Bug Summary

File:clang/lib/Sema/SemaOverload.cpp
Warning:line 9706, column 44
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/include -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-08-06-171148-17323-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/CXXInheritance.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DependenceFlags.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/Optional.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include <algorithm>
38#include <cstdlib>
39
40using namespace clang;
41using namespace sema;
42
43using AllowedExplicit = Sema::AllowedExplicit;
44
45static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47 return P->hasAttr<PassObjectSizeAttr>();
48 });
49}
50
51/// A convenience routine for creating a decayed reference to a function.
52static ExprResult
53CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54 const Expr *Base, bool HadMultipleCandidates,
55 SourceLocation Loc = SourceLocation(),
56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58 return ExprError();
59 // If FoundDecl is different from Fn (such as if one is a template
60 // and the other a specialization), make sure DiagnoseUseOfDecl is
61 // called on both.
62 // FIXME: This would be more comprehensively addressed by modifying
63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64 // being used.
65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66 return ExprError();
67 DeclRefExpr *DRE = new (S.Context)
68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69 if (HadMultipleCandidates)
70 DRE->setHadMultipleCandidates(true);
71
72 S.MarkDeclRefReferenced(DRE, Base);
73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75 S.ResolveExceptionSpec(Loc, FPT);
76 DRE->setType(Fn->getType());
77 }
78 }
79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80 CK_FunctionToPointerDecay);
81}
82
83static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84 bool InOverloadResolution,
85 StandardConversionSequence &SCS,
86 bool CStyle,
87 bool AllowObjCWritebackConversion);
88
89static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90 QualType &ToType,
91 bool InOverloadResolution,
92 StandardConversionSequence &SCS,
93 bool CStyle);
94static OverloadingResult
95IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96 UserDefinedConversionSequence& User,
97 OverloadCandidateSet& Conversions,
98 AllowedExplicit AllowExplicit,
99 bool AllowObjCConversionOnExplicit);
100
101static ImplicitConversionSequence::CompareKind
102CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103 const StandardConversionSequence& SCS1,
104 const StandardConversionSequence& SCS2);
105
106static ImplicitConversionSequence::CompareKind
107CompareQualificationConversions(Sema &S,
108 const StandardConversionSequence& SCS1,
109 const StandardConversionSequence& SCS2);
110
111static ImplicitConversionSequence::CompareKind
112CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113 const StandardConversionSequence& SCS1,
114 const StandardConversionSequence& SCS2);
115
116/// GetConversionRank - Retrieve the implicit conversion rank
117/// corresponding to the given implicit conversion kind.
118ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119 static const ImplicitConversionRank
120 Rank[(int)ICK_Num_Conversion_Kinds] = {
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Promotion,
128 ICR_Promotion,
129 ICR_Promotion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_OCL_Scalar_Widening,
141 ICR_Complex_Real_Conversion,
142 ICR_Conversion,
143 ICR_Conversion,
144 ICR_Writeback_Conversion,
145 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
146 // it was omitted by the patch that added
147 // ICK_Zero_Event_Conversion
148 ICR_C_Conversion,
149 ICR_C_Conversion_Extension
150 };
151 return Rank[(int)Kind];
152}
153
154/// GetImplicitConversionName - Return the name of this kind of
155/// implicit conversion.
156static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158 "No conversion",
159 "Lvalue-to-rvalue",
160 "Array-to-pointer",
161 "Function-to-pointer",
162 "Function pointer conversion",
163 "Qualification",
164 "Integral promotion",
165 "Floating point promotion",
166 "Complex promotion",
167 "Integral conversion",
168 "Floating conversion",
169 "Complex conversion",
170 "Floating-integral conversion",
171 "Pointer conversion",
172 "Pointer-to-member conversion",
173 "Boolean conversion",
174 "Compatible-types conversion",
175 "Derived-to-base conversion",
176 "Vector conversion",
177 "Vector splat",
178 "Complex-real conversion",
179 "Block Pointer conversion",
180 "Transparent Union Conversion",
181 "Writeback conversion",
182 "OpenCL Zero Event Conversion",
183 "C specific type conversion",
184 "Incompatible pointer conversion"
185 };
186 return Name[Kind];
187}
188
189/// StandardConversionSequence - Set the standard conversion
190/// sequence to the identity conversion.
191void StandardConversionSequence::setAsIdentityConversion() {
192 First = ICK_Identity;
193 Second = ICK_Identity;
194 Third = ICK_Identity;
195 DeprecatedStringLiteralToCharPtr = false;
196 QualificationIncludesObjCLifetime = false;
197 ReferenceBinding = false;
198 DirectBinding = false;
199 IsLvalueReference = true;
200 BindsToFunctionLvalue = false;
201 BindsToRvalue = false;
202 BindsImplicitObjectArgumentWithoutRefQualifier = false;
203 ObjCLifetimeConversionBinding = false;
204 CopyConstructor = nullptr;
205}
206
207/// getRank - Retrieve the rank of this standard conversion sequence
208/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
209/// implicit conversions.
210ImplicitConversionRank StandardConversionSequence::getRank() const {
211 ImplicitConversionRank Rank = ICR_Exact_Match;
212 if (GetConversionRank(First) > Rank)
213 Rank = GetConversionRank(First);
214 if (GetConversionRank(Second) > Rank)
215 Rank = GetConversionRank(Second);
216 if (GetConversionRank(Third) > Rank)
217 Rank = GetConversionRank(Third);
218 return Rank;
219}
220
221/// isPointerConversionToBool - Determines whether this conversion is
222/// a conversion of a pointer or pointer-to-member to bool. This is
223/// used as part of the ranking of standard conversion sequences
224/// (C++ 13.3.3.2p4).
225bool StandardConversionSequence::isPointerConversionToBool() const {
226 // Note that FromType has not necessarily been transformed by the
227 // array-to-pointer or function-to-pointer implicit conversions, so
228 // check for their presence as well as checking whether FromType is
229 // a pointer.
230 if (getToType(1)->isBooleanType() &&
231 (getFromType()->isPointerType() ||
232 getFromType()->isMemberPointerType() ||
233 getFromType()->isObjCObjectPointerType() ||
234 getFromType()->isBlockPointerType() ||
235 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
236 return true;
237
238 return false;
239}
240
241/// isPointerConversionToVoidPointer - Determines whether this
242/// conversion is a conversion of a pointer to a void pointer. This is
243/// used as part of the ranking of standard conversion sequences (C++
244/// 13.3.3.2p4).
245bool
246StandardConversionSequence::
247isPointerConversionToVoidPointer(ASTContext& Context) const {
248 QualType FromType = getFromType();
249 QualType ToType = getToType(1);
250
251 // Note that FromType has not necessarily been transformed by the
252 // array-to-pointer implicit conversion, so check for its presence
253 // and redo the conversion to get a pointer.
254 if (First == ICK_Array_To_Pointer)
255 FromType = Context.getArrayDecayedType(FromType);
256
257 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
258 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
259 return ToPtrType->getPointeeType()->isVoidType();
260
261 return false;
262}
263
264/// Skip any implicit casts which could be either part of a narrowing conversion
265/// or after one in an implicit conversion.
266static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
267 const Expr *Converted) {
268 // We can have cleanups wrapping the converted expression; these need to be
269 // preserved so that destructors run if necessary.
270 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
271 Expr *Inner =
272 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
273 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
274 EWC->getObjects());
275 }
276
277 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
278 switch (ICE->getCastKind()) {
279 case CK_NoOp:
280 case CK_IntegralCast:
281 case CK_IntegralToBoolean:
282 case CK_IntegralToFloating:
283 case CK_BooleanToSignedIntegral:
284 case CK_FloatingToIntegral:
285 case CK_FloatingToBoolean:
286 case CK_FloatingCast:
287 Converted = ICE->getSubExpr();
288 continue;
289
290 default:
291 return Converted;
292 }
293 }
294
295 return Converted;
296}
297
298/// Check if this standard conversion sequence represents a narrowing
299/// conversion, according to C++11 [dcl.init.list]p7.
300///
301/// \param Ctx The AST context.
302/// \param Converted The result of applying this standard conversion sequence.
303/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
304/// value of the expression prior to the narrowing conversion.
305/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
306/// type of the expression prior to the narrowing conversion.
307/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
308/// from floating point types to integral types should be ignored.
309NarrowingKind StandardConversionSequence::getNarrowingKind(
310 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
311 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
312 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 312, __PRETTY_FUNCTION__))
;
313
314 // C++11 [dcl.init.list]p7:
315 // A narrowing conversion is an implicit conversion ...
316 QualType FromType = getToType(0);
317 QualType ToType = getToType(1);
318
319 // A conversion to an enumeration type is narrowing if the conversion to
320 // the underlying type is narrowing. This only arises for expressions of
321 // the form 'Enum{init}'.
322 if (auto *ET = ToType->getAs<EnumType>())
323 ToType = ET->getDecl()->getIntegerType();
324
325 switch (Second) {
326 // 'bool' is an integral type; dispatch to the right place to handle it.
327 case ICK_Boolean_Conversion:
328 if (FromType->isRealFloatingType())
329 goto FloatingIntegralConversion;
330 if (FromType->isIntegralOrUnscopedEnumerationType())
331 goto IntegralConversion;
332 // -- from a pointer type or pointer-to-member type to bool, or
333 return NK_Type_Narrowing;
334
335 // -- from a floating-point type to an integer type, or
336 //
337 // -- from an integer type or unscoped enumeration type to a floating-point
338 // type, except where the source is a constant expression and the actual
339 // value after conversion will fit into the target type and will produce
340 // the original value when converted back to the original type, or
341 case ICK_Floating_Integral:
342 FloatingIntegralConversion:
343 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
344 return NK_Type_Narrowing;
345 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
346 ToType->isRealFloatingType()) {
347 if (IgnoreFloatToIntegralConversion)
348 return NK_Not_Narrowing;
349 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
350 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 350, __PRETTY_FUNCTION__))
;
351
352 // If it's value-dependent, we can't tell whether it's narrowing.
353 if (Initializer->isValueDependent())
354 return NK_Dependent_Narrowing;
355
356 if (Optional<llvm::APSInt> IntConstantValue =
357 Initializer->getIntegerConstantExpr(Ctx)) {
358 // Convert the integer to the floating type.
359 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
360 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
361 llvm::APFloat::rmNearestTiesToEven);
362 // And back.
363 llvm::APSInt ConvertedValue = *IntConstantValue;
364 bool ignored;
365 Result.convertToInteger(ConvertedValue,
366 llvm::APFloat::rmTowardZero, &ignored);
367 // If the resulting value is different, this was a narrowing conversion.
368 if (*IntConstantValue != ConvertedValue) {
369 ConstantValue = APValue(*IntConstantValue);
370 ConstantType = Initializer->getType();
371 return NK_Constant_Narrowing;
372 }
373 } else {
374 // Variables are always narrowings.
375 return NK_Variable_Narrowing;
376 }
377 }
378 return NK_Not_Narrowing;
379
380 // -- from long double to double or float, or from double to float, except
381 // where the source is a constant expression and the actual value after
382 // conversion is within the range of values that can be represented (even
383 // if it cannot be represented exactly), or
384 case ICK_Floating_Conversion:
385 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
386 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
387 // FromType is larger than ToType.
388 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
389
390 // If it's value-dependent, we can't tell whether it's narrowing.
391 if (Initializer->isValueDependent())
392 return NK_Dependent_Narrowing;
393
394 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
395 // Constant!
396 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 396, __PRETTY_FUNCTION__))
;
397 llvm::APFloat FloatVal = ConstantValue.getFloat();
398 // Convert the source value into the target type.
399 bool ignored;
400 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
401 Ctx.getFloatTypeSemantics(ToType),
402 llvm::APFloat::rmNearestTiesToEven, &ignored);
403 // If there was no overflow, the source value is within the range of
404 // values that can be represented.
405 if (ConvertStatus & llvm::APFloat::opOverflow) {
406 ConstantType = Initializer->getType();
407 return NK_Constant_Narrowing;
408 }
409 } else {
410 return NK_Variable_Narrowing;
411 }
412 }
413 return NK_Not_Narrowing;
414
415 // -- from an integer type or unscoped enumeration type to an integer type
416 // that cannot represent all the values of the original type, except where
417 // the source is a constant expression and the actual value after
418 // conversion will fit into the target type and will produce the original
419 // value when converted back to the original type.
420 case ICK_Integral_Conversion:
421 IntegralConversion: {
422 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 422, __PRETTY_FUNCTION__))
;
423 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 423, __PRETTY_FUNCTION__))
;
424 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
425 const unsigned FromWidth = Ctx.getIntWidth(FromType);
426 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
427 const unsigned ToWidth = Ctx.getIntWidth(ToType);
428
429 if (FromWidth > ToWidth ||
430 (FromWidth == ToWidth && FromSigned != ToSigned) ||
431 (FromSigned && !ToSigned)) {
432 // Not all values of FromType can be represented in ToType.
433 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
434
435 // If it's value-dependent, we can't tell whether it's narrowing.
436 if (Initializer->isValueDependent())
437 return NK_Dependent_Narrowing;
438
439 Optional<llvm::APSInt> OptInitializerValue;
440 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
441 // Such conversions on variables are always narrowing.
442 return NK_Variable_Narrowing;
443 }
444 llvm::APSInt &InitializerValue = *OptInitializerValue;
445 bool Narrowing = false;
446 if (FromWidth < ToWidth) {
447 // Negative -> unsigned is narrowing. Otherwise, more bits is never
448 // narrowing.
449 if (InitializerValue.isSigned() && InitializerValue.isNegative())
450 Narrowing = true;
451 } else {
452 // Add a bit to the InitializerValue so we don't have to worry about
453 // signed vs. unsigned comparisons.
454 InitializerValue = InitializerValue.extend(
455 InitializerValue.getBitWidth() + 1);
456 // Convert the initializer to and from the target width and signed-ness.
457 llvm::APSInt ConvertedValue = InitializerValue;
458 ConvertedValue = ConvertedValue.trunc(ToWidth);
459 ConvertedValue.setIsSigned(ToSigned);
460 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
461 ConvertedValue.setIsSigned(InitializerValue.isSigned());
462 // If the result is different, this was a narrowing conversion.
463 if (ConvertedValue != InitializerValue)
464 Narrowing = true;
465 }
466 if (Narrowing) {
467 ConstantType = Initializer->getType();
468 ConstantValue = APValue(InitializerValue);
469 return NK_Constant_Narrowing;
470 }
471 }
472 return NK_Not_Narrowing;
473 }
474
475 default:
476 // Other kinds of conversions are not narrowings.
477 return NK_Not_Narrowing;
478 }
479}
480
481/// dump - Print this standard conversion sequence to standard
482/// error. Useful for debugging overloading issues.
483LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
484 raw_ostream &OS = llvm::errs();
485 bool PrintedSomething = false;
486 if (First != ICK_Identity) {
487 OS << GetImplicitConversionName(First);
488 PrintedSomething = true;
489 }
490
491 if (Second != ICK_Identity) {
492 if (PrintedSomething) {
493 OS << " -> ";
494 }
495 OS << GetImplicitConversionName(Second);
496
497 if (CopyConstructor) {
498 OS << " (by copy constructor)";
499 } else if (DirectBinding) {
500 OS << " (direct reference binding)";
501 } else if (ReferenceBinding) {
502 OS << " (reference binding)";
503 }
504 PrintedSomething = true;
505 }
506
507 if (Third != ICK_Identity) {
508 if (PrintedSomething) {
509 OS << " -> ";
510 }
511 OS << GetImplicitConversionName(Third);
512 PrintedSomething = true;
513 }
514
515 if (!PrintedSomething) {
516 OS << "No conversions required";
517 }
518}
519
520/// dump - Print this user-defined conversion sequence to standard
521/// error. Useful for debugging overloading issues.
522void UserDefinedConversionSequence::dump() const {
523 raw_ostream &OS = llvm::errs();
524 if (Before.First || Before.Second || Before.Third) {
525 Before.dump();
526 OS << " -> ";
527 }
528 if (ConversionFunction)
529 OS << '\'' << *ConversionFunction << '\'';
530 else
531 OS << "aggregate initialization";
532 if (After.First || After.Second || After.Third) {
533 OS << " -> ";
534 After.dump();
535 }
536}
537
538/// dump - Print this implicit conversion sequence to standard
539/// error. Useful for debugging overloading issues.
540void ImplicitConversionSequence::dump() const {
541 raw_ostream &OS = llvm::errs();
542 if (isStdInitializerListElement())
543 OS << "Worst std::initializer_list element conversion: ";
544 switch (ConversionKind) {
545 case StandardConversion:
546 OS << "Standard conversion: ";
547 Standard.dump();
548 break;
549 case UserDefinedConversion:
550 OS << "User-defined conversion: ";
551 UserDefined.dump();
552 break;
553 case EllipsisConversion:
554 OS << "Ellipsis conversion";
555 break;
556 case AmbiguousConversion:
557 OS << "Ambiguous conversion";
558 break;
559 case BadConversion:
560 OS << "Bad conversion";
561 break;
562 }
563
564 OS << "\n";
565}
566
567void AmbiguousConversionSequence::construct() {
568 new (&conversions()) ConversionSet();
569}
570
571void AmbiguousConversionSequence::destruct() {
572 conversions().~ConversionSet();
573}
574
575void
576AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
577 FromTypePtr = O.FromTypePtr;
578 ToTypePtr = O.ToTypePtr;
579 new (&conversions()) ConversionSet(O.conversions());
580}
581
582namespace {
583 // Structure used by DeductionFailureInfo to store
584 // template argument information.
585 struct DFIArguments {
586 TemplateArgument FirstArg;
587 TemplateArgument SecondArg;
588 };
589 // Structure used by DeductionFailureInfo to store
590 // template parameter and template argument information.
591 struct DFIParamWithArguments : DFIArguments {
592 TemplateParameter Param;
593 };
594 // Structure used by DeductionFailureInfo to store template argument
595 // information and the index of the problematic call argument.
596 struct DFIDeducedMismatchArgs : DFIArguments {
597 TemplateArgumentList *TemplateArgs;
598 unsigned CallArgIndex;
599 };
600 // Structure used by DeductionFailureInfo to store information about
601 // unsatisfied constraints.
602 struct CNSInfo {
603 TemplateArgumentList *TemplateArgs;
604 ConstraintSatisfaction Satisfaction;
605 };
606}
607
608/// Convert from Sema's representation of template deduction information
609/// to the form used in overload-candidate information.
610DeductionFailureInfo
611clang::MakeDeductionFailureInfo(ASTContext &Context,
612 Sema::TemplateDeductionResult TDK,
613 TemplateDeductionInfo &Info) {
614 DeductionFailureInfo Result;
615 Result.Result = static_cast<unsigned>(TDK);
616 Result.HasDiagnostic = false;
617 switch (TDK) {
618 case Sema::TDK_Invalid:
619 case Sema::TDK_InstantiationDepth:
620 case Sema::TDK_TooManyArguments:
621 case Sema::TDK_TooFewArguments:
622 case Sema::TDK_MiscellaneousDeductionFailure:
623 case Sema::TDK_CUDATargetMismatch:
624 Result.Data = nullptr;
625 break;
626
627 case Sema::TDK_Incomplete:
628 case Sema::TDK_InvalidExplicitArguments:
629 Result.Data = Info.Param.getOpaqueValue();
630 break;
631
632 case Sema::TDK_DeducedMismatch:
633 case Sema::TDK_DeducedMismatchNested: {
634 // FIXME: Should allocate from normal heap so that we can free this later.
635 auto *Saved = new (Context) DFIDeducedMismatchArgs;
636 Saved->FirstArg = Info.FirstArg;
637 Saved->SecondArg = Info.SecondArg;
638 Saved->TemplateArgs = Info.take();
639 Saved->CallArgIndex = Info.CallArgIndex;
640 Result.Data = Saved;
641 break;
642 }
643
644 case Sema::TDK_NonDeducedMismatch: {
645 // FIXME: Should allocate from normal heap so that we can free this later.
646 DFIArguments *Saved = new (Context) DFIArguments;
647 Saved->FirstArg = Info.FirstArg;
648 Saved->SecondArg = Info.SecondArg;
649 Result.Data = Saved;
650 break;
651 }
652
653 case Sema::TDK_IncompletePack:
654 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
655 case Sema::TDK_Inconsistent:
656 case Sema::TDK_Underqualified: {
657 // FIXME: Should allocate from normal heap so that we can free this later.
658 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
659 Saved->Param = Info.Param;
660 Saved->FirstArg = Info.FirstArg;
661 Saved->SecondArg = Info.SecondArg;
662 Result.Data = Saved;
663 break;
664 }
665
666 case Sema::TDK_SubstitutionFailure:
667 Result.Data = Info.take();
668 if (Info.hasSFINAEDiagnostic()) {
669 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
670 SourceLocation(), PartialDiagnostic::NullDiagnostic());
671 Info.takeSFINAEDiagnostic(*Diag);
672 Result.HasDiagnostic = true;
673 }
674 break;
675
676 case Sema::TDK_ConstraintsNotSatisfied: {
677 CNSInfo *Saved = new (Context) CNSInfo;
678 Saved->TemplateArgs = Info.take();
679 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
680 Result.Data = Saved;
681 break;
682 }
683
684 case Sema::TDK_Success:
685 case Sema::TDK_NonDependentConversionFailure:
686 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 686)
;
687 }
688
689 return Result;
690}
691
692void DeductionFailureInfo::Destroy() {
693 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
694 case Sema::TDK_Success:
695 case Sema::TDK_Invalid:
696 case Sema::TDK_InstantiationDepth:
697 case Sema::TDK_Incomplete:
698 case Sema::TDK_TooManyArguments:
699 case Sema::TDK_TooFewArguments:
700 case Sema::TDK_InvalidExplicitArguments:
701 case Sema::TDK_CUDATargetMismatch:
702 case Sema::TDK_NonDependentConversionFailure:
703 break;
704
705 case Sema::TDK_IncompletePack:
706 case Sema::TDK_Inconsistent:
707 case Sema::TDK_Underqualified:
708 case Sema::TDK_DeducedMismatch:
709 case Sema::TDK_DeducedMismatchNested:
710 case Sema::TDK_NonDeducedMismatch:
711 // FIXME: Destroy the data?
712 Data = nullptr;
713 break;
714
715 case Sema::TDK_SubstitutionFailure:
716 // FIXME: Destroy the template argument list?
717 Data = nullptr;
718 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
719 Diag->~PartialDiagnosticAt();
720 HasDiagnostic = false;
721 }
722 break;
723
724 case Sema::TDK_ConstraintsNotSatisfied:
725 // FIXME: Destroy the template argument list?
726 Data = nullptr;
727 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
728 Diag->~PartialDiagnosticAt();
729 HasDiagnostic = false;
730 }
731 break;
732
733 // Unhandled
734 case Sema::TDK_MiscellaneousDeductionFailure:
735 break;
736 }
737}
738
739PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
740 if (HasDiagnostic)
741 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
742 return nullptr;
743}
744
745TemplateParameter DeductionFailureInfo::getTemplateParameter() {
746 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
747 case Sema::TDK_Success:
748 case Sema::TDK_Invalid:
749 case Sema::TDK_InstantiationDepth:
750 case Sema::TDK_TooManyArguments:
751 case Sema::TDK_TooFewArguments:
752 case Sema::TDK_SubstitutionFailure:
753 case Sema::TDK_DeducedMismatch:
754 case Sema::TDK_DeducedMismatchNested:
755 case Sema::TDK_NonDeducedMismatch:
756 case Sema::TDK_CUDATargetMismatch:
757 case Sema::TDK_NonDependentConversionFailure:
758 case Sema::TDK_ConstraintsNotSatisfied:
759 return TemplateParameter();
760
761 case Sema::TDK_Incomplete:
762 case Sema::TDK_InvalidExplicitArguments:
763 return TemplateParameter::getFromOpaqueValue(Data);
764
765 case Sema::TDK_IncompletePack:
766 case Sema::TDK_Inconsistent:
767 case Sema::TDK_Underqualified:
768 return static_cast<DFIParamWithArguments*>(Data)->Param;
769
770 // Unhandled
771 case Sema::TDK_MiscellaneousDeductionFailure:
772 break;
773 }
774
775 return TemplateParameter();
776}
777
778TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
779 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
780 case Sema::TDK_Success:
781 case Sema::TDK_Invalid:
782 case Sema::TDK_InstantiationDepth:
783 case Sema::TDK_TooManyArguments:
784 case Sema::TDK_TooFewArguments:
785 case Sema::TDK_Incomplete:
786 case Sema::TDK_IncompletePack:
787 case Sema::TDK_InvalidExplicitArguments:
788 case Sema::TDK_Inconsistent:
789 case Sema::TDK_Underqualified:
790 case Sema::TDK_NonDeducedMismatch:
791 case Sema::TDK_CUDATargetMismatch:
792 case Sema::TDK_NonDependentConversionFailure:
793 return nullptr;
794
795 case Sema::TDK_DeducedMismatch:
796 case Sema::TDK_DeducedMismatchNested:
797 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
798
799 case Sema::TDK_SubstitutionFailure:
800 return static_cast<TemplateArgumentList*>(Data);
801
802 case Sema::TDK_ConstraintsNotSatisfied:
803 return static_cast<CNSInfo*>(Data)->TemplateArgs;
804
805 // Unhandled
806 case Sema::TDK_MiscellaneousDeductionFailure:
807 break;
808 }
809
810 return nullptr;
811}
812
813const TemplateArgument *DeductionFailureInfo::getFirstArg() {
814 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
815 case Sema::TDK_Success:
816 case Sema::TDK_Invalid:
817 case Sema::TDK_InstantiationDepth:
818 case Sema::TDK_Incomplete:
819 case Sema::TDK_TooManyArguments:
820 case Sema::TDK_TooFewArguments:
821 case Sema::TDK_InvalidExplicitArguments:
822 case Sema::TDK_SubstitutionFailure:
823 case Sema::TDK_CUDATargetMismatch:
824 case Sema::TDK_NonDependentConversionFailure:
825 case Sema::TDK_ConstraintsNotSatisfied:
826 return nullptr;
827
828 case Sema::TDK_IncompletePack:
829 case Sema::TDK_Inconsistent:
830 case Sema::TDK_Underqualified:
831 case Sema::TDK_DeducedMismatch:
832 case Sema::TDK_DeducedMismatchNested:
833 case Sema::TDK_NonDeducedMismatch:
834 return &static_cast<DFIArguments*>(Data)->FirstArg;
835
836 // Unhandled
837 case Sema::TDK_MiscellaneousDeductionFailure:
838 break;
839 }
840
841 return nullptr;
842}
843
844const TemplateArgument *DeductionFailureInfo::getSecondArg() {
845 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
846 case Sema::TDK_Success:
847 case Sema::TDK_Invalid:
848 case Sema::TDK_InstantiationDepth:
849 case Sema::TDK_Incomplete:
850 case Sema::TDK_IncompletePack:
851 case Sema::TDK_TooManyArguments:
852 case Sema::TDK_TooFewArguments:
853 case Sema::TDK_InvalidExplicitArguments:
854 case Sema::TDK_SubstitutionFailure:
855 case Sema::TDK_CUDATargetMismatch:
856 case Sema::TDK_NonDependentConversionFailure:
857 case Sema::TDK_ConstraintsNotSatisfied:
858 return nullptr;
859
860 case Sema::TDK_Inconsistent:
861 case Sema::TDK_Underqualified:
862 case Sema::TDK_DeducedMismatch:
863 case Sema::TDK_DeducedMismatchNested:
864 case Sema::TDK_NonDeducedMismatch:
865 return &static_cast<DFIArguments*>(Data)->SecondArg;
866
867 // Unhandled
868 case Sema::TDK_MiscellaneousDeductionFailure:
869 break;
870 }
871
872 return nullptr;
873}
874
875llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
876 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
877 case Sema::TDK_DeducedMismatch:
878 case Sema::TDK_DeducedMismatchNested:
879 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
880
881 default:
882 return llvm::None;
883 }
884}
885
886bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
887 OverloadedOperatorKind Op) {
888 if (!AllowRewrittenCandidates)
889 return false;
890 return Op == OO_EqualEqual || Op == OO_Spaceship;
891}
892
893bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
894 ASTContext &Ctx, const FunctionDecl *FD) {
895 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
896 return false;
897 // Don't bother adding a reversed candidate that can never be a better
898 // match than the non-reversed version.
