Bug Summary

File:clang/lib/Sema/SemaTemplate.cpp
Warning:line 4652, column 21
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplate.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaTemplate.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaTemplate.cpp

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8// This file implements semantic analysis for C++ templates.
9//===----------------------------------------------------------------------===//
10
11#include "TreeTransform.h"
12#include "clang/AST/ASTConsumer.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclFriend.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/TypeVisitor.h"
20#include "clang/Basic/Builtins.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/Stack.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Sema/Scope.h"
31#include "clang/Sema/SemaInternal.h"
32#include "clang/Sema/Template.h"
33#include "clang/Sema/TemplateDeduction.h"
34#include "llvm/ADT/SmallBitVector.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/StringExtras.h"
37
38#include <iterator>
39using namespace clang;
40using namespace sema;
41
42// Exported for use by Parser.
43SourceRange
44clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
45 unsigned N) {
46 if (!N) return SourceRange();
47 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
48}
49
50unsigned Sema::getTemplateDepth(Scope *S) const {
51 unsigned Depth = 0;
52
53 // Each template parameter scope represents one level of template parameter
54 // depth.
55 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
56 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
57 ++Depth;
58 }
59
60 // Note that there are template parameters with the given depth.
61 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
62
63 // Look for parameters of an enclosing generic lambda. We don't create a
64 // template parameter scope for these.
65 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
66 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
67 if (!LSI->TemplateParams.empty()) {
68 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
69 break;
70 }
71 if (LSI->GLTemplateParameterList) {
72 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
73 break;
74 }
75 }
76 }
77
78 // Look for parameters of an enclosing terse function template. We don't
79 // create a template parameter scope for these either.
80 for (const InventedTemplateParameterInfo &Info :
81 getInventedParameterInfos()) {
82 if (!Info.TemplateParams.empty()) {
83 ParamsAtDepth(Info.AutoTemplateParameterDepth);
84 break;
85 }
86 }
87
88 return Depth;
89}
90
91/// \brief Determine whether the declaration found is acceptable as the name
92/// of a template and, if so, return that template declaration. Otherwise,
93/// returns null.
94///
95/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
96/// is true. In all other cases it will return a TemplateDecl (or null).
97NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
98 bool AllowFunctionTemplates,
99 bool AllowDependent) {
100 D = D->getUnderlyingDecl();
101
102 if (isa<TemplateDecl>(D)) {
103 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
104 return nullptr;
105
106 return D;
107 }
108
109 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
110 // C++ [temp.local]p1:
111 // Like normal (non-template) classes, class templates have an
112 // injected-class-name (Clause 9). The injected-class-name
113 // can be used with or without a template-argument-list. When
114 // it is used without a template-argument-list, it is
115 // equivalent to the injected-class-name followed by the
116 // template-parameters of the class template enclosed in
117 // <>. When it is used with a template-argument-list, it
118 // refers to the specified class template specialization,
119 // which could be the current specialization or another
120 // specialization.
121 if (Record->isInjectedClassName()) {
122 Record = cast<CXXRecordDecl>(Record->getDeclContext());
123 if (Record->getDescribedClassTemplate())
124 return Record->getDescribedClassTemplate();
125
126 if (ClassTemplateSpecializationDecl *Spec
127 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
128 return Spec->getSpecializedTemplate();
129 }
130
131 return nullptr;
132 }
133
134 // 'using Dependent::foo;' can resolve to a template name.
135 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
136 // injected-class-name).
137 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
138 return D;
139
140 return nullptr;
141}
142
143void Sema::FilterAcceptableTemplateNames(LookupResult &R,
144 bool AllowFunctionTemplates,
145 bool AllowDependent) {
146 LookupResult::Filter filter = R.makeFilter();
147 while (filter.hasNext()) {
148 NamedDecl *Orig = filter.next();
149 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
150 filter.erase();
151 }
152 filter.done();
153}
154
155bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
156 bool AllowFunctionTemplates,
157 bool AllowDependent,
158 bool AllowNonTemplateFunctions) {
159 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
160 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
161 return true;
162 if (AllowNonTemplateFunctions &&
163 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
164 return true;
165 }
166
167 return false;
168}
169
170TemplateNameKind Sema::isTemplateName(Scope *S,
171 CXXScopeSpec &SS,
172 bool hasTemplateKeyword,
173 const UnqualifiedId &Name,
174 ParsedType ObjectTypePtr,
175 bool EnteringContext,
176 TemplateTy &TemplateResult,
177 bool &MemberOfUnknownSpecialization,
178 bool Disambiguation) {
179 assert(getLangOpts().CPlusPlus && "No template names in C!")(static_cast<void> (0));
180
181 DeclarationName TName;
182 MemberOfUnknownSpecialization = false;
183
184 switch (Name.getKind()) {
185 case UnqualifiedIdKind::IK_Identifier:
186 TName = DeclarationName(Name.Identifier);
187 break;
188
189 case UnqualifiedIdKind::IK_OperatorFunctionId:
190 TName = Context.DeclarationNames.getCXXOperatorName(
191 Name.OperatorFunctionId.Operator);
192 break;
193
194 case UnqualifiedIdKind::IK_LiteralOperatorId:
195 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
196 break;
197
198 default:
199 return TNK_Non_template;
200 }
201
202 QualType ObjectType = ObjectTypePtr.get();
203
204 AssumedTemplateKind AssumedTemplate;
205 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
206 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
207 MemberOfUnknownSpecialization, SourceLocation(),
208 &AssumedTemplate,
209 /*AllowTypoCorrection=*/!Disambiguation))
210 return TNK_Non_template;
211
212 if (AssumedTemplate != AssumedTemplateKind::None) {
213 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
214 // Let the parser know whether we found nothing or found functions; if we
215 // found nothing, we want to more carefully check whether this is actually
216 // a function template name versus some other kind of undeclared identifier.
217 return AssumedTemplate == AssumedTemplateKind::FoundNothing
218 ? TNK_Undeclared_template
219 : TNK_Function_template;
220 }
221
222 if (R.empty())
223 return TNK_Non_template;
224
225 NamedDecl *D = nullptr;
226 if (R.isAmbiguous()) {
227 // If we got an ambiguity involving a non-function template, treat this
228 // as a template name, and pick an arbitrary template for error recovery.
229 bool AnyFunctionTemplates = false;
230 for (NamedDecl *FoundD : R) {
231 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
232 if (isa<FunctionTemplateDecl>(FoundTemplate))
233 AnyFunctionTemplates = true;
234 else {
235 D = FoundTemplate;
236 break;
237 }
238 }
239 }
240
241 // If we didn't find any templates at all, this isn't a template name.
242 // Leave the ambiguity for a later lookup to diagnose.
243 if (!D && !AnyFunctionTemplates) {
244 R.suppressDiagnostics();
245 return TNK_Non_template;
246 }
247
248 // If the only templates were function templates, filter out the rest.
249 // We'll diagnose the ambiguity later.
250 if (!D)
251 FilterAcceptableTemplateNames(R);
252 }
253
254 // At this point, we have either picked a single template name declaration D
255 // or we have a non-empty set of results R containing either one template name
256 // declaration or a set of function templates.
257
258 TemplateName Template;
259 TemplateNameKind TemplateKind;
260
261 unsigned ResultCount = R.end() - R.begin();
262 if (!D && ResultCount > 1) {
263 // We assume that we'll preserve the qualifier from a function
264 // template name in other ways.
265 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
266 TemplateKind = TNK_Function_template;
267
268 // We'll do this lookup again later.
269 R.suppressDiagnostics();
270 } else {
271 if (!D) {
272 D = getAsTemplateNameDecl(*R.begin());
273 assert(D && "unambiguous result is not a template name")(static_cast<void> (0));
274 }
275
276 if (isa<UnresolvedUsingValueDecl>(D)) {
277 // We don't yet know whether this is a template-name or not.
278 MemberOfUnknownSpecialization = true;
279 return TNK_Non_template;
280 }
281
282 TemplateDecl *TD = cast<TemplateDecl>(D);
283
284 if (SS.isSet() && !SS.isInvalid()) {
285 NestedNameSpecifier *Qualifier = SS.getScopeRep();
286 Template = Context.getQualifiedTemplateName(Qualifier,
287 hasTemplateKeyword, TD);
288 } else {
289 Template = TemplateName(TD);
290 }
291
292 if (isa<FunctionTemplateDecl>(TD)) {
293 TemplateKind = TNK_Function_template;
294
295 // We'll do this lookup again later.
296 R.suppressDiagnostics();
297 } else {
298 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||(static_cast<void> (0))
299 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||(static_cast<void> (0))
300 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD))(static_cast<void> (0));
301 TemplateKind =
302 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
303 isa<ConceptDecl>(TD) ? TNK_Concept_template :
304 TNK_Type_template;
305 }
306 }
307
308 TemplateResult = TemplateTy::make(Template);
309 return TemplateKind;
310}
311
312bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
313 SourceLocation NameLoc,
314 ParsedTemplateTy *Template) {
315 CXXScopeSpec SS;
316 bool MemberOfUnknownSpecialization = false;
317
318 // We could use redeclaration lookup here, but we don't need to: the
319 // syntactic form of a deduction guide is enough to identify it even
320 // if we can't look up the template name at all.
321 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
322 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
323 /*EnteringContext*/ false,
324 MemberOfUnknownSpecialization))
325 return false;
326
327 if (R.empty()) return false;
328 if (R.isAmbiguous()) {
329 // FIXME: Diagnose an ambiguity if we find at least one template.
330 R.suppressDiagnostics();
331 return false;
332 }
333
334 // We only treat template-names that name type templates as valid deduction
335 // guide names.
336 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
337 if (!TD || !getAsTypeTemplateDecl(TD))
338 return false;
339
340 if (Template)
341 *Template = TemplateTy::make(TemplateName(TD));
342 return true;
343}
344
345bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
346 SourceLocation IILoc,
347 Scope *S,
348 const CXXScopeSpec *SS,
349 TemplateTy &SuggestedTemplate,
350 TemplateNameKind &SuggestedKind) {
351 // We can't recover unless there's a dependent scope specifier preceding the
352 // template name.
353 // FIXME: Typo correction?
354 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
355 computeDeclContext(*SS))
356 return false;
357
358 // The code is missing a 'template' keyword prior to the dependent template
359 // name.
360 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
361 Diag(IILoc, diag::err_template_kw_missing)
362 << Qualifier << II.getName()
363 << FixItHint::CreateInsertion(IILoc, "template ");
364 SuggestedTemplate
365 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
366 SuggestedKind = TNK_Dependent_template_name;
367 return true;
368}
369
370bool Sema::LookupTemplateName(LookupResult &Found,
371 Scope *S, CXXScopeSpec &SS,
372 QualType ObjectType,
373 bool EnteringContext,
374 bool &MemberOfUnknownSpecialization,
375 RequiredTemplateKind RequiredTemplate,
376 AssumedTemplateKind *ATK,
377 bool AllowTypoCorrection) {
378 if (ATK
6.1
'ATK' is null
6.1
'ATK' is null
6.1
'ATK' is null
6.1
'ATK' is null
6.1
'ATK' is null
)
7
Taking false branch
379 *ATK = AssumedTemplateKind::None;
380
381 if (SS.isInvalid())
8
Calling 'CXXScopeSpec::isInvalid'
10
Returning from 'CXXScopeSpec::isInvalid'
11
Taking false branch
382 return true;
383
384 Found.setTemplateNameLookup(true);
385
386 // Determine where to perform name lookup
387 MemberOfUnknownSpecialization = false;
388 DeclContext *LookupCtx = nullptr;
389 bool IsDependent = false;
390 if (!ObjectType.isNull()) {
12
Calling 'QualType::isNull'
26
Returning from 'QualType::isNull'
27
Taking false branch
391 // This nested-name-specifier occurs in a member access expression, e.g.,
392 // x->B::f, and we are looking into the type of the object.
393 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist")(static_cast<void> (0));
394 LookupCtx = computeDeclContext(ObjectType);
395 IsDependent = !LookupCtx && ObjectType->isDependentType();
396 assert((IsDependent || !ObjectType->isIncompleteType() ||(static_cast<void> (0))
397 ObjectType->castAs<TagType>()->isBeingDefined()) &&(static_cast<void> (0))
398 "Caller should have completed object type")(static_cast<void> (0));
399
400 // Template names cannot appear inside an Objective-C class or object type
401 // or a vector type.
402 //
403 // FIXME: This is wrong. For example:
404 //
405 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
406 // Vec<int> vi;
407 // vi.Vec<int>::~Vec<int>();
408 //
409 // ... should be accepted but we will not treat 'Vec' as a template name
410 // here. The right thing to do would be to check if the name is a valid
411 // vector component name, and look up a template name if not. And similarly
412 // for lookups into Objective-C class and object types, where the same
413 // problem can arise.
414 if (ObjectType->isObjCObjectOrInterfaceType() ||
415 ObjectType->isVectorType()) {
416 Found.clear();
417 return false;
418 }
419 } else if (SS.isNotEmpty()) {
28
Calling 'CXXScopeSpec::isNotEmpty'
34
Returning from 'CXXScopeSpec::isNotEmpty'
35
Taking true branch
420 // This nested-name-specifier occurs after another nested-name-specifier,
421 // so long into the context associated with the prior nested-name-specifier.
422 LookupCtx = computeDeclContext(SS, EnteringContext);
423 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
36
Assuming 'LookupCtx' is non-null
424
425 // The declaration context must be complete.
426 if (LookupCtx
36.1
'LookupCtx' is non-null
36.1
'LookupCtx' is non-null
36.1
'LookupCtx' is non-null
36.1
'LookupCtx' is non-null
36.1
'LookupCtx' is non-null
&& RequireCompleteDeclContext(SS, LookupCtx))
37
Assuming the condition is false
38
Taking false branch
427 return true;
428 }
429
430 bool ObjectTypeSearchedInScope = false;
431 bool AllowFunctionTemplatesInLookup = true;
432 if (LookupCtx
38.1
'LookupCtx' is non-null
38.1
'LookupCtx' is non-null
38.1
'LookupCtx' is non-null
38.1
'LookupCtx' is non-null
38.1
'LookupCtx' is non-null
) {
39
Taking true branch
433 // Perform "qualified" name lookup into the declaration context we
434 // computed, which is either the type of the base of a member access
435 // expression or the declaration context associated with a prior
436 // nested-name-specifier.
437 LookupQualifiedName(Found, LookupCtx);
438
439 // FIXME: The C++ standard does not clearly specify what happens in the
440 // case where the object type is dependent, and implementations vary. In
441 // Clang, we treat a name after a . or -> as a template-name if lookup
442 // finds a non-dependent member or member of the current instantiation that
443 // is a type template, or finds no such members and lookup in the context
444 // of the postfix-expression finds a type template. In the latter case, the
445 // name is nonetheless dependent, and we may resolve it to a member of an
446 // unknown specialization when we come to instantiate the template.
447 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
448 }
449
450 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
451 // C++ [basic.lookup.classref]p1:
452 // In a class member access expression (5.2.5), if the . or -> token is
453 // immediately followed by an identifier followed by a <, the
454 // identifier must be looked up to determine whether the < is the
455 // beginning of a template argument list (14.2) or a less-than operator.
456 // The identifier is first looked up in the class of the object
457 // expression. If the identifier is not found, it is then looked up in
458 // the context of the entire postfix-expression and shall name a class
459 // template.
460 if (S)
461 LookupName(Found, S);
462
463 if (!ObjectType.isNull()) {
464 // FIXME: We should filter out all non-type templates here, particularly
465 // variable templates and concepts. But the exclusion of alias templates
466 // and template template parameters is a wording defect.
467 AllowFunctionTemplatesInLookup = false;
468 ObjectTypeSearchedInScope = true;
469 }
470
471 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
472 }
473
474 if (Found.isAmbiguous())
40
Assuming the condition is true
41
Taking true branch
475 return false;
42
Returning zero, which participates in a condition later
476
477 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
478 !RequiredTemplate.hasTemplateKeyword()) {
479 // C++2a [temp.names]p2:
480 // A name is also considered to refer to a template if it is an
481 // unqualified-id followed by a < and name lookup finds either one or more
482 // functions or finds nothing.
483 //
484 // To keep our behavior consistent, we apply the "finds nothing" part in
485 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
486 // successfully form a call to an undeclared template-id.
487 bool AllFunctions =
488 getLangOpts().CPlusPlus20 &&
489 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
490 return isa<FunctionDecl>(ND->getUnderlyingDecl());
491 });
492 if (AllFunctions || (Found.empty() && !IsDependent)) {
493 // If lookup found any functions, or if this is a name that can only be
494 // used for a function, then strongly assume this is a function
495 // template-id.
496 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
497 ? AssumedTemplateKind::FoundNothing
498 : AssumedTemplateKind::FoundFunctions;
499 Found.clear();
500 return false;
501 }
502 }
503
504 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
505 // If we did not find any names, and this is not a disambiguation, attempt
506 // to correct any typos.
507 DeclarationName Name = Found.getLookupName();
508 Found.clear();
509 // Simple filter callback that, for keywords, only accepts the C++ *_cast
510 DefaultFilterCCC FilterCCC{};
511 FilterCCC.WantTypeSpecifiers = false;
512 FilterCCC.WantExpressionKeywords = false;
513 FilterCCC.WantRemainingKeywords = false;
514 FilterCCC.WantCXXNamedCasts = true;
515 if (TypoCorrection Corrected =
516 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
517 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
518 if (auto *ND = Corrected.getFoundDecl())
519 Found.addDecl(ND);
520 FilterAcceptableTemplateNames(Found);
521 if (Found.isAmbiguous()) {
522 Found.clear();
523 } else if (!Found.empty()) {
524 Found.setLookupName(Corrected.getCorrection());
525 if (LookupCtx) {
526 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
527 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
528 Name.getAsString() == CorrectedStr;
529 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
530 << Name << LookupCtx << DroppedSpecifier
531 << SS.getRange());
532 } else {
533 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
534 }
535 }
536 }
537 }
538
539 NamedDecl *ExampleLookupResult =
540 Found.empty() ? nullptr : Found.getRepresentativeDecl();
541 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
542 if (Found.empty()) {
543 if (IsDependent) {
544 MemberOfUnknownSpecialization = true;
545 return false;
546 }
547
548 // If a 'template' keyword was used, a lookup that finds only non-template
549 // names is an error.
550 if (ExampleLookupResult && RequiredTemplate) {
551 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
552 << Found.getLookupName() << SS.getRange()
553 << RequiredTemplate.hasTemplateKeyword()
554 << RequiredTemplate.getTemplateKeywordLoc();
555 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
556 diag::note_template_kw_refers_to_non_template)
557 << Found.getLookupName();
558 return true;
559 }
560
561 return false;
562 }
563
564 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
565 !getLangOpts().CPlusPlus11) {
566 // C++03 [basic.lookup.classref]p1:
567 // [...] If the lookup in the class of the object expression finds a
568 // template, the name is also looked up in the context of the entire
569 // postfix-expression and [...]
570 //
571 // Note: C++11 does not perform this second lookup.
572 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
573 LookupOrdinaryName);
574 FoundOuter.setTemplateNameLookup(true);
575 LookupName(FoundOuter, S);
576 // FIXME: We silently accept an ambiguous lookup here, in violation of
577 // [basic.lookup]/1.
578 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
579
580 NamedDecl *OuterTemplate;
581 if (FoundOuter.empty()) {
582 // - if the name is not found, the name found in the class of the
583 // object expression is used, otherwise
584 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
585 !(OuterTemplate =
586 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
587 // - if the name is found in the context of the entire
588 // postfix-expression and does not name a class template, the name
589 // found in the class of the object expression is used, otherwise
590 FoundOuter.clear();
591 } else if (!Found.isSuppressingDiagnostics()) {
592 // - if the name found is a class template, it must refer to the same
593 // entity as the one found in the class of the object expression,
594 // otherwise the program is ill-formed.
595 if (!Found.isSingleResult() ||
596 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
597 OuterTemplate->getCanonicalDecl()) {
598 Diag(Found.getNameLoc(),
599 diag::ext_nested_name_member_ref_lookup_ambiguous)
600 << Found.getLookupName()
601 << ObjectType;
602 Diag(Found.getRepresentativeDecl()->getLocation(),
603 diag::note_ambig_member_ref_object_type)
604 << ObjectType;
605 Diag(FoundOuter.getFoundDecl()->getLocation(),
606 diag::note_ambig_member_ref_scope);
607
608 // Recover by taking the template that we found in the object
609 // expression's type.
610 }
611 }
612 }
613
614 return false;
615}
616
617void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
618 SourceLocation Less,
619 SourceLocation Greater) {
620 if (TemplateName.isInvalid())
621 return;
622
623 DeclarationNameInfo NameInfo;
624 CXXScopeSpec SS;
625 LookupNameKind LookupKind;
626
627 DeclContext *LookupCtx = nullptr;
628 NamedDecl *Found = nullptr;
629 bool MissingTemplateKeyword = false;
630
631 // Figure out what name we looked up.
632 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
633 NameInfo = DRE->getNameInfo();
634 SS.Adopt(DRE->getQualifierLoc());
635 LookupKind = LookupOrdinaryName;
636 Found = DRE->getFoundDecl();
637 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
638 NameInfo = ME->getMemberNameInfo();
639 SS.Adopt(ME->getQualifierLoc());
640 LookupKind = LookupMemberName;
641 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
642 Found = ME->getMemberDecl();
643 } else if (auto *DSDRE =
644 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
645 NameInfo = DSDRE->getNameInfo();
646 SS.Adopt(DSDRE->getQualifierLoc());
647 MissingTemplateKeyword = true;
648 } else if (auto *DSME =
649 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
650 NameInfo = DSME->getMemberNameInfo();
651 SS.Adopt(DSME->getQualifierLoc());
652 MissingTemplateKeyword = true;
653 } else {
654 llvm_unreachable("unexpected kind of potential template name")__builtin_unreachable();
655 }
656
657 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
658 // was missing.
659 if (MissingTemplateKeyword) {
660 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
661 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
662 return;
663 }
664
665 // Try to correct the name by looking for templates and C++ named casts.
666 struct TemplateCandidateFilter : CorrectionCandidateCallback {
667 Sema &S;
668 TemplateCandidateFilter(Sema &S) : S(S) {
669 WantTypeSpecifiers = false;
670 WantExpressionKeywords = false;
671 WantRemainingKeywords = false;
672 WantCXXNamedCasts = true;
673 };
674 bool ValidateCandidate(const TypoCorrection &Candidate) override {
675 if (auto *ND = Candidate.getCorrectionDecl())
676 return S.getAsTemplateNameDecl(ND);
677 return Candidate.isKeyword();
678 }
679
680 std::unique_ptr<CorrectionCandidateCallback> clone() override {
681 return std::make_unique<TemplateCandidateFilter>(*this);
682 }
683 };
684
685 DeclarationName Name = NameInfo.getName();
686 TemplateCandidateFilter CCC(*this);
687 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
688 CTK_ErrorRecovery, LookupCtx)) {
689 auto *ND = Corrected.getFoundDecl();
690 if (ND)
691 ND = getAsTemplateNameDecl(ND);
692 if (ND || Corrected.isKeyword()) {
693 if (LookupCtx) {
694 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
695 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
696 Name.getAsString() == CorrectedStr;
697 diagnoseTypo(Corrected,
698 PDiag(diag::err_non_template_in_member_template_id_suggest)
699 << Name << LookupCtx << DroppedSpecifier
700 << SS.getRange(), false);
701 } else {
702 diagnoseTypo(Corrected,
703 PDiag(diag::err_non_template_in_template_id_suggest)
704 << Name, false);
705 }
706 if (Found)
707 Diag(Found->getLocation(),
708 diag::note_non_template_in_template_id_found);
709 return;
710 }
711 }
712
713 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
714 << Name << SourceRange(Less, Greater);
715 if (Found)
716 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
717}
718
719/// ActOnDependentIdExpression - Handle a dependent id-expression that
720/// was just parsed. This is only possible with an explicit scope
721/// specifier naming a dependent type.
722ExprResult
723Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
724 SourceLocation TemplateKWLoc,
725 const DeclarationNameInfo &NameInfo,
726 bool isAddressOfOperand,
727 const TemplateArgumentListInfo *TemplateArgs) {
728 DeclContext *DC = getFunctionLevelDeclContext();
729
730 // C++11 [expr.prim.general]p12:
731 // An id-expression that denotes a non-static data member or non-static
732 // member function of a class can only be used:
733 // (...)
734 // - if that id-expression denotes a non-static data member and it
735 // appears in an unevaluated operand.
736 //
737 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
738 // CXXDependentScopeMemberExpr. The former can instantiate to either
739 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
740 // always a MemberExpr.
741 bool MightBeCxx11UnevalField =
742 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
743
744 // Check if the nested name specifier is an enum type.
745 bool IsEnum = false;
746 if (NestedNameSpecifier *NNS = SS.getScopeRep())
747 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
748
749 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
750 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
751 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
752
753 // Since the 'this' expression is synthesized, we don't need to
754 // perform the double-lookup check.
755 NamedDecl *FirstQualifierInScope = nullptr;
756
757 return CXXDependentScopeMemberExpr::Create(
758 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
759 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
760 FirstQualifierInScope, NameInfo, TemplateArgs);
761 }
762
763 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
764}
765
766ExprResult
767Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
768 SourceLocation TemplateKWLoc,
769 const DeclarationNameInfo &NameInfo,
770 const TemplateArgumentListInfo *TemplateArgs) {
771 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
772 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
773 if (!QualifierLoc)
774 return ExprError();
775
776 return DependentScopeDeclRefExpr::Create(
777 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
778}
779
780
781/// Determine whether we would be unable to instantiate this template (because
782/// it either has no definition, or is in the process of being instantiated).
783bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
784 NamedDecl *Instantiation,
785 bool InstantiatedFromMember,
786 const NamedDecl *Pattern,
787 const NamedDecl *PatternDef,
788 TemplateSpecializationKind TSK,
789 bool Complain /*= true*/) {
790 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||(static_cast<void> (0))
791 isa<VarDecl>(Instantiation))(static_cast<void> (0));
792
793 bool IsEntityBeingDefined = false;
794 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
795 IsEntityBeingDefined = TD->isBeingDefined();
796
797 if (PatternDef && !IsEntityBeingDefined) {
798 NamedDecl *SuggestedDef = nullptr;
799 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
800 /*OnlyNeedComplete*/false)) {
801 // If we're allowed to diagnose this and recover, do so.
802 bool Recover = Complain && !isSFINAEContext();
803 if (Complain)
804 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
805 Sema::MissingImportKind::Definition, Recover);
806 return !Recover;
807 }
808 return false;
809 }
810
811 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
812 return true;
813
814 llvm::Optional<unsigned> Note;
815 QualType InstantiationTy;
816 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
817 InstantiationTy = Context.getTypeDeclType(TD);
818 if (PatternDef) {
819 Diag(PointOfInstantiation,
820 diag::err_template_instantiate_within_definition)
821 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
822 << InstantiationTy;
823 // Not much point in noting the template declaration here, since
824 // we're lexically inside it.
825 Instantiation->setInvalidDecl();
826 } else if (InstantiatedFromMember) {
827 if (isa<FunctionDecl>(Instantiation)) {
828 Diag(PointOfInstantiation,
829 diag::err_explicit_instantiation_undefined_member)
830 << /*member function*/ 1 << Instantiation->getDeclName()
831 << Instantiation->getDeclContext();
832 Note = diag::note_explicit_instantiation_here;
833 } else {
834 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")(static_cast<void> (0));
835 Diag(PointOfInstantiation,
836 diag::err_implicit_instantiate_member_undefined)
837 << InstantiationTy;
838 Note = diag::note_member_declared_at;
839 }
840 } else {
841 if (isa<FunctionDecl>(Instantiation)) {
842 Diag(PointOfInstantiation,
843 diag::err_explicit_instantiation_undefined_func_template)
844 << Pattern;
845 Note = diag::note_explicit_instantiation_here;
846 } else if (isa<TagDecl>(Instantiation)) {
847 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
848 << (TSK != TSK_ImplicitInstantiation)
849 << InstantiationTy;
850 Note = diag::note_template_decl_here;
851 } else {
852 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")(static_cast<void> (0));
853 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
854 Diag(PointOfInstantiation,
855 diag::err_explicit_instantiation_undefined_var_template)
856 << Instantiation;
857 Instantiation->setInvalidDecl();
858 } else
859 Diag(PointOfInstantiation,
860 diag::err_explicit_instantiation_undefined_member)
861 << /*static data member*/ 2 << Instantiation->getDeclName()
862 << Instantiation->getDeclContext();
863 Note = diag::note_explicit_instantiation_here;
864 }
865 }
866 if (Note) // Diagnostics were emitted.
867 Diag(Pattern->getLocation(), Note.getValue());
868
869 // In general, Instantiation isn't marked invalid to get more than one
870 // error for multiple undefined instantiations. But the code that does
871 // explicit declaration -> explicit definition conversion can't handle
872 // invalid declarations, so mark as invalid in that case.
873 if (TSK == TSK_ExplicitInstantiationDeclaration)
874 Instantiation->setInvalidDecl();
875 return true;
876}
877
878/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
879/// that the template parameter 'PrevDecl' is being shadowed by a new
880/// declaration at location Loc. Returns true to indicate that this is
881/// an error, and false otherwise.
882void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
883 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")(static_cast<void> (0));
884
885 // C++ [temp.local]p4:
886 // A template-parameter shall not be redeclared within its
887 // scope (including nested scopes).
888 //
889 // Make this a warning when MSVC compatibility is requested.
890 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
891 : diag::err_template_param_shadow;
892 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
893 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
894}
895
896/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
897/// the parameter D to reference the templated declaration and return a pointer
898/// to the template declaration. Otherwise, do nothing to D and return null.
899TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
900 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
901 D = Temp->getTemplatedDecl();
902 return Temp;
903 }
904 return nullptr;
905}
906
907ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
908 SourceLocation EllipsisLoc) const {
909 assert(Kind == Template &&(static_cast<void> (0))
910 "Only template template arguments can be pack expansions here")(static_cast<void> (0));
911 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&(static_cast<void> (0))
912 "Template template argument pack expansion without packs")(static_cast<void> (0));
913 ParsedTemplateArgument Result(*this);
914 Result.EllipsisLoc = EllipsisLoc;
915 return Result;
916}
917
918static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
919 const ParsedTemplateArgument &Arg) {
920
921 switch (Arg.getKind()) {
922 case ParsedTemplateArgument::Type: {
923 TypeSourceInfo *DI;
924 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
925 if (!DI)
926 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
927 return TemplateArgumentLoc(TemplateArgument(T), DI);
928 }
929
930 case ParsedTemplateArgument::NonType: {
931 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
932 return TemplateArgumentLoc(TemplateArgument(E), E);
933 }
934
935 case ParsedTemplateArgument::Template: {
936 TemplateName Template = Arg.getAsTemplate().get();
937 TemplateArgument TArg;
938 if (Arg.getEllipsisLoc().isValid())
939 TArg = TemplateArgument(Template, Optional<unsigned int>());
940 else
941 TArg = Template;
942 return TemplateArgumentLoc(
943 SemaRef.Context, TArg,
944 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
945 Arg.getLocation(), Arg.getEllipsisLoc());
946 }
947 }
948
949 llvm_unreachable("Unhandled parsed template argument")__builtin_unreachable();
950}
951
952/// Translates template arguments as provided by the parser
953/// into template arguments used by semantic analysis.
954void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
955 TemplateArgumentListInfo &TemplateArgs) {
956 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
957 TemplateArgs.addArgument(translateTemplateArgument(*this,
958 TemplateArgsIn[I]));
959}
960
961static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
962 SourceLocation Loc,
963 IdentifierInfo *Name) {
964 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
965 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
966 if (PrevDecl && PrevDecl->isTemplateParameter())
967 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
968}
969
970/// Convert a parsed type into a parsed template argument. This is mostly
971/// trivial, except that we may have parsed a C++17 deduced class template
972/// specialization type, in which case we should form a template template
973/// argument instead of a type template argument.
974ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
975 TypeSourceInfo *TInfo;
976 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
977 if (T.isNull())
978 return ParsedTemplateArgument();
979 assert(TInfo && "template argument with no location")(static_cast<void> (0));
980
981 // If we might have formed a deduced template specialization type, convert
982 // it to a template template argument.
983 if (getLangOpts().CPlusPlus17) {
984 TypeLoc TL = TInfo->getTypeLoc();
985 SourceLocation EllipsisLoc;
986 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
987 EllipsisLoc = PET.getEllipsisLoc();
988 TL = PET.getPatternLoc();
989 }
990
991 CXXScopeSpec SS;
992 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
993 SS.Adopt(ET.getQualifierLoc());
994 TL = ET.getNamedTypeLoc();
995 }
996
997 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
998 TemplateName Name = DTST.getTypePtr()->getTemplateName();
999 if (SS.isSet())
1000 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1001 /*HasTemplateKeyword*/ false,
1002 Name.getAsTemplateDecl());
1003 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1004 DTST.getTemplateNameLoc());
1005 if (EllipsisLoc.isValid())
1006 Result = Result.getTemplatePackExpansion(EllipsisLoc);
1007 return Result;
1008 }
1009 }
1010
1011 // This is a normal type template argument. Note, if the type template
1012 // argument is an injected-class-name for a template, it has a dual nature
1013 // and can be used as either a type or a template. We handle that in
1014 // convertTypeTemplateArgumentToTemplate.
1015 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1016 ParsedType.get().getAsOpaquePtr(),
1017 TInfo->getTypeLoc().getBeginLoc());
1018}
1019
1020/// ActOnTypeParameter - Called when a C++ template type parameter
1021/// (e.g., "typename T") has been parsed. Typename specifies whether
1022/// the keyword "typename" was used to declare the type parameter
1023/// (otherwise, "class" was used), and KeyLoc is the location of the
1024/// "class" or "typename" keyword. ParamName is the name of the
1025/// parameter (NULL indicates an unnamed template parameter) and
1026/// ParamNameLoc is the location of the parameter name (if any).
1027/// If the type parameter has a default argument, it will be added
1028/// later via ActOnTypeParameterDefault.
1029NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1030 SourceLocation EllipsisLoc,
1031 SourceLocation KeyLoc,
1032 IdentifierInfo *ParamName,
1033 SourceLocation ParamNameLoc,
1034 unsigned Depth, unsigned Position,
1035 SourceLocation EqualLoc,
1036 ParsedType DefaultArg,
1037 bool HasTypeConstraint) {
1038 assert(S->isTemplateParamScope() &&(static_cast<void> (0))
1039 "Template type parameter not in template parameter scope!")(static_cast<void> (0));
1040
1041 bool IsParameterPack = EllipsisLoc.isValid();
1042 TemplateTypeParmDecl *Param
1043 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1044 KeyLoc, ParamNameLoc, Depth, Position,
1045 ParamName, Typename, IsParameterPack,
1046 HasTypeConstraint);
1047 Param->setAccess(AS_public);
1048
1049 if (Param->isParameterPack())
1050 if (auto *LSI = getEnclosingLambda())
1051 LSI->LocalPacks.push_back(Param);
1052
1053 if (ParamName) {
1054 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1055
1056 // Add the template parameter into the current scope.
1057 S->AddDecl(Param);
1058 IdResolver.AddDecl(Param);
1059 }
1060
1061 // C++0x [temp.param]p9:
1062 // A default template-argument may be specified for any kind of
1063 // template-parameter that is not a template parameter pack.
1064 if (DefaultArg && IsParameterPack) {
1065 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1066 DefaultArg = nullptr;
1067 }
1068
1069 // Handle the default argument, if provided.
1070 if (DefaultArg) {
1071 TypeSourceInfo *DefaultTInfo;
1072 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1073
1074 assert(DefaultTInfo && "expected source information for type")(static_cast<void> (0));
1075
1076 // Check for unexpanded parameter packs.
1077 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1078 UPPC_DefaultArgument))
1079 return Param;
1080
1081 // Check the template argument itself.
1082 if (CheckTemplateArgument(DefaultTInfo)) {
1083 Param->setInvalidDecl();
1084 return Param;
1085 }
1086
1087 Param->setDefaultArgument(DefaultTInfo);
1088 }
1089
1090 return Param;
1091}
1092
1093/// Convert the parser's template argument list representation into our form.
1094static TemplateArgumentListInfo
1095makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1096 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1097 TemplateId.RAngleLoc);
1098 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1099 TemplateId.NumArgs);
1100 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1101 return TemplateArgs;
1102}
1103
1104bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1105 TemplateIdAnnotation *TypeConstr,
1106 TemplateTypeParmDecl *ConstrainedParameter,
1107 SourceLocation EllipsisLoc) {
1108 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1109 false);
1110}
1111
1112bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1113 TemplateIdAnnotation *TypeConstr,
1114 TemplateTypeParmDecl *ConstrainedParameter,
1115 SourceLocation EllipsisLoc,
1116 bool AllowUnexpandedPack) {
1117 TemplateName TN = TypeConstr->Template.get();
1118 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1119
1120 // C++2a [temp.param]p4:
1121 // [...] The concept designated by a type-constraint shall be a type
1122 // concept ([temp.concept]).
1123 if (!CD->isTypeConcept()) {
1124 Diag(TypeConstr->TemplateNameLoc,
1125 diag::err_type_constraint_non_type_concept);
1126 return true;
1127 }
1128
1129 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1130
1131 if (!WereArgsSpecified &&
1132 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1133 Diag(TypeConstr->TemplateNameLoc,
1134 diag::err_type_constraint_missing_arguments) << CD;
1135 return true;
1136 }
1137
1138 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1139 TypeConstr->TemplateNameLoc);
1140
1141 TemplateArgumentListInfo TemplateArgs;
1142 if (TypeConstr->LAngleLoc.isValid()) {
1143 TemplateArgs =
1144 makeTemplateArgumentListInfo(*this, *TypeConstr);
1145
1146 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1147 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1148 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1149 return true;
1150 }
1151 }
1152 }
1153 return AttachTypeConstraint(
1154 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1155 ConceptName, CD,
1156 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1157 ConstrainedParameter, EllipsisLoc);
1158}
1159
1160template<typename ArgumentLocAppender>
1161static ExprResult formImmediatelyDeclaredConstraint(
1162 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1163 ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1164 SourceLocation RAngleLoc, QualType ConstrainedType,
1165 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1166 SourceLocation EllipsisLoc) {
1167
1168 TemplateArgumentListInfo ConstraintArgs;
1169 ConstraintArgs.addArgument(
1170 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1171 /*NTTPType=*/QualType(), ParamNameLoc));
1172
1173 ConstraintArgs.setRAngleLoc(RAngleLoc);
1174 ConstraintArgs.setLAngleLoc(LAngleLoc);
1175 Appender(ConstraintArgs);
1176
1177 // C++2a [temp.param]p4:
1178 // [...] This constraint-expression E is called the immediately-declared
1179 // constraint of T. [...]
1180 CXXScopeSpec SS;
1181 SS.Adopt(NS);
1182 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1183 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1184 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1185 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1186 return ImmediatelyDeclaredConstraint;
1187
1188 // C++2a [temp.param]p4:
1189 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1190 //
1191 // We have the following case:
1192 //
1193 // template<typename T> concept C1 = true;
1194 // template<C1... T> struct s1;
1195 //
1196 // The constraint: (C1<T> && ...)
1197 //
1198 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1199 // any unqualified lookups for 'operator&&' here.
1200 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1201 /*LParenLoc=*/SourceLocation(),
1202 ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1203 EllipsisLoc, /*RHS=*/nullptr,
1204 /*RParenLoc=*/SourceLocation(),
1205 /*NumExpansions=*/None);
1206}
1207
1208/// Attach a type-constraint to a template parameter.
1209/// \returns true if an error occured. This can happen if the
1210/// immediately-declared constraint could not be formed (e.g. incorrect number
1211/// of arguments for the named concept).
1212bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1213 DeclarationNameInfo NameInfo,
1214 ConceptDecl *NamedConcept,
1215 const TemplateArgumentListInfo *TemplateArgs,
1216 TemplateTypeParmDecl *ConstrainedParameter,
1217 SourceLocation EllipsisLoc) {
1218 // C++2a [temp.param]p4:
1219 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1220 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1221 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1222 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1223 *TemplateArgs) : nullptr;
1224
1225 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1226
1227 ExprResult ImmediatelyDeclaredConstraint =
1228 formImmediatelyDeclaredConstraint(
1229 *this, NS, NameInfo, NamedConcept,
1230 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1231 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1232 ParamAsArgument, ConstrainedParameter->getLocation(),
1233 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1234 if (TemplateArgs)
1235 for (const auto &ArgLoc : TemplateArgs->arguments())
1236 ConstraintArgs.addArgument(ArgLoc);
1237 }, EllipsisLoc);
1238 if (ImmediatelyDeclaredConstraint.isInvalid())
1239 return true;
1240
1241 ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1242 /*FoundDecl=*/NamedConcept,
1243 NamedConcept, ArgsAsWritten,
1244 ImmediatelyDeclaredConstraint.get());
1245 return false;
1246}
1247
1248bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1249 SourceLocation EllipsisLoc) {
1250 if (NTTP->getType() != TL.getType() ||
1251 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1252 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1253 diag::err_unsupported_placeholder_constraint)
1254 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1255 return true;
1256 }
1257 // FIXME: Concepts: This should be the type of the placeholder, but this is
1258 // unclear in the wording right now.
1259 DeclRefExpr *Ref =
1260 BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation());
1261 if (!Ref)
1262 return true;
1263 ExprResult ImmediatelyDeclaredConstraint =
1264 formImmediatelyDeclaredConstraint(
1265 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1266 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1267 BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(),
1268 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1269 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1270 ConstraintArgs.addArgument(TL.getArgLoc(I));
1271 }, EllipsisLoc);
1272 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1273 !ImmediatelyDeclaredConstraint.isUsable())
1274 return true;
1275
1276 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1277 return false;
1278}
1279
1280/// Check that the type of a non-type template parameter is
1281/// well-formed.
1282///
1283/// \returns the (possibly-promoted) parameter type if valid;
1284/// otherwise, produces a diagnostic and returns a NULL type.
1285QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1286 SourceLocation Loc) {
1287 if (TSI->getType()->isUndeducedType()) {
1288 // C++17 [temp.dep.expr]p3:
1289 // An id-expression is type-dependent if it contains
1290 // - an identifier associated by name lookup with a non-type
1291 // template-parameter declared with a type that contains a
1292 // placeholder type (7.1.7.4),
1293 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1294 }
1295
1296 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1297}
1298
1299/// Require the given type to be a structural type, and diagnose if it is not.
1300///
1301/// \return \c true if an error was produced.
1302bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1303 if (T->isDependentType())
1304 return false;
1305
1306 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1307 return true;
1308
1309 if (T->isStructuralType())
1310 return false;
1311
1312 // Structural types are required to be object types or lvalue references.
1313 if (T->isRValueReferenceType()) {
1314 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1315 return true;
1316 }
1317
1318 // Don't mention structural types in our diagnostic prior to C++20. Also,
1319 // there's not much more we can say about non-scalar non-class types --
1320 // because we can't see functions or arrays here, those can only be language
1321 // extensions.
1322 if (!getLangOpts().CPlusPlus20 ||
1323 (!T->isScalarType() && !T->isRecordType())) {
1324 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1325 return true;
1326 }
1327
1328 // Structural types are required to be literal types.
1329 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1330 return true;
1331
1332 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1333
1334 // Drill down into the reason why the class is non-structural.
1335 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1336 // All members are required to be public and non-mutable, and can't be of
1337 // rvalue reference type. Check these conditions first to prefer a "local"
1338 // reason over a more distant one.
1339 for (const FieldDecl *FD : RD->fields()) {
1340 if (FD->getAccess() != AS_public) {
1341 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1342 return true;
1343 }
1344 if (FD->isMutable()) {
1345 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1346 return true;
1347 }
1348 if (FD->getType()->isRValueReferenceType()) {
1349 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1350 << T;
1351 return true;
1352 }
1353 }
1354
1355 // All bases are required to be public.
1356 for (const auto &BaseSpec : RD->bases()) {
1357 if (BaseSpec.getAccessSpecifier() != AS_public) {
1358 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1359 << T << 1;
1360 return true;
1361 }
1362 }
1363
1364 // All subobjects are required to be of structural types.
1365 SourceLocation SubLoc;
1366 QualType SubType;
1367 int Kind = -1;
1368
1369 for (const FieldDecl *FD : RD->fields()) {
1370 QualType T = Context.getBaseElementType(FD->getType());
1371 if (!T->isStructuralType()) {
1372 SubLoc = FD->getLocation();
1373 SubType = T;
1374 Kind = 0;
1375 break;
1376 }
1377 }
1378
1379 if (Kind == -1) {
1380 for (const auto &BaseSpec : RD->bases()) {
1381 QualType T = BaseSpec.getType();
1382 if (!T->isStructuralType()) {
1383 SubLoc = BaseSpec.getBaseTypeLoc();
1384 SubType = T;
1385 Kind = 1;
1386 break;
1387 }
1388 }
1389 }
1390
1391 assert(Kind != -1 && "couldn't find reason why type is not structural")(static_cast<void> (0));
1392 Diag(SubLoc, diag::note_not_structural_subobject)
1393 << T << Kind << SubType;
1394 T = SubType;
1395 RD = T->getAsCXXRecordDecl();
1396 }
1397
1398 return true;
1399}
1400
1401QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1402 SourceLocation Loc) {
1403 // We don't allow variably-modified types as the type of non-type template
1404 // parameters.
1405 if (T->isVariablyModifiedType()) {
1406 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1407 << T;
1408 return QualType();
1409 }
1410
1411 // C++ [temp.param]p4:
1412 //
1413 // A non-type template-parameter shall have one of the following
1414 // (optionally cv-qualified) types:
1415 //
1416 // -- integral or enumeration type,
1417 if (T->isIntegralOrEnumerationType() ||
1418 // -- pointer to object or pointer to function,
1419 T->isPointerType() ||
1420 // -- lvalue reference to object or lvalue reference to function,
1421 T->isLValueReferenceType() ||
1422 // -- pointer to member,
1423 T->isMemberPointerType() ||
1424 // -- std::nullptr_t, or
1425 T->isNullPtrType() ||
1426 // -- a type that contains a placeholder type.
1427 T->isUndeducedType()) {
1428 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1429 // are ignored when determining its type.
1430 return T.getUnqualifiedType();
1431 }
1432
1433 // C++ [temp.param]p8:
1434 //
1435 // A non-type template-parameter of type "array of T" or
1436 // "function returning T" is adjusted to be of type "pointer to
1437 // T" or "pointer to function returning T", respectively.
1438 if (T->isArrayType() || T->isFunctionType())
1439 return Context.getDecayedType(T);
1440
1441 // If T is a dependent type, we can't do the check now, so we
1442 // assume that it is well-formed. Note that stripping off the
1443 // qualifiers here is not really correct if T turns out to be
1444 // an array type, but we'll recompute the type everywhere it's
1445 // used during instantiation, so that should be OK. (Using the
1446 // qualified type is equally wrong.)
1447 if (T->isDependentType())
1448 return T.getUnqualifiedType();
1449
1450 // C++20 [temp.param]p6:
1451 // -- a structural type
1452 if (RequireStructuralType(T, Loc))
1453 return QualType();
1454
1455 if (!getLangOpts().CPlusPlus20) {
1456 // FIXME: Consider allowing structural types as an extension in C++17. (In
1457 // earlier language modes, the template argument evaluation rules are too
1458 // inflexible.)
1459 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1460 return QualType();
1461 }
1462
1463 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1464 return T.getUnqualifiedType();
1465}
1466
1467NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1468 unsigned Depth,
1469 unsigned Position,
1470 SourceLocation EqualLoc,
1471 Expr *Default) {
1472 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1473
1474 // Check that we have valid decl-specifiers specified.
1475 auto CheckValidDeclSpecifiers = [this, &D] {
1476 // C++ [temp.param]
1477 // p1
1478 // template-parameter:
1479 // ...
1480 // parameter-declaration
1481 // p2
1482 // ... A storage class shall not be specified in a template-parameter
1483 // declaration.
1484 // [dcl.typedef]p1:
1485 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1486 // of a parameter-declaration
1487 const DeclSpec &DS = D.getDeclSpec();
1488 auto EmitDiag = [this](SourceLocation Loc) {
1489 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1490 << FixItHint::CreateRemoval(Loc);
1491 };
1492 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1493 EmitDiag(DS.getStorageClassSpecLoc());
1494
1495 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1496 EmitDiag(DS.getThreadStorageClassSpecLoc());
1497
1498 // [dcl.inline]p1:
1499 // The inline specifier can be applied only to the declaration or
1500 // definition of a variable or function.
1501
1502 if (DS.isInlineSpecified())
1503 EmitDiag(DS.getInlineSpecLoc());
1504
1505 // [dcl.constexpr]p1:
1506 // The constexpr specifier shall be applied only to the definition of a
1507 // variable or variable template or the declaration of a function or
1508 // function template.
1509
1510 if (DS.hasConstexprSpecifier())
1511 EmitDiag(DS.getConstexprSpecLoc());
1512
1513 // [dcl.fct.spec]p1:
1514 // Function-specifiers can be used only in function declarations.
1515
1516 if (DS.isVirtualSpecified())
1517 EmitDiag(DS.getVirtualSpecLoc());
1518
1519 if (DS.hasExplicitSpecifier())
1520 EmitDiag(DS.getExplicitSpecLoc());
1521
1522 if (DS.isNoreturnSpecified())
1523 EmitDiag(DS.getNoreturnSpecLoc());
1524 };
1525
1526 CheckValidDeclSpecifiers();
1527
1528 if (TInfo->getType()->isUndeducedType()) {
1529 Diag(D.getIdentifierLoc(),
1530 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1531 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1532 }
1533
1534 assert(S->isTemplateParamScope() &&(static_cast<void> (0))
1535 "Non-type template parameter not in template parameter scope!")(static_cast<void> (0));
1536 bool Invalid = false;
1537
1538 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1539 if (T.isNull()) {
1540 T = Context.IntTy; // Recover with an 'int' type.
1541 Invalid = true;
1542 }
1543
1544 CheckFunctionOrTemplateParamDeclarator(S, D);
1545
1546 IdentifierInfo *ParamName = D.getIdentifier();
1547 bool IsParameterPack = D.hasEllipsis();
1548 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1549 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1550 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1551 TInfo);
1552 Param->setAccess(AS_public);
1553
1554 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1555 if (TL.isConstrained())
1556 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1557 Invalid = true;
1558
1559 if (Invalid)
1560 Param->setInvalidDecl();
1561
1562 if (Param->isParameterPack())
1563 if (auto *LSI = getEnclosingLambda())
1564 LSI->LocalPacks.push_back(Param);
1565
1566 if (ParamName) {
1567 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1568 ParamName);
1569
1570 // Add the template parameter into the current scope.
1571 S->AddDecl(Param);
1572 IdResolver.AddDecl(Param);
1573 }
1574
1575 // C++0x [temp.param]p9:
1576 // A default template-argument may be specified for any kind of
1577 // template-parameter that is not a template parameter pack.
1578 if (Default && IsParameterPack) {
1579 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1580 Default = nullptr;
1581 }
1582
1583 // Check the well-formedness of the default template argument, if provided.
1584 if (Default) {
1585 // Check for unexpanded parameter packs.
1586 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1587 return Param;
1588
1589 TemplateArgument Converted;
1590 ExprResult DefaultRes =
1591 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1592 if (DefaultRes.isInvalid()) {
1593 Param->setInvalidDecl();
1594 return Param;
1595 }
1596 Default = DefaultRes.get();
1597
1598 Param->setDefaultArgument(Default);
1599 }
1600
1601 return Param;
1602}
1603
1604/// ActOnTemplateTemplateParameter - Called when a C++ template template
1605/// parameter (e.g. T in template <template \<typename> class T> class array)
1606/// has been parsed. S is the current scope.
1607NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1608 SourceLocation TmpLoc,
1609 TemplateParameterList *Params,
1610 SourceLocation EllipsisLoc,
1611 IdentifierInfo *Name,
1612 SourceLocation NameLoc,
1613 unsigned Depth,
1614 unsigned Position,
1615 SourceLocation EqualLoc,
1616 ParsedTemplateArgument Default) {
1617 assert(S->isTemplateParamScope() &&(static_cast<void> (0))
1618 "Template template parameter not in template parameter scope!")(static_cast<void> (0));
1619
1620 // Construct the parameter object.
1621 bool IsParameterPack = EllipsisLoc.isValid();
1622 TemplateTemplateParmDecl *Param =
1623 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1624 NameLoc.isInvalid()? TmpLoc : NameLoc,
1625 Depth, Position, IsParameterPack,
1626 Name, Params);
1627 Param->setAccess(AS_public);
1628
1629 if (Param->isParameterPack())
1630 if (auto *LSI = getEnclosingLambda())
1631 LSI->LocalPacks.push_back(Param);
1632
1633 // If the template template parameter has a name, then link the identifier
1634 // into the scope and lookup mechanisms.
1635 if (Name) {
1636 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1637
1638 S->AddDecl(Param);
1639 IdResolver.AddDecl(Param);
1640 }
1641
1642 if (Params->size() == 0) {
1643 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1644 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1645 Param->setInvalidDecl();
1646 }
1647
1648 // C++0x [temp.param]p9:
1649 // A default template-argument may be specified for any kind of
1650 // template-parameter that is not a template parameter pack.
1651 if (IsParameterPack && !Default.isInvalid()) {
1652 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1653 Default = ParsedTemplateArgument();
1654 }
1655
1656 if (!Default.isInvalid()) {
1657 // Check only that we have a template template argument. We don't want to
1658 // try to check well-formedness now, because our template template parameter
1659 // might have dependent types in its template parameters, which we wouldn't
1660 // be able to match now.
1661 //
1662 // If none of the template template parameter's template arguments mention
1663 // other template parameters, we could actually perform more checking here.
1664 // However, it isn't worth doing.
1665 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1666 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1667 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1668 << DefaultArg.getSourceRange();
1669 return Param;
1670 }
1671
1672 // Check for unexpanded parameter packs.
1673 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1674 DefaultArg.getArgument().getAsTemplate(),
1675 UPPC_DefaultArgument))
1676 return Param;
1677
1678 Param->setDefaultArgument(Context, DefaultArg);
1679 }
1680
1681 return Param;
1682}
1683
1684/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1685/// constrained by RequiresClause, that contains the template parameters in
1686/// Params.
1687TemplateParameterList *
1688Sema::ActOnTemplateParameterList(unsigned Depth,
1689 SourceLocation ExportLoc,
1690 SourceLocation TemplateLoc,
1691 SourceLocation LAngleLoc,
1692 ArrayRef<NamedDecl *> Params,
1693 SourceLocation RAngleLoc,
1694 Expr *RequiresClause) {
1695 if (ExportLoc.isValid())
1696 Diag(ExportLoc, diag::warn_template_export_unsupported);
1697
1698 for (NamedDecl *P : Params)
1699 warnOnReservedIdentifier(P);
1700
1701 return TemplateParameterList::Create(
1702 Context, TemplateLoc, LAngleLoc,
1703 llvm::makeArrayRef(Params.data(), Params.size()),
1704 RAngleLoc, RequiresClause);
1705}
1706
1707static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1708 const CXXScopeSpec &SS) {
1709 if (SS.isSet())
1710 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1711}
1712
1713DeclResult Sema::CheckClassTemplate(
1714 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1715 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1716 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1717 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1718 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1719 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1720 assert(TemplateParams && TemplateParams->size() > 0 &&(static_cast<void> (0))
1721 "No template parameters")(static_cast<void> (0));
1722 assert(TUK != TUK_Reference && "Can only declare or define class templates")(static_cast<void> (0));
1723 bool Invalid = false;
1724
1725 // Check that we can declare a template here.
1726 if (CheckTemplateDeclScope(S, TemplateParams))
1727 return true;
1728
1729 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1730 assert(Kind != TTK_Enum && "can't build template of enumerated type")(static_cast<void> (0));
1731
1732 // There is no such thing as an unnamed class template.
1733 if (!Name) {
1734 Diag(KWLoc, diag::err_template_unnamed_class);
1735 return true;
1736 }
1737
1738 // Find any previous declaration with this name. For a friend with no
1739 // scope explicitly specified, we only look for tag declarations (per
1740 // C++11 [basic.lookup.elab]p2).
1741 DeclContext *SemanticContext;
1742 LookupResult Previous(*this, Name, NameLoc,
1743 (SS.isEmpty() && TUK == TUK_Friend)
1744 ? LookupTagName : LookupOrdinaryName,
1745 forRedeclarationInCurContext());
1746 if (SS.isNotEmpty() && !SS.isInvalid()) {
1747 SemanticContext = computeDeclContext(SS, true);
1748 if (!SemanticContext) {
1749 // FIXME: Horrible, horrible hack! We can't currently represent this
1750 // in the AST, and historically we have just ignored such friend
1751 // class templates, so don't complain here.
1752 Diag(NameLoc, TUK == TUK_Friend
1753 ? diag::warn_template_qualified_friend_ignored
1754 : diag::err_template_qualified_declarator_no_match)
1755 << SS.getScopeRep() << SS.getRange();
1756 return TUK != TUK_Friend;
1757 }
1758
1759 if (RequireCompleteDeclContext(SS, SemanticContext))
1760 return true;
1761
1762 // If we're adding a template to a dependent context, we may need to
1763 // rebuilding some of the types used within the template parameter list,
1764 // now that we know what the current instantiation is.
1765 if (SemanticContext->isDependentContext()) {
1766 ContextRAII SavedContext(*this, SemanticContext);
1767 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1768 Invalid = true;
1769 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1770 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1771
1772 LookupQualifiedName(Previous, SemanticContext);
1773 } else {
1774 SemanticContext = CurContext;
1775
1776 // C++14 [class.mem]p14:
1777 // If T is the name of a class, then each of the following shall have a
1778 // name different from T:
1779 // -- every member template of class T
1780 if (TUK != TUK_Friend &&
1781 DiagnoseClassNameShadow(SemanticContext,
1782 DeclarationNameInfo(Name, NameLoc)))
1783 return true;
1784
1785 LookupName(Previous, S);
1786 }
1787
1788 if (Previous.isAmbiguous())
1789 return true;
1790
1791 NamedDecl *PrevDecl = nullptr;
1792 if (Previous.begin() != Previous.end())
1793 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1794
1795 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1796 // Maybe we will complain about the shadowed template parameter.
1797 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1798 // Just pretend that we didn't see the previous declaration.
1799 PrevDecl = nullptr;
1800 }
1801
1802 // If there is a previous declaration with the same name, check
1803 // whether this is a valid redeclaration.
1804 ClassTemplateDecl *PrevClassTemplate =
1805 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1806
1807 // We may have found the injected-class-name of a class template,
1808 // class template partial specialization, or class template specialization.
1809 // In these cases, grab the template that is being defined or specialized.
1810 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1811 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1812 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1813 PrevClassTemplate
1814 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1815 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1816 PrevClassTemplate
1817 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1818 ->getSpecializedTemplate();
1819 }
1820 }
1821
1822 if (TUK == TUK_Friend) {
1823 // C++ [namespace.memdef]p3:
1824 // [...] When looking for a prior declaration of a class or a function
1825 // declared as a friend, and when the name of the friend class or
1826 // function is neither a qualified name nor a template-id, scopes outside
1827 // the innermost enclosing namespace scope are not considered.
1828 if (!SS.isSet()) {
1829 DeclContext *OutermostContext = CurContext;
1830 while (!OutermostContext->isFileContext())
1831 OutermostContext = OutermostContext->getLookupParent();
1832
1833 if (PrevDecl &&
1834 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1835 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1836 SemanticContext = PrevDecl->getDeclContext();
1837 } else {
1838 // Declarations in outer scopes don't matter. However, the outermost
1839 // context we computed is the semantic context for our new
1840 // declaration.
1841 PrevDecl = PrevClassTemplate = nullptr;
1842 SemanticContext = OutermostContext;
1843
1844 // Check that the chosen semantic context doesn't already contain a
1845 // declaration of this name as a non-tag type.
1846 Previous.clear(LookupOrdinaryName);
1847 DeclContext *LookupContext = SemanticContext;
1848 while (LookupContext->isTransparentContext())
1849 LookupContext = LookupContext->getLookupParent();
1850 LookupQualifiedName(Previous, LookupContext);
1851
1852 if (Previous.isAmbiguous())
1853 return true;
1854
1855 if (Previous.begin() != Previous.end())
1856 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1857 }
1858 }
1859 } else if (PrevDecl &&
1860 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1861 S, SS.isValid()))
1862 PrevDecl = PrevClassTemplate = nullptr;
1863
1864 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1865 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1866 if (SS.isEmpty() &&
1867 !(PrevClassTemplate &&
1868 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1869 SemanticContext->getRedeclContext()))) {
1870 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1871 Diag(Shadow->getTargetDecl()->getLocation(),
1872 diag::note_using_decl_target);
1873 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1874 // Recover by ignoring the old declaration.
1875 PrevDecl = PrevClassTemplate = nullptr;
1876 }
1877 }
1878
1879 if (PrevClassTemplate) {
1880 // Ensure that the template parameter lists are compatible. Skip this check
1881 // for a friend in a dependent context: the template parameter list itself
1882 // could be dependent.
1883 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1884 !TemplateParameterListsAreEqual(TemplateParams,
1885 PrevClassTemplate->getTemplateParameters(),
1886 /*Complain=*/true,
1887 TPL_TemplateMatch))
1888 return true;
1889
1890 // C++ [temp.class]p4:
1891 // In a redeclaration, partial specialization, explicit
1892 // specialization or explicit instantiation of a class template,
1893 // the class-key shall agree in kind with the original class
1894 // template declaration (7.1.5.3).
1895 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1896 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1897 TUK == TUK_Definition, KWLoc, Name)) {
1898 Diag(KWLoc, diag::err_use_with_wrong_tag)
1899 << Name
1900 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1901 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1902 Kind = PrevRecordDecl->getTagKind();
1903 }
1904
1905 // Check for redefinition of this class template.
1906 if (TUK == TUK_Definition) {
1907 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1908 // If we have a prior definition that is not visible, treat this as
1909 // simply making that previous definition visible.
1910 NamedDecl *Hidden = nullptr;
1911 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1912 SkipBody->ShouldSkip = true;
1913 SkipBody->Previous = Def;
1914 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1915 assert(Tmpl && "original definition of a class template is not a "(static_cast<void> (0))
1916 "class template?")(static_cast<void> (0));
1917 makeMergedDefinitionVisible(Hidden);
1918 makeMergedDefinitionVisible(Tmpl);
1919 } else {
1920 Diag(NameLoc, diag::err_redefinition) << Name;
1921 Diag(Def->getLocation(), diag::note_previous_definition);
1922 // FIXME: Would it make sense to try to "forget" the previous
1923 // definition, as part of error recovery?
1924 return true;
1925 }
1926 }
1927 }
1928 } else if (PrevDecl) {
1929 // C++ [temp]p5:
1930 // A class template shall not have the same name as any other
1931 // template, class, function, object, enumeration, enumerator,
1932 // namespace, or type in the same scope (3.3), except as specified
1933 // in (14.5.4).
1934 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1935 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1936 return true;
1937 }
1938
1939 // Check the template parameter list of this declaration, possibly
1940 // merging in the template parameter list from the previous class
1941 // template declaration. Skip this check for a friend in a dependent
1942 // context, because the template parameter list might be dependent.
1943 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1944 CheckTemplateParameterList(
1945 TemplateParams,
1946 PrevClassTemplate
1947 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1948 : nullptr,
1949 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1950 SemanticContext->isDependentContext())
1951 ? TPC_ClassTemplateMember
1952 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1953 SkipBody))
1954 Invalid = true;
1955
1956 if (SS.isSet()) {
1957 // If the name of the template was qualified, we must be defining the
1958 // template out-of-line.
1959 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1960 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1961 : diag::err_member_decl_does_not_match)
1962 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1963 Invalid = true;
1964 }
1965 }
1966
1967 // If this is a templated friend in a dependent context we should not put it
1968 // on the redecl chain. In some cases, the templated friend can be the most
1969 // recent declaration tricking the template instantiator to make substitutions
1970 // there.
1971 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1972 bool ShouldAddRedecl
1973 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1974
1975 CXXRecordDecl *NewClass =
1976 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1977 PrevClassTemplate && ShouldAddRedecl ?
1978 PrevClassTemplate->getTemplatedDecl() : nullptr,
1979 /*DelayTypeCreation=*/true);
1980 SetNestedNameSpecifier(*this, NewClass, SS);
1981 if (NumOuterTemplateParamLists > 0)
1982 NewClass->setTemplateParameterListsInfo(
1983 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1984 NumOuterTemplateParamLists));
1985
1986 // Add alignment attributes if necessary; these attributes are checked when
1987 // the ASTContext lays out the structure.
1988 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1989 AddAlignmentAttributesForRecord(NewClass);
1990 AddMsStructLayoutForRecord(NewClass);
1991 }
1992
1993 ClassTemplateDecl *NewTemplate
1994 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1995 DeclarationName(Name), TemplateParams,
1996 NewClass);
1997
1998 if (ShouldAddRedecl)
1999 NewTemplate->setPreviousDecl(PrevClassTemplate);
2000
2001 NewClass->setDescribedClassTemplate(NewTemplate);
2002
2003 if (ModulePrivateLoc.isValid())
2004 NewTemplate->setModulePrivate();
2005
2006 // Build the type for the class template declaration now.
2007 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2008 T = Context.getInjectedClassNameType(NewClass, T);
2009 assert(T->isDependentType() && "Class template type is not dependent?")(static_cast<void> (0));
2010 (void)T;
2011
2012 // If we are providing an explicit specialization of a member that is a
2013 // class template, make a note of that.
2014 if (PrevClassTemplate &&
2015 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2016 PrevClassTemplate->setMemberSpecialization();
2017
2018 // Set the access specifier.
2019 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2020 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2021
2022 // Set the lexical context of these templates
2023 NewClass->setLexicalDeclContext(CurContext);
2024 NewTemplate->setLexicalDeclContext(CurContext);
2025
2026 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2027 NewClass->startDefinition();
2028
2029 ProcessDeclAttributeList(S, NewClass, Attr);
2030
2031 if (PrevClassTemplate)
2032 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2033
2034 AddPushedVisibilityAttribute(NewClass);
2035 inferGslOwnerPointerAttribute(NewClass);
2036
2037 if (TUK != TUK_Friend) {
2038 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2039 Scope *Outer = S;
2040 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2041 Outer = Outer->getParent();
2042 PushOnScopeChains(NewTemplate, Outer);
2043 } else {
2044 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2045 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2046 NewClass->setAccess(PrevClassTemplate->getAccess());
2047 }
2048
2049 NewTemplate->setObjectOfFriendDecl();
2050
2051 // Friend templates are visible in fairly strange ways.
2052 if (!CurContext->isDependentContext()) {
2053 DeclContext *DC = SemanticContext->getRedeclContext();
2054 DC->makeDeclVisibleInContext(NewTemplate);
2055 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2056 PushOnScopeChains(NewTemplate, EnclosingScope,
2057 /* AddToContext = */ false);
2058 }
2059
2060 FriendDecl *Friend = FriendDecl::Create(
2061 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2062 Friend->setAccess(AS_public);
2063 CurContext->addDecl(Friend);
2064 }
2065
2066 if (PrevClassTemplate)
2067 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
2068
2069 if (Invalid) {
2070 NewTemplate->setInvalidDecl();
2071 NewClass->setInvalidDecl();
2072 }
2073
2074 ActOnDocumentableDecl(NewTemplate);
2075
2076 if (SkipBody && SkipBody->ShouldSkip)
2077 return SkipBody->Previous;
2078
2079 return NewTemplate;
2080}
2081
2082namespace {
2083/// Tree transform to "extract" a transformed type from a class template's
2084/// constructor to a deduction guide.
2085class ExtractTypeForDeductionGuide
2086 : public TreeTransform<ExtractTypeForDeductionGuide> {
2087 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2088
2089public:
2090 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2091 ExtractTypeForDeductionGuide(
2092 Sema &SemaRef,
2093 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2094 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2095
2096 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2097
2098 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2099 ASTContext &Context = SemaRef.getASTContext();
2100 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2101 TypedefNameDecl *Decl = OrigDecl;
2102 // Transform the underlying type of the typedef and clone the Decl only if
2103 // the typedef has a dependent context.
2104 if (OrigDecl->getDeclContext()->isDependentContext()) {
2105 TypeLocBuilder InnerTLB;
2106 QualType Transformed =
2107 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2108 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2109 if (isa<TypeAliasDecl>(OrigDecl))
2110 Decl = TypeAliasDecl::Create(
2111 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2112 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2113 else {
2114 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef")(static_cast<void> (0));
2115 Decl = TypedefDecl::Create(
2116 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2117 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2118 }
2119 MaterializedTypedefs.push_back(Decl);
2120 }
2121
2122 QualType TDTy = Context.getTypedefType(Decl);
2123 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2124 TypedefTL.setNameLoc(TL.getNameLoc());
2125
2126 return TDTy;
2127 }
2128};
2129
2130/// Transform to convert portions of a constructor declaration into the
2131/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2132struct ConvertConstructorToDeductionGuideTransform {
2133 ConvertConstructorToDeductionGuideTransform(Sema &S,
2134 ClassTemplateDecl *Template)
2135 : SemaRef(S), Template(Template) {}
2136
2137 Sema &SemaRef;
2138 ClassTemplateDecl *Template;
2139
2140 DeclContext *DC = Template->getDeclContext();
2141 CXXRecordDecl *Primary = Template->getTemplatedDecl();
2142 DeclarationName DeductionGuideName =
2143 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2144
2145 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2146
2147 // Index adjustment to apply to convert depth-1 template parameters into
2148 // depth-0 template parameters.
2149 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2150
2151 /// Transform a constructor declaration into a deduction guide.
2152 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2153 CXXConstructorDecl *CD) {
2154 SmallVector<TemplateArgument, 16> SubstArgs;
2155
2156 LocalInstantiationScope Scope(SemaRef);
2157
2158 // C++ [over.match.class.deduct]p1:
2159 // -- For each constructor of the class template designated by the
2160 // template-name, a function template with the following properties:
2161
2162 // -- The template parameters are the template parameters of the class
2163 // template followed by the template parameters (including default
2164 // template arguments) of the constructor, if any.
2165 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2166 if (FTD) {
2167 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2168 SmallVector<NamedDecl *, 16> AllParams;
2169 AllParams.reserve(TemplateParams->size() + InnerParams->size());
2170 AllParams.insert(AllParams.begin(),
2171 TemplateParams->begin(), TemplateParams->end());
2172 SubstArgs.reserve(InnerParams->size());
2173
2174 // Later template parameters could refer to earlier ones, so build up
2175 // a list of substituted template arguments as we go.
2176 for (NamedDecl *Param : *InnerParams) {
2177 MultiLevelTemplateArgumentList Args;
2178 Args.setKind(TemplateSubstitutionKind::Rewrite);
2179 Args.addOuterTemplateArguments(SubstArgs);
2180 Args.addOuterRetainedLevel();
2181 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2182 if (!NewParam)
2183 return nullptr;
2184 AllParams.push_back(NewParam);
2185 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2186 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2187 }
2188 TemplateParams = TemplateParameterList::Create(
2189 SemaRef.Context, InnerParams->getTemplateLoc(),
2190 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2191 /*FIXME: RequiresClause*/ nullptr);
2192 }
2193
2194 // If we built a new template-parameter-list, track that we need to
2195 // substitute references to the old parameters into references to the
2196 // new ones.
2197 MultiLevelTemplateArgumentList Args;
2198 Args.setKind(TemplateSubstitutionKind::Rewrite);
2199 if (FTD) {
2200 Args.addOuterTemplateArguments(SubstArgs);
2201 Args.addOuterRetainedLevel();
2202 }
2203
2204 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2205 .getAsAdjusted<FunctionProtoTypeLoc>();
2206 assert(FPTL && "no prototype for constructor declaration")(static_cast<void> (0));
2207
2208 // Transform the type of the function, adjusting the return type and
2209 // replacing references to the old parameters with references to the
2210 // new ones.
2211 TypeLocBuilder TLB;
2212 SmallVector<ParmVarDecl*, 8> Params;
2213 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2214 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2215 MaterializedTypedefs);
2216 if (NewType.isNull())
2217 return nullptr;
2218 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2219
2220 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2221 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2222 CD->getEndLoc(), MaterializedTypedefs);
2223 }
2224
2225 /// Build a deduction guide with the specified parameter types.
2226 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2227 SourceLocation Loc = Template->getLocation();
2228
2229 // Build the requested type.
2230 FunctionProtoType::ExtProtoInfo EPI;
2231 EPI.HasTrailingReturn = true;
2232 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2233 DeductionGuideName, EPI);
2234 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2235
2236 FunctionProtoTypeLoc FPTL =
2237 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2238
2239 // Build the parameters, needed during deduction / substitution.
2240 SmallVector<ParmVarDecl*, 4> Params;
2241 for (auto T : ParamTypes) {
2242 ParmVarDecl *NewParam = ParmVarDecl::Create(
2243 SemaRef.Context, DC, Loc, Loc, nullptr, T,
2244 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2245 NewParam->setScopeInfo(0, Params.size());
2246 FPTL.setParam(Params.size(), NewParam);
2247 Params.push_back(NewParam);
2248 }
2249
2250 return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2251 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2252 }
2253
2254private:
2255 /// Transform a constructor template parameter into a deduction guide template
2256 /// parameter, rebuilding any internal references to earlier parameters and
2257 /// renumbering as we go.
2258 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2259 MultiLevelTemplateArgumentList &Args) {
2260 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2261 // TemplateTypeParmDecl's index cannot be changed after creation, so
2262 // substitute it directly.
2263 auto *NewTTP = TemplateTypeParmDecl::Create(
2264 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2265 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2266 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2267 TTP->isParameterPack(), TTP->hasTypeConstraint(),
2268 TTP->isExpandedParameterPack() ?
2269 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2270 if (const auto *TC = TTP->getTypeConstraint()) {
2271 TemplateArgumentListInfo TransformedArgs;
2272 const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten();
2273 if (!ArgsAsWritten ||
2274 SemaRef.Subst(ArgsAsWritten->getTemplateArgs(),
2275 ArgsAsWritten->NumTemplateArgs, TransformedArgs,
2276 Args))
2277 SemaRef.AttachTypeConstraint(
2278 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2279 TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr,
2280 NewTTP,
2281 NewTTP->isParameterPack()
2282 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2283 ->getEllipsisLoc()
2284 : SourceLocation());
2285 }
2286 if (TTP->hasDefaultArgument()) {
2287 TypeSourceInfo *InstantiatedDefaultArg =
2288 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2289 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2290 if (InstantiatedDefaultArg)
2291 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2292 }
2293 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2294 NewTTP);
2295 return NewTTP;
2296 }
2297
2298 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2299 return transformTemplateParameterImpl(TTP, Args);
2300
2301 return transformTemplateParameterImpl(
2302 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2303 }
2304 template<typename TemplateParmDecl>
2305 TemplateParmDecl *
2306 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2307 MultiLevelTemplateArgumentList &Args) {
2308 // Ask the template instantiator to do the heavy lifting for us, then adjust
2309 // the index of the parameter once it's done.
2310 auto *NewParam =
2311 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2312 assert(NewParam->getDepth() == 0 && "unexpected template param depth")(static_cast<void> (0));
2313 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2314 return NewParam;
2315 }
2316
2317 QualType transformFunctionProtoType(
2318 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2319 SmallVectorImpl<ParmVarDecl *> &Params,
2320 MultiLevelTemplateArgumentList &Args,
2321 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2322 SmallVector<QualType, 4> ParamTypes;
2323 const FunctionProtoType *T = TL.getTypePtr();
2324
2325 // -- The types of the function parameters are those of the constructor.
2326 for (auto *OldParam : TL.getParams()) {
2327 ParmVarDecl *NewParam =
2328 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2329 if (!NewParam)
2330 return QualType();
2331 ParamTypes.push_back(NewParam->getType());
2332 Params.push_back(NewParam);
2333 }
2334
2335 // -- The return type is the class template specialization designated by
2336 // the template-name and template arguments corresponding to the
2337 // template parameters obtained from the class template.
2338 //
2339 // We use the injected-class-name type of the primary template instead.
2340 // This has the convenient property that it is different from any type that
2341 // the user can write in a deduction-guide (because they cannot enter the
2342 // context of the template), so implicit deduction guides can never collide
2343 // with explicit ones.
2344 QualType ReturnType = DeducedType;
2345 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2346
2347 // Resolving a wording defect, we also inherit the variadicness of the
2348 // constructor.
2349 FunctionProtoType::ExtProtoInfo EPI;
2350 EPI.Variadic = T->isVariadic();
2351 EPI.HasTrailingReturn = true;
2352
2353 QualType Result = SemaRef.BuildFunctionType(
2354 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2355 if (Result.isNull())
2356 return QualType();
2357
2358 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2359 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2360 NewTL.setLParenLoc(TL.getLParenLoc());
2361 NewTL.setRParenLoc(TL.getRParenLoc());
2362 NewTL.setExceptionSpecRange(SourceRange());
2363 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2364 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2365 NewTL.setParam(I, Params[I]);
2366
2367 return Result;
2368 }
2369
2370 ParmVarDecl *transformFunctionTypeParam(
2371 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2372 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2373 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2374 TypeSourceInfo *NewDI;
2375 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2376 // Expand out the one and only element in each inner pack.
2377 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2378 NewDI =
2379 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2380 OldParam->getLocation(), OldParam->getDeclName());
2381 if (!NewDI) return nullptr;
2382 NewDI =
2383 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2384 PackTL.getTypePtr()->getNumExpansions());
2385 } else
2386 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2387 OldParam->getDeclName());
2388 if (!NewDI)
2389 return nullptr;
2390
2391 // Extract the type. This (for instance) replaces references to typedef
2392 // members of the current instantiations with the definitions of those
2393 // typedefs, avoiding triggering instantiation of the deduced type during
2394 // deduction.
2395 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2396 .transform(NewDI);
2397
2398 // Resolving a wording defect, we also inherit default arguments from the
2399 // constructor.
2400 ExprResult NewDefArg;
2401 if (OldParam->hasDefaultArg()) {
2402 // We don't care what the value is (we won't use it); just create a
2403 // placeholder to indicate there is a default argument.
2404 QualType ParamTy = NewDI->getType();
2405 NewDefArg = new (SemaRef.Context)
2406 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2407 ParamTy.getNonLValueExprType(SemaRef.Context),
2408 ParamTy->isLValueReferenceType() ? VK_LValue
2409 : ParamTy->isRValueReferenceType() ? VK_XValue
2410 : VK_PRValue);
2411 }
2412
2413 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2414 OldParam->getInnerLocStart(),
2415 OldParam->getLocation(),
2416 OldParam->getIdentifier(),
2417 NewDI->getType(),
2418 NewDI,
2419 OldParam->getStorageClass(),
2420 NewDefArg.get());
2421 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2422 OldParam->getFunctionScopeIndex());
2423 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2424 return NewParam;
2425 }
2426
2427 FunctionTemplateDecl *buildDeductionGuide(
2428 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2429 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2430 SourceLocation Loc, SourceLocation LocEnd,
2431 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2432 DeclarationNameInfo Name(DeductionGuideName, Loc);
2433 ArrayRef<ParmVarDecl *> Params =
2434 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2435
2436 // Build the implicit deduction guide template.
2437 auto *Guide =
2438 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2439 TInfo->getType(), TInfo, LocEnd, Ctor);
2440 Guide->setImplicit();
2441 Guide->setParams(Params);
2442
2443 for (auto *Param : Params)
2444 Param->setDeclContext(Guide);
2445 for (auto *TD : MaterializedTypedefs)
2446 TD->setDeclContext(Guide);
2447
2448 auto *GuideTemplate = FunctionTemplateDecl::Create(
2449 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2450 GuideTemplate->setImplicit();
2451 Guide->setDescribedFunctionTemplate(GuideTemplate);
2452
2453 if (isa<CXXRecordDecl>(DC)) {
2454 Guide->setAccess(AS_public);
2455 GuideTemplate->setAccess(AS_public);
2456 }
2457
2458 DC->addDecl(GuideTemplate);
2459 return GuideTemplate;
2460 }
2461};
2462}
2463
2464void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2465 SourceLocation Loc) {
2466 if (CXXRecordDecl *DefRecord =
2467 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2468 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2469 Template = DescribedTemplate ? DescribedTemplate : Template;
2470 }
2471
2472 DeclContext *DC = Template->getDeclContext();
2473 if (DC->isDependentContext())
2474 return;
2475
2476 ConvertConstructorToDeductionGuideTransform Transform(
2477 *this, cast<ClassTemplateDecl>(Template));
2478 if (!isCompleteType(Loc, Transform.DeducedType))
2479 return;
2480
2481 // Check whether we've already declared deduction guides for this template.
2482 // FIXME: Consider storing a flag on the template to indicate this.
2483 auto Existing = DC->lookup(Transform.DeductionGuideName);
2484 for (auto *D : Existing)
2485 if (D->isImplicit())
2486 return;
2487
2488 // In case we were expanding a pack when we attempted to declare deduction
2489 // guides, turn off pack expansion for everything we're about to do.
2490 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2491 // Create a template instantiation record to track the "instantiation" of
2492 // constructors into deduction guides.
2493 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2494 // this substitution process actually fail?
2495 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2496 if (BuildingDeductionGuides.isInvalid())
2497 return;
2498
2499 // Convert declared constructors into deduction guide templates.
2500 // FIXME: Skip constructors for which deduction must necessarily fail (those
2501 // for which some class template parameter without a default argument never
2502 // appears in a deduced context).
2503 bool AddedAny = false;
2504 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2505 D = D->getUnderlyingDecl();
2506 if (D->isInvalidDecl() || D->isImplicit())
2507 continue;
2508 D = cast<NamedDecl>(D->getCanonicalDecl());
2509
2510 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2511 auto *CD =
2512 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2513 // Class-scope explicit specializations (MS extension) do not result in
2514 // deduction guides.
2515 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2516 continue;
2517
2518 // Cannot make a deduction guide when unparsed arguments are present.
2519 if (std::any_of(CD->param_begin(), CD->param_end(), [](ParmVarDecl *P) {
2520 return !P || P->hasUnparsedDefaultArg();
2521 }))
2522 continue;
2523
2524 Transform.transformConstructor(FTD, CD);
2525 AddedAny = true;
2526 }
2527
2528 // C++17 [over.match.class.deduct]
2529 // -- If C is not defined or does not declare any constructors, an
2530 // additional function template derived as above from a hypothetical
2531 // constructor C().
2532 if (!AddedAny)
2533 Transform.buildSimpleDeductionGuide(None);
2534
2535 // -- An additional function template derived as above from a hypothetical
2536 // constructor C(C), called the copy deduction candidate.
2537 cast<CXXDeductionGuideDecl>(
2538 cast<FunctionTemplateDecl>(
2539 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2540 ->getTemplatedDecl())
2541 ->setIsCopyDeductionCandidate();
2542}
2543
2544/// Diagnose the presence of a default template argument on a
2545/// template parameter, which is ill-formed in certain contexts.
2546///
2547/// \returns true if the default template argument should be dropped.
2548static bool DiagnoseDefaultTemplateArgument(Sema &S,
2549 Sema::TemplateParamListContext TPC,
2550 SourceLocation ParamLoc,
2551 SourceRange DefArgRange) {
2552 switch (TPC) {
2553 case Sema::TPC_ClassTemplate:
2554 case Sema::TPC_VarTemplate:
2555 case Sema::TPC_TypeAliasTemplate:
2556 return false;
2557
2558 case Sema::TPC_FunctionTemplate:
2559 case Sema::TPC_FriendFunctionTemplateDefinition:
2560 // C++ [temp.param]p9:
2561 // A default template-argument shall not be specified in a
2562 // function template declaration or a function template
2563 // definition [...]
2564 // If a friend function template declaration specifies a default
2565 // template-argument, that declaration shall be a definition and shall be
2566 // the only declaration of the function template in the translation unit.
2567 // (C++98/03 doesn't have this wording; see DR226).
2568 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2569 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2570 : diag::ext_template_parameter_default_in_function_template)
2571 << DefArgRange;
2572 return false;
2573
2574 case Sema::TPC_ClassTemplateMember:
2575 // C++0x [temp.param]p9:
2576 // A default template-argument shall not be specified in the
2577 // template-parameter-lists of the definition of a member of a
2578 // class template that appears outside of the member's class.
2579 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2580 << DefArgRange;
2581 return true;
2582
2583 case Sema::TPC_FriendClassTemplate:
2584 case Sema::TPC_FriendFunctionTemplate:
2585 // C++ [temp.param]p9:
2586 // A default template-argument shall not be specified in a
2587 // friend template declaration.
2588 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2589 << DefArgRange;
2590 return true;
2591
2592 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2593 // for friend function templates if there is only a single
2594 // declaration (and it is a definition). Strange!
2595 }
2596
2597 llvm_unreachable("Invalid TemplateParamListContext!")__builtin_unreachable();
2598}
2599
2600/// Check for unexpanded parameter packs within the template parameters
2601/// of a template template parameter, recursively.
2602static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2603 TemplateTemplateParmDecl *TTP) {
2604 // A template template parameter which is a parameter pack is also a pack
2605 // expansion.
2606 if (TTP->isParameterPack())
2607 return false;
2608
2609 TemplateParameterList *Params = TTP->getTemplateParameters();
2610 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2611 NamedDecl *P = Params->getParam(I);
2612 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2613 if (!TTP->isParameterPack())
2614 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2615 if (TC->hasExplicitTemplateArgs())
2616 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2617 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2618 Sema::UPPC_TypeConstraint))
2619 return true;
2620 continue;
2621 }
2622
2623 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2624 if (!NTTP->isParameterPack() &&
2625 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2626 NTTP->getTypeSourceInfo(),
2627 Sema::UPPC_NonTypeTemplateParameterType))
2628 return true;
2629
2630 continue;
2631 }
2632
2633 if (TemplateTemplateParmDecl *InnerTTP
2634 = dyn_cast<TemplateTemplateParmDecl>(P))
2635 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2636 return true;
2637 }
2638
2639 return false;
2640}
2641
2642/// Checks the validity of a template parameter list, possibly
2643/// considering the template parameter list from a previous
2644/// declaration.
2645///
2646/// If an "old" template parameter list is provided, it must be
2647/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2648/// template parameter list.
2649///
2650/// \param NewParams Template parameter list for a new template
2651/// declaration. This template parameter list will be updated with any
2652/// default arguments that are carried through from the previous
2653/// template parameter list.
2654///
2655/// \param OldParams If provided, template parameter list from a
2656/// previous declaration of the same template. Default template
2657/// arguments will be merged from the old template parameter list to
2658/// the new template parameter list.
2659///
2660/// \param TPC Describes the context in which we are checking the given
2661/// template parameter list.
2662///
2663/// \param SkipBody If we might have already made a prior merged definition
2664/// of this template visible, the corresponding body-skipping information.
2665/// Default argument redefinition is not an error when skipping such a body,
2666/// because (under the ODR) we can assume the default arguments are the same
2667/// as the prior merged definition.
2668///
2669/// \returns true if an error occurred, false otherwise.
2670bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2671 TemplateParameterList *OldParams,
2672 TemplateParamListContext TPC,
2673 SkipBodyInfo *SkipBody) {
2674 bool Invalid = false;
2675
2676 // C++ [temp.param]p10:
2677 // The set of default template-arguments available for use with a
2678 // template declaration or definition is obtained by merging the
2679 // default arguments from the definition (if in scope) and all
2680 // declarations in scope in the same way default function
2681 // arguments are (8.3.6).
2682 bool SawDefaultArgument = false;
2683 SourceLocation PreviousDefaultArgLoc;
2684
2685 // Dummy initialization to avoid warnings.
2686 TemplateParameterList::iterator OldParam = NewParams->end();
2687 if (OldParams)
2688 OldParam = OldParams->begin();
2689
2690 bool RemoveDefaultArguments = false;
2691 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2692 NewParamEnd = NewParams->end();
2693 NewParam != NewParamEnd; ++NewParam) {
2694 // Variables used to diagnose redundant default arguments
2695 bool RedundantDefaultArg = false;
2696 SourceLocation OldDefaultLoc;
2697 SourceLocation NewDefaultLoc;
2698
2699 // Variable used to diagnose missing default arguments
2700 bool MissingDefaultArg = false;
2701
2702 // Variable used to diagnose non-final parameter packs
2703 bool SawParameterPack = false;
2704
2705 if (TemplateTypeParmDecl *NewTypeParm
2706 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2707 // Check the presence of a default argument here.
2708 if (NewTypeParm->hasDefaultArgument() &&
2709 DiagnoseDefaultTemplateArgument(*this, TPC,
2710 NewTypeParm->getLocation(),
2711 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2712 .getSourceRange()))
2713 NewTypeParm->removeDefaultArgument();
2714
2715 // Merge default arguments for template type parameters.
2716 TemplateTypeParmDecl *OldTypeParm
2717 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2718 if (NewTypeParm->isParameterPack()) {
2719 assert(!NewTypeParm->hasDefaultArgument() &&(static_cast<void> (0))
2720 "Parameter packs can't have a default argument!")(static_cast<void> (0));
2721 SawParameterPack = true;
2722 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2723 NewTypeParm->hasDefaultArgument() &&
2724 (!SkipBody || !SkipBody->ShouldSkip)) {
2725 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2726 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2727 SawDefaultArgument = true;
2728 RedundantDefaultArg = true;
2729 PreviousDefaultArgLoc = NewDefaultLoc;
2730 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2731 // Merge the default argument from the old declaration to the
2732 // new declaration.
