Bug Summary

File:build/source/clang/lib/Sema/SemaOverload.cpp
Warning:line 10078, column 44
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1668078801 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-11-10-135928-647445-1 -x c++ /build/source/clang/lib/Sema/SemaOverload.cpp
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/CXXInheritance.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DependenceFlags.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/Type.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/Basic/DiagnosticOptions.h"
25#include "clang/Basic/OperatorKinds.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Sema/Initialization.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateDeduction.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/Optional.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallString.h"
40#include "llvm/Support/Casting.h"
41#include <algorithm>
42#include <cstdlib>
43
44using namespace clang;
45using namespace sema;
46
47using AllowedExplicit = Sema::AllowedExplicit;
48
49static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
50 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
51 return P->hasAttr<PassObjectSizeAttr>();
52 });
53}
54
55/// A convenience routine for creating a decayed reference to a function.
56static ExprResult CreateFunctionRefExpr(
57 Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base,
58 bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(),
59 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) {
60 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
61 return ExprError();
62 // If FoundDecl is different from Fn (such as if one is a template
63 // and the other a specialization), make sure DiagnoseUseOfDecl is
64 // called on both.
65 // FIXME: This would be more comprehensively addressed by modifying
66 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
67 // being used.
68 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
69 return ExprError();
70 DeclRefExpr *DRE = new (S.Context)
71 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
72 if (HadMultipleCandidates)
73 DRE->setHadMultipleCandidates(true);
74
75 S.MarkDeclRefReferenced(DRE, Base);
76 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
77 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
78 S.ResolveExceptionSpec(Loc, FPT);
79 DRE->setType(Fn->getType());
80 }
81 }
82 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
83 CK_FunctionToPointerDecay);
84}
85
86static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
87 bool InOverloadResolution,
88 StandardConversionSequence &SCS,
89 bool CStyle,
90 bool AllowObjCWritebackConversion);
91
92static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
93 QualType &ToType,
94 bool InOverloadResolution,
95 StandardConversionSequence &SCS,
96 bool CStyle);
97static OverloadingResult
98IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
99 UserDefinedConversionSequence& User,
100 OverloadCandidateSet& Conversions,
101 AllowedExplicit AllowExplicit,
102 bool AllowObjCConversionOnExplicit);
103
104static ImplicitConversionSequence::CompareKind
105CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
106 const StandardConversionSequence& SCS1,
107 const StandardConversionSequence& SCS2);
108
109static ImplicitConversionSequence::CompareKind
110CompareQualificationConversions(Sema &S,
111 const StandardConversionSequence& SCS1,
112 const StandardConversionSequence& SCS2);
113
114static ImplicitConversionSequence::CompareKind
115CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
116 const StandardConversionSequence& SCS1,
117 const StandardConversionSequence& SCS2);
118
119/// GetConversionRank - Retrieve the implicit conversion rank
120/// corresponding to the given implicit conversion kind.
121ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
122 static const ImplicitConversionRank
123 Rank[(int)ICK_Num_Conversion_Kinds] = {
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Exact_Match,
128 ICR_Exact_Match,
129 ICR_Exact_Match,
130 ICR_Promotion,
131 ICR_Promotion,
132 ICR_Promotion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Conversion,
142 ICR_Conversion,
143 ICR_Conversion,
144 ICR_OCL_Scalar_Widening,
145 ICR_Complex_Real_Conversion,
146 ICR_Conversion,
147 ICR_Conversion,
148 ICR_Writeback_Conversion,
149 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
150 // it was omitted by the patch that added
151 // ICK_Zero_Event_Conversion
152 ICR_C_Conversion,
153 ICR_C_Conversion_Extension
154 };
155 return Rank[(int)Kind];
156}
157
158/// GetImplicitConversionName - Return the name of this kind of
159/// implicit conversion.
160static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
161 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
162 "No conversion",
163 "Lvalue-to-rvalue",
164 "Array-to-pointer",
165 "Function-to-pointer",
166 "Function pointer conversion",
167 "Qualification",
168 "Integral promotion",
169 "Floating point promotion",
170 "Complex promotion",
171 "Integral conversion",
172 "Floating conversion",
173 "Complex conversion",
174 "Floating-integral conversion",
175 "Pointer conversion",
176 "Pointer-to-member conversion",
177 "Boolean conversion",
178 "Compatible-types conversion",
179 "Derived-to-base conversion",
180 "Vector conversion",
181 "SVE Vector conversion",
182 "Vector splat",
183 "Complex-real conversion",
184 "Block Pointer conversion",
185 "Transparent Union Conversion",
186 "Writeback conversion",
187 "OpenCL Zero Event Conversion",
188 "C specific type conversion",
189 "Incompatible pointer conversion"
190 };
191 return Name[Kind];
192}
193
194/// StandardConversionSequence - Set the standard conversion
195/// sequence to the identity conversion.
196void StandardConversionSequence::setAsIdentityConversion() {
197 First = ICK_Identity;
198 Second = ICK_Identity;
199 Third = ICK_Identity;
200 DeprecatedStringLiteralToCharPtr = false;
201 QualificationIncludesObjCLifetime = false;
202 ReferenceBinding = false;
203 DirectBinding = false;
204 IsLvalueReference = true;
205 BindsToFunctionLvalue = false;
206 BindsToRvalue = false;
207 BindsImplicitObjectArgumentWithoutRefQualifier = false;
208 ObjCLifetimeConversionBinding = false;
209 CopyConstructor = nullptr;
210}
211
212/// getRank - Retrieve the rank of this standard conversion sequence
213/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
214/// implicit conversions.
215ImplicitConversionRank StandardConversionSequence::getRank() const {
216 ImplicitConversionRank Rank = ICR_Exact_Match;
217 if (GetConversionRank(First) > Rank)
218 Rank = GetConversionRank(First);
219 if (GetConversionRank(Second) > Rank)
220 Rank = GetConversionRank(Second);
221 if (GetConversionRank(Third) > Rank)
222 Rank = GetConversionRank(Third);
223 return Rank;
224}
225
226/// isPointerConversionToBool - Determines whether this conversion is
227/// a conversion of a pointer or pointer-to-member to bool. This is
228/// used as part of the ranking of standard conversion sequences
229/// (C++ 13.3.3.2p4).
230bool StandardConversionSequence::isPointerConversionToBool() const {
231 // Note that FromType has not necessarily been transformed by the
232 // array-to-pointer or function-to-pointer implicit conversions, so
233 // check for their presence as well as checking whether FromType is
234 // a pointer.
235 if (getToType(1)->isBooleanType() &&
236 (getFromType()->isPointerType() ||
237 getFromType()->isMemberPointerType() ||
238 getFromType()->isObjCObjectPointerType() ||
239 getFromType()->isBlockPointerType() ||
240 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
241 return true;
242
243 return false;
244}
245
246/// isPointerConversionToVoidPointer - Determines whether this
247/// conversion is a conversion of a pointer to a void pointer. This is
248/// used as part of the ranking of standard conversion sequences (C++
249/// 13.3.3.2p4).
250bool
251StandardConversionSequence::
252isPointerConversionToVoidPointer(ASTContext& Context) const {
253 QualType FromType = getFromType();
254 QualType ToType = getToType(1);
255
256 // Note that FromType has not necessarily been transformed by the
257 // array-to-pointer implicit conversion, so check for its presence
258 // and redo the conversion to get a pointer.
259 if (First == ICK_Array_To_Pointer)
260 FromType = Context.getArrayDecayedType(FromType);
261
262 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
263 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
264 return ToPtrType->getPointeeType()->isVoidType();
265
266 return false;
267}
268
269/// Skip any implicit casts which could be either part of a narrowing conversion
270/// or after one in an implicit conversion.
271static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
272 const Expr *Converted) {
273 // We can have cleanups wrapping the converted expression; these need to be
274 // preserved so that destructors run if necessary.
275 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
276 Expr *Inner =
277 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
278 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
279 EWC->getObjects());
280 }
281
282 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
283 switch (ICE->getCastKind()) {
284 case CK_NoOp:
285 case CK_IntegralCast:
286 case CK_IntegralToBoolean:
287 case CK_IntegralToFloating:
288 case CK_BooleanToSignedIntegral:
289 case CK_FloatingToIntegral:
290 case CK_FloatingToBoolean:
291 case CK_FloatingCast:
292 Converted = ICE->getSubExpr();
293 continue;
294
295 default:
296 return Converted;
297 }
298 }
299
300 return Converted;
301}
302
303/// Check if this standard conversion sequence represents a narrowing
304/// conversion, according to C++11 [dcl.init.list]p7.
305///
306/// \param Ctx The AST context.
307/// \param Converted The result of applying this standard conversion sequence.
308/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
309/// value of the expression prior to the narrowing conversion.
310/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
311/// type of the expression prior to the narrowing conversion.
312/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
313/// from floating point types to integral types should be ignored.
314NarrowingKind StandardConversionSequence::getNarrowingKind(
315 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
316 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
317 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")(static_cast <bool> (Ctx.getLangOpts().CPlusPlus &&
"narrowing check outside C++") ? void (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "clang/lib/Sema/SemaOverload.cpp", 317, __extension__ __PRETTY_FUNCTION__
))
;
318
319 // C++11 [dcl.init.list]p7:
320 // A narrowing conversion is an implicit conversion ...
321 QualType FromType = getToType(0);
322 QualType ToType = getToType(1);
323
324 // A conversion to an enumeration type is narrowing if the conversion to
325 // the underlying type is narrowing. This only arises for expressions of
326 // the form 'Enum{init}'.
327 if (auto *ET = ToType->getAs<EnumType>())
328 ToType = ET->getDecl()->getIntegerType();
329
330 switch (Second) {
331 // 'bool' is an integral type; dispatch to the right place to handle it.
332 case ICK_Boolean_Conversion:
333 if (FromType->isRealFloatingType())
334 goto FloatingIntegralConversion;
335 if (FromType->isIntegralOrUnscopedEnumerationType())
336 goto IntegralConversion;
337 // -- from a pointer type or pointer-to-member type to bool, or
338 return NK_Type_Narrowing;
339
340 // -- from a floating-point type to an integer type, or
341 //
342 // -- from an integer type or unscoped enumeration type to a floating-point
343 // type, except where the source is a constant expression and the actual
344 // value after conversion will fit into the target type and will produce
345 // the original value when converted back to the original type, or
346 case ICK_Floating_Integral:
347 FloatingIntegralConversion:
348 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
349 return NK_Type_Narrowing;
350 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
351 ToType->isRealFloatingType()) {
352 if (IgnoreFloatToIntegralConversion)
353 return NK_Not_Narrowing;
354 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
355 assert(Initializer && "Unknown conversion expression")(static_cast <bool> (Initializer && "Unknown conversion expression"
) ? void (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "clang/lib/Sema/SemaOverload.cpp", 355, __extension__ __PRETTY_FUNCTION__
))
;
356
357 // If it's value-dependent, we can't tell whether it's narrowing.
358 if (Initializer->isValueDependent())
359 return NK_Dependent_Narrowing;
360
361 if (Optional<llvm::APSInt> IntConstantValue =
362 Initializer->getIntegerConstantExpr(Ctx)) {
363 // Convert the integer to the floating type.
364 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
365 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
366 llvm::APFloat::rmNearestTiesToEven);
367 // And back.
368 llvm::APSInt ConvertedValue = *IntConstantValue;
369 bool ignored;
370 Result.convertToInteger(ConvertedValue,
371 llvm::APFloat::rmTowardZero, &ignored);
372 // If the resulting value is different, this was a narrowing conversion.
373 if (*IntConstantValue != ConvertedValue) {
374 ConstantValue = APValue(*IntConstantValue);
375 ConstantType = Initializer->getType();
376 return NK_Constant_Narrowing;
377 }
378 } else {
379 // Variables are always narrowings.
380 return NK_Variable_Narrowing;
381 }
382 }
383 return NK_Not_Narrowing;
384
385 // -- from long double to double or float, or from double to float, except
386 // where the source is a constant expression and the actual value after
387 // conversion is within the range of values that can be represented (even
388 // if it cannot be represented exactly), or
389 case ICK_Floating_Conversion:
390 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
391 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
392 // FromType is larger than ToType.
393 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
394
395 // If it's value-dependent, we can't tell whether it's narrowing.
396 if (Initializer->isValueDependent())
397 return NK_Dependent_Narrowing;
398
399 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
400 // Constant!
401 assert(ConstantValue.isFloat())(static_cast <bool> (ConstantValue.isFloat()) ? void (0
) : __assert_fail ("ConstantValue.isFloat()", "clang/lib/Sema/SemaOverload.cpp"
, 401, __extension__ __PRETTY_FUNCTION__))
;
402 llvm::APFloat FloatVal = ConstantValue.getFloat();
403 // Convert the source value into the target type.
404 bool ignored;
405 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
406 Ctx.getFloatTypeSemantics(ToType),
407 llvm::APFloat::rmNearestTiesToEven, &ignored);
408 // If there was no overflow, the source value is within the range of
409 // values that can be represented.
410 if (ConvertStatus & llvm::APFloat::opOverflow) {
411 ConstantType = Initializer->getType();
412 return NK_Constant_Narrowing;
413 }
414 } else {
415 return NK_Variable_Narrowing;
416 }
417 }
418 return NK_Not_Narrowing;
419
420 // -- from an integer type or unscoped enumeration type to an integer type
421 // that cannot represent all the values of the original type, except where
422 // the source is a constant expression and the actual value after
423 // conversion will fit into the target type and will produce the original
424 // value when converted back to the original type.
425 case ICK_Integral_Conversion:
426 IntegralConversion: {
427 assert(FromType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (FromType->isIntegralOrUnscopedEnumerationType
()) ? void (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "clang/lib/Sema/SemaOverload.cpp", 427, __extension__ __PRETTY_FUNCTION__
))
;
428 assert(ToType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (ToType->isIntegralOrUnscopedEnumerationType
()) ? void (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "clang/lib/Sema/SemaOverload.cpp", 428, __extension__ __PRETTY_FUNCTION__
))
;
429 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
430 const unsigned FromWidth = Ctx.getIntWidth(FromType);
431 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
432 const unsigned ToWidth = Ctx.getIntWidth(ToType);
433
434 if (FromWidth > ToWidth ||
435 (FromWidth == ToWidth && FromSigned != ToSigned) ||
436 (FromSigned && !ToSigned)) {
437 // Not all values of FromType can be represented in ToType.
438 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
439
440 // If it's value-dependent, we can't tell whether it's narrowing.
441 if (Initializer->isValueDependent())
442 return NK_Dependent_Narrowing;
443
444 Optional<llvm::APSInt> OptInitializerValue;
445 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
446 // Such conversions on variables are always narrowing.
447 return NK_Variable_Narrowing;
448 }
449 llvm::APSInt &InitializerValue = *OptInitializerValue;
450 bool Narrowing = false;
451 if (FromWidth < ToWidth) {
452 // Negative -> unsigned is narrowing. Otherwise, more bits is never
453 // narrowing.
454 if (InitializerValue.isSigned() && InitializerValue.isNegative())
455 Narrowing = true;
456 } else {
457 // Add a bit to the InitializerValue so we don't have to worry about
458 // signed vs. unsigned comparisons.
459 InitializerValue = InitializerValue.extend(
460 InitializerValue.getBitWidth() + 1);
461 // Convert the initializer to and from the target width and signed-ness.
462 llvm::APSInt ConvertedValue = InitializerValue;
463 ConvertedValue = ConvertedValue.trunc(ToWidth);
464 ConvertedValue.setIsSigned(ToSigned);
465 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
466 ConvertedValue.setIsSigned(InitializerValue.isSigned());
467 // If the result is different, this was a narrowing conversion.
468 if (ConvertedValue != InitializerValue)
469 Narrowing = true;
470 }
471 if (Narrowing) {
472 ConstantType = Initializer->getType();
473 ConstantValue = APValue(InitializerValue);
474 return NK_Constant_Narrowing;
475 }
476 }
477 return NK_Not_Narrowing;
478 }
479
480 default:
481 // Other kinds of conversions are not narrowings.
482 return NK_Not_Narrowing;
483 }
484}
485
486/// dump - Print this standard conversion sequence to standard
487/// error. Useful for debugging overloading issues.
488LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
489 raw_ostream &OS = llvm::errs();
490 bool PrintedSomething = false;
491 if (First != ICK_Identity) {
492 OS << GetImplicitConversionName(First);
493 PrintedSomething = true;
494 }
495
496 if (Second != ICK_Identity) {
497 if (PrintedSomething) {
498 OS << " -> ";
499 }
500 OS << GetImplicitConversionName(Second);
501
502 if (CopyConstructor) {
503 OS << " (by copy constructor)";
504 } else if (DirectBinding) {
505 OS << " (direct reference binding)";
506 } else if (ReferenceBinding) {
507 OS << " (reference binding)";
508 }
509 PrintedSomething = true;
510 }
511
512 if (Third != ICK_Identity) {
513 if (PrintedSomething) {
514 OS << " -> ";
515 }
516 OS << GetImplicitConversionName(Third);
517 PrintedSomething = true;
518 }
519
520 if (!PrintedSomething) {
521 OS << "No conversions required";
522 }
523}
524
525/// dump - Print this user-defined conversion sequence to standard
526/// error. Useful for debugging overloading issues.
527void UserDefinedConversionSequence::dump() const {
528 raw_ostream &OS = llvm::errs();
529 if (Before.First || Before.Second || Before.Third) {
530 Before.dump();
531 OS << " -> ";
532 }
533 if (ConversionFunction)
534 OS << '\'' << *ConversionFunction << '\'';
535 else
536 OS << "aggregate initialization";
537 if (After.First || After.Second || After.Third) {
538 OS << " -> ";
539 After.dump();
540 }
541}
542
543/// dump - Print this implicit conversion sequence to standard
544/// error. Useful for debugging overloading issues.
545void ImplicitConversionSequence::dump() const {
546 raw_ostream &OS = llvm::errs();
547 if (hasInitializerListContainerType())
548 OS << "Worst list element conversion: ";
549 switch (ConversionKind) {
550 case StandardConversion:
551 OS << "Standard conversion: ";
552 Standard.dump();
553 break;
554 case UserDefinedConversion:
555 OS << "User-defined conversion: ";
556 UserDefined.dump();
557 break;
558 case EllipsisConversion:
559 OS << "Ellipsis conversion";
560 break;
561 case AmbiguousConversion:
562 OS << "Ambiguous conversion";
563 break;
564 case BadConversion:
565 OS << "Bad conversion";
566 break;
567 }
568
569 OS << "\n";
570}
571
572void AmbiguousConversionSequence::construct() {
573 new (&conversions()) ConversionSet();
574}
575
576void AmbiguousConversionSequence::destruct() {
577 conversions().~ConversionSet();
578}
579
580void
581AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
582 FromTypePtr = O.FromTypePtr;
583 ToTypePtr = O.ToTypePtr;
584 new (&conversions()) ConversionSet(O.conversions());
585}
586
587namespace {
588 // Structure used by DeductionFailureInfo to store
589 // template argument information.
590 struct DFIArguments {
591 TemplateArgument FirstArg;
592 TemplateArgument SecondArg;
593 };
594 // Structure used by DeductionFailureInfo to store
595 // template parameter and template argument information.
596 struct DFIParamWithArguments : DFIArguments {
597 TemplateParameter Param;
598 };
599 // Structure used by DeductionFailureInfo to store template argument
600 // information and the index of the problematic call argument.
601 struct DFIDeducedMismatchArgs : DFIArguments {
602 TemplateArgumentList *TemplateArgs;
603 unsigned CallArgIndex;
604 };
605 // Structure used by DeductionFailureInfo to store information about
606 // unsatisfied constraints.
607 struct CNSInfo {
608 TemplateArgumentList *TemplateArgs;
609 ConstraintSatisfaction Satisfaction;
610 };
611}
612
613/// Convert from Sema's representation of template deduction information
614/// to the form used in overload-candidate information.
615DeductionFailureInfo
616clang::MakeDeductionFailureInfo(ASTContext &Context,
617 Sema::TemplateDeductionResult TDK,
618 TemplateDeductionInfo &Info) {
619 DeductionFailureInfo Result;
620 Result.Result = static_cast<unsigned>(TDK);
621 Result.HasDiagnostic = false;
622 switch (TDK) {
623 case Sema::TDK_Invalid:
624 case Sema::TDK_InstantiationDepth:
625 case Sema::TDK_TooManyArguments:
626 case Sema::TDK_TooFewArguments:
627 case Sema::TDK_MiscellaneousDeductionFailure:
628 case Sema::TDK_CUDATargetMismatch:
629 Result.Data = nullptr;
630 break;
631
632 case Sema::TDK_Incomplete:
633 case Sema::TDK_InvalidExplicitArguments:
634 Result.Data = Info.Param.getOpaqueValue();
635 break;
636
637 case Sema::TDK_DeducedMismatch:
638 case Sema::TDK_DeducedMismatchNested: {
639 // FIXME: Should allocate from normal heap so that we can free this later.
640 auto *Saved = new (Context) DFIDeducedMismatchArgs;
641 Saved->FirstArg = Info.FirstArg;
642 Saved->SecondArg = Info.SecondArg;
643 Saved->TemplateArgs = Info.takeSugared();
644 Saved->CallArgIndex = Info.CallArgIndex;
645 Result.Data = Saved;
646 break;
647 }
648
649 case Sema::TDK_NonDeducedMismatch: {
650 // FIXME: Should allocate from normal heap so that we can free this later.
651 DFIArguments *Saved = new (Context) DFIArguments;
652 Saved->FirstArg = Info.FirstArg;
653 Saved->SecondArg = Info.SecondArg;
654 Result.Data = Saved;
655 break;
656 }
657
658 case Sema::TDK_IncompletePack:
659 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
660 case Sema::TDK_Inconsistent:
661 case Sema::TDK_Underqualified: {
662 // FIXME: Should allocate from normal heap so that we can free this later.
663 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
664 Saved->Param = Info.Param;
665 Saved->FirstArg = Info.FirstArg;
666 Saved->SecondArg = Info.SecondArg;
667 Result.Data = Saved;
668 break;
669 }
670
671 case Sema::TDK_SubstitutionFailure:
672 Result.Data = Info.takeSugared();
673 if (Info.hasSFINAEDiagnostic()) {
674 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
675 SourceLocation(), PartialDiagnostic::NullDiagnostic());
676 Info.takeSFINAEDiagnostic(*Diag);
677 Result.HasDiagnostic = true;
678 }
679 break;
680
681 case Sema::TDK_ConstraintsNotSatisfied: {
682 CNSInfo *Saved = new (Context) CNSInfo;
683 Saved->TemplateArgs = Info.takeSugared();
684 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
685 Result.Data = Saved;
686 break;
687 }
688
689 case Sema::TDK_Success:
690 case Sema::TDK_NonDependentConversionFailure:
691 case Sema::TDK_AlreadyDiagnosed:
692 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "clang/lib/Sema/SemaOverload.cpp"
, 692)
;
693 }
694
695 return Result;
696}
697
698void DeductionFailureInfo::Destroy() {
699 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
700 case Sema::TDK_Success:
701 case Sema::TDK_Invalid:
702 case Sema::TDK_InstantiationDepth:
703 case Sema::TDK_Incomplete:
704 case Sema::TDK_TooManyArguments:
705 case Sema::TDK_TooFewArguments:
706 case Sema::TDK_InvalidExplicitArguments:
707 case Sema::TDK_CUDATargetMismatch:
708 case Sema::TDK_NonDependentConversionFailure:
709 break;
710
711 case Sema::TDK_IncompletePack:
712 case Sema::TDK_Inconsistent:
713 case Sema::TDK_Underqualified:
714 case Sema::TDK_DeducedMismatch:
715 case Sema::TDK_DeducedMismatchNested:
716 case Sema::TDK_NonDeducedMismatch:
717 // FIXME: Destroy the data?
718 Data = nullptr;
719 break;
720
721 case Sema::TDK_SubstitutionFailure:
722 // FIXME: Destroy the template argument list?
723 Data = nullptr;
724 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
725 Diag->~PartialDiagnosticAt();
726 HasDiagnostic = false;
727 }
728 break;
729
730 case Sema::TDK_ConstraintsNotSatisfied:
731 // FIXME: Destroy the template argument list?