899 return FD->getNumParams() != 2 ||
900 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
901 FD->getParamDecl(1)->getType()) ||
902 FD->hasAttr<EnableIfAttr>();
903}
904
905void OverloadCandidateSet::destroyCandidates() {
906 for (iterator i = begin(), e = end(); i != e; ++i) {
907 for (auto &C : i->Conversions)
908 C.~ImplicitConversionSequence();
909 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
910 i->DeductionFailure.Destroy();
911 }
912}
913
914void OverloadCandidateSet::clear(CandidateSetKind CSK) {
915 destroyCandidates();
916 SlabAllocator.Reset();
917 NumInlineBytesUsed = 0;
918 Candidates.clear();
919 Functions.clear();
920 Kind = CSK;
921}
922
923namespace {
924 class UnbridgedCastsSet {
925 struct Entry {
926 Expr **Addr;
927 Expr *Saved;
928 };
929 SmallVector<Entry, 2> Entries;
930
931 public:
932 void save(Sema &S, Expr *&E) {
933 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 933, __PRETTY_FUNCTION__))
;
934 Entry entry = { &E, E };
935 Entries.push_back(entry);
936 E = S.stripARCUnbridgedCast(E);
937 }
938
939 void restore() {
940 for (SmallVectorImpl<Entry>::iterator
941 i = Entries.begin(), e = Entries.end(); i != e; ++i)
942 *i->Addr = i->Saved;
943 }
944 };
945}
946
947/// checkPlaceholderForOverload - Do any interesting placeholder-like
948/// preprocessing on the given expression.
949///
950/// \param unbridgedCasts a collection to which to add unbridged casts;
951/// without this, they will be immediately diagnosed as errors
952///
953/// Return true on unrecoverable error.
954static bool
955checkPlaceholderForOverload(Sema &S, Expr *&E,
956 UnbridgedCastsSet *unbridgedCasts = nullptr) {
957 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
958 // We can't handle overloaded expressions here because overload
959 // resolution might reasonably tweak them.
960 if (placeholder->getKind() == BuiltinType::Overload) return false;
961
962 // If the context potentially accepts unbridged ARC casts, strip
963 // the unbridged cast and add it to the collection for later restoration.
964 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
965 unbridgedCasts) {
966 unbridgedCasts->save(S, E);
967 return false;
968 }
969
970 // Go ahead and check everything else.
971 ExprResult result = S.CheckPlaceholderExpr(E);
972 if (result.isInvalid())
973 return true;
974
975 E = result.get();
976 return false;
977 }
978
979 // Nothing to do.
980 return false;
981}
982
983/// checkArgPlaceholdersForOverload - Check a set of call operands for
984/// placeholders.
985static bool checkArgPlaceholdersForOverload(Sema &S,
986 MultiExprArg Args,
987 UnbridgedCastsSet &unbridged) {
988 for (unsigned i = 0, e = Args.size(); i != e; ++i)
989 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
990 return true;
991
992 return false;
993}
994
995/// Determine whether the given New declaration is an overload of the
996/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
997/// New and Old cannot be overloaded, e.g., if New has the same signature as
998/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
999/// functions (or function templates) at all. When it does return Ovl_Match or
1000/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1001/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1002/// declaration.
1003///
1004/// Example: Given the following input:
1005///
1006/// void f(int, float); // #1
1007/// void f(int, int); // #2
1008/// int f(int, int); // #3
1009///
1010/// When we process #1, there is no previous declaration of "f", so IsOverload
1011/// will not be used.
1012///
1013/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1014/// the parameter types, we see that #1 and #2 are overloaded (since they have
1015/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1016/// unchanged.
1017///
1018/// When we process #3, Old is an overload set containing #1 and #2. We compare
1019/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1020/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1021/// functions are not part of the signature), IsOverload returns Ovl_Match and
1022/// MatchedDecl will be set to point to the FunctionDecl for #2.
1023///
1024/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1025/// by a using declaration. The rules for whether to hide shadow declarations
1026/// ignore some properties which otherwise figure into a function template's
1027/// signature.
1028Sema::OverloadKind
1029Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1030 NamedDecl *&Match, bool NewIsUsingDecl) {
1031 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1032 I != E; ++I) {
1033 NamedDecl *OldD = *I;
1034
1035 bool OldIsUsingDecl = false;
1036 if (isa<UsingShadowDecl>(OldD)) {
1037 OldIsUsingDecl = true;
1038
1039 // We can always introduce two using declarations into the same
1040 // context, even if they have identical signatures.
1041 if (NewIsUsingDecl) continue;
1042
1043 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1044 }
1045
1046 // A using-declaration does not conflict with another declaration
1047 // if one of them is hidden.
1048 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1049 continue;
1050
1051 // If either declaration was introduced by a using declaration,
1052 // we'll need to use slightly different rules for matching.
1053 // Essentially, these rules are the normal rules, except that
1054 // function templates hide function templates with different
1055 // return types or template parameter lists.
1056 bool UseMemberUsingDeclRules =
1057 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1058 !New->getFriendObjectKind();
1059
1060 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1061 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1062 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1063 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1064 continue;
1065 }
1066
1067 if (!isa<FunctionTemplateDecl>(OldD) &&
1068 !shouldLinkPossiblyHiddenDecl(*I, New))
1069 continue;
1070
1071 Match = *I;
1072 return Ovl_Match;
1073 }
1074
1075 // Builtins that have custom typechecking or have a reference should
1076 // not be overloadable or redeclarable.
1077 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1078 Match = *I;
1079 return Ovl_NonFunction;
1080 }
1081 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1082 // We can overload with these, which can show up when doing
1083 // redeclaration checks for UsingDecls.
1084 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1084, __PRETTY_FUNCTION__))
;
1085 } else if (isa<TagDecl>(OldD)) {
1086 // We can always overload with tags by hiding them.
1087 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1088 // Optimistically assume that an unresolved using decl will
1089 // overload; if it doesn't, we'll have to diagnose during
1090 // template instantiation.
1091 //
1092 // Exception: if the scope is dependent and this is not a class
1093 // member, the using declaration can only introduce an enumerator.
1094 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1095 Match = *I;
1096 return Ovl_NonFunction;
1097 }
1098 } else {
1099 // (C++ 13p1):
1100 // Only function declarations can be overloaded; object and type
1101 // declarations cannot be overloaded.
1102 Match = *I;
1103 return Ovl_NonFunction;
1104 }
1105 }
1106
1107 // C++ [temp.friend]p1:
1108 // For a friend function declaration that is not a template declaration:
1109 // -- if the name of the friend is a qualified or unqualified template-id,
1110 // [...], otherwise
1111 // -- if the name of the friend is a qualified-id and a matching
1112 // non-template function is found in the specified class or namespace,
1113 // the friend declaration refers to that function, otherwise,
1114 // -- if the name of the friend is a qualified-id and a matching function
1115 // template is found in the specified class or namespace, the friend
1116 // declaration refers to the deduced specialization of that function
1117 // template, otherwise
1118 // -- the name shall be an unqualified-id [...]
1119 // If we get here for a qualified friend declaration, we've just reached the
1120 // third bullet. If the type of the friend is dependent, skip this lookup
1121 // until instantiation.
1122 if (New->getFriendObjectKind() && New->getQualifier() &&
1123 !New->getDescribedFunctionTemplate() &&
1124 !New->getDependentSpecializationInfo() &&
1125 !New->getType()->isDependentType()) {
1126 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1127 TemplateSpecResult.addAllDecls(Old);
1128 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1129 /*QualifiedFriend*/true)) {
1130 New->setInvalidDecl();
1131 return Ovl_Overload;
1132 }
1133
1134 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1135 return Ovl_Match;
1136 }
1137
1138 return Ovl_Overload;
1139}
1140
1141bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1142 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1143 bool ConsiderRequiresClauses) {
1144 // C++ [basic.start.main]p2: This function shall not be overloaded.
1145 if (New->isMain())
1146 return false;
1147
1148 // MSVCRT user defined entry points cannot be overloaded.
1149 if (New->isMSVCRTEntryPoint())
1150 return false;
1151
1152 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1153 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1154
1155 // C++ [temp.fct]p2:
1156 // A function template can be overloaded with other function templates
1157 // and with normal (non-template) functions.
1158 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1159 return true;
1160
1161 // Is the function New an overload of the function Old?
1162 QualType OldQType = Context.getCanonicalType(Old->getType());
1163 QualType NewQType = Context.getCanonicalType(New->getType());
1164
1165 // Compare the signatures (C++ 1.3.10) of the two functions to
1166 // determine whether they are overloads. If we find any mismatch
1167 // in the signature, they are overloads.
1168
1169 // If either of these functions is a K&R-style function (no
1170 // prototype), then we consider them to have matching signatures.
1171 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1172 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1173 return false;
1174
1175 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1176 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1177
1178 // The signature of a function includes the types of its
1179 // parameters (C++ 1.3.10), which includes the presence or absence
1180 // of the ellipsis; see C++ DR 357).
1181 if (OldQType != NewQType &&
1182 (OldType->getNumParams() != NewType->getNumParams() ||
1183 OldType->isVariadic() != NewType->isVariadic() ||
1184 !FunctionParamTypesAreEqual(OldType, NewType)))
1185 return true;
1186
1187 // C++ [temp.over.link]p4:
1188 // The signature of a function template consists of its function
1189 // signature, its return type and its template parameter list. The names
1190 // of the template parameters are significant only for establishing the
1191 // relationship between the template parameters and the rest of the
1192 // signature.
1193 //
1194 // We check the return type and template parameter lists for function
1195 // templates first; the remaining checks follow.
1196 //
1197 // However, we don't consider either of these when deciding whether
1198 // a member introduced by a shadow declaration is hidden.
1199 if (!UseMemberUsingDeclRules && NewTemplate &&
1200 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1201 OldTemplate->getTemplateParameters(),
1202 false, TPL_TemplateMatch) ||
1203 !Context.hasSameType(Old->getDeclaredReturnType(),
1204 New->getDeclaredReturnType())))
1205 return true;
1206
1207 // If the function is a class member, its signature includes the
1208 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1209 //
1210 // As part of this, also check whether one of the member functions
1211 // is static, in which case they are not overloads (C++
1212 // 13.1p2). While not part of the definition of the signature,
1213 // this check is important to determine whether these functions
1214 // can be overloaded.
1215 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1216 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1217 if (OldMethod && NewMethod &&
1218 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1219 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1220 if (!UseMemberUsingDeclRules &&
1221 (OldMethod->getRefQualifier() == RQ_None ||
1222 NewMethod->getRefQualifier() == RQ_None)) {
1223 // C++0x [over.load]p2:
1224 // - Member function declarations with the same name and the same
1225 // parameter-type-list as well as member function template
1226 // declarations with the same name, the same parameter-type-list, and
1227 // the same template parameter lists cannot be overloaded if any of
1228 // them, but not all, have a ref-qualifier (8.3.5).
1229 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1230 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1231 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1232 }
1233 return true;
1234 }
1235
1236 // We may not have applied the implicit const for a constexpr member
1237 // function yet (because we haven't yet resolved whether this is a static
1238 // or non-static member function). Add it now, on the assumption that this
1239 // is a redeclaration of OldMethod.
1240 auto OldQuals = OldMethod->getMethodQualifiers();
1241 auto NewQuals = NewMethod->getMethodQualifiers();
1242 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1243 !isa<CXXConstructorDecl>(NewMethod))
1244 NewQuals.addConst();
1245 // We do not allow overloading based off of '__restrict'.
1246 OldQuals.removeRestrict();
1247 NewQuals.removeRestrict();
1248 if (OldQuals != NewQuals)
1249 return true;
1250 }
1251
1252 // Though pass_object_size is placed on parameters and takes an argument, we
1253 // consider it to be a function-level modifier for the sake of function
1254 // identity. Either the function has one or more parameters with
1255 // pass_object_size or it doesn't.
1256 if (functionHasPassObjectSizeParams(New) !=
1257 functionHasPassObjectSizeParams(Old))
1258 return true;
1259
1260 // enable_if attributes are an order-sensitive part of the signature.
1261 for (specific_attr_iterator<EnableIfAttr>
1262 NewI = New->specific_attr_begin<EnableIfAttr>(),
1263 NewE = New->specific_attr_end<EnableIfAttr>(),
1264 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1265 OldE = Old->specific_attr_end<EnableIfAttr>();
1266 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1267 if (NewI == NewE || OldI == OldE)
1268 return true;
1269 llvm::FoldingSetNodeID NewID, OldID;
1270 NewI->getCond()->Profile(NewID, Context, true);
1271 OldI->getCond()->Profile(OldID, Context, true);
1272 if (NewID != OldID)
1273 return true;
1274 }
1275
1276 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1277 // Don't allow overloading of destructors. (In theory we could, but it
1278 // would be a giant change to clang.)
1279 if (!isa<CXXDestructorDecl>(New)) {
1280 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1281 OldTarget = IdentifyCUDATarget(Old);
1282 if (NewTarget != CFT_InvalidTarget) {
1283 assert((OldTarget != CFT_InvalidTarget) &&(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1284, __PRETTY_FUNCTION__))
1284 "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1284, __PRETTY_FUNCTION__))
;
1285
1286 // Allow overloading of functions with same signature and different CUDA
1287 // target attributes.
1288 if (NewTarget != OldTarget)
1289 return true;
1290 }
1291 }
1292 }
1293
1294 if (ConsiderRequiresClauses) {
1295 Expr *NewRC = New->getTrailingRequiresClause(),
1296 *OldRC = Old->getTrailingRequiresClause();
1297 if ((NewRC != nullptr) != (OldRC != nullptr))
1298 // RC are most certainly different - these are overloads.
1299 return true;
1300
1301 if (NewRC) {
1302 llvm::FoldingSetNodeID NewID, OldID;
1303 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1304 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1305 if (NewID != OldID)
1306 // RCs are not equivalent - these are overloads.
1307 return true;
1308 }
1309 }
1310
1311 // The signatures match; this is not an overload.
1312 return false;
1313}
1314
1315/// Tries a user-defined conversion from From to ToType.
1316///
1317/// Produces an implicit conversion sequence for when a standard conversion
1318/// is not an option. See TryImplicitConversion for more information.
1319static ImplicitConversionSequence
1320TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1321 bool SuppressUserConversions,
1322 AllowedExplicit AllowExplicit,
1323 bool InOverloadResolution,
1324 bool CStyle,
1325 bool AllowObjCWritebackConversion,
1326 bool AllowObjCConversionOnExplicit) {
1327 ImplicitConversionSequence ICS;
1328
1329 if (SuppressUserConversions) {
1330 // We're not in the case above, so there is no conversion that
1331 // we can perform.
1332 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1333 return ICS;
1334 }
1335
1336 // Attempt user-defined conversion.
1337 OverloadCandidateSet Conversions(From->getExprLoc(),
1338 OverloadCandidateSet::CSK_Normal);
1339 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1340 Conversions, AllowExplicit,
1341 AllowObjCConversionOnExplicit)) {
1342 case OR_Success:
1343 case OR_Deleted:
1344 ICS.setUserDefined();
1345 // C++ [over.ics.user]p4:
1346 // A conversion of an expression of class type to the same class
1347 // type is given Exact Match rank, and a conversion of an
1348 // expression of class type to a base class of that type is
1349 // given Conversion rank, in spite of the fact that a copy
1350 // constructor (i.e., a user-defined conversion function) is
1351 // called for those cases.
1352 if (CXXConstructorDecl *Constructor
1353 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1354 QualType FromCanon
1355 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1356 QualType ToCanon
1357 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1358 if (Constructor->isCopyConstructor() &&
1359 (FromCanon == ToCanon ||
1360 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1361 // Turn this into a "standard" conversion sequence, so that it
1362 // gets ranked with standard conversion sequences.
1363 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1364 ICS.setStandard();
1365 ICS.Standard.setAsIdentityConversion();
1366 ICS.Standard.setFromType(From->getType());
1367 ICS.Standard.setAllToTypes(ToType);
1368 ICS.Standard.CopyConstructor = Constructor;
1369 ICS.Standard.FoundCopyConstructor = Found;
1370 if (ToCanon != FromCanon)
1371 ICS.Standard.Second = ICK_Derived_To_Base;
1372 }
1373 }
1374 break;
1375
1376 case OR_Ambiguous:
1377 ICS.setAmbiguous();
1378 ICS.Ambiguous.setFromType(From->getType());
1379 ICS.Ambiguous.setToType(ToType);
1380 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1381 Cand != Conversions.end(); ++Cand)
1382 if (Cand->Best)
1383 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1384 break;
1385
1386 // Fall through.
1387 case OR_No_Viable_Function:
1388 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1389 break;
1390 }
1391
1392 return ICS;
1393}
1394
1395/// TryImplicitConversion - Attempt to perform an implicit conversion
1396/// from the given expression (Expr) to the given type (ToType). This
1397/// function returns an implicit conversion sequence that can be used
1398/// to perform the initialization. Given
1399///
1400/// void f(float f);
1401/// void g(int i) { f(i); }
1402///
1403/// this routine would produce an implicit conversion sequence to
1404/// describe the initialization of f from i, which will be a standard
1405/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1406/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1407//
1408/// Note that this routine only determines how the conversion can be
1409/// performed; it does not actually perform the conversion. As such,
1410/// it will not produce any diagnostics if no conversion is available,
1411/// but will instead return an implicit conversion sequence of kind
1412/// "BadConversion".
1413///
1414/// If @p SuppressUserConversions, then user-defined conversions are
1415/// not permitted.
1416/// If @p AllowExplicit, then explicit user-defined conversions are
1417/// permitted.
1418///
1419/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1420/// writeback conversion, which allows __autoreleasing id* parameters to
1421/// be initialized with __strong id* or __weak id* arguments.
1422static ImplicitConversionSequence
1423TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1424 bool SuppressUserConversions,
1425 AllowedExplicit AllowExplicit,
1426 bool InOverloadResolution,
1427 bool CStyle,
1428 bool AllowObjCWritebackConversion,
1429 bool AllowObjCConversionOnExplicit) {
1430 ImplicitConversionSequence ICS;
1431 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1432 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1433 ICS.setStandard();
1434 return ICS;
1435 }
1436
1437 if (!S.getLangOpts().CPlusPlus) {
1438 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1439 return ICS;
1440 }
1441
1442 // C++ [over.ics.user]p4:
1443 // A conversion of an expression of class type to the same class
1444 // type is given Exact Match rank, and a conversion of an
1445 // expression of class type to a base class of that type is
1446 // given Conversion rank, in spite of the fact that a copy/move
1447 // constructor (i.e., a user-defined conversion function) is
1448 // called for those cases.
1449 QualType FromType = From->getType();
1450 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1451 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1452 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1453 ICS.setStandard();
1454 ICS.Standard.setAsIdentityConversion();
1455 ICS.Standard.setFromType(FromType);
1456 ICS.Standard.setAllToTypes(ToType);
1457
1458 // We don't actually check at this point whether there is a valid
1459 // copy/move constructor, since overloading just assumes that it
1460 // exists. When we actually perform initialization, we'll find the
1461 // appropriate constructor to copy the returned object, if needed.
1462 ICS.Standard.CopyConstructor = nullptr;
1463
1464 // Determine whether this is considered a derived-to-base conversion.
1465 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1466 ICS.Standard.Second = ICK_Derived_To_Base;
1467
1468 return ICS;
1469 }
1470
1471 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1472 AllowExplicit, InOverloadResolution, CStyle,
1473 AllowObjCWritebackConversion,
1474 AllowObjCConversionOnExplicit);
1475}
1476
1477ImplicitConversionSequence
1478Sema::TryImplicitConversion(Expr *From, QualType ToType,
1479 bool SuppressUserConversions,
1480 AllowedExplicit AllowExplicit,
1481 bool InOverloadResolution,
1482 bool CStyle,
1483 bool AllowObjCWritebackConversion) {
1484 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1485 AllowExplicit, InOverloadResolution, CStyle,
1486 AllowObjCWritebackConversion,
1487 /*AllowObjCConversionOnExplicit=*/false);
1488}
1489
1490/// PerformImplicitConversion - Perform an implicit conversion of the
1491/// expression From to the type ToType. Returns the
1492/// converted expression. Flavor is the kind of conversion we're
1493/// performing, used in the error message. If @p AllowExplicit,
1494/// explicit user-defined conversions are permitted.
1495ExprResult
1496Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1497 AssignmentAction Action, bool AllowExplicit) {
1498 ImplicitConversionSequence ICS;
1499 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1500}
1501
1502ExprResult
1503Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1504 AssignmentAction Action, bool AllowExplicit,
1505 ImplicitConversionSequence& ICS) {
1506 if (checkPlaceholderForOverload(*this, From))
1507 return ExprError();
1508
1509 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1510 bool AllowObjCWritebackConversion
1511 = getLangOpts().ObjCAutoRefCount &&
1512 (Action == AA_Passing || Action == AA_Sending);
1513 if (getLangOpts().ObjC)
1514 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1515 From->getType(), From);
1516 ICS = ::TryImplicitConversion(*this, From, ToType,
1517 /*SuppressUserConversions=*/false,
1518 AllowExplicit ? AllowedExplicit::All
1519 : AllowedExplicit::None,
1520 /*InOverloadResolution=*/false,
1521 /*CStyle=*/false, AllowObjCWritebackConversion,
1522 /*AllowObjCConversionOnExplicit=*/false);
1523 return PerformImplicitConversion(From, ToType, ICS, Action);
1524}
1525
1526/// Determine whether the conversion from FromType to ToType is a valid
1527/// conversion that strips "noexcept" or "noreturn" off the nested function
1528/// type.
1529bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1530 QualType &ResultTy) {
1531 if (Context.hasSameUnqualifiedType(FromType, ToType))
1532 return false;
1533
1534 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1535 // or F(t noexcept) -> F(t)
1536 // where F adds one of the following at most once:
1537 // - a pointer
1538 // - a member pointer
1539 // - a block pointer
1540 // Changes here need matching changes in FindCompositePointerType.
1541 CanQualType CanTo = Context.getCanonicalType(ToType);
1542 CanQualType CanFrom = Context.getCanonicalType(FromType);
1543 Type::TypeClass TyClass = CanTo->getTypeClass();
1544 if (TyClass != CanFrom->getTypeClass()) return false;
1545 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1546 if (TyClass == Type::Pointer) {
1547 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1548 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1549 } else if (TyClass == Type::BlockPointer) {
1550 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1551 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1552 } else if (TyClass == Type::MemberPointer) {
1553 auto ToMPT = CanTo.castAs<MemberPointerType>();
1554 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1555 // A function pointer conversion cannot change the class of the function.