2733 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2734 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2735 } else if (NewTypeParm->hasDefaultArgument()) {
2736 SawDefaultArgument = true;
2737 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2738 } else if (SawDefaultArgument)
2739 MissingDefaultArg = true;
2740 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2741 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2742 // Check for unexpanded parameter packs.
2743 if (!NewNonTypeParm->isParameterPack() &&
2744 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2745 NewNonTypeParm->getTypeSourceInfo(),
2746 UPPC_NonTypeTemplateParameterType)) {
2747 Invalid = true;
2748 continue;
2749 }
2750
2751 // Check the presence of a default argument here.
2752 if (NewNonTypeParm->hasDefaultArgument() &&
2753 DiagnoseDefaultTemplateArgument(*this, TPC,
2754 NewNonTypeParm->getLocation(),
2755 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2756 NewNonTypeParm->removeDefaultArgument();
2757 }
2758
2759 // Merge default arguments for non-type template parameters
2760 NonTypeTemplateParmDecl *OldNonTypeParm
2761 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2762 if (NewNonTypeParm->isParameterPack()) {
2763 assert(!NewNonTypeParm->hasDefaultArgument() &&(static_cast<void> (0))
2764 "Parameter packs can't have a default argument!")(static_cast<void> (0));
2765 if (!NewNonTypeParm->isPackExpansion())
2766 SawParameterPack = true;
2767 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2768 NewNonTypeParm->hasDefaultArgument() &&
2769 (!SkipBody || !SkipBody->ShouldSkip)) {
2770 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2771 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2772 SawDefaultArgument = true;
2773 RedundantDefaultArg = true;
2774 PreviousDefaultArgLoc = NewDefaultLoc;
2775 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2776 // Merge the default argument from the old declaration to the
2777 // new declaration.
2778 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2779 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2780 } else if (NewNonTypeParm->hasDefaultArgument()) {
2781 SawDefaultArgument = true;
2782 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2783 } else if (SawDefaultArgument)
2784 MissingDefaultArg = true;
2785 } else {
2786 TemplateTemplateParmDecl *NewTemplateParm
2787 = cast<TemplateTemplateParmDecl>(*NewParam);
2788
2789 // Check for unexpanded parameter packs, recursively.
2790 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2791 Invalid = true;
2792 continue;
2793 }
2794
2795 // Check the presence of a default argument here.
2796 if (NewTemplateParm->hasDefaultArgument() &&
2797 DiagnoseDefaultTemplateArgument(*this, TPC,
2798 NewTemplateParm->getLocation(),
2799 NewTemplateParm->getDefaultArgument().getSourceRange()))
2800 NewTemplateParm->removeDefaultArgument();
2801
2802 // Merge default arguments for template template parameters
2803 TemplateTemplateParmDecl *OldTemplateParm
2804 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2805 if (NewTemplateParm->isParameterPack()) {
2806 assert(!NewTemplateParm->hasDefaultArgument() &&(static_cast<void> (0))
2807 "Parameter packs can't have a default argument!")(static_cast<void> (0));
2808 if (!NewTemplateParm->isPackExpansion())
2809 SawParameterPack = true;
2810 } else if (OldTemplateParm &&
2811 hasVisibleDefaultArgument(OldTemplateParm) &&
2812 NewTemplateParm->hasDefaultArgument() &&
2813 (!SkipBody || !SkipBody->ShouldSkip)) {
2814 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2815 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2816 SawDefaultArgument = true;
2817 RedundantDefaultArg = true;
2818 PreviousDefaultArgLoc = NewDefaultLoc;
2819 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2820 // Merge the default argument from the old declaration to the
2821 // new declaration.
2822 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2823 PreviousDefaultArgLoc
2824 = OldTemplateParm->getDefaultArgument().getLocation();
2825 } else if (NewTemplateParm->hasDefaultArgument()) {
2826 SawDefaultArgument = true;
2827 PreviousDefaultArgLoc
2828 = NewTemplateParm->getDefaultArgument().getLocation();
2829 } else if (SawDefaultArgument)
2830 MissingDefaultArg = true;
2831 }
2832
2833 // C++11 [temp.param]p11:
2834 // If a template parameter of a primary class template or alias template
2835 // is a template parameter pack, it shall be the last template parameter.
2836 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2837 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2838 TPC == TPC_TypeAliasTemplate)) {
2839 Diag((*NewParam)->getLocation(),
2840 diag::err_template_param_pack_must_be_last_template_parameter);
2841 Invalid = true;
2842 }
2843
2844 if (RedundantDefaultArg) {
2845 // C++ [temp.param]p12:
2846 // A template-parameter shall not be given default arguments
2847 // by two different declarations in the same scope.
2848 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2849 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2850 Invalid = true;
2851 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2852 // C++ [temp.param]p11:
2853 // If a template-parameter of a class template has a default
2854 // template-argument, each subsequent template-parameter shall either
2855 // have a default template-argument supplied or be a template parameter
2856 // pack.
2857 Diag((*NewParam)->getLocation(),
2858 diag::err_template_param_default_arg_missing);
2859 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2860 Invalid = true;
2861 RemoveDefaultArguments = true;
2862 }
2863
2864 // If we have an old template parameter list that we're merging
2865 // in, move on to the next parameter.
2866 if (OldParams)
2867 ++OldParam;
2868 }
2869
2870 // We were missing some default arguments at the end of the list, so remove
2871 // all of the default arguments.
2872 if (RemoveDefaultArguments) {
2873 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2874 NewParamEnd = NewParams->end();
2875 NewParam != NewParamEnd; ++NewParam) {
2876 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2877 TTP->removeDefaultArgument();
2878 else if (NonTypeTemplateParmDecl *NTTP
2879 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2880 NTTP->removeDefaultArgument();
2881 else
2882 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2883 }
2884 }
2885
2886 return Invalid;
2887}
2888
2889namespace {
2890
2891/// A class which looks for a use of a certain level of template
2892/// parameter.
2893struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2894 typedef RecursiveASTVisitor<DependencyChecker> super;
2895
2896 unsigned Depth;
2897
2898 // Whether we're looking for a use of a template parameter that makes the
2899 // overall construct type-dependent / a dependent type. This is strictly
2900 // best-effort for now; we may fail to match at all for a dependent type
2901 // in some cases if this is set.
2902 bool IgnoreNonTypeDependent;
2903
2904 bool Match;
2905 SourceLocation MatchLoc;
2906
2907 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2908 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2909 Match(false) {}
2910
2911 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2912 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2913 NamedDecl *ND = Params->getParam(0);
2914 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2915 Depth = PD->getDepth();
2916 } else if (NonTypeTemplateParmDecl *PD =
2917 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2918 Depth = PD->getDepth();
2919 } else {
2920 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2921 }
2922 }
2923
2924 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2925 if (ParmDepth >= Depth) {
2926 Match = true;
2927 MatchLoc = Loc;
2928 return true;
2929 }
2930 return false;
2931 }
2932
2933 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2934 // Prune out non-type-dependent expressions if requested. This can
2935 // sometimes result in us failing to find a template parameter reference
2936 // (if a value-dependent expression creates a dependent type), but this
2937 // mode is best-effort only.
2938 if (auto *E = dyn_cast_or_null<Expr>(S))
2939 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2940 return true;
2941 return super::TraverseStmt(S, Q);
2942 }
2943
2944 bool TraverseTypeLoc(TypeLoc TL) {
2945 if (IgnoreNonTypeDependent && !TL.isNull() &&
2946 !TL.getType()->isDependentType())
2947 return true;
2948 return super::TraverseTypeLoc(TL);
2949 }
2950
2951 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2952 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2953 }
2954
2955 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2956 // For a best-effort search, keep looking until we find a location.
2957 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2958 }
2959
2960 bool TraverseTemplateName(TemplateName N) {
2961 if (TemplateTemplateParmDecl *PD =
2962 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2963 if (Matches(PD->getDepth()))
2964 return false;
2965 return super::TraverseTemplateName(N);
2966 }
2967
2968 bool VisitDeclRefExpr(DeclRefExpr *E) {
2969 if (NonTypeTemplateParmDecl *PD =
2970 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2971 if (Matches(PD->getDepth(), E->getExprLoc()))
2972 return false;
2973 return super::VisitDeclRefExpr(E);
2974 }
2975
2976 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2977 return TraverseType(T->getReplacementType());
2978 }
2979
2980 bool
2981 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2982 return TraverseTemplateArgument(T->getArgumentPack());
2983 }
2984
2985 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2986 return TraverseType(T->getInjectedSpecializationType());
2987 }
2988};
2989} // end anonymous namespace
2990
2991/// Determines whether a given type depends on the given parameter
2992/// list.
2993static bool
2994DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2995 if (!Params->size())
2996 return false;
2997
2998 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2999 Checker.TraverseType(T);
3000 return Checker.Match;
3001}
3002
3003// Find the source range corresponding to the named type in the given
3004// nested-name-specifier, if any.
3005static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3006 QualType T,
3007 const CXXScopeSpec &SS) {
3008 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3009 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3010 if (const Type *CurType = NNS->getAsType()) {
3011 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3012 return NNSLoc.getTypeLoc().getSourceRange();
3013 } else
3014 break;
3015
3016 NNSLoc = NNSLoc.getPrefix();
3017 }
3018
3019 return SourceRange();
3020}
3021
3022/// Match the given template parameter lists to the given scope
3023/// specifier, returning the template parameter list that applies to the
3024/// name.
3025///
3026/// \param DeclStartLoc the start of the declaration that has a scope
3027/// specifier or a template parameter list.
3028///
3029/// \param DeclLoc The location of the declaration itself.
3030///
3031/// \param SS the scope specifier that will be matched to the given template
3032/// parameter lists. This scope specifier precedes a qualified name that is
3033/// being declared.
3034///
3035/// \param TemplateId The template-id following the scope specifier, if there
3036/// is one. Used to check for a missing 'template<>'.
3037///
3038/// \param ParamLists the template parameter lists, from the outermost to the
3039/// innermost template parameter lists.
3040///
3041/// \param IsFriend Whether to apply the slightly different rules for
3042/// matching template parameters to scope specifiers in friend
3043/// declarations.
3044///
3045/// \param IsMemberSpecialization will be set true if the scope specifier
3046/// denotes a fully-specialized type, and therefore this is a declaration of
3047/// a member specialization.
3048///
3049/// \returns the template parameter list, if any, that corresponds to the
3050/// name that is preceded by the scope specifier @p SS. This template
3051/// parameter list may have template parameters (if we're declaring a
3052/// template) or may have no template parameters (if we're declaring a
3053/// template specialization), or may be NULL (if what we're declaring isn't
3054/// itself a template).
3055TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3056 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3057 TemplateIdAnnotation *TemplateId,
3058 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3059 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3060 IsMemberSpecialization = false;
3061 Invalid = false;
3062
3063 // The sequence of nested types to which we will match up the template
3064 // parameter lists. We first build this list by starting with the type named
3065 // by the nested-name-specifier and walking out until we run out of types.
3066 SmallVector<QualType, 4> NestedTypes;
3067 QualType T;
3068 if (SS.getScopeRep()) {
3069 if (CXXRecordDecl *Record
3070 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3071 T = Context.getTypeDeclType(Record);
3072 else
3073 T = QualType(SS.getScopeRep()->getAsType(), 0);
3074 }
3075
3076 // If we found an explicit specialization that prevents us from needing
3077 // 'template<>' headers, this will be set to the location of that
3078 // explicit specialization.
3079 SourceLocation ExplicitSpecLoc;
3080
3081 while (!T.isNull()) {
3082 NestedTypes.push_back(T);
3083
3084 // Retrieve the parent of a record type.
3085 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3086 // If this type is an explicit specialization, we're done.
3087 if (ClassTemplateSpecializationDecl *Spec
3088 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3089 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3090 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3091 ExplicitSpecLoc = Spec->getLocation();
3092 break;
3093 }
3094 } else if (Record->getTemplateSpecializationKind()
3095 == TSK_ExplicitSpecialization) {
3096 ExplicitSpecLoc = Record->getLocation();
3097 break;
3098 }
3099
3100 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3101 T = Context.getTypeDeclType(Parent);
3102 else
3103 T = QualType();
3104 continue;
3105 }
3106
3107 if (const TemplateSpecializationType *TST
3108 = T->getAs<TemplateSpecializationType>()) {
3109 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3110 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3111 T = Context.getTypeDeclType(Parent);
3112 else
3113 T = QualType();
3114 continue;
3115 }
3116 }
3117
3118 // Look one step prior in a dependent template specialization type.
3119 if (const DependentTemplateSpecializationType *DependentTST
3120 = T->getAs<DependentTemplateSpecializationType>()) {
3121 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3122 T = QualType(NNS->getAsType(), 0);
3123 else
3124 T = QualType();
3125 continue;
3126 }
3127
3128 // Look one step prior in a dependent name type.
3129 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3130 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3131 T = QualType(NNS->getAsType(), 0);
3132 else
3133 T = QualType();
3134 continue;
3135 }
3136
3137 // Retrieve the parent of an enumeration type.
3138 if (const EnumType *EnumT = T->getAs<EnumType>()) {
3139 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3140 // check here.
3141 EnumDecl *Enum = EnumT->getDecl();
3142
3143 // Get to the parent type.
3144 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3145 T = Context.getTypeDeclType(Parent);
3146 else
3147 T = QualType();
3148 continue;
3149 }
3150
3151 T = QualType();
3152 }
3153 // Reverse the nested types list, since we want to traverse from the outermost
3154 // to the innermost while checking template-parameter-lists.
3155 std::reverse(NestedTypes.begin(), NestedTypes.end());
3156
3157 // C++0x [temp.expl.spec]p17:
3158 // A member or a member template may be nested within many
3159 // enclosing class templates. In an explicit specialization for
3160 // such a member, the member declaration shall be preceded by a
3161 // template<> for each enclosing class template that is
3162 // explicitly specialized.
3163 bool SawNonEmptyTemplateParameterList = false;
3164
3165 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3166 if (SawNonEmptyTemplateParameterList) {
3167 if (!SuppressDiagnostic)
3168 Diag(DeclLoc, diag::err_specialize_member_of_template)
3169 << !Recovery << Range;
3170 Invalid = true;
3171 IsMemberSpecialization = false;
3172 return true;
3173 }
3174
3175 return false;
3176 };
3177
3178 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3179 // Check that we can have an explicit specialization here.
3180 if (CheckExplicitSpecialization(Range, true))
3181 return true;
3182
3183 // We don't have a template header, but we should.
3184 SourceLocation ExpectedTemplateLoc;
3185 if (!ParamLists.empty())
3186 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3187 else
3188 ExpectedTemplateLoc = DeclStartLoc;
3189
3190 if (!SuppressDiagnostic)
3191 Diag(DeclLoc, diag::err_template_spec_needs_header)
3192 << Range
3193 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3194 return false;
3195 };
3196
3197 unsigned ParamIdx = 0;
3198 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3199 ++TypeIdx) {
3200 T = NestedTypes[TypeIdx];
3201
3202 // Whether we expect a 'template<>' header.
3203 bool NeedEmptyTemplateHeader = false;
3204
3205 // Whether we expect a template header with parameters.
3206 bool NeedNonemptyTemplateHeader = false;
3207
3208 // For a dependent type, the set of template parameters that we
3209 // expect to see.
3210 TemplateParameterList *ExpectedTemplateParams = nullptr;
3211
3212 // C++0x [temp.expl.spec]p15:
3213 // A member or a member template may be nested within many enclosing
3214 // class templates. In an explicit specialization for such a member, the
3215 // member declaration shall be preceded by a template<> for each
3216 // enclosing class template that is explicitly specialized.
3217 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3218 if (ClassTemplatePartialSpecializationDecl *Partial
3219 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3220 ExpectedTemplateParams = Partial->getTemplateParameters();
3221 NeedNonemptyTemplateHeader = true;
3222 } else if (Record->isDependentType()) {
3223 if (Record->getDescribedClassTemplate()) {
3224 ExpectedTemplateParams = Record->getDescribedClassTemplate()
3225 ->getTemplateParameters();
3226 NeedNonemptyTemplateHeader = true;
3227 }
3228 } else if (ClassTemplateSpecializationDecl *Spec
3229 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3230 // C++0x [temp.expl.spec]p4:
3231 // Members of an explicitly specialized class template are defined
3232 // in the same manner as members of normal classes, and not using
3233 // the template<> syntax.
3234 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3235 NeedEmptyTemplateHeader = true;
3236 else
3237 continue;
3238 } else if (Record->getTemplateSpecializationKind()) {
3239 if (Record->getTemplateSpecializationKind()
3240 != TSK_ExplicitSpecialization &&
3241 TypeIdx == NumTypes - 1)
3242 IsMemberSpecialization = true;
3243
3244 continue;
3245 }
3246 } else if (const TemplateSpecializationType *TST
3247 = T->getAs<TemplateSpecializationType>()) {
3248 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3249 ExpectedTemplateParams = Template->getTemplateParameters();
3250 NeedNonemptyTemplateHeader = true;
3251 }
3252 } else if (T->getAs<DependentTemplateSpecializationType>()) {
3253 // FIXME: We actually could/should check the template arguments here
3254 // against the corresponding template parameter list.
3255 NeedNonemptyTemplateHeader = false;
3256 }
3257
3258 // C++ [temp.expl.spec]p16:
3259 // In an explicit specialization declaration for a member of a class
3260 // template or a member template that ap- pears in namespace scope, the
3261 // member template and some of its enclosing class templates may remain
3262 // unspecialized, except that the declaration shall not explicitly
3263 // specialize a class member template if its en- closing class templates
3264 // are not explicitly specialized as well.
3265 if (ParamIdx < ParamLists.size()) {
3266 if (ParamLists[ParamIdx]->size() == 0) {
3267 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3268 false))
3269 return nullptr;
3270 } else
3271 SawNonEmptyTemplateParameterList = true;
3272 }
3273
3274 if (NeedEmptyTemplateHeader) {
3275 // If we're on the last of the types, and we need a 'template<>' header
3276 // here, then it's a member specialization.
3277 if (TypeIdx == NumTypes - 1)
3278 IsMemberSpecialization = true;
3279
3280 if (ParamIdx < ParamLists.size()) {
3281 if (ParamLists[ParamIdx]->size() > 0) {
3282 // The header has template parameters when it shouldn't. Complain.
3283 if (!SuppressDiagnostic)
3284 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3285 diag::err_template_param_list_matches_nontemplate)
3286 << T
3287 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3288 ParamLists[ParamIdx]->getRAngleLoc())
3289 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3290 Invalid = true;
3291 return nullptr;
3292 }
3293
3294 // Consume this template header.
3295 ++ParamIdx;
3296 continue;
3297 }
3298
3299 if (!IsFriend)
3300 if (DiagnoseMissingExplicitSpecialization(
3301 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3302 return nullptr;
3303
3304 continue;
3305 }
3306
3307 if (NeedNonemptyTemplateHeader) {
3308 // In friend declarations we can have template-ids which don't
3309 // depend on the corresponding template parameter lists. But
3310 // assume that empty parameter lists are supposed to match this
3311 // template-id.
3312 if (IsFriend && T->isDependentType()) {
3313 if (ParamIdx < ParamLists.size() &&
3314 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3315 ExpectedTemplateParams = nullptr;
3316 else
3317 continue;
3318 }
3319
3320 if (ParamIdx < ParamLists.size()) {
3321 // Check the template parameter list, if we can.
3322 if (ExpectedTemplateParams &&
3323 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3324 ExpectedTemplateParams,
3325 !SuppressDiagnostic, TPL_TemplateMatch))
3326 Invalid = true;
3327
3328 if (!Invalid &&
3329 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3330 TPC_ClassTemplateMember))
3331 Invalid = true;
3332
3333 ++ParamIdx;
3334 continue;
3335 }
3336
3337 if (!SuppressDiagnostic)
3338 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3339 << T
3340 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3341 Invalid = true;
3342 continue;
3343 }
3344 }
3345
3346 // If there were at least as many template-ids as there were template
3347 // parameter lists, then there are no template parameter lists remaining for
3348 // the declaration itself.
3349 if (ParamIdx >= ParamLists.size()) {
3350 if (TemplateId && !IsFriend) {
3351 // We don't have a template header for the declaration itself, but we
3352 // should.
3353 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3354 TemplateId->RAngleLoc));
3355
3356 // Fabricate an empty template parameter list for the invented header.
3357 return TemplateParameterList::Create(Context, SourceLocation(),
3358 SourceLocation(), None,
3359 SourceLocation(), nullptr);
3360 }
3361
3362 return nullptr;
3363 }
3364
3365 // If there were too many template parameter lists, complain about that now.
3366 if (ParamIdx < ParamLists.size() - 1) {
3367 bool HasAnyExplicitSpecHeader = false;
3368 bool AllExplicitSpecHeaders = true;
3369 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3370 if (ParamLists[I]->size() == 0)
3371 HasAnyExplicitSpecHeader = true;
3372 else
3373 AllExplicitSpecHeaders = false;
3374 }
3375
3376 if (!SuppressDiagnostic)
3377 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3378 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3379 : diag::err_template_spec_extra_headers)
3380 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3381 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3382
3383 // If there was a specialization somewhere, such that 'template<>' is
3384 // not required, and there were any 'template<>' headers, note where the
3385 // specialization occurred.
3386 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3387 !SuppressDiagnostic)
3388 Diag(ExplicitSpecLoc,
3389 diag::note_explicit_template_spec_does_not_need_header)
3390 << NestedTypes.back();
3391
3392 // We have a template parameter list with no corresponding scope, which
3393 // means that the resulting template declaration can't be instantiated
3394 // properly (we'll end up with dependent nodes when we shouldn't).
3395 if (!AllExplicitSpecHeaders)
3396 Invalid = true;
3397 }
3398
3399 // C++ [temp.expl.spec]p16:
3400 // In an explicit specialization declaration for a member of a class
3401 // template or a member template that ap- pears in namespace scope, the
3402 // member template and some of its enclosing class templates may remain
3403 // unspecialized, except that the declaration shall not explicitly
3404 // specialize a class member template if its en- closing class templates
3405 // are not explicitly specialized as well.
3406 if (ParamLists.back()->size() == 0 &&
3407 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3408 false))
3409 return nullptr;
3410
3411 // Return the last template parameter list, which corresponds to the
3412 // entity being declared.
3413 return ParamLists.back();
3414}
3415
3416void Sema::NoteAllFoundTemplates(TemplateName Name) {
3417 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3418 Diag(Template->getLocation(), diag::note_template_declared_here)
3419 << (isa<FunctionTemplateDecl>(Template)
3420 ? 0
3421 : isa<ClassTemplateDecl>(Template)
3422 ? 1
3423 : isa<VarTemplateDecl>(Template)
3424 ? 2
3425 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3426 << Template->getDeclName();
3427 return;
3428 }
3429
3430 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3431 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3432 IEnd = OST->end();
3433 I != IEnd; ++I)
3434 Diag((*I)->getLocation(), diag::note_template_declared_here)
3435 << 0 << (*I)->getDeclName();
3436
3437 return;
3438 }
3439}
3440
3441static QualType
3442checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3443 const SmallVectorImpl<TemplateArgument> &Converted,
3444 SourceLocation TemplateLoc,
3445 TemplateArgumentListInfo &TemplateArgs) {
3446 ASTContext &Context = SemaRef.getASTContext();
3447 switch (BTD->getBuiltinTemplateKind()) {
3448 case BTK__make_integer_seq: {
3449 // Specializations of __make_integer_seq<S, T, N> are treated like
3450 // S<T, 0, ..., N-1>.
3451
3452 // C++14 [inteseq.intseq]p1:
3453 // T shall be an integer type.
3454 if (!Converted[1].getAsType()->isIntegralType(Context)) {
3455 SemaRef.Diag(TemplateArgs[1].getLocation(),
3456 diag::err_integer_sequence_integral_element_type);
3457 return QualType();
3458 }
3459
3460 // C++14 [inteseq.make]p1:
3461 // If N is negative the program is ill-formed.
3462 TemplateArgument NumArgsArg = Converted[2];
3463 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3464 if (NumArgs < 0) {
3465 SemaRef.Diag(TemplateArgs[2].getLocation(),
3466 diag::err_integer_sequence_negative_length);
3467 return QualType();
3468 }
3469
3470 QualType ArgTy = NumArgsArg.getIntegralType();
3471 TemplateArgumentListInfo SyntheticTemplateArgs;
3472 // The type argument gets reused as the first template argument in the
3473 // synthetic template argument list.
3474 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3475 // Expand N into 0 ... N-1.
3476 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3477 I < NumArgs; ++I) {
3478 TemplateArgument TA(Context, I, ArgTy);
3479 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3480 TA, ArgTy, TemplateArgs[2].getLocation()));
3481 }
3482 // The first template argument will be reused as the template decl that
3483 // our synthetic template arguments will be applied to.
3484 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3485 TemplateLoc, SyntheticTemplateArgs);
3486 }
3487
3488 case BTK__type_pack_element:
3489 // Specializations of
3490 // __type_pack_element<Index, T_1, ..., T_N>
3491 // are treated like T_Index.
3492 assert(Converted.size() == 2 &&(static_cast<void> (0))
3493 "__type_pack_element should be given an index and a parameter pack")(static_cast<void> (0));
3494
3495 // If the Index is out of bounds, the program is ill-formed.
3496 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3497 llvm::APSInt Index = IndexArg.getAsIntegral();
3498 assert(Index >= 0 && "the index used with __type_pack_element should be of "(static_cast<void> (0))
3499 "type std::size_t, and hence be non-negative")(static_cast<void> (0));
3500 if (Index >= Ts.pack_size()) {
3501 SemaRef.Diag(TemplateArgs[0].getLocation(),
3502 diag::err_type_pack_element_out_of_bounds);
3503 return QualType();
3504 }
3505
3506 // We simply return the type at index `Index`.
3507 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3508 return Nth->getAsType();
3509 }
3510 llvm_unreachable("unexpected BuiltinTemplateDecl!")__builtin_unreachable();
3511}
3512
3513/// Determine whether this alias template is "enable_if_t".
3514static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3515 return AliasTemplate->getName().equals("enable_if_t");
3516}
3517
3518/// Collect all of the separable terms in the given condition, which
3519/// might be a conjunction.
3520///
3521/// FIXME: The right answer is to convert the logical expression into
3522/// disjunctive normal form, so we can find the first failed term
3523/// within each possible clause.
3524static void collectConjunctionTerms(Expr *Clause,
3525 SmallVectorImpl<Expr *> &Terms) {
3526 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3527 if (BinOp->getOpcode() == BO_LAnd) {
3528 collectConjunctionTerms(BinOp->getLHS(), Terms);
3529 collectConjunctionTerms(BinOp->getRHS(), Terms);
3530 }
3531
3532 return;
3533 }
3534
3535 Terms.push_back(Clause);
3536}
3537
3538// The ranges-v3 library uses an odd pattern of a top-level "||" with
3539// a left-hand side that is value-dependent but never true. Identify
3540// the idiom and ignore that term.
3541static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3542 // Top-level '||'.
3543 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3544 if (!BinOp) return Cond;
3545
3546 if (BinOp->getOpcode() != BO_LOr) return Cond;
3547
3548 // With an inner '==' that has a literal on the right-hand side.
3549 Expr *LHS = BinOp->getLHS();
3550 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3551 if (!InnerBinOp) return Cond;
3552
3553 if (InnerBinOp->getOpcode() != BO_EQ ||
3554 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3555 return Cond;
3556
3557 // If the inner binary operation came from a macro expansion named
3558 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3559 // of the '||', which is the real, user-provided condition.
3560 SourceLocation Loc = InnerBinOp->getExprLoc();
3561 if (!Loc.isMacroID()) return Cond;
3562
3563 StringRef MacroName = PP.getImmediateMacroName(Loc);
3564 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3565 return BinOp->getRHS();
3566
3567 return Cond;
3568}
3569
3570namespace {
3571
3572// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3573// within failing boolean expression, such as substituting template parameters
3574// for actual types.
3575class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3576public:
3577 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3578 : Policy(P) {}
3579
3580 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3581 const auto *DR = dyn_cast<DeclRefExpr>(E);
3582 if (DR && DR->getQualifier()) {
3583 // If this is a qualified name, expand the template arguments in nested
3584 // qualifiers.
3585 DR->getQualifier()->print(OS, Policy, true);
3586 // Then print the decl itself.
3587 const ValueDecl *VD = DR->getDecl();
3588 OS << VD->getName();
3589 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3590 // This is a template variable, print the expanded template arguments.
3591 printTemplateArgumentList(
3592 OS, IV->getTemplateArgs().asArray(), Policy,
3593 IV->getSpecializedTemplate()->getTemplateParameters());
3594 }
3595 return true;
3596 }
3597 return false;
3598 }
3599
3600private:
3601 const PrintingPolicy Policy;
3602};
3603
3604} // end anonymous namespace
3605
3606std::pair<Expr *, std::string>
3607Sema::findFailedBooleanCondition(Expr *Cond) {
3608 Cond = lookThroughRangesV3Condition(PP, Cond);
3609
3610 // Separate out all of the terms in a conjunction.
3611 SmallVector<Expr *, 4> Terms;
3612 collectConjunctionTerms(Cond, Terms);
3613
3614 // Determine which term failed.
3615 Expr *FailedCond = nullptr;
3616 for (Expr *Term : Terms) {
3617 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3618
3619 // Literals are uninteresting.
3620 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3621 isa<IntegerLiteral>(TermAsWritten))
3622 continue;
3623
3624 // The initialization of the parameter from the argument is
3625 // a constant-evaluated context.
3626 EnterExpressionEvaluationContext ConstantEvaluated(
3627 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3628
3629 bool Succeeded;
3630 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3631 !Succeeded) {
3632 FailedCond = TermAsWritten;
3633 break;
3634 }
3635 }
3636 if (!FailedCond)
3637 FailedCond = Cond->IgnoreParenImpCasts();
3638
3639 std::string Description;
3640 {
3641 llvm::raw_string_ostream Out(Description);
3642 PrintingPolicy Policy = getPrintingPolicy();
3643 Policy.PrintCanonicalTypes = true;
3644 FailedBooleanConditionPrinterHelper Helper(Policy);
3645 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3646 }
3647 return { FailedCond, Description };
3648}
3649
3650QualType Sema::CheckTemplateIdType(TemplateName Name,
3651 SourceLocation TemplateLoc,
3652 TemplateArgumentListInfo &TemplateArgs) {
3653 DependentTemplateName *DTN
3654 = Name.getUnderlying().getAsDependentTemplateName();
3655 if (DTN && DTN->isIdentifier())
3656 // When building a template-id where the template-name is dependent,
3657 // assume the template is a type template. Either our assumption is
3658 // correct, or the code is ill-formed and will be diagnosed when the
3659 // dependent name is substituted.
3660 return Context.getDependentTemplateSpecializationType(ETK_None,
3661 DTN->getQualifier(),
3662 DTN->getIdentifier(),
3663 TemplateArgs);
3664
3665 if (Name.getAsAssumedTemplateName() &&
3666 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3667 return QualType();
3668
3669 TemplateDecl *Template = Name.getAsTemplateDecl();
3670 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3671 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3672 // We might have a substituted template template parameter pack. If so,
3673 // build a template specialization type for it.
3674 if (Name.getAsSubstTemplateTemplateParmPack())
3675 return Context.getTemplateSpecializationType(Name, TemplateArgs);
3676
3677 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3678 << Name;
3679 NoteAllFoundTemplates(Name);
3680 return QualType();
3681 }
3682
3683 // Check that the template argument list is well-formed for this
3684 // template.
3685 SmallVector<TemplateArgument, 4> Converted;
3686 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3687 false, Converted,
3688 /*UpdateArgsWithConversion=*/true))
3689 return QualType();
3690
3691 QualType CanonType;
3692
3693 if (TypeAliasTemplateDecl *AliasTemplate =
3694 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3695
3696 // Find the canonical type for this type alias template specialization.
3697 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3698 if (Pattern->isInvalidDecl())
3699 return QualType();
3700
3701 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3702 Converted);
3703
3704 // Only substitute for the innermost template argument list.
3705 MultiLevelTemplateArgumentList TemplateArgLists;
3706 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3707 TemplateArgLists.addOuterRetainedLevels(
3708 AliasTemplate->getTemplateParameters()->getDepth());
3709
3710 LocalInstantiationScope Scope(*this);
3711 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3712 if (Inst.isInvalid())
3713 return QualType();
3714
3715 CanonType = SubstType(Pattern->getUnderlyingType(),
3716 TemplateArgLists, AliasTemplate->getLocation(),
3717 AliasTemplate->getDeclName());
3718 if (CanonType.isNull()) {
3719 // If this was enable_if and we failed to find the nested type
3720 // within enable_if in a SFINAE context, dig out the specific
3721 // enable_if condition that failed and present that instead.
3722 if (isEnableIfAliasTemplate(AliasTemplate)) {
3723 if (auto DeductionInfo = isSFINAEContext()) {
3724 if (*DeductionInfo &&
3725 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3726 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3727 diag::err_typename_nested_not_found_enable_if &&
3728 TemplateArgs[0].getArgument().getKind()
3729 == TemplateArgument::Expression) {
3730 Expr *FailedCond;
3731 std::string FailedDescription;
3732 std::tie(FailedCond, FailedDescription) =
3733 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3734
3735 // Remove the old SFINAE diagnostic.
3736 PartialDiagnosticAt OldDiag =
3737 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3738 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3739
3740 // Add a new SFINAE diagnostic specifying which condition
3741 // failed.
3742 (*DeductionInfo)->addSFINAEDiagnostic(
3743 OldDiag.first,
3744 PDiag(diag::err_typename_nested_not_found_requirement)
3745 << FailedDescription
3746 << FailedCond->getSourceRange());
3747 }
3748 }
3749 }
3750
3751 return QualType();
3752 }
3753 } else if (Name.isDependent() ||
3754 TemplateSpecializationType::anyDependentTemplateArguments(
3755 TemplateArgs, Converted)) {
3756 // This class template specialization is a dependent
3757 // type. Therefore, its canonical type is another class template
3758 // specialization type that contains all of the converted
3759 // arguments in canonical form. This ensures that, e.g., A<T> and
3760 // A<T, T> have identical types when A is declared as:
3761 //
3762 // template<typename T, typename U = T> struct A;
3763 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3764
3765 // This might work out to be a current instantiation, in which
3766 // case the canonical type needs to be the InjectedClassNameType.
3767 //
3768 // TODO: in theory this could be a simple hashtable lookup; most
3769 // changes to CurContext don't change the set of current
3770 // instantiations.
3771 if (isa<ClassTemplateDecl>(Template)) {
3772 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3773 // If we get out to a namespace, we're done.
3774 if (Ctx->isFileContext()) break;
3775
3776 // If this isn't a record, keep looking.
3777 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3778 if (!Record) continue;
3779
3780 // Look for one of the two cases with InjectedClassNameTypes
3781 // and check whether it's the same template.
3782 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3783 !Record->getDescribedClassTemplate())
3784 continue;
3785
3786 // Fetch the injected class name type and check whether its
3787 // injected type is equal to the type we just built.
3788 QualType ICNT = Context.getTypeDeclType(Record);
3789 QualType Injected = cast<InjectedClassNameType>(ICNT)
3790 ->getInjectedSpecializationType();
3791
3792 if (CanonType != Injected->getCanonicalTypeInternal())
3793 continue;
3794
3795 // If so, the canonical type of this TST is the injected
3796 // class name type of the record we just found.
3797 assert(ICNT.isCanonical())(static_cast<void> (0));
3798 CanonType = ICNT;
3799 break;
3800 }
3801 }
3802 } else if (ClassTemplateDecl *ClassTemplate
3803 = dyn_cast<ClassTemplateDecl>(Template)) {
3804 // Find the class template specialization declaration that
3805 // corresponds to these arguments.
3806 void *InsertPos = nullptr;
3807 ClassTemplateSpecializationDecl *Decl
3808 = ClassTemplate->findSpecialization(Converted, InsertPos);
3809 if (!Decl) {
3810 // This is the first time we have referenced this class template
3811 // specialization. Create the canonical declaration and add it to
3812 // the set of specializations.
3813 Decl = ClassTemplateSpecializationDecl::Create(
3814 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3815 ClassTemplate->getDeclContext(),
3816 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3817 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3818 ClassTemplate->AddSpecialization(Decl, InsertPos);
3819 if (ClassTemplate->isOutOfLine())
3820 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3821 }
3822
3823 if (Decl->getSpecializationKind() == TSK_Undeclared &&
3824 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
3825 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
3826 if (!Inst.isInvalid()) {
3827 MultiLevelTemplateArgumentList TemplateArgLists;
3828 TemplateArgLists.addOuterTemplateArguments(Converted);
3829 InstantiateAttrsForDecl(TemplateArgLists,
3830 ClassTemplate->getTemplatedDecl(), Decl);
3831 }
3832 }
3833
3834 // Diagnose uses of this specialization.
3835 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3836
3837 CanonType = Context.getTypeDeclType(Decl);
3838 assert(isa<RecordType>(CanonType) &&(static_cast<void> (0))
3839 "type of non-dependent specialization is not a RecordType")(static_cast<void> (0));
3840 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3841 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3842 TemplateArgs);
3843 }
3844
3845 // Build the fully-sugared type for this class template
3846 // specialization, which refers back to the class template
3847 // specialization we created or found.
3848 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3849}
3850
3851void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3852 TemplateNameKind &TNK,
3853 SourceLocation NameLoc,
3854 IdentifierInfo *&II) {
3855 assert(TNK == TNK_Undeclared_template && "not an undeclared template name")(static_cast<void> (0));
3856
3857 TemplateName Name = ParsedName.get();
3858 auto *ATN = Name.getAsAssumedTemplateName();
3859 assert(ATN && "not an assumed template name")(static_cast<void> (0));
3860 II = ATN->getDeclName().getAsIdentifierInfo();
3861
3862 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3863 // Resolved to a type template name.
3864 ParsedName = TemplateTy::make(Name);
3865 TNK = TNK_Type_template;
3866 }
3867}
3868
3869bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3870 SourceLocation NameLoc,
3871 bool Diagnose) {
3872 // We assumed this undeclared identifier to be an (ADL-only) function
3873 // template name, but it was used in a context where a type was required.
3874 // Try to typo-correct it now.
3875 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3876 assert(ATN && "not an assumed template name")(static_cast<void> (0));
3877
3878 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3879 struct CandidateCallback : CorrectionCandidateCallback {
3880 bool ValidateCandidate(const TypoCorrection &TC) override {
3881 return TC.getCorrectionDecl() &&
3882 getAsTypeTemplateDecl(TC.getCorrectionDecl());
3883 }
3884 std::unique_ptr<CorrectionCandidateCallback> clone() override {
3885 return std::make_unique<CandidateCallback>(*this);
3886 }
3887 } FilterCCC;
3888
3889 TypoCorrection Corrected =
3890 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3891 FilterCCC, CTK_ErrorRecovery);
3892 if (Corrected && Corrected.getFoundDecl()) {
3893 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3894 << ATN->getDeclName());
3895 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3896 return false;
3897 }
3898
3899 if (Diagnose)
3900 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3901 return true;
3902}
3903
3904TypeResult Sema::ActOnTemplateIdType(
3905 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3906 TemplateTy TemplateD, IdentifierInfo *TemplateII,
3907 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3908 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3909 bool IsCtorOrDtorName, bool IsClassName) {
3910 if (SS.isInvalid())
3911 return true;
3912
3913 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3914 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3915
3916 // C++ [temp.res]p3:
3917 // A qualified-id that refers to a type and in which the
3918 // nested-name-specifier depends on a template-parameter (14.6.2)
3919 // shall be prefixed by the keyword typename to indicate that the
3920 // qualified-id denotes a type, forming an
3921 // elaborated-type-specifier (7.1.5.3).
3922 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3923 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3924 << SS.getScopeRep() << TemplateII->getName();
3925 // Recover as if 'typename' were specified.
3926 // FIXME: This is not quite correct recovery as we don't transform SS
3927 // into the corresponding dependent form (and we don't diagnose missing
3928 // 'template' keywords within SS as a result).
3929 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3930 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3931 TemplateArgsIn, RAngleLoc);
3932 }
3933
3934 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3935 // it's not actually allowed to be used as a type in most cases. Because
3936 // we annotate it before we know whether it's valid, we have to check for
3937 // this case here.
3938 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3939 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3940 Diag(TemplateIILoc,
3941 TemplateKWLoc.isInvalid()
3942 ? diag::err_out_of_line_qualified_id_type_names_constructor
3943 : diag::ext_out_of_line_qualified_id_type_names_constructor)
3944 << TemplateII << 0 /*injected-class-name used as template name*/
3945 << 1 /*if any keyword was present, it was 'template'*/;
3946 }
3947 }
3948
3949 TemplateName Template = TemplateD.get();
3950 if (Template.getAsAssumedTemplateName() &&
3951 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3952 return true;
3953
3954 // Translate the parser's template argument list in our AST format.
3955 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3956 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3957
3958 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3959 QualType T
3960 = Context.getDependentTemplateSpecializationType(ETK_None,
3961 DTN->getQualifier(),
3962 DTN->getIdentifier(),
3963 TemplateArgs);
3964 // Build type-source information.
3965 TypeLocBuilder TLB;
3966 DependentTemplateSpecializationTypeLoc SpecTL
3967 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3968 SpecTL.setElaboratedKeywordLoc(SourceLocation());
3969 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3970 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3971 SpecTL.setTemplateNameLoc(TemplateIILoc);
3972 SpecTL.setLAngleLoc(LAngleLoc);
3973 SpecTL.setRAngleLoc(RAngleLoc);
3974 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3975 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3976 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3977 }
3978
3979 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3980 if (Result.isNull())
3981 return true;
3982
3983 // Build type-source information.
3984 TypeLocBuilder TLB;
3985 TemplateSpecializationTypeLoc SpecTL
3986 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3987 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3988 SpecTL.setTemplateNameLoc(TemplateIILoc);
3989 SpecTL.setLAngleLoc(LAngleLoc);
3990 SpecTL.setRAngleLoc(RAngleLoc);
3991 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3992 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3993
3994 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3995 // constructor or destructor name (in such a case, the scope specifier
3996 // will be attached to the enclosing Decl or Expr node).
3997 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3998 // Create an elaborated-type-specifier containing the nested-name-specifier.
3999 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
4000 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4001 ElabTL.setElaboratedKeywordLoc(SourceLocation());
4002 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4003 }
4004
4005 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4006}
4007
4008TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4009 TypeSpecifierType TagSpec,
4010 SourceLocation TagLoc,
4011 CXXScopeSpec &SS,
4012 SourceLocation TemplateKWLoc,
4013 TemplateTy TemplateD,
4014 SourceLocation TemplateLoc,
4015 SourceLocation LAngleLoc,
4016 ASTTemplateArgsPtr TemplateArgsIn,
4017 SourceLocation RAngleLoc) {
4018 if (SS.isInvalid())
4019 return TypeResult(true);
4020
4021 TemplateName Template = TemplateD.get();
4022
4023 // Translate the parser's template argument list in our AST format.
4024 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4025 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4026
4027 // Determine the tag kind
4028 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4029 ElaboratedTypeKeyword Keyword
4030 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4031
4032 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4033 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
4034 DTN->getQualifier(),
4035 DTN->getIdentifier(),
4036 TemplateArgs);
4037
4038 // Build type-source information.
4039 TypeLocBuilder TLB;
4040 DependentTemplateSpecializationTypeLoc SpecTL
4041 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4042 SpecTL.setElaboratedKeywordLoc(TagLoc);
4043 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4044 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4045 SpecTL.setTemplateNameLoc(TemplateLoc);
4046 SpecTL.setLAngleLoc(LAngleLoc);
4047 SpecTL.setRAngleLoc(RAngleLoc);
4048 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4049 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4050 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4051 }
4052
4053 if (TypeAliasTemplateDecl *TAT =
4054 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4055 // C++0x [dcl.type.elab]p2:
4056 // If the identifier resolves to a typedef-name or the simple-template-id
4057 // resolves to an alias template specialization, the
4058 // elaborated-type-specifier is ill-formed.
4059 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4060 << TAT << NTK_TypeAliasTemplate << TagKind;
4061 Diag(TAT->getLocation(), diag::note_declared_at);
4062 }
4063
4064 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4065 if (Result.isNull())
4066 return TypeResult(true);
4067
4068 // Check the tag kind
4069 if (const RecordType *RT = Result->getAs<RecordType>()) {
4070 RecordDecl *D = RT->getDecl();
4071
4072 IdentifierInfo *Id = D->getIdentifier();
4073 assert(Id && "templated class must have an identifier")(static_cast<void> (0));
4074
4075 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4076 TagLoc, Id)) {
4077 Diag(TagLoc, diag::err_use_with_wrong_tag)
4078 << Result
4079 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4080 Diag(D->getLocation(), diag::note_previous_use);
4081 }
4082 }
4083
4084 // Provide source-location information for the template specialization.
4085 TypeLocBuilder TLB;
4086 TemplateSpecializationTypeLoc SpecTL
4087 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4088 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4089 SpecTL.setTemplateNameLoc(TemplateLoc);
4090 SpecTL.setLAngleLoc(LAngleLoc);
4091 SpecTL.setRAngleLoc(RAngleLoc);
4092 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4093 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4094
4095 // Construct an elaborated type containing the nested-name-specifier (if any)
4096 // and tag keyword.
4097 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4098 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4099 ElabTL.setElaboratedKeywordLoc(TagLoc);
4100 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4101 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4102}
4103
4104static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4105 NamedDecl *PrevDecl,
4106 SourceLocation Loc,
4107 bool IsPartialSpecialization);
4108
4109static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4110
4111static bool isTemplateArgumentTemplateParameter(
4112 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4113 switch (Arg.getKind()) {
4114 case TemplateArgument::Null:
4115 case TemplateArgument::NullPtr:
4116 case TemplateArgument::Integral:
4117 case TemplateArgument::Declaration:
4118 case TemplateArgument::Pack:
4119 case TemplateArgument::TemplateExpansion:
4120 return false;
4121
4122 case TemplateArgument::Type: {
4123 QualType Type = Arg.getAsType();
4124 const TemplateTypeParmType *TPT =
4125 Arg.getAsType()->getAs<TemplateTypeParmType>();
4126 return TPT && !Type.hasQualifiers() &&
4127 TPT->getDepth() == Depth && TPT->getIndex() == Index;
4128 }
4129
4130 case TemplateArgument::Expression: {
4131 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4132 if (!DRE || !DRE->getDecl())
4133 return false;
4134 const NonTypeTemplateParmDecl *NTTP =
4135 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4136 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4137 }
4138
4139 case TemplateArgument::Template:
4140 const TemplateTemplateParmDecl *TTP =
4141 dyn_cast_or_null<TemplateTemplateParmDecl>(
4142 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4143 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4144 }
4145 llvm_unreachable("unexpected kind of template argument")__builtin_unreachable();
4146}
4147
4148static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4149 ArrayRef<TemplateArgument> Args) {
4150 if (Params->size() != Args.size())
4151 return false;
4152
4153 unsigned Depth = Params->getDepth();
4154
4155 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4156 TemplateArgument Arg = Args[I];
4157
4158 // If the parameter is a pack expansion, the argument must be a pack
4159 // whose only element is a pack expansion.
4160 if (Params->getParam(I)->isParameterPack()) {
4161 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4162 !Arg.pack_begin()->isPackExpansion())
4163 return false;
4164 Arg = Arg.pack_begin()->getPackExpansionPattern();
4165 }
4166
4167 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4168 return false;
4169 }
4170
4171 return true;
4172}
4173
4174template<typename PartialSpecDecl>
4175static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4176 if (Partial->getDeclContext()->isDependentContext())
4177 return;
4178
4179 // FIXME: Get the TDK from deduction in order to provide better diagnostics
4180 // for non-substitution-failure issues?
4181 TemplateDeductionInfo Info(Partial->getLocation());
4182 if (S.isMoreSpecializedThanPrimary(Partial, Info))
4183 return;
4184
4185 auto *Template = Partial->getSpecializedTemplate();
4186 S.Diag(Partial->getLocation(),
4187 diag::ext_partial_spec_not_more_specialized_than_primary)
4188 << isa<VarTemplateDecl>(Template);
4189
4190 if (Info.hasSFINAEDiagnostic()) {
4191 PartialDiagnosticAt Diag = {SourceLocation(),
4192 PartialDiagnostic::NullDiagnostic()};
4193 Info.takeSFINAEDiagnostic(Diag);
4194 SmallString<128> SFINAEArgString;
4195 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4196 S.Diag(Diag.first,
4197 diag::note_partial_spec_not_more_specialized_than_primary)
4198 << SFINAEArgString;
4199 }
4200
4201 S.Diag(Template->getLocation(), diag::note_template_decl_here);
4202 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4203 Template->getAssociatedConstraints(TemplateAC);
4204 Partial->getAssociatedConstraints(PartialAC);
4205 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4206 TemplateAC);
4207}
4208
4209static void
4210noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4211 const llvm::SmallBitVector &DeducibleParams) {
4212 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4213 if (!DeducibleParams[I]) {
4214 NamedDecl *Param = TemplateParams->getParam(I);
4215 if (Param->getDeclName())
4216 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4217 << Param->getDeclName();
4218 else
4219 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4220 << "(anonymous)";
4221 }
4222 }
4223}
4224
4225
4226template<typename PartialSpecDecl>
4227static void checkTemplatePartialSpecialization(Sema &S,
4228 PartialSpecDecl *Partial) {
4229 // C++1z [temp.class.spec]p8: (DR1495)
4230 // - The specialization shall be more specialized than the primary
4231 // template (14.5.5.2).
4232 checkMoreSpecializedThanPrimary(S, Partial);
4233
4234 // C++ [temp.class.spec]p8: (DR1315)
4235 // - Each template-parameter shall appear at least once in the
4236 // template-id outside a non-deduced context.
4237 // C++1z [temp.class.spec.match]p3 (P0127R2)
4238 // If the template arguments of a partial specialization cannot be
4239 // deduced because of the structure of its template-parameter-list
4240 // and the template-id, the program is ill-formed.
4241 auto *TemplateParams = Partial->getTemplateParameters();
4242 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4243 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4244 TemplateParams->getDepth(), DeducibleParams);
4245
4246 if (!DeducibleParams.all()) {
4247 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4248 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4249 << isa<VarTemplatePartialSpecializationDecl>(Partial)
4250 << (NumNonDeducible > 1)
4251 << SourceRange(Partial->getLocation(),
4252 Partial->getTemplateArgsAsWritten()->RAngleLoc);
4253 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4254 }
4255}
4256
4257void Sema::CheckTemplatePartialSpecialization(
4258 ClassTemplatePartialSpecializationDecl *Partial) {
4259 checkTemplatePartialSpecialization(*this, Partial);
4260}
4261
4262void Sema::CheckTemplatePartialSpecialization(
4263 VarTemplatePartialSpecializationDecl *Partial) {
4264 checkTemplatePartialSpecialization(*this, Partial);
4265}
4266
4267void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4268 // C++1z [temp.param]p11:
4269 // A template parameter of a deduction guide template that does not have a
4270 // default-argument shall be deducible from the parameter-type-list of the
4271 // deduction guide template.
4272 auto *TemplateParams = TD->getTemplateParameters();
4273 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4274 MarkDeducedTemplateParameters(TD, DeducibleParams);
4275 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4276 // A parameter pack is deducible (to an empty pack).
4277 auto *Param = TemplateParams->getParam(I);
4278 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4279 DeducibleParams[I] = true;
4280 }
4281
4282 if (!DeducibleParams.all()) {
4283 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4284 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4285 << (NumNonDeducible > 1);
4286 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4287 }
4288}
4289
4290DeclResult Sema::ActOnVarTemplateSpecialization(
4291 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4292 TemplateParameterList *TemplateParams, StorageClass SC,
4293 bool IsPartialSpecialization) {
4294 // D must be variable template id.
4295 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&(static_cast<void> (0))
4296 "Variable template specialization is declared with a template it.")(static_cast<void> (0));
4297
4298 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4299 TemplateArgumentListInfo TemplateArgs =
4300 makeTemplateArgumentListInfo(*this, *TemplateId);
4301 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4302 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4303 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4304
4305 TemplateName Name = TemplateId->Template.get();
4306
4307 // The template-id must name a variable template.
4308 VarTemplateDecl *VarTemplate =
4309 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4310 if (!VarTemplate) {
4311 NamedDecl *FnTemplate;
4312 if (auto *OTS = Name.getAsOverloadedTemplate())
4313 FnTemplate = *OTS->begin();
4314 else
4315 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4316 if (FnTemplate)
4317 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4318 << FnTemplate->getDeclName();
4319 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4320 << IsPartialSpecialization;
4321 }
4322
4323 // Check for unexpanded parameter packs in any of the template arguments.
4324 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4325 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4326 UPPC_PartialSpecialization))
4327 return true;
4328
4329 // Check that the template argument list is well-formed for this
4330 // template.
4331 SmallVector<TemplateArgument, 4> Converted;
4332 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4333 false, Converted,
4334 /*UpdateArgsWithConversion=*/true))
4335 return true;
4336
4337 // Find the variable template (partial) specialization declaration that
4338 // corresponds to these arguments.
4339 if (IsPartialSpecialization) {
4340 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4341 TemplateArgs.size(), Converted))
4342 return true;
4343
4344 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4345 // also do them during instantiation.
4346 if (!Name.isDependent() &&
4347 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4348 Converted)) {
4349 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4350 << VarTemplate->getDeclName();
4351 IsPartialSpecialization = false;
4352 }
4353
4354 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4355 Converted) &&
4356 (!Context.getLangOpts().CPlusPlus20 ||
4357 !TemplateParams->hasAssociatedConstraints())) {
4358 // C++ [temp.class.spec]p9b3:
4359 //
4360 // -- The argument list of the specialization shall not be identical
4361 // to the implicit argument list of the primary template.
4362 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4363 << /*variable template*/ 1
4364 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4365 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4366 // FIXME: Recover from this by treating the declaration as a redeclaration
4367 // of the primary template.
4368 return true;
4369 }
4370 }
4371
4372 void *InsertPos = nullptr;
4373 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4374
4375 if (IsPartialSpecialization)
4376 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4377 InsertPos);
4378 else
4379 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4380
4381 VarTemplateSpecializationDecl *Specialization = nullptr;
4382
4383 // Check whether we can declare a variable template specialization in
4384 // the current scope.
4385 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4386 TemplateNameLoc,
4387 IsPartialSpecialization))
4388 return true;
4389
4390 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4391 // Since the only prior variable template specialization with these
4392 // arguments was referenced but not declared, reuse that
4393 // declaration node as our own, updating its source location and
4394 // the list of outer template parameters to reflect our new declaration.
4395 Specialization = PrevDecl;
4396 Specialization->setLocation(TemplateNameLoc);
4397 PrevDecl = nullptr;
4398 } else if (IsPartialSpecialization) {
4399 // Create a new class template partial specialization declaration node.
4400 VarTemplatePartialSpecializationDecl *PrevPartial =
4401 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4402 VarTemplatePartialSpecializationDecl *Partial =
4403 VarTemplatePartialSpecializationDecl::Create(
4404 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4405 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4406 Converted, TemplateArgs);
4407
4408 if (!PrevPartial)
4409 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4410 Specialization = Partial;
4411
4412 // If we are providing an explicit specialization of a member variable
4413 // template specialization, make a note of that.
4414 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4415 PrevPartial->setMemberSpecialization();
4416
4417 CheckTemplatePartialSpecialization(Partial);
4418 } else {
4419 // Create a new class template specialization declaration node for
4420 // this explicit specialization or friend declaration.
4421 Specialization = VarTemplateSpecializationDecl::Create(
4422 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4423 VarTemplate, DI->getType(), DI, SC, Converted);
4424 Specialization->setTemplateArgsInfo(TemplateArgs);
4425
4426 if (!PrevDecl)
4427 VarTemplate->AddSpecialization(Specialization, InsertPos);
4428 }
4429
4430 // C++ [temp.expl.spec]p6:
4431 // If a template, a member template or the member of a class template is
4432 // explicitly specialized then that specialization shall be declared
4433 // before the first use of that specialization that would cause an implicit
4434 // instantiation to take place, in every translation unit in which such a
4435 // use occurs; no diagnostic is required.
4436 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4437 bool Okay = false;
4438 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4439 // Is there any previous explicit specialization declaration?
4440 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4441 Okay = true;
4442 break;
4443 }
4444 }
4445
4446 if (!Okay) {
4447 SourceRange Range(TemplateNameLoc, RAngleLoc);
4448 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4449 << Name << Range;
4450
4451 Diag(PrevDecl->getPointOfInstantiation(),
4452 diag::note_instantiation_required_here)
4453 << (PrevDecl->getTemplateSpecializationKind() !=
4454 TSK_ImplicitInstantiation);
4455 return true;
4456 }
4457 }
4458
4459 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4460 Specialization->setLexicalDeclContext(CurContext);
4461
4462 // Add the specialization into its lexical context, so that it can
4463 // be seen when iterating through the list of declarations in that
4464 // context. However, specializations are not found by name lookup.
4465 CurContext->addDecl(Specialization);
4466
4467 // Note that this is an explicit specialization.
4468 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4469
4470 if (PrevDecl) {
4471 // Check that this isn't a redefinition of this specialization,
4472 // merging with previous declarations.
4473 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4474 forRedeclarationInCurContext());
4475 PrevSpec.addDecl(PrevDecl);
4476 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4477 } else if (Specialization->isStaticDataMember() &&
4478 Specialization->isOutOfLine()) {
4479 Specialization->setAccess(VarTemplate->getAccess());
4480 }
4481
4482 return Specialization;
4483}
4484
4485namespace {
4486/// A partial specialization whose template arguments have matched
4487/// a given template-id.
4488struct PartialSpecMatchResult {
4489 VarTemplatePartialSpecializationDecl *Partial;
4490 TemplateArgumentList *Args;
4491};
4492} // end anonymous namespace
4493
4494DeclResult
4495Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4496 SourceLocation TemplateNameLoc,
4497 const TemplateArgumentListInfo &TemplateArgs) {
4498 assert(Template && "A variable template id without template?")(static_cast<void> (0));
4499
4500 // Check that the template argument list is well-formed for this template.
4501 SmallVector<TemplateArgument, 4> Converted;
4502 if (CheckTemplateArgumentList(
4503 Template, TemplateNameLoc,
4504 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4505 Converted, /*UpdateArgsWithConversion=*/true))
4506 return true;
4507
4508 // Produce a placeholder value if the specialization is dependent.
4509 if (Template->getDeclContext()->isDependentContext() ||
4510 TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
4511 Converted))
4512 return DeclResult();
4513
4514 // Find the variable template specialization declaration that
4515 // corresponds to these arguments.
4516 void *InsertPos = nullptr;
4517 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4518 Converted, InsertPos)) {
4519 checkSpecializationVisibility(TemplateNameLoc, Spec);
4520 // If we already have a variable template specialization, return it.
4521 return Spec;
4522 }
4523
4524 // This is the first time we have referenced this variable template
4525 // specialization. Create the canonical declaration and add it to
4526 // the set of specializations, based on the closest partial specialization
4527 // that it represents. That is,
4528 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4529 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4530 Converted);
4531 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4532 bool AmbiguousPartialSpec = false;
4533 typedef PartialSpecMatchResult MatchResult;
4534 SmallVector<MatchResult, 4> Matched;
4535 SourceLocation PointOfInstantiation = TemplateNameLoc;
4536 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4537 /*ForTakingAddress=*/false);
4538
4539 // 1. Attempt to find the closest partial specialization that this
4540 // specializes, if any.
4541 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4542 // Perhaps better after unification of DeduceTemplateArguments() and
4543 // getMoreSpecializedPartialSpecialization().
4544 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4545 Template->getPartialSpecializations(PartialSpecs);
4546
4547 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4548 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4549 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4550
4551 if (TemplateDeductionResult Result =
4552 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4553 // Store the failed-deduction information for use in diagnostics, later.
4554 // TODO: Actually use the failed-deduction info?
4555 FailedCandidates.addCandidate().set(
4556 DeclAccessPair::make(Template, AS_public), Partial,
4557 MakeDeductionFailureInfo(Context, Result, Info));
4558 (void)Result;
4559 } else {
4560 Matched.push_back(PartialSpecMatchResult());
4561 Matched.back().Partial = Partial;
4562 Matched.back().Args = Info.take();
4563 }
4564 }
4565
4566 if (Matched.size() >= 1) {
4567 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4568 if (Matched.size() == 1) {
4569 // -- If exactly one matching specialization is found, the
4570 // instantiation is generated from that specialization.
4571 // We don't need to do anything for this.
4572 } else {
4573 // -- If more than one matching specialization is found, the
4574 // partial order rules (14.5.4.2) are used to determine
4575 // whether one of the specializations is more specialized
4576 // than the others. If none of the specializations is more
4577 // specialized than all of the other matching
4578 // specializations, then the use of the variable template is
4579 // ambiguous and the program is ill-formed.
4580 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4581 PEnd = Matched.end();
4582 P != PEnd; ++P) {
4583 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4584 PointOfInstantiation) ==
4585 P->Partial)
4586 Best = P;
4587 }
4588
4589 // Determine if the best partial specialization is more specialized than
4590 // the others.
4591 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4592 PEnd = Matched.end();
4593 P != PEnd; ++P) {
4594 if (P != Best && getMoreSpecializedPartialSpecialization(
4595 P->Partial, Best->Partial,
4596 PointOfInstantiation) != Best->Partial) {
4597 AmbiguousPartialSpec = true;
4598 break;
4599 }
4600 }
4601 }
4602
4603 // Instantiate using the best variable template partial specialization.
4604 InstantiationPattern = Best->Partial;
4605 InstantiationArgs = Best->Args;
4606 } else {
4607 // -- If no match is found, the instantiation is generated
4608 // from the primary template.
4609 // InstantiationPattern = Template->getTemplatedDecl();
4610 }
4611
4612 // 2. Create the canonical declaration.
4613 // Note that we do not instantiate a definition until we see an odr-use
4614 // in DoMarkVarDeclReferenced().
4615 // FIXME: LateAttrs et al.?
4616 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4617 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4618 Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4619 if (!Decl)
4620 return true;
4621
4622 if (AmbiguousPartialSpec) {
4623 // Partial ordering did not produce a clear winner. Complain.
4624 Decl->setInvalidDecl();
4625 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4626 << Decl;
4627
4628 // Print the matching partial specializations.
4629 for (MatchResult P : Matched)
4630 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4631 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4632 *P.Args);
4633 return true;
4634 }
4635
4636 if (VarTemplatePartialSpecializationDecl *D =
4637 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4638 Decl->setInstantiationOf(D, InstantiationArgs);
4639
4640 checkSpecializationVisibility(TemplateNameLoc, Decl);
4641
4642 assert(Decl && "No variable template specialization?")(static_cast<void> (0));
4643 return Decl;
4644}
4645
4646ExprResult
4647Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4648 const DeclarationNameInfo &NameInfo,
4649 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4650 const TemplateArgumentListInfo *TemplateArgs) {
4651
4652 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
61
Forming reference to null pointer
4653 *TemplateArgs);
4654 if (Decl.isInvalid())
4655 return ExprError();
4656
4657 if (!Decl.get())
4658 return ExprResult();
4659
4660 VarDecl *Var = cast<VarDecl>(Decl.get());
4661 if (!Var->getTemplateSpecializationKind())
4662 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4663 NameInfo.getLoc());
4664
4665 // Build an ordinary singleton decl ref.
4666 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4667 /*FoundD=*/nullptr, TemplateArgs);
4668}
4669
4670void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4671 SourceLocation Loc) {
4672 Diag(Loc, diag::err_template_missing_args)
4673 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4674 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4675 Diag(TD->getLocation(), diag::note_template_decl_here)
4676 << TD->getTemplateParameters()->getSourceRange();
4677 }
4678}
4679
4680ExprResult
4681Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4682 SourceLocation TemplateKWLoc,
4683 const DeclarationNameInfo &ConceptNameInfo,
4684 NamedDecl *FoundDecl,
4685 ConceptDecl *NamedConcept,
4686 const TemplateArgumentListInfo *TemplateArgs) {
4687 assert(NamedConcept && "A concept template id without a template?")(static_cast<void> (0));
4688
4689 llvm::SmallVector<TemplateArgument, 4> Converted;
4690 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4691 const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4692 /*PartialTemplateArgs=*/false, Converted,
4693 /*UpdateArgsWithConversion=*/false))
4694 return ExprError();
4695
4696 ConstraintSatisfaction Satisfaction;
4697 bool AreArgsDependent =
4698 TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs,
4699 Converted);
4700 if (!AreArgsDependent &&
4701 CheckConstraintSatisfaction(
4702 NamedConcept, {NamedConcept->getConstraintExpr()}, Converted,
4703 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4704 TemplateArgs->getRAngleLoc()),
4705 Satisfaction))
4706 return ExprError();
4707
4708 return ConceptSpecializationExpr::Create(Context,
4709 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4710 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4711 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4712 AreArgsDependent ? nullptr : &Satisfaction);
4713}
4714
4715ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4716 SourceLocation TemplateKWLoc,
4717 LookupResult &R,
4718 bool RequiresADL,
4719 const TemplateArgumentListInfo *TemplateArgs) {
4720 // FIXME: Can we do any checking at this point? I guess we could check the
4721 // template arguments that we have against the template name, if the template
4722 // name refers to a single template. That's not a terribly common case,
4723 // though.
4724 // foo<int> could identify a single function unambiguously
4725 // This approach does NOT work, since f<int>(1);
4726 // gets resolved prior to resorting to overload resolution
4727 // i.e., template<class T> void f(double);
4728 // vs template<class T, class U> void f(U);
4729
4730 // These should be filtered out by our callers.
4731 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")(static_cast<void> (0));
4732
4733 // Non-function templates require a template argument list.
4734 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
53
Assuming 'TD' is non-null
4735 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
54
Assuming 'TemplateArgs' is null
55
Assuming 'TD' is a 'FunctionTemplateDecl'
56
Taking false branch
4736 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4737 return ExprError();
4738 }
4739 }
4740
4741 // In C++1y, check variable template ids.
4742 if (R.getAsSingle<VarTemplateDecl>()) {
57
Assuming the condition is true
58
Taking true branch
4743 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
60
Calling 'Sema::CheckVarTemplateId'
4744 R.getAsSingle<VarTemplateDecl>(),
4745 TemplateKWLoc, TemplateArgs);
59
Passing null pointer value via 5th parameter 'TemplateArgs'
4746 if (Res.isInvalid() || Res.isUsable())
4747 return Res;
4748 // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4749 }
4750
4751 if (R.getAsSingle<ConceptDecl>()) {
4752 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4753 R.getFoundDecl(),
4754 R.getAsSingle<ConceptDecl>(), TemplateArgs);
4755 }
4756
4757 // We don't want lookup warnings at this point.
4758 R.suppressDiagnostics();
4759
4760 UnresolvedLookupExpr *ULE
4761 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4762 SS.getWithLocInContext(Context),
4763 TemplateKWLoc,
4764 R.getLookupNameInfo(),
4765 RequiresADL, TemplateArgs,
4766 R.begin(), R.end());
4767
4768 return ULE;
4769}
4770
4771// We actually only call this from template instantiation.
4772ExprResult
4773Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4774 SourceLocation TemplateKWLoc,
4775 const DeclarationNameInfo &NameInfo,
4776 const TemplateArgumentListInfo *TemplateArgs) {
4777
4778 assert(TemplateArgs || TemplateKWLoc.isValid())(static_cast<void> (0));
4779 DeclContext *DC;
4780 if (!(DC = computeDeclContext(SS, false)) ||
1
Assuming pointer value is null
2
Assuming 'DC' is non-null
5
Taking false branch
4781 DC->isDependentContext() ||
3
Assuming the condition is false
4782 RequireCompleteDeclContext(SS, DC))
4
Assuming the condition is false
4783 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4784
4785 bool MemberOfUnknownSpecialization;
4786 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4787 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
6
Calling 'Sema::LookupTemplateName'
43
Returning from 'Sema::LookupTemplateName'
44
Taking false branch
4788 /*Entering*/false, MemberOfUnknownSpecialization,
4789 TemplateKWLoc))
4790 return ExprError();
4791
4792 if (R.isAmbiguous())
45
Assuming the condition is false
46
Taking false branch
4793 return ExprError();
4794
4795 if (R.empty()) {
47
Assuming the condition is false
48
Taking false branch
4796 Diag(NameInfo.getLoc(), diag::err_no_member)
4797 << NameInfo.getName() << DC << SS.getRange();
4798 return ExprError();
4799 }
4800
4801 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
49
Assuming 'Temp' is null
50
Taking false branch
4802 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4803 << SS.getScopeRep()
4804 << NameInfo.getName().getAsString() << SS.getRange();
4805 Diag(Temp->getLocation(), diag::note_referenced_class_template);
4806 return ExprError();
4807 }
4808
4809 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
51
Passing value via 5th parameter 'TemplateArgs'
52
Calling 'Sema::BuildTemplateIdExpr'
4810}
4811
4812/// Form a template name from a name that is syntactically required to name a
4813/// template, either due to use of the 'template' keyword or because a name in
4814/// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
4815///
4816/// This action forms a template name given the name of the template and its
4817/// optional scope specifier. This is used when the 'template' keyword is used
4818/// or when the parsing context unambiguously treats a following '<' as
4819/// introducing a template argument list. Note that this may produce a
4820/// non-dependent template name if we can perform the lookup now and identify
4821/// the named template.
4822///
4823/// For example, given "x.MetaFun::template apply", the scope specifier
4824/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
4825/// of the "template" keyword, and "apply" is the \p Name.
4826TemplateNameKind Sema::ActOnTemplateName(Scope *S,
4827 CXXScopeSpec &SS,
4828 SourceLocation TemplateKWLoc,
4829 const UnqualifiedId &Name,
4830 ParsedType ObjectType,
4831 bool EnteringContext,
4832 TemplateTy &Result,
4833 bool AllowInjectedClassName) {
4834 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4835 Diag(TemplateKWLoc,
4836 getLangOpts().CPlusPlus11 ?
4837 diag::warn_cxx98_compat_template_outside_of_template :
4838 diag::ext_template_outside_of_template)
4839 << FixItHint::CreateRemoval(TemplateKWLoc);
4840
4841 if (SS.isInvalid())
4842 return TNK_Non_template;
4843
4844 // Figure out where isTemplateName is going to look.
4845 DeclContext *LookupCtx = nullptr;
4846 if (SS.isNotEmpty())
4847 LookupCtx = computeDeclContext(SS, EnteringContext);
4848 else if (ObjectType)
4849 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
4850
4851 // C++0x [temp.names]p5:
4852 // If a name prefixed by the keyword template is not the name of
4853 // a template, the program is ill-formed. [Note: the keyword
4854 // template may not be applied to non-template members of class
4855 // templates. -end note ] [ Note: as is the case with the
4856 // typename prefix, the template prefix is allowed in cases
4857 // where it is not strictly necessary; i.e., when the
4858 // nested-name-specifier or the expression on the left of the ->
4859 // or . is not dependent on a template-parameter, or the use
4860 // does not appear in the scope of a template. -end note]
4861 //
4862 // Note: C++03 was more strict here, because it banned the use of
4863 // the "template" keyword prior to a template-name that was not a
4864 // dependent name. C++ DR468 relaxed this requirement (the
4865 // "template" keyword is now permitted). We follow the C++0x
4866 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4867 bool MemberOfUnknownSpecialization;
4868 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4869 ObjectType, EnteringContext, Result,
4870 MemberOfUnknownSpecialization);
4871 if (TNK != TNK_Non_template) {
4872 // We resolved this to a (non-dependent) template name. Return it.
4873 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4874 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
4875 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4876 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4877 // C++14 [class.qual]p2:
4878 // In a lookup in which function names are not ignored and the
4879 // nested-name-specifier nominates a class C, if the name specified
4880 // [...] is the injected-class-name of C, [...] the name is instead
4881 // considered to name the constructor
4882 //
4883 // We don't get here if naming the constructor would be valid, so we
4884 // just reject immediately and recover by treating the
4885 // injected-class-name as naming the template.
4886 Diag(Name.getBeginLoc(),
4887 diag::ext_out_of_line_qualified_id_type_names_constructor)
4888 << Name.Identifier
4889 << 0 /*injected-class-name used as template name*/
4890 << TemplateKWLoc.isValid();
4891 }
4892 return TNK;
4893 }
4894
4895 if (!MemberOfUnknownSpecialization) {
4896 // Didn't find a template name, and the lookup wasn't dependent.
4897 // Do the lookup again to determine if this is a "nothing found" case or
4898 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4899 // need to do this.
4900 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4901 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4902 LookupOrdinaryName);
4903 bool MOUS;
4904 // Tell LookupTemplateName that we require a template so that it diagnoses
4905 // cases where it finds a non-template.
4906 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
4907 ? RequiredTemplateKind(TemplateKWLoc)
4908 : TemplateNameIsRequired;
4909 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
4910 RTK, nullptr, /*AllowTypoCorrection=*/false) &&
4911 !R.isAmbiguous()) {
4912 if (LookupCtx)
4913 Diag(Name.getBeginLoc(), diag::err_no_member)
4914 << DNI.getName() << LookupCtx << SS.getRange();
4915 else
4916 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
4917 << DNI.getName() << SS.getRange();
4918 }
4919 return TNK_Non_template;
4920 }
4921
4922 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4923
4924 switch (Name.getKind()) {
4925 case UnqualifiedIdKind::IK_Identifier:
4926 Result = TemplateTy::make(
4927 Context.getDependentTemplateName(Qualifier, Name.Identifier));
4928 return TNK_Dependent_template_name;
4929
4930 case UnqualifiedIdKind::IK_OperatorFunctionId:
4931 Result = TemplateTy::make(Context.getDependentTemplateName(
4932 Qualifier, Name.OperatorFunctionId.Operator));
4933 return TNK_Function_template;
4934
4935 case UnqualifiedIdKind::IK_LiteralOperatorId:
4936 // This is a kind of template name, but can never occur in a dependent
4937 // scope (literal operators can only be declared at namespace scope).
4938 break;
4939
4940 default:
4941 break;
4942 }
4943
4944 // This name cannot possibly name a dependent template. Diagnose this now
4945 // rather than building a dependent template name that can never be valid.
4946 Diag(Name.getBeginLoc(),
4947 diag::err_template_kw_refers_to_dependent_non_template)
4948 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4949 << TemplateKWLoc.isValid() << TemplateKWLoc;
4950 return TNK_Non_template;
4951}
4952
4953bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4954 TemplateArgumentLoc &AL,
4955 SmallVectorImpl<TemplateArgument> &Converted) {
4956 const TemplateArgument &Arg = AL.getArgument();
4957 QualType ArgType;
4958 TypeSourceInfo *TSI = nullptr;
4959
4960 // Check template type parameter.
4961 switch(Arg.getKind()) {
4962 case TemplateArgument::Type:
4963 // C++ [temp.arg.type]p1:
4964 // A template-argument for a template-parameter which is a
4965 // type shall be a type-id.
4966 ArgType = Arg.getAsType();
4967 TSI = AL.getTypeSourceInfo();
4968 break;
4969 case TemplateArgument::Template:
4970 case TemplateArgument::TemplateExpansion: {
4971 // We have a template type parameter but the template argument
4972 // is a template without any arguments.
4973 SourceRange SR = AL.getSourceRange();
4974 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4975 diagnoseMissingTemplateArguments(Name, SR.getEnd());
4976 return true;
4977 }
4978 case TemplateArgument::Expression: {
4979 // We have a template type parameter but the template argument is an
4980 // expression; see if maybe it is missing the "typename" keyword.
4981 CXXScopeSpec SS;
4982 DeclarationNameInfo NameInfo;
4983
4984 if (DependentScopeDeclRefExpr *ArgExpr =
4985 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4986 SS.Adopt(ArgExpr->getQualifierLoc());
4987 NameInfo = ArgExpr->getNameInfo();
4988 } else if (CXXDependentScopeMemberExpr *ArgExpr =
4989 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4990 if (ArgExpr->isImplicitAccess()) {
4991 SS.Adopt(ArgExpr->getQualifierLoc());
4992 NameInfo = ArgExpr->getMemberNameInfo();
4993 }
4994 }
4995
4996 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4997 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4998 LookupParsedName(Result, CurScope, &SS);
4999
5000 if (Result.getAsSingle<TypeDecl>() ||
5001 Result.getResultKind() ==
5002 LookupResult::NotFoundInCurrentInstantiation) {
5003 assert(SS.getScopeRep() && "dependent scope expr must has a scope!")(static_cast<void> (0));
5004 // Suggest that the user add 'typename' before the NNS.
5005 SourceLocation Loc = AL.getSourceRange().getBegin();
5006 Diag(Loc, getLangOpts().MSVCCompat
5007 ? diag::ext_ms_template_type_arg_missing_typename
5008 : diag::err_template_arg_must_be_type_suggest)
5009 << FixItHint::CreateInsertion(Loc, "typename ");
5010 Diag(Param->getLocation(), diag::note_template_param_here);
5011
5012 // Recover by synthesizing a type using the location information that we
5013 // already have.
5014 ArgType =
5015 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
5016 TypeLocBuilder TLB;
5017 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5018 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5019 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5020 TL.setNameLoc(NameInfo.getLoc());
5021 TSI = TLB.getTypeSourceInfo(Context, ArgType);
5022
5023 // Overwrite our input TemplateArgumentLoc so that we can recover
5024 // properly.
5025 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5026 TemplateArgumentLocInfo(TSI));
5027
5028 break;
5029 }
5030 }
5031 // fallthrough
5032 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5033 }
5034 default: {
5035 // We have a template type parameter but the template argument
5036 // is not a type.
5037 SourceRange SR = AL.getSourceRange();
5038 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5039 Diag(Param->getLocation(), diag::note_template_param_here);
5040
5041 return true;
5042 }
5043 }
5044
5045 if (CheckTemplateArgument(TSI))
5046 return true;
5047
5048 // Add the converted template type argument.
5049 ArgType = Context.getCanonicalType(ArgType);
5050
5051 // Objective-C ARC:
5052 // If an explicitly-specified template argument type is a lifetime type
5053 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5054 if (getLangOpts().ObjCAutoRefCount &&
5055 ArgType->isObjCLifetimeType() &&
5056 !ArgType.getObjCLifetime()) {
5057 Qualifiers Qs;
5058 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5059 ArgType = Context.getQualifiedType(ArgType, Qs);
5060 }
5061
5062 Converted.push_back(TemplateArgument(ArgType));
5063 return false;
5064}
5065
5066/// Substitute template arguments into the default template argument for
5067/// the given template type parameter.
5068///
5069/// \param SemaRef the semantic analysis object for which we are performing
5070/// the substitution.
5071///
5072/// \param Template the template that we are synthesizing template arguments
5073/// for.
5074///
5075/// \param TemplateLoc the location of the template name that started the
5076/// template-id we are checking.
5077///
5078/// \param RAngleLoc the location of the right angle bracket ('>') that
5079/// terminates the template-id.
5080///
5081/// \param Param the template template parameter whose default we are
5082/// substituting into.
5083///
5084/// \param Converted the list of template arguments provided for template
5085/// parameters that precede \p Param in the template parameter list.
5086/// \returns the substituted template argument, or NULL if an error occurred.
5087static TypeSourceInfo *
5088SubstDefaultTemplateArgument(Sema &SemaRef,
5089 TemplateDecl *Template,
5090 SourceLocation TemplateLoc,
5091 SourceLocation RAngleLoc,
5092 TemplateTypeParmDecl *Param,
5093 SmallVectorImpl<TemplateArgument> &Converted) {
5094 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5095
5096 // If the argument type is dependent, instantiate it now based
5097 // on the previously-computed template arguments.
5098 if (ArgType->getType()->isInstantiationDependentType()) {
5099 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5100 Param, Template, Converted,
5101 SourceRange(TemplateLoc, RAngleLoc));
5102 if (Inst.isInvalid())
5103 return nullptr;
5104
5105 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5106
5107 // Only substitute for the innermost template argument list.
5108 MultiLevelTemplateArgumentList TemplateArgLists;
5109 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5110 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5111 TemplateArgLists.addOuterTemplateArguments(None);
5112
5113 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5114 ArgType =
5115 SemaRef.SubstType(ArgType, TemplateArgLists,
5116 Param->getDefaultArgumentLoc(), Param->getDeclName());
5117 }
5118
5119 return ArgType;
5120}
5121
5122/// Substitute template arguments into the default template argument for
5123/// the given non-type template parameter.
5124///
5125/// \param SemaRef the semantic analysis object for which we are performing
5126/// the substitution.
5127///
5128/// \param Template the template that we are synthesizing template arguments
5129/// for.
5130///
5131/// \param TemplateLoc the location of the template name that started the
5132/// template-id we are checking.
5133///
5134/// \param RAngleLoc the location of the right angle bracket ('>') that
5135/// terminates the template-id.
5136///
5137/// \param Param the non-type template parameter whose default we are
5138/// substituting into.
5139///
5140/// \param Converted the list of template arguments provided for template
5141/// parameters that precede \p Param in the template parameter list.
5142///
5143/// \returns the substituted template argument, or NULL if an error occurred.
5144static ExprResult
5145SubstDefaultTemplateArgument(Sema &SemaRef,
5146 TemplateDecl *Template,
5147 SourceLocation TemplateLoc,
5148 SourceLocation RAngleLoc,
5149 NonTypeTemplateParmDecl *Param,
5150 SmallVectorImpl<TemplateArgument> &Converted) {
5151 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5152 Param, Template, Converted,
5153 SourceRange(TemplateLoc, RAngleLoc));
5154 if (Inst.isInvalid())
5155 return ExprError();
5156
5157 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5158
5159 // Only substitute for the innermost template argument list.
5160 MultiLevelTemplateArgumentList TemplateArgLists;
5161 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5162 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5163 TemplateArgLists.addOuterTemplateArguments(None);
5164
5165 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5166 EnterExpressionEvaluationContext ConstantEvaluated(
5167 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5168 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5169}
5170
5171/// Substitute template arguments into the default template argument for
5172/// the given template template parameter.
5173///
5174/// \param SemaRef the semantic analysis object for which we are performing
5175/// the substitution.
5176///
5177/// \param Template the template that we are synthesizing template arguments
5178/// for.
5179///
5180/// \param TemplateLoc the location of the template name that started the
5181/// template-id we are checking.
5182///
5183/// \param RAngleLoc the location of the right angle bracket ('>') that
5184/// terminates the template-id.
5185///
5186/// \param Param the template template parameter whose default we are
5187/// substituting into.
5188///
5189/// \param Converted the list of template arguments provided for template
5190/// parameters that precede \p Param in the template parameter list.
5191///
5192/// \param QualifierLoc Will be set to the nested-name-specifier (with
5193/// source-location information) that precedes the template name.
5194///
5195/// \returns the substituted template argument, or NULL if an error occurred.
5196static TemplateName
5197SubstDefaultTemplateArgument(Sema &SemaRef,
5198 TemplateDecl *Template,
5199 SourceLocation TemplateLoc,
5200 SourceLocation RAngleLoc,
5201 TemplateTemplateParmDecl *Param,
5202 SmallVectorImpl<TemplateArgument> &Converted,
5203 NestedNameSpecifierLoc &QualifierLoc) {
5204 Sema::InstantiatingTemplate Inst(
5205 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
5206 SourceRange(TemplateLoc, RAngleLoc));
5207 if (Inst.isInvalid())
5208 return TemplateName();
5209
5210 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5211
5212 // Only substitute for the innermost template argument list.
5213 MultiLevelTemplateArgumentList TemplateArgLists;
5214 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5215 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5216 TemplateArgLists.addOuterTemplateArguments(None);
5217
5218 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5219 // Substitute into the nested-name-specifier first,
5220 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5221 if (QualifierLoc) {
5222 QualifierLoc =
5223 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5224 if (!QualifierLoc)
5225 return TemplateName();
5226 }
5227
5228 return SemaRef.SubstTemplateName(
5229 QualifierLoc,
5230 Param->getDefaultArgument().getArgument().getAsTemplate(),
5231 Param->getDefaultArgument().getTemplateNameLoc(),
5232 TemplateArgLists);
5233}
5234
5235/// If the given template parameter has a default template
5236/// argument, substitute into that default template argument and
5237/// return the corresponding template argument.
5238TemplateArgumentLoc
5239Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5240 SourceLocation TemplateLoc,
5241 SourceLocation RAngleLoc,
5242 Decl *Param,
5243 SmallVectorImpl<TemplateArgument>
5244 &Converted,
5245 bool &HasDefaultArg) {
5246 HasDefaultArg = false;
5247
5248 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5249 if (!hasVisibleDefaultArgument(TypeParm))
5250 return TemplateArgumentLoc();
5251
5252 HasDefaultArg = true;
5253 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5254 TemplateLoc,
5255 RAngleLoc,
5256 TypeParm,
5257 Converted);
5258 if (DI)
5259 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5260
5261 return TemplateArgumentLoc();
5262 }
5263
5264 if (NonTypeTemplateParmDecl *NonTypeParm
5265 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5266 if (!hasVisibleDefaultArgument(NonTypeParm))
5267 return TemplateArgumentLoc();
5268
5269 HasDefaultArg = true;
5270 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5271 TemplateLoc,
5272 RAngleLoc,
5273 NonTypeParm,
5274 Converted);
5275 if (Arg.isInvalid())
5276 return TemplateArgumentLoc();
5277
5278 Expr *ArgE = Arg.getAs<Expr>();
5279 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5280 }
5281
5282 TemplateTemplateParmDecl *TempTempParm
5283 = cast<TemplateTemplateParmDecl>(Param);
5284 if (!hasVisibleDefaultArgument(TempTempParm))
5285 return TemplateArgumentLoc();
5286
5287 HasDefaultArg = true;
5288 NestedNameSpecifierLoc QualifierLoc;
5289 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5290 TemplateLoc,
5291 RAngleLoc,
5292 TempTempParm,
5293 Converted,
5294 QualifierLoc);
5295 if (TName.isNull())
5296 return TemplateArgumentLoc();
5297
5298 return TemplateArgumentLoc(
5299 Context, TemplateArgument(TName),
5300 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5301 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5302}
5303
5304/// Convert a template-argument that we parsed as a type into a template, if
5305/// possible. C++ permits injected-class-names to perform dual service as
5306/// template template arguments and as template type arguments.
5307static TemplateArgumentLoc
5308convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5309 // Extract and step over any surrounding nested-name-specifier.
5310 NestedNameSpecifierLoc QualLoc;
5311 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5312 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5313 return TemplateArgumentLoc();
5314
5315 QualLoc = ETLoc.getQualifierLoc();
5316 TLoc = ETLoc.getNamedTypeLoc();
5317 }
5318 // If this type was written as an injected-class-name, it can be used as a
5319 // template template argument.
5320 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5321 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5322 QualLoc, InjLoc.getNameLoc());
5323
5324 // If this type was written as an injected-class-name, it may have been
5325 // converted to a RecordType during instantiation. If the RecordType is
5326 // *not* wrapped in a TemplateSpecializationType and denotes a class
5327 // template specialization, it must have come from an injected-class-name.
5328 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5329 if (auto *CTSD =
5330 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5331 return TemplateArgumentLoc(Context,
5332 TemplateName(CTSD->getSpecializedTemplate()),
5333 QualLoc, RecLoc.getNameLoc());
5334
5335 return TemplateArgumentLoc();
5336}
5337
5338/// Check that the given template argument corresponds to the given
5339/// template parameter.
5340///
5341/// \param Param The template parameter against which the argument will be
5342/// checked.
5343///
5344/// \param Arg The template argument, which may be updated due to conversions.
5345///
5346/// \param Template The template in which the template argument resides.
5347///
5348/// \param TemplateLoc The location of the template name for the template
5349/// whose argument list we're matching.
5350///
5351/// \param RAngleLoc The location of the right angle bracket ('>') that closes
5352/// the template argument list.
5353///
5354/// \param ArgumentPackIndex The index into the argument pack where this
5355/// argument will be placed. Only valid if the parameter is a parameter pack.
5356///
5357/// \param Converted The checked, converted argument will be added to the
5358/// end of this small vector.
5359///
5360/// \param CTAK Describes how we arrived at this particular template argument:
5361/// explicitly written, deduced, etc.
5362///
5363/// \returns true on error, false otherwise.
5364bool Sema::CheckTemplateArgument(NamedDecl *Param,
5365 TemplateArgumentLoc &Arg,
5366 NamedDecl *Template,
5367 SourceLocation TemplateLoc,
5368 SourceLocation RAngleLoc,
5369 unsigned ArgumentPackIndex,
5370 SmallVectorImpl<TemplateArgument> &Converted,
5371 CheckTemplateArgumentKind CTAK) {
5372 // Check template type parameters.
5373 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5374 return CheckTemplateTypeArgument(TTP, Arg, Converted);
5375
5376 // Check non-type template parameters.
5377 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5378 // Do substitution on the type of the non-type template parameter
5379 // with the template arguments we've seen thus far. But if the
5380 // template has a dependent context then we cannot substitute yet.
5381 QualType NTTPType = NTTP->getType();
5382 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5383 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5384
5385 if (NTTPType->isInstantiationDependentType() &&
5386 !isa<TemplateTemplateParmDecl>(Template) &&
5387 !Template->getDeclContext()->isDependentContext()) {
5388 // Do substitution on the type of the non-type template parameter.
5389 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5390 NTTP, Converted,
5391 SourceRange(TemplateLoc, RAngleLoc));
5392 if (Inst.isInvalid())
5393 return true;
5394
5395 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5396 Converted);
5397
5398 // If the parameter is a pack expansion, expand this slice of the pack.