732 Data = nullptr;
733 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
734 Diag->~PartialDiagnosticAt();
735 HasDiagnostic = false;
736 }
737 break;
738
739 // Unhandled
740 case Sema::TDK_MiscellaneousDeductionFailure:
741 case Sema::TDK_AlreadyDiagnosed:
742 break;
743 }
744}
745
746PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
747 if (HasDiagnostic)
748 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
749 return nullptr;
750}
751
752TemplateParameter DeductionFailureInfo::getTemplateParameter() {
753 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
754 case Sema::TDK_Success:
755 case Sema::TDK_Invalid:
756 case Sema::TDK_InstantiationDepth:
757 case Sema::TDK_TooManyArguments:
758 case Sema::TDK_TooFewArguments:
759 case Sema::TDK_SubstitutionFailure:
760 case Sema::TDK_DeducedMismatch:
761 case Sema::TDK_DeducedMismatchNested:
762 case Sema::TDK_NonDeducedMismatch:
763 case Sema::TDK_CUDATargetMismatch:
764 case Sema::TDK_NonDependentConversionFailure:
765 case Sema::TDK_ConstraintsNotSatisfied:
766 return TemplateParameter();
767
768 case Sema::TDK_Incomplete:
769 case Sema::TDK_InvalidExplicitArguments:
770 return TemplateParameter::getFromOpaqueValue(Data);
771
772 case Sema::TDK_IncompletePack:
773 case Sema::TDK_Inconsistent:
774 case Sema::TDK_Underqualified:
775 return static_cast<DFIParamWithArguments*>(Data)->Param;
776
777 // Unhandled
778 case Sema::TDK_MiscellaneousDeductionFailure:
779 case Sema::TDK_AlreadyDiagnosed:
780 break;
781 }
782
783 return TemplateParameter();
784}
785
786TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
787 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
788 case Sema::TDK_Success:
789 case Sema::TDK_Invalid:
790 case Sema::TDK_InstantiationDepth:
791 case Sema::TDK_TooManyArguments:
792 case Sema::TDK_TooFewArguments:
793 case Sema::TDK_Incomplete:
794 case Sema::TDK_IncompletePack:
795 case Sema::TDK_InvalidExplicitArguments:
796 case Sema::TDK_Inconsistent:
797 case Sema::TDK_Underqualified:
798 case Sema::TDK_NonDeducedMismatch:
799 case Sema::TDK_CUDATargetMismatch:
800 case Sema::TDK_NonDependentConversionFailure:
801 return nullptr;
802
803 case Sema::TDK_DeducedMismatch:
804 case Sema::TDK_DeducedMismatchNested:
805 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
806
807 case Sema::TDK_SubstitutionFailure:
808 return static_cast<TemplateArgumentList*>(Data);
809
810 case Sema::TDK_ConstraintsNotSatisfied:
811 return static_cast<CNSInfo*>(Data)->TemplateArgs;
812
813 // Unhandled
814 case Sema::TDK_MiscellaneousDeductionFailure:
815 case Sema::TDK_AlreadyDiagnosed:
816 break;
817 }
818
819 return nullptr;
820}
821
822const TemplateArgument *DeductionFailureInfo::getFirstArg() {
823 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
824 case Sema::TDK_Success:
825 case Sema::TDK_Invalid:
826 case Sema::TDK_InstantiationDepth:
827 case Sema::TDK_Incomplete:
828 case Sema::TDK_TooManyArguments:
829 case Sema::TDK_TooFewArguments:
830 case Sema::TDK_InvalidExplicitArguments:
831 case Sema::TDK_SubstitutionFailure:
832 case Sema::TDK_CUDATargetMismatch:
833 case Sema::TDK_NonDependentConversionFailure:
834 case Sema::TDK_ConstraintsNotSatisfied:
835 return nullptr;
836
837 case Sema::TDK_IncompletePack:
838 case Sema::TDK_Inconsistent:
839 case Sema::TDK_Underqualified:
840 case Sema::TDK_DeducedMismatch:
841 case Sema::TDK_DeducedMismatchNested:
842 case Sema::TDK_NonDeducedMismatch:
843 return &static_cast<DFIArguments*>(Data)->FirstArg;
844
845 // Unhandled
846 case Sema::TDK_MiscellaneousDeductionFailure:
847 case Sema::TDK_AlreadyDiagnosed:
848 break;
849 }
850
851 return nullptr;
852}
853
854const TemplateArgument *DeductionFailureInfo::getSecondArg() {
855 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
856 case Sema::TDK_Success:
857 case Sema::TDK_Invalid:
858 case Sema::TDK_InstantiationDepth:
859 case Sema::TDK_Incomplete:
860 case Sema::TDK_IncompletePack:
861 case Sema::TDK_TooManyArguments:
862 case Sema::TDK_TooFewArguments:
863 case Sema::TDK_InvalidExplicitArguments:
864 case Sema::TDK_SubstitutionFailure:
865 case Sema::TDK_CUDATargetMismatch:
866 case Sema::TDK_NonDependentConversionFailure:
867 case Sema::TDK_ConstraintsNotSatisfied:
868 return nullptr;
869
870 case Sema::TDK_Inconsistent:
871 case Sema::TDK_Underqualified:
872 case Sema::TDK_DeducedMismatch:
873 case Sema::TDK_DeducedMismatchNested:
874 case Sema::TDK_NonDeducedMismatch:
875 return &static_cast<DFIArguments*>(Data)->SecondArg;
876
877 // Unhandled
878 case Sema::TDK_MiscellaneousDeductionFailure:
879 case Sema::TDK_AlreadyDiagnosed:
880 break;
881 }
882
883 return nullptr;
884}
885
886llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
887 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
888 case Sema::TDK_DeducedMismatch:
889 case Sema::TDK_DeducedMismatchNested:
890 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
891
892 default:
893 return llvm::None;
894 }
895}
896
897static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X,
898 const FunctionDecl *Y) {
899 if (!X || !Y)
900 return false;
901 if (X->getNumParams() != Y->getNumParams())
902 return false;
903 for (unsigned I = 0; I < X->getNumParams(); ++I)
904 if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(),
905 Y->getParamDecl(I)->getType()))
906 return false;
907 if (auto *FTX = X->getDescribedFunctionTemplate()) {
908 auto *FTY = Y->getDescribedFunctionTemplate();
909 if (!FTY)
910 return false;
911 if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(),
912 FTY->getTemplateParameters()))
913 return false;
914 }
915 return true;
916}
917
918static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc,
919 Expr *FirstOperand, FunctionDecl *EqFD) {
920 assert(EqFD->getOverloadedOperator() ==(static_cast <bool> (EqFD->getOverloadedOperator() ==
OverloadedOperatorKind::OO_EqualEqual) ? void (0) : __assert_fail
("EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual"
, "clang/lib/Sema/SemaOverload.cpp", 921, __extension__ __PRETTY_FUNCTION__
))
921 OverloadedOperatorKind::OO_EqualEqual)(static_cast <bool> (EqFD->getOverloadedOperator() ==
OverloadedOperatorKind::OO_EqualEqual) ? void (0) : __assert_fail
("EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual"
, "clang/lib/Sema/SemaOverload.cpp", 921, __extension__ __PRETTY_FUNCTION__
))
;
922 // C++2a [over.match.oper]p4:
923 // A non-template function or function template F named operator== is a
924 // rewrite target with first operand o unless a search for the name operator!=
925 // in the scope S from the instantiation context of the operator expression
926 // finds a function or function template that would correspond
927 // ([basic.scope.scope]) to F if its name were operator==, where S is the
928 // scope of the class type of o if F is a class member, and the namespace
929 // scope of which F is a member otherwise. A function template specialization
930 // named operator== is a rewrite target if its function template is a rewrite
931 // target.
932 DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName(
933 OverloadedOperatorKind::OO_ExclaimEqual);
934 if (isa<CXXMethodDecl>(EqFD)) {
935 // If F is a class member, search scope is class type of first operand.
936 QualType RHS = FirstOperand->getType();
937 auto *RHSRec = RHS->getAs<RecordType>();
938 if (!RHSRec)
939 return true;
940 LookupResult Members(S, NotEqOp, OpLoc,
941 Sema::LookupNameKind::LookupMemberName);
942 S.LookupQualifiedName(Members, RHSRec->getDecl());
943 Members.suppressDiagnostics();
944 for (NamedDecl *Op : Members)
945 if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction()))
946 return false;
947 return true;
948 }
949 // Otherwise the search scope is the namespace scope of which F is a member.
950 LookupResult NonMembers(S, NotEqOp, OpLoc,
951 Sema::LookupNameKind::LookupOperatorName);
952 S.LookupName(NonMembers,
953 S.getScopeForContext(EqFD->getEnclosingNamespaceContext()));
954 NonMembers.suppressDiagnostics();
955 for (NamedDecl *Op : NonMembers) {
956 auto *FD = Op->getAsFunction();
957 if(auto* UD = dyn_cast<UsingShadowDecl>(Op))
958 FD = UD->getUnderlyingDecl()->getAsFunction();
959 if (FunctionsCorrespond(S.Context, EqFD, FD) &&
960 declaresSameEntity(cast<Decl>(EqFD->getDeclContext()),
961 cast<Decl>(Op->getDeclContext())))
962 return false;
963 }
964 return true;
965}
966
967bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed(
968 OverloadedOperatorKind Op) {
969 if (!AllowRewrittenCandidates)
970 return false;
971 return Op == OO_EqualEqual || Op == OO_Spaceship;
972}
973
974bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
975 Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) {
976 auto Op = FD->getOverloadedOperator();
977 if (!allowsReversed(Op))
978 return false;
979 if (Op == OverloadedOperatorKind::OO_EqualEqual) {
980 assert(OriginalArgs.size() == 2)(static_cast <bool> (OriginalArgs.size() == 2) ? void (
0) : __assert_fail ("OriginalArgs.size() == 2", "clang/lib/Sema/SemaOverload.cpp"
, 980, __extension__ __PRETTY_FUNCTION__))
;
981 if (!shouldAddReversedEqEq(
982 S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD))
983 return false;
984 }
985 // Don't bother adding a reversed candidate that can never be a better
986 // match than the non-reversed version.
987 return FD->getNumParams() != 2 ||
988 !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
989 FD->getParamDecl(1)->getType()) ||
990 FD->hasAttr<EnableIfAttr>();
991}
992
993void OverloadCandidateSet::destroyCandidates() {
994 for (iterator i = begin(), e = end(); i != e; ++i) {
995 for (auto &C : i->Conversions)
996 C.~ImplicitConversionSequence();
997 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
998 i->DeductionFailure.Destroy();
999 }
1000}
1001
1002void OverloadCandidateSet::clear(CandidateSetKind CSK) {
1003 destroyCandidates();
1004 SlabAllocator.Reset();
1005 NumInlineBytesUsed = 0;
1006 Candidates.clear();
1007 Functions.clear();
1008 Kind = CSK;
1009}
1010
1011namespace {
1012 class UnbridgedCastsSet {
1013 struct Entry {
1014 Expr **Addr;
1015 Expr *Saved;
1016 };
1017 SmallVector<Entry, 2> Entries;
1018
1019 public:
1020 void save(Sema &S, Expr *&E) {
1021 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))(static_cast <bool> (E->hasPlaceholderType(BuiltinType
::ARCUnbridgedCast)) ? void (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "clang/lib/Sema/SemaOverload.cpp", 1021, __extension__ __PRETTY_FUNCTION__
))
;
1022 Entry entry = { &E, E };
1023 Entries.push_back(entry);
1024 E = S.stripARCUnbridgedCast(E);
1025 }
1026
1027 void restore() {
1028 for (SmallVectorImpl<Entry>::iterator
1029 i = Entries.begin(), e = Entries.end(); i != e; ++i)
1030 *i->Addr = i->Saved;
1031 }
1032 };
1033}
1034
1035/// checkPlaceholderForOverload - Do any interesting placeholder-like
1036/// preprocessing on the given expression.
1037///
1038/// \param unbridgedCasts a collection to which to add unbridged casts;
1039/// without this, they will be immediately diagnosed as errors
1040///
1041/// Return true on unrecoverable error.
1042static bool
1043checkPlaceholderForOverload(Sema &S, Expr *&E,
1044 UnbridgedCastsSet *unbridgedCasts = nullptr) {
1045 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
1046 // We can't handle overloaded expressions here because overload
1047 // resolution might reasonably tweak them.
1048 if (placeholder->getKind() == BuiltinType::Overload) return false;
1049
1050 // If the context potentially accepts unbridged ARC casts, strip
1051 // the unbridged cast and add it to the collection for later restoration.
1052 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
1053 unbridgedCasts) {
1054 unbridgedCasts->save(S, E);
1055 return false;
1056 }
1057
1058 // Go ahead and check everything else.
1059 ExprResult result = S.CheckPlaceholderExpr(E);
1060 if (result.isInvalid())
1061 return true;
1062
1063 E = result.get();
1064 return false;
1065 }
1066
1067 // Nothing to do.
1068 return false;
1069}
1070
1071/// checkArgPlaceholdersForOverload - Check a set of call operands for
1072/// placeholders.
1073static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args,
1074 UnbridgedCastsSet &unbridged) {
1075 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1076 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
1077 return true;
1078
1079 return false;
1080}
1081
1082/// Determine whether the given New declaration is an overload of the
1083/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
1084/// New and Old cannot be overloaded, e.g., if New has the same signature as
1085/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1086/// functions (or function templates) at all. When it does return Ovl_Match or
1087/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1088/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1089/// declaration.
1090///
1091/// Example: Given the following input:
1092///
1093/// void f(int, float); // #1
1094/// void f(int, int); // #2
1095/// int f(int, int); // #3
1096///
1097/// When we process #1, there is no previous declaration of "f", so IsOverload
1098/// will not be used.
1099///
1100/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1101/// the parameter types, we see that #1 and #2 are overloaded (since they have
1102/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1103/// unchanged.
1104///
1105/// When we process #3, Old is an overload set containing #1 and #2. We compare
1106/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1107/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1108/// functions are not part of the signature), IsOverload returns Ovl_Match and
1109/// MatchedDecl will be set to point to the FunctionDecl for #2.
1110///
1111/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1112/// by a using declaration. The rules for whether to hide shadow declarations
1113/// ignore some properties which otherwise figure into a function template's
1114/// signature.
1115Sema::OverloadKind
1116Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1117 NamedDecl *&Match, bool NewIsUsingDecl) {
1118 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1119 I != E; ++I) {
1120 NamedDecl *OldD = *I;
1121
1122 bool OldIsUsingDecl = false;
1123 if (isa<UsingShadowDecl>(OldD)) {
1124 OldIsUsingDecl = true;
1125
1126 // We can always introduce two using declarations into the same
1127 // context, even if they have identical signatures.
1128 if (NewIsUsingDecl) continue;
1129
1130 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1131 }
1132
1133 // A using-declaration does not conflict with another declaration
1134 // if one of them is hidden.
1135 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1136 continue;
1137
1138 // If either declaration was introduced by a using declaration,
1139 // we'll need to use slightly different rules for matching.
1140 // Essentially, these rules are the normal rules, except that
1141 // function templates hide function templates with different
1142 // return types or template parameter lists.
1143 bool UseMemberUsingDeclRules =
1144 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1145 !New->getFriendObjectKind();
1146
1147 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1148 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1149 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1150 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1151 continue;
1152 }
1153
1154 if (!isa<FunctionTemplateDecl>(OldD) &&
1155 !shouldLinkPossiblyHiddenDecl(*I, New))
1156 continue;
1157
1158 // C++20 [temp.friend] p9: A non-template friend declaration with a
1159 // requires-clause shall be a definition. A friend function template
1160 // with a constraint that depends on a template parameter from an
1161 // enclosing template shall be a definition. Such a constrained friend
1162 // function or function template declaration does not declare the same
1163 // function or function template as a declaration in any other scope.
1164 if (Context.FriendsDifferByConstraints(OldF, New))
1165 continue;
1166
1167 Match = *I;
1168 return Ovl_Match;
1169 }
1170
1171 // Builtins that have custom typechecking or have a reference should
1172 // not be overloadable or redeclarable.
1173 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1174 Match = *I;
1175 return Ovl_NonFunction;
1176 }
1177 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1178 // We can overload with these, which can show up when doing
1179 // redeclaration checks for UsingDecls.
1180 assert(Old.getLookupKind() == LookupUsingDeclName)(static_cast <bool> (Old.getLookupKind() == LookupUsingDeclName
) ? void (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "clang/lib/Sema/SemaOverload.cpp", 1180, __extension__ __PRETTY_FUNCTION__
))
;
1181 } else if (isa<TagDecl>(OldD)) {
1182 // We can always overload with tags by hiding them.
1183 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1184 // Optimistically assume that an unresolved using decl will
1185 // overload; if it doesn't, we'll have to diagnose during
1186 // template instantiation.
1187 //
1188 // Exception: if the scope is dependent and this is not a class
1189 // member, the using declaration can only introduce an enumerator.
1190 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1191 Match = *I;
1192 return Ovl_NonFunction;
1193 }
1194 } else {
1195 // (C++ 13p1):
1196 // Only function declarations can be overloaded; object and type
1197 // declarations cannot be overloaded.
1198 Match = *I;
1199 return Ovl_NonFunction;
1200 }
1201 }
1202
1203 // C++ [temp.friend]p1:
1204 // For a friend function declaration that is not a template declaration:
1205 // -- if the name of the friend is a qualified or unqualified template-id,
1206 // [...], otherwise
1207 // -- if the name of the friend is a qualified-id and a matching
1208 // non-template function is found in the specified class or namespace,
1209 // the friend declaration refers to that function, otherwise,
1210 // -- if the name of the friend is a qualified-id and a matching function
1211 // template is found in the specified class or namespace, the friend
1212 // declaration refers to the deduced specialization of that function
1213 // template, otherwise
1214 // -- the name shall be an unqualified-id [...]
1215 // If we get here for a qualified friend declaration, we've just reached the
1216 // third bullet. If the type of the friend is dependent, skip this lookup
1217 // until instantiation.
1218 if (New->getFriendObjectKind() && New->getQualifier() &&
1219 !New->getDescribedFunctionTemplate() &&
1220 !New->getDependentSpecializationInfo() &&
1221 !New->getType()->isDependentType()) {
1222 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1223 TemplateSpecResult.addAllDecls(Old);
1224 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1225 /*QualifiedFriend*/true)) {
1226 New->setInvalidDecl();
1227 return Ovl_Overload;
1228 }
1229
1230 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1231 return Ovl_Match;
1232 }
1233
1234 return Ovl_Overload;
1235}
1236
1237bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1238 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1239 bool ConsiderRequiresClauses) {
1240 // C++ [basic.start.main]p2: This function shall not be overloaded.
1241 if (New->isMain())
1242 return false;
1243
1244 // MSVCRT user defined entry points cannot be overloaded.
1245 if (New->isMSVCRTEntryPoint())
1246 return false;
1247
1248 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1249 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1250
1251 // C++ [temp.fct]p2:
1252 // A function template can be overloaded with other function templates
1253 // and with normal (non-template) functions.
1254 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1255 return true;
1256
1257 // Is the function New an overload of the function Old?
1258 QualType OldQType = Context.getCanonicalType(Old->getType());
1259 QualType NewQType = Context.getCanonicalType(New->getType());
1260
1261 // Compare the signatures (C++ 1.3.10) of the two functions to
1262 // determine whether they are overloads. If we find any mismatch
1263 // in the signature, they are overloads.
1264
1265 // If either of these functions is a K&R-style function (no
1266 // prototype), then we consider them to have matching signatures.
1267 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1268 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1269 return false;
1270
1271 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1272 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1273
1274 // The signature of a function includes the types of its
1275 // parameters (C++ 1.3.10), which includes the presence or absence
1276 // of the ellipsis; see C++ DR 357).
1277 if (OldQType != NewQType &&
1278 (OldType->getNumParams() != NewType->getNumParams() ||
1279 OldType->isVariadic() != NewType->isVariadic() ||
1280 !FunctionParamTypesAreEqual(OldType, NewType)))
1281 return true;
1282
1283 if (NewTemplate) {
1284 // C++ [temp.over.link]p4:
1285 // The signature of a function template consists of its function
1286 // signature, its return type and its template parameter list. The names
1287 // of the template parameters are significant only for establishing the
1288 // relationship between the template parameters and the rest of the
1289 // signature.
1290 //
1291 // We check the return type and template parameter lists for function
1292 // templates first; the remaining checks follow.
1293 bool SameTemplateParameterList = TemplateParameterListsAreEqual(
1294 NewTemplate->getTemplateParameters(),
1295 OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch);
1296 bool SameReturnType = Context.hasSameType(Old->getDeclaredReturnType(),
1297 New->getDeclaredReturnType());
1298 // FIXME(GH58571): Match template parameter list even for non-constrained
1299 // template heads. This currently ensures that the code prior to C++20 is
1300 // not newly broken.
1301 bool ConstraintsInTemplateHead =
1302 NewTemplate->getTemplateParameters()->hasAssociatedConstraints() ||
1303 OldTemplate->getTemplateParameters()->hasAssociatedConstraints();
1304 // C++ [namespace.udecl]p11:
1305 // The set of declarations named by a using-declarator that inhabits a
1306 // class C does not include member functions and member function
1307 // templates of a base class that "correspond" to (and thus would
1308 // conflict with) a declaration of a function or function template in
1309 // C.
1310 // Comparing return types is not required for the "correspond" check to
1311 // decide whether a member introduced by a shadow declaration is hidden.
1312 if (UseMemberUsingDeclRules && ConstraintsInTemplateHead &&
1313 !SameTemplateParameterList)
1314 return true;
1315 if (!UseMemberUsingDeclRules &&
1316 (!SameTemplateParameterList || !SameReturnType))
1317 return true;
1318 }
1319 // If the function is a class member, its signature includes the
1320 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1321 //
1322 // As part of this, also check whether one of the member functions
1323 // is static, in which case they are not overloads (C++
1324 // 13.1p2). While not part of the definition of the signature,
1325 // this check is important to determine whether these functions
1326 // can be overloaded.
1327 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1328 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1329 if (OldMethod && NewMethod &&
1330 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1331 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1332 if (!UseMemberUsingDeclRules &&
1333 (OldMethod->getRefQualifier() == RQ_None ||
1334 NewMethod->getRefQualifier() == RQ_None)) {
1335 // C++0x [over.load]p2:
1336 // - Member function declarations with the same name and the same
1337 // parameter-type-list as well as member function template
1338 // declarations with the same name, the same parameter-type-list, and
1339 // the same template parameter lists cannot be overloaded if any of
1340 // them, but not all, have a ref-qualifier (8.3.5).
1341 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1342 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1343 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1344 }
1345 return true;
1346 }
1347
1348 // We may not have applied the implicit const for a constexpr member
1349 // function yet (because we haven't yet resolved whether this is a static
1350 // or non-static member function). Add it now, on the assumption that this
1351 // is a redeclaration of OldMethod.
1352 auto OldQuals = OldMethod->getMethodQualifiers();
1353 auto NewQuals = NewMethod->getMethodQualifiers();
1354 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1355 !isa<CXXConstructorDecl>(NewMethod))
1356 NewQuals.addConst();
1357 // We do not allow overloading based off of '__restrict'.
1358 OldQuals.removeRestrict();
1359 NewQuals.removeRestrict();
1360 if (OldQuals != NewQuals)
1361 return true;
1362 }
1363
1364 // Though pass_object_size is placed on parameters and takes an argument, we
1365 // consider it to be a function-level modifier for the sake of function
1366 // identity. Either the function has one or more parameters with
1367 // pass_object_size or it doesn't.
1368 if (functionHasPassObjectSizeParams(New) !=
1369 functionHasPassObjectSizeParams(Old))
1370 return true;
1371
1372 // enable_if attributes are an order-sensitive part of the signature.
1373 for (specific_attr_iterator<EnableIfAttr>
1374 NewI = New->specific_attr_begin<EnableIfAttr>(),
1375 NewE = New->specific_attr_end<EnableIfAttr>(),
1376 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1377 OldE = Old->specific_attr_end<EnableIfAttr>();
1378 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1379 if (NewI == NewE || OldI == OldE)
1380 return true;
1381 llvm::FoldingSetNodeID NewID, OldID;
1382 NewI->getCond()->Profile(NewID, Context, true);
1383 OldI->getCond()->Profile(OldID, Context, true);
1384 if (NewID != OldID)
1385 return true;
1386 }
1387
1388 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1389 // Don't allow overloading of destructors. (In theory we could, but it
1390 // would be a giant change to clang.)
1391 if (!isa<CXXDestructorDecl>(New)) {
1392 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1393 OldTarget = IdentifyCUDATarget(Old);
1394 if (NewTarget != CFT_InvalidTarget) {
1395 assert((OldTarget != CFT_InvalidTarget) &&(static_cast <bool> ((OldTarget != CFT_InvalidTarget) &&
"Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "clang/lib/Sema/SemaOverload.cpp", 1396, __extension__ __PRETTY_FUNCTION__
))
1396 "Unexpected invalid target.")(static_cast <bool> ((OldTarget != CFT_InvalidTarget) &&
"Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "clang/lib/Sema/SemaOverload.cpp", 1396, __extension__ __PRETTY_FUNCTION__
))
;
1397
1398 // Allow overloading of functions with same signature and different CUDA
1399 // target attributes.
1400 if (NewTarget != OldTarget)
1401 return true;
1402 }
1403 }
1404 }
1405
1406 if (ConsiderRequiresClauses) {
1407 Expr *NewRC = New->getTrailingRequiresClause(),
1408 *OldRC = Old->getTrailingRequiresClause();
1409 if ((NewRC != nullptr) != (OldRC != nullptr))
1410 // RC are most certainly different - these are overloads.
1411 return true;
1412
1413 if (NewRC) {
1414 llvm::FoldingSetNodeID NewID, OldID;
1415 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1416 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1417 if (NewID != OldID)
1418 // RCs are not equivalent - these are overloads.
1419 return true;
1420 }
1421 }
1422
1423 // The signatures match; this is not an overload.
1424 return false;
1425}
1426
1427/// Tries a user-defined conversion from From to ToType.
1428///
1429/// Produces an implicit conversion sequence for when a standard conversion
1430/// is not an option. See TryImplicitConversion for more information.
1431static ImplicitConversionSequence
1432TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1433 bool SuppressUserConversions,
1434 AllowedExplicit AllowExplicit,
1435 bool InOverloadResolution,
1436 bool CStyle,
1437 bool AllowObjCWritebackConversion,
1438 bool AllowObjCConversionOnExplicit) {
1439 ImplicitConversionSequence ICS;
1440
1441 if (SuppressUserConversions) {
1442 // We're not in the case above, so there is no conversion that
1443 // we can perform.
1444 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1445 return ICS;
1446 }
1447
1448 // Attempt user-defined conversion.
1449 OverloadCandidateSet Conversions(From->getExprLoc(),
1450 OverloadCandidateSet::CSK_Normal);
1451 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1452 Conversions, AllowExplicit,
1453 AllowObjCConversionOnExplicit)) {
1454 case OR_Success:
1455 case OR_Deleted:
1456 ICS.setUserDefined();
1457 // C++ [over.ics.user]p4:
1458 // A conversion of an expression of class type to the same class
1459 // type is given Exact Match rank, and a conversion of an
1460 // expression of class type to a base class of that type is
1461 // given Conversion rank, in spite of the fact that a copy
1462 // constructor (i.e., a user-defined conversion function) is
1463 // called for those cases.
1464 if (CXXConstructorDecl *Constructor
1465 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1466 QualType FromCanon
1467 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1468 QualType ToCanon
1469 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1470 if (Constructor->isCopyConstructor() &&
1471 (FromCanon == ToCanon ||
1472 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1473 // Turn this into a "standard" conversion sequence, so that it
1474 // gets ranked with standard conversion sequences.
1475 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1476 ICS.setStandard();
1477 ICS.Standard.setAsIdentityConversion();
1478 ICS.Standard.setFromType(From->getType());
1479 ICS.Standard.setAllToTypes(ToType);
1480 ICS.Standard.CopyConstructor = Constructor;
1481 ICS.Standard.FoundCopyConstructor = Found;
1482 if (ToCanon != FromCanon)
1483 ICS.Standard.Second = ICK_Derived_To_Base;
1484 }
1485 }
1486 break;
1487
1488 case OR_Ambiguous:
1489 ICS.setAmbiguous();
1490 ICS.Ambiguous.setFromType(From->getType());
1491 ICS.Ambiguous.setToType(ToType);
1492 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1493 Cand != Conversions.end(); ++Cand)
1494 if (Cand->Best)
1495 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1496 break;
1497
1498 // Fall through.
1499 case OR_No_Viable_Function:
1500 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1501 break;
1502 }
1503
1504 return ICS;
1505}
1506
1507/// TryImplicitConversion - Attempt to perform an implicit conversion
1508/// from the given expression (Expr) to the given type (ToType). This
1509/// function returns an implicit conversion sequence that can be used
1510/// to perform the initialization. Given
1511///
1512/// void f(float f);
1513/// void g(int i) { f(i); }
1514///
1515/// this routine would produce an implicit conversion sequence to
1516/// describe the initialization of f from i, which will be a standard
1517/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1518/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1519//
1520/// Note that this routine only determines how the conversion can be
1521/// performed; it does not actually perform the conversion. As such,
1522/// it will not produce any diagnostics if no conversion is available,
1523/// but will instead return an implicit conversion sequence of kind
1524/// "BadConversion".
1525///
1526/// If @p SuppressUserConversions, then user-defined conversions are
1527/// not permitted.
1528/// If @p AllowExplicit, then explicit user-defined conversions are
1529/// permitted.
1530///
1531/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1532/// writeback conversion, which allows __autoreleasing id* parameters to
1533/// be initialized with __strong id* or __weak id* arguments.
