Bug Summary

File:tools/clang/lib/Sema/SemaTemplate.cpp
Warning:line 204, column 25
Potential leak of memory pointed to by field 'DiagStorage'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplate.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp

/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===//
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35
36#include <iterator>
37using namespace clang;
38using namespace sema;
39
40// Exported for use by Parser.
41SourceRange
42clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
43 unsigned N) {
44 if (!N) return SourceRange();
45 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
46}
47
48namespace clang {
49/// \brief [temp.constr.decl]p2: A template's associated constraints are
50/// defined as a single constraint-expression derived from the introduced
51/// constraint-expressions [ ... ].
52///
53/// \param Params The template parameter list and optional requires-clause.
54///
55/// \param FD The underlying templated function declaration for a function
56/// template.
57static Expr *formAssociatedConstraints(TemplateParameterList *Params,
58 FunctionDecl *FD);
59}
60
61static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params,
62 FunctionDecl *FD) {
63 // FIXME: Concepts: collect additional introduced constraint-expressions
64 assert(!FD && "Cannot collect constraints from function declaration yet.")(static_cast <bool> (!FD && "Cannot collect constraints from function declaration yet."
) ? void (0) : __assert_fail ("!FD && \"Cannot collect constraints from function declaration yet.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 64, __extension__ __PRETTY_FUNCTION__))
;
65 return Params->getRequiresClause();
66}
67
68/// \brief Determine whether the declaration found is acceptable as the name
69/// of a template and, if so, return that template declaration. Otherwise,
70/// returns NULL.
71static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
72 NamedDecl *Orig,
73 bool AllowFunctionTemplates) {
74 NamedDecl *D = Orig->getUnderlyingDecl();
75
76 if (isa<TemplateDecl>(D)) {
77 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
78 return nullptr;
79
80 return Orig;
81 }
82
83 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
84 // C++ [temp.local]p1:
85 // Like normal (non-template) classes, class templates have an
86 // injected-class-name (Clause 9). The injected-class-name
87 // can be used with or without a template-argument-list. When
88 // it is used without a template-argument-list, it is
89 // equivalent to the injected-class-name followed by the
90 // template-parameters of the class template enclosed in
91 // <>. When it is used with a template-argument-list, it
92 // refers to the specified class template specialization,
93 // which could be the current specialization or another
94 // specialization.
95 if (Record->isInjectedClassName()) {
96 Record = cast<CXXRecordDecl>(Record->getDeclContext());
97 if (Record->getDescribedClassTemplate())
98 return Record->getDescribedClassTemplate();
99
100 if (ClassTemplateSpecializationDecl *Spec
101 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
102 return Spec->getSpecializedTemplate();
103 }
104
105 return nullptr;
106 }
107
108 return nullptr;
109}
110
111void Sema::FilterAcceptableTemplateNames(LookupResult &R,
112 bool AllowFunctionTemplates) {
113 // The set of class templates we've already seen.
114 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
115 LookupResult::Filter filter = R.makeFilter();
116 while (filter.hasNext()) {
117 NamedDecl *Orig = filter.next();
118 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
119 AllowFunctionTemplates);
120 if (!Repl)
121 filter.erase();
122 else if (Repl != Orig) {
123
124 // C++ [temp.local]p3:
125 // A lookup that finds an injected-class-name (10.2) can result in an
126 // ambiguity in certain cases (for example, if it is found in more than
127 // one base class). If all of the injected-class-names that are found
128 // refer to specializations of the same class template, and if the name
129 // is used as a template-name, the reference refers to the class
130 // template itself and not a specialization thereof, and is not
131 // ambiguous.
132 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
133 if (!ClassTemplates.insert(ClassTmpl).second) {
134 filter.erase();
135 continue;
136 }
137
138 // FIXME: we promote access to public here as a workaround to
139 // the fact that LookupResult doesn't let us remember that we
140 // found this template through a particular injected class name,
141 // which means we end up doing nasty things to the invariants.
142 // Pretending that access is public is *much* safer.
143 filter.replace(Repl, AS_public);
144 }
145 }
146 filter.done();
147}
148
149bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
150 bool AllowFunctionTemplates) {
151 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
152 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
153 return true;
154
155 return false;
156}
157
158TemplateNameKind Sema::isTemplateName(Scope *S,
159 CXXScopeSpec &SS,
160 bool hasTemplateKeyword,
161 UnqualifiedId &Name,
162 ParsedType ObjectTypePtr,
163 bool EnteringContext,
164 TemplateTy &TemplateResult,
165 bool &MemberOfUnknownSpecialization) {
166 assert(getLangOpts().CPlusPlus && "No template names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No template names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 166, __extension__ __PRETTY_FUNCTION__))
;
167
168 DeclarationName TName;
169 MemberOfUnknownSpecialization = false;
170
171 switch (Name.getKind()) {
172 case UnqualifiedIdKind::IK_Identifier:
173 TName = DeclarationName(Name.Identifier);
174 break;
175
176 case UnqualifiedIdKind::IK_OperatorFunctionId:
177 TName = Context.DeclarationNames.getCXXOperatorName(
178 Name.OperatorFunctionId.Operator);
179 break;
180
181 case UnqualifiedIdKind::IK_LiteralOperatorId:
182 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
183 break;
184
185 default:
186 return TNK_Non_template;
187 }
188
189 QualType ObjectType = ObjectTypePtr.get();
190
191 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
192 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
193 MemberOfUnknownSpecialization);
194 if (R.empty()) return TNK_Non_template;
195 if (R.isAmbiguous()) {
196 // Suppress diagnostics; we'll redo this lookup later.
197 R.suppressDiagnostics();
198
199 // FIXME: we might have ambiguous templates, in which case we
200 // should at least parse them properly!
201 return TNK_Non_template;
202 }
203
204 TemplateName Template;
205 TemplateNameKind TemplateKind;
206
207 unsigned ResultCount = R.end() - R.begin();
208 if (ResultCount > 1) {
209 // We assume that we'll preserve the qualifier from a function
210 // template name in other ways.
211 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
212 TemplateKind = TNK_Function_template;
213
214 // We'll do this lookup again later.
215 R.suppressDiagnostics();
216 } else {
217 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
218
219 if (SS.isSet() && !SS.isInvalid()) {
220 NestedNameSpecifier *Qualifier = SS.getScopeRep();
221 Template = Context.getQualifiedTemplateName(Qualifier,
222 hasTemplateKeyword, TD);
223 } else {
224 Template = TemplateName(TD);
225 }
226
227 if (isa<FunctionTemplateDecl>(TD)) {
228 TemplateKind = TNK_Function_template;
229
230 // We'll do this lookup again later.
231 R.suppressDiagnostics();
232 } else {
233 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||(static_cast <bool> (isa<ClassTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl
>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl
>(TD)) ? void (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __extension__ __PRETTY_FUNCTION__))
234 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||(static_cast <bool> (isa<ClassTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl
>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl
>(TD)) ? void (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __extension__ __PRETTY_FUNCTION__))
235 isa<BuiltinTemplateDecl>(TD))(static_cast <bool> (isa<ClassTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl
>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl
>(TD)) ? void (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __extension__ __PRETTY_FUNCTION__))
;
236 TemplateKind =
237 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
238 }
239 }
240
241 TemplateResult = TemplateTy::make(Template);
242 return TemplateKind;
243}
244
245bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
246 SourceLocation NameLoc,
247 ParsedTemplateTy *Template) {
248 CXXScopeSpec SS;
249 bool MemberOfUnknownSpecialization = false;
250
251 // We could use redeclaration lookup here, but we don't need to: the
252 // syntactic form of a deduction guide is enough to identify it even
253 // if we can't look up the template name at all.
254 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
255 LookupTemplateName(R, S, SS, /*ObjectType*/QualType(),
256 /*EnteringContext*/false, MemberOfUnknownSpecialization);
257
258 if (R.empty()) return false;
259 if (R.isAmbiguous()) {
260 // FIXME: Diagnose an ambiguity if we find at least one template.
261 R.suppressDiagnostics();
262 return false;
263 }
264
265 // We only treat template-names that name type templates as valid deduction
266 // guide names.
267 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
268 if (!TD || !getAsTypeTemplateDecl(TD))
269 return false;
270
271 if (Template)
272 *Template = TemplateTy::make(TemplateName(TD));
273 return true;
274}
275
276bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
277 SourceLocation IILoc,
278 Scope *S,
279 const CXXScopeSpec *SS,
280 TemplateTy &SuggestedTemplate,
281 TemplateNameKind &SuggestedKind) {
282 // We can't recover unless there's a dependent scope specifier preceding the
283 // template name.
284 // FIXME: Typo correction?
285 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
286 computeDeclContext(*SS))
287 return false;
288
289 // The code is missing a 'template' keyword prior to the dependent template
290 // name.
291 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
292 Diag(IILoc, diag::err_template_kw_missing)
293 << Qualifier << II.getName()
294 << FixItHint::CreateInsertion(IILoc, "template ");
295 SuggestedTemplate
296 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
297 SuggestedKind = TNK_Dependent_template_name;
298 return true;
299}
300
301void Sema::LookupTemplateName(LookupResult &Found,
302 Scope *S, CXXScopeSpec &SS,
303 QualType ObjectType,
304 bool EnteringContext,
305 bool &MemberOfUnknownSpecialization) {
306 // Determine where to perform name lookup
307 MemberOfUnknownSpecialization = false;
308 DeclContext *LookupCtx = nullptr;
309 bool isDependent = false;
310 if (!ObjectType.isNull()) {
311 // This nested-name-specifier occurs in a member access expression, e.g.,
312 // x->B::f, and we are looking into the type of the object.
313 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")(static_cast <bool> (!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? void (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 313, __extension__ __PRETTY_FUNCTION__))
;
314 LookupCtx = computeDeclContext(ObjectType);
315 isDependent = ObjectType->isDependentType();
316 assert((isDependent || !ObjectType->isIncompleteType() ||(static_cast <bool> ((isDependent || !ObjectType->isIncompleteType
() || ObjectType->castAs<TagType>()->isBeingDefined
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __extension__ __PRETTY_FUNCTION__))
317 ObjectType->castAs<TagType>()->isBeingDefined()) &&(static_cast <bool> ((isDependent || !ObjectType->isIncompleteType
() || ObjectType->castAs<TagType>()->isBeingDefined
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __extension__ __PRETTY_FUNCTION__))
318 "Caller should have completed object type")(static_cast <bool> ((isDependent || !ObjectType->isIncompleteType
() || ObjectType->castAs<TagType>()->isBeingDefined
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __extension__ __PRETTY_FUNCTION__))
;
319
320 // Template names cannot appear inside an Objective-C class or object type.
321 if (ObjectType->isObjCObjectOrInterfaceType()) {
322 Found.clear();
323 return;
324 }
325 } else if (SS.isSet()) {
326 // This nested-name-specifier occurs after another nested-name-specifier,
327 // so long into the context associated with the prior nested-name-specifier.
328 LookupCtx = computeDeclContext(SS, EnteringContext);
329 isDependent = isDependentScopeSpecifier(SS);
330
331 // The declaration context must be complete.
332 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
333 return;
334 }
335
336 bool ObjectTypeSearchedInScope = false;
337 bool AllowFunctionTemplatesInLookup = true;
338 if (LookupCtx) {
339 // Perform "qualified" name lookup into the declaration context we
340 // computed, which is either the type of the base of a member access
341 // expression or the declaration context associated with a prior
342 // nested-name-specifier.
343 LookupQualifiedName(Found, LookupCtx);
344 if (!ObjectType.isNull() && Found.empty()) {
345 // C++ [basic.lookup.classref]p1:
346 // In a class member access expression (5.2.5), if the . or -> token is
347 // immediately followed by an identifier followed by a <, the
348 // identifier must be looked up to determine whether the < is the
349 // beginning of a template argument list (14.2) or a less-than operator.
350 // The identifier is first looked up in the class of the object
351 // expression. If the identifier is not found, it is then looked up in
352 // the context of the entire postfix-expression and shall name a class
353 // or function template.
354 if (S) LookupName(Found, S);
355 ObjectTypeSearchedInScope = true;
356 AllowFunctionTemplatesInLookup = false;
357 }
358 } else if (isDependent && (!S || ObjectType.isNull())) {
359 // We cannot look into a dependent object type or nested nme
360 // specifier.
361 MemberOfUnknownSpecialization = true;
362 return;
363 } else {
364 // Perform unqualified name lookup in the current scope.
365 LookupName(Found, S);
366
367 if (!ObjectType.isNull())
368 AllowFunctionTemplatesInLookup = false;
369 }
370
371 if (Found.empty() && !isDependent) {
372 // If we did not find any names, attempt to correct any typos.
373 DeclarationName Name = Found.getLookupName();
374 Found.clear();
375 // Simple filter callback that, for keywords, only accepts the C++ *_cast
376 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
377 FilterCCC->WantTypeSpecifiers = false;
378 FilterCCC->WantExpressionKeywords = false;
379 FilterCCC->WantRemainingKeywords = false;
380 FilterCCC->WantCXXNamedCasts = true;
381 if (TypoCorrection Corrected = CorrectTypo(
382 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
383 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
384 Found.setLookupName(Corrected.getCorrection());
385 if (auto *ND = Corrected.getFoundDecl())
386 Found.addDecl(ND);
387 FilterAcceptableTemplateNames(Found);
388 if (!Found.empty()) {
389 if (LookupCtx) {
390 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
391 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
392 Name.getAsString() == CorrectedStr;
393 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
394 << Name << LookupCtx << DroppedSpecifier
395 << SS.getRange());
396 } else {
397 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
398 }
399 }
400 } else {
401 Found.setLookupName(Name);
402 }
403 }
404
405 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
406 if (Found.empty()) {
407 if (isDependent)
408 MemberOfUnknownSpecialization = true;
409 return;
410 }
411
412 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
413 !getLangOpts().CPlusPlus11) {
414 // C++03 [basic.lookup.classref]p1:
415 // [...] If the lookup in the class of the object expression finds a
416 // template, the name is also looked up in the context of the entire
417 // postfix-expression and [...]
418 //
419 // Note: C++11 does not perform this second lookup.
420 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
421 LookupOrdinaryName);
422 LookupName(FoundOuter, S);
423 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
424
425 if (FoundOuter.empty()) {
426 // - if the name is not found, the name found in the class of the
427 // object expression is used, otherwise
428 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
429 FoundOuter.isAmbiguous()) {
430 // - if the name is found in the context of the entire
431 // postfix-expression and does not name a class template, the name
432 // found in the class of the object expression is used, otherwise
433 FoundOuter.clear();
434 } else if (!Found.isSuppressingDiagnostics()) {
435 // - if the name found is a class template, it must refer to the same
436 // entity as the one found in the class of the object expression,
437 // otherwise the program is ill-formed.
438 if (!Found.isSingleResult() ||
439 Found.getFoundDecl()->getCanonicalDecl()
440 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
441 Diag(Found.getNameLoc(),
442 diag::ext_nested_name_member_ref_lookup_ambiguous)
443 << Found.getLookupName()
444 << ObjectType;
445 Diag(Found.getRepresentativeDecl()->getLocation(),
446 diag::note_ambig_member_ref_object_type)
447 << ObjectType;
448 Diag(FoundOuter.getFoundDecl()->getLocation(),
449 diag::note_ambig_member_ref_scope);
450
451 // Recover by taking the template that we found in the object
452 // expression's type.
453 }
454 }
455 }
456}
457
458void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
459 SourceLocation Less,
460 SourceLocation Greater) {
461 if (TemplateName.isInvalid())
462 return;
463
464 DeclarationNameInfo NameInfo;
465 CXXScopeSpec SS;
466 LookupNameKind LookupKind;
467
468 DeclContext *LookupCtx = nullptr;
469 NamedDecl *Found = nullptr;
470
471 // Figure out what name we looked up.
472 if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
473 NameInfo = ME->getMemberNameInfo();
474 SS.Adopt(ME->getQualifierLoc());
475 LookupKind = LookupMemberName;
476 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
477 Found = ME->getMemberDecl();
478 } else {
479 auto *DRE = cast<DeclRefExpr>(TemplateName.get());
480 NameInfo = DRE->getNameInfo();
481 SS.Adopt(DRE->getQualifierLoc());
482 LookupKind = LookupOrdinaryName;
483 Found = DRE->getFoundDecl();
484 }
485
486 // Try to correct the name by looking for templates and C++ named casts.