5399 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5400 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5401 ArgumentPackIndex);
5402 NTTPType = SubstType(PET->getPattern(),
5403 MultiLevelTemplateArgumentList(TemplateArgs),
5404 NTTP->getLocation(),
5405 NTTP->getDeclName());
5406 } else {
5407 NTTPType = SubstType(NTTPType,
5408 MultiLevelTemplateArgumentList(TemplateArgs),
5409 NTTP->getLocation(),
5410 NTTP->getDeclName());
5411 }
5412
5413 // If that worked, check the non-type template parameter type
5414 // for validity.
5415 if (!NTTPType.isNull())
5416 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5417 NTTP->getLocation());
5418 if (NTTPType.isNull())
5419 return true;
5420 }
5421
5422 switch (Arg.getArgument().getKind()) {
5423 case TemplateArgument::Null:
5424 llvm_unreachable("Should never see a NULL template argument here")__builtin_unreachable();
5425
5426 case TemplateArgument::Expression: {
5427 TemplateArgument Result;
5428 unsigned CurSFINAEErrors = NumSFINAEErrors;
5429 ExprResult Res =
5430 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5431 Result, CTAK);
5432 if (Res.isInvalid())
5433 return true;
5434 // If the current template argument causes an error, give up now.
5435 if (CurSFINAEErrors < NumSFINAEErrors)
5436 return true;
5437
5438 // If the resulting expression is new, then use it in place of the
5439 // old expression in the template argument.
5440 if (Res.get() != Arg.getArgument().getAsExpr()) {
5441 TemplateArgument TA(Res.get());
5442 Arg = TemplateArgumentLoc(TA, Res.get());
5443 }
5444
5445 Converted.push_back(Result);
5446 break;
5447 }
5448
5449 case TemplateArgument::Declaration:
5450 case TemplateArgument::Integral:
5451 case TemplateArgument::NullPtr:
5452 // We've already checked this template argument, so just copy
5453 // it to the list of converted arguments.
5454 Converted.push_back(Arg.getArgument());
5455 break;
5456
5457 case TemplateArgument::Template:
5458 case TemplateArgument::TemplateExpansion:
5459 // We were given a template template argument. It may not be ill-formed;
5460 // see below.
5461 if (DependentTemplateName *DTN
5462 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5463 .getAsDependentTemplateName()) {
5464 // We have a template argument such as \c T::template X, which we
5465 // parsed as a template template argument. However, since we now
5466 // know that we need a non-type template argument, convert this
5467 // template name into an expression.
5468
5469 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5470 Arg.getTemplateNameLoc());
5471
5472 CXXScopeSpec SS;
5473 SS.Adopt(Arg.getTemplateQualifierLoc());
5474 // FIXME: the template-template arg was a DependentTemplateName,
5475 // so it was provided with a template keyword. However, its source
5476 // location is not stored in the template argument structure.
5477 SourceLocation TemplateKWLoc;
5478 ExprResult E = DependentScopeDeclRefExpr::Create(
5479 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5480 nullptr);
5481
5482 // If we parsed the template argument as a pack expansion, create a
5483 // pack expansion expression.
5484 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5485 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5486 if (E.isInvalid())
5487 return true;
5488 }
5489
5490 TemplateArgument Result;
5491 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5492 if (E.isInvalid())
5493 return true;
5494
5495 Converted.push_back(Result);
5496 break;
5497 }
5498
5499 // We have a template argument that actually does refer to a class
5500 // template, alias template, or template template parameter, and
5501 // therefore cannot be a non-type template argument.
5502 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5503 << Arg.getSourceRange();
5504
5505 Diag(Param->getLocation(), diag::note_template_param_here);
5506 return true;
5507
5508 case TemplateArgument::Type: {
5509 // We have a non-type template parameter but the template
5510 // argument is a type.
5511
5512 // C++ [temp.arg]p2:
5513 // In a template-argument, an ambiguity between a type-id and
5514 // an expression is resolved to a type-id, regardless of the
5515 // form of the corresponding template-parameter.
5516 //
5517 // We warn specifically about this case, since it can be rather
5518 // confusing for users.
5519 QualType T = Arg.getArgument().getAsType();
5520 SourceRange SR = Arg.getSourceRange();
5521 if (T->isFunctionType())
5522 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5523 else
5524 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5525 Diag(Param->getLocation(), diag::note_template_param_here);
5526 return true;
5527 }
5528
5529 case TemplateArgument::Pack:
5530 llvm_unreachable("Caller must expand template argument packs")__builtin_unreachable();
5531 }
5532
5533 return false;
5534 }
5535
5536
5537 // Check template template parameters.
5538 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5539
5540 TemplateParameterList *Params = TempParm->getTemplateParameters();
5541 if (TempParm->isExpandedParameterPack())
5542 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5543
5544 // Substitute into the template parameter list of the template
5545 // template parameter, since previously-supplied template arguments
5546 // may appear within the template template parameter.
5547 //
5548 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5549 {
5550 // Set up a template instantiation context.
5551 LocalInstantiationScope Scope(*this);
5552 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5553 TempParm, Converted,
5554 SourceRange(TemplateLoc, RAngleLoc));
5555 if (Inst.isInvalid())
5556 return true;
5557
5558 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5559 Params = SubstTemplateParams(Params, CurContext,
5560 MultiLevelTemplateArgumentList(TemplateArgs));
5561 if (!Params)
5562 return true;
5563 }
5564
5565 // C++1z [temp.local]p1: (DR1004)
5566 // When [the injected-class-name] is used [...] as a template-argument for
5567 // a template template-parameter [...] it refers to the class template
5568 // itself.
5569 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5570 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5571 Context, Arg.getTypeSourceInfo()->getTypeLoc());
5572 if (!ConvertedArg.getArgument().isNull())
5573 Arg = ConvertedArg;
5574 }
5575
5576 switch (Arg.getArgument().getKind()) {
5577 case TemplateArgument::Null:
5578 llvm_unreachable("Should never see a NULL template argument here")__builtin_unreachable();
5579
5580 case TemplateArgument::Template:
5581 case TemplateArgument::TemplateExpansion:
5582 if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5583 return true;
5584
5585 Converted.push_back(Arg.getArgument());
5586 break;
5587
5588 case TemplateArgument::Expression:
5589 case TemplateArgument::Type:
5590 // We have a template template parameter but the template
5591 // argument does not refer to a template.
5592 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5593 << getLangOpts().CPlusPlus11;
5594 return true;
5595
5596 case TemplateArgument::Declaration:
5597 llvm_unreachable("Declaration argument with template template parameter")__builtin_unreachable();
5598 case TemplateArgument::Integral:
5599 llvm_unreachable("Integral argument with template template parameter")__builtin_unreachable();
5600 case TemplateArgument::NullPtr:
5601 llvm_unreachable("Null pointer argument with template template parameter")__builtin_unreachable();
5602
5603 case TemplateArgument::Pack:
5604 llvm_unreachable("Caller must expand template argument packs")__builtin_unreachable();
5605 }
5606
5607 return false;
5608}
5609
5610/// Diagnose a missing template argument.
5611template<typename TemplateParmDecl>
5612static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5613 TemplateDecl *TD,
5614 const TemplateParmDecl *D,
5615 TemplateArgumentListInfo &Args) {
5616 // Dig out the most recent declaration of the template parameter; there may be
5617 // declarations of the template that are more recent than TD.
5618 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5619 ->getTemplateParameters()
5620 ->getParam(D->getIndex()));
5621
5622 // If there's a default argument that's not visible, diagnose that we're
5623 // missing a module import.
5624 llvm::SmallVector<Module*, 8> Modules;
5625 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5626 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5627 D->getDefaultArgumentLoc(), Modules,
5628 Sema::MissingImportKind::DefaultArgument,
5629 /*Recover*/true);
5630 return true;
5631 }
5632
5633 // FIXME: If there's a more recent default argument that *is* visible,
5634 // diagnose that it was declared too late.
5635
5636 TemplateParameterList *Params = TD->getTemplateParameters();
5637
5638 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5639 << /*not enough args*/0
5640 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5641 << TD;
5642 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5643 << Params->getSourceRange();
5644 return true;
5645}
5646
5647/// Check that the given template argument list is well-formed
5648/// for specializing the given template.
5649bool Sema::CheckTemplateArgumentList(
5650 TemplateDecl *Template, SourceLocation TemplateLoc,
5651 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5652 SmallVectorImpl<TemplateArgument> &Converted,
5653 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5654
5655 if (ConstraintsNotSatisfied)
5656 *ConstraintsNotSatisfied = false;
5657
5658 // Make a copy of the template arguments for processing. Only make the
5659 // changes at the end when successful in matching the arguments to the
5660 // template.
5661 TemplateArgumentListInfo NewArgs = TemplateArgs;
5662
5663 // Make sure we get the template parameter list from the most
5664 // recent declaration, since that is the only one that is guaranteed to
5665 // have all the default template argument information.
5666 TemplateParameterList *Params =
5667 cast<TemplateDecl>(Template->getMostRecentDecl())
5668 ->getTemplateParameters();
5669
5670 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5671
5672 // C++ [temp.arg]p1:
5673 // [...] The type and form of each template-argument specified in
5674 // a template-id shall match the type and form specified for the
5675 // corresponding parameter declared by the template in its
5676 // template-parameter-list.
5677 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5678 SmallVector<TemplateArgument, 2> ArgumentPack;
5679 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5680 LocalInstantiationScope InstScope(*this, true);
5681 for (TemplateParameterList::iterator Param = Params->begin(),
5682 ParamEnd = Params->end();
5683 Param != ParamEnd; /* increment in loop */) {
5684 // If we have an expanded parameter pack, make sure we don't have too
5685 // many arguments.
5686 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5687 if (*Expansions == ArgumentPack.size()) {
5688 // We're done with this parameter pack. Pack up its arguments and add
5689 // them to the list.
5690 Converted.push_back(
5691 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5692 ArgumentPack.clear();
5693
5694 // This argument is assigned to the next parameter.
5695 ++Param;
5696 continue;
5697 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5698 // Not enough arguments for this parameter pack.
5699 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5700 << /*not enough args*/0
5701 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5702 << Template;
5703 Diag(Template->getLocation(), diag::note_template_decl_here)
5704 << Params->getSourceRange();
5705 return true;
5706 }
5707 }
5708
5709 if (ArgIdx < NumArgs) {
5710 // Check the template argument we were given.
5711 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5712 TemplateLoc, RAngleLoc,
5713 ArgumentPack.size(), Converted))
5714 return true;
5715
5716 bool PackExpansionIntoNonPack =
5717 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5718 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5719 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5720 isa<ConceptDecl>(Template))) {
5721 // Core issue 1430: we have a pack expansion as an argument to an
5722 // alias template, and it's not part of a parameter pack. This
5723 // can't be canonicalized, so reject it now.
5724 // As for concepts - we cannot normalize constraints where this
5725 // situation exists.
5726 Diag(NewArgs[ArgIdx].getLocation(),
5727 diag::err_template_expansion_into_fixed_list)
5728 << (isa<ConceptDecl>(Template) ? 1 : 0)
5729 << NewArgs[ArgIdx].getSourceRange();
5730 Diag((*Param)->getLocation(), diag::note_template_param_here);
5731 return true;
5732 }
5733
5734 // We're now done with this argument.
5735 ++ArgIdx;
5736
5737 if ((*Param)->isTemplateParameterPack()) {
5738 // The template parameter was a template parameter pack, so take the
5739 // deduced argument and place it on the argument pack. Note that we
5740 // stay on the same template parameter so that we can deduce more
5741 // arguments.
5742 ArgumentPack.push_back(Converted.pop_back_val());
5743 } else {
5744 // Move to the next template parameter.
5745 ++Param;
5746 }
5747
5748 // If we just saw a pack expansion into a non-pack, then directly convert
5749 // the remaining arguments, because we don't know what parameters they'll
5750 // match up with.
5751 if (PackExpansionIntoNonPack) {
5752 if (!ArgumentPack.empty()) {
5753 // If we were part way through filling in an expanded parameter pack,
5754 // fall back to just producing individual arguments.
5755 Converted.insert(Converted.end(),
5756 ArgumentPack.begin(), ArgumentPack.end());
5757 ArgumentPack.clear();
5758 }
5759
5760 while (ArgIdx < NumArgs) {
5761 Converted.push_back(NewArgs[ArgIdx].getArgument());
5762 ++ArgIdx;
5763 }
5764
5765 return false;
5766 }
5767
5768 continue;
5769 }
5770
5771 // If we're checking a partial template argument list, we're done.
5772 if (PartialTemplateArgs) {
5773 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5774 Converted.push_back(
5775 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5776 return false;
5777 }
5778
5779 // If we have a template parameter pack with no more corresponding
5780 // arguments, just break out now and we'll fill in the argument pack below.
5781 if ((*Param)->isTemplateParameterPack()) {
5782 assert(!getExpandedPackSize(*Param) &&(static_cast<void> (0))
5783 "Should have dealt with this already")(static_cast<void> (0));
5784
5785 // A non-expanded parameter pack before the end of the parameter list
5786 // only occurs for an ill-formed template parameter list, unless we've
5787 // got a partial argument list for a function template, so just bail out.
5788 if (Param + 1 != ParamEnd)
5789 return true;
5790
5791 Converted.push_back(
5792 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5793 ArgumentPack.clear();
5794
5795 ++Param;
5796 continue;
5797 }
5798
5799 // Check whether we have a default argument.
5800 TemplateArgumentLoc Arg;
5801
5802 // Retrieve the default template argument from the template
5803 // parameter. For each kind of template parameter, we substitute the
5804 // template arguments provided thus far and any "outer" template arguments
5805 // (when the template parameter was part of a nested template) into
5806 // the default argument.
5807 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5808 if (!hasVisibleDefaultArgument(TTP))
5809 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5810 NewArgs);
5811
5812 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5813 Template,
5814 TemplateLoc,
5815 RAngleLoc,
5816 TTP,
5817 Converted);
5818 if (!ArgType)
5819 return true;
5820
5821 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5822 ArgType);
5823 } else if (NonTypeTemplateParmDecl *NTTP
5824 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5825 if (!hasVisibleDefaultArgument(NTTP))
5826 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5827 NewArgs);
5828
5829 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5830 TemplateLoc,
5831 RAngleLoc,
5832 NTTP,
5833 Converted);
5834 if (E.isInvalid())
5835 return true;
5836
5837 Expr *Ex = E.getAs<Expr>();
5838 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5839 } else {
5840 TemplateTemplateParmDecl *TempParm
5841 = cast<TemplateTemplateParmDecl>(*Param);
5842
5843 if (!hasVisibleDefaultArgument(TempParm))
5844 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5845 NewArgs);
5846
5847 NestedNameSpecifierLoc QualifierLoc;
5848 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5849 TemplateLoc,
5850 RAngleLoc,
5851 TempParm,
5852 Converted,
5853 QualifierLoc);
5854 if (Name.isNull())
5855 return true;
5856
5857 Arg = TemplateArgumentLoc(
5858 Context, TemplateArgument(Name), QualifierLoc,
5859 TempParm->getDefaultArgument().getTemplateNameLoc());
5860 }
5861
5862 // Introduce an instantiation record that describes where we are using
5863 // the default template argument. We're not actually instantiating a
5864 // template here, we just create this object to put a note into the
5865 // context stack.
5866 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5867 SourceRange(TemplateLoc, RAngleLoc));
5868 if (Inst.isInvalid())
5869 return true;
5870
5871 // Check the default template argument.
5872 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5873 RAngleLoc, 0, Converted))
5874 return true;
5875
5876 // Core issue 150 (assumed resolution): if this is a template template
5877 // parameter, keep track of the default template arguments from the
5878 // template definition.
5879 if (isTemplateTemplateParameter)
5880 NewArgs.addArgument(Arg);
5881
5882 // Move to the next template parameter and argument.
5883 ++Param;
5884 ++ArgIdx;
5885 }
5886
5887 // If we're performing a partial argument substitution, allow any trailing
5888 // pack expansions; they might be empty. This can happen even if
5889 // PartialTemplateArgs is false (the list of arguments is complete but
5890 // still dependent).
5891 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5892 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5893 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5894 Converted.push_back(NewArgs[ArgIdx++].getArgument());
5895 }
5896
5897 // If we have any leftover arguments, then there were too many arguments.
5898 // Complain and fail.
5899 if (ArgIdx < NumArgs) {
5900 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5901 << /*too many args*/1
5902 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5903 << Template
5904 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5905 Diag(Template->getLocation(), diag::note_template_decl_here)
5906 << Params->getSourceRange();
5907 return true;
5908 }
5909
5910 // No problems found with the new argument list, propagate changes back
5911 // to caller.
5912 if (UpdateArgsWithConversions)
5913 TemplateArgs = std::move(NewArgs);
5914
5915 if (!PartialTemplateArgs &&
5916 EnsureTemplateArgumentListConstraints(
5917 Template, Converted, SourceRange(TemplateLoc,
5918 TemplateArgs.getRAngleLoc()))) {
5919 if (ConstraintsNotSatisfied)
5920 *ConstraintsNotSatisfied = true;
5921 return true;
5922 }
5923
5924 return false;
5925}
5926
5927namespace {
5928 class UnnamedLocalNoLinkageFinder
5929 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5930 {
5931 Sema &S;
5932 SourceRange SR;
5933
5934 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5935
5936 public:
5937 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5938
5939 bool Visit(QualType T) {
5940 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5941 }
5942
5943#define TYPE(Class, Parent) \
5944 bool Visit##Class##Type(const Class##Type *);
5945#define ABSTRACT_TYPE(Class, Parent) \
5946 bool Visit##Class##Type(const Class##Type *) { return false; }
5947#define NON_CANONICAL_TYPE(Class, Parent) \
5948 bool Visit##Class##Type(const Class##Type *) { return false; }
5949#include "clang/AST/TypeNodes.inc"
5950
5951 bool VisitTagDecl(const TagDecl *Tag);
5952 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5953 };
5954} // end anonymous namespace
5955
5956bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5957 return false;
5958}
5959
5960bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5961 return Visit(T->getElementType());
5962}
5963
5964bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5965 return Visit(T->getPointeeType());
5966}
5967
5968bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5969 const BlockPointerType* T) {
5970 return Visit(T->getPointeeType());
5971}
5972
5973bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5974 const LValueReferenceType* T) {
5975 return Visit(T->getPointeeType());
5976}
5977
5978bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5979 const RValueReferenceType* T) {
5980 return Visit(T->getPointeeType());
5981}
5982
5983bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5984 const MemberPointerType* T) {
5985 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5986}
5987
5988bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5989 const ConstantArrayType* T) {
5990 return Visit(T->getElementType());
5991}
5992
5993bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5994 const IncompleteArrayType* T) {
5995 return Visit(T->getElementType());
5996}
5997
5998bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5999 const VariableArrayType* T) {
6000 return Visit(T->getElementType());
6001}
6002
6003bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6004 const DependentSizedArrayType* T) {
6005 return Visit(T->getElementType());
6006}
6007
6008bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6009 const DependentSizedExtVectorType* T) {
6010 return Visit(T->getElementType());
6011}
6012
6013bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6014 const DependentSizedMatrixType *T) {
6015 return Visit(T->getElementType());
6016}
6017
6018bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6019 const DependentAddressSpaceType *T) {
6020 return Visit(T->getPointeeType());
6021}
6022
6023bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6024 return Visit(T->getElementType());
6025}
6026
6027bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6028 const DependentVectorType *T) {
6029 return Visit(T->getElementType());
6030}
6031
6032bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6033 return Visit(T->getElementType());
6034}
6035
6036bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6037 const ConstantMatrixType *T) {
6038 return Visit(T->getElementType());
6039}
6040
6041bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6042 const FunctionProtoType* T) {
6043 for (const auto &A : T->param_types()) {
6044 if (Visit(A))
6045 return true;
6046 }
6047
6048 return Visit(T->getReturnType());
6049}
6050
6051bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6052 const FunctionNoProtoType* T) {
6053 return Visit(T->getReturnType());
6054}
6055
6056bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6057 const UnresolvedUsingType*) {
6058 return false;
6059}
6060
6061bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6062 return false;
6063}
6064
6065bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6066 return Visit(T->getUnderlyingType());
6067}
6068
6069bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6070 return false;
6071}
6072
6073bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6074 const UnaryTransformType*) {
6075 return false;
6076}
6077
6078bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6079 return Visit(T->getDeducedType());
6080}
6081
6082bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6083 const DeducedTemplateSpecializationType *T) {
6084 return Visit(T->getDeducedType());
6085}
6086
6087bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6088 return VisitTagDecl(T->getDecl());
6089}
6090
6091bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6092 return VisitTagDecl(T->getDecl());
6093}
6094
6095bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6096 const TemplateTypeParmType*) {
6097 return false;
6098}
6099
6100bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6101 const SubstTemplateTypeParmPackType *) {
6102 return false;
6103}
6104
6105bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6106 const TemplateSpecializationType*) {
6107 return false;
6108}
6109
6110bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6111 const InjectedClassNameType* T) {
6112 return VisitTagDecl(T->getDecl());
6113}
6114
6115bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6116 const DependentNameType* T) {
6117 return VisitNestedNameSpecifier(T->getQualifier());
6118}
6119
6120bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6121 const DependentTemplateSpecializationType* T) {
6122 if (auto *Q = T->getQualifier())
6123 return VisitNestedNameSpecifier(Q);
6124 return false;
6125}
6126
6127bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6128 const PackExpansionType* T) {
6129 return Visit(T->getPattern());
6130}
6131
6132bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6133 return false;
6134}
6135
6136bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6137 const ObjCInterfaceType *) {
6138 return false;
6139}
6140
6141bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6142 const ObjCObjectPointerType *) {
6143 return false;
6144}
6145
6146bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6147 return Visit(T->getValueType());
6148}
6149
6150bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6151 return false;
6152}
6153
6154bool UnnamedLocalNoLinkageFinder::VisitExtIntType(const ExtIntType *T) {
6155 return false;
6156}
6157
6158bool UnnamedLocalNoLinkageFinder::VisitDependentExtIntType(
6159 const DependentExtIntType *T) {
6160 return false;
6161}
6162
6163bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6164 if (Tag->getDeclContext()->isFunctionOrMethod()) {
6165 S.Diag(SR.getBegin(),
6166 S.getLangOpts().CPlusPlus11 ?
6167 diag::warn_cxx98_compat_template_arg_local_type :
6168 diag::ext_template_arg_local_type)
6169 << S.Context.getTypeDeclType(Tag) << SR;
6170 return true;
6171 }
6172
6173 if (!Tag->hasNameForLinkage()) {
6174 S.Diag(SR.getBegin(),
6175 S.getLangOpts().CPlusPlus11 ?
6176 diag::warn_cxx98_compat_template_arg_unnamed_type :
6177 diag::ext_template_arg_unnamed_type) << SR;
6178 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6179 return true;
6180 }
6181
6182 return false;
6183}
6184
6185bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6186 NestedNameSpecifier *NNS) {
6187 assert(NNS)(static_cast<void> (0));
6188 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6189 return true;
6190
6191 switch (NNS->getKind()) {
6192 case NestedNameSpecifier::Identifier:
6193 case NestedNameSpecifier::Namespace:
6194 case NestedNameSpecifier::NamespaceAlias:
6195 case NestedNameSpecifier::Global:
6196 case NestedNameSpecifier::Super:
6197 return false;
6198
6199 case NestedNameSpecifier::TypeSpec:
6200 case NestedNameSpecifier::TypeSpecWithTemplate:
6201 return Visit(QualType(NNS->getAsType(), 0));
6202 }
6203 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")__builtin_unreachable();
6204}
6205
6206/// Check a template argument against its corresponding
6207/// template type parameter.
6208///
6209/// This routine implements the semantics of C++ [temp.arg.type]. It
6210/// returns true if an error occurred, and false otherwise.
6211bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6212 assert(ArgInfo && "invalid TypeSourceInfo")(static_cast<void> (0));
6213 QualType Arg = ArgInfo->getType();
6214 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6215
6216 if (Arg->isVariablyModifiedType()) {
6217 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6218 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6219 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6220 }
6221
6222 // C++03 [temp.arg.type]p2:
6223 // A local type, a type with no linkage, an unnamed type or a type
6224 // compounded from any of these types shall not be used as a
6225 // template-argument for a template type-parameter.
6226 //
6227 // C++11 allows these, and even in C++03 we allow them as an extension with
6228 // a warning.
6229 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6230 UnnamedLocalNoLinkageFinder Finder(*this, SR);
6231 (void)Finder.Visit(Context.getCanonicalType(Arg));
6232 }
6233
6234 return false;
6235}
6236
6237enum NullPointerValueKind {
6238 NPV_NotNullPointer,
6239 NPV_NullPointer,
6240 NPV_Error
6241};
6242
6243/// Determine whether the given template argument is a null pointer
6244/// value of the appropriate type.
6245static NullPointerValueKind
6246isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6247 QualType ParamType, Expr *Arg,
6248 Decl *Entity = nullptr) {
6249 if (Arg->isValueDependent() || Arg->isTypeDependent())
6250 return NPV_NotNullPointer;
6251
6252 // dllimport'd entities aren't constant but are available inside of template
6253 // arguments.
6254 if (Entity && Entity->hasAttr<DLLImportAttr>())
6255 return NPV_NotNullPointer;
6256
6257 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6258 llvm_unreachable(__builtin_unreachable()
6259 "Incomplete parameter type in isNullPointerValueTemplateArgument!")__builtin_unreachable();
6260
6261 if (!S.getLangOpts().CPlusPlus11)
6262 return NPV_NotNullPointer;
6263
6264 // Determine whether we have a constant expression.
6265 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6266 if (ArgRV.isInvalid())
6267 return NPV_Error;
6268 Arg = ArgRV.get();
6269
6270 Expr::EvalResult EvalResult;
6271 SmallVector<PartialDiagnosticAt, 8> Notes;
6272 EvalResult.Diag = &Notes;
6273 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6274 EvalResult.HasSideEffects) {
6275 SourceLocation DiagLoc = Arg->getExprLoc();
6276
6277 // If our only note is the usual "invalid subexpression" note, just point
6278 // the caret at its location rather than producing an essentially
6279 // redundant note.
6280 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6281 diag::note_invalid_subexpr_in_const_expr) {
6282 DiagLoc = Notes[0].first;
6283 Notes.clear();
6284 }
6285
6286 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6287 << Arg->getType() << Arg->getSourceRange();
6288 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6289 S.Diag(Notes[I].first, Notes[I].second);
6290
6291 S.Diag(Param->getLocation(), diag::note_template_param_here);
6292 return NPV_Error;
6293 }
6294
6295 // C++11 [temp.arg.nontype]p1:
6296 // - an address constant expression of type std::nullptr_t
6297 if (Arg->getType()->isNullPtrType())
6298 return NPV_NullPointer;
6299
6300 // - a constant expression that evaluates to a null pointer value (4.10); or
6301 // - a constant expression that evaluates to a null member pointer value
6302 // (4.11); or
6303 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6304 (EvalResult.Val.isMemberPointer() &&
6305 !EvalResult.Val.getMemberPointerDecl())) {
6306 // If our expression has an appropriate type, we've succeeded.
6307 bool ObjCLifetimeConversion;
6308 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6309 S.IsQualificationConversion(Arg->getType(), ParamType, false,
6310 ObjCLifetimeConversion))
6311 return NPV_NullPointer;
6312
6313 // The types didn't match, but we know we got a null pointer; complain,
6314 // then recover as if the types were correct.
6315 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6316 << Arg->getType() << ParamType << Arg->getSourceRange();
6317 S.Diag(Param->getLocation(), diag::note_template_param_here);
6318 return NPV_NullPointer;
6319 }
6320
6321 // If we don't have a null pointer value, but we do have a NULL pointer
6322 // constant, suggest a cast to the appropriate type.
6323 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6324 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6325 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6326 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6327 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6328 ")");
6329 S.Diag(Param->getLocation(), diag::note_template_param_here);
6330 return NPV_NullPointer;
6331 }
6332
6333 // FIXME: If we ever want to support general, address-constant expressions
6334 // as non-type template arguments, we should return the ExprResult here to
6335 // be interpreted by the caller.
6336 return NPV_NotNullPointer;
6337}
6338
6339/// Checks whether the given template argument is compatible with its
6340/// template parameter.
6341static bool CheckTemplateArgumentIsCompatibleWithParameter(
6342 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6343 Expr *Arg, QualType ArgType) {
6344 bool ObjCLifetimeConversion;
6345 if (ParamType->isPointerType() &&
6346 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6347 S.IsQualificationConversion(ArgType, ParamType, false,
6348 ObjCLifetimeConversion)) {
6349 // For pointer-to-object types, qualification conversions are
6350 // permitted.
6351 } else {
6352 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6353 if (!ParamRef->getPointeeType()->isFunctionType()) {
6354 // C++ [temp.arg.nontype]p5b3:
6355 // For a non-type template-parameter of type reference to
6356 // object, no conversions apply. The type referred to by the
6357 // reference may be more cv-qualified than the (otherwise
6358 // identical) type of the template- argument. The
6359 // template-parameter is bound directly to the
6360 // template-argument, which shall be an lvalue.
6361
6362 // FIXME: Other qualifiers?
6363 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6364 unsigned ArgQuals = ArgType.getCVRQualifiers();
6365
6366 if ((ParamQuals | ArgQuals) != ParamQuals) {
6367 S.Diag(Arg->getBeginLoc(),
6368 diag::err_template_arg_ref_bind_ignores_quals)
6369 << ParamType << Arg->getType() << Arg->getSourceRange();
6370 S.Diag(Param->getLocation(), diag::note_template_param_here);
6371 return true;
6372 }
6373 }
6374 }
6375
6376 // At this point, the template argument refers to an object or
6377 // function with external linkage. We now need to check whether the
6378 // argument and parameter types are compatible.
6379 if (!S.Context.hasSameUnqualifiedType(ArgType,
6380 ParamType.getNonReferenceType())) {
6381 // We can't perform this conversion or binding.
6382 if (ParamType->isReferenceType())
6383 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6384 << ParamType << ArgIn->getType() << Arg->getSourceRange();
6385 else
6386 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6387 << ArgIn->getType() << ParamType << Arg->getSourceRange();
6388 S.Diag(Param->getLocation(), diag::note_template_param_here);
6389 return true;
6390 }
6391 }
6392
6393 return false;
6394}
6395
6396/// Checks whether the given template argument is the address
6397/// of an object or function according to C++ [temp.arg.nontype]p1.
6398static bool
6399CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6400 NonTypeTemplateParmDecl *Param,
6401 QualType ParamType,
6402 Expr *ArgIn,
6403 TemplateArgument &Converted) {
6404 bool Invalid = false;
6405 Expr *Arg = ArgIn;
6406 QualType ArgType = Arg->getType();
6407
6408 bool AddressTaken = false;
6409 SourceLocation AddrOpLoc;
6410 if (S.getLangOpts().MicrosoftExt) {
6411 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6412 // dereference and address-of operators.
6413 Arg = Arg->IgnoreParenCasts();
6414
6415 bool ExtWarnMSTemplateArg = false;
6416 UnaryOperatorKind FirstOpKind;
6417 SourceLocation FirstOpLoc;
6418 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6419 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6420 if (UnOpKind == UO_Deref)
6421 ExtWarnMSTemplateArg = true;
6422 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6423 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6424 if (!AddrOpLoc.isValid()) {
6425 FirstOpKind = UnOpKind;
6426 FirstOpLoc = UnOp->getOperatorLoc();
6427 }
6428 } else
6429 break;
6430 }
6431 if (FirstOpLoc.isValid()) {
6432 if (ExtWarnMSTemplateArg)
6433 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6434 << ArgIn->getSourceRange();
6435
6436 if (FirstOpKind == UO_AddrOf)
6437 AddressTaken = true;
6438 else if (Arg->getType()->isPointerType()) {
6439 // We cannot let pointers get dereferenced here, that is obviously not a
6440 // constant expression.
6441 assert(FirstOpKind == UO_Deref)(static_cast<void> (0));
6442 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6443 << Arg->getSourceRange();
6444 }
6445 }
6446 } else {
6447 // See through any implicit casts we added to fix the type.
6448 Arg = Arg->IgnoreImpCasts();
6449
6450 // C++ [temp.arg.nontype]p1:
6451 //
6452 // A template-argument for a non-type, non-template
6453 // template-parameter shall be one of: [...]
6454 //
6455 // -- the address of an object or function with external
6456 // linkage, including function templates and function
6457 // template-ids but excluding non-static class members,
6458 // expressed as & id-expression where the & is optional if
6459 // the name refers to a function or array, or if the
6460 // corresponding template-parameter is a reference; or
6461
6462 // In C++98/03 mode, give an extension warning on any extra parentheses.
6463 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6464 bool ExtraParens = false;
6465 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6466 if (!Invalid && !ExtraParens) {
6467 S.Diag(Arg->getBeginLoc(),
6468 S.getLangOpts().CPlusPlus11
6469 ? diag::warn_cxx98_compat_template_arg_extra_parens
6470 : diag::ext_template_arg_extra_parens)
6471 << Arg->getSourceRange();
6472 ExtraParens = true;
6473 }
6474
6475 Arg = Parens->getSubExpr();
6476 }
6477
6478 while (SubstNonTypeTemplateParmExpr *subst =
6479 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6480 Arg = subst->getReplacement()->IgnoreImpCasts();
6481
6482 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6483 if (UnOp->getOpcode() == UO_AddrOf) {
6484 Arg = UnOp->getSubExpr();
6485 AddressTaken = true;
6486 AddrOpLoc = UnOp->getOperatorLoc();
6487 }
6488 }
6489
6490 while (SubstNonTypeTemplateParmExpr *subst =
6491 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6492 Arg = subst->getReplacement()->IgnoreImpCasts();
6493 }
6494
6495 ValueDecl *Entity = nullptr;
6496 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6497 Entity = DRE->getDecl();
6498 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6499 Entity = CUE->getGuidDecl();
6500
6501 // If our parameter has pointer type, check for a null template value.
6502 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6503 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6504 Entity)) {
6505 case NPV_NullPointer:
6506 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6507 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6508 /*isNullPtr=*/true);
6509 return false;
6510
6511 case NPV_Error:
6512 return true;
6513
6514 case NPV_NotNullPointer:
6515 break;
6516 }
6517 }
6518
6519 // Stop checking the precise nature of the argument if it is value dependent,
6520 // it should be checked when instantiated.
6521 if (Arg->isValueDependent()) {
6522 Converted = TemplateArgument(ArgIn);
6523 return false;
6524 }
6525
6526 if (!Entity) {
6527 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6528 << Arg->getSourceRange();
6529 S.Diag(Param->getLocation(), diag::note_template_param_here);
6530 return true;
6531 }
6532
6533 // Cannot refer to non-static data members
6534 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6535 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6536 << Entity << Arg->getSourceRange();
6537 S.Diag(Param->getLocation(), diag::note_template_param_here);
6538 return true;
6539 }
6540
6541 // Cannot refer to non-static member functions
6542 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6543 if (!Method->isStatic()) {
6544 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6545 << Method << Arg->getSourceRange();
6546 S.Diag(Param->getLocation(), diag::note_template_param_here);
6547 return true;
6548 }
6549 }
6550
6551 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6552 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6553 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6554
6555 // A non-type template argument must refer to an object or function.
6556 if (!Func && !Var && !Guid) {
6557 // We found something, but we don't know specifically what it is.
6558 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6559 << Arg->getSourceRange();
6560 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6561 return true;
6562 }
6563
6564 // Address / reference template args must have external linkage in C++98.
6565 if (Entity->getFormalLinkage() == InternalLinkage) {
6566 S.Diag(Arg->getBeginLoc(),
6567 S.getLangOpts().CPlusPlus11
6568 ? diag::warn_cxx98_compat_template_arg_object_internal
6569 : diag::ext_template_arg_object_internal)
6570 << !Func << Entity << Arg->getSourceRange();
6571 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6572 << !Func;
6573 } else if (!Entity->hasLinkage()) {
6574 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6575 << !Func << Entity << Arg->getSourceRange();
6576 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6577 << !Func;
6578 return true;
6579 }
6580
6581 if (Var) {
6582 // A value of reference type is not an object.
6583 if (Var->getType()->isReferenceType()) {
6584 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6585 << Var->getType() << Arg->getSourceRange();
6586 S.Diag(Param->getLocation(), diag::note_template_param_here);
6587 return true;
6588 }
6589
6590 // A template argument must have static storage duration.
6591 if (Var->getTLSKind()) {
6592 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6593 << Arg->getSourceRange();
6594 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6595 return true;
6596 }
6597 }
6598
6599 if (AddressTaken && ParamType->isReferenceType()) {
6600 // If we originally had an address-of operator, but the
6601 // parameter has reference type, complain and (if things look
6602 // like they will work) drop the address-of operator.
6603 if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6604 ParamType.getNonReferenceType())) {
6605 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6606 << ParamType;
6607 S.Diag(Param->getLocation(), diag::note_template_param_here);
6608 return true;
6609 }
6610
6611 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6612 << ParamType
6613 << FixItHint::CreateRemoval(AddrOpLoc);
6614 S.Diag(Param->getLocation(), diag::note_template_param_here);
6615
6616 ArgType = Entity->getType();
6617 }
6618
6619 // If the template parameter has pointer type, either we must have taken the
6620 // address or the argument must decay to a pointer.
6621 if (!AddressTaken && ParamType->isPointerType()) {
6622 if (Func) {
6623 // Function-to-pointer decay.
6624 ArgType = S.Context.getPointerType(Func->getType());
6625 } else if (Entity->getType()->isArrayType()) {
6626 // Array-to-pointer decay.
6627 ArgType = S.Context.getArrayDecayedType(Entity->getType());
6628 } else {
6629 // If the template parameter has pointer type but the address of
6630 // this object was not taken, complain and (possibly) recover by
6631 // taking the address of the entity.
6632 ArgType = S.Context.getPointerType(Entity->getType());
6633 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6634 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6635 << ParamType;
6636 S.Diag(Param->getLocation(), diag::note_template_param_here);
6637 return true;
6638 }
6639
6640 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6641 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6642
6643 S.Diag(Param->getLocation(), diag::note_template_param_here);
6644 }
6645 }
6646
6647 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6648 Arg, ArgType))
6649 return true;
6650
6651 // Create the template argument.
6652 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
6653 S.Context.getCanonicalType(ParamType));
6654 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6655 return false;
6656}
6657
6658/// Checks whether the given template argument is a pointer to
6659/// member constant according to C++ [temp.arg.nontype]p1.
6660static bool CheckTemplateArgumentPointerToMember(Sema &S,
6661 NonTypeTemplateParmDecl *Param,
6662 QualType ParamType,
6663 Expr *&ResultArg,
6664 TemplateArgument &Converted) {
6665 bool Invalid = false;
6666
6667 Expr *Arg = ResultArg;
6668 bool ObjCLifetimeConversion;
6669
6670 // C++ [temp.arg.nontype]p1:
6671 //
6672 // A template-argument for a non-type, non-template
6673 // template-parameter shall be one of: [...]
6674 //
6675 // -- a pointer to member expressed as described in 5.3.1.
6676 DeclRefExpr *DRE = nullptr;
6677
6678 // In C++98/03 mode, give an extension warning on any extra parentheses.
6679 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6680 bool ExtraParens = false;
6681 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6682 if (!Invalid && !ExtraParens) {
6683 S.Diag(Arg->getBeginLoc(),
6684 S.getLangOpts().CPlusPlus11
6685 ? diag::warn_cxx98_compat_template_arg_extra_parens
6686 : diag::ext_template_arg_extra_parens)
6687 << Arg->getSourceRange();
6688 ExtraParens = true;
6689 }
6690
6691 Arg = Parens->getSubExpr();
6692 }
6693
6694 while (SubstNonTypeTemplateParmExpr *subst =
6695 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6696 Arg = subst->getReplacement()->IgnoreImpCasts();
6697
6698 // A pointer-to-member constant written &Class::member.
6699 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6700 if (UnOp->getOpcode() == UO_AddrOf) {
6701 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6702 if (DRE && !DRE->getQualifier())
6703 DRE = nullptr;
6704 }
6705 }
6706 // A constant of pointer-to-member type.
6707 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6708 ValueDecl *VD = DRE->getDecl();
6709 if (VD->getType()->isMemberPointerType()) {
6710 if (isa<NonTypeTemplateParmDecl>(VD)) {
6711 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6712 Converted = TemplateArgument(Arg);
6713 } else {
6714 VD = cast<ValueDecl>(VD->getCanonicalDecl());
6715 Converted = TemplateArgument(VD, ParamType);
6716 }
6717 return Invalid;
6718 }
6719 }
6720
6721 DRE = nullptr;
6722 }
6723
6724 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6725
6726 // Check for a null pointer value.
6727 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6728 Entity)) {
6729 case NPV_Error:
6730 return true;
6731 case NPV_NullPointer:
6732 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6733 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6734 /*isNullPtr*/true);
6735 return false;
6736 case NPV_NotNullPointer:
6737 break;
6738 }
6739
6740 if (S.IsQualificationConversion(ResultArg->getType(),
6741 ParamType.getNonReferenceType(), false,
6742 ObjCLifetimeConversion)) {
6743 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6744 ResultArg->getValueKind())
6745 .get();
6746 } else if (!S.Context.hasSameUnqualifiedType(
6747 ResultArg->getType(), ParamType.getNonReferenceType())) {
6748 // We can't perform this conversion.
6749 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6750 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6751 S.Diag(Param->getLocation(), diag::note_template_param_here);
6752 return true;
6753 }
6754
6755 if (!DRE)
6756 return S.Diag(Arg->getBeginLoc(),
6757 diag::err_template_arg_not_pointer_to_member_form)
6758 << Arg->getSourceRange();
6759
6760 if (isa<FieldDecl>(DRE->getDecl()) ||
6761 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6762 isa<CXXMethodDecl>(DRE->getDecl())) {
6763 assert((isa<FieldDecl>(DRE->getDecl()) ||(static_cast<void> (0))
6764 isa<IndirectFieldDecl>(DRE->getDecl()) ||(static_cast<void> (0))
6765 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(static_cast<void> (0))
6766 "Only non-static member pointers can make it here")(static_cast<void> (0));
6767
6768 // Okay: this is the address of a non-static member, and therefore
6769 // a member pointer constant.
6770 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6771 Converted = TemplateArgument(Arg);
6772 } else {
6773 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6774 Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType));
6775 }
6776 return Invalid;
6777 }
6778
6779 // We found something else, but we don't know specifically what it is.
6780 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6781 << Arg->getSourceRange();
6782 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6783 return true;
6784}
6785
6786/// Check a template argument against its corresponding
6787/// non-type template parameter.
6788///
6789/// This routine implements the semantics of C++ [temp.arg.nontype].
6790/// If an error occurred, it returns ExprError(); otherwise, it
6791/// returns the converted template argument. \p ParamType is the
6792/// type of the non-type template parameter after it has been instantiated.
6793ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6794 QualType ParamType, Expr *Arg,
6795 TemplateArgument &Converted,
6796 CheckTemplateArgumentKind CTAK) {
6797 SourceLocation StartLoc = Arg->getBeginLoc();
6798
6799 // If the parameter type somehow involves auto, deduce the type now.
6800 DeducedType *DeducedT = ParamType->getContainedDeducedType();
6801 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
6802 // During template argument deduction, we allow 'decltype(auto)' to
6803 // match an arbitrary dependent argument.
6804 // FIXME: The language rules don't say what happens in this case.
6805 // FIXME: We get an opaque dependent type out of decltype(auto) if the
6806 // expression is merely instantiation-dependent; is this enough?
6807 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6808 auto *AT = dyn_cast<AutoType>(DeducedT);
6809 if (AT && AT->isDecltypeAuto()) {
6810 Converted = TemplateArgument(Arg);
6811 return Arg;
6812 }
6813 }
6814
6815 // When checking a deduced template argument, deduce from its type even if
6816 // the type is dependent, in order to check the types of non-type template
6817 // arguments line up properly in partial ordering.
6818 Optional<unsigned> Depth = Param->getDepth() + 1;
6819 Expr *DeductionArg = Arg;
6820 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6821 DeductionArg = PE->getPattern();
6822 TypeSourceInfo *TSI =
6823 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
6824 if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
6825 InitializedEntity Entity =
6826 InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6827 InitializationKind Kind = InitializationKind::CreateForInit(
6828 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
6829 Expr *Inits[1] = {DeductionArg};
6830 ParamType =
6831 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
6832 if (ParamType.isNull())
6833 return ExprError();
6834 } else if (DeduceAutoType(
6835 TSI, DeductionArg, ParamType, Depth,
6836 // We do not check constraints right now because the
6837 // immediately-declared constraint of the auto type is also
6838 // an associated constraint, and will be checked along with
6839 // the other associated constraints after checking the
6840 // template argument list.
6841 /*IgnoreConstraints=*/true) == DAR_Failed) {
6842 Diag(Arg->getExprLoc(),
6843 diag::err_non_type_template_parm_type_deduction_failure)
6844 << Param->getDeclName() << Param->getType() << Arg->getType()
6845 << Arg->getSourceRange();
6846 Diag(Param->getLocation(), diag::note_template_param_here);
6847 return ExprError();
6848 }
6849 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6850 // an error. The error message normally references the parameter
6851 // declaration, but here we'll pass the argument location because that's
6852 // where the parameter type is deduced.
6853 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6854 if (ParamType.isNull()) {
6855 Diag(Param->getLocation(), diag::note_template_param_here);
6856 return ExprError();
6857 }
6858 }
6859
6860 // We should have already dropped all cv-qualifiers by now.
6861 assert(!ParamType.hasQualifiers() &&(static_cast<void> (0))
6862 "non-type template parameter type cannot be qualified")(static_cast<void> (0));
6863
6864 // FIXME: When Param is a reference, should we check that Arg is an lvalue?
6865 if (CTAK == CTAK_Deduced &&
6866 (ParamType->isReferenceType()
6867 ? !Context.hasSameType(ParamType.getNonReferenceType(),
6868 Arg->getType())
6869 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
6870 // FIXME: If either type is dependent, we skip the check. This isn't
6871 // correct, since during deduction we're supposed to have replaced each
6872 // template parameter with some unique (non-dependent) placeholder.
6873 // FIXME: If the argument type contains 'auto', we carry on and fail the
6874 // type check in order to force specific types to be more specialized than
6875 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6876 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
6877 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6878 !Arg->getType()->getContainedDeducedType()) {
6879 Converted = TemplateArgument(Arg);
6880 return Arg;
6881 }
6882 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6883 // we should actually be checking the type of the template argument in P,
6884 // not the type of the template argument deduced from A, against the
6885 // template parameter type.
6886 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6887 << Arg->getType()
6888 << ParamType.getUnqualifiedType();
6889 Diag(Param->getLocation(), diag::note_template_param_here);
6890 return ExprError();
6891 }
6892
6893 // If either the parameter has a dependent type or the argument is
6894 // type-dependent, there's nothing we can check now. The argument only
6895 // contains an unexpanded pack during partial ordering, and there's
6896 // nothing more we can check in that case.
6897 if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6898 Arg->containsUnexpandedParameterPack()) {
6899 // Force the argument to the type of the parameter to maintain invariants.
6900 auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6901 if (PE)
6902 Arg = PE->getPattern();
6903 ExprResult E = ImpCastExprToType(
6904 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6905 ParamType->isLValueReferenceType() ? VK_LValue
6906 : ParamType->isRValueReferenceType() ? VK_XValue
6907 : VK_PRValue);
6908 if (E.isInvalid())
6909 return ExprError();
6910 if (PE) {
6911 // Recreate a pack expansion if we unwrapped one.
6912 E = new (Context)
6913 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6914 PE->getNumExpansions());
6915 }
6916 Converted = TemplateArgument(E.get());
6917 return E;
6918 }
6919
6920 // The initialization of the parameter from the argument is
6921 // a constant-evaluated context.
6922 EnterExpressionEvaluationContext ConstantEvaluated(
6923 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6924
6925 if (getLangOpts().CPlusPlus17) {
6926 QualType CanonParamType = Context.getCanonicalType(ParamType);
6927
6928 // Avoid making a copy when initializing a template parameter of class type
6929 // from a template parameter object of the same type. This is going beyond
6930 // the standard, but is required for soundness: in
6931 // template<A a> struct X { X *p; X<a> *q; };
6932 // ... we need p and q to have the same type.
6933 //
6934 // Similarly, don't inject a call to a copy constructor when initializing
6935 // from a template parameter of the same type.
6936 Expr *InnerArg = Arg->IgnoreParenImpCasts();
6937 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
6938 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
6939 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
6940 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
6941 Converted = TemplateArgument(TPO, CanonParamType);
6942 return Arg;
6943 }
6944 if (isa<NonTypeTemplateParmDecl>(ND)) {
6945 Converted = TemplateArgument(Arg);
6946 return Arg;
6947 }
6948 }
6949
6950 // C++17 [temp.arg.nontype]p1:
6951 // A template-argument for a non-type template parameter shall be
6952 // a converted constant expression of the type of the template-parameter.
6953 APValue Value;
6954 ExprResult ArgResult = CheckConvertedConstantExpression(
6955 Arg, ParamType, Value, CCEK_TemplateArg, Param);
6956 if (ArgResult.isInvalid())
6957 return ExprError();
6958
6959 // For a value-dependent argument, CheckConvertedConstantExpression is
6960 // permitted (and expected) to be unable to determine a value.
6961 if (ArgResult.get()->isValueDependent()) {
6962 Converted = TemplateArgument(ArgResult.get());
6963 return ArgResult;
6964 }
6965
6966 // Convert the APValue to a TemplateArgument.
6967 switch (Value.getKind()) {
6968 case APValue::None:
6969 assert(ParamType->isNullPtrType())(static_cast<void> (0));
6970 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6971 break;
6972 case APValue::Indeterminate:
6973 llvm_unreachable("result of constant evaluation should be initialized")__builtin_unreachable();
6974 break;
6975 case APValue::Int:
6976 assert(ParamType->isIntegralOrEnumerationType())(static_cast<void> (0));
6977 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6978 break;
6979 case APValue::MemberPointer: {
6980 assert(ParamType->isMemberPointerType())(static_cast<void> (0));
6981
6982 // FIXME: We need TemplateArgument representation and mangling for these.
6983 if (!Value.getMemberPointerPath().empty()) {
6984 Diag(Arg->getBeginLoc(),
6985 diag::err_template_arg_member_ptr_base_derived_not_supported)
6986 << Value.getMemberPointerDecl() << ParamType
6987 << Arg->getSourceRange();
6988 return ExprError();
6989 }
6990
6991 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6992 Converted = VD ? TemplateArgument(VD, CanonParamType)
6993 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6994 break;
6995 }
6996 case APValue::LValue: {
6997 // For a non-type template-parameter of pointer or reference type,
6998 // the value of the constant expression shall not refer to
6999 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||(static_cast<void> (0))
7000 ParamType->isNullPtrType())(static_cast<void> (0));
7001 // -- a temporary object
7002 // -- a string literal
7003 // -- the result of a typeid expression, or
7004 // -- a predefined __func__ variable
7005 APValue::LValueBase Base = Value.getLValueBase();
7006 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7007 if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) {
7008 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7009 << Arg->getSourceRange();
7010 return ExprError();
7011 }
7012 // -- a subobject
7013 // FIXME: Until C++20
7014 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7015 VD && VD->getType()->isArrayType() &&
7016 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7017 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7018 // Per defect report (no number yet):
7019 // ... other than a pointer to the first element of a complete array
7020 // object.
7021 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7022 Value.isLValueOnePastTheEnd()) {
7023 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7024 << Value.getAsString(Context, ParamType);
7025 return ExprError();
7026 }
7027 assert((VD || !ParamType->isReferenceType()) &&(static_cast<void> (0))
7028 "null reference should not be a constant expression")(static_cast<void> (0));
7029 assert((!VD || !ParamType->isNullPtrType()) &&(static_cast<void> (0))
7030 "non-null value of type nullptr_t?")(static_cast<void> (0));
7031 Converted = VD ? TemplateArgument(VD, CanonParamType)
7032 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7033 break;
7034 }
7035 case APValue::Struct:
7036 case APValue::Union:
7037 // Get or create the corresponding template parameter object.
7038 Converted = TemplateArgument(
7039 Context.getTemplateParamObjectDecl(CanonParamType, Value),
7040 CanonParamType);
7041 break;
7042 case APValue::AddrLabelDiff:
7043 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7044 case APValue::FixedPoint:
7045 case APValue::Float:
7046 case APValue::ComplexInt:
7047 case APValue::ComplexFloat:
7048 case APValue::Vector:
7049 case APValue::Array:
7050 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7051 << ParamType;
7052 }
7053
7054 return ArgResult.get();
7055 }
7056
7057 // C++ [temp.arg.nontype]p5:
7058 // The following conversions are performed on each expression used
7059 // as a non-type template-argument. If a non-type
7060 // template-argument cannot be converted to the type of the
7061 // corresponding template-parameter then the program is
7062 // ill-formed.
7063 if (ParamType->isIntegralOrEnumerationType()) {
7064 // C++11:
7065 // -- for a non-type template-parameter of integral or
7066 // enumeration type, conversions permitted in a converted
7067 // constant expression are applied.
7068 //
7069 // C++98:
7070 // -- for a non-type template-parameter of integral or
7071 // enumeration type, integral promotions (4.5) and integral
7072 // conversions (4.7) are applied.
7073
7074 if (getLangOpts().CPlusPlus11) {
7075 // C++ [temp.arg.nontype]p1:
7076 // A template-argument for a non-type, non-template template-parameter
7077 // shall be one of:
7078 //
7079 // -- for a non-type template-parameter of integral or enumeration
7080 // type, a converted constant expression of the type of the
7081 // template-parameter; or
7082 llvm::APSInt Value;
7083 ExprResult ArgResult =
7084 CheckConvertedConstantExpression(Arg, ParamType, Value,
7085 CCEK_TemplateArg);
7086 if (ArgResult.isInvalid())
7087 return ExprError();
7088
7089 // We can't check arbitrary value-dependent arguments.
7090 if (ArgResult.get()->isValueDependent()) {
7091 Converted = TemplateArgument(ArgResult.get());
7092 return ArgResult;
7093 }
7094
7095 // Widen the argument value to sizeof(parameter type). This is almost
7096 // always a no-op, except when the parameter type is bool. In
7097 // that case, this may extend the argument from 1 bit to 8 bits.
7098 QualType IntegerType = ParamType;
7099 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7100 IntegerType = Enum->getDecl()->getIntegerType();
7101 Value = Value.extOrTrunc(IntegerType->isExtIntType()
7102 ? Context.getIntWidth(IntegerType)
7103 : Context.getTypeSize(IntegerType));
7104
7105 Converted = TemplateArgument(Context, Value,
7106 Context.getCanonicalType(ParamType));
7107 return ArgResult;
7108 }
7109
7110 ExprResult ArgResult = DefaultLvalueConversion(Arg);
7111 if (ArgResult.isInvalid())
7112 return ExprError();
7113 Arg = ArgResult.get();
7114
7115 QualType ArgType = Arg->getType();
7116
7117 // C++ [temp.arg.nontype]p1:
7118 // A template-argument for a non-type, non-template
7119 // template-parameter shall be one of:
7120 //
7121 // -- an integral constant-expression of integral or enumeration
7122 // type; or
7123 // -- the name of a non-type template-parameter; or
7124 llvm::APSInt Value;
7125 if (!ArgType->isIntegralOrEnumerationType()) {
7126 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7127 << ArgType << Arg->getSourceRange();
7128 Diag(Param->getLocation(), diag::note_template_param_here);
7129 return ExprError();
7130 } else if (!Arg->isValueDependent()) {
7131 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7132 QualType T;
7133
7134 public:
7135 TmplArgICEDiagnoser(QualType T) : T(T) { }
7136
7137 SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7138 SourceLocation Loc) override {
7139 return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7140 }
7141 } Diagnoser(ArgType);
7142
7143 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7144 if (!Arg)
7145 return ExprError();
7146 }
7147
7148 // From here on out, all we care about is the unqualified form
7149 // of the argument type.
7150 ArgType = ArgType.getUnqualifiedType();
7151
7152 // Try to convert the argument to the parameter's type.
7153 if (Context.hasSameType(ParamType, ArgType)) {
7154 // Okay: no conversion necessary
7155 } else if (ParamType->isBooleanType()) {
7156 // This is an integral-to-boolean conversion.
7157 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7158 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7159 !ParamType->isEnumeralType()) {
7160 // This is an integral promotion or conversion.
7161 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7162 } else {
7163 // We can't perform this conversion.
7164 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7165 << Arg->getType() << ParamType << Arg->getSourceRange();
7166 Diag(Param->getLocation(), diag::note_template_param_here);
7167 return ExprError();
7168 }
7169
7170 // Add the value of this argument to the list of converted
7171 // arguments. We use the bitwidth and signedness of the template
7172 // parameter.
7173 if (Arg->isValueDependent()) {
7174 // The argument is value-dependent. Create a new
7175 // TemplateArgument with the converted expression.
7176 Converted = TemplateArgument(Arg);
7177 return Arg;
7178 }
7179
7180 QualType IntegerType = Context.getCanonicalType(ParamType);
7181 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7182 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
7183
7184 if (ParamType->isBooleanType()) {
7185 // Value must be zero or one.
7186 Value = Value != 0;
7187 unsigned AllowedBits = Context.getTypeSize(IntegerType);
7188 if (Value.getBitWidth() != AllowedBits)
7189 Value = Value.extOrTrunc(AllowedBits);
7190 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7191 } else {
7192 llvm::APSInt OldValue = Value;
7193
7194 // Coerce the template argument's value to the value it will have
7195 // based on the template parameter's type.
7196 unsigned AllowedBits = IntegerType->isExtIntType()
7197 ? Context.getIntWidth(IntegerType)
7198 : Context.getTypeSize(IntegerType);
7199 if (Value.getBitWidth() != AllowedBits)
7200 Value = Value.extOrTrunc(AllowedBits);
7201 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7202
7203 // Complain if an unsigned parameter received a negative value.
7204 if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7205 (OldValue.isSigned() && OldValue.isNegative())) {
7206 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7207 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7208 << Arg->getSourceRange();
7209 Diag(Param->getLocation(), diag::note_template_param_here);
7210 }
7211
7212 // Complain if we overflowed the template parameter's type.
7213 unsigned RequiredBits;
7214 if (IntegerType->isUnsignedIntegerOrEnumerationType())
7215 RequiredBits = OldValue.getActiveBits();
7216 else if (OldValue.isUnsigned())
7217 RequiredBits = OldValue.getActiveBits() + 1;
7218 else
7219 RequiredBits = OldValue.getMinSignedBits();
7220 if (RequiredBits > AllowedBits) {
7221 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7222 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7223 << Arg->getSourceRange();
7224 Diag(Param->getLocation(), diag::note_template_param_here);
7225 }
7226 }
7227
7228 Converted = TemplateArgument(Context, Value,
7229 ParamType->isEnumeralType()
7230 ? Context.getCanonicalType(ParamType)
7231 : IntegerType);
7232 return Arg;
7233 }
7234
7235 QualType ArgType = Arg->getType();
7236 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7237
7238 // Handle pointer-to-function, reference-to-function, and
7239 // pointer-to-member-function all in (roughly) the same way.
7240 if (// -- For a non-type template-parameter of type pointer to
7241 // function, only the function-to-pointer conversion (4.3) is
7242 // applied. If the template-argument represents a set of
7243 // overloaded functions (or a pointer to such), the matching
7244 // function is selected from the set (13.4).
7245 (ParamType->isPointerType() &&
7246 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7247 // -- For a non-type template-parameter of type reference to
7248 // function, no conversions apply. If the template-argument
7249 // represents a set of overloaded functions, the matching
7250 // function is selected from the set (13.4).
7251 (ParamType->isReferenceType() &&
7252 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7253 // -- For a non-type template-parameter of type pointer to
7254 // member function, no conversions apply. If the
7255 // template-argument represents a set of overloaded member
7256 // functions, the matching member function is selected from
7257 // the set (13.4).
7258 (ParamType->isMemberPointerType() &&
7259 ParamType->castAs<MemberPointerType>()->getPointeeType()
7260 ->isFunctionType())) {
7261
7262 if (Arg->getType() == Context.OverloadTy) {
7263 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7264 true,
7265 FoundResult)) {
7266 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7267 return ExprError();
7268
7269 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7270 ArgType = Arg->getType();
7271 } else
7272 return ExprError();
7273 }
7274
7275 if (!ParamType->isMemberPointerType()) {
7276 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7277 ParamType,
7278 Arg, Converted))
7279 return ExprError();
7280 return Arg;
7281 }
7282
7283 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7284 Converted))
7285 return ExprError();
7286 return Arg;
7287 }
7288
7289 if (ParamType->isPointerType()) {
7290 // -- for a non-type template-parameter of type pointer to
7291 // object, qualification conversions (4.4) and the
7292 // array-to-pointer conversion (4.2) are applied.
7293 // C++0x also allows a value of std::nullptr_t.
7294 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&(static_cast<void> (0))
7295 "Only object pointers allowed here")(static_cast<void> (0));
7296
7297 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7298 ParamType,
7299 Arg, Converted))
7300 return ExprError();
7301 return Arg;
7302 }
7303
7304 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7305 // -- For a non-type template-parameter of type reference to
7306 // object, no conversions apply. The type referred to by the
7307 // reference may be more cv-qualified than the (otherwise
7308 // identical) type of the template-argument. The
7309 // template-parameter is bound directly to the
7310 // template-argument, which must be an lvalue.
7311 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&(static_cast<void> (0))
7312 "Only object references allowed here")(static_cast<void> (0));
7313
7314 if (Arg->getType() == Context.OverloadTy) {
7315 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7316 ParamRefType->getPointeeType(),
7317 true,
7318 FoundResult)) {
7319 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7320 return ExprError();
7321
7322 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7323 ArgType = Arg->getType();
7324 } else
7325 return ExprError();
7326 }
7327
7328 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7329 ParamType,
7330 Arg, Converted))
7331 return ExprError();
7332 return Arg;
7333 }
7334
7335 // Deal with parameters of type std::nullptr_t.
7336 if (ParamType->isNullPtrType()) {
7337 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7338 Converted = TemplateArgument(Arg);
7339 return Arg;
7340 }
7341
7342 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7343 case NPV_NotNullPointer:
7344 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7345 << Arg->getType() << ParamType;
7346 Diag(Param->getLocation(), diag::note_template_param_here);
7347 return ExprError();
7348
7349 case NPV_Error:
7350 return ExprError();
7351
7352 case NPV_NullPointer:
7353 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7354 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7355 /*isNullPtr*/true);
7356 return Arg;
7357 }
7358 }
7359
7360 // -- For a non-type template-parameter of type pointer to data
7361 // member, qualification conversions (4.4) are applied.
7362 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")(static_cast<void> (0));
7363
7364 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7365 Converted))
7366 return ExprError();
7367 return Arg;
7368}
7369
7370static void DiagnoseTemplateParameterListArityMismatch(
7371 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7372 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7373
7374/// Check a template argument against its corresponding
7375/// template template parameter.
7376///
7377/// This routine implements the semantics of C++ [temp.arg.template].
7378/// It returns true if an error occurred, and false otherwise.
7379bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7380 TemplateParameterList *Params,
7381 TemplateArgumentLoc &Arg) {
7382 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7383 TemplateDecl *Template = Name.getAsTemplateDecl();
7384 if (!Template) {
7385 // Any dependent template name is fine.
7386 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")(static_cast<void> (0));
7387 return false;
7388 }
7389
7390 if (Template->isInvalidDecl())
7391 return true;
7392
7393 // C++0x [temp.arg.template]p1:
7394 // A template-argument for a template template-parameter shall be
7395 // the name of a class template or an alias template, expressed as an
7396 // id-expression. When the template-argument names a class template, only
7397 // primary class templates are considered when matching the
7398 // template template argument with the corresponding parameter;
7399 // partial specializations are not considered even if their
7400 // parameter lists match that of the template template parameter.
7401 //
7402 // Note that we also allow template template parameters here, which
7403 // will happen when we are dealing with, e.g., class template
7404 // partial specializations.
7405 if (!isa<ClassTemplateDecl>(Template) &&
7406 !isa<TemplateTemplateParmDecl>(Template) &&
7407 !isa<TypeAliasTemplateDecl>(Template) &&
7408 !isa<BuiltinTemplateDecl>(Template)) {
7409 assert(isa<FunctionTemplateDecl>(Template) &&(static_cast<void> (0))
7410 "Only function templates are possible here")(static_cast<void> (0));
7411 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7412 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7413 << Template;
7414 }
7415
7416 // C++1z [temp.arg.template]p3: (DR 150)
7417 // A template-argument matches a template template-parameter P when P
7418 // is at least as specialized as the template-argument A.
7419 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7420 // defect report resolution from C++17 and shouldn't be introduced by
7421 // concepts.
7422 if (getLangOpts().RelaxedTemplateTemplateArgs) {
7423 // Quick check for the common case:
7424 // If P contains a parameter pack, then A [...] matches P if each of A's
7425 // template parameters matches the corresponding template parameter in
7426 // the template-parameter-list of P.
7427 if (TemplateParameterListsAreEqual(
7428 Template->getTemplateParameters(), Params, false,
7429 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7430 // If the argument has no associated constraints, then the parameter is
7431 // definitely at least as specialized as the argument.
7432 // Otherwise - we need a more thorough check.
7433 !Template->hasAssociatedConstraints())
7434 return false;
7435
7436 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7437 Arg.getLocation())) {
7438 // C++2a[temp.func.order]p2
7439 // [...] If both deductions succeed, the partial ordering selects the
7440 // more constrained template as described by the rules in
7441 // [temp.constr.order].
7442 SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7443 Params->getAssociatedConstraints(ParamsAC);
7444 // C++2a[temp.arg.template]p3
7445 // [...] In this comparison, if P is unconstrained, the constraints on A
7446 // are not considered.
7447 if (ParamsAC.empty())
7448 return false;
7449 Template->getAssociatedConstraints(TemplateAC);
7450 bool IsParamAtLeastAsConstrained;
7451 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7452 IsParamAtLeastAsConstrained))
7453 return true;
7454 if (!IsParamAtLeastAsConstrained) {
7455 Diag(Arg.getLocation(),
7456 diag::err_template_template_parameter_not_at_least_as_constrained)
7457 << Template << Param << Arg.getSourceRange();
7458 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7459 Diag(Template->getLocation(), diag::note_entity_declared_at)
7460 << Template;
7461 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7462 TemplateAC);
7463 return true;
7464 }
7465 return false;
7466 }
7467 // FIXME: Produce better diagnostics for deduction failures.
7468 }
7469
7470 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7471 Params,
7472 true,
7473 TPL_TemplateTemplateArgumentMatch,
7474 Arg.getLocation());
7475}
7476
7477/// Given a non-type template argument that refers to a
7478/// declaration and the type of its corresponding non-type template
7479/// parameter, produce an expression that properly refers to that
7480/// declaration.
7481ExprResult
7482Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7483 QualType ParamType,
7484 SourceLocation Loc) {
7485 // C++ [temp.param]p8:
7486 //
7487 // A non-type template-parameter of type "array of T" or
7488 // "function returning T" is adjusted to be of type "pointer to
7489 // T" or "pointer to function returning T", respectively.
7490 if (ParamType->isArrayType())
7491 ParamType = Context.getArrayDecayedType(ParamType);
7492 else if (ParamType->isFunctionType())
7493 ParamType = Context.getPointerType(ParamType);
7494
7495 // For a NULL non-type template argument, return nullptr casted to the
7496 // parameter's type.
7497 if (Arg.getKind() == TemplateArgument::NullPtr) {
7498 return ImpCastExprToType(
7499 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7500 ParamType,
7501 ParamType->getAs<MemberPointerType>()
7502 ? CK_NullToMemberPointer
7503 : CK_NullToPointer);
7504 }
7505 assert(Arg.getKind() == TemplateArgument::Declaration &&(static_cast<void> (0))
7506 "Only declaration template arguments permitted here")(static_cast<void> (0));
7507
7508 ValueDecl *VD = Arg.getAsDecl();
7509
7510 CXXScopeSpec SS;
7511 if (ParamType->isMemberPointerType()) {
7512 // If this is a pointer to member, we need to use a qualified name to
7513 // form a suitable pointer-to-member constant.
7514 assert(VD->getDeclContext()->isRecord() &&(static_cast<void> (0))
7515 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||(static_cast<void> (0))
7516 isa<IndirectFieldDecl>(VD)))(static_cast<void> (0));
7517 QualType ClassType
7518 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7519 NestedNameSpecifier *Qualifier
7520 = NestedNameSpecifier::Create(Context, nullptr, false,
7521 ClassType.getTypePtr());
7522 SS.MakeTrivial(Context, Qualifier, Loc);
7523 }
7524
7525 ExprResult RefExpr = BuildDeclarationNameExpr(
7526 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7527 if (RefExpr.isInvalid())
7528 return ExprError();
7529
7530 // For a pointer, the argument declaration is the pointee. Take its address.
7531 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7532 if (ParamType->isPointerType() && !ElemT.isNull() &&
7533 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7534 // Decay an array argument if we want a pointer to its first element.
7535 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7536 if (RefExpr.isInvalid())
7537 return ExprError();
7538 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7539 // For any other pointer, take the address (or form a pointer-to-member).
7540 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7541 if (RefExpr.isInvalid())
7542 return ExprError();
7543 } else if (ParamType->isRecordType()) {
7544 assert(isa<TemplateParamObjectDecl>(VD) &&(static_cast<void> (0))
7545 "arg for class template param not a template parameter object")(static_cast<void> (0));
7546 // No conversions apply in this case.
7547 return RefExpr;
7548 } else {
7549 assert(ParamType->isReferenceType() &&(static_cast<void> (0))
7550 "unexpected type for decl template argument")(static_cast<void> (0));
7551 }
7552
7553 // At this point we should have the right value category.
7554 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&(static_cast<void> (0))
7555 "value kind mismatch for non-type template argument")(static_cast<void> (0));
7556
7557 // The type of the template parameter can differ from the type of the
7558 // argument in various ways; convert it now if necessary.
7559 QualType DestExprType = ParamType.getNonLValueExprType(Context);
7560 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7561 CastKind CK;
7562 QualType Ignored;
7563 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7564 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7565 CK = CK_NoOp;
7566 } else if (ParamType->isVoidPointerType() &&
7567 RefExpr.get()->getType()->isPointerType()) {
7568 CK = CK_BitCast;
7569 } else {
7570 // FIXME: Pointers to members can need conversion derived-to-base or
7571 // base-to-derived conversions. We currently don't retain enough
7572 // information to convert properly (we need to track a cast path or
7573 // subobject number in the template argument).
7574 llvm_unreachable(__builtin_unreachable()
7575 "unexpected conversion required for non-type template argument")__builtin_unreachable();
7576 }
7577 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7578 RefExpr.get()->getValueKind());
7579 }
7580
7581 return RefExpr;
7582}
7583
7584/// Construct a new expression that refers to the given
7585/// integral template argument with the given source-location
7586/// information.
7587///
7588/// This routine takes care of the mapping from an integral template
7589/// argument (which may have any integral type) to the appropriate
7590/// literal value.
7591ExprResult
7592Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7593 SourceLocation Loc) {
7594 assert(Arg.getKind() == TemplateArgument::Integral &&(static_cast<void> (0))
7595 "Operation is only valid for integral template arguments")(static_cast<void> (0));
7596 QualType OrigT = Arg.getIntegralType();
7597
7598 // If this is an enum type that we're instantiating, we need to use an integer
7599 // type the same size as the enumerator. We don't want to build an
7600 // IntegerLiteral with enum type. The integer type of an enum type can be of
7601 // any integral type with C++11 enum classes, make sure we create the right
7602 // type of literal for it.
7603 QualType T = OrigT;
7604 if (const EnumType *ET = OrigT->getAs<EnumType>())
7605 T = ET->getDecl()->getIntegerType();
7606
7607 Expr *E;
7608 if (T->isAnyCharacterType()) {
7609 CharacterLiteral::CharacterKind Kind;
7610 if (T->isWideCharType())
7611 Kind = CharacterLiteral::Wide;
7612 else if (T->isChar8Type() && getLangOpts().Char8)
7613 Kind = CharacterLiteral::UTF8;
7614 else if (T->isChar16Type())
7615 Kind = CharacterLiteral::UTF16;
7616 else if (T->isChar32Type())
7617 Kind = CharacterLiteral::UTF32;
7618 else
7619 Kind = CharacterLiteral::Ascii;
7620
7621 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7622 Kind, T, Loc);
7623 } else if (T->isBooleanType()) {
7624 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7625 T, Loc);
7626 } else if (T->isNullPtrType()) {
7627 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7628 } else {
7629 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7630 }
7631
7632 if (OrigT->isEnumeralType()) {
7633 // FIXME: This is a hack. We need a better way to handle substituted
7634 // non-type template parameters.
7635 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
7636 nullptr, CurFPFeatureOverrides(),
7637 Context.getTrivialTypeSourceInfo(OrigT, Loc),
7638 Loc, Loc);
7639 }
7640
7641 return E;
7642}
7643
7644/// Match two template parameters within template parameter lists.
7645static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7646 bool Complain,
7647 Sema::TemplateParameterListEqualKind Kind,
7648 SourceLocation TemplateArgLoc) {
7649 // Check the actual kind (type, non-type, template).
7650 if (Old->getKind() != New->getKind()) {
7651 if (Complain) {
7652 unsigned NextDiag = diag::err_template_param_different_kind;
7653 if (TemplateArgLoc.isValid()) {
7654 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7655 NextDiag = diag::note_template_param_different_kind;
7656 }
7657 S.Diag(New->getLocation(), NextDiag)
7658 << (Kind != Sema::TPL_TemplateMatch);
7659 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7660 << (Kind != Sema::TPL_TemplateMatch);
7661 }
7662
7663 return false;
7664 }
7665
7666 // Check that both are parameter packs or neither are parameter packs.
7667 // However, if we are matching a template template argument to a
7668 // template template parameter, the template template parameter can have
7669 // a parameter pack where the template template argument does not.
7670 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7671 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7672 Old->isTemplateParameterPack())) {
7673 if (Complain) {
7674 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7675 if (TemplateArgLoc.isValid()) {
7676 S.Diag(TemplateArgLoc,
7677 diag::err_template_arg_template_params_mismatch);
7678 NextDiag = diag::note_template_parameter_pack_non_pack;
7679 }
7680
7681 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7682 : isa<NonTypeTemplateParmDecl>(New)? 1
7683 : 2;
7684 S.Diag(New->getLocation(), NextDiag)
7685 << ParamKind << New->isParameterPack();
7686 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7687 << ParamKind << Old->isParameterPack();
7688 }
7689
7690 return false;
7691 }
7692
7693 // For non-type template parameters, check the type of the parameter.
7694 if (NonTypeTemplateParmDecl *OldNTTP
7695 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7696 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7697
7698 // If we are matching a template template argument to a template
7699 // template parameter and one of the non-type template parameter types
7700 // is dependent, then we must wait until template instantiation time
7701 // to actually compare the arguments.
7702 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7703 (!OldNTTP->getType()->isDependentType() &&
7704 !NewNTTP->getType()->isDependentType()))
7705 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7706 if (Complain) {
7707 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7708 if (TemplateArgLoc.isValid()) {
7709 S.Diag(TemplateArgLoc,
7710 diag::err_template_arg_template_params_mismatch);
7711 NextDiag = diag::note_template_nontype_parm_different_type;
7712 }
7713 S.Diag(NewNTTP->getLocation(), NextDiag)
7714 << NewNTTP->getType()
7715 << (Kind != Sema::TPL_TemplateMatch);
7716 S.Diag(OldNTTP->getLocation(),
7717 diag::note_template_nontype_parm_prev_declaration)
7718 << OldNTTP->getType();
7719 }
7720
7721 return false;
7722 }
7723 }
7724 // For template template parameters, check the template parameter types.
7725 // The template parameter lists of template template
7726 // parameters must agree.
7727 else if (TemplateTemplateParmDecl *OldTTP
7728 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7729 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7730 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7731 OldTTP->getTemplateParameters(),
7732 Complain,
7733 (Kind == Sema::TPL_TemplateMatch
7734 ? Sema::TPL_TemplateTemplateParmMatch
7735 : Kind),
7736 TemplateArgLoc))
7737 return false;
7738 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7739 const Expr *NewC = nullptr, *OldC = nullptr;
7740 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7741 NewC = TC->getImmediatelyDeclaredConstraint();
7742 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7743 OldC = TC->getImmediatelyDeclaredConstraint();
7744
7745 auto Diagnose = [&] {
7746 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7747 diag::err_template_different_type_constraint);
7748 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7749 diag::note_template_prev_declaration) << /*declaration*/0;
7750 };
7751
7752 if (!NewC != !OldC) {
7753 if (Complain)
7754 Diagnose();
7755 return false;
7756 }
7757
7758 if (NewC) {
7759 llvm::FoldingSetNodeID OldCID, NewCID;
7760 OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7761 NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7762 if (OldCID != NewCID) {
7763 if (Complain)
7764 Diagnose();
7765 return false;
7766 }
7767 }
7768 }
7769
7770 return true;
7771}
7772
7773/// Diagnose a known arity mismatch when comparing template argument
7774/// lists.
7775static
7776void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7777 TemplateParameterList *New,
7778 TemplateParameterList *Old,
7779 Sema::TemplateParameterListEqualKind Kind,
7780 SourceLocation TemplateArgLoc) {
7781 unsigned NextDiag = diag::err_template_param_list_different_arity;
7782 if (TemplateArgLoc.isValid()) {
7783 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7784 NextDiag = diag::note_template_param_list_different_arity;
7785 }
7786 S.Diag(New->getTemplateLoc(), NextDiag)
7787 << (New->size() > Old->size())
7788 << (Kind != Sema::TPL_TemplateMatch)
7789 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7790 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7791 << (Kind != Sema::TPL_TemplateMatch)
7792 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7793}
7794
7795/// Determine whether the given template parameter lists are
7796/// equivalent.
7797///
7798/// \param New The new template parameter list, typically written in the
7799/// source code as part of a new template declaration.
7800///
7801/// \param Old The old template parameter list, typically found via
7802/// name lookup of the template declared with this template parameter
7803/// list.
7804///
7805/// \param Complain If true, this routine will produce a diagnostic if
7806/// the template parameter lists are not equivalent.
7807///
7808/// \param Kind describes how we are to match the template parameter lists.
7809///
7810/// \param TemplateArgLoc If this source location is valid, then we
7811/// are actually checking the template parameter list of a template
7812/// argument (New) against the template parameter list of its
7813/// corresponding template template parameter (Old). We produce
7814/// slightly different diagnostics in this scenario.
7815///
7816/// \returns True if the template parameter lists are equal, false
7817/// otherwise.
7818bool
7819Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7820 TemplateParameterList *Old,
7821 bool Complain,
7822 TemplateParameterListEqualKind Kind,
7823 SourceLocation TemplateArgLoc) {
7824 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7825 if (Complain)
7826 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7827 TemplateArgLoc);
7828
7829 return false;
7830 }
7831
7832 // C++0x [temp.arg.template]p3:
7833 // A template-argument matches a template template-parameter (call it P)
7834 // when each of the template parameters in the template-parameter-list of
7835 // the template-argument's corresponding class template or alias template
7836 // (call it A) matches the corresponding template parameter in the
7837 // template-parameter-list of P. [...]
7838 TemplateParameterList::iterator NewParm = New->begin();
7839 TemplateParameterList::iterator NewParmEnd = New->end();
7840 for (TemplateParameterList::iterator OldParm = Old->begin(),
7841 OldParmEnd = Old->end();
7842 OldParm != OldParmEnd; ++OldParm) {
7843 if (Kind != TPL_TemplateTemplateArgumentMatch ||
7844 !(*OldParm)->isTemplateParameterPack()) {
7845 if (NewParm == NewParmEnd) {
7846 if (Complain)
7847 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7848 TemplateArgLoc);
7849
7850 return false;
7851 }
7852
7853 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7854 Kind, TemplateArgLoc))
7855 return false;
7856
7857 ++NewParm;
7858 continue;
7859 }
7860
7861 // C++0x [temp.arg.template]p3:
7862 // [...] When P's template- parameter-list contains a template parameter
7863 // pack (14.5.3), the template parameter pack will match zero or more
7864 // template parameters or template parameter packs in the
7865 // template-parameter-list of A with the same type and form as the
7866 // template parameter pack in P (ignoring whether those template
7867 // parameters are template parameter packs).
7868 for (; NewParm != NewParmEnd; ++NewParm) {
7869 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7870 Kind, TemplateArgLoc))
7871 return false;
7872 }
7873 }
7874
7875 // Make sure we exhausted all of the arguments.
7876 if (NewParm != NewParmEnd) {
7877 if (Complain)
7878 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7879 TemplateArgLoc);
7880
7881 return false;
7882 }
7883
7884 if (Kind != TPL_TemplateTemplateArgumentMatch) {
7885 const Expr *NewRC = New->getRequiresClause();
7886 const Expr *OldRC = Old->getRequiresClause();
7887
7888 auto Diagnose = [&] {
7889 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7890 diag::err_template_different_requires_clause);
7891 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7892 diag::note_template_prev_declaration) << /*declaration*/0;
7893 };
7894
7895 if (!NewRC != !OldRC) {
7896 if (Complain)
7897 Diagnose();
7898 return false;
7899 }
7900
7901 if (NewRC) {
7902 llvm::FoldingSetNodeID OldRCID, NewRCID;
7903 OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7904 NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7905 if (OldRCID != NewRCID) {
7906 if (Complain)
7907 Diagnose();
7908 return false;
7909 }
7910 }
7911 }
7912
7913 return true;
7914}
7915
7916/// Check whether a template can be declared within this scope.
7917///
7918/// If the template declaration is valid in this scope, returns
7919/// false. Otherwise, issues a diagnostic and returns true.
7920bool
7921Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7922 if (!S)
7923 return false;
7924
7925 // Find the nearest enclosing declaration scope.
7926 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7927 (S->getFlags() & Scope::TemplateParamScope) != 0)
7928 S = S->getParent();
7929
7930 // C++ [temp.pre]p6: [P2096]
7931 // A template, explicit specialization, or partial specialization shall not
7932 // have C linkage.
7933 DeclContext *Ctx = S->getEntity();
7934 if (Ctx && Ctx->isExternCContext()) {
7935 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7936 << TemplateParams->getSourceRange();
7937 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7938 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7939 return true;
7940 }
7941 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
7942
7943 // C++ [temp]p2:
7944 // A template-declaration can appear only as a namespace scope or
7945 // class scope declaration.
7946 // C++ [temp.expl.spec]p3:
7947 // An explicit specialization may be declared in any scope in which the
7948 // corresponding primary template may be defined.
7949 // C++ [temp.class.spec]p6: [P2096]
7950 // A partial specialization may be declared in any scope in which the
7951 // corresponding primary template may be defined.
7952 if (Ctx) {
7953 if (Ctx->isFileContext())
7954 return false;
7955 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7956 // C++ [temp.mem]p2:
7957 // A local class shall not have member templates.
7958 if (RD->isLocalClass())
7959 return Diag(TemplateParams->getTemplateLoc(),
7960 diag::err_template_inside_local_class)
7961 << TemplateParams->getSourceRange();
7962 else
7963 return false;
7964 }
7965 }
7966
7967 return Diag(TemplateParams->getTemplateLoc(),
7968 diag::err_template_outside_namespace_or_class_scope)
7969 << TemplateParams->getSourceRange();
7970}
7971
7972/// Determine what kind of template specialization the given declaration
7973/// is.
7974static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7975 if (!D)
7976 return TSK_Undeclared;
7977
7978 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7979 return Record->getTemplateSpecializationKind();
7980 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7981 return Function->getTemplateSpecializationKind();
7982 if (VarDecl *Var = dyn_cast<VarDecl>(D))
7983 return Var->getTemplateSpecializationKind();
7984
7985 return TSK_Undeclared;
7986}
7987
7988/// Check whether a specialization is well-formed in the current
7989/// context.
7990///
7991/// This routine determines whether a template specialization can be declared
7992/// in the current context (C++ [temp.expl.spec]p2).
7993///
7994/// \param S the semantic analysis object for which this check is being
7995/// performed.
7996///
7997/// \param Specialized the entity being specialized or instantiated, which
7998/// may be a kind of template (class template, function template, etc.) or
7999/// a member of a class template (member function, static data member,
8000/// member class).
8001///
8002/// \param PrevDecl the previous declaration of this entity, if any.
8003///
8004/// \param Loc the location of the explicit specialization or instantiation of
8005/// this entity.
8006///
8007/// \param IsPartialSpecialization whether this is a partial specialization of
8008/// a class template.
8009///
8010/// \returns true if there was an error that we cannot recover from, false
8011/// otherwise.
8012static bool CheckTemplateSpecializationScope(Sema &S,
8013 NamedDecl *Specialized,
8014 NamedDecl *PrevDecl,
8015 SourceLocation Loc,
8016 bool IsPartialSpecialization) {
8017 // Keep these "kind" numbers in sync with the %select statements in the
8018 // various diagnostics emitted by this routine.
8019 int EntityKind = 0;
8020 if (isa<ClassTemplateDecl>(Specialized))
8021 EntityKind = IsPartialSpecialization? 1 : 0;
8022 else if (isa<VarTemplateDecl>(Specialized))
8023 EntityKind = IsPartialSpecialization ? 3 : 2;
8024 else if (isa<FunctionTemplateDecl>(Specialized))
8025 EntityKind = 4;
8026 else if (isa<CXXMethodDecl>(Specialized))
8027 EntityKind = 5;
8028 else if (isa<VarDecl>(Specialized))
8029 EntityKind = 6;
8030 else if (isa<RecordDecl>(Specialized))
8031 EntityKind = 7;
8032 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8033 EntityKind = 8;
8034 else {
8035 S.Diag(Loc, diag::err_template_spec_unknown_kind)
8036 << S.getLangOpts().CPlusPlus11;
8037 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8038 return true;
8039 }
8040
8041 // C++ [temp.expl.spec]p2:
8042 // An explicit specialization may be declared in any scope in which
8043 // the corresponding primary template may be defined.
8044 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8045 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8046 << Specialized;
8047 return true;
8048 }
8049
8050 // C++ [temp.class.spec]p6:
8051 // A class template partial specialization may be declared in any
8052 // scope in which the primary template may be defined.
8053 DeclContext *SpecializedContext =
8054 Specialized->getDeclContext()->getRedeclContext();
8055 DeclContext *DC = S.CurContext->getRedeclContext();
8056
8057 // Make sure that this redeclaration (or definition) occurs in the same
8058 // scope or an enclosing namespace.
8059 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8060 : DC->Equals(SpecializedContext))) {
8061 if (isa<TranslationUnitDecl>(SpecializedContext))
8062 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8063 << EntityKind << Specialized;
8064 else {
8065 auto *ND = cast<NamedDecl>(SpecializedContext);
8066 int Diag = diag::err_template_spec_redecl_out_of_scope;
8067 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8068 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8069 S.Diag(Loc, Diag) << EntityKind << Specialized
8070 << ND << isa<CXXRecordDecl>(ND);
8071 }
8072
8073 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8074
8075 // Don't allow specializing in the wrong class during error recovery.
8076 // Otherwise, things can go horribly wrong.
8077 if (DC->isRecord())
8078 return true;
8079 }
8080
8081 return false;
8082}
8083
8084static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8085 if (!E->isTypeDependent())
8086 return SourceLocation();
8087 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8088 Checker.TraverseStmt(E);
8089 if (Checker.MatchLoc.isInvalid())
8090 return E->getSourceRange();
8091 return Checker.MatchLoc;
8092}
8093
8094static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8095 if (!TL.getType()->isDependentType())
8096 return SourceLocation();
8097 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8098 Checker.TraverseTypeLoc(TL);
8099 if (Checker.MatchLoc.isInvalid())
8100 return TL.getSourceRange();
8101 return Checker.MatchLoc;
8102}
8103
8104/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8105/// that checks non-type template partial specialization arguments.
8106static bool CheckNonTypeTemplatePartialSpecializationArgs(
8107 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8108 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8109 for (unsigned I = 0; I != NumArgs; ++I) {
8110 if (Args[I].getKind() == TemplateArgument::Pack) {
8111 if (CheckNonTypeTemplatePartialSpecializationArgs(
8112 S, TemplateNameLoc, Param, Args[I].pack_begin(),
8113 Args[I].pack_size(), IsDefaultArgument))
8114 return true;
8115
8116 continue;
8117 }
8118
8119 if (Args[I].getKind() != TemplateArgument::Expression)
8120 continue;
8121
8122 Expr *ArgExpr = Args[I].getAsExpr();
8123
8124 // We can have a pack expansion of any of the bullets below.
8125 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8126 ArgExpr = Expansion->getPattern();
8127
8128 // Strip off any implicit casts we added as part of type checking.
8129 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8130 ArgExpr = ICE->getSubExpr();
8131
8132 // C++ [temp.class.spec]p8:
8133 // A non-type argument is non-specialized if it is the name of a
8134 // non-type parameter. All other non-type arguments are
8135 // specialized.
8136 //
8137 // Below, we check the two conditions that only apply to
8138 // specialized non-type arguments, so skip any non-specialized
8139 // arguments.
8140 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8141 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8142 continue;
8143
8144 // C++ [temp.class.spec]p9:
8145 // Within the argument list of a class template partial
8146 // specialization, the following restrictions apply:
8147 // -- A partially specialized non-type argument expression
8148 // shall not involve a template parameter of the partial
8149 // specialization except when the argument expression is a
8150 // simple identifier.