1534static ImplicitConversionSequence
1535TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1536 bool SuppressUserConversions,
1537 AllowedExplicit AllowExplicit,
1538 bool InOverloadResolution,
1539 bool CStyle,
1540 bool AllowObjCWritebackConversion,
1541 bool AllowObjCConversionOnExplicit) {
1542 ImplicitConversionSequence ICS;
1543 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1544 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1545 ICS.setStandard();
1546 return ICS;
1547 }
1548
1549 if (!S.getLangOpts().CPlusPlus) {
1550 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1551 return ICS;
1552 }
1553
1554 // C++ [over.ics.user]p4:
1555 // A conversion of an expression of class type to the same class
1556 // type is given Exact Match rank, and a conversion of an
1557 // expression of class type to a base class of that type is
1558 // given Conversion rank, in spite of the fact that a copy/move
1559 // constructor (i.e., a user-defined conversion function) is
1560 // called for those cases.
1561 QualType FromType = From->getType();
1562 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1563 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1564 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1565 ICS.setStandard();
1566 ICS.Standard.setAsIdentityConversion();
1567 ICS.Standard.setFromType(FromType);
1568 ICS.Standard.setAllToTypes(ToType);
1569
1570 // We don't actually check at this point whether there is a valid
1571 // copy/move constructor, since overloading just assumes that it
1572 // exists. When we actually perform initialization, we'll find the
1573 // appropriate constructor to copy the returned object, if needed.
1574 ICS.Standard.CopyConstructor = nullptr;
1575
1576 // Determine whether this is considered a derived-to-base conversion.
1577 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1578 ICS.Standard.Second = ICK_Derived_To_Base;
1579
1580 return ICS;
1581 }
1582
1583 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1584 AllowExplicit, InOverloadResolution, CStyle,
1585 AllowObjCWritebackConversion,
1586 AllowObjCConversionOnExplicit);
1587}
1588
1589ImplicitConversionSequence
1590Sema::TryImplicitConversion(Expr *From, QualType ToType,
1591 bool SuppressUserConversions,
1592 AllowedExplicit AllowExplicit,
1593 bool InOverloadResolution,
1594 bool CStyle,
1595 bool AllowObjCWritebackConversion) {
1596 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1597 AllowExplicit, InOverloadResolution, CStyle,
1598 AllowObjCWritebackConversion,
1599 /*AllowObjCConversionOnExplicit=*/false);
1600}
1601
1602/// PerformImplicitConversion - Perform an implicit conversion of the
1603/// expression From to the type ToType. Returns the
1604/// converted expression. Flavor is the kind of conversion we're
1605/// performing, used in the error message. If @p AllowExplicit,
1606/// explicit user-defined conversions are permitted.
1607ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1608 AssignmentAction Action,
1609 bool AllowExplicit) {
1610 if (checkPlaceholderForOverload(*this, From))
1611 return ExprError();
1612
1613 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1614 bool AllowObjCWritebackConversion
1615 = getLangOpts().ObjCAutoRefCount &&
1616 (Action == AA_Passing || Action == AA_Sending);
1617 if (getLangOpts().ObjC)
1618 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1619 From->getType(), From);
1620 ImplicitConversionSequence ICS = ::TryImplicitConversion(
1621 *this, From, ToType,
1622 /*SuppressUserConversions=*/false,
1623 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1624 /*InOverloadResolution=*/false,
1625 /*CStyle=*/false, AllowObjCWritebackConversion,
1626 /*AllowObjCConversionOnExplicit=*/false);
1627 return PerformImplicitConversion(From, ToType, ICS, Action);
1628}
1629
1630/// Determine whether the conversion from FromType to ToType is a valid
1631/// conversion that strips "noexcept" or "noreturn" off the nested function
1632/// type.
1633bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1634 QualType &ResultTy) {
1635 if (Context.hasSameUnqualifiedType(FromType, ToType))
1636 return false;
1637
1638 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1639 // or F(t noexcept) -> F(t)
1640 // where F adds one of the following at most once:
1641 // - a pointer
1642 // - a member pointer
1643 // - a block pointer
1644 // Changes here need matching changes in FindCompositePointerType.
1645 CanQualType CanTo = Context.getCanonicalType(ToType);
1646 CanQualType CanFrom = Context.getCanonicalType(FromType);
1647 Type::TypeClass TyClass = CanTo->getTypeClass();
1648 if (TyClass != CanFrom->getTypeClass()) return false;
1649 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1650 if (TyClass == Type::Pointer) {
1651 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1652 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1653 } else if (TyClass == Type::BlockPointer) {
1654 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1655 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1656 } else if (TyClass == Type::MemberPointer) {
1657 auto ToMPT = CanTo.castAs<MemberPointerType>();
1658 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1659 // A function pointer conversion cannot change the class of the function.
1660 if (ToMPT->getClass() != FromMPT->getClass())
1661 return false;
1662 CanTo = ToMPT->getPointeeType();
1663 CanFrom = FromMPT->getPointeeType();
1664 } else {
1665 return false;
1666 }
1667
1668 TyClass = CanTo->getTypeClass();
1669 if (TyClass != CanFrom->getTypeClass()) return false;
1670 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1671 return false;
1672 }
1673
1674 const auto *FromFn = cast<FunctionType>(CanFrom);
1675 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1676
1677 const auto *ToFn = cast<FunctionType>(CanTo);
1678 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1679
1680 bool Changed = false;
1681
1682 // Drop 'noreturn' if not present in target type.
1683 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1684 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1685 Changed = true;
1686 }
1687
1688 // Drop 'noexcept' if not present in target type.
1689 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1690 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1691 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1692 FromFn = cast<FunctionType>(
1693 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1694 EST_None)
1695 .getTypePtr());
1696 Changed = true;
1697 }
1698
1699 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1700 // only if the ExtParameterInfo lists of the two function prototypes can be
1701 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1702 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1703 bool CanUseToFPT, CanUseFromFPT;
1704 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1705 CanUseFromFPT, NewParamInfos) &&
1706 CanUseToFPT && !CanUseFromFPT) {
1707 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1708 ExtInfo.ExtParameterInfos =
1709 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1710 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1711 FromFPT->getParamTypes(), ExtInfo);
1712 FromFn = QT->getAs<FunctionType>();
1713 Changed = true;
1714 }
1715 }
1716
1717 if (!Changed)
1718 return false;
1719
1720 assert(QualType(FromFn, 0).isCanonical())(static_cast <bool> (QualType(FromFn, 0).isCanonical())
? void (0) : __assert_fail ("QualType(FromFn, 0).isCanonical()"
, "clang/lib/Sema/SemaOverload.cpp", 1720, __extension__ __PRETTY_FUNCTION__
))
;
1721 if (QualType(FromFn, 0) != CanTo) return false;
1722
1723 ResultTy = ToType;
1724 return true;
1725}
1726
1727/// Determine whether the conversion from FromType to ToType is a valid
1728/// vector conversion.
1729///
1730/// \param ICK Will be set to the vector conversion kind, if this is a vector
1731/// conversion.
1732static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType,
1733 ImplicitConversionKind &ICK, Expr *From,
1734 bool InOverloadResolution) {
1735 // We need at least one of these types to be a vector type to have a vector
1736 // conversion.
1737 if (!ToType->isVectorType() && !FromType->isVectorType())
1738 return false;
1739
1740 // Identical types require no conversions.
1741 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1742 return false;
1743
1744 // There are no conversions between extended vector types, only identity.
1745 if (ToType->isExtVectorType()) {
1746 // There are no conversions between extended vector types other than the
1747 // identity conversion.
1748 if (FromType->isExtVectorType())
1749 return false;
1750
1751 // Vector splat from any arithmetic type to a vector.
1752 if (FromType->isArithmeticType()) {
1753 ICK = ICK_Vector_Splat;
1754 return true;
1755 }
1756 }
1757
1758 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1759 if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1760 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1761 ICK = ICK_SVE_Vector_Conversion;
1762 return true;
1763 }
1764
1765 // We can perform the conversion between vector types in the following cases:
1766 // 1)vector types are equivalent AltiVec and GCC vector types
1767 // 2)lax vector conversions are permitted and the vector types are of the
1768 // same size
1769 // 3)the destination type does not have the ARM MVE strict-polymorphism
1770 // attribute, which inhibits lax vector conversion for overload resolution
1771 // only
1772 if (ToType->isVectorType() && FromType->isVectorType()) {
1773 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1774 (S.isLaxVectorConversion(FromType, ToType) &&
1775 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1776 if (S.isLaxVectorConversion(FromType, ToType) &&
1777 S.anyAltivecTypes(FromType, ToType) &&
1778 !S.areSameVectorElemTypes(FromType, ToType) &&
1779 !InOverloadResolution) {
1780 S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all)
1781 << FromType << ToType;
1782 }
1783 ICK = ICK_Vector_Conversion;
1784 return true;
1785 }
1786 }
1787
1788 return false;
1789}
1790
1791static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1792 bool InOverloadResolution,
1793 StandardConversionSequence &SCS,
1794 bool CStyle);
1795
1796/// IsStandardConversion - Determines whether there is a standard
1797/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1798/// expression From to the type ToType. Standard conversion sequences
1799/// only consider non-class types; for conversions that involve class
1800/// types, use TryImplicitConversion. If a conversion exists, SCS will
1801/// contain the standard conversion sequence required to perform this
1802/// conversion and this routine will return true. Otherwise, this
1803/// routine will return false and the value of SCS is unspecified.
1804static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1805 bool InOverloadResolution,
1806 StandardConversionSequence &SCS,
1807 bool CStyle,
1808 bool AllowObjCWritebackConversion) {
1809 QualType FromType = From->getType();
1810
1811 // Standard conversions (C++ [conv])
1812 SCS.setAsIdentityConversion();
1813 SCS.IncompatibleObjC = false;
1814 SCS.setFromType(FromType);
1815 SCS.CopyConstructor = nullptr;
1816
1817 // There are no standard conversions for class types in C++, so
1818 // abort early. When overloading in C, however, we do permit them.
1819 if (S.getLangOpts().CPlusPlus &&
1820 (FromType->isRecordType() || ToType->isRecordType()))
1821 return false;
1822
1823 // The first conversion can be an lvalue-to-rvalue conversion,
1824 // array-to-pointer conversion, or function-to-pointer conversion
1825 // (C++ 4p1).
1826
1827 if (FromType == S.Context.OverloadTy) {
1828 DeclAccessPair AccessPair;
1829 if (FunctionDecl *Fn
1830 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1831 AccessPair)) {
1832 // We were able to resolve the address of the overloaded function,
1833 // so we can convert to the type of that function.
1834 FromType = Fn->getType();
1835 SCS.setFromType(FromType);
1836
1837 // we can sometimes resolve &foo<int> regardless of ToType, so check
1838 // if the type matches (identity) or we are converting to bool
1839 if (!S.Context.hasSameUnqualifiedType(
1840 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1841 QualType resultTy;
1842 // if the function type matches except for [[noreturn]], it's ok
1843 if (!S.IsFunctionConversion(FromType,
1844 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1845 // otherwise, only a boolean conversion is standard
1846 if (!ToType->isBooleanType())
1847 return false;
1848 }
1849
1850 // Check if the "from" expression is taking the address of an overloaded
1851 // function and recompute the FromType accordingly. Take advantage of the
1852 // fact that non-static member functions *must* have such an address-of
1853 // expression.
1854 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1855 if (Method && !Method->isStatic()) {
1856 assert(isa<UnaryOperator>(From->IgnoreParens()) &&(static_cast <bool> (isa<UnaryOperator>(From->
IgnoreParens()) && "Non-unary operator on non-static member address"
) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "clang/lib/Sema/SemaOverload.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
1857 "Non-unary operator on non-static member address")(static_cast <bool> (isa<UnaryOperator>(From->
IgnoreParens()) && "Non-unary operator on non-static member address"
) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "clang/lib/Sema/SemaOverload.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
;
1858 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__
))
1859 == UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__
))
1860 "Non-address-of operator on non-static member address")(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "clang/lib/Sema/SemaOverload.cpp", 1860, __extension__ __PRETTY_FUNCTION__
))
;
1861 const Type *ClassType
1862 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1863 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1864 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1865 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "clang/lib/Sema/SemaOverload.cpp", 1867, __extension__ __PRETTY_FUNCTION__
))
1866 UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "clang/lib/Sema/SemaOverload.cpp", 1867, __extension__ __PRETTY_FUNCTION__
))
1867 "Non-address-of operator for overloaded function expression")(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "clang/lib/Sema/SemaOverload.cpp", 1867, __extension__ __PRETTY_FUNCTION__
))
;
1868 FromType = S.Context.getPointerType(FromType);
1869 }
1870 } else {
1871 return false;
1872 }
1873 }
1874 // Lvalue-to-rvalue conversion (C++11 4.1):
1875 // A glvalue (3.10) of a non-function, non-array type T can
1876 // be converted to a prvalue.
1877 bool argIsLValue = From->isGLValue();
1878 if (argIsLValue &&
1879 !FromType->isFunctionType() && !FromType->isArrayType() &&
1880 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1881 SCS.First = ICK_Lvalue_To_Rvalue;
1882
1883 // C11 6.3.2.1p2:
1884 // ... if the lvalue has atomic type, the value has the non-atomic version
1885 // of the type of the lvalue ...
1886 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1887 FromType = Atomic->getValueType();
1888
1889 // If T is a non-class type, the type of the rvalue is the
1890 // cv-unqualified version of T. Otherwise, the type of the rvalue
1891 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1892 // just strip the qualifiers because they don't matter.
1893 FromType = FromType.getUnqualifiedType();
1894 } else if (FromType->isArrayType()) {
1895 // Array-to-pointer conversion (C++ 4.2)
1896 SCS.First = ICK_Array_To_Pointer;
1897
1898 // An lvalue or rvalue of type "array of N T" or "array of unknown
1899 // bound of T" can be converted to an rvalue of type "pointer to
1900 // T" (C++ 4.2p1).
1901 FromType = S.Context.getArrayDecayedType(FromType);
1902
1903 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1904 // This conversion is deprecated in C++03 (D.4)
1905 SCS.DeprecatedStringLiteralToCharPtr = true;
1906
1907 // For the purpose of ranking in overload resolution
1908 // (13.3.3.1.1), this conversion is considered an
1909 // array-to-pointer conversion followed by a qualification
1910 // conversion (4.4). (C++ 4.2p2)
1911 SCS.Second = ICK_Identity;
1912 SCS.Third = ICK_Qualification;
1913 SCS.QualificationIncludesObjCLifetime = false;
1914 SCS.setAllToTypes(FromType);
1915 return true;
1916 }
1917 } else if (FromType->isFunctionType() && argIsLValue) {
1918 // Function-to-pointer conversion (C++ 4.3).
1919 SCS.First = ICK_Function_To_Pointer;
1920
1921 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1922 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1923 if (!S.checkAddressOfFunctionIsAvailable(FD))
1924 return false;
1925
1926 // An lvalue of function type T can be converted to an rvalue of
1927 // type "pointer to T." The result is a pointer to the
1928 // function. (C++ 4.3p1).
1929 FromType = S.Context.getPointerType(FromType);
1930 } else {
1931 // We don't require any conversions for the first step.
1932 SCS.First = ICK_Identity;
1933 }
1934 SCS.setToType(0, FromType);
1935
1936 // The second conversion can be an integral promotion, floating
1937 // point promotion, integral conversion, floating point conversion,
1938 // floating-integral conversion, pointer conversion,
1939 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1940 // For overloading in C, this can also be a "compatible-type"
1941 // conversion.
1942 bool IncompatibleObjC = false;
1943 ImplicitConversionKind SecondICK = ICK_Identity;
1944 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1945 // The unqualified versions of the types are the same: there's no
1946 // conversion to do.
1947 SCS.Second = ICK_Identity;
1948 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1949 // Integral promotion (C++ 4.5).
1950 SCS.Second = ICK_Integral_Promotion;
1951 FromType = ToType.getUnqualifiedType();
1952 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1953 // Floating point promotion (C++ 4.6).
1954 SCS.Second = ICK_Floating_Promotion;
1955 FromType = ToType.getUnqualifiedType();
1956 } else if (S.IsComplexPromotion(FromType, ToType)) {
1957 // Complex promotion (Clang extension)
1958 SCS.Second = ICK_Complex_Promotion;
1959 FromType = ToType.getUnqualifiedType();
1960 } else if (ToType->isBooleanType() &&
1961 (FromType->isArithmeticType() ||
1962 FromType->isAnyPointerType() ||
1963 FromType->isBlockPointerType() ||
1964 FromType->isMemberPointerType())) {
1965 // Boolean conversions (C++ 4.12).
1966 SCS.Second = ICK_Boolean_Conversion;
1967 FromType = S.Context.BoolTy;
1968 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1969 ToType->isIntegralType(S.Context)) {
1970 // Integral conversions (C++ 4.7).
1971 SCS.Second = ICK_Integral_Conversion;
1972 FromType = ToType.getUnqualifiedType();
1973 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1974 // Complex conversions (C99 6.3.1.6)
1975 SCS.Second = ICK_Complex_Conversion;
1976 FromType = ToType.getUnqualifiedType();
1977 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1978 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1979 // Complex-real conversions (C99 6.3.1.7)
1980 SCS.Second = ICK_Complex_Real;
1981 FromType = ToType.getUnqualifiedType();
1982 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1983 // FIXME: disable conversions between long double, __ibm128 and __float128
1984 // if their representation is different until there is back end support
1985 // We of course allow this conversion if long double is really double.
1986
1987 // Conversions between bfloat and other floats are not permitted.
1988 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1989 return false;
1990
1991 // Conversions between IEEE-quad and IBM-extended semantics are not
1992 // permitted.
1993 const llvm::fltSemantics &FromSem =
1994 S.Context.getFloatTypeSemantics(FromType);
1995 const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType);
1996 if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() &&
1997 &ToSem == &llvm::APFloat::IEEEquad()) ||
1998 (&FromSem == &llvm::APFloat::IEEEquad() &&
1999 &ToSem == &llvm::APFloat::PPCDoubleDouble()))
2000 return false;
2001
2002 // Floating point conversions (C++ 4.8).
2003 SCS.Second = ICK_Floating_Conversion;
2004 FromType = ToType.getUnqualifiedType();
2005 } else if ((FromType->isRealFloatingType() &&
2006 ToType->isIntegralType(S.Context)) ||
2007 (FromType->isIntegralOrUnscopedEnumerationType() &&
2008 ToType->isRealFloatingType())) {
2009 // Conversions between bfloat and int are not permitted.
2010 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
2011 return false;
2012
2013 // Floating-integral conversions (C++ 4.9).
2014 SCS.Second = ICK_Floating_Integral;
2015 FromType = ToType.getUnqualifiedType();
2016 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
2017 SCS.Second = ICK_Block_Pointer_Conversion;
2018 } else if (AllowObjCWritebackConversion &&
2019 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
2020 SCS.Second = ICK_Writeback_Conversion;
2021 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
2022 FromType, IncompatibleObjC)) {
2023 // Pointer conversions (C++ 4.10).
2024 SCS.Second = ICK_Pointer_Conversion;
2025 SCS.IncompatibleObjC = IncompatibleObjC;
2026 FromType = FromType.getUnqualifiedType();
2027 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
2028 InOverloadResolution, FromType)) {
2029 // Pointer to member conversions (4.11).
2030 SCS.Second = ICK_Pointer_Member;
2031 } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From,
2032 InOverloadResolution)) {
2033 SCS.Second = SecondICK;
2034 FromType = ToType.getUnqualifiedType();
2035 } else if (!S.getLangOpts().CPlusPlus &&
2036 S.Context.typesAreCompatible(ToType, FromType)) {
2037 // Compatible conversions (Clang extension for C function overloading)
2038 SCS.Second = ICK_Compatible_Conversion;
2039 FromType = ToType.getUnqualifiedType();
2040 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
2041 InOverloadResolution,
2042 SCS, CStyle)) {
2043 SCS.Second = ICK_TransparentUnionConversion;
2044 FromType = ToType;
2045 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
2046 CStyle)) {
2047 // tryAtomicConversion has updated the standard conversion sequence
2048 // appropriately.
2049 return true;
2050 } else if (ToType->isEventT() &&
2051 From->isIntegerConstantExpr(S.getASTContext()) &&
2052 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
2053 SCS.Second = ICK_Zero_Event_Conversion;
2054 FromType = ToType;
2055 } else if (ToType->isQueueT() &&
2056 From->isIntegerConstantExpr(S.getASTContext()) &&
2057 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
2058 SCS.Second = ICK_Zero_Queue_Conversion;
2059 FromType = ToType;
2060 } else if (ToType->isSamplerT() &&
2061 From->isIntegerConstantExpr(S.getASTContext())) {
2062 SCS.Second = ICK_Compatible_Conversion;
2063 FromType = ToType;
2064 } else {
2065 // No second conversion required.
2066 SCS.Second = ICK_Identity;
2067 }
2068 SCS.setToType(1, FromType);
2069
2070 // The third conversion can be a function pointer conversion or a
2071 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
2072 bool ObjCLifetimeConversion;
2073 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
2074 // Function pointer conversions (removing 'noexcept') including removal of
2075 // 'noreturn' (Clang extension).
2076 SCS.Third = ICK_Function_Conversion;
2077 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
2078 ObjCLifetimeConversion)) {
2079 SCS.Third = ICK_Qualification;
2080 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
2081 FromType = ToType;
2082 } else {
2083 // No conversion required
2084 SCS.Third = ICK_Identity;
2085 }
2086
2087 // C++ [over.best.ics]p6:
2088 // [...] Any difference in top-level cv-qualification is
2089 // subsumed by the initialization itself and does not constitute
2090 // a conversion. [...]
2091 QualType CanonFrom = S.Context.getCanonicalType(FromType);
2092 QualType CanonTo = S.Context.getCanonicalType(ToType);
2093 if (CanonFrom.getLocalUnqualifiedType()
2094 == CanonTo.getLocalUnqualifiedType() &&
2095 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
2096 FromType = ToType;
2097 CanonFrom = CanonTo;
2098 }
2099
2100 SCS.setToType(2, FromType);
2101
2102 if (CanonFrom == CanonTo)
2103 return true;
2104
2105 // If we have not converted the argument type to the parameter type,
2106 // this is a bad conversion sequence, unless we're resolving an overload in C.
2107 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
2108 return false;
2109
2110 ExprResult ER = ExprResult{From};
2111 Sema::AssignConvertType Conv =
2112 S.CheckSingleAssignmentConstraints(ToType, ER,
2113 /*Diagnose=*/false,
2114 /*DiagnoseCFAudited=*/false,
2115 /*ConvertRHS=*/false);
2116 ImplicitConversionKind SecondConv;
2117 switch (Conv) {
2118 case Sema::Compatible:
2119 SecondConv = ICK_C_Only_Conversion;
2120 break;
2121 // For our purposes, discarding qualifiers is just as bad as using an
2122 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2123 // qualifiers, as well.
2124 case Sema::CompatiblePointerDiscardsQualifiers:
2125 case Sema::IncompatiblePointer:
2126 case Sema::IncompatiblePointerSign:
2127 SecondConv = ICK_Incompatible_Pointer_Conversion;
2128 break;
2129 default:
2130 return false;
2131 }
2132
2133 // First can only be an lvalue conversion, so we pretend that this was the
2134 // second conversion. First should already be valid from earlier in the
2135 // function.
2136 SCS.Second = SecondConv;
2137 SCS.setToType(1, ToType);
2138
2139 // Third is Identity, because Second should rank us worse than any other
2140 // conversion. This could also be ICK_Qualification, but it's simpler to just
2141 // lump everything in with the second conversion, and we don't gain anything
2142 // from making this ICK_Qualification.
2143 SCS.Third = ICK_Identity;
2144 SCS.setToType(2, ToType);
2145 return true;
2146}
2147
2148static bool
2149IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2150 QualType &ToType,
2151 bool InOverloadResolution,
2152 StandardConversionSequence &SCS,
2153 bool CStyle) {
2154
2155 const RecordType *UT = ToType->getAsUnionType();
2156 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2157 return false;
2158 // The field to initialize within the transparent union.
2159 RecordDecl *UD = UT->getDecl();
2160 // It's compatible if the expression matches any of the fields.
2161 for (const auto *it : UD->fields()) {
2162 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2163 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2164 ToType = it->getType();
2165 return true;
2166 }
2167 }
2168 return false;
2169}
2170
2171/// IsIntegralPromotion - Determines whether the conversion from the
2172/// expression From (whose potentially-adjusted type is FromType) to
2173/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2174/// sets PromotedType to the promoted type.
2175bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2176 const BuiltinType *To = ToType->getAs<BuiltinType>();
2177 // All integers are built-in.
2178 if (!To) {
2179 return false;
2180 }
2181
2182 // An rvalue of type char, signed char, unsigned char, short int, or
2183 // unsigned short int can be converted to an rvalue of type int if
2184 // int can represent all the values of the source type; otherwise,
2185 // the source rvalue can be converted to an rvalue of type unsigned
2186 // int (C++ 4.5p1).
2187 if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() &&
2188 !FromType->isEnumeralType()) {
2189 if ( // We can promote any signed, promotable integer type to an int
2190 (FromType->isSignedIntegerType() ||
2191 // We can promote any unsigned integer type whose size is
2192 // less than int to an int.
2193 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2194 return To->getKind() == BuiltinType::Int;
2195 }
2196
2197 return To->getKind() == BuiltinType::UInt;
2198 }
2199
2200 // C++11 [conv.prom]p3:
2201 // A prvalue of an unscoped enumeration type whose underlying type is not
2202 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2203 // following types that can represent all the values of the enumeration
2204 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2205 // unsigned int, long int, unsigned long int, long long int, or unsigned
2206 // long long int. If none of the types in that list can represent all the
2207 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2208 // type can be converted to an rvalue a prvalue of the extended integer type
2209 // with lowest integer conversion rank (4.13) greater than the rank of long
2210 // long in which all the values of the enumeration can be represented. If
2211 // there are two such extended types, the signed one is chosen.
2212 // C++11 [conv.prom]p4:
2213 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2214 // can be converted to a prvalue of its underlying type. Moreover, if
2215 // integral promotion can be applied to its underlying type, a prvalue of an
2216 // unscoped enumeration type whose underlying type is fixed can also be
2217 // converted to a prvalue of the promoted underlying type.
2218 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2219 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2220 // provided for a scoped enumeration.
2221 if (FromEnumType->getDecl()->isScoped())
2222 return false;
2223
2224 // We can perform an integral promotion to the underlying type of the enum,
2225 // even if that's not the promoted type. Note that the check for promoting
2226 // the underlying type is based on the type alone, and does not consider
2227 // the bitfield-ness of the actual source expression.
2228 if (FromEnumType->getDecl()->isFixed()) {
2229 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2230 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2231 IsIntegralPromotion(nullptr, Underlying, ToType);
2232 }
2233
2234 // We have already pre-calculated the promotion type, so this is trivial.
2235 if (ToType->isIntegerType() &&
2236 isCompleteType(From->getBeginLoc(), FromType))
2237 return Context.hasSameUnqualifiedType(
2238 ToType, FromEnumType->getDecl()->getPromotionType());
2239
2240 // C++ [conv.prom]p5:
2241 // If the bit-field has an enumerated type, it is treated as any other
2242 // value of that type for promotion purposes.