1556 if (ToMPT->getClass() != FromMPT->getClass())
1557 return false;
1558 CanTo = ToMPT->getPointeeType();
1559 CanFrom = FromMPT->getPointeeType();
1560 } else {
1561 return false;
1562 }
1563
1564 TyClass = CanTo->getTypeClass();
1565 if (TyClass != CanFrom->getTypeClass()) return false;
1566 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1567 return false;
1568 }
1569
1570 const auto *FromFn = cast<FunctionType>(CanFrom);
1571 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1572
1573 const auto *ToFn = cast<FunctionType>(CanTo);
1574 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1575
1576 bool Changed = false;
1577
1578 // Drop 'noreturn' if not present in target type.
1579 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1580 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1581 Changed = true;
1582 }
1583
1584 // Drop 'noexcept' if not present in target type.
1585 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1586 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1587 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1588 FromFn = cast<FunctionType>(
1589 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1590 EST_None)
1591 .getTypePtr());
1592 Changed = true;
1593 }
1594
1595 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1596 // only if the ExtParameterInfo lists of the two function prototypes can be
1597 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1598 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1599 bool CanUseToFPT, CanUseFromFPT;
1600 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1601 CanUseFromFPT, NewParamInfos) &&
1602 CanUseToFPT && !CanUseFromFPT) {
1603 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1604 ExtInfo.ExtParameterInfos =
1605 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1606 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1607 FromFPT->getParamTypes(), ExtInfo);
1608 FromFn = QT->getAs<FunctionType>();
1609 Changed = true;
1610 }
1611 }
1612
1613 if (!Changed)
1614 return false;
1615
1616 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1616, __PRETTY_FUNCTION__))
;
1617 if (QualType(FromFn, 0) != CanTo) return false;
1618
1619 ResultTy = ToType;
1620 return true;
1621}
1622
1623/// Determine whether the conversion from FromType to ToType is a valid
1624/// vector conversion.
1625///
1626/// \param ICK Will be set to the vector conversion kind, if this is a vector
1627/// conversion.
1628static bool IsVectorConversion(Sema &S, QualType FromType,
1629 QualType ToType, ImplicitConversionKind &ICK) {
1630 // We need at least one of these types to be a vector type to have a vector
1631 // conversion.
1632 if (!ToType->isVectorType() && !FromType->isVectorType())
1633 return false;
1634
1635 // Identical types require no conversions.
1636 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1637 return false;
1638
1639 // There are no conversions between extended vector types, only identity.
1640 if (ToType->isExtVectorType()) {
1641 // There are no conversions between extended vector types other than the
1642 // identity conversion.
1643 if (FromType->isExtVectorType())
1644 return false;
1645
1646 // Vector splat from any arithmetic type to a vector.
1647 if (FromType->isArithmeticType()) {
1648 ICK = ICK_Vector_Splat;
1649 return true;
1650 }
1651 }
1652
1653 // We can perform the conversion between vector types in the following cases:
1654 // 1)vector types are equivalent AltiVec and GCC vector types
1655 // 2)lax vector conversions are permitted and the vector types are of the
1656 // same size
1657 // 3)the destination type does not have the ARM MVE strict-polymorphism
1658 // attribute, which inhibits lax vector conversion for overload resolution
1659 // only
1660 if (ToType->isVectorType() && FromType->isVectorType()) {
1661 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1662 (S.isLaxVectorConversion(FromType, ToType) &&
1663 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1664 ICK = ICK_Vector_Conversion;
1665 return true;
1666 }
1667 }
1668
1669 return false;
1670}
1671
1672static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1673 bool InOverloadResolution,
1674 StandardConversionSequence &SCS,
1675 bool CStyle);
1676
1677/// IsStandardConversion - Determines whether there is a standard
1678/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1679/// expression From to the type ToType. Standard conversion sequences
1680/// only consider non-class types; for conversions that involve class
1681/// types, use TryImplicitConversion. If a conversion exists, SCS will
1682/// contain the standard conversion sequence required to perform this
1683/// conversion and this routine will return true. Otherwise, this
1684/// routine will return false and the value of SCS is unspecified.
1685static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1686 bool InOverloadResolution,
1687 StandardConversionSequence &SCS,
1688 bool CStyle,
1689 bool AllowObjCWritebackConversion) {
1690 QualType FromType = From->getType();
1691
1692 // Standard conversions (C++ [conv])
1693 SCS.setAsIdentityConversion();
1694 SCS.IncompatibleObjC = false;
1695 SCS.setFromType(FromType);
1696 SCS.CopyConstructor = nullptr;
1697
1698 // There are no standard conversions for class types in C++, so
1699 // abort early. When overloading in C, however, we do permit them.
1700 if (S.getLangOpts().CPlusPlus &&
1701 (FromType->isRecordType() || ToType->isRecordType()))
1702 return false;
1703
1704 // The first conversion can be an lvalue-to-rvalue conversion,
1705 // array-to-pointer conversion, or function-to-pointer conversion
1706 // (C++ 4p1).
1707
1708 if (FromType == S.Context.OverloadTy) {
1709 DeclAccessPair AccessPair;
1710 if (FunctionDecl *Fn
1711 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1712 AccessPair)) {
1713 // We were able to resolve the address of the overloaded function,
1714 // so we can convert to the type of that function.
1715 FromType = Fn->getType();
1716 SCS.setFromType(FromType);
1717
1718 // we can sometimes resolve &foo<int> regardless of ToType, so check
1719 // if the type matches (identity) or we are converting to bool
1720 if (!S.Context.hasSameUnqualifiedType(
1721 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1722 QualType resultTy;
1723 // if the function type matches except for [[noreturn]], it's ok
1724 if (!S.IsFunctionConversion(FromType,
1725 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1726 // otherwise, only a boolean conversion is standard
1727 if (!ToType->isBooleanType())
1728 return false;
1729 }
1730
1731 // Check if the "from" expression is taking the address of an overloaded
1732 // function and recompute the FromType accordingly. Take advantage of the
1733 // fact that non-static member functions *must* have such an address-of
1734 // expression.
1735 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1736 if (Method && !Method->isStatic()) {
1737 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1738, __PRETTY_FUNCTION__))
1738 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1738, __PRETTY_FUNCTION__))
;
1739 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1741, __PRETTY_FUNCTION__))
1740 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1741, __PRETTY_FUNCTION__))
1741 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1741, __PRETTY_FUNCTION__))
;
1742 const Type *ClassType
1743 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1744 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1745 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1746 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1748, __PRETTY_FUNCTION__))
1747 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1748, __PRETTY_FUNCTION__))
1748 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1748, __PRETTY_FUNCTION__))
;
1749 FromType = S.Context.getPointerType(FromType);
1750 }
1751
1752 // Check that we've computed the proper type after overload resolution.
1753 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1754 // be calling it from within an NDEBUG block.
1755 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1757, __PRETTY_FUNCTION__))
1756 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1757, __PRETTY_FUNCTION__))
1757 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 1757, __PRETTY_FUNCTION__))
;
1758 } else {
1759 return false;
1760 }
1761 }
1762 // Lvalue-to-rvalue conversion (C++11 4.1):
1763 // A glvalue (3.10) of a non-function, non-array type T can
1764 // be converted to a prvalue.
1765 bool argIsLValue = From->isGLValue();
1766 if (argIsLValue &&
1767 !FromType->isFunctionType() && !FromType->isArrayType() &&
1768 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1769 SCS.First = ICK_Lvalue_To_Rvalue;
1770
1771 // C11 6.3.2.1p2:
1772 // ... if the lvalue has atomic type, the value has the non-atomic version
1773 // of the type of the lvalue ...
1774 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1775 FromType = Atomic->getValueType();
1776
1777 // If T is a non-class type, the type of the rvalue is the
1778 // cv-unqualified version of T. Otherwise, the type of the rvalue
1779 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1780 // just strip the qualifiers because they don't matter.
1781 FromType = FromType.getUnqualifiedType();
1782 } else if (FromType->isArrayType()) {
1783 // Array-to-pointer conversion (C++ 4.2)
1784 SCS.First = ICK_Array_To_Pointer;
1785
1786 // An lvalue or rvalue of type "array of N T" or "array of unknown
1787 // bound of T" can be converted to an rvalue of type "pointer to
1788 // T" (C++ 4.2p1).
1789 FromType = S.Context.getArrayDecayedType(FromType);
1790
1791 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1792 // This conversion is deprecated in C++03 (D.4)
1793 SCS.DeprecatedStringLiteralToCharPtr = true;
1794
1795 // For the purpose of ranking in overload resolution
1796 // (13.3.3.1.1), this conversion is considered an
1797 // array-to-pointer conversion followed by a qualification
1798 // conversion (4.4). (C++ 4.2p2)
1799 SCS.Second = ICK_Identity;
1800 SCS.Third = ICK_Qualification;
1801 SCS.QualificationIncludesObjCLifetime = false;
1802 SCS.setAllToTypes(FromType);
1803 return true;
1804 }
1805 } else if (FromType->isFunctionType() && argIsLValue) {
1806 // Function-to-pointer conversion (C++ 4.3).
1807 SCS.First = ICK_Function_To_Pointer;
1808
1809 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1810 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1811 if (!S.checkAddressOfFunctionIsAvailable(FD))
1812 return false;
1813
1814 // An lvalue of function type T can be converted to an rvalue of
1815 // type "pointer to T." The result is a pointer to the
1816 // function. (C++ 4.3p1).
1817 FromType = S.Context.getPointerType(FromType);
1818 } else {
1819 // We don't require any conversions for the first step.
1820 SCS.First = ICK_Identity;
1821 }
1822 SCS.setToType(0, FromType);
1823
1824 // The second conversion can be an integral promotion, floating
1825 // point promotion, integral conversion, floating point conversion,
1826 // floating-integral conversion, pointer conversion,
1827 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1828 // For overloading in C, this can also be a "compatible-type"
1829 // conversion.
1830 bool IncompatibleObjC = false;
1831 ImplicitConversionKind SecondICK = ICK_Identity;
1832 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1833 // The unqualified versions of the types are the same: there's no
1834 // conversion to do.
1835 SCS.Second = ICK_Identity;
1836 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1837 // Integral promotion (C++ 4.5).
1838 SCS.Second = ICK_Integral_Promotion;
1839 FromType = ToType.getUnqualifiedType();
1840 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1841 // Floating point promotion (C++ 4.6).
1842 SCS.Second = ICK_Floating_Promotion;
1843 FromType = ToType.getUnqualifiedType();
1844 } else if (S.IsComplexPromotion(FromType, ToType)) {
1845 // Complex promotion (Clang extension)
1846 SCS.Second = ICK_Complex_Promotion;
1847 FromType = ToType.getUnqualifiedType();
1848 } else if (ToType->isBooleanType() &&
1849 (FromType->isArithmeticType() ||
1850 FromType->isAnyPointerType() ||
1851 FromType->isBlockPointerType() ||
1852 FromType->isMemberPointerType())) {
1853 // Boolean conversions (C++ 4.12).
1854 SCS.Second = ICK_Boolean_Conversion;
1855 FromType = S.Context.BoolTy;
1856 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1857 ToType->isIntegralType(S.Context)) {
1858 // Integral conversions (C++ 4.7).
1859 SCS.Second = ICK_Integral_Conversion;
1860 FromType = ToType.getUnqualifiedType();
1861 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1862 // Complex conversions (C99 6.3.1.6)
1863 SCS.Second = ICK_Complex_Conversion;
1864 FromType = ToType.getUnqualifiedType();
1865 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1866 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1867 // Complex-real conversions (C99 6.3.1.7)
1868 SCS.Second = ICK_Complex_Real;
1869 FromType = ToType.getUnqualifiedType();
1870 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1871 // FIXME: disable conversions between long double and __float128 if
1872 // their representation is different until there is back end support
1873 // We of course allow this conversion if long double is really double.
1874
1875 // Conversions between bfloat and other floats are not permitted.
1876 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1877 return false;
1878 if (&S.Context.getFloatTypeSemantics(FromType) !=
1879 &S.Context.getFloatTypeSemantics(ToType)) {
1880 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1881 ToType == S.Context.LongDoubleTy) ||
1882 (FromType == S.Context.LongDoubleTy &&
1883 ToType == S.Context.Float128Ty));
1884 if (Float128AndLongDouble &&
1885 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1886 &llvm::APFloat::PPCDoubleDouble()))
1887 return false;
1888 }
1889 // Floating point conversions (C++ 4.8).
1890 SCS.Second = ICK_Floating_Conversion;
1891 FromType = ToType.getUnqualifiedType();
1892 } else if ((FromType->isRealFloatingType() &&
1893 ToType->isIntegralType(S.Context)) ||
1894 (FromType->isIntegralOrUnscopedEnumerationType() &&
1895 ToType->isRealFloatingType())) {
1896 // Conversions between bfloat and int are not permitted.
1897 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1898 return false;
1899
1900 // Floating-integral conversions (C++ 4.9).
1901 SCS.Second = ICK_Floating_Integral;
1902 FromType = ToType.getUnqualifiedType();
1903 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1904 SCS.Second = ICK_Block_Pointer_Conversion;
1905 } else if (AllowObjCWritebackConversion &&
1906 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1907 SCS.Second = ICK_Writeback_Conversion;
1908 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1909 FromType, IncompatibleObjC)) {
1910 // Pointer conversions (C++ 4.10).
1911 SCS.Second = ICK_Pointer_Conversion;
1912 SCS.IncompatibleObjC = IncompatibleObjC;
1913 FromType = FromType.getUnqualifiedType();
1914 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1915 InOverloadResolution, FromType)) {
1916 // Pointer to member conversions (4.11).
1917 SCS.Second = ICK_Pointer_Member;
1918 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1919 SCS.Second = SecondICK;
1920 FromType = ToType.getUnqualifiedType();
1921 } else if (!S.getLangOpts().CPlusPlus &&
1922 S.Context.typesAreCompatible(ToType, FromType)) {
1923 // Compatible conversions (Clang extension for C function overloading)
1924 SCS.Second = ICK_Compatible_Conversion;
1925 FromType = ToType.getUnqualifiedType();
1926 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1927 InOverloadResolution,
1928 SCS, CStyle)) {
1929 SCS.Second = ICK_TransparentUnionConversion;
1930 FromType = ToType;
1931 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1932 CStyle)) {
1933 // tryAtomicConversion has updated the standard conversion sequence
1934 // appropriately.
1935 return true;
1936 } else if (ToType->isEventT() &&
1937 From->isIntegerConstantExpr(S.getASTContext()) &&
1938 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1939 SCS.Second = ICK_Zero_Event_Conversion;
1940 FromType = ToType;
1941 } else if (ToType->isQueueT() &&
1942 From->isIntegerConstantExpr(S.getASTContext()) &&
1943 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1944 SCS.Second = ICK_Zero_Queue_Conversion;
1945 FromType = ToType;
1946 } else if (ToType->isSamplerT() &&
1947 From->isIntegerConstantExpr(S.getASTContext())) {
1948 SCS.Second = ICK_Compatible_Conversion;
1949 FromType = ToType;
1950 } else {
1951 // No second conversion required.
1952 SCS.Second = ICK_Identity;
1953 }
1954 SCS.setToType(1, FromType);
1955
1956 // The third conversion can be a function pointer conversion or a
1957 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1958 bool ObjCLifetimeConversion;
1959 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1960 // Function pointer conversions (removing 'noexcept') including removal of
1961 // 'noreturn' (Clang extension).
1962 SCS.Third = ICK_Function_Conversion;
1963 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1964 ObjCLifetimeConversion)) {
1965 SCS.Third = ICK_Qualification;
1966 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1967 FromType = ToType;
1968 } else {
1969 // No conversion required
1970 SCS.Third = ICK_Identity;
1971 }
1972
1973 // C++ [over.best.ics]p6:
1974 // [...] Any difference in top-level cv-qualification is
1975 // subsumed by the initialization itself and does not constitute
1976 // a conversion. [...]
1977 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1978 QualType CanonTo = S.Context.getCanonicalType(ToType);
1979 if (CanonFrom.getLocalUnqualifiedType()
1980 == CanonTo.getLocalUnqualifiedType() &&
1981 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1982 FromType = ToType;
1983 CanonFrom = CanonTo;
1984 }
1985
1986 SCS.setToType(2, FromType);
1987
1988 if (CanonFrom == CanonTo)
1989 return true;
1990
1991 // If we have not converted the argument type to the parameter type,
1992 // this is a bad conversion sequence, unless we're resolving an overload in C.
1993 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1994 return false;
1995
1996 ExprResult ER = ExprResult{From};
1997 Sema::AssignConvertType Conv =
1998 S.CheckSingleAssignmentConstraints(ToType, ER,
1999 /*Diagnose=*/false,
2000 /*DiagnoseCFAudited=*/false,
2001 /*ConvertRHS=*/false);
2002 ImplicitConversionKind SecondConv;
2003 switch (Conv) {
2004 case Sema::Compatible:
2005 SecondConv = ICK_C_Only_Conversion;
2006 break;
2007 // For our purposes, discarding qualifiers is just as bad as using an
2008 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2009 // qualifiers, as well.
2010 case Sema::CompatiblePointerDiscardsQualifiers:
2011 case Sema::IncompatiblePointer:
2012 case Sema::IncompatiblePointerSign:
2013 SecondConv = ICK_Incompatible_Pointer_Conversion;
2014 break;
2015 default:
2016 return false;
2017 }
2018
2019 // First can only be an lvalue conversion, so we pretend that this was the
2020 // second conversion. First should already be valid from earlier in the
2021 // function.
2022 SCS.Second = SecondConv;
2023 SCS.setToType(1, ToType);
2024
2025 // Third is Identity, because Second should rank us worse than any other
2026 // conversion. This could also be ICK_Qualification, but it's simpler to just
2027 // lump everything in with the second conversion, and we don't gain anything
2028 // from making this ICK_Qualification.
2029 SCS.Third = ICK_Identity;
2030 SCS.setToType(2, ToType);
2031 return true;
2032}
2033
2034static bool
2035IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2036 QualType &ToType,
2037 bool InOverloadResolution,
2038 StandardConversionSequence &SCS,
2039 bool CStyle) {
2040
2041 const RecordType *UT = ToType->getAsUnionType();
2042 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2043 return false;
2044 // The field to initialize within the transparent union.
2045 RecordDecl *UD = UT->getDecl();
2046 // It's compatible if the expression matches any of the fields.
2047 for (const auto *it : UD->fields()) {
2048 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2049 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2050 ToType = it->getType();
2051 return true;
2052 }
2053 }
2054 return false;
2055}
2056
2057/// IsIntegralPromotion - Determines whether the conversion from the
2058/// expression From (whose potentially-adjusted type is FromType) to
2059/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2060/// sets PromotedType to the promoted type.
2061bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2062 const BuiltinType *To = ToType->getAs<BuiltinType>();
2063 // All integers are built-in.
2064 if (!To) {
2065 return false;
2066 }
2067
2068 // An rvalue of type char, signed char, unsigned char, short int, or
2069 // unsigned short int can be converted to an rvalue of type int if
2070 // int can represent all the values of the source type; otherwise,
2071 // the source rvalue can be converted to an rvalue of type unsigned
2072 // int (C++ 4.5p1).
2073 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2074 !FromType->isEnumeralType()) {
2075 if (// We can promote any signed, promotable integer type to an int
2076 (FromType->isSignedIntegerType() ||
2077 // We can promote any unsigned integer type whose size is
2078 // less than int to an int.
2079 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2080 return To->getKind() == BuiltinType::Int;
2081 }
2082
2083 return To->getKind() == BuiltinType::UInt;
2084 }
2085
2086 // C++11 [conv.prom]p3:
2087 // A prvalue of an unscoped enumeration type whose underlying type is not
2088 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2089 // following types that can represent all the values of the enumeration
2090 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2091 // unsigned int, long int, unsigned long int, long long int, or unsigned
2092 // long long int. If none of the types in that list can represent all the
2093 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2094 // type can be converted to an rvalue a prvalue of the extended integer type
2095 // with lowest integer conversion rank (4.13) greater than the rank of long
2096 // long in which all the values of the enumeration can be represented. If
2097 // there are two such extended types, the signed one is chosen.
2098 // C++11 [conv.prom]p4:
2099 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2100 // can be converted to a prvalue of its underlying type. Moreover, if
2101 // integral promotion can be applied to its underlying type, a prvalue of an
2102 // unscoped enumeration type whose underlying type is fixed can also be
2103 // converted to a prvalue of the promoted underlying type.
2104 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2105 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2106 // provided for a scoped enumeration.
2107 if (FromEnumType->getDecl()->isScoped())
2108 return false;
2109
2110 // We can perform an integral promotion to the underlying type of the enum,
2111 // even if that's not the promoted type. Note that the check for promoting
2112 // the underlying type is based on the type alone, and does not consider
2113 // the bitfield-ness of the actual source expression.
2114 if (FromEnumType->getDecl()->isFixed()) {
2115 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2116 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2117 IsIntegralPromotion(nullptr, Underlying, ToType);
2118 }
2119
2120 // We have already pre-calculated the promotion type, so this is trivial.
2121 if (ToType->isIntegerType() &&
2122 isCompleteType(From->getBeginLoc(), FromType))
2123 return Context.hasSameUnqualifiedType(
2124 ToType, FromEnumType->getDecl()->getPromotionType());
2125
2126 // C++ [conv.prom]p5:
2127 // If the bit-field has an enumerated type, it is treated as any other
2128 // value of that type for promotion purposes.
2129 //
2130 // ... so do not fall through into the bit-field checks below in C++.
2131 if (getLangOpts().CPlusPlus)
2132 return false;
2133 }
2134
2135 // C++0x [conv.prom]p2:
2136 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2137 // to an rvalue a prvalue of the first of the following types that can
2138 // represent all the values of its underlying type: int, unsigned int,
2139 // long int, unsigned long int, long long int, or unsigned long long int.
2140 // If none of the types in that list can represent all the values of its
2141 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2142 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2143 // type.
2144 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2145 ToType->isIntegerType()) {
2146 // Determine whether the type we're converting from is signed or
2147 // unsigned.
2148 bool FromIsSigned = FromType->isSignedIntegerType();
2149 uint64_t FromSize = Context.getTypeSize(FromType);
2150
2151 // The types we'll try to promote to, in the appropriate
2152 // order. Try each of these types.
2153 QualType PromoteTypes[6] = {
2154 Context.IntTy, Context.UnsignedIntTy,
2155 Context.LongTy, Context.UnsignedLongTy ,
2156 Context.LongLongTy, Context.UnsignedLongLongTy
2157 };
2158 for (int Idx = 0; Idx < 6; ++Idx) {
2159 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2160 if (FromSize < ToSize ||
2161 (FromSize == ToSize &&
2162 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2163 // We found the type that we can promote to. If this is the
2164 // type we wanted, we have a promotion. Otherwise, no
2165 // promotion.
2166 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2167 }
2168 }
2169 }
2170
2171 // An rvalue for an integral bit-field (9.6) can be converted to an
2172 // rvalue of type int if int can represent all the values of the
2173 // bit-field; otherwise, it can be converted to unsigned int if
2174 // unsigned int can represent all the values of the bit-field. If
2175 // the bit-field is larger yet, no integral promotion applies to
2176 // it. If the bit-field has an enumerated type, it is treated as any
2177 // other value of that type for promotion purposes (C++ 4.5p3).
2178 // FIXME: We should delay checking of bit-fields until we actually perform the
2179 // conversion.
2180 //
2181 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2182 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2183 // bit-fields and those whose underlying type is larger than int) for GCC
2184 // compatibility.
2185 if (From) {
2186 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2187 Optional<llvm::APSInt> BitWidth;
2188 if (FromType->isIntegralType(Context) &&
2189 (BitWidth =
2190 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2191 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2192 ToSize = Context.getTypeSize(ToType);
2193
2194 // Are we promoting to an int from a bitfield that fits in an int?
2195 if (*BitWidth < ToSize ||
2196 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2197 return To->getKind() == BuiltinType::Int;
2198 }
2199
2200 // Are we promoting to an unsigned int from an unsigned bitfield
2201 // that fits into an unsigned int?
2202 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2203 return To->getKind() == BuiltinType::UInt;
2204 }
2205
2206 return false;
2207 }
2208 }
2209 }
2210
2211 // An rvalue of type bool can be converted to an rvalue of type int,
2212 // with false becoming zero and true becoming one (C++ 4.5p4).
2213 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2214 return true;
2215 }
2216
2217 return false;
2218}
2219
2220/// IsFloatingPointPromotion - Determines whether the conversion from
2221/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2222/// returns true and sets PromotedType to the promoted type.
2223bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2224 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2225 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2226 /// An rvalue of type float can be converted to an rvalue of type
2227 /// double. (C++ 4.6p1).
2228 if (FromBuiltin->getKind() == BuiltinType::Float &&
2229 ToBuiltin->getKind() == BuiltinType::Double)
2230 return true;
2231
2232 // C99 6.3.1.5p1:
2233 // When a float is promoted to double or long double, or a
2234 // double is promoted to long double [...].
2235 if (!getLangOpts().CPlusPlus &&
2236 (FromBuiltin->getKind() == BuiltinType::Float ||
2237 FromBuiltin->getKind() == BuiltinType::Double) &&
2238 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2239 ToBuiltin->getKind() == BuiltinType::Float128))
2240 return true;
2241
2242 // Half can be promoted to float.
2243 if (!getLangOpts().NativeHalfType &&
2244 FromBuiltin->getKind() == BuiltinType::Half &&
2245 ToBuiltin->getKind() == BuiltinType::Float)
2246 return true;
2247 }
2248
2249 return false;
2250}
2251
2252/// Determine if a conversion is a complex promotion.