8151 // -- The type of a template parameter corresponding to a
8152 // specialized non-type argument shall not be dependent on a
8153 // parameter of the specialization.
8154 // DR1315 removes the first bullet, leaving an incoherent set of rules.
8155 // We implement a compromise between the original rules and DR1315:
8156 // -- A specialized non-type template argument shall not be
8157 // type-dependent and the corresponding template parameter
8158 // shall have a non-dependent type.
8159 SourceRange ParamUseRange =
8160 findTemplateParameterInType(Param->getDepth(), ArgExpr);
8161 if (ParamUseRange.isValid()) {
8162 if (IsDefaultArgument) {
8163 S.Diag(TemplateNameLoc,
8164 diag::err_dependent_non_type_arg_in_partial_spec);
8165 S.Diag(ParamUseRange.getBegin(),
8166 diag::note_dependent_non_type_default_arg_in_partial_spec)
8167 << ParamUseRange;
8168 } else {
8169 S.Diag(ParamUseRange.getBegin(),
8170 diag::err_dependent_non_type_arg_in_partial_spec)
8171 << ParamUseRange;
8172 }
8173 return true;
8174 }
8175
8176 ParamUseRange = findTemplateParameter(
8177 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8178 if (ParamUseRange.isValid()) {
8179 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8180 diag::err_dependent_typed_non_type_arg_in_partial_spec)
8181 << Param->getType();
8182 S.Diag(Param->getLocation(), diag::note_template_param_here)
8183 << (IsDefaultArgument ? ParamUseRange : SourceRange())
8184 << ParamUseRange;
8185 return true;
8186 }
8187 }
8188
8189 return false;
8190}
8191
8192/// Check the non-type template arguments of a class template
8193/// partial specialization according to C++ [temp.class.spec]p9.
8194///
8195/// \param TemplateNameLoc the location of the template name.
8196/// \param PrimaryTemplate the template parameters of the primary class
8197/// template.
8198/// \param NumExplicit the number of explicitly-specified template arguments.
8199/// \param TemplateArgs the template arguments of the class template
8200/// partial specialization.
8201///
8202/// \returns \c true if there was an error, \c false otherwise.
8203bool Sema::CheckTemplatePartialSpecializationArgs(
8204 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8205 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8206 // We have to be conservative when checking a template in a dependent
8207 // context.
8208 if (PrimaryTemplate->getDeclContext()->isDependentContext())
8209 return false;
8210
8211 TemplateParameterList *TemplateParams =
8212 PrimaryTemplate->getTemplateParameters();
8213 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8214 NonTypeTemplateParmDecl *Param
8215 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8216 if (!Param)
8217 continue;
8218
8219 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8220 Param, &TemplateArgs[I],
8221 1, I >= NumExplicit))
8222 return true;
8223 }
8224
8225 return false;
8226}
8227
8228DeclResult Sema::ActOnClassTemplateSpecialization(
8229 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8230 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8231 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8232 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8233 assert(TUK != TUK_Reference && "References are not specializations")(static_cast<void> (0));
8234
8235 // NOTE: KWLoc is the location of the tag keyword. This will instead
8236 // store the location of the outermost template keyword in the declaration.
8237 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8238 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8239 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8240 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8241 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8242
8243 // Find the class template we're specializing
8244 TemplateName Name = TemplateId.Template.get();
8245 ClassTemplateDecl *ClassTemplate
8246 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8247
8248 if (!ClassTemplate) {
8249 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8250 << (Name.getAsTemplateDecl() &&
8251 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8252 return true;
8253 }
8254
8255 bool isMemberSpecialization = false;
8256 bool isPartialSpecialization = false;
8257
8258 // Check the validity of the template headers that introduce this
8259 // template.
8260 // FIXME: We probably shouldn't complain about these headers for
8261 // friend declarations.
8262 bool Invalid = false;
8263 TemplateParameterList *TemplateParams =
8264 MatchTemplateParametersToScopeSpecifier(
8265 KWLoc, TemplateNameLoc, SS, &TemplateId,
8266 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8267 Invalid);
8268 if (Invalid)
8269 return true;
8270
8271 // Check that we can declare a template specialization here.
8272 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8273 return true;
8274
8275 if (TemplateParams && TemplateParams->size() > 0) {
8276 isPartialSpecialization = true;
8277
8278 if (TUK == TUK_Friend) {
8279 Diag(KWLoc, diag::err_partial_specialization_friend)
8280 << SourceRange(LAngleLoc, RAngleLoc);
8281 return true;
8282 }
8283
8284 // C++ [temp.class.spec]p10:
8285 // The template parameter list of a specialization shall not
8286 // contain default template argument values.
8287 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8288 Decl *Param = TemplateParams->getParam(I);
8289 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8290 if (TTP->hasDefaultArgument()) {
8291 Diag(TTP->getDefaultArgumentLoc(),
8292 diag::err_default_arg_in_partial_spec);
8293 TTP->removeDefaultArgument();
8294 }
8295 } else if (NonTypeTemplateParmDecl *NTTP
8296 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8297 if (Expr *DefArg = NTTP->getDefaultArgument()) {
8298 Diag(NTTP->getDefaultArgumentLoc(),
8299 diag::err_default_arg_in_partial_spec)
8300 << DefArg->getSourceRange();
8301 NTTP->removeDefaultArgument();
8302 }
8303 } else {
8304 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8305 if (TTP->hasDefaultArgument()) {
8306 Diag(TTP->getDefaultArgument().getLocation(),
8307 diag::err_default_arg_in_partial_spec)
8308 << TTP->getDefaultArgument().getSourceRange();
8309 TTP->removeDefaultArgument();
8310 }
8311 }
8312 }
8313 } else if (TemplateParams) {
8314 if (TUK == TUK_Friend)
8315 Diag(KWLoc, diag::err_template_spec_friend)
8316 << FixItHint::CreateRemoval(
8317 SourceRange(TemplateParams->getTemplateLoc(),
8318 TemplateParams->getRAngleLoc()))
8319 << SourceRange(LAngleLoc, RAngleLoc);
8320 } else {
8321 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")(static_cast<void> (0));
8322 }
8323
8324 // Check that the specialization uses the same tag kind as the
8325 // original template.
8326 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8327 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")(static_cast<void> (0));
8328 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8329 Kind, TUK == TUK_Definition, KWLoc,
8330 ClassTemplate->getIdentifier())) {
8331 Diag(KWLoc, diag::err_use_with_wrong_tag)
8332 << ClassTemplate
8333 << FixItHint::CreateReplacement(KWLoc,
8334 ClassTemplate->getTemplatedDecl()->getKindName());
8335 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8336 diag::note_previous_use);
8337 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8338 }
8339
8340 // Translate the parser's template argument list in our AST format.
8341 TemplateArgumentListInfo TemplateArgs =
8342 makeTemplateArgumentListInfo(*this, TemplateId);
8343
8344 // Check for unexpanded parameter packs in any of the template arguments.
8345 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8346 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8347 UPPC_PartialSpecialization))
8348 return true;
8349
8350 // Check that the template argument list is well-formed for this
8351 // template.
8352 SmallVector<TemplateArgument, 4> Converted;
8353 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8354 TemplateArgs, false, Converted,
8355 /*UpdateArgsWithConversion=*/true))
8356 return true;
8357
8358 // Find the class template (partial) specialization declaration that
8359 // corresponds to these arguments.
8360 if (isPartialSpecialization) {
8361 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8362 TemplateArgs.size(), Converted))
8363 return true;
8364
8365 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8366 // also do it during instantiation.
8367 if (!Name.isDependent() &&
8368 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
8369 Converted)) {
8370 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8371 << ClassTemplate->getDeclName();
8372 isPartialSpecialization = false;
8373 }
8374 }
8375
8376 void *InsertPos = nullptr;
8377 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8378
8379 if (isPartialSpecialization)
8380 PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8381 TemplateParams,
8382 InsertPos);
8383 else
8384 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8385
8386 ClassTemplateSpecializationDecl *Specialization = nullptr;
8387
8388 // Check whether we can declare a class template specialization in
8389 // the current scope.
8390 if (TUK != TUK_Friend &&
8391 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8392 TemplateNameLoc,
8393 isPartialSpecialization))
8394 return true;
8395
8396 // The canonical type
8397 QualType CanonType;
8398 if (isPartialSpecialization) {
8399 // Build the canonical type that describes the converted template
8400 // arguments of the class template partial specialization.
8401 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8402 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8403 Converted);
8404
8405 if (Context.hasSameType(CanonType,
8406 ClassTemplate->getInjectedClassNameSpecialization()) &&
8407 (!Context.getLangOpts().CPlusPlus20 ||
8408 !TemplateParams->hasAssociatedConstraints())) {
8409 // C++ [temp.class.spec]p9b3:
8410 //
8411 // -- The argument list of the specialization shall not be identical
8412 // to the implicit argument list of the primary template.
8413 //
8414 // This rule has since been removed, because it's redundant given DR1495,
8415 // but we keep it because it produces better diagnostics and recovery.
8416 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8417 << /*class template*/0 << (TUK == TUK_Definition)
8418 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8419 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8420 ClassTemplate->getIdentifier(),
8421 TemplateNameLoc,
8422 Attr,
8423 TemplateParams,
8424 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8425 /*FriendLoc*/SourceLocation(),
8426 TemplateParameterLists.size() - 1,
8427 TemplateParameterLists.data());
8428 }
8429
8430 // Create a new class template partial specialization declaration node.
8431 ClassTemplatePartialSpecializationDecl *PrevPartial
8432 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8433 ClassTemplatePartialSpecializationDecl *Partial
8434 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8435 ClassTemplate->getDeclContext(),
8436 KWLoc, TemplateNameLoc,
8437 TemplateParams,
8438 ClassTemplate,
8439 Converted,
8440 TemplateArgs,
8441 CanonType,
8442 PrevPartial);
8443 SetNestedNameSpecifier(*this, Partial, SS);
8444 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8445 Partial->setTemplateParameterListsInfo(
8446 Context, TemplateParameterLists.drop_back(1));
8447 }
8448
8449 if (!PrevPartial)
8450 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8451 Specialization = Partial;
8452
8453 // If we are providing an explicit specialization of a member class
8454 // template specialization, make a note of that.
8455 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8456 PrevPartial->setMemberSpecialization();
8457
8458 CheckTemplatePartialSpecialization(Partial);
8459 } else {
8460 // Create a new class template specialization declaration node for
8461 // this explicit specialization or friend declaration.
8462 Specialization
8463 = ClassTemplateSpecializationDecl::Create(Context, Kind,
8464 ClassTemplate->getDeclContext(),
8465 KWLoc, TemplateNameLoc,
8466 ClassTemplate,
8467 Converted,
8468 PrevDecl);
8469 SetNestedNameSpecifier(*this, Specialization, SS);
8470 if (TemplateParameterLists.size() > 0) {
8471 Specialization->setTemplateParameterListsInfo(Context,
8472 TemplateParameterLists);
8473 }
8474
8475 if (!PrevDecl)
8476 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8477
8478 if (CurContext->isDependentContext()) {
8479 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8480 CanonType = Context.getTemplateSpecializationType(
8481 CanonTemplate, Converted);
8482 } else {
8483 CanonType = Context.getTypeDeclType(Specialization);
8484 }
8485 }
8486
8487 // C++ [temp.expl.spec]p6:
8488 // If a template, a member template or the member of a class template is
8489 // explicitly specialized then that specialization shall be declared
8490 // before the first use of that specialization that would cause an implicit
8491 // instantiation to take place, in every translation unit in which such a
8492 // use occurs; no diagnostic is required.
8493 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8494 bool Okay = false;
8495 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8496 // Is there any previous explicit specialization declaration?
8497 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8498 Okay = true;
8499 break;
8500 }
8501 }
8502
8503 if (!Okay) {
8504 SourceRange Range(TemplateNameLoc, RAngleLoc);
8505 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8506 << Context.getTypeDeclType(Specialization) << Range;
8507
8508 Diag(PrevDecl->getPointOfInstantiation(),
8509 diag::note_instantiation_required_here)
8510 << (PrevDecl->getTemplateSpecializationKind()
8511 != TSK_ImplicitInstantiation);
8512 return true;
8513 }
8514 }
8515
8516 // If this is not a friend, note that this is an explicit specialization.
8517 if (TUK != TUK_Friend)
8518 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8519
8520 // Check that this isn't a redefinition of this specialization.
8521 if (TUK == TUK_Definition) {
8522 RecordDecl *Def = Specialization->getDefinition();
8523 NamedDecl *Hidden = nullptr;
8524 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8525 SkipBody->ShouldSkip = true;
8526 SkipBody->Previous = Def;
8527 makeMergedDefinitionVisible(Hidden);
8528 } else if (Def) {
8529 SourceRange Range(TemplateNameLoc, RAngleLoc);
8530 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8531 Diag(Def->getLocation(), diag::note_previous_definition);
8532 Specialization->setInvalidDecl();
8533 return true;
8534 }
8535 }
8536
8537 ProcessDeclAttributeList(S, Specialization, Attr);
8538
8539 // Add alignment attributes if necessary; these attributes are checked when
8540 // the ASTContext lays out the structure.
8541 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8542 AddAlignmentAttributesForRecord(Specialization);
8543 AddMsStructLayoutForRecord(Specialization);
8544 }
8545
8546 if (ModulePrivateLoc.isValid())
8547 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8548 << (isPartialSpecialization? 1 : 0)
8549 << FixItHint::CreateRemoval(ModulePrivateLoc);
8550
8551 // Build the fully-sugared type for this class template
8552 // specialization as the user wrote in the specialization
8553 // itself. This means that we'll pretty-print the type retrieved
8554 // from the specialization's declaration the way that the user
8555 // actually wrote the specialization, rather than formatting the
8556 // name based on the "canonical" representation used to store the
8557 // template arguments in the specialization.
8558 TypeSourceInfo *WrittenTy
8559 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8560 TemplateArgs, CanonType);
8561 if (TUK != TUK_Friend) {
8562 Specialization->setTypeAsWritten(WrittenTy);
8563 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8564 }
8565
8566 // C++ [temp.expl.spec]p9:
8567 // A template explicit specialization is in the scope of the
8568 // namespace in which the template was defined.
8569 //
8570 // We actually implement this paragraph where we set the semantic
8571 // context (in the creation of the ClassTemplateSpecializationDecl),
8572 // but we also maintain the lexical context where the actual
8573 // definition occurs.
8574 Specialization->setLexicalDeclContext(CurContext);
8575
8576 // We may be starting the definition of this specialization.
8577 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8578 Specialization->startDefinition();
8579
8580 if (TUK == TUK_Friend) {
8581 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8582 TemplateNameLoc,
8583 WrittenTy,
8584 /*FIXME:*/KWLoc);
8585 Friend->setAccess(AS_public);
8586 CurContext->addDecl(Friend);
8587 } else {
8588 // Add the specialization into its lexical context, so that it can
8589 // be seen when iterating through the list of declarations in that
8590 // context. However, specializations are not found by name lookup.
8591 CurContext->addDecl(Specialization);
8592 }
8593
8594 if (SkipBody && SkipBody->ShouldSkip)
8595 return SkipBody->Previous;
8596
8597 return Specialization;
8598}
8599
8600Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8601 MultiTemplateParamsArg TemplateParameterLists,
8602 Declarator &D) {
8603 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8604 ActOnDocumentableDecl(NewDecl);
8605 return NewDecl;
8606}
8607
8608Decl *Sema::ActOnConceptDefinition(Scope *S,
8609 MultiTemplateParamsArg TemplateParameterLists,
8610 IdentifierInfo *Name, SourceLocation NameLoc,
8611 Expr *ConstraintExpr) {
8612 DeclContext *DC = CurContext;
8613
8614 if (!DC->getRedeclContext()->isFileContext()) {
8615 Diag(NameLoc,
8616 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8617 return nullptr;
8618 }
8619
8620 if (TemplateParameterLists.size() > 1) {
8621 Diag(NameLoc, diag::err_concept_extra_headers);
8622 return nullptr;
8623 }
8624
8625 if (TemplateParameterLists.front()->size() == 0) {
8626 Diag(NameLoc, diag::err_concept_no_parameters);
8627 return nullptr;
8628 }
8629
8630 if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8631 return nullptr;
8632
8633 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8634 TemplateParameterLists.front(),
8635 ConstraintExpr);
8636
8637 if (NewDecl->hasAssociatedConstraints()) {
8638 // C++2a [temp.concept]p4:
8639 // A concept shall not have associated constraints.
8640 Diag(NameLoc, diag::err_concept_no_associated_constraints);
8641 NewDecl->setInvalidDecl();
8642 }
8643
8644 // Check for conflicting previous declaration.
8645 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8646 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8647 ForVisibleRedeclaration);
8648 LookupName(Previous, S);
8649
8650 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8651 /*AllowInlineNamespace*/false);
8652 if (!Previous.empty()) {
8653 auto *Old = Previous.getRepresentativeDecl();
8654 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
8655 diag::err_redefinition_different_kind) << NewDecl->getDeclName();
8656 Diag(Old->getLocation(), diag::note_previous_definition);
8657 }
8658
8659 ActOnDocumentableDecl(NewDecl);
8660 PushOnScopeChains(NewDecl, S);
8661 return NewDecl;
8662}
8663
8664/// \brief Strips various properties off an implicit instantiation
8665/// that has just been explicitly specialized.
8666static void StripImplicitInstantiation(NamedDecl *D) {
8667 D->dropAttr<DLLImportAttr>();
8668 D->dropAttr<DLLExportAttr>();
8669
8670 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8671 FD->setInlineSpecified(false);
8672}
8673
8674/// Compute the diagnostic location for an explicit instantiation
8675// declaration or definition.
8676static SourceLocation DiagLocForExplicitInstantiation(
8677 NamedDecl* D, SourceLocation PointOfInstantiation) {
8678 // Explicit instantiations following a specialization have no effect and
8679 // hence no PointOfInstantiation. In that case, walk decl backwards
8680 // until a valid name loc is found.
8681 SourceLocation PrevDiagLoc = PointOfInstantiation;
8682 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8683 Prev = Prev->getPreviousDecl()) {
8684 PrevDiagLoc = Prev->getLocation();
8685 }
8686 assert(PrevDiagLoc.isValid() &&(static_cast<void> (0))
8687 "Explicit instantiation without point of instantiation?")(static_cast<void> (0));
8688 return PrevDiagLoc;
8689}
8690
8691/// Diagnose cases where we have an explicit template specialization
8692/// before/after an explicit template instantiation, producing diagnostics
8693/// for those cases where they are required and determining whether the
8694/// new specialization/instantiation will have any effect.
8695///
8696/// \param NewLoc the location of the new explicit specialization or
8697/// instantiation.
8698///
8699/// \param NewTSK the kind of the new explicit specialization or instantiation.
8700///
8701/// \param PrevDecl the previous declaration of the entity.
8702///
8703/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8704///
8705/// \param PrevPointOfInstantiation if valid, indicates where the previus
8706/// declaration was instantiated (either implicitly or explicitly).
8707///
8708/// \param HasNoEffect will be set to true to indicate that the new
8709/// specialization or instantiation has no effect and should be ignored.
8710///
8711/// \returns true if there was an error that should prevent the introduction of
8712/// the new declaration into the AST, false otherwise.
8713bool
8714Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8715 TemplateSpecializationKind NewTSK,
8716 NamedDecl *PrevDecl,
8717 TemplateSpecializationKind PrevTSK,
8718 SourceLocation PrevPointOfInstantiation,
8719 bool &HasNoEffect) {
8720 HasNoEffect = false;
8721
8722 switch (NewTSK) {
8723 case TSK_Undeclared:
8724 case TSK_ImplicitInstantiation:
8725 assert((static_cast<void> (0))
8726 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(static_cast<void> (0))
8727 "previous declaration must be implicit!")(static_cast<void> (0));
8728 return false;
8729
8730 case TSK_ExplicitSpecialization:
8731 switch (PrevTSK) {
8732 case TSK_Undeclared:
8733 case TSK_ExplicitSpecialization:
8734 // Okay, we're just specializing something that is either already
8735 // explicitly specialized or has merely been mentioned without any
8736 // instantiation.
8737 return false;
8738
8739 case TSK_ImplicitInstantiation:
8740 if (PrevPointOfInstantiation.isInvalid()) {
8741 // The declaration itself has not actually been instantiated, so it is
8742 // still okay to specialize it.
8743 StripImplicitInstantiation(PrevDecl);
8744 return false;
8745 }
8746 // Fall through
8747 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8748
8749 case TSK_ExplicitInstantiationDeclaration:
8750 case TSK_ExplicitInstantiationDefinition:
8751 assert((PrevTSK == TSK_ImplicitInstantiation ||(static_cast<void> (0))
8752 PrevPointOfInstantiation.isValid()) &&(static_cast<void> (0))
8753 "Explicit instantiation without point of instantiation?")(static_cast<void> (0));
8754
8755 // C++ [temp.expl.spec]p6:
8756 // If a template, a member template or the member of a class template
8757 // is explicitly specialized then that specialization shall be declared
8758 // before the first use of that specialization that would cause an
8759 // implicit instantiation to take place, in every translation unit in
8760 // which such a use occurs; no diagnostic is required.
8761 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8762 // Is there any previous explicit specialization declaration?
8763 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8764 return false;
8765 }
8766
8767 Diag(NewLoc, diag::err_specialization_after_instantiation)
8768 << PrevDecl;
8769 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8770 << (PrevTSK != TSK_ImplicitInstantiation);
8771
8772 return true;
8773 }
8774 llvm_unreachable("The switch over PrevTSK must be exhaustive.")__builtin_unreachable();
8775
8776 case TSK_ExplicitInstantiationDeclaration:
8777 switch (PrevTSK) {
8778 case TSK_ExplicitInstantiationDeclaration:
8779 // This explicit instantiation declaration is redundant (that's okay).
8780 HasNoEffect = true;
8781 return false;
8782
8783 case TSK_Undeclared:
8784 case TSK_ImplicitInstantiation:
8785 // We're explicitly instantiating something that may have already been
8786 // implicitly instantiated; that's fine.
8787 return false;
8788
8789 case TSK_ExplicitSpecialization:
8790 // C++0x [temp.explicit]p4:
8791 // For a given set of template parameters, if an explicit instantiation
8792 // of a template appears after a declaration of an explicit
8793 // specialization for that template, the explicit instantiation has no
8794 // effect.
8795 HasNoEffect = true;
8796 return false;
8797
8798 case TSK_ExplicitInstantiationDefinition:
8799 // C++0x [temp.explicit]p10:
8800 // If an entity is the subject of both an explicit instantiation
8801 // declaration and an explicit instantiation definition in the same
8802 // translation unit, the definition shall follow the declaration.
8803 Diag(NewLoc,
8804 diag::err_explicit_instantiation_declaration_after_definition);
8805
8806 // Explicit instantiations following a specialization have no effect and
8807 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8808 // until a valid name loc is found.
8809 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8810 diag::note_explicit_instantiation_definition_here);
8811 HasNoEffect = true;
8812 return false;
8813 }
8814 llvm_unreachable("Unexpected TemplateSpecializationKind!")__builtin_unreachable();
8815
8816 case TSK_ExplicitInstantiationDefinition:
8817 switch (PrevTSK) {
8818 case TSK_Undeclared:
8819 case TSK_ImplicitInstantiation:
8820 // We're explicitly instantiating something that may have already been
8821 // implicitly instantiated; that's fine.
8822 return false;
8823
8824 case TSK_ExplicitSpecialization:
8825 // C++ DR 259, C++0x [temp.explicit]p4:
8826 // For a given set of template parameters, if an explicit
8827 // instantiation of a template appears after a declaration of
8828 // an explicit specialization for that template, the explicit
8829 // instantiation has no effect.
8830 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8831 << PrevDecl;
8832 Diag(PrevDecl->getLocation(),
8833 diag::note_previous_template_specialization);
8834 HasNoEffect = true;
8835 return false;
8836
8837 case TSK_ExplicitInstantiationDeclaration:
8838 // We're explicitly instantiating a definition for something for which we
8839 // were previously asked to suppress instantiations. That's fine.
8840
8841 // C++0x [temp.explicit]p4:
8842 // For a given set of template parameters, if an explicit instantiation
8843 // of a template appears after a declaration of an explicit
8844 // specialization for that template, the explicit instantiation has no
8845 // effect.
8846 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8847 // Is there any previous explicit specialization declaration?
8848 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8849 HasNoEffect = true;
8850 break;
8851 }
8852 }
8853
8854 return false;
8855
8856 case TSK_ExplicitInstantiationDefinition:
8857 // C++0x [temp.spec]p5:
8858 // For a given template and a given set of template-arguments,
8859 // - an explicit instantiation definition shall appear at most once
8860 // in a program,
8861
8862 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8863 Diag(NewLoc, (getLangOpts().MSVCCompat)
8864 ? diag::ext_explicit_instantiation_duplicate
8865 : diag::err_explicit_instantiation_duplicate)
8866 << PrevDecl;
8867 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8868 diag::note_previous_explicit_instantiation);
8869 HasNoEffect = true;
8870 return false;
8871 }
8872 }
8873
8874 llvm_unreachable("Missing specialization/instantiation case?")__builtin_unreachable();
8875}
8876
8877/// Perform semantic analysis for the given dependent function
8878/// template specialization.
8879///
8880/// The only possible way to get a dependent function template specialization
8881/// is with a friend declaration, like so:
8882///
8883/// \code
8884/// template \<class T> void foo(T);
8885/// template \<class T> class A {
8886/// friend void foo<>(T);
8887/// };
8888/// \endcode
8889///
8890/// There really isn't any useful analysis we can do here, so we
8891/// just store the information.
8892bool
8893Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8894 const TemplateArgumentListInfo &ExplicitTemplateArgs,
8895 LookupResult &Previous) {
8896 // Remove anything from Previous that isn't a function template in
8897 // the correct context.
8898 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8899 LookupResult::Filter F = Previous.makeFilter();
8900 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8901 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8902 while (F.hasNext()) {
8903 NamedDecl *D = F.next()->getUnderlyingDecl();
8904 if (!isa<FunctionTemplateDecl>(D)) {
8905 F.erase();
8906 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8907 continue;
8908 }
8909
8910 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8911 D->getDeclContext()->getRedeclContext())) {
8912 F.erase();
8913 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8914 continue;
8915 }
8916 }
8917 F.done();
8918
8919 if (Previous.empty()) {
8920 Diag(FD->getLocation(),
8921 diag::err_dependent_function_template_spec_no_match);
8922 for (auto &P : DiscardedCandidates)
8923 Diag(P.second->getLocation(),
8924 diag::note_dependent_function_template_spec_discard_reason)
8925 << P.first;
8926 return true;
8927 }
8928
8929 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8930 ExplicitTemplateArgs);
8931 return false;
8932}
8933
8934/// Perform semantic analysis for the given function template
8935/// specialization.
8936///
8937/// This routine performs all of the semantic analysis required for an
8938/// explicit function template specialization. On successful completion,
8939/// the function declaration \p FD will become a function template
8940/// specialization.
8941///
8942/// \param FD the function declaration, which will be updated to become a
8943/// function template specialization.
8944///
8945/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8946/// if any. Note that this may be valid info even when 0 arguments are
8947/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8948/// as it anyway contains info on the angle brackets locations.
8949///
8950/// \param Previous the set of declarations that may be specialized by
8951/// this function specialization.
8952///
8953/// \param QualifiedFriend whether this is a lookup for a qualified friend
8954/// declaration with no explicit template argument list that might be
8955/// befriending a function template specialization.
8956bool Sema::CheckFunctionTemplateSpecialization(
8957 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8958 LookupResult &Previous, bool QualifiedFriend) {
8959 // The set of function template specializations that could match this
8960 // explicit function template specialization.
8961 UnresolvedSet<8> Candidates;
8962 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8963 /*ForTakingAddress=*/false);
8964
8965 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8966 ConvertedTemplateArgs;
8967
8968 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8969 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8970 I != E; ++I) {
8971 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8972 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8973 // Only consider templates found within the same semantic lookup scope as
8974 // FD.
8975 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8976 Ovl->getDeclContext()->getRedeclContext()))
8977 continue;
8978
8979 // When matching a constexpr member function template specialization
8980 // against the primary template, we don't yet know whether the
8981 // specialization has an implicit 'const' (because we don't know whether
8982 // it will be a static member function until we know which template it
8983 // specializes), so adjust it now assuming it specializes this template.
8984 QualType FT = FD->getType();
8985 if (FD->isConstexpr()) {
8986 CXXMethodDecl *OldMD =
8987 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8988 if (OldMD && OldMD->isConst()) {
8989 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8990 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8991 EPI.TypeQuals.addConst();
8992 FT = Context.getFunctionType(FPT->getReturnType(),
8993 FPT->getParamTypes(), EPI);
8994 }
8995 }
8996
8997 TemplateArgumentListInfo Args;
8998 if (ExplicitTemplateArgs)
8999 Args = *ExplicitTemplateArgs;
9000
9001 // C++ [temp.expl.spec]p11:
9002 // A trailing template-argument can be left unspecified in the
9003 // template-id naming an explicit function template specialization
9004 // provided it can be deduced from the function argument type.
9005 // Perform template argument deduction to determine whether we may be
9006 // specializing this template.
9007 // FIXME: It is somewhat wasteful to build
9008 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9009 FunctionDecl *Specialization = nullptr;
9010 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9011 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9012 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9013 Info)) {
9014 // Template argument deduction failed; record why it failed, so
9015 // that we can provide nifty diagnostics.
9016 FailedCandidates.addCandidate().set(
9017 I.getPair(), FunTmpl->getTemplatedDecl(),
9018 MakeDeductionFailureInfo(Context, TDK, Info));
9019 (void)TDK;
9020 continue;
9021 }
9022
9023 // Target attributes are part of the cuda function signature, so
9024 // the deduced template's cuda target must match that of the
9025 // specialization. Given that C++ template deduction does not
9026 // take target attributes into account, we reject candidates
9027 // here that have a different target.
9028 if (LangOpts.CUDA &&
9029 IdentifyCUDATarget(Specialization,
9030 /* IgnoreImplicitHDAttr = */ true) !=
9031 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9032 FailedCandidates.addCandidate().set(
9033 I.getPair(), FunTmpl->getTemplatedDecl(),
9034 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9035 continue;
9036 }
9037
9038 // Record this candidate.
9039 if (ExplicitTemplateArgs)
9040 ConvertedTemplateArgs[Specialization] = std::move(Args);
9041 Candidates.addDecl(Specialization, I.getAccess());
9042 }
9043 }
9044
9045 // For a qualified friend declaration (with no explicit marker to indicate
9046 // that a template specialization was intended), note all (template and
9047 // non-template) candidates.
9048 if (QualifiedFriend && Candidates.empty()) {
9049 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9050 << FD->getDeclName() << FDLookupContext;
9051 // FIXME: We should form a single candidate list and diagnose all
9052 // candidates at once, to get proper sorting and limiting.
9053 for (auto *OldND : Previous) {
9054 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9055 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9056 }
9057 FailedCandidates.NoteCandidates(*this, FD->getLocation());
9058 return true;
9059 }
9060
9061 // Find the most specialized function template.
9062 UnresolvedSetIterator Result = getMostSpecialized(
9063 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9064 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9065 PDiag(diag::err_function_template_spec_ambiguous)
9066 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9067 PDiag(diag::note_function_template_spec_matched));
9068
9069 if (Result == Candidates.end())
9070 return true;
9071
9072 // Ignore access information; it doesn't figure into redeclaration checking.
9073 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9074
9075 FunctionTemplateSpecializationInfo *SpecInfo
9076 = Specialization->getTemplateSpecializationInfo();
9077 assert(SpecInfo && "Function template specialization info missing?")(static_cast<void> (0));
9078
9079 // Note: do not overwrite location info if previous template
9080 // specialization kind was explicit.
9081 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9082 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9083 Specialization->setLocation(FD->getLocation());
9084 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9085 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9086 // function can differ from the template declaration with respect to
9087 // the constexpr specifier.
9088 // FIXME: We need an update record for this AST mutation.
9089 // FIXME: What if there are multiple such prior declarations (for instance,
9090 // from different modules)?
9091 Specialization->setConstexprKind(FD->getConstexprKind());
9092 }
9093
9094 // FIXME: Check if the prior specialization has a point of instantiation.
9095 // If so, we have run afoul of .
9096
9097 // If this is a friend declaration, then we're not really declaring
9098 // an explicit specialization.
9099 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9100
9101 // Check the scope of this explicit specialization.
9102 if (!isFriend &&
9103 CheckTemplateSpecializationScope(*this,
9104 Specialization->getPrimaryTemplate(),
9105 Specialization, FD->getLocation(),
9106 false))
9107 return true;
9108
9109 // C++ [temp.expl.spec]p6:
9110 // If a template, a member template or the member of a class template is
9111 // explicitly specialized then that specialization shall be declared
9112 // before the first use of that specialization that would cause an implicit
9113 // instantiation to take place, in every translation unit in which such a
9114 // use occurs; no diagnostic is required.
9115 bool HasNoEffect = false;
9116 if (!isFriend &&
9117 CheckSpecializationInstantiationRedecl(FD->getLocation(),
9118 TSK_ExplicitSpecialization,
9119 Specialization,
9120 SpecInfo->getTemplateSpecializationKind(),
9121 SpecInfo->getPointOfInstantiation(),
9122 HasNoEffect))
9123 return true;
9124
9125 // Mark the prior declaration as an explicit specialization, so that later
9126 // clients know that this is an explicit specialization.
9127 if (!isFriend) {
9128 // Since explicit specializations do not inherit '=delete' from their
9129 // primary function template - check if the 'specialization' that was
9130 // implicitly generated (during template argument deduction for partial
9131 // ordering) from the most specialized of all the function templates that
9132 // 'FD' could have been specializing, has a 'deleted' definition. If so,
9133 // first check that it was implicitly generated during template argument
9134 // deduction by making sure it wasn't referenced, and then reset the deleted
9135 // flag to not-deleted, so that we can inherit that information from 'FD'.
9136 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9137 !Specialization->getCanonicalDecl()->isReferenced()) {
9138 // FIXME: This assert will not hold in the presence of modules.
9139 assert((static_cast<void> (0))
9140 Specialization->getCanonicalDecl() == Specialization &&(static_cast<void> (0))
9141 "This must be the only existing declaration of this specialization")(static_cast<void> (0));
9142 // FIXME: We need an update record for this AST mutation.
9143 Specialization->setDeletedAsWritten(false);
9144 }
9145 // FIXME: We need an update record for this AST mutation.
9146 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9147 MarkUnusedFileScopedDecl(Specialization);
9148 }
9149
9150 // Turn the given function declaration into a function template
9151 // specialization, with the template arguments from the previous
9152 // specialization.
9153 // Take copies of (semantic and syntactic) template argument lists.
9154 const TemplateArgumentList* TemplArgs = new (Context)
9155 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9156 FD->setFunctionTemplateSpecialization(
9157 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9158 SpecInfo->getTemplateSpecializationKind(),
9159 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9160
9161 // A function template specialization inherits the target attributes
9162 // of its template. (We require the attributes explicitly in the
9163 // code to match, but a template may have implicit attributes by
9164 // virtue e.g. of being constexpr, and it passes these implicit
9165 // attributes on to its specializations.)
9166 if (LangOpts.CUDA)
9167 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9168
9169 // The "previous declaration" for this function template specialization is
9170 // the prior function template specialization.
9171 Previous.clear();
9172 Previous.addDecl(Specialization);
9173 return false;
9174}
9175
9176/// Perform semantic analysis for the given non-template member
9177/// specialization.
9178///
9179/// This routine performs all of the semantic analysis required for an
9180/// explicit member function specialization. On successful completion,
9181/// the function declaration \p FD will become a member function
9182/// specialization.
9183///
9184/// \param Member the member declaration, which will be updated to become a
9185/// specialization.
9186///
9187/// \param Previous the set of declarations, one of which may be specialized
9188/// by this function specialization; the set will be modified to contain the
9189/// redeclared member.
9190bool
9191Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9192 assert(!isa<TemplateDecl>(Member) && "Only for non-template members")(static_cast<void> (0));
9193
9194 // Try to find the member we are instantiating.
9195 NamedDecl *FoundInstantiation = nullptr;
9196 NamedDecl *Instantiation = nullptr;
9197 NamedDecl *InstantiatedFrom = nullptr;
9198 MemberSpecializationInfo *MSInfo = nullptr;
9199
9200 if (Previous.empty()) {
9201 // Nowhere to look anyway.
9202 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9203 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9204 I != E; ++I) {
9205 NamedDecl *D = (*I)->getUnderlyingDecl();
9206 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9207 QualType Adjusted = Function->getType();
9208 if (!hasExplicitCallingConv(Adjusted))
9209 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9210 // This doesn't handle deduced return types, but both function
9211 // declarations should be undeduced at this point.
9212 if (Context.hasSameType(Adjusted, Method->getType())) {
9213 FoundInstantiation = *I;
9214 Instantiation = Method;
9215 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9216 MSInfo = Method->getMemberSpecializationInfo();
9217 break;
9218 }
9219 }
9220 }
9221 } else if (isa<VarDecl>(Member)) {
9222 VarDecl *PrevVar;
9223 if (Previous.isSingleResult() &&
9224 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9225 if (PrevVar->isStaticDataMember()) {
9226 FoundInstantiation = Previous.getRepresentativeDecl();
9227 Instantiation = PrevVar;
9228 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9229 MSInfo = PrevVar->getMemberSpecializationInfo();
9230 }
9231 } else if (isa<RecordDecl>(Member)) {
9232 CXXRecordDecl *PrevRecord;
9233 if (Previous.isSingleResult() &&
9234 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9235 FoundInstantiation = Previous.getRepresentativeDecl();
9236 Instantiation = PrevRecord;
9237 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9238 MSInfo = PrevRecord->getMemberSpecializationInfo();
9239 }
9240 } else if (isa<EnumDecl>(Member)) {
9241 EnumDecl *PrevEnum;
9242 if (Previous.isSingleResult() &&
9243 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9244 FoundInstantiation = Previous.getRepresentativeDecl();
9245 Instantiation = PrevEnum;
9246 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9247 MSInfo = PrevEnum->getMemberSpecializationInfo();
9248 }
9249 }
9250
9251 if (!Instantiation) {
9252 // There is no previous declaration that matches. Since member
9253 // specializations are always out-of-line, the caller will complain about
9254 // this mismatch later.
9255 return false;
9256 }
9257
9258 // A member specialization in a friend declaration isn't really declaring
9259 // an explicit specialization, just identifying a specific (possibly implicit)
9260 // specialization. Don't change the template specialization kind.
9261 //
9262 // FIXME: Is this really valid? Other compilers reject.
9263 if (Member->getFriendObjectKind() != Decl::FOK_None) {
9264 // Preserve instantiation information.
9265 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9266 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9267 cast<CXXMethodDecl>(InstantiatedFrom),
9268 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9269 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9270 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9271 cast<CXXRecordDecl>(InstantiatedFrom),
9272 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9273 }
9274
9275 Previous.clear();
9276 Previous.addDecl(FoundInstantiation);
9277 return false;
9278 }
9279
9280 // Make sure that this is a specialization of a member.
9281 if (!InstantiatedFrom) {
9282 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9283 << Member;
9284 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9285 return true;
9286 }
9287
9288 // C++ [temp.expl.spec]p6:
9289 // If a template, a member template or the member of a class template is
9290 // explicitly specialized then that specialization shall be declared
9291 // before the first use of that specialization that would cause an implicit
9292 // instantiation to take place, in every translation unit in which such a
9293 // use occurs; no diagnostic is required.
9294 assert(MSInfo && "Member specialization info missing?")(static_cast<void> (0));
9295
9296 bool HasNoEffect = false;
9297 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9298 TSK_ExplicitSpecialization,
9299 Instantiation,
9300 MSInfo->getTemplateSpecializationKind(),
9301 MSInfo->getPointOfInstantiation(),
9302 HasNoEffect))
9303 return true;
9304
9305 // Check the scope of this explicit specialization.
9306 if (CheckTemplateSpecializationScope(*this,
9307 InstantiatedFrom,
9308 Instantiation, Member->getLocation(),
9309 false))
9310 return true;
9311
9312 // Note that this member specialization is an "instantiation of" the
9313 // corresponding member of the original template.
9314 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9315 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9316 if (InstantiationFunction->getTemplateSpecializationKind() ==
9317 TSK_ImplicitInstantiation) {
9318 // Explicit specializations of member functions of class templates do not
9319 // inherit '=delete' from the member function they are specializing.
9320 if (InstantiationFunction->isDeleted()) {
9321 // FIXME: This assert will not hold in the presence of modules.
9322 assert(InstantiationFunction->getCanonicalDecl() ==(static_cast<void> (0))
9323 InstantiationFunction)(static_cast<void> (0));
9324 // FIXME: We need an update record for this AST mutation.
9325 InstantiationFunction->setDeletedAsWritten(false);
9326 }
9327 }
9328
9329 MemberFunction->setInstantiationOfMemberFunction(
9330 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9331 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9332 MemberVar->setInstantiationOfStaticDataMember(
9333 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9334 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9335 MemberClass->setInstantiationOfMemberClass(
9336 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9337 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9338 MemberEnum->setInstantiationOfMemberEnum(
9339 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9340 } else {
9341 llvm_unreachable("unknown member specialization kind")__builtin_unreachable();
9342 }
9343
9344 // Save the caller the trouble of having to figure out which declaration
9345 // this specialization matches.
9346 Previous.clear();
9347 Previous.addDecl(FoundInstantiation);
9348 return false;
9349}
9350
9351/// Complete the explicit specialization of a member of a class template by
9352/// updating the instantiated member to be marked as an explicit specialization.
9353///
9354/// \param OrigD The member declaration instantiated from the template.
9355/// \param Loc The location of the explicit specialization of the member.
9356template<typename DeclT>
9357static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9358 SourceLocation Loc) {
9359 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9360 return;
9361
9362 // FIXME: Inform AST mutation listeners of this AST mutation.
9363 // FIXME: If there are multiple in-class declarations of the member (from
9364 // multiple modules, or a declaration and later definition of a member type),
9365 // should we update all of them?
9366 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9367 OrigD->setLocation(Loc);
9368}
9369
9370void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9371 LookupResult &Previous) {
9372 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9373 if (Instantiation == Member)
9374 return;
9375
9376 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9377 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9378 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9379 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9380 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9381 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9382 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9383 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9384 else
9385 llvm_unreachable("unknown member specialization kind")__builtin_unreachable();
9386}
9387
9388/// Check the scope of an explicit instantiation.
9389///
9390/// \returns true if a serious error occurs, false otherwise.
9391static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9392 SourceLocation InstLoc,
9393 bool WasQualifiedName) {
9394 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9395 DeclContext *CurContext = S.CurContext->getRedeclContext();
9396
9397 if (CurContext->isRecord()) {
9398 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9399 << D;
9400 return true;
9401 }
9402
9403 // C++11 [temp.explicit]p3:
9404 // An explicit instantiation shall appear in an enclosing namespace of its
9405 // template. If the name declared in the explicit instantiation is an
9406 // unqualified name, the explicit instantiation shall appear in the
9407 // namespace where its template is declared or, if that namespace is inline
9408 // (7.3.1), any namespace from its enclosing namespace set.
9409 //
9410 // This is DR275, which we do not retroactively apply to C++98/03.
9411 if (WasQualifiedName) {
9412 if (CurContext->Encloses(OrigContext))
9413 return false;
9414 } else {
9415 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9416 return false;
9417 }
9418
9419 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9420 if (WasQualifiedName)
9421 S.Diag(InstLoc,
9422 S.getLangOpts().CPlusPlus11?
9423 diag::err_explicit_instantiation_out_of_scope :
9424 diag::warn_explicit_instantiation_out_of_scope_0x)
9425 << D << NS;
9426 else
9427 S.Diag(InstLoc,
9428 S.getLangOpts().CPlusPlus11?
9429 diag::err_explicit_instantiation_unqualified_wrong_namespace :
9430 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9431 << D << NS;
9432 } else
9433 S.Diag(InstLoc,
9434 S.getLangOpts().CPlusPlus11?
9435 diag::err_explicit_instantiation_must_be_global :
9436 diag::warn_explicit_instantiation_must_be_global_0x)
9437 << D;
9438 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9439 return false;
9440}
9441
9442/// Common checks for whether an explicit instantiation of \p D is valid.
9443static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9444 SourceLocation InstLoc,
9445 bool WasQualifiedName,
9446 TemplateSpecializationKind TSK) {
9447 // C++ [temp.explicit]p13:
9448 // An explicit instantiation declaration shall not name a specialization of
9449 // a template with internal linkage.
9450 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9451 D->getFormalLinkage() == InternalLinkage) {
9452 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9453 return true;
9454 }
9455
9456 // C++11 [temp.explicit]p3: [DR 275]
9457 // An explicit instantiation shall appear in an enclosing namespace of its
9458 // template.
9459 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9460 return true;
9461
9462 return false;
9463}
9464
9465/// Determine whether the given scope specifier has a template-id in it.
9466static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9467 if (!SS.isSet())
9468 return false;
9469
9470 // C++11 [temp.explicit]p3:
9471 // If the explicit instantiation is for a member function, a member class
9472 // or a static data member of a class template specialization, the name of
9473 // the class template specialization in the qualified-id for the member
9474 // name shall be a simple-template-id.
9475 //
9476 // C++98 has the same restriction, just worded differently.
9477 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9478 NNS = NNS->getPrefix())
9479 if (const Type *T = NNS->getAsType())
9480 if (isa<TemplateSpecializationType>(T))
9481 return true;
9482
9483 return false;
9484}
9485
9486/// Make a dllexport or dllimport attr on a class template specialization take
9487/// effect.
9488static void dllExportImportClassTemplateSpecialization(
9489 Sema &S, ClassTemplateSpecializationDecl *Def) {
9490 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9491 assert(A && "dllExportImportClassTemplateSpecialization called "(static_cast<void> (0))
9492 "on Def without dllexport or dllimport")(static_cast<void> (0));
9493
9494 // We reject explicit instantiations in class scope, so there should
9495 // never be any delayed exported classes to worry about.
9496 assert(S.DelayedDllExportClasses.empty() &&(static_cast<void> (0))
9497 "delayed exports present at explicit instantiation")(static_cast<void> (0));
9498 S.checkClassLevelDLLAttribute(Def);
9499
9500 // Propagate attribute to base class templates.
9501 for (auto &B : Def->bases()) {
9502 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9503 B.getType()->getAsCXXRecordDecl()))
9504 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9505 }
9506
9507 S.referenceDLLExportedClassMethods();
9508}
9509
9510// Explicit instantiation of a class template specialization
9511DeclResult Sema::ActOnExplicitInstantiation(
9512 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9513 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9514 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9515 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9516 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9517 // Find the class template we're specializing
9518 TemplateName Name = TemplateD.get();
9519 TemplateDecl *TD = Name.getAsTemplateDecl();
9520 // Check that the specialization uses the same tag kind as the
9521 // original template.
9522 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9523 assert(Kind != TTK_Enum &&(static_cast<void> (0))
9524 "Invalid enum tag in class template explicit instantiation!")(static_cast<void> (0));
9525
9526 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9527
9528 if (!ClassTemplate) {
9529 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9530 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9531 Diag(TD->getLocation(), diag::note_previous_use);
9532 return true;
9533 }
9534
9535 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9536 Kind, /*isDefinition*/false, KWLoc,
9537 ClassTemplate->getIdentifier())) {
9538 Diag(KWLoc, diag::err_use_with_wrong_tag)
9539 << ClassTemplate
9540 << FixItHint::CreateReplacement(KWLoc,
9541 ClassTemplate->getTemplatedDecl()->getKindName());
9542 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9543 diag::note_previous_use);
9544 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9545 }
9546
9547 // C++0x [temp.explicit]p2:
9548 // There are two forms of explicit instantiation: an explicit instantiation
9549 // definition and an explicit instantiation declaration. An explicit
9550 // instantiation declaration begins with the extern keyword. [...]
9551 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9552 ? TSK_ExplicitInstantiationDefinition
9553 : TSK_ExplicitInstantiationDeclaration;
9554
9555 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9556 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9557 // Check for dllexport class template instantiation declarations,
9558 // except for MinGW mode.
9559 for (const ParsedAttr &AL : Attr) {
9560 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9561 Diag(ExternLoc,
9562 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9563 Diag(AL.getLoc(), diag::note_attribute);
9564 break;
9565 }
9566 }
9567
9568 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9569 Diag(ExternLoc,
9570 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9571 Diag(A->getLocation(), diag::note_attribute);
9572 }
9573 }
9574
9575 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9576 // instantiation declarations for most purposes.
9577 bool DLLImportExplicitInstantiationDef = false;
9578 if (TSK == TSK_ExplicitInstantiationDefinition &&
9579 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9580 // Check for dllimport class template instantiation definitions.
9581 bool DLLImport =
9582 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9583 for (const ParsedAttr &AL : Attr) {
9584 if (AL.getKind() == ParsedAttr::AT_DLLImport)
9585 DLLImport = true;
9586 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9587 // dllexport trumps dllimport here.
9588 DLLImport = false;
9589 break;
9590 }
9591 }
9592 if (DLLImport) {
9593 TSK = TSK_ExplicitInstantiationDeclaration;
9594 DLLImportExplicitInstantiationDef = true;
9595 }
9596 }
9597
9598 // Translate the parser's template argument list in our AST format.
9599 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9600 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9601
9602 // Check that the template argument list is well-formed for this
9603 // template.
9604 SmallVector<TemplateArgument, 4> Converted;
9605 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9606 TemplateArgs, false, Converted,
9607 /*UpdateArgsWithConversion=*/true))
9608 return true;
9609
9610 // Find the class template specialization declaration that
9611 // corresponds to these arguments.
9612 void *InsertPos = nullptr;
9613 ClassTemplateSpecializationDecl *PrevDecl
9614 = ClassTemplate->findSpecialization(Converted, InsertPos);
9615
9616 TemplateSpecializationKind PrevDecl_TSK
9617 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9618
9619 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9620 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9621 // Check for dllexport class template instantiation definitions in MinGW
9622 // mode, if a previous declaration of the instantiation was seen.
9623 for (const ParsedAttr &AL : Attr) {
9624 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9625 Diag(AL.getLoc(),
9626 diag::warn_attribute_dllexport_explicit_instantiation_def);
9627 break;
9628 }
9629 }
9630 }
9631
9632 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9633 SS.isSet(), TSK))
9634 return true;
9635
9636 ClassTemplateSpecializationDecl *Specialization = nullptr;
9637
9638 bool HasNoEffect = false;
9639 if (PrevDecl) {
9640 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9641 PrevDecl, PrevDecl_TSK,
9642 PrevDecl->getPointOfInstantiation(),
9643 HasNoEffect))
9644 return PrevDecl;
9645
9646 // Even though HasNoEffect == true means that this explicit instantiation
9647 // has no effect on semantics, we go on to put its syntax in the AST.
9648
9649 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9650 PrevDecl_TSK == TSK_Undeclared) {
9651 // Since the only prior class template specialization with these
9652 // arguments was referenced but not declared, reuse that
9653 // declaration node as our own, updating the source location
9654 // for the template name to reflect our new declaration.
9655 // (Other source locations will be updated later.)
9656 Specialization = PrevDecl;
9657 Specialization->setLocation(TemplateNameLoc);
9658 PrevDecl = nullptr;
9659 }
9660
9661 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9662 DLLImportExplicitInstantiationDef) {
9663 // The new specialization might add a dllimport attribute.
9664 HasNoEffect = false;
9665 }
9666 }
9667
9668 if (!Specialization) {
9669 // Create a new class template specialization declaration node for
9670 // this explicit specialization.
9671 Specialization
9672 = ClassTemplateSpecializationDecl::Create(Context, Kind,
9673 ClassTemplate->getDeclContext(),
9674 KWLoc, TemplateNameLoc,
9675 ClassTemplate,
9676 Converted,
9677 PrevDecl);
9678 SetNestedNameSpecifier(*this, Specialization, SS);
9679
9680 if (!HasNoEffect && !PrevDecl) {
9681 // Insert the new specialization.
9682 ClassTemplate->AddSpecialization(Specialization, InsertPos);
9683 }
9684 }
9685
9686 // Build the fully-sugared type for this explicit instantiation as
9687 // the user wrote in the explicit instantiation itself. This means
9688 // that we'll pretty-print the type retrieved from the
9689 // specialization's declaration the way that the user actually wrote
9690 // the explicit instantiation, rather than formatting the name based
9691 // on the "canonical" representation used to store the template
9692 // arguments in the specialization.
9693 TypeSourceInfo *WrittenTy
9694 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9695 TemplateArgs,
9696 Context.getTypeDeclType(Specialization));
9697 Specialization->setTypeAsWritten(WrittenTy);
9698
9699 // Set source locations for keywords.
9700 Specialization->setExternLoc(ExternLoc);
9701 Specialization->setTemplateKeywordLoc(TemplateLoc);
9702 Specialization->setBraceRange(SourceRange());
9703
9704 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9705 ProcessDeclAttributeList(S, Specialization, Attr);
9706
9707 // Add the explicit instantiation into its lexical context. However,
9708 // since explicit instantiations are never found by name lookup, we
9709 // just put it into the declaration context directly.
9710 Specialization->setLexicalDeclContext(CurContext);
9711 CurContext->addDecl(Specialization);
9712
9713 // Syntax is now OK, so return if it has no other effect on semantics.
9714 if (HasNoEffect) {
9715 // Set the template specialization kind.
9716 Specialization->setTemplateSpecializationKind(TSK);
9717 return Specialization;
9718 }
9719
9720 // C++ [temp.explicit]p3:
9721 // A definition of a class template or class member template
9722 // shall be in scope at the point of the explicit instantiation of
9723 // the class template or class member template.
9724 //
9725 // This check comes when we actually try to perform the
9726 // instantiation.
9727 ClassTemplateSpecializationDecl *Def
9728 = cast_or_null<ClassTemplateSpecializationDecl>(
9729 Specialization->getDefinition());
9730 if (!Def)
9731 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9732 else if (TSK == TSK_ExplicitInstantiationDefinition) {
9733 MarkVTableUsed(TemplateNameLoc, Specialization, true);
9734 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9735 }
9736
9737 // Instantiate the members of this class template specialization.
9738 Def = cast_or_null<ClassTemplateSpecializationDecl>(
9739 Specialization->getDefinition());
9740 if (Def) {
9741 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9742 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9743 // TSK_ExplicitInstantiationDefinition
9744 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9745 (TSK == TSK_ExplicitInstantiationDefinition ||
9746 DLLImportExplicitInstantiationDef)) {
9747 // FIXME: Need to notify the ASTMutationListener that we did this.
9748 Def->setTemplateSpecializationKind(TSK);
9749
9750 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9751 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9752 !Context.getTargetInfo().getTriple().isPS4CPU())) {
9753 // An explicit instantiation definition can add a dll attribute to a
9754 // template with a previous instantiation declaration. MinGW doesn't
9755 // allow this.
9756 auto *A = cast<InheritableAttr>(
9757 getDLLAttr(Specialization)->clone(getASTContext()));
9758 A->setInherited(true);
9759 Def->addAttr(A);
9760 dllExportImportClassTemplateSpecialization(*this, Def);
9761 }
9762 }
9763
9764 // Fix a TSK_ImplicitInstantiation followed by a
9765 // TSK_ExplicitInstantiationDefinition
9766 bool NewlyDLLExported =
9767 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9768 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9769 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9770 !Context.getTargetInfo().getTriple().isPS4CPU())) {
9771 // An explicit instantiation definition can add a dll attribute to a
9772 // template with a previous implicit instantiation. MinGW doesn't allow
9773 // this. We limit clang to only adding dllexport, to avoid potentially
9774 // strange codegen behavior. For example, if we extend this conditional
9775 // to dllimport, and we have a source file calling a method on an
9776 // implicitly instantiated template class instance and then declaring a
9777 // dllimport explicit instantiation definition for the same template
9778 // class, the codegen for the method call will not respect the dllimport,
9779 // while it will with cl. The Def will already have the DLL attribute,
9780 // since the Def and Specialization will be the same in the case of
9781 // Old_TSK == TSK_ImplicitInstantiation, and we already added the
9782 // attribute to the Specialization; we just need to make it take effect.
9783 assert(Def == Specialization &&(static_cast<void> (0))
9784 "Def and Specialization should match for implicit instantiation")(static_cast<void> (0));
9785 dllExportImportClassTemplateSpecialization(*this, Def);
9786 }
9787
9788 // In MinGW mode, export the template instantiation if the declaration
9789 // was marked dllexport.
9790 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9791 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9792 PrevDecl->hasAttr<DLLExportAttr>()) {
9793 dllExportImportClassTemplateSpecialization(*this, Def);
9794 }
9795
9796 if (Def->hasAttr<MSInheritanceAttr>()) {
9797 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>());
9798 Consumer.AssignInheritanceModel(Specialization);
9799 }
9800
9801 // Set the template specialization kind. Make sure it is set before
9802 // instantiating the members which will trigger ASTConsumer callbacks.
9803 Specialization->setTemplateSpecializationKind(TSK);
9804 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9805 } else {
9806
9807 // Set the template specialization kind.
9808 Specialization->setTemplateSpecializationKind(TSK);
9809 }
9810
9811 return Specialization;
9812}
9813
9814// Explicit instantiation of a member class of a class template.
9815DeclResult
9816Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9817 SourceLocation TemplateLoc, unsigned TagSpec,
9818 SourceLocation KWLoc, CXXScopeSpec &SS,
9819 IdentifierInfo *Name, SourceLocation NameLoc,
9820 const ParsedAttributesView &Attr) {
9821
9822 bool Owned = false;
9823 bool IsDependent = false;
9824 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9825 KWLoc, SS, Name, NameLoc, Attr, AS_none,
9826 /*ModulePrivateLoc=*/SourceLocation(),
9827 MultiTemplateParamsArg(), Owned, IsDependent,
9828 SourceLocation(), false, TypeResult(),
9829 /*IsTypeSpecifier*/false,
9830 /*IsTemplateParamOrArg*/false);
9831 assert(!IsDependent && "explicit instantiation of dependent name not yet handled")(static_cast<void> (0));
9832
9833 if (!TagD)
9834 return true;
9835
9836 TagDecl *Tag = cast<TagDecl>(TagD);
9837 assert(!Tag->isEnum() && "shouldn't see enumerations here")(static_cast<void> (0));
9838
9839 if (Tag->isInvalidDecl())
9840 return true;
9841
9842 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9843 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9844 if (!Pattern) {
9845 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9846 << Context.getTypeDeclType(Record);
9847 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9848 return true;
9849 }
9850
9851 // C++0x [temp.explicit]p2:
9852 // If the explicit instantiation is for a class or member class, the
9853 // elaborated-type-specifier in the declaration shall include a
9854 // simple-template-id.
9855 //
9856 // C++98 has the same restriction, just worded differently.
9857 if (!ScopeSpecifierHasTemplateId(SS))
9858 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9859 << Record << SS.getRange();
9860
9861 // C++0x [temp.explicit]p2:
9862 // There are two forms of explicit instantiation: an explicit instantiation
9863 // definition and an explicit instantiation declaration. An explicit
9864 // instantiation declaration begins with the extern keyword. [...]
9865 TemplateSpecializationKind TSK
9866 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9867 : TSK_ExplicitInstantiationDeclaration;
9868
9869 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9870
9871 // Verify that it is okay to explicitly instantiate here.
9872 CXXRecordDecl *PrevDecl
9873 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9874 if (!PrevDecl && Record->getDefinition())
9875 PrevDecl = Record;
9876 if (PrevDecl) {
9877 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9878 bool HasNoEffect = false;
9879 assert(MSInfo && "No member specialization information?")(static_cast<void> (0));
9880 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9881 PrevDecl,
9882 MSInfo->getTemplateSpecializationKind(),
9883 MSInfo->getPointOfInstantiation(),
9884 HasNoEffect))
9885 return true;
9886 if (HasNoEffect)
9887 return TagD;
9888 }
9889
9890 CXXRecordDecl *RecordDef
9891 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9892 if (!RecordDef) {
9893 // C++ [temp.explicit]p3:
9894 // A definition of a member class of a class template shall be in scope
9895 // at the point of an explicit instantiation of the member class.
9896 CXXRecordDecl *Def
9897 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9898 if (!Def) {
9899 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9900 << 0 << Record->getDeclName() << Record->getDeclContext();
9901 Diag(Pattern->getLocation(), diag::note_forward_declaration)
9902 << Pattern;
9903 return true;
9904 } else {
9905 if (InstantiateClass(NameLoc, Record, Def,
9906 getTemplateInstantiationArgs(Record),
9907 TSK))
9908 return true;
9909
9910 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9911 if (!RecordDef)
9912 return true;
9913 }
9914 }
9915
9916 // Instantiate all of the members of the class.
9917 InstantiateClassMembers(NameLoc, RecordDef,
9918 getTemplateInstantiationArgs(Record), TSK);
9919
9920 if (TSK == TSK_ExplicitInstantiationDefinition)
9921 MarkVTableUsed(NameLoc, RecordDef, true);
9922
9923 // FIXME: We don't have any representation for explicit instantiations of
9924 // member classes. Such a representation is not needed for compilation, but it
9925 // should be available for clients that want to see all of the declarations in
9926 // the source code.
9927 return TagD;
9928}
9929
9930DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9931 SourceLocation ExternLoc,
9932 SourceLocation TemplateLoc,
9933 Declarator &D) {
9934 // Explicit instantiations always require a name.
9935 // TODO: check if/when DNInfo should replace Name.
9936 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9937 DeclarationName Name = NameInfo.getName();
9938 if (!Name) {
9939 if (!D.isInvalidType())
9940 Diag(D.getDeclSpec().getBeginLoc(),
9941 diag::err_explicit_instantiation_requires_name)
9942 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9943
9944 return true;
9945 }
9946
9947 // The scope passed in may not be a decl scope. Zip up the scope tree until
9948 // we find one that is.
9949 while ((S->getFlags() & Scope::DeclScope) == 0 ||
9950 (S->getFlags() & Scope::TemplateParamScope) != 0)
9951 S = S->getParent();
9952
9953 // Determine the type of the declaration.
9954 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9955 QualType R = T->getType();
9956 if (R.isNull())
9957 return true;
9958
9959 // C++ [dcl.stc]p1:
9960 // A storage-class-specifier shall not be specified in [...] an explicit
9961 // instantiation (14.7.2) directive.
9962 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9963 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9964 << Name;
9965 return true;
9966 } else if (D.getDeclSpec().getStorageClassSpec()
9967 != DeclSpec::SCS_unspecified) {
9968 // Complain about then remove the storage class specifier.
9969 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9970 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9971
9972 D.getMutableDeclSpec().ClearStorageClassSpecs();
9973 }
9974
9975 // C++0x [temp.explicit]p1:
9976 // [...] An explicit instantiation of a function template shall not use the
9977 // inline or constexpr specifiers.
9978 // Presumably, this also applies to member functions of class templates as
9979 // well.
9980 if (D.getDeclSpec().isInlineSpecified())
9981 Diag(D.getDeclSpec().getInlineSpecLoc(),
9982 getLangOpts().CPlusPlus11 ?
9983 diag::err_explicit_instantiation_inline :
9984 diag::warn_explicit_instantiation_inline_0x)
9985 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9986 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9987 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9988 // not already specified.
9989 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9990 diag::err_explicit_instantiation_constexpr);
9991
9992 // A deduction guide is not on the list of entities that can be explicitly
9993 // instantiated.
9994 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9995 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9996 << /*explicit instantiation*/ 0;
9997 return true;
9998 }
9999
10000 // C++0x [temp.explicit]p2:
10001 // There are two forms of explicit instantiation: an explicit instantiation
10002 // definition and an explicit instantiation declaration. An explicit
10003 // instantiation declaration begins with the extern keyword. [...]
10004 TemplateSpecializationKind TSK
10005 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10006 : TSK_ExplicitInstantiationDeclaration;
10007
10008 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10009 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10010
10011 if (!R->isFunctionType()) {
10012 // C++ [temp.explicit]p1:
10013 // A [...] static data member of a class template can be explicitly
10014 // instantiated from the member definition associated with its class
10015 // template.
10016 // C++1y [temp.explicit]p1:
10017 // A [...] variable [...] template specialization can be explicitly
10018 // instantiated from its template.
10019 if (Previous.isAmbiguous())
10020 return true;
10021
10022 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10023 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10024
10025 if (!PrevTemplate) {
10026 if (!Prev || !Prev->isStaticDataMember()) {
10027 // We expect to see a static data member here.
10028 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10029 << Name;
10030 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10031 P != PEnd; ++P)
10032 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10033 return true;
10034 }
10035
10036 if (!Prev->getInstantiatedFromStaticDataMember()) {
10037 // FIXME: Check for explicit specialization?
10038 Diag(D.getIdentifierLoc(),
10039 diag::err_explicit_instantiation_data_member_not_instantiated)
10040 << Prev;
10041 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10042 // FIXME: Can we provide a note showing where this was declared?
10043 return true;
10044 }
10045 } else {
10046 // Explicitly instantiate a variable template.
10047
10048 // C++1y [dcl.spec.auto]p6:
10049 // ... A program that uses auto or decltype(auto) in a context not
10050 // explicitly allowed in this section is ill-formed.
10051 //
10052 // This includes auto-typed variable template instantiations.
10053 if (R->isUndeducedType()) {
10054 Diag(T->getTypeLoc().getBeginLoc(),
10055 diag::err_auto_not_allowed_var_inst);
10056 return true;
10057 }
10058
10059 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10060 // C++1y [temp.explicit]p3:
10061 // If the explicit instantiation is for a variable, the unqualified-id
10062 // in the declaration shall be a template-id.
10063 Diag(D.getIdentifierLoc(),
10064 diag::err_explicit_instantiation_without_template_id)
10065 << PrevTemplate;
10066 Diag(PrevTemplate->getLocation(),
10067 diag::note_explicit_instantiation_here);
10068 return true;
10069 }
10070
10071 // Translate the parser's template argument list into our AST format.
10072 TemplateArgumentListInfo TemplateArgs =
10073 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10074
10075 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10076 D.getIdentifierLoc(), TemplateArgs);
10077 if (Res.isInvalid())
10078 return true;
10079
10080 if (!Res.isUsable()) {
10081 // We somehow specified dependent template arguments in an explicit
10082 // instantiation. This should probably only happen during error
10083 // recovery.
10084 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10085 return true;
10086 }
10087
10088 // Ignore access control bits, we don't need them for redeclaration
10089 // checking.
10090 Prev = cast<VarDecl>(Res.get());
10091 }
10092
10093 // C++0x [temp.explicit]p2:
10094 // If the explicit instantiation is for a member function, a member class
10095 // or a static data member of a class template specialization, the name of
10096 // the class template specialization in the qualified-id for the member
10097 // name shall be a simple-template-id.
10098 //
10099 // C++98 has the same restriction, just worded differently.
10100 //
10101 // This does not apply to variable template specializations, where the
10102 // template-id is in the unqualified-id instead.
10103 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10104 Diag(D.getIdentifierLoc(),
10105 diag::ext_explicit_instantiation_without_qualified_id)
10106 << Prev << D.getCXXScopeSpec().getRange();
10107
10108 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10109
10110 // Verify that it is okay to explicitly instantiate here.
10111 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10112 SourceLocation POI = Prev->getPointOfInstantiation();
10113 bool HasNoEffect = false;
10114 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10115 PrevTSK, POI, HasNoEffect))
10116 return true;
10117
10118 if (!HasNoEffect) {
10119 // Instantiate static data member or variable template.
10120 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10121 // Merge attributes.
10122 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10123 if (TSK == TSK_ExplicitInstantiationDefinition)
10124 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10125 }
10126
10127 // Check the new variable specialization against the parsed input.
10128 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
10129 Diag(T->getTypeLoc().getBeginLoc(),
10130 diag::err_invalid_var_template_spec_type)
10131 << 0 << PrevTemplate << R << Prev->getType();
10132 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10133 << 2 << PrevTemplate->getDeclName();
10134 return true;
10135 }
10136
10137 // FIXME: Create an ExplicitInstantiation node?
10138 return (Decl*) nullptr;
10139 }
10140
10141 // If the declarator is a template-id, translate the parser's template
10142 // argument list into our AST format.
10143 bool HasExplicitTemplateArgs = false;
10144 TemplateArgumentListInfo TemplateArgs;
10145 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10146 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10147 HasExplicitTemplateArgs = true;
10148 }
10149
10150 // C++ [temp.explicit]p1:
10151 // A [...] function [...] can be explicitly instantiated from its template.
10152 // A member function [...] of a class template can be explicitly
10153 // instantiated from the member definition associated with its class
10154 // template.
10155 UnresolvedSet<8> TemplateMatches;
10156 FunctionDecl *NonTemplateMatch = nullptr;
10157 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10158 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10159 P != PEnd; ++P) {
10160 NamedDecl *Prev = *P;
10161 if (!HasExplicitTemplateArgs) {
10162 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10163 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10164 /*AdjustExceptionSpec*/true);
10165 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10166 if (Method->getPrimaryTemplate()) {
10167 TemplateMatches.addDecl(Method, P.getAccess());
10168 } else {
10169 // FIXME: Can this assert ever happen? Needs a test.
10170 assert(!NonTemplateMatch && "Multiple NonTemplateMatches")(static_cast<void> (0));
10171 NonTemplateMatch = Method;
10172 }
10173 }
10174 }
10175 }
10176
10177 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10178 if (!FunTmpl)
10179 continue;
10180
10181 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10182 FunctionDecl *Specialization = nullptr;
10183 if (TemplateDeductionResult TDK
10184 = DeduceTemplateArguments(FunTmpl,
10185 (HasExplicitTemplateArgs ? &TemplateArgs
10186 : nullptr),
10187 R, Specialization, Info)) {
10188 // Keep track of almost-matches.
10189 FailedCandidates.addCandidate()
10190 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10191 MakeDeductionFailureInfo(Context, TDK, Info));
10192 (void)TDK;
10193 continue;
10194 }
10195
10196 // Target attributes are part of the cuda function signature, so
10197 // the cuda target of the instantiated function must match that of its
10198 // template. Given that C++ template deduction does not take
10199 // target attributes into account, we reject candidates here that
10200 // have a different target.
10201 if (LangOpts.CUDA &&
10202 IdentifyCUDATarget(Specialization,
10203 /* IgnoreImplicitHDAttr = */ true) !=
10204 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10205 FailedCandidates.addCandidate().set(
10206 P.getPair(), FunTmpl->getTemplatedDecl(),
10207 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10208 continue;
10209 }
10210
10211 TemplateMatches.addDecl(Specialization, P.getAccess());
10212 }
10213
10214 FunctionDecl *Specialization = NonTemplateMatch;
10215 if (!Specialization) {
10216 // Find the most specialized function template specialization.
10217 UnresolvedSetIterator Result = getMostSpecialized(
10218 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10219 D.getIdentifierLoc(),
10220 PDiag(diag::err_explicit_instantiation_not_known) << Name,
10221 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10222 PDiag(diag::note_explicit_instantiation_candidate));
10223
10224 if (Result == TemplateMatches.end())
10225 return true;
10226
10227 // Ignore access control bits, we don't need them for redeclaration checking.
10228 Specialization = cast<FunctionDecl>(*Result);
10229 }
10230
10231 // C++11 [except.spec]p4
10232 // In an explicit instantiation an exception-specification may be specified,
10233 // but is not required.
10234 // If an exception-specification is specified in an explicit instantiation
10235 // directive, it shall be compatible with the exception-specifications of
10236 // other declarations of that function.
10237 if (auto *FPT = R->getAs<FunctionProtoType>())
10238 if (FPT->hasExceptionSpec()) {
10239 unsigned DiagID =
10240 diag::err_mismatched_exception_spec_explicit_instantiation;
10241 if (getLangOpts().MicrosoftExt)
10242 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10243 bool Result = CheckEquivalentExceptionSpec(
10244 PDiag(DiagID) << Specialization->getType(),
10245 PDiag(diag::note_explicit_instantiation_here),
10246 Specialization->getType()->getAs<FunctionProtoType>(),
10247 Specialization->getLocation(), FPT, D.getBeginLoc());
10248 // In Microsoft mode, mismatching exception specifications just cause a
10249 // warning.
10250 if (!getLangOpts().MicrosoftExt && Result)
10251 return true;
10252 }
10253
10254 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10255 Diag(D.getIdentifierLoc(),
10256 diag::err_explicit_instantiation_member_function_not_instantiated)
10257 << Specialization
10258 << (Specialization->getTemplateSpecializationKind() ==
10259 TSK_ExplicitSpecialization);
10260 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10261 return true;
10262 }
10263
10264 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10265 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10266 PrevDecl = Specialization;
10267
10268 if (PrevDecl) {
10269 bool HasNoEffect = false;
10270 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10271 PrevDecl,
10272 PrevDecl->getTemplateSpecializationKind(),
10273 PrevDecl->getPointOfInstantiation(),
10274 HasNoEffect))
10275 return true;
10276
10277 // FIXME: We may still want to build some representation of this
10278 // explicit specialization.
10279 if (HasNoEffect)
10280 return (Decl*) nullptr;
10281 }
10282
10283 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10284 // functions
10285 // valarray<size_t>::valarray(size_t) and
10286 // valarray<size_t>::~valarray()
10287 // that it declared to have internal linkage with the internal_linkage
10288 // attribute. Ignore the explicit instantiation declaration in this case.
10289 if (Specialization->hasAttr<InternalLinkageAttr>() &&
10290 TSK == TSK_ExplicitInstantiationDeclaration) {
10291 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10292 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10293 RD->isInStdNamespace())
10294 return (Decl*) nullptr;
10295 }
10296
10297 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10298
10299 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10300 // instantiation declarations.
10301 if (TSK == TSK_ExplicitInstantiationDefinition &&
10302 Specialization->hasAttr<DLLImportAttr>() &&
10303 Context.getTargetInfo().getCXXABI().isMicrosoft())
10304 TSK = TSK_ExplicitInstantiationDeclaration;
10305
10306 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10307
10308 if (Specialization->isDefined()) {
10309 // Let the ASTConsumer know that this function has been explicitly
10310 // instantiated now, and its linkage might have changed.
10311 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10312 } else if (TSK == TSK_ExplicitInstantiationDefinition)
10313 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10314
10315 // C++0x [temp.explicit]p2:
10316 // If the explicit instantiation is for a member function, a member class
10317 // or a static data member of a class template specialization, the name of
10318 // the class template specialization in the qualified-id for the member
10319 // name shall be a simple-template-id.
10320 //
10321 // C++98 has the same restriction, just worded differently.
10322 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10323 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10324 D.getCXXScopeSpec().isSet() &&
10325 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10326 Diag(D.getIdentifierLoc(),
10327 diag::ext_explicit_instantiation_without_qualified_id)
10328 << Specialization << D.getCXXScopeSpec().getRange();
10329
10330 CheckExplicitInstantiation(
10331 *this,
10332 FunTmpl ? (NamedDecl *)FunTmpl
10333 : Specialization->getInstantiatedFromMemberFunction(),
10334 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10335
10336 // FIXME: Create some kind of ExplicitInstantiationDecl here.
10337 return (Decl*) nullptr;
10338}
10339
10340TypeResult
10341Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10342 const CXXScopeSpec &SS, IdentifierInfo *Name,
10343 SourceLocation TagLoc, SourceLocation NameLoc) {
10344 // This has to hold, because SS is expected to be defined.
10345 assert(Name && "Expected a name in a dependent tag")(static_cast<void> (0));
10346
10347 NestedNameSpecifier *NNS = SS.getScopeRep();
10348 if (!NNS)
10349 return true;
10350
10351 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10352
10353 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10354 Diag(NameLoc, diag::err_dependent_tag_decl)
10355 << (TUK == TUK_Definition) << Kind << SS.getRange();
10356 return true;
10357 }
10358
10359 // Create the resulting type.
10360 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10361 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10362
10363 // Create type-source location information for this type.
10364 TypeLocBuilder TLB;
10365 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10366 TL.setElaboratedKeywordLoc(TagLoc);
10367 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10368 TL.setNameLoc(NameLoc);
10369 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10370}
10371
10372TypeResult
10373Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10374 const CXXScopeSpec &SS, const IdentifierInfo &II,
10375 SourceLocation IdLoc) {
10376 if (SS.isInvalid())
10377 return true;
10378
10379 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10380 Diag(TypenameLoc,
10381 getLangOpts().CPlusPlus11 ?
10382 diag::warn_cxx98_compat_typename_outside_of_template :
10383 diag::ext_typename_outside_of_template)
10384 << FixItHint::CreateRemoval(TypenameLoc);
10385
10386 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10387 TypeSourceInfo *TSI = nullptr;
10388 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10389 TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10390 /*DeducedTSTContext=*/true);
10391 if (T.isNull())
10392 return true;
10393 return CreateParsedType(T, TSI);
10394}
10395
10396TypeResult
10397Sema::ActOnTypenameType(Scope *S,
10398 SourceLocation TypenameLoc,
10399 const CXXScopeSpec &SS,
10400 SourceLocation TemplateKWLoc,
10401 TemplateTy TemplateIn,
10402 IdentifierInfo *TemplateII,
10403 SourceLocation TemplateIILoc,
10404 SourceLocation LAngleLoc,
10405 ASTTemplateArgsPtr TemplateArgsIn,
10406 SourceLocation RAngleLoc) {
10407 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10408 Diag(TypenameLoc,
10409 getLangOpts().CPlusPlus11 ?
10410 diag::warn_cxx98_compat_typename_outside_of_template :
10411 diag::ext_typename_outside_of_template)
10412 << FixItHint::CreateRemoval(TypenameLoc);
10413
10414 // Strangely, non-type results are not ignored by this lookup, so the
10415 // program is ill-formed if it finds an injected-class-name.
10416 if (TypenameLoc.isValid()) {
10417 auto *LookupRD =
10418 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10419 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10420 Diag(TemplateIILoc,
10421 diag::ext_out_of_line_qualified_id_type_names_constructor)
10422 << TemplateII << 0 /*injected-class-name used as template name*/
10423 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10424 }
10425 }
10426
10427 // Translate the parser's template argument list in our AST format.
10428 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10429 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10430
10431 TemplateName Template = TemplateIn.get();
10432 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10433 // Construct a dependent template specialization type.
10434 assert(DTN && "dependent template has non-dependent name?")(static_cast<void> (0));
10435 assert(DTN->getQualifier() == SS.getScopeRep())(static_cast<void> (0));
10436 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10437 DTN->getQualifier(),
10438 DTN->getIdentifier(),
10439 TemplateArgs);
10440
10441 // Create source-location information for this type.
10442 TypeLocBuilder Builder;
10443 DependentTemplateSpecializationTypeLoc SpecTL
10444 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10445 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10446 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10447 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10448 SpecTL.setTemplateNameLoc(TemplateIILoc);
10449 SpecTL.setLAngleLoc(LAngleLoc);
10450 SpecTL.setRAngleLoc(RAngleLoc);
10451 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10452 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10453 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10454 }
10455
10456 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10457 if (T.isNull())
10458 return true;
10459
10460 // Provide source-location information for the template specialization type.
10461 TypeLocBuilder Builder;
10462 TemplateSpecializationTypeLoc SpecTL
10463 = Builder.push<TemplateSpecializationTypeLoc>(T);
10464 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10465 SpecTL.setTemplateNameLoc(TemplateIILoc);
10466 SpecTL.setLAngleLoc(LAngleLoc);
10467 SpecTL.setRAngleLoc(RAngleLoc);
10468 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10469 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10470
10471 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10472 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10473 TL.setElaboratedKeywordLoc(TypenameLoc);
10474 TL.setQualifierLoc(SS.getWithLocInContext(Context));
10475
10476 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10477 return CreateParsedType(T, TSI);
10478}
10479
10480
10481/// Determine whether this failed name lookup should be treated as being
10482/// disabled by a usage of std::enable_if.
10483static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10484 SourceRange &CondRange, Expr *&Cond) {
10485 // We must be looking for a ::type...
10486 if (!II.isStr("type"))
10487 return false;
10488
10489 // ... within an explicitly-written template specialization...
10490 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10491 return false;
10492 TypeLoc EnableIfTy = NNS.getTypeLoc();
10493 TemplateSpecializationTypeLoc EnableIfTSTLoc =
10494 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10495 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10496 return false;
10497 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10498
10499 // ... which names a complete class template declaration...
10500 const TemplateDecl *EnableIfDecl =
10501 EnableIfTST->getTemplateName().getAsTemplateDecl();
10502 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10503 return false;
10504
10505 // ... called "enable_if".
10506 const IdentifierInfo *EnableIfII =
10507 EnableIfDecl->getDeclName().getAsIdentifierInfo();
10508 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10509 return false;
10510
10511 // Assume the first template argument is the condition.
10512 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10513
10514 // Dig out the condition.
10515 Cond = nullptr;
10516 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10517 != TemplateArgument::Expression)
10518 return true;
10519
10520 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10521
10522 // Ignore Boolean literals; they add no value.
10523 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10524 Cond = nullptr;
10525
10526 return true;
10527}
10528
10529QualType
10530Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10531 SourceLocation KeywordLoc,
10532 NestedNameSpecifierLoc QualifierLoc,
10533 const IdentifierInfo &II,
10534 SourceLocation IILoc,
10535 TypeSourceInfo **TSI,
10536 bool DeducedTSTContext) {
10537 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10538 DeducedTSTContext);
10539 if (T.isNull())
10540 return QualType();
10541
10542 *TSI = Context.CreateTypeSourceInfo(T);
10543 if (isa<DependentNameType>(T)) {
10544 DependentNameTypeLoc TL =
10545 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10546 TL.setElaboratedKeywordLoc(KeywordLoc);
10547 TL.setQualifierLoc(QualifierLoc);
10548 TL.setNameLoc(IILoc);
10549 } else {
10550 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10551 TL.setElaboratedKeywordLoc(KeywordLoc);
10552 TL.setQualifierLoc(QualifierLoc);
10553 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10554 }
10555 return T;
10556}
10557
10558/// Build the type that describes a C++ typename specifier,
10559/// e.g., "typename T::type".
10560QualType
10561Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10562 SourceLocation KeywordLoc,
10563 NestedNameSpecifierLoc QualifierLoc,
10564 const IdentifierInfo &II,
10565 SourceLocation IILoc, bool DeducedTSTContext) {
10566 CXXScopeSpec SS;
10567 SS.Adopt(QualifierLoc);
10568
10569 DeclContext *Ctx = nullptr;
10570 if (QualifierLoc) {
10571 Ctx = computeDeclContext(SS);
10572 if (!Ctx) {
10573 // If the nested-name-specifier is dependent and couldn't be
10574 // resolved to a type, build a typename type.
10575 assert(QualifierLoc.getNestedNameSpecifier()->isDependent())(static_cast<void> (0));
10576 return Context.getDependentNameType(Keyword,
10577 QualifierLoc.getNestedNameSpecifier(),
10578 &II);
10579 }
10580
10581 // If the nested-name-specifier refers to the current instantiation,
10582 // the "typename" keyword itself is superfluous. In C++03, the
10583 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10584 // allows such extraneous "typename" keywords, and we retroactively
10585 // apply this DR to C++03 code with only a warning. In any case we continue.
10586
10587 if (RequireCompleteDeclContext(SS, Ctx))
10588 return QualType();
10589 }
10590
10591 DeclarationName Name(&II);
10592 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10593 if (Ctx)
10594 LookupQualifiedName(Result, Ctx, SS);
10595 else
10596 LookupName(Result, CurScope);
10597 unsigned DiagID = 0;
10598 Decl *Referenced = nullptr;
10599 switch (Result.getResultKind()) {
10600 case LookupResult::NotFound: {
10601 // If we're looking up 'type' within a template named 'enable_if', produce
10602 // a more specific diagnostic.
10603 SourceRange CondRange;
10604 Expr *Cond = nullptr;
10605 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10606 // If we have a condition, narrow it down to the specific failed
10607 // condition.
10608 if (Cond) {
10609 Expr *FailedCond;
10610 std::string FailedDescription;
10611 std::tie(FailedCond, FailedDescription) =
10612 findFailedBooleanCondition(Cond);
10613
10614 Diag(FailedCond->getExprLoc(),
10615 diag::err_typename_nested_not_found_requirement)
10616 << FailedDescription
10617 << FailedCond->getSourceRange();
10618 return QualType();
10619 }
10620
10621 Diag(CondRange.getBegin(),
10622 diag::err_typename_nested_not_found_enable_if)
10623 << Ctx << CondRange;
10624 return QualType();
10625 }
10626
10627 DiagID = Ctx ? diag::err_typename_nested_not_found
10628 : diag::err_unknown_typename;
10629 break;
10630 }
10631
10632 case LookupResult::FoundUnresolvedValue: {
10633 // We found a using declaration that is a value. Most likely, the using
10634 // declaration itself is meant to have the 'typename' keyword.
10635 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10636 IILoc);
10637 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10638 << Name << Ctx << FullRange;
10639 if (UnresolvedUsingValueDecl *Using
10640 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10641 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10642 Diag(Loc, diag::note_using_value_decl_missing_typename)
10643 << FixItHint::CreateInsertion(Loc, "typename ");
10644 }
10645 }
10646 // Fall through to create a dependent typename type, from which we can recover
10647 // better.
10648 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10649
10650 case LookupResult::NotFoundInCurrentInstantiation:
10651 // Okay, it's a member of an unknown instantiation.
10652 return Context.getDependentNameType(Keyword,
10653 QualifierLoc.getNestedNameSpecifier(),
10654 &II);
10655
10656 case LookupResult::Found:
10657 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10658 // C++ [class.qual]p2:
10659 // In a lookup in which function names are not ignored and the
10660 // nested-name-specifier nominates a class C, if the name specified
10661 // after the nested-name-specifier, when looked up in C, is the
10662 // injected-class-name of C [...] then the name is instead considered
10663 // to name the constructor of class C.
10664 //
10665 // Unlike in an elaborated-type-specifier, function names are not ignored
10666 // in typename-specifier lookup. However, they are ignored in all the
10667 // contexts where we form a typename type with no keyword (that is, in
10668 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10669 //
10670 // FIXME: That's not strictly true: mem-initializer-id lookup does not
10671 // ignore functions, but that appears to be an oversight.
10672 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10673 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10674 if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10675 FoundRD->isInjectedClassName() &&
10676 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10677 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10678 << &II << 1 << 0 /*'typename' keyword used*/;
10679
10680 // We found a type. Build an ElaboratedType, since the
10681 // typename-specifier was just sugar.
10682 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10683 return Context.getElaboratedType(Keyword,
10684 QualifierLoc.getNestedNameSpecifier(),
10685 Context.getTypeDeclType(Type));
10686 }
10687
10688 // C++ [dcl.type.simple]p2:
10689 // A type-specifier of the form
10690 // typename[opt] nested-name-specifier[opt] template-name
10691 // is a placeholder for a deduced class type [...].
10692 if (getLangOpts().CPlusPlus17) {
10693 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10694 if (!DeducedTSTContext) {
10695 QualType T(QualifierLoc
10696 ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10697 : nullptr, 0);
10698 if (!T.isNull())
10699 Diag(IILoc, diag::err_dependent_deduced_tst)
10700 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10701 else
10702 Diag(IILoc, diag::err_deduced_tst)
10703 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10704 Diag(TD->getLocation(), diag::note_template_decl_here);
10705 return QualType();
10706 }
10707 return Context.getElaboratedType(
10708 Keyword, QualifierLoc.getNestedNameSpecifier(),
10709 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10710 QualType(), false));
10711 }
10712 }
10713
10714 DiagID = Ctx ? diag::err_typename_nested_not_type
10715 : diag::err_typename_not_type;
10716 Referenced = Result.getFoundDecl();
10717 break;
10718
10719 case LookupResult::FoundOverloaded:
10720 DiagID = Ctx ? diag::err_typename_nested_not_type
10721 : diag::err_typename_not_type;
10722 Referenced = *Result.begin();
10723 break;
10724
10725 case LookupResult::Ambiguous:
10726 return QualType();
10727 }
10728
10729 // If we get here, it's because name lookup did not find a
10730 // type. Emit an appropriate diagnostic and return an error.
10731 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10732 IILoc);
10733 if (Ctx)
10734 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10735 else
10736 Diag(IILoc, DiagID) << FullRange << Name;
10737 if (Referenced)
10738 Diag(Referenced->getLocation(),
10739 Ctx ? diag::note_typename_member_refers_here
10740 : diag::note_typename_refers_here)
10741 << Name;
10742 return QualType();
10743}
10744
10745namespace {
10746 // See Sema::RebuildTypeInCurrentInstantiation
10747 class CurrentInstantiationRebuilder
10748 : public TreeTransform<CurrentInstantiationRebuilder> {
10749 SourceLocation Loc;
10750 DeclarationName Entity;
10751
10752 public:
10753 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10754
10755 CurrentInstantiationRebuilder(Sema &SemaRef,
10756 SourceLocation Loc,
10757 DeclarationName Entity)
10758 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10759 Loc(Loc), Entity(Entity) { }
10760
10761 /// Determine whether the given type \p T has already been
10762 /// transformed.
10763 ///
10764 /// For the purposes of type reconstruction, a type has already been
10765 /// transformed if it is NULL or if it is not dependent.
10766 bool AlreadyTransformed(QualType T) {
10767 return T.isNull() || !T->isInstantiationDependentType();
10768 }
10769
10770 /// Returns the location of the entity whose type is being
10771 /// rebuilt.
10772 SourceLocation getBaseLocation() { return Loc; }
10773
10774 /// Returns the name of the entity whose type is being rebuilt.
10775 DeclarationName getBaseEntity() { return Entity; }
10776
10777 /// Sets the "base" location and entity when that
10778 /// information is known based on another transformation.