2243 //
2244 // ... so do not fall through into the bit-field checks below in C++.
2245 if (getLangOpts().CPlusPlus)
2246 return false;
2247 }
2248
2249 // C++0x [conv.prom]p2:
2250 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2251 // to an rvalue a prvalue of the first of the following types that can
2252 // represent all the values of its underlying type: int, unsigned int,
2253 // long int, unsigned long int, long long int, or unsigned long long int.
2254 // If none of the types in that list can represent all the values of its
2255 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2256 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2257 // type.
2258 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2259 ToType->isIntegerType()) {
2260 // Determine whether the type we're converting from is signed or
2261 // unsigned.
2262 bool FromIsSigned = FromType->isSignedIntegerType();
2263 uint64_t FromSize = Context.getTypeSize(FromType);
2264
2265 // The types we'll try to promote to, in the appropriate
2266 // order. Try each of these types.
2267 QualType PromoteTypes[6] = {
2268 Context.IntTy, Context.UnsignedIntTy,
2269 Context.LongTy, Context.UnsignedLongTy ,
2270 Context.LongLongTy, Context.UnsignedLongLongTy
2271 };
2272 for (int Idx = 0; Idx < 6; ++Idx) {
2273 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2274 if (FromSize < ToSize ||
2275 (FromSize == ToSize &&
2276 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2277 // We found the type that we can promote to. If this is the
2278 // type we wanted, we have a promotion. Otherwise, no
2279 // promotion.
2280 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2281 }
2282 }
2283 }
2284
2285 // An rvalue for an integral bit-field (9.6) can be converted to an
2286 // rvalue of type int if int can represent all the values of the
2287 // bit-field; otherwise, it can be converted to unsigned int if
2288 // unsigned int can represent all the values of the bit-field. If
2289 // the bit-field is larger yet, no integral promotion applies to
2290 // it. If the bit-field has an enumerated type, it is treated as any
2291 // other value of that type for promotion purposes (C++ 4.5p3).
2292 // FIXME: We should delay checking of bit-fields until we actually perform the
2293 // conversion.
2294 //
2295 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2296 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2297 // bit-fields and those whose underlying type is larger than int) for GCC
2298 // compatibility.
2299 if (From) {
2300 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2301 Optional<llvm::APSInt> BitWidth;
2302 if (FromType->isIntegralType(Context) &&
2303 (BitWidth =
2304 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2305 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2306 ToSize = Context.getTypeSize(ToType);
2307
2308 // Are we promoting to an int from a bitfield that fits in an int?
2309 if (*BitWidth < ToSize ||
2310 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2311 return To->getKind() == BuiltinType::Int;
2312 }
2313
2314 // Are we promoting to an unsigned int from an unsigned bitfield
2315 // that fits into an unsigned int?
2316 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2317 return To->getKind() == BuiltinType::UInt;
2318 }
2319
2320 return false;
2321 }
2322 }
2323 }
2324
2325 // An rvalue of type bool can be converted to an rvalue of type int,
2326 // with false becoming zero and true becoming one (C++ 4.5p4).
2327 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2328 return true;
2329 }
2330
2331 return false;
2332}
2333
2334/// IsFloatingPointPromotion - Determines whether the conversion from
2335/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2336/// returns true and sets PromotedType to the promoted type.
2337bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2338 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2339 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2340 /// An rvalue of type float can be converted to an rvalue of type
2341 /// double. (C++ 4.6p1).
2342 if (FromBuiltin->getKind() == BuiltinType::Float &&
2343 ToBuiltin->getKind() == BuiltinType::Double)
2344 return true;
2345
2346 // C99 6.3.1.5p1:
2347 // When a float is promoted to double or long double, or a
2348 // double is promoted to long double [...].
2349 if (!getLangOpts().CPlusPlus &&
2350 (FromBuiltin->getKind() == BuiltinType::Float ||
2351 FromBuiltin->getKind() == BuiltinType::Double) &&
2352 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2353 ToBuiltin->getKind() == BuiltinType::Float128 ||
2354 ToBuiltin->getKind() == BuiltinType::Ibm128))
2355 return true;
2356
2357 // Half can be promoted to float.
2358 if (!getLangOpts().NativeHalfType &&
2359 FromBuiltin->getKind() == BuiltinType::Half &&
2360 ToBuiltin->getKind() == BuiltinType::Float)
2361 return true;
2362 }
2363
2364 return false;
2365}
2366
2367/// Determine if a conversion is a complex promotion.
2368///
2369/// A complex promotion is defined as a complex -> complex conversion
2370/// where the conversion between the underlying real types is a
2371/// floating-point or integral promotion.
2372bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2373 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2374 if (!FromComplex)
2375 return false;
2376
2377 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2378 if (!ToComplex)
2379 return false;
2380
2381 return IsFloatingPointPromotion(FromComplex->getElementType(),
2382 ToComplex->getElementType()) ||
2383 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2384 ToComplex->getElementType());
2385}
2386
2387/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2388/// the pointer type FromPtr to a pointer to type ToPointee, with the
2389/// same type qualifiers as FromPtr has on its pointee type. ToType,
2390/// if non-empty, will be a pointer to ToType that may or may not have
2391/// the right set of qualifiers on its pointee.
2392///
2393static QualType
2394BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2395 QualType ToPointee, QualType ToType,
2396 ASTContext &Context,
2397 bool StripObjCLifetime = false) {
2398 assert((FromPtr->getTypeClass() == Type::Pointer ||(static_cast <bool> ((FromPtr->getTypeClass() == Type
::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer
) && "Invalid similarly-qualified pointer type") ? void
(0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "clang/lib/Sema/SemaOverload.cpp", 2400, __extension__ __PRETTY_FUNCTION__
))
2399 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(static_cast <bool> ((FromPtr->getTypeClass() == Type
::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer
) && "Invalid similarly-qualified pointer type") ? void
(0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "clang/lib/Sema/SemaOverload.cpp", 2400, __extension__ __PRETTY_FUNCTION__
))
2400 "Invalid similarly-qualified pointer type")(static_cast <bool> ((FromPtr->getTypeClass() == Type
::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer
) && "Invalid similarly-qualified pointer type") ? void
(0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "clang/lib/Sema/SemaOverload.cpp", 2400, __extension__ __PRETTY_FUNCTION__
))
;
2401
2402 /// Conversions to 'id' subsume cv-qualifier conversions.
2403 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2404 return ToType.getUnqualifiedType();
2405
2406 QualType CanonFromPointee
2407 = Context.getCanonicalType(FromPtr->getPointeeType());
2408 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2409 Qualifiers Quals = CanonFromPointee.getQualifiers();
2410
2411 if (StripObjCLifetime)
2412 Quals.removeObjCLifetime();
2413
2414 // Exact qualifier match -> return the pointer type we're converting to.
2415 if (CanonToPointee.getLocalQualifiers() == Quals) {
2416 // ToType is exactly what we need. Return it.
2417 if (!ToType.isNull())
2418 return ToType.getUnqualifiedType();
2419
2420 // Build a pointer to ToPointee. It has the right qualifiers
2421 // already.
2422 if (isa<ObjCObjectPointerType>(ToType))
2423 return Context.getObjCObjectPointerType(ToPointee);
2424 return Context.getPointerType(ToPointee);
2425 }
2426
2427 // Just build a canonical type that has the right qualifiers.
2428 QualType QualifiedCanonToPointee
2429 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2430
2431 if (isa<ObjCObjectPointerType>(ToType))
2432 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2433 return Context.getPointerType(QualifiedCanonToPointee);
2434}
2435
2436static bool isNullPointerConstantForConversion(Expr *Expr,
2437 bool InOverloadResolution,
2438 ASTContext &Context) {
2439 // Handle value-dependent integral null pointer constants correctly.
2440 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2441 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2442 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2443 return !InOverloadResolution;
2444
2445 return Expr->isNullPointerConstant(Context,
2446 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2447 : Expr::NPC_ValueDependentIsNull);
2448}
2449
2450/// IsPointerConversion - Determines whether the conversion of the
2451/// expression From, which has the (possibly adjusted) type FromType,
2452/// can be converted to the type ToType via a pointer conversion (C++
2453/// 4.10). If so, returns true and places the converted type (that
2454/// might differ from ToType in its cv-qualifiers at some level) into
2455/// ConvertedType.
2456///
2457/// This routine also supports conversions to and from block pointers
2458/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2459/// pointers to interfaces. FIXME: Once we've determined the
2460/// appropriate overloading rules for Objective-C, we may want to
2461/// split the Objective-C checks into a different routine; however,
2462/// GCC seems to consider all of these conversions to be pointer
2463/// conversions, so for now they live here. IncompatibleObjC will be
2464/// set if the conversion is an allowed Objective-C conversion that
2465/// should result in a warning.
2466bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2467 bool InOverloadResolution,
2468 QualType& ConvertedType,
2469 bool &IncompatibleObjC) {
2470 IncompatibleObjC = false;
2471 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2472 IncompatibleObjC))
2473 return true;
2474
2475 // Conversion from a null pointer constant to any Objective-C pointer type.
2476 if (ToType->isObjCObjectPointerType() &&
2477 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2478 ConvertedType = ToType;
2479 return true;
2480 }
2481
2482 // Blocks: Block pointers can be converted to void*.
2483 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2484 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2485 ConvertedType = ToType;
2486 return true;
2487 }
2488 // Blocks: A null pointer constant can be converted to a block
2489 // pointer type.
2490 if (ToType->isBlockPointerType() &&
2491 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2492 ConvertedType = ToType;
2493 return true;
2494 }
2495
2496 // If the left-hand-side is nullptr_t, the right side can be a null
2497 // pointer constant.
2498 if (ToType->isNullPtrType() &&
2499 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2500 ConvertedType = ToType;
2501 return true;
2502 }
2503
2504 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2505 if (!ToTypePtr)
2506 return false;
2507
2508 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2509 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2510 ConvertedType = ToType;
2511 return true;
2512 }
2513
2514 // Beyond this point, both types need to be pointers
2515 // , including objective-c pointers.
2516 QualType ToPointeeType = ToTypePtr->getPointeeType();
2517 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2518 !getLangOpts().ObjCAutoRefCount) {
2519 ConvertedType = BuildSimilarlyQualifiedPointerType(
2520 FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType,
2521 Context);
2522 return true;
2523 }
2524 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2525 if (!FromTypePtr)
2526 return false;
2527
2528 QualType FromPointeeType = FromTypePtr->getPointeeType();
2529
2530 // If the unqualified pointee types are the same, this can't be a
2531 // pointer conversion, so don't do all of the work below.
2532 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2533 return false;
2534
2535 // An rvalue of type "pointer to cv T," where T is an object type,
2536 // can be converted to an rvalue of type "pointer to cv void" (C++
2537 // 4.10p2).
2538 if (FromPointeeType->isIncompleteOrObjectType() &&
2539 ToPointeeType->isVoidType()) {
2540 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2541 ToPointeeType,
2542 ToType, Context,
2543 /*StripObjCLifetime=*/true);
2544 return true;
2545 }
2546
2547 // MSVC allows implicit function to void* type conversion.
2548 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2549 ToPointeeType->isVoidType()) {
2550 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2551 ToPointeeType,
2552 ToType, Context);
2553 return true;
2554 }
2555
2556 // When we're overloading in C, we allow a special kind of pointer
2557 // conversion for compatible-but-not-identical pointee types.
2558 if (!getLangOpts().CPlusPlus &&
2559 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2560 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2561 ToPointeeType,
2562 ToType, Context);
2563 return true;
2564 }
2565
2566 // C++ [conv.ptr]p3:
2567 //
2568 // An rvalue of type "pointer to cv D," where D is a class type,
2569 // can be converted to an rvalue of type "pointer to cv B," where
2570 // B is a base class (clause 10) of D. If B is an inaccessible
2571 // (clause 11) or ambiguous (10.2) base class of D, a program that
2572 // necessitates this conversion is ill-formed. The result of the
2573 // conversion is a pointer to the base class sub-object of the
2574 // derived class object. The null pointer value is converted to
2575 // the null pointer value of the destination type.
2576 //
2577 // Note that we do not check for ambiguity or inaccessibility
2578 // here. That is handled by CheckPointerConversion.
2579 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2580 ToPointeeType->isRecordType() &&
2581 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2582 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2583 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2584 ToPointeeType,
2585 ToType, Context);
2586 return true;
2587 }
2588
2589 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2590 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2591 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2592 ToPointeeType,
2593 ToType, Context);
2594 return true;
2595 }
2596
2597 return false;
2598}
2599
2600/// Adopt the given qualifiers for the given type.
2601static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2602 Qualifiers TQs = T.getQualifiers();
2603
2604 // Check whether qualifiers already match.
2605 if (TQs == Qs)
2606 return T;
2607
2608 if (Qs.compatiblyIncludes(TQs))
2609 return Context.getQualifiedType(T, Qs);
2610
2611 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2612}
2613
2614/// isObjCPointerConversion - Determines whether this is an
2615/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2616/// with the same arguments and return values.
2617bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2618 QualType& ConvertedType,
2619 bool &IncompatibleObjC) {
2620 if (!getLangOpts().ObjC)
2621 return false;
2622
2623 // The set of qualifiers on the type we're converting from.
2624 Qualifiers FromQualifiers = FromType.getQualifiers();
2625
2626 // First, we handle all conversions on ObjC object pointer types.
2627 const ObjCObjectPointerType* ToObjCPtr =
2628 ToType->getAs<ObjCObjectPointerType>();
2629 const ObjCObjectPointerType *FromObjCPtr =
2630 FromType->getAs<ObjCObjectPointerType>();
2631
2632 if (ToObjCPtr && FromObjCPtr) {
2633 // If the pointee types are the same (ignoring qualifications),
2634 // then this is not a pointer conversion.
2635 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2636 FromObjCPtr->getPointeeType()))
2637 return false;
2638
2639 // Conversion between Objective-C pointers.
2640 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2641 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2642 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2643 if (getLangOpts().CPlusPlus && LHS && RHS &&
2644 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2645 FromObjCPtr->getPointeeType()))
2646 return false;
2647 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2648 ToObjCPtr->getPointeeType(),
2649 ToType, Context);
2650 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2651 return true;
2652 }
2653
2654 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2655 // Okay: this is some kind of implicit downcast of Objective-C
2656 // interfaces, which is permitted. However, we're going to
2657 // complain about it.
2658 IncompatibleObjC = true;
2659 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2660 ToObjCPtr->getPointeeType(),
2661 ToType, Context);
2662 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2663 return true;
2664 }
2665 }
2666 // Beyond this point, both types need to be C pointers or block pointers.
2667 QualType ToPointeeType;
2668 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2669 ToPointeeType = ToCPtr->getPointeeType();
2670 else if (const BlockPointerType *ToBlockPtr =
2671 ToType->getAs<BlockPointerType>()) {
2672 // Objective C++: We're able to convert from a pointer to any object
2673 // to a block pointer type.
2674 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2675 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2676 return true;
2677 }
2678 ToPointeeType = ToBlockPtr->getPointeeType();
2679 }
2680 else if (FromType->getAs<BlockPointerType>() &&
2681 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2682 // Objective C++: We're able to convert from a block pointer type to a
2683 // pointer to any object.
2684 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2685 return true;
2686 }
2687 else
2688 return false;
2689
2690 QualType FromPointeeType;
2691 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2692 FromPointeeType = FromCPtr->getPointeeType();
2693 else if (const BlockPointerType *FromBlockPtr =
2694 FromType->getAs<BlockPointerType>())
2695 FromPointeeType = FromBlockPtr->getPointeeType();
2696 else
2697 return false;
2698
2699 // If we have pointers to pointers, recursively check whether this
2700 // is an Objective-C conversion.
2701 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2702 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2703 IncompatibleObjC)) {
2704 // We always complain about this conversion.
2705 IncompatibleObjC = true;
2706 ConvertedType = Context.getPointerType(ConvertedType);
2707 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2708 return true;
2709 }
2710 // Allow conversion of pointee being objective-c pointer to another one;
2711 // as in I* to id.
2712 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2713 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2714 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2715 IncompatibleObjC)) {
2716
2717 ConvertedType = Context.getPointerType(ConvertedType);
2718 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2719 return true;
2720 }
2721
2722 // If we have pointers to functions or blocks, check whether the only
2723 // differences in the argument and result types are in Objective-C
2724 // pointer conversions. If so, we permit the conversion (but
2725 // complain about it).
2726 const FunctionProtoType *FromFunctionType
2727 = FromPointeeType->getAs<FunctionProtoType>();
2728 const FunctionProtoType *ToFunctionType
2729 = ToPointeeType->getAs<FunctionProtoType>();
2730 if (FromFunctionType && ToFunctionType) {
2731 // If the function types are exactly the same, this isn't an
2732 // Objective-C pointer conversion.
2733 if (Context.getCanonicalType(FromPointeeType)
2734 == Context.getCanonicalType(ToPointeeType))
2735 return false;
2736
2737 // Perform the quick checks that will tell us whether these
2738 // function types are obviously different.
2739 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2740 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2741 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2742 return false;
2743
2744 bool HasObjCConversion = false;
2745 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2746 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2747 // Okay, the types match exactly. Nothing to do.
2748 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2749 ToFunctionType->getReturnType(),
2750 ConvertedType, IncompatibleObjC)) {
2751 // Okay, we have an Objective-C pointer conversion.
2752 HasObjCConversion = true;
2753 } else {
2754 // Function types are too different. Abort.
2755 return false;
2756 }
2757
2758 // Check argument types.
2759 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2760 ArgIdx != NumArgs; ++ArgIdx) {
2761 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2762 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2763 if (Context.getCanonicalType(FromArgType)
2764 == Context.getCanonicalType(ToArgType)) {
2765 // Okay, the types match exactly. Nothing to do.
2766 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2767 ConvertedType, IncompatibleObjC)) {
2768 // Okay, we have an Objective-C pointer conversion.
2769 HasObjCConversion = true;
2770 } else {
2771 // Argument types are too different. Abort.
2772 return false;
2773 }
2774 }
2775
2776 if (HasObjCConversion) {
2777 // We had an Objective-C conversion. Allow this pointer
2778 // conversion, but complain about it.
2779 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2780 IncompatibleObjC = true;
2781 return true;
2782 }
2783 }
2784
2785 return false;
2786}
2787
2788/// Determine whether this is an Objective-C writeback conversion,
2789/// used for parameter passing when performing automatic reference counting.
2790///
2791/// \param FromType The type we're converting form.
2792///
2793/// \param ToType The type we're converting to.
2794///
2795/// \param ConvertedType The type that will be produced after applying
2796/// this conversion.
2797bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2798 QualType &ConvertedType) {
2799 if (!getLangOpts().ObjCAutoRefCount ||
2800 Context.hasSameUnqualifiedType(FromType, ToType))
2801 return false;
2802
2803 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2804 QualType ToPointee;
2805 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2806 ToPointee = ToPointer->getPointeeType();
2807 else
2808 return false;
2809
2810 Qualifiers ToQuals = ToPointee.getQualifiers();
2811 if (!ToPointee->isObjCLifetimeType() ||
2812 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2813 !ToQuals.withoutObjCLifetime().empty())
2814 return false;
2815
2816 // Argument must be a pointer to __strong to __weak.
2817 QualType FromPointee;
2818 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2819 FromPointee = FromPointer->getPointeeType();
2820 else
2821 return false;
2822
2823 Qualifiers FromQuals = FromPointee.getQualifiers();
2824 if (!FromPointee->isObjCLifetimeType() ||
2825 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2826 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2827 return false;
2828
2829 // Make sure that we have compatible qualifiers.
2830 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2831 if (!ToQuals.compatiblyIncludes(FromQuals))
2832 return false;
2833
2834 // Remove qualifiers from the pointee type we're converting from; they
2835 // aren't used in the compatibility check belong, and we'll be adding back
2836 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2837 FromPointee = FromPointee.getUnqualifiedType();
2838
2839 // The unqualified form of the pointee types must be compatible.
2840 ToPointee = ToPointee.getUnqualifiedType();
2841 bool IncompatibleObjC;
2842 if (Context.typesAreCompatible(FromPointee, ToPointee))
2843 FromPointee = ToPointee;
2844 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2845 IncompatibleObjC))
2846 return false;
2847
2848 /// Construct the type we're converting to, which is a pointer to
2849 /// __autoreleasing pointee.
2850 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2851 ConvertedType = Context.getPointerType(FromPointee);
2852 return true;
2853}
2854
2855bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2856 QualType& ConvertedType) {
2857 QualType ToPointeeType;
2858 if (const BlockPointerType *ToBlockPtr =
2859 ToType->getAs<BlockPointerType>())
2860 ToPointeeType = ToBlockPtr->getPointeeType();
2861 else
2862 return false;
2863
2864 QualType FromPointeeType;
2865 if (const BlockPointerType *FromBlockPtr =
2866 FromType->getAs<BlockPointerType>())
2867 FromPointeeType = FromBlockPtr->getPointeeType();
2868 else
2869 return false;
2870 // We have pointer to blocks, check whether the only
2871 // differences in the argument and result types are in Objective-C
2872 // pointer conversions. If so, we permit the conversion.
2873
2874 const FunctionProtoType *FromFunctionType
2875 = FromPointeeType->getAs<FunctionProtoType>();
2876 const FunctionProtoType *ToFunctionType
2877 = ToPointeeType->getAs<FunctionProtoType>();
2878
2879 if (!FromFunctionType || !ToFunctionType)
2880 return false;
2881
2882 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2883 return true;
2884
2885 // Perform the quick checks that will tell us whether these
2886 // function types are obviously different.
2887 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2888 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2889 return false;
2890
2891 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2892 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2893 if (FromEInfo != ToEInfo)
2894 return false;
2895
2896 bool IncompatibleObjC = false;
2897 if (Context.hasSameType(FromFunctionType->getReturnType(),
2898 ToFunctionType->getReturnType())) {
2899 // Okay, the types match exactly. Nothing to do.
2900 } else {
2901 QualType RHS = FromFunctionType->getReturnType();
2902 QualType LHS = ToFunctionType->getReturnType();
2903 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2904 !RHS.hasQualifiers() && LHS.hasQualifiers())
2905 LHS = LHS.getUnqualifiedType();
2906
2907 if (Context.hasSameType(RHS,LHS)) {
2908 // OK exact match.
2909 } else if (isObjCPointerConversion(RHS, LHS,
2910 ConvertedType, IncompatibleObjC)) {
2911 if (IncompatibleObjC)
2912 return false;
2913 // Okay, we have an Objective-C pointer conversion.
2914 }
2915 else
2916 return false;
2917 }
2918
2919 // Check argument types.
2920 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2921 ArgIdx != NumArgs; ++ArgIdx) {
2922 IncompatibleObjC = false;
2923 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2924 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2925 if (Context.hasSameType(FromArgType, ToArgType)) {
2926 // Okay, the types match exactly. Nothing to do.
2927 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2928 ConvertedType, IncompatibleObjC)) {
2929 if (IncompatibleObjC)
2930 return false;
2931 // Okay, we have an Objective-C pointer conversion.
2932 } else
2933 // Argument types are too different. Abort.
2934 return false;
2935 }
2936
2937 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2938 bool CanUseToFPT, CanUseFromFPT;
2939 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2940 CanUseToFPT, CanUseFromFPT,
2941 NewParamInfos))
2942 return false;
2943
2944 ConvertedType = ToType;
2945 return true;
2946}
2947
2948enum {
2949 ft_default,
2950 ft_different_class,
2951 ft_parameter_arity,
2952 ft_parameter_mismatch,
2953 ft_return_type,
2954 ft_qualifer_mismatch,
2955 ft_noexcept
2956};
2957
2958/// Attempts to get the FunctionProtoType from a Type. Handles
2959/// MemberFunctionPointers properly.
2960static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2961 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2962 return FPT;
2963
2964 if (auto *MPT = FromType->getAs<MemberPointerType>())
2965 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2966
2967 return nullptr;
2968}
2969
2970/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2971/// function types. Catches different number of parameter, mismatch in
2972/// parameter types, and different return types.
2973void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2974 QualType FromType, QualType ToType) {
2975 // If either type is not valid, include no extra info.
2976 if (FromType.isNull() || ToType.isNull()) {
2977 PDiag << ft_default;
2978 return;
2979 }
2980
2981 // Get the function type from the pointers.
2982 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2983 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2984 *ToMember = ToType->castAs<MemberPointerType>();
2985 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2986 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2987 << QualType(FromMember->getClass(), 0);
2988 return;
2989 }
2990 FromType = FromMember->getPointeeType();
2991 ToType = ToMember->getPointeeType();
2992 }
2993
2994 if (FromType->isPointerType())
2995 FromType = FromType->getPointeeType();
2996 if (ToType->isPointerType())
2997 ToType = ToType->getPointeeType();
2998
2999 // Remove references.
3000 FromType = FromType.getNonReferenceType();
3001 ToType = ToType.getNonReferenceType();
3002
3003 // Don't print extra info for non-specialized template functions.
3004 if (FromType->isInstantiationDependentType() &&
3005 !FromType->getAs<TemplateSpecializationType>()) {
3006 PDiag << ft_default;
3007 return;
3008 }
3009
3010 // No extra info for same types.
3011 if (Context.hasSameType(FromType, ToType)) {
3012 PDiag << ft_default;
3013 return;
3014 }
3015
3016 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
3017 *ToFunction = tryGetFunctionProtoType(ToType);
3018
3019 // Both types need to be function types.
3020 if (!FromFunction || !ToFunction) {
3021 PDiag << ft_default;
3022 return;
3023 }
3024
3025 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
3026 PDiag << ft_parameter_arity << ToFunction->getNumParams()
3027 << FromFunction->getNumParams();
3028 return;
3029 }
3030
3031 // Handle different parameter types.
3032 unsigned ArgPos;
3033 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
3034 PDiag << ft_parameter_mismatch << ArgPos + 1
3035 << ToFunction->getParamType(ArgPos)
3036 << FromFunction->getParamType(ArgPos);
3037 return;
3038 }
3039
3040 // Handle different return type.
3041 if (!Context.hasSameType(FromFunction->getReturnType(),
3042 ToFunction->getReturnType())) {
3043 PDiag << ft_return_type << ToFunction->getReturnType()
3044 << FromFunction->getReturnType();
3045 return;
3046 }
3047
3048 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
3049 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
3050 << FromFunction->getMethodQuals();
3051 return;
3052 }
3053
3054 // Handle exception specification differences on canonical type (in C++17
3055 // onwards).
3056 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
3057 ->isNothrow() !=
3058 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
3059 ->isNothrow()) {
3060 PDiag << ft_noexcept;
3061 return;
3062 }
3063
3064 // Unable to find a difference, so add no extra info.
3065 PDiag << ft_default;
3066}
3067
3068/// FunctionParamTypesAreEqual - This routine checks two function proto types
3069/// for equality of their parameter types. Caller has already checked that
3070/// they have same number of parameters. If the parameters are different,
3071/// ArgPos will have the parameter index of the first different parameter.
3072/// If `Reversed` is true, the parameters of `NewType` will be compared in
3073/// reverse order. That's useful if one of the functions is being used as a C++20
3074/// synthesized operator overload with a reversed parameter order.