2253///
2254/// A complex promotion is defined as a complex -> complex conversion
2255/// where the conversion between the underlying real types is a
2256/// floating-point or integral promotion.
2257bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2258 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2259 if (!FromComplex)
2260 return false;
2261
2262 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2263 if (!ToComplex)
2264 return false;
2265
2266 return IsFloatingPointPromotion(FromComplex->getElementType(),
2267 ToComplex->getElementType()) ||
2268 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2269 ToComplex->getElementType());
2270}
2271
2272/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2273/// the pointer type FromPtr to a pointer to type ToPointee, with the
2274/// same type qualifiers as FromPtr has on its pointee type. ToType,
2275/// if non-empty, will be a pointer to ToType that may or may not have
2276/// the right set of qualifiers on its pointee.
2277///
2278static QualType
2279BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2280 QualType ToPointee, QualType ToType,
2281 ASTContext &Context,
2282 bool StripObjCLifetime = false) {
2283 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 2285, __PRETTY_FUNCTION__))
2284 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 2285, __PRETTY_FUNCTION__))
2285 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 2285, __PRETTY_FUNCTION__))
;
2286
2287 /// Conversions to 'id' subsume cv-qualifier conversions.
2288 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2289 return ToType.getUnqualifiedType();
2290
2291 QualType CanonFromPointee
2292 = Context.getCanonicalType(FromPtr->getPointeeType());
2293 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2294 Qualifiers Quals = CanonFromPointee.getQualifiers();
2295
2296 if (StripObjCLifetime)
2297 Quals.removeObjCLifetime();
2298
2299 // Exact qualifier match -> return the pointer type we're converting to.
2300 if (CanonToPointee.getLocalQualifiers() == Quals) {
2301 // ToType is exactly what we need. Return it.
2302 if (!ToType.isNull())
2303 return ToType.getUnqualifiedType();
2304
2305 // Build a pointer to ToPointee. It has the right qualifiers
2306 // already.
2307 if (isa<ObjCObjectPointerType>(ToType))
2308 return Context.getObjCObjectPointerType(ToPointee);
2309 return Context.getPointerType(ToPointee);
2310 }
2311
2312 // Just build a canonical type that has the right qualifiers.
2313 QualType QualifiedCanonToPointee
2314 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2315
2316 if (isa<ObjCObjectPointerType>(ToType))
2317 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2318 return Context.getPointerType(QualifiedCanonToPointee);
2319}
2320
2321static bool isNullPointerConstantForConversion(Expr *Expr,
2322 bool InOverloadResolution,
2323 ASTContext &Context) {
2324 // Handle value-dependent integral null pointer constants correctly.
2325 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2326 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2327 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2328 return !InOverloadResolution;
2329
2330 return Expr->isNullPointerConstant(Context,
2331 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2332 : Expr::NPC_ValueDependentIsNull);
2333}
2334
2335/// IsPointerConversion - Determines whether the conversion of the
2336/// expression From, which has the (possibly adjusted) type FromType,
2337/// can be converted to the type ToType via a pointer conversion (C++
2338/// 4.10). If so, returns true and places the converted type (that
2339/// might differ from ToType in its cv-qualifiers at some level) into
2340/// ConvertedType.
2341///
2342/// This routine also supports conversions to and from block pointers
2343/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2344/// pointers to interfaces. FIXME: Once we've determined the
2345/// appropriate overloading rules for Objective-C, we may want to
2346/// split the Objective-C checks into a different routine; however,
2347/// GCC seems to consider all of these conversions to be pointer
2348/// conversions, so for now they live here. IncompatibleObjC will be
2349/// set if the conversion is an allowed Objective-C conversion that
2350/// should result in a warning.
2351bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2352 bool InOverloadResolution,
2353 QualType& ConvertedType,
2354 bool &IncompatibleObjC) {
2355 IncompatibleObjC = false;
2356 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2357 IncompatibleObjC))
2358 return true;
2359
2360 // Conversion from a null pointer constant to any Objective-C pointer type.
2361 if (ToType->isObjCObjectPointerType() &&
2362 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2363 ConvertedType = ToType;
2364 return true;
2365 }
2366
2367 // Blocks: Block pointers can be converted to void*.
2368 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2369 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2370 ConvertedType = ToType;
2371 return true;
2372 }
2373 // Blocks: A null pointer constant can be converted to a block
2374 // pointer type.
2375 if (ToType->isBlockPointerType() &&
2376 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2377 ConvertedType = ToType;
2378 return true;
2379 }
2380
2381 // If the left-hand-side is nullptr_t, the right side can be a null
2382 // pointer constant.
2383 if (ToType->isNullPtrType() &&
2384 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2385 ConvertedType = ToType;
2386 return true;
2387 }
2388
2389 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2390 if (!ToTypePtr)
2391 return false;
2392
2393 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2394 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2395 ConvertedType = ToType;
2396 return true;
2397 }
2398
2399 // Beyond this point, both types need to be pointers
2400 // , including objective-c pointers.
2401 QualType ToPointeeType = ToTypePtr->getPointeeType();
2402 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2403 !getLangOpts().ObjCAutoRefCount) {
2404 ConvertedType = BuildSimilarlyQualifiedPointerType(
2405 FromType->getAs<ObjCObjectPointerType>(),
2406 ToPointeeType,
2407 ToType, Context);
2408 return true;
2409 }
2410 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2411 if (!FromTypePtr)
2412 return false;
2413
2414 QualType FromPointeeType = FromTypePtr->getPointeeType();
2415
2416 // If the unqualified pointee types are the same, this can't be a
2417 // pointer conversion, so don't do all of the work below.
2418 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2419 return false;
2420
2421 // An rvalue of type "pointer to cv T," where T is an object type,
2422 // can be converted to an rvalue of type "pointer to cv void" (C++
2423 // 4.10p2).
2424 if (FromPointeeType->isIncompleteOrObjectType() &&
2425 ToPointeeType->isVoidType()) {
2426 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2427 ToPointeeType,
2428 ToType, Context,
2429 /*StripObjCLifetime=*/true);
2430 return true;
2431 }
2432
2433 // MSVC allows implicit function to void* type conversion.
2434 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2435 ToPointeeType->isVoidType()) {
2436 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2437 ToPointeeType,
2438 ToType, Context);
2439 return true;
2440 }
2441
2442 // When we're overloading in C, we allow a special kind of pointer
2443 // conversion for compatible-but-not-identical pointee types.
2444 if (!getLangOpts().CPlusPlus &&
2445 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2446 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2447 ToPointeeType,
2448 ToType, Context);
2449 return true;
2450 }
2451
2452 // C++ [conv.ptr]p3:
2453 //
2454 // An rvalue of type "pointer to cv D," where D is a class type,
2455 // can be converted to an rvalue of type "pointer to cv B," where
2456 // B is a base class (clause 10) of D. If B is an inaccessible
2457 // (clause 11) or ambiguous (10.2) base class of D, a program that
2458 // necessitates this conversion is ill-formed. The result of the
2459 // conversion is a pointer to the base class sub-object of the
2460 // derived class object. The null pointer value is converted to
2461 // the null pointer value of the destination type.
2462 //
2463 // Note that we do not check for ambiguity or inaccessibility
2464 // here. That is handled by CheckPointerConversion.
2465 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2466 ToPointeeType->isRecordType() &&
2467 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2468 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2469 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2470 ToPointeeType,
2471 ToType, Context);
2472 return true;
2473 }
2474
2475 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2476 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2477 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2478 ToPointeeType,
2479 ToType, Context);
2480 return true;
2481 }
2482
2483 return false;
2484}
2485
2486/// Adopt the given qualifiers for the given type.
2487static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2488 Qualifiers TQs = T.getQualifiers();
2489
2490 // Check whether qualifiers already match.
2491 if (TQs == Qs)
2492 return T;
2493
2494 if (Qs.compatiblyIncludes(TQs))
2495 return Context.getQualifiedType(T, Qs);
2496
2497 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2498}
2499
2500/// isObjCPointerConversion - Determines whether this is an
2501/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2502/// with the same arguments and return values.
2503bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2504 QualType& ConvertedType,
2505 bool &IncompatibleObjC) {
2506 if (!getLangOpts().ObjC)
2507 return false;
2508
2509 // The set of qualifiers on the type we're converting from.
2510 Qualifiers FromQualifiers = FromType.getQualifiers();
2511
2512 // First, we handle all conversions on ObjC object pointer types.
2513 const ObjCObjectPointerType* ToObjCPtr =
2514 ToType->getAs<ObjCObjectPointerType>();
2515 const ObjCObjectPointerType *FromObjCPtr =
2516 FromType->getAs<ObjCObjectPointerType>();
2517
2518 if (ToObjCPtr && FromObjCPtr) {
2519 // If the pointee types are the same (ignoring qualifications),
2520 // then this is not a pointer conversion.
2521 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2522 FromObjCPtr->getPointeeType()))
2523 return false;
2524
2525 // Conversion between Objective-C pointers.
2526 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2527 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2528 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2529 if (getLangOpts().CPlusPlus && LHS && RHS &&
2530 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2531 FromObjCPtr->getPointeeType()))
2532 return false;
2533 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2534 ToObjCPtr->getPointeeType(),
2535 ToType, Context);
2536 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2537 return true;
2538 }
2539
2540 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2541 // Okay: this is some kind of implicit downcast of Objective-C
2542 // interfaces, which is permitted. However, we're going to
2543 // complain about it.
2544 IncompatibleObjC = true;
2545 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2546 ToObjCPtr->getPointeeType(),
2547 ToType, Context);
2548 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2549 return true;
2550 }
2551 }
2552 // Beyond this point, both types need to be C pointers or block pointers.
2553 QualType ToPointeeType;
2554 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2555 ToPointeeType = ToCPtr->getPointeeType();
2556 else if (const BlockPointerType *ToBlockPtr =
2557 ToType->getAs<BlockPointerType>()) {
2558 // Objective C++: We're able to convert from a pointer to any object
2559 // to a block pointer type.
2560 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2561 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2562 return true;
2563 }
2564 ToPointeeType = ToBlockPtr->getPointeeType();
2565 }
2566 else if (FromType->getAs<BlockPointerType>() &&
2567 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2568 // Objective C++: We're able to convert from a block pointer type to a
2569 // pointer to any object.
2570 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2571 return true;
2572 }
2573 else
2574 return false;
2575
2576 QualType FromPointeeType;
2577 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2578 FromPointeeType = FromCPtr->getPointeeType();
2579 else if (const BlockPointerType *FromBlockPtr =
2580 FromType->getAs<BlockPointerType>())
2581 FromPointeeType = FromBlockPtr->getPointeeType();
2582 else
2583 return false;
2584
2585 // If we have pointers to pointers, recursively check whether this
2586 // is an Objective-C conversion.
2587 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2588 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2589 IncompatibleObjC)) {
2590 // We always complain about this conversion.
2591 IncompatibleObjC = true;
2592 ConvertedType = Context.getPointerType(ConvertedType);
2593 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2594 return true;
2595 }
2596 // Allow conversion of pointee being objective-c pointer to another one;
2597 // as in I* to id.
2598 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2599 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2600 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2601 IncompatibleObjC)) {
2602
2603 ConvertedType = Context.getPointerType(ConvertedType);
2604 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2605 return true;
2606 }
2607
2608 // If we have pointers to functions or blocks, check whether the only
2609 // differences in the argument and result types are in Objective-C
2610 // pointer conversions. If so, we permit the conversion (but
2611 // complain about it).
2612 const FunctionProtoType *FromFunctionType
2613 = FromPointeeType->getAs<FunctionProtoType>();
2614 const FunctionProtoType *ToFunctionType
2615 = ToPointeeType->getAs<FunctionProtoType>();
2616 if (FromFunctionType && ToFunctionType) {
2617 // If the function types are exactly the same, this isn't an
2618 // Objective-C pointer conversion.
2619 if (Context.getCanonicalType(FromPointeeType)
2620 == Context.getCanonicalType(ToPointeeType))
2621 return false;
2622
2623 // Perform the quick checks that will tell us whether these
2624 // function types are obviously different.
2625 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2626 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2627 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2628 return false;
2629
2630 bool HasObjCConversion = false;
2631 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2632 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2633 // Okay, the types match exactly. Nothing to do.
2634 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2635 ToFunctionType->getReturnType(),
2636 ConvertedType, IncompatibleObjC)) {
2637 // Okay, we have an Objective-C pointer conversion.
2638 HasObjCConversion = true;
2639 } else {
2640 // Function types are too different. Abort.
2641 return false;
2642 }
2643
2644 // Check argument types.
2645 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2646 ArgIdx != NumArgs; ++ArgIdx) {
2647 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2648 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2649 if (Context.getCanonicalType(FromArgType)
2650 == Context.getCanonicalType(ToArgType)) {
2651 // Okay, the types match exactly. Nothing to do.
2652 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2653 ConvertedType, IncompatibleObjC)) {
2654 // Okay, we have an Objective-C pointer conversion.
2655 HasObjCConversion = true;
2656 } else {
2657 // Argument types are too different. Abort.
2658 return false;
2659 }
2660 }
2661
2662 if (HasObjCConversion) {
2663 // We had an Objective-C conversion. Allow this pointer
2664 // conversion, but complain about it.
2665 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2666 IncompatibleObjC = true;
2667 return true;
2668 }
2669 }
2670
2671 return false;
2672}
2673
2674/// Determine whether this is an Objective-C writeback conversion,
2675/// used for parameter passing when performing automatic reference counting.
2676///
2677/// \param FromType The type we're converting form.
2678///
2679/// \param ToType The type we're converting to.
2680///
2681/// \param ConvertedType The type that will be produced after applying
2682/// this conversion.
2683bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2684 QualType &ConvertedType) {
2685 if (!getLangOpts().ObjCAutoRefCount ||
2686 Context.hasSameUnqualifiedType(FromType, ToType))
2687 return false;
2688
2689 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2690 QualType ToPointee;
2691 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2692 ToPointee = ToPointer->getPointeeType();
2693 else
2694 return false;
2695
2696 Qualifiers ToQuals = ToPointee.getQualifiers();
2697 if (!ToPointee->isObjCLifetimeType() ||
2698 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2699 !ToQuals.withoutObjCLifetime().empty())
2700 return false;
2701
2702 // Argument must be a pointer to __strong to __weak.
2703 QualType FromPointee;
2704 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2705 FromPointee = FromPointer->getPointeeType();
2706 else
2707 return false;
2708
2709 Qualifiers FromQuals = FromPointee.getQualifiers();
2710 if (!FromPointee->isObjCLifetimeType() ||
2711 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2712 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2713 return false;
2714
2715 // Make sure that we have compatible qualifiers.
2716 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2717 if (!ToQuals.compatiblyIncludes(FromQuals))
2718 return false;
2719
2720 // Remove qualifiers from the pointee type we're converting from; they
2721 // aren't used in the compatibility check belong, and we'll be adding back
2722 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2723 FromPointee = FromPointee.getUnqualifiedType();
2724
2725 // The unqualified form of the pointee types must be compatible.
2726 ToPointee = ToPointee.getUnqualifiedType();
2727 bool IncompatibleObjC;
2728 if (Context.typesAreCompatible(FromPointee, ToPointee))
2729 FromPointee = ToPointee;
2730 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2731 IncompatibleObjC))
2732 return false;
2733
2734 /// Construct the type we're converting to, which is a pointer to
2735 /// __autoreleasing pointee.
2736 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2737 ConvertedType = Context.getPointerType(FromPointee);
2738 return true;
2739}
2740
2741bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2742 QualType& ConvertedType) {
2743 QualType ToPointeeType;
2744 if (const BlockPointerType *ToBlockPtr =
2745 ToType->getAs<BlockPointerType>())
2746 ToPointeeType = ToBlockPtr->getPointeeType();
2747 else
2748 return false;
2749
2750 QualType FromPointeeType;
2751 if (const BlockPointerType *FromBlockPtr =
2752 FromType->getAs<BlockPointerType>())
2753 FromPointeeType = FromBlockPtr->getPointeeType();
2754 else
2755 return false;
2756 // We have pointer to blocks, check whether the only
2757 // differences in the argument and result types are in Objective-C
2758 // pointer conversions. If so, we permit the conversion.
2759
2760 const FunctionProtoType *FromFunctionType
2761 = FromPointeeType->getAs<FunctionProtoType>();
2762 const FunctionProtoType *ToFunctionType
2763 = ToPointeeType->getAs<FunctionProtoType>();
2764
2765 if (!FromFunctionType || !ToFunctionType)
2766 return false;
2767
2768 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2769 return true;
2770
2771 // Perform the quick checks that will tell us whether these
2772 // function types are obviously different.
2773 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2774 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2775 return false;
2776
2777 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2778 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2779 if (FromEInfo != ToEInfo)
2780 return false;
2781
2782 bool IncompatibleObjC = false;
2783 if (Context.hasSameType(FromFunctionType->getReturnType(),
2784 ToFunctionType->getReturnType())) {
2785 // Okay, the types match exactly. Nothing to do.
2786 } else {
2787 QualType RHS = FromFunctionType->getReturnType();
2788 QualType LHS = ToFunctionType->getReturnType();
2789 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2790 !RHS.hasQualifiers() && LHS.hasQualifiers())
2791 LHS = LHS.getUnqualifiedType();
2792
2793 if (Context.hasSameType(RHS,LHS)) {
2794 // OK exact match.
2795 } else if (isObjCPointerConversion(RHS, LHS,
2796 ConvertedType, IncompatibleObjC)) {
2797 if (IncompatibleObjC)
2798 return false;
2799 // Okay, we have an Objective-C pointer conversion.
2800 }
2801 else
2802 return false;
2803 }
2804
2805 // Check argument types.
2806 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2807 ArgIdx != NumArgs; ++ArgIdx) {
2808 IncompatibleObjC = false;
2809 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2810 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2811 if (Context.hasSameType(FromArgType, ToArgType)) {
2812 // Okay, the types match exactly. Nothing to do.
2813 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2814 ConvertedType, IncompatibleObjC)) {
2815 if (IncompatibleObjC)
2816 return false;
2817 // Okay, we have an Objective-C pointer conversion.
2818 } else
2819 // Argument types are too different. Abort.
2820 return false;
2821 }
2822
2823 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2824 bool CanUseToFPT, CanUseFromFPT;
2825 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2826 CanUseToFPT, CanUseFromFPT,
2827 NewParamInfos))
2828 return false;
2829
2830 ConvertedType = ToType;
2831 return true;
2832}
2833
2834enum {
2835 ft_default,
2836 ft_different_class,
2837 ft_parameter_arity,
2838 ft_parameter_mismatch,
2839 ft_return_type,
2840 ft_qualifer_mismatch,
2841 ft_noexcept
2842};
2843
2844/// Attempts to get the FunctionProtoType from a Type. Handles
2845/// MemberFunctionPointers properly.
2846static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2847 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2848 return FPT;
2849
2850 if (auto *MPT = FromType->getAs<MemberPointerType>())
2851 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2852
2853 return nullptr;
2854}
2855
2856/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2857/// function types. Catches different number of parameter, mismatch in
2858/// parameter types, and different return types.
2859void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2860 QualType FromType, QualType ToType) {
2861 // If either type is not valid, include no extra info.
2862 if (FromType.isNull() || ToType.isNull()) {
2863 PDiag << ft_default;
2864 return;
2865 }
2866
2867 // Get the function type from the pointers.
2868 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2869 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2870 *ToMember = ToType->castAs<MemberPointerType>();
2871 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2872 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2873 << QualType(FromMember->getClass(), 0);
2874 return;
2875 }
2876 FromType = FromMember->getPointeeType();
2877 ToType = ToMember->getPointeeType();
2878 }
2879
2880 if (FromType->isPointerType())
2881 FromType = FromType->getPointeeType();
2882 if (ToType->isPointerType())
2883 ToType = ToType->getPointeeType();
2884
2885 // Remove references.
2886 FromType = FromType.getNonReferenceType();
2887 ToType = ToType.getNonReferenceType();
2888
2889 // Don't print extra info for non-specialized template functions.
2890 if (FromType->isInstantiationDependentType() &&
2891 !FromType->getAs<TemplateSpecializationType>()) {
2892 PDiag << ft_default;
2893 return;
2894 }
2895
2896 // No extra info for same types.
2897 if (Context.hasSameType(FromType, ToType)) {
2898 PDiag << ft_default;
2899 return;
2900 }
2901
2902 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2903 *ToFunction = tryGetFunctionProtoType(ToType);
2904
2905 // Both types need to be function types.
2906 if (!FromFunction || !ToFunction) {
2907 PDiag << ft_default;
2908 return;
2909 }
2910
2911 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2912 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2913 << FromFunction->getNumParams();
2914 return;
2915 }
2916
2917 // Handle different parameter types.
2918 unsigned ArgPos;
2919 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2920 PDiag << ft_parameter_mismatch << ArgPos + 1
2921 << ToFunction->getParamType(ArgPos)
2922 << FromFunction->getParamType(ArgPos);
2923 return;
2924 }
2925
2926 // Handle different return type.
2927 if (!Context.hasSameType(FromFunction->getReturnType(),
2928 ToFunction->getReturnType())) {
2929 PDiag << ft_return_type << ToFunction->getReturnType()
2930 << FromFunction->getReturnType();
2931 return;
2932 }
2933
2934 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2935 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2936 << FromFunction->getMethodQuals();
2937 return;
2938 }
2939
2940 // Handle exception specification differences on canonical type (in C++17
2941 // onwards).
2942 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2943 ->isNothrow() !=
2944 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2945 ->isNothrow()) {
2946 PDiag << ft_noexcept;
2947 return;
2948 }
2949
2950 // Unable to find a difference, so add no extra info.
2951 PDiag << ft_default;
2952}
2953
2954/// FunctionParamTypesAreEqual - This routine checks two function proto types
2955/// for equality of their argument types. Caller has already checked that
2956/// they have same number of arguments. If the parameters are different,
2957/// ArgPos will have the parameter index of the first different parameter.
2958bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2959 const FunctionProtoType *NewType,
2960 unsigned *ArgPos) {
2961 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2962 N = NewType->param_type_begin(),
2963 E = OldType->param_type_end();
2964 O && (O != E); ++O, ++N) {
2965 // Ignore address spaces in pointee type. This is to disallow overloading
2966 // on __ptr32/__ptr64 address spaces.
2967 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2968 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2969
2970 if (!Context.hasSameType(Old, New)) {
2971 if (ArgPos)
2972 *ArgPos = O - OldType->param_type_begin();
2973 return false;
2974 }
2975 }
2976 return true;
2977}
2978
2979/// CheckPointerConversion - Check the pointer conversion from the
2980/// expression From to the type ToType. This routine checks for
2981/// ambiguous or inaccessible derived-to-base pointer
2982/// conversions for which IsPointerConversion has already returned
2983/// true. It returns true and produces a diagnostic if there was an
2984/// error, or returns false otherwise.
2985bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2986 CastKind &Kind,
2987 CXXCastPath& BasePath,
2988 bool IgnoreBaseAccess,
2989 bool Diagnose) {
2990 QualType FromType = From->getType();
2991 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2992
2993 Kind = CK_BitCast;
2994
2995 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2996 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2997 Expr::NPCK_ZeroExpression) {
2998 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2999 DiagRuntimeBehavior(From->getExprLoc(), From,
3000 PDiag(diag::warn_impcast_bool_to_null_pointer)
3001 << ToType << From->getSourceRange());
3002 else if (!isUnevaluatedContext())
3003 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3004 << ToType << From->getSourceRange();
3005 }
3006 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3007 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3008 QualType FromPointeeType = FromPtrType->getPointeeType(),
3009 ToPointeeType = ToPtrType->getPointeeType();
3010
3011 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3012 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3013 // We must have a derived-to-base conversion. Check an
3014 // ambiguous or inaccessible conversion.
3015 unsigned InaccessibleID = 0;
3016 unsigned AmbiguousID = 0;
3017 if (Diagnose) {
3018 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3019 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3020 }
3021 if (CheckDerivedToBaseConversion(
3022 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3023 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3024 &BasePath, IgnoreBaseAccess))
3025 return true;
3026
3027 // The conversion was successful.
3028 Kind = CK_DerivedToBase;
3029 }
3030
3031 if (Diagnose && !IsCStyleOrFunctionalCast &&
3032 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3033 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3034, __PRETTY_FUNCTION__))
3034 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3034, __PRETTY_FUNCTION__))
;
3035 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3036 << From->getSourceRange();
3037 }
3038 }
3039 } else if (const ObjCObjectPointerType *ToPtrType =
3040 ToType->getAs<ObjCObjectPointerType>()) {
3041 if (const ObjCObjectPointerType *FromPtrType =
3042 FromType->getAs<ObjCObjectPointerType>()) {
3043 // Objective-C++ conversions are always okay.
3044 // FIXME: We should have a different class of conversions for the
3045 // Objective-C++ implicit conversions.
3046 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3047 return false;
3048 } else if (FromType->isBlockPointerType()) {
3049 Kind = CK_BlockPointerToObjCPointerCast;
3050 } else {
3051 Kind = CK_CPointerToObjCPointerCast;
3052 }
3053 } else if (ToType->isBlockPointerType()) {
3054 if (!FromType->isBlockPointerType())
3055 Kind = CK_AnyPointerToBlockPointerCast;
3056 }
3057
3058 // We shouldn't fall into this case unless it's valid for other
3059 // reasons.