10779 void setBase(SourceLocation Loc, DeclarationName Entity) {
10780 this->Loc = Loc;
10781 this->Entity = Entity;
10782 }
10783
10784 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10785 // Lambdas never need to be transformed.
10786 return E;
10787 }
10788 };
10789} // end anonymous namespace
10790
10791/// Rebuilds a type within the context of the current instantiation.
10792///
10793/// The type \p T is part of the type of an out-of-line member definition of
10794/// a class template (or class template partial specialization) that was parsed
10795/// and constructed before we entered the scope of the class template (or
10796/// partial specialization thereof). This routine will rebuild that type now
10797/// that we have entered the declarator's scope, which may produce different
10798/// canonical types, e.g.,
10799///
10800/// \code
10801/// template<typename T>
10802/// struct X {
10803/// typedef T* pointer;
10804/// pointer data();
10805/// };
10806///
10807/// template<typename T>
10808/// typename X<T>::pointer X<T>::data() { ... }
10809/// \endcode
10810///
10811/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10812/// since we do not know that we can look into X<T> when we parsed the type.
10813/// This function will rebuild the type, performing the lookup of "pointer"
10814/// in X<T> and returning an ElaboratedType whose canonical type is the same
10815/// as the canonical type of T*, allowing the return types of the out-of-line
10816/// definition and the declaration to match.
10817TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10818 SourceLocation Loc,
10819 DeclarationName Name) {
10820 if (!T || !T->getType()->isInstantiationDependentType())
10821 return T;
10822
10823 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10824 return Rebuilder.TransformType(T);
10825}
10826
10827ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10828 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10829 DeclarationName());
10830 return Rebuilder.TransformExpr(E);
10831}
10832
10833bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10834 if (SS.isInvalid())
10835 return true;
10836
10837 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10838 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10839 DeclarationName());
10840 NestedNameSpecifierLoc Rebuilt
10841 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10842 if (!Rebuilt)
10843 return true;
10844
10845 SS.Adopt(Rebuilt);
10846 return false;
10847}
10848
10849/// Rebuild the template parameters now that we know we're in a current
10850/// instantiation.
10851bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10852 TemplateParameterList *Params) {
10853 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10854 Decl *Param = Params->getParam(I);
10855
10856 // There is nothing to rebuild in a type parameter.
10857 if (isa<TemplateTypeParmDecl>(Param))
10858 continue;
10859
10860 // Rebuild the template parameter list of a template template parameter.
10861 if (TemplateTemplateParmDecl *TTP
10862 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10863 if (RebuildTemplateParamsInCurrentInstantiation(
10864 TTP->getTemplateParameters()))
10865 return true;
10866
10867 continue;
10868 }
10869
10870 // Rebuild the type of a non-type template parameter.
10871 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10872 TypeSourceInfo *NewTSI
10873 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10874 NTTP->getLocation(),
10875 NTTP->getDeclName());
10876 if (!NewTSI)
10877 return true;
10878
10879 if (NewTSI->getType()->isUndeducedType()) {
10880 // C++17 [temp.dep.expr]p3:
10881 // An id-expression is type-dependent if it contains
10882 // - an identifier associated by name lookup with a non-type
10883 // template-parameter declared with a type that contains a
10884 // placeholder type (7.1.7.4),
10885 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10886 }
10887
10888 if (NewTSI != NTTP->getTypeSourceInfo()) {
10889 NTTP->setTypeSourceInfo(NewTSI);
10890 NTTP->setType(NewTSI->getType());
10891 }
10892 }
10893
10894 return false;
10895}
10896
10897/// Produces a formatted string that describes the binding of
10898/// template parameters to template arguments.
10899std::string
10900Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10901 const TemplateArgumentList &Args) {
10902 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10903}
10904
10905std::string
10906Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10907 const TemplateArgument *Args,
10908 unsigned NumArgs) {
10909 SmallString<128> Str;
10910 llvm::raw_svector_ostream Out(Str);
10911
10912 if (!Params || Params->size() == 0 || NumArgs == 0)
10913 return std::string();
10914
10915 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10916 if (I >= NumArgs)
10917 break;
10918
10919 if (I == 0)
10920 Out << "[with ";
10921 else
10922 Out << ", ";
10923
10924 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10925 Out << Id->getName();
10926 } else {
10927 Out << '$' << I;
10928 }
10929
10930 Out << " = ";
10931 Args[I].print(
10932 getPrintingPolicy(), Out,
10933 TemplateParameterList::shouldIncludeTypeForArgument(Params, I));
10934 }
10935
10936 Out << ']';
10937 return std::string(Out.str());
10938}
10939
10940void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10941 CachedTokens &Toks) {
10942 if (!FD)
10943 return;
10944
10945 auto LPT = std::make_unique<LateParsedTemplate>();
10946
10947 // Take tokens to avoid allocations
10948 LPT->Toks.swap(Toks);
10949 LPT->D = FnD;
10950 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10951
10952 FD->setLateTemplateParsed(true);
10953}
10954
10955void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10956 if (!FD)
10957 return;
10958 FD->setLateTemplateParsed(false);
10959}
10960
10961bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10962 DeclContext *DC = CurContext;
10963
10964 while (DC) {
10965 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10966 const FunctionDecl *FD = RD->isLocalClass();
10967 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10968 } else if (DC->isTranslationUnit() || DC->isNamespace())
10969 return false;
10970
10971 DC = DC->getParent();
10972 }
10973 return false;
10974}
10975
10976namespace {
10977/// Walk the path from which a declaration was instantiated, and check
10978/// that every explicit specialization along that path is visible. This enforces
10979/// C++ [temp.expl.spec]/6:
10980///
10981/// If a template, a member template or a member of a class template is
10982/// explicitly specialized then that specialization shall be declared before
10983/// the first use of that specialization that would cause an implicit
10984/// instantiation to take place, in every translation unit in which such a
10985/// use occurs; no diagnostic is required.
10986///
10987/// and also C++ [temp.class.spec]/1:
10988///
10989/// A partial specialization shall be declared before the first use of a
10990/// class template specialization that would make use of the partial
10991/// specialization as the result of an implicit or explicit instantiation
10992/// in every translation unit in which such a use occurs; no diagnostic is
10993/// required.
10994class ExplicitSpecializationVisibilityChecker {
10995 Sema &S;
10996 SourceLocation Loc;
10997 llvm::SmallVector<Module *, 8> Modules;
10998
10999public:
11000 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
11001 : S(S), Loc(Loc) {}
11002
11003 void check(NamedDecl *ND) {
11004 if (auto *FD = dyn_cast<FunctionDecl>(ND))
11005 return checkImpl(FD);
11006 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11007 return checkImpl(RD);
11008 if (auto *VD = dyn_cast<VarDecl>(ND))
11009 return checkImpl(VD);
11010 if (auto *ED = dyn_cast<EnumDecl>(ND))
11011 return checkImpl(ED);
11012 }
11013
11014private:
11015 void diagnose(NamedDecl *D, bool IsPartialSpec) {
11016 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11017 : Sema::MissingImportKind::ExplicitSpecialization;
11018 const bool Recover = true;
11019
11020 // If we got a custom set of modules (because only a subset of the
11021 // declarations are interesting), use them, otherwise let
11022 // diagnoseMissingImport intelligently pick some.
11023 if (Modules.empty())
11024 S.diagnoseMissingImport(Loc, D, Kind, Recover);
11025 else
11026 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11027 }
11028
11029 // Check a specific declaration. There are three problematic cases:
11030 //
11031 // 1) The declaration is an explicit specialization of a template
11032 // specialization.
11033 // 2) The declaration is an explicit specialization of a member of an
11034 // templated class.
11035 // 3) The declaration is an instantiation of a template, and that template
11036 // is an explicit specialization of a member of a templated class.
11037 //
11038 // We don't need to go any deeper than that, as the instantiation of the
11039 // surrounding class / etc is not triggered by whatever triggered this
11040 // instantiation, and thus should be checked elsewhere.
11041 template<typename SpecDecl>
11042 void checkImpl(SpecDecl *Spec) {
11043 bool IsHiddenExplicitSpecialization = false;
11044 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11045 IsHiddenExplicitSpecialization =
11046 Spec->getMemberSpecializationInfo()
11047 ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
11048 : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
11049 } else {
11050 checkInstantiated(Spec);
11051 }
11052
11053 if (IsHiddenExplicitSpecialization)
11054 diagnose(Spec->getMostRecentDecl(), false);
11055 }
11056
11057 void checkInstantiated(FunctionDecl *FD) {
11058 if (auto *TD = FD->getPrimaryTemplate())
11059 checkTemplate(TD);
11060 }
11061
11062 void checkInstantiated(CXXRecordDecl *RD) {
11063 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11064 if (!SD)
11065 return;
11066
11067 auto From = SD->getSpecializedTemplateOrPartial();
11068 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11069 checkTemplate(TD);
11070 else if (auto *TD =
11071 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11072 if (!S.hasVisibleDeclaration(TD))
11073 diagnose(TD, true);
11074 checkTemplate(TD);
11075 }
11076 }
11077
11078 void checkInstantiated(VarDecl *RD) {
11079 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11080 if (!SD)
11081 return;
11082
11083 auto From = SD->getSpecializedTemplateOrPartial();
11084 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11085 checkTemplate(TD);
11086 else if (auto *TD =
11087 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11088 if (!S.hasVisibleDeclaration(TD))
11089 diagnose(TD, true);
11090 checkTemplate(TD);
11091 }
11092 }
11093
11094 void checkInstantiated(EnumDecl *FD) {}
11095
11096 template<typename TemplDecl>
11097 void checkTemplate(TemplDecl *TD) {
11098 if (TD->isMemberSpecialization()) {
11099 if (!S.hasVisibleMemberSpecialization(TD, &Modules))
11100 diagnose(TD->getMostRecentDecl(), false);
11101 }
11102 }
11103};
11104} // end anonymous namespace
11105
11106void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11107 if (!getLangOpts().Modules)
11108 return;
11109
11110 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
11111}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/Sema/DeclSpec.h

1//===--- DeclSpec.h - Parsed declaration specifiers -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the classes used to store parsed information about
11/// declaration-specifiers and declarators.
12///
13/// \verbatim
14/// static const int volatile x, *y, *(*(*z)[10])(const void *x);
15/// ------------------------- - -- ---------------------------
16/// declaration-specifiers \ | /
17/// declarators
18/// \endverbatim
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CLANG_SEMA_DECLSPEC_H
23#define LLVM_CLANG_SEMA_DECLSPEC_H
24
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjCCommon.h"
27#include "clang/AST/NestedNameSpecifier.h"
28#include "clang/Basic/ExceptionSpecificationType.h"
29#include "clang/Basic/Lambda.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Lex/Token.h"
33#include "clang/Sema/Ownership.h"
34#include "clang/Sema/ParsedAttr.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ErrorHandling.h"
38
39namespace clang {
40 class ASTContext;
41 class CXXRecordDecl;
42 class TypeLoc;
43 class LangOptions;
44 class IdentifierInfo;
45 class NamespaceAliasDecl;
46 class NamespaceDecl;
47 class ObjCDeclSpec;
48 class Sema;
49 class Declarator;
50 struct TemplateIdAnnotation;
51
52/// Represents a C++ nested-name-specifier or a global scope specifier.
53///
54/// These can be in 3 states:
55/// 1) Not present, identified by isEmpty()
56/// 2) Present, identified by isNotEmpty()
57/// 2.a) Valid, identified by isValid()
58/// 2.b) Invalid, identified by isInvalid().
59///
60/// isSet() is deprecated because it mostly corresponded to "valid" but was
61/// often used as if it meant "present".
62///
63/// The actual scope is described by getScopeRep().
64class CXXScopeSpec {
65 SourceRange Range;
66 NestedNameSpecifierLocBuilder Builder;
67
68public:
69 SourceRange getRange() const { return Range; }
70 void setRange(SourceRange R) { Range = R; }
71 void setBeginLoc(SourceLocation Loc) { Range.setBegin(Loc); }
72 void setEndLoc(SourceLocation Loc) { Range.setEnd(Loc); }
73 SourceLocation getBeginLoc() const { return Range.getBegin(); }
74 SourceLocation getEndLoc() const { return Range.getEnd(); }
75
76 /// Retrieve the representation of the nested-name-specifier.
77 NestedNameSpecifier *getScopeRep() const {
78 return Builder.getRepresentation();
79 }
80
81 /// Extend the current nested-name-specifier by another
82 /// nested-name-specifier component of the form 'type::'.
83 ///
84 /// \param Context The AST context in which this nested-name-specifier
85 /// resides.
86 ///
87 /// \param TemplateKWLoc The location of the 'template' keyword, if present.
88 ///
89 /// \param TL The TypeLoc that describes the type preceding the '::'.
90 ///
91 /// \param ColonColonLoc The location of the trailing '::'.
92 void Extend(ASTContext &Context, SourceLocation TemplateKWLoc, TypeLoc TL,
93 SourceLocation ColonColonLoc);
94
95 /// Extend the current nested-name-specifier by another
96 /// nested-name-specifier component of the form 'identifier::'.
97 ///
98 /// \param Context The AST context in which this nested-name-specifier
99 /// resides.
100 ///
101 /// \param Identifier The identifier.
102 ///
103 /// \param IdentifierLoc The location of the identifier.
104 ///
105 /// \param ColonColonLoc The location of the trailing '::'.
106 void Extend(ASTContext &Context, IdentifierInfo *Identifier,
107 SourceLocation IdentifierLoc, SourceLocation ColonColonLoc);
108
109 /// Extend the current nested-name-specifier by another
110 /// nested-name-specifier component of the form 'namespace::'.
111 ///
112 /// \param Context The AST context in which this nested-name-specifier
113 /// resides.
114 ///
115 /// \param Namespace The namespace.
116 ///
117 /// \param NamespaceLoc The location of the namespace name.
118 ///
119 /// \param ColonColonLoc The location of the trailing '::'.
120 void Extend(ASTContext &Context, NamespaceDecl *Namespace,
121 SourceLocation NamespaceLoc, SourceLocation ColonColonLoc);
122
123 /// Extend the current nested-name-specifier by another
124 /// nested-name-specifier component of the form 'namespace-alias::'.
125 ///
126 /// \param Context The AST context in which this nested-name-specifier
127 /// resides.
128 ///
129 /// \param Alias The namespace alias.
130 ///
131 /// \param AliasLoc The location of the namespace alias
132 /// name.
133 ///
134 /// \param ColonColonLoc The location of the trailing '::'.
135 void Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
136 SourceLocation AliasLoc, SourceLocation ColonColonLoc);
137
138 /// Turn this (empty) nested-name-specifier into the global
139 /// nested-name-specifier '::'.
140 void MakeGlobal(ASTContext &Context, SourceLocation ColonColonLoc);
141
142 /// Turns this (empty) nested-name-specifier into '__super'
143 /// nested-name-specifier.
144 ///
145 /// \param Context The AST context in which this nested-name-specifier
146 /// resides.
147 ///
148 /// \param RD The declaration of the class in which nested-name-specifier
149 /// appeared.
150 ///
151 /// \param SuperLoc The location of the '__super' keyword.
152 /// name.
153 ///
154 /// \param ColonColonLoc The location of the trailing '::'.
155 void MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
156 SourceLocation SuperLoc, SourceLocation ColonColonLoc);
157
158 /// Make a new nested-name-specifier from incomplete source-location
159 /// information.
160 ///
161 /// FIXME: This routine should be used very, very rarely, in cases where we
162 /// need to synthesize a nested-name-specifier. Most code should instead use
163 /// \c Adopt() with a proper \c NestedNameSpecifierLoc.
164 void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier,
165 SourceRange R);
166
167 /// Adopt an existing nested-name-specifier (with source-range
168 /// information).
169 void Adopt(NestedNameSpecifierLoc Other);
170
171 /// Retrieve a nested-name-specifier with location information, copied
172 /// into the given AST context.
173 ///
174 /// \param Context The context into which this nested-name-specifier will be
175 /// copied.
176 NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const;
177
178 /// Retrieve the location of the name in the last qualifier
179 /// in this nested name specifier.
180 ///
181 /// For example, the location of \c bar
182 /// in
183 /// \verbatim
184 /// \::foo::bar<0>::
185 /// ^~~
186 /// \endverbatim
187 SourceLocation getLastQualifierNameLoc() const;
188
189 /// No scope specifier.
190 bool isEmpty() const { return Range.isInvalid() && getScopeRep() == nullptr; }
30
Assuming the condition is false
31
Returning zero, which participates in a condition later
191 /// A scope specifier is present, but may be valid or invalid.
192 bool isNotEmpty() const { return !isEmpty(); }
29
Calling 'CXXScopeSpec::isEmpty'
32
Returning from 'CXXScopeSpec::isEmpty'
33
Returning the value 1, which participates in a condition later
193
194 /// An error occurred during parsing of the scope specifier.
195 bool isInvalid() const { return Range.isValid() && getScopeRep() == nullptr; }
9
Returning zero, which participates in a condition later
196 /// A scope specifier is present, and it refers to a real scope.
197 bool isValid() const { return getScopeRep() != nullptr; }
198
199 /// Indicate that this nested-name-specifier is invalid.
200 void SetInvalid(SourceRange R) {
201 assert(R.isValid() && "Must have a valid source range")(static_cast<void> (0));
202 if (Range.getBegin().isInvalid())
203 Range.setBegin(R.getBegin());
204 Range.setEnd(R.getEnd());
205 Builder.Clear();
206 }
207
208 /// Deprecated. Some call sites intend isNotEmpty() while others intend
209 /// isValid().
210 bool isSet() const { return getScopeRep() != nullptr; }
211
212 void clear() {
213 Range = SourceRange();
214 Builder.Clear();
215 }
216
217 /// Retrieve the data associated with the source-location information.
218 char *location_data() const { return Builder.getBuffer().first; }
219
220 /// Retrieve the size of the data associated with source-location
221 /// information.
222 unsigned location_size() const { return Builder.getBuffer().second; }
223};
224
225/// Captures information about "declaration specifiers".
226///
227/// "Declaration specifiers" encompasses storage-class-specifiers,
228/// type-specifiers, type-qualifiers, and function-specifiers.
229class DeclSpec {
230public:
231 /// storage-class-specifier
232 /// \note The order of these enumerators is important for diagnostics.
233 enum SCS {
234 SCS_unspecified = 0,
235 SCS_typedef,
236 SCS_extern,
237 SCS_static,
238 SCS_auto,
239 SCS_register,
240 SCS_private_extern,
241 SCS_mutable
242 };
243
244 // Import thread storage class specifier enumeration and constants.
245 // These can be combined with SCS_extern and SCS_static.
246 typedef ThreadStorageClassSpecifier TSCS;
247 static const TSCS TSCS_unspecified = clang::TSCS_unspecified;
248 static const TSCS TSCS___thread = clang::TSCS___thread;
249 static const TSCS TSCS_thread_local = clang::TSCS_thread_local;
250 static const TSCS TSCS__Thread_local = clang::TSCS__Thread_local;
251
252 enum TSC {
253 TSC_unspecified,
254 TSC_imaginary,
255 TSC_complex
256 };
257
258 // Import type specifier type enumeration and constants.
259 typedef TypeSpecifierType TST;
260 static const TST TST_unspecified = clang::TST_unspecified;
261 static const TST TST_void = clang::TST_void;
262 static const TST TST_char = clang::TST_char;
263 static const TST TST_wchar = clang::TST_wchar;
264 static const TST TST_char8 = clang::TST_char8;
265 static const TST TST_char16 = clang::TST_char16;
266 static const TST TST_char32 = clang::TST_char32;
267 static const TST TST_int = clang::TST_int;
268 static const TST TST_int128 = clang::TST_int128;
269 static const TST TST_extint = clang::TST_extint;
270 static const TST TST_half = clang::TST_half;
271 static const TST TST_BFloat16 = clang::TST_BFloat16;
272 static const TST TST_float = clang::TST_float;
273 static const TST TST_double = clang::TST_double;
274 static const TST TST_float16 = clang::TST_Float16;
275 static const TST TST_accum = clang::TST_Accum;
276 static const TST TST_fract = clang::TST_Fract;
277 static const TST TST_float128 = clang::TST_float128;
278 static const TST TST_bool = clang::TST_bool;
279 static const TST TST_decimal32 = clang::TST_decimal32;
280 static const TST TST_decimal64 = clang::TST_decimal64;
281 static const TST TST_decimal128 = clang::TST_decimal128;
282 static const TST TST_enum = clang::TST_enum;
283 static const TST TST_union = clang::TST_union;
284 static const TST TST_struct = clang::TST_struct;
285 static const TST TST_interface = clang::TST_interface;
286 static const TST TST_class = clang::TST_class;
287 static const TST TST_typename = clang::TST_typename;
288 static const TST TST_typeofType = clang::TST_typeofType;
289 static const TST TST_typeofExpr = clang::TST_typeofExpr;
290 static const TST TST_decltype = clang::TST_decltype;
291 static const TST TST_decltype_auto = clang::TST_decltype_auto;
292 static const TST TST_underlyingType = clang::TST_underlyingType;
293 static const TST TST_auto = clang::TST_auto;
294 static const TST TST_auto_type = clang::TST_auto_type;
295 static const TST TST_unknown_anytype = clang::TST_unknown_anytype;
296 static const TST TST_atomic = clang::TST_atomic;
297#define GENERIC_IMAGE_TYPE(ImgType, Id) \
298 static const TST TST_##ImgType##_t = clang::TST_##ImgType##_t;
299#include "clang/Basic/OpenCLImageTypes.def"
300 static const TST TST_error = clang::TST_error;
301
302 // type-qualifiers
303 enum TQ { // NOTE: These flags must be kept in sync with Qualifiers::TQ.
304 TQ_unspecified = 0,
305 TQ_const = 1,
306 TQ_restrict = 2,
307 TQ_volatile = 4,
308 TQ_unaligned = 8,
309 // This has no corresponding Qualifiers::TQ value, because it's not treated
310 // as a qualifier in our type system.
311 TQ_atomic = 16
312 };
313
314 /// ParsedSpecifiers - Flags to query which specifiers were applied. This is
315 /// returned by getParsedSpecifiers.
316 enum ParsedSpecifiers {
317 PQ_None = 0,
318 PQ_StorageClassSpecifier = 1,
319 PQ_TypeSpecifier = 2,
320 PQ_TypeQualifier = 4,
321 PQ_FunctionSpecifier = 8
322 // FIXME: Attributes should be included here.
323 };
324
325private:
326 // storage-class-specifier
327 /*SCS*/unsigned StorageClassSpec : 3;
328 /*TSCS*/unsigned ThreadStorageClassSpec : 2;
329 unsigned SCS_extern_in_linkage_spec : 1;
330
331 // type-specifier
332 /*TypeSpecifierWidth*/ unsigned TypeSpecWidth : 2;
333 /*TSC*/unsigned TypeSpecComplex : 2;
334 /*TSS*/unsigned TypeSpecSign : 2;
335 /*TST*/unsigned TypeSpecType : 6;
336 unsigned TypeAltiVecVector : 1;
337 unsigned TypeAltiVecPixel : 1;
338 unsigned TypeAltiVecBool : 1;
339 unsigned TypeSpecOwned : 1;
340 unsigned TypeSpecPipe : 1;
341 unsigned TypeSpecSat : 1;
342 unsigned ConstrainedAuto : 1;
343
344 // type-qualifiers
345 unsigned TypeQualifiers : 5; // Bitwise OR of TQ.
346
347 // function-specifier
348 unsigned FS_inline_specified : 1;
349 unsigned FS_forceinline_specified: 1;
350 unsigned FS_virtual_specified : 1;
351 unsigned FS_noreturn_specified : 1;
352
353 // friend-specifier
354 unsigned Friend_specified : 1;
355
356 // constexpr-specifier
357 unsigned ConstexprSpecifier : 2;
358
359 union {
360 UnionParsedType TypeRep;
361 Decl *DeclRep;
362 Expr *ExprRep;
363 TemplateIdAnnotation *TemplateIdRep;
364 };
365
366 /// ExplicitSpecifier - Store information about explicit spicifer.
367 ExplicitSpecifier FS_explicit_specifier;
368
369 // attributes.
370 ParsedAttributes Attrs;
371
372 // Scope specifier for the type spec, if applicable.
373 CXXScopeSpec TypeScope;
374
375 // SourceLocation info. These are null if the item wasn't specified or if
376 // the setting was synthesized.
377 SourceRange Range;
378
379 SourceLocation StorageClassSpecLoc, ThreadStorageClassSpecLoc;
380 SourceRange TSWRange;
381 SourceLocation TSCLoc, TSSLoc, TSTLoc, AltiVecLoc, TSSatLoc;
382 /// TSTNameLoc - If TypeSpecType is any of class, enum, struct, union,
383 /// typename, then this is the location of the named type (if present);
384 /// otherwise, it is the same as TSTLoc. Hence, the pair TSTLoc and
385 /// TSTNameLoc provides source range info for tag types.
386 SourceLocation TSTNameLoc;
387 SourceRange TypeofParensRange;
388 SourceLocation TQ_constLoc, TQ_restrictLoc, TQ_volatileLoc, TQ_atomicLoc,
389 TQ_unalignedLoc;
390 SourceLocation FS_inlineLoc, FS_virtualLoc, FS_explicitLoc, FS_noreturnLoc;
391 SourceLocation FS_explicitCloseParenLoc;
392 SourceLocation FS_forceinlineLoc;
393 SourceLocation FriendLoc, ModulePrivateLoc, ConstexprLoc;
394 SourceLocation TQ_pipeLoc;
395
396 WrittenBuiltinSpecs writtenBS;
397 void SaveWrittenBuiltinSpecs();
398
399 ObjCDeclSpec *ObjCQualifiers;
400
401 static bool isTypeRep(TST T) {
402 return (T == TST_typename || T == TST_typeofType ||
403 T == TST_underlyingType || T == TST_atomic);
404 }
405 static bool isExprRep(TST T) {
406 return (T == TST_typeofExpr || T == TST_decltype || T == TST_extint);
407 }
408 static bool isTemplateIdRep(TST T) {
409 return (T == TST_auto || T == TST_decltype_auto);
410 }
411
412 DeclSpec(const DeclSpec &) = delete;
413 void operator=(const DeclSpec &) = delete;
414public:
415 static bool isDeclRep(TST T) {
416 return (T == TST_enum || T == TST_struct ||
417 T == TST_interface || T == TST_union ||
418 T == TST_class);
419 }
420
421 DeclSpec(AttributeFactory &attrFactory)
422 : StorageClassSpec(SCS_unspecified),
423 ThreadStorageClassSpec(TSCS_unspecified),
424 SCS_extern_in_linkage_spec(false),
425 TypeSpecWidth(static_cast<unsigned>(TypeSpecifierWidth::Unspecified)),
426 TypeSpecComplex(TSC_unspecified),
427 TypeSpecSign(static_cast<unsigned>(TypeSpecifierSign::Unspecified)),
428 TypeSpecType(TST_unspecified), TypeAltiVecVector(false),
429 TypeAltiVecPixel(false), TypeAltiVecBool(false), TypeSpecOwned(false),
430 TypeSpecPipe(false), TypeSpecSat(false), ConstrainedAuto(false),
431 TypeQualifiers(TQ_unspecified), FS_inline_specified(false),
432 FS_forceinline_specified(false), FS_virtual_specified(false),
433 FS_noreturn_specified(false), Friend_specified(false),
434 ConstexprSpecifier(
435 static_cast<unsigned>(ConstexprSpecKind::Unspecified)),
436 FS_explicit_specifier(), Attrs(attrFactory), writtenBS(),
437 ObjCQualifiers(nullptr) {}
438
439 // storage-class-specifier
440 SCS getStorageClassSpec() const { return (SCS)StorageClassSpec; }
441 TSCS getThreadStorageClassSpec() const {
442 return (TSCS)ThreadStorageClassSpec;
443 }
444 bool isExternInLinkageSpec() const { return SCS_extern_in_linkage_spec; }
445 void setExternInLinkageSpec(bool Value) {
446 SCS_extern_in_linkage_spec = Value;
447 }
448
449 SourceLocation getStorageClassSpecLoc() const { return StorageClassSpecLoc; }
450 SourceLocation getThreadStorageClassSpecLoc() const {
451 return ThreadStorageClassSpecLoc;
452 }
453
454 void ClearStorageClassSpecs() {
455 StorageClassSpec = DeclSpec::SCS_unspecified;
456 ThreadStorageClassSpec = DeclSpec::TSCS_unspecified;
457 SCS_extern_in_linkage_spec = false;
458 StorageClassSpecLoc = SourceLocation();
459 ThreadStorageClassSpecLoc = SourceLocation();
460 }
461
462 void ClearTypeSpecType() {
463 TypeSpecType = DeclSpec::TST_unspecified;
464 TypeSpecOwned = false;
465 TSTLoc = SourceLocation();
466 }
467
468 // type-specifier
469 TypeSpecifierWidth getTypeSpecWidth() const {
470 return static_cast<TypeSpecifierWidth>(TypeSpecWidth);
471 }
472 TSC getTypeSpecComplex() const { return (TSC)TypeSpecComplex; }
473 TypeSpecifierSign getTypeSpecSign() const {
474 return static_cast<TypeSpecifierSign>(TypeSpecSign);
475 }
476 TST getTypeSpecType() const { return (TST)TypeSpecType; }
477 bool isTypeAltiVecVector() const { return TypeAltiVecVector; }
478 bool isTypeAltiVecPixel() const { return TypeAltiVecPixel; }
479 bool isTypeAltiVecBool() const { return TypeAltiVecBool; }
480 bool isTypeSpecOwned() const { return TypeSpecOwned; }
481 bool isTypeRep() const { return isTypeRep((TST) TypeSpecType); }
482 bool isTypeSpecPipe() const { return TypeSpecPipe; }
483 bool isTypeSpecSat() const { return TypeSpecSat; }
484 bool isConstrainedAuto() const { return ConstrainedAuto; }
485
486 ParsedType getRepAsType() const {
487 assert(isTypeRep((TST) TypeSpecType) && "DeclSpec does not store a type")(static_cast<void> (0));
488 return TypeRep;
489 }
490 Decl *getRepAsDecl() const {
491 assert(isDeclRep((TST) TypeSpecType) && "DeclSpec does not store a decl")(static_cast<void> (0));
492 return DeclRep;
493 }
494 Expr *getRepAsExpr() const {
495 assert(isExprRep((TST) TypeSpecType) && "DeclSpec does not store an expr")(static_cast<void> (0));
496 return ExprRep;
497 }
498 TemplateIdAnnotation *getRepAsTemplateId() const {
499 assert(isTemplateIdRep((TST) TypeSpecType) &&(static_cast<void> (0))
500 "DeclSpec does not store a template id")(static_cast<void> (0));
501 return TemplateIdRep;
502 }
503 CXXScopeSpec &getTypeSpecScope() { return TypeScope; }
504 const CXXScopeSpec &getTypeSpecScope() const { return TypeScope; }
505
506 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
507 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
508 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
509
510 SourceLocation getTypeSpecWidthLoc() const { return TSWRange.getBegin(); }
511 SourceRange getTypeSpecWidthRange() const { return TSWRange; }
512 SourceLocation getTypeSpecComplexLoc() const { return TSCLoc; }
513 SourceLocation getTypeSpecSignLoc() const { return TSSLoc; }
514 SourceLocation getTypeSpecTypeLoc() const { return TSTLoc; }
515 SourceLocation getAltiVecLoc() const { return AltiVecLoc; }
516 SourceLocation getTypeSpecSatLoc() const { return TSSatLoc; }
517
518 SourceLocation getTypeSpecTypeNameLoc() const {
519 assert(isDeclRep((TST) TypeSpecType) || TypeSpecType == TST_typename)(static_cast<void> (0));
520 return TSTNameLoc;
521 }
522
523 SourceRange getTypeofParensRange() const { return TypeofParensRange; }
524 void setTypeofParensRange(SourceRange range) { TypeofParensRange = range; }
525
526 bool hasAutoTypeSpec() const {
527 return (TypeSpecType == TST_auto || TypeSpecType == TST_auto_type ||
528 TypeSpecType == TST_decltype_auto);
529 }
530
531 bool hasTagDefinition() const;
532
533 /// Turn a type-specifier-type into a string like "_Bool" or "union".
534 static const char *getSpecifierName(DeclSpec::TST T,
535 const PrintingPolicy &Policy);
536 static const char *getSpecifierName(DeclSpec::TQ Q);
537 static const char *getSpecifierName(TypeSpecifierSign S);
538 static const char *getSpecifierName(DeclSpec::TSC C);
539 static const char *getSpecifierName(TypeSpecifierWidth W);
540 static const char *getSpecifierName(DeclSpec::SCS S);
541 static const char *getSpecifierName(DeclSpec::TSCS S);
542 static const char *getSpecifierName(ConstexprSpecKind C);
543
544 // type-qualifiers
545
546 /// getTypeQualifiers - Return a set of TQs.
547 unsigned getTypeQualifiers() const { return TypeQualifiers; }
548 SourceLocation getConstSpecLoc() const { return TQ_constLoc; }
549 SourceLocation getRestrictSpecLoc() const { return TQ_restrictLoc; }
550 SourceLocation getVolatileSpecLoc() const { return TQ_volatileLoc; }
551 SourceLocation getAtomicSpecLoc() const { return TQ_atomicLoc; }
552 SourceLocation getUnalignedSpecLoc() const { return TQ_unalignedLoc; }
553 SourceLocation getPipeLoc() const { return TQ_pipeLoc; }
554
555 /// Clear out all of the type qualifiers.
556 void ClearTypeQualifiers() {
557 TypeQualifiers = 0;
558 TQ_constLoc = SourceLocation();
559 TQ_restrictLoc = SourceLocation();
560 TQ_volatileLoc = SourceLocation();
561 TQ_atomicLoc = SourceLocation();
562 TQ_unalignedLoc = SourceLocation();
563 TQ_pipeLoc = SourceLocation();
564 }
565
566 // function-specifier
567 bool isInlineSpecified() const {
568 return FS_inline_specified | FS_forceinline_specified;
569 }
570 SourceLocation getInlineSpecLoc() const {
571 return FS_inline_specified ? FS_inlineLoc : FS_forceinlineLoc;
572 }
573
574 ExplicitSpecifier getExplicitSpecifier() const {
575 return FS_explicit_specifier;
576 }
577
578 bool isVirtualSpecified() const { return FS_virtual_specified; }
579 SourceLocation getVirtualSpecLoc() const { return FS_virtualLoc; }
580
581 bool hasExplicitSpecifier() const {
582 return FS_explicit_specifier.isSpecified();
583 }
584 SourceLocation getExplicitSpecLoc() const { return FS_explicitLoc; }
585 SourceRange getExplicitSpecRange() const {
586 return FS_explicit_specifier.getExpr()
587 ? SourceRange(FS_explicitLoc, FS_explicitCloseParenLoc)
588 : SourceRange(FS_explicitLoc);
589 }
590
591 bool isNoreturnSpecified() const { return FS_noreturn_specified; }
592 SourceLocation getNoreturnSpecLoc() const { return FS_noreturnLoc; }
593
594 void ClearFunctionSpecs() {
595 FS_inline_specified = false;
596 FS_inlineLoc = SourceLocation();
597 FS_forceinline_specified = false;
598 FS_forceinlineLoc = SourceLocation();
599 FS_virtual_specified = false;
600 FS_virtualLoc = SourceLocation();
601 FS_explicit_specifier = ExplicitSpecifier();
602 FS_explicitLoc = SourceLocation();
603 FS_explicitCloseParenLoc = SourceLocation();
604 FS_noreturn_specified = false;
605 FS_noreturnLoc = SourceLocation();
606 }
607
608 /// This method calls the passed in handler on each CVRU qual being
609 /// set.
610 /// Handle - a handler to be invoked.
611 void forEachCVRUQualifier(
612 llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
613
614 /// This method calls the passed in handler on each qual being
615 /// set.
616 /// Handle - a handler to be invoked.
617 void forEachQualifier(
618 llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
619
620 /// Return true if any type-specifier has been found.
621 bool hasTypeSpecifier() const {
622 return getTypeSpecType() != DeclSpec::TST_unspecified ||
623 getTypeSpecWidth() != TypeSpecifierWidth::Unspecified ||
624 getTypeSpecComplex() != DeclSpec::TSC_unspecified ||
625 getTypeSpecSign() != TypeSpecifierSign::Unspecified;
626 }
627
628 /// Return a bitmask of which flavors of specifiers this
629 /// DeclSpec includes.
630 unsigned getParsedSpecifiers() const;
631
632 /// isEmpty - Return true if this declaration specifier is completely empty:
633 /// no tokens were parsed in the production of it.
634 bool isEmpty() const {
635 return getParsedSpecifiers() == DeclSpec::PQ_None;
636 }
637
638 void SetRangeStart(SourceLocation Loc) { Range.setBegin(Loc); }
639 void SetRangeEnd(SourceLocation Loc) { Range.setEnd(Loc); }
640
641 /// These methods set the specified attribute of the DeclSpec and
642 /// return false if there was no error. If an error occurs (for
643 /// example, if we tried to set "auto" on a spec with "extern"
644 /// already set), they return true and set PrevSpec and DiagID
645 /// such that
646 /// Diag(Loc, DiagID) << PrevSpec;
647 /// will yield a useful result.
648 ///
649 /// TODO: use a more general approach that still allows these
650 /// diagnostics to be ignored when desired.
651 bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
652 const char *&PrevSpec, unsigned &DiagID,
653 const PrintingPolicy &Policy);
654 bool SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc,
655 const char *&PrevSpec, unsigned &DiagID);
656 bool SetTypeSpecWidth(TypeSpecifierWidth W, SourceLocation Loc,
657 const char *&PrevSpec, unsigned &DiagID,
658 const PrintingPolicy &Policy);
659 bool SetTypeSpecComplex(TSC C, SourceLocation Loc, const char *&PrevSpec,
660 unsigned &DiagID);
661 bool SetTypeSpecSign(TypeSpecifierSign S, SourceLocation Loc,
662 const char *&PrevSpec, unsigned &DiagID);
663 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
664 unsigned &DiagID, const PrintingPolicy &Policy);
665 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
666 unsigned &DiagID, ParsedType Rep,
667 const PrintingPolicy &Policy);
668 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
669 unsigned &DiagID, TypeResult Rep,
670 const PrintingPolicy &Policy) {
671 if (Rep.isInvalid())
672 return SetTypeSpecError();
673 return SetTypeSpecType(T, Loc, PrevSpec, DiagID, Rep.get(), Policy);
674 }
675 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
676 unsigned &DiagID, Decl *Rep, bool Owned,
677 const PrintingPolicy &Policy);
678 bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
679 SourceLocation TagNameLoc, const char *&PrevSpec,
680 unsigned &DiagID, ParsedType Rep,
681 const PrintingPolicy &Policy);
682 bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
683 SourceLocation TagNameLoc, const char *&PrevSpec,
684 unsigned &DiagID, Decl *Rep, bool Owned,
685 const PrintingPolicy &Policy);
686 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
687 unsigned &DiagID, TemplateIdAnnotation *Rep,
688 const PrintingPolicy &Policy);
689
690 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
691 unsigned &DiagID, Expr *Rep,
692 const PrintingPolicy &policy);
693 bool SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
694 const char *&PrevSpec, unsigned &DiagID,
695 const PrintingPolicy &Policy);
696 bool SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
697 const char *&PrevSpec, unsigned &DiagID,
698 const PrintingPolicy &Policy);
699 bool SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc,
700 const char *&PrevSpec, unsigned &DiagID,
701 const PrintingPolicy &Policy);
702 bool SetTypePipe(bool isPipe, SourceLocation Loc,
703 const char *&PrevSpec, unsigned &DiagID,
704 const PrintingPolicy &Policy);
705 bool SetExtIntType(SourceLocation KWLoc, Expr *BitWidth,
706 const char *&PrevSpec, unsigned &DiagID,
707 const PrintingPolicy &Policy);
708 bool SetTypeSpecSat(SourceLocation Loc, const char *&PrevSpec,
709 unsigned &DiagID);
710 bool SetTypeSpecError();
711 void UpdateDeclRep(Decl *Rep) {
712 assert(isDeclRep((TST) TypeSpecType))(static_cast<void> (0));
713 DeclRep = Rep;
714 }
715 void UpdateTypeRep(ParsedType Rep) {
716 assert(isTypeRep((TST) TypeSpecType))(static_cast<void> (0));
717 TypeRep = Rep;
718 }
719 void UpdateExprRep(Expr *Rep) {
720 assert(isExprRep((TST) TypeSpecType))(static_cast<void> (0));
721 ExprRep = Rep;
722 }
723
724 bool SetTypeQual(TQ T, SourceLocation Loc);
725
726 bool SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
727 unsigned &DiagID, const LangOptions &Lang);
728
729 bool setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
730 unsigned &DiagID);
731 bool setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec,
732 unsigned &DiagID);
733 bool setFunctionSpecVirtual(SourceLocation Loc, const char *&PrevSpec,
734 unsigned &DiagID);
735 bool setFunctionSpecExplicit(SourceLocation Loc, const char *&PrevSpec,
736 unsigned &DiagID, ExplicitSpecifier ExplicitSpec,
737 SourceLocation CloseParenLoc);
738 bool setFunctionSpecNoreturn(SourceLocation Loc, const char *&PrevSpec,
739 unsigned &DiagID);
740
741 bool SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
742 unsigned &DiagID);
743 bool setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
744 unsigned &DiagID);
745 bool SetConstexprSpec(ConstexprSpecKind ConstexprKind, SourceLocation Loc,
746 const char *&PrevSpec, unsigned &DiagID);
747
748 bool isFriendSpecified() const { return Friend_specified; }
749 SourceLocation getFriendSpecLoc() const { return FriendLoc; }
750
751 bool isModulePrivateSpecified() const { return ModulePrivateLoc.isValid(); }
752 SourceLocation getModulePrivateSpecLoc() const { return ModulePrivateLoc; }
753
754 ConstexprSpecKind getConstexprSpecifier() const {
755 return ConstexprSpecKind(ConstexprSpecifier);
756 }
757
758 SourceLocation getConstexprSpecLoc() const { return ConstexprLoc; }
759 bool hasConstexprSpecifier() const {
760 return getConstexprSpecifier() != ConstexprSpecKind::Unspecified;
761 }
762
763 void ClearConstexprSpec() {
764 ConstexprSpecifier = static_cast<unsigned>(ConstexprSpecKind::Unspecified);
765 ConstexprLoc = SourceLocation();
766 }
767
768 AttributePool &getAttributePool() const {
769 return Attrs.getPool();
770 }
771
772 /// Concatenates two attribute lists.
773 ///
774 /// The GCC attribute syntax allows for the following:
775 ///
776 /// \code
777 /// short __attribute__(( unused, deprecated ))
778 /// int __attribute__(( may_alias, aligned(16) )) var;
779 /// \endcode
780 ///
781 /// This declares 4 attributes using 2 lists. The following syntax is
782 /// also allowed and equivalent to the previous declaration.
783 ///
784 /// \code
785 /// short __attribute__((unused)) __attribute__((deprecated))
786 /// int __attribute__((may_alias)) __attribute__((aligned(16))) var;
787 /// \endcode
788 ///
789 void addAttributes(ParsedAttributesView &AL) {
790 Attrs.addAll(AL.begin(), AL.end());
791 }
792
793 bool hasAttributes() const { return !Attrs.empty(); }
794
795 ParsedAttributes &getAttributes() { return Attrs; }
796 const ParsedAttributes &getAttributes() const { return Attrs; }
797
798 void takeAttributesFrom(ParsedAttributes &attrs) {
799 Attrs.takeAllFrom(attrs);
800 }
801
802 /// Finish - This does final analysis of the declspec, issuing diagnostics for
803 /// things like "_Imaginary" (lacking an FP type). After calling this method,
804 /// DeclSpec is guaranteed self-consistent, even if an error occurred.
805 void Finish(Sema &S, const PrintingPolicy &Policy);
806
807 const WrittenBuiltinSpecs& getWrittenBuiltinSpecs() const {
808 return writtenBS;
809 }
810
811 ObjCDeclSpec *getObjCQualifiers() const { return ObjCQualifiers; }
812 void setObjCQualifiers(ObjCDeclSpec *quals) { ObjCQualifiers = quals; }
813
814 /// Checks if this DeclSpec can stand alone, without a Declarator.
815 ///
816 /// Only tag declspecs can stand alone.
817 bool isMissingDeclaratorOk();
818};
819
820/// Captures information about "declaration specifiers" specific to
821/// Objective-C.
822class ObjCDeclSpec {
823public:
824 /// ObjCDeclQualifier - Qualifier used on types in method
825 /// declarations. Not all combinations are sensible. Parameters
826 /// can be one of { in, out, inout } with one of { bycopy, byref }.
827 /// Returns can either be { oneway } or not.
828 ///
829 /// This should be kept in sync with Decl::ObjCDeclQualifier.
830 enum ObjCDeclQualifier {
831 DQ_None = 0x0,
832 DQ_In = 0x1,
833 DQ_Inout = 0x2,
834 DQ_Out = 0x4,
835 DQ_Bycopy = 0x8,
836 DQ_Byref = 0x10,
837 DQ_Oneway = 0x20,
838 DQ_CSNullability = 0x40
839 };
840
841 ObjCDeclSpec()
842 : objcDeclQualifier(DQ_None),
843 PropertyAttributes(ObjCPropertyAttribute::kind_noattr), Nullability(0),
844 GetterName(nullptr), SetterName(nullptr) {}
845
846 ObjCDeclQualifier getObjCDeclQualifier() const {
847 return (ObjCDeclQualifier)objcDeclQualifier;
848 }
849 void setObjCDeclQualifier(ObjCDeclQualifier DQVal) {
850 objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier | DQVal);
851 }
852 void clearObjCDeclQualifier(ObjCDeclQualifier DQVal) {
853 objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier & ~DQVal);
854 }
855
856 ObjCPropertyAttribute::Kind getPropertyAttributes() const {
857 return ObjCPropertyAttribute::Kind(PropertyAttributes);
858 }
859 void setPropertyAttributes(ObjCPropertyAttribute::Kind PRVal) {
860 PropertyAttributes =
861 (ObjCPropertyAttribute::Kind)(PropertyAttributes | PRVal);
862 }
863
864 NullabilityKind getNullability() const {
865 assert((static_cast<void> (0))
866 ((getObjCDeclQualifier() & DQ_CSNullability) ||(static_cast<void> (0))
867 (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&(static_cast<void> (0))
868 "Objective-C declspec doesn't have nullability")(static_cast<void> (0));
869 return static_cast<NullabilityKind>(Nullability);
870 }
871
872 SourceLocation getNullabilityLoc() const {
873 assert((static_cast<void> (0))
874 ((getObjCDeclQualifier() & DQ_CSNullability) ||(static_cast<void> (0))
875 (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&(static_cast<void> (0))
876 "Objective-C declspec doesn't have nullability")(static_cast<void> (0));
877 return NullabilityLoc;
878 }
879
880 void setNullability(SourceLocation loc, NullabilityKind kind) {
881 assert((static_cast<void> (0))
882 ((getObjCDeclQualifier() & DQ_CSNullability) ||(static_cast<void> (0))
883 (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&(static_cast<void> (0))
884 "Set the nullability declspec or property attribute first")(static_cast<void> (0));
885 Nullability = static_cast<unsigned>(kind);
886 NullabilityLoc = loc;
887 }
888
889 const IdentifierInfo *getGetterName() const { return GetterName; }
890 IdentifierInfo *getGetterName() { return GetterName; }
891 SourceLocation getGetterNameLoc() const { return GetterNameLoc; }
892 void setGetterName(IdentifierInfo *name, SourceLocation loc) {
893 GetterName = name;
894 GetterNameLoc = loc;
895 }
896
897 const IdentifierInfo *getSetterName() const { return SetterName; }
898 IdentifierInfo *getSetterName() { return SetterName; }
899 SourceLocation getSetterNameLoc() const { return SetterNameLoc; }
900 void setSetterName(IdentifierInfo *name, SourceLocation loc) {
901 SetterName = name;
902 SetterNameLoc = loc;
903 }
904
905private:
906 // FIXME: These two are unrelated and mutually exclusive. So perhaps
907 // we can put them in a union to reflect their mutual exclusivity
908 // (space saving is negligible).
909 unsigned objcDeclQualifier : 7;
910
911 // NOTE: VC++ treats enums as signed, avoid using ObjCPropertyAttribute::Kind
912 unsigned PropertyAttributes : NumObjCPropertyAttrsBits;
913
914 unsigned Nullability : 2;
915
916 SourceLocation NullabilityLoc;
917
918 IdentifierInfo *GetterName; // getter name or NULL if no getter
919 IdentifierInfo *SetterName; // setter name or NULL if no setter
920 SourceLocation GetterNameLoc; // location of the getter attribute's value
921 SourceLocation SetterNameLoc; // location of the setter attribute's value
922
923};
924
925/// Describes the kind of unqualified-id parsed.
926enum class UnqualifiedIdKind {
927 /// An identifier.
928 IK_Identifier,
929 /// An overloaded operator name, e.g., operator+.
930 IK_OperatorFunctionId,
931 /// A conversion function name, e.g., operator int.
932 IK_ConversionFunctionId,
933 /// A user-defined literal name, e.g., operator "" _i.
934 IK_LiteralOperatorId,
935 /// A constructor name.
936 IK_ConstructorName,
937 /// A constructor named via a template-id.
938 IK_ConstructorTemplateId,
939 /// A destructor name.
940 IK_DestructorName,
941 /// A template-id, e.g., f<int>.
942 IK_TemplateId,
943 /// An implicit 'self' parameter
944 IK_ImplicitSelfParam,
945 /// A deduction-guide name (a template-name)
946 IK_DeductionGuideName
947};
948
949/// Represents a C++ unqualified-id that has been parsed.
950class UnqualifiedId {
951private:
952 UnqualifiedId(const UnqualifiedId &Other) = delete;
953 const UnqualifiedId &operator=(const UnqualifiedId &) = delete;
954
955public:
956 /// Describes the kind of unqualified-id parsed.
957 UnqualifiedIdKind Kind;
958
959 struct OFI {
960 /// The kind of overloaded operator.
961 OverloadedOperatorKind Operator;
962
963 /// The source locations of the individual tokens that name
964 /// the operator, e.g., the "new", "[", and "]" tokens in
965 /// operator new [].
966 ///
967 /// Different operators have different numbers of tokens in their name,
968 /// up to three. Any remaining source locations in this array will be
969 /// set to an invalid value for operators with fewer than three tokens.
970 SourceLocation SymbolLocations[3];
971 };
972
973 /// Anonymous union that holds extra data associated with the
974 /// parsed unqualified-id.
975 union {
976 /// When Kind == IK_Identifier, the parsed identifier, or when
977 /// Kind == IK_UserLiteralId, the identifier suffix.
978 IdentifierInfo *Identifier;
979
980 /// When Kind == IK_OperatorFunctionId, the overloaded operator
981 /// that we parsed.
982 struct OFI OperatorFunctionId;
983
984 /// When Kind == IK_ConversionFunctionId, the type that the
985 /// conversion function names.
986 UnionParsedType ConversionFunctionId;
987
988 /// When Kind == IK_ConstructorName, the class-name of the type
989 /// whose constructor is being referenced.
990 UnionParsedType ConstructorName;
991
992 /// When Kind == IK_DestructorName, the type referred to by the
993 /// class-name.
994 UnionParsedType DestructorName;
995
996 /// When Kind == IK_DeductionGuideName, the parsed template-name.
997 UnionParsedTemplateTy TemplateName;
998
999 /// When Kind == IK_TemplateId or IK_ConstructorTemplateId,
1000 /// the template-id annotation that contains the template name and
1001 /// template arguments.
1002 TemplateIdAnnotation *TemplateId;
1003 };
1004
1005 /// The location of the first token that describes this unqualified-id,
1006 /// which will be the location of the identifier, "operator" keyword,
1007 /// tilde (for a destructor), or the template name of a template-id.
1008 SourceLocation StartLocation;
1009
1010 /// The location of the last token that describes this unqualified-id.
1011 SourceLocation EndLocation;
1012
1013 UnqualifiedId()
1014 : Kind(UnqualifiedIdKind::IK_Identifier), Identifier(nullptr) {}
1015
1016 /// Clear out this unqualified-id, setting it to default (invalid)
1017 /// state.
1018 void clear() {
1019 Kind = UnqualifiedIdKind::IK_Identifier;
1020 Identifier = nullptr;
1021 StartLocation = SourceLocation();
1022 EndLocation = SourceLocation();
1023 }
1024
1025 /// Determine whether this unqualified-id refers to a valid name.
1026 bool isValid() const { return StartLocation.isValid(); }
1027
1028 /// Determine whether this unqualified-id refers to an invalid name.
1029 bool isInvalid() const { return !isValid(); }
1030
1031 /// Determine what kind of name we have.
1032 UnqualifiedIdKind getKind() const { return Kind; }
1033
1034 /// Specify that this unqualified-id was parsed as an identifier.
1035 ///
1036 /// \param Id the parsed identifier.
1037 /// \param IdLoc the location of the parsed identifier.
1038 void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc) {
1039 Kind = UnqualifiedIdKind::IK_Identifier;
1040 Identifier = const_cast<IdentifierInfo *>(Id);
1041 StartLocation = EndLocation = IdLoc;
1042 }
1043
1044 /// Specify that this unqualified-id was parsed as an
1045 /// operator-function-id.
1046 ///
1047 /// \param OperatorLoc the location of the 'operator' keyword.
1048 ///
1049 /// \param Op the overloaded operator.
1050 ///
1051 /// \param SymbolLocations the locations of the individual operator symbols
1052 /// in the operator.
1053 void setOperatorFunctionId(SourceLocation OperatorLoc,
1054 OverloadedOperatorKind Op,
1055 SourceLocation SymbolLocations[3]);
1056
1057 /// Specify that this unqualified-id was parsed as a
1058 /// conversion-function-id.
1059 ///
1060 /// \param OperatorLoc the location of the 'operator' keyword.
1061 ///
1062 /// \param Ty the type to which this conversion function is converting.
1063 ///
1064 /// \param EndLoc the location of the last token that makes up the type name.
1065 void setConversionFunctionId(SourceLocation OperatorLoc,
1066 ParsedType Ty,
1067 SourceLocation EndLoc) {
1068 Kind = UnqualifiedIdKind::IK_ConversionFunctionId;
1069 StartLocation = OperatorLoc;
1070 EndLocation = EndLoc;
1071 ConversionFunctionId = Ty;
1072 }
1073
1074 /// Specific that this unqualified-id was parsed as a
1075 /// literal-operator-id.
1076 ///
1077 /// \param Id the parsed identifier.
1078 ///
1079 /// \param OpLoc the location of the 'operator' keyword.
1080 ///
1081 /// \param IdLoc the location of the identifier.
1082 void setLiteralOperatorId(const IdentifierInfo *Id, SourceLocation OpLoc,
1083 SourceLocation IdLoc) {
1084 Kind = UnqualifiedIdKind::IK_LiteralOperatorId;
1085 Identifier = const_cast<IdentifierInfo *>(Id);
1086 StartLocation = OpLoc;
1087 EndLocation = IdLoc;
1088 }
1089
1090 /// Specify that this unqualified-id was parsed as a constructor name.
1091 ///
1092 /// \param ClassType the class type referred to by the constructor name.
1093 ///
1094 /// \param ClassNameLoc the location of the class name.
1095 ///
1096 /// \param EndLoc the location of the last token that makes up the type name.
1097 void setConstructorName(ParsedType ClassType,
1098 SourceLocation ClassNameLoc,
1099 SourceLocation EndLoc) {
1100 Kind = UnqualifiedIdKind::IK_ConstructorName;
1101 StartLocation = ClassNameLoc;
1102 EndLocation = EndLoc;
1103 ConstructorName = ClassType;
1104 }
1105
1106 /// Specify that this unqualified-id was parsed as a
1107 /// template-id that names a constructor.
1108 ///
1109 /// \param TemplateId the template-id annotation that describes the parsed
1110 /// template-id. This UnqualifiedId instance will take ownership of the
1111 /// \p TemplateId and will free it on destruction.
1112 void setConstructorTemplateId(TemplateIdAnnotation *TemplateId);
1113
1114 /// Specify that this unqualified-id was parsed as a destructor name.
1115 ///
1116 /// \param TildeLoc the location of the '~' that introduces the destructor
1117 /// name.
1118 ///
1119 /// \param ClassType the name of the class referred to by the destructor name.
1120 void setDestructorName(SourceLocation TildeLoc,
1121 ParsedType ClassType,
1122 SourceLocation EndLoc) {
1123 Kind = UnqualifiedIdKind::IK_DestructorName;
1124 StartLocation = TildeLoc;
1125 EndLocation = EndLoc;
1126 DestructorName = ClassType;
1127 }
1128
1129 /// Specify that this unqualified-id was parsed as a template-id.
1130 ///
1131 /// \param TemplateId the template-id annotation that describes the parsed
1132 /// template-id. This UnqualifiedId instance will take ownership of the
1133 /// \p TemplateId and will free it on destruction.
1134 void setTemplateId(TemplateIdAnnotation *TemplateId);
1135
1136 /// Specify that this unqualified-id was parsed as a template-name for
1137 /// a deduction-guide.
1138 ///
1139 /// \param Template The parsed template-name.
1140 /// \param TemplateLoc The location of the parsed template-name.
1141 void setDeductionGuideName(ParsedTemplateTy Template,
1142 SourceLocation TemplateLoc) {
1143 Kind = UnqualifiedIdKind::IK_DeductionGuideName;
1144 TemplateName = Template;
1145 StartLocation = EndLocation = TemplateLoc;
1146 }
1147
1148 /// Specify that this unqualified-id is an implicit 'self'
1149 /// parameter.
1150 ///
1151 /// \param Id the identifier.
1152 void setImplicitSelfParam(const IdentifierInfo *Id) {
1153 Kind = UnqualifiedIdKind::IK_ImplicitSelfParam;
1154 Identifier = const_cast<IdentifierInfo *>(Id);
1155 StartLocation = EndLocation = SourceLocation();
1156 }
1157
1158 /// Return the source range that covers this unqualified-id.
1159 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
1160 return SourceRange(StartLocation, EndLocation);
1161 }
1162 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return StartLocation; }
1163 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return EndLocation; }
1164};
1165
1166/// A set of tokens that has been cached for later parsing.
1167typedef SmallVector<Token, 4> CachedTokens;
1168
1169/// One instance of this struct is used for each type in a
1170/// declarator that is parsed.
1171///
1172/// This is intended to be a small value object.
1173struct DeclaratorChunk {
1174 DeclaratorChunk() {};
1175
1176 enum {
1177 Pointer, Reference, Array, Function, BlockPointer, MemberPointer, Paren, Pipe
1178 } Kind;
1179
1180 /// Loc - The place where this type was defined.
1181 SourceLocation Loc;
1182 /// EndLoc - If valid, the place where this chunck ends.
1183 SourceLocation EndLoc;
1184
1185 SourceRange getSourceRange() const {
1186 if (EndLoc.isInvalid())
1187 return SourceRange(Loc, Loc);
1188 return SourceRange(Loc, EndLoc);
1189 }
1190
1191 ParsedAttributesView AttrList;
1192
1193 struct PointerTypeInfo {
1194 /// The type qualifiers: const/volatile/restrict/unaligned/atomic.
1195 unsigned TypeQuals : 5;
1196
1197 /// The location of the const-qualifier, if any.
1198 SourceLocation ConstQualLoc;
1199
1200 /// The location of the volatile-qualifier, if any.
1201 SourceLocation VolatileQualLoc;
1202
1203 /// The location of the restrict-qualifier, if any.
1204 SourceLocation RestrictQualLoc;
1205
1206 /// The location of the _Atomic-qualifier, if any.
1207 SourceLocation AtomicQualLoc;
1208
1209 /// The location of the __unaligned-qualifier, if any.
1210 SourceLocation UnalignedQualLoc;
1211
1212 void destroy() {
1213 }
1214 };
1215
1216 struct ReferenceTypeInfo {
1217 /// The type qualifier: restrict. [GNU] C++ extension
1218 bool HasRestrict : 1;
1219 /// True if this is an lvalue reference, false if it's an rvalue reference.
1220 bool LValueRef : 1;
1221 void destroy() {
1222 }
1223 };
1224
1225 struct ArrayTypeInfo {
1226 /// The type qualifiers for the array:
1227 /// const/volatile/restrict/__unaligned/_Atomic.
1228 unsigned TypeQuals : 5;
1229
1230 /// True if this dimension included the 'static' keyword.
1231 unsigned hasStatic : 1;
1232
1233 /// True if this dimension was [*]. In this case, NumElts is null.
1234 unsigned isStar : 1;
1235
1236 /// This is the size of the array, or null if [] or [*] was specified.
1237 /// Since the parser is multi-purpose, and we don't want to impose a root
1238 /// expression class on all clients, NumElts is untyped.
1239 Expr *NumElts;
1240
1241 void destroy() {}
1242 };
1243
1244 /// ParamInfo - An array of paraminfo objects is allocated whenever a function
1245 /// declarator is parsed. There are two interesting styles of parameters
1246 /// here:
1247 /// K&R-style identifier lists and parameter type lists. K&R-style identifier
1248 /// lists will have information about the identifier, but no type information.
1249 /// Parameter type lists will have type info (if the actions module provides
1250 /// it), but may have null identifier info: e.g. for 'void foo(int X, int)'.
1251 struct ParamInfo {
1252 IdentifierInfo *Ident;
1253 SourceLocation IdentLoc;
1254 Decl *Param;
1255
1256 /// DefaultArgTokens - When the parameter's default argument
1257 /// cannot be parsed immediately (because it occurs within the
1258 /// declaration of a member function), it will be stored here as a
1259 /// sequence of tokens to be parsed once the class definition is
1260 /// complete. Non-NULL indicates that there is a default argument.
1261 std::unique_ptr<CachedTokens> DefaultArgTokens;
1262
1263 ParamInfo() = default;
1264 ParamInfo(IdentifierInfo *ident, SourceLocation iloc,
1265 Decl *param,
1266 std::unique_ptr<CachedTokens> DefArgTokens = nullptr)
1267 : Ident(ident), IdentLoc(iloc), Param(param),
1268 DefaultArgTokens(std::move(DefArgTokens)) {}
1269 };
1270
1271 struct TypeAndRange {
1272 ParsedType Ty;
1273 SourceRange Range;
1274 };
1275
1276 struct FunctionTypeInfo {
1277 /// hasPrototype - This is true if the function had at least one typed
1278 /// parameter. If the function is () or (a,b,c), then it has no prototype,
1279 /// and is treated as a K&R-style function.
1280 unsigned hasPrototype : 1;
1281
1282 /// isVariadic - If this function has a prototype, and if that
1283 /// proto ends with ',...)', this is true. When true, EllipsisLoc
1284 /// contains the location of the ellipsis.
1285 unsigned isVariadic : 1;
1286
1287 /// Can this declaration be a constructor-style initializer?
1288 unsigned isAmbiguous : 1;
1289
1290 /// Whether the ref-qualifier (if any) is an lvalue reference.
1291 /// Otherwise, it's an rvalue reference.
1292 unsigned RefQualifierIsLValueRef : 1;
1293
1294 /// ExceptionSpecType - An ExceptionSpecificationType value.
1295 unsigned ExceptionSpecType : 4;
1296
1297 /// DeleteParams - If this is true, we need to delete[] Params.
1298 unsigned DeleteParams : 1;
1299
1300 /// HasTrailingReturnType - If this is true, a trailing return type was
1301 /// specified.
1302 unsigned HasTrailingReturnType : 1;
1303
1304 /// The location of the left parenthesis in the source.
1305 SourceLocation LParenLoc;
1306
1307 /// When isVariadic is true, the location of the ellipsis in the source.
1308 SourceLocation EllipsisLoc;
1309
1310 /// The location of the right parenthesis in the source.
1311 SourceLocation RParenLoc;
1312
1313 /// NumParams - This is the number of formal parameters specified by the
1314 /// declarator.
1315 unsigned NumParams;
1316
1317 /// NumExceptionsOrDecls - This is the number of types in the
1318 /// dynamic-exception-decl, if the function has one. In C, this is the
1319 /// number of declarations in the function prototype.
1320 unsigned NumExceptionsOrDecls;
1321
1322 /// The location of the ref-qualifier, if any.
1323 ///
1324 /// If this is an invalid location, there is no ref-qualifier.
1325 SourceLocation RefQualifierLoc;
1326
1327 /// The location of the 'mutable' qualifer in a lambda-declarator, if
1328 /// any.
1329 SourceLocation MutableLoc;
1330
1331 /// The beginning location of the exception specification, if any.
1332 SourceLocation ExceptionSpecLocBeg;
1333
1334 /// The end location of the exception specification, if any.
1335 SourceLocation ExceptionSpecLocEnd;
1336
1337 /// Params - This is a pointer to a new[]'d array of ParamInfo objects that
1338 /// describe the parameters specified by this function declarator. null if
1339 /// there are no parameters specified.
1340 ParamInfo *Params;
1341
1342 /// DeclSpec for the function with the qualifier related info.
1343 DeclSpec *MethodQualifiers;
1344
1345 /// AtttibuteFactory for the MethodQualifiers.
1346 AttributeFactory *QualAttrFactory;
1347
1348 union {
1349 /// Pointer to a new[]'d array of TypeAndRange objects that
1350 /// contain the types in the function's dynamic exception specification
1351 /// and their locations, if there is one.
1352 TypeAndRange *Exceptions;
1353
1354 /// Pointer to the expression in the noexcept-specifier of this
1355 /// function, if it has one.
1356 Expr *NoexceptExpr;
1357
1358 /// Pointer to the cached tokens for an exception-specification
1359 /// that has not yet been parsed.
1360 CachedTokens *ExceptionSpecTokens;
1361
1362 /// Pointer to a new[]'d array of declarations that need to be available
1363 /// for lookup inside the function body, if one exists. Does not exist in
1364 /// C++.
1365 NamedDecl **DeclsInPrototype;
1366 };
1367
1368 /// If HasTrailingReturnType is true, this is the trailing return
1369 /// type specified.
1370 UnionParsedType TrailingReturnType;
1371
1372 /// If HasTrailingReturnType is true, this is the location of the trailing
1373 /// return type.
1374 SourceLocation TrailingReturnTypeLoc;
1375
1376 /// Reset the parameter list to having zero parameters.
1377 ///
1378 /// This is used in various places for error recovery.
1379 void freeParams() {
1380 for (unsigned I = 0; I < NumParams; ++I)
1381 Params[I].DefaultArgTokens.reset();
1382 if (DeleteParams) {
1383 delete[] Params;
1384 DeleteParams = false;
1385 }
1386 NumParams = 0;
1387 }
1388
1389 void destroy() {
1390 freeParams();
1391 delete QualAttrFactory;
1392 delete MethodQualifiers;
1393 switch (getExceptionSpecType()) {
1394 default:
1395 break;
1396 case EST_Dynamic:
1397 delete[] Exceptions;
1398 break;
1399 case EST_Unparsed:
1400 delete ExceptionSpecTokens;
1401 break;
1402 case EST_None:
1403 if (NumExceptionsOrDecls != 0)
1404 delete[] DeclsInPrototype;
1405 break;
1406 }
1407 }
1408
1409 DeclSpec &getOrCreateMethodQualifiers() {
1410 if (!MethodQualifiers) {
1411 QualAttrFactory = new AttributeFactory();
1412 MethodQualifiers = new DeclSpec(*QualAttrFactory);
1413 }
1414 return *MethodQualifiers;
1415 }
1416
1417 /// isKNRPrototype - Return true if this is a K&R style identifier list,
1418 /// like "void foo(a,b,c)". In a function definition, this will be followed
1419 /// by the parameter type definitions.
1420 bool isKNRPrototype() const { return !hasPrototype && NumParams != 0; }
1421
1422 SourceLocation getLParenLoc() const { return LParenLoc; }
1423
1424 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
1425
1426 SourceLocation getRParenLoc() const { return RParenLoc; }
1427
1428 SourceLocation getExceptionSpecLocBeg() const {
1429 return ExceptionSpecLocBeg;
1430 }
1431
1432 SourceLocation getExceptionSpecLocEnd() const {
1433 return ExceptionSpecLocEnd;
1434 }
1435
1436 SourceRange getExceptionSpecRange() const {
1437 return SourceRange(getExceptionSpecLocBeg(), getExceptionSpecLocEnd());
1438 }
1439
1440 /// Retrieve the location of the ref-qualifier, if any.
1441 SourceLocation getRefQualifierLoc() const { return RefQualifierLoc; }
1442
1443 /// Retrieve the location of the 'const' qualifier.
1444 SourceLocation getConstQualifierLoc() const {
1445 assert(MethodQualifiers)(static_cast<void> (0));
1446 return MethodQualifiers->getConstSpecLoc();
1447 }
1448
1449 /// Retrieve the location of the 'volatile' qualifier.
1450 SourceLocation getVolatileQualifierLoc() const {
1451 assert(MethodQualifiers)(static_cast<void> (0));
1452 return MethodQualifiers->getVolatileSpecLoc();
1453 }
1454
1455 /// Retrieve the location of the 'restrict' qualifier.
1456 SourceLocation getRestrictQualifierLoc() const {
1457 assert(MethodQualifiers)(static_cast<void> (0));
1458 return MethodQualifiers->getRestrictSpecLoc();
1459 }
1460
1461 /// Retrieve the location of the 'mutable' qualifier, if any.
1462 SourceLocation getMutableLoc() const { return MutableLoc; }
1463
1464 /// Determine whether this function declaration contains a
1465 /// ref-qualifier.
1466 bool hasRefQualifier() const { return getRefQualifierLoc().isValid(); }
1467
1468 /// Determine whether this lambda-declarator contains a 'mutable'
1469 /// qualifier.
1470 bool hasMutableQualifier() const { return getMutableLoc().isValid(); }
1471
1472 /// Determine whether this method has qualifiers.
1473 bool hasMethodTypeQualifiers() const {
1474 return MethodQualifiers && (MethodQualifiers->getTypeQualifiers() ||
1475 MethodQualifiers->getAttributes().size());
1476 }
1477
1478 /// Get the type of exception specification this function has.
1479 ExceptionSpecificationType getExceptionSpecType() const {
1480 return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
1481 }
1482
1483 /// Get the number of dynamic exception specifications.
1484 unsigned getNumExceptions() const {
1485 assert(ExceptionSpecType != EST_None)(static_cast<void> (0));
1486 return NumExceptionsOrDecls;
1487 }
1488
1489 /// Get the non-parameter decls defined within this function
1490 /// prototype. Typically these are tag declarations.
1491 ArrayRef<NamedDecl *> getDeclsInPrototype() const {
1492 assert(ExceptionSpecType == EST_None)(static_cast<void> (0));
1493 return llvm::makeArrayRef(DeclsInPrototype, NumExceptionsOrDecls);
1494 }
1495
1496 /// Determine whether this function declarator had a
1497 /// trailing-return-type.
1498 bool hasTrailingReturnType() const { return HasTrailingReturnType; }
1499
1500 /// Get the trailing-return-type for this function declarator.
1501 ParsedType getTrailingReturnType() const {
1502 assert(HasTrailingReturnType)(static_cast<void> (0));
1503 return TrailingReturnType;
1504 }
1505
1506 /// Get the trailing-return-type location for this function declarator.
1507 SourceLocation getTrailingReturnTypeLoc() const {
1508 assert(HasTrailingReturnType)(static_cast<void> (0));
1509 return TrailingReturnTypeLoc;
1510 }
1511 };
1512
1513 struct BlockPointerTypeInfo {
1514 /// For now, sema will catch these as invalid.
1515 /// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
1516 unsigned TypeQuals : 5;
1517
1518 void destroy() {
1519 }
1520 };
1521
1522 struct MemberPointerTypeInfo {
1523 /// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
1524 unsigned TypeQuals : 5;
1525 /// Location of the '*' token.
1526 SourceLocation StarLoc;
1527 // CXXScopeSpec has a constructor, so it can't be a direct member.
1528 // So we need some pointer-aligned storage and a bit of trickery.
1529 alignas(CXXScopeSpec) char ScopeMem[sizeof(CXXScopeSpec)];
1530 CXXScopeSpec &Scope() {
1531 return *reinterpret_cast<CXXScopeSpec *>(ScopeMem);
1532 }
1533 const CXXScopeSpec &Scope() const {
1534 return *reinterpret_cast<const CXXScopeSpec *>(ScopeMem);
1535 }
1536 void destroy() {
1537 Scope().~CXXScopeSpec();
1538 }
1539 };
1540
1541 struct PipeTypeInfo {
1542 /// The access writes.
1543 unsigned AccessWrites : 3;
1544
1545 void destroy() {}
1546 };
1547
1548 union {
1549 PointerTypeInfo Ptr;
1550 ReferenceTypeInfo Ref;
1551 ArrayTypeInfo Arr;
1552 FunctionTypeInfo Fun;
1553 BlockPointerTypeInfo Cls;
1554 MemberPointerTypeInfo Mem;
1555 PipeTypeInfo PipeInfo;
1556 };
1557
1558 void destroy() {
1559 switch (Kind) {
1560 case DeclaratorChunk::Function: return Fun.destroy();
1561 case DeclaratorChunk::Pointer: return Ptr.destroy();
1562 case DeclaratorChunk::BlockPointer: return Cls.destroy();
1563 case DeclaratorChunk::Reference: return Ref.destroy();
1564 case DeclaratorChunk::Array: return Arr.destroy();
1565 case DeclaratorChunk::MemberPointer: return Mem.destroy();
1566 case DeclaratorChunk::Paren: return;
1567 case DeclaratorChunk::Pipe: return PipeInfo.destroy();
1568 }
1569 }
1570
1571 /// If there are attributes applied to this declaratorchunk, return
1572 /// them.
1573 const ParsedAttributesView &getAttrs() const { return AttrList; }
1574 ParsedAttributesView &getAttrs() { return AttrList; }
1575
1576 /// Return a DeclaratorChunk for a pointer.
1577 static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc,
1578 SourceLocation ConstQualLoc,
1579 SourceLocation VolatileQualLoc,
1580 SourceLocation RestrictQualLoc,
1581 SourceLocation AtomicQualLoc,
1582 SourceLocation UnalignedQualLoc) {
1583 DeclaratorChunk I;
1584 I.Kind = Pointer;
1585 I.Loc = Loc;
1586 new (&I.Ptr) PointerTypeInfo;
1587 I.Ptr.TypeQuals = TypeQuals;
1588 I.Ptr.ConstQualLoc = ConstQualLoc;
1589 I.Ptr.VolatileQualLoc = VolatileQualLoc;
1590 I.Ptr.RestrictQualLoc = RestrictQualLoc;
1591 I.Ptr.AtomicQualLoc = AtomicQualLoc;
1592 I.Ptr.UnalignedQualLoc = UnalignedQualLoc;
1593 return I;
1594 }
1595
1596 /// Return a DeclaratorChunk for a reference.
1597 static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc,
1598 bool lvalue) {
1599 DeclaratorChunk I;
1600 I.Kind = Reference;
1601 I.Loc = Loc;
1602 I.Ref.HasRestrict = (TypeQuals & DeclSpec::TQ_restrict) != 0;
1603 I.Ref.LValueRef = lvalue;
1604 return I;
1605 }
1606
1607 /// Return a DeclaratorChunk for an array.
1608 static DeclaratorChunk getArray(unsigned TypeQuals,
1609 bool isStatic, bool isStar, Expr *NumElts,
1610 SourceLocation LBLoc, SourceLocation RBLoc) {
1611 DeclaratorChunk I;
1612 I.Kind = Array;
1613 I.Loc = LBLoc;
1614 I.EndLoc = RBLoc;
1615 I.Arr.TypeQuals = TypeQuals;
1616 I.Arr.hasStatic = isStatic;
1617 I.Arr.isStar = isStar;
1618 I.Arr.NumElts = NumElts;
1619 return I;
1620 }
1621
1622 /// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
1623 /// "TheDeclarator" is the declarator that this will be added to.
1624 static DeclaratorChunk getFunction(bool HasProto,
1625 bool IsAmbiguous,
1626 SourceLocation LParenLoc,
1627 ParamInfo *Params, unsigned NumParams,
1628 SourceLocation EllipsisLoc,
1629 SourceLocation RParenLoc,
1630 bool RefQualifierIsLvalueRef,
1631 SourceLocation RefQualifierLoc,
1632 SourceLocation MutableLoc,
1633 ExceptionSpecificationType ESpecType,
1634 SourceRange ESpecRange,
1635 ParsedType *Exceptions,
1636 SourceRange *ExceptionRanges,
1637 unsigned NumExceptions,
1638 Expr *NoexceptExpr,
1639 CachedTokens *ExceptionSpecTokens,
1640 ArrayRef<NamedDecl *> DeclsInPrototype,
1641 SourceLocation LocalRangeBegin,
1642 SourceLocation LocalRangeEnd,
1643 Declarator &TheDeclarator,
1644 TypeResult TrailingReturnType =
1645 TypeResult(),
1646 SourceLocation TrailingReturnTypeLoc =
1647 SourceLocation(),
1648 DeclSpec *MethodQualifiers = nullptr);
1649
1650 /// Return a DeclaratorChunk for a block.
1651 static DeclaratorChunk getBlockPointer(unsigned TypeQuals,
1652 SourceLocation Loc) {
1653 DeclaratorChunk I;
1654 I.Kind = BlockPointer;
1655 I.Loc = Loc;
1656 I.Cls.TypeQuals = TypeQuals;
1657 return I;
1658 }
1659
1660 /// Return a DeclaratorChunk for a block.
1661 static DeclaratorChunk getPipe(unsigned TypeQuals,
1662 SourceLocation Loc) {
1663 DeclaratorChunk I;
1664 I.Kind = Pipe;
1665 I.Loc = Loc;
1666 I.Cls.TypeQuals = TypeQuals;
1667 return I;
1668 }
1669
1670 static DeclaratorChunk getMemberPointer(const CXXScopeSpec &SS,
1671 unsigned TypeQuals,
1672 SourceLocation StarLoc,
1673 SourceLocation EndLoc) {
1674 DeclaratorChunk I;
1675 I.Kind = MemberPointer;
1676 I.Loc = SS.getBeginLoc();
1677 I.EndLoc = EndLoc;
1678 new (&I.Mem) MemberPointerTypeInfo;
1679 I.Mem.StarLoc = StarLoc;
1680 I.Mem.TypeQuals = TypeQuals;
1681 new (I.Mem.ScopeMem) CXXScopeSpec(SS);
1682 return I;
1683 }
1684
1685 /// Return a DeclaratorChunk for a paren.
1686 static DeclaratorChunk getParen(SourceLocation LParenLoc,
1687 SourceLocation RParenLoc) {
1688 DeclaratorChunk I;
1689 I.Kind = Paren;
1690 I.Loc = LParenLoc;
1691 I.EndLoc = RParenLoc;
1692 return I;
1693 }
1694
1695 bool isParen() const {
1696 return Kind == Paren;
1697 }
1698};
1699
1700/// A parsed C++17 decomposition declarator of the form
1701/// '[' identifier-list ']'
1702class DecompositionDeclarator {
1703public:
1704 struct Binding {
1705 IdentifierInfo *Name;
1706 SourceLocation NameLoc;
1707 };
1708
1709private:
1710 /// The locations of the '[' and ']' tokens.
1711 SourceLocation LSquareLoc, RSquareLoc;
1712
1713 /// The bindings.
1714 Binding *Bindings;
1715 unsigned NumBindings : 31;
1716 unsigned DeleteBindings : 1;
1717
1718 friend class Declarator;
1719
1720public:
1721 DecompositionDeclarator()
1722 : Bindings(nullptr), NumBindings(0), DeleteBindings(false) {}
1723 DecompositionDeclarator(const DecompositionDeclarator &G) = delete;
1724 DecompositionDeclarator &operator=(const DecompositionDeclarator &G) = delete;
1725 ~DecompositionDeclarator() {
1726 if (DeleteBindings)
1727 delete[] Bindings;
1728 }
1729
1730 void clear() {
1731 LSquareLoc = RSquareLoc = SourceLocation();
1732 if (DeleteBindings)
1733 delete[] Bindings;
1734 Bindings = nullptr;
1735 NumBindings = 0;
1736 DeleteBindings = false;
1737 }
1738
1739 ArrayRef<Binding> bindings() const {
1740 return llvm::makeArrayRef(Bindings, NumBindings);
1741 }
1742
1743 bool isSet() const { return LSquareLoc.isValid(); }
1744
1745 SourceLocation getLSquareLoc() const { return LSquareLoc; }
1746 SourceLocation getRSquareLoc() const { return RSquareLoc; }
1747 SourceRange getSourceRange() const {
1748 return SourceRange(LSquareLoc, RSquareLoc);
1749 }
1750};
1751
1752/// Described the kind of function definition (if any) provided for
1753/// a function.
1754enum class FunctionDefinitionKind {
1755 Declaration,
1756 Definition,
1757 Defaulted,
1758 Deleted
1759};
1760
1761enum class DeclaratorContext {
1762 File, // File scope declaration.
1763 Prototype, // Within a function prototype.
1764 ObjCResult, // An ObjC method result type.
1765 ObjCParameter, // An ObjC method parameter type.
1766 KNRTypeList, // K&R type definition list for formals.
1767 TypeName, // Abstract declarator for types.
1768 FunctionalCast, // Type in a C++ functional cast expression.
1769 Member, // Struct/Union field.
1770 Block, // Declaration within a block in a function.
1771 ForInit, // Declaration within first part of a for loop.
1772 SelectionInit, // Declaration within optional init stmt of if/switch.
1773 Condition, // Condition declaration in a C++ if/switch/while/for.
1774 TemplateParam, // Within a template parameter list.
1775 CXXNew, // C++ new-expression.
1776 CXXCatch, // C++ catch exception-declaration
1777 ObjCCatch, // Objective-C catch exception-declaration
1778 BlockLiteral, // Block literal declarator.
1779 LambdaExpr, // Lambda-expression declarator.
1780 LambdaExprParameter, // Lambda-expression parameter declarator.
1781 ConversionId, // C++ conversion-type-id.
1782 TrailingReturn, // C++11 trailing-type-specifier.
1783 TrailingReturnVar, // C++11 trailing-type-specifier for variable.
1784 TemplateArg, // Any template argument (in template argument list).
1785 TemplateTypeArg, // Template type argument (in default argument).
1786 AliasDecl, // C++11 alias-declaration.
1787 AliasTemplate, // C++11 alias-declaration template.
1788 RequiresExpr // C++2a requires-expression.
1789};
1790
1791/// Information about one declarator, including the parsed type
1792/// information and the identifier.
1793///
1794/// When the declarator is fully formed, this is turned into the appropriate
1795/// Decl object.
1796///
1797/// Declarators come in two types: normal declarators and abstract declarators.
1798/// Abstract declarators are used when parsing types, and don't have an
1799/// identifier. Normal declarators do have ID's.
1800///
1801/// Instances of this class should be a transient object that lives on the
1802/// stack, not objects that are allocated in large quantities on the heap.
1803class Declarator {
1804
1805private:
1806 const DeclSpec &DS;
1807 CXXScopeSpec SS;
1808 UnqualifiedId Name;
1809 SourceRange Range;
1810
1811 /// Where we are parsing this declarator.
1812 DeclaratorContext Context;
1813
1814 /// The C++17 structured binding, if any. This is an alternative to a Name.
1815 DecompositionDeclarator BindingGroup;
1816
1817 /// DeclTypeInfo - This holds each type that the declarator includes as it is
1818 /// parsed. This is pushed from the identifier out, which means that element
1819 /// #0 will be the most closely bound to the identifier, and
1820 /// DeclTypeInfo.back() will be the least closely bound.
1821 SmallVector<DeclaratorChunk, 8> DeclTypeInfo;
1822
1823 /// InvalidType - Set by Sema::GetTypeForDeclarator().
1824 unsigned InvalidType : 1;
1825
1826 /// GroupingParens - Set by Parser::ParseParenDeclarator().
1827 unsigned GroupingParens : 1;
1828
1829 /// FunctionDefinition - Is this Declarator for a function or member
1830 /// definition and, if so, what kind?
1831 ///
1832 /// Actually a FunctionDefinitionKind.
1833 unsigned FunctionDefinition : 2;
1834
1835 /// Is this Declarator a redeclaration?
1836 unsigned Redeclaration : 1;
1837
1838 /// true if the declaration is preceded by \c __extension__.
1839 unsigned Extension : 1;
1840
1841 /// Indicates whether this is an Objective-C instance variable.
1842 unsigned ObjCIvar : 1;
1843
1844 /// Indicates whether this is an Objective-C 'weak' property.
1845 unsigned ObjCWeakProperty : 1;
1846
1847 /// Indicates whether the InlineParams / InlineBindings storage has been used.
1848 unsigned InlineStorageUsed : 1;
1849
1850 /// Indicates whether this declarator has an initializer.
1851 unsigned HasInitializer : 1;
1852
1853 /// Attrs - Attributes.
1854 ParsedAttributes Attrs;
1855
1856 /// The asm label, if specified.
1857 Expr *AsmLabel;
1858
1859 /// \brief The constraint-expression specified by the trailing
1860 /// requires-clause, or null if no such clause was specified.
1861 Expr *TrailingRequiresClause;
1862
1863 /// If this declarator declares a template, its template parameter lists.
1864 ArrayRef<TemplateParameterList *> TemplateParameterLists;
1865
1866 /// If the declarator declares an abbreviated function template, the innermost
1867 /// template parameter list containing the invented and explicit template
1868 /// parameters (if any).
1869 TemplateParameterList *InventedTemplateParameterList;
1870
1871#ifndef _MSC_VER
1872 union {
1873#endif
1874 /// InlineParams - This is a local array used for the first function decl
1875 /// chunk to avoid going to the heap for the common case when we have one
1876 /// function chunk in the declarator.
1877 DeclaratorChunk::ParamInfo InlineParams[16];
1878 DecompositionDeclarator::Binding InlineBindings[16];
1879#ifndef _MSC_VER
1880 };
1881#endif
1882
1883 /// If this is the second or subsequent declarator in this declaration,
1884 /// the location of the comma before this declarator.
1885 SourceLocation CommaLoc;
1886
1887 /// If provided, the source location of the ellipsis used to describe
1888 /// this declarator as a parameter pack.
1889 SourceLocation EllipsisLoc;
1890
1891 friend struct DeclaratorChunk;
1892
1893public:
1894 Declarator(const DeclSpec &ds, DeclaratorContext C)
1895 : DS(ds), Range(ds.getSourceRange()), Context(C),
1896 InvalidType(DS.getTypeSpecType() == DeclSpec::TST_error),
1897 GroupingParens(false), FunctionDefinition(static_cast<unsigned>(
1898 FunctionDefinitionKind::Declaration)),
1899 Redeclaration(false), Extension(false), ObjCIvar(false),
1900 ObjCWeakProperty(false), InlineStorageUsed(false),
1901 HasInitializer(false), Attrs(ds.getAttributePool().getFactory()),
1902 AsmLabel(nullptr), TrailingRequiresClause(nullptr),
1903 InventedTemplateParameterList(nullptr) {}
1904
1905 ~Declarator() {
1906 clear();
1907 }
1908 /// getDeclSpec - Return the declaration-specifier that this declarator was
1909 /// declared with.
1910 const DeclSpec &getDeclSpec() const { return DS; }
1911
1912 /// getMutableDeclSpec - Return a non-const version of the DeclSpec. This
1913 /// should be used with extreme care: declspecs can often be shared between
1914 /// multiple declarators, so mutating the DeclSpec affects all of the
1915 /// Declarators. This should only be done when the declspec is known to not
1916 /// be shared or when in error recovery etc.
1917 DeclSpec &getMutableDeclSpec() { return const_cast<DeclSpec &>(DS); }
1918
1919 AttributePool &getAttributePool() const {
1920 return Attrs.getPool();
1921 }
1922
1923 /// getCXXScopeSpec - Return the C++ scope specifier (global scope or
1924 /// nested-name-specifier) that is part of the declarator-id.
1925 const CXXScopeSpec &getCXXScopeSpec() const { return SS; }
1926 CXXScopeSpec &getCXXScopeSpec() { return SS; }
1927
1928 /// Retrieve the name specified by this declarator.
1929 UnqualifiedId &getName() { return Name; }
1930
1931 const DecompositionDeclarator &getDecompositionDeclarator() const {
1932 return BindingGroup;
1933 }
1934
1935 DeclaratorContext getContext() const { return Context; }
1936
1937 bool isPrototypeContext() const {
1938 return (Context == DeclaratorContext::Prototype ||
1939 Context == DeclaratorContext::ObjCParameter ||
1940 Context == DeclaratorContext::ObjCResult ||
1941 Context == DeclaratorContext::LambdaExprParameter);
1942 }
1943
1944 /// Get the source range that spans this declarator.
1945 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
1946 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
1947 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
1948
1949 void SetSourceRange(SourceRange R) { Range = R; }
1950 /// SetRangeBegin - Set the start of the source range to Loc, unless it's
1951 /// invalid.
1952 void SetRangeBegin(SourceLocation Loc) {
1953 if (!Loc.isInvalid())
1954 Range.setBegin(Loc);
1955 }
1956 /// SetRangeEnd - Set the end of the source range to Loc, unless it's invalid.
1957 void SetRangeEnd(SourceLocation Loc) {
1958 if (!Loc.isInvalid())
1959 Range.setEnd(Loc);
1960 }
1961 /// ExtendWithDeclSpec - Extend the declarator source range to include the
1962 /// given declspec, unless its location is invalid. Adopts the range start if
1963 /// the current range start is invalid.