487 struct TemplateCandidateFilter : CorrectionCandidateCallback {
488 TemplateCandidateFilter() {
489 WantTypeSpecifiers = false;
490 WantExpressionKeywords = false;
491 WantRemainingKeywords = false;
492 WantCXXNamedCasts = true;
493 };
494 bool ValidateCandidate(const TypoCorrection &Candidate) override {
495 if (auto *ND = Candidate.getCorrectionDecl())
496 return isAcceptableTemplateName(ND->getASTContext(), ND, true);
497 return Candidate.isKeyword();
498 }
499 };
500
501 DeclarationName Name = NameInfo.getName();
502 if (TypoCorrection Corrected =
503 CorrectTypo(NameInfo, LookupKind, S, &SS,
504 llvm::make_unique<TemplateCandidateFilter>(),
505 CTK_ErrorRecovery, LookupCtx)) {
506 auto *ND = Corrected.getFoundDecl();
507 if (ND)
508 ND = isAcceptableTemplateName(Context, ND,
509 /*AllowFunctionTemplates*/ true);
510 if (ND || Corrected.isKeyword()) {
511 if (LookupCtx) {
512 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
513 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
514 Name.getAsString() == CorrectedStr;
515 diagnoseTypo(Corrected,
516 PDiag(diag::err_non_template_in_member_template_id_suggest)
517 << Name << LookupCtx << DroppedSpecifier
518 << SS.getRange(), false);
519 } else {
520 diagnoseTypo(Corrected,
521 PDiag(diag::err_non_template_in_template_id_suggest)
522 << Name, false);
523 }
524 if (Found)
525 Diag(Found->getLocation(),
526 diag::note_non_template_in_template_id_found);
527 return;
528 }
529 }
530
531 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
532 << Name << SourceRange(Less, Greater);
533 if (Found)
534 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
535}
536
537/// ActOnDependentIdExpression - Handle a dependent id-expression that
538/// was just parsed. This is only possible with an explicit scope
539/// specifier naming a dependent type.
540ExprResult
541Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
542 SourceLocation TemplateKWLoc,
543 const DeclarationNameInfo &NameInfo,
544 bool isAddressOfOperand,
545 const TemplateArgumentListInfo *TemplateArgs) {
546 DeclContext *DC = getFunctionLevelDeclContext();
547
548 // C++11 [expr.prim.general]p12:
549 // An id-expression that denotes a non-static data member or non-static
550 // member function of a class can only be used:
551 // (...)
552 // - if that id-expression denotes a non-static data member and it
553 // appears in an unevaluated operand.
554 //
555 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
556 // CXXDependentScopeMemberExpr. The former can instantiate to either
557 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
558 // always a MemberExpr.
559 bool MightBeCxx11UnevalField =
560 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
561
562 // Check if the nested name specifier is an enum type.
563 bool IsEnum = false;
564 if (NestedNameSpecifier *NNS = SS.getScopeRep())
565 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
566
567 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
568 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
569 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
570
571 // Since the 'this' expression is synthesized, we don't need to
572 // perform the double-lookup check.
573 NamedDecl *FirstQualifierInScope = nullptr;
574
575 return CXXDependentScopeMemberExpr::Create(
576 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
577 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
578 FirstQualifierInScope, NameInfo, TemplateArgs);
579 }
580
581 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
582}
583
584ExprResult
585Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
586 SourceLocation TemplateKWLoc,
587 const DeclarationNameInfo &NameInfo,
588 const TemplateArgumentListInfo *TemplateArgs) {
589 return DependentScopeDeclRefExpr::Create(
590 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
591 TemplateArgs);
592}
593
594
595/// Determine whether we would be unable to instantiate this template (because
596/// it either has no definition, or is in the process of being instantiated).
597bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
598 NamedDecl *Instantiation,
599 bool InstantiatedFromMember,
600 const NamedDecl *Pattern,
601 const NamedDecl *PatternDef,
602 TemplateSpecializationKind TSK,
603 bool Complain /*= true*/) {
604 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||(static_cast <bool> (isa<TagDecl>(Instantiation) ||
isa<FunctionDecl>(Instantiation) || isa<VarDecl>
(Instantiation)) ? void (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 605, __extension__ __PRETTY_FUNCTION__))
605 isa<VarDecl>(Instantiation))(static_cast <bool> (isa<TagDecl>(Instantiation) ||
isa<FunctionDecl>(Instantiation) || isa<VarDecl>
(Instantiation)) ? void (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 605, __extension__ __PRETTY_FUNCTION__))
;
606
607 bool IsEntityBeingDefined = false;
608 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
609 IsEntityBeingDefined = TD->isBeingDefined();
610
611 if (PatternDef && !IsEntityBeingDefined) {
612 NamedDecl *SuggestedDef = nullptr;
613 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
614 /*OnlyNeedComplete*/false)) {
615 // If we're allowed to diagnose this and recover, do so.
616 bool Recover = Complain && !isSFINAEContext();
617 if (Complain)
618 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
619 Sema::MissingImportKind::Definition, Recover);
620 return !Recover;
621 }
622 return false;
623 }
624
625 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
626 return true;
627
628 llvm::Optional<unsigned> Note;
629 QualType InstantiationTy;
630 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
631 InstantiationTy = Context.getTypeDeclType(TD);
632 if (PatternDef) {
633 Diag(PointOfInstantiation,
634 diag::err_template_instantiate_within_definition)
635 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
636 << InstantiationTy;
637 // Not much point in noting the template declaration here, since
638 // we're lexically inside it.
639 Instantiation->setInvalidDecl();
640 } else if (InstantiatedFromMember) {
641 if (isa<FunctionDecl>(Instantiation)) {
642 Diag(PointOfInstantiation,
643 diag::err_explicit_instantiation_undefined_member)
644 << /*member function*/ 1 << Instantiation->getDeclName()
645 << Instantiation->getDeclContext();
646 Note = diag::note_explicit_instantiation_here;
647 } else {
648 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")(static_cast <bool> (isa<TagDecl>(Instantiation) &&
"Must be a TagDecl!") ? void (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 648, __extension__ __PRETTY_FUNCTION__))
;
649 Diag(PointOfInstantiation,
650 diag::err_implicit_instantiate_member_undefined)
651 << InstantiationTy;
652 Note = diag::note_member_declared_at;
653 }
654 } else {
655 if (isa<FunctionDecl>(Instantiation)) {
656 Diag(PointOfInstantiation,
657 diag::err_explicit_instantiation_undefined_func_template)
658 << Pattern;
659 Note = diag::note_explicit_instantiation_here;
660 } else if (isa<TagDecl>(Instantiation)) {
661 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
662 << (TSK != TSK_ImplicitInstantiation)
663 << InstantiationTy;
664 Note = diag::note_template_decl_here;
665 } else {
666 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")(static_cast <bool> (isa<VarDecl>(Instantiation) &&
"Must be a VarDecl!") ? void (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 666, __extension__ __PRETTY_FUNCTION__))
;
667 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
668 Diag(PointOfInstantiation,
669 diag::err_explicit_instantiation_undefined_var_template)
670 << Instantiation;
671 Instantiation->setInvalidDecl();
672 } else
673 Diag(PointOfInstantiation,
674 diag::err_explicit_instantiation_undefined_member)
675 << /*static data member*/ 2 << Instantiation->getDeclName()
676 << Instantiation->getDeclContext();
677 Note = diag::note_explicit_instantiation_here;
678 }
679 }
680 if (Note) // Diagnostics were emitted.
681 Diag(Pattern->getLocation(), Note.getValue());
682
683 // In general, Instantiation isn't marked invalid to get more than one
684 // error for multiple undefined instantiations. But the code that does
685 // explicit declaration -> explicit definition conversion can't handle
686 // invalid declarations, so mark as invalid in that case.
687 if (TSK == TSK_ExplicitInstantiationDeclaration)
688 Instantiation->setInvalidDecl();
689 return true;
690}
691
692/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
693/// that the template parameter 'PrevDecl' is being shadowed by a new
694/// declaration at location Loc. Returns true to indicate that this is
695/// an error, and false otherwise.
696void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
697 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")(static_cast <bool> (PrevDecl->isTemplateParameter()
&& "Not a template parameter") ? void (0) : __assert_fail
("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 697, __extension__ __PRETTY_FUNCTION__))
;
698
699 // Microsoft Visual C++ permits template parameters to be shadowed.
700 if (getLangOpts().MicrosoftExt)
701 return;
702
703 // C++ [temp.local]p4:
704 // A template-parameter shall not be redeclared within its
705 // scope (including nested scopes).
706 Diag(Loc, diag::err_template_param_shadow)
707 << cast<NamedDecl>(PrevDecl)->getDeclName();
708 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
709}
710
711/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
712/// the parameter D to reference the templated declaration and return a pointer
713/// to the template declaration. Otherwise, do nothing to D and return null.
714TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
715 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
716 D = Temp->getTemplatedDecl();
717 return Temp;
718 }
719 return nullptr;
720}
721
722ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
723 SourceLocation EllipsisLoc) const {
724 assert(Kind == Template &&(static_cast <bool> (Kind == Template && "Only template template arguments can be pack expansions here"
) ? void (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __extension__ __PRETTY_FUNCTION__))
725 "Only template template arguments can be pack expansions here")(static_cast <bool> (Kind == Template && "Only template template arguments can be pack expansions here"
) ? void (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __extension__ __PRETTY_FUNCTION__))
;
726 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&(static_cast <bool> (getAsTemplate().get().containsUnexpandedParameterPack
() && "Template template argument pack expansion without packs"
) ? void (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 727, __extension__ __PRETTY_FUNCTION__))
727 "Template template argument pack expansion without packs")(static_cast <bool> (getAsTemplate().get().containsUnexpandedParameterPack
() && "Template template argument pack expansion without packs"
) ? void (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 727, __extension__ __PRETTY_FUNCTION__))
;
728 ParsedTemplateArgument Result(*this);
729 Result.EllipsisLoc = EllipsisLoc;
730 return Result;
731}
732
733static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
734 const ParsedTemplateArgument &Arg) {
735
736 switch (Arg.getKind()) {
737 case ParsedTemplateArgument::Type: {
738 TypeSourceInfo *DI;
739 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
740 if (!DI)
741 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
742 return TemplateArgumentLoc(TemplateArgument(T), DI);
743 }
744
745 case ParsedTemplateArgument::NonType: {
746 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
747 return TemplateArgumentLoc(TemplateArgument(E), E);
748 }
749
750 case ParsedTemplateArgument::Template: {
751 TemplateName Template = Arg.getAsTemplate().get();
752 TemplateArgument TArg;
753 if (Arg.getEllipsisLoc().isValid())
754 TArg = TemplateArgument(Template, Optional<unsigned int>());
755 else
756 TArg = Template;
757 return TemplateArgumentLoc(TArg,
758 Arg.getScopeSpec().getWithLocInContext(
759 SemaRef.Context),
760 Arg.getLocation(),
761 Arg.getEllipsisLoc());
762 }
763 }
764
765 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 765)
;
766}
767
768/// \brief Translates template arguments as provided by the parser
769/// into template arguments used by semantic analysis.
770void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
771 TemplateArgumentListInfo &TemplateArgs) {
772 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
773 TemplateArgs.addArgument(translateTemplateArgument(*this,
774 TemplateArgsIn[I]));
775}
776
777static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
778 SourceLocation Loc,
779 IdentifierInfo *Name) {
780 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
781 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
782 if (PrevDecl && PrevDecl->isTemplateParameter())
783 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
784}
785
786/// Convert a parsed type into a parsed template argument. This is mostly
787/// trivial, except that we may have parsed a C++17 deduced class template
788/// specialization type, in which case we should form a template template
789/// argument instead of a type template argument.
790ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
791 TypeSourceInfo *TInfo;
792 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
793 if (T.isNull())
794 return ParsedTemplateArgument();
795 assert(TInfo && "template argument with no location")(static_cast <bool> (TInfo && "template argument with no location"
) ? void (0) : __assert_fail ("TInfo && \"template argument with no location\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 795, __extension__ __PRETTY_FUNCTION__))
;
796
797 // If we might have formed a deduced template specialization type, convert
798 // it to a template template argument.
799 if (getLangOpts().CPlusPlus17) {
800 TypeLoc TL = TInfo->getTypeLoc();
801 SourceLocation EllipsisLoc;
802 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
803 EllipsisLoc = PET.getEllipsisLoc();
804 TL = PET.getPatternLoc();
805 }
806
807 CXXScopeSpec SS;
808 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
809 SS.Adopt(ET.getQualifierLoc());
810 TL = ET.getNamedTypeLoc();
811 }
812
813 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
814 TemplateName Name = DTST.getTypePtr()->getTemplateName();
815 if (SS.isSet())
816 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
817 /*HasTemplateKeyword*/ false,
818 Name.getAsTemplateDecl());
819 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
820 DTST.getTemplateNameLoc());
821 if (EllipsisLoc.isValid())
822 Result = Result.getTemplatePackExpansion(EllipsisLoc);
823 return Result;
824 }
825 }
826
827 // This is a normal type template argument. Note, if the type template
828 // argument is an injected-class-name for a template, it has a dual nature
829 // and can be used as either a type or a template. We handle that in
830 // convertTypeTemplateArgumentToTemplate.
831 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
832 ParsedType.get().getAsOpaquePtr(),
833 TInfo->getTypeLoc().getLocStart());
834}
835
836/// ActOnTypeParameter - Called when a C++ template type parameter
837/// (e.g., "typename T") has been parsed. Typename specifies whether
838/// the keyword "typename" was used to declare the type parameter
839/// (otherwise, "class" was used), and KeyLoc is the location of the
840/// "class" or "typename" keyword. ParamName is the name of the
841/// parameter (NULL indicates an unnamed template parameter) and
842/// ParamNameLoc is the location of the parameter name (if any).
843/// If the type parameter has a default argument, it will be added
844/// later via ActOnTypeParameterDefault.
845NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
846 SourceLocation EllipsisLoc,
847 SourceLocation KeyLoc,
848 IdentifierInfo *ParamName,
849 SourceLocation ParamNameLoc,
850 unsigned Depth, unsigned Position,
851 SourceLocation EqualLoc,
852 ParsedType DefaultArg) {
853 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"Template type parameter not in template parameter scope!") ?
void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 854, __extension__ __PRETTY_FUNCTION__))
854 "Template type parameter not in template parameter scope!")(static_cast <bool> (S->isTemplateParamScope() &&
"Template type parameter not in template parameter scope!") ?
void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 854, __extension__ __PRETTY_FUNCTION__))
;
855
856 SourceLocation Loc = ParamNameLoc;
857 if (!ParamName)
858 Loc = KeyLoc;
859
860 bool IsParameterPack = EllipsisLoc.isValid();
861 TemplateTypeParmDecl *Param
862 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
863 KeyLoc, Loc, Depth, Position, ParamName,
864 Typename, IsParameterPack);
865 Param->setAccess(AS_public);
866
867 if (ParamName) {
868 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
869
870 // Add the template parameter into the current scope.
871 S->AddDecl(Param);
872 IdResolver.AddDecl(Param);
873 }
874
875 // C++0x [temp.param]p9:
876 // A default template-argument may be specified for any kind of
877 // template-parameter that is not a template parameter pack.
878 if (DefaultArg && IsParameterPack) {
879 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
880 DefaultArg = nullptr;
881 }
882
883 // Handle the default argument, if provided.
884 if (DefaultArg) {
885 TypeSourceInfo *DefaultTInfo;
886 GetTypeFromParser(DefaultArg, &DefaultTInfo);
887
888 assert(DefaultTInfo && "expected source information for type")(static_cast <bool> (DefaultTInfo && "expected source information for type"
) ? void (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 888, __extension__ __PRETTY_FUNCTION__))
;
889
890 // Check for unexpanded parameter packs.
891 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
892 UPPC_DefaultArgument))
893 return Param;
894
895 // Check the template argument itself.
896 if (CheckTemplateArgument(Param, DefaultTInfo)) {
897 Param->setInvalidDecl();
898 return Param;
899 }
900
901 Param->setDefaultArgument(DefaultTInfo);
902 }
903
904 return Param;
905}
906
907/// \brief Check that the type of a non-type template parameter is
908/// well-formed.
909///
910/// \returns the (possibly-promoted) parameter type if valid;
911/// otherwise, produces a diagnostic and returns a NULL type.
912QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
913 SourceLocation Loc) {
914 if (TSI->getType()->isUndeducedType()) {
915 // C++1z [temp.dep.expr]p3:
916 // An id-expression is type-dependent if it contains
917 // - an identifier associated by name lookup with a non-type
918 // template-parameter declared with a type that contains a
919 // placeholder type (7.1.7.4),
920 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
921 }
922
923 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
924}
925
926QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
927 SourceLocation Loc) {
928 // We don't allow variably-modified types as the type of non-type template
929 // parameters.
930 if (T->isVariablyModifiedType()) {
931 Diag(Loc, diag::err_variably_modified_nontype_template_param)
932 << T;
933 return QualType();
934 }
935
936 // C++ [temp.param]p4:
937 //
938 // A non-type template-parameter shall have one of the following
939 // (optionally cv-qualified) types:
940 //
941 // -- integral or enumeration type,
942 if (T->isIntegralOrEnumerationType() ||
943 // -- pointer to object or pointer to function,
944 T->isPointerType() ||
945 // -- reference to object or reference to function,
946 T->isReferenceType() ||
947 // -- pointer to member,
948 T->isMemberPointerType() ||
949 // -- std::nullptr_t.
950 T->isNullPtrType() ||
951 // If T is a dependent type, we can't do the check now, so we
952 // assume that it is well-formed.
953 T->isDependentType() ||
954 // Allow use of auto in template parameter declarations.
955 T->isUndeducedType()) {
956 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
957 // are ignored when determining its type.
958 return T.getUnqualifiedType();
959 }
960
961 // C++ [temp.param]p8:
962 //
963 // A non-type template-parameter of type "array of T" or
964 // "function returning T" is adjusted to be of type "pointer to
965 // T" or "pointer to function returning T", respectively.
966 else if (T->isArrayType() || T->isFunctionType())
967 return Context.getDecayedType(T);
968
969 Diag(Loc, diag::err_template_nontype_parm_bad_type)
970 << T;
971
972 return QualType();
973}
974
975NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
976 unsigned Depth,
977 unsigned Position,
978 SourceLocation EqualLoc,
979 Expr *Default) {
980 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
981
982 // Check that we have valid decl-specifiers specified.
983 auto CheckValidDeclSpecifiers = [this, &D] {
984 // C++ [temp.param]
985 // p1
986 // template-parameter:
987 // ...
988 // parameter-declaration
989 // p2
990 // ... A storage class shall not be specified in a template-parameter
991 // declaration.
992 // [dcl.typedef]p1:
993 // The typedef specifier [...] shall not be used in the decl-specifier-seq
994 // of a parameter-declaration
995 const DeclSpec &DS = D.getDeclSpec();
996 auto EmitDiag = [this](SourceLocation Loc) {
997 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
998 << FixItHint::CreateRemoval(Loc);
999 };
1000 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1001 EmitDiag(DS.getStorageClassSpecLoc());
1002
1003 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1004 EmitDiag(DS.getThreadStorageClassSpecLoc());
1005
1006 // [dcl.inline]p1:
1007 // The inline specifier can be applied only to the declaration or
1008 // definition of a variable or function.
1009
1010 if (DS.isInlineSpecified())
1011 EmitDiag(DS.getInlineSpecLoc());
1012
1013 // [dcl.constexpr]p1:
1014 // The constexpr specifier shall be applied only to the definition of a
1015 // variable or variable template or the declaration of a function or
1016 // function template.
1017
1018 if (DS.isConstexprSpecified())
1019 EmitDiag(DS.getConstexprSpecLoc());
1020
1021 // [dcl.fct.spec]p1:
1022 // Function-specifiers can be used only in function declarations.
1023
1024 if (DS.isVirtualSpecified())
1025 EmitDiag(DS.getVirtualSpecLoc());
1026
1027 if (DS.isExplicitSpecified())
1028 EmitDiag(DS.getExplicitSpecLoc());
1029
1030 if (DS.isNoreturnSpecified())
1031 EmitDiag(DS.getNoreturnSpecLoc());
1032 };
1033
1034 CheckValidDeclSpecifiers();
1035
1036 if (TInfo->getType()->isUndeducedType()) {
1037 Diag(D.getIdentifierLoc(),
1038 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1039 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1040 }
1041
1042 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"Non-type template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1043, __extension__ __PRETTY_FUNCTION__))
1043 "Non-type template parameter not in template parameter scope!")(static_cast <bool> (S->isTemplateParamScope() &&
"Non-type template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1043, __extension__ __PRETTY_FUNCTION__))
;
1044 bool Invalid = false;
1045
1046 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1047 if (T.isNull()) {
1048 T = Context.IntTy; // Recover with an 'int' type.
1049 Invalid = true;
1050 }
1051
1052 IdentifierInfo *ParamName = D.getIdentifier();
1053 bool IsParameterPack = D.hasEllipsis();
1054 NonTypeTemplateParmDecl *Param
1055 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1056 D.getLocStart(),
1057 D.getIdentifierLoc(),
1058 Depth, Position, ParamName, T,
1059 IsParameterPack, TInfo);
1060 Param->setAccess(AS_public);
1061
1062 if (Invalid)
1063 Param->setInvalidDecl();
1064
1065 if (ParamName) {
1066 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1067 ParamName);
1068
1069 // Add the template parameter into the current scope.
1070 S->AddDecl(Param);
1071 IdResolver.AddDecl(Param);
1072 }
1073
1074 // C++0x [temp.param]p9:
1075 // A default template-argument may be specified for any kind of
1076 // template-parameter that is not a template parameter pack.
1077 if (Default && IsParameterPack) {
1078 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1079 Default = nullptr;
1080 }
1081
1082 // Check the well-formedness of the default template argument, if provided.
1083 if (Default) {
1084 // Check for unexpanded parameter packs.
1085 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1086 return Param;
1087
1088 TemplateArgument Converted;
1089 ExprResult DefaultRes =
1090 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1091 if (DefaultRes.isInvalid()) {
1092 Param->setInvalidDecl();
1093 return Param;
1094 }
1095 Default = DefaultRes.get();
1096
1097 Param->setDefaultArgument(Default);
1098 }
1099
1100 return Param;
1101}
1102
1103/// ActOnTemplateTemplateParameter - Called when a C++ template template
1104/// parameter (e.g. T in template <template \<typename> class T> class array)
1105/// has been parsed. S is the current scope.
1106NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1107 SourceLocation TmpLoc,
1108 TemplateParameterList *Params,
1109 SourceLocation EllipsisLoc,
1110 IdentifierInfo *Name,
1111 SourceLocation NameLoc,
1112 unsigned Depth,
1113 unsigned Position,
1114 SourceLocation EqualLoc,
1115 ParsedTemplateArgument Default) {
1116 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"Template template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1117, __extension__ __PRETTY_FUNCTION__))
1117 "Template template parameter not in template parameter scope!")(static_cast <bool> (S->isTemplateParamScope() &&
"Template template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1117, __extension__ __PRETTY_FUNCTION__))
;
1118
1119 // Construct the parameter object.
1120 bool IsParameterPack = EllipsisLoc.isValid();
1121 TemplateTemplateParmDecl *Param =
1122 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1123 NameLoc.isInvalid()? TmpLoc : NameLoc,
1124 Depth, Position, IsParameterPack,
1125 Name, Params);
1126 Param->setAccess(AS_public);
1127
1128 // If the template template parameter has a name, then link the identifier
1129 // into the scope and lookup mechanisms.
1130 if (Name) {
1131 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1132
1133 S->AddDecl(Param);
1134 IdResolver.AddDecl(Param);
1135 }
1136
1137 if (Params->size() == 0) {
1138 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1139 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1140 Param->setInvalidDecl();
1141 }
1142
1143 // C++0x [temp.param]p9:
1144 // A default template-argument may be specified for any kind of
1145 // template-parameter that is not a template parameter pack.
1146 if (IsParameterPack && !Default.isInvalid()) {
1147 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1148 Default = ParsedTemplateArgument();
1149 }
1150
1151 if (!Default.isInvalid()) {
1152 // Check only that we have a template template argument. We don't want to
1153 // try to check well-formedness now, because our template template parameter
1154 // might have dependent types in its template parameters, which we wouldn't
1155 // be able to match now.
1156 //
1157 // If none of the template template parameter's template arguments mention
1158 // other template parameters, we could actually perform more checking here.
1159 // However, it isn't worth doing.
1160 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1161 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1162 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1163 << DefaultArg.getSourceRange();
1164 return Param;
1165 }
1166
1167 // Check for unexpanded parameter packs.
1168 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1169 DefaultArg.getArgument().getAsTemplate(),
1170 UPPC_DefaultArgument))
1171 return Param;
1172
1173 Param->setDefaultArgument(Context, DefaultArg);
1174 }
1175
1176 return Param;
1177}
1178
1179/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1180/// constrained by RequiresClause, that contains the template parameters in
1181/// Params.
1182TemplateParameterList *
1183Sema::ActOnTemplateParameterList(unsigned Depth,
1184 SourceLocation ExportLoc,
1185 SourceLocation TemplateLoc,
1186 SourceLocation LAngleLoc,
1187 ArrayRef<NamedDecl *> Params,
1188 SourceLocation RAngleLoc,
1189 Expr *RequiresClause) {
1190 if (ExportLoc.isValid())
1191 Diag(ExportLoc, diag::warn_template_export_unsupported);
1192
1193 return TemplateParameterList::Create(
1194 Context, TemplateLoc, LAngleLoc,
1195 llvm::makeArrayRef(Params.data(), Params.size()),
1196 RAngleLoc, RequiresClause);
1197}
1198
1199static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
1200 if (SS.isSet())
1201 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
1202}
1203
1204DeclResult
1205Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
1206 SourceLocation KWLoc, CXXScopeSpec &SS,
1207 IdentifierInfo *Name, SourceLocation NameLoc,
1208 AttributeList *Attr,
1209 TemplateParameterList *TemplateParams,
1210 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1211 SourceLocation FriendLoc,
1212 unsigned NumOuterTemplateParamLists,
1213 TemplateParameterList** OuterTemplateParamLists,
1214 SkipBodyInfo *SkipBody) {
1215 assert(TemplateParams && TemplateParams->size() > 0 &&(static_cast <bool> (TemplateParams && TemplateParams
->size() > 0 && "No template parameters") ? void
(0) : __assert_fail ("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1216, __extension__ __PRETTY_FUNCTION__))
1216 "No template parameters")(static_cast <bool> (TemplateParams && TemplateParams
->size() > 0 && "No template parameters") ? void
(0) : __assert_fail ("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1216, __extension__ __PRETTY_FUNCTION__))
;
1217 assert(TUK != TUK_Reference && "Can only declare or define class templates")(static_cast <bool> (TUK != TUK_Reference && "Can only declare or define class templates"
) ? void (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1217, __extension__ __PRETTY_FUNCTION__))
;
1218 bool Invalid = false;
1219
1220 // Check that we can declare a template here.
1221 if (CheckTemplateDeclScope(S, TemplateParams))
1222 return true;
1223
1224 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1225 assert(Kind != TTK_Enum && "can't build template of enumerated type")(static_cast <bool> (Kind != TTK_Enum && "can't build template of enumerated type"
) ? void (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1225, __extension__ __PRETTY_FUNCTION__))
;
1226
1227 // There is no such thing as an unnamed class template.
1228 if (!Name) {
1229 Diag(KWLoc, diag::err_template_unnamed_class);
1230 return true;
1231 }
1232
1233 // Find any previous declaration with this name. For a friend with no
1234 // scope explicitly specified, we only look for tag declarations (per
1235 // C++11 [basic.lookup.elab]p2).
1236 DeclContext *SemanticContext;
1237 LookupResult Previous(*this, Name, NameLoc,
1238 (SS.isEmpty() && TUK == TUK_Friend)
1239 ? LookupTagName : LookupOrdinaryName,
1240 forRedeclarationInCurContext());
1241 if (SS.isNotEmpty() && !SS.isInvalid()) {
1242 SemanticContext = computeDeclContext(SS, true);
1243 if (!SemanticContext) {
1244 // FIXME: Horrible, horrible hack! We can't currently represent this
1245 // in the AST, and historically we have just ignored such friend
1246 // class templates, so don't complain here.
1247 Diag(NameLoc, TUK == TUK_Friend
1248 ? diag::warn_template_qualified_friend_ignored
1249 : diag::err_template_qualified_declarator_no_match)
1250 << SS.getScopeRep() << SS.getRange();
1251 return TUK != TUK_Friend;
1252 }
1253
1254 if (RequireCompleteDeclContext(SS, SemanticContext))
1255 return true;
1256
1257 // If we're adding a template to a dependent context, we may need to
1258 // rebuilding some of the types used within the template parameter list,
1259 // now that we know what the current instantiation is.
1260 if (SemanticContext->isDependentContext()) {
1261 ContextRAII SavedContext(*this, SemanticContext);
1262 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1263 Invalid = true;
1264 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1265 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1266
1267 LookupQualifiedName(Previous, SemanticContext);
1268 } else {
1269 SemanticContext = CurContext;
1270
1271 // C++14 [class.mem]p14:
1272 // If T is the name of a class, then each of the following shall have a
1273 // name different from T:
1274 // -- every member template of class T
1275 if (TUK != TUK_Friend &&
1276 DiagnoseClassNameShadow(SemanticContext,
1277 DeclarationNameInfo(Name, NameLoc)))
1278 return true;
1279
1280 LookupName(Previous, S);
1281 }
1282
1283 if (Previous.isAmbiguous())
1284 return true;
1285
1286 NamedDecl *PrevDecl = nullptr;
1287 if (Previous.begin() != Previous.end())
1288 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1289
1290 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1291 // Maybe we will complain about the shadowed template parameter.
1292 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1293 // Just pretend that we didn't see the previous declaration.
1294 PrevDecl = nullptr;
1295 }
1296
1297 // If there is a previous declaration with the same name, check
1298 // whether this is a valid redeclaration.
1299 ClassTemplateDecl *PrevClassTemplate =
1300 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1301
1302 // We may have found the injected-class-name of a class template,
1303 // class template partial specialization, or class template specialization.
1304 // In these cases, grab the template that is being defined or specialized.
1305 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1306 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1307 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1308 PrevClassTemplate
1309 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1310 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1311 PrevClassTemplate
1312 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1313 ->getSpecializedTemplate();
1314 }
1315 }
1316
1317 if (TUK == TUK_Friend) {
1318 // C++ [namespace.memdef]p3:
1319 // [...] When looking for a prior declaration of a class or a function
1320 // declared as a friend, and when the name of the friend class or
1321 // function is neither a qualified name nor a template-id, scopes outside
1322 // the innermost enclosing namespace scope are not considered.
1323 if (!SS.isSet()) {
1324 DeclContext *OutermostContext = CurContext;
1325 while (!OutermostContext->isFileContext())
1326 OutermostContext = OutermostContext->getLookupParent();
1327
1328 if (PrevDecl &&
1329 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1330 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1331 SemanticContext = PrevDecl->getDeclContext();
1332 } else {
1333 // Declarations in outer scopes don't matter. However, the outermost
1334 // context we computed is the semantic context for our new
1335 // declaration.
1336 PrevDecl = PrevClassTemplate = nullptr;
1337 SemanticContext = OutermostContext;
1338
1339 // Check that the chosen semantic context doesn't already contain a
1340 // declaration of this name as a non-tag type.
1341 Previous.clear(LookupOrdinaryName);
1342 DeclContext *LookupContext = SemanticContext;
1343 while (LookupContext->isTransparentContext())
1344 LookupContext = LookupContext->getLookupParent();
1345 LookupQualifiedName(Previous, LookupContext);
1346
1347 if (Previous.isAmbiguous())
1348 return true;
1349
1350 if (Previous.begin() != Previous.end())
1351 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1352 }
1353 }
1354 } else if (PrevDecl &&
1355 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1356 S, SS.isValid()))
1357 PrevDecl = PrevClassTemplate = nullptr;
1358
1359 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1360 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1361 if (SS.isEmpty() &&
1362 !(PrevClassTemplate &&
1363 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1364 SemanticContext->getRedeclContext()))) {
1365 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1366 Diag(Shadow->getTargetDecl()->getLocation(),
1367 diag::note_using_decl_target);
1368 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1369 // Recover by ignoring the old declaration.
1370 PrevDecl = PrevClassTemplate = nullptr;
1371 }
1372 }
1373
1374 // TODO Memory management; associated constraints are not always stored.