3060 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3061 Kind = CK_NullToPointer;
3062
3063 return false;
3064}
3065
3066/// IsMemberPointerConversion - Determines whether the conversion of the
3067/// expression From, which has the (possibly adjusted) type FromType, can be
3068/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3069/// If so, returns true and places the converted type (that might differ from
3070/// ToType in its cv-qualifiers at some level) into ConvertedType.
3071bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3072 QualType ToType,
3073 bool InOverloadResolution,
3074 QualType &ConvertedType) {
3075 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3076 if (!ToTypePtr)
3077 return false;
3078
3079 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3080 if (From->isNullPointerConstant(Context,
3081 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3082 : Expr::NPC_ValueDependentIsNull)) {
3083 ConvertedType = ToType;
3084 return true;
3085 }
3086
3087 // Otherwise, both types have to be member pointers.
3088 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3089 if (!FromTypePtr)
3090 return false;
3091
3092 // A pointer to member of B can be converted to a pointer to member of D,
3093 // where D is derived from B (C++ 4.11p2).
3094 QualType FromClass(FromTypePtr->getClass(), 0);
3095 QualType ToClass(ToTypePtr->getClass(), 0);
3096
3097 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3098 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3099 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3100 ToClass.getTypePtr());
3101 return true;
3102 }
3103
3104 return false;
3105}
3106
3107/// CheckMemberPointerConversion - Check the member pointer conversion from the
3108/// expression From to the type ToType. This routine checks for ambiguous or
3109/// virtual or inaccessible base-to-derived member pointer conversions
3110/// for which IsMemberPointerConversion has already returned true. It returns
3111/// true and produces a diagnostic if there was an error, or returns false
3112/// otherwise.
3113bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3114 CastKind &Kind,
3115 CXXCastPath &BasePath,
3116 bool IgnoreBaseAccess) {
3117 QualType FromType = From->getType();
3118 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3119 if (!FromPtrType) {
3120 // This must be a null pointer to member pointer conversion
3121 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
3122 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
3123 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
;
3124 Kind = CK_NullToMemberPointer;
3125 return false;
3126 }
3127
3128 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3129 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3130, __PRETTY_FUNCTION__))
3130 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3130, __PRETTY_FUNCTION__))
;
3131
3132 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3133 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3134
3135 // FIXME: What about dependent types?
3136 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3136, __PRETTY_FUNCTION__))
;
3137 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3137, __PRETTY_FUNCTION__))
;
3138
3139 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3140 /*DetectVirtual=*/true);
3141 bool DerivationOkay =
3142 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3143 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3144, __PRETTY_FUNCTION__))
3144 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3144, __PRETTY_FUNCTION__))
;
3145 (void)DerivationOkay;
3146
3147 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3148 getUnqualifiedType())) {
3149 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3150 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3151 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3152 return true;
3153 }
3154
3155 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3156 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3157 << FromClass << ToClass << QualType(VBase, 0)
3158 << From->getSourceRange();
3159 return true;
3160 }
3161
3162 if (!IgnoreBaseAccess)
3163 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3164 Paths.front(),
3165 diag::err_downcast_from_inaccessible_base);
3166
3167 // Must be a base to derived member conversion.
3168 BuildBasePathArray(Paths, BasePath);
3169 Kind = CK_BaseToDerivedMemberPointer;
3170 return false;
3171}
3172
3173/// Determine whether the lifetime conversion between the two given
3174/// qualifiers sets is nontrivial.
3175static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3176 Qualifiers ToQuals) {
3177 // Converting anything to const __unsafe_unretained is trivial.
3178 if (ToQuals.hasConst() &&
3179 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3180 return false;
3181
3182 return true;
3183}
3184
3185/// Perform a single iteration of the loop for checking if a qualification
3186/// conversion is valid.
3187///
3188/// Specifically, check whether any change between the qualifiers of \p
3189/// FromType and \p ToType is permissible, given knowledge about whether every
3190/// outer layer is const-qualified.
3191static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3192 bool CStyle, bool IsTopLevel,
3193 bool &PreviousToQualsIncludeConst,
3194 bool &ObjCLifetimeConversion) {
3195 Qualifiers FromQuals = FromType.getQualifiers();
3196 Qualifiers ToQuals = ToType.getQualifiers();
3197
3198 // Ignore __unaligned qualifier if this type is void.
3199 if (ToType.getUnqualifiedType()->isVoidType())
3200 FromQuals.removeUnaligned();
3201
3202 // Objective-C ARC:
3203 // Check Objective-C lifetime conversions.
3204 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3205 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3206 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3207 ObjCLifetimeConversion = true;
3208 FromQuals.removeObjCLifetime();
3209 ToQuals.removeObjCLifetime();
3210 } else {
3211 // Qualification conversions cannot cast between different
3212 // Objective-C lifetime qualifiers.
3213 return false;
3214 }
3215 }
3216
3217 // Allow addition/removal of GC attributes but not changing GC attributes.
3218 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3219 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3220 FromQuals.removeObjCGCAttr();
3221 ToQuals.removeObjCGCAttr();
3222 }
3223
3224 // -- for every j > 0, if const is in cv 1,j then const is in cv
3225 // 2,j, and similarly for volatile.
3226 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3227 return false;
3228
3229 // If address spaces mismatch:
3230 // - in top level it is only valid to convert to addr space that is a
3231 // superset in all cases apart from C-style casts where we allow
3232 // conversions between overlapping address spaces.
3233 // - in non-top levels it is not a valid conversion.
3234 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3235 (!IsTopLevel ||
3236 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3237 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3238 return false;
3239
3240 // -- if the cv 1,j and cv 2,j are different, then const is in
3241 // every cv for 0 < k < j.
3242 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3243 !PreviousToQualsIncludeConst)
3244 return false;
3245
3246 // Keep track of whether all prior cv-qualifiers in the "to" type
3247 // include const.
3248 PreviousToQualsIncludeConst =
3249 PreviousToQualsIncludeConst && ToQuals.hasConst();
3250 return true;
3251}
3252
3253/// IsQualificationConversion - Determines whether the conversion from
3254/// an rvalue of type FromType to ToType is a qualification conversion
3255/// (C++ 4.4).
3256///
3257/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3258/// when the qualification conversion involves a change in the Objective-C
3259/// object lifetime.
3260bool
3261Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3262 bool CStyle, bool &ObjCLifetimeConversion) {
3263 FromType = Context.getCanonicalType(FromType);
3264 ToType = Context.getCanonicalType(ToType);
3265 ObjCLifetimeConversion = false;
3266
3267 // If FromType and ToType are the same type, this is not a
3268 // qualification conversion.
3269 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3270 return false;
3271
3272 // (C++ 4.4p4):
3273 // A conversion can add cv-qualifiers at levels other than the first
3274 // in multi-level pointers, subject to the following rules: [...]
3275 bool PreviousToQualsIncludeConst = true;
3276 bool UnwrappedAnyPointer = false;
3277 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3278 if (!isQualificationConversionStep(
3279 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3280 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3281 return false;
3282 UnwrappedAnyPointer = true;
3283 }
3284
3285 // We are left with FromType and ToType being the pointee types
3286 // after unwrapping the original FromType and ToType the same number
3287 // of times. If we unwrapped any pointers, and if FromType and
3288 // ToType have the same unqualified type (since we checked
3289 // qualifiers above), then this is a qualification conversion.
3290 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3291}
3292
3293/// - Determine whether this is a conversion from a scalar type to an
3294/// atomic type.
3295///
3296/// If successful, updates \c SCS's second and third steps in the conversion
3297/// sequence to finish the conversion.
3298static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3299 bool InOverloadResolution,
3300 StandardConversionSequence &SCS,
3301 bool CStyle) {
3302 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3303 if (!ToAtomic)
3304 return false;
3305
3306 StandardConversionSequence InnerSCS;
3307 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3308 InOverloadResolution, InnerSCS,
3309 CStyle, /*AllowObjCWritebackConversion=*/false))
3310 return false;
3311
3312 SCS.Second = InnerSCS.Second;
3313 SCS.setToType(1, InnerSCS.getToType(1));
3314 SCS.Third = InnerSCS.Third;
3315 SCS.QualificationIncludesObjCLifetime
3316 = InnerSCS.QualificationIncludesObjCLifetime;
3317 SCS.setToType(2, InnerSCS.getToType(2));
3318 return true;
3319}
3320
3321static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3322 CXXConstructorDecl *Constructor,
3323 QualType Type) {
3324 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3325 if (CtorType->getNumParams() > 0) {
3326 QualType FirstArg = CtorType->getParamType(0);
3327 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3328 return true;
3329 }
3330 return false;
3331}
3332
3333static OverloadingResult
3334IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3335 CXXRecordDecl *To,
3336 UserDefinedConversionSequence &User,
3337 OverloadCandidateSet &CandidateSet,
3338 bool AllowExplicit) {
3339 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3340 for (auto *D : S.LookupConstructors(To)) {
3341 auto Info = getConstructorInfo(D);
3342 if (!Info)
3343 continue;
3344
3345 bool Usable = !Info.Constructor->isInvalidDecl() &&
3346 S.isInitListConstructor(Info.Constructor);
3347 if (Usable) {
3348 // If the first argument is (a reference to) the target type,
3349 // suppress conversions.
3350 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3351 S.Context, Info.Constructor, ToType);
3352 if (Info.ConstructorTmpl)
3353 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3354 /*ExplicitArgs*/ nullptr, From,
3355 CandidateSet, SuppressUserConversions,
3356 /*PartialOverloading*/ false,
3357 AllowExplicit);
3358 else
3359 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3360 CandidateSet, SuppressUserConversions,
3361 /*PartialOverloading*/ false, AllowExplicit);
3362 }
3363 }
3364
3365 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3366
3367 OverloadCandidateSet::iterator Best;
3368 switch (auto Result =
3369 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3370 case OR_Deleted:
3371 case OR_Success: {
3372 // Record the standard conversion we used and the conversion function.
3373 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3374 QualType ThisType = Constructor->getThisType();
3375 // Initializer lists don't have conversions as such.
3376 User.Before.setAsIdentityConversion();
3377 User.HadMultipleCandidates = HadMultipleCandidates;
3378 User.ConversionFunction = Constructor;
3379 User.FoundConversionFunction = Best->FoundDecl;
3380 User.After.setAsIdentityConversion();
3381 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3382 User.After.setAllToTypes(ToType);
3383 return Result;
3384 }
3385
3386 case OR_No_Viable_Function:
3387 return OR_No_Viable_Function;
3388 case OR_Ambiguous:
3389 return OR_Ambiguous;
3390 }
3391
3392 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3392)
;
3393}
3394
3395/// Determines whether there is a user-defined conversion sequence
3396/// (C++ [over.ics.user]) that converts expression From to the type
3397/// ToType. If such a conversion exists, User will contain the
3398/// user-defined conversion sequence that performs such a conversion
3399/// and this routine will return true. Otherwise, this routine returns
3400/// false and User is unspecified.
3401///
3402/// \param AllowExplicit true if the conversion should consider C++0x
3403/// "explicit" conversion functions as well as non-explicit conversion
3404/// functions (C++0x [class.conv.fct]p2).
3405///
3406/// \param AllowObjCConversionOnExplicit true if the conversion should
3407/// allow an extra Objective-C pointer conversion on uses of explicit
3408/// constructors. Requires \c AllowExplicit to also be set.
3409static OverloadingResult
3410IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3411 UserDefinedConversionSequence &User,
3412 OverloadCandidateSet &CandidateSet,
3413 AllowedExplicit AllowExplicit,
3414 bool AllowObjCConversionOnExplicit) {
3415 assert(AllowExplicit != AllowedExplicit::None ||((AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit
) ? static_cast<void> (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3416, __PRETTY_FUNCTION__))
3416 !AllowObjCConversionOnExplicit)((AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit
) ? static_cast<void> (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3416, __PRETTY_FUNCTION__))
;
3417 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3418
3419 // Whether we will only visit constructors.
3420 bool ConstructorsOnly = false;
3421
3422 // If the type we are conversion to is a class type, enumerate its
3423 // constructors.
3424 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3425 // C++ [over.match.ctor]p1:
3426 // When objects of class type are direct-initialized (8.5), or
3427 // copy-initialized from an expression of the same or a
3428 // derived class type (8.5), overload resolution selects the
3429 // constructor. [...] For copy-initialization, the candidate
3430 // functions are all the converting constructors (12.3.1) of
3431 // that class. The argument list is the expression-list within
3432 // the parentheses of the initializer.
3433 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3434 (From->getType()->getAs<RecordType>() &&
3435 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3436 ConstructorsOnly = true;
3437
3438 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3439 // We're not going to find any constructors.
3440 } else if (CXXRecordDecl *ToRecordDecl
3441 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3442
3443 Expr **Args = &From;
3444 unsigned NumArgs = 1;
3445 bool ListInitializing = false;
3446 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3447 // But first, see if there is an init-list-constructor that will work.
3448 OverloadingResult Result = IsInitializerListConstructorConversion(
3449 S, From, ToType, ToRecordDecl, User, CandidateSet,
3450 AllowExplicit == AllowedExplicit::All);
3451 if (Result != OR_No_Viable_Function)
3452 return Result;
3453 // Never mind.
3454 CandidateSet.clear(
3455 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3456
3457 // If we're list-initializing, we pass the individual elements as
3458 // arguments, not the entire list.
3459 Args = InitList->getInits();
3460 NumArgs = InitList->getNumInits();
3461 ListInitializing = true;
3462 }
3463
3464 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3465 auto Info = getConstructorInfo(D);
3466 if (!Info)
3467 continue;
3468
3469 bool Usable = !Info.Constructor->isInvalidDecl();
3470 if (!ListInitializing)
3471 Usable = Usable && Info.Constructor->isConvertingConstructor(
3472 /*AllowExplicit*/ true);
3473 if (Usable) {
3474 bool SuppressUserConversions = !ConstructorsOnly;
3475 if (SuppressUserConversions && ListInitializing) {
3476 SuppressUserConversions = false;
3477 if (NumArgs == 1) {
3478 // If the first argument is (a reference to) the target type,
3479 // suppress conversions.
3480 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3481 S.Context, Info.Constructor, ToType);
3482 }
3483 }
3484 if (Info.ConstructorTmpl)
3485 S.AddTemplateOverloadCandidate(
3486 Info.ConstructorTmpl, Info.FoundDecl,
3487 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3488 CandidateSet, SuppressUserConversions,
3489 /*PartialOverloading*/ false,
3490 AllowExplicit == AllowedExplicit::All);
3491 else
3492 // Allow one user-defined conversion when user specifies a
3493 // From->ToType conversion via an static cast (c-style, etc).
3494 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3495 llvm::makeArrayRef(Args, NumArgs),
3496 CandidateSet, SuppressUserConversions,
3497 /*PartialOverloading*/ false,
3498 AllowExplicit == AllowedExplicit::All);
3499 }
3500 }
3501 }
3502 }
3503
3504 // Enumerate conversion functions, if we're allowed to.
3505 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3506 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3507 // No conversion functions from incomplete types.
3508 } else if (const RecordType *FromRecordType =
3509 From->getType()->getAs<RecordType>()) {
3510 if (CXXRecordDecl *FromRecordDecl
3511 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3512 // Add all of the conversion functions as candidates.
3513 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3514 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3515 DeclAccessPair FoundDecl = I.getPair();
3516 NamedDecl *D = FoundDecl.getDecl();
3517 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3518 if (isa<UsingShadowDecl>(D))
3519 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3520
3521 CXXConversionDecl *Conv;
3522 FunctionTemplateDecl *ConvTemplate;
3523 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3524 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3525 else
3526 Conv = cast<CXXConversionDecl>(D);
3527
3528 if (ConvTemplate)
3529 S.AddTemplateConversionCandidate(
3530 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3531 CandidateSet, AllowObjCConversionOnExplicit,
3532 AllowExplicit != AllowedExplicit::None);
3533 else
3534 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3535 CandidateSet, AllowObjCConversionOnExplicit,
3536 AllowExplicit != AllowedExplicit::None);
3537 }
3538 }
3539 }
3540
3541 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3542
3543 OverloadCandidateSet::iterator Best;
3544 switch (auto Result =
3545 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3546 case OR_Success:
3547 case OR_Deleted:
3548 // Record the standard conversion we used and the conversion function.
3549 if (CXXConstructorDecl *Constructor
3550 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3551 // C++ [over.ics.user]p1:
3552 // If the user-defined conversion is specified by a
3553 // constructor (12.3.1), the initial standard conversion
3554 // sequence converts the source type to the type required by
3555 // the argument of the constructor.
3556 //
3557 QualType ThisType = Constructor->getThisType();
3558 if (isa<InitListExpr>(From)) {
3559 // Initializer lists don't have conversions as such.
3560 User.Before.setAsIdentityConversion();
3561 } else {
3562 if (Best->Conversions[0].isEllipsis())
3563 User.EllipsisConversion = true;
3564 else {
3565 User.Before = Best->Conversions[0].Standard;
3566 User.EllipsisConversion = false;
3567 }
3568 }
3569 User.HadMultipleCandidates = HadMultipleCandidates;
3570 User.ConversionFunction = Constructor;
3571 User.FoundConversionFunction = Best->FoundDecl;
3572 User.After.setAsIdentityConversion();
3573 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3574 User.After.setAllToTypes(ToType);
3575 return Result;
3576 }
3577 if (CXXConversionDecl *Conversion
3578 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3579 // C++ [over.ics.user]p1:
3580 //
3581 // [...] If the user-defined conversion is specified by a
3582 // conversion function (12.3.2), the initial standard
3583 // conversion sequence converts the source type to the
3584 // implicit object parameter of the conversion function.
3585 User.Before = Best->Conversions[0].Standard;
3586 User.HadMultipleCandidates = HadMultipleCandidates;
3587 User.ConversionFunction = Conversion;
3588 User.FoundConversionFunction = Best->FoundDecl;
3589 User.EllipsisConversion = false;
3590
3591 // C++ [over.ics.user]p2:
3592 // The second standard conversion sequence converts the
3593 // result of the user-defined conversion to the target type
3594 // for the sequence. Since an implicit conversion sequence
3595 // is an initialization, the special rules for
3596 // initialization by user-defined conversion apply when
3597 // selecting the best user-defined conversion for a
3598 // user-defined conversion sequence (see 13.3.3 and
3599 // 13.3.3.1).
3600 User.After = Best->FinalConversion;
3601 return Result;
3602 }
3603 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3603)
;
3604
3605 case OR_No_Viable_Function:
3606 return OR_No_Viable_Function;
3607
3608 case OR_Ambiguous:
3609 return OR_Ambiguous;
3610 }
3611
3612 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 3612)
;
3613}
3614
3615bool
3616Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3617 ImplicitConversionSequence ICS;
3618 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3619 OverloadCandidateSet::CSK_Normal);
3620 OverloadingResult OvResult =
3621 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3622 CandidateSet, AllowedExplicit::None, false);
3623
3624 if (!(OvResult == OR_Ambiguous ||
3625 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3626 return false;
3627
3628 auto Cands = CandidateSet.CompleteCandidates(
3629 *this,
3630 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3631 From);
3632 if (OvResult == OR_Ambiguous)
3633 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3634 << From->getType() << ToType << From->getSourceRange();
3635 else { // OR_No_Viable_Function && !CandidateSet.empty()
3636 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3637 diag::err_typecheck_nonviable_condition_incomplete,
3638 From->getType(), From->getSourceRange()))
3639 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3640 << false << From->getType() << From->getSourceRange() << ToType;
3641 }
3642
3643 CandidateSet.NoteCandidates(
3644 *this, From, Cands);
3645 return true;
3646}
3647
3648/// Compare the user-defined conversion functions or constructors
3649/// of two user-defined conversion sequences to determine whether any ordering
3650/// is possible.
3651static ImplicitConversionSequence::CompareKind
3652compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3653 FunctionDecl *Function2) {
3654 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3655 return ImplicitConversionSequence::Indistinguishable;
3656
3657 // Objective-C++:
3658 // If both conversion functions are implicitly-declared conversions from
3659 // a lambda closure type to a function pointer and a block pointer,
3660 // respectively, always prefer the conversion to a function pointer,
3661 // because the function pointer is more lightweight and is more likely
3662 // to keep code working.
3663 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3664 if (!Conv1)
3665 return ImplicitConversionSequence::Indistinguishable;
3666
3667 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3668 if (!Conv2)
3669 return ImplicitConversionSequence::Indistinguishable;
3670
3671 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3672 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3673 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3674 if (Block1 != Block2)
3675 return Block1 ? ImplicitConversionSequence::Worse
3676 : ImplicitConversionSequence::Better;
3677 }
3678
3679 return ImplicitConversionSequence::Indistinguishable;
3680}
3681
3682static bool hasDeprecatedStringLiteralToCharPtrConversion(
3683 const ImplicitConversionSequence &ICS) {
3684 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3685 (ICS.isUserDefined() &&
3686 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3687}
3688
3689/// CompareImplicitConversionSequences - Compare two implicit
3690/// conversion sequences to determine whether one is better than the
3691/// other or if they are indistinguishable (C++ 13.3.3.2).
3692static ImplicitConversionSequence::CompareKind
3693CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3694 const ImplicitConversionSequence& ICS1,
3695 const ImplicitConversionSequence& ICS2)
3696{
3697 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3698 // conversion sequences (as defined in 13.3.3.1)
3699 // -- a standard conversion sequence (13.3.3.1.1) is a better
3700 // conversion sequence than a user-defined conversion sequence or
3701 // an ellipsis conversion sequence, and
3702 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3703 // conversion sequence than an ellipsis conversion sequence
3704 // (13.3.3.1.3).
3705 //
3706 // C++0x [over.best.ics]p10:
3707 // For the purpose of ranking implicit conversion sequences as
3708 // described in 13.3.3.2, the ambiguous conversion sequence is
3709 // treated as a user-defined sequence that is indistinguishable
3710 // from any other user-defined conversion sequence.
3711
3712 // String literal to 'char *' conversion has been deprecated in C++03. It has
3713 // been removed from C++11. We still accept this conversion, if it happens at
3714 // the best viable function. Otherwise, this conversion is considered worse
3715 // than ellipsis conversion. Consider this as an extension; this is not in the
3716 // standard. For example:
3717 //
3718 // int &f(...); // #1
3719 // void f(char*); // #2
3720 // void g() { int &r = f("foo"); }
3721 //
3722 // In C++03, we pick #2 as the best viable function.
3723 // In C++11, we pick #1 as the best viable function, because ellipsis
3724 // conversion is better than string-literal to char* conversion (since there
3725 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3726 // convert arguments, #2 would be the best viable function in C++11.
3727 // If the best viable function has this conversion, a warning will be issued
3728 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3729
3730 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3731 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3732 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3733 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3734 ? ImplicitConversionSequence::Worse
3735 : ImplicitConversionSequence::Better;
3736
3737 if (ICS1.getKindRank() < ICS2.getKindRank())
3738 return ImplicitConversionSequence::Better;
3739 if (ICS2.getKindRank() < ICS1.getKindRank())
3740 return ImplicitConversionSequence::Worse;
3741
3742 // The following checks require both conversion sequences to be of
3743 // the same kind.
3744 if (ICS1.getKind() != ICS2.getKind())
3745 return ImplicitConversionSequence::Indistinguishable;
3746
3747 ImplicitConversionSequence::CompareKind Result =
3748 ImplicitConversionSequence::Indistinguishable;
3749
3750 // Two implicit conversion sequences of the same form are
3751 // indistinguishable conversion sequences unless one of the
3752 // following rules apply: (C++ 13.3.3.2p3):
3753
3754 // List-initialization sequence L1 is a better conversion sequence than
3755 // list-initialization sequence L2 if:
3756 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3757 // if not that,
3758 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3759 // and N1 is smaller than N2.,
3760 // even if one of the other rules in this paragraph would otherwise apply.
3761 if (!ICS1.isBad()) {
3762 if (ICS1.isStdInitializerListElement() &&
3763 !ICS2.isStdInitializerListElement())
3764 return ImplicitConversionSequence::Better;
3765 if (!ICS1.isStdInitializerListElement() &&
3766 ICS2.isStdInitializerListElement())
3767 return ImplicitConversionSequence::Worse;
3768 }
3769
3770 if (ICS1.isStandard())
3771 // Standard conversion sequence S1 is a better conversion sequence than
3772 // standard conversion sequence S2 if [...]
3773 Result = CompareStandardConversionSequences(S, Loc,
3774 ICS1.Standard, ICS2.Standard);
3775 else if (ICS1.isUserDefined()) {
3776 // User-defined conversion sequence U1 is a better conversion
3777 // sequence than another user-defined conversion sequence U2 if
3778 // they contain the same user-defined conversion function or
3779 // constructor and if the second standard conversion sequence of
3780 // U1 is better than the second standard conversion sequence of
3781 // U2 (C++ 13.3.3.2p3).
3782 if (ICS1.UserDefined.ConversionFunction ==
3783 ICS2.UserDefined.ConversionFunction)
3784 Result = CompareStandardConversionSequences(S, Loc,
3785 ICS1.UserDefined.After,
3786 ICS2.UserDefined.After);
3787 else
3788 Result = compareConversionFunctions(S,
3789 ICS1.UserDefined.ConversionFunction,
3790 ICS2.UserDefined.ConversionFunction);
3791 }
3792
3793 return Result;
3794}
3795
3796// Per 13.3.3.2p3, compare the given standard conversion sequences to
3797// determine if one is a proper subset of the other.