3075bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3076 const FunctionProtoType *NewType,
3077 unsigned *ArgPos, bool Reversed) {
3078 assert(OldType->getNumParams() == NewType->getNumParams() &&(static_cast <bool> (OldType->getNumParams() == NewType
->getNumParams() && "Can't compare parameters of functions with different number of "
"parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\""
, "clang/lib/Sema/SemaOverload.cpp", 3080, __extension__ __PRETTY_FUNCTION__
))
3079 "Can't compare parameters of functions with different number of "(static_cast <bool> (OldType->getNumParams() == NewType
->getNumParams() && "Can't compare parameters of functions with different number of "
"parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\""
, "clang/lib/Sema/SemaOverload.cpp", 3080, __extension__ __PRETTY_FUNCTION__
))
3080 "parameters!")(static_cast <bool> (OldType->getNumParams() == NewType
->getNumParams() && "Can't compare parameters of functions with different number of "
"parameters!") ? void (0) : __assert_fail ("OldType->getNumParams() == NewType->getNumParams() && \"Can't compare parameters of functions with different number of \" \"parameters!\""
, "clang/lib/Sema/SemaOverload.cpp", 3080, __extension__ __PRETTY_FUNCTION__
))
;
3081 for (size_t I = 0; I < OldType->getNumParams(); I++) {
3082 // Reverse iterate over the parameters of `OldType` if `Reversed` is true.
3083 size_t J = Reversed ? (OldType->getNumParams() - I - 1) : I;
3084
3085 // Ignore address spaces in pointee type. This is to disallow overloading
3086 // on __ptr32/__ptr64 address spaces.
3087 QualType Old = Context.removePtrSizeAddrSpace(OldType->getParamType(I).getUnqualifiedType());
3088 QualType New = Context.removePtrSizeAddrSpace(NewType->getParamType(J).getUnqualifiedType());
3089
3090 if (!Context.hasSameType(Old, New)) {
3091 if (ArgPos)
3092 *ArgPos = I;
3093 return false;
3094 }
3095 }
3096 return true;
3097}
3098
3099/// CheckPointerConversion - Check the pointer conversion from the
3100/// expression From to the type ToType. This routine checks for
3101/// ambiguous or inaccessible derived-to-base pointer
3102/// conversions for which IsPointerConversion has already returned
3103/// true. It returns true and produces a diagnostic if there was an
3104/// error, or returns false otherwise.
3105bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
3106 CastKind &Kind,
3107 CXXCastPath& BasePath,
3108 bool IgnoreBaseAccess,
3109 bool Diagnose) {
3110 QualType FromType = From->getType();
3111 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
3112
3113 Kind = CK_BitCast;
3114
3115 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
3116 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
3117 Expr::NPCK_ZeroExpression) {
3118 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3119 DiagRuntimeBehavior(From->getExprLoc(), From,
3120 PDiag(diag::warn_impcast_bool_to_null_pointer)
3121 << ToType << From->getSourceRange());
3122 else if (!isUnevaluatedContext())
3123 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3124 << ToType << From->getSourceRange();
3125 }
3126 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3127 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3128 QualType FromPointeeType = FromPtrType->getPointeeType(),
3129 ToPointeeType = ToPtrType->getPointeeType();
3130
3131 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3132 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3133 // We must have a derived-to-base conversion. Check an
3134 // ambiguous or inaccessible conversion.
3135 unsigned InaccessibleID = 0;
3136 unsigned AmbiguousID = 0;
3137 if (Diagnose) {
3138 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3139 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3140 }
3141 if (CheckDerivedToBaseConversion(
3142 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3143 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3144 &BasePath, IgnoreBaseAccess))
3145 return true;
3146
3147 // The conversion was successful.
3148 Kind = CK_DerivedToBase;
3149 }
3150
3151 if (Diagnose && !IsCStyleOrFunctionalCast &&
3152 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3153 assert(getLangOpts().MSVCCompat &&(static_cast <bool> (getLangOpts().MSVCCompat &&
"this should only be possible with MSVCCompat!") ? void (0) :
__assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "clang/lib/Sema/SemaOverload.cpp", 3154, __extension__ __PRETTY_FUNCTION__
))
3154 "this should only be possible with MSVCCompat!")(static_cast <bool> (getLangOpts().MSVCCompat &&
"this should only be possible with MSVCCompat!") ? void (0) :
__assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "clang/lib/Sema/SemaOverload.cpp", 3154, __extension__ __PRETTY_FUNCTION__
))
;
3155 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3156 << From->getSourceRange();
3157 }
3158 }
3159 } else if (const ObjCObjectPointerType *ToPtrType =
3160 ToType->getAs<ObjCObjectPointerType>()) {
3161 if (const ObjCObjectPointerType *FromPtrType =
3162 FromType->getAs<ObjCObjectPointerType>()) {
3163 // Objective-C++ conversions are always okay.
3164 // FIXME: We should have a different class of conversions for the
3165 // Objective-C++ implicit conversions.
3166 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3167 return false;
3168 } else if (FromType->isBlockPointerType()) {
3169 Kind = CK_BlockPointerToObjCPointerCast;
3170 } else {
3171 Kind = CK_CPointerToObjCPointerCast;
3172 }
3173 } else if (ToType->isBlockPointerType()) {
3174 if (!FromType->isBlockPointerType())
3175 Kind = CK_AnyPointerToBlockPointerCast;
3176 }
3177
3178 // We shouldn't fall into this case unless it's valid for other
3179 // reasons.
3180 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3181 Kind = CK_NullToPointer;
3182
3183 return false;
3184}
3185
3186/// IsMemberPointerConversion - Determines whether the conversion of the
3187/// expression From, which has the (possibly adjusted) type FromType, can be
3188/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3189/// If so, returns true and places the converted type (that might differ from
3190/// ToType in its cv-qualifiers at some level) into ConvertedType.
3191bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3192 QualType ToType,
3193 bool InOverloadResolution,
3194 QualType &ConvertedType) {
3195 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3196 if (!ToTypePtr)
3197 return false;
3198
3199 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3200 if (From->isNullPointerConstant(Context,
3201 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3202 : Expr::NPC_ValueDependentIsNull)) {
3203 ConvertedType = ToType;
3204 return true;
3205 }
3206
3207 // Otherwise, both types have to be member pointers.
3208 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3209 if (!FromTypePtr)
3210 return false;
3211
3212 // A pointer to member of B can be converted to a pointer to member of D,
3213 // where D is derived from B (C++ 4.11p2).
3214 QualType FromClass(FromTypePtr->getClass(), 0);
3215 QualType ToClass(ToTypePtr->getClass(), 0);
3216
3217 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3218 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3219 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3220 ToClass.getTypePtr());
3221 return true;
3222 }
3223
3224 return false;
3225}
3226
3227/// CheckMemberPointerConversion - Check the member pointer conversion from the
3228/// expression From to the type ToType. This routine checks for ambiguous or
3229/// virtual or inaccessible base-to-derived member pointer conversions
3230/// for which IsMemberPointerConversion has already returned true. It returns
3231/// true and produces a diagnostic if there was an error, or returns false
3232/// otherwise.
3233bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3234 CastKind &Kind,
3235 CXXCastPath &BasePath,
3236 bool IgnoreBaseAccess) {
3237 QualType FromType = From->getType();
3238 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3239 if (!FromPtrType) {
3240 // This must be a null pointer to member pointer conversion
3241 assert(From->isNullPointerConstant(Context,(static_cast <bool> (From->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"
) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "clang/lib/Sema/SemaOverload.cpp", 3243, __extension__ __PRETTY_FUNCTION__
))
3242 Expr::NPC_ValueDependentIsNull) &&(static_cast <bool> (From->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"
) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "clang/lib/Sema/SemaOverload.cpp", 3243, __extension__ __PRETTY_FUNCTION__
))
3243 "Expr must be null pointer constant!")(static_cast <bool> (From->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"
) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "clang/lib/Sema/SemaOverload.cpp", 3243, __extension__ __PRETTY_FUNCTION__
))
;
3244 Kind = CK_NullToMemberPointer;
3245 return false;
3246 }
3247
3248 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3249 assert(ToPtrType && "No member pointer cast has a target type "(static_cast <bool> (ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? void (0) : __assert_fail (
"ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "clang/lib/Sema/SemaOverload.cpp", 3250, __extension__ __PRETTY_FUNCTION__
))
3250 "that is not a member pointer.")(static_cast <bool> (ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? void (0) : __assert_fail (
"ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "clang/lib/Sema/SemaOverload.cpp", 3250, __extension__ __PRETTY_FUNCTION__
))
;
3251
3252 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3253 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3254
3255 // FIXME: What about dependent types?
3256 assert(FromClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (FromClass->isRecordType() &&
"Pointer into non-class.") ? void (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "clang/lib/Sema/SemaOverload.cpp", 3256, __extension__ __PRETTY_FUNCTION__
))
;
3257 assert(ToClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (ToClass->isRecordType() &&
"Pointer into non-class.") ? void (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "clang/lib/Sema/SemaOverload.cpp", 3257, __extension__ __PRETTY_FUNCTION__
))
;
3258
3259 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3260 /*DetectVirtual=*/true);
3261 bool DerivationOkay =
3262 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3263 assert(DerivationOkay &&(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK."
) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "clang/lib/Sema/SemaOverload.cpp", 3264, __extension__ __PRETTY_FUNCTION__
))
3264 "Should not have been called if derivation isn't OK.")(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK."
) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "clang/lib/Sema/SemaOverload.cpp", 3264, __extension__ __PRETTY_FUNCTION__
))
;
3265 (void)DerivationOkay;
3266
3267 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3268 getUnqualifiedType())) {
3269 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3270 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3271 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3272 return true;
3273 }
3274
3275 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3276 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3277 << FromClass << ToClass << QualType(VBase, 0)
3278 << From->getSourceRange();
3279 return true;
3280 }
3281
3282 if (!IgnoreBaseAccess)
3283 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3284 Paths.front(),
3285 diag::err_downcast_from_inaccessible_base);
3286
3287 // Must be a base to derived member conversion.
3288 BuildBasePathArray(Paths, BasePath);
3289 Kind = CK_BaseToDerivedMemberPointer;
3290 return false;
3291}
3292
3293/// Determine whether the lifetime conversion between the two given
3294/// qualifiers sets is nontrivial.
3295static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3296 Qualifiers ToQuals) {
3297 // Converting anything to const __unsafe_unretained is trivial.
3298 if (ToQuals.hasConst() &&
3299 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3300 return false;
3301
3302 return true;
3303}
3304
3305/// Perform a single iteration of the loop for checking if a qualification
3306/// conversion is valid.
3307///
3308/// Specifically, check whether any change between the qualifiers of \p
3309/// FromType and \p ToType is permissible, given knowledge about whether every
3310/// outer layer is const-qualified.
3311static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3312 bool CStyle, bool IsTopLevel,
3313 bool &PreviousToQualsIncludeConst,
3314 bool &ObjCLifetimeConversion) {
3315 Qualifiers FromQuals = FromType.getQualifiers();
3316 Qualifiers ToQuals = ToType.getQualifiers();
3317
3318 // Ignore __unaligned qualifier.
3319 FromQuals.removeUnaligned();
3320
3321 // Objective-C ARC:
3322 // Check Objective-C lifetime conversions.
3323 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3324 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3325 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3326 ObjCLifetimeConversion = true;
3327 FromQuals.removeObjCLifetime();
3328 ToQuals.removeObjCLifetime();
3329 } else {
3330 // Qualification conversions cannot cast between different
3331 // Objective-C lifetime qualifiers.
3332 return false;
3333 }
3334 }
3335
3336 // Allow addition/removal of GC attributes but not changing GC attributes.
3337 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3338 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3339 FromQuals.removeObjCGCAttr();
3340 ToQuals.removeObjCGCAttr();
3341 }
3342
3343 // -- for every j > 0, if const is in cv 1,j then const is in cv
3344 // 2,j, and similarly for volatile.
3345 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3346 return false;
3347
3348 // If address spaces mismatch:
3349 // - in top level it is only valid to convert to addr space that is a
3350 // superset in all cases apart from C-style casts where we allow
3351 // conversions between overlapping address spaces.
3352 // - in non-top levels it is not a valid conversion.
3353 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3354 (!IsTopLevel ||
3355 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3356 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3357 return false;
3358
3359 // -- if the cv 1,j and cv 2,j are different, then const is in
3360 // every cv for 0 < k < j.
3361 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3362 !PreviousToQualsIncludeConst)
3363 return false;
3364
3365 // The following wording is from C++20, where the result of the conversion
3366 // is T3, not T2.
3367 // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is
3368 // "array of unknown bound of"
3369 if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType())
3370 return false;
3371
3372 // -- if the resulting P3,i is different from P1,i [...], then const is
3373 // added to every cv 3_k for 0 < k < i.
3374 if (!CStyle && FromType->isConstantArrayType() &&
3375 ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst)
3376 return false;
3377
3378 // Keep track of whether all prior cv-qualifiers in the "to" type
3379 // include const.
3380 PreviousToQualsIncludeConst =
3381 PreviousToQualsIncludeConst && ToQuals.hasConst();
3382 return true;
3383}
3384
3385/// IsQualificationConversion - Determines whether the conversion from
3386/// an rvalue of type FromType to ToType is a qualification conversion
3387/// (C++ 4.4).
3388///
3389/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3390/// when the qualification conversion involves a change in the Objective-C
3391/// object lifetime.
3392bool
3393Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3394 bool CStyle, bool &ObjCLifetimeConversion) {
3395 FromType = Context.getCanonicalType(FromType);
3396 ToType = Context.getCanonicalType(ToType);
3397 ObjCLifetimeConversion = false;
3398
3399 // If FromType and ToType are the same type, this is not a
3400 // qualification conversion.
3401 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3402 return false;
3403
3404 // (C++ 4.4p4):
3405 // A conversion can add cv-qualifiers at levels other than the first
3406 // in multi-level pointers, subject to the following rules: [...]
3407 bool PreviousToQualsIncludeConst = true;
3408 bool UnwrappedAnyPointer = false;
3409 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3410 if (!isQualificationConversionStep(
3411 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3412 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3413 return false;
3414 UnwrappedAnyPointer = true;
3415 }
3416
3417 // We are left with FromType and ToType being the pointee types
3418 // after unwrapping the original FromType and ToType the same number
3419 // of times. If we unwrapped any pointers, and if FromType and
3420 // ToType have the same unqualified type (since we checked
3421 // qualifiers above), then this is a qualification conversion.
3422 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3423}
3424
3425/// - Determine whether this is a conversion from a scalar type to an
3426/// atomic type.
3427///
3428/// If successful, updates \c SCS's second and third steps in the conversion
3429/// sequence to finish the conversion.
3430static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3431 bool InOverloadResolution,
3432 StandardConversionSequence &SCS,
3433 bool CStyle) {
3434 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3435 if (!ToAtomic)
3436 return false;
3437
3438 StandardConversionSequence InnerSCS;
3439 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3440 InOverloadResolution, InnerSCS,
3441 CStyle, /*AllowObjCWritebackConversion=*/false))
3442 return false;
3443
3444 SCS.Second = InnerSCS.Second;
3445 SCS.setToType(1, InnerSCS.getToType(1));
3446 SCS.Third = InnerSCS.Third;
3447 SCS.QualificationIncludesObjCLifetime
3448 = InnerSCS.QualificationIncludesObjCLifetime;
3449 SCS.setToType(2, InnerSCS.getToType(2));
3450 return true;
3451}
3452
3453static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3454 CXXConstructorDecl *Constructor,
3455 QualType Type) {
3456 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3457 if (CtorType->getNumParams() > 0) {
3458 QualType FirstArg = CtorType->getParamType(0);
3459 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3460 return true;
3461 }
3462 return false;
3463}
3464
3465static OverloadingResult
3466IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3467 CXXRecordDecl *To,
3468 UserDefinedConversionSequence &User,
3469 OverloadCandidateSet &CandidateSet,
3470 bool AllowExplicit) {
3471 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3472 for (auto *D : S.LookupConstructors(To)) {
3473 auto Info = getConstructorInfo(D);
3474 if (!Info)
3475 continue;
3476
3477 bool Usable = !Info.Constructor->isInvalidDecl() &&
3478 S.isInitListConstructor(Info.Constructor);
3479 if (Usable) {
3480 bool SuppressUserConversions = false;
3481 if (Info.ConstructorTmpl)
3482 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3483 /*ExplicitArgs*/ nullptr, From,
3484 CandidateSet, SuppressUserConversions,
3485 /*PartialOverloading*/ false,
3486 AllowExplicit);
3487 else
3488 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3489 CandidateSet, SuppressUserConversions,
3490 /*PartialOverloading*/ false, AllowExplicit);
3491 }
3492 }
3493
3494 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3495
3496 OverloadCandidateSet::iterator Best;
3497 switch (auto Result =
3498 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3499 case OR_Deleted:
3500 case OR_Success: {
3501 // Record the standard conversion we used and the conversion function.
3502 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3503 QualType ThisType = Constructor->getThisType();
3504 // Initializer lists don't have conversions as such.
3505 User.Before.setAsIdentityConversion();
3506 User.HadMultipleCandidates = HadMultipleCandidates;
3507 User.ConversionFunction = Constructor;
3508 User.FoundConversionFunction = Best->FoundDecl;
3509 User.After.setAsIdentityConversion();
3510 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3511 User.After.setAllToTypes(ToType);
3512 return Result;
3513 }
3514
3515 case OR_No_Viable_Function:
3516 return OR_No_Viable_Function;
3517 case OR_Ambiguous:
3518 return OR_Ambiguous;
3519 }
3520
3521 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp"
, 3521)
;
3522}
3523
3524/// Determines whether there is a user-defined conversion sequence
3525/// (C++ [over.ics.user]) that converts expression From to the type
3526/// ToType. If such a conversion exists, User will contain the
3527/// user-defined conversion sequence that performs such a conversion
3528/// and this routine will return true. Otherwise, this routine returns
3529/// false and User is unspecified.
3530///
3531/// \param AllowExplicit true if the conversion should consider C++0x
3532/// "explicit" conversion functions as well as non-explicit conversion
3533/// functions (C++0x [class.conv.fct]p2).
3534///
3535/// \param AllowObjCConversionOnExplicit true if the conversion should
3536/// allow an extra Objective-C pointer conversion on uses of explicit
3537/// constructors. Requires \c AllowExplicit to also be set.
3538static OverloadingResult
3539IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3540 UserDefinedConversionSequence &User,
3541 OverloadCandidateSet &CandidateSet,
3542 AllowedExplicit AllowExplicit,
3543 bool AllowObjCConversionOnExplicit) {
3544 assert(AllowExplicit != AllowedExplicit::None ||(static_cast <bool> (AllowExplicit != AllowedExplicit::
None || !AllowObjCConversionOnExplicit) ? void (0) : __assert_fail
("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "clang/lib/Sema/SemaOverload.cpp", 3545, __extension__ __PRETTY_FUNCTION__
))
3545 !AllowObjCConversionOnExplicit)(static_cast <bool> (AllowExplicit != AllowedExplicit::
None || !AllowObjCConversionOnExplicit) ? void (0) : __assert_fail
("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "clang/lib/Sema/SemaOverload.cpp", 3545, __extension__ __PRETTY_FUNCTION__
))
;
3546 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3547
3548 // Whether we will only visit constructors.
3549 bool ConstructorsOnly = false;
3550
3551 // If the type we are conversion to is a class type, enumerate its
3552 // constructors.
3553 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3554 // C++ [over.match.ctor]p1:
3555 // When objects of class type are direct-initialized (8.5), or
3556 // copy-initialized from an expression of the same or a
3557 // derived class type (8.5), overload resolution selects the
3558 // constructor. [...] For copy-initialization, the candidate
3559 // functions are all the converting constructors (12.3.1) of
3560 // that class. The argument list is the expression-list within
3561 // the parentheses of the initializer.
3562 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3563 (From->getType()->getAs<RecordType>() &&
3564 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3565 ConstructorsOnly = true;
3566
3567 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3568 // We're not going to find any constructors.
3569 } else if (CXXRecordDecl *ToRecordDecl
3570 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3571
3572 Expr **Args = &From;
3573 unsigned NumArgs = 1;
3574 bool ListInitializing = false;
3575 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3576 // But first, see if there is an init-list-constructor that will work.
3577 OverloadingResult Result = IsInitializerListConstructorConversion(
3578 S, From, ToType, ToRecordDecl, User, CandidateSet,
3579 AllowExplicit == AllowedExplicit::All);
3580 if (Result != OR_No_Viable_Function)
3581 return Result;
3582 // Never mind.
3583 CandidateSet.clear(
3584 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3585
3586 // If we're list-initializing, we pass the individual elements as
3587 // arguments, not the entire list.
3588 Args = InitList->getInits();
3589 NumArgs = InitList->getNumInits();
3590 ListInitializing = true;
3591 }
3592
3593 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3594 auto Info = getConstructorInfo(D);
3595 if (!Info)
3596 continue;
3597
3598 bool Usable = !Info.Constructor->isInvalidDecl();
3599 if (!ListInitializing)
3600 Usable = Usable && Info.Constructor->isConvertingConstructor(
3601 /*AllowExplicit*/ true);
3602 if (Usable) {
3603 bool SuppressUserConversions = !ConstructorsOnly;
3604 // C++20 [over.best.ics.general]/4.5:
3605 // if the target is the first parameter of a constructor [of class
3606 // X] and the constructor [...] is a candidate by [...] the second
3607 // phase of [over.match.list] when the initializer list has exactly
3608 // one element that is itself an initializer list, [...] and the
3609 // conversion is to X or reference to cv X, user-defined conversion
3610 // sequences are not cnosidered.
3611 if (SuppressUserConversions && ListInitializing) {
3612 SuppressUserConversions =
3613 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3614 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3615 ToType);
3616 }
3617 if (Info.ConstructorTmpl)
3618 S.AddTemplateOverloadCandidate(
3619 Info.ConstructorTmpl, Info.FoundDecl,
3620 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3621 CandidateSet, SuppressUserConversions,
3622 /*PartialOverloading*/ false,
3623 AllowExplicit == AllowedExplicit::All);
3624 else
3625 // Allow one user-defined conversion when user specifies a
3626 // From->ToType conversion via an static cast (c-style, etc).
3627 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3628 llvm::makeArrayRef(Args, NumArgs),
3629 CandidateSet, SuppressUserConversions,
3630 /*PartialOverloading*/ false,
3631 AllowExplicit == AllowedExplicit::All);
3632 }
3633 }
3634 }
3635 }
3636
3637 // Enumerate conversion functions, if we're allowed to.
3638 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3639 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3640 // No conversion functions from incomplete types.
3641 } else if (const RecordType *FromRecordType =
3642 From->getType()->getAs<RecordType>()) {
3643 if (CXXRecordDecl *FromRecordDecl
3644 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3645 // Add all of the conversion functions as candidates.
3646 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3647 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3648 DeclAccessPair FoundDecl = I.getPair();
3649 NamedDecl *D = FoundDecl.getDecl();
3650 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3651 if (isa<UsingShadowDecl>(D))
3652 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3653
3654 CXXConversionDecl *Conv;
3655 FunctionTemplateDecl *ConvTemplate;
3656 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3657 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3658 else
3659 Conv = cast<CXXConversionDecl>(D);
3660
3661 if (ConvTemplate)
3662 S.AddTemplateConversionCandidate(
3663 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3664 CandidateSet, AllowObjCConversionOnExplicit,
3665 AllowExplicit != AllowedExplicit::None);
3666 else
3667 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3668 CandidateSet, AllowObjCConversionOnExplicit,
3669 AllowExplicit != AllowedExplicit::None);
3670 }
3671 }
3672 }
3673
3674 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3675
3676 OverloadCandidateSet::iterator Best;
3677 switch (auto Result =
3678 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3679 case OR_Success:
3680 case OR_Deleted:
3681 // Record the standard conversion we used and the conversion function.
3682 if (CXXConstructorDecl *Constructor
3683 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3684 // C++ [over.ics.user]p1:
3685 // If the user-defined conversion is specified by a
3686 // constructor (12.3.1), the initial standard conversion
3687 // sequence converts the source type to the type required by
3688 // the argument of the constructor.
3689 //
3690 QualType ThisType = Constructor->getThisType();
3691 if (isa<InitListExpr>(From)) {
3692 // Initializer lists don't have conversions as such.
3693 User.Before.setAsIdentityConversion();
3694 } else {
3695 if (Best->Conversions[0].isEllipsis())
3696 User.EllipsisConversion = true;
3697 else {
3698 User.Before = Best->Conversions[0].Standard;
3699 User.EllipsisConversion = false;
3700 }
3701 }
3702 User.HadMultipleCandidates = HadMultipleCandidates;
3703 User.ConversionFunction = Constructor;
3704 User.FoundConversionFunction = Best->FoundDecl;
3705 User.After.setAsIdentityConversion();
3706 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3707 User.After.setAllToTypes(ToType);
3708 return Result;
3709 }
3710 if (CXXConversionDecl *Conversion
3711 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3712 // C++ [over.ics.user]p1:
3713 //
3714 // [...] If the user-defined conversion is specified by a
3715 // conversion function (12.3.2), the initial standard
3716 // conversion sequence converts the source type to the
3717 // implicit object parameter of the conversion function.
3718 User.Before = Best->Conversions[0].Standard;
3719 User.HadMultipleCandidates = HadMultipleCandidates;
3720 User.ConversionFunction = Conversion;
3721 User.FoundConversionFunction = Best->FoundDecl;
3722 User.EllipsisConversion = false;
3723
3724 // C++ [over.ics.user]p2:
3725 // The second standard conversion sequence converts the
3726 // result of the user-defined conversion to the target type
3727 // for the sequence. Since an implicit conversion sequence
3728 // is an initialization, the special rules for
3729 // initialization by user-defined conversion apply when
3730 // selecting the best user-defined conversion for a
3731 // user-defined conversion sequence (see 13.3.3 and
3732 // 13.3.3.1).
3733 User.After = Best->FinalConversion;
3734 return Result;
3735 }
3736 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "clang/lib/Sema/SemaOverload.cpp", 3736)
;
3737
3738 case OR_No_Viable_Function:
3739 return OR_No_Viable_Function;
3740
3741 case OR_Ambiguous:
3742 return OR_Ambiguous;
3743 }
3744
3745 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp"
, 3745)
;
3746}
3747
3748bool
3749Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3750 ImplicitConversionSequence ICS;
3751 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3752 OverloadCandidateSet::CSK_Normal);
3753 OverloadingResult OvResult =
3754 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3755 CandidateSet, AllowedExplicit::None, false);
3756
3757 if (!(OvResult == OR_Ambiguous ||
3758 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3759 return false;
3760
3761 auto Cands = CandidateSet.CompleteCandidates(
3762 *this,
3763 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3764 From);
3765 if (OvResult == OR_Ambiguous)
3766 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3767 << From->getType() << ToType << From->getSourceRange();
3768 else { // OR_No_Viable_Function && !CandidateSet.empty()
3769 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3770 diag::err_typecheck_nonviable_condition_incomplete,
3771 From->getType(), From->getSourceRange()))
3772 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3773 << false << From->getType() << From->getSourceRange() << ToType;
3774 }
3775
3776 CandidateSet.NoteCandidates(
3777 *this, From, Cands);
3778 return true;
3779}
3780
3781// Helper for compareConversionFunctions that gets the FunctionType that the
3782// conversion-operator return value 'points' to, or nullptr.