1375 Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr);
1376
1377 if (PrevClassTemplate) {
1378 // Ensure that the template parameter lists are compatible. Skip this check
1379 // for a friend in a dependent context: the template parameter list itself
1380 // could be dependent.
1381 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1382 !TemplateParameterListsAreEqual(TemplateParams,
1383 PrevClassTemplate->getTemplateParameters(),
1384 /*Complain=*/true,
1385 TPL_TemplateMatch))
1386 return true;
1387
1388 // Check for matching associated constraints on redeclarations.
1389 const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints();
1390 const bool RedeclACMismatch = [&] {
1391 if (!(CurAC || PrevAC))
1392 return false; // Nothing to check; no mismatch.
1393 if (CurAC && PrevAC) {
1394 llvm::FoldingSetNodeID CurACInfo, PrevACInfo;
1395 CurAC->Profile(CurACInfo, Context, /*Canonical=*/true);
1396 PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true);
1397 if (CurACInfo == PrevACInfo)
1398 return false; // All good; no mismatch.
1399 }
1400 return true;
1401 }();
1402
1403 if (RedeclACMismatch) {
1404 Diag(CurAC ? CurAC->getLocStart() : NameLoc,
1405 diag::err_template_different_associated_constraints);
1406 Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(),
1407 diag::note_template_prev_declaration) << /*declaration*/0;
1408 return true;
1409 }
1410
1411 // C++ [temp.class]p4:
1412 // In a redeclaration, partial specialization, explicit
1413 // specialization or explicit instantiation of a class template,
1414 // the class-key shall agree in kind with the original class
1415 // template declaration (7.1.5.3).
1416 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1417 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1418 TUK == TUK_Definition, KWLoc, Name)) {
1419 Diag(KWLoc, diag::err_use_with_wrong_tag)
1420 << Name
1421 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1422 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1423 Kind = PrevRecordDecl->getTagKind();
1424 }
1425
1426 // Check for redefinition of this class template.
1427 if (TUK == TUK_Definition) {
1428 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1429 // If we have a prior definition that is not visible, treat this as
1430 // simply making that previous definition visible.
1431 NamedDecl *Hidden = nullptr;
1432 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1433 SkipBody->ShouldSkip = true;
1434 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1435 assert(Tmpl && "original definition of a class template is not a "(static_cast <bool> (Tmpl && "original definition of a class template is not a "
"class template?") ? void (0) : __assert_fail ("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1436, __extension__ __PRETTY_FUNCTION__))
1436 "class template?")(static_cast <bool> (Tmpl && "original definition of a class template is not a "
"class template?") ? void (0) : __assert_fail ("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1436, __extension__ __PRETTY_FUNCTION__))
;
1437 makeMergedDefinitionVisible(Hidden);
1438 makeMergedDefinitionVisible(Tmpl);
1439 return Def;
1440 }
1441
1442 Diag(NameLoc, diag::err_redefinition) << Name;
1443 Diag(Def->getLocation(), diag::note_previous_definition);
1444 // FIXME: Would it make sense to try to "forget" the previous
1445 // definition, as part of error recovery?
1446 return true;
1447 }
1448 }
1449 } else if (PrevDecl) {
1450 // C++ [temp]p5:
1451 // A class template shall not have the same name as any other
1452 // template, class, function, object, enumeration, enumerator,
1453 // namespace, or type in the same scope (3.3), except as specified
1454 // in (14.5.4).
1455 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1456 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1457 return true;
1458 }
1459
1460 // Check the template parameter list of this declaration, possibly
1461 // merging in the template parameter list from the previous class
1462 // template declaration. Skip this check for a friend in a dependent
1463 // context, because the template parameter list might be dependent.
1464 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1465 CheckTemplateParameterList(
1466 TemplateParams,
1467 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1468 : nullptr,
1469 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1470 SemanticContext->isDependentContext())
1471 ? TPC_ClassTemplateMember
1472 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1473 : TPC_ClassTemplate))
1474 Invalid = true;
1475
1476 if (SS.isSet()) {
1477 // If the name of the template was qualified, we must be defining the
1478 // template out-of-line.
1479 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1480 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1481 : diag::err_member_decl_does_not_match)
1482 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1483 Invalid = true;
1484 }
1485 }
1486
1487 // If this is a templated friend in a dependent context we should not put it
1488 // on the redecl chain. In some cases, the templated friend can be the most
1489 // recent declaration tricking the template instantiator to make substitutions
1490 // there.
1491 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1492 bool ShouldAddRedecl
1493 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1494
1495 CXXRecordDecl *NewClass =
1496 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1497 PrevClassTemplate && ShouldAddRedecl ?
1498 PrevClassTemplate->getTemplatedDecl() : nullptr,
1499 /*DelayTypeCreation=*/true);
1500 SetNestedNameSpecifier(NewClass, SS);
1501 if (NumOuterTemplateParamLists > 0)
1502 NewClass->setTemplateParameterListsInfo(
1503 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1504 NumOuterTemplateParamLists));
1505
1506 // Add alignment attributes if necessary; these attributes are checked when
1507 // the ASTContext lays out the structure.
1508 if (TUK == TUK_Definition) {
1509 AddAlignmentAttributesForRecord(NewClass);
1510 AddMsStructLayoutForRecord(NewClass);
1511 }
1512
1513 // Attach the associated constraints when the declaration will not be part of
1514 // a decl chain.
1515 Expr *const ACtoAttach =
1516 PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC;
1517
1518 ClassTemplateDecl *NewTemplate
1519 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1520 DeclarationName(Name), TemplateParams,
1521 NewClass, ACtoAttach);
1522
1523 if (ShouldAddRedecl)
1524 NewTemplate->setPreviousDecl(PrevClassTemplate);
1525
1526 NewClass->setDescribedClassTemplate(NewTemplate);
1527
1528 if (ModulePrivateLoc.isValid())
1529 NewTemplate->setModulePrivate();
1530
1531 // Build the type for the class template declaration now.
1532 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1533 T = Context.getInjectedClassNameType(NewClass, T);
1534 assert(T->isDependentType() && "Class template type is not dependent?")(static_cast <bool> (T->isDependentType() &&
"Class template type is not dependent?") ? void (0) : __assert_fail
("T->isDependentType() && \"Class template type is not dependent?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1534, __extension__ __PRETTY_FUNCTION__))
;
1535 (void)T;
1536
1537 // If we are providing an explicit specialization of a member that is a
1538 // class template, make a note of that.
1539 if (PrevClassTemplate &&
1540 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1541 PrevClassTemplate->setMemberSpecialization();
1542
1543 // Set the access specifier.
1544 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1545 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1546
1547 // Set the lexical context of these templates
1548 NewClass->setLexicalDeclContext(CurContext);
1549 NewTemplate->setLexicalDeclContext(CurContext);
1550
1551 if (TUK == TUK_Definition)
1552 NewClass->startDefinition();
1553
1554 if (Attr)
1555 ProcessDeclAttributeList(S, NewClass, Attr);
1556
1557 if (PrevClassTemplate)
1558 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1559
1560 AddPushedVisibilityAttribute(NewClass);
1561
1562 if (TUK != TUK_Friend) {
1563 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1564 Scope *Outer = S;
1565 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1566 Outer = Outer->getParent();
1567 PushOnScopeChains(NewTemplate, Outer);
1568 } else {
1569 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1570 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1571 NewClass->setAccess(PrevClassTemplate->getAccess());
1572 }
1573
1574 NewTemplate->setObjectOfFriendDecl();
1575
1576 // Friend templates are visible in fairly strange ways.
1577 if (!CurContext->isDependentContext()) {
1578 DeclContext *DC = SemanticContext->getRedeclContext();
1579 DC->makeDeclVisibleInContext(NewTemplate);
1580 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1581 PushOnScopeChains(NewTemplate, EnclosingScope,
1582 /* AddToContext = */ false);
1583 }
1584
1585 FriendDecl *Friend = FriendDecl::Create(
1586 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1587 Friend->setAccess(AS_public);
1588 CurContext->addDecl(Friend);
1589 }
1590
1591 if (PrevClassTemplate)
1592 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
1593
1594 if (Invalid) {
1595 NewTemplate->setInvalidDecl();
1596 NewClass->setInvalidDecl();
1597 }
1598
1599 ActOnDocumentableDecl(NewTemplate);
1600
1601 return NewTemplate;
1602}
1603
1604namespace {
1605/// Transform to convert portions of a constructor declaration into the
1606/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1607struct ConvertConstructorToDeductionGuideTransform {
1608 ConvertConstructorToDeductionGuideTransform(Sema &S,
1609 ClassTemplateDecl *Template)
1610 : SemaRef(S), Template(Template) {}
1611
1612 Sema &SemaRef;
1613 ClassTemplateDecl *Template;
1614
1615 DeclContext *DC = Template->getDeclContext();
1616 CXXRecordDecl *Primary = Template->getTemplatedDecl();
1617 DeclarationName DeductionGuideName =
1618 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1619
1620 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1621
1622 // Index adjustment to apply to convert depth-1 template parameters into
1623 // depth-0 template parameters.
1624 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1625
1626 /// Transform a constructor declaration into a deduction guide.
1627 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1628 CXXConstructorDecl *CD) {
1629 SmallVector<TemplateArgument, 16> SubstArgs;
1630
1631 LocalInstantiationScope Scope(SemaRef);
1632
1633 // C++ [over.match.class.deduct]p1:
1634 // -- For each constructor of the class template designated by the
1635 // template-name, a function template with the following properties:
1636
1637 // -- The template parameters are the template parameters of the class
1638 // template followed by the template parameters (including default
1639 // template arguments) of the constructor, if any.
1640 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1641 if (FTD) {
1642 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1643 SmallVector<NamedDecl *, 16> AllParams;
1644 AllParams.reserve(TemplateParams->size() + InnerParams->size());
1645 AllParams.insert(AllParams.begin(),
1646 TemplateParams->begin(), TemplateParams->end());
1647 SubstArgs.reserve(InnerParams->size());
1648
1649 // Later template parameters could refer to earlier ones, so build up
1650 // a list of substituted template arguments as we go.
1651 for (NamedDecl *Param : *InnerParams) {
1652 MultiLevelTemplateArgumentList Args;
1653 Args.addOuterTemplateArguments(SubstArgs);
1654 Args.addOuterRetainedLevel();
1655 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
1656 if (!NewParam)
1657 return nullptr;
1658 AllParams.push_back(NewParam);
1659 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
1660 SemaRef.Context.getInjectedTemplateArg(NewParam)));
1661 }
1662 TemplateParams = TemplateParameterList::Create(
1663 SemaRef.Context, InnerParams->getTemplateLoc(),
1664 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
1665 /*FIXME: RequiresClause*/ nullptr);
1666 }
1667
1668 // If we built a new template-parameter-list, track that we need to
1669 // substitute references to the old parameters into references to the
1670 // new ones.
1671 MultiLevelTemplateArgumentList Args;
1672 if (FTD) {
1673 Args.addOuterTemplateArguments(SubstArgs);
1674 Args.addOuterRetainedLevel();
1675 }
1676
1677 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
1678 .getAsAdjusted<FunctionProtoTypeLoc>();
1679 assert(FPTL && "no prototype for constructor declaration")(static_cast <bool> (FPTL && "no prototype for constructor declaration"
) ? void (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1679, __extension__ __PRETTY_FUNCTION__))
;
1680
1681 // Transform the type of the function, adjusting the return type and
1682 // replacing references to the old parameters with references to the
1683 // new ones.
1684 TypeLocBuilder TLB;
1685 SmallVector<ParmVarDecl*, 8> Params;
1686 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
1687 if (NewType.isNull())
1688 return nullptr;
1689 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
1690
1691 return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo,
1692 CD->getLocStart(), CD->getLocation(),
1693 CD->getLocEnd());
1694 }
1695
1696 /// Build a deduction guide with the specified parameter types.
1697 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
1698 SourceLocation Loc = Template->getLocation();
1699
1700 // Build the requested type.
1701 FunctionProtoType::ExtProtoInfo EPI;
1702 EPI.HasTrailingReturn = true;
1703 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
1704 DeductionGuideName, EPI);
1705 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
1706
1707 FunctionProtoTypeLoc FPTL =
1708 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
1709
1710 // Build the parameters, needed during deduction / substitution.
1711 SmallVector<ParmVarDecl*, 4> Params;
1712 for (auto T : ParamTypes) {
1713 ParmVarDecl *NewParam = ParmVarDecl::Create(
1714 SemaRef.Context, DC, Loc, Loc, nullptr, T,
1715 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
1716 NewParam->setScopeInfo(0, Params.size());
1717 FPTL.setParam(Params.size(), NewParam);
1718 Params.push_back(NewParam);
1719 }
1720
1721 return buildDeductionGuide(Template->getTemplateParameters(), false, TSI,
1722 Loc, Loc, Loc);
1723 }
1724
1725private:
1726 /// Transform a constructor template parameter into a deduction guide template
1727 /// parameter, rebuilding any internal references to earlier parameters and
1728 /// renumbering as we go.
1729 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
1730 MultiLevelTemplateArgumentList &Args) {
1731 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
1732 // TemplateTypeParmDecl's index cannot be changed after creation, so
1733 // substitute it directly.
1734 auto *NewTTP = TemplateTypeParmDecl::Create(
1735 SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(),
1736 /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(),
1737 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
1738 TTP->isParameterPack());
1739 if (TTP->hasDefaultArgument()) {
1740 TypeSourceInfo *InstantiatedDefaultArg =
1741 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
1742 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
1743 if (InstantiatedDefaultArg)
1744 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
1745 }
1746 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
1747 NewTTP);
1748 return NewTTP;
1749 }
1750
1751 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
1752 return transformTemplateParameterImpl(TTP, Args);
1753
1754 return transformTemplateParameterImpl(
1755 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
1756 }
1757 template<typename TemplateParmDecl>
1758 TemplateParmDecl *
1759 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
1760 MultiLevelTemplateArgumentList &Args) {
1761 // Ask the template instantiator to do the heavy lifting for us, then adjust
1762 // the index of the parameter once it's done.
1763 auto *NewParam =
1764 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
1765 assert(NewParam->getDepth() == 0 && "unexpected template param depth")(static_cast <bool> (NewParam->getDepth() == 0 &&
"unexpected template param depth") ? void (0) : __assert_fail
("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1765, __extension__ __PRETTY_FUNCTION__))
;
1766 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
1767 return NewParam;
1768 }
1769
1770 QualType transformFunctionProtoType(TypeLocBuilder &TLB,
1771 FunctionProtoTypeLoc TL,
1772 SmallVectorImpl<ParmVarDecl*> &Params,
1773 MultiLevelTemplateArgumentList &Args) {
1774 SmallVector<QualType, 4> ParamTypes;
1775 const FunctionProtoType *T = TL.getTypePtr();
1776
1777 // -- The types of the function parameters are those of the constructor.
1778 for (auto *OldParam : TL.getParams()) {
1779 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
1780 if (!NewParam)
1781 return QualType();
1782 ParamTypes.push_back(NewParam->getType());
1783 Params.push_back(NewParam);
1784 }
1785
1786 // -- The return type is the class template specialization designated by
1787 // the template-name and template arguments corresponding to the
1788 // template parameters obtained from the class template.
1789 //
1790 // We use the injected-class-name type of the primary template instead.
1791 // This has the convenient property that it is different from any type that
1792 // the user can write in a deduction-guide (because they cannot enter the
1793 // context of the template), so implicit deduction guides can never collide
1794 // with explicit ones.
1795 QualType ReturnType = DeducedType;
1796 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
1797
1798 // Resolving a wording defect, we also inherit the variadicness of the
1799 // constructor.
1800 FunctionProtoType::ExtProtoInfo EPI;
1801 EPI.Variadic = T->isVariadic();
1802 EPI.HasTrailingReturn = true;
1803
1804 QualType Result = SemaRef.BuildFunctionType(
1805 ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI);
1806 if (Result.isNull())
1807 return QualType();
1808
1809 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
1810 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
1811 NewTL.setLParenLoc(TL.getLParenLoc());
1812 NewTL.setRParenLoc(TL.getRParenLoc());
1813 NewTL.setExceptionSpecRange(SourceRange());
1814 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
1815 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
1816 NewTL.setParam(I, Params[I]);
1817
1818 return Result;
1819 }
1820
1821 ParmVarDecl *
1822 transformFunctionTypeParam(ParmVarDecl *OldParam,
1823 MultiLevelTemplateArgumentList &Args) {
1824 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
1825 TypeSourceInfo *NewDI;
1826 if (!Args.getNumLevels())
1827 NewDI = OldDI;
1828 else if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
1829 // Expand out the one and only element in each inner pack.