3798static ImplicitConversionSequence::CompareKind
3799compareStandardConversionSubsets(ASTContext &Context,
3800 const StandardConversionSequence& SCS1,
3801 const StandardConversionSequence& SCS2) {
3802 ImplicitConversionSequence::CompareKind Result
3803 = ImplicitConversionSequence::Indistinguishable;
3804
3805 // the identity conversion sequence is considered to be a subsequence of
3806 // any non-identity conversion sequence
3807 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3808 return ImplicitConversionSequence::Better;
3809 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3810 return ImplicitConversionSequence::Worse;
3811
3812 if (SCS1.Second != SCS2.Second) {
3813 if (SCS1.Second == ICK_Identity)
3814 Result = ImplicitConversionSequence::Better;
3815 else if (SCS2.Second == ICK_Identity)
3816 Result = ImplicitConversionSequence::Worse;
3817 else
3818 return ImplicitConversionSequence::Indistinguishable;
3819 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3820 return ImplicitConversionSequence::Indistinguishable;
3821
3822 if (SCS1.Third == SCS2.Third) {
3823 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3824 : ImplicitConversionSequence::Indistinguishable;
3825 }
3826
3827 if (SCS1.Third == ICK_Identity)
3828 return Result == ImplicitConversionSequence::Worse
3829 ? ImplicitConversionSequence::Indistinguishable
3830 : ImplicitConversionSequence::Better;
3831
3832 if (SCS2.Third == ICK_Identity)
3833 return Result == ImplicitConversionSequence::Better
3834 ? ImplicitConversionSequence::Indistinguishable
3835 : ImplicitConversionSequence::Worse;
3836
3837 return ImplicitConversionSequence::Indistinguishable;
3838}
3839
3840/// Determine whether one of the given reference bindings is better
3841/// than the other based on what kind of bindings they are.
3842static bool
3843isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3844 const StandardConversionSequence &SCS2) {
3845 // C++0x [over.ics.rank]p3b4:
3846 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3847 // implicit object parameter of a non-static member function declared
3848 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3849 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3850 // lvalue reference to a function lvalue and S2 binds an rvalue
3851 // reference*.
3852 //
3853 // FIXME: Rvalue references. We're going rogue with the above edits,
3854 // because the semantics in the current C++0x working paper (N3225 at the
3855 // time of this writing) break the standard definition of std::forward
3856 // and std::reference_wrapper when dealing with references to functions.
3857 // Proposed wording changes submitted to CWG for consideration.
3858 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3859 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3860 return false;
3861
3862 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3863 SCS2.IsLvalueReference) ||
3864 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3865 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3866}
3867
3868enum class FixedEnumPromotion {
3869 None,
3870 ToUnderlyingType,
3871 ToPromotedUnderlyingType
3872};
3873
3874/// Returns kind of fixed enum promotion the \a SCS uses.
3875static FixedEnumPromotion
3876getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3877
3878 if (SCS.Second != ICK_Integral_Promotion)
3879 return FixedEnumPromotion::None;
3880
3881 QualType FromType = SCS.getFromType();
3882 if (!FromType->isEnumeralType())
3883 return FixedEnumPromotion::None;
3884
3885 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3886 if (!Enum->isFixed())
3887 return FixedEnumPromotion::None;
3888
3889 QualType UnderlyingType = Enum->getIntegerType();
3890 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3891 return FixedEnumPromotion::ToUnderlyingType;
3892
3893 return FixedEnumPromotion::ToPromotedUnderlyingType;
3894}
3895
3896/// CompareStandardConversionSequences - Compare two standard
3897/// conversion sequences to determine whether one is better than the
3898/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3899static ImplicitConversionSequence::CompareKind
3900CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3901 const StandardConversionSequence& SCS1,
3902 const StandardConversionSequence& SCS2)
3903{
3904 // Standard conversion sequence S1 is a better conversion sequence
3905 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3906
3907 // -- S1 is a proper subsequence of S2 (comparing the conversion
3908 // sequences in the canonical form defined by 13.3.3.1.1,
3909 // excluding any Lvalue Transformation; the identity conversion
3910 // sequence is considered to be a subsequence of any
3911 // non-identity conversion sequence) or, if not that,
3912 if (ImplicitConversionSequence::CompareKind CK
3913 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3914 return CK;
3915
3916 // -- the rank of S1 is better than the rank of S2 (by the rules
3917 // defined below), or, if not that,
3918 ImplicitConversionRank Rank1 = SCS1.getRank();
3919 ImplicitConversionRank Rank2 = SCS2.getRank();
3920 if (Rank1 < Rank2)
3921 return ImplicitConversionSequence::Better;
3922 else if (Rank2 < Rank1)
3923 return ImplicitConversionSequence::Worse;
3924
3925 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3926 // are indistinguishable unless one of the following rules
3927 // applies:
3928
3929 // A conversion that is not a conversion of a pointer, or
3930 // pointer to member, to bool is better than another conversion
3931 // that is such a conversion.
3932 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3933 return SCS2.isPointerConversionToBool()
3934 ? ImplicitConversionSequence::Better
3935 : ImplicitConversionSequence::Worse;
3936
3937 // C++14 [over.ics.rank]p4b2:
3938 // This is retroactively applied to C++11 by CWG 1601.
3939 //
3940 // A conversion that promotes an enumeration whose underlying type is fixed
3941 // to its underlying type is better than one that promotes to the promoted
3942 // underlying type, if the two are different.
3943 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3944 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3945 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3946 FEP1 != FEP2)
3947 return FEP1 == FixedEnumPromotion::ToUnderlyingType
3948 ? ImplicitConversionSequence::Better
3949 : ImplicitConversionSequence::Worse;
3950
3951 // C++ [over.ics.rank]p4b2:
3952 //
3953 // If class B is derived directly or indirectly from class A,
3954 // conversion of B* to A* is better than conversion of B* to
3955 // void*, and conversion of A* to void* is better than conversion
3956 // of B* to void*.
3957 bool SCS1ConvertsToVoid
3958 = SCS1.isPointerConversionToVoidPointer(S.Context);
3959 bool SCS2ConvertsToVoid
3960 = SCS2.isPointerConversionToVoidPointer(S.Context);
3961 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3962 // Exactly one of the conversion sequences is a conversion to
3963 // a void pointer; it's the worse conversion.
3964 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3965 : ImplicitConversionSequence::Worse;
3966 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3967 // Neither conversion sequence converts to a void pointer; compare
3968 // their derived-to-base conversions.
3969 if (ImplicitConversionSequence::CompareKind DerivedCK
3970 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3971 return DerivedCK;
3972 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3973 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3974 // Both conversion sequences are conversions to void
3975 // pointers. Compare the source types to determine if there's an
3976 // inheritance relationship in their sources.
3977 QualType FromType1 = SCS1.getFromType();
3978 QualType FromType2 = SCS2.getFromType();
3979
3980 // Adjust the types we're converting from via the array-to-pointer
3981 // conversion, if we need to.
3982 if (SCS1.First == ICK_Array_To_Pointer)
3983 FromType1 = S.Context.getArrayDecayedType(FromType1);
3984 if (SCS2.First == ICK_Array_To_Pointer)
3985 FromType2 = S.Context.getArrayDecayedType(FromType2);
3986
3987 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3988 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3989
3990 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3991 return ImplicitConversionSequence::Better;
3992 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3993 return ImplicitConversionSequence::Worse;
3994
3995 // Objective-C++: If one interface is more specific than the
3996 // other, it is the better one.
3997 const ObjCObjectPointerType* FromObjCPtr1
3998 = FromType1->getAs<ObjCObjectPointerType>();
3999 const ObjCObjectPointerType* FromObjCPtr2
4000 = FromType2->getAs<ObjCObjectPointerType>();
4001 if (FromObjCPtr1 && FromObjCPtr2) {
4002 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4003 FromObjCPtr2);
4004 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4005 FromObjCPtr1);
4006 if (AssignLeft != AssignRight) {
4007 return AssignLeft? ImplicitConversionSequence::Better
4008 : ImplicitConversionSequence::Worse;
4009 }
4010 }
4011 }
4012
4013 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4014 // Check for a better reference binding based on the kind of bindings.
4015 if (isBetterReferenceBindingKind(SCS1, SCS2))
4016 return ImplicitConversionSequence::Better;
4017 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4018 return ImplicitConversionSequence::Worse;
4019 }
4020
4021 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4022 // bullet 3).
4023 if (ImplicitConversionSequence::CompareKind QualCK
4024 = CompareQualificationConversions(S, SCS1, SCS2))
4025 return QualCK;
4026
4027 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4028 // C++ [over.ics.rank]p3b4:
4029 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4030 // which the references refer are the same type except for
4031 // top-level cv-qualifiers, and the type to which the reference
4032 // initialized by S2 refers is more cv-qualified than the type
4033 // to which the reference initialized by S1 refers.
4034 QualType T1 = SCS1.getToType(2);
4035 QualType T2 = SCS2.getToType(2);
4036 T1 = S.Context.getCanonicalType(T1);
4037 T2 = S.Context.getCanonicalType(T2);
4038 Qualifiers T1Quals, T2Quals;
4039 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4040 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4041 if (UnqualT1 == UnqualT2) {
4042 // Objective-C++ ARC: If the references refer to objects with different
4043 // lifetimes, prefer bindings that don't change lifetime.
4044 if (SCS1.ObjCLifetimeConversionBinding !=
4045 SCS2.ObjCLifetimeConversionBinding) {
4046 return SCS1.ObjCLifetimeConversionBinding
4047 ? ImplicitConversionSequence::Worse
4048 : ImplicitConversionSequence::Better;
4049 }
4050
4051 // If the type is an array type, promote the element qualifiers to the
4052 // type for comparison.
4053 if (isa<ArrayType>(T1) && T1Quals)
4054 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4055 if (isa<ArrayType>(T2) && T2Quals)
4056 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4057 if (T2.isMoreQualifiedThan(T1))
4058 return ImplicitConversionSequence::Better;
4059 if (T1.isMoreQualifiedThan(T2))
4060 return ImplicitConversionSequence::Worse;
4061 }
4062 }
4063
4064 // In Microsoft mode, prefer an integral conversion to a
4065 // floating-to-integral conversion if the integral conversion
4066 // is between types of the same size.
4067 // For example:
4068 // void f(float);
4069 // void f(int);
4070 // int main {
4071 // long a;
4072 // f(a);
4073 // }
4074 // Here, MSVC will call f(int) instead of generating a compile error
4075 // as clang will do in standard mode.
4076 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
4077 SCS2.Second == ICK_Floating_Integral &&
4078 S.Context.getTypeSize(SCS1.getFromType()) ==
4079 S.Context.getTypeSize(SCS1.getToType(2)))
4080 return ImplicitConversionSequence::Better;
4081
4082 // Prefer a compatible vector conversion over a lax vector conversion
4083 // For example:
4084 //
4085 // typedef float __v4sf __attribute__((__vector_size__(16)));
4086 // void f(vector float);
4087 // void f(vector signed int);
4088 // int main() {
4089 // __v4sf a;
4090 // f(a);
4091 // }
4092 // Here, we'd like to choose f(vector float) and not
4093 // report an ambiguous call error
4094 if (SCS1.Second == ICK_Vector_Conversion &&
4095 SCS2.Second == ICK_Vector_Conversion) {
4096 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4097 SCS1.getFromType(), SCS1.getToType(2));
4098 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4099 SCS2.getFromType(), SCS2.getToType(2));
4100
4101 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4102 return SCS1IsCompatibleVectorConversion
4103 ? ImplicitConversionSequence::Better
4104 : ImplicitConversionSequence::Worse;
4105 }
4106
4107 return ImplicitConversionSequence::Indistinguishable;
4108}
4109
4110/// CompareQualificationConversions - Compares two standard conversion
4111/// sequences to determine whether they can be ranked based on their
4112/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4113static ImplicitConversionSequence::CompareKind
4114CompareQualificationConversions(Sema &S,
4115 const StandardConversionSequence& SCS1,
4116 const StandardConversionSequence& SCS2) {
4117 // C++ 13.3.3.2p3:
4118 // -- S1 and S2 differ only in their qualification conversion and
4119 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
4120 // cv-qualification signature of type T1 is a proper subset of
4121 // the cv-qualification signature of type T2, and S1 is not the
4122 // deprecated string literal array-to-pointer conversion (4.2).
4123 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4124 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4125 return ImplicitConversionSequence::Indistinguishable;
4126
4127 // FIXME: the example in the standard doesn't use a qualification
4128 // conversion (!)
4129 QualType T1 = SCS1.getToType(2);
4130 QualType T2 = SCS2.getToType(2);
4131 T1 = S.Context.getCanonicalType(T1);
4132 T2 = S.Context.getCanonicalType(T2);
4133 assert(!T1->isReferenceType() && !T2->isReferenceType())((!T1->isReferenceType() && !T2->isReferenceType
()) ? static_cast<void> (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4133, __PRETTY_FUNCTION__))
;
4134 Qualifiers T1Quals, T2Quals;
4135 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4136 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4137
4138 // If the types are the same, we won't learn anything by unwrapping
4139 // them.
4140 if (UnqualT1 == UnqualT2)
4141 return ImplicitConversionSequence::Indistinguishable;
4142
4143 ImplicitConversionSequence::CompareKind Result
4144 = ImplicitConversionSequence::Indistinguishable;
4145
4146 // Objective-C++ ARC:
4147 // Prefer qualification conversions not involving a change in lifetime
4148 // to qualification conversions that do not change lifetime.
4149 if (SCS1.QualificationIncludesObjCLifetime !=
4150 SCS2.QualificationIncludesObjCLifetime) {
4151 Result = SCS1.QualificationIncludesObjCLifetime
4152 ? ImplicitConversionSequence::Worse
4153 : ImplicitConversionSequence::Better;
4154 }
4155
4156 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4157 // Within each iteration of the loop, we check the qualifiers to
4158 // determine if this still looks like a qualification
4159 // conversion. Then, if all is well, we unwrap one more level of
4160 // pointers or pointers-to-members and do it all again
4161 // until there are no more pointers or pointers-to-members left
4162 // to unwrap. This essentially mimics what
4163 // IsQualificationConversion does, but here we're checking for a
4164 // strict subset of qualifiers.
4165 if (T1.getQualifiers().withoutObjCLifetime() ==
4166 T2.getQualifiers().withoutObjCLifetime())
4167 // The qualifiers are the same, so this doesn't tell us anything
4168 // about how the sequences rank.
4169 // ObjC ownership quals are omitted above as they interfere with
4170 // the ARC overload rule.
4171 ;
4172 else if (T2.isMoreQualifiedThan(T1)) {
4173 // T1 has fewer qualifiers, so it could be the better sequence.
4174 if (Result == ImplicitConversionSequence::Worse)
4175 // Neither has qualifiers that are a subset of the other's
4176 // qualifiers.
4177 return ImplicitConversionSequence::Indistinguishable;
4178
4179 Result = ImplicitConversionSequence::Better;
4180 } else if (T1.isMoreQualifiedThan(T2)) {
4181 // T2 has fewer qualifiers, so it could be the better sequence.
4182 if (Result == ImplicitConversionSequence::Better)
4183 // Neither has qualifiers that are a subset of the other's
4184 // qualifiers.
4185 return ImplicitConversionSequence::Indistinguishable;
4186
4187 Result = ImplicitConversionSequence::Worse;
4188 } else {
4189 // Qualifiers are disjoint.
4190 return ImplicitConversionSequence::Indistinguishable;
4191 }
4192
4193 // If the types after this point are equivalent, we're done.
4194 if (S.Context.hasSameUnqualifiedType(T1, T2))
4195 break;
4196 }
4197
4198 // Check that the winning standard conversion sequence isn't using
4199 // the deprecated string literal array to pointer conversion.
4200 switch (Result) {
4201 case ImplicitConversionSequence::Better:
4202 if (SCS1.DeprecatedStringLiteralToCharPtr)
4203 Result = ImplicitConversionSequence::Indistinguishable;
4204 break;
4205
4206 case ImplicitConversionSequence::Indistinguishable:
4207 break;
4208
4209 case ImplicitConversionSequence::Worse:
4210 if (SCS2.DeprecatedStringLiteralToCharPtr)
4211 Result = ImplicitConversionSequence::Indistinguishable;
4212 break;
4213 }
4214
4215 return Result;
4216}
4217
4218/// CompareDerivedToBaseConversions - Compares two standard conversion
4219/// sequences to determine whether they can be ranked based on their
4220/// various kinds of derived-to-base conversions (C++
4221/// [over.ics.rank]p4b3). As part of these checks, we also look at
4222/// conversions between Objective-C interface types.
4223static ImplicitConversionSequence::CompareKind
4224CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4225 const StandardConversionSequence& SCS1,
4226 const StandardConversionSequence& SCS2) {
4227 QualType FromType1 = SCS1.getFromType();
4228 QualType ToType1 = SCS1.getToType(1);
4229 QualType FromType2 = SCS2.getFromType();
4230 QualType ToType2 = SCS2.getToType(1);
4231
4232 // Adjust the types we're converting from via the array-to-pointer
4233 // conversion, if we need to.
4234 if (SCS1.First == ICK_Array_To_Pointer)
4235 FromType1 = S.Context.getArrayDecayedType(FromType1);
4236 if (SCS2.First == ICK_Array_To_Pointer)
4237 FromType2 = S.Context.getArrayDecayedType(FromType2);
4238
4239 // Canonicalize all of the types.
4240 FromType1 = S.Context.getCanonicalType(FromType1);
4241 ToType1 = S.Context.getCanonicalType(ToType1);
4242 FromType2 = S.Context.getCanonicalType(FromType2);
4243 ToType2 = S.Context.getCanonicalType(ToType2);
4244
4245 // C++ [over.ics.rank]p4b3:
4246 //
4247 // If class B is derived directly or indirectly from class A and
4248 // class C is derived directly or indirectly from B,
4249 //
4250 // Compare based on pointer conversions.
4251 if (SCS1.Second == ICK_Pointer_Conversion &&
4252 SCS2.Second == ICK_Pointer_Conversion &&
4253 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4254 FromType1->isPointerType() && FromType2->isPointerType() &&
4255 ToType1->isPointerType() && ToType2->isPointerType()) {
4256 QualType FromPointee1 =
4257 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4258 QualType ToPointee1 =
4259 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4260 QualType FromPointee2 =
4261 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4262 QualType ToPointee2 =
4263 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4264
4265 // -- conversion of C* to B* is better than conversion of C* to A*,
4266 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4267 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4268 return ImplicitConversionSequence::Better;
4269 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4270 return ImplicitConversionSequence::Worse;
4271 }
4272
4273 // -- conversion of B* to A* is better than conversion of C* to A*,
4274 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4275 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4276 return ImplicitConversionSequence::Better;
4277 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4278 return ImplicitConversionSequence::Worse;
4279 }
4280 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4281 SCS2.Second == ICK_Pointer_Conversion) {
4282 const ObjCObjectPointerType *FromPtr1
4283 = FromType1->getAs<ObjCObjectPointerType>();
4284 const ObjCObjectPointerType *FromPtr2
4285 = FromType2->getAs<ObjCObjectPointerType>();
4286 const ObjCObjectPointerType *ToPtr1
4287 = ToType1->getAs<ObjCObjectPointerType>();
4288 const ObjCObjectPointerType *ToPtr2
4289 = ToType2->getAs<ObjCObjectPointerType>();
4290
4291 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4292 // Apply the same conversion ranking rules for Objective-C pointer types
4293 // that we do for C++ pointers to class types. However, we employ the
4294 // Objective-C pseudo-subtyping relationship used for assignment of
4295 // Objective-C pointer types.
4296 bool FromAssignLeft
4297 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4298 bool FromAssignRight
4299 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4300 bool ToAssignLeft
4301 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4302 bool ToAssignRight
4303 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4304
4305 // A conversion to an a non-id object pointer type or qualified 'id'
4306 // type is better than a conversion to 'id'.
4307 if (ToPtr1->isObjCIdType() &&
4308 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4309 return ImplicitConversionSequence::Worse;
4310 if (ToPtr2->isObjCIdType() &&
4311 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4312 return ImplicitConversionSequence::Better;
4313
4314 // A conversion to a non-id object pointer type is better than a
4315 // conversion to a qualified 'id' type
4316 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4317 return ImplicitConversionSequence::Worse;
4318 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4319 return ImplicitConversionSequence::Better;
4320
4321 // A conversion to an a non-Class object pointer type or qualified 'Class'
4322 // type is better than a conversion to 'Class'.
4323 if (ToPtr1->isObjCClassType() &&
4324 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4325 return ImplicitConversionSequence::Worse;
4326 if (ToPtr2->isObjCClassType() &&
4327 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4328 return ImplicitConversionSequence::Better;
4329
4330 // A conversion to a non-Class object pointer type is better than a
4331 // conversion to a qualified 'Class' type.
4332 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4333 return ImplicitConversionSequence::Worse;
4334 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4335 return ImplicitConversionSequence::Better;
4336
4337 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4338 if (S.Context.hasSameType(FromType1, FromType2) &&
4339 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4340 (ToAssignLeft != ToAssignRight)) {
4341 if (FromPtr1->isSpecialized()) {
4342 // "conversion of B<A> * to B * is better than conversion of B * to
4343 // C *.
4344 bool IsFirstSame =
4345 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4346 bool IsSecondSame =
4347 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4348 if (IsFirstSame) {
4349 if (!IsSecondSame)
4350 return ImplicitConversionSequence::Better;
4351 } else if (IsSecondSame)
4352 return ImplicitConversionSequence::Worse;
4353 }
4354 return ToAssignLeft? ImplicitConversionSequence::Worse
4355 : ImplicitConversionSequence::Better;
4356 }
4357
4358 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4359 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4360 (FromAssignLeft != FromAssignRight))
4361 return FromAssignLeft? ImplicitConversionSequence::Better
4362 : ImplicitConversionSequence::Worse;
4363 }
4364 }
4365
4366 // Ranking of member-pointer types.
4367 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4368 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4369 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4370 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4371 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4372 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4373 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4374 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4375 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4376 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4377 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4378 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4379 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4380 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4381 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4382 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4383 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4384 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4385 return ImplicitConversionSequence::Worse;
4386 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4387 return ImplicitConversionSequence::Better;
4388 }
4389 // conversion of B::* to C::* is better than conversion of A::* to C::*
4390 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4391 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4392 return ImplicitConversionSequence::Better;
4393 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4394 return ImplicitConversionSequence::Worse;
4395 }
4396 }
4397
4398 if (SCS1.Second == ICK_Derived_To_Base) {
4399 // -- conversion of C to B is better than conversion of C to A,
4400 // -- binding of an expression of type C to a reference of type
4401 // B& is better than binding an expression of type C to a
4402 // reference of type A&,
4403 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4404 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4405 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4406 return ImplicitConversionSequence::Better;
4407 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4408 return ImplicitConversionSequence::Worse;
4409 }
4410
4411 // -- conversion of B to A is better than conversion of C to A.
4412 // -- binding of an expression of type B to a reference of type
4413 // A& is better than binding an expression of type C to a
4414 // reference of type A&,
4415 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4416 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4417 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4418 return ImplicitConversionSequence::Better;
4419 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4420 return ImplicitConversionSequence::Worse;
4421 }
4422 }
4423
4424 return ImplicitConversionSequence::Indistinguishable;
4425}
4426
4427/// Determine whether the given type is valid, e.g., it is not an invalid
4428/// C++ class.
4429static bool isTypeValid(QualType T) {
4430 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4431 return !Record->isInvalidDecl();
4432
4433 return true;
4434}
4435
4436static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4437 if (!T.getQualifiers().hasUnaligned())
4438 return T;
4439
4440 Qualifiers Q;
4441 T = Ctx.getUnqualifiedArrayType(T, Q);
4442 Q.removeUnaligned();
4443 return Ctx.getQualifiedType(T, Q);
4444}
4445
4446/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4447/// determine whether they are reference-compatible,
4448/// reference-related, or incompatible, for use in C++ initialization by
4449/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4450/// type, and the first type (T1) is the pointee type of the reference
4451/// type being initialized.
4452Sema::ReferenceCompareResult
4453Sema::CompareReferenceRelationship(SourceLocation Loc,
4454 QualType OrigT1, QualType OrigT2,
4455 ReferenceConversions *ConvOut) {
4456 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4457, __PRETTY_FUNCTION__))
4457 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4457, __PRETTY_FUNCTION__))
;
4458 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4458, __PRETTY_FUNCTION__))
;
4459
4460 QualType T1 = Context.getCanonicalType(OrigT1);
4461 QualType T2 = Context.getCanonicalType(OrigT2);
4462 Qualifiers T1Quals, T2Quals;
4463 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4464 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4465
4466 ReferenceConversions ConvTmp;
4467 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4468 Conv = ReferenceConversions();
4469
4470 // C++2a [dcl.init.ref]p4:
4471 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4472 // reference-related to "cv2 T2" if T1 is similar to T2, or
4473 // T1 is a base class of T2.
4474 // "cv1 T1" is reference-compatible with "cv2 T2" if
4475 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4476 // "pointer to cv1 T1" via a standard conversion sequence.
4477
4478 // Check for standard conversions we can apply to pointers: derived-to-base
4479 // conversions, ObjC pointer conversions, and function pointer conversions.
4480 // (Qualification conversions are checked last.)
4481 QualType ConvertedT2;
4482 if (UnqualT1 == UnqualT2) {
4483 // Nothing to do.
4484 } else if (isCompleteType(Loc, OrigT2) &&
4485 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4486 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4487 Conv |= ReferenceConversions::DerivedToBase;
4488 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4489 UnqualT2->isObjCObjectOrInterfaceType() &&
4490 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4491 Conv |= ReferenceConversions::ObjC;
4492 else if (UnqualT2->isFunctionType() &&
4493 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4494 Conv |= ReferenceConversions::Function;
4495 // No need to check qualifiers; function types don't have them.