3783static const FunctionType *
3784getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3785 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3786 const PointerType *RetPtrTy =
3787 ConvFuncTy->getReturnType()->getAs<PointerType>();
3788
3789 if (!RetPtrTy)
3790 return nullptr;
3791
3792 return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3793}
3794
3795/// Compare the user-defined conversion functions or constructors
3796/// of two user-defined conversion sequences to determine whether any ordering
3797/// is possible.
3798static ImplicitConversionSequence::CompareKind
3799compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3800 FunctionDecl *Function2) {
3801 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3802 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3803 if (!Conv1 || !Conv2)
3804 return ImplicitConversionSequence::Indistinguishable;
3805
3806 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3807 return ImplicitConversionSequence::Indistinguishable;
3808
3809 // Objective-C++:
3810 // If both conversion functions are implicitly-declared conversions from
3811 // a lambda closure type to a function pointer and a block pointer,
3812 // respectively, always prefer the conversion to a function pointer,
3813 // because the function pointer is more lightweight and is more likely
3814 // to keep code working.
3815 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3816 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3817 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3818 if (Block1 != Block2)
3819 return Block1 ? ImplicitConversionSequence::Worse
3820 : ImplicitConversionSequence::Better;
3821 }
3822
3823 // In order to support multiple calling conventions for the lambda conversion
3824 // operator (such as when the free and member function calling convention is
3825 // different), prefer the 'free' mechanism, followed by the calling-convention
3826 // of operator(). The latter is in place to support the MSVC-like solution of
3827 // defining ALL of the possible conversions in regards to calling-convention.
3828 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3829 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3830
3831 if (Conv1FuncRet && Conv2FuncRet &&
3832 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3833 CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3834 CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3835
3836 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3837 const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>();
3838
3839 CallingConv CallOpCC =
3840 CallOp->getType()->castAs<FunctionType>()->getCallConv();
3841 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3842 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3843 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3844 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3845
3846 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3847 for (CallingConv CC : PrefOrder) {
3848 if (Conv1CC == CC)
3849 return ImplicitConversionSequence::Better;
3850 if (Conv2CC == CC)
3851 return ImplicitConversionSequence::Worse;
3852 }
3853 }
3854
3855 return ImplicitConversionSequence::Indistinguishable;
3856}
3857
3858static bool hasDeprecatedStringLiteralToCharPtrConversion(
3859 const ImplicitConversionSequence &ICS) {
3860 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3861 (ICS.isUserDefined() &&
3862 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3863}
3864
3865/// CompareImplicitConversionSequences - Compare two implicit
3866/// conversion sequences to determine whether one is better than the
3867/// other or if they are indistinguishable (C++ 13.3.3.2).
3868static ImplicitConversionSequence::CompareKind
3869CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3870 const ImplicitConversionSequence& ICS1,
3871 const ImplicitConversionSequence& ICS2)
3872{
3873 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3874 // conversion sequences (as defined in 13.3.3.1)
3875 // -- a standard conversion sequence (13.3.3.1.1) is a better
3876 // conversion sequence than a user-defined conversion sequence or
3877 // an ellipsis conversion sequence, and
3878 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3879 // conversion sequence than an ellipsis conversion sequence
3880 // (13.3.3.1.3).
3881 //
3882 // C++0x [over.best.ics]p10:
3883 // For the purpose of ranking implicit conversion sequences as
3884 // described in 13.3.3.2, the ambiguous conversion sequence is
3885 // treated as a user-defined sequence that is indistinguishable
3886 // from any other user-defined conversion sequence.
3887
3888 // String literal to 'char *' conversion has been deprecated in C++03. It has
3889 // been removed from C++11. We still accept this conversion, if it happens at
3890 // the best viable function. Otherwise, this conversion is considered worse
3891 // than ellipsis conversion. Consider this as an extension; this is not in the
3892 // standard. For example:
3893 //
3894 // int &f(...); // #1
3895 // void f(char*); // #2
3896 // void g() { int &r = f("foo"); }
3897 //
3898 // In C++03, we pick #2 as the best viable function.
3899 // In C++11, we pick #1 as the best viable function, because ellipsis
3900 // conversion is better than string-literal to char* conversion (since there
3901 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3902 // convert arguments, #2 would be the best viable function in C++11.
3903 // If the best viable function has this conversion, a warning will be issued
3904 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3905
3906 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3907 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3908 hasDeprecatedStringLiteralToCharPtrConversion(ICS2) &&
3909 // Ill-formedness must not differ
3910 ICS1.isBad() == ICS2.isBad())
3911 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3912 ? ImplicitConversionSequence::Worse
3913 : ImplicitConversionSequence::Better;
3914
3915 if (ICS1.getKindRank() < ICS2.getKindRank())
3916 return ImplicitConversionSequence::Better;
3917 if (ICS2.getKindRank() < ICS1.getKindRank())
3918 return ImplicitConversionSequence::Worse;
3919
3920 // The following checks require both conversion sequences to be of
3921 // the same kind.
3922 if (ICS1.getKind() != ICS2.getKind())
3923 return ImplicitConversionSequence::Indistinguishable;
3924
3925 ImplicitConversionSequence::CompareKind Result =
3926 ImplicitConversionSequence::Indistinguishable;
3927
3928 // Two implicit conversion sequences of the same form are
3929 // indistinguishable conversion sequences unless one of the
3930 // following rules apply: (C++ 13.3.3.2p3):
3931
3932 // List-initialization sequence L1 is a better conversion sequence than
3933 // list-initialization sequence L2 if:
3934 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3935 // if not that,
3936 // — L1 and L2 convert to arrays of the same element type, and either the
3937 // number of elements n_1 initialized by L1 is less than the number of
3938 // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to
3939 // an array of unknown bound and L1 does not,
3940 // even if one of the other rules in this paragraph would otherwise apply.
3941 if (!ICS1.isBad()) {
3942 bool StdInit1 = false, StdInit2 = false;
3943 if (ICS1.hasInitializerListContainerType())
3944 StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(),
3945 nullptr);
3946 if (ICS2.hasInitializerListContainerType())
3947 StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(),
3948 nullptr);
3949 if (StdInit1 != StdInit2)
3950 return StdInit1 ? ImplicitConversionSequence::Better
3951 : ImplicitConversionSequence::Worse;
3952
3953 if (ICS1.hasInitializerListContainerType() &&
3954 ICS2.hasInitializerListContainerType())
3955 if (auto *CAT1 = S.Context.getAsConstantArrayType(
3956 ICS1.getInitializerListContainerType()))
3957 if (auto *CAT2 = S.Context.getAsConstantArrayType(
3958 ICS2.getInitializerListContainerType())) {
3959 if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(),
3960 CAT2->getElementType())) {
3961 // Both to arrays of the same element type
3962 if (CAT1->getSize() != CAT2->getSize())
3963 // Different sized, the smaller wins
3964 return CAT1->getSize().ult(CAT2->getSize())
3965 ? ImplicitConversionSequence::Better
3966 : ImplicitConversionSequence::Worse;
3967 if (ICS1.isInitializerListOfIncompleteArray() !=
3968 ICS2.isInitializerListOfIncompleteArray())
3969 // One is incomplete, it loses
3970 return ICS2.isInitializerListOfIncompleteArray()
3971 ? ImplicitConversionSequence::Better
3972 : ImplicitConversionSequence::Worse;
3973 }
3974 }
3975 }
3976
3977 if (ICS1.isStandard())
3978 // Standard conversion sequence S1 is a better conversion sequence than
3979 // standard conversion sequence S2 if [...]
3980 Result = CompareStandardConversionSequences(S, Loc,
3981 ICS1.Standard, ICS2.Standard);
3982 else if (ICS1.isUserDefined()) {
3983 // User-defined conversion sequence U1 is a better conversion
3984 // sequence than another user-defined conversion sequence U2 if
3985 // they contain the same user-defined conversion function or
3986 // constructor and if the second standard conversion sequence of
3987 // U1 is better than the second standard conversion sequence of
3988 // U2 (C++ 13.3.3.2p3).
3989 if (ICS1.UserDefined.ConversionFunction ==
3990 ICS2.UserDefined.ConversionFunction)
3991 Result = CompareStandardConversionSequences(S, Loc,
3992 ICS1.UserDefined.After,
3993 ICS2.UserDefined.After);
3994 else
3995 Result = compareConversionFunctions(S,
3996 ICS1.UserDefined.ConversionFunction,
3997 ICS2.UserDefined.ConversionFunction);
3998 }
3999
4000 return Result;
4001}
4002
4003// Per 13.3.3.2p3, compare the given standard conversion sequences to
4004// determine if one is a proper subset of the other.
4005static ImplicitConversionSequence::CompareKind
4006compareStandardConversionSubsets(ASTContext &Context,
4007 const StandardConversionSequence& SCS1,
4008 const StandardConversionSequence& SCS2) {
4009 ImplicitConversionSequence::CompareKind Result
4010 = ImplicitConversionSequence::Indistinguishable;
4011
4012 // the identity conversion sequence is considered to be a subsequence of
4013 // any non-identity conversion sequence
4014 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
4015 return ImplicitConversionSequence::Better;
4016 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
4017 return ImplicitConversionSequence::Worse;
4018
4019 if (SCS1.Second != SCS2.Second) {
4020 if (SCS1.Second == ICK_Identity)
4021 Result = ImplicitConversionSequence::Better;
4022 else if (SCS2.Second == ICK_Identity)
4023 Result = ImplicitConversionSequence::Worse;
4024 else
4025 return ImplicitConversionSequence::Indistinguishable;
4026 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
4027 return ImplicitConversionSequence::Indistinguishable;
4028
4029 if (SCS1.Third == SCS2.Third) {
4030 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
4031 : ImplicitConversionSequence::Indistinguishable;
4032 }
4033
4034 if (SCS1.Third == ICK_Identity)
4035 return Result == ImplicitConversionSequence::Worse
4036 ? ImplicitConversionSequence::Indistinguishable
4037 : ImplicitConversionSequence::Better;
4038
4039 if (SCS2.Third == ICK_Identity)
4040 return Result == ImplicitConversionSequence::Better
4041 ? ImplicitConversionSequence::Indistinguishable
4042 : ImplicitConversionSequence::Worse;
4043
4044 return ImplicitConversionSequence::Indistinguishable;
4045}
4046
4047/// Determine whether one of the given reference bindings is better
4048/// than the other based on what kind of bindings they are.
4049static bool
4050isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
4051 const StandardConversionSequence &SCS2) {
4052 // C++0x [over.ics.rank]p3b4:
4053 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
4054 // implicit object parameter of a non-static member function declared
4055 // without a ref-qualifier, and *either* S1 binds an rvalue reference
4056 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
4057 // lvalue reference to a function lvalue and S2 binds an rvalue
4058 // reference*.
4059 //
4060 // FIXME: Rvalue references. We're going rogue with the above edits,
4061 // because the semantics in the current C++0x working paper (N3225 at the
4062 // time of this writing) break the standard definition of std::forward
4063 // and std::reference_wrapper when dealing with references to functions.
4064 // Proposed wording changes submitted to CWG for consideration.
4065 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
4066 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
4067 return false;
4068
4069 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
4070 SCS2.IsLvalueReference) ||
4071 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
4072 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
4073}
4074
4075enum class FixedEnumPromotion {
4076 None,
4077 ToUnderlyingType,
4078 ToPromotedUnderlyingType
4079};
4080
4081/// Returns kind of fixed enum promotion the \a SCS uses.
4082static FixedEnumPromotion
4083getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
4084
4085 if (SCS.Second != ICK_Integral_Promotion)
4086 return FixedEnumPromotion::None;
4087
4088 QualType FromType = SCS.getFromType();
4089 if (!FromType->isEnumeralType())
4090 return FixedEnumPromotion::None;
4091
4092 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
4093 if (!Enum->isFixed())
4094 return FixedEnumPromotion::None;
4095
4096 QualType UnderlyingType = Enum->getIntegerType();
4097 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
4098 return FixedEnumPromotion::ToUnderlyingType;
4099
4100 return FixedEnumPromotion::ToPromotedUnderlyingType;
4101}
4102
4103/// CompareStandardConversionSequences - Compare two standard
4104/// conversion sequences to determine whether one is better than the
4105/// other or if they are indistinguishable (C++ 13.3.3.2p3).
4106static ImplicitConversionSequence::CompareKind
4107CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
4108 const StandardConversionSequence& SCS1,
4109 const StandardConversionSequence& SCS2)
4110{
4111 // Standard conversion sequence S1 is a better conversion sequence
4112 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
4113
4114 // -- S1 is a proper subsequence of S2 (comparing the conversion
4115 // sequences in the canonical form defined by 13.3.3.1.1,
4116 // excluding any Lvalue Transformation; the identity conversion
4117 // sequence is considered to be a subsequence of any
4118 // non-identity conversion sequence) or, if not that,
4119 if (ImplicitConversionSequence::CompareKind CK
4120 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
4121 return CK;
4122
4123 // -- the rank of S1 is better than the rank of S2 (by the rules
4124 // defined below), or, if not that,
4125 ImplicitConversionRank Rank1 = SCS1.getRank();
4126 ImplicitConversionRank Rank2 = SCS2.getRank();
4127 if (Rank1 < Rank2)
4128 return ImplicitConversionSequence::Better;
4129 else if (Rank2 < Rank1)
4130 return ImplicitConversionSequence::Worse;
4131
4132 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
4133 // are indistinguishable unless one of the following rules
4134 // applies:
4135
4136 // A conversion that is not a conversion of a pointer, or
4137 // pointer to member, to bool is better than another conversion
4138 // that is such a conversion.
4139 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
4140 return SCS2.isPointerConversionToBool()
4141 ? ImplicitConversionSequence::Better
4142 : ImplicitConversionSequence::Worse;
4143
4144 // C++14 [over.ics.rank]p4b2:
4145 // This is retroactively applied to C++11 by CWG 1601.
4146 //
4147 // A conversion that promotes an enumeration whose underlying type is fixed
4148 // to its underlying type is better than one that promotes to the promoted
4149 // underlying type, if the two are different.
4150 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
4151 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
4152 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
4153 FEP1 != FEP2)
4154 return FEP1 == FixedEnumPromotion::ToUnderlyingType
4155 ? ImplicitConversionSequence::Better
4156 : ImplicitConversionSequence::Worse;
4157
4158 // C++ [over.ics.rank]p4b2:
4159 //
4160 // If class B is derived directly or indirectly from class A,
4161 // conversion of B* to A* is better than conversion of B* to
4162 // void*, and conversion of A* to void* is better than conversion
4163 // of B* to void*.
4164 bool SCS1ConvertsToVoid
4165 = SCS1.isPointerConversionToVoidPointer(S.Context);
4166 bool SCS2ConvertsToVoid
4167 = SCS2.isPointerConversionToVoidPointer(S.Context);
4168 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4169 // Exactly one of the conversion sequences is a conversion to
4170 // a void pointer; it's the worse conversion.
4171 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4172 : ImplicitConversionSequence::Worse;
4173 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4174 // Neither conversion sequence converts to a void pointer; compare
4175 // their derived-to-base conversions.
4176 if (ImplicitConversionSequence::CompareKind DerivedCK
4177 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4178 return DerivedCK;
4179 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4180 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4181 // Both conversion sequences are conversions to void
4182 // pointers. Compare the source types to determine if there's an
4183 // inheritance relationship in their sources.
4184 QualType FromType1 = SCS1.getFromType();
4185 QualType FromType2 = SCS2.getFromType();
4186
4187 // Adjust the types we're converting from via the array-to-pointer
4188 // conversion, if we need to.
4189 if (SCS1.First == ICK_Array_To_Pointer)
4190 FromType1 = S.Context.getArrayDecayedType(FromType1);
4191 if (SCS2.First == ICK_Array_To_Pointer)
4192 FromType2 = S.Context.getArrayDecayedType(FromType2);
4193
4194 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4195 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4196
4197 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4198 return ImplicitConversionSequence::Better;
4199 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4200 return ImplicitConversionSequence::Worse;
4201
4202 // Objective-C++: If one interface is more specific than the
4203 // other, it is the better one.
4204 const ObjCObjectPointerType* FromObjCPtr1
4205 = FromType1->getAs<ObjCObjectPointerType>();
4206 const ObjCObjectPointerType* FromObjCPtr2
4207 = FromType2->getAs<ObjCObjectPointerType>();
4208 if (FromObjCPtr1 && FromObjCPtr2) {
4209 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4210 FromObjCPtr2);
4211 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4212 FromObjCPtr1);
4213 if (AssignLeft != AssignRight) {
4214 return AssignLeft? ImplicitConversionSequence::Better
4215 : ImplicitConversionSequence::Worse;
4216 }
4217 }
4218 }
4219
4220 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4221 // Check for a better reference binding based on the kind of bindings.
4222 if (isBetterReferenceBindingKind(SCS1, SCS2))
4223 return ImplicitConversionSequence::Better;
4224 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4225 return ImplicitConversionSequence::Worse;
4226 }
4227
4228 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4229 // bullet 3).
4230 if (ImplicitConversionSequence::CompareKind QualCK
4231 = CompareQualificationConversions(S, SCS1, SCS2))
4232 return QualCK;
4233
4234 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4235 // C++ [over.ics.rank]p3b4:
4236 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4237 // which the references refer are the same type except for
4238 // top-level cv-qualifiers, and the type to which the reference
4239 // initialized by S2 refers is more cv-qualified than the type
4240 // to which the reference initialized by S1 refers.
4241 QualType T1 = SCS1.getToType(2);
4242 QualType T2 = SCS2.getToType(2);
4243 T1 = S.Context.getCanonicalType(T1);
4244 T2 = S.Context.getCanonicalType(T2);
4245 Qualifiers T1Quals, T2Quals;
4246 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4247 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4248 if (UnqualT1 == UnqualT2) {
4249 // Objective-C++ ARC: If the references refer to objects with different
4250 // lifetimes, prefer bindings that don't change lifetime.
4251 if (SCS1.ObjCLifetimeConversionBinding !=
4252 SCS2.ObjCLifetimeConversionBinding) {
4253 return SCS1.ObjCLifetimeConversionBinding
4254 ? ImplicitConversionSequence::Worse
4255 : ImplicitConversionSequence::Better;
4256 }
4257
4258 // If the type is an array type, promote the element qualifiers to the
4259 // type for comparison.
4260 if (isa<ArrayType>(T1) && T1Quals)
4261 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4262 if (isa<ArrayType>(T2) && T2Quals)
4263 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4264 if (T2.isMoreQualifiedThan(T1))
4265 return ImplicitConversionSequence::Better;
4266 if (T1.isMoreQualifiedThan(T2))
4267 return ImplicitConversionSequence::Worse;
4268 }
4269 }
4270
4271 // In Microsoft mode (below 19.28), prefer an integral conversion to a
4272 // floating-to-integral conversion if the integral conversion
4273 // is between types of the same size.
4274 // For example:
4275 // void f(float);
4276 // void f(int);
4277 // int main {
4278 // long a;
4279 // f(a);
4280 // }
4281 // Here, MSVC will call f(int) instead of generating a compile error
4282 // as clang will do in standard mode.
4283 if (S.getLangOpts().MSVCCompat &&
4284 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4285 SCS1.Second == ICK_Integral_Conversion &&
4286 SCS2.Second == ICK_Floating_Integral &&
4287 S.Context.getTypeSize(SCS1.getFromType()) ==
4288 S.Context.getTypeSize(SCS1.getToType(2)))
4289 return ImplicitConversionSequence::Better;
4290
4291 // Prefer a compatible vector conversion over a lax vector conversion
4292 // For example:
4293 //
4294 // typedef float __v4sf __attribute__((__vector_size__(16)));
4295 // void f(vector float);
4296 // void f(vector signed int);
4297 // int main() {
4298 // __v4sf a;
4299 // f(a);
4300 // }
4301 // Here, we'd like to choose f(vector float) and not
4302 // report an ambiguous call error
4303 if (SCS1.Second == ICK_Vector_Conversion &&
4304 SCS2.Second == ICK_Vector_Conversion) {
4305 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4306 SCS1.getFromType(), SCS1.getToType(2));
4307 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4308 SCS2.getFromType(), SCS2.getToType(2));
4309
4310 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4311 return SCS1IsCompatibleVectorConversion
4312 ? ImplicitConversionSequence::Better
4313 : ImplicitConversionSequence::Worse;
4314 }
4315
4316 if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4317 SCS2.Second == ICK_SVE_Vector_Conversion) {
4318 bool SCS1IsCompatibleSVEVectorConversion =
4319 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4320 bool SCS2IsCompatibleSVEVectorConversion =
4321 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4322
4323 if (SCS1IsCompatibleSVEVectorConversion !=
4324 SCS2IsCompatibleSVEVectorConversion)
4325 return SCS1IsCompatibleSVEVectorConversion
4326 ? ImplicitConversionSequence::Better
4327 : ImplicitConversionSequence::Worse;
4328 }
4329
4330 return ImplicitConversionSequence::Indistinguishable;
4331}
4332
4333/// CompareQualificationConversions - Compares two standard conversion
4334/// sequences to determine whether they can be ranked based on their
4335/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4336static ImplicitConversionSequence::CompareKind
4337CompareQualificationConversions(Sema &S,
4338 const StandardConversionSequence& SCS1,
4339 const StandardConversionSequence& SCS2) {
4340 // C++ [over.ics.rank]p3:
4341 // -- S1 and S2 differ only in their qualification conversion and
4342 // yield similar types T1 and T2 (C++ 4.4), respectively, [...]
4343 // [C++98]
4344 // [...] and the cv-qualification signature of type T1 is a proper subset
4345 // of the cv-qualification signature of type T2, and S1 is not the
4346 // deprecated string literal array-to-pointer conversion (4.2).
4347 // [C++2a]
4348 // [...] where T1 can be converted to T2 by a qualification conversion.
4349 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4350 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4351 return ImplicitConversionSequence::Indistinguishable;
4352
4353 // FIXME: the example in the standard doesn't use a qualification
4354 // conversion (!)
4355 QualType T1 = SCS1.getToType(2);
4356 QualType T2 = SCS2.getToType(2);
4357 T1 = S.Context.getCanonicalType(T1);
4358 T2 = S.Context.getCanonicalType(T2);
4359 assert(!T1->isReferenceType() && !T2->isReferenceType())(static_cast <bool> (!T1->isReferenceType() &&
!T2->isReferenceType()) ? void (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()"
, "clang/lib/Sema/SemaOverload.cpp", 4359, __extension__ __PRETTY_FUNCTION__
))
;
4360 Qualifiers T1Quals, T2Quals;
4361 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4362 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4363
4364 // If the types are the same, we won't learn anything by unwrapping
4365 // them.
4366 if (UnqualT1 == UnqualT2)
4367 return ImplicitConversionSequence::Indistinguishable;
4368
4369 // Don't ever prefer a standard conversion sequence that uses the deprecated
4370 // string literal array to pointer conversion.
4371 bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr;
4372 bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr;
4373
4374 // Objective-C++ ARC:
4375 // Prefer qualification conversions not involving a change in lifetime
4376 // to qualification conversions that do change lifetime.
4377 if (SCS1.QualificationIncludesObjCLifetime &&
4378 !SCS2.QualificationIncludesObjCLifetime)
4379 CanPick1 = false;
4380 if (SCS2.QualificationIncludesObjCLifetime &&
4381 !SCS1.QualificationIncludesObjCLifetime)
4382 CanPick2 = false;
4383
4384 bool ObjCLifetimeConversion;
4385 if (CanPick1 &&
4386 !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion))
4387 CanPick1 = false;
4388 // FIXME: In Objective-C ARC, we can have qualification conversions in both
4389 // directions, so we can't short-cut this second check in general.
4390 if (CanPick2 &&
4391 !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion))
4392 CanPick2 = false;
4393
4394 if (CanPick1 != CanPick2)
4395 return CanPick1 ? ImplicitConversionSequence::Better
4396 : ImplicitConversionSequence::Worse;
4397 return ImplicitConversionSequence::Indistinguishable;
4398}
4399
4400/// CompareDerivedToBaseConversions - Compares two standard conversion
4401/// sequences to determine whether they can be ranked based on their
4402/// various kinds of derived-to-base conversions (C++
4403/// [over.ics.rank]p4b3). As part of these checks, we also look at
4404/// conversions between Objective-C interface types.
4405static ImplicitConversionSequence::CompareKind
4406CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4407 const StandardConversionSequence& SCS1,
4408 const StandardConversionSequence& SCS2) {
4409 QualType FromType1 = SCS1.getFromType();
4410 QualType ToType1 = SCS1.getToType(1);
4411 QualType FromType2 = SCS2.getFromType();
4412 QualType ToType2 = SCS2.getToType(1);
4413
4414 // Adjust the types we're converting from via the array-to-pointer
4415 // conversion, if we need to.
4416 if (SCS1.First == ICK_Array_To_Pointer)
4417 FromType1 = S.Context.getArrayDecayedType(FromType1);
4418 if (SCS2.First == ICK_Array_To_Pointer)
4419 FromType2 = S.Context.getArrayDecayedType(FromType2);
4420
4421 // Canonicalize all of the types.
4422 FromType1 = S.Context.getCanonicalType(FromType1);
4423 ToType1 = S.Context.getCanonicalType(ToType1);
4424 FromType2 = S.Context.getCanonicalType(FromType2);
4425 ToType2 = S.Context.getCanonicalType(ToType2);
4426
4427 // C++ [over.ics.rank]p4b3:
4428 //
4429 // If class B is derived directly or indirectly from class A and
4430 // class C is derived directly or indirectly from B,
4431 //
4432 // Compare based on pointer conversions.
4433 if (SCS1.Second == ICK_Pointer_Conversion &&
4434 SCS2.Second == ICK_Pointer_Conversion &&
4435 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4436 FromType1->isPointerType() && FromType2->isPointerType() &&
4437 ToType1->isPointerType() && ToType2->isPointerType()) {
4438 QualType FromPointee1 =
4439 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4440 QualType ToPointee1 =
4441 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4442 QualType FromPointee2 =
4443 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4444 QualType ToPointee2 =
4445 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4446
4447 // -- conversion of C* to B* is better than conversion of C* to A*,
4448 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4449 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4450 return ImplicitConversionSequence::Better;
4451 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4452 return ImplicitConversionSequence::Worse;
4453 }
4454
4455 // -- conversion of B* to A* is better than conversion of C* to A*,
4456 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4457 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4458 return ImplicitConversionSequence::Better;
4459 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4460 return ImplicitConversionSequence::Worse;
4461 }
4462 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4463 SCS2.Second == ICK_Pointer_Conversion) {
4464 const ObjCObjectPointerType *FromPtr1
4465 = FromType1->getAs<ObjCObjectPointerType>();
4466 const ObjCObjectPointerType *FromPtr2
4467 = FromType2->getAs<ObjCObjectPointerType>();
4468 const ObjCObjectPointerType *ToPtr1
4469 = ToType1->getAs<ObjCObjectPointerType>();
4470 const ObjCObjectPointerType *ToPtr2
4471 = ToType2->getAs<ObjCObjectPointerType>();
4472
4473 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4474 // Apply the same conversion ranking rules for Objective-C pointer types
4475 // that we do for C++ pointers to class types. However, we employ the
4476 // Objective-C pseudo-subtyping relationship used for assignment of
4477 // Objective-C pointer types.