1830 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
1831 NewDI =
1832 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
1833 OldParam->getLocation(), OldParam->getDeclName());
1834 if (!NewDI) return nullptr;
1835 NewDI =
1836 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
1837 PackTL.getTypePtr()->getNumExpansions());
1838 } else
1839 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
1840 OldParam->getDeclName());
1841 if (!NewDI)
1842 return nullptr;
1843
1844 // Canonicalize the type. This (for instance) replaces references to
1845 // typedef members of the current instantiations with the definitions of
1846 // those typedefs, avoiding triggering instantiation of the deduced type
1847 // during deduction.
1848 // FIXME: It would be preferable to retain type sugar and source
1849 // information here (and handle this in substitution instead).
1850 NewDI = SemaRef.Context.getTrivialTypeSourceInfo(
1851 SemaRef.Context.getCanonicalType(NewDI->getType()),
1852 OldParam->getLocation());
1853
1854 // Resolving a wording defect, we also inherit default arguments from the
1855 // constructor.
1856 ExprResult NewDefArg;
1857 if (OldParam->hasDefaultArg()) {
1858 NewDefArg = Args.getNumLevels()
1859 ? SemaRef.SubstExpr(OldParam->getDefaultArg(), Args)
1860 : OldParam->getDefaultArg();
1861 if (NewDefArg.isInvalid())
1862 return nullptr;
1863 }
1864
1865 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
1866 OldParam->getInnerLocStart(),
1867 OldParam->getLocation(),
1868 OldParam->getIdentifier(),
1869 NewDI->getType(),
1870 NewDI,
1871 OldParam->getStorageClass(),
1872 NewDefArg.get());
1873 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
1874 OldParam->getFunctionScopeIndex());
1875 return NewParam;
1876 }
1877
1878 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
1879 bool Explicit, TypeSourceInfo *TInfo,
1880 SourceLocation LocStart, SourceLocation Loc,
1881 SourceLocation LocEnd) {
1882 DeclarationNameInfo Name(DeductionGuideName, Loc);
1883 ArrayRef<ParmVarDecl *> Params =
1884 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
1885
1886 // Build the implicit deduction guide template.
1887 auto *Guide =
1888 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit,
1889 Name, TInfo->getType(), TInfo, LocEnd);
1890 Guide->setImplicit();
1891 Guide->setParams(Params);
1892
1893 for (auto *Param : Params)
1894 Param->setDeclContext(Guide);
1895
1896 auto *GuideTemplate = FunctionTemplateDecl::Create(
1897 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
1898 GuideTemplate->setImplicit();
1899 Guide->setDescribedFunctionTemplate(GuideTemplate);
1900
1901 if (isa<CXXRecordDecl>(DC)) {
1902 Guide->setAccess(AS_public);
1903 GuideTemplate->setAccess(AS_public);
1904 }
1905
1906 DC->addDecl(GuideTemplate);
1907 return GuideTemplate;
1908 }
1909};
1910}
1911
1912void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
1913 SourceLocation Loc) {
1914 DeclContext *DC = Template->getDeclContext();
1915 if (DC->isDependentContext())
1916 return;
1917
1918 ConvertConstructorToDeductionGuideTransform Transform(
1919 *this, cast<ClassTemplateDecl>(Template));
1920 if (!isCompleteType(Loc, Transform.DeducedType))
1921 return;
1922
1923 // Check whether we've already declared deduction guides for this template.
1924 // FIXME: Consider storing a flag on the template to indicate this.
1925 auto Existing = DC->lookup(Transform.DeductionGuideName);
1926 for (auto *D : Existing)
1927 if (D->isImplicit())
1928 return;
1929
1930 // In case we were expanding a pack when we attempted to declare deduction
1931 // guides, turn off pack expansion for everything we're about to do.
1932 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
1933 // Create a template instantiation record to track the "instantiation" of
1934 // constructors into deduction guides.
1935 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
1936 // this substitution process actually fail?
1937 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
1938
1939 // Convert declared constructors into deduction guide templates.
1940 // FIXME: Skip constructors for which deduction must necessarily fail (those
1941 // for which some class template parameter without a default argument never
1942 // appears in a deduced context).
1943 bool AddedAny = false;
1944 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
1945 D = D->getUnderlyingDecl();
1946 if (D->isInvalidDecl() || D->isImplicit())
1947 continue;
1948 D = cast<NamedDecl>(D->getCanonicalDecl());
1949
1950 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
1951 auto *CD =
1952 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
1953 // Class-scope explicit specializations (MS extension) do not result in
1954 // deduction guides.
1955 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
1956 continue;
1957
1958 Transform.transformConstructor(FTD, CD);
1959 AddedAny = true;
1960 }
1961
1962 // C++17 [over.match.class.deduct]
1963 // -- If C is not defined or does not declare any constructors, an
1964 // additional function template derived as above from a hypothetical
1965 // constructor C().
1966 if (!AddedAny)
1967 Transform.buildSimpleDeductionGuide(None);
1968
1969 // -- An additional function template derived as above from a hypothetical
1970 // constructor C(C), called the copy deduction candidate.
1971 cast<CXXDeductionGuideDecl>(
1972 cast<FunctionTemplateDecl>(
1973 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
1974 ->getTemplatedDecl())
1975 ->setIsCopyDeductionCandidate();
1976}
1977
1978/// \brief Diagnose the presence of a default template argument on a
1979/// template parameter, which is ill-formed in certain contexts.
1980///
1981/// \returns true if the default template argument should be dropped.
1982static bool DiagnoseDefaultTemplateArgument(Sema &S,
1983 Sema::TemplateParamListContext TPC,
1984 SourceLocation ParamLoc,
1985 SourceRange DefArgRange) {
1986 switch (TPC) {
1987 case Sema::TPC_ClassTemplate:
1988 case Sema::TPC_VarTemplate:
1989 case Sema::TPC_TypeAliasTemplate:
1990 return false;
1991
1992 case Sema::TPC_FunctionTemplate:
1993 case Sema::TPC_FriendFunctionTemplateDefinition:
1994 // C++ [temp.param]p9:
1995 // A default template-argument shall not be specified in a
1996 // function template declaration or a function template
1997 // definition [...]
1998 // If a friend function template declaration specifies a default
1999 // template-argument, that declaration shall be a definition and shall be
2000 // the only declaration of the function template in the translation unit.
2001 // (C++98/03 doesn't have this wording; see DR226).
2002 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2003 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2004 : diag::ext_template_parameter_default_in_function_template)
2005 << DefArgRange;
2006 return false;
2007
2008 case Sema::TPC_ClassTemplateMember:
2009 // C++0x [temp.param]p9:
2010 // A default template-argument shall not be specified in the
2011 // template-parameter-lists of the definition of a member of a
2012 // class template that appears outside of the member's class.
2013 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2014 << DefArgRange;
2015 return true;
2016
2017 case Sema::TPC_FriendClassTemplate:
2018 case Sema::TPC_FriendFunctionTemplate:
2019 // C++ [temp.param]p9:
2020 // A default template-argument shall not be specified in a
2021 // friend template declaration.
2022 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2023 << DefArgRange;
2024 return true;
2025
2026 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2027 // for friend function templates if there is only a single
2028 // declaration (and it is a definition). Strange!
2029 }
2030
2031 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2031)
;
2032}
2033
2034/// \brief Check for unexpanded parameter packs within the template parameters
2035/// of a template template parameter, recursively.
2036static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2037 TemplateTemplateParmDecl *TTP) {
2038 // A template template parameter which is a parameter pack is also a pack
2039 // expansion.
2040 if (TTP->isParameterPack())
2041 return false;
2042
2043 TemplateParameterList *Params = TTP->getTemplateParameters();
2044 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2045 NamedDecl *P = Params->getParam(I);
2046 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2047 if (!NTTP->isParameterPack() &&
2048 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2049 NTTP->getTypeSourceInfo(),
2050 Sema::UPPC_NonTypeTemplateParameterType))
2051 return true;
2052
2053 continue;
2054 }
2055
2056 if (TemplateTemplateParmDecl *InnerTTP
2057 = dyn_cast<TemplateTemplateParmDecl>(P))
2058 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2059 return true;
2060 }
2061
2062 return false;
2063}
2064
2065/// \brief Checks the validity of a template parameter list, possibly
2066/// considering the template parameter list from a previous
2067/// declaration.
2068///
2069/// If an "old" template parameter list is provided, it must be
2070/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2071/// template parameter list.
2072///
2073/// \param NewParams Template parameter list for a new template
2074/// declaration. This template parameter list will be updated with any
2075/// default arguments that are carried through from the previous
2076/// template parameter list.
2077///
2078/// \param OldParams If provided, template parameter list from a
2079/// previous declaration of the same template. Default template
2080/// arguments will be merged from the old template parameter list to
2081/// the new template parameter list.
2082///
2083/// \param TPC Describes the context in which we are checking the given
2084/// template parameter list.
2085///
2086/// \returns true if an error occurred, false otherwise.
2087bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2088 TemplateParameterList *OldParams,
2089 TemplateParamListContext TPC) {
2090 bool Invalid = false;
2091
2092 // C++ [temp.param]p10:
2093 // The set of default template-arguments available for use with a
2094 // template declaration or definition is obtained by merging the
2095 // default arguments from the definition (if in scope) and all
2096 // declarations in scope in the same way default function
2097 // arguments are (8.3.6).
2098 bool SawDefaultArgument = false;
2099 SourceLocation PreviousDefaultArgLoc;
2100
2101 // Dummy initialization to avoid warnings.
2102 TemplateParameterList::iterator OldParam = NewParams->end();
2103 if (OldParams)
2104 OldParam = OldParams->begin();
2105
2106 bool RemoveDefaultArguments = false;
2107 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2108 NewParamEnd = NewParams->end();
2109 NewParam != NewParamEnd; ++NewParam) {
2110 // Variables used to diagnose redundant default arguments
2111 bool RedundantDefaultArg = false;
2112 SourceLocation OldDefaultLoc;
2113 SourceLocation NewDefaultLoc;
2114
2115 // Variable used to diagnose missing default arguments
2116 bool MissingDefaultArg = false;
2117
2118 // Variable used to diagnose non-final parameter packs
2119 bool SawParameterPack = false;
2120
2121 if (TemplateTypeParmDecl *NewTypeParm
2122 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2123 // Check the presence of a default argument here.
2124 if (NewTypeParm->hasDefaultArgument() &&
2125 DiagnoseDefaultTemplateArgument(*this, TPC,
2126 NewTypeParm->getLocation(),
2127 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2128 .getSourceRange()))
2129 NewTypeParm->removeDefaultArgument();
2130
2131 // Merge default arguments for template type parameters.
2132 TemplateTypeParmDecl *OldTypeParm
2133 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2134 if (NewTypeParm->isParameterPack()) {
2135 assert(!NewTypeParm->hasDefaultArgument() &&(static_cast <bool> (!NewTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2136, __extension__ __PRETTY_FUNCTION__))
2136 "Parameter packs can't have a default argument!")(static_cast <bool> (!NewTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2136, __extension__ __PRETTY_FUNCTION__))
;
2137 SawParameterPack = true;
2138 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2139 NewTypeParm->hasDefaultArgument()) {
2140 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2141 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2142 SawDefaultArgument = true;
2143 RedundantDefaultArg = true;
2144 PreviousDefaultArgLoc = NewDefaultLoc;
2145 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2146 // Merge the default argument from the old declaration to the
2147 // new declaration.
2148 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2149 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2150 } else if (NewTypeParm->hasDefaultArgument()) {
2151 SawDefaultArgument = true;
2152 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2153 } else if (SawDefaultArgument)
2154 MissingDefaultArg = true;
2155 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2156 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2157 // Check for unexpanded parameter packs.
2158 if (!NewNonTypeParm->isParameterPack() &&
2159 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2160 NewNonTypeParm->getTypeSourceInfo(),
2161 UPPC_NonTypeTemplateParameterType)) {
2162 Invalid = true;
2163 continue;
2164 }
2165
2166 // Check the presence of a default argument here.
2167 if (NewNonTypeParm->hasDefaultArgument() &&
2168 DiagnoseDefaultTemplateArgument(*this, TPC,
2169 NewNonTypeParm->getLocation(),
2170 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2171 NewNonTypeParm->removeDefaultArgument();
2172 }
2173
2174 // Merge default arguments for non-type template parameters
2175 NonTypeTemplateParmDecl *OldNonTypeParm
2176 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2177 if (NewNonTypeParm->isParameterPack()) {
2178 assert(!NewNonTypeParm->hasDefaultArgument() &&(static_cast <bool> (!NewNonTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2179, __extension__ __PRETTY_FUNCTION__))
2179 "Parameter packs can't have a default argument!")(static_cast <bool> (!NewNonTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2179, __extension__ __PRETTY_FUNCTION__))
;
2180 if (!NewNonTypeParm->isPackExpansion())
2181 SawParameterPack = true;
2182 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2183 NewNonTypeParm->hasDefaultArgument()) {
2184 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2185 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2186 SawDefaultArgument = true;
2187 RedundantDefaultArg = true;
2188 PreviousDefaultArgLoc = NewDefaultLoc;
2189 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2190 // Merge the default argument from the old declaration to the
2191 // new declaration.
2192 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2193 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2194 } else if (NewNonTypeParm->hasDefaultArgument()) {
2195 SawDefaultArgument = true;
2196 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2197 } else if (SawDefaultArgument)
2198 MissingDefaultArg = true;
2199 } else {
2200 TemplateTemplateParmDecl *NewTemplateParm
2201 = cast<TemplateTemplateParmDecl>(*NewParam);
2202
2203 // Check for unexpanded parameter packs, recursively.
2204 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2205 Invalid = true;
2206 continue;
2207 }
2208
2209 // Check the presence of a default argument here.
2210 if (NewTemplateParm->hasDefaultArgument() &&
2211 DiagnoseDefaultTemplateArgument(*this, TPC,
2212 NewTemplateParm->getLocation(),
2213 NewTemplateParm->getDefaultArgument().getSourceRange()))
2214 NewTemplateParm->removeDefaultArgument();
2215
2216 // Merge default arguments for template template parameters
2217 TemplateTemplateParmDecl *OldTemplateParm
2218 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2219 if (NewTemplateParm->isParameterPack()) {
2220 assert(!NewTemplateParm->hasDefaultArgument() &&(static_cast <bool> (!NewTemplateParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2221, __extension__ __PRETTY_FUNCTION__))
2221 "Parameter packs can't have a default argument!")(static_cast <bool> (!NewTemplateParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2221, __extension__ __PRETTY_FUNCTION__))
;
2222 if (!NewTemplateParm->isPackExpansion())
2223 SawParameterPack = true;
2224 } else if (OldTemplateParm &&
2225 hasVisibleDefaultArgument(OldTemplateParm) &&
2226 NewTemplateParm->hasDefaultArgument()) {
2227 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2228 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2229 SawDefaultArgument = true;
2230 RedundantDefaultArg = true;
2231 PreviousDefaultArgLoc = NewDefaultLoc;
2232 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2233 // Merge the default argument from the old declaration to the
2234 // new declaration.
2235 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2236 PreviousDefaultArgLoc
2237 = OldTemplateParm->getDefaultArgument().getLocation();
2238 } else if (NewTemplateParm->hasDefaultArgument()) {
2239 SawDefaultArgument = true;
2240 PreviousDefaultArgLoc
2241 = NewTemplateParm->getDefaultArgument().getLocation();
2242 } else if (SawDefaultArgument)
2243 MissingDefaultArg = true;
2244 }
2245
2246 // C++11 [temp.param]p11:
2247 // If a template parameter of a primary class template or alias template
2248 // is a template parameter pack, it shall be the last template parameter.
2249 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2250 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2251 TPC == TPC_TypeAliasTemplate)) {
2252 Diag((*NewParam)->getLocation(),
2253 diag::err_template_param_pack_must_be_last_template_parameter);
2254 Invalid = true;
2255 }
2256
2257 if (RedundantDefaultArg) {
2258 // C++ [temp.param]p12:
2259 // A template-parameter shall not be given default arguments
2260 // by two different declarations in the same scope.