4496 return Ref_Compatible;
4497 }
4498 bool ConvertedReferent = Conv != 0;
4499
4500 // We can have a qualification conversion. Compute whether the types are
4501 // similar at the same time.
4502 bool PreviousToQualsIncludeConst = true;
4503 bool TopLevel = true;
4504 do {
4505 if (T1 == T2)
4506 break;
4507
4508 // We will need a qualification conversion.
4509 Conv |= ReferenceConversions::Qualification;
4510
4511 // Track whether we performed a qualification conversion anywhere other
4512 // than the top level. This matters for ranking reference bindings in
4513 // overload resolution.
4514 if (!TopLevel)
4515 Conv |= ReferenceConversions::NestedQualification;
4516
4517 // MS compiler ignores __unaligned qualifier for references; do the same.
4518 T1 = withoutUnaligned(Context, T1);
4519 T2 = withoutUnaligned(Context, T2);
4520
4521 // If we find a qualifier mismatch, the types are not reference-compatible,
4522 // but are still be reference-related if they're similar.
4523 bool ObjCLifetimeConversion = false;
4524 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4525 PreviousToQualsIncludeConst,
4526 ObjCLifetimeConversion))
4527 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4528 ? Ref_Related
4529 : Ref_Incompatible;
4530
4531 // FIXME: Should we track this for any level other than the first?
4532 if (ObjCLifetimeConversion)
4533 Conv |= ReferenceConversions::ObjCLifetime;
4534
4535 TopLevel = false;
4536 } while (Context.UnwrapSimilarTypes(T1, T2));
4537
4538 // At this point, if the types are reference-related, we must either have the
4539 // same inner type (ignoring qualifiers), or must have already worked out how
4540 // to convert the referent.
4541 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4542 ? Ref_Compatible
4543 : Ref_Incompatible;
4544}
4545
4546/// Look for a user-defined conversion to a value reference-compatible
4547/// with DeclType. Return true if something definite is found.
4548static bool
4549FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4550 QualType DeclType, SourceLocation DeclLoc,
4551 Expr *Init, QualType T2, bool AllowRvalues,
4552 bool AllowExplicit) {
4553 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4553, __PRETTY_FUNCTION__))
;
4554 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4555
4556 OverloadCandidateSet CandidateSet(
4557 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4558 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4559 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4560 NamedDecl *D = *I;
4561 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4562 if (isa<UsingShadowDecl>(D))
4563 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4564
4565 FunctionTemplateDecl *ConvTemplate
4566 = dyn_cast<FunctionTemplateDecl>(D);
4567 CXXConversionDecl *Conv;
4568 if (ConvTemplate)
4569 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4570 else
4571 Conv = cast<CXXConversionDecl>(D);
4572
4573 if (AllowRvalues) {
4574 // If we are initializing an rvalue reference, don't permit conversion
4575 // functions that return lvalues.
4576 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4577 const ReferenceType *RefType
4578 = Conv->getConversionType()->getAs<LValueReferenceType>();
4579 if (RefType && !RefType->getPointeeType()->isFunctionType())
4580 continue;
4581 }
4582
4583 if (!ConvTemplate &&
4584 S.CompareReferenceRelationship(
4585 DeclLoc,
4586 Conv->getConversionType()
4587 .getNonReferenceType()
4588 .getUnqualifiedType(),
4589 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4590 Sema::Ref_Incompatible)
4591 continue;
4592 } else {
4593 // If the conversion function doesn't return a reference type,
4594 // it can't be considered for this conversion. An rvalue reference
4595 // is only acceptable if its referencee is a function type.
4596
4597 const ReferenceType *RefType =
4598 Conv->getConversionType()->getAs<ReferenceType>();
4599 if (!RefType ||
4600 (!RefType->isLValueReferenceType() &&
4601 !RefType->getPointeeType()->isFunctionType()))
4602 continue;
4603 }
4604
4605 if (ConvTemplate)
4606 S.AddTemplateConversionCandidate(
4607 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4608 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4609 else
4610 S.AddConversionCandidate(
4611 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4612 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4613 }
4614
4615 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4616
4617 OverloadCandidateSet::iterator Best;
4618 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4619 case OR_Success:
4620 // C++ [over.ics.ref]p1:
4621 //
4622 // [...] If the parameter binds directly to the result of
4623 // applying a conversion function to the argument
4624 // expression, the implicit conversion sequence is a
4625 // user-defined conversion sequence (13.3.3.1.2), with the
4626 // second standard conversion sequence either an identity
4627 // conversion or, if the conversion function returns an
4628 // entity of a type that is a derived class of the parameter
4629 // type, a derived-to-base Conversion.
4630 if (!Best->FinalConversion.DirectBinding)
4631 return false;
4632
4633 ICS.setUserDefined();
4634 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4635 ICS.UserDefined.After = Best->FinalConversion;
4636 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4637 ICS.UserDefined.ConversionFunction = Best->Function;
4638 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4639 ICS.UserDefined.EllipsisConversion = false;
4640 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4642, __PRETTY_FUNCTION__))
4641 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4642, __PRETTY_FUNCTION__))
4642 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4642, __PRETTY_FUNCTION__))
;
4643 return true;
4644
4645 case OR_Ambiguous:
4646 ICS.setAmbiguous();
4647 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4648 Cand != CandidateSet.end(); ++Cand)
4649 if (Cand->Best)
4650 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4651 return true;
4652
4653 case OR_No_Viable_Function:
4654 case OR_Deleted:
4655 // There was no suitable conversion, or we found a deleted
4656 // conversion; continue with other checks.
4657 return false;
4658 }
4659
4660 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4660)
;
4661}
4662
4663/// Compute an implicit conversion sequence for reference
4664/// initialization.
4665static ImplicitConversionSequence
4666TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4667 SourceLocation DeclLoc,
4668 bool SuppressUserConversions,
4669 bool AllowExplicit) {
4670 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 4670, __PRETTY_FUNCTION__))
;
4671
4672 // Most paths end in a failed conversion.
4673 ImplicitConversionSequence ICS;
4674 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4675
4676 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4677 QualType T2 = Init->getType();
4678
4679 // If the initializer is the address of an overloaded function, try
4680 // to resolve the overloaded function. If all goes well, T2 is the
4681 // type of the resulting function.
4682 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4683 DeclAccessPair Found;
4684 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4685 false, Found))
4686 T2 = Fn->getType();
4687 }
4688
4689 // Compute some basic properties of the types and the initializer.
4690 bool isRValRef = DeclType->isRValueReferenceType();
4691 Expr::Classification InitCategory = Init->Classify(S.Context);
4692
4693 Sema::ReferenceConversions RefConv;
4694 Sema::ReferenceCompareResult RefRelationship =
4695 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4696
4697 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4698 ICS.setStandard();
4699 ICS.Standard.First = ICK_Identity;
4700 // FIXME: A reference binding can be a function conversion too. We should
4701 // consider that when ordering reference-to-function bindings.
4702 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4703 ? ICK_Derived_To_Base
4704 : (RefConv & Sema::ReferenceConversions::ObjC)
4705 ? ICK_Compatible_Conversion
4706 : ICK_Identity;
4707 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4708 // a reference binding that performs a non-top-level qualification
4709 // conversion as a qualification conversion, not as an identity conversion.
4710 ICS.Standard.Third = (RefConv &
4711 Sema::ReferenceConversions::NestedQualification)
4712 ? ICK_Qualification
4713 : ICK_Identity;
4714 ICS.Standard.setFromType(T2);
4715 ICS.Standard.setToType(0, T2);
4716 ICS.Standard.setToType(1, T1);
4717 ICS.Standard.setToType(2, T1);
4718 ICS.Standard.ReferenceBinding = true;
4719 ICS.Standard.DirectBinding = BindsDirectly;
4720 ICS.Standard.IsLvalueReference = !isRValRef;
4721 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4722 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4723 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4724 ICS.Standard.ObjCLifetimeConversionBinding =
4725 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4726 ICS.Standard.CopyConstructor = nullptr;
4727 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4728 };
4729
4730 // C++0x [dcl.init.ref]p5:
4731 // A reference to type "cv1 T1" is initialized by an expression
4732 // of type "cv2 T2" as follows:
4733
4734 // -- If reference is an lvalue reference and the initializer expression
4735 if (!isRValRef) {
4736 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4737 // reference-compatible with "cv2 T2," or
4738 //
4739 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4740 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4741 // C++ [over.ics.ref]p1:
4742 // When a parameter of reference type binds directly (8.5.3)
4743 // to an argument expression, the implicit conversion sequence
4744 // is the identity conversion, unless the argument expression
4745 // has a type that is a derived class of the parameter type,
4746 // in which case the implicit conversion sequence is a
4747 // derived-to-base Conversion (13.3.3.1).
4748 SetAsReferenceBinding(/*BindsDirectly=*/true);
4749
4750 // Nothing more to do: the inaccessibility/ambiguity check for
4751 // derived-to-base conversions is suppressed when we're
4752 // computing the implicit conversion sequence (C++
4753 // [over.best.ics]p2).
4754 return ICS;
4755 }
4756
4757 // -- has a class type (i.e., T2 is a class type), where T1 is
4758 // not reference-related to T2, and can be implicitly
4759 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4760 // is reference-compatible with "cv3 T3" 92) (this
4761 // conversion is selected by enumerating the applicable
4762 // conversion functions (13.3.1.6) and choosing the best
4763 // one through overload resolution (13.3)),
4764 if (!SuppressUserConversions && T2->isRecordType() &&
4765 S.isCompleteType(DeclLoc, T2) &&
4766 RefRelationship == Sema::Ref_Incompatible) {
4767 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4768 Init, T2, /*AllowRvalues=*/false,
4769 AllowExplicit))
4770 return ICS;
4771 }
4772 }
4773
4774 // -- Otherwise, the reference shall be an lvalue reference to a
4775 // non-volatile const type (i.e., cv1 shall be const), or the reference
4776 // shall be an rvalue reference.
4777 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4778 return ICS;
4779
4780 // -- If the initializer expression
4781 //
4782 // -- is an xvalue, class prvalue, array prvalue or function
4783 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4784 if (RefRelationship == Sema::Ref_Compatible &&
4785 (InitCategory.isXValue() ||
4786 (InitCategory.isPRValue() &&
4787 (T2->isRecordType() || T2->isArrayType())) ||
4788 (InitCategory.isLValue() && T2->isFunctionType()))) {
4789 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4790 // binding unless we're binding to a class prvalue.
4791 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4792 // allow the use of rvalue references in C++98/03 for the benefit of
4793 // standard library implementors; therefore, we need the xvalue check here.
4794 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4795 !(InitCategory.isPRValue() || T2->isRecordType()));
4796 return ICS;
4797 }
4798
4799 // -- has a class type (i.e., T2 is a class type), where T1 is not
4800 // reference-related to T2, and can be implicitly converted to
4801 // an xvalue, class prvalue, or function lvalue of type
4802 // "cv3 T3", where "cv1 T1" is reference-compatible with
4803 // "cv3 T3",
4804 //
4805 // then the reference is bound to the value of the initializer
4806 // expression in the first case and to the result of the conversion
4807 // in the second case (or, in either case, to an appropriate base
4808 // class subobject).
4809 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4810 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4811 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4812 Init, T2, /*AllowRvalues=*/true,
4813 AllowExplicit)) {
4814 // In the second case, if the reference is an rvalue reference
4815 // and the second standard conversion sequence of the
4816 // user-defined conversion sequence includes an lvalue-to-rvalue
4817 // conversion, the program is ill-formed.
4818 if (ICS.isUserDefined() && isRValRef &&
4819 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4820 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4821
4822 return ICS;
4823 }
4824
4825 // A temporary of function type cannot be created; don't even try.
4826 if (T1->isFunctionType())
4827 return ICS;
4828
4829 // -- Otherwise, a temporary of type "cv1 T1" is created and
4830 // initialized from the initializer expression using the
4831 // rules for a non-reference copy initialization (8.5). The
4832 // reference is then bound to the temporary. If T1 is
4833 // reference-related to T2, cv1 must be the same
4834 // cv-qualification as, or greater cv-qualification than,
4835 // cv2; otherwise, the program is ill-formed.
4836 if (RefRelationship == Sema::Ref_Related) {
4837 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4838 // we would be reference-compatible or reference-compatible with
4839 // added qualification. But that wasn't the case, so the reference
4840 // initialization fails.
4841 //
4842 // Note that we only want to check address spaces and cvr-qualifiers here.
4843 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4844 Qualifiers T1Quals = T1.getQualifiers();
4845 Qualifiers T2Quals = T2.getQualifiers();
4846 T1Quals.removeObjCGCAttr();
4847 T1Quals.removeObjCLifetime();
4848 T2Quals.removeObjCGCAttr();
4849 T2Quals.removeObjCLifetime();
4850 // MS compiler ignores __unaligned qualifier for references; do the same.
4851 T1Quals.removeUnaligned();
4852 T2Quals.removeUnaligned();
4853 if (!T1Quals.compatiblyIncludes(T2Quals))
4854 return ICS;
4855 }
4856
4857 // If at least one of the types is a class type, the types are not
4858 // related, and we aren't allowed any user conversions, the
4859 // reference binding fails. This case is important for breaking
4860 // recursion, since TryImplicitConversion below will attempt to
4861 // create a temporary through the use of a copy constructor.
4862 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4863 (T1->isRecordType() || T2->isRecordType()))
4864 return ICS;
4865
4866 // If T1 is reference-related to T2 and the reference is an rvalue
4867 // reference, the initializer expression shall not be an lvalue.
4868 if (RefRelationship >= Sema::Ref_Related &&
4869 isRValRef && Init->Classify(S.Context).isLValue())
4870 return ICS;
4871
4872 // C++ [over.ics.ref]p2:
4873 // When a parameter of reference type is not bound directly to
4874 // an argument expression, the conversion sequence is the one
4875 // required to convert the argument expression to the
4876 // underlying type of the reference according to
4877 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4878 // to copy-initializing a temporary of the underlying type with
4879 // the argument expression. Any difference in top-level
4880 // cv-qualification is subsumed by the initialization itself
4881 // and does not constitute a conversion.
4882 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4883 AllowedExplicit::None,
4884 /*InOverloadResolution=*/false,
4885 /*CStyle=*/false,
4886 /*AllowObjCWritebackConversion=*/false,
4887 /*AllowObjCConversionOnExplicit=*/false);
4888
4889 // Of course, that's still a reference binding.
4890 if (ICS.isStandard()) {
4891 ICS.Standard.ReferenceBinding = true;
4892 ICS.Standard.IsLvalueReference = !isRValRef;
4893 ICS.Standard.BindsToFunctionLvalue = false;
4894 ICS.Standard.BindsToRvalue = true;
4895 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4896 ICS.Standard.ObjCLifetimeConversionBinding = false;
4897 } else if (ICS.isUserDefined()) {
4898 const ReferenceType *LValRefType =
4899 ICS.UserDefined.ConversionFunction->getReturnType()
4900 ->getAs<LValueReferenceType>();
4901
4902 // C++ [over.ics.ref]p3:
4903 // Except for an implicit object parameter, for which see 13.3.1, a
4904 // standard conversion sequence cannot be formed if it requires [...]
4905 // binding an rvalue reference to an lvalue other than a function
4906 // lvalue.
4907 // Note that the function case is not possible here.
4908 if (DeclType->isRValueReferenceType() && LValRefType) {
4909 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4910 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4911 // reference to an rvalue!
4912 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4913 return ICS;
4914 }
4915
4916 ICS.UserDefined.After.ReferenceBinding = true;
4917 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4918 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4919 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4920 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4921 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4922 }
4923
4924 return ICS;
4925}
4926
4927static ImplicitConversionSequence
4928TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4929 bool SuppressUserConversions,
4930 bool InOverloadResolution,
4931 bool AllowObjCWritebackConversion,
4932 bool AllowExplicit = false);
4933
4934/// TryListConversion - Try to copy-initialize a value of type ToType from the
4935/// initializer list From.
4936static ImplicitConversionSequence
4937TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4938 bool SuppressUserConversions,
4939 bool InOverloadResolution,
4940 bool AllowObjCWritebackConversion) {
4941 // C++11 [over.ics.list]p1:
4942 // When an argument is an initializer list, it is not an expression and
4943 // special rules apply for converting it to a parameter type.
4944
4945 ImplicitConversionSequence Result;
4946 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4947
4948 // We need a complete type for what follows. Incomplete types can never be
4949 // initialized from init lists.
4950 if (!S.isCompleteType(From->getBeginLoc(), ToType))
4951 return Result;
4952
4953 // Per DR1467:
4954 // If the parameter type is a class X and the initializer list has a single
4955 // element of type cv U, where U is X or a class derived from X, the
4956 // implicit conversion sequence is the one required to convert the element
4957 // to the parameter type.
4958 //
4959 // Otherwise, if the parameter type is a character array [... ]
4960 // and the initializer list has a single element that is an
4961 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4962 // implicit conversion sequence is the identity conversion.
4963 if (From->getNumInits() == 1) {
4964 if (ToType->isRecordType()) {
4965 QualType InitType = From->getInit(0)->getType();
4966 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4967 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4968 return TryCopyInitialization(S, From->getInit(0), ToType,
4969 SuppressUserConversions,
4970 InOverloadResolution,
4971 AllowObjCWritebackConversion);
4972 }
4973 // FIXME: Check the other conditions here: array of character type,
4974 // initializer is a string literal.
4975 if (ToType->isArrayType()) {
4976 InitializedEntity Entity =
4977 InitializedEntity::InitializeParameter(S.Context, ToType,
4978 /*Consumed=*/false);
4979 if (S.CanPerformCopyInitialization(Entity, From)) {
4980 Result.setStandard();
4981 Result.Standard.setAsIdentityConversion();
4982 Result.Standard.setFromType(ToType);
4983 Result.Standard.setAllToTypes(ToType);
4984 return Result;
4985 }
4986 }
4987 }
4988
4989 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4990 // C++11 [over.ics.list]p2:
4991 // If the parameter type is std::initializer_list<X> or "array of X" and
4992 // all the elements can be implicitly converted to X, the implicit
4993 // conversion sequence is the worst conversion necessary to convert an
4994 // element of the list to X.
4995 //
4996 // C++14 [over.ics.list]p3:
4997 // Otherwise, if the parameter type is "array of N X", if the initializer
4998 // list has exactly N elements or if it has fewer than N elements and X is
4999 // default-constructible, and if all the elements of the initializer list
5000 // can be implicitly converted to X, the implicit conversion sequence is
5001 // the worst conversion necessary to convert an element of the list to X.
5002 //
5003 // FIXME: We're missing a lot of these checks.
5004 bool toStdInitializerList = false;
5005 QualType X;
5006 if (ToType->isArrayType())
5007 X = S.Context.getAsArrayType(ToType)->getElementType();
5008 else
5009 toStdInitializerList = S.isStdInitializerList(ToType, &X);
5010 if (!X.isNull()) {
5011 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
5012 Expr *Init = From->getInit(i);
5013 ImplicitConversionSequence ICS =
5014 TryCopyInitialization(S, Init, X, SuppressUserConversions,
5015 InOverloadResolution,
5016 AllowObjCWritebackConversion);
5017 // If a single element isn't convertible, fail.
5018 if (ICS.isBad()) {
5019 Result = ICS;
5020 break;
5021 }
5022 // Otherwise, look for the worst conversion.
5023 if (Result.isBad() || CompareImplicitConversionSequences(
5024 S, From->getBeginLoc(), ICS, Result) ==
5025 ImplicitConversionSequence::Worse)
5026 Result = ICS;
5027 }
5028
5029 // For an empty list, we won't have computed any conversion sequence.
5030 // Introduce the identity conversion sequence.
5031 if (From->getNumInits() == 0) {
5032 Result.setStandard();
5033 Result.Standard.setAsIdentityConversion();
5034 Result.Standard.setFromType(ToType);
5035 Result.Standard.setAllToTypes(ToType);
5036 }
5037
5038 Result.setStdInitializerListElement(toStdInitializerList);
5039 return Result;
5040 }
5041
5042 // C++14 [over.ics.list]p4:
5043 // C++11 [over.ics.list]p3:
5044 // Otherwise, if the parameter is a non-aggregate class X and overload
5045 // resolution chooses a single best constructor [...] the implicit
5046 // conversion sequence is a user-defined conversion sequence. If multiple
5047 // constructors are viable but none is better than the others, the
5048 // implicit conversion sequence is a user-defined conversion sequence.
5049 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5050 // This function can deal with initializer lists.
5051 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5052 AllowedExplicit::None,
5053 InOverloadResolution, /*CStyle=*/false,
5054 AllowObjCWritebackConversion,
5055 /*AllowObjCConversionOnExplicit=*/false);
5056 }
5057
5058 // C++14 [over.ics.list]p5:
5059 // C++11 [over.ics.list]p4:
5060 // Otherwise, if the parameter has an aggregate type which can be
5061 // initialized from the initializer list [...] the implicit conversion
5062 // sequence is a user-defined conversion sequence.
5063 if (ToType->isAggregateType()) {
5064 // Type is an aggregate, argument is an init list. At this point it comes
5065 // down to checking whether the initialization works.
5066 // FIXME: Find out whether this parameter is consumed or not.
5067 InitializedEntity Entity =
5068 InitializedEntity::InitializeParameter(S.Context, ToType,
5069 /*Consumed=*/false);
5070 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5071 From)) {
5072 Result.setUserDefined();
5073 Result.UserDefined.Before.setAsIdentityConversion();
5074 // Initializer lists don't have a type.
5075 Result.UserDefined.Before.setFromType(QualType());
5076 Result.UserDefined.Before.setAllToTypes(QualType());
5077
5078 Result.UserDefined.After.setAsIdentityConversion();
5079 Result.UserDefined.After.setFromType(ToType);
5080 Result.UserDefined.After.setAllToTypes(ToType);
5081 Result.UserDefined.ConversionFunction = nullptr;
5082 }
5083 return Result;
5084 }
5085
5086 // C++14 [over.ics.list]p6:
5087 // C++11 [over.ics.list]p5:
5088 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5089 if (ToType->isReferenceType()) {
5090 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5091 // mention initializer lists in any way. So we go by what list-
5092 // initialization would do and try to extrapolate from that.
5093
5094 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5095
5096 // If the initializer list has a single element that is reference-related
5097 // to the parameter type, we initialize the reference from that.
5098 if (From->getNumInits() == 1) {
5099 Expr *Init = From->getInit(0);
5100
5101 QualType T2 = Init->getType();
5102
5103 // If the initializer is the address of an overloaded function, try
5104 // to resolve the overloaded function. If all goes well, T2 is the
5105 // type of the resulting function.
5106 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5107 DeclAccessPair Found;
5108 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5109 Init, ToType, false, Found))
5110 T2 = Fn->getType();
5111 }
5112
5113 // Compute some basic properties of the types and the initializer.
5114 Sema::ReferenceCompareResult RefRelationship =
5115 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5116
5117 if (RefRelationship >= Sema::Ref_Related) {
5118 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5119 SuppressUserConversions,
5120 /*AllowExplicit=*/false);
5121 }
5122 }
5123
5124 // Otherwise, we bind the reference to a temporary created from the
5125 // initializer list.
5126 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5127 InOverloadResolution,
5128 AllowObjCWritebackConversion);
5129 if (Result.isFailure())
5130 return Result;
5131 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5132, __PRETTY_FUNCTION__))
5132 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5132, __PRETTY_FUNCTION__))
;
5133
5134 // Can we even bind to a temporary?
5135 if (ToType->isRValueReferenceType() ||
5136 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5137 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5138 Result.UserDefined.After;
5139 SCS.ReferenceBinding = true;
5140 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5141 SCS.BindsToRvalue = true;
5142 SCS.BindsToFunctionLvalue = false;
5143 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5144 SCS.ObjCLifetimeConversionBinding = false;
5145 } else
5146 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5147 From, ToType);
5148 return Result;
5149 }
5150
5151 // C++14 [over.ics.list]p7:
5152 // C++11 [over.ics.list]p6:
5153 // Otherwise, if the parameter type is not a class:
5154 if (!ToType->isRecordType()) {
5155 // - if the initializer list has one element that is not itself an
5156 // initializer list, the implicit conversion sequence is the one
5157 // required to convert the element to the parameter type.
5158 unsigned NumInits = From->getNumInits();
5159 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5160 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5161 SuppressUserConversions,
5162 InOverloadResolution,
5163 AllowObjCWritebackConversion);
5164 // - if the initializer list has no elements, the implicit conversion
5165 // sequence is the identity conversion.
5166 else if (NumInits == 0) {
5167 Result.setStandard();
5168 Result.Standard.setAsIdentityConversion();
5169 Result.Standard.setFromType(ToType);
5170 Result.Standard.setAllToTypes(ToType);
5171 }
5172 return Result;
5173 }
5174
5175 // C++14 [over.ics.list]p8:
5176 // C++11 [over.ics.list]p7:
5177 // In all cases other than those enumerated above, no conversion is possible
5178 return Result;
5179}
5180
5181/// TryCopyInitialization - Try to copy-initialize a value of type
5182/// ToType from the expression From. Return the implicit conversion
5183/// sequence required to pass this argument, which may be a bad
5184/// conversion sequence (meaning that the argument cannot be passed to
5185/// a parameter of this type). If @p SuppressUserConversions, then we
5186/// do not permit any user-defined conversion sequences.