1964 void ExtendWithDeclSpec(const DeclSpec &DS) {
1965 SourceRange SR = DS.getSourceRange();
1966 if (Range.getBegin().isInvalid())
1967 Range.setBegin(SR.getBegin());
1968 if (!SR.getEnd().isInvalid())
1969 Range.setEnd(SR.getEnd());
1970 }
1971
1972 /// Reset the contents of this Declarator.
1973 void clear() {
1974 SS.clear();
1975 Name.clear();
1976 Range = DS.getSourceRange();
1977 BindingGroup.clear();
1978
1979 for (unsigned i = 0, e = DeclTypeInfo.size(); i != e; ++i)
1980 DeclTypeInfo[i].destroy();
1981 DeclTypeInfo.clear();
1982 Attrs.clear();
1983 AsmLabel = nullptr;
1984 InlineStorageUsed = false;
1985 HasInitializer = false;
1986 ObjCIvar = false;
1987 ObjCWeakProperty = false;
1988 CommaLoc = SourceLocation();
1989 EllipsisLoc = SourceLocation();
1990 }
1991
1992 /// mayOmitIdentifier - Return true if the identifier is either optional or
1993 /// not allowed. This is true for typenames, prototypes, and template
1994 /// parameter lists.
1995 bool mayOmitIdentifier() const {
1996 switch (Context) {
1997 case DeclaratorContext::File:
1998 case DeclaratorContext::KNRTypeList:
1999 case DeclaratorContext::Member:
2000 case DeclaratorContext::Block:
2001 case DeclaratorContext::ForInit:
2002 case DeclaratorContext::SelectionInit:
2003 case DeclaratorContext::Condition:
2004 return false;
2005
2006 case DeclaratorContext::TypeName:
2007 case DeclaratorContext::FunctionalCast:
2008 case DeclaratorContext::AliasDecl:
2009 case DeclaratorContext::AliasTemplate:
2010 case DeclaratorContext::Prototype:
2011 case DeclaratorContext::LambdaExprParameter:
2012 case DeclaratorContext::ObjCParameter:
2013 case DeclaratorContext::ObjCResult:
2014 case DeclaratorContext::TemplateParam:
2015 case DeclaratorContext::CXXNew:
2016 case DeclaratorContext::CXXCatch:
2017 case DeclaratorContext::ObjCCatch:
2018 case DeclaratorContext::BlockLiteral:
2019 case DeclaratorContext::LambdaExpr:
2020 case DeclaratorContext::ConversionId:
2021 case DeclaratorContext::TemplateArg:
2022 case DeclaratorContext::TemplateTypeArg:
2023 case DeclaratorContext::TrailingReturn:
2024 case DeclaratorContext::TrailingReturnVar:
2025 case DeclaratorContext::RequiresExpr:
2026 return true;
2027 }
2028 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2029 }
2030
2031 /// mayHaveIdentifier - Return true if the identifier is either optional or
2032 /// required. This is true for normal declarators and prototypes, but not
2033 /// typenames.
2034 bool mayHaveIdentifier() const {
2035 switch (Context) {
2036 case DeclaratorContext::File:
2037 case DeclaratorContext::KNRTypeList:
2038 case DeclaratorContext::Member:
2039 case DeclaratorContext::Block:
2040 case DeclaratorContext::ForInit:
2041 case DeclaratorContext::SelectionInit:
2042 case DeclaratorContext::Condition:
2043 case DeclaratorContext::Prototype:
2044 case DeclaratorContext::LambdaExprParameter:
2045 case DeclaratorContext::TemplateParam:
2046 case DeclaratorContext::CXXCatch:
2047 case DeclaratorContext::ObjCCatch:
2048 case DeclaratorContext::RequiresExpr:
2049 return true;
2050
2051 case DeclaratorContext::TypeName:
2052 case DeclaratorContext::FunctionalCast:
2053 case DeclaratorContext::CXXNew:
2054 case DeclaratorContext::AliasDecl:
2055 case DeclaratorContext::AliasTemplate:
2056 case DeclaratorContext::ObjCParameter:
2057 case DeclaratorContext::ObjCResult:
2058 case DeclaratorContext::BlockLiteral:
2059 case DeclaratorContext::LambdaExpr:
2060 case DeclaratorContext::ConversionId:
2061 case DeclaratorContext::TemplateArg:
2062 case DeclaratorContext::TemplateTypeArg:
2063 case DeclaratorContext::TrailingReturn:
2064 case DeclaratorContext::TrailingReturnVar:
2065 return false;
2066 }
2067 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2068 }
2069
2070 /// Return true if the context permits a C++17 decomposition declarator.
2071 bool mayHaveDecompositionDeclarator() const {
2072 switch (Context) {
2073 case DeclaratorContext::File:
2074 // FIXME: It's not clear that the proposal meant to allow file-scope
2075 // structured bindings, but it does.
2076 case DeclaratorContext::Block:
2077 case DeclaratorContext::ForInit:
2078 case DeclaratorContext::SelectionInit:
2079 case DeclaratorContext::Condition:
2080 return true;
2081
2082 case DeclaratorContext::Member:
2083 case DeclaratorContext::Prototype:
2084 case DeclaratorContext::TemplateParam:
2085 case DeclaratorContext::RequiresExpr:
2086 // Maybe one day...
2087 return false;
2088
2089 // These contexts don't allow any kind of non-abstract declarator.
2090 case DeclaratorContext::KNRTypeList:
2091 case DeclaratorContext::TypeName:
2092 case DeclaratorContext::FunctionalCast:
2093 case DeclaratorContext::AliasDecl:
2094 case DeclaratorContext::AliasTemplate:
2095 case DeclaratorContext::LambdaExprParameter:
2096 case DeclaratorContext::ObjCParameter:
2097 case DeclaratorContext::ObjCResult:
2098 case DeclaratorContext::CXXNew:
2099 case DeclaratorContext::CXXCatch:
2100 case DeclaratorContext::ObjCCatch:
2101 case DeclaratorContext::BlockLiteral:
2102 case DeclaratorContext::LambdaExpr:
2103 case DeclaratorContext::ConversionId:
2104 case DeclaratorContext::TemplateArg:
2105 case DeclaratorContext::TemplateTypeArg:
2106 case DeclaratorContext::TrailingReturn:
2107 case DeclaratorContext::TrailingReturnVar:
2108 return false;
2109 }
2110 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2111 }
2112
2113 /// mayBeFollowedByCXXDirectInit - Return true if the declarator can be
2114 /// followed by a C++ direct initializer, e.g. "int x(1);".
2115 bool mayBeFollowedByCXXDirectInit() const {
2116 if (hasGroupingParens()) return false;
2117
2118 if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2119 return false;
2120
2121 if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern &&
2122 Context != DeclaratorContext::File)
2123 return false;
2124
2125 // Special names can't have direct initializers.
2126 if (Name.getKind() != UnqualifiedIdKind::IK_Identifier)
2127 return false;
2128
2129 switch (Context) {
2130 case DeclaratorContext::File:
2131 case DeclaratorContext::Block:
2132 case DeclaratorContext::ForInit:
2133 case DeclaratorContext::SelectionInit:
2134 case DeclaratorContext::TrailingReturnVar:
2135 return true;
2136
2137 case DeclaratorContext::Condition:
2138 // This may not be followed by a direct initializer, but it can't be a
2139 // function declaration either, and we'd prefer to perform a tentative
2140 // parse in order to produce the right diagnostic.
2141 return true;
2142
2143 case DeclaratorContext::KNRTypeList:
2144 case DeclaratorContext::Member:
2145 case DeclaratorContext::Prototype:
2146 case DeclaratorContext::LambdaExprParameter:
2147 case DeclaratorContext::ObjCParameter:
2148 case DeclaratorContext::ObjCResult:
2149 case DeclaratorContext::TemplateParam:
2150 case DeclaratorContext::CXXCatch:
2151 case DeclaratorContext::ObjCCatch:
2152 case DeclaratorContext::TypeName:
2153 case DeclaratorContext::FunctionalCast: // FIXME
2154 case DeclaratorContext::CXXNew:
2155 case DeclaratorContext::AliasDecl:
2156 case DeclaratorContext::AliasTemplate:
2157 case DeclaratorContext::BlockLiteral:
2158 case DeclaratorContext::LambdaExpr:
2159 case DeclaratorContext::ConversionId:
2160 case DeclaratorContext::TemplateArg:
2161 case DeclaratorContext::TemplateTypeArg:
2162 case DeclaratorContext::TrailingReturn:
2163 case DeclaratorContext::RequiresExpr:
2164 return false;
2165 }
2166 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2167 }
2168
2169 /// isPastIdentifier - Return true if we have parsed beyond the point where
2170 /// the name would appear. (This may happen even if we haven't actually parsed
2171 /// a name, perhaps because this context doesn't require one.)
2172 bool isPastIdentifier() const { return Name.isValid(); }
2173
2174 /// hasName - Whether this declarator has a name, which might be an
2175 /// identifier (accessible via getIdentifier()) or some kind of
2176 /// special C++ name (constructor, destructor, etc.), or a structured
2177 /// binding (which is not exactly a name, but occupies the same position).
2178 bool hasName() const {
2179 return Name.getKind() != UnqualifiedIdKind::IK_Identifier ||
2180 Name.Identifier || isDecompositionDeclarator();
2181 }
2182
2183 /// Return whether this declarator is a decomposition declarator.
2184 bool isDecompositionDeclarator() const {
2185 return BindingGroup.isSet();
2186 }
2187
2188 IdentifierInfo *getIdentifier() const {
2189 if (Name.getKind() == UnqualifiedIdKind::IK_Identifier)
2190 return Name.Identifier;
2191
2192 return nullptr;
2193 }
2194 SourceLocation getIdentifierLoc() const { return Name.StartLocation; }
2195
2196 /// Set the name of this declarator to be the given identifier.
2197 void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc) {
2198 Name.setIdentifier(Id, IdLoc);
2199 }
2200
2201 /// Set the decomposition bindings for this declarator.
2202 void
2203 setDecompositionBindings(SourceLocation LSquareLoc,
2204 ArrayRef<DecompositionDeclarator::Binding> Bindings,
2205 SourceLocation RSquareLoc);
2206
2207 /// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
2208 /// EndLoc, which should be the last token of the chunk.
2209 /// This function takes attrs by R-Value reference because it takes ownership
2210 /// of those attributes from the parameter.
2211 void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs,
2212 SourceLocation EndLoc) {
2213 DeclTypeInfo.push_back(TI);
2214 DeclTypeInfo.back().getAttrs().addAll(attrs.begin(), attrs.end());
2215 getAttributePool().takeAllFrom(attrs.getPool());
2216
2217 if (!EndLoc.isInvalid())
2218 SetRangeEnd(EndLoc);
2219 }
2220
2221 /// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
2222 /// EndLoc, which should be the last token of the chunk.
2223 void AddTypeInfo(const DeclaratorChunk &TI, SourceLocation EndLoc) {
2224 DeclTypeInfo.push_back(TI);
2225
2226 if (!EndLoc.isInvalid())
2227 SetRangeEnd(EndLoc);
2228 }
2229
2230 /// Add a new innermost chunk to this declarator.
2231 void AddInnermostTypeInfo(const DeclaratorChunk &TI) {
2232 DeclTypeInfo.insert(DeclTypeInfo.begin(), TI);
2233 }
2234
2235 /// Return the number of types applied to this declarator.
2236 unsigned getNumTypeObjects() const { return DeclTypeInfo.size(); }
2237
2238 /// Return the specified TypeInfo from this declarator. TypeInfo #0 is
2239 /// closest to the identifier.
2240 const DeclaratorChunk &getTypeObject(unsigned i) const {
2241 assert(i < DeclTypeInfo.size() && "Invalid type chunk")(static_cast<void> (0));
2242 return DeclTypeInfo[i];
2243 }
2244 DeclaratorChunk &getTypeObject(unsigned i) {
2245 assert(i < DeclTypeInfo.size() && "Invalid type chunk")(static_cast<void> (0));
2246 return DeclTypeInfo[i];
2247 }
2248
2249 typedef SmallVectorImpl<DeclaratorChunk>::const_iterator type_object_iterator;
2250 typedef llvm::iterator_range<type_object_iterator> type_object_range;
2251
2252 /// Returns the range of type objects, from the identifier outwards.
2253 type_object_range type_objects() const {
2254 return type_object_range(DeclTypeInfo.begin(), DeclTypeInfo.end());
2255 }
2256
2257 void DropFirstTypeObject() {
2258 assert(!DeclTypeInfo.empty() && "No type chunks to drop.")(static_cast<void> (0));
2259 DeclTypeInfo.front().destroy();
2260 DeclTypeInfo.erase(DeclTypeInfo.begin());
2261 }
2262
2263 /// Return the innermost (closest to the declarator) chunk of this
2264 /// declarator that is not a parens chunk, or null if there are no
2265 /// non-parens chunks.
2266 const DeclaratorChunk *getInnermostNonParenChunk() const {
2267 for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
2268 if (!DeclTypeInfo[i].isParen())
2269 return &DeclTypeInfo[i];
2270 }
2271 return nullptr;
2272 }
2273
2274 /// Return the outermost (furthest from the declarator) chunk of
2275 /// this declarator that is not a parens chunk, or null if there are
2276 /// no non-parens chunks.
2277 const DeclaratorChunk *getOutermostNonParenChunk() const {
2278 for (unsigned i = DeclTypeInfo.size(), i_end = 0; i != i_end; --i) {
2279 if (!DeclTypeInfo[i-1].isParen())
2280 return &DeclTypeInfo[i-1];
2281 }
2282 return nullptr;
2283 }
2284
2285 /// isArrayOfUnknownBound - This method returns true if the declarator
2286 /// is a declarator for an array of unknown bound (looking through
2287 /// parentheses).
2288 bool isArrayOfUnknownBound() const {
2289 const DeclaratorChunk *chunk = getInnermostNonParenChunk();
2290 return (chunk && chunk->Kind == DeclaratorChunk::Array &&
2291 !chunk->Arr.NumElts);
2292 }
2293
2294 /// isFunctionDeclarator - This method returns true if the declarator
2295 /// is a function declarator (looking through parentheses).
2296 /// If true is returned, then the reference type parameter idx is
2297 /// assigned with the index of the declaration chunk.
2298 bool isFunctionDeclarator(unsigned& idx) const {
2299 for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
2300 switch (DeclTypeInfo[i].Kind) {
2301 case DeclaratorChunk::Function:
2302 idx = i;
2303 return true;
2304 case DeclaratorChunk::Paren:
2305 continue;
2306 case DeclaratorChunk::Pointer:
2307 case DeclaratorChunk::Reference:
2308 case DeclaratorChunk::Array:
2309 case DeclaratorChunk::BlockPointer:
2310 case DeclaratorChunk::MemberPointer:
2311 case DeclaratorChunk::Pipe:
2312 return false;
2313 }
2314 llvm_unreachable("Invalid type chunk")__builtin_unreachable();
2315 }
2316 return false;
2317 }
2318
2319 /// isFunctionDeclarator - Once this declarator is fully parsed and formed,
2320 /// this method returns true if the identifier is a function declarator
2321 /// (looking through parentheses).
2322 bool isFunctionDeclarator() const {
2323 unsigned index;
2324 return isFunctionDeclarator(index);
2325 }
2326
2327 /// getFunctionTypeInfo - Retrieves the function type info object
2328 /// (looking through parentheses).
2329 DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() {
2330 assert(isFunctionDeclarator() && "Not a function declarator!")(static_cast<void> (0));
2331 unsigned index = 0;
2332 isFunctionDeclarator(index);
2333 return DeclTypeInfo[index].Fun;
2334 }
2335
2336 /// getFunctionTypeInfo - Retrieves the function type info object
2337 /// (looking through parentheses).
2338 const DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() const {
2339 return const_cast<Declarator*>(this)->getFunctionTypeInfo();
2340 }
2341
2342 /// Determine whether the declaration that will be produced from
2343 /// this declaration will be a function.
2344 ///
2345 /// A declaration can declare a function even if the declarator itself
2346 /// isn't a function declarator, if the type specifier refers to a function
2347 /// type. This routine checks for both cases.
2348 bool isDeclarationOfFunction() const;
2349
2350 /// Return true if this declaration appears in a context where a
2351 /// function declarator would be a function declaration.
2352 bool isFunctionDeclarationContext() const {
2353 if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2354 return false;
2355
2356 switch (Context) {
2357 case DeclaratorContext::File:
2358 case DeclaratorContext::Member:
2359 case DeclaratorContext::Block:
2360 case DeclaratorContext::ForInit:
2361 case DeclaratorContext::SelectionInit:
2362 return true;
2363
2364 case DeclaratorContext::Condition:
2365 case DeclaratorContext::KNRTypeList:
2366 case DeclaratorContext::TypeName:
2367 case DeclaratorContext::FunctionalCast:
2368 case DeclaratorContext::AliasDecl:
2369 case DeclaratorContext::AliasTemplate:
2370 case DeclaratorContext::Prototype:
2371 case DeclaratorContext::LambdaExprParameter:
2372 case DeclaratorContext::ObjCParameter:
2373 case DeclaratorContext::ObjCResult:
2374 case DeclaratorContext::TemplateParam:
2375 case DeclaratorContext::CXXNew:
2376 case DeclaratorContext::CXXCatch:
2377 case DeclaratorContext::ObjCCatch:
2378 case DeclaratorContext::BlockLiteral:
2379 case DeclaratorContext::LambdaExpr:
2380 case DeclaratorContext::ConversionId:
2381 case DeclaratorContext::TemplateArg:
2382 case DeclaratorContext::TemplateTypeArg:
2383 case DeclaratorContext::TrailingReturn:
2384 case DeclaratorContext::TrailingReturnVar:
2385 case DeclaratorContext::RequiresExpr:
2386 return false;
2387 }
2388 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2389 }
2390
2391 /// Determine whether this declaration appears in a context where an
2392 /// expression could appear.
2393 bool isExpressionContext() const {
2394 switch (Context) {
2395 case DeclaratorContext::File:
2396 case DeclaratorContext::KNRTypeList:
2397 case DeclaratorContext::Member:
2398
2399 // FIXME: sizeof(...) permits an expression.
2400 case DeclaratorContext::TypeName:
2401
2402 case DeclaratorContext::FunctionalCast:
2403 case DeclaratorContext::AliasDecl:
2404 case DeclaratorContext::AliasTemplate:
2405 case DeclaratorContext::Prototype:
2406 case DeclaratorContext::LambdaExprParameter:
2407 case DeclaratorContext::ObjCParameter:
2408 case DeclaratorContext::ObjCResult:
2409 case DeclaratorContext::TemplateParam:
2410 case DeclaratorContext::CXXNew:
2411 case DeclaratorContext::CXXCatch:
2412 case DeclaratorContext::ObjCCatch:
2413 case DeclaratorContext::BlockLiteral:
2414 case DeclaratorContext::LambdaExpr:
2415 case DeclaratorContext::ConversionId:
2416 case DeclaratorContext::TrailingReturn:
2417 case DeclaratorContext::TrailingReturnVar:
2418 case DeclaratorContext::TemplateTypeArg:
2419 case DeclaratorContext::RequiresExpr:
2420 return false;
2421
2422 case DeclaratorContext::Block:
2423 case DeclaratorContext::ForInit:
2424 case DeclaratorContext::SelectionInit:
2425 case DeclaratorContext::Condition:
2426 case DeclaratorContext::TemplateArg:
2427 return true;
2428 }
2429
2430 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2431 }
2432
2433 /// Return true if a function declarator at this position would be a
2434 /// function declaration.
2435 bool isFunctionDeclaratorAFunctionDeclaration() const {
2436 if (!isFunctionDeclarationContext())
2437 return false;
2438
2439 for (unsigned I = 0, N = getNumTypeObjects(); I != N; ++I)
2440 if (getTypeObject(I).Kind != DeclaratorChunk::Paren)
2441 return false;
2442
2443 return true;
2444 }
2445
2446 /// Determine whether a trailing return type was written (at any
2447 /// level) within this declarator.
2448 bool hasTrailingReturnType() const {
2449 for (const auto &Chunk : type_objects())
2450 if (Chunk.Kind == DeclaratorChunk::Function &&
2451 Chunk.Fun.hasTrailingReturnType())
2452 return true;
2453 return false;
2454 }
2455 /// Get the trailing return type appearing (at any level) within this
2456 /// declarator.
2457 ParsedType getTrailingReturnType() const {
2458 for (const auto &Chunk : type_objects())
2459 if (Chunk.Kind == DeclaratorChunk::Function &&
2460 Chunk.Fun.hasTrailingReturnType())
2461 return Chunk.Fun.getTrailingReturnType();
2462 return ParsedType();
2463 }
2464
2465 /// \brief Sets a trailing requires clause for this declarator.
2466 void setTrailingRequiresClause(Expr *TRC) {
2467 TrailingRequiresClause = TRC;
2468
2469 SetRangeEnd(TRC->getEndLoc());
2470 }
2471
2472 /// \brief Sets a trailing requires clause for this declarator.
2473 Expr *getTrailingRequiresClause() {
2474 return TrailingRequiresClause;
2475 }
2476
2477 /// \brief Determine whether a trailing requires clause was written in this
2478 /// declarator.
2479 bool hasTrailingRequiresClause() const {
2480 return TrailingRequiresClause != nullptr;
2481 }
2482
2483 /// Sets the template parameter lists that preceded the declarator.
2484 void setTemplateParameterLists(ArrayRef<TemplateParameterList *> TPLs) {
2485 TemplateParameterLists = TPLs;
2486 }
2487
2488 /// The template parameter lists that preceded the declarator.
2489 ArrayRef<TemplateParameterList *> getTemplateParameterLists() const {
2490 return TemplateParameterLists;
2491 }
2492
2493 /// Sets the template parameter list generated from the explicit template
2494 /// parameters along with any invented template parameters from
2495 /// placeholder-typed parameters.
2496 void setInventedTemplateParameterList(TemplateParameterList *Invented) {
2497 InventedTemplateParameterList = Invented;
2498 }
2499
2500 /// The template parameter list generated from the explicit template
2501 /// parameters along with any invented template parameters from
2502 /// placeholder-typed parameters, if there were any such parameters.
2503 TemplateParameterList * getInventedTemplateParameterList() const {
2504 return InventedTemplateParameterList;
2505 }
2506
2507 /// takeAttributes - Takes attributes from the given parsed-attributes
2508 /// set and add them to this declarator.
2509 ///
2510 /// These examples both add 3 attributes to "var":
2511 /// short int var __attribute__((aligned(16),common,deprecated));
2512 /// short int x, __attribute__((aligned(16)) var
2513 /// __attribute__((common,deprecated));
2514 ///
2515 /// Also extends the range of the declarator.
2516 void takeAttributes(ParsedAttributes &attrs, SourceLocation lastLoc) {
2517 Attrs.takeAllFrom(attrs);
2518
2519 if (!lastLoc.isInvalid())
2520 SetRangeEnd(lastLoc);
2521 }
2522
2523 const ParsedAttributes &getAttributes() const { return Attrs; }
2524 ParsedAttributes &getAttributes() { return Attrs; }
2525
2526 /// hasAttributes - do we contain any attributes?
2527 bool hasAttributes() const {
2528 if (!getAttributes().empty() || getDeclSpec().hasAttributes())
2529 return true;
2530 for (unsigned i = 0, e = getNumTypeObjects(); i != e; ++i)
2531 if (!getTypeObject(i).getAttrs().empty())
2532 return true;
2533 return false;
2534 }
2535
2536 /// Return a source range list of C++11 attributes associated
2537 /// with the declarator.
2538 void getCXX11AttributeRanges(SmallVectorImpl<SourceRange> &Ranges) {
2539 for (const ParsedAttr &AL : Attrs)
2540 if (AL.isCXX11Attribute())
2541 Ranges.push_back(AL.getRange());
2542 }
2543
2544 void setAsmLabel(Expr *E) { AsmLabel = E; }
2545 Expr *getAsmLabel() const { return AsmLabel; }
2546
2547 void setExtension(bool Val = true) { Extension = Val; }
2548 bool getExtension() const { return Extension; }
2549
2550 void setObjCIvar(bool Val = true) { ObjCIvar = Val; }
2551 bool isObjCIvar() const { return ObjCIvar; }
2552
2553 void setObjCWeakProperty(bool Val = true) { ObjCWeakProperty = Val; }
2554 bool isObjCWeakProperty() const { return ObjCWeakProperty; }
2555
2556 void setInvalidType(bool Val = true) { InvalidType = Val; }
2557 bool isInvalidType() const {
2558 return InvalidType || DS.getTypeSpecType() == DeclSpec::TST_error;
2559 }
2560
2561 void setGroupingParens(bool flag) { GroupingParens = flag; }
2562 bool hasGroupingParens() const { return GroupingParens; }
2563
2564 bool isFirstDeclarator() const { return !CommaLoc.isValid(); }
2565 SourceLocation getCommaLoc() const { return CommaLoc; }
2566 void setCommaLoc(SourceLocation CL) { CommaLoc = CL; }
2567
2568 bool hasEllipsis() const { return EllipsisLoc.isValid(); }
2569 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2570 void setEllipsisLoc(SourceLocation EL) { EllipsisLoc = EL; }
2571
2572 void setFunctionDefinitionKind(FunctionDefinitionKind Val) {
2573 FunctionDefinition = static_cast<unsigned>(Val);
2574 }
2575
2576 bool isFunctionDefinition() const {
2577 return getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration;
2578 }
2579
2580 FunctionDefinitionKind getFunctionDefinitionKind() const {
2581 return (FunctionDefinitionKind)FunctionDefinition;
2582 }
2583
2584 void setHasInitializer(bool Val = true) { HasInitializer = Val; }
2585 bool hasInitializer() const { return HasInitializer; }
2586
2587 /// Returns true if this declares a real member and not a friend.
2588 bool isFirstDeclarationOfMember() {
2589 return getContext() == DeclaratorContext::Member &&
2590 !getDeclSpec().isFriendSpecified();
2591 }
2592
2593 /// Returns true if this declares a static member. This cannot be called on a
2594 /// declarator outside of a MemberContext because we won't know until
2595 /// redeclaration time if the decl is static.
2596 bool isStaticMember();
2597
2598 /// Returns true if this declares a constructor or a destructor.
2599 bool isCtorOrDtor();
2600
2601 void setRedeclaration(bool Val) { Redeclaration = Val; }
2602 bool isRedeclaration() const { return Redeclaration; }
2603};
2604
2605/// This little struct is used to capture information about
2606/// structure field declarators, which is basically just a bitfield size.
2607struct FieldDeclarator {
2608 Declarator D;
2609 Expr *BitfieldSize;
2610 explicit FieldDeclarator(const DeclSpec &DS)
2611 : D(DS, DeclaratorContext::Member), BitfieldSize(nullptr) {}
2612};
2613
2614/// Represents a C++11 virt-specifier-seq.
2615class VirtSpecifiers {
2616public:
2617 enum Specifier {
2618 VS_None = 0,
2619 VS_Override = 1,
2620 VS_Final = 2,
2621 VS_Sealed = 4,
2622 // Represents the __final keyword, which is legal for gcc in pre-C++11 mode.
2623 VS_GNU_Final = 8,
2624 VS_Abstract = 16
2625 };
2626
2627 VirtSpecifiers() : Specifiers(0), LastSpecifier(VS_None) { }
2628
2629 bool SetSpecifier(Specifier VS, SourceLocation Loc,
2630 const char *&PrevSpec);
2631
2632 bool isUnset() const { return Specifiers == 0; }
2633
2634 bool isOverrideSpecified() const { return Specifiers & VS_Override; }
2635 SourceLocation getOverrideLoc() const { return VS_overrideLoc; }
2636
2637 bool isFinalSpecified() const { return Specifiers & (VS_Final | VS_Sealed | VS_GNU_Final); }
2638 bool isFinalSpelledSealed() const { return Specifiers & VS_Sealed; }
2639 SourceLocation getFinalLoc() const { return VS_finalLoc; }
2640 SourceLocation getAbstractLoc() const { return VS_abstractLoc; }
2641
2642 void clear() { Specifiers = 0; }
2643
2644 static const char *getSpecifierName(Specifier VS);
2645
2646 SourceLocation getFirstLocation() const { return FirstLocation; }
2647 SourceLocation getLastLocation() const { return LastLocation; }
2648 Specifier getLastSpecifier() const { return LastSpecifier; }
2649
2650private:
2651 unsigned Specifiers;
2652 Specifier LastSpecifier;
2653
2654 SourceLocation VS_overrideLoc, VS_finalLoc, VS_abstractLoc;
2655 SourceLocation FirstLocation;
2656 SourceLocation LastLocation;
2657};
2658
2659enum class LambdaCaptureInitKind {
2660 NoInit, //!< [a]
2661 CopyInit, //!< [a = b], [a = {b}]
2662 DirectInit, //!< [a(b)]
2663 ListInit //!< [a{b}]
2664};
2665
2666/// Represents a complete lambda introducer.
2667struct LambdaIntroducer {
2668 /// An individual capture in a lambda introducer.
2669 struct LambdaCapture {
2670 LambdaCaptureKind Kind;
2671 SourceLocation Loc;
2672 IdentifierInfo *Id;
2673 SourceLocation EllipsisLoc;
2674 LambdaCaptureInitKind InitKind;
2675 ExprResult Init;
2676 ParsedType InitCaptureType;
2677 SourceRange ExplicitRange;
2678
2679 LambdaCapture(LambdaCaptureKind Kind, SourceLocation Loc,
2680 IdentifierInfo *Id, SourceLocation EllipsisLoc,
2681 LambdaCaptureInitKind InitKind, ExprResult Init,
2682 ParsedType InitCaptureType,
2683 SourceRange ExplicitRange)
2684 : Kind(Kind), Loc(Loc), Id(Id), EllipsisLoc(EllipsisLoc),
2685 InitKind(InitKind), Init(Init), InitCaptureType(InitCaptureType),
2686 ExplicitRange(ExplicitRange) {}
2687 };
2688
2689 SourceRange Range;
2690 SourceLocation DefaultLoc;
2691 LambdaCaptureDefault Default;
2692 SmallVector<LambdaCapture, 4> Captures;
2693
2694 LambdaIntroducer()
2695 : Default(LCD_None) {}
2696
2697 /// Append a capture in a lambda introducer.
2698 void addCapture(LambdaCaptureKind Kind,
2699 SourceLocation Loc,
2700 IdentifierInfo* Id,
2701 SourceLocation EllipsisLoc,
2702 LambdaCaptureInitKind InitKind,
2703 ExprResult Init,
2704 ParsedType InitCaptureType,
2705 SourceRange ExplicitRange) {
2706 Captures.push_back(LambdaCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
2707 InitCaptureType, ExplicitRange));
2708 }
2709};
2710
2711struct InventedTemplateParameterInfo {
2712 /// The number of parameters in the template parameter list that were
2713 /// explicitly specified by the user, as opposed to being invented by use
2714 /// of an auto parameter.
2715 unsigned NumExplicitTemplateParams = 0;
2716
2717 /// If this is a generic lambda or abbreviated function template, use this
2718 /// as the depth of each 'auto' parameter, during initial AST construction.
2719 unsigned AutoTemplateParameterDepth = 0;
2720
2721 /// Store the list of the template parameters for a generic lambda or an
2722 /// abbreviated function template.
2723 /// If this is a generic lambda or abbreviated function template, this holds
2724 /// the explicit template parameters followed by the auto parameters
2725 /// converted into TemplateTypeParmDecls.
2726 /// It can be used to construct the generic lambda or abbreviated template's
2727 /// template parameter list during initial AST construction.
2728 SmallVector<NamedDecl*, 4> TemplateParams;
2729};
2730
2731} // end namespace clang
2732
2733#endif // LLVM_CLANG_SEMA_DECLSPEC_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast<void> (0));
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast<void> (0));
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast<void> (0));
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast<void> (0));
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)(static_cast<void> (0));
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)(static_cast<void> (0));
344 assert(!hasObjCLifetime())(static_cast<void> (0));
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast<void> (0));
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(static_cast<void> (0));
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)(static_cast<void> (0));
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast<void> (0));
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast<void> (0));
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast<void> (0));
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast<void> (0))
463 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast<void> (0));
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast<void> (0))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast<void> (0));
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast<void> (0))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast<void> (0));
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
490 B == LangAS::sycl_global_host)) ||
491 // Consider pointer size address spaces to be equivalent to default.
492 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
493 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
494 // Default is a superset of SYCL address spaces.
495 (A == LangAS::Default &&
496 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
497 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
498 B == LangAS::sycl_global_host)) ||
499 // In HIP device compilation, any cuda address space is allowed
500 // to implicitly cast into the default address space.
501 (A == LangAS::Default &&
502 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
503 B == LangAS::cuda_shared));
504 }
505
506 /// Returns true if the address space in these qualifiers is equal to or
507 /// a superset of the address space in the argument qualifiers.
508 bool isAddressSpaceSupersetOf(Qualifiers other) const {
509 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
510 }
511
512 /// Determines if these qualifiers compatibly include another set.
513 /// Generally this answers the question of whether an object with the other
514 /// qualifiers can be safely used as an object with these qualifiers.
515 bool compatiblyIncludes(Qualifiers other) const {
516 return isAddressSpaceSupersetOf(other) &&
517 // ObjC GC qualifiers can match, be added, or be removed, but can't
518 // be changed.
519 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
520 !other.hasObjCGCAttr()) &&
521 // ObjC lifetime qualifiers must match exactly.
522 getObjCLifetime() == other.getObjCLifetime() &&
523 // CVR qualifiers may subset.
524 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
525 // U qualifier may superset.
526 (!other.hasUnaligned() || hasUnaligned());
527 }
528
529 /// Determines if these qualifiers compatibly include another set of
530 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
531 ///
532 /// One set of Objective-C lifetime qualifiers compatibly includes the other
533 /// if the lifetime qualifiers match, or if both are non-__weak and the
534 /// including set also contains the 'const' qualifier, or both are non-__weak
535 /// and one is None (which can only happen in non-ARC modes).
536 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
537 if (getObjCLifetime() == other.getObjCLifetime())
538 return true;
539
540 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
541 return false;
542
543 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
544 return true;
545
546 return hasConst();
547 }
548
549 /// Determine whether this set of qualifiers is a strict superset of
550 /// another set of qualifiers, not considering qualifier compatibility.
551 bool isStrictSupersetOf(Qualifiers Other) const;
552
553 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
554 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
555
556 explicit operator bool() const { return hasQualifiers(); }
557
558 Qualifiers &operator+=(Qualifiers R) {
559 addQualifiers(R);
560 return *this;
561 }
562
563 // Union two qualifier sets. If an enumerated qualifier appears
564 // in both sets, use the one from the right.
565 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
566 L += R;
567 return L;
568 }
569
570 Qualifiers &operator-=(Qualifiers R) {
571 removeQualifiers(R);
572 return *this;
573 }
574
575 /// Compute the difference between two qualifier sets.
576 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
577 L -= R;
578 return L;
579 }
580
581 std::string getAsString() const;
582 std::string getAsString(const PrintingPolicy &Policy) const;
583
584 static std::string getAddrSpaceAsString(LangAS AS);
585
586 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
587 void print(raw_ostream &OS, const PrintingPolicy &Policy,
588 bool appendSpaceIfNonEmpty = false) const;
589
590 void Profile(llvm::FoldingSetNodeID &ID) const {
591 ID.AddInteger(Mask);
592 }
593
594private:
595 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
596 // |C R V|U|GCAttr|Lifetime|AddressSpace|
597 uint32_t Mask = 0;
598
599 static const uint32_t UMask = 0x8;
600 static const uint32_t UShift = 3;
601 static const uint32_t GCAttrMask = 0x30;
602 static const uint32_t GCAttrShift = 4;
603 static const uint32_t LifetimeMask = 0x1C0;
604 static const uint32_t LifetimeShift = 6;
605 static const uint32_t AddressSpaceMask =
606 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
607 static const uint32_t AddressSpaceShift = 9;
608};
609
610/// A std::pair-like structure for storing a qualified type split
611/// into its local qualifiers and its locally-unqualified type.
612struct SplitQualType {
613 /// The locally-unqualified type.
614 const Type *Ty = nullptr;
615
616 /// The local qualifiers.
617 Qualifiers Quals;
618
619 SplitQualType() = default;
620 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
621
622 SplitQualType getSingleStepDesugaredType() const; // end of this file
623
624 // Make std::tie work.
625 std::pair<const Type *,Qualifiers> asPair() const {
626 return std::pair<const Type *, Qualifiers>(Ty, Quals);
627 }
628
629 friend bool operator==(SplitQualType a, SplitQualType b) {
630 return a.Ty == b.Ty && a.Quals == b.Quals;
631 }
632 friend bool operator!=(SplitQualType a, SplitQualType b) {
633 return a.Ty != b.Ty || a.Quals != b.Quals;
634 }
635};
636
637/// The kind of type we are substituting Objective-C type arguments into.
638///
639/// The kind of substitution affects the replacement of type parameters when
640/// no concrete type information is provided, e.g., when dealing with an
641/// unspecialized type.
642enum class ObjCSubstitutionContext {
643 /// An ordinary type.
644 Ordinary,
645
646 /// The result type of a method or function.
647 Result,
648
649 /// The parameter type of a method or function.
650 Parameter,
651
652 /// The type of a property.
653 Property,
654
655 /// The superclass of a type.
656 Superclass,
657};
658
659/// A (possibly-)qualified type.
660///
661/// For efficiency, we don't store CV-qualified types as nodes on their
662/// own: instead each reference to a type stores the qualifiers. This
663/// greatly reduces the number of nodes we need to allocate for types (for
664/// example we only need one for 'int', 'const int', 'volatile int',
665/// 'const volatile int', etc).
666///
667/// As an added efficiency bonus, instead of making this a pair, we
668/// just store the two bits we care about in the low bits of the
669/// pointer. To handle the packing/unpacking, we make QualType be a
670/// simple wrapper class that acts like a smart pointer. A third bit
671/// indicates whether there are extended qualifiers present, in which
672/// case the pointer points to a special structure.
673class QualType {
674 friend class QualifierCollector;
675
676 // Thankfully, these are efficiently composable.
677 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
678 Qualifiers::FastWidth> Value;
679
680 const ExtQuals *getExtQualsUnsafe() const {
681 return Value.getPointer().get<const ExtQuals*>();
682 }
683
684 const Type *getTypePtrUnsafe() const {
685 return Value.getPointer().get<const Type*>();
686 }
687
688 const ExtQualsTypeCommonBase *getCommonPtr() const {
689 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast<void> (0));
690 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
691 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
692 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
693 }
694
695public:
696 QualType() = default;
697 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
698 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699
700 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
701 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
702
703 /// Retrieves a pointer to the underlying (unqualified) type.
704 ///
705 /// This function requires that the type not be NULL. If the type might be
706 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
707 const Type *getTypePtr() const;
708
709 const Type *getTypePtrOrNull() const;
710
711 /// Retrieves a pointer to the name of the base type.
712 const IdentifierInfo *getBaseTypeIdentifier() const;
713
714 /// Divides a QualType into its unqualified type and a set of local
715 /// qualifiers.
716 SplitQualType split() const;
717
718 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
719
720 static QualType getFromOpaquePtr(const void *Ptr) {
721 QualType T;
722 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
723 return T;
724 }
725
726 const Type &operator*() const {
727 return *getTypePtr();
728 }
729
730 const Type *operator->() const {
731 return getTypePtr();
732 }
733
734 bool isCanonical() const;
735 bool isCanonicalAsParam() const;
736
737 /// Return true if this QualType doesn't point to a type yet.
738 bool isNull() const {
739 return Value.getPointer().isNull();
13
Calling 'PointerUnion::isNull'
24
Returning from 'PointerUnion::isNull'
25
Returning the value 1, which participates in a condition later
740 }
741
742 /// Determine whether this particular QualType instance has the
743 /// "const" qualifier set, without looking through typedefs that may have
744 /// added "const" at a different level.
745 bool isLocalConstQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Const);
747 }
748
749 /// Determine whether this type is const-qualified.
750 bool isConstQualified() const;
751
752 /// Determine whether this particular QualType instance has the
753 /// "restrict" qualifier set, without looking through typedefs that may have
754 /// added "restrict" at a different level.
755 bool isLocalRestrictQualified() const {
756 return (getLocalFastQualifiers() & Qualifiers::Restrict);
757 }
758
759 /// Determine whether this type is restrict-qualified.
760 bool isRestrictQualified() const;
761
762 /// Determine whether this particular QualType instance has the
763 /// "volatile" qualifier set, without looking through typedefs that may have
764 /// added "volatile" at a different level.
765 bool isLocalVolatileQualified() const {
766 return (getLocalFastQualifiers() & Qualifiers::Volatile);
767 }
768
769 /// Determine whether this type is volatile-qualified.
770 bool isVolatileQualified() const;
771
772 /// Determine whether this particular QualType instance has any
773 /// qualifiers, without looking through any typedefs that might add
774 /// qualifiers at a different level.
775 bool hasLocalQualifiers() const {
776 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
777 }
778
779 /// Determine whether this type has any qualifiers.
780 bool hasQualifiers() const;
781
782 /// Determine whether this particular QualType instance has any
783 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
784 /// instance.
785 bool hasLocalNonFastQualifiers() const {
786 return Value.getPointer().is<const ExtQuals*>();
787 }
788
789 /// Retrieve the set of qualifiers local to this particular QualType
790 /// instance, not including any qualifiers acquired through typedefs or
791 /// other sugar.
792 Qualifiers getLocalQualifiers() const;
793
794 /// Retrieve the set of qualifiers applied to this type.
795 Qualifiers getQualifiers() const;
796
797 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
798 /// local to this particular QualType instance, not including any qualifiers
799 /// acquired through typedefs or other sugar.
800 unsigned getLocalCVRQualifiers() const {
801 return getLocalFastQualifiers();
802 }
803
804 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
805 /// applied to this type.
806 unsigned getCVRQualifiers() const;
807
808 bool isConstant(const ASTContext& Ctx) const {
809 return QualType::isConstant(*this, Ctx);
810 }
811
812 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
813 bool isPODType(const ASTContext &Context) const;
814
815 /// Return true if this is a POD type according to the rules of the C++98
816 /// standard, regardless of the current compilation's language.
817 bool isCXX98PODType(const ASTContext &Context) const;
818
819 /// Return true if this is a POD type according to the more relaxed rules
820 /// of the C++11 standard, regardless of the current compilation's language.
821 /// (C++0x [basic.types]p9). Note that, unlike
822 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
823 bool isCXX11PODType(const ASTContext &Context) const;
824
825 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
826 bool isTrivialType(const ASTContext &Context) const;
827
828 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
829 bool isTriviallyCopyableType(const ASTContext &Context) const;
830
831
832 /// Returns true if it is a class and it might be dynamic.
833 bool mayBeDynamicClass() const;
834
835 /// Returns true if it is not a class or if the class might not be dynamic.
836 bool mayBeNotDynamicClass() const;
837
838 // Don't promise in the API that anything besides 'const' can be
839 // easily added.
840
841 /// Add the `const` type qualifier to this QualType.
842 void addConst() {
843 addFastQualifiers(Qualifiers::Const);
844 }
845 QualType withConst() const {
846 return withFastQualifiers(Qualifiers::Const);
847 }
848
849 /// Add the `volatile` type qualifier to this QualType.
850 void addVolatile() {
851 addFastQualifiers(Qualifiers::Volatile);
852 }
853 QualType withVolatile() const {
854 return withFastQualifiers(Qualifiers::Volatile);
855 }
856
857 /// Add the `restrict` qualifier to this QualType.
858 void addRestrict() {
859 addFastQualifiers(Qualifiers::Restrict);
860 }
861 QualType withRestrict() const {
862 return withFastQualifiers(Qualifiers::Restrict);
863 }
864
865 QualType withCVRQualifiers(unsigned CVR) const {
866 return withFastQualifiers(CVR);
867 }
868
869 void addFastQualifiers(unsigned TQs) {
870 assert(!(TQs & ~Qualifiers::FastMask)(static_cast<void> (0))
871 && "non-fast qualifier bits set in mask!")(static_cast<void> (0));
872 Value.setInt(Value.getInt() | TQs);
873 }
874
875 void removeLocalConst();
876 void removeLocalVolatile();
877 void removeLocalRestrict();
878 void removeLocalCVRQualifiers(unsigned Mask);
879
880 void removeLocalFastQualifiers() { Value.setInt(0); }
881 void removeLocalFastQualifiers(unsigned Mask) {
882 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast<void> (0));
883 Value.setInt(Value.getInt() & ~Mask);
884 }
885
886 // Creates a type with the given qualifiers in addition to any
887 // qualifiers already on this type.
888 QualType withFastQualifiers(unsigned TQs) const {
889 QualType T = *this;
890 T.addFastQualifiers(TQs);
891 return T;
892 }
893
894 // Creates a type with exactly the given fast qualifiers, removing
895 // any existing fast qualifiers.
896 QualType withExactLocalFastQualifiers(unsigned TQs) const {
897 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
898 }
899
900 // Removes fast qualifiers, but leaves any extended qualifiers in place.
901 QualType withoutLocalFastQualifiers() const {
902 QualType T = *this;
903 T.removeLocalFastQualifiers();
904 return T;
905 }
906
907 QualType getCanonicalType() const;
908
909 /// Return this type with all of the instance-specific qualifiers
910 /// removed, but without removing any qualifiers that may have been applied
911 /// through typedefs.
912 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
913
914 /// Retrieve the unqualified variant of the given type,
915 /// removing as little sugar as possible.
916 ///
917 /// This routine looks through various kinds of sugar to find the
918 /// least-desugared type that is unqualified. For example, given:
919 ///
920 /// \code
921 /// typedef int Integer;
922 /// typedef const Integer CInteger;
923 /// typedef CInteger DifferenceType;
924 /// \endcode
925 ///
926 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
927 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
928 ///
929 /// The resulting type might still be qualified if it's sugar for an array
930 /// type. To strip qualifiers even from within a sugared array type, use
931 /// ASTContext::getUnqualifiedArrayType.
932 inline QualType getUnqualifiedType() const;
933
934 /// Retrieve the unqualified variant of the given type, removing as little
935 /// sugar as possible.
936 ///
937 /// Like getUnqualifiedType(), but also returns the set of
938 /// qualifiers that were built up.
939 ///
940 /// The resulting type might still be qualified if it's sugar for an array
941 /// type. To strip qualifiers even from within a sugared array type, use
942 /// ASTContext::getUnqualifiedArrayType.
943 inline SplitQualType getSplitUnqualifiedType() const;
944
945 /// Determine whether this type is more qualified than the other
946 /// given type, requiring exact equality for non-CVR qualifiers.
947 bool isMoreQualifiedThan(QualType Other) const;
948
949 /// Determine whether this type is at least as qualified as the other
950 /// given type, requiring exact equality for non-CVR qualifiers.
951 bool isAtLeastAsQualifiedAs(QualType Other) const;
952
953 QualType getNonReferenceType() const;
954
955 /// Determine the type of a (typically non-lvalue) expression with the
956 /// specified result type.
957 ///
958 /// This routine should be used for expressions for which the return type is
959 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
960 /// an lvalue. It removes a top-level reference (since there are no
961 /// expressions of reference type) and deletes top-level cvr-qualifiers
962 /// from non-class types (in C++) or all types (in C).
963 QualType getNonLValueExprType(const ASTContext &Context) const;
964
965 /// Remove an outer pack expansion type (if any) from this type. Used as part
966 /// of converting the type of a declaration to the type of an expression that
967 /// references that expression. It's meaningless for an expression to have a
968 /// pack expansion type.
969 QualType getNonPackExpansionType() const;
970
971 /// Return the specified type with any "sugar" removed from
972 /// the type. This takes off typedefs, typeof's etc. If the outer level of
973 /// the type is already concrete, it returns it unmodified. This is similar
974 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
975 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
976 /// concrete.
977 ///
978 /// Qualifiers are left in place.
979 QualType getDesugaredType(const ASTContext &Context) const {
980 return getDesugaredType(*this, Context);
981 }
982
983 SplitQualType getSplitDesugaredType() const {
984 return getSplitDesugaredType(*this);
985 }
986
987 /// Return the specified type with one level of "sugar" removed from
988 /// the type.
989 ///
990 /// This routine takes off the first typedef, typeof, etc. If the outer level
991 /// of the type is already concrete, it returns it unmodified.
992 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
993 return getSingleStepDesugaredTypeImpl(*this, Context);
994 }
995
996 /// Returns the specified type after dropping any
997 /// outer-level parentheses.
998 QualType IgnoreParens() const {
999 if (isa<ParenType>(*this))
1000 return QualType::IgnoreParens(*this);
1001 return *this;
1002 }
1003
1004 /// Indicate whether the specified types and qualifiers are identical.
1005 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1006 return LHS.Value == RHS.Value;
1007 }
1008 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1009 return LHS.Value != RHS.Value;
1010 }
1011 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1012 return LHS.Value < RHS.Value;
1013 }
1014
1015 static std::string getAsString(SplitQualType split,
1016 const PrintingPolicy &Policy) {
1017 return getAsString(split.Ty, split.Quals, Policy);
1018 }
1019 static std::string getAsString(const Type *ty, Qualifiers qs,
1020 const PrintingPolicy &Policy);
1021
1022 std::string getAsString() const;
1023 std::string getAsString(const PrintingPolicy &Policy) const;
1024
1025 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1026 const Twine &PlaceHolder = Twine(),
1027 unsigned Indentation = 0) const;
1028
1029 static void print(SplitQualType split, raw_ostream &OS,
1030 const PrintingPolicy &policy, const Twine &PlaceHolder,
1031 unsigned Indentation = 0) {
1032 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1033 }
1034
1035 static void print(const Type *ty, Qualifiers qs,
1036 raw_ostream &OS, const PrintingPolicy &policy,
1037 const Twine &PlaceHolder,
1038 unsigned Indentation = 0);
1039
1040 void getAsStringInternal(std::string &Str,
1041 const PrintingPolicy &Policy) const;
1042
1043 static void getAsStringInternal(SplitQualType split, std::string &out,
1044 const PrintingPolicy &policy) {
1045 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1046 }
1047
1048 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1049 std::string &out,
1050 const PrintingPolicy &policy);
1051
1052 class StreamedQualTypeHelper {
1053 const QualType &T;
1054 const PrintingPolicy &Policy;
1055 const Twine &PlaceHolder;
1056 unsigned Indentation;
1057
1058 public:
1059 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder, unsigned Indentation)
1061 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1062 Indentation(Indentation) {}
1063
1064 friend raw_ostream &operator<<(raw_ostream &OS,
1065 const StreamedQualTypeHelper &SQT) {
1066 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1067 return OS;
1068 }
1069 };
1070
1071 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1072 const Twine &PlaceHolder = Twine(),
1073 unsigned Indentation = 0) const {
1074 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1075 }
1076
1077 void dump(const char *s) const;
1078 void dump() const;
1079 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1080
1081 void Profile(llvm::FoldingSetNodeID &ID) const {
1082 ID.AddPointer(getAsOpaquePtr());
1083 }
1084
1085 /// Check if this type has any address space qualifier.
1086 inline bool hasAddressSpace() const;
1087
1088 /// Return the address space of this type.
1089 inline LangAS getAddressSpace() const;
1090
1091 /// Returns true if address space qualifiers overlap with T address space
1092 /// qualifiers.
1093 /// OpenCL C defines conversion rules for pointers to different address spaces
1094 /// and notion of overlapping address spaces.
1095 /// CL1.1 or CL1.2:
1096 /// address spaces overlap iff they are they same.
1097 /// OpenCL C v2.0 s6.5.5 adds:
1098 /// __generic overlaps with any address space except for __constant.
1099 bool isAddressSpaceOverlapping(QualType T) const {
1100 Qualifiers Q = getQualifiers();
1101 Qualifiers TQ = T.getQualifiers();
1102 // Address spaces overlap if at least one of them is a superset of another
1103 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1104 }
1105
1106 /// Returns gc attribute of this type.
1107 inline Qualifiers::GC getObjCGCAttr() const;
1108
1109 /// true when Type is objc's weak.
1110 bool isObjCGCWeak() const {
1111 return getObjCGCAttr() == Qualifiers::Weak;
1112 }
1113
1114 /// true when Type is objc's strong.
1115 bool isObjCGCStrong() const {
1116 return getObjCGCAttr() == Qualifiers::Strong;
1117 }
1118
1119 /// Returns lifetime attribute of this type.
1120 Qualifiers::ObjCLifetime getObjCLifetime() const {
1121 return getQualifiers().getObjCLifetime();
1122 }
1123
1124 bool hasNonTrivialObjCLifetime() const {
1125 return getQualifiers().hasNonTrivialObjCLifetime();
1126 }
1127
1128 bool hasStrongOrWeakObjCLifetime() const {
1129 return getQualifiers().hasStrongOrWeakObjCLifetime();
1130 }
1131
1132 // true when Type is objc's weak and weak is enabled but ARC isn't.
1133 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1134
1135 enum PrimitiveDefaultInitializeKind {
1136 /// The type does not fall into any of the following categories. Note that
1137 /// this case is zero-valued so that values of this enum can be used as a
1138 /// boolean condition for non-triviality.
1139 PDIK_Trivial,
1140
1141 /// The type is an Objective-C retainable pointer type that is qualified
1142 /// with the ARC __strong qualifier.
1143 PDIK_ARCStrong,
1144
1145 /// The type is an Objective-C retainable pointer type that is qualified
1146 /// with the ARC __weak qualifier.
1147 PDIK_ARCWeak,
1148
1149 /// The type is a struct containing a field whose type is not PCK_Trivial.
1150 PDIK_Struct
1151 };
1152
1153 /// Functions to query basic properties of non-trivial C struct types.
1154
1155 /// Check if this is a non-trivial type that would cause a C struct
1156 /// transitively containing this type to be non-trivial to default initialize
1157 /// and return the kind.
1158 PrimitiveDefaultInitializeKind
1159 isNonTrivialToPrimitiveDefaultInitialize() const;
1160
1161 enum PrimitiveCopyKind {
1162 /// The type does not fall into any of the following categories. Note that
1163 /// this case is zero-valued so that values of this enum can be used as a
1164 /// boolean condition for non-triviality.
1165 PCK_Trivial,
1166
1167 /// The type would be trivial except that it is volatile-qualified. Types
1168 /// that fall into one of the other non-trivial cases may additionally be
1169 /// volatile-qualified.
1170 PCK_VolatileTrivial,
1171
1172 /// The type is an Objective-C retainable pointer type that is qualified
1173 /// with the ARC __strong qualifier.
1174 PCK_ARCStrong,
1175
1176 /// The type is an Objective-C retainable pointer type that is qualified
1177 /// with the ARC __weak qualifier.
1178 PCK_ARCWeak,
1179
1180 /// The type is a struct containing a field whose type is neither
1181 /// PCK_Trivial nor PCK_VolatileTrivial.
1182 /// Note that a C++ struct type does not necessarily match this; C++ copying
1183 /// semantics are too complex to express here, in part because they depend
1184 /// on the exact constructor or assignment operator that is chosen by
1185 /// overload resolution to do the copy.
1186 PCK_Struct
1187 };
1188
1189 /// Check if this is a non-trivial type that would cause a C struct
1190 /// transitively containing this type to be non-trivial to copy and return the
1191 /// kind.
1192 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1193
1194 /// Check if this is a non-trivial type that would cause a C struct
1195 /// transitively containing this type to be non-trivial to destructively
1196 /// move and return the kind. Destructive move in this context is a C++-style
1197 /// move in which the source object is placed in a valid but unspecified state
1198 /// after it is moved, as opposed to a truly destructive move in which the
1199 /// source object is placed in an uninitialized state.
1200 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1201
1202 enum DestructionKind {
1203 DK_none,
1204 DK_cxx_destructor,
1205 DK_objc_strong_lifetime,
1206 DK_objc_weak_lifetime,
1207 DK_nontrivial_c_struct
1208 };
1209
1210 /// Returns a nonzero value if objects of this type require
1211 /// non-trivial work to clean up after. Non-zero because it's
1212 /// conceivable that qualifiers (objc_gc(weak)?) could make
1213 /// something require destruction.
1214 DestructionKind isDestructedType() const {
1215 return isDestructedTypeImpl(*this);
1216 }
1217
1218 /// Check if this is or contains a C union that is non-trivial to
1219 /// default-initialize, which is a union that has a member that is non-trivial
1220 /// to default-initialize. If this returns true,
1221 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1222 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1223
1224 /// Check if this is or contains a C union that is non-trivial to destruct,
1225 /// which is a union that has a member that is non-trivial to destruct. If
1226 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1227 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1228
1229 /// Check if this is or contains a C union that is non-trivial to copy, which
1230 /// is a union that has a member that is non-trivial to copy. If this returns
1231 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1232 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1233
1234 /// Determine whether expressions of the given type are forbidden
1235 /// from being lvalues in C.
1236 ///
1237 /// The expression types that are forbidden to be lvalues are:
1238 /// - 'void', but not qualified void
1239 /// - function types
1240 ///
1241 /// The exact rule here is C99 6.3.2.1:
1242 /// An lvalue is an expression with an object type or an incomplete
1243 /// type other than void.
1244 bool isCForbiddenLValueType() const;
1245
1246 /// Substitute type arguments for the Objective-C type parameters used in the
1247 /// subject type.
1248 ///
1249 /// \param ctx ASTContext in which the type exists.
1250 ///
1251 /// \param typeArgs The type arguments that will be substituted for the
1252 /// Objective-C type parameters in the subject type, which are generally
1253 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1254 /// parameters will be replaced with their bounds or id/Class, as appropriate
1255 /// for the context.
1256 ///
1257 /// \param context The context in which the subject type was written.
1258 ///
1259 /// \returns the resulting type.
1260 QualType substObjCTypeArgs(ASTContext &ctx,
1261 ArrayRef<QualType> typeArgs,
1262 ObjCSubstitutionContext context) const;
1263
1264 /// Substitute type arguments from an object type for the Objective-C type
1265 /// parameters used in the subject type.
1266 ///
1267 /// This operation combines the computation of type arguments for
1268 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1269 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1270 /// callers that need to perform a single substitution in isolation.
1271 ///
1272 /// \param objectType The type of the object whose member type we're
1273 /// substituting into. For example, this might be the receiver of a message
1274 /// or the base of a property access.
1275 ///
1276 /// \param dc The declaration context from which the subject type was
1277 /// retrieved, which indicates (for example) which type parameters should
1278 /// be substituted.
1279 ///
1280 /// \param context The context in which the subject type was written.
1281 ///
1282 /// \returns the subject type after replacing all of the Objective-C type
1283 /// parameters with their corresponding arguments.
1284 QualType substObjCMemberType(QualType objectType,
1285 const DeclContext *dc,
1286 ObjCSubstitutionContext context) const;
1287
1288 /// Strip Objective-C "__kindof" types from the given type.
1289 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1290
1291 /// Remove all qualifiers including _Atomic.
1292 QualType getAtomicUnqualifiedType() const;
1293
1294private:
1295 // These methods are implemented in a separate translation unit;
1296 // "static"-ize them to avoid creating temporary QualTypes in the
1297 // caller.
1298 static bool isConstant(QualType T, const ASTContext& Ctx);
1299 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1300 static SplitQualType getSplitDesugaredType(QualType T);
1301 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1302 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1303 const ASTContext &C);
1304 static QualType IgnoreParens(QualType T);
1305 static DestructionKind isDestructedTypeImpl(QualType type);
1306
1307 /// Check if \param RD is or contains a non-trivial C union.
1308 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1309 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1311};
1312
1313} // namespace clang
1314
1315namespace llvm {
1316
1317/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1318/// to a specific Type class.
1319template<> struct simplify_type< ::clang::QualType> {
1320 using SimpleType = const ::clang::Type *;
1321
1322 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1323 return Val.getTypePtr();
1324 }
1325};
1326
1327// Teach SmallPtrSet that QualType is "basically a pointer".
1328template<>
1329struct PointerLikeTypeTraits<clang::QualType> {
1330 static inline void *getAsVoidPointer(clang::QualType P) {
1331 return P.getAsOpaquePtr();
1332 }
1333
1334 static inline clang::QualType getFromVoidPointer(void *P) {
1335 return clang::QualType::getFromOpaquePtr(P);
1336 }
1337
1338 // Various qualifiers go in low bits.
1339 static constexpr int NumLowBitsAvailable = 0;
1340};
1341
1342} // namespace llvm
1343
1344namespace clang {
1345
1346/// Base class that is common to both the \c ExtQuals and \c Type
1347/// classes, which allows \c QualType to access the common fields between the
1348/// two.
1349class ExtQualsTypeCommonBase {
1350 friend class ExtQuals;
1351 friend class QualType;
1352 friend class Type;
1353
1354 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1355 /// a self-referential pointer (for \c Type).
1356 ///
1357 /// This pointer allows an efficient mapping from a QualType to its
1358 /// underlying type pointer.
1359 const Type *const BaseType;
1360
1361 /// The canonical type of this type. A QualType.
1362 QualType CanonicalType;
1363
1364 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1365 : BaseType(baseType), CanonicalType(canon) {}
1366};
1367
1368/// We can encode up to four bits in the low bits of a
1369/// type pointer, but there are many more type qualifiers that we want
1370/// to be able to apply to an arbitrary type. Therefore we have this
1371/// struct, intended to be heap-allocated and used by QualType to
1372/// store qualifiers.
1373///
1374/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1375/// in three low bits on the QualType pointer; a fourth bit records whether
1376/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1377/// Objective-C GC attributes) are much more rare.
1378class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1379 // NOTE: changing the fast qualifiers should be straightforward as
1380 // long as you don't make 'const' non-fast.
1381 // 1. Qualifiers:
1382 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1383 // Fast qualifiers must occupy the low-order bits.
1384 // b) Update Qualifiers::FastWidth and FastMask.
1385 // 2. QualType:
1386 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1387 // b) Update remove{Volatile,Restrict}, defined near the end of
1388 // this header.
1389 // 3. ASTContext:
1390 // a) Update get{Volatile,Restrict}Type.
1391
1392 /// The immutable set of qualifiers applied by this node. Always contains
1393 /// extended qualifiers.
1394 Qualifiers Quals;
1395
1396 ExtQuals *this_() { return this; }
1397
1398public:
1399 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1400 : ExtQualsTypeCommonBase(baseType,
1401 canon.isNull() ? QualType(this_(), 0) : canon),
1402 Quals(quals) {
1403 assert(Quals.hasNonFastQualifiers()(static_cast<void> (0))
1404 && "ExtQuals created with no fast qualifiers")(static_cast<void> (0));
1405 assert(!Quals.hasFastQualifiers()(static_cast<void> (0))
1406 && "ExtQuals created with fast qualifiers")(static_cast<void> (0));
1407 }
1408
1409 Qualifiers getQualifiers() const { return Quals; }
1410
1411 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1412 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1413
1414 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1415 Qualifiers::ObjCLifetime getObjCLifetime() const {
1416 return Quals.getObjCLifetime();
1417 }
1418
1419 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1420 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1421
1422 const Type *getBaseType() const { return BaseType; }
1423
1424public:
1425 void Profile(llvm::FoldingSetNodeID &ID) const {
1426 Profile(ID, getBaseType(), Quals);
1427 }
1428
1429 static void Profile(llvm::FoldingSetNodeID &ID,
1430 const Type *BaseType,
1431 Qualifiers Quals) {
1432 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast<void> (0));
1433 ID.AddPointer(BaseType);
1434 Quals.Profile(ID);
1435 }
1436};
1437
1438/// The kind of C++11 ref-qualifier associated with a function type.
1439/// This determines whether a member function's "this" object can be an
1440/// lvalue, rvalue, or neither.
1441enum RefQualifierKind {
1442 /// No ref-qualifier was provided.
1443 RQ_None = 0,
1444
1445 /// An lvalue ref-qualifier was provided (\c &).
1446 RQ_LValue,
1447
1448 /// An rvalue ref-qualifier was provided (\c &&).
1449 RQ_RValue
1450};
1451
1452/// Which keyword(s) were used to create an AutoType.
1453enum class AutoTypeKeyword {
1454 /// auto
1455 Auto,
1456
1457 /// decltype(auto)
1458 DecltypeAuto,
1459
1460 /// __auto_type (GNU extension)
1461 GNUAutoType
1462};
1463
1464/// The base class of the type hierarchy.
1465///
1466/// A central concept with types is that each type always has a canonical
1467/// type. A canonical type is the type with any typedef names stripped out
1468/// of it or the types it references. For example, consider:
1469///
1470/// typedef int foo;
1471/// typedef foo* bar;
1472/// 'int *' 'foo *' 'bar'
1473///
1474/// There will be a Type object created for 'int'. Since int is canonical, its
1475/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1476/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1477/// there is a PointerType that represents 'int*', which, like 'int', is
1478/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1479/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1480/// is also 'int*'.
1481///
1482/// Non-canonical types are useful for emitting diagnostics, without losing
1483/// information about typedefs being used. Canonical types are useful for type
1484/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1485/// about whether something has a particular form (e.g. is a function type),
1486/// because they implicitly, recursively, strip all typedefs out of a type.
1487///
1488/// Types, once created, are immutable.
1489///
1490class alignas(8) Type : public ExtQualsTypeCommonBase {
1491public:
1492 enum TypeClass {
1493#define TYPE(Class, Base) Class,
1494#define LAST_TYPE(Class) TypeLast = Class
1495#define ABSTRACT_TYPE(Class, Base)
1496#include "clang/AST/TypeNodes.inc"
1497 };
1498
1499private:
1500 /// Bitfields required by the Type class.
1501 class TypeBitfields {
1502 friend class Type;
1503 template <class T> friend class TypePropertyCache;
1504
1505 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1506 unsigned TC : 8;
1507
1508 /// Store information on the type dependency.
1509 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1510
1511 /// True if the cache (i.e. the bitfields here starting with
1512 /// 'Cache') is valid.
1513 mutable unsigned CacheValid : 1;
1514
1515 /// Linkage of this type.
1516 mutable unsigned CachedLinkage : 3;
1517
1518 /// Whether this type involves and local or unnamed types.
1519 mutable unsigned CachedLocalOrUnnamed : 1;
1520
1521 /// Whether this type comes from an AST file.
1522 mutable unsigned FromAST : 1;
1523
1524 bool isCacheValid() const {
1525 return CacheValid;
1526 }
1527
1528 Linkage getLinkage() const {
1529 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast<void> (0));
1530 return static_cast<Linkage>(CachedLinkage);
1531 }
1532
1533 bool hasLocalOrUnnamedType() const {
1534 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast<void> (0));
1535 return CachedLocalOrUnnamed;
1536 }
1537 };
1538 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1539
1540protected:
1541 // These classes allow subclasses to somewhat cleanly pack bitfields
1542 // into Type.
1543
1544 class ArrayTypeBitfields {
1545 friend class ArrayType;
1546
1547 unsigned : NumTypeBits;
1548
1549 /// CVR qualifiers from declarations like
1550 /// 'int X[static restrict 4]'. For function parameters only.
1551 unsigned IndexTypeQuals : 3;
1552
1553 /// Storage class qualifiers from declarations like
1554 /// 'int X[static restrict 4]'. For function parameters only.
1555 /// Actually an ArrayType::ArraySizeModifier.
1556 unsigned SizeModifier : 3;
1557 };
1558
1559 class ConstantArrayTypeBitfields {
1560 friend class ConstantArrayType;
1561
1562 unsigned : NumTypeBits + 3 + 3;
1563
1564 /// Whether we have a stored size expression.
1565 unsigned HasStoredSizeExpr : 1;
1566 };
1567
1568 class BuiltinTypeBitfields {
1569 friend class BuiltinType;
1570
1571 unsigned : NumTypeBits;
1572
1573 /// The kind (BuiltinType::Kind) of builtin type this is.
1574 unsigned Kind : 8;
1575 };
1576
1577 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1578 /// Only common bits are stored here. Additional uncommon bits are stored
1579 /// in a trailing object after FunctionProtoType.
1580 class FunctionTypeBitfields {
1581 friend class FunctionProtoType;
1582 friend class FunctionType;
1583
1584 unsigned : NumTypeBits;
1585
1586 /// Extra information which affects how the function is called, like
1587 /// regparm and the calling convention.
1588 unsigned ExtInfo : 13;
1589
1590 /// The ref-qualifier associated with a \c FunctionProtoType.
1591 ///
1592 /// This is a value of type \c RefQualifierKind.
1593 unsigned RefQualifier : 2;
1594
1595 /// Used only by FunctionProtoType, put here to pack with the
1596 /// other bitfields.
1597 /// The qualifiers are part of FunctionProtoType because...
1598 ///
1599 /// C++ 8.3.5p4: The return type, the parameter type list and the
1600 /// cv-qualifier-seq, [...], are part of the function type.
1601 unsigned FastTypeQuals : Qualifiers::FastWidth;
1602 /// Whether this function has extended Qualifiers.
1603 unsigned HasExtQuals : 1;
1604
1605 /// The number of parameters this function has, not counting '...'.
1606 /// According to [implimits] 8 bits should be enough here but this is
1607 /// somewhat easy to exceed with metaprogramming and so we would like to
1608 /// keep NumParams as wide as reasonably possible.
1609 unsigned NumParams : 16;
1610
1611 /// The type of exception specification this function has.
1612 unsigned ExceptionSpecType : 4;
1613
1614 /// Whether this function has extended parameter information.
1615 unsigned HasExtParameterInfos : 1;
1616
1617 /// Whether the function is variadic.
1618 unsigned Variadic : 1;
1619
1620 /// Whether this function has a trailing return type.
1621 unsigned HasTrailingReturn : 1;
1622 };
1623
1624 class ObjCObjectTypeBitfields {
1625 friend class ObjCObjectType;
1626
1627 unsigned : NumTypeBits;
1628
1629 /// The number of type arguments stored directly on this object type.
1630 unsigned NumTypeArgs : 7;
1631
1632 /// The number of protocols stored directly on this object type.
1633 unsigned NumProtocols : 6;
1634
1635 /// Whether this is a "kindof" type.
1636 unsigned IsKindOf : 1;
1637 };
1638
1639 class ReferenceTypeBitfields {
1640 friend class ReferenceType;
1641
1642 unsigned : NumTypeBits;
1643
1644 /// True if the type was originally spelled with an lvalue sigil.
1645 /// This is never true of rvalue references but can also be false
1646 /// on lvalue references because of C++0x [dcl.typedef]p9,
1647 /// as follows:
1648 ///
1649 /// typedef int &ref; // lvalue, spelled lvalue
1650 /// typedef int &&rvref; // rvalue
1651 /// ref &a; // lvalue, inner ref, spelled lvalue
1652 /// ref &&a; // lvalue, inner ref
1653 /// rvref &a; // lvalue, inner ref, spelled lvalue
1654 /// rvref &&a; // rvalue, inner ref
1655 unsigned SpelledAsLValue : 1;
1656
1657 /// True if the inner type is a reference type. This only happens
1658 /// in non-canonical forms.
1659 unsigned InnerRef : 1;
1660 };
1661
1662 class TypeWithKeywordBitfields {
1663 friend class TypeWithKeyword;
1664
1665 unsigned : NumTypeBits;
1666
1667 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1668 unsigned Keyword : 8;
1669 };
1670
1671 enum { NumTypeWithKeywordBits = 8 };
1672
1673 class ElaboratedTypeBitfields {
1674 friend class ElaboratedType;
1675
1676 unsigned : NumTypeBits;
1677 unsigned : NumTypeWithKeywordBits;
1678
1679 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1680 unsigned HasOwnedTagDecl : 1;
1681 };
1682
1683 class VectorTypeBitfields {
1684 friend class VectorType;
1685 friend class DependentVectorType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// The kind of vector, either a generic vector type or some
1690 /// target-specific vector type such as for AltiVec or Neon.
1691 unsigned VecKind : 3;
1692 /// The number of elements in the vector.
1693 uint32_t NumElements;
1694 };
1695
1696 class AttributedTypeBitfields {
1697 friend class AttributedType;
1698
1699 unsigned : NumTypeBits;
1700
1701 /// An AttributedType::Kind
1702 unsigned AttrKind : 32 - NumTypeBits;
1703 };
1704
1705 class AutoTypeBitfields {
1706 friend class AutoType;
1707
1708 unsigned : NumTypeBits;
1709
1710 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1711 /// or '__auto_type'? AutoTypeKeyword value.
1712 unsigned Keyword : 2;
1713
1714 /// The number of template arguments in the type-constraints, which is
1715 /// expected to be able to hold at least 1024 according to [implimits].
1716 /// However as this limit is somewhat easy to hit with template
1717 /// metaprogramming we'd prefer to keep it as large as possible.
1718 /// At the moment it has been left as a non-bitfield since this type
1719 /// safely fits in 64 bits as an unsigned, so there is no reason to
1720 /// introduce the performance impact of a bitfield.
1721 unsigned NumArgs;
1722 };
1723
1724 class SubstTemplateTypeParmPackTypeBitfields {
1725 friend class SubstTemplateTypeParmPackType;
1726
1727 unsigned : NumTypeBits;
1728
1729 /// The number of template arguments in \c Arguments, which is
1730 /// expected to be able to hold at least 1024 according to [implimits].
1731 /// However as this limit is somewhat easy to hit with template
1732 /// metaprogramming we'd prefer to keep it as large as possible.
1733 /// At the moment it has been left as a non-bitfield since this type
1734 /// safely fits in 64 bits as an unsigned, so there is no reason to
1735 /// introduce the performance impact of a bitfield.
1736 unsigned NumArgs;
1737 };
1738
1739 class TemplateSpecializationTypeBitfields {
1740 friend class TemplateSpecializationType;
1741
1742 unsigned : NumTypeBits;
1743
1744 /// Whether this template specialization type is a substituted type alias.
1745 unsigned TypeAlias : 1;
1746
1747 /// The number of template arguments named in this class template
1748 /// specialization, which is expected to be able to hold at least 1024
1749 /// according to [implimits]. However, as this limit is somewhat easy to
1750 /// hit with template metaprogramming we'd prefer to keep it as large
1751 /// as possible. At the moment it has been left as a non-bitfield since
1752 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1753 /// to introduce the performance impact of a bitfield.
1754 unsigned NumArgs;
1755 };
1756
1757 class DependentTemplateSpecializationTypeBitfields {
1758 friend class DependentTemplateSpecializationType;
1759
1760 unsigned : NumTypeBits;
1761 unsigned : NumTypeWithKeywordBits;
1762
1763 /// The number of template arguments named in this class template
1764 /// specialization, which is expected to be able to hold at least 1024
1765 /// according to [implimits]. However, as this limit is somewhat easy to
1766 /// hit with template metaprogramming we'd prefer to keep it as large
1767 /// as possible. At the moment it has been left as a non-bitfield since
1768 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1769 /// to introduce the performance impact of a bitfield.
1770 unsigned NumArgs;
1771 };
1772
1773 class PackExpansionTypeBitfields {
1774 friend class PackExpansionType;
1775
1776 unsigned : NumTypeBits;
1777
1778 /// The number of expansions that this pack expansion will
1779 /// generate when substituted (+1), which is expected to be able to
1780 /// hold at least 1024 according to [implimits]. However, as this limit
1781 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1782 /// keep it as large as possible. At the moment it has been left as a
1783 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1784 /// there is no reason to introduce the performance impact of a bitfield.
1785 ///
1786 /// This field will only have a non-zero value when some of the parameter
1787 /// packs that occur within the pattern have been substituted but others
1788 /// have not.
1789 unsigned NumExpansions;
1790 };
1791
1792 union {
1793 TypeBitfields TypeBits;
1794 ArrayTypeBitfields ArrayTypeBits;
1795 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1796 AttributedTypeBitfields AttributedTypeBits;
1797 AutoTypeBitfields AutoTypeBits;
1798 BuiltinTypeBitfields BuiltinTypeBits;
1799 FunctionTypeBitfields FunctionTypeBits;
1800 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1801 ReferenceTypeBitfields ReferenceTypeBits;
1802 TypeWithKeywordBitfields TypeWithKeywordBits;
1803 ElaboratedTypeBitfields ElaboratedTypeBits;
1804 VectorTypeBitfields VectorTypeBits;
1805 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1806 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1807 DependentTemplateSpecializationTypeBitfields
1808 DependentTemplateSpecializationTypeBits;
1809 PackExpansionTypeBitfields PackExpansionTypeBits;
1810 };
1811
1812private:
1813 template <class T> friend class TypePropertyCache;
1814
1815 /// Set whether this type comes from an AST file.
1816 void setFromAST(bool V = true) const {
1817 TypeBits.FromAST = V;
1818 }
1819
1820protected:
1821 friend class ASTContext;
1822
1823 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1827 "changing bitfields changed sizeof(Type)!");
1828 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1829 "Insufficient alignment!");
1830 TypeBits.TC = tc;
1831 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1832 TypeBits.CacheValid = false;
1833 TypeBits.CachedLocalOrUnnamed = false;
1834 TypeBits.CachedLinkage = NoLinkage;
1835 TypeBits.FromAST = false;
1836 }
1837
1838 // silence VC++ warning C4355: 'this' : used in base member initializer list
1839 Type *this_() { return this; }
1840
1841 void setDependence(TypeDependence D) {
1842 TypeBits.Dependence = static_cast<unsigned>(D);
1843 }
1844
1845 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1846
1847public:
1848 friend class ASTReader;
1849 friend class ASTWriter;
1850 template <class T> friend class serialization::AbstractTypeReader;
1851 template <class T> friend class serialization::AbstractTypeWriter;
1852
1853 Type(const Type &) = delete;
1854 Type(Type &&) = delete;
1855 Type &operator=(const Type &) = delete;
1856 Type &operator=(Type &&) = delete;
1857
1858 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1859
1860 /// Whether this type comes from an AST file.
1861 bool isFromAST() const { return TypeBits.FromAST; }
1862
1863 /// Whether this type is or contains an unexpanded parameter
1864 /// pack, used to support C++0x variadic templates.
1865 ///
1866 /// A type that contains a parameter pack shall be expanded by the
1867 /// ellipsis operator at some point. For example, the typedef in the
1868 /// following example contains an unexpanded parameter pack 'T':
1869 ///
1870 /// \code
1871 /// template<typename ...T>
1872 /// struct X {
1873 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1874 /// };
1875 /// \endcode
1876 ///
1877 /// Note that this routine does not specify which
1878 bool containsUnexpandedParameterPack() const {
1879 return getDependence() & TypeDependence::UnexpandedPack;
1880 }
1881
1882 /// Determines if this type would be canonical if it had no further
1883 /// qualification.
1884 bool isCanonicalUnqualified() const {
1885 return CanonicalType == QualType(this, 0);
1886 }
1887
1888 /// Pull a single level of sugar off of this locally-unqualified type.
1889 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1890 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1891 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1892
1893 /// As an extension, we classify types as one of "sized" or "sizeless";
1894 /// every type is one or the other. Standard types are all sized;
1895 /// sizeless types are purely an extension.
1896 ///
1897 /// Sizeless types contain data with no specified size, alignment,
1898 /// or layout.
1899 bool isSizelessType() const;
1900 bool isSizelessBuiltinType() const;
1901
1902 /// Determines if this is a sizeless type supported by the
1903 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1904 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1905 bool isVLSTBuiltinType() const;
1906
1907 /// Returns the representative type for the element of an SVE builtin type.
1908 /// This is used to represent fixed-length SVE vectors created with the
1909 /// 'arm_sve_vector_bits' type attribute as VectorType.
1910 QualType getSveEltType(const ASTContext &Ctx) const;
1911
1912 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1913 /// object types, function types, and incomplete types.
1914
1915 /// Return true if this is an incomplete type.
1916 /// A type that can describe objects, but which lacks information needed to
1917 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1918 /// routine will need to determine if the size is actually required.
1919 ///
1920 /// Def If non-null, and the type refers to some kind of declaration
1921 /// that can be completed (such as a C struct, C++ class, or Objective-C
1922 /// class), will be set to the declaration.
1923 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1924
1925 /// Return true if this is an incomplete or object
1926 /// type, in other words, not a function type.
1927 bool isIncompleteOrObjectType() const {
1928 return !isFunctionType();
1929 }
1930
1931 /// Determine whether this type is an object type.
1932 bool isObjectType() const {
1933 // C++ [basic.types]p8:
1934 // An object type is a (possibly cv-qualified) type that is not a
1935 // function type, not a reference type, and not a void type.
1936 return !isReferenceType() && !isFunctionType() && !isVoidType();
1937 }
1938
1939 /// Return true if this is a literal type
1940 /// (C++11 [basic.types]p10)
1941 bool isLiteralType(const ASTContext &Ctx) const;
1942
1943 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1944 bool isStructuralType() const;
1945
1946 /// Test if this type is a standard-layout type.
1947 /// (C++0x [basic.type]p9)
1948 bool isStandardLayoutType() const;
1949
1950 /// Helper methods to distinguish type categories. All type predicates
1951 /// operate on the canonical type, ignoring typedefs and qualifiers.
1952
1953 /// Returns true if the type is a builtin type.
1954 bool isBuiltinType() const;
1955
1956 /// Test for a particular builtin type.
1957 bool isSpecificBuiltinType(unsigned K) const;
1958
1959 /// Test for a type which does not represent an actual type-system type but
1960 /// is instead used as a placeholder for various convenient purposes within
1961 /// Clang. All such types are BuiltinTypes.
1962 bool isPlaceholderType() const;
1963 const BuiltinType *getAsPlaceholderType() const;
1964
1965 /// Test for a specific placeholder type.
1966 bool isSpecificPlaceholderType(unsigned K) const;
1967
1968 /// Test for a placeholder type other than Overload; see
1969 /// BuiltinType::isNonOverloadPlaceholderType.
1970 bool isNonOverloadPlaceholderType() const;
1971
1972 /// isIntegerType() does *not* include complex integers (a GCC extension).
1973 /// isComplexIntegerType() can be used to test for complex integers.
1974 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1975 bool isEnumeralType() const;
1976
1977 /// Determine whether this type is a scoped enumeration type.
1978 bool isScopedEnumeralType() const;
1979 bool isBooleanType() const;
1980 bool isCharType() const;
1981 bool isWideCharType() const;
1982 bool isChar8Type() const;
1983 bool isChar16Type() const;
1984 bool isChar32Type() const;
1985 bool isAnyCharacterType() const;
1986 bool isIntegralType(const ASTContext &Ctx) const;
1987
1988 /// Determine whether this type is an integral or enumeration type.
1989 bool isIntegralOrEnumerationType() const;
1990
1991 /// Determine whether this type is an integral or unscoped enumeration type.
1992 bool isIntegralOrUnscopedEnumerationType() const;
1993 bool isUnscopedEnumerationType() const;
1994
1995 /// Floating point categories.
1996 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1997 /// isComplexType() does *not* include complex integers (a GCC extension).
1998 /// isComplexIntegerType() can be used to test for complex integers.
1999 bool isComplexType() const; // C99 6.2.5p11 (complex)
2000 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2001 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2002 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2003 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2004 bool isBFloat16Type() const;
2005 bool isFloat128Type() const;
2006 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2007 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2008 bool isVoidType() const; // C99 6.2.5p19
2009 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2010 bool isAggregateType() const;
2011 bool isFundamentalType() const;
2012 bool isCompoundType() const;
2013
2014 // Type Predicates: Check to see if this type is structurally the specified
2015 // type, ignoring typedefs and qualifiers.
2016 bool isFunctionType() const;
2017 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2018 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2019 bool isPointerType() const;
2020 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2021 bool isBlockPointerType() const;
2022 bool isVoidPointerType() const;
2023 bool isReferenceType() const;
2024 bool isLValueReferenceType() const;
2025 bool isRValueReferenceType() const;
2026 bool isObjectPointerType() const;
2027 bool isFunctionPointerType() const;
2028 bool isFunctionReferenceType() const;
2029 bool isMemberPointerType() const;
2030 bool isMemberFunctionPointerType() const;
2031 bool isMemberDataPointerType() const;
2032 bool isArrayType() const;
2033 bool isConstantArrayType() const;
2034 bool isIncompleteArrayType() const;
2035 bool isVariableArrayType() const;
2036 bool isDependentSizedArrayType() const;
2037 bool isRecordType() const;
2038 bool isClassType() const;
2039 bool isStructureType() const;
2040 bool isObjCBoxableRecordType() const;
2041 bool isInterfaceType() const;
2042 bool isStructureOrClassType() const;
2043 bool isUnionType() const;
2044 bool isComplexIntegerType() const; // GCC _Complex integer type.
2045 bool isVectorType() const; // GCC vector type.
2046 bool isExtVectorType() const; // Extended vector type.
2047 bool isMatrixType() const; // Matrix type.
2048 bool isConstantMatrixType() const; // Constant matrix type.
2049 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2050 bool isObjCObjectPointerType() const; // pointer to ObjC object
2051 bool isObjCRetainableType() const; // ObjC object or block pointer
2052 bool isObjCLifetimeType() const; // (array of)* retainable type
2053 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2054 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2055 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2056 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2057 // for the common case.
2058 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2059 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2060 bool isObjCQualifiedIdType() const; // id<foo>
2061 bool isObjCQualifiedClassType() const; // Class<foo>
2062 bool isObjCObjectOrInterfaceType() const;
2063 bool isObjCIdType() const; // id
2064 bool isDecltypeType() const;
2065 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2066 /// qualifier?
2067 ///
2068 /// This approximates the answer to the following question: if this
2069 /// translation unit were compiled in ARC, would this type be qualified
2070 /// with __unsafe_unretained?
2071 bool isObjCInertUnsafeUnretainedType() const {
2072 return hasAttr(attr::ObjCInertUnsafeUnretained);
2073 }
2074
2075 /// Whether the type is Objective-C 'id' or a __kindof type of an
2076 /// object type, e.g., __kindof NSView * or __kindof id
2077 /// <NSCopying>.
2078 ///
2079 /// \param bound Will be set to the bound on non-id subtype types,
2080 /// which will be (possibly specialized) Objective-C class type, or
2081 /// null for 'id.
2082 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2083 const ObjCObjectType *&bound) const;
2084
2085 bool isObjCClassType() const; // Class
2086
2087 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2088 /// Class type, e.g., __kindof Class <NSCopying>.
2089 ///
2090 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2091 /// here because Objective-C's type system cannot express "a class
2092 /// object for a subclass of NSFoo".
2093 bool isObjCClassOrClassKindOfType() const;
2094
2095 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2096 bool isObjCSelType() const; // Class
2097 bool isObjCBuiltinType() const; // 'id' or 'Class'
2098 bool isObjCARCBridgableType() const;
2099 bool isCARCBridgableType() const;
2100 bool isTemplateTypeParmType() const; // C++ template type parameter
2101 bool isNullPtrType() const; // C++11 std::nullptr_t
2102 bool isNothrowT() const; // C++ std::nothrow_t
2103 bool isAlignValT() const; // C++17 std::align_val_t
2104 bool isStdByteType() const; // C++17 std::byte
2105 bool isAtomicType() const; // C11 _Atomic()
2106 bool isUndeducedAutoType() const; // C++11 auto or
2107 // C++14 decltype(auto)
2108 bool isTypedefNameType() const; // typedef or alias template
2109
2110#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLImageTypes.def"
2113
2114 bool isImageType() const; // Any OpenCL image type
2115
2116 bool isSamplerT() const; // OpenCL sampler_t
2117 bool isEventT() const; // OpenCL event_t
2118 bool isClkEventT() const; // OpenCL clk_event_t
2119 bool isQueueT() const; // OpenCL queue_t
2120 bool isReserveIDT() const; // OpenCL reserve_id_t
2121
2122#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2123 bool is##Id##Type() const;
2124#include "clang/Basic/OpenCLExtensionTypes.def"
2125 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2126 bool isOCLIntelSubgroupAVCType() const;
2127 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2128
2129 bool isPipeType() const; // OpenCL pipe type
2130 bool isExtIntType() const; // Extended Int Type
2131 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2132
2133 /// Determines if this type, which must satisfy
2134 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2135 /// than implicitly __strong.
2136 bool isObjCARCImplicitlyUnretainedType() const;
2137
2138 /// Check if the type is the CUDA device builtin surface type.
2139 bool isCUDADeviceBuiltinSurfaceType() const;
2140 /// Check if the type is the CUDA device builtin texture type.
2141 bool isCUDADeviceBuiltinTextureType() const;
2142
2143 /// Return the implicit lifetime for this type, which must not be dependent.
2144 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2145
2146 enum ScalarTypeKind {
2147 STK_CPointer,
2148 STK_BlockPointer,
2149 STK_ObjCObjectPointer,
2150 STK_MemberPointer,
2151 STK_Bool,
2152 STK_Integral,
2153 STK_Floating,
2154 STK_IntegralComplex,
2155 STK_FloatingComplex,
2156 STK_FixedPoint
2157 };
2158
2159 /// Given that this is a scalar type, classify it.
2160 ScalarTypeKind getScalarTypeKind() const;
2161
2162 TypeDependence getDependence() const {
2163 return static_cast<TypeDependence>(TypeBits.Dependence);
2164 }
2165
2166 /// Whether this type is an error type.
2167 bool containsErrors() const {
2168 return getDependence() & TypeDependence::Error;
2169 }
2170
2171 /// Whether this type is a dependent type, meaning that its definition
2172 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2173 bool isDependentType() const {
2174 return getDependence() & TypeDependence::Dependent;
2175 }
2176
2177 /// Determine whether this type is an instantiation-dependent type,
2178 /// meaning that the type involves a template parameter (even if the
2179 /// definition does not actually depend on the type substituted for that
2180 /// template parameter).