2261 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2262 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2263 Invalid = true;
2264 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2265 // C++ [temp.param]p11:
2266 // If a template-parameter of a class template has a default
2267 // template-argument, each subsequent template-parameter shall either
2268 // have a default template-argument supplied or be a template parameter
2269 // pack.
2270 Diag((*NewParam)->getLocation(),
2271 diag::err_template_param_default_arg_missing);
2272 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2273 Invalid = true;
2274 RemoveDefaultArguments = true;
2275 }
2276
2277 // If we have an old template parameter list that we're merging
2278 // in, move on to the next parameter.
2279 if (OldParams)
2280 ++OldParam;
2281 }
2282
2283 // We were missing some default arguments at the end of the list, so remove
2284 // all of the default arguments.
2285 if (RemoveDefaultArguments) {
2286 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2287 NewParamEnd = NewParams->end();
2288 NewParam != NewParamEnd; ++NewParam) {
2289 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2290 TTP->removeDefaultArgument();
2291 else if (NonTypeTemplateParmDecl *NTTP
2292 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2293 NTTP->removeDefaultArgument();
2294 else
2295 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2296 }
2297 }
2298
2299 return Invalid;
2300}
2301
2302namespace {
2303
2304/// A class which looks for a use of a certain level of template
2305/// parameter.
2306struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2307 typedef RecursiveASTVisitor<DependencyChecker> super;
2308
2309 unsigned Depth;
2310
2311 // Whether we're looking for a use of a template parameter that makes the
2312 // overall construct type-dependent / a dependent type. This is strictly
2313 // best-effort for now; we may fail to match at all for a dependent type
2314 // in some cases if this is set.
2315 bool IgnoreNonTypeDependent;
2316
2317 bool Match;
2318 SourceLocation MatchLoc;
2319
2320 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2321 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2322 Match(false) {}
2323
2324 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2325 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2326 NamedDecl *ND = Params->getParam(0);
2327 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2328 Depth = PD->getDepth();
2329 } else if (NonTypeTemplateParmDecl *PD =
2330 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2331 Depth = PD->getDepth();
2332 } else {
2333 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2334 }
2335 }
2336
2337 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2338 if (ParmDepth >= Depth) {
2339 Match = true;
2340 MatchLoc = Loc;
2341 return true;
2342 }
2343 return false;
2344 }
2345
2346 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2347 // Prune out non-type-dependent expressions if requested. This can
2348 // sometimes result in us failing to find a template parameter reference
2349 // (if a value-dependent expression creates a dependent type), but this
2350 // mode is best-effort only.
2351 if (auto *E = dyn_cast_or_null<Expr>(S))
2352 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2353 return true;
2354 return super::TraverseStmt(S, Q);
2355 }
2356
2357 bool TraverseTypeLoc(TypeLoc TL) {
2358 if (IgnoreNonTypeDependent && !TL.isNull() &&
2359 !TL.getType()->isDependentType())
2360 return true;
2361 return super::TraverseTypeLoc(TL);
2362 }
2363
2364 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2365 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2366 }
2367
2368 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2369 // For a best-effort search, keep looking until we find a location.
2370 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2371 }
2372
2373 bool TraverseTemplateName(TemplateName N) {
2374 if (TemplateTemplateParmDecl *PD =
2375 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2376 if (Matches(PD->getDepth()))
2377 return false;
2378 return super::TraverseTemplateName(N);
2379 }
2380
2381 bool VisitDeclRefExpr(DeclRefExpr *E) {
2382 if (NonTypeTemplateParmDecl *PD =
2383 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2384 if (Matches(PD->getDepth(), E->getExprLoc()))
2385 return false;
2386 return super::VisitDeclRefExpr(E);
2387 }
2388
2389 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2390 return TraverseType(T->getReplacementType());
2391 }
2392
2393 bool
2394 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2395 return TraverseTemplateArgument(T->getArgumentPack());
2396 }
2397
2398 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2399 return TraverseType(T->getInjectedSpecializationType());
2400 }
2401};
2402} // end anonymous namespace
2403
2404/// Determines whether a given type depends on the given parameter
2405/// list.
2406static bool
2407DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2408 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2409 Checker.TraverseType(T);
2410 return Checker.Match;
2411}
2412
2413// Find the source range corresponding to the named type in the given
2414// nested-name-specifier, if any.
2415static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2416 QualType T,
2417 const CXXScopeSpec &SS) {
2418 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2419 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2420 if (const Type *CurType = NNS->getAsType()) {
2421 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2422 return NNSLoc.getTypeLoc().getSourceRange();
2423 } else
2424 break;
2425
2426 NNSLoc = NNSLoc.getPrefix();
2427 }
2428
2429 return SourceRange();
2430}
2431
2432/// \brief Match the given template parameter lists to the given scope
2433/// specifier, returning the template parameter list that applies to the
2434/// name.
2435///
2436/// \param DeclStartLoc the start of the declaration that has a scope
2437/// specifier or a template parameter list.
2438///
2439/// \param DeclLoc The location of the declaration itself.
2440///
2441/// \param SS the scope specifier that will be matched to the given template
2442/// parameter lists. This scope specifier precedes a qualified name that is
2443/// being declared.
2444///
2445/// \param TemplateId The template-id following the scope specifier, if there
2446/// is one. Used to check for a missing 'template<>'.
2447///
2448/// \param ParamLists the template parameter lists, from the outermost to the
2449/// innermost template parameter lists.
2450///
2451/// \param IsFriend Whether to apply the slightly different rules for
2452/// matching template parameters to scope specifiers in friend
2453/// declarations.
2454///
2455/// \param IsMemberSpecialization will be set true if the scope specifier
2456/// denotes a fully-specialized type, and therefore this is a declaration of
2457/// a member specialization.
2458///
2459/// \returns the template parameter list, if any, that corresponds to the
2460/// name that is preceded by the scope specifier @p SS. This template
2461/// parameter list may have template parameters (if we're declaring a
2462/// template) or may have no template parameters (if we're declaring a
2463/// template specialization), or may be NULL (if what we're declaring isn't
2464/// itself a template).
2465TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2466 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2467 TemplateIdAnnotation *TemplateId,
2468 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2469 bool &IsMemberSpecialization, bool &Invalid) {
2470 IsMemberSpecialization = false;
2471 Invalid = false;
2472
2473 // The sequence of nested types to which we will match up the template
2474 // parameter lists. We first build this list by starting with the type named
2475 // by the nested-name-specifier and walking out until we run out of types.
2476 SmallVector<QualType, 4> NestedTypes;
2477 QualType T;
2478 if (SS.getScopeRep()) {
2479 if (CXXRecordDecl *Record
2480 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2481 T = Context.getTypeDeclType(Record);
2482 else
2483 T = QualType(SS.getScopeRep()->getAsType(), 0);
2484 }
2485
2486 // If we found an explicit specialization that prevents us from needing
2487 // 'template<>' headers, this will be set to the location of that
2488 // explicit specialization.
2489 SourceLocation ExplicitSpecLoc;
2490
2491 while (!T.isNull()) {
2492 NestedTypes.push_back(T);
2493
2494 // Retrieve the parent of a record type.
2495 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2496 // If this type is an explicit specialization, we're done.
2497 if (ClassTemplateSpecializationDecl *Spec
2498 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2499 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2500 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2501 ExplicitSpecLoc = Spec->getLocation();
2502 break;
2503 }
2504 } else if (Record->getTemplateSpecializationKind()
2505 == TSK_ExplicitSpecialization) {
2506 ExplicitSpecLoc = Record->getLocation();
2507 break;
2508 }
2509
2510 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2511 T = Context.getTypeDeclType(Parent);
2512 else
2513 T = QualType();
2514 continue;
2515 }
2516
2517 if (const TemplateSpecializationType *TST
2518 = T->getAs<TemplateSpecializationType>()) {
2519 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2520 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2521 T = Context.getTypeDeclType(Parent);
2522 else
2523 T = QualType();
2524 continue;
2525 }
2526 }
2527
2528 // Look one step prior in a dependent template specialization type.
2529 if (const DependentTemplateSpecializationType *DependentTST
2530 = T->getAs<DependentTemplateSpecializationType>()) {
2531 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2532 T = QualType(NNS->getAsType(), 0);
2533 else
2534 T = QualType();
2535 continue;
2536 }
2537
2538 // Look one step prior in a dependent name type.
2539 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2540 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2541 T = QualType(NNS->getAsType(), 0);
2542 else
2543 T = QualType();
2544 continue;
2545 }
2546
2547 // Retrieve the parent of an enumeration type.
2548 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2549 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2550 // check here.
2551 EnumDecl *Enum = EnumT->getDecl();
2552
2553 // Get to the parent type.
2554 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2555 T = Context.getTypeDeclType(Parent);
2556 else
2557 T = QualType();
2558 continue;
2559 }
2560
2561 T = QualType();
2562 }
2563 // Reverse the nested types list, since we want to traverse from the outermost
2564 // to the innermost while checking template-parameter-lists.
2565 std::reverse(NestedTypes.begin(), NestedTypes.end());
2566
2567 // C++0x [temp.expl.spec]p17:
2568 // A member or a member template may be nested within many
2569 // enclosing class templates. In an explicit specialization for
2570 // such a member, the member declaration shall be preceded by a
2571 // template<> for each enclosing class template that is
2572 // explicitly specialized.
2573 bool SawNonEmptyTemplateParameterList = false;
2574
2575 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2576 if (SawNonEmptyTemplateParameterList) {
2577 Diag(DeclLoc, diag::err_specialize_member_of_template)
2578 << !Recovery << Range;
2579 Invalid = true;
2580 IsMemberSpecialization = false;
2581 return true;
2582 }
2583
2584 return false;
2585 };
2586
2587 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2588 // Check that we can have an explicit specialization here.
2589 if (CheckExplicitSpecialization(Range, true))
2590 return true;
2591
2592 // We don't have a template header, but we should.
2593 SourceLocation ExpectedTemplateLoc;
2594 if (!ParamLists.empty())
2595 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2596 else
2597 ExpectedTemplateLoc = DeclStartLoc;
2598
2599 Diag(DeclLoc, diag::err_template_spec_needs_header)
2600 << Range
2601 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2602 return false;
2603 };
2604
2605 unsigned ParamIdx = 0;
2606 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2607 ++TypeIdx) {
2608 T = NestedTypes[TypeIdx];
2609
2610 // Whether we expect a 'template<>' header.
2611 bool NeedEmptyTemplateHeader = false;
2612
2613 // Whether we expect a template header with parameters.
2614 bool NeedNonemptyTemplateHeader = false;
2615
2616 // For a dependent type, the set of template parameters that we
2617 // expect to see.
2618 TemplateParameterList *ExpectedTemplateParams = nullptr;
2619
2620 // C++0x [temp.expl.spec]p15:
2621 // A member or a member template may be nested within many enclosing
2622 // class templates. In an explicit specialization for such a member, the
2623 // member declaration shall be preceded by a template<> for each
2624 // enclosing class template that is explicitly specialized.
2625 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2626 if (ClassTemplatePartialSpecializationDecl *Partial
2627 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2628 ExpectedTemplateParams = Partial->getTemplateParameters();
2629 NeedNonemptyTemplateHeader = true;
2630 } else if (Record->isDependentType()) {
2631 if (Record->getDescribedClassTemplate()) {
2632 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2633 ->getTemplateParameters();
2634 NeedNonemptyTemplateHeader = true;
2635 }
2636 } else if (ClassTemplateSpecializationDecl *Spec
2637 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2638 // C++0x [temp.expl.spec]p4:
2639 // Members of an explicitly specialized class template are defined
2640 // in the same manner as members of normal classes, and not using
2641 // the template<> syntax.
2642 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2643 NeedEmptyTemplateHeader = true;
2644 else
2645 continue;
2646 } else if (Record->getTemplateSpecializationKind()) {
2647 if (Record->getTemplateSpecializationKind()
2648 != TSK_ExplicitSpecialization &&
2649 TypeIdx == NumTypes - 1)
2650 IsMemberSpecialization = true;
2651
2652 continue;
2653 }
2654 } else if (const TemplateSpecializationType *TST
2655 = T->getAs<TemplateSpecializationType>()) {
2656 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2657 ExpectedTemplateParams = Template->getTemplateParameters();
2658 NeedNonemptyTemplateHeader = true;
2659 }
2660 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2661 // FIXME: We actually could/should check the template arguments here
2662 // against the corresponding template parameter list.
2663 NeedNonemptyTemplateHeader = false;
2664 }
2665
2666 // C++ [temp.expl.spec]p16:
2667 // In an explicit specialization declaration for a member of a class
2668 // template or a member template that ap- pears in namespace scope, the
2669 // member template and some of its enclosing class templates may remain
2670 // unspecialized, except that the declaration shall not explicitly
2671 // specialize a class member template if its en- closing class templates
2672 // are not explicitly specialized as well.
2673 if (ParamIdx < ParamLists.size()) {
2674 if (ParamLists[ParamIdx]->size() == 0) {
2675 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2676 false))
2677 return nullptr;
2678 } else
2679 SawNonEmptyTemplateParameterList = true;
2680 }
2681
2682 if (NeedEmptyTemplateHeader) {
2683 // If we're on the last of the types, and we need a 'template<>' header
2684 // here, then it's a member specialization.
2685 if (TypeIdx == NumTypes - 1)
2686 IsMemberSpecialization = true;
2687
2688 if (ParamIdx < ParamLists.size()) {
2689 if (ParamLists[ParamIdx]->size() > 0) {
2690 // The header has template parameters when it shouldn't. Complain.
2691 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2692 diag::err_template_param_list_matches_nontemplate)
2693 << T
2694 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2695 ParamLists[ParamIdx]->getRAngleLoc())
2696 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2697 Invalid = true;
2698 return nullptr;
2699 }
2700
2701 // Consume this template header.
2702 ++ParamIdx;
2703 continue;
2704 }
2705
2706 if (!IsFriend)
2707 if (DiagnoseMissingExplicitSpecialization(
2708 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2709 return nullptr;
2710
2711 continue;
2712 }
2713
2714 if (NeedNonemptyTemplateHeader) {
2715 // In friend declarations we can have template-ids which don't
2716 // depend on the corresponding template parameter lists. But
2717 // assume that empty parameter lists are supposed to match this
2718 // template-id.
2719 if (IsFriend && T->isDependentType()) {
2720 if (ParamIdx < ParamLists.size() &&
2721 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2722 ExpectedTemplateParams = nullptr;
2723 else
2724 continue;
2725 }
2726
2727 if (ParamIdx < ParamLists.size()) {
2728 // Check the template parameter list, if we can.
2729 if (ExpectedTemplateParams &&
2730 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2731 ExpectedTemplateParams,
2732 true, TPL_TemplateMatch))
2733 Invalid = true;
2734
2735 if (!Invalid &&
2736 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2737 TPC_ClassTemplateMember))
2738 Invalid = true;
2739
2740 ++ParamIdx;
2741 continue;
2742 }
2743
2744 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2745 << T
2746 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2747 Invalid = true;
2748 continue;
2749 }
2750 }
2751
2752 // If there were at least as many template-ids as there were template
2753 // parameter lists, then there are no template parameter lists remaining for
2754 // the declaration itself.
2755 if (ParamIdx >= ParamLists.size()) {
2756 if (TemplateId && !IsFriend) {
2757 // We don't have a template header for the declaration itself, but we
2758 // should.
2759 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2760 TemplateId->RAngleLoc));
2761
2762 // Fabricate an empty template parameter list for the invented header.
2763 return TemplateParameterList::Create(Context, SourceLocation(),
2764 SourceLocation(), None,
2765 SourceLocation(), nullptr);
2766 }
2767
2768 return nullptr;
2769 }
2770
2771 // If there were too many template parameter lists, complain about that now.
2772 if (ParamIdx < ParamLists.size() - 1) {
2773 bool HasAnyExplicitSpecHeader = false;
2774 bool AllExplicitSpecHeaders = true;
2775 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2776 if (ParamLists[I]->size() == 0)
2777 HasAnyExplicitSpecHeader = true;
2778 else
2779 AllExplicitSpecHeaders = false;
2780 }
2781
2782 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2783 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2784 : diag::err_template_spec_extra_headers)
2785 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2786 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2787
2788 // If there was a specialization somewhere, such that 'template<>' is
2789 // not required, and there were any 'template<>' headers, note where the
2790 // specialization occurred.