4478 bool FromAssignLeft
4479 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4480 bool FromAssignRight
4481 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4482 bool ToAssignLeft
4483 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4484 bool ToAssignRight
4485 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4486
4487 // A conversion to an a non-id object pointer type or qualified 'id'
4488 // type is better than a conversion to 'id'.
4489 if (ToPtr1->isObjCIdType() &&
4490 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4491 return ImplicitConversionSequence::Worse;
4492 if (ToPtr2->isObjCIdType() &&
4493 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4494 return ImplicitConversionSequence::Better;
4495
4496 // A conversion to a non-id object pointer type is better than a
4497 // conversion to a qualified 'id' type
4498 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4499 return ImplicitConversionSequence::Worse;
4500 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4501 return ImplicitConversionSequence::Better;
4502
4503 // A conversion to an a non-Class object pointer type or qualified 'Class'
4504 // type is better than a conversion to 'Class'.
4505 if (ToPtr1->isObjCClassType() &&
4506 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4507 return ImplicitConversionSequence::Worse;
4508 if (ToPtr2->isObjCClassType() &&
4509 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4510 return ImplicitConversionSequence::Better;
4511
4512 // A conversion to a non-Class object pointer type is better than a
4513 // conversion to a qualified 'Class' type.
4514 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4515 return ImplicitConversionSequence::Worse;
4516 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4517 return ImplicitConversionSequence::Better;
4518
4519 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4520 if (S.Context.hasSameType(FromType1, FromType2) &&
4521 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4522 (ToAssignLeft != ToAssignRight)) {
4523 if (FromPtr1->isSpecialized()) {
4524 // "conversion of B<A> * to B * is better than conversion of B * to
4525 // C *.
4526 bool IsFirstSame =
4527 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4528 bool IsSecondSame =
4529 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4530 if (IsFirstSame) {
4531 if (!IsSecondSame)
4532 return ImplicitConversionSequence::Better;
4533 } else if (IsSecondSame)
4534 return ImplicitConversionSequence::Worse;
4535 }
4536 return ToAssignLeft? ImplicitConversionSequence::Worse
4537 : ImplicitConversionSequence::Better;
4538 }
4539
4540 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4541 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4542 (FromAssignLeft != FromAssignRight))
4543 return FromAssignLeft? ImplicitConversionSequence::Better
4544 : ImplicitConversionSequence::Worse;
4545 }
4546 }
4547
4548 // Ranking of member-pointer types.
4549 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4550 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4551 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4552 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4553 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4554 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4555 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4556 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4557 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4558 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4559 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4560 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4561 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4562 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4563 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4564 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4565 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4566 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4567 return ImplicitConversionSequence::Worse;
4568 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4569 return ImplicitConversionSequence::Better;
4570 }
4571 // conversion of B::* to C::* is better than conversion of A::* to C::*
4572 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4573 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4574 return ImplicitConversionSequence::Better;
4575 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4576 return ImplicitConversionSequence::Worse;
4577 }
4578 }
4579
4580 if (SCS1.Second == ICK_Derived_To_Base) {
4581 // -- conversion of C to B is better than conversion of C to A,
4582 // -- binding of an expression of type C to a reference of type
4583 // B& is better than binding an expression of type C to a
4584 // reference of type A&,
4585 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4586 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4587 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4588 return ImplicitConversionSequence::Better;
4589 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4590 return ImplicitConversionSequence::Worse;
4591 }
4592
4593 // -- conversion of B to A is better than conversion of C to A.
4594 // -- binding of an expression of type B to a reference of type
4595 // A& is better than binding an expression of type C to a
4596 // reference of type A&,
4597 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4598 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4599 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4600 return ImplicitConversionSequence::Better;
4601 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4602 return ImplicitConversionSequence::Worse;
4603 }
4604 }
4605
4606 return ImplicitConversionSequence::Indistinguishable;
4607}
4608
4609static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4610 if (!T.getQualifiers().hasUnaligned())
4611 return T;
4612
4613 Qualifiers Q;
4614 T = Ctx.getUnqualifiedArrayType(T, Q);
4615 Q.removeUnaligned();
4616 return Ctx.getQualifiedType(T, Q);
4617}
4618
4619/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4620/// determine whether they are reference-compatible,
4621/// reference-related, or incompatible, for use in C++ initialization by
4622/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4623/// type, and the first type (T1) is the pointee type of the reference
4624/// type being initialized.
4625Sema::ReferenceCompareResult
4626Sema::CompareReferenceRelationship(SourceLocation Loc,
4627 QualType OrigT1, QualType OrigT2,
4628 ReferenceConversions *ConvOut) {
4629 assert(!OrigT1->isReferenceType() &&(static_cast <bool> (!OrigT1->isReferenceType() &&
"T1 must be the pointee type of the reference type") ? void (
0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "clang/lib/Sema/SemaOverload.cpp", 4630, __extension__ __PRETTY_FUNCTION__
))
4630 "T1 must be the pointee type of the reference type")(static_cast <bool> (!OrigT1->isReferenceType() &&
"T1 must be the pointee type of the reference type") ? void (
0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "clang/lib/Sema/SemaOverload.cpp", 4630, __extension__ __PRETTY_FUNCTION__
))
;
4631 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")(static_cast <bool> (!OrigT2->isReferenceType() &&
"T2 cannot be a reference type") ? void (0) : __assert_fail (
"!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "clang/lib/Sema/SemaOverload.cpp", 4631, __extension__ __PRETTY_FUNCTION__
))
;
4632
4633 QualType T1 = Context.getCanonicalType(OrigT1);
4634 QualType T2 = Context.getCanonicalType(OrigT2);
4635 Qualifiers T1Quals, T2Quals;
4636 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4637 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4638
4639 ReferenceConversions ConvTmp;
4640 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4641 Conv = ReferenceConversions();
4642
4643 // C++2a [dcl.init.ref]p4:
4644 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4645 // reference-related to "cv2 T2" if T1 is similar to T2, or
4646 // T1 is a base class of T2.
4647 // "cv1 T1" is reference-compatible with "cv2 T2" if
4648 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4649 // "pointer to cv1 T1" via a standard conversion sequence.
4650
4651 // Check for standard conversions we can apply to pointers: derived-to-base
4652 // conversions, ObjC pointer conversions, and function pointer conversions.
4653 // (Qualification conversions are checked last.)
4654 QualType ConvertedT2;
4655 if (UnqualT1 == UnqualT2) {
4656 // Nothing to do.
4657 } else if (isCompleteType(Loc, OrigT2) &&
4658 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4659 Conv |= ReferenceConversions::DerivedToBase;
4660 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4661 UnqualT2->isObjCObjectOrInterfaceType() &&
4662 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4663 Conv |= ReferenceConversions::ObjC;
4664 else if (UnqualT2->isFunctionType() &&
4665 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4666 Conv |= ReferenceConversions::Function;
4667 // No need to check qualifiers; function types don't have them.
4668 return Ref_Compatible;
4669 }
4670 bool ConvertedReferent = Conv != 0;
4671
4672 // We can have a qualification conversion. Compute whether the types are
4673 // similar at the same time.
4674 bool PreviousToQualsIncludeConst = true;
4675 bool TopLevel = true;
4676 do {
4677 if (T1 == T2)
4678 break;
4679
4680 // We will need a qualification conversion.
4681 Conv |= ReferenceConversions::Qualification;
4682
4683 // Track whether we performed a qualification conversion anywhere other
4684 // than the top level. This matters for ranking reference bindings in
4685 // overload resolution.
4686 if (!TopLevel)
4687 Conv |= ReferenceConversions::NestedQualification;
4688
4689 // MS compiler ignores __unaligned qualifier for references; do the same.
4690 T1 = withoutUnaligned(Context, T1);
4691 T2 = withoutUnaligned(Context, T2);
4692
4693 // If we find a qualifier mismatch, the types are not reference-compatible,
4694 // but are still be reference-related if they're similar.
4695 bool ObjCLifetimeConversion = false;
4696 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4697 PreviousToQualsIncludeConst,
4698 ObjCLifetimeConversion))
4699 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4700 ? Ref_Related
4701 : Ref_Incompatible;
4702
4703 // FIXME: Should we track this for any level other than the first?
4704 if (ObjCLifetimeConversion)
4705 Conv |= ReferenceConversions::ObjCLifetime;
4706
4707 TopLevel = false;
4708 } while (Context.UnwrapSimilarTypes(T1, T2));
4709
4710 // At this point, if the types are reference-related, we must either have the
4711 // same inner type (ignoring qualifiers), or must have already worked out how
4712 // to convert the referent.
4713 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4714 ? Ref_Compatible
4715 : Ref_Incompatible;
4716}
4717
4718/// Look for a user-defined conversion to a value reference-compatible
4719/// with DeclType. Return true if something definite is found.
4720static bool
4721FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4722 QualType DeclType, SourceLocation DeclLoc,
4723 Expr *Init, QualType T2, bool AllowRvalues,
4724 bool AllowExplicit) {
4725 assert(T2->isRecordType() && "Can only find conversions of record types.")(static_cast <bool> (T2->isRecordType() && "Can only find conversions of record types."
) ? void (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "clang/lib/Sema/SemaOverload.cpp", 4725, __extension__ __PRETTY_FUNCTION__
))
;
4726 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4727
4728 OverloadCandidateSet CandidateSet(
4729 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4730 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4731 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4732 NamedDecl *D = *I;
4733 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4734 if (isa<UsingShadowDecl>(D))
4735 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4736
4737 FunctionTemplateDecl *ConvTemplate
4738 = dyn_cast<FunctionTemplateDecl>(D);
4739 CXXConversionDecl *Conv;
4740 if (ConvTemplate)
4741 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4742 else
4743 Conv = cast<CXXConversionDecl>(D);
4744
4745 if (AllowRvalues) {
4746 // If we are initializing an rvalue reference, don't permit conversion
4747 // functions that return lvalues.
4748 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4749 const ReferenceType *RefType
4750 = Conv->getConversionType()->getAs<LValueReferenceType>();
4751 if (RefType && !RefType->getPointeeType()->isFunctionType())
4752 continue;
4753 }
4754
4755 if (!ConvTemplate &&
4756 S.CompareReferenceRelationship(
4757 DeclLoc,
4758 Conv->getConversionType()
4759 .getNonReferenceType()
4760 .getUnqualifiedType(),
4761 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4762 Sema::Ref_Incompatible)
4763 continue;
4764 } else {
4765 // If the conversion function doesn't return a reference type,
4766 // it can't be considered for this conversion. An rvalue reference
4767 // is only acceptable if its referencee is a function type.
4768
4769 const ReferenceType *RefType =
4770 Conv->getConversionType()->getAs<ReferenceType>();
4771 if (!RefType ||
4772 (!RefType->isLValueReferenceType() &&
4773 !RefType->getPointeeType()->isFunctionType()))
4774 continue;
4775 }
4776
4777 if (ConvTemplate)
4778 S.AddTemplateConversionCandidate(
4779 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4780 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4781 else
4782 S.AddConversionCandidate(
4783 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4784 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4785 }
4786
4787 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4788
4789 OverloadCandidateSet::iterator Best;
4790 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4791 case OR_Success:
4792 // C++ [over.ics.ref]p1:
4793 //
4794 // [...] If the parameter binds directly to the result of
4795 // applying a conversion function to the argument
4796 // expression, the implicit conversion sequence is a
4797 // user-defined conversion sequence (13.3.3.1.2), with the
4798 // second standard conversion sequence either an identity
4799 // conversion or, if the conversion function returns an
4800 // entity of a type that is a derived class of the parameter
4801 // type, a derived-to-base Conversion.
4802 if (!Best->FinalConversion.DirectBinding)
4803 return false;
4804
4805 ICS.setUserDefined();
4806 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4807 ICS.UserDefined.After = Best->FinalConversion;
4808 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4809 ICS.UserDefined.ConversionFunction = Best->Function;
4810 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4811 ICS.UserDefined.EllipsisConversion = false;
4812 assert(ICS.UserDefined.After.ReferenceBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding
&& ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"
) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "clang/lib/Sema/SemaOverload.cpp", 4814, __extension__ __PRETTY_FUNCTION__
))
4813 ICS.UserDefined.After.DirectBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding
&& ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"
) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "clang/lib/Sema/SemaOverload.cpp", 4814, __extension__ __PRETTY_FUNCTION__
))
4814 "Expected a direct reference binding!")(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding
&& ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"
) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "clang/lib/Sema/SemaOverload.cpp", 4814, __extension__ __PRETTY_FUNCTION__
))
;
4815 return true;
4816
4817 case OR_Ambiguous:
4818 ICS.setAmbiguous();
4819 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4820 Cand != CandidateSet.end(); ++Cand)
4821 if (Cand->Best)
4822 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4823 return true;
4824
4825 case OR_No_Viable_Function:
4826 case OR_Deleted:
4827 // There was no suitable conversion, or we found a deleted
4828 // conversion; continue with other checks.
4829 return false;
4830 }
4831
4832 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "clang/lib/Sema/SemaOverload.cpp"
, 4832)
;
4833}
4834
4835/// Compute an implicit conversion sequence for reference
4836/// initialization.
4837static ImplicitConversionSequence
4838TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4839 SourceLocation DeclLoc,
4840 bool SuppressUserConversions,
4841 bool AllowExplicit) {
4842 assert(DeclType->isReferenceType() && "Reference init needs a reference")(static_cast <bool> (DeclType->isReferenceType() &&
"Reference init needs a reference") ? void (0) : __assert_fail
("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "clang/lib/Sema/SemaOverload.cpp", 4842, __extension__ __PRETTY_FUNCTION__
))
;
4843
4844 // Most paths end in a failed conversion.
4845 ImplicitConversionSequence ICS;
4846 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4847
4848 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4849 QualType T2 = Init->getType();
4850
4851 // If the initializer is the address of an overloaded function, try
4852 // to resolve the overloaded function. If all goes well, T2 is the
4853 // type of the resulting function.
4854 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4855 DeclAccessPair Found;
4856 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4857 false, Found))
4858 T2 = Fn->getType();
4859 }
4860
4861 // Compute some basic properties of the types and the initializer.
4862 bool isRValRef = DeclType->isRValueReferenceType();
4863 Expr::Classification InitCategory = Init->Classify(S.Context);
4864
4865 Sema::ReferenceConversions RefConv;
4866 Sema::ReferenceCompareResult RefRelationship =
4867 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4868
4869 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4870 ICS.setStandard();
4871 ICS.Standard.First = ICK_Identity;
4872 // FIXME: A reference binding can be a function conversion too. We should
4873 // consider that when ordering reference-to-function bindings.
4874 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4875 ? ICK_Derived_To_Base
4876 : (RefConv & Sema::ReferenceConversions::ObjC)
4877 ? ICK_Compatible_Conversion
4878 : ICK_Identity;
4879 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4880 // a reference binding that performs a non-top-level qualification
4881 // conversion as a qualification conversion, not as an identity conversion.
4882 ICS.Standard.Third = (RefConv &
4883 Sema::ReferenceConversions::NestedQualification)
4884 ? ICK_Qualification
4885 : ICK_Identity;
4886 ICS.Standard.setFromType(T2);
4887 ICS.Standard.setToType(0, T2);
4888 ICS.Standard.setToType(1, T1);
4889 ICS.Standard.setToType(2, T1);
4890 ICS.Standard.ReferenceBinding = true;
4891 ICS.Standard.DirectBinding = BindsDirectly;
4892 ICS.Standard.IsLvalueReference = !isRValRef;
4893 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4894 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4895 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4896 ICS.Standard.ObjCLifetimeConversionBinding =
4897 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4898 ICS.Standard.CopyConstructor = nullptr;
4899 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4900 };
4901
4902 // C++0x [dcl.init.ref]p5:
4903 // A reference to type "cv1 T1" is initialized by an expression
4904 // of type "cv2 T2" as follows:
4905
4906 // -- If reference is an lvalue reference and the initializer expression
4907 if (!isRValRef) {
4908 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4909 // reference-compatible with "cv2 T2," or
4910 //
4911 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4912 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4913 // C++ [over.ics.ref]p1:
4914 // When a parameter of reference type binds directly (8.5.3)
4915 // to an argument expression, the implicit conversion sequence
4916 // is the identity conversion, unless the argument expression
4917 // has a type that is a derived class of the parameter type,
4918 // in which case the implicit conversion sequence is a
4919 // derived-to-base Conversion (13.3.3.1).
4920 SetAsReferenceBinding(/*BindsDirectly=*/true);
4921
4922 // Nothing more to do: the inaccessibility/ambiguity check for
4923 // derived-to-base conversions is suppressed when we're
4924 // computing the implicit conversion sequence (C++
4925 // [over.best.ics]p2).
4926 return ICS;
4927 }
4928
4929 // -- has a class type (i.e., T2 is a class type), where T1 is
4930 // not reference-related to T2, and can be implicitly
4931 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4932 // is reference-compatible with "cv3 T3" 92) (this
4933 // conversion is selected by enumerating the applicable
4934 // conversion functions (13.3.1.6) and choosing the best
4935 // one through overload resolution (13.3)),
4936 if (!SuppressUserConversions && T2->isRecordType() &&
4937 S.isCompleteType(DeclLoc, T2) &&
4938 RefRelationship == Sema::Ref_Incompatible) {
4939 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4940 Init, T2, /*AllowRvalues=*/false,
4941 AllowExplicit))
4942 return ICS;
4943 }
4944 }
4945
4946 // -- Otherwise, the reference shall be an lvalue reference to a
4947 // non-volatile const type (i.e., cv1 shall be const), or the reference
4948 // shall be an rvalue reference.
4949 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4950 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4951 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4952 return ICS;
4953 }
4954
4955 // -- If the initializer expression
4956 //
4957 // -- is an xvalue, class prvalue, array prvalue or function
4958 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4959 if (RefRelationship == Sema::Ref_Compatible &&
4960 (InitCategory.isXValue() ||
4961 (InitCategory.isPRValue() &&
4962 (T2->isRecordType() || T2->isArrayType())) ||
4963 (InitCategory.isLValue() && T2->isFunctionType()))) {
4964 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4965 // binding unless we're binding to a class prvalue.
4966 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4967 // allow the use of rvalue references in C++98/03 for the benefit of
4968 // standard library implementors; therefore, we need the xvalue check here.
4969 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4970 !(InitCategory.isPRValue() || T2->isRecordType()));
4971 return ICS;
4972 }
4973
4974 // -- has a class type (i.e., T2 is a class type), where T1 is not
4975 // reference-related to T2, and can be implicitly converted to
4976 // an xvalue, class prvalue, or function lvalue of type
4977 // "cv3 T3", where "cv1 T1" is reference-compatible with
4978 // "cv3 T3",
4979 //
4980 // then the reference is bound to the value of the initializer
4981 // expression in the first case and to the result of the conversion
4982 // in the second case (or, in either case, to an appropriate base
4983 // class subobject).
4984 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4985 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4986 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4987 Init, T2, /*AllowRvalues=*/true,
4988 AllowExplicit)) {
4989 // In the second case, if the reference is an rvalue reference
4990 // and the second standard conversion sequence of the
4991 // user-defined conversion sequence includes an lvalue-to-rvalue
4992 // conversion, the program is ill-formed.
4993 if (ICS.isUserDefined() && isRValRef &&
4994 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4995 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4996
4997 return ICS;
4998 }
4999
5000 // A temporary of function type cannot be created; don't even try.
5001 if (T1->isFunctionType())
5002 return ICS;
5003
5004 // -- Otherwise, a temporary of type "cv1 T1" is created and
5005 // initialized from the initializer expression using the
5006 // rules for a non-reference copy initialization (8.5). The
5007 // reference is then bound to the temporary. If T1 is
5008 // reference-related to T2, cv1 must be the same
5009 // cv-qualification as, or greater cv-qualification than,
5010 // cv2; otherwise, the program is ill-formed.
5011 if (RefRelationship == Sema::Ref_Related) {
5012 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
5013 // we would be reference-compatible or reference-compatible with
5014 // added qualification. But that wasn't the case, so the reference
5015 // initialization fails.
5016 //
5017 // Note that we only want to check address spaces and cvr-qualifiers here.
5018 // ObjC GC, lifetime and unaligned qualifiers aren't important.
5019 Qualifiers T1Quals = T1.getQualifiers();
5020 Qualifiers T2Quals = T2.getQualifiers();
5021 T1Quals.removeObjCGCAttr();
5022 T1Quals.removeObjCLifetime();
5023 T2Quals.removeObjCGCAttr();
5024 T2Quals.removeObjCLifetime();
5025 // MS compiler ignores __unaligned qualifier for references; do the same.
5026 T1Quals.removeUnaligned();
5027 T2Quals.removeUnaligned();
5028 if (!T1Quals.compatiblyIncludes(T2Quals))
5029 return ICS;
5030 }
5031
5032 // If at least one of the types is a class type, the types are not
5033 // related, and we aren't allowed any user conversions, the
5034 // reference binding fails. This case is important for breaking
5035 // recursion, since TryImplicitConversion below will attempt to
5036 // create a temporary through the use of a copy constructor.
5037 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
5038 (T1->isRecordType() || T2->isRecordType()))
5039 return ICS;
5040
5041 // If T1 is reference-related to T2 and the reference is an rvalue
5042 // reference, the initializer expression shall not be an lvalue.
5043 if (RefRelationship >= Sema::Ref_Related && isRValRef &&
5044 Init->Classify(S.Context).isLValue()) {
5045 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
5046 return ICS;
5047 }
5048
5049 // C++ [over.ics.ref]p2:
5050 // When a parameter of reference type is not bound directly to
5051 // an argument expression, the conversion sequence is the one
5052 // required to convert the argument expression to the
5053 // underlying type of the reference according to
5054 // 13.3.3.1. Conceptually, this conversion sequence corresponds
5055 // to copy-initializing a temporary of the underlying type with
5056 // the argument expression. Any difference in top-level
5057 // cv-qualification is subsumed by the initialization itself
5058 // and does not constitute a conversion.
5059 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
5060 AllowedExplicit::None,
5061 /*InOverloadResolution=*/false,
5062 /*CStyle=*/false,
5063 /*AllowObjCWritebackConversion=*/false,
5064 /*AllowObjCConversionOnExplicit=*/false);
5065
5066 // Of course, that's still a reference binding.
5067 if (ICS.isStandard()) {
5068 ICS.Standard.ReferenceBinding = true;
5069 ICS.Standard.IsLvalueReference = !isRValRef;
5070 ICS.Standard.BindsToFunctionLvalue = false;
5071 ICS.Standard.BindsToRvalue = true;
5072 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5073 ICS.Standard.ObjCLifetimeConversionBinding = false;
5074 } else if (ICS.isUserDefined()) {
5075 const ReferenceType *LValRefType =
5076 ICS.UserDefined.ConversionFunction->getReturnType()
5077 ->getAs<LValueReferenceType>();
5078
5079 // C++ [over.ics.ref]p3:
5080 // Except for an implicit object parameter, for which see 13.3.1, a
5081 // standard conversion sequence cannot be formed if it requires [...]
5082 // binding an rvalue reference to an lvalue other than a function
5083 // lvalue.
5084 // Note that the function case is not possible here.
5085 if (isRValRef && LValRefType) {
5086 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
5087 return ICS;
5088 }
5089
5090 ICS.UserDefined.After.ReferenceBinding = true;
5091 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
5092 ICS.UserDefined.After.BindsToFunctionLvalue = false;
5093 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
5094 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5095 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
5096 }
5097
5098 return ICS;
5099}
5100
5101static ImplicitConversionSequence
5102TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5103 bool SuppressUserConversions,
5104 bool InOverloadResolution,
5105 bool AllowObjCWritebackConversion,
5106 bool AllowExplicit = false);
5107
5108/// TryListConversion - Try to copy-initialize a value of type ToType from the
5109/// initializer list From.
5110static ImplicitConversionSequence
5111TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5112 bool SuppressUserConversions,
5113 bool InOverloadResolution,
5114 bool AllowObjCWritebackConversion) {
5115 // C++11 [over.ics.list]p1:
5116 // When an argument is an initializer list, it is not an expression and
5117 // special rules apply for converting it to a parameter type.
5118
5119 ImplicitConversionSequence Result;
5120 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5121
5122 // We need a complete type for what follows. With one C++20 exception,
5123 // incomplete types can never be initialized from init lists.
5124 QualType InitTy = ToType;
5125 const ArrayType *AT = S.Context.getAsArrayType(ToType);
5126 if (AT && S.getLangOpts().CPlusPlus20)
5127 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT))
5128 // C++20 allows list initialization of an incomplete array type.
5129 InitTy = IAT->getElementType();
5130 if (!S.isCompleteType(From->getBeginLoc(), InitTy))
5131 return Result;
5132
5133 // Per DR1467:
5134 // If the parameter type is a class X and the initializer list has a single
5135 // element of type cv U, where U is X or a class derived from X, the
5136 // implicit conversion sequence is the one required to convert the element
5137 // to the parameter type.
5138 //
5139 // Otherwise, if the parameter type is a character array [... ]
5140 // and the initializer list has a single element that is an
5141 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5142 // implicit conversion sequence is the identity conversion.
5143 if (From->getNumInits() == 1) {
5144 if (ToType->isRecordType()) {
5145 QualType InitType = From->getInit(0)->getType();
5146 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5147 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5148 return TryCopyInitialization(S, From->getInit(0), ToType,
5149 SuppressUserConversions,
5150 InOverloadResolution,
5151 AllowObjCWritebackConversion);
5152 }
5153
5154 if (AT && S.IsStringInit(From->getInit(0), AT)) {
5155 InitializedEntity Entity =
5156 InitializedEntity::InitializeParameter(S.Context, ToType,
5157 /*Consumed=*/false);
5158 if (S.CanPerformCopyInitialization(Entity, From)) {
5159 Result.setStandard();
5160 Result.Standard.setAsIdentityConversion();
5161 Result.Standard.setFromType(ToType);
5162 Result.Standard.setAllToTypes(ToType);
5163 return Result;
5164 }
5165 }
5166 }
5167
5168 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5169 // C++11 [over.ics.list]p2:
5170 // If the parameter type is std::initializer_list<X> or "array of X" and
5171 // all the elements can be implicitly converted to X, the implicit
5172 // conversion sequence is the worst conversion necessary to convert an
5173 // element of the list to X.
5174 //
5175 // C++14 [over.ics.list]p3:
5176 // Otherwise, if the parameter type is "array of N X", if the initializer
5177 // list has exactly N elements or if it has fewer than N elements and X is
5178 // default-constructible, and if all the elements of the initializer list
5179 // can be implicitly converted to X, the implicit conversion sequence is
5180 // the worst conversion necessary to convert an element of the list to X.