2181 bool isInstantiationDependentType() const {
2182 return getDependence() & TypeDependence::Instantiation;
2183 }
2184
2185 /// Determine whether this type is an undeduced type, meaning that
2186 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2187 /// deduced.
2188 bool isUndeducedType() const;
2189
2190 /// Whether this type is a variably-modified type (C99 6.7.5).
2191 bool isVariablyModifiedType() const {
2192 return getDependence() & TypeDependence::VariablyModified;
2193 }
2194
2195 /// Whether this type involves a variable-length array type
2196 /// with a definite size.
2197 bool hasSizedVLAType() const;
2198
2199 /// Whether this type is or contains a local or unnamed type.
2200 bool hasUnnamedOrLocalType() const;
2201
2202 bool isOverloadableType() const;
2203
2204 /// Determine wither this type is a C++ elaborated-type-specifier.
2205 bool isElaboratedTypeSpecifier() const;
2206
2207 bool canDecayToPointerType() const;
2208
2209 /// Whether this type is represented natively as a pointer. This includes
2210 /// pointers, references, block pointers, and Objective-C interface,
2211 /// qualified id, and qualified interface types, as well as nullptr_t.
2212 bool hasPointerRepresentation() const;
2213
2214 /// Whether this type can represent an objective pointer type for the
2215 /// purpose of GC'ability
2216 bool hasObjCPointerRepresentation() const;
2217
2218 /// Determine whether this type has an integer representation
2219 /// of some sort, e.g., it is an integer type or a vector.
2220 bool hasIntegerRepresentation() const;
2221
2222 /// Determine whether this type has an signed integer representation
2223 /// of some sort, e.g., it is an signed integer type or a vector.
2224 bool hasSignedIntegerRepresentation() const;
2225
2226 /// Determine whether this type has an unsigned integer representation
2227 /// of some sort, e.g., it is an unsigned integer type or a vector.
2228 bool hasUnsignedIntegerRepresentation() const;
2229
2230 /// Determine whether this type has a floating-point representation
2231 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2232 bool hasFloatingRepresentation() const;
2233
2234 // Type Checking Functions: Check to see if this type is structurally the
2235 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2236 // the best type we can.
2237 const RecordType *getAsStructureType() const;
2238 /// NOTE: getAs*ArrayType are methods on ASTContext.
2239 const RecordType *getAsUnionType() const;
2240 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2241 const ObjCObjectType *getAsObjCInterfaceType() const;
2242
2243 // The following is a convenience method that returns an ObjCObjectPointerType
2244 // for object declared using an interface.
2245 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2246 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2247 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2248 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2249
2250 /// Retrieves the CXXRecordDecl that this type refers to, either
2251 /// because the type is a RecordType or because it is the injected-class-name
2252 /// type of a class template or class template partial specialization.
2253 CXXRecordDecl *getAsCXXRecordDecl() const;
2254
2255 /// Retrieves the RecordDecl this type refers to.
2256 RecordDecl *getAsRecordDecl() const;
2257
2258 /// Retrieves the TagDecl that this type refers to, either
2259 /// because the type is a TagType or because it is the injected-class-name
2260 /// type of a class template or class template partial specialization.
2261 TagDecl *getAsTagDecl() const;
2262
2263 /// If this is a pointer or reference to a RecordType, return the
2264 /// CXXRecordDecl that the type refers to.
2265 ///
2266 /// If this is not a pointer or reference, or the type being pointed to does
2267 /// not refer to a CXXRecordDecl, returns NULL.
2268 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2269
2270 /// Get the DeducedType whose type will be deduced for a variable with
2271 /// an initializer of this type. This looks through declarators like pointer
2272 /// types, but not through decltype or typedefs.
2273 DeducedType *getContainedDeducedType() const;
2274
2275 /// Get the AutoType whose type will be deduced for a variable with
2276 /// an initializer of this type. This looks through declarators like pointer
2277 /// types, but not through decltype or typedefs.
2278 AutoType *getContainedAutoType() const {
2279 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2280 }
2281
2282 /// Determine whether this type was written with a leading 'auto'
2283 /// corresponding to a trailing return type (possibly for a nested
2284 /// function type within a pointer to function type or similar).
2285 bool hasAutoForTrailingReturnType() const;
2286
2287 /// Member-template getAs<specific type>'. Look through sugar for
2288 /// an instance of \<specific type>. This scheme will eventually
2289 /// replace the specific getAsXXXX methods above.
2290 ///
2291 /// There are some specializations of this member template listed
2292 /// immediately following this class.
2293 template <typename T> const T *getAs() const;
2294
2295 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2296 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2297 /// This is used when you need to walk over sugar nodes that represent some
2298 /// kind of type adjustment from a type that was written as a \<specific type>
2299 /// to another type that is still canonically a \<specific type>.
2300 template <typename T> const T *getAsAdjusted() const;
2301
2302 /// A variant of getAs<> for array types which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *getAsArrayTypeUnsafe() const;
2305
2306 /// Member-template castAs<specific type>. Look through sugar for
2307 /// the underlying instance of \<specific type>.
2308 ///
2309 /// This method has the same relationship to getAs<T> as cast<T> has
2310 /// to dyn_cast<T>; which is to say, the underlying type *must*
2311 /// have the intended type, and this method will never return null.
2312 template <typename T> const T *castAs() const;
2313
2314 /// A variant of castAs<> for array type which silently discards
2315 /// qualifiers from the outermost type.
2316 const ArrayType *castAsArrayTypeUnsafe() const;
2317
2318 /// Determine whether this type had the specified attribute applied to it
2319 /// (looking through top-level type sugar).
2320 bool hasAttr(attr::Kind AK) const;
2321
2322 /// Get the base element type of this type, potentially discarding type
2323 /// qualifiers. This should never be used when type qualifiers
2324 /// are meaningful.
2325 const Type *getBaseElementTypeUnsafe() const;
2326
2327 /// If this is an array type, return the element type of the array,
2328 /// potentially with type qualifiers missing.
2329 /// This should never be used when type qualifiers are meaningful.
2330 const Type *getArrayElementTypeNoTypeQual() const;
2331
2332 /// If this is a pointer type, return the pointee type.
2333 /// If this is an array type, return the array element type.
2334 /// This should never be used when type qualifiers are meaningful.
2335 const Type *getPointeeOrArrayElementType() const;
2336
2337 /// If this is a pointer, ObjC object pointer, or block
2338 /// pointer, this returns the respective pointee.
2339 QualType getPointeeType() const;
2340
2341 /// Return the specified type with any "sugar" removed from the type,
2342 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2343 const Type *getUnqualifiedDesugaredType() const;
2344
2345 /// More type predicates useful for type checking/promotion
2346 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2347
2348 /// Return true if this is an integer type that is
2349 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2350 /// or an enum decl which has a signed representation.
2351 bool isSignedIntegerType() const;
2352
2353 /// Return true if this is an integer type that is
2354 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2355 /// or an enum decl which has an unsigned representation.
2356 bool isUnsignedIntegerType() const;
2357
2358 /// Determines whether this is an integer type that is signed or an
2359 /// enumeration types whose underlying type is a signed integer type.
2360 bool isSignedIntegerOrEnumerationType() const;
2361
2362 /// Determines whether this is an integer type that is unsigned or an
2363 /// enumeration types whose underlying type is a unsigned integer type.
2364 bool isUnsignedIntegerOrEnumerationType() const;
2365
2366 /// Return true if this is a fixed point type according to
2367 /// ISO/IEC JTC1 SC22 WG14 N1169.
2368 bool isFixedPointType() const;
2369
2370 /// Return true if this is a fixed point or integer type.
2371 bool isFixedPointOrIntegerType() const;
2372
2373 /// Return true if this is a saturated fixed point type according to
2374 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2375 bool isSaturatedFixedPointType() const;
2376
2377 /// Return true if this is a saturated fixed point type according to
2378 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2379 bool isUnsaturatedFixedPointType() const;
2380
2381 /// Return true if this is a fixed point type that is signed according
2382 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2383 bool isSignedFixedPointType() const;
2384
2385 /// Return true if this is a fixed point type that is unsigned according
2386 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2387 bool isUnsignedFixedPointType() const;
2388
2389 /// Return true if this is not a variable sized type,
2390 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2391 /// incomplete types.
2392 bool isConstantSizeType() const;
2393
2394 /// Returns true if this type can be represented by some
2395 /// set of type specifiers.
2396 bool isSpecifierType() const;
2397
2398 /// Determine the linkage of this type.
2399 Linkage getLinkage() const;
2400
2401 /// Determine the visibility of this type.
2402 Visibility getVisibility() const {
2403 return getLinkageAndVisibility().getVisibility();
2404 }
2405
2406 /// Return true if the visibility was explicitly set is the code.
2407 bool isVisibilityExplicit() const {
2408 return getLinkageAndVisibility().isVisibilityExplicit();
2409 }
2410
2411 /// Determine the linkage and visibility of this type.
2412 LinkageInfo getLinkageAndVisibility() const;
2413
2414 /// True if the computed linkage is valid. Used for consistency
2415 /// checking. Should always return true.
2416 bool isLinkageValid() const;
2417
2418 /// Determine the nullability of the given type.
2419 ///
2420 /// Note that nullability is only captured as sugar within the type
2421 /// system, not as part of the canonical type, so nullability will
2422 /// be lost by canonicalization and desugaring.
2423 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2424
2425 /// Determine whether the given type can have a nullability
2426 /// specifier applied to it, i.e., if it is any kind of pointer type.
2427 ///
2428 /// \param ResultIfUnknown The value to return if we don't yet know whether
2429 /// this type can have nullability because it is dependent.
2430 bool canHaveNullability(bool ResultIfUnknown = true) const;
2431
2432 /// Retrieve the set of substitutions required when accessing a member
2433 /// of the Objective-C receiver type that is declared in the given context.
2434 ///
2435 /// \c *this is the type of the object we're operating on, e.g., the
2436 /// receiver for a message send or the base of a property access, and is
2437 /// expected to be of some object or object pointer type.
2438 ///
2439 /// \param dc The declaration context for which we are building up a
2440 /// substitution mapping, which should be an Objective-C class, extension,
2441 /// category, or method within.
2442 ///
2443 /// \returns an array of type arguments that can be substituted for
2444 /// the type parameters of the given declaration context in any type described
2445 /// within that context, or an empty optional to indicate that no
2446 /// substitution is required.
2447 Optional<ArrayRef<QualType>>
2448 getObjCSubstitutions(const DeclContext *dc) const;
2449
2450 /// Determines if this is an ObjC interface type that may accept type
2451 /// parameters.
2452 bool acceptsObjCTypeParams() const;
2453
2454 const char *getTypeClassName() const;
2455
2456 QualType getCanonicalTypeInternal() const {
2457 return CanonicalType;
2458 }
2459
2460 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2461 void dump() const;
2462 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2463};
2464
2465/// This will check for a TypedefType by removing any existing sugar
2466/// until it reaches a TypedefType or a non-sugared type.
2467template <> const TypedefType *Type::getAs() const;
2468
2469/// This will check for a TemplateSpecializationType by removing any
2470/// existing sugar until it reaches a TemplateSpecializationType or a
2471/// non-sugared type.
2472template <> const TemplateSpecializationType *Type::getAs() const;
2473
2474/// This will check for an AttributedType by removing any existing sugar
2475/// until it reaches an AttributedType or a non-sugared type.
2476template <> const AttributedType *Type::getAs() const;
2477
2478// We can do canonical leaf types faster, because we don't have to
2479// worry about preserving child type decoration.
2480#define TYPE(Class, Base)
2481#define LEAF_TYPE(Class) \
2482template <> inline const Class##Type *Type::getAs() const { \
2483 return dyn_cast<Class##Type>(CanonicalType); \
2484} \
2485template <> inline const Class##Type *Type::castAs() const { \
2486 return cast<Class##Type>(CanonicalType); \
2487}
2488#include "clang/AST/TypeNodes.inc"
2489
2490/// This class is used for builtin types like 'int'. Builtin
2491/// types are always canonical and have a literal name field.
2492class BuiltinType : public Type {
2493public:
2494 enum Kind {
2495// OpenCL image types
2496#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2497#include "clang/Basic/OpenCLImageTypes.def"
2498// OpenCL extension types
2499#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2500#include "clang/Basic/OpenCLExtensionTypes.def"
2501// SVE Types
2502#define SVE_TYPE(Name, Id, SingletonId) Id,
2503#include "clang/Basic/AArch64SVEACLETypes.def"
2504// PPC MMA Types
2505#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2506#include "clang/Basic/PPCTypes.def"
2507// RVV Types
2508#define RVV_TYPE(Name, Id, SingletonId) Id,
2509#include "clang/Basic/RISCVVTypes.def"
2510// All other builtin types
2511#define BUILTIN_TYPE(Id, SingletonId) Id,
2512#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2513#include "clang/AST/BuiltinTypes.def"
2514 };
2515
2516private:
2517 friend class ASTContext; // ASTContext creates these.
2518
2519 BuiltinType(Kind K)
2520 : Type(Builtin, QualType(),
2521 K == Dependent ? TypeDependence::DependentInstantiation
2522 : TypeDependence::None) {
2523 BuiltinTypeBits.Kind = K;
2524 }
2525
2526public:
2527 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2528 StringRef getName(const PrintingPolicy &Policy) const;
2529
2530 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2531 // The StringRef is null-terminated.
2532 StringRef str = getName(Policy);
2533 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast<void> (0));
2534 return str.data();
2535 }
2536
2537 bool isSugared() const { return false; }
2538 QualType desugar() const { return QualType(this, 0); }
2539
2540 bool isInteger() const {
2541 return getKind() >= Bool && getKind() <= Int128;
2542 }
2543
2544 bool isSignedInteger() const {
2545 return getKind() >= Char_S && getKind() <= Int128;
2546 }
2547
2548 bool isUnsignedInteger() const {
2549 return getKind() >= Bool && getKind() <= UInt128;
2550 }
2551
2552 bool isFloatingPoint() const {
2553 return getKind() >= Half && getKind() <= Float128;
2554 }
2555
2556 /// Determines whether the given kind corresponds to a placeholder type.
2557 static bool isPlaceholderTypeKind(Kind K) {
2558 return K >= Overload;
2559 }
2560
2561 /// Determines whether this type is a placeholder type, i.e. a type
2562 /// which cannot appear in arbitrary positions in a fully-formed
2563 /// expression.
2564 bool isPlaceholderType() const {
2565 return isPlaceholderTypeKind(getKind());
2566 }
2567
2568 /// Determines whether this type is a placeholder type other than
2569 /// Overload. Most placeholder types require only syntactic
2570 /// information about their context in order to be resolved (e.g.
2571 /// whether it is a call expression), which means they can (and
2572 /// should) be resolved in an earlier "phase" of analysis.
2573 /// Overload expressions sometimes pick up further information
2574 /// from their context, like whether the context expects a
2575 /// specific function-pointer type, and so frequently need
2576 /// special treatment.
2577 bool isNonOverloadPlaceholderType() const {
2578 return getKind() > Overload;
2579 }
2580
2581 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2582};
2583
2584/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2585/// types (_Complex float etc) as well as the GCC integer complex extensions.
2586class ComplexType : public Type, public llvm::FoldingSetNode {
2587 friend class ASTContext; // ASTContext creates these.
2588
2589 QualType ElementType;
2590
2591 ComplexType(QualType Element, QualType CanonicalPtr)
2592 : Type(Complex, CanonicalPtr, Element->getDependence()),
2593 ElementType(Element) {}
2594
2595public:
2596 QualType getElementType() const { return ElementType; }
2597
2598 bool isSugared() const { return false; }
2599 QualType desugar() const { return QualType(this, 0); }
2600
2601 void Profile(llvm::FoldingSetNodeID &ID) {
2602 Profile(ID, getElementType());
2603 }
2604
2605 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2606 ID.AddPointer(Element.getAsOpaquePtr());
2607 }
2608
2609 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2610};
2611
2612/// Sugar for parentheses used when specifying types.
2613class ParenType : public Type, public llvm::FoldingSetNode {
2614 friend class ASTContext; // ASTContext creates these.
2615
2616 QualType Inner;
2617
2618 ParenType(QualType InnerType, QualType CanonType)
2619 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2620
2621public:
2622 QualType getInnerType() const { return Inner; }
2623
2624 bool isSugared() const { return true; }
2625 QualType desugar() const { return getInnerType(); }
2626
2627 void Profile(llvm::FoldingSetNodeID &ID) {
2628 Profile(ID, getInnerType());
2629 }
2630
2631 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2632 Inner.Profile(ID);
2633 }
2634
2635 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2636};
2637
2638/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2639class PointerType : public Type, public llvm::FoldingSetNode {
2640 friend class ASTContext; // ASTContext creates these.
2641
2642 QualType PointeeType;
2643
2644 PointerType(QualType Pointee, QualType CanonicalPtr)
2645 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2646 PointeeType(Pointee) {}
2647
2648public:
2649 QualType getPointeeType() const { return PointeeType; }
2650
2651 bool isSugared() const { return false; }
2652 QualType desugar() const { return QualType(this, 0); }
2653
2654 void Profile(llvm::FoldingSetNodeID &ID) {
2655 Profile(ID, getPointeeType());
2656 }
2657
2658 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2659 ID.AddPointer(Pointee.getAsOpaquePtr());
2660 }
2661
2662 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2663};
2664
2665/// Represents a type which was implicitly adjusted by the semantic
2666/// engine for arbitrary reasons. For example, array and function types can
2667/// decay, and function types can have their calling conventions adjusted.
2668class AdjustedType : public Type, public llvm::FoldingSetNode {
2669 QualType OriginalTy;
2670 QualType AdjustedTy;
2671
2672protected:
2673 friend class ASTContext; // ASTContext creates these.
2674
2675 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2676 QualType CanonicalPtr)
2677 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2678 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2679
2680public:
2681 QualType getOriginalType() const { return OriginalTy; }
2682 QualType getAdjustedType() const { return AdjustedTy; }
2683
2684 bool isSugared() const { return true; }
2685 QualType desugar() const { return AdjustedTy; }
2686
2687 void Profile(llvm::FoldingSetNodeID &ID) {
2688 Profile(ID, OriginalTy, AdjustedTy);
2689 }
2690
2691 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2692 ID.AddPointer(Orig.getAsOpaquePtr());
2693 ID.AddPointer(New.getAsOpaquePtr());
2694 }
2695
2696 static bool classof(const Type *T) {
2697 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2698 }
2699};
2700
2701/// Represents a pointer type decayed from an array or function type.
2702class DecayedType : public AdjustedType {
2703 friend class ASTContext; // ASTContext creates these.
2704
2705 inline
2706 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2707
2708public:
2709 QualType getDecayedType() const { return getAdjustedType(); }
2710
2711 inline QualType getPointeeType() const;
2712
2713 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2714};
2715
2716/// Pointer to a block type.
2717/// This type is to represent types syntactically represented as
2718/// "void (^)(int)", etc. Pointee is required to always be a function type.
2719class BlockPointerType : public Type, public llvm::FoldingSetNode {
2720 friend class ASTContext; // ASTContext creates these.
2721
2722 // Block is some kind of pointer type
2723 QualType PointeeType;
2724
2725 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2726 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2727 PointeeType(Pointee) {}
2728
2729public:
2730 // Get the pointee type. Pointee is required to always be a function type.
2731 QualType getPointeeType() const { return PointeeType; }
2732
2733 bool isSugared() const { return false; }
2734 QualType desugar() const { return QualType(this, 0); }
2735
2736 void Profile(llvm::FoldingSetNodeID &ID) {
2737 Profile(ID, getPointeeType());
2738 }
2739
2740 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2741 ID.AddPointer(Pointee.getAsOpaquePtr());
2742 }
2743
2744 static bool classof(const Type *T) {
2745 return T->getTypeClass() == BlockPointer;
2746 }
2747};
2748
2749/// Base for LValueReferenceType and RValueReferenceType
2750class ReferenceType : public Type, public llvm::FoldingSetNode {
2751 QualType PointeeType;
2752
2753protected:
2754 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2755 bool SpelledAsLValue)
2756 : Type(tc, CanonicalRef, Referencee->getDependence()),
2757 PointeeType(Referencee) {
2758 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2759 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2760 }
2761
2762public:
2763 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2764 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2765
2766 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2767
2768 QualType getPointeeType() const {
2769 // FIXME: this might strip inner qualifiers; okay?
2770 const ReferenceType *T = this;
2771 while (T->isInnerRef())
2772 T = T->PointeeType->castAs<ReferenceType>();
2773 return T->PointeeType;
2774 }
2775
2776 void Profile(llvm::FoldingSetNodeID &ID) {
2777 Profile(ID, PointeeType, isSpelledAsLValue());
2778 }
2779
2780 static void Profile(llvm::FoldingSetNodeID &ID,
2781 QualType Referencee,
2782 bool SpelledAsLValue) {
2783 ID.AddPointer(Referencee.getAsOpaquePtr());
2784 ID.AddBoolean(SpelledAsLValue);
2785 }
2786
2787 static bool classof(const Type *T) {
2788 return T->getTypeClass() == LValueReference ||
2789 T->getTypeClass() == RValueReference;
2790 }
2791};
2792
2793/// An lvalue reference type, per C++11 [dcl.ref].
2794class LValueReferenceType : public ReferenceType {
2795 friend class ASTContext; // ASTContext creates these
2796
2797 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2798 bool SpelledAsLValue)
2799 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2800 SpelledAsLValue) {}
2801
2802public:
2803 bool isSugared() const { return false; }
2804 QualType desugar() const { return QualType(this, 0); }
2805
2806 static bool classof(const Type *T) {
2807 return T->getTypeClass() == LValueReference;
2808 }
2809};
2810
2811/// An rvalue reference type, per C++11 [dcl.ref].
2812class RValueReferenceType : public ReferenceType {
2813 friend class ASTContext; // ASTContext creates these
2814
2815 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2816 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2817
2818public:
2819 bool isSugared() const { return false; }
2820 QualType desugar() const { return QualType(this, 0); }
2821
2822 static bool classof(const Type *T) {
2823 return T->getTypeClass() == RValueReference;
2824 }
2825};
2826
2827/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2828///
2829/// This includes both pointers to data members and pointer to member functions.
2830class MemberPointerType : public Type, public llvm::FoldingSetNode {
2831 friend class ASTContext; // ASTContext creates these.
2832
2833 QualType PointeeType;
2834
2835 /// The class of which the pointee is a member. Must ultimately be a
2836 /// RecordType, but could be a typedef or a template parameter too.
2837 const Type *Class;
2838
2839 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2840 : Type(MemberPointer, CanonicalPtr,
2841 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2842 Pointee->getDependence()),
2843 PointeeType(Pointee), Class(Cls) {}
2844
2845public:
2846 QualType getPointeeType() const { return PointeeType; }
2847
2848 /// Returns true if the member type (i.e. the pointee type) is a
2849 /// function type rather than a data-member type.
2850 bool isMemberFunctionPointer() const {
2851 return PointeeType->isFunctionProtoType();
2852 }
2853
2854 /// Returns true if the member type (i.e. the pointee type) is a
2855 /// data type rather than a function type.
2856 bool isMemberDataPointer() const {
2857 return !PointeeType->isFunctionProtoType();
2858 }
2859
2860 const Type *getClass() const { return Class; }
2861 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2862
2863 bool isSugared() const { return false; }
2864 QualType desugar() const { return QualType(this, 0); }
2865
2866 void Profile(llvm::FoldingSetNodeID &ID) {
2867 Profile(ID, getPointeeType(), getClass());
2868 }
2869
2870 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2871 const Type *Class) {
2872 ID.AddPointer(Pointee.getAsOpaquePtr());
2873 ID.AddPointer(Class);
2874 }
2875
2876 static bool classof(const Type *T) {
2877 return T->getTypeClass() == MemberPointer;
2878 }
2879};
2880
2881/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2882class ArrayType : public Type, public llvm::FoldingSetNode {
2883public:
2884 /// Capture whether this is a normal array (e.g. int X[4])
2885 /// an array with a static size (e.g. int X[static 4]), or an array
2886 /// with a star size (e.g. int X[*]).
2887 /// 'static' is only allowed on function parameters.
2888 enum ArraySizeModifier {
2889 Normal, Static, Star
2890 };
2891
2892private:
2893 /// The element type of the array.
2894 QualType ElementType;
2895
2896protected:
2897 friend class ASTContext; // ASTContext creates these.
2898
2899 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2900 unsigned tq, const Expr *sz = nullptr);
2901
2902public:
2903 QualType getElementType() const { return ElementType; }
2904
2905 ArraySizeModifier getSizeModifier() const {
2906 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2907 }
2908
2909 Qualifiers getIndexTypeQualifiers() const {
2910 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2911 }
2912
2913 unsigned getIndexTypeCVRQualifiers() const {
2914 return ArrayTypeBits.IndexTypeQuals;
2915 }
2916
2917 static bool classof(const Type *T) {
2918 return T->getTypeClass() == ConstantArray ||
2919 T->getTypeClass() == VariableArray ||
2920 T->getTypeClass() == IncompleteArray ||
2921 T->getTypeClass() == DependentSizedArray;
2922 }
2923};
2924
2925/// Represents the canonical version of C arrays with a specified constant size.
2926/// For example, the canonical type for 'int A[4 + 4*100]' is a
2927/// ConstantArrayType where the element type is 'int' and the size is 404.
2928class ConstantArrayType final
2929 : public ArrayType,
2930 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2931 friend class ASTContext; // ASTContext creates these.
2932 friend TrailingObjects;
2933
2934 llvm::APInt Size; // Allows us to unique the type.
2935
2936 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2937 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2938 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2939 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2940 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2941 assert(!can.isNull() && "canonical constant array should not have size")(static_cast<void> (0));
2942 *getTrailingObjects<const Expr*>() = sz;
2943 }
2944 }
2945
2946 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2947 return ConstantArrayTypeBits.HasStoredSizeExpr;
2948 }
2949
2950public:
2951 const llvm::APInt &getSize() const { return Size; }
2952 const Expr *getSizeExpr() const {
2953 return ConstantArrayTypeBits.HasStoredSizeExpr
2954 ? *getTrailingObjects<const Expr *>()
2955 : nullptr;
2956 }
2957 bool isSugared() const { return false; }
2958 QualType desugar() const { return QualType(this, 0); }
2959
2960 /// Determine the number of bits required to address a member of
2961 // an array with the given element type and number of elements.
2962 static unsigned getNumAddressingBits(const ASTContext &Context,
2963 QualType ElementType,
2964 const llvm::APInt &NumElements);
2965
2966 /// Determine the maximum number of active bits that an array's size
2967 /// can require, which limits the maximum size of the array.
2968 static unsigned getMaxSizeBits(const ASTContext &Context);
2969
2970 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2971 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2972 getSizeModifier(), getIndexTypeCVRQualifiers());
2973 }
2974
2975 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2976 QualType ET, const llvm::APInt &ArraySize,
2977 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2978 unsigned TypeQuals);
2979
2980 static bool classof(const Type *T) {
2981 return T->getTypeClass() == ConstantArray;
2982 }
2983};
2984
2985/// Represents a C array with an unspecified size. For example 'int A[]' has
2986/// an IncompleteArrayType where the element type is 'int' and the size is
2987/// unspecified.
2988class IncompleteArrayType : public ArrayType {
2989 friend class ASTContext; // ASTContext creates these.
2990
2991 IncompleteArrayType(QualType et, QualType can,
2992 ArraySizeModifier sm, unsigned tq)
2993 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2994
2995public:
2996 friend class StmtIteratorBase;
2997
2998 bool isSugared() const { return false; }
2999 QualType desugar() const { return QualType(this, 0); }
3000
3001 static bool classof(const Type *T) {
3002 return T->getTypeClass() == IncompleteArray;
3003 }
3004
3005 void Profile(llvm::FoldingSetNodeID &ID) {
3006 Profile(ID, getElementType(), getSizeModifier(),
3007 getIndexTypeCVRQualifiers());
3008 }
3009
3010 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3011 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3012 ID.AddPointer(ET.getAsOpaquePtr());
3013 ID.AddInteger(SizeMod);
3014 ID.AddInteger(TypeQuals);
3015 }
3016};
3017
3018/// Represents a C array with a specified size that is not an
3019/// integer-constant-expression. For example, 'int s[x+foo()]'.
3020/// Since the size expression is an arbitrary expression, we store it as such.
3021///
3022/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3023/// should not be: two lexically equivalent variable array types could mean
3024/// different things, for example, these variables do not have the same type
3025/// dynamically:
3026///
3027/// void foo(int x) {
3028/// int Y[x];
3029/// ++x;
3030/// int Z[x];
3031/// }
3032class VariableArrayType : public ArrayType {
3033 friend class ASTContext; // ASTContext creates these.
3034
3035 /// An assignment-expression. VLA's are only permitted within
3036 /// a function block.
3037 Stmt *SizeExpr;
3038
3039 /// The range spanned by the left and right array brackets.
3040 SourceRange Brackets;
3041
3042 VariableArrayType(QualType et, QualType can, Expr *e,
3043 ArraySizeModifier sm, unsigned tq,
3044 SourceRange brackets)
3045 : ArrayType(VariableArray, et, can, sm, tq, e),
3046 SizeExpr((Stmt*) e), Brackets(brackets) {}
3047
3048public:
3049 friend class StmtIteratorBase;
3050
3051 Expr *getSizeExpr() const {
3052 // We use C-style casts instead of cast<> here because we do not wish
3053 // to have a dependency of Type.h on Stmt.h/Expr.h.
3054 return (Expr*) SizeExpr;
3055 }
3056
3057 SourceRange getBracketsRange() const { return Brackets; }
3058 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3059 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3060
3061 bool isSugared() const { return false; }
3062 QualType desugar() const { return QualType(this, 0); }
3063
3064 static bool classof(const Type *T) {
3065 return T->getTypeClass() == VariableArray;
3066 }
3067
3068 void Profile(llvm::FoldingSetNodeID &ID) {
3069 llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable();
3070 }
3071};
3072
3073/// Represents an array type in C++ whose size is a value-dependent expression.
3074///
3075/// For example:
3076/// \code
3077/// template<typename T, int Size>
3078/// class array {
3079/// T data[Size];
3080/// };
3081/// \endcode
3082///
3083/// For these types, we won't actually know what the array bound is
3084/// until template instantiation occurs, at which point this will
3085/// become either a ConstantArrayType or a VariableArrayType.
3086class DependentSizedArrayType : public ArrayType {
3087 friend class ASTContext; // ASTContext creates these.
3088
3089 const ASTContext &Context;
3090
3091 /// An assignment expression that will instantiate to the
3092 /// size of the array.
3093 ///
3094 /// The expression itself might be null, in which case the array
3095 /// type will have its size deduced from an initializer.
3096 Stmt *SizeExpr;
3097
3098 /// The range spanned by the left and right array brackets.
3099 SourceRange Brackets;
3100
3101 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3102 Expr *e, ArraySizeModifier sm, unsigned tq,
3103 SourceRange brackets);
3104
3105public:
3106 friend class StmtIteratorBase;
3107
3108 Expr *getSizeExpr() const {
3109 // We use C-style casts instead of cast<> here because we do not wish
3110 // to have a dependency of Type.h on Stmt.h/Expr.h.
3111 return (Expr*) SizeExpr;
3112 }
3113
3114 SourceRange getBracketsRange() const { return Brackets; }
3115 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3116 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3117
3118 bool isSugared() const { return false; }
3119 QualType desugar() const { return QualType(this, 0); }
3120
3121 static bool classof(const Type *T) {
3122 return T->getTypeClass() == DependentSizedArray;
3123 }
3124
3125 void Profile(llvm::FoldingSetNodeID &ID) {
3126 Profile(ID, Context, getElementType(),
3127 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3128 }
3129
3130 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3131 QualType ET, ArraySizeModifier SizeMod,
3132 unsigned TypeQuals, Expr *E);
3133};
3134
3135/// Represents an extended address space qualifier where the input address space
3136/// value is dependent. Non-dependent address spaces are not represented with a
3137/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3138///
3139/// For example:
3140/// \code
3141/// template<typename T, int AddrSpace>
3142/// class AddressSpace {
3143/// typedef T __attribute__((address_space(AddrSpace))) type;
3144/// }
3145/// \endcode
3146class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3147 friend class ASTContext;
3148
3149 const ASTContext &Context;
3150 Expr *AddrSpaceExpr;
3151 QualType PointeeType;
3152 SourceLocation loc;
3153
3154 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3155 QualType can, Expr *AddrSpaceExpr,
3156 SourceLocation loc);
3157
3158public:
3159 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3160 QualType getPointeeType() const { return PointeeType; }
3161 SourceLocation getAttributeLoc() const { return loc; }
3162
3163 bool isSugared() const { return false; }
3164 QualType desugar() const { return QualType(this, 0); }
3165
3166 static bool classof(const Type *T) {
3167 return T->getTypeClass() == DependentAddressSpace;
3168 }
3169
3170 void Profile(llvm::FoldingSetNodeID &ID) {
3171 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3172 }
3173
3174 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3175 QualType PointeeType, Expr *AddrSpaceExpr);
3176};
3177
3178/// Represents an extended vector type where either the type or size is
3179/// dependent.
3180///
3181/// For example:
3182/// \code
3183/// template<typename T, int Size>
3184/// class vector {
3185/// typedef T __attribute__((ext_vector_type(Size))) type;
3186/// }
3187/// \endcode
3188class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3189 friend class ASTContext;
3190
3191 const ASTContext &Context;
3192 Expr *SizeExpr;
3193
3194 /// The element type of the array.
3195 QualType ElementType;
3196
3197 SourceLocation loc;
3198
3199 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3200 QualType can, Expr *SizeExpr, SourceLocation loc);
3201
3202public:
3203 Expr *getSizeExpr() const { return SizeExpr; }
3204 QualType getElementType() const { return ElementType; }
3205 SourceLocation getAttributeLoc() const { return loc; }
3206
3207 bool isSugared() const { return false; }
3208 QualType desugar() const { return QualType(this, 0); }
3209
3210 static bool classof(const Type *T) {
3211 return T->getTypeClass() == DependentSizedExtVector;
3212 }
3213
3214 void Profile(llvm::FoldingSetNodeID &ID) {
3215 Profile(ID, Context, getElementType(), getSizeExpr());
3216 }
3217
3218 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3219 QualType ElementType, Expr *SizeExpr);
3220};
3221
3222
3223/// Represents a GCC generic vector type. This type is created using
3224/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3225/// bytes; or from an Altivec __vector or vector declaration.
3226/// Since the constructor takes the number of vector elements, the
3227/// client is responsible for converting the size into the number of elements.
3228class VectorType : public Type, public llvm::FoldingSetNode {
3229public:
3230 enum VectorKind {
3231 /// not a target-specific vector type
3232 GenericVector,
3233
3234 /// is AltiVec vector
3235 AltiVecVector,
3236
3237 /// is AltiVec 'vector Pixel'
3238 AltiVecPixel,
3239
3240 /// is AltiVec 'vector bool ...'
3241 AltiVecBool,
3242
3243 /// is ARM Neon vector
3244 NeonVector,
3245
3246 /// is ARM Neon polynomial vector
3247 NeonPolyVector,
3248
3249 /// is AArch64 SVE fixed-length data vector
3250 SveFixedLengthDataVector,
3251
3252 /// is AArch64 SVE fixed-length predicate vector
3253 SveFixedLengthPredicateVector
3254 };
3255
3256protected:
3257 friend class ASTContext; // ASTContext creates these.
3258
3259 /// The element type of the vector.
3260 QualType ElementType;
3261
3262 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3263 VectorKind vecKind);
3264
3265 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3266 QualType canonType, VectorKind vecKind);
3267
3268public:
3269 QualType getElementType() const { return ElementType; }
3270 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3271
3272 bool isSugared() const { return false; }
3273 QualType desugar() const { return QualType(this, 0); }
3274
3275 VectorKind getVectorKind() const {
3276 return VectorKind(VectorTypeBits.VecKind);
3277 }
3278
3279 void Profile(llvm::FoldingSetNodeID &ID) {
3280 Profile(ID, getElementType(), getNumElements(),
3281 getTypeClass(), getVectorKind());
3282 }
3283
3284 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3285 unsigned NumElements, TypeClass TypeClass,
3286 VectorKind VecKind) {
3287 ID.AddPointer(ElementType.getAsOpaquePtr());
3288 ID.AddInteger(NumElements);
3289 ID.AddInteger(TypeClass);
3290 ID.AddInteger(VecKind);
3291 }
3292
3293 static bool classof(const Type *T) {
3294 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3295 }
3296};
3297
3298/// Represents a vector type where either the type or size is dependent.
3299////
3300/// For example:
3301/// \code
3302/// template<typename T, int Size>
3303/// class vector {
3304/// typedef T __attribute__((vector_size(Size))) type;
3305/// }
3306/// \endcode
3307class DependentVectorType : public Type, public llvm::FoldingSetNode {
3308 friend class ASTContext;
3309
3310 const ASTContext &Context;
3311 QualType ElementType;
3312 Expr *SizeExpr;
3313 SourceLocation Loc;
3314
3315 DependentVectorType(const ASTContext &Context, QualType ElementType,
3316 QualType CanonType, Expr *SizeExpr,
3317 SourceLocation Loc, VectorType::VectorKind vecKind);
3318
3319public:
3320 Expr *getSizeExpr() const { return SizeExpr; }
3321 QualType getElementType() const { return ElementType; }
3322 SourceLocation getAttributeLoc() const { return Loc; }
3323 VectorType::VectorKind getVectorKind() const {
3324 return VectorType::VectorKind(VectorTypeBits.VecKind);
3325 }
3326
3327 bool isSugared() const { return false; }
3328 QualType desugar() const { return QualType(this, 0); }
3329
3330 static bool classof(const Type *T) {
3331 return T->getTypeClass() == DependentVector;
3332 }
3333
3334 void Profile(llvm::FoldingSetNodeID &ID) {
3335 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3336 }
3337
3338 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3339 QualType ElementType, const Expr *SizeExpr,
3340 VectorType::VectorKind VecKind);
3341};
3342
3343/// ExtVectorType - Extended vector type. This type is created using
3344/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3345/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3346/// class enables syntactic extensions, like Vector Components for accessing
3347/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3348/// Shading Language).
3349class ExtVectorType : public VectorType {
3350 friend class ASTContext; // ASTContext creates these.
3351
3352 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3353 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3354
3355public:
3356 static int getPointAccessorIdx(char c) {
3357 switch (c) {
3358 default: return -1;
3359 case 'x': case 'r': return 0;
3360 case 'y': case 'g': return 1;
3361 case 'z': case 'b': return 2;
3362 case 'w': case 'a': return 3;
3363 }
3364 }
3365
3366 static int getNumericAccessorIdx(char c) {
3367 switch (c) {
3368 default: return -1;
3369 case '0': return 0;
3370 case '1': return 1;
3371 case '2': return 2;
3372 case '3': return 3;
3373 case '4': return 4;
3374 case '5': return 5;
3375 case '6': return 6;
3376 case '7': return 7;
3377 case '8': return 8;
3378 case '9': return 9;
3379 case 'A':
3380 case 'a': return 10;
3381 case 'B':
3382 case 'b': return 11;
3383 case 'C':
3384 case 'c': return 12;
3385 case 'D':
3386 case 'd': return 13;
3387 case 'E':
3388 case 'e': return 14;
3389 case 'F':
3390 case 'f': return 15;
3391 }
3392 }
3393
3394 static int getAccessorIdx(char c, bool isNumericAccessor) {
3395 if (isNumericAccessor)
3396 return getNumericAccessorIdx(c);
3397 else
3398 return getPointAccessorIdx(c);
3399 }
3400
3401 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3402 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3403 return unsigned(idx-1) < getNumElements();
3404 return false;
3405 }
3406
3407 bool isSugared() const { return false; }
3408 QualType desugar() const { return QualType(this, 0); }
3409
3410 static bool classof(const Type *T) {
3411 return T->getTypeClass() == ExtVector;
3412 }
3413};
3414
3415/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3416/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3417/// number of rows and "columns" specifies the number of columns.
3418class MatrixType : public Type, public llvm::FoldingSetNode {
3419protected:
3420 friend class ASTContext;
3421
3422 /// The element type of the matrix.
3423 QualType ElementType;
3424
3425 MatrixType(QualType ElementTy, QualType CanonElementTy);
3426
3427 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3428 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3429
3430public:
3431 /// Returns type of the elements being stored in the matrix
3432 QualType getElementType() const { return ElementType; }
3433
3434 /// Valid elements types are the following:
3435 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3436 /// and _Bool
3437 /// * the standard floating types float or double
3438 /// * a half-precision floating point type, if one is supported on the target
3439 static bool isValidElementType(QualType T) {
3440 return T->isDependentType() ||
3441 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3442 }
3443
3444 bool isSugared() const { return false; }
3445 QualType desugar() const { return QualType(this, 0); }
3446
3447 static bool classof(const Type *T) {
3448 return T->getTypeClass() == ConstantMatrix ||
3449 T->getTypeClass() == DependentSizedMatrix;
3450 }
3451};
3452
3453/// Represents a concrete matrix type with constant number of rows and columns
3454class ConstantMatrixType final : public MatrixType {
3455protected:
3456 friend class ASTContext;
3457
3458 /// Number of rows and columns.
3459 unsigned NumRows;
3460 unsigned NumColumns;
3461
3462 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3463
3464 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3465 unsigned NColumns, QualType CanonElementType);
3466
3467 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3468 unsigned NColumns, QualType CanonElementType);
3469
3470public:
3471 /// Returns the number of rows in the matrix.
3472 unsigned getNumRows() const { return NumRows; }
3473
3474 /// Returns the number of columns in the matrix.
3475 unsigned getNumColumns() const { return NumColumns; }
3476
3477 /// Returns the number of elements required to embed the matrix into a vector.
3478 unsigned getNumElementsFlattened() const {
3479 return getNumRows() * getNumColumns();
3480 }
3481
3482 /// Returns true if \p NumElements is a valid matrix dimension.
3483 static constexpr bool isDimensionValid(size_t NumElements) {
3484 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3485 }
3486
3487 /// Returns the maximum number of elements per dimension.
3488 static constexpr unsigned getMaxElementsPerDimension() {
3489 return MaxElementsPerDimension;
3490 }
3491
3492 void Profile(llvm::FoldingSetNodeID &ID) {
3493 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3494 getTypeClass());
3495 }
3496
3497 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3498 unsigned NumRows, unsigned NumColumns,
3499 TypeClass TypeClass) {
3500 ID.AddPointer(ElementType.getAsOpaquePtr());
3501 ID.AddInteger(NumRows);
3502 ID.AddInteger(NumColumns);
3503 ID.AddInteger(TypeClass);
3504 }
3505
3506 static bool classof(const Type *T) {
3507 return T->getTypeClass() == ConstantMatrix;
3508 }
3509};
3510
3511/// Represents a matrix type where the type and the number of rows and columns
3512/// is dependent on a template.
3513class DependentSizedMatrixType final : public MatrixType {
3514 friend class ASTContext;
3515
3516 const ASTContext &Context;
3517 Expr *RowExpr;
3518 Expr *ColumnExpr;
3519
3520 SourceLocation loc;
3521
3522 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3523 QualType CanonicalType, Expr *RowExpr,
3524 Expr *ColumnExpr, SourceLocation loc);
3525
3526public:
3527 Expr *getRowExpr() const { return RowExpr; }
3528 Expr *getColumnExpr() const { return ColumnExpr; }
3529 SourceLocation getAttributeLoc() const { return loc; }
3530
3531 static bool classof(const Type *T) {
3532 return T->getTypeClass() == DependentSizedMatrix;
3533 }
3534
3535 void Profile(llvm::FoldingSetNodeID &ID) {
3536 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3537 }
3538
3539 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3540 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3541};
3542
3543/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3544/// class of FunctionNoProtoType and FunctionProtoType.
3545class FunctionType : public Type {
3546 // The type returned by the function.
3547 QualType ResultType;
3548
3549public:
3550 /// Interesting information about a specific parameter that can't simply
3551 /// be reflected in parameter's type. This is only used by FunctionProtoType
3552 /// but is in FunctionType to make this class available during the
3553 /// specification of the bases of FunctionProtoType.
3554 ///
3555 /// It makes sense to model language features this way when there's some
3556 /// sort of parameter-specific override (such as an attribute) that
3557 /// affects how the function is called. For example, the ARC ns_consumed
3558 /// attribute changes whether a parameter is passed at +0 (the default)
3559 /// or +1 (ns_consumed). This must be reflected in the function type,
3560 /// but isn't really a change to the parameter type.
3561 ///
3562 /// One serious disadvantage of modelling language features this way is
3563 /// that they generally do not work with language features that attempt
3564 /// to destructure types. For example, template argument deduction will
3565 /// not be able to match a parameter declared as
3566 /// T (*)(U)
3567 /// against an argument of type
3568 /// void (*)(__attribute__((ns_consumed)) id)
3569 /// because the substitution of T=void, U=id into the former will
3570 /// not produce the latter.
3571 class ExtParameterInfo {
3572 enum {
3573 ABIMask = 0x0F,
3574 IsConsumed = 0x10,
3575 HasPassObjSize = 0x20,
3576 IsNoEscape = 0x40,
3577 };
3578 unsigned char Data = 0;
3579
3580 public:
3581 ExtParameterInfo() = default;
3582
3583 /// Return the ABI treatment of this parameter.
3584 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3585 ExtParameterInfo withABI(ParameterABI kind) const {
3586 ExtParameterInfo copy = *this;
3587 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3588 return copy;
3589 }
3590
3591 /// Is this parameter considered "consumed" by Objective-C ARC?
3592 /// Consumed parameters must have retainable object type.
3593 bool isConsumed() const { return (Data & IsConsumed); }
3594 ExtParameterInfo withIsConsumed(bool consumed) const {
3595 ExtParameterInfo copy = *this;
3596 if (consumed)
3597 copy.Data |= IsConsumed;
3598 else
3599 copy.Data &= ~IsConsumed;
3600 return copy;
3601 }
3602
3603 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3604 ExtParameterInfo withHasPassObjectSize() const {
3605 ExtParameterInfo Copy = *this;
3606 Copy.Data |= HasPassObjSize;
3607 return Copy;
3608 }
3609
3610 bool isNoEscape() const { return Data & IsNoEscape; }
3611 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3612 ExtParameterInfo Copy = *this;
3613 if (NoEscape)
3614 Copy.Data |= IsNoEscape;
3615 else
3616 Copy.Data &= ~IsNoEscape;
3617 return Copy;
3618 }
3619
3620 unsigned char getOpaqueValue() const { return Data; }
3621 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3622 ExtParameterInfo result;
3623 result.Data = data;
3624 return result;
3625 }
3626
3627 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3628 return lhs.Data == rhs.Data;
3629 }
3630
3631 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3632 return lhs.Data != rhs.Data;
3633 }
3634 };
3635
3636 /// A class which abstracts out some details necessary for
3637 /// making a call.
3638 ///
3639 /// It is not actually used directly for storing this information in
3640 /// a FunctionType, although FunctionType does currently use the
3641 /// same bit-pattern.
3642 ///
3643 // If you add a field (say Foo), other than the obvious places (both,
3644 // constructors, compile failures), what you need to update is
3645 // * Operator==
3646 // * getFoo
3647 // * withFoo
3648 // * functionType. Add Foo, getFoo.
3649 // * ASTContext::getFooType
3650 // * ASTContext::mergeFunctionTypes
3651 // * FunctionNoProtoType::Profile
3652 // * FunctionProtoType::Profile
3653 // * TypePrinter::PrintFunctionProto
3654 // * AST read and write
3655 // * Codegen
3656 class ExtInfo {
3657 friend class FunctionType;
3658
3659 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3660 // adjust the Bits field below, and if you add bits, you'll need to adjust
3661 // Type::FunctionTypeBitfields::ExtInfo as well.
3662
3663 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3664 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3665 //
3666 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3667 enum { CallConvMask = 0x1F };
3668 enum { NoReturnMask = 0x20 };
3669 enum { ProducesResultMask = 0x40 };
3670 enum { NoCallerSavedRegsMask = 0x80 };
3671 enum {
3672 RegParmMask = 0x700,
3673 RegParmOffset = 8
3674 };
3675 enum { NoCfCheckMask = 0x800 };
3676 enum { CmseNSCallMask = 0x1000 };
3677 uint16_t Bits = CC_C;
3678
3679 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3680
3681 public:
3682 // Constructor with no defaults. Use this when you know that you
3683 // have all the elements (when reading an AST file for example).
3684 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3685 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3686 bool cmseNSCall) {
3687 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast<void> (0));
3688 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3689 (producesResult ? ProducesResultMask : 0) |
3690 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3691 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3692 (NoCfCheck ? NoCfCheckMask : 0) |
3693 (cmseNSCall ? CmseNSCallMask : 0);
3694 }
3695
3696 // Constructor with all defaults. Use when for example creating a
3697 // function known to use defaults.
3698 ExtInfo() = default;
3699
3700 // Constructor with just the calling convention, which is an important part
3701 // of the canonical type.
3702 ExtInfo(CallingConv CC) : Bits(CC) {}
3703
3704 bool getNoReturn() const { return Bits & NoReturnMask; }
3705 bool getProducesResult() const { return Bits & ProducesResultMask; }
3706 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3707 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3708 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3709 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3710
3711 unsigned getRegParm() const {
3712 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3713 if (RegParm > 0)
3714 --RegParm;
3715 return RegParm;
3716 }
3717
3718 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3719
3720 bool operator==(ExtInfo Other) const {
3721 return Bits == Other.Bits;
3722 }
3723 bool operator!=(ExtInfo Other) const {
3724 return Bits != Other.Bits;
3725 }
3726
3727 // Note that we don't have setters. That is by design, use
3728 // the following with methods instead of mutating these objects.
3729
3730 ExtInfo withNoReturn(bool noReturn) const {
3731 if (noReturn)
3732 return ExtInfo(Bits | NoReturnMask);
3733 else
3734 return ExtInfo(Bits & ~NoReturnMask);
3735 }
3736
3737 ExtInfo withProducesResult(bool producesResult) const {
3738 if (producesResult)
3739 return ExtInfo(Bits | ProducesResultMask);
3740 else
3741 return ExtInfo(Bits & ~ProducesResultMask);
3742 }
3743
3744 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3745 if (cmseNSCall)
3746 return ExtInfo(Bits | CmseNSCallMask);
3747 else
3748 return ExtInfo(Bits & ~CmseNSCallMask);
3749 }
3750
3751 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3752 if (noCallerSavedRegs)
3753 return ExtInfo(Bits | NoCallerSavedRegsMask);
3754 else
3755 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3756 }
3757
3758 ExtInfo withNoCfCheck(bool noCfCheck) const {
3759 if (noCfCheck)
3760 return ExtInfo(Bits | NoCfCheckMask);
3761 else
3762 return ExtInfo(Bits & ~NoCfCheckMask);
3763 }
3764
3765 ExtInfo withRegParm(unsigned RegParm) const {
3766 assert(RegParm < 7 && "Invalid regparm value")(static_cast<void> (0));
3767 return ExtInfo((Bits & ~RegParmMask) |
3768 ((RegParm + 1) << RegParmOffset));
3769 }
3770
3771 ExtInfo withCallingConv(CallingConv cc) const {
3772 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3773 }
3774
3775 void Profile(llvm::FoldingSetNodeID &ID) const {
3776 ID.AddInteger(Bits);
3777 }
3778 };
3779
3780 /// A simple holder for a QualType representing a type in an
3781 /// exception specification. Unfortunately needed by FunctionProtoType
3782 /// because TrailingObjects cannot handle repeated types.
3783 struct ExceptionType { QualType Type; };
3784
3785 /// A simple holder for various uncommon bits which do not fit in
3786 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3787 /// alignment of subsequent objects in TrailingObjects. You must update
3788 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3789 struct alignas(void *) FunctionTypeExtraBitfields {
3790 /// The number of types in the exception specification.
3791 /// A whole unsigned is not needed here and according to
3792 /// [implimits] 8 bits would be enough here.
3793 unsigned NumExceptionType;
3794 };
3795
3796protected:
3797 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3798 TypeDependence Dependence, ExtInfo Info)
3799 : Type(tc, Canonical, Dependence), ResultType(res) {
3800 FunctionTypeBits.ExtInfo = Info.Bits;
3801 }
3802
3803 Qualifiers getFastTypeQuals() const {
3804 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3805 }
3806
3807public:
3808 QualType getReturnType() const { return ResultType; }
3809
3810 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3811 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3812
3813 /// Determine whether this function type includes the GNU noreturn
3814 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3815 /// type.
3816 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3817
3818 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3819 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3820 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3821
3822 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3823 "Const, volatile and restrict are assumed to be a subset of "
3824 "the fast qualifiers.");
3825
3826 bool isConst() const { return getFastTypeQuals().hasConst(); }
3827 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3828 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3829
3830 /// Determine the type of an expression that calls a function of
3831 /// this type.
3832 QualType getCallResultType(const ASTContext &Context) const {
3833 return getReturnType().getNonLValueExprType(Context);
3834 }
3835
3836 static StringRef getNameForCallConv(CallingConv CC);
3837
3838 static bool classof(const Type *T) {
3839 return T->getTypeClass() == FunctionNoProto ||
3840 T->getTypeClass() == FunctionProto;
3841 }
3842};
3843
3844/// Represents a K&R-style 'int foo()' function, which has
3845/// no information available about its arguments.
3846class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3847 friend class ASTContext; // ASTContext creates these.
3848
3849 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3850 : FunctionType(FunctionNoProto, Result, Canonical,
3851 Result->getDependence() &
3852 ~(TypeDependence::DependentInstantiation |
3853 TypeDependence::UnexpandedPack),
3854 Info) {}
3855
3856public:
3857 // No additional state past what FunctionType provides.
3858
3859 bool isSugared() const { return false; }
3860 QualType desugar() const { return QualType(this, 0); }
3861
3862 void Profile(llvm::FoldingSetNodeID &ID) {
3863 Profile(ID, getReturnType(), getExtInfo());
3864 }
3865
3866 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3867 ExtInfo Info) {
3868 Info.Profile(ID);
3869 ID.AddPointer(ResultType.getAsOpaquePtr());
3870 }
3871
3872 static bool classof(const Type *T) {
3873 return T->getTypeClass() == FunctionNoProto;
3874 }
3875};
3876
3877/// Represents a prototype with parameter type info, e.g.
3878/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3879/// parameters, not as having a single void parameter. Such a type can have
3880/// an exception specification, but this specification is not part of the
3881/// canonical type. FunctionProtoType has several trailing objects, some of
3882/// which optional. For more information about the trailing objects see
3883/// the first comment inside FunctionProtoType.
3884class FunctionProtoType final
3885 : public FunctionType,
3886 public llvm::FoldingSetNode,
3887 private llvm::TrailingObjects<
3888 FunctionProtoType, QualType, SourceLocation,
3889 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3890 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3891 friend class ASTContext; // ASTContext creates these.
3892 friend TrailingObjects;
3893
3894 // FunctionProtoType is followed by several trailing objects, some of
3895 // which optional. They are in order:
3896 //
3897 // * An array of getNumParams() QualType holding the parameter types.
3898 // Always present. Note that for the vast majority of FunctionProtoType,
3899 // these will be the only trailing objects.
3900 //
3901 // * Optionally if the function is variadic, the SourceLocation of the
3902 // ellipsis.
3903 //
3904 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3905 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3906 // a single FunctionTypeExtraBitfields. Present if and only if
3907 // hasExtraBitfields() is true.
3908 //
3909 // * Optionally exactly one of:
3910 // * an array of getNumExceptions() ExceptionType,
3911 // * a single Expr *,
3912 // * a pair of FunctionDecl *,
3913 // * a single FunctionDecl *
3914 // used to store information about the various types of exception
3915 // specification. See getExceptionSpecSize for the details.
3916 //
3917 // * Optionally an array of getNumParams() ExtParameterInfo holding
3918 // an ExtParameterInfo for each of the parameters. Present if and
3919 // only if hasExtParameterInfos() is true.
3920 //
3921 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3922 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3923 // if hasExtQualifiers() is true.
3924 //
3925 // The optional FunctionTypeExtraBitfields has to be before the data
3926 // related to the exception specification since it contains the number
3927 // of exception types.
3928 //
3929 // We put the ExtParameterInfos last. If all were equal, it would make
3930 // more sense to put these before the exception specification, because
3931 // it's much easier to skip past them compared to the elaborate switch
3932 // required to skip the exception specification. However, all is not
3933 // equal; ExtParameterInfos are used to model very uncommon features,
3934 // and it's better not to burden the more common paths.
3935
3936public:
3937 /// Holds information about the various types of exception specification.
3938 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3939 /// used to group together the various bits of information about the
3940 /// exception specification.
3941 struct ExceptionSpecInfo {
3942 /// The kind of exception specification this is.
3943 ExceptionSpecificationType Type = EST_None;
3944
3945 /// Explicitly-specified list of exception types.
3946 ArrayRef<QualType> Exceptions;
3947
3948 /// Noexcept expression, if this is a computed noexcept specification.
3949 Expr *NoexceptExpr = nullptr;
3950
3951 /// The function whose exception specification this is, for
3952 /// EST_Unevaluated and EST_Uninstantiated.
3953 FunctionDecl *SourceDecl = nullptr;
3954
3955 /// The function template whose exception specification this is instantiated
3956 /// from, for EST_Uninstantiated.
3957 FunctionDecl *SourceTemplate = nullptr;
3958
3959 ExceptionSpecInfo() = default;
3960
3961 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3962 };
3963
3964 /// Extra information about a function prototype. ExtProtoInfo is not
3965 /// stored as such in FunctionProtoType but is used to group together
3966 /// the various bits of extra information about a function prototype.
3967 struct ExtProtoInfo {
3968 FunctionType::ExtInfo ExtInfo;
3969 bool Variadic : 1;
3970 bool HasTrailingReturn : 1;
3971 Qualifiers TypeQuals;
3972 RefQualifierKind RefQualifier = RQ_None;
3973 ExceptionSpecInfo ExceptionSpec;
3974 const ExtParameterInfo *ExtParameterInfos = nullptr;
3975 SourceLocation EllipsisLoc;
3976
3977 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3978
3979 ExtProtoInfo(CallingConv CC)
3980 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3981
3982 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3983 ExtProtoInfo Result(*this);
3984 Result.ExceptionSpec = ESI;
3985 return Result;
3986 }
3987 };
3988
3989private:
3990 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3991 return getNumParams();
3992 }
3993
3994 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3995 return isVariadic();
3996 }
3997
3998 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3999 return hasExtraBitfields();
4000 }
4001
4002 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4003 return getExceptionSpecSize().NumExceptionType;
4004 }
4005
4006 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4007 return getExceptionSpecSize().NumExprPtr;
4008 }
4009
4010 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4011 return getExceptionSpecSize().NumFunctionDeclPtr;
4012 }
4013
4014 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4015 return hasExtParameterInfos() ? getNumParams() : 0;
4016 }
4017
4018 /// Determine whether there are any argument types that
4019 /// contain an unexpanded parameter pack.
4020 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4021 unsigned numArgs) {
4022 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4023 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4024 return true;
4025
4026 return false;
4027 }
4028
4029 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4030 QualType canonical, const ExtProtoInfo &epi);
4031
4032 /// This struct is returned by getExceptionSpecSize and is used to
4033 /// translate an ExceptionSpecificationType to the number and kind
4034 /// of trailing objects related to the exception specification.
4035 struct ExceptionSpecSizeHolder {
4036 unsigned NumExceptionType;
4037 unsigned NumExprPtr;
4038 unsigned NumFunctionDeclPtr;
4039 };
4040
4041 /// Return the number and kind of trailing objects
4042 /// related to the exception specification.
4043 static ExceptionSpecSizeHolder
4044 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4045 switch (EST) {
4046 case EST_None:
4047 case EST_DynamicNone:
4048 case EST_MSAny:
4049 case EST_BasicNoexcept:
4050 case EST_Unparsed:
4051 case EST_NoThrow:
4052 return {0, 0, 0};
4053
4054 case EST_Dynamic:
4055 return {NumExceptions, 0, 0};
4056
4057 case EST_DependentNoexcept:
4058 case EST_NoexceptFalse:
4059 case EST_NoexceptTrue:
4060 return {0, 1, 0};
4061
4062 case EST_Uninstantiated:
4063 return {0, 0, 2};
4064
4065 case EST_Unevaluated:
4066 return {0, 0, 1};
4067 }
4068 llvm_unreachable("bad exception specification kind")__builtin_unreachable();
4069 }
4070
4071 /// Return the number and kind of trailing objects
4072 /// related to the exception specification.
4073 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4074 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4075 }
4076
4077 /// Whether the trailing FunctionTypeExtraBitfields is present.
4078 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4079 // If the exception spec type is EST_Dynamic then we have > 0 exception
4080 // types and the exact number is stored in FunctionTypeExtraBitfields.
4081 return EST == EST_Dynamic;
4082 }
4083
4084 /// Whether the trailing FunctionTypeExtraBitfields is present.
4085 bool hasExtraBitfields() const {
4086 return hasExtraBitfields(getExceptionSpecType());
4087 }
4088
4089 bool hasExtQualifiers() const {
4090 return FunctionTypeBits.HasExtQuals;
4091 }
4092
4093public:
4094 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4095
4096 QualType getParamType(unsigned i) const {
4097 assert(i < getNumParams() && "invalid parameter index")(static_cast<void> (0));
4098 return param_type_begin()[i];
4099 }
4100
4101 ArrayRef<QualType> getParamTypes() const {
4102 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4103 }
4104
4105 ExtProtoInfo getExtProtoInfo() const {
4106 ExtProtoInfo EPI;
4107 EPI.ExtInfo = getExtInfo();
4108 EPI.Variadic = isVariadic();
4109 EPI.EllipsisLoc = getEllipsisLoc();
4110 EPI.HasTrailingReturn = hasTrailingReturn();
4111 EPI.ExceptionSpec = getExceptionSpecInfo();
4112 EPI.TypeQuals = getMethodQuals();
4113 EPI.RefQualifier = getRefQualifier();
4114 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4115 return EPI;
4116 }
4117
4118 /// Get the kind of exception specification on this function.
4119 ExceptionSpecificationType getExceptionSpecType() const {
4120 return static_cast<ExceptionSpecificationType>(
4121 FunctionTypeBits.ExceptionSpecType);
4122 }
4123
4124 /// Return whether this function has any kind of exception spec.
4125 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4126
4127 /// Return whether this function has a dynamic (throw) exception spec.
4128 bool hasDynamicExceptionSpec() const {
4129 return isDynamicExceptionSpec(getExceptionSpecType());
4130 }
4131
4132 /// Return whether this function has a noexcept exception spec.
4133 bool hasNoexceptExceptionSpec() const {
4134 return isNoexceptExceptionSpec(getExceptionSpecType());
4135 }
4136
4137 /// Return whether this function has a dependent exception spec.
4138 bool hasDependentExceptionSpec() const;
4139
4140 /// Return whether this function has an instantiation-dependent exception
4141 /// spec.
4142 bool hasInstantiationDependentExceptionSpec() const;
4143
4144 /// Return all the available information about this type's exception spec.
4145 ExceptionSpecInfo getExceptionSpecInfo() const {
4146 ExceptionSpecInfo Result;
4147 Result.Type = getExceptionSpecType();
4148 if (Result.Type == EST_Dynamic) {
4149 Result.Exceptions = exceptions();
4150 } else if (isComputedNoexcept(Result.Type)) {
4151 Result.NoexceptExpr = getNoexceptExpr();
4152 } else if (Result.Type == EST_Uninstantiated) {
4153 Result.SourceDecl = getExceptionSpecDecl();
4154 Result.SourceTemplate = getExceptionSpecTemplate();
4155 } else if (Result.Type == EST_Unevaluated) {
4156 Result.SourceDecl = getExceptionSpecDecl();
4157 }
4158 return Result;
4159 }
4160
4161 /// Return the number of types in the exception specification.
4162 unsigned getNumExceptions() const {
4163 return getExceptionSpecType() == EST_Dynamic
4164 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4165 ->NumExceptionType
4166 : 0;
4167 }
4168
4169 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4170 QualType getExceptionType(unsigned i) const {
4171 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast<void> (0));
4172 return exception_begin()[i];
4173 }
4174
4175 /// Return the expression inside noexcept(expression), or a null pointer
4176 /// if there is none (because the exception spec is not of this form).
4177 Expr *getNoexceptExpr() const {
4178 if (!isComputedNoexcept(getExceptionSpecType()))
4179 return nullptr;
4180 return *getTrailingObjects<Expr *>();
4181 }
4182
4183 /// If this function type has an exception specification which hasn't
4184 /// been determined yet (either because it has not been evaluated or because
4185 /// it has not been instantiated), this is the function whose exception
4186 /// specification is represented by this type.
4187 FunctionDecl *getExceptionSpecDecl() const {
4188 if (getExceptionSpecType() != EST_Uninstantiated &&
4189 getExceptionSpecType() != EST_Unevaluated)
4190 return nullptr;
4191 return getTrailingObjects<FunctionDecl *>()[0];
4192 }
4193
4194 /// If this function type has an uninstantiated exception
4195 /// specification, this is the function whose exception specification
4196 /// should be instantiated to find the exception specification for
4197 /// this type.
4198 FunctionDecl *getExceptionSpecTemplate() const {
4199 if (getExceptionSpecType() != EST_Uninstantiated)
4200 return nullptr;
4201 return getTrailingObjects<FunctionDecl *>()[1];
4202 }
4203
4204 /// Determine whether this function type has a non-throwing exception
4205 /// specification.
4206 CanThrowResult canThrow() const;
4207
4208 /// Determine whether this function type has a non-throwing exception
4209 /// specification. If this depends on template arguments, returns
4210 /// \c ResultIfDependent.
4211 bool isNothrow(bool ResultIfDependent = false) const {
4212 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4213 }
4214
4215 /// Whether this function prototype is variadic.
4216 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4217
4218 SourceLocation getEllipsisLoc() const {
4219 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4220 : SourceLocation();
4221 }
4222
4223 /// Determines whether this function prototype contains a
4224 /// parameter pack at the end.
4225 ///
4226 /// A function template whose last parameter is a parameter pack can be
4227 /// called with an arbitrary number of arguments, much like a variadic
4228 /// function.
4229 bool isTemplateVariadic() const;
4230
4231 /// Whether this function prototype has a trailing return type.
4232 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4233
4234 Qualifiers getMethodQuals() const {
4235 if (hasExtQualifiers())
4236 return *getTrailingObjects<Qualifiers>();
4237 else
4238 return getFastTypeQuals();
4239 }
4240
4241 /// Retrieve the ref-qualifier associated with this function type.
4242 RefQualifierKind getRefQualifier() const {
4243 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4244 }
4245
4246 using param_type_iterator = const QualType *;
4247 using param_type_range = llvm::iterator_range<param_type_iterator>;
4248
4249 param_type_range param_types() const {
4250 return param_type_range(param_type_begin(), param_type_end());
4251 }
4252
4253 param_type_iterator param_type_begin() const {
4254 return getTrailingObjects<QualType>();
4255 }
4256
4257 param_type_iterator param_type_end() const {
4258 return param_type_begin() + getNumParams();
4259 }
4260
4261 using exception_iterator = const QualType *;
4262
4263 ArrayRef<QualType> exceptions() const {
4264 return llvm::makeArrayRef(exception_begin(), exception_end());
4265 }
4266
4267 exception_iterator exception_begin() const {
4268 return reinterpret_cast<exception_iterator>(
4269 getTrailingObjects<ExceptionType>());
4270 }
4271
4272 exception_iterator exception_end() const {
4273 return exception_begin() + getNumExceptions();
4274 }
4275
4276 /// Is there any interesting extra information for any of the parameters
4277 /// of this function type?
4278 bool hasExtParameterInfos() const {
4279 return FunctionTypeBits.HasExtParameterInfos;
4280 }
4281
4282 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4283 assert(hasExtParameterInfos())(static_cast<void> (0));
4284 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4285 getNumParams());
4286 }
4287
4288 /// Return a pointer to the beginning of the array of extra parameter
4289 /// information, if present, or else null if none of the parameters
4290 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4291 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4292 if (!hasExtParameterInfos())
4293 return nullptr;
4294 return getTrailingObjects<ExtParameterInfo>();
4295 }
4296
4297 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4298 assert(I < getNumParams() && "parameter index out of range")(static_cast<void> (0));
4299 if (hasExtParameterInfos())
4300 return getTrailingObjects<ExtParameterInfo>()[I];
4301 return ExtParameterInfo();
4302 }
4303
4304 ParameterABI getParameterABI(unsigned I) const {
4305 assert(I < getNumParams() && "parameter index out of range")(static_cast<void> (0));
4306 if (hasExtParameterInfos())
4307 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4308 return ParameterABI::Ordinary;
4309 }
4310
4311 bool isParamConsumed(unsigned I) const {
4312 assert(I < getNumParams() && "parameter index out of range")(static_cast<void> (0));
4313 if (hasExtParameterInfos())
4314 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4315 return false;
4316 }
4317
4318 bool isSugared() const { return false; }
4319 QualType desugar() const { return QualType(this, 0); }
4320
4321 void printExceptionSpecification(raw_ostream &OS,
4322 const PrintingPolicy &Policy) const;
4323
4324 static bool classof(const Type *T) {
4325 return T->getTypeClass() == FunctionProto;
4326 }
4327
4328 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4329 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4330 param_type_iterator ArgTys, unsigned NumArgs,
4331 const ExtProtoInfo &EPI, const ASTContext &Context,
4332 bool Canonical);
4333};
4334
4335/// Represents the dependent type named by a dependently-scoped
4336/// typename using declaration, e.g.
4337/// using typename Base<T>::foo;
4338///
4339/// Template instantiation turns these into the underlying type.
4340class UnresolvedUsingType : public Type {
4341 friend class ASTContext; // ASTContext creates these.
4342
4343 UnresolvedUsingTypenameDecl *Decl;
4344
4345 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4346 : Type(UnresolvedUsing, QualType(),
4347 TypeDependence::DependentInstantiation),
4348 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4349
4350public:
4351 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4352
4353 bool isSugared() const { return false; }
4354 QualType desugar() const { return QualType(this, 0); }
4355
4356 static bool classof(const Type *T) {
4357 return T->getTypeClass() == UnresolvedUsing;
4358 }
4359
4360 void Profile(llvm::FoldingSetNodeID &ID) {
4361 return Profile(ID, Decl);
4362 }
4363
4364 static void Profile(llvm::FoldingSetNodeID &ID,
4365 UnresolvedUsingTypenameDecl *D) {
4366 ID.AddPointer(D);
4367 }
4368};
4369
4370class TypedefType : public Type {
4371 TypedefNameDecl *Decl;
4372
4373private:
4374 friend class ASTContext; // ASTContext creates these.
4375
4376 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4377 QualType can);
4378
4379public:
4380 TypedefNameDecl *getDecl() const { return Decl; }
4381
4382 bool isSugared() const { return true; }
4383 QualType desugar() const;
4384
4385 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4386};
4387
4388/// Sugar type that represents a type that was qualified by a qualifier written
4389/// as a macro invocation.
4390class MacroQualifiedType : public Type {
4391 friend class ASTContext; // ASTContext creates these.
4392
4393 QualType UnderlyingTy;
4394 const IdentifierInfo *MacroII;
4395
4396 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4397 const IdentifierInfo *MacroII)
4398 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4399 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4400 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast<void> (0))
4401 "Expected a macro qualified type to only wrap attributed types.")(static_cast<void> (0));
4402 }
4403
4404public:
4405 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4406 QualType getUnderlyingType() const { return UnderlyingTy; }
4407
4408 /// Return this attributed type's modified type with no qualifiers attached to
4409 /// it.
4410 QualType getModifiedType() const;
4411
4412 bool isSugared() const { return true; }
4413 QualType desugar() const;
4414
4415 static bool classof(const Type *T) {
4416 return T->getTypeClass() == MacroQualified;
4417 }
4418};
4419
4420/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4421class TypeOfExprType : public Type {
4422 Expr *TOExpr;
4423
4424protected:
4425 friend class ASTContext; // ASTContext creates these.
4426
4427 TypeOfExprType(Expr *E, QualType can = QualType());
4428
4429public:
4430 Expr *getUnderlyingExpr() const { return TOExpr; }
4431
4432 /// Remove a single level of sugar.
4433 QualType desugar() const;
4434
4435 /// Returns whether this type directly provides sugar.
4436 bool isSugared() const;
4437
4438 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4439};
4440
4441/// Internal representation of canonical, dependent
4442/// `typeof(expr)` types.
4443///
4444/// This class is used internally by the ASTContext to manage
4445/// canonical, dependent types, only. Clients will only see instances
4446/// of this class via TypeOfExprType nodes.
4447class DependentTypeOfExprType
4448 : public TypeOfExprType, public llvm::FoldingSetNode {
4449 const ASTContext &Context;
4450
4451public:
4452 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4453 : TypeOfExprType(E), Context(Context) {}
4454
4455 void Profile(llvm::FoldingSetNodeID &ID) {
4456 Profile(ID, Context, getUnderlyingExpr());
4457 }
4458
4459 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4460 Expr *E);
4461};
4462
4463/// Represents `typeof(type)`, a GCC extension.
4464class TypeOfType : public Type {
4465 friend class ASTContext; // ASTContext creates these.
4466
4467 QualType TOType;
4468
4469 TypeOfType(QualType T, QualType can)
4470 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4471 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast<void> (0));
4472 }
4473
4474public:
4475 QualType getUnderlyingType() const { return TOType; }
4476
4477 /// Remove a single level of sugar.
4478 QualType desugar() const { return getUnderlyingType(); }
4479
4480 /// Returns whether this type directly provides sugar.
4481 bool isSugared() const { return true; }
4482
4483 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4484};
4485
4486/// Represents the type `decltype(expr)` (C++11).
4487class DecltypeType : public Type {
4488 Expr *E;
4489 QualType UnderlyingType;
4490
4491protected:
4492 friend class ASTContext; // ASTContext creates these.
4493
4494 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4495
4496public:
4497 Expr *getUnderlyingExpr() const { return E; }
4498 QualType getUnderlyingType() const { return UnderlyingType; }
4499
4500 /// Remove a single level of sugar.
4501 QualType desugar() const;
4502
4503 /// Returns whether this type directly provides sugar.
4504 bool isSugared() const;
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4507};
4508
4509/// Internal representation of canonical, dependent
4510/// decltype(expr) types.
4511///
4512/// This class is used internally by the ASTContext to manage
4513/// canonical, dependent types, only. Clients will only see instances
4514/// of this class via DecltypeType nodes.
4515class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4516 const ASTContext &Context;
4517
4518public:
4519 DependentDecltypeType(const ASTContext &Context, Expr *E);
4520
4521 void Profile(llvm::FoldingSetNodeID &ID) {
4522 Profile(ID, Context, getUnderlyingExpr());
4523 }
4524
4525 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4526 Expr *E);
4527};
4528
4529/// A unary type transform, which is a type constructed from another.
4530class UnaryTransformType : public Type {
4531public:
4532 enum UTTKind {
4533 EnumUnderlyingType
4534 };
4535
4536private:
4537 /// The untransformed type.
4538 QualType BaseType;
4539
4540 /// The transformed type if not dependent, otherwise the same as BaseType.
4541 QualType UnderlyingType;
4542
4543 UTTKind UKind;
4544
4545protected:
4546 friend class ASTContext;
4547
4548 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4549 QualType CanonicalTy);
4550
4551public:
4552 bool isSugared() const { return !isDependentType(); }
4553 QualType desugar() const { return UnderlyingType; }
4554
4555 QualType getUnderlyingType() const { return UnderlyingType; }
4556 QualType getBaseType() const { return BaseType; }
4557
4558 UTTKind getUTTKind() const { return UKind; }
4559
4560 static bool classof(const Type *T) {
4561 return T->getTypeClass() == UnaryTransform;
4562 }
4563};
4564
4565/// Internal representation of canonical, dependent
4566/// __underlying_type(type) types.
4567///
4568/// This class is used internally by the ASTContext to manage
4569/// canonical, dependent types, only. Clients will only see instances
4570/// of this class via UnaryTransformType nodes.
4571class DependentUnaryTransformType : public UnaryTransformType,
4572 public llvm::FoldingSetNode {
4573public:
4574 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4575 UTTKind UKind);
4576
4577 void Profile(llvm::FoldingSetNodeID &ID) {
4578 Profile(ID, getBaseType(), getUTTKind());
4579 }
4580
4581 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4582 UTTKind UKind) {
4583 ID.AddPointer(BaseType.getAsOpaquePtr());
4584 ID.AddInteger((unsigned)UKind);
4585 }
4586};
4587
4588class TagType : public Type {
4589 friend class ASTReader;
4590 template <class T> friend class serialization::AbstractTypeReader;
4591
4592 /// Stores the TagDecl associated with this type. The decl may point to any
4593 /// TagDecl that declares the entity.
4594 TagDecl *decl;
4595
4596protected:
4597 TagType(TypeClass TC, const TagDecl *D, QualType can);
4598
4599public:
4600 TagDecl *getDecl() const;
4601
4602 /// Determines whether this type is in the process of being defined.
4603 bool isBeingDefined() const;
4604
4605 static bool classof(const Type *T) {
4606 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4607 }
4608};
4609
4610/// A helper class that allows the use of isa/cast/dyncast
4611/// to detect TagType objects of structs/unions/classes.
4612class RecordType : public TagType {
4613protected:
4614 friend class ASTContext; // ASTContext creates these.
4615
4616 explicit RecordType(const RecordDecl *D)
4617 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4618 explicit RecordType(TypeClass TC, RecordDecl *D)
4619 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4620
4621public:
4622 RecordDecl *getDecl() const {
4623 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4624 }
4625
4626 /// Recursively check all fields in the record for const-ness. If any field
4627 /// is declared const, return true. Otherwise, return false.
4628 bool hasConstFields() const;
4629
4630 bool isSugared() const { return false; }
4631 QualType desugar() const { return QualType(this, 0); }
4632
4633 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4634};
4635
4636/// A helper class that allows the use of isa/cast/dyncast
4637/// to detect TagType objects of enums.
4638class EnumType : public TagType {
4639 friend class ASTContext; // ASTContext creates these.
4640
4641 explicit EnumType(const EnumDecl *D)
4642 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4643
4644public:
4645 EnumDecl *getDecl() const {
4646 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4647 }
4648
4649 bool isSugared() const { return false; }
4650 QualType desugar() const { return QualType(this, 0); }
4651
4652 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4653};
4654
4655/// An attributed type is a type to which a type attribute has been applied.
4656///
4657/// The "modified type" is the fully-sugared type to which the attributed
4658/// type was applied; generally it is not canonically equivalent to the
4659/// attributed type. The "equivalent type" is the minimally-desugared type
4660/// which the type is canonically equivalent to.
4661///
4662/// For example, in the following attributed type:
4663/// int32_t __attribute__((vector_size(16)))
4664/// - the modified type is the TypedefType for int32_t
4665/// - the equivalent type is VectorType(16, int32_t)
4666/// - the canonical type is VectorType(16, int)
4667class AttributedType : public Type, public llvm::FoldingSetNode {
4668public:
4669 using Kind = attr::Kind;
4670
4671private:
4672 friend class ASTContext; // ASTContext creates these
4673
4674 QualType ModifiedType;
4675 QualType EquivalentType;
4676
4677 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4678 QualType equivalent)
4679 : Type(Attributed, canon, equivalent->getDependence()),
4680 ModifiedType(modified), EquivalentType(equivalent) {
4681 AttributedTypeBits.AttrKind = attrKind;
4682 }
4683
4684public:
4685 Kind getAttrKind() const {
4686 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4687 }
4688
4689 QualType getModifiedType() const { return ModifiedType; }
4690 QualType getEquivalentType() const { return EquivalentType; }
4691
4692 bool isSugared() const { return true; }
4693 QualType desugar() const { return getEquivalentType(); }
4694
4695 /// Does this attribute behave like a type qualifier?
4696 ///
4697 /// A type qualifier adjusts a type to provide specialized rules for
4698 /// a specific object, like the standard const and volatile qualifiers.
4699 /// This includes attributes controlling things like nullability,
4700 /// address spaces, and ARC ownership. The value of the object is still
4701 /// largely described by the modified type.
4702 ///
4703 /// In contrast, many type attributes "rewrite" their modified type to
4704 /// produce a fundamentally different type, not necessarily related in any
4705 /// formalizable way to the original type. For example, calling convention
4706 /// and vector attributes are not simple type qualifiers.
4707 ///
4708 /// Type qualifiers are often, but not always, reflected in the canonical
4709 /// type.
4710 bool isQualifier() const;
4711
4712 bool isMSTypeSpec() const;
4713
4714 bool isCallingConv() const;
4715
4716 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4717
4718 /// Retrieve the attribute kind corresponding to the given
4719 /// nullability kind.
4720 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4721 switch (kind) {
4722 case NullabilityKind::NonNull:
4723 return attr::TypeNonNull;
4724
4725 case NullabilityKind::Nullable:
4726 return attr::TypeNullable;
4727
4728 case NullabilityKind::NullableResult:
4729 return attr::TypeNullableResult;
4730
4731 case NullabilityKind::Unspecified:
4732 return attr::TypeNullUnspecified;
4733 }
4734 llvm_unreachable("Unknown nullability kind.")__builtin_unreachable();
4735 }
4736
4737 /// Strip off the top-level nullability annotation on the given
4738 /// type, if it's there.
4739 ///
4740 /// \param T The type to strip. If the type is exactly an
4741 /// AttributedType specifying nullability (without looking through
4742 /// type sugar), the nullability is returned and this type changed
4743 /// to the underlying modified type.
4744 ///
4745 /// \returns the top-level nullability, if present.
4746 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4747
4748 void Profile(llvm::FoldingSetNodeID &ID) {
4749 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4750 }
4751
4752 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4753 QualType modified, QualType equivalent) {
4754 ID.AddInteger(attrKind);
4755 ID.AddPointer(modified.getAsOpaquePtr());
4756 ID.AddPointer(equivalent.getAsOpaquePtr());
4757 }
4758
4759 static bool classof(const Type *T) {
4760 return T->getTypeClass() == Attributed;
4761 }
4762};
4763
4764class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4765 friend class ASTContext; // ASTContext creates these
4766
4767 // Helper data collector for canonical types.
4768 struct CanonicalTTPTInfo {
4769 unsigned Depth : 15;
4770 unsigned ParameterPack : 1;
4771 unsigned Index : 16;
4772 };
4773
4774 union {
4775 // Info for the canonical type.
4776 CanonicalTTPTInfo CanTTPTInfo;
4777
4778 // Info for the non-canonical type.
4779 TemplateTypeParmDecl *TTPDecl;
4780 };
4781
4782 /// Build a non-canonical type.
4783 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4784 : Type(TemplateTypeParm, Canon,
4785 TypeDependence::DependentInstantiation |
4786 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4787 TTPDecl(TTPDecl) {}
4788
4789 /// Build the canonical type.
4790 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4791 : Type(TemplateTypeParm, QualType(this, 0),
4792 TypeDependence::DependentInstantiation |
4793 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4794 CanTTPTInfo.Depth = D;
4795 CanTTPTInfo.Index = I;
4796 CanTTPTInfo.ParameterPack = PP;
4797 }
4798
4799 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4800 QualType Can = getCanonicalTypeInternal();
4801 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4802 }
4803
4804public:
4805 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4806 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4807 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4808
4809 TemplateTypeParmDecl *getDecl() const {
4810 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4811 }
4812
4813 IdentifierInfo *getIdentifier() const;
4814
4815 bool isSugared() const { return false; }
4816 QualType desugar() const { return QualType(this, 0); }
4817
4818 void Profile(llvm::FoldingSetNodeID &ID) {
4819 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4820 }
4821
4822 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4823 unsigned Index, bool ParameterPack,
4824 TemplateTypeParmDecl *TTPDecl) {
4825 ID.AddInteger(Depth);
4826 ID.AddInteger(Index);
4827 ID.AddBoolean(ParameterPack);
4828 ID.AddPointer(TTPDecl);
4829 }
4830
4831 static bool classof(const Type *T) {
4832 return T->getTypeClass() == TemplateTypeParm;
4833 }
4834};
4835
4836/// Represents the result of substituting a type for a template
4837/// type parameter.
4838///
4839/// Within an instantiated template, all template type parameters have
4840/// been replaced with these. They are used solely to record that a
4841/// type was originally written as a template type parameter;
4842/// therefore they are never canonical.
4843class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4844 friend class ASTContext;
4845
4846 // The original type parameter.
4847 const TemplateTypeParmType *Replaced;
4848
4849 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4850 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4851 Replaced(Param) {}
4852
4853public:
4854 /// Gets the template parameter that was substituted for.
4855 const TemplateTypeParmType *getReplacedParameter() const {
4856 return Replaced;
4857 }
4858
4859 /// Gets the type that was substituted for the template
4860 /// parameter.
4861 QualType getReplacementType() const {
4862 return getCanonicalTypeInternal();
4863 }
4864
4865 bool isSugared() const { return true; }
4866 QualType desugar() const { return getReplacementType(); }
4867
4868 void Profile(llvm::FoldingSetNodeID &ID) {
4869 Profile(ID, getReplacedParameter(), getReplacementType());
4870 }
4871
4872 static void Profile(llvm::FoldingSetNodeID &ID,
4873 const TemplateTypeParmType *Replaced,
4874 QualType Replacement) {
4875 ID.AddPointer(Replaced);
4876 ID.AddPointer(Replacement.getAsOpaquePtr());
4877 }
4878
4879 static bool classof(const Type *T) {
4880 return T->getTypeClass() == SubstTemplateTypeParm;
4881 }
4882};
4883
4884/// Represents the result of substituting a set of types for a template
4885/// type parameter pack.
4886///
4887/// When a pack expansion in the source code contains multiple parameter packs
4888/// and those parameter packs correspond to different levels of template
4889/// parameter lists, this type node is used to represent a template type
4890/// parameter pack from an outer level, which has already had its argument pack
4891/// substituted but that still lives within a pack expansion that itself
4892/// could not be instantiated. When actually performing a substitution into
4893/// that pack expansion (e.g., when all template parameters have corresponding
4894/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4895/// at the current pack substitution index.
4896class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4897 friend class ASTContext;
4898
4899 /// The original type parameter.
4900 const TemplateTypeParmType *Replaced;
4901
4902 /// A pointer to the set of template arguments that this
4903 /// parameter pack is instantiated with.
4904 const TemplateArgument *Arguments;
4905
4906 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4907 QualType Canon,
4908 const TemplateArgument &ArgPack);
4909
4910public:
4911 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4912
4913 /// Gets the template parameter that was substituted for.
4914 const TemplateTypeParmType *getReplacedParameter() const {
4915 return Replaced;
4916 }
4917
4918 unsigned getNumArgs() const {
4919 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4920 }
4921
4922 bool isSugared() const { return false; }
4923 QualType desugar() const { return QualType(this, 0); }
4924
4925 TemplateArgument getArgumentPack() const;
4926
4927 void Profile(llvm::FoldingSetNodeID &ID);
4928 static void Profile(llvm::FoldingSetNodeID &ID,
4929 const TemplateTypeParmType *Replaced,
4930 const TemplateArgument &ArgPack);
4931
4932 static bool classof(const Type *T) {
4933 return T->getTypeClass() == SubstTemplateTypeParmPack;
4934 }
4935};
4936
4937/// Common base class for placeholders for types that get replaced by
4938/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4939/// class template types, and constrained type names.
4940///
4941/// These types are usually a placeholder for a deduced type. However, before
4942/// the initializer is attached, or (usually) if the initializer is
4943/// type-dependent, there is no deduced type and the type is canonical. In
4944/// the latter case, it is also a dependent type.
4945class DeducedType : public Type {
4946protected:
4947 DeducedType(TypeClass TC, QualType DeducedAsType,
4948 TypeDependence ExtraDependence)
4949 : Type(TC,
4950 // FIXME: Retain the sugared deduced type?
4951 DeducedAsType.isNull() ? QualType(this, 0)
4952 : DeducedAsType.getCanonicalType(),
4953 ExtraDependence | (DeducedAsType.isNull()
4954 ? TypeDependence::None
4955 : DeducedAsType->getDependence() &
4956 ~TypeDependence::VariablyModified)) {}
4957
4958public:
4959 bool isSugared() const { return !isCanonicalUnqualified(); }
4960 QualType desugar() const { return getCanonicalTypeInternal(); }
4961
4962 /// Get the type deduced for this placeholder type, or null if it's
4963 /// either not been deduced or was deduced to a dependent type.
4964 QualType getDeducedType() const {
4965 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4966 }
4967 bool isDeduced() const {
4968 return !isCanonicalUnqualified() || isDependentType();
4969 }
4970
4971 static bool classof(const Type *T) {
4972 return T->getTypeClass() == Auto ||
4973 T->getTypeClass() == DeducedTemplateSpecialization;
4974 }
4975};
4976
4977/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4978/// by a type-constraint.
4979class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4980 friend class ASTContext; // ASTContext creates these
4981
4982 ConceptDecl *TypeConstraintConcept;
4983
4984 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4985 TypeDependence ExtraDependence, ConceptDecl *CD,
4986 ArrayRef<TemplateArgument> TypeConstraintArgs);
4987
4988 const TemplateArgument *getArgBuffer() const {
4989 return reinterpret_cast<const TemplateArgument*>(this+1);
4990 }
4991
4992 TemplateArgument *getArgBuffer() {
4993 return reinterpret_cast<TemplateArgument*>(this+1);
4994 }
4995
4996public:
4997 /// Retrieve the template arguments.