2791 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2792 Diag(ExplicitSpecLoc,
2793 diag::note_explicit_template_spec_does_not_need_header)
2794 << NestedTypes.back();
2795
2796 // We have a template parameter list with no corresponding scope, which
2797 // means that the resulting template declaration can't be instantiated
2798 // properly (we'll end up with dependent nodes when we shouldn't).
2799 if (!AllExplicitSpecHeaders)
2800 Invalid = true;
2801 }
2802
2803 // C++ [temp.expl.spec]p16:
2804 // In an explicit specialization declaration for a member of a class
2805 // template or a member template that ap- pears in namespace scope, the
2806 // member template and some of its enclosing class templates may remain
2807 // unspecialized, except that the declaration shall not explicitly
2808 // specialize a class member template if its en- closing class templates
2809 // are not explicitly specialized as well.
2810 if (ParamLists.back()->size() == 0 &&
2811 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2812 false))
2813 return nullptr;
2814
2815 // Return the last template parameter list, which corresponds to the
2816 // entity being declared.
2817 return ParamLists.back();
2818}
2819
2820void Sema::NoteAllFoundTemplates(TemplateName Name) {
2821 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2822 Diag(Template->getLocation(), diag::note_template_declared_here)
2823 << (isa<FunctionTemplateDecl>(Template)
2824 ? 0
2825 : isa<ClassTemplateDecl>(Template)
2826 ? 1
2827 : isa<VarTemplateDecl>(Template)
2828 ? 2
2829 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2830 << Template->getDeclName();
2831 return;
2832 }
2833
2834 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2835 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2836 IEnd = OST->end();
2837 I != IEnd; ++I)
2838 Diag((*I)->getLocation(), diag::note_template_declared_here)
2839 << 0 << (*I)->getDeclName();
2840
2841 return;
2842 }
2843}
2844
2845static QualType
2846checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2847 const SmallVectorImpl<TemplateArgument> &Converted,
2848 SourceLocation TemplateLoc,
2849 TemplateArgumentListInfo &TemplateArgs) {
2850 ASTContext &Context = SemaRef.getASTContext();
2851 switch (BTD->getBuiltinTemplateKind()) {
2852 case BTK__make_integer_seq: {
2853 // Specializations of __make_integer_seq<S, T, N> are treated like
2854 // S<T, 0, ..., N-1>.
2855
2856 // C++14 [inteseq.intseq]p1:
2857 // T shall be an integer type.
2858 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2859 SemaRef.Diag(TemplateArgs[1].getLocation(),
2860 diag::err_integer_sequence_integral_element_type);
2861 return QualType();
2862 }
2863
2864 // C++14 [inteseq.make]p1:
2865 // If N is negative the program is ill-formed.
2866 TemplateArgument NumArgsArg = Converted[2];
2867 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2868 if (NumArgs < 0) {
2869 SemaRef.Diag(TemplateArgs[2].getLocation(),
2870 diag::err_integer_sequence_negative_length);
2871 return QualType();
2872 }
2873
2874 QualType ArgTy = NumArgsArg.getIntegralType();
2875 TemplateArgumentListInfo SyntheticTemplateArgs;
2876 // The type argument gets reused as the first template argument in the
2877 // synthetic template argument list.
2878 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2879 // Expand N into 0 ... N-1.
2880 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2881 I < NumArgs; ++I) {
2882 TemplateArgument TA(Context, I, ArgTy);
2883 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
2884 TA, ArgTy, TemplateArgs[2].getLocation()));
2885 }
2886 // The first template argument will be reused as the template decl that
2887 // our synthetic template arguments will be applied to.
2888 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2889 TemplateLoc, SyntheticTemplateArgs);
2890 }
2891
2892 case BTK__type_pack_element:
2893 // Specializations of
2894 // __type_pack_element<Index, T_1, ..., T_N>
2895 // are treated like T_Index.
2896 assert(Converted.size() == 2 &&(static_cast <bool> (Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? void (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2897, __extension__ __PRETTY_FUNCTION__))
2897 "__type_pack_element should be given an index and a parameter pack")(static_cast <bool> (Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? void (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2897, __extension__ __PRETTY_FUNCTION__))
;
2898
2899 // If the Index is out of bounds, the program is ill-formed.
2900 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
2901 llvm::APSInt Index = IndexArg.getAsIntegral();
2902 assert(Index >= 0 && "the index used with __type_pack_element should be of "(static_cast <bool> (Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? void (0) : __assert_fail
("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2903, __extension__ __PRETTY_FUNCTION__))
2903 "type std::size_t, and hence be non-negative")(static_cast <bool> (Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? void (0) : __assert_fail
("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2903, __extension__ __PRETTY_FUNCTION__))
;
2904 if (Index >= Ts.pack_size()) {
2905 SemaRef.Diag(TemplateArgs[0].getLocation(),
2906 diag::err_type_pack_element_out_of_bounds);
2907 return QualType();
2908 }
2909
2910 // We simply return the type at index `Index`.
2911 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
2912 return Nth->getAsType();
2913 }
2914 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2914)
;
2915}
2916
2917/// Determine whether this alias template is "enable_if_t".
2918static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
2919 return AliasTemplate->getName().equals("enable_if_t");
2920}
2921
2922/// Collect all of the separable terms in the given condition, which
2923/// might be a conjunction.
2924///
2925/// FIXME: The right answer is to convert the logical expression into
2926/// disjunctive normal form, so we can find the first failed term
2927/// within each possible clause.
2928static void collectConjunctionTerms(Expr *Clause,
2929 SmallVectorImpl<Expr *> &Terms) {
2930 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
2931 if (BinOp->getOpcode() == BO_LAnd) {
2932 collectConjunctionTerms(BinOp->getLHS(), Terms);
2933 collectConjunctionTerms(BinOp->getRHS(), Terms);
2934 }
2935
2936 return;
2937 }
2938
2939 Terms.push_back(Clause);
2940}
2941
2942// The ranges-v3 library uses an odd pattern of a top-level "||" with
2943// a left-hand side that is value-dependent but never true. Identify
2944// the idiom and ignore that term.
2945static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
2946 // Top-level '||'.
2947 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
2948 if (!BinOp) return Cond;
2949
2950 if (BinOp->getOpcode() != BO_LOr) return Cond;
2951
2952 // With an inner '==' that has a literal on the right-hand side.
2953 Expr *LHS = BinOp->getLHS();
2954 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
2955 if (!InnerBinOp) return Cond;
2956
2957 if (InnerBinOp->getOpcode() != BO_EQ ||
2958 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
2959 return Cond;
2960
2961 // If the inner binary operation came from a macro expansion named
2962 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
2963 // of the '||', which is the real, user-provided condition.
2964 SourceLocation Loc = InnerBinOp->getExprLoc();
2965 if (!Loc.isMacroID()) return Cond;
2966
2967 StringRef MacroName = PP.getImmediateMacroName(Loc);
2968 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
2969 return BinOp->getRHS();
2970
2971 return Cond;
2972}
2973
2974std::pair<Expr *, std::string>
2975Sema::findFailedBooleanCondition(Expr *Cond, bool AllowTopLevelCond) {
2976 Cond = lookThroughRangesV3Condition(PP, Cond);
2977
2978 // Separate out all of the terms in a conjunction.
2979 SmallVector<Expr *, 4> Terms;
2980 collectConjunctionTerms(Cond, Terms);
2981
2982 // Determine which term failed.
2983 Expr *FailedCond = nullptr;
2984 for (Expr *Term : Terms) {
2985 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
2986
2987 // Literals are uninteresting.
2988 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
2989 isa<IntegerLiteral>(TermAsWritten))
2990 continue;
2991
2992 // The initialization of the parameter from the argument is
2993 // a constant-evaluated context.
2994 EnterExpressionEvaluationContext ConstantEvaluated(
2995 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
2996
2997 bool Succeeded;
2998 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
2999 !Succeeded) {
3000 FailedCond = TermAsWritten;
3001 break;
3002 }
3003 }
3004
3005 if (!FailedCond) {
3006 if (!AllowTopLevelCond)
3007 return { nullptr, "" };
3008
3009 FailedCond = Cond->IgnoreParenImpCasts();
3010 }
3011
3012 std::string Description;
3013 {
3014 llvm::raw_string_ostream Out(Description);
3015 FailedCond->printPretty(Out, nullptr, getPrintingPolicy());
3016 }
3017 return { FailedCond, Description };
3018}
3019
3020QualType Sema::CheckTemplateIdType(TemplateName Name,
3021 SourceLocation TemplateLoc,
3022 TemplateArgumentListInfo &TemplateArgs) {
3023 DependentTemplateName *DTN
3024 = Name.getUnderlying().getAsDependentTemplateName();
3025 if (DTN && DTN->isIdentifier())
3026 // When building a template-id where the template-name is dependent,
3027 // assume the template is a type template. Either our assumption is
3028 // correct, or the code is ill-formed and will be diagnosed when the
3029 // dependent name is substituted.
3030 return Context.getDependentTemplateSpecializationType(ETK_None,
3031 DTN->getQualifier(),
3032 DTN->getIdentifier(),
3033 TemplateArgs);
3034
3035 TemplateDecl *Template = Name.getAsTemplateDecl();
3036 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3037 isa<VarTemplateDecl>(Template)) {
3038 // We might have a substituted template template parameter pack. If so,
3039 // build a template specialization type for it.
3040 if (Name.getAsSubstTemplateTemplateParmPack())
3041 return Context.getTemplateSpecializationType(Name, TemplateArgs);
3042
3043 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3044 << Name;
3045 NoteAllFoundTemplates(Name);
3046 return QualType();
3047 }
3048
3049 // Check that the template argument list is well-formed for this
3050 // template.
3051 SmallVector<TemplateArgument, 4> Converted;
3052 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3053 false, Converted))
3054 return QualType();
3055
3056 QualType CanonType;
3057
3058 bool InstantiationDependent = false;
3059 if (TypeAliasTemplateDecl *AliasTemplate =
3060 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3061 // Find the canonical type for this type alias template specialization.
3062 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3063 if (Pattern->isInvalidDecl())
3064 return QualType();
3065
3066 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3067 Converted);
3068
3069 // Only substitute for the innermost template argument list.
3070 MultiLevelTemplateArgumentList TemplateArgLists;
3071 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3072 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
3073 for (unsigned I = 0; I < Depth; ++I)
3074 TemplateArgLists.addOuterTemplateArguments(None);
3075
3076 LocalInstantiationScope Scope(*this);
3077 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3078 if (Inst.isInvalid())
3079 return QualType();
3080
3081 CanonType = SubstType(Pattern->getUnderlyingType(),
3082 TemplateArgLists, AliasTemplate->getLocation(),
3083 AliasTemplate->getDeclName());
3084 if (CanonType.isNull()) {
3085 // If this was enable_if and we failed to find the nested type
3086 // within enable_if in a SFINAE context, dig out the specific
3087 // enable_if condition that failed and present that instead.
3088 if (isEnableIfAliasTemplate(AliasTemplate)) {
3089 if (auto DeductionInfo = isSFINAEContext()) {
3090 if (*DeductionInfo &&
3091 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3092 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3093 diag::err_typename_nested_not_found_enable_if &&
3094 TemplateArgs[0].getArgument().getKind()
3095 == TemplateArgument::Expression) {
3096 Expr *FailedCond;
3097 std::string FailedDescription;
3098 std::tie(FailedCond, FailedDescription) =
3099 findFailedBooleanCondition(
3100 TemplateArgs[0].getSourceExpression(),
3101 /*AllowTopLevelCond=*/true);
3102
3103 // Remove the old SFINAE diagnostic.
3104 PartialDiagnosticAt OldDiag =
3105 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3106 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3107
3108 // Add a new SFINAE diagnostic specifying which condition
3109 // failed.
3110 (*DeductionInfo)->addSFINAEDiagnostic(
3111 OldDiag.first,
3112 PDiag(diag::err_typename_nested_not_found_requirement)
3113 << FailedDescription
3114 << FailedCond->getSourceRange());
3115 }
3116 }
3117 }
3118
3119 return QualType();
3120 }
3121 } else if (Name.isDependent() ||
3122 TemplateSpecializationType::anyDependentTemplateArguments(
3123 TemplateArgs, InstantiationDependent)) {
3124 // This class template specialization is a dependent
3125 // type. Therefore, its canonical type is another class template
3126 // specialization type that contains all of the converted
3127 // arguments in canonical form. This ensures that, e.g., A<T> and
3128 // A<T, T> have identical types when A is declared as:
3129 //
3130 // template<typename T, typename U = T> struct A;
3131 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3132
3133 // This might work out to be a current instantiation, in which
3134 // case the canonical type needs to be the InjectedClassNameType.
3135 //
3136 // TODO: in theory this could be a simple hashtable lookup; most
3137 // changes to CurContext don't change the set of current
3138 // instantiations.
3139 if (isa<ClassTemplateDecl>(Template)) {
3140 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3141 // If we get out to a namespace, we're done.
3142 if (Ctx->isFileContext()) break;
3143
3144 // If this isn't a record, keep looking.
3145 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3146 if (!Record) continue;
3147
3148 // Look for one of the two cases with InjectedClassNameTypes
3149 // and check whether it's the same template.
3150 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3151 !Record->getDescribedClassTemplate())
3152 continue;
3153
3154 // Fetch the injected class name type and check whether its
3155 // injected type is equal to the type we just built.
3156 QualType ICNT = Context.getTypeDeclType(Record);
3157 QualType Injected = cast<InjectedClassNameType>(ICNT)
3158 ->getInjectedSpecializationType();
3159
3160 if (CanonType != Injected->getCanonicalTypeInternal())
3161 continue;
3162
3163 // If so, the canonical type of this TST is the injected
3164 // class name type of the record we just found.
3165 assert(ICNT.isCanonical())(static_cast <bool> (ICNT.isCanonical()) ? void (0) : __assert_fail
("ICNT.isCanonical()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3165, __extension__ __PRETTY_FUNCTION__))
;
3166 CanonType = ICNT;
3167 break;
3168 }
3169 }
3170 } else if (ClassTemplateDecl *ClassTemplate
3171 = dyn_cast<ClassTemplateDecl>(Template)) {
3172 // Find the class template specialization declaration that
3173 // corresponds to these arguments.
3174 void *InsertPos = nullptr;
3175 ClassTemplateSpecializationDecl *Decl
3176 = ClassTemplate->findSpecialization(Converted, InsertPos);
3177 if (!Decl) {
3178 // This is the first time we have referenced this class template
3179 // specialization. Create the canonical declaration and add it to
3180 // the set of specializations.
3181 Decl = ClassTemplateSpecializationDecl::Create(Context,
3182 ClassTemplate->getTemplatedDecl()->getTagKind(),
3183 ClassTemplate->getDeclContext(),
3184 ClassTemplate->getTemplatedDecl()->getLocStart(),
3185 ClassTemplate->getLocation(),
3186 ClassTemplate,
3187 Converted, nullptr);
3188 ClassTemplate->AddSpecialization(Decl, InsertPos);
3189 if (ClassTemplate->isOutOfLine())
3190 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3191 }
3192
3193 if (Decl->getSpecializationKind() == TSK_Undeclared) {
3194 MultiLevelTemplateArgumentList TemplateArgLists;
3195 TemplateArgLists.addOuterTemplateArguments(Converted);
3196 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3197 Decl);
3198 }
3199
3200 // Diagnose uses of this specialization.
3201 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3202
3203 CanonType = Context.getTypeDeclType(Decl);
3204 assert(isa<RecordType>(CanonType) &&(static_cast <bool> (isa<RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType") ?
void (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3205, __extension__ __PRETTY_FUNCTION__))
3205 "type of non-dependent specialization is not a RecordType")(static_cast <bool> (isa<RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType") ?
void (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3205, __extension__ __PRETTY_FUNCTION__))
;
3206 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3207 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3208 TemplateArgs);
3209 }
3210
3211 // Build the fully-sugared type for this class template
3212 // specialization, which refers back to the class template
3213 // specialization we created or found.