5187static ImplicitConversionSequence
5188TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5189 bool SuppressUserConversions,
5190 bool InOverloadResolution,
5191 bool AllowObjCWritebackConversion,
5192 bool AllowExplicit) {
5193 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5194 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5195 InOverloadResolution,AllowObjCWritebackConversion);
5196
5197 if (ToType->isReferenceType())
5198 return TryReferenceInit(S, From, ToType,
5199 /*FIXME:*/ From->getBeginLoc(),
5200 SuppressUserConversions, AllowExplicit);
5201
5202 return TryImplicitConversion(S, From, ToType,
5203 SuppressUserConversions,
5204 AllowedExplicit::None,
5205 InOverloadResolution,
5206 /*CStyle=*/false,
5207 AllowObjCWritebackConversion,
5208 /*AllowObjCConversionOnExplicit=*/false);
5209}
5210
5211static bool TryCopyInitialization(const CanQualType FromQTy,
5212 const CanQualType ToQTy,
5213 Sema &S,
5214 SourceLocation Loc,
5215 ExprValueKind FromVK) {
5216 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5217 ImplicitConversionSequence ICS =
5218 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5219
5220 return !ICS.isBad();
5221}
5222
5223/// TryObjectArgumentInitialization - Try to initialize the object
5224/// parameter of the given member function (@c Method) from the
5225/// expression @p From.
5226static ImplicitConversionSequence
5227TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5228 Expr::Classification FromClassification,
5229 CXXMethodDecl *Method,
5230 CXXRecordDecl *ActingContext) {
5231 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5232 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5233 // const volatile object.
5234 Qualifiers Quals = Method->getMethodQualifiers();
5235 if (isa<CXXDestructorDecl>(Method)) {
5236 Quals.addConst();
5237 Quals.addVolatile();
5238 }
5239
5240 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5241
5242 // Set up the conversion sequence as a "bad" conversion, to allow us
5243 // to exit early.
5244 ImplicitConversionSequence ICS;
5245
5246 // We need to have an object of class type.
5247 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5248 FromType = PT->getPointeeType();
5249
5250 // When we had a pointer, it's implicitly dereferenced, so we
5251 // better have an lvalue.
5252 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5252, __PRETTY_FUNCTION__))
;
5253 }
5254
5255 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5255, __PRETTY_FUNCTION__))
;
5256
5257 // C++0x [over.match.funcs]p4:
5258 // For non-static member functions, the type of the implicit object
5259 // parameter is
5260 //
5261 // - "lvalue reference to cv X" for functions declared without a
5262 // ref-qualifier or with the & ref-qualifier
5263 // - "rvalue reference to cv X" for functions declared with the &&
5264 // ref-qualifier
5265 //
5266 // where X is the class of which the function is a member and cv is the
5267 // cv-qualification on the member function declaration.
5268 //
5269 // However, when finding an implicit conversion sequence for the argument, we
5270 // are not allowed to perform user-defined conversions
5271 // (C++ [over.match.funcs]p5). We perform a simplified version of
5272 // reference binding here, that allows class rvalues to bind to
5273 // non-constant references.
5274
5275 // First check the qualifiers.
5276 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5277 if (ImplicitParamType.getCVRQualifiers()
5278 != FromTypeCanon.getLocalCVRQualifiers() &&
5279 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5280 ICS.setBad(BadConversionSequence::bad_qualifiers,
5281 FromType, ImplicitParamType);
5282 return ICS;
5283 }
5284
5285 if (FromTypeCanon.hasAddressSpace()) {
5286 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5287 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5288 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5289 ICS.setBad(BadConversionSequence::bad_qualifiers,
5290 FromType, ImplicitParamType);
5291 return ICS;
5292 }
5293 }
5294
5295 // Check that we have either the same type or a derived type. It
5296 // affects the conversion rank.
5297 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5298 ImplicitConversionKind SecondKind;
5299 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5300 SecondKind = ICK_Identity;
5301 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5302 SecondKind = ICK_Derived_To_Base;
5303 else {
5304 ICS.setBad(BadConversionSequence::unrelated_class,
5305 FromType, ImplicitParamType);
5306 return ICS;
5307 }
5308
5309 // Check the ref-qualifier.
5310 switch (Method->getRefQualifier()) {
5311 case RQ_None:
5312 // Do nothing; we don't care about lvalueness or rvalueness.
5313 break;
5314
5315 case RQ_LValue:
5316 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5317 // non-const lvalue reference cannot bind to an rvalue
5318 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5319 ImplicitParamType);
5320 return ICS;
5321 }
5322 break;
5323
5324 case RQ_RValue:
5325 if (!FromClassification.isRValue()) {
5326 // rvalue reference cannot bind to an lvalue
5327 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5328 ImplicitParamType);
5329 return ICS;
5330 }
5331 break;
5332 }
5333
5334 // Success. Mark this as a reference binding.
5335 ICS.setStandard();
5336 ICS.Standard.setAsIdentityConversion();
5337 ICS.Standard.Second = SecondKind;
5338 ICS.Standard.setFromType(FromType);
5339 ICS.Standard.setAllToTypes(ImplicitParamType);
5340 ICS.Standard.ReferenceBinding = true;
5341 ICS.Standard.DirectBinding = true;
5342 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5343 ICS.Standard.BindsToFunctionLvalue = false;
5344 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5345 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5346 = (Method->getRefQualifier() == RQ_None);
5347 return ICS;
5348}
5349
5350/// PerformObjectArgumentInitialization - Perform initialization of
5351/// the implicit object parameter for the given Method with the given
5352/// expression.
5353ExprResult
5354Sema::PerformObjectArgumentInitialization(Expr *From,
5355 NestedNameSpecifier *Qualifier,
5356 NamedDecl *FoundDecl,
5357 CXXMethodDecl *Method) {
5358 QualType FromRecordType, DestType;
5359 QualType ImplicitParamRecordType =
5360 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5361
5362 Expr::Classification FromClassification;
5363 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5364 FromRecordType = PT->getPointeeType();
5365 DestType = Method->getThisType();
5366 FromClassification = Expr::Classification::makeSimpleLValue();
5367 } else {
5368 FromRecordType = From->getType();
5369 DestType = ImplicitParamRecordType;
5370 FromClassification = From->Classify(Context);
5371
5372 // When performing member access on an rvalue, materialize a temporary.
5373 if (From->isRValue()) {
5374 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5375 Method->getRefQualifier() !=
5376 RefQualifierKind::RQ_RValue);
5377 }
5378 }
5379
5380 // Note that we always use the true parent context when performing
5381 // the actual argument initialization.
5382 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5383 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5384 Method->getParent());
5385 if (ICS.isBad()) {
5386 switch (ICS.Bad.Kind) {
5387 case BadConversionSequence::bad_qualifiers: {
5388 Qualifiers FromQs = FromRecordType.getQualifiers();
5389 Qualifiers ToQs = DestType.getQualifiers();
5390 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5391 if (CVR) {
5392 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5393 << Method->getDeclName() << FromRecordType << (CVR - 1)
5394 << From->getSourceRange();
5395 Diag(Method->getLocation(), diag::note_previous_decl)
5396 << Method->getDeclName();
5397 return ExprError();
5398 }
5399 break;
5400 }
5401
5402 case BadConversionSequence::lvalue_ref_to_rvalue:
5403 case BadConversionSequence::rvalue_ref_to_lvalue: {
5404 bool IsRValueQualified =
5405 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5406 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5407 << Method->getDeclName() << FromClassification.isRValue()
5408 << IsRValueQualified;
5409 Diag(Method->getLocation(), diag::note_previous_decl)
5410 << Method->getDeclName();
5411 return ExprError();
5412 }
5413
5414 case BadConversionSequence::no_conversion:
5415 case BadConversionSequence::unrelated_class:
5416 break;
5417 }
5418
5419 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5420 << ImplicitParamRecordType << FromRecordType
5421 << From->getSourceRange();
5422 }
5423
5424 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5425 ExprResult FromRes =
5426 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5427 if (FromRes.isInvalid())
5428 return ExprError();
5429 From = FromRes.get();
5430 }
5431
5432 if (!Context.hasSameType(From->getType(), DestType)) {
5433 CastKind CK;
5434 QualType PteeTy = DestType->getPointeeType();
5435 LangAS DestAS =
5436 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5437 if (FromRecordType.getAddressSpace() != DestAS)
5438 CK = CK_AddressSpaceConversion;
5439 else
5440 CK = CK_NoOp;
5441 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5442 }
5443 return From;
5444}
5445
5446/// TryContextuallyConvertToBool - Attempt to contextually convert the
5447/// expression From to bool (C++0x [conv]p3).
5448static ImplicitConversionSequence
5449TryContextuallyConvertToBool(Sema &S, Expr *From) {
5450 // C++ [dcl.init]/17.8:
5451 // - Otherwise, if the initialization is direct-initialization, the source
5452 // type is std::nullptr_t, and the destination type is bool, the initial
5453 // value of the object being initialized is false.
5454 if (From->getType()->isNullPtrType())
5455 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5456 S.Context.BoolTy,
5457 From->isGLValue());
5458
5459 // All other direct-initialization of bool is equivalent to an implicit
5460 // conversion to bool in which explicit conversions are permitted.
5461 return TryImplicitConversion(S, From, S.Context.BoolTy,
5462 /*SuppressUserConversions=*/false,
5463 AllowedExplicit::Conversions,
5464 /*InOverloadResolution=*/false,
5465 /*CStyle=*/false,
5466 /*AllowObjCWritebackConversion=*/false,
5467 /*AllowObjCConversionOnExplicit=*/false);
5468}
5469
5470/// PerformContextuallyConvertToBool - Perform a contextual conversion
5471/// of the expression From to bool (C++0x [conv]p3).
5472ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5473 if (checkPlaceholderForOverload(*this, From))
5474 return ExprError();
5475
5476 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5477 if (!ICS.isBad())
5478 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5479
5480 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5481 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5482 << From->getType() << From->getSourceRange();
5483 return ExprError();
5484}
5485
5486/// Check that the specified conversion is permitted in a converted constant
5487/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5488/// is acceptable.
5489static bool CheckConvertedConstantConversions(Sema &S,
5490 StandardConversionSequence &SCS) {
5491 // Since we know that the target type is an integral or unscoped enumeration
5492 // type, most conversion kinds are impossible. All possible First and Third
5493 // conversions are fine.
5494 switch (SCS.Second) {
5495 case ICK_Identity:
5496 case ICK_Function_Conversion:
5497 case ICK_Integral_Promotion:
5498 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5499 case ICK_Zero_Queue_Conversion:
5500 return true;
5501
5502 case ICK_Boolean_Conversion:
5503 // Conversion from an integral or unscoped enumeration type to bool is
5504 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5505 // conversion, so we allow it in a converted constant expression.
5506 //
5507 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5508 // a lot of popular code. We should at least add a warning for this
5509 // (non-conforming) extension.
5510 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5511 SCS.getToType(2)->isBooleanType();
5512
5513 case ICK_Pointer_Conversion:
5514 case ICK_Pointer_Member:
5515 // C++1z: null pointer conversions and null member pointer conversions are
5516 // only permitted if the source type is std::nullptr_t.
5517 return SCS.getFromType()->isNullPtrType();
5518
5519 case ICK_Floating_Promotion:
5520 case ICK_Complex_Promotion:
5521 case ICK_Floating_Conversion:
5522 case ICK_Complex_Conversion:
5523 case ICK_Floating_Integral:
5524 case ICK_Compatible_Conversion:
5525 case ICK_Derived_To_Base:
5526 case ICK_Vector_Conversion:
5527 case ICK_Vector_Splat:
5528 case ICK_Complex_Real:
5529 case ICK_Block_Pointer_Conversion:
5530 case ICK_TransparentUnionConversion:
5531 case ICK_Writeback_Conversion:
5532 case ICK_Zero_Event_Conversion:
5533 case ICK_C_Only_Conversion:
5534 case ICK_Incompatible_Pointer_Conversion:
5535 return false;
5536
5537 case ICK_Lvalue_To_Rvalue:
5538 case ICK_Array_To_Pointer:
5539 case ICK_Function_To_Pointer:
5540 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5540)
;
5541
5542 case ICK_Qualification:
5543 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5543)
;
5544
5545 case ICK_Num_Conversion_Kinds:
5546 break;
5547 }
5548
5549 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5549)
;
5550}
5551
5552/// CheckConvertedConstantExpression - Check that the expression From is a
5553/// converted constant expression of type T, perform the conversion and produce
5554/// the converted expression, per C++11 [expr.const]p3.
5555static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5556 QualType T, APValue &Value,
5557 Sema::CCEKind CCE,
5558 bool RequireInt) {
5559 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5560, __PRETTY_FUNCTION__))
5560 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5560, __PRETTY_FUNCTION__))
;
5561
5562 if (checkPlaceholderForOverload(S, From))
5563 return ExprError();
5564
5565 // C++1z [expr.const]p3:
5566 // A converted constant expression of type T is an expression,
5567 // implicitly converted to type T, where the converted
5568 // expression is a constant expression and the implicit conversion
5569 // sequence contains only [... list of conversions ...].
5570 // C++1z [stmt.if]p2:
5571 // If the if statement is of the form if constexpr, the value of the
5572 // condition shall be a contextually converted constant expression of type
5573 // bool.
5574 ImplicitConversionSequence ICS =
5575 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5576 ? TryContextuallyConvertToBool(S, From)
5577 : TryCopyInitialization(S, From, T,
5578 /*SuppressUserConversions=*/false,
5579 /*InOverloadResolution=*/false,
5580 /*AllowObjCWritebackConversion=*/false,
5581 /*AllowExplicit=*/false);
5582 StandardConversionSequence *SCS = nullptr;
5583 switch (ICS.getKind()) {
5584 case ImplicitConversionSequence::StandardConversion:
5585 SCS = &ICS.Standard;
5586 break;
5587 case ImplicitConversionSequence::UserDefinedConversion:
5588 // We are converting to a non-class type, so the Before sequence
5589 // must be trivial.
5590 SCS = &ICS.UserDefined.After;
5591 break;
5592 case ImplicitConversionSequence::AmbiguousConversion:
5593 case ImplicitConversionSequence::BadConversion:
5594 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5595 return S.Diag(From->getBeginLoc(),
5596 diag::err_typecheck_converted_constant_expression)
5597 << From->getType() << From->getSourceRange() << T;
5598 return ExprError();
5599
5600 case ImplicitConversionSequence::EllipsisConversion:
5601 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5601)
;
5602 }
5603
5604 // Check that we would only use permitted conversions.
5605 if (!CheckConvertedConstantConversions(S, *SCS)) {
5606 return S.Diag(From->getBeginLoc(),
5607 diag::err_typecheck_converted_constant_expression_disallowed)
5608 << From->getType() << From->getSourceRange() << T;
5609 }
5610 // [...] and where the reference binding (if any) binds directly.
5611 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5612 return S.Diag(From->getBeginLoc(),
5613 diag::err_typecheck_converted_constant_expression_indirect)
5614 << From->getType() << From->getSourceRange() << T;
5615 }
5616
5617 ExprResult Result =
5618 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5619 if (Result.isInvalid())
5620 return Result;
5621
5622 // C++2a [intro.execution]p5:
5623 // A full-expression is [...] a constant-expression [...]
5624 Result =
5625 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5626 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5627 if (Result.isInvalid())
5628 return Result;
5629
5630 // Check for a narrowing implicit conversion.
5631 APValue PreNarrowingValue;
5632 QualType PreNarrowingType;
5633 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5634 PreNarrowingType)) {
5635 case NK_Dependent_Narrowing:
5636 // Implicit conversion to a narrower type, but the expression is
5637 // value-dependent so we can't tell whether it's actually narrowing.
5638 case NK_Variable_Narrowing:
5639 // Implicit conversion to a narrower type, and the value is not a constant
5640 // expression. We'll diagnose this in a moment.
5641 case NK_Not_Narrowing:
5642 break;
5643
5644 case NK_Constant_Narrowing:
5645 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5646 << CCE << /*Constant*/ 1
5647 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5648 break;
5649
5650 case NK_Type_Narrowing:
5651 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5652 << CCE << /*Constant*/ 0 << From->getType() << T;
5653 break;
5654 }
5655
5656 if (Result.get()->isValueDependent()) {
5657 Value = APValue();
5658 return Result;
5659 }
5660
5661 // Check the expression is a constant expression.
5662 SmallVector<PartialDiagnosticAt, 8> Notes;
5663 Expr::EvalResult Eval;
5664 Eval.Diag = &Notes;
5665 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5666 ? Expr::EvaluateForMangling
5667 : Expr::EvaluateForCodeGen;
5668
5669 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5670 (RequireInt && !Eval.Val.isInt())) {
5671 // The expression can't be folded, so we can't keep it at this position in
5672 // the AST.
5673 Result = ExprError();
5674 } else {
5675 Value = Eval.Val;
5676
5677 if (Notes.empty()) {
5678 // It's a constant expression.
5679 return ConstantExpr::Create(S.Context, Result.get(), Value);
5680 }
5681 }
5682
5683 // It's not a constant expression. Produce an appropriate diagnostic.
5684 if (Notes.size() == 1 &&
5685 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5686 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5687 else {
5688 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5689 << CCE << From->getSourceRange();
5690 for (unsigned I = 0; I < Notes.size(); ++I)
5691 S.Diag(Notes[I].first, Notes[I].second);
5692 }
5693 return ExprError();
5694}
5695
5696ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5697 APValue &Value, CCEKind CCE) {
5698 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5699}
5700
5701ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5702 llvm::APSInt &Value,
5703 CCEKind CCE) {
5704 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/Sema/SemaOverload.cpp"
, 5704, __PRETTY_FUNCTION__))
;
5705
5706 APValue V;
5707 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5708 if (!R.isInvalid() && !R.get()->isValueDependent())
5709 Value = V.getInt();
5710 return R;
5711}
5712
5713
5714/// dropPointerConversions - If the given standard conversion sequence
5715/// involves any pointer conversions, remove them. This may change
5716/// the result type of the conversion sequence.
5717static void dropPointerConversion(StandardConversionSequence &SCS) {
5718 if (SCS.Second == ICK_Pointer_Conversion) {
5719 SCS.Second = ICK_Identity;
5720 SCS.Third = ICK_Identity;
5721 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5722 }
5723}
5724
5725/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5726/// convert the expression From to an Objective-C pointer type.
5727static ImplicitConversionSequence
5728TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5729 // Do an implicit conversion to 'id'.
5730 QualType Ty = S.Context.getObjCIdType();
5731 ImplicitConversionSequence ICS
5732 = TryImplicitConversion(S, From, Ty,
5733 // FIXME: Are these flags correct?
5734 /*SuppressUserConversions=*/false,
5735 AllowedExplicit::Conversions,
5736 /*InOverloadResolution=*/false,
5737 /*CStyle=*/false,
5738 /*AllowObjCWritebackConversion=*/false,
5739 /*AllowObjCConversionOnExplicit=*/true);
5740
5741 // Strip off any final conversions to 'id'.
5742 switch (ICS.getKind()) {
5743 case ImplicitConversionSequence::BadConversion:
5744 case ImplicitConversionSequence::AmbiguousConversion:
5745 case ImplicitConversionSequence::EllipsisConversion:
5746 break;
5747
5748 case ImplicitConversionSequence::UserDefinedConversion:
5749 dropPointerConversion(ICS.UserDefined.After);
5750 break;
5751
5752 case ImplicitConversionSequence::StandardConversion:
5753 dropPointerConversion(ICS.Standard);
5754 break;
5755 }
5756
5757 return ICS;
5758}
5759
5760/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5761/// conversion of the expression From to an Objective-C pointer type.
5762/// Returns a valid but null ExprResult if no conversion sequence exists.
5763ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5764 if (checkPlaceholderForOverload(*this, From))
5765 return ExprError();
5766
5767 QualType Ty = Context.getObjCIdType();
5768 ImplicitConversionSequence ICS =
5769 TryContextuallyConvertToObjCPointer(*this, From);
5770 if (!ICS.isBad())
5771 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5772 return ExprResult();
5773}
5774
5775/// Determine whether the provided type is an integral type, or an enumeration
5776/// type of a permitted flavor.
5777bool Sema::ICEConvertDiagnoser::match(QualType T) {
5778 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5779 : T->isIntegralOrUnscopedEnumerationType();
5780}
5781
5782static ExprResult
5783diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5784 Sema::ContextualImplicitConverter &Converter,
5785 QualType T, UnresolvedSetImpl &ViableConversions) {
5786
5787 if (Converter.Suppress)
5788 return ExprError();
5789
5790 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5791 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5792 CXXConversionDecl *Conv =
5793 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5794 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5795 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5796 }
5797 return From;
5798}
5799
5800static bool
5801diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5802 Sema::ContextualImplicitConverter &Converter,
5803 QualType T, bool HadMultipleCandidates,
5804 UnresolvedSetImpl &ExplicitConversions) {
5805 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5806 DeclAccessPair Found = ExplicitConversions[0];
5807 CXXConversionDecl *Conversion =
5808 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5809
5810 // The user probably meant to invoke the given explicit
5811 // conversion; use it.
5812 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5813 std::string TypeStr;
5814 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5815
5816 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5817 << FixItHint::CreateInsertion(From->getBeginLoc(),
5818 "static_cast<" + TypeStr + ">(")
5819 << FixItHint::CreateInsertion(
5820 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5821 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5822
5823 // If we aren't in a SFINAE context, build a call to the
5824 // explicit conversion function.
5825 if (SemaRef.isSFINAEContext())
5826 return true;
5827
5828 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5829 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5830 HadMultipleCandidates);
5831 if (Result.isInvalid())
5832 return true;
5833 // Record usage of conversion in an implicit cast.
5834 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5835 CK_UserDefinedConversion, Result.get(),
5836 nullptr, Result.get()->getValueKind());
5837 }
5838 return false;
5839}
5840
5841static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5842 Sema::ContextualImplicitConverter &Converter,
5843 QualType T, bool HadMultipleCandidates,
5844 DeclAccessPair &Found) {
5845 CXXConversionDecl *Conversion =
5846 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5847 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5848
5849 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5850 if (!Converter.SuppressConversion) {
5851 if (SemaRef.isSFINAEContext())
5852 return true;
5853
5854 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5855 << From->getSourceRange();
5856 }
5857
5858 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5859 HadMultipleCandidates);
5860 if (Result.isInvalid())
5861 return true;
5862 // Record usage of conversion in an implicit cast.
5863 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5864 CK_UserDefinedConversion, Result.get(),
5865 nullptr, Result.get()->getValueKind());
5866 return false;
5867}
5868
5869static ExprResult finishContextualImplicitConversion(
5870 Sema &SemaRef, SourceLocation Loc, Expr *From,
5871 Sema::ContextualImplicitConverter &Converter) {
5872 if (!Converter.match(From->getType()) && !Converter.Suppress)
5873 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5874 << From->getSourceRange();
5875
5876 return SemaRef.DefaultLvalueConversion(From);
5877}
5878
5879static void
5880collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5881 UnresolvedSetImpl &ViableConversions,
5882 OverloadCandidateSet &CandidateSet) {
5883 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5884 DeclAccessPair FoundDecl = ViableConversions[I];
5885 NamedDecl *D = FoundDecl.getDecl();
5886 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5887 if (isa<UsingShadowDecl>(D))
5888 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5889
5890 CXXConversionDecl *Conv;
5891 FunctionTemplateDecl *ConvTemplate;
5892 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5893 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5894 else
5895 Conv = cast<CXXConversionDecl>(D);
5896
5897 if (ConvTemplate)
5898 SemaRef.AddTemplateConversionCandidate(
5899 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5900 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5901 else
5902 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5903 ToType, CandidateSet,
5904 /*AllowObjCConversionOnExplicit=*/false,
5905 /*AllowExplicit*/ true);
5906 }
5907}
5908
5909/// Attempt to convert the given expression to a type which is accepted
5910/// by the given converter.
5911///
5912/// This routine will attempt to convert an expression of class type to a
5913/// type accepted by the specified converter. In C++11 and before, the class
5914/// must have a single non-explicit conversion function converting to a matching
5915/// type. In C++1y, there can be multiple such conversion functions, but only
5916/// one target type.
5917///
5918/// \param Loc The source location of the construct that requires the
5919/// conversion.
5920///
5921/// \param From The expression we're converting from.
5922///
5923/// \param Converter Used to control and diagnose the conversion process.
5924///
5925/// \returns The expression, converted to an integral or enumeration type if
5926/// successful.
5927ExprResult Sema::PerformContextualImplicitConversion(
5928 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5929 // We can't perform any more checking for type-dependent expressions.
5930 if (From->isTypeDependent())
5931 return From;
5932
5933 // Process placeholders immediately.
5934 if (From->hasPlaceholderType()) {
5935 ExprResult result = CheckPlaceholderExpr(From);
5936 if (result.isInvalid())
5937 return result;
5938 From = result.get();
5939 }
5940
5941 // If the expression already has a matching type, we're golden.
5942 QualType T = From->getType();
5943 if (Converter.match(T))
5944 return DefaultLvalueConversion(From);
5945
5946 // FIXME: Check for missing '()' if T is a function type?
5947
5948 // We can only perform contextual implicit conversions on objects of class
5949 // type.
5950 const RecordType *RecordTy = T->getAs<RecordType>();
5951 if (!RecordTy || !getLangOpts().CPlusPlus) {
5952 if (!Converter.Suppress)
5953 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5954 return From;
5955 }
5956
5957 // We must have a complete class type.
5958 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5959