4998 const TemplateArgument *getArgs() const {
4999 return getArgBuffer();
5000 }
5001
5002 /// Retrieve the number of template arguments.
5003 unsigned getNumArgs() const {
5004 return AutoTypeBits.NumArgs;
5005 }
5006
5007 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5008
5009 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5010 return {getArgs(), getNumArgs()};
5011 }
5012
5013 ConceptDecl *getTypeConstraintConcept() const {
5014 return TypeConstraintConcept;
5015 }
5016
5017 bool isConstrained() const {
5018 return TypeConstraintConcept != nullptr;
5019 }
5020
5021 bool isDecltypeAuto() const {
5022 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5023 }
5024
5025 AutoTypeKeyword getKeyword() const {
5026 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5027 }
5028
5029 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5030 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5031 getTypeConstraintConcept(), getTypeConstraintArguments());
5032 }
5033
5034 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5035 QualType Deduced, AutoTypeKeyword Keyword,
5036 bool IsDependent, ConceptDecl *CD,
5037 ArrayRef<TemplateArgument> Arguments);
5038
5039 static bool classof(const Type *T) {
5040 return T->getTypeClass() == Auto;
5041 }
5042};
5043
5044/// Represents a C++17 deduced template specialization type.
5045class DeducedTemplateSpecializationType : public DeducedType,
5046 public llvm::FoldingSetNode {
5047 friend class ASTContext; // ASTContext creates these
5048
5049 /// The name of the template whose arguments will be deduced.
5050 TemplateName Template;
5051
5052 DeducedTemplateSpecializationType(TemplateName Template,
5053 QualType DeducedAsType,
5054 bool IsDeducedAsDependent)
5055 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5056 toTypeDependence(Template.getDependence()) |
5057 (IsDeducedAsDependent
5058 ? TypeDependence::DependentInstantiation
5059 : TypeDependence::None)),
5060 Template(Template) {}
5061
5062public:
5063 /// Retrieve the name of the template that we are deducing.
5064 TemplateName getTemplateName() const { return Template;}
5065
5066 void Profile(llvm::FoldingSetNodeID &ID) {
5067 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5068 }
5069
5070 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5071 QualType Deduced, bool IsDependent) {
5072 Template.Profile(ID);
5073 ID.AddPointer(Deduced.getAsOpaquePtr());
5074 ID.AddBoolean(IsDependent);
5075 }
5076
5077 static bool classof(const Type *T) {
5078 return T->getTypeClass() == DeducedTemplateSpecialization;
5079 }
5080};
5081
5082/// Represents a type template specialization; the template
5083/// must be a class template, a type alias template, or a template
5084/// template parameter. A template which cannot be resolved to one of
5085/// these, e.g. because it is written with a dependent scope
5086/// specifier, is instead represented as a
5087/// @c DependentTemplateSpecializationType.
5088///
5089/// A non-dependent template specialization type is always "sugar",
5090/// typically for a \c RecordType. For example, a class template
5091/// specialization type of \c vector<int> will refer to a tag type for
5092/// the instantiation \c std::vector<int, std::allocator<int>>
5093///
5094/// Template specializations are dependent if either the template or
5095/// any of the template arguments are dependent, in which case the
5096/// type may also be canonical.
5097///
5098/// Instances of this type are allocated with a trailing array of
5099/// TemplateArguments, followed by a QualType representing the
5100/// non-canonical aliased type when the template is a type alias
5101/// template.
5102class alignas(8) TemplateSpecializationType
5103 : public Type,
5104 public llvm::FoldingSetNode {
5105 friend class ASTContext; // ASTContext creates these
5106
5107 /// The name of the template being specialized. This is
5108 /// either a TemplateName::Template (in which case it is a
5109 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5110 /// TypeAliasTemplateDecl*), a
5111 /// TemplateName::SubstTemplateTemplateParmPack, or a
5112 /// TemplateName::SubstTemplateTemplateParm (in which case the
5113 /// replacement must, recursively, be one of these).
5114 TemplateName Template;
5115
5116 TemplateSpecializationType(TemplateName T,
5117 ArrayRef<TemplateArgument> Args,
5118 QualType Canon,
5119 QualType Aliased);
5120
5121public:
5122 /// Determine whether any of the given template arguments are dependent.
5123 ///
5124 /// The converted arguments should be supplied when known; whether an
5125 /// argument is dependent can depend on the conversions performed on it
5126 /// (for example, a 'const int' passed as a template argument might be
5127 /// dependent if the parameter is a reference but non-dependent if the
5128 /// parameter is an int).
5129 ///
5130 /// Note that the \p Args parameter is unused: this is intentional, to remind
5131 /// the caller that they need to pass in the converted arguments, not the
5132 /// specified arguments.
5133 static bool
5134 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5135 ArrayRef<TemplateArgument> Converted);
5136 static bool
5137 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5138 ArrayRef<TemplateArgument> Converted);
5139 static bool anyInstantiationDependentTemplateArguments(
5140 ArrayRef<TemplateArgumentLoc> Args);
5141
5142 /// True if this template specialization type matches a current
5143 /// instantiation in the context in which it is found.
5144 bool isCurrentInstantiation() const {
5145 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5146 }
5147
5148 /// Determine if this template specialization type is for a type alias
5149 /// template that has been substituted.
5150 ///
5151 /// Nearly every template specialization type whose template is an alias
5152 /// template will be substituted. However, this is not the case when
5153 /// the specialization contains a pack expansion but the template alias
5154 /// does not have a corresponding parameter pack, e.g.,
5155 ///
5156 /// \code
5157 /// template<typename T, typename U, typename V> struct S;
5158 /// template<typename T, typename U> using A = S<T, int, U>;
5159 /// template<typename... Ts> struct X {
5160 /// typedef A<Ts...> type; // not a type alias
5161 /// };
5162 /// \endcode
5163 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5164
5165 /// Get the aliased type, if this is a specialization of a type alias
5166 /// template.
5167 QualType getAliasedType() const {
5168 assert(isTypeAlias() && "not a type alias template specialization")(static_cast<void> (0));
5169 return *reinterpret_cast<const QualType*>(end());
5170 }
5171
5172 using iterator = const TemplateArgument *;
5173
5174 iterator begin() const { return getArgs(); }
5175 iterator end() const; // defined inline in TemplateBase.h
5176
5177 /// Retrieve the name of the template that we are specializing.
5178 TemplateName getTemplateName() const { return Template; }
5179
5180 /// Retrieve the template arguments.
5181 const TemplateArgument *getArgs() const {
5182 return reinterpret_cast<const TemplateArgument *>(this + 1);
5183 }
5184
5185 /// Retrieve the number of template arguments.
5186 unsigned getNumArgs() const {
5187 return TemplateSpecializationTypeBits.NumArgs;
5188 }
5189
5190 /// Retrieve a specific template argument as a type.
5191 /// \pre \c isArgType(Arg)
5192 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5193
5194 ArrayRef<TemplateArgument> template_arguments() const {
5195 return {getArgs(), getNumArgs()};
5196 }
5197
5198 bool isSugared() const {
5199 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5200 }
5201
5202 QualType desugar() const {
5203 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5204 }
5205
5206 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5207 Profile(ID, Template, template_arguments(), Ctx);
5208 if (isTypeAlias())
5209 getAliasedType().Profile(ID);
5210 }
5211
5212 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5213 ArrayRef<TemplateArgument> Args,
5214 const ASTContext &Context);
5215
5216 static bool classof(const Type *T) {
5217 return T->getTypeClass() == TemplateSpecialization;
5218 }
5219};
5220
5221/// Print a template argument list, including the '<' and '>'
5222/// enclosing the template arguments.
5223void printTemplateArgumentList(raw_ostream &OS,
5224 ArrayRef<TemplateArgument> Args,
5225 const PrintingPolicy &Policy,
5226 const TemplateParameterList *TPL = nullptr);
5227
5228void printTemplateArgumentList(raw_ostream &OS,
5229 ArrayRef<TemplateArgumentLoc> Args,
5230 const PrintingPolicy &Policy,
5231 const TemplateParameterList *TPL = nullptr);
5232
5233void printTemplateArgumentList(raw_ostream &OS,
5234 const TemplateArgumentListInfo &Args,
5235 const PrintingPolicy &Policy,
5236 const TemplateParameterList *TPL = nullptr);
5237
5238/// The injected class name of a C++ class template or class
5239/// template partial specialization. Used to record that a type was
5240/// spelled with a bare identifier rather than as a template-id; the
5241/// equivalent for non-templated classes is just RecordType.
5242///
5243/// Injected class name types are always dependent. Template
5244/// instantiation turns these into RecordTypes.
5245///
5246/// Injected class name types are always canonical. This works
5247/// because it is impossible to compare an injected class name type
5248/// with the corresponding non-injected template type, for the same
5249/// reason that it is impossible to directly compare template
5250/// parameters from different dependent contexts: injected class name
5251/// types can only occur within the scope of a particular templated
5252/// declaration, and within that scope every template specialization
5253/// will canonicalize to the injected class name (when appropriate
5254/// according to the rules of the language).
5255class InjectedClassNameType : public Type {
5256 friend class ASTContext; // ASTContext creates these.
5257 friend class ASTNodeImporter;
5258 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5259 // currently suitable for AST reading, too much
5260 // interdependencies.
5261 template <class T> friend class serialization::AbstractTypeReader;
5262
5263 CXXRecordDecl *Decl;
5264
5265 /// The template specialization which this type represents.
5266 /// For example, in
5267 /// template <class T> class A { ... };
5268 /// this is A<T>, whereas in
5269 /// template <class X, class Y> class A<B<X,Y> > { ... };
5270 /// this is A<B<X,Y> >.
5271 ///
5272 /// It is always unqualified, always a template specialization type,
5273 /// and always dependent.
5274 QualType InjectedType;
5275
5276 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5277 : Type(InjectedClassName, QualType(),
5278 TypeDependence::DependentInstantiation),
5279 Decl(D), InjectedType(TST) {
5280 assert(isa<TemplateSpecializationType>(TST))(static_cast<void> (0));
5281 assert(!TST.hasQualifiers())(static_cast<void> (0));
5282 assert(TST->isDependentType())(static_cast<void> (0));
5283 }
5284
5285public:
5286 QualType getInjectedSpecializationType() const { return InjectedType; }
5287
5288 const TemplateSpecializationType *getInjectedTST() const {
5289 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5290 }
5291
5292 TemplateName getTemplateName() const {
5293 return getInjectedTST()->getTemplateName();
5294 }
5295
5296 CXXRecordDecl *getDecl() const;
5297
5298 bool isSugared() const { return false; }
5299 QualType desugar() const { return QualType(this, 0); }
5300
5301 static bool classof(const Type *T) {
5302 return T->getTypeClass() == InjectedClassName;
5303 }
5304};
5305
5306/// The kind of a tag type.
5307enum TagTypeKind {
5308 /// The "struct" keyword.
5309 TTK_Struct,
5310
5311 /// The "__interface" keyword.
5312 TTK_Interface,
5313
5314 /// The "union" keyword.
5315 TTK_Union,
5316
5317 /// The "class" keyword.
5318 TTK_Class,
5319
5320 /// The "enum" keyword.
5321 TTK_Enum
5322};
5323
5324/// The elaboration keyword that precedes a qualified type name or
5325/// introduces an elaborated-type-specifier.
5326enum ElaboratedTypeKeyword {
5327 /// The "struct" keyword introduces the elaborated-type-specifier.
5328 ETK_Struct,
5329
5330 /// The "__interface" keyword introduces the elaborated-type-specifier.
5331 ETK_Interface,
5332
5333 /// The "union" keyword introduces the elaborated-type-specifier.
5334 ETK_Union,
5335
5336 /// The "class" keyword introduces the elaborated-type-specifier.
5337 ETK_Class,
5338
5339 /// The "enum" keyword introduces the elaborated-type-specifier.
5340 ETK_Enum,
5341
5342 /// The "typename" keyword precedes the qualified type name, e.g.,
5343 /// \c typename T::type.
5344 ETK_Typename,
5345
5346 /// No keyword precedes the qualified type name.
5347 ETK_None
5348};
5349
5350/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5351/// The keyword in stored in the free bits of the base class.
5352/// Also provides a few static helpers for converting and printing
5353/// elaborated type keyword and tag type kind enumerations.
5354class TypeWithKeyword : public Type {
5355protected:
5356 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5357 QualType Canonical, TypeDependence Dependence)
5358 : Type(tc, Canonical, Dependence) {
5359 TypeWithKeywordBits.Keyword = Keyword;
5360 }
5361
5362public:
5363 ElaboratedTypeKeyword getKeyword() const {
5364 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5365 }
5366
5367 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5368 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5369
5370 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5371 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5372 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5373
5374 /// Converts a TagTypeKind into an elaborated type keyword.
5375 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5376
5377 /// Converts an elaborated type keyword into a TagTypeKind.
5378 /// It is an error to provide an elaborated type keyword
5379 /// which *isn't* a tag kind here.
5380 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5381
5382 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5383
5384 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5385
5386 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5387 return getKeywordName(getKeywordForTagTypeKind(Kind));
5388 }
5389
5390 class CannotCastToThisType {};
5391 static CannotCastToThisType classof(const Type *);
5392};
5393
5394/// Represents a type that was referred to using an elaborated type
5395/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5396/// or both.
5397///
5398/// This type is used to keep track of a type name as written in the
5399/// source code, including tag keywords and any nested-name-specifiers.
5400/// The type itself is always "sugar", used to express what was written
5401/// in the source code but containing no additional semantic information.
5402class ElaboratedType final
5403 : public TypeWithKeyword,
5404 public llvm::FoldingSetNode,
5405 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5406 friend class ASTContext; // ASTContext creates these
5407 friend TrailingObjects;
5408
5409 /// The nested name specifier containing the qualifier.
5410 NestedNameSpecifier *NNS;
5411
5412 /// The type that this qualified name refers to.
5413 QualType NamedType;
5414
5415 /// The (re)declaration of this tag type owned by this occurrence is stored
5416 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5417 /// it, or obtain a null pointer if there is none.
5418
5419 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5420 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5421 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5422 // Any semantic dependence on the qualifier will have
5423 // been incorporated into NamedType. We still need to
5424 // track syntactic (instantiation / error / pack)
5425 // dependence on the qualifier.
5426 NamedType->getDependence() |
5427 (NNS ? toSyntacticDependence(
5428 toTypeDependence(NNS->getDependence()))
5429 : TypeDependence::None)),
5430 NNS(NNS), NamedType(NamedType) {
5431 ElaboratedTypeBits.HasOwnedTagDecl = false;
5432 if (OwnedTagDecl) {
5433 ElaboratedTypeBits.HasOwnedTagDecl = true;
5434 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5435 }
5436 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast<void> (0))
5437 "ElaboratedType cannot have elaborated type keyword "(static_cast<void> (0))
5438 "and name qualifier both null.")(static_cast<void> (0));
5439 }
5440
5441public:
5442 /// Retrieve the qualification on this type.
5443 NestedNameSpecifier *getQualifier() const { return NNS; }
5444
5445 /// Retrieve the type named by the qualified-id.
5446 QualType getNamedType() const { return NamedType; }
5447
5448 /// Remove a single level of sugar.
5449 QualType desugar() const { return getNamedType(); }
5450
5451 /// Returns whether this type directly provides sugar.
5452 bool isSugared() const { return true; }
5453
5454 /// Return the (re)declaration of this type owned by this occurrence of this
5455 /// type, or nullptr if there is none.
5456 TagDecl *getOwnedTagDecl() const {
5457 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5458 : nullptr;
5459 }
5460
5461 void Profile(llvm::FoldingSetNodeID &ID) {
5462 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5463 }
5464
5465 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5466 NestedNameSpecifier *NNS, QualType NamedType,
5467 TagDecl *OwnedTagDecl) {
5468 ID.AddInteger(Keyword);
5469 ID.AddPointer(NNS);
5470 NamedType.Profile(ID);
5471 ID.AddPointer(OwnedTagDecl);
5472 }
5473
5474 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5475};
5476
5477/// Represents a qualified type name for which the type name is
5478/// dependent.
5479///
5480/// DependentNameType represents a class of dependent types that involve a
5481/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5482/// name of a type. The DependentNameType may start with a "typename" (for a
5483/// typename-specifier), "class", "struct", "union", or "enum" (for a
5484/// dependent elaborated-type-specifier), or nothing (in contexts where we
5485/// know that we must be referring to a type, e.g., in a base class specifier).
5486/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5487/// mode, this type is used with non-dependent names to delay name lookup until
5488/// instantiation.
5489class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5490 friend class ASTContext; // ASTContext creates these
5491
5492 /// The nested name specifier containing the qualifier.
5493 NestedNameSpecifier *NNS;
5494
5495 /// The type that this typename specifier refers to.
5496 const IdentifierInfo *Name;
5497
5498 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5499 const IdentifierInfo *Name, QualType CanonType)
5500 : TypeWithKeyword(Keyword, DependentName, CanonType,
5501 TypeDependence::DependentInstantiation |
5502 toTypeDependence(NNS->getDependence())),
5503 NNS(NNS), Name(Name) {}
5504
5505public:
5506 /// Retrieve the qualification on this type.
5507 NestedNameSpecifier *getQualifier() const { return NNS; }
5508
5509 /// Retrieve the type named by the typename specifier as an identifier.
5510 ///
5511 /// This routine will return a non-NULL identifier pointer when the
5512 /// form of the original typename was terminated by an identifier,
5513 /// e.g., "typename T::type".
5514 const IdentifierInfo *getIdentifier() const {
5515 return Name;
5516 }
5517
5518 bool isSugared() const { return false; }
5519 QualType desugar() const { return QualType(this, 0); }
5520
5521 void Profile(llvm::FoldingSetNodeID &ID) {
5522 Profile(ID, getKeyword(), NNS, Name);
5523 }
5524
5525 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5526 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5527 ID.AddInteger(Keyword);
5528 ID.AddPointer(NNS);
5529 ID.AddPointer(Name);
5530 }
5531
5532 static bool classof(const Type *T) {
5533 return T->getTypeClass() == DependentName;
5534 }
5535};
5536
5537/// Represents a template specialization type whose template cannot be
5538/// resolved, e.g.
5539/// A<T>::template B<T>
5540class alignas(8) DependentTemplateSpecializationType
5541 : public TypeWithKeyword,
5542 public llvm::FoldingSetNode {
5543 friend class ASTContext; // ASTContext creates these
5544
5545 /// The nested name specifier containing the qualifier.
5546 NestedNameSpecifier *NNS;
5547
5548 /// The identifier of the template.
5549 const IdentifierInfo *Name;
5550
5551 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5552 NestedNameSpecifier *NNS,
5553 const IdentifierInfo *Name,
5554 ArrayRef<TemplateArgument> Args,
5555 QualType Canon);
5556
5557 const TemplateArgument *getArgBuffer() const {
5558 return reinterpret_cast<const TemplateArgument*>(this+1);
5559 }
5560
5561 TemplateArgument *getArgBuffer() {
5562 return reinterpret_cast<TemplateArgument*>(this+1);
5563 }
5564
5565public:
5566 NestedNameSpecifier *getQualifier() const { return NNS; }
5567 const IdentifierInfo *getIdentifier() const { return Name; }
5568
5569 /// Retrieve the template arguments.
5570 const TemplateArgument *getArgs() const {
5571 return getArgBuffer();
5572 }
5573
5574 /// Retrieve the number of template arguments.
5575 unsigned getNumArgs() const {
5576 return DependentTemplateSpecializationTypeBits.NumArgs;
5577 }
5578
5579 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5580
5581 ArrayRef<TemplateArgument> template_arguments() const {
5582 return {getArgs(), getNumArgs()};
5583 }
5584
5585 using iterator = const TemplateArgument *;
5586
5587 iterator begin() const { return getArgs(); }
5588 iterator end() const; // inline in TemplateBase.h
5589
5590 bool isSugared() const { return false; }
5591 QualType desugar() const { return QualType(this, 0); }
5592
5593 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5594 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5595 }
5596
5597 static void Profile(llvm::FoldingSetNodeID &ID,
5598 const ASTContext &Context,
5599 ElaboratedTypeKeyword Keyword,
5600 NestedNameSpecifier *Qualifier,
5601 const IdentifierInfo *Name,
5602 ArrayRef<TemplateArgument> Args);
5603
5604 static bool classof(const Type *T) {
5605 return T->getTypeClass() == DependentTemplateSpecialization;
5606 }
5607};
5608
5609/// Represents a pack expansion of types.
5610///
5611/// Pack expansions are part of C++11 variadic templates. A pack
5612/// expansion contains a pattern, which itself contains one or more
5613/// "unexpanded" parameter packs. When instantiated, a pack expansion
5614/// produces a series of types, each instantiated from the pattern of
5615/// the expansion, where the Ith instantiation of the pattern uses the
5616/// Ith arguments bound to each of the unexpanded parameter packs. The
5617/// pack expansion is considered to "expand" these unexpanded
5618/// parameter packs.
5619///
5620/// \code
5621/// template<typename ...Types> struct tuple;
5622///
5623/// template<typename ...Types>
5624/// struct tuple_of_references {
5625/// typedef tuple<Types&...> type;
5626/// };
5627/// \endcode
5628///
5629/// Here, the pack expansion \c Types&... is represented via a
5630/// PackExpansionType whose pattern is Types&.
5631class PackExpansionType : public Type, public llvm::FoldingSetNode {
5632 friend class ASTContext; // ASTContext creates these
5633
5634 /// The pattern of the pack expansion.
5635 QualType Pattern;
5636
5637 PackExpansionType(QualType Pattern, QualType Canon,
5638 Optional<unsigned> NumExpansions)
5639 : Type(PackExpansion, Canon,
5640 (Pattern->getDependence() | TypeDependence::Dependent |
5641 TypeDependence::Instantiation) &
5642 ~TypeDependence::UnexpandedPack),
5643 Pattern(Pattern) {
5644 PackExpansionTypeBits.NumExpansions =
5645 NumExpansions ? *NumExpansions + 1 : 0;
5646 }
5647
5648public:
5649 /// Retrieve the pattern of this pack expansion, which is the
5650 /// type that will be repeatedly instantiated when instantiating the
5651 /// pack expansion itself.
5652 QualType getPattern() const { return Pattern; }
5653
5654 /// Retrieve the number of expansions that this pack expansion will
5655 /// generate, if known.
5656 Optional<unsigned> getNumExpansions() const {
5657 if (PackExpansionTypeBits.NumExpansions)
5658 return PackExpansionTypeBits.NumExpansions - 1;
5659 return None;
5660 }
5661
5662 bool isSugared() const { return false; }
5663 QualType desugar() const { return QualType(this, 0); }
5664
5665 void Profile(llvm::FoldingSetNodeID &ID) {
5666 Profile(ID, getPattern(), getNumExpansions());
5667 }
5668
5669 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5670 Optional<unsigned> NumExpansions) {
5671 ID.AddPointer(Pattern.getAsOpaquePtr());
5672 ID.AddBoolean(NumExpansions.hasValue());
5673 if (NumExpansions)
5674 ID.AddInteger(*NumExpansions);
5675 }
5676
5677 static bool classof(const Type *T) {
5678 return T->getTypeClass() == PackExpansion;
5679 }
5680};
5681
5682/// This class wraps the list of protocol qualifiers. For types that can
5683/// take ObjC protocol qualifers, they can subclass this class.
5684template <class T>
5685class ObjCProtocolQualifiers {
5686protected:
5687 ObjCProtocolQualifiers() = default;
5688
5689 ObjCProtocolDecl * const *getProtocolStorage() const {
5690 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5691 }
5692
5693 ObjCProtocolDecl **getProtocolStorage() {
5694 return static_cast<T*>(this)->getProtocolStorageImpl();
5695 }
5696
5697 void setNumProtocols(unsigned N) {
5698 static_cast<T*>(this)->setNumProtocolsImpl(N);
5699 }
5700
5701 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5702 setNumProtocols(protocols.size());
5703 assert(getNumProtocols() == protocols.size() &&(static_cast<void> (0))
5704 "bitfield overflow in protocol count")(static_cast<void> (0));
5705 if (!protocols.empty())
5706 memcpy(getProtocolStorage(), protocols.data(),
5707 protocols.size() * sizeof(ObjCProtocolDecl*));
5708 }
5709
5710public:
5711 using qual_iterator = ObjCProtocolDecl * const *;
5712 using qual_range = llvm::iterator_range<qual_iterator>;
5713
5714 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5715 qual_iterator qual_begin() const { return getProtocolStorage(); }
5716 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5717
5718 bool qual_empty() const { return getNumProtocols() == 0; }
5719
5720 /// Return the number of qualifying protocols in this type, or 0 if
5721 /// there are none.
5722 unsigned getNumProtocols() const {
5723 return static_cast<const T*>(this)->getNumProtocolsImpl();
5724 }
5725
5726 /// Fetch a protocol by index.
5727 ObjCProtocolDecl *getProtocol(unsigned I) const {
5728 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast<void> (0));
5729 return qual_begin()[I];
5730 }
5731
5732 /// Retrieve all of the protocol qualifiers.
5733 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5734 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5735 }
5736};
5737
5738/// Represents a type parameter type in Objective C. It can take
5739/// a list of protocols.
5740class ObjCTypeParamType : public Type,
5741 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5742 public llvm::FoldingSetNode {
5743 friend class ASTContext;
5744 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5745
5746 /// The number of protocols stored on this type.
5747 unsigned NumProtocols : 6;
5748
5749 ObjCTypeParamDecl *OTPDecl;
5750
5751 /// The protocols are stored after the ObjCTypeParamType node. In the
5752 /// canonical type, the list of protocols are sorted alphabetically
5753 /// and uniqued.
5754 ObjCProtocolDecl **getProtocolStorageImpl();
5755
5756 /// Return the number of qualifying protocols in this interface type,
5757 /// or 0 if there are none.
5758 unsigned getNumProtocolsImpl() const {
5759 return NumProtocols;
5760 }
5761
5762 void setNumProtocolsImpl(unsigned N) {
5763 NumProtocols = N;
5764 }
5765
5766 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5767 QualType can,
5768 ArrayRef<ObjCProtocolDecl *> protocols);
5769
5770public:
5771 bool isSugared() const { return true; }
5772 QualType desugar() const { return getCanonicalTypeInternal(); }
5773
5774 static bool classof(const Type *T) {
5775 return T->getTypeClass() == ObjCTypeParam;
5776 }
5777
5778 void Profile(llvm::FoldingSetNodeID &ID);
5779 static void Profile(llvm::FoldingSetNodeID &ID,
5780 const ObjCTypeParamDecl *OTPDecl,
5781 QualType CanonicalType,
5782 ArrayRef<ObjCProtocolDecl *> protocols);
5783
5784 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5785};
5786
5787/// Represents a class type in Objective C.
5788///
5789/// Every Objective C type is a combination of a base type, a set of
5790/// type arguments (optional, for parameterized classes) and a list of
5791/// protocols.
5792///
5793/// Given the following declarations:
5794/// \code
5795/// \@class C<T>;
5796/// \@protocol P;
5797/// \endcode
5798///
5799/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5800/// with base C and no protocols.
5801///
5802/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5803/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5804/// protocol list.
5805/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5806/// and protocol list [P].
5807///
5808/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5809/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5810/// and no protocols.
5811///
5812/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5813/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5814/// this should get its own sugar class to better represent the source.
5815class ObjCObjectType : public Type,
5816 public ObjCProtocolQualifiers<ObjCObjectType> {
5817 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5818
5819 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5820 // after the ObjCObjectPointerType node.
5821 // ObjCObjectType.NumProtocols - the number of protocols stored
5822 // after the type arguments of ObjCObjectPointerType node.
5823 //
5824 // These protocols are those written directly on the type. If
5825 // protocol qualifiers ever become additive, the iterators will need
5826 // to get kindof complicated.
5827 //
5828 // In the canonical object type, these are sorted alphabetically
5829 // and uniqued.
5830
5831 /// Either a BuiltinType or an InterfaceType or sugar for either.
5832 QualType BaseType;
5833
5834 /// Cached superclass type.
5835 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5836 CachedSuperClassType;
5837
5838 QualType *getTypeArgStorage();
5839 const QualType *getTypeArgStorage() const {
5840 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5841 }
5842
5843 ObjCProtocolDecl **getProtocolStorageImpl();
5844 /// Return the number of qualifying protocols in this interface type,
5845 /// or 0 if there are none.
5846 unsigned getNumProtocolsImpl() const {
5847 return ObjCObjectTypeBits.NumProtocols;
5848 }
5849 void setNumProtocolsImpl(unsigned N) {
5850 ObjCObjectTypeBits.NumProtocols = N;
5851 }
5852
5853protected:
5854 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5855
5856 ObjCObjectType(QualType Canonical, QualType Base,
5857 ArrayRef<QualType> typeArgs,
5858 ArrayRef<ObjCProtocolDecl *> protocols,
5859 bool isKindOf);
5860
5861 ObjCObjectType(enum Nonce_ObjCInterface)
5862 : Type(ObjCInterface, QualType(), TypeDependence::None),
5863 BaseType(QualType(this_(), 0)) {
5864 ObjCObjectTypeBits.NumProtocols = 0;
5865 ObjCObjectTypeBits.NumTypeArgs = 0;
5866 ObjCObjectTypeBits.IsKindOf = 0;
5867 }
5868
5869 void computeSuperClassTypeSlow() const;
5870
5871public:
5872 /// Gets the base type of this object type. This is always (possibly
5873 /// sugar for) one of:
5874 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5875 /// user, which is a typedef for an ObjCObjectPointerType)
5876 /// - the 'Class' builtin type (same caveat)
5877 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5878 QualType getBaseType() const { return BaseType; }
5879
5880 bool isObjCId() const {
5881 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5882 }
5883
5884 bool isObjCClass() const {
5885 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5886 }
5887
5888 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5889 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5890 bool isObjCUnqualifiedIdOrClass() const {
5891 if (!qual_empty()) return false;
5892 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5893 return T->getKind() == BuiltinType::ObjCId ||
5894 T->getKind() == BuiltinType::ObjCClass;
5895 return false;
5896 }
5897 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5898 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5899
5900 /// Gets the interface declaration for this object type, if the base type
5901 /// really is an interface.
5902 ObjCInterfaceDecl *getInterface() const;
5903
5904 /// Determine whether this object type is "specialized", meaning
5905 /// that it has type arguments.
5906 bool isSpecialized() const;
5907
5908 /// Determine whether this object type was written with type arguments.
5909 bool isSpecializedAsWritten() const {
5910 return ObjCObjectTypeBits.NumTypeArgs > 0;
5911 }
5912
5913 /// Determine whether this object type is "unspecialized", meaning
5914 /// that it has no type arguments.
5915 bool isUnspecialized() const { return !isSpecialized(); }
5916
5917 /// Determine whether this object type is "unspecialized" as
5918 /// written, meaning that it has no type arguments.
5919 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5920
5921 /// Retrieve the type arguments of this object type (semantically).
5922 ArrayRef<QualType> getTypeArgs() const;
5923
5924 /// Retrieve the type arguments of this object type as they were
5925 /// written.
5926 ArrayRef<QualType> getTypeArgsAsWritten() const {
5927 return llvm::makeArrayRef(getTypeArgStorage(),
5928 ObjCObjectTypeBits.NumTypeArgs);
5929 }
5930
5931 /// Whether this is a "__kindof" type as written.
5932 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5933
5934 /// Whether this ia a "__kindof" type (semantically).
5935 bool isKindOfType() const;
5936
5937 /// Retrieve the type of the superclass of this object type.
5938 ///
5939 /// This operation substitutes any type arguments into the
5940 /// superclass of the current class type, potentially producing a
5941 /// specialization of the superclass type. Produces a null type if
5942 /// there is no superclass.
5943 QualType getSuperClassType() const {
5944 if (!CachedSuperClassType.getInt())
5945 computeSuperClassTypeSlow();
5946
5947 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast<void> (0));
5948 return QualType(CachedSuperClassType.getPointer(), 0);
5949 }
5950
5951 /// Strip off the Objective-C "kindof" type and (with it) any
5952 /// protocol qualifiers.
5953 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5954
5955 bool isSugared() const { return false; }
5956 QualType desugar() const { return QualType(this, 0); }
5957
5958 static bool classof(const Type *T) {
5959 return T->getTypeClass() == ObjCObject ||
5960 T->getTypeClass() == ObjCInterface;
5961 }
5962};
5963
5964/// A class providing a concrete implementation
5965/// of ObjCObjectType, so as to not increase the footprint of
5966/// ObjCInterfaceType. Code outside of ASTContext and the core type
5967/// system should not reference this type.
5968class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5969 friend class ASTContext;
5970
5971 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5972 // will need to be modified.
5973
5974 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5975 ArrayRef<QualType> typeArgs,
5976 ArrayRef<ObjCProtocolDecl *> protocols,
5977 bool isKindOf)
5978 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5979
5980public:
5981 void Profile(llvm::FoldingSetNodeID &ID);
5982 static void Profile(llvm::FoldingSetNodeID &ID,
5983 QualType Base,
5984 ArrayRef<QualType> typeArgs,
5985 ArrayRef<ObjCProtocolDecl *> protocols,
5986 bool isKindOf);
5987};
5988
5989inline QualType *ObjCObjectType::getTypeArgStorage() {
5990 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5991}
5992
5993inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5994 return reinterpret_cast<ObjCProtocolDecl**>(
5995 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5996}
5997
5998inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5999 return reinterpret_cast<ObjCProtocolDecl**>(
6000 static_cast<ObjCTypeParamType*>(this)+1);
6001}
6002
6003/// Interfaces are the core concept in Objective-C for object oriented design.
6004/// They basically correspond to C++ classes. There are two kinds of interface
6005/// types: normal interfaces like `NSString`, and qualified interfaces, which
6006/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6007///
6008/// ObjCInterfaceType guarantees the following properties when considered
6009/// as a subtype of its superclass, ObjCObjectType:
6010/// - There are no protocol qualifiers. To reinforce this, code which
6011/// tries to invoke the protocol methods via an ObjCInterfaceType will
6012/// fail to compile.
6013/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6014/// T->getBaseType() == QualType(T, 0).
6015class ObjCInterfaceType : public ObjCObjectType {
6016 friend class ASTContext; // ASTContext creates these.
6017 friend class ASTReader;
6018 friend class ObjCInterfaceDecl;
6019 template <class T> friend class serialization::AbstractTypeReader;
6020
6021 mutable ObjCInterfaceDecl *Decl;
6022
6023 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6024 : ObjCObjectType(Nonce_ObjCInterface),
6025 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6026
6027public:
6028 /// Get the declaration of this interface.
6029 ObjCInterfaceDecl *getDecl() const { return Decl; }
6030
6031 bool isSugared() const { return false; }
6032 QualType desugar() const { return QualType(this, 0); }
6033
6034 static bool classof(const Type *T) {
6035 return T->getTypeClass() == ObjCInterface;
6036 }
6037
6038 // Nonsense to "hide" certain members of ObjCObjectType within this
6039 // class. People asking for protocols on an ObjCInterfaceType are
6040 // not going to get what they want: ObjCInterfaceTypes are
6041 // guaranteed to have no protocols.
6042 enum {
6043 qual_iterator,
6044 qual_begin,
6045 qual_end,
6046 getNumProtocols,
6047 getProtocol
6048 };
6049};
6050
6051inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6052 QualType baseType = getBaseType();
6053 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6054 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6055 return T->getDecl();
6056
6057 baseType = ObjT->getBaseType();
6058 }
6059
6060 return nullptr;
6061}
6062
6063/// Represents a pointer to an Objective C object.
6064///
6065/// These are constructed from pointer declarators when the pointee type is
6066/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6067/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6068/// and 'Class<P>' are translated into these.
6069///
6070/// Pointers to pointers to Objective C objects are still PointerTypes;
6071/// only the first level of pointer gets it own type implementation.
6072class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6073 friend class ASTContext; // ASTContext creates these.
6074
6075 QualType PointeeType;
6076
6077 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6078 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6079 PointeeType(Pointee) {}
6080
6081public:
6082 /// Gets the type pointed to by this ObjC pointer.
6083 /// The result will always be an ObjCObjectType or sugar thereof.
6084 QualType getPointeeType() const { return PointeeType; }
6085
6086 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6087 ///
6088 /// This method is equivalent to getPointeeType() except that
6089 /// it discards any typedefs (or other sugar) between this
6090 /// type and the "outermost" object type. So for:
6091 /// \code
6092 /// \@class A; \@protocol P; \@protocol Q;
6093 /// typedef A<P> AP;
6094 /// typedef A A1;
6095 /// typedef A1<P> A1P;
6096 /// typedef A1P<Q> A1PQ;
6097 /// \endcode
6098 /// For 'A*', getObjectType() will return 'A'.
6099 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6100 /// For 'AP*', getObjectType() will return 'A<P>'.
6101 /// For 'A1*', getObjectType() will return 'A'.
6102 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6103 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6104 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6105 /// adding protocols to a protocol-qualified base discards the
6106 /// old qualifiers (for now). But if it didn't, getObjectType()
6107 /// would return 'A1P<Q>' (and we'd have to make iterating over
6108 /// qualifiers more complicated).
6109 const ObjCObjectType *getObjectType() const {
6110 return PointeeType->castAs<ObjCObjectType>();
6111 }
6112
6113 /// If this pointer points to an Objective C
6114 /// \@interface type, gets the type for that interface. Any protocol
6115 /// qualifiers on the interface are ignored.
6116 ///
6117 /// \return null if the base type for this pointer is 'id' or 'Class'
6118 const ObjCInterfaceType *getInterfaceType() const;
6119
6120 /// If this pointer points to an Objective \@interface
6121 /// type, gets the declaration for that interface.
6122 ///
6123 /// \return null if the base type for this pointer is 'id' or 'Class'
6124 ObjCInterfaceDecl *getInterfaceDecl() const {
6125 return getObjectType()->getInterface();
6126 }
6127
6128 /// True if this is equivalent to the 'id' type, i.e. if
6129 /// its object type is the primitive 'id' type with no protocols.
6130 bool isObjCIdType() const {
6131 return getObjectType()->isObjCUnqualifiedId();
6132 }
6133
6134 /// True if this is equivalent to the 'Class' type,
6135 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6136 bool isObjCClassType() const {
6137 return getObjectType()->isObjCUnqualifiedClass();
6138 }
6139
6140 /// True if this is equivalent to the 'id' or 'Class' type,
6141 bool isObjCIdOrClassType() const {
6142 return getObjectType()->isObjCUnqualifiedIdOrClass();
6143 }
6144
6145 /// True if this is equivalent to 'id<P>' for some non-empty set of
6146 /// protocols.
6147 bool isObjCQualifiedIdType() const {
6148 return getObjectType()->isObjCQualifiedId();
6149 }
6150
6151 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6152 /// protocols.
6153 bool isObjCQualifiedClassType() const {
6154 return getObjectType()->isObjCQualifiedClass();
6155 }
6156
6157 /// Whether this is a "__kindof" type.
6158 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6159
6160 /// Whether this type is specialized, meaning that it has type arguments.
6161 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6162
6163 /// Whether this type is specialized, meaning that it has type arguments.
6164 bool isSpecializedAsWritten() const {
6165 return getObjectType()->isSpecializedAsWritten();
6166 }
6167
6168 /// Whether this type is unspecialized, meaning that is has no type arguments.
6169 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6170
6171 /// Determine whether this object type is "unspecialized" as
6172 /// written, meaning that it has no type arguments.
6173 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6174
6175 /// Retrieve the type arguments for this type.
6176 ArrayRef<QualType> getTypeArgs() const {
6177 return getObjectType()->getTypeArgs();
6178 }
6179
6180 /// Retrieve the type arguments for this type.
6181 ArrayRef<QualType> getTypeArgsAsWritten() const {
6182 return getObjectType()->getTypeArgsAsWritten();
6183 }
6184
6185 /// An iterator over the qualifiers on the object type. Provided
6186 /// for convenience. This will always iterate over the full set of
6187 /// protocols on a type, not just those provided directly.
6188 using qual_iterator = ObjCObjectType::qual_iterator;
6189 using qual_range = llvm::iterator_range<qual_iterator>;
6190
6191 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6192
6193 qual_iterator qual_begin() const {
6194 return getObjectType()->qual_begin();
6195 }
6196
6197 qual_iterator qual_end() const {
6198 return getObjectType()->qual_end();
6199 }
6200
6201 bool qual_empty() const { return getObjectType()->qual_empty(); }
6202
6203 /// Return the number of qualifying protocols on the object type.
6204 unsigned getNumProtocols() const {
6205 return getObjectType()->getNumProtocols();
6206 }
6207
6208 /// Retrieve a qualifying protocol by index on the object type.
6209 ObjCProtocolDecl *getProtocol(unsigned I) const {
6210 return getObjectType()->getProtocol(I);
6211 }
6212
6213 bool isSugared() const { return false; }
6214 QualType desugar() const { return QualType(this, 0); }
6215
6216 /// Retrieve the type of the superclass of this object pointer type.
6217 ///
6218 /// This operation substitutes any type arguments into the
6219 /// superclass of the current class type, potentially producing a
6220 /// pointer to a specialization of the superclass type. Produces a
6221 /// null type if there is no superclass.
6222 QualType getSuperClassType() const;
6223
6224 /// Strip off the Objective-C "kindof" type and (with it) any
6225 /// protocol qualifiers.
6226 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6227 const ASTContext &ctx) const;
6228
6229 void Profile(llvm::FoldingSetNodeID &ID) {
6230 Profile(ID, getPointeeType());
6231 }
6232
6233 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6234 ID.AddPointer(T.getAsOpaquePtr());
6235 }
6236
6237 static bool classof(const Type *T) {
6238 return T->getTypeClass() == ObjCObjectPointer;
6239 }
6240};
6241
6242class AtomicType : public Type, public llvm::FoldingSetNode {
6243 friend class ASTContext; // ASTContext creates these.
6244
6245 QualType ValueType;
6246
6247 AtomicType(QualType ValTy, QualType Canonical)
6248 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6249
6250public:
6251 /// Gets the type contained by this atomic type, i.e.
6252 /// the type returned by performing an atomic load of this atomic type.
6253 QualType getValueType() const { return ValueType; }
6254
6255 bool isSugared() const { return false; }
6256 QualType desugar() const { return QualType(this, 0); }
6257
6258 void Profile(llvm::FoldingSetNodeID &ID) {
6259 Profile(ID, getValueType());
6260 }
6261
6262 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6263 ID.AddPointer(T.getAsOpaquePtr());
6264 }
6265
6266 static bool classof(const Type *T) {
6267 return T->getTypeClass() == Atomic;
6268 }
6269};
6270
6271/// PipeType - OpenCL20.
6272class PipeType : public Type, public llvm::FoldingSetNode {
6273 friend class ASTContext; // ASTContext creates these.
6274
6275 QualType ElementType;
6276 bool isRead;
6277
6278 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6279 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6280 ElementType(elemType), isRead(isRead) {}
6281
6282public:
6283 QualType getElementType() const { return ElementType; }
6284
6285 bool isSugared() const { return false; }
6286
6287 QualType desugar() const { return QualType(this, 0); }
6288
6289 void Profile(llvm::FoldingSetNodeID &ID) {
6290 Profile(ID, getElementType(), isReadOnly());
6291 }
6292
6293 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6294 ID.AddPointer(T.getAsOpaquePtr());
6295 ID.AddBoolean(isRead);
6296 }
6297
6298 static bool classof(const Type *T) {
6299 return T->getTypeClass() == Pipe;
6300 }
6301
6302 bool isReadOnly() const { return isRead; }
6303};
6304
6305/// A fixed int type of a specified bitwidth.
6306class ExtIntType final : public Type, public llvm::FoldingSetNode {
6307 friend class ASTContext;
6308 unsigned IsUnsigned : 1;
6309 unsigned NumBits : 24;
6310
6311protected:
6312 ExtIntType(bool isUnsigned, unsigned NumBits);
6313
6314public:
6315 bool isUnsigned() const { return IsUnsigned; }
6316 bool isSigned() const { return !IsUnsigned; }
6317 unsigned getNumBits() const { return NumBits; }
6318
6319 bool isSugared() const { return false; }
6320 QualType desugar() const { return QualType(this, 0); }
6321
6322 void Profile(llvm::FoldingSetNodeID &ID) {
6323 Profile(ID, isUnsigned(), getNumBits());
6324 }
6325
6326 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6327 unsigned NumBits) {
6328 ID.AddBoolean(IsUnsigned);
6329 ID.AddInteger(NumBits);
6330 }
6331
6332 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6333};
6334
6335class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6336 friend class ASTContext;
6337 const ASTContext &Context;
6338 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6339
6340protected:
6341 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6342 Expr *NumBits);
6343
6344public:
6345 bool isUnsigned() const;
6346 bool isSigned() const { return !isUnsigned(); }
6347 Expr *getNumBitsExpr() const;
6348
6349 bool isSugared() const { return false; }
6350 QualType desugar() const { return QualType(this, 0); }
6351
6352 void Profile(llvm::FoldingSetNodeID &ID) {
6353 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6354 }
6355 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6356 bool IsUnsigned, Expr *NumBitsExpr);
6357
6358 static bool classof(const Type *T) {
6359 return T->getTypeClass() == DependentExtInt;
6360 }
6361};
6362
6363/// A qualifier set is used to build a set of qualifiers.
6364class QualifierCollector : public Qualifiers {
6365public:
6366 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6367
6368 /// Collect any qualifiers on the given type and return an
6369 /// unqualified type. The qualifiers are assumed to be consistent
6370 /// with those already in the type.
6371 const Type *strip(QualType type) {
6372 addFastQualifiers(type.getLocalFastQualifiers());
6373 if (!type.hasLocalNonFastQualifiers())
6374 return type.getTypePtrUnsafe();
6375
6376 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6377 addConsistentQualifiers(extQuals->getQualifiers());
6378 return extQuals->getBaseType();
6379 }
6380
6381 /// Apply the collected qualifiers to the given type.
6382 QualType apply(const ASTContext &Context, QualType QT) const;
6383
6384 /// Apply the collected qualifiers to the given type.
6385 QualType apply(const ASTContext &Context, const Type* T) const;
6386};
6387
6388/// A container of type source information.
6389///
6390/// A client can read the relevant info using TypeLoc wrappers, e.g:
6391/// @code
6392/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6393/// TL.getBeginLoc().print(OS, SrcMgr);
6394/// @endcode
6395class alignas(8) TypeSourceInfo {
6396 // Contains a memory block after the class, used for type source information,
6397 // allocated by ASTContext.
6398 friend class ASTContext;
6399
6400 QualType Ty;
6401
6402 TypeSourceInfo(QualType ty) : Ty(ty) {}
6403
6404public:
6405 /// Return the type wrapped by this type source info.
6406 QualType getType() const { return Ty; }
6407
6408 /// Return the TypeLoc wrapper for the type source info.
6409 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6410
6411 /// Override the type stored in this TypeSourceInfo. Use with caution!
6412 void overrideType(QualType T) { Ty = T; }
6413};
6414
6415// Inline function definitions.
6416
6417inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6418 SplitQualType desugar =
6419 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6420 desugar.Quals.addConsistentQualifiers(Quals);
6421 return desugar;
6422}
6423
6424inline const Type *QualType::getTypePtr() const {
6425 return getCommonPtr()->BaseType;
6426}
6427
6428inline const Type *QualType::getTypePtrOrNull() const {
6429 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6430}
6431
6432inline SplitQualType QualType::split() const {
6433 if (!hasLocalNonFastQualifiers())
6434 return SplitQualType(getTypePtrUnsafe(),
6435 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6436
6437 const ExtQuals *eq = getExtQualsUnsafe();
6438 Qualifiers qs = eq->getQualifiers();
6439 qs.addFastQualifiers(getLocalFastQualifiers());
6440 return SplitQualType(eq->getBaseType(), qs);
6441}
6442
6443inline Qualifiers QualType::getLocalQualifiers() const {
6444 Qualifiers Quals;
6445 if (hasLocalNonFastQualifiers())
6446 Quals = getExtQualsUnsafe()->getQualifiers();
6447 Quals.addFastQualifiers(getLocalFastQualifiers());
6448 return Quals;
6449}
6450
6451inline Qualifiers QualType::getQualifiers() const {
6452 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6453 quals.addFastQualifiers(getLocalFastQualifiers());
6454 return quals;
6455}
6456
6457inline unsigned QualType::getCVRQualifiers() const {
6458 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6459 cvr |= getLocalCVRQualifiers();
6460 return cvr;
6461}
6462
6463inline QualType QualType::getCanonicalType() const {
6464 QualType canon = getCommonPtr()->CanonicalType;
6465 return canon.withFastQualifiers(getLocalFastQualifiers());
6466}
6467
6468inline bool QualType::isCanonical() const {
6469 return getTypePtr()->isCanonicalUnqualified();
6470}
6471
6472inline bool QualType::isCanonicalAsParam() const {
6473 if (!isCanonical()) return false;
6474 if (hasLocalQualifiers()) return false;
6475
6476 const Type *T = getTypePtr();
6477 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6478 return false;
6479
6480 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6481}
6482
6483inline bool QualType::isConstQualified() const {
6484 return isLocalConstQualified() ||
6485 getCommonPtr()->CanonicalType.isLocalConstQualified();
6486}
6487
6488inline bool QualType::isRestrictQualified() const {
6489 return isLocalRestrictQualified() ||
6490 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6491}
6492
6493
6494inline bool QualType::isVolatileQualified() const {
6495 return isLocalVolatileQualified() ||
6496 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6497}
6498
6499inline bool QualType::hasQualifiers() const {
6500 return hasLocalQualifiers() ||
6501 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6502}
6503
6504inline QualType QualType::getUnqualifiedType() const {
6505 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6506 return QualType(getTypePtr(), 0);
6507
6508 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6509}
6510
6511inline SplitQualType QualType::getSplitUnqualifiedType() const {
6512 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6513 return split();
6514
6515 return getSplitUnqualifiedTypeImpl(*this);
6516}
6517
6518inline void QualType::removeLocalConst() {
6519 removeLocalFastQualifiers(Qualifiers::Const);
6520}
6521
6522inline void QualType::removeLocalRestrict() {
6523 removeLocalFastQualifiers(Qualifiers::Restrict);
6524}
6525
6526inline void QualType::removeLocalVolatile() {
6527 removeLocalFastQualifiers(Qualifiers::Volatile);
6528}
6529
6530inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6531 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast<void> (0));
6532 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6533 "Fast bits differ from CVR bits!");
6534
6535 // Fast path: we don't need to touch the slow qualifiers.
6536 removeLocalFastQualifiers(Mask);
6537}
6538
6539/// Check if this type has any address space qualifier.
6540inline bool QualType::hasAddressSpace() const {
6541 return getQualifiers().hasAddressSpace();
6542}
6543
6544/// Return the address space of this type.
6545inline LangAS QualType::getAddressSpace() const {
6546 return getQualifiers().getAddressSpace();
6547}
6548
6549/// Return the gc attribute of this type.
6550inline Qualifiers::GC QualType::getObjCGCAttr() const {
6551 return getQualifiers().getObjCGCAttr();
6552}
6553
6554inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6555 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6556 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6557 return false;
6558}
6559
6560inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6561 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6562 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6563 return false;
6564}
6565
6566inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6567 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6568 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6569 return false;
6570}
6571
6572inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6573 if (const auto *PT = t.getAs<PointerType>()) {
6574 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6575 return FT->getExtInfo();
6576 } else if (const auto *FT = t.getAs<FunctionType>())
6577 return FT->getExtInfo();
6578
6579 return FunctionType::ExtInfo();
6580}
6581
6582inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6583 return getFunctionExtInfo(*t);
6584}
6585
6586/// Determine whether this type is more
6587/// qualified than the Other type. For example, "const volatile int"
6588/// is more qualified than "const int", "volatile int", and
6589/// "int". However, it is not more qualified than "const volatile
6590/// int".
6591inline bool QualType::isMoreQualifiedThan(QualType other) const {
6592 Qualifiers MyQuals = getQualifiers();
6593 Qualifiers OtherQuals = other.getQualifiers();
6594 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6595}
6596
6597/// Determine whether this type is at last
6598/// as qualified as the Other type. For example, "const volatile
6599/// int" is at least as qualified as "const int", "volatile int",
6600/// "int", and "const volatile int".
6601inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6602 Qualifiers OtherQuals = other.getQualifiers();
6603
6604 // Ignore __unaligned qualifier if this type is a void.
6605 if (getUnqualifiedType()->isVoidType())
6606 OtherQuals.removeUnaligned();
6607
6608 return getQualifiers().compatiblyIncludes(OtherQuals);
6609}
6610
6611/// If Type is a reference type (e.g., const
6612/// int&), returns the type that the reference refers to ("const
6613/// int"). Otherwise, returns the type itself. This routine is used
6614/// throughout Sema to implement C++ 5p6:
6615///
6616/// If an expression initially has the type "reference to T" (8.3.2,
6617/// 8.5.3), the type is adjusted to "T" prior to any further
6618/// analysis, the expression designates the object or function
6619/// denoted by the reference, and the expression is an lvalue.
6620inline QualType QualType::getNonReferenceType() const {
6621 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6622 return RefType->getPointeeType();
6623 else
6624 return *this;
6625}
6626
6627inline bool QualType::isCForbiddenLValueType() const {
6628 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6629 getTypePtr()->isFunctionType());
6630}
6631
6632/// Tests whether the type is categorized as a fundamental type.
6633///
6634/// \returns True for types specified in C++0x [basic.fundamental].
6635inline bool Type::isFundamentalType() const {
6636 return isVoidType() ||
6637 isNullPtrType() ||
6638 // FIXME: It's really annoying that we don't have an
6639 // 'isArithmeticType()' which agrees with the standard definition.
6640 (isArithmeticType() && !isEnumeralType());
6641}
6642
6643/// Tests whether the type is categorized as a compound type.
6644///
6645/// \returns True for types specified in C++0x [basic.compound].
6646inline bool Type::isCompoundType() const {
6647 // C++0x [basic.compound]p1:
6648 // Compound types can be constructed in the following ways:
6649 // -- arrays of objects of a given type [...];
6650 return isArrayType() ||
6651 // -- functions, which have parameters of given types [...];
6652 isFunctionType() ||
6653 // -- pointers to void or objects or functions [...];
6654 isPointerType() ||
6655 // -- references to objects or functions of a given type. [...]
6656 isReferenceType() ||
6657 // -- classes containing a sequence of objects of various types, [...];
6658 isRecordType() ||
6659 // -- unions, which are classes capable of containing objects of different
6660 // types at different times;
6661 isUnionType() ||
6662 // -- enumerations, which comprise a set of named constant values. [...];
6663 isEnumeralType() ||
6664 // -- pointers to non-static class members, [...].
6665 isMemberPointerType();
6666}
6667
6668inline bool Type::isFunctionType() const {
6669 return isa<FunctionType>(CanonicalType);
6670}
6671
6672inline bool Type::isPointerType() const {
6673 return isa<PointerType>(CanonicalType);
6674}
6675
6676inline bool Type::isAnyPointerType() const {
6677 return isPointerType() || isObjCObjectPointerType();
6678}
6679
6680inline bool Type::isBlockPointerType() const {
6681 return isa<BlockPointerType>(CanonicalType);
6682}
6683
6684inline bool Type::isReferenceType() const {
6685 return isa<ReferenceType>(CanonicalType);
6686}
6687
6688inline bool Type::isLValueReferenceType() const {
6689 return isa<LValueReferenceType>(CanonicalType);
6690}
6691
6692inline bool Type::isRValueReferenceType() const {
6693 return isa<RValueReferenceType>(CanonicalType);
6694}
6695
6696inline bool Type::isObjectPointerType() const {
6697 // Note: an "object pointer type" is not the same thing as a pointer to an
6698 // object type; rather, it is a pointer to an object type or a pointer to cv
6699 // void.
6700 if (const auto *T = getAs<PointerType>())
6701 return !T->getPointeeType()->isFunctionType();
6702 else
6703 return false;
6704}
6705
6706inline bool Type::isFunctionPointerType() const {
6707 if (const auto *T = getAs<PointerType>())
6708 return T->getPointeeType()->isFunctionType();
6709 else
6710 return false;
6711}
6712
6713inline bool Type::isFunctionReferenceType() const {
6714 if (const auto *T = getAs<ReferenceType>())
6715 return T->getPointeeType()->isFunctionType();
6716 else
6717 return false;
6718}
6719
6720inline bool Type::isMemberPointerType() const {
6721 return isa<MemberPointerType>(CanonicalType);
6722}
6723
6724inline bool Type::isMemberFunctionPointerType() const {
6725 if (const auto *T = getAs<MemberPointerType>())
6726 return T->isMemberFunctionPointer();
6727 else
6728 return false;
6729}
6730
6731inline bool Type::isMemberDataPointerType() const {
6732 if (const auto *T = getAs<MemberPointerType>())
6733 return T->isMemberDataPointer();
6734 else
6735 return false;
6736}
6737
6738inline bool Type::isArrayType() const {
6739 return isa<ArrayType>(CanonicalType);
6740}
6741
6742inline bool Type::isConstantArrayType() const {
6743 return isa<ConstantArrayType>(CanonicalType);
6744}
6745
6746inline bool Type::isIncompleteArrayType() const {
6747 return isa<IncompleteArrayType>(CanonicalType);
6748}
6749
6750inline bool Type::isVariableArrayType() const {
6751 return isa<VariableArrayType>(CanonicalType);
6752}
6753
6754inline bool Type::isDependentSizedArrayType() const {
6755 return isa<DependentSizedArrayType>(CanonicalType);
6756}
6757
6758inline bool Type::isBuiltinType() const {
6759 return isa<BuiltinType>(CanonicalType);
6760}
6761
6762inline bool Type::isRecordType() const {
6763 return isa<RecordType>(CanonicalType);
6764}
6765
6766inline bool Type::isEnumeralType() const {
6767 return isa<EnumType>(CanonicalType);
6768}
6769
6770inline bool Type::isAnyComplexType() const {
6771 return isa<ComplexType>(CanonicalType);
6772}
6773
6774inline bool Type::isVectorType() const {
6775 return isa<VectorType>(CanonicalType);
6776}
6777
6778inline bool Type::isExtVectorType() const {
6779 return isa<ExtVectorType>(CanonicalType);
6780}
6781
6782inline bool Type::isMatrixType() const {
6783 return isa<MatrixType>(CanonicalType);
6784}
6785
6786inline bool Type::isConstantMatrixType() const {
6787 return isa<ConstantMatrixType>(CanonicalType);
6788}
6789
6790inline bool Type::isDependentAddressSpaceType() const {
6791 return isa<DependentAddressSpaceType>(CanonicalType);
6792}
6793
6794inline bool Type::isObjCObjectPointerType() const {
6795 return isa<ObjCObjectPointerType>(CanonicalType);
6796}
6797
6798inline bool Type::isObjCObjectType() const {
6799 return isa<ObjCObjectType>(CanonicalType);
6800}
6801
6802inline bool Type::isObjCObjectOrInterfaceType() const {
6803 return isa<ObjCInterfaceType>(CanonicalType) ||
6804 isa<ObjCObjectType>(CanonicalType);
6805}
6806
6807inline bool Type::isAtomicType() const {
6808 return isa<AtomicType>(CanonicalType);
6809}
6810
6811inline bool Type::isUndeducedAutoType() const {
6812 return isa<AutoType>(CanonicalType);
6813}
6814
6815inline bool Type::isObjCQualifiedIdType() const {
6816 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6817 return OPT->isObjCQualifiedIdType();
6818 return false;
6819}
6820
6821inline bool Type::isObjCQualifiedClassType() const {
6822 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6823 return OPT->isObjCQualifiedClassType();
6824 return false;
6825}
6826
6827inline bool Type::isObjCIdType() const {
6828 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6829 return OPT->isObjCIdType();
6830 return false;
6831}
6832
6833inline bool Type::isObjCClassType() const {
6834 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6835 return OPT->isObjCClassType();
6836 return false;
6837}
6838
6839inline bool Type::isObjCSelType() const {
6840 if (const auto *OPT = getAs<PointerType>())
6841 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6842 return false;
6843}
6844
6845inline bool Type::isObjCBuiltinType() const {
6846 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6847}
6848
6849inline bool Type::isDecltypeType() const {
6850 return isa<DecltypeType>(this);
6851}
6852
6853#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6854 inline bool Type::is##Id##Type() const { \
6855 return isSpecificBuiltinType(BuiltinType::Id); \
6856 }
6857#include "clang/Basic/OpenCLImageTypes.def"
6858
6859inline bool Type::isSamplerT() const {
6860 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6861}
6862
6863inline bool Type::isEventT() const {
6864 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6865}
6866
6867inline bool Type::isClkEventT() const {
6868 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6869}
6870
6871inline bool Type::isQueueT() const {
6872 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6873}
6874
6875inline bool Type::isReserveIDT() const {
6876 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6877}
6878
6879inline bool Type::isImageType() const {
6880#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6881 return
6882#include "clang/Basic/OpenCLImageTypes.def"
6883 false; // end boolean or operation
6884}
6885
6886inline bool Type::isPipeType() const {
6887 return isa<PipeType>(CanonicalType);
6888}
6889
6890inline bool Type::isExtIntType() const {
6891 return isa<ExtIntType>(CanonicalType);
6892}
6893
6894#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6895 inline bool Type::is##Id##Type() const { \
6896 return isSpecificBuiltinType(BuiltinType::Id); \
6897 }
6898#include "clang/Basic/OpenCLExtensionTypes.def"
6899
6900inline bool Type::isOCLIntelSubgroupAVCType() const {
6901#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6902 isOCLIntelSubgroupAVC##Id##Type() ||
6903 return
6904#include "clang/Basic/OpenCLExtensionTypes.def"
6905 false; // end of boolean or operation
6906}
6907
6908inline bool Type::isOCLExtOpaqueType() const {
6909#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6910 return
6911#include "clang/Basic/OpenCLExtensionTypes.def"
6912 false; // end of boolean or operation
6913}
6914
6915inline bool Type::isOpenCLSpecificType() const {
6916 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6917 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6918}
6919
6920inline bool Type::isTemplateTypeParmType() const {
6921 return isa<TemplateTypeParmType>(CanonicalType);
6922}
6923
6924inline bool Type::isSpecificBuiltinType(unsigned K) const {
6925 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6926 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6927 }
6928 return false;
6929}
6930
6931inline bool Type::isPlaceholderType() const {
6932 if (const auto *BT = dyn_cast<BuiltinType>(this))
6933 return BT->isPlaceholderType();
6934 return false;
6935}
6936
6937inline const BuiltinType *Type::getAsPlaceholderType() const {
6938 if (const auto *BT = dyn_cast<BuiltinType>(this))
6939 if (BT->isPlaceholderType())
6940 return BT;
6941 return nullptr;
6942}
6943
6944inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6945 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast<void> (0));
6946 return isSpecificBuiltinType(K);
6947}
6948
6949inline bool Type::isNonOverloadPlaceholderType() const {
6950 if (const auto *BT = dyn_cast<BuiltinType>(this))
6951 return BT->isNonOverloadPlaceholderType();
6952 return false;
6953}
6954
6955inline bool Type::isVoidType() const {
6956 return isSpecificBuiltinType(BuiltinType::Void);
6957}
6958
6959inline bool Type::isHalfType() const {
6960 // FIXME: Should we allow complex __fp16? Probably not.
6961 return isSpecificBuiltinType(BuiltinType::Half);
6962}
6963
6964inline bool Type::isFloat16Type() const {
6965 return isSpecificBuiltinType(BuiltinType::Float16);
6966}
6967
6968inline bool Type::isBFloat16Type() const {
6969 return isSpecificBuiltinType(BuiltinType::BFloat16);
6970}
6971
6972inline bool Type::isFloat128Type() const {
6973 return isSpecificBuiltinType(BuiltinType::Float128);
6974}
6975
6976inline bool Type::isNullPtrType() const {
6977 return isSpecificBuiltinType(BuiltinType::NullPtr);
6978}
6979
6980bool IsEnumDeclComplete(EnumDecl *);
6981bool IsEnumDeclScoped(EnumDecl *);
6982
6983inline bool Type::isIntegerType() const {
6984 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6985 return BT->getKind() >= BuiltinType::Bool &&
6986 BT->getKind() <= BuiltinType::Int128;
6987 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6988 // Incomplete enum types are not treated as integer types.
6989 // FIXME: In C++, enum types are never integer types.
6990 return IsEnumDeclComplete(ET->getDecl()) &&
6991 !IsEnumDeclScoped(ET->getDecl());
6992 }
6993 return isExtIntType();
6994}
6995
6996inline bool Type::isFixedPointType() const {
6997 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6998 return BT->getKind() >= BuiltinType::ShortAccum &&
6999 BT->getKind() <= BuiltinType::SatULongFract;
7000 }
7001 return false;
7002}
7003
7004inline bool Type::isFixedPointOrIntegerType() const {
7005 return isFixedPointType() || isIntegerType();
7006}
7007
7008inline bool Type::isSaturatedFixedPointType() const {
7009 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7010 return BT->getKind() >= BuiltinType::SatShortAccum &&
7011 BT->getKind() <= BuiltinType::SatULongFract;
7012 }
7013 return false;
7014}
7015
7016inline bool Type::isUnsaturatedFixedPointType() const {
7017 return isFixedPointType() && !isSaturatedFixedPointType();
7018}
7019
7020inline bool Type::isSignedFixedPointType() const {
7021 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7022 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7023 BT->getKind() <= BuiltinType::LongAccum) ||
7024 (BT->getKind() >= BuiltinType::ShortFract &&
7025 BT->getKind() <= BuiltinType::LongFract) ||
7026 (BT->getKind() >= BuiltinType::SatShortAccum &&
7027 BT->getKind() <= BuiltinType::SatLongAccum) ||
7028 (BT->getKind() >= BuiltinType::SatShortFract &&
7029 BT->getKind() <= BuiltinType::SatLongFract));
7030 }
7031 return false;
7032}
7033
7034inline bool Type::isUnsignedFixedPointType() const {
7035 return isFixedPointType() && !isSignedFixedPointType();
7036}
7037
7038inline bool Type::isScalarType() const {
7039 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7040 return BT->getKind() > BuiltinType::Void &&
7041 BT->getKind() <= BuiltinType::NullPtr;
7042 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7043 // Enums are scalar types, but only if they are defined. Incomplete enums
7044 // are not treated as scalar types.
7045 return IsEnumDeclComplete(ET->getDecl());
7046 return isa<PointerType>(CanonicalType) ||
7047 isa<BlockPointerType>(CanonicalType) ||
7048 isa<MemberPointerType>(CanonicalType) ||
7049 isa<ComplexType>(CanonicalType) ||
7050 isa<ObjCObjectPointerType>(CanonicalType) ||
7051 isExtIntType();
7052}
7053
7054inline bool Type::isIntegralOrEnumerationType() const {
7055 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7056 return BT->getKind() >= BuiltinType::Bool &&
7057 BT->getKind() <= BuiltinType::Int128;
7058
7059 // Check for a complete enum type; incomplete enum types are not properly an
7060 // enumeration type in the sense required here.
7061 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7062 return IsEnumDeclComplete(ET->getDecl());
7063
7064 return isExtIntType();
7065}
7066
7067inline bool Type::isBooleanType() const {
7068 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7069 return BT->getKind() == BuiltinType::Bool;
7070 return false;
7071}
7072
7073inline bool Type::isUndeducedType() const {
7074 auto *DT = getContainedDeducedType();
7075 return DT && !DT->isDeduced();
7076}
7077
7078/// Determines whether this is a type for which one can define
7079/// an overloaded operator.
7080inline bool Type::isOverloadableType() const {
7081 return isDependentType() || isRecordType() || isEnumeralType();
7082}
7083
7084/// Determines whether this type is written as a typedef-name.
7085inline bool Type::isTypedefNameType() const {
7086 if (getAs<TypedefType>())
7087 return true;
7088 if (auto *TST = getAs<TemplateSpecializationType>())
7089 return TST->isTypeAlias();
7090 return false;
7091}
7092
7093/// Determines whether this type can decay to a pointer type.
7094inline bool Type::canDecayToPointerType() const {
7095 return isFunctionType() || isArrayType();
7096}
7097
7098inline bool Type::hasPointerRepresentation() const {
7099 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7100 isObjCObjectPointerType() || isNullPtrType());
7101}
7102
7103inline bool Type::hasObjCPointerRepresentation() const {
7104 return isObjCObjectPointerType();
7105}
7106
7107inline const Type *Type::getBaseElementTypeUnsafe() const {
7108 const Type *type = this;
7109 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7110 type = arrayType->getElementType().getTypePtr();
7111 return type;
7112}
7113
7114inline const Type *Type::getPointeeOrArrayElementType() const {
7115 const Type *type = this;
7116 if (type->isAnyPointerType())
7117 return type->getPointeeType().getTypePtr();
7118 else if (type->isArrayType())
7119 return type->getBaseElementTypeUnsafe();
7120 return type;
7121}
7122/// Insertion operator for partial diagnostics. This allows sending adress
7123/// spaces into a diagnostic with <<.
7124inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7125 LangAS AS) {
7126 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7127 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7128 return PD;
7129}
7130
7131/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7132/// into a diagnostic with <<.
7133inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7134 Qualifiers Q) {
7135 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7136 DiagnosticsEngine::ArgumentKind::ak_qual);
7137 return PD;
7138}
7139
7140/// Insertion operator for partial diagnostics. This allows sending QualType's
7141/// into a diagnostic with <<.
7142inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7143 QualType T) {
7144 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7145 DiagnosticsEngine::ak_qualtype);
7146 return PD;
7147}
7148
7149// Helper class template that is used by Type::getAs to ensure that one does
7150// not try to look through a qualified type to get to an array type.
7151template <typename T>
7152using TypeIsArrayType =
7153 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7154 std::is_base_of<ArrayType, T>::value>;
7155
7156// Member-template getAs<specific type>'.
7157template <typename T> const T *Type::getAs() const {
7158 static_assert(!TypeIsArrayType<T>::value,
7159 "ArrayType cannot be used with getAs!");
7160
7161 // If this is directly a T type, return it.
7162 if (const auto *Ty = dyn_cast<T>(this))
7163 return Ty;
7164
7165 // If the canonical form of this type isn't the right kind, reject it.
7166 if (!isa<T>(CanonicalType))
7167 return nullptr;
7168
7169 // If this is a typedef for the type, strip the typedef off without
7170 // losing all typedef information.
7171 return cast<T>(getUnqualifiedDesugaredType());
7172}
7173
7174template <typename T> const T *Type::getAsAdjusted() const {
7175 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7176
7177 // If this is directly a T type, return it.
7178 if (const auto *Ty = dyn_cast<T>(this))
7179 return Ty;
7180
7181 // If the canonical form of this type isn't the right kind, reject it.
7182 if (!isa<T>(CanonicalType))
7183 return nullptr;
7184
7185 // Strip off type adjustments that do not modify the underlying nature of the
7186 // type.
7187 const Type *Ty = this;
7188 while (Ty) {
7189 if (const auto *A = dyn_cast<AttributedType>(Ty))
7190 Ty = A->getModifiedType().getTypePtr();
7191 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7192 Ty = E->desugar().getTypePtr();
7193 else if (const auto *P = dyn_cast<ParenType>(Ty))
7194 Ty = P->desugar().getTypePtr();
7195 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7196 Ty = A->desugar().getTypePtr();
7197 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7198 Ty = M->desugar().getTypePtr();
7199 else
7200 break;
7201 }
7202
7203 // Just because the canonical type is correct does not mean we can use cast<>,
7204 // since we may not have stripped off all the sugar down to the base type.
7205 return dyn_cast<T>(Ty);
7206}
7207
7208inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7209 // If this is directly an array type, return it.
7210 if (const auto *arr = dyn_cast<ArrayType>(this))
7211 return arr;
7212
7213 // If the canonical form of this type isn't the right kind, reject it.
7214 if (!isa<ArrayType>(CanonicalType))
7215 return nullptr;
7216
7217 // If this is a typedef for the type, strip the typedef off without
7218 // losing all typedef information.
7219 return cast<ArrayType>(getUnqualifiedDesugaredType());
7220}
7221
7222template <typename T> const T *Type::castAs() const {
7223 static_assert(!TypeIsArrayType<T>::value,
7224 "ArrayType cannot be used with castAs!");
7225
7226 if (const auto *ty = dyn_cast<T>(this)) return ty;
7227 assert(isa<T>(CanonicalType))(static_cast<void> (0));
7228 return cast<T>(getUnqualifiedDesugaredType());
7229}
7230
7231inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7232 assert(isa<ArrayType>(CanonicalType))(static_cast<void> (0));
7233 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7234 return cast<ArrayType>(getUnqualifiedDesugaredType());
7235}
7236
7237DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7238 QualType CanonicalPtr)
7239 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7240#ifndef NDEBUG1
7241 QualType Adjusted = getAdjustedType();
7242 (void)AttributedType::stripOuterNullability(Adjusted);
7243 assert(isa<PointerType>(Adjusted))(static_cast<void> (0));
7244#endif
7245}
7246
7247QualType DecayedType::getPointeeType() const {
7248 QualType Decayed = getDecayedType();
7249 (void)AttributedType::stripOuterNullability(Decayed);
7250 return cast<PointerType>(Decayed)->getPointeeType();
7251}
7252
7253// Get the decimal string representation of a fixed point type, represented
7254// as a scaled integer.
7255// TODO: At some point, we should change the arguments to instead just accept an
7256// APFixedPoint instead of APSInt and scale.
7257void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7258 unsigned Scale);
7259
7260} // namespace clang
7261
7262#endif // LLVM_CLANG_AST_TYPE_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerUnion class, which is a discriminated union of
10// pointer types.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_POINTERUNION_H
15#define LLVM_ADT_POINTERUNION_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/Support/PointerLikeTypeTraits.h"
20#include <cassert>
21#include <cstddef>
22#include <cstdint>
23
24namespace llvm {
25
26namespace pointer_union_detail {
27 /// Determine the number of bits required to store integers with values < n.
28 /// This is ceil(log2(n)).
29 constexpr int bitsRequired(unsigned n) {
30 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
31 }
32
33 template <typename... Ts> constexpr int lowBitsAvailable() {
34 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
35 }
36
37 /// Find the index of a type in a list of types. TypeIndex<T, Us...>::Index
38 /// is the index of T in Us, or sizeof...(Us) if T does not appear in the
39 /// list.
40 template <typename T, typename ...Us> struct TypeIndex;
41 template <typename T, typename ...Us> struct TypeIndex<T, T, Us...> {
42 static constexpr int Index = 0;
43 };
44 template <typename T, typename U, typename... Us>
45 struct TypeIndex<T, U, Us...> {
46 static constexpr int Index = 1 + TypeIndex<T, Us...>::Index;
47 };
48 template <typename T> struct TypeIndex<T> {
49 static constexpr int Index = 0;
50 };
51
52 /// Find the first type in a list of types.
53 template <typename T, typename...> struct GetFirstType {
54 using type = T;
55 };
56
57 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
58 /// for the template arguments.
59 template <typename ...PTs> class PointerUnionUIntTraits {
60 public:
61 static inline void *getAsVoidPointer(void *P) { return P; }
62 static inline void *getFromVoidPointer(void *P) { return P; }
17
Returning null pointer (loaded from 'P'), which participates in a condition later
63 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
64 };
65
66 template <typename Derived, typename ValTy, int I, typename ...Types>
67 class PointerUnionMembers;
68
69 template <typename Derived, typename ValTy, int I>
70 class PointerUnionMembers<Derived, ValTy, I> {
71 protected:
72 ValTy Val;
73 PointerUnionMembers() = default;
74 PointerUnionMembers(ValTy Val) : Val(Val) {}
75
76 friend struct PointerLikeTypeTraits<Derived>;
77 };
78
79 template <typename Derived, typename ValTy, int I, typename Type,
80 typename ...Types>
81 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
82 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
83 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
84 public:
85 using Base::Base;
86 PointerUnionMembers() = default;
87 PointerUnionMembers(Type V)
88 : Base(ValTy(const_cast<void *>(
89 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
90 I)) {}
91
92 using Base::operator=;
93 Derived &operator=(Type V) {
94 this->Val = ValTy(
95 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
96 I);
97 return static_cast<Derived &>(*this);
98 };
99 };
100}
101
102/// A discriminated union of two or more pointer types, with the discriminator
103/// in the low bit of the pointer.
104///
105/// This implementation is extremely efficient in space due to leveraging the
106/// low bits of the pointer, while exposing a natural and type-safe API.
107///
108/// Common use patterns would be something like this:
109/// PointerUnion<int*, float*> P;
110/// P = (int*)0;
111/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
112/// X = P.get<int*>(); // ok.
113/// Y = P.get<float*>(); // runtime assertion failure.
114/// Z = P.get<double*>(); // compile time failure.
115/// P = (float*)0;
116/// Y = P.get<float*>(); // ok.
117/// X = P.get<int*>(); // runtime assertion failure.
118template <typename... PTs>
119class PointerUnion
120 : public pointer_union_detail::PointerUnionMembers<
121 PointerUnion<PTs...>,
122 PointerIntPair<
123 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
124 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
125 0, PTs...> {
126 // The first type is special because we want to directly cast a pointer to a
127 // default-initialized union to a pointer to the first type. But we don't
128 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
129 // because it's much more convenient to have a name for the whole pack. So
130 // split off the first type here.
131 using First = typename pointer_union_detail::GetFirstType<PTs...>::type;
132 using Base = typename PointerUnion::PointerUnionMembers;
133
134public:
135 PointerUnion() = default;
136
137 PointerUnion(std::nullptr_t) : PointerUnion() {}
138 using Base::Base;
139
140 /// Test if the pointer held in the union is null, regardless of
141 /// which type it is.
142 bool isNull() const { return !this->Val.getPointer(); }
14
Calling 'PointerIntPair::getPointer'
22
Returning from 'PointerIntPair::getPointer'
23
Returning the value 1, which participates in a condition later
143
144 explicit operator bool() const { return !isNull(); }
145
146 /// Test if the Union currently holds the type matching T.
147 template <typename T> bool is() const {
148 constexpr int Index = pointer_union_detail::TypeIndex<T, PTs...>::Index;
149 static_assert(Index < sizeof...(PTs),
150 "PointerUnion::is<T> given type not in the union");
151 return this->Val.getInt() == Index;
152 }
153
154 /// Returns the value of the specified pointer type.
155 ///
156 /// If the specified pointer type is incorrect, assert.
157 template <typename T> T get() const {
158 assert(is<T>() && "Invalid accessor called")(static_cast<void> (0));
159 return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer());
160 }
161
162 /// Returns the current pointer if it is of the specified pointer type,
163 /// otherwise returns null.
164 template <typename T> T dyn_cast() const {
165 if (is<T>())
166 return get<T>();
167 return T();
168 }
169
170 /// If the union is set to the first pointer type get an address pointing to
171 /// it.
172 First const *getAddrOfPtr1() const {
173 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
174 }
175
176 /// If the union is set to the first pointer type get an address pointing to
177 /// it.
178 First *getAddrOfPtr1() {
179 assert(is<First>() && "Val is not the first pointer")(static_cast<void> (0));
180 assert((static_cast<void> (0))
181 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==(static_cast<void> (0))
182 this->Val.getPointer() &&(static_cast<void> (0))
183 "Can't get the address because PointerLikeTypeTraits changes the ptr")(static_cast<void> (0));
184 return const_cast<First *>(
185 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
186 }
187
188 /// Assignment from nullptr which just clears the union.
189 const PointerUnion &operator=(std::nullptr_t) {
190 this->Val.initWithPointer(nullptr);
191 return *this;
192 }
193
194 /// Assignment from elements of the union.
195 using Base::operator=;
196
197 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
198 static inline PointerUnion getFromOpaqueValue(void *VP) {
199 PointerUnion V;
200 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
201 return V;
202 }
203};
204
205template <typename ...PTs>
206bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
207 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
208}
209
210template <typename ...PTs>
211bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
212 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
213}
214
215template <typename ...PTs>
216bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
217 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
218}
219
220// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
221// # low bits available = min(PT1bits,PT2bits)-1.
222template <typename ...PTs>
223struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
224 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
225 return P.getOpaqueValue();
226 }
227
228 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
229 return PointerUnion<PTs...>::getFromOpaqueValue(P);
230 }
231
232 // The number of bits available are the min of the pointer types minus the
233 // bits needed for the discriminator.
234 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
235 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
236};
237
238// Teach DenseMap how to use PointerUnions as keys.
239template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
240 using Union = PointerUnion<PTs...>;
241 using FirstInfo =
242 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
243
244 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
245
246 static inline Union getTombstoneKey() {
247 return Union(FirstInfo::getTombstoneKey());
248 }
249
250 static unsigned getHashValue(const Union &UnionVal) {
251 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
252 return DenseMapInfo<intptr_t>::getHashValue(key);
253 }
254
255 static bool isEqual(const Union &LHS, const Union &RHS) {
256 return LHS == RHS;
257 }
258};
259
260} // end namespace llvm
261
262#endif // LLVM_ADT_POINTERUNION_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/ADT/PointerIntPair.h

1//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerIntPair class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_POINTERINTPAIR_H
14#define LLVM_ADT_POINTERINTPAIR_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/PointerLikeTypeTraits.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <cstdint>
21#include <limits>
22
23namespace llvm {
24
25template <typename T> struct DenseMapInfo;
26template <typename PointerT, unsigned IntBits, typename PtrTraits>
27struct PointerIntPairInfo;
28
29/// PointerIntPair - This class implements a pair of a pointer and small
30/// integer. It is designed to represent this in the space required by one
31/// pointer by bitmangling the integer into the low part of the pointer. This
32/// can only be done for small integers: typically up to 3 bits, but it depends
33/// on the number of bits available according to PointerLikeTypeTraits for the
34/// type.
35///
36/// Note that PointerIntPair always puts the IntVal part in the highest bits
37/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
38/// the bool into bit #2, not bit #0, which allows the low two bits to be used
39/// for something else. For example, this allows:
40/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
41/// ... and the two bools will land in different bits.
42template <typename PointerTy, unsigned IntBits, typename IntType = unsigned,
43 typename PtrTraits = PointerLikeTypeTraits<PointerTy>,
44 typename Info = PointerIntPairInfo<PointerTy, IntBits, PtrTraits>>
45class PointerIntPair {
46 // Used by MSVC visualizer and generally helpful for debugging/visualizing.
47 using InfoTy = Info;
48 intptr_t Value = 0;
49
50public:
51 constexpr PointerIntPair() = default;
52
53 PointerIntPair(PointerTy PtrVal, IntType IntVal) {
54 setPointerAndInt(PtrVal, IntVal);
55 }
56
57 explicit PointerIntPair(PointerTy PtrVal) { initWithPointer(PtrVal); }
58
59 PointerTy getPointer() const { return Info::getPointer(Value); }
15
Calling 'PointerIntPairInfo::getPointer'
20
Returning from 'PointerIntPairInfo::getPointer'
21
Returning null pointer, which participates in a condition later
60
61 IntType getInt() const { return (IntType)Info::getInt(Value); }
62
63 void setPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION& {
64 Value = Info::updatePointer(Value, PtrVal);
65 }
66
67 void setInt(IntType IntVal) LLVM_LVALUE_FUNCTION& {
68 Value = Info::updateInt(Value, static_cast<intptr_t>(IntVal));
69 }
70
71 void initWithPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION& {
72 Value = Info::updatePointer(0, PtrVal);
73 }
74
75 void setPointerAndInt(PointerTy PtrVal, IntType IntVal) LLVM_LVALUE_FUNCTION& {
76 Value = Info::updateInt(Info::updatePointer(0, PtrVal),
77 static_cast<intptr_t>(IntVal));
78 }
79
80 PointerTy const *getAddrOfPointer() const {
81 return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
82 }
83
84 PointerTy *getAddrOfPointer() {
85 assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&(static_cast<void> (0))
86 "Can only return the address if IntBits is cleared and "(static_cast<void> (0))
87 "PtrTraits doesn't change the pointer")(static_cast<void> (0));
88 return reinterpret_cast<PointerTy *>(&Value);
89 }
90
91 void *getOpaqueValue() const { return reinterpret_cast<void *>(Value); }
92
93 void setFromOpaqueValue(void *Val) LLVM_LVALUE_FUNCTION& {
94 Value = reinterpret_cast<intptr_t>(Val);
95 }
96
97 static PointerIntPair getFromOpaqueValue(void *V) {
98 PointerIntPair P;
99 P.setFromOpaqueValue(V);
100 return P;
101 }
102
103 // Allow PointerIntPairs to be created from const void * if and only if the
104 // pointer type could be created from a const void *.
105 static PointerIntPair getFromOpaqueValue(const void *V) {
106 (void)PtrTraits::getFromVoidPointer(V);
107 return getFromOpaqueValue(const_cast<void *>(V));
108 }
109
110 bool operator==(const PointerIntPair &RHS) const {
111 return Value == RHS.Value;
112 }
113
114 bool operator!=(const PointerIntPair &RHS) const {
115 return Value != RHS.Value;
116 }
117
118 bool operator<(const PointerIntPair &RHS) const { return Value < RHS.Value; }
119 bool operator>(const PointerIntPair &RHS) const { return Value > RHS.Value; }
120
121 bool operator<=(const PointerIntPair &RHS) const {
122 return Value <= RHS.Value;
123 }
124
125 bool operator>=(const PointerIntPair &RHS) const {
126 return Value >= RHS.Value;
127 }
128};
129
130// Specialize is_trivially_copyable to avoid limitation of llvm::is_trivially_copyable
131// when compiled with gcc 4.9.
132template <typename PointerTy, unsigned IntBits, typename IntType,
133 typename PtrTraits,
134 typename Info>
135struct is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>> : std::true_type {
136#ifdef HAVE_STD_IS_TRIVIALLY_COPYABLE
137 static_assert(std::is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>>::value,
138 "inconsistent behavior between llvm:: and std:: implementation of is_trivially_copyable");
139#endif
140};
141
142
143template <typename PointerT, unsigned IntBits, typename PtrTraits>
144struct PointerIntPairInfo {
145 static_assert(PtrTraits::NumLowBitsAvailable <
146 std::numeric_limits<uintptr_t>::digits,
147 "cannot use a pointer type that has all bits free");
148 static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
149 "PointerIntPair with integer size too large for pointer");
150 enum MaskAndShiftConstants : uintptr_t {
151 /// PointerBitMask - The bits that come from the pointer.
152 PointerBitMask =
153 ~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable) - 1),
154
155 /// IntShift - The number of low bits that we reserve for other uses, and
156 /// keep zero.
157 IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable - IntBits,
158
159 /// IntMask - This is the unshifted mask for valid bits of the int type.
160 IntMask = (uintptr_t)(((intptr_t)1 << IntBits) - 1),
161
162 // ShiftedIntMask - This is the bits for the integer shifted in place.
163 ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
164 };
165
166 static PointerT getPointer(intptr_t Value) {
167 return PtrTraits::getFromVoidPointer(
16
Calling 'PointerUnionUIntTraits::getFromVoidPointer'
18
Returning from 'PointerUnionUIntTraits::getFromVoidPointer'
19
Returning null pointer, which participates in a condition later
168 reinterpret_cast<void *>(Value & PointerBitMask));
169 }
170
171 static intptr_t getInt(intptr_t Value) {
172 return (Value >> IntShift) & IntMask;
173 }
174
175 static intptr_t updatePointer(intptr_t OrigValue, PointerT Ptr) {
176 intptr_t PtrWord =
177 reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(Ptr));
178 assert((PtrWord & ~PointerBitMask) == 0 &&(static_cast<void> (0))
179 "Pointer is not sufficiently aligned")(static_cast<void> (0));
180 // Preserve all low bits, just update the pointer.
181 return PtrWord | (OrigValue & ~PointerBitMask);
182 }
183
184 static intptr_t updateInt(intptr_t OrigValue, intptr_t Int) {
185 intptr_t IntWord = static_cast<intptr_t>(Int);
186 assert((IntWord & ~IntMask) == 0 && "Integer too large for field")(static_cast<void> (0));
187
188 // Preserve all bits other than the ones we are updating.
189 return (OrigValue & ~ShiftedIntMask) | IntWord << IntShift;
190 }
191};
192
193// Provide specialization of DenseMapInfo for PointerIntPair.
194template <typename PointerTy, unsigned IntBits, typename IntType>
195struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType>> {
196 using Ty = PointerIntPair<PointerTy, IntBits, IntType>;
197
198 static Ty getEmptyKey() {
199 uintptr_t Val = static_cast<uintptr_t>(-1);
200 Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
201 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
202 }
203
204 static Ty getTombstoneKey() {
205 uintptr_t Val = static_cast<uintptr_t>(-2);
206 Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
207 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
208 }
209
210 static unsigned getHashValue(Ty V) {
211 uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
212 return unsigned(IV) ^ unsigned(IV >> 9);
213 }
214
215 static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
216};
217
218// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
219template <typename PointerTy, unsigned IntBits, typename IntType,
220 typename PtrTraits>
221struct PointerLikeTypeTraits<
222 PointerIntPair<PointerTy, IntBits, IntType, PtrTraits>> {
223 static inline void *
224 getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
225 return P.getOpaqueValue();
226 }
227
228 static inline PointerIntPair<PointerTy, IntBits, IntType>
229 getFromVoidPointer(void *P) {
230 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
231 }
232
233 static inline PointerIntPair<PointerTy, IntBits, IntType>
234 getFromVoidPointer(const void *P) {
235 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
236 }
237
238 static constexpr int NumLowBitsAvailable =
239 PtrTraits::NumLowBitsAvailable - IntBits;
240};
241
242} // end namespace llvm
243
244#endif // LLVM_ADT_POINTERINTPAIR_H