5181 if (AT || S.isStdInitializerList(ToType, &InitTy)) {
5182 unsigned e = From->getNumInits();
5183 ImplicitConversionSequence DfltElt;
5184 DfltElt.setBad(BadConversionSequence::no_conversion, QualType(),
5185 QualType());
5186 QualType ContTy = ToType;
5187 bool IsUnbounded = false;
5188 if (AT) {
5189 InitTy = AT->getElementType();
5190 if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) {
5191 if (CT->getSize().ult(e)) {
5192 // Too many inits, fatally bad
5193 Result.setBad(BadConversionSequence::too_many_initializers, From,
5194 ToType);
5195 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5196 return Result;
5197 }
5198 if (CT->getSize().ugt(e)) {
5199 // Need an init from empty {}, is there one?
5200 InitListExpr EmptyList(S.Context, From->getEndLoc(), None,
5201 From->getEndLoc());
5202 EmptyList.setType(S.Context.VoidTy);
5203 DfltElt = TryListConversion(
5204 S, &EmptyList, InitTy, SuppressUserConversions,
5205 InOverloadResolution, AllowObjCWritebackConversion);
5206 if (DfltElt.isBad()) {
5207 // No {} init, fatally bad
5208 Result.setBad(BadConversionSequence::too_few_initializers, From,
5209 ToType);
5210 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5211 return Result;
5212 }
5213 }
5214 } else {
5215 assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array")(static_cast <bool> (isa<IncompleteArrayType>(AT)
&& "Expected incomplete array") ? void (0) : __assert_fail
("isa<IncompleteArrayType>(AT) && \"Expected incomplete array\""
, "clang/lib/Sema/SemaOverload.cpp", 5215, __extension__ __PRETTY_FUNCTION__
))
;
5216 IsUnbounded = true;
5217 if (!e) {
5218 // Cannot convert to zero-sized.
5219 Result.setBad(BadConversionSequence::too_few_initializers, From,
5220 ToType);
5221 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5222 return Result;
5223 }
5224 llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e);
5225 ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr,
5226 ArrayType::Normal, 0);
5227 }
5228 }
5229
5230 Result.setStandard();
5231 Result.Standard.setAsIdentityConversion();
5232 Result.Standard.setFromType(InitTy);
5233 Result.Standard.setAllToTypes(InitTy);
5234 for (unsigned i = 0; i < e; ++i) {
5235 Expr *Init = From->getInit(i);
5236 ImplicitConversionSequence ICS = TryCopyInitialization(
5237 S, Init, InitTy, SuppressUserConversions, InOverloadResolution,
5238 AllowObjCWritebackConversion);
5239
5240 // Keep the worse conversion seen so far.
5241 // FIXME: Sequences are not totally ordered, so 'worse' can be
5242 // ambiguous. CWG has been informed.
5243 if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS,
5244 Result) ==
5245 ImplicitConversionSequence::Worse) {
5246 Result = ICS;
5247 // Bail as soon as we find something unconvertible.
5248 if (Result.isBad()) {
5249 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5250 return Result;
5251 }
5252 }
5253 }
5254
5255 // If we needed any implicit {} initialization, compare that now.
5256 // over.ics.list/6 indicates we should compare that conversion. Again CWG
5257 // has been informed that this might not be the best thing.
5258 if (!DfltElt.isBad() && CompareImplicitConversionSequences(
5259 S, From->getEndLoc(), DfltElt, Result) ==
5260 ImplicitConversionSequence::Worse)
5261 Result = DfltElt;
5262 // Record the type being initialized so that we may compare sequences
5263 Result.setInitializerListContainerType(ContTy, IsUnbounded);
5264 return Result;
5265 }
5266
5267 // C++14 [over.ics.list]p4:
5268 // C++11 [over.ics.list]p3:
5269 // Otherwise, if the parameter is a non-aggregate class X and overload
5270 // resolution chooses a single best constructor [...] the implicit
5271 // conversion sequence is a user-defined conversion sequence. If multiple
5272 // constructors are viable but none is better than the others, the
5273 // implicit conversion sequence is a user-defined conversion sequence.
5274 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5275 // This function can deal with initializer lists.
5276 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5277 AllowedExplicit::None,
5278 InOverloadResolution, /*CStyle=*/false,
5279 AllowObjCWritebackConversion,
5280 /*AllowObjCConversionOnExplicit=*/false);
5281 }
5282
5283 // C++14 [over.ics.list]p5:
5284 // C++11 [over.ics.list]p4:
5285 // Otherwise, if the parameter has an aggregate type which can be
5286 // initialized from the initializer list [...] the implicit conversion
5287 // sequence is a user-defined conversion sequence.
5288 if (ToType->isAggregateType()) {
5289 // Type is an aggregate, argument is an init list. At this point it comes
5290 // down to checking whether the initialization works.
5291 // FIXME: Find out whether this parameter is consumed or not.
5292 InitializedEntity Entity =
5293 InitializedEntity::InitializeParameter(S.Context, ToType,
5294 /*Consumed=*/false);
5295 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5296 From)) {
5297 Result.setUserDefined();
5298 Result.UserDefined.Before.setAsIdentityConversion();
5299 // Initializer lists don't have a type.
5300 Result.UserDefined.Before.setFromType(QualType());
5301 Result.UserDefined.Before.setAllToTypes(QualType());
5302
5303 Result.UserDefined.After.setAsIdentityConversion();
5304 Result.UserDefined.After.setFromType(ToType);
5305 Result.UserDefined.After.setAllToTypes(ToType);
5306 Result.UserDefined.ConversionFunction = nullptr;
5307 }
5308 return Result;
5309 }
5310
5311 // C++14 [over.ics.list]p6:
5312 // C++11 [over.ics.list]p5:
5313 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5314 if (ToType->isReferenceType()) {
5315 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5316 // mention initializer lists in any way. So we go by what list-
5317 // initialization would do and try to extrapolate from that.
5318
5319 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5320
5321 // If the initializer list has a single element that is reference-related
5322 // to the parameter type, we initialize the reference from that.
5323 if (From->getNumInits() == 1) {
5324 Expr *Init = From->getInit(0);
5325
5326 QualType T2 = Init->getType();
5327
5328 // If the initializer is the address of an overloaded function, try
5329 // to resolve the overloaded function. If all goes well, T2 is the
5330 // type of the resulting function.
5331 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5332 DeclAccessPair Found;
5333 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5334 Init, ToType, false, Found))
5335 T2 = Fn->getType();
5336 }
5337
5338 // Compute some basic properties of the types and the initializer.
5339 Sema::ReferenceCompareResult RefRelationship =
5340 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5341
5342 if (RefRelationship >= Sema::Ref_Related) {
5343 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5344 SuppressUserConversions,
5345 /*AllowExplicit=*/false);
5346 }
5347 }
5348
5349 // Otherwise, we bind the reference to a temporary created from the
5350 // initializer list.
5351 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5352 InOverloadResolution,
5353 AllowObjCWritebackConversion);
5354 if (Result.isFailure())
5355 return Result;
5356 assert(!Result.isEllipsis() &&(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "clang/lib/Sema/SemaOverload.cpp", 5357, __extension__ __PRETTY_FUNCTION__
))
5357 "Sub-initialization cannot result in ellipsis conversion.")(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "clang/lib/Sema/SemaOverload.cpp", 5357, __extension__ __PRETTY_FUNCTION__
))
;
5358
5359 // Can we even bind to a temporary?
5360 if (ToType->isRValueReferenceType() ||
5361 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5362 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5363 Result.UserDefined.After;
5364 SCS.ReferenceBinding = true;
5365 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5366 SCS.BindsToRvalue = true;
5367 SCS.BindsToFunctionLvalue = false;
5368 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5369 SCS.ObjCLifetimeConversionBinding = false;
5370 } else
5371 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5372 From, ToType);
5373 return Result;
5374 }
5375
5376 // C++14 [over.ics.list]p7:
5377 // C++11 [over.ics.list]p6:
5378 // Otherwise, if the parameter type is not a class:
5379 if (!ToType->isRecordType()) {
5380 // - if the initializer list has one element that is not itself an
5381 // initializer list, the implicit conversion sequence is the one
5382 // required to convert the element to the parameter type.
5383 unsigned NumInits = From->getNumInits();
5384 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5385 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5386 SuppressUserConversions,
5387 InOverloadResolution,
5388 AllowObjCWritebackConversion);
5389 // - if the initializer list has no elements, the implicit conversion
5390 // sequence is the identity conversion.
5391 else if (NumInits == 0) {
5392 Result.setStandard();
5393 Result.Standard.setAsIdentityConversion();
5394 Result.Standard.setFromType(ToType);
5395 Result.Standard.setAllToTypes(ToType);
5396 }
5397 return Result;
5398 }
5399
5400 // C++14 [over.ics.list]p8:
5401 // C++11 [over.ics.list]p7:
5402 // In all cases other than those enumerated above, no conversion is possible
5403 return Result;
5404}
5405
5406/// TryCopyInitialization - Try to copy-initialize a value of type
5407/// ToType from the expression From. Return the implicit conversion
5408/// sequence required to pass this argument, which may be a bad
5409/// conversion sequence (meaning that the argument cannot be passed to
5410/// a parameter of this type). If @p SuppressUserConversions, then we
5411/// do not permit any user-defined conversion sequences.
5412static ImplicitConversionSequence
5413TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5414 bool SuppressUserConversions,
5415 bool InOverloadResolution,
5416 bool AllowObjCWritebackConversion,
5417 bool AllowExplicit) {
5418 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5419 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5420 InOverloadResolution,AllowObjCWritebackConversion);
5421
5422 if (ToType->isReferenceType())
5423 return TryReferenceInit(S, From, ToType,
5424 /*FIXME:*/ From->getBeginLoc(),
5425 SuppressUserConversions, AllowExplicit);
5426
5427 return TryImplicitConversion(S, From, ToType,
5428 SuppressUserConversions,
5429 AllowedExplicit::None,
5430 InOverloadResolution,
5431 /*CStyle=*/false,
5432 AllowObjCWritebackConversion,
5433 /*AllowObjCConversionOnExplicit=*/false);
5434}
5435
5436static bool TryCopyInitialization(const CanQualType FromQTy,
5437 const CanQualType ToQTy,
5438 Sema &S,
5439 SourceLocation Loc,
5440 ExprValueKind FromVK) {
5441 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5442 ImplicitConversionSequence ICS =
5443 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5444
5445 return !ICS.isBad();
5446}
5447
5448/// TryObjectArgumentInitialization - Try to initialize the object
5449/// parameter of the given member function (@c Method) from the
5450/// expression @p From.
5451static ImplicitConversionSequence
5452TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5453 Expr::Classification FromClassification,
5454 CXXMethodDecl *Method,
5455 CXXRecordDecl *ActingContext) {
5456 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5457 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5458 // const volatile object.
5459 Qualifiers Quals = Method->getMethodQualifiers();
5460 if (isa<CXXDestructorDecl>(Method)) {
5461 Quals.addConst();
5462 Quals.addVolatile();
5463 }
5464
5465 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5466
5467 // Set up the conversion sequence as a "bad" conversion, to allow us
5468 // to exit early.
5469 ImplicitConversionSequence ICS;
5470
5471 // We need to have an object of class type.
5472 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5473 FromType = PT->getPointeeType();
5474
5475 // When we had a pointer, it's implicitly dereferenced, so we
5476 // better have an lvalue.
5477 assert(FromClassification.isLValue())(static_cast <bool> (FromClassification.isLValue()) ? void
(0) : __assert_fail ("FromClassification.isLValue()", "clang/lib/Sema/SemaOverload.cpp"
, 5477, __extension__ __PRETTY_FUNCTION__))
;
5478 }
5479
5480 assert(FromType->isRecordType())(static_cast <bool> (FromType->isRecordType()) ? void
(0) : __assert_fail ("FromType->isRecordType()", "clang/lib/Sema/SemaOverload.cpp"
, 5480, __extension__ __PRETTY_FUNCTION__))
;
5481
5482 // C++0x [over.match.funcs]p4:
5483 // For non-static member functions, the type of the implicit object
5484 // parameter is
5485 //
5486 // - "lvalue reference to cv X" for functions declared without a
5487 // ref-qualifier or with the & ref-qualifier
5488 // - "rvalue reference to cv X" for functions declared with the &&
5489 // ref-qualifier
5490 //
5491 // where X is the class of which the function is a member and cv is the
5492 // cv-qualification on the member function declaration.
5493 //
5494 // However, when finding an implicit conversion sequence for the argument, we
5495 // are not allowed to perform user-defined conversions
5496 // (C++ [over.match.funcs]p5). We perform a simplified version of
5497 // reference binding here, that allows class rvalues to bind to
5498 // non-constant references.
5499
5500 // First check the qualifiers.
5501 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5502 if (ImplicitParamType.getCVRQualifiers()
5503 != FromTypeCanon.getLocalCVRQualifiers() &&
5504 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5505 ICS.setBad(BadConversionSequence::bad_qualifiers,
5506 FromType, ImplicitParamType);
5507 return ICS;
5508 }
5509
5510 if (FromTypeCanon.hasAddressSpace()) {
5511 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5512 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5513 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5514 ICS.setBad(BadConversionSequence::bad_qualifiers,
5515 FromType, ImplicitParamType);
5516 return ICS;
5517 }
5518 }
5519
5520 // Check that we have either the same type or a derived type. It
5521 // affects the conversion rank.
5522 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5523 ImplicitConversionKind SecondKind;
5524 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5525 SecondKind = ICK_Identity;
5526 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5527 SecondKind = ICK_Derived_To_Base;
5528 else {
5529 ICS.setBad(BadConversionSequence::unrelated_class,
5530 FromType, ImplicitParamType);
5531 return ICS;
5532 }
5533
5534 // Check the ref-qualifier.
5535 switch (Method->getRefQualifier()) {
5536 case RQ_None:
5537 // Do nothing; we don't care about lvalueness or rvalueness.
5538 break;
5539
5540 case RQ_LValue:
5541 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5542 // non-const lvalue reference cannot bind to an rvalue
5543 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5544 ImplicitParamType);
5545 return ICS;
5546 }
5547 break;
5548
5549 case RQ_RValue:
5550 if (!FromClassification.isRValue()) {
5551 // rvalue reference cannot bind to an lvalue
5552 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5553 ImplicitParamType);
5554 return ICS;
5555 }
5556 break;
5557 }
5558
5559 // Success. Mark this as a reference binding.
5560 ICS.setStandard();
5561 ICS.Standard.setAsIdentityConversion();
5562 ICS.Standard.Second = SecondKind;
5563 ICS.Standard.setFromType(FromType);
5564 ICS.Standard.setAllToTypes(ImplicitParamType);
5565 ICS.Standard.ReferenceBinding = true;
5566 ICS.Standard.DirectBinding = true;
5567 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5568 ICS.Standard.BindsToFunctionLvalue = false;
5569 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5570 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5571 = (Method->getRefQualifier() == RQ_None);
5572 return ICS;
5573}
5574
5575/// PerformObjectArgumentInitialization - Perform initialization of
5576/// the implicit object parameter for the given Method with the given
5577/// expression.
5578ExprResult
5579Sema::PerformObjectArgumentInitialization(Expr *From,
5580 NestedNameSpecifier *Qualifier,
5581 NamedDecl *FoundDecl,
5582 CXXMethodDecl *Method) {
5583 QualType FromRecordType, DestType;
5584 QualType ImplicitParamRecordType =
5585 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5586
5587 Expr::Classification FromClassification;
5588 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5589 FromRecordType = PT->getPointeeType();
5590 DestType = Method->getThisType();
5591 FromClassification = Expr::Classification::makeSimpleLValue();
5592 } else {
5593 FromRecordType = From->getType();
5594 DestType = ImplicitParamRecordType;
5595 FromClassification = From->Classify(Context);
5596
5597 // When performing member access on a prvalue, materialize a temporary.
5598 if (From->isPRValue()) {
5599 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5600 Method->getRefQualifier() !=
5601 RefQualifierKind::RQ_RValue);
5602 }
5603 }
5604
5605 // Note that we always use the true parent context when performing
5606 // the actual argument initialization.
5607 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5608 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5609 Method->getParent());
5610 if (ICS.isBad()) {
5611 switch (ICS.Bad.Kind) {
5612 case BadConversionSequence::bad_qualifiers: {
5613 Qualifiers FromQs = FromRecordType.getQualifiers();
5614 Qualifiers ToQs = DestType.getQualifiers();
5615 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5616 if (CVR) {
5617 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5618 << Method->getDeclName() << FromRecordType << (CVR - 1)
5619 << From->getSourceRange();
5620 Diag(Method->getLocation(), diag::note_previous_decl)
5621 << Method->getDeclName();
5622 return ExprError();
5623 }
5624 break;
5625 }
5626
5627 case BadConversionSequence::lvalue_ref_to_rvalue:
5628 case BadConversionSequence::rvalue_ref_to_lvalue: {
5629 bool IsRValueQualified =
5630 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5631 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5632 << Method->getDeclName() << FromClassification.isRValue()
5633 << IsRValueQualified;
5634 Diag(Method->getLocation(), diag::note_previous_decl)
5635 << Method->getDeclName();
5636 return ExprError();
5637 }
5638
5639 case BadConversionSequence::no_conversion:
5640 case BadConversionSequence::unrelated_class:
5641 break;
5642
5643 case BadConversionSequence::too_few_initializers:
5644 case BadConversionSequence::too_many_initializers:
5645 llvm_unreachable("Lists are not objects")::llvm::llvm_unreachable_internal("Lists are not objects", "clang/lib/Sema/SemaOverload.cpp"
, 5645)
;
5646 }
5647
5648 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5649 << ImplicitParamRecordType << FromRecordType
5650 << From->getSourceRange();
5651 }
5652
5653 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5654 ExprResult FromRes =
5655 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5656 if (FromRes.isInvalid())
5657 return ExprError();
5658 From = FromRes.get();
5659 }
5660
5661 if (!Context.hasSameType(From->getType(), DestType)) {
5662 CastKind CK;
5663 QualType PteeTy = DestType->getPointeeType();
5664 LangAS DestAS =
5665 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5666 if (FromRecordType.getAddressSpace() != DestAS)
5667 CK = CK_AddressSpaceConversion;
5668 else
5669 CK = CK_NoOp;
5670 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5671 }
5672 return From;
5673}
5674
5675/// TryContextuallyConvertToBool - Attempt to contextually convert the
5676/// expression From to bool (C++0x [conv]p3).
5677static ImplicitConversionSequence
5678TryContextuallyConvertToBool(Sema &S, Expr *From) {
5679 // C++ [dcl.init]/17.8:
5680 // - Otherwise, if the initialization is direct-initialization, the source
5681 // type is std::nullptr_t, and the destination type is bool, the initial
5682 // value of the object being initialized is false.
5683 if (From->getType()->isNullPtrType())
5684 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5685 S.Context.BoolTy,
5686 From->isGLValue());
5687
5688 // All other direct-initialization of bool is equivalent to an implicit
5689 // conversion to bool in which explicit conversions are permitted.
5690 return TryImplicitConversion(S, From, S.Context.BoolTy,
5691 /*SuppressUserConversions=*/false,
5692 AllowedExplicit::Conversions,
5693 /*InOverloadResolution=*/false,
5694 /*CStyle=*/false,
5695 /*AllowObjCWritebackConversion=*/false,
5696 /*AllowObjCConversionOnExplicit=*/false);
5697}
5698
5699/// PerformContextuallyConvertToBool - Perform a contextual conversion
5700/// of the expression From to bool (C++0x [conv]p3).
5701ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5702 if (checkPlaceholderForOverload(*this, From))
5703 return ExprError();
5704
5705 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5706 if (!ICS.isBad())
5707 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5708
5709 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5710 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5711 << From->getType() << From->getSourceRange();
5712 return ExprError();
5713}
5714
5715/// Check that the specified conversion is permitted in a converted constant
5716/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5717/// is acceptable.
5718static bool CheckConvertedConstantConversions(Sema &S,
5719 StandardConversionSequence &SCS) {
5720 // Since we know that the target type is an integral or unscoped enumeration
5721 // type, most conversion kinds are impossible. All possible First and Third
5722 // conversions are fine.
5723 switch (SCS.Second) {
5724 case ICK_Identity:
5725 case ICK_Integral_Promotion:
5726 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5727 case ICK_Zero_Queue_Conversion:
5728 return true;
5729
5730 case ICK_Boolean_Conversion:
5731 // Conversion from an integral or unscoped enumeration type to bool is
5732 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5733 // conversion, so we allow it in a converted constant expression.
5734 //
5735 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5736 // a lot of popular code. We should at least add a warning for this
5737 // (non-conforming) extension.
5738 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5739 SCS.getToType(2)->isBooleanType();
5740
5741 case ICK_Pointer_Conversion:
5742 case ICK_Pointer_Member:
5743 // C++1z: null pointer conversions and null member pointer conversions are
5744 // only permitted if the source type is std::nullptr_t.
5745 return SCS.getFromType()->isNullPtrType();
5746
5747 case ICK_Floating_Promotion:
5748 case ICK_Complex_Promotion:
5749 case ICK_Floating_Conversion:
5750 case ICK_Complex_Conversion:
5751 case ICK_Floating_Integral:
5752 case ICK_Compatible_Conversion:
5753 case ICK_Derived_To_Base:
5754 case ICK_Vector_Conversion:
5755 case ICK_SVE_Vector_Conversion:
5756 case ICK_Vector_Splat:
5757 case ICK_Complex_Real:
5758 case ICK_Block_Pointer_Conversion:
5759 case ICK_TransparentUnionConversion:
5760 case ICK_Writeback_Conversion:
5761 case ICK_Zero_Event_Conversion:
5762 case ICK_C_Only_Conversion:
5763 case ICK_Incompatible_Pointer_Conversion:
5764 return false;
5765
5766 case ICK_Lvalue_To_Rvalue:
5767 case ICK_Array_To_Pointer:
5768 case ICK_Function_To_Pointer:
5769 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "clang/lib/Sema/SemaOverload.cpp", 5769)
;
5770
5771 case ICK_Function_Conversion:
5772 case ICK_Qualification:
5773 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "clang/lib/Sema/SemaOverload.cpp", 5773)
;
5774
5775 case ICK_Num_Conversion_Kinds:
5776 break;
5777 }
5778
5779 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "clang/lib/Sema/SemaOverload.cpp"
, 5779)
;
5780}
5781
5782/// CheckConvertedConstantExpression - Check that the expression From is a
5783/// converted constant expression of type T, perform the conversion and produce
5784/// the converted expression, per C++11 [expr.const]p3.
5785static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5786 QualType T, APValue &Value,
5787 Sema::CCEKind CCE,
5788 bool RequireInt,
5789 NamedDecl *Dest) {
5790 assert(S.getLangOpts().CPlusPlus11 &&(static_cast <bool> (S.getLangOpts().CPlusPlus11 &&
"converted constant expression outside C++11") ? void (0) : __assert_fail
("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "clang/lib/Sema/SemaOverload.cpp", 5791, __extension__ __PRETTY_FUNCTION__
))
5791 "converted constant expression outside C++11")(static_cast <bool> (S.getLangOpts().CPlusPlus11 &&
"converted constant expression outside C++11") ? void (0) : __assert_fail
("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "clang/lib/Sema/SemaOverload.cpp", 5791, __extension__ __PRETTY_FUNCTION__
))
;
5792
5793 if (checkPlaceholderForOverload(S, From))
5794 return ExprError();
5795
5796 // C++1z [expr.const]p3:
5797 // A converted constant expression of type T is an expression,
5798 // implicitly converted to type T, where the converted
5799 // expression is a constant expression and the implicit conversion
5800 // sequence contains only [... list of conversions ...].
5801 ImplicitConversionSequence ICS =
5802 (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept)
5803 ? TryContextuallyConvertToBool(S, From)
5804 : TryCopyInitialization(S, From, T,
5805 /*SuppressUserConversions=*/false,
5806 /*InOverloadResolution=*/false,
5807 /*AllowObjCWritebackConversion=*/false,
5808 /*AllowExplicit=*/false);
5809 StandardConversionSequence *SCS = nullptr;
5810 switch (ICS.getKind()) {
5811 case ImplicitConversionSequence::StandardConversion:
5812 SCS = &ICS.Standard;
5813 break;
5814 case ImplicitConversionSequence::UserDefinedConversion:
5815 if (T->isRecordType())
5816 SCS = &ICS.UserDefined.Before;
5817 else
5818 SCS = &ICS.UserDefined.After;
5819 break;
5820 case ImplicitConversionSequence::AmbiguousConversion:
5821 case ImplicitConversionSequence::BadConversion:
5822 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5823 return S.Diag(From->getBeginLoc(),
5824 diag::err_typecheck_converted_constant_expression)
5825 << From->getType() << From->getSourceRange() << T;
5826 return ExprError();
5827
5828 case ImplicitConversionSequence::EllipsisConversion:
5829 case ImplicitConversionSequence::StaticObjectArgumentConversion:
5830 llvm_unreachable("bad conversion in converted constant expression")::llvm::llvm_unreachable_internal("bad conversion in converted constant expression"
, "clang/lib/Sema/SemaOverload.cpp", 5830)
;
5831 }
5832
5833 // Check that we would only use permitted conversions.
5834 if (!CheckConvertedConstantConversions(S, *SCS)) {
5835 return S.Diag(From->getBeginLoc(),
5836 diag::err_typecheck_converted_constant_expression_disallowed)
5837 << From->getType() << From->getSourceRange() << T;
5838 }
5839 // [...] and where the reference binding (if any) binds directly.
5840 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5841 return S.Diag(From->getBeginLoc(),
5842 diag::err_typecheck_converted_constant_expression_indirect)
5843 << From->getType() << From->getSourceRange() << T;
5844 }
5845
5846 // Usually we can simply apply the ImplicitConversionSequence we formed
5847 // earlier, but that's not guaranteed to work when initializing an object of
5848 // class type.
5849 ExprResult Result;
5850 if (T->isRecordType()) {
5851 assert(CCE == Sema::CCEK_TemplateArg &&(static_cast <bool> (CCE == Sema::CCEK_TemplateArg &&
"unexpected class type converted constant expr") ? void (0) :
__assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\""
, "clang/lib/Sema/SemaOverload.cpp", 5852, __extension__ __PRETTY_FUNCTION__
))
5852 "unexpected class type converted constant expr")(static_cast <bool> (CCE == Sema::CCEK_TemplateArg &&
"unexpected class type converted constant expr") ? void (0) :
__assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\""
, "clang/lib/Sema/SemaOverload.cpp", 5852, __extension__ __PRETTY_FUNCTION__
))
;
5853 Result = S.PerformCopyInitialization(
5854 InitializedEntity::InitializeTemplateParameter(
5855 T, cast<NonTypeTemplateParmDecl>(Dest)),
5856 SourceLocation(), From);
5857 } else {
5858 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5859 }
5860 if (Result.isInvalid())
5861 return Result;
5862
5863 // C++2a [intro.execution]p5:
5864 // A full-expression is [...] a constant-expression [...]
5865 Result = S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5866 /*DiscardedValue=*/false, /*IsCons