3214 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3215}
3216
3217TypeResult
3218Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3219 TemplateTy TemplateD, IdentifierInfo *TemplateII,
3220 SourceLocation TemplateIILoc,
3221 SourceLocation LAngleLoc,
3222 ASTTemplateArgsPtr TemplateArgsIn,
3223 SourceLocation RAngleLoc,
3224 bool IsCtorOrDtorName, bool IsClassName) {
3225 if (SS.isInvalid())
3226 return true;
3227
3228 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3229 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3230
3231 // C++ [temp.res]p3:
3232 // A qualified-id that refers to a type and in which the
3233 // nested-name-specifier depends on a template-parameter (14.6.2)
3234 // shall be prefixed by the keyword typename to indicate that the
3235 // qualified-id denotes a type, forming an
3236 // elaborated-type-specifier (7.1.5.3).
3237 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3238 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3239 << SS.getScopeRep() << TemplateII->getName();
3240 // Recover as if 'typename' were specified.
3241 // FIXME: This is not quite correct recovery as we don't transform SS
3242 // into the corresponding dependent form (and we don't diagnose missing
3243 // 'template' keywords within SS as a result).
3244 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3245 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3246 TemplateArgsIn, RAngleLoc);
3247 }
3248
3249 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3250 // it's not actually allowed to be used as a type in most cases. Because
3251 // we annotate it before we know whether it's valid, we have to check for
3252 // this case here.
3253 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3254 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3255 Diag(TemplateIILoc,
3256 TemplateKWLoc.isInvalid()
3257 ? diag::err_out_of_line_qualified_id_type_names_constructor
3258 : diag::ext_out_of_line_qualified_id_type_names_constructor)
3259 << TemplateII << 0 /*injected-class-name used as template name*/
3260 << 1 /*if any keyword was present, it was 'template'*/;
3261 }
3262 }
3263
3264 TemplateName Template = TemplateD.get();
3265
3266 // Translate the parser's template argument list in our AST format.
3267 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3268 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3269
3270 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3271 QualType T
3272 = Context.getDependentTemplateSpecializationType(ETK_None,
3273 DTN->getQualifier(),
3274 DTN->getIdentifier(),
3275 TemplateArgs);
3276 // Build type-source information.
3277 TypeLocBuilder TLB;
3278 DependentTemplateSpecializationTypeLoc SpecTL
3279 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3280 SpecTL.setElaboratedKeywordLoc(SourceLocation());
3281 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3282 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3283 SpecTL.setTemplateNameLoc(TemplateIILoc);
3284 SpecTL.setLAngleLoc(LAngleLoc);
3285 SpecTL.setRAngleLoc(RAngleLoc);
3286 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3287 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3288 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3289 }
3290
3291 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3292 if (Result.isNull())
3293 return true;
3294
3295 // Build type-source information.
3296 TypeLocBuilder TLB;
3297 TemplateSpecializationTypeLoc SpecTL
3298 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3299 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3300 SpecTL.setTemplateNameLoc(TemplateIILoc);
3301 SpecTL.setLAngleLoc(LAngleLoc);
3302 SpecTL.setRAngleLoc(RAngleLoc);
3303 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3304 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3305
3306 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3307 // constructor or destructor name (in such a case, the scope specifier
3308 // will be attached to the enclosing Decl or Expr node).
3309 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3310 // Create an elaborated-type-specifier containing the nested-name-specifier.
3311 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3312 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3313 ElabTL.setElaboratedKeywordLoc(SourceLocation());
3314 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3315 }
3316
3317 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3318}
3319
3320TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3321 TypeSpecifierType TagSpec,
3322 SourceLocation TagLoc,
3323 CXXScopeSpec &SS,
3324 SourceLocation TemplateKWLoc,
3325 TemplateTy TemplateD,
3326 SourceLocation TemplateLoc,
3327 SourceLocation LAngleLoc,
3328 ASTTemplateArgsPtr TemplateArgsIn,
3329 SourceLocation RAngleLoc) {
3330 TemplateName Template = TemplateD.get();
3331
3332 // Translate the parser's template argument list in our AST format.
3333 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3334 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3335
3336 // Determine the tag kind
3337 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3338 ElaboratedTypeKeyword Keyword
3339 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3340
3341 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3342 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3343 DTN->getQualifier(),
3344 DTN->getIdentifier(),
3345 TemplateArgs);
3346
3347 // Build type-source information.
3348 TypeLocBuilder TLB;
3349 DependentTemplateSpecializationTypeLoc SpecTL
3350 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3351 SpecTL.setElaboratedKeywordLoc(TagLoc);
3352 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3353 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3354 SpecTL.setTemplateNameLoc(TemplateLoc);
3355 SpecTL.setLAngleLoc(LAngleLoc);
3356 SpecTL.setRAngleLoc(RAngleLoc);
3357 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3358 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3359 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3360 }
3361
3362 if (TypeAliasTemplateDecl *TAT =
3363 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3364 // C++0x [dcl.type.elab]p2:
3365 // If the identifier resolves to a typedef-name or the simple-template-id
3366 // resolves to an alias template specialization, the
3367 // elaborated-type-specifier is ill-formed.
3368 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3369 << TAT << NTK_TypeAliasTemplate << TagKind;
3370 Diag(TAT->getLocation(), diag::note_declared_at);
3371 }
3372
3373 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3374 if (Result.isNull())
3375 return TypeResult(true);
3376
3377 // Check the tag kind
3378 if (const RecordType *RT = Result->getAs<RecordType>()) {
3379 RecordDecl *D = RT->getDecl();
3380
3381 IdentifierInfo *Id = D->getIdentifier();
3382 assert(Id && "templated class must have an identifier")(static_cast <bool> (Id && "templated class must have an identifier"
) ? void (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3382, __extension__ __PRETTY_FUNCTION__))
;
3383
3384 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3385 TagLoc, Id)) {
3386 Diag(TagLoc, diag::err_use_with_wrong_tag)
3387 << Result
3388 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3389 Diag(D->getLocation(), diag::note_previous_use);
3390 }
3391 }
3392
3393 // Provide source-location information for the template specialization.
3394 TypeLocBuilder TLB;
3395 TemplateSpecializationTypeLoc SpecTL
3396 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3397 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3398 SpecTL.setTemplateNameLoc(TemplateLoc);
3399 SpecTL.setLAngleLoc(LAngleLoc);
3400 SpecTL.setRAngleLoc(RAngleLoc);
3401 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3402 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3403
3404 // Construct an elaborated type containing the nested-name-specifier (if any)
3405 // and tag keyword.
3406 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3407 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3408 ElabTL.setElaboratedKeywordLoc(TagLoc);
3409 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3410 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3411}
3412
3413static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3414 NamedDecl *PrevDecl,
3415 SourceLocation Loc,
3416 bool IsPartialSpecialization);
3417
3418static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3419
3420static bool isTemplateArgumentTemplateParameter(
3421 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3422 switch (Arg.getKind()) {
3423 case TemplateArgument::Null:
3424 case TemplateArgument::NullPtr:
3425 case TemplateArgument::Integral:
3426 case TemplateArgument::Declaration:
3427 case TemplateArgument::Pack:
3428 case TemplateArgument::TemplateExpansion:
3429 return false;
3430
3431 case TemplateArgument::Type: {
3432 QualType Type = Arg.getAsType();
3433 const TemplateTypeParmType *TPT =
3434 Arg.getAsType()->getAs<TemplateTypeParmType>();
3435 return TPT && !Type.hasQualifiers() &&
3436 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3437 }
3438
3439 case TemplateArgument::Expression: {
3440 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3441 if (!DRE || !DRE->getDecl())
3442 return false;
3443 const NonTypeTemplateParmDecl *NTTP =
3444 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3445 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3446 }
3447
3448 case TemplateArgument::Template:
3449 const TemplateTemplateParmDecl *TTP =
3450 dyn_cast_or_null<TemplateTemplateParmDecl>(
3451 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3452 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3453 }
3454 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3454)
;
3455}
3456
3457static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3458 ArrayRef<TemplateArgument> Args) {
3459 if (Params->size() != Args.size())
3460 return false;
3461
3462 unsigned Depth = Params->getDepth();
3463
3464 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3465 TemplateArgument Arg = Args[I];
3466
3467 // If the parameter is a pack expansion, the argument must be a pack
3468 // whose only element is a pack expansion.
3469 if (Params->getParam(I)->isParameterPack()) {
3470 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3471 !Arg.pack_begin()->isPackExpansion())
3472 return false;
3473 Arg = Arg.pack_begin()->getPackExpansionPattern();
3474 }
3475
3476 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3477 return false;
3478 }
3479
3480 return true;
3481}
3482
3483/// Convert the parser's template argument list representation into our form.
3484static TemplateArgumentListInfo
3485makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
3486 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
3487 TemplateId.RAngleLoc);
3488 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
3489 TemplateId.NumArgs);
3490 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
3491 return TemplateArgs;
3492}
3493
3494template<typename PartialSpecDecl>
3495static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3496 if (Partial->getDeclContext()->isDependentContext())
3497 return;
3498
3499 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3500 // for non-substitution-failure issues?
3501 TemplateDeductionInfo Info(Partial->getLocation());
3502 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3503 return;
3504
3505 auto *Template = Partial->getSpecializedTemplate();
3506 S.Diag(Partial->getLocation(),
3507 diag::ext_partial_spec_not_more_specialized_than_primary)
3508 << isa<VarTemplateDecl>(Template);
3509
3510 if (Info.hasSFINAEDiagnostic()) {
3511 PartialDiagnosticAt Diag = {SourceLocation(),
3512 PartialDiagnostic::NullDiagnostic()};
3513 Info.takeSFINAEDiagnostic(Diag);
3514 SmallString<128> SFINAEArgString;
3515 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3516 S.Diag(Diag.first,
3517 diag::note_partial_spec_not_more_specialized_than_primary)
3518 << SFINAEArgString;
3519 }
3520
3521 S.Diag(Template->getLocation(), diag::note_template_decl_here);
3522}
3523
3524static void
3525noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3526 const llvm::SmallBitVector &DeducibleParams) {
3527 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3528 if (!DeducibleParams[I]) {
3529 NamedDecl *Param = TemplateParams->getParam(I);
3530 if (Param->getDeclName())
3531 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3532 << Param->getDeclName();
3533 else
3534 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3535 << "(anonymous)";
3536 }
3537 }
3538}
3539
3540
3541template<typename PartialSpecDecl>
3542static void checkTemplatePartialSpecialization(Sema &S,
3543 PartialSpecDecl *Partial) {
3544 // C++1z [temp.class.spec]p8: (DR1495)
3545 // - The specialization shall be more specialized than the primary
3546 // template (14.5.5.2).
3547 checkMoreSpecializedThanPrimary(S, Partial);
3548
3549 // C++ [temp.class.spec]p8: (DR1315)
3550 // - Each template-parameter shall appear at least once in the
3551 // template-id outside a non-deduced context.
3552 // C++1z [temp.class.spec.match]p3 (P0127R2)
3553 // If the template arguments of a partial specialization cannot be
3554 // deduced because of the structure of its template-parameter-list
3555 // and the template-id, the program is ill-formed.
3556 auto *TemplateParams = Partial->getTemplateParameters();
3557 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3558 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3559 TemplateParams->getDepth(), DeducibleParams);
3560
3561 if (!DeducibleParams.all()) {
3562 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3563 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3564 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3565 << (NumNonDeducible > 1)
3566 << SourceRange(Partial->getLocation(),
3567 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3568 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3569 }
3570}
3571
3572void Sema::CheckTemplatePartialSpecialization(
3573 ClassTemplatePartialSpecializationDecl *Partial) {
3574 checkTemplatePartialSpecialization(*this, Partial);
3575}
3576
3577void Sema::CheckTemplatePartialSpecialization(
3578 VarTemplatePartialSpecializationDecl *Partial) {
3579 checkTemplatePartialSpecialization(*this, Partial);
3580}
3581
3582void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3583 // C++1z [temp.param]p11:
3584 // A template parameter of a deduction guide template that does not have a
3585 // default-argument shall be deducible from the parameter-type-list of the
3586 // deduction guide template.
3587 auto *TemplateParams = TD->getTemplateParameters();
3588 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3589 MarkDeducedTemplateParameters(TD, DeducibleParams);
3590 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3591 // A parameter pack is deducible (to an empty pack).
3592 auto *Param = TemplateParams->getParam(I);
3593 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3594 DeducibleParams[I] = true;
3595 }
3596
3597 if (!DeducibleParams.all()) {
3598 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3599 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3600 << (NumNonDeducible > 1);
3601 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3602 }
3603}
3604
3605DeclResult Sema::ActOnVarTemplateSpecialization(
3606 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
3607 TemplateParameterList *TemplateParams, StorageClass SC,
3608 bool IsPartialSpecialization) {
3609 // D must be variable template id.
3610 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&(static_cast <bool> (D.getName().getKind() == UnqualifiedIdKind
::IK_TemplateId && "Variable template specialization is declared with a template it."
) ? void (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3611, __extension__ __PRETTY_FUNCTION__))
3611 "Variable template specialization is declared with a template it.")(static_cast <bool> (D.getName().getKind() == UnqualifiedIdKind
::IK_TemplateId && "Variable template specialization is declared with a template it."
) ? void (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3611, __extension__ __PRETTY_FUNCTION__))
;
3612
3613 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3614 TemplateArgumentListInfo TemplateArgs =
3615 makeTemplateArgumentListInfo(*this, *TemplateId);
3616 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3617 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3618 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3619
3620 TemplateName Name = TemplateId->Template.get();
3621
3622 // The template-id must name a variable template.
3623 VarTemplateDecl *VarTemplate =
3624 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3625 if (!VarTemplate) {
3626 NamedDecl *FnTemplate;
3627 if (auto *OTS = Name.getAsOverloadedTemplate())
3628 FnTemplate = *OTS->begin();
3629 else
3630 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3631 if (FnTemplate)
3632 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3633 << FnTemplate->getDeclName();
3634 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3635 << IsPartialSpecialization;
3636 }
3637
3638 // Check for unexpanded parameter packs in any of the template arguments.
3639 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3640 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3641 UPPC_PartialSpecialization))
3642 return true;
3643
3644 // Check that the template argument list is well-formed for this
3645 // template.
3646 SmallVector<TemplateArgument, 4> Converted;
3647 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3648 false, Converted))
3649 return true;
3650
3651 // Find the variable template (partial) specialization declaration that
3652 // corresponds to these arguments.
3653 if (IsPartialSpecialization) {
3654 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3655 TemplateArgs.size(), Converted))
3656 return true;
3657
3658 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
3659 // also do them during instantiation.
3660 bool InstantiationDependent;
3661 if (!Name.isDependent() &&
3662 !TemplateSpecializationType::anyDependentTemplateArguments(
3663 TemplateArgs.arguments(),
3664 InstantiationDependent)) {
3665 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3666 << VarTemplate->getDeclName();
3667 IsPartialSpecialization = false;
3668 }
3669
3670 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
3671 Converted)) {
3672 // C++ [temp.class.spec]p9b3:
3673 //
3674 // -- The argument list of the specialization shall not be identical
3675 // to the implicit argument list of the primary template.
3676 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3677 << /*variable template*/ 1
3678 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
3679 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3680 // FIXME: Recover from this by treating the declaration as a redeclaration
3681 // of the primary template.
3682 return true;
3683 }
3684 }
3685
3686 void *InsertPos = nullptr;
3687 VarTemplateSpecializationDecl *PrevDecl = nullptr;
3688
3689 if (IsPartialSpecialization)
3690 // FIXME: Template parameter list matters too
3691 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
3692 else
3693 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
3694
3695 VarTemplateSpecializationDecl *Specialization = nullptr;
3696
3697 // Check whether we can declare a variable template specialization in
3698 // the current scope.
3699 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
3700 TemplateNameLoc,
3701 IsPartialSpecialization))
3702 return true;
3703
3704 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3705 // Since the only prior variable template specialization with these
3706 // arguments was referenced but not declared, reuse that
3707 // declaration node as our own, updating its source location and
3708 // the list of outer template parameters to reflect our new declaration.
3709 Specialization = PrevDecl;
3710 Specialization->setLocation(TemplateNameLoc);
3711 PrevDecl = nullptr;
3712 } else if (IsPartialSpecialization) {
3713 // Create a new class template partial specialization declaration node.
3714 VarTemplatePartialSpecializationDecl *PrevPartial =
3715 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
3716 VarTemplatePartialSpecializationDecl *Partial =
3717 VarTemplatePartialSpecializationDecl::Create(
3718 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
3719 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
3720 Converted, TemplateArgs);
3721
3722 if (!PrevPartial)
3723 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
3724 Specialization = Partial;
3725
3726 // If we are providing an explicit specialization of a member variable
3727 // template specialization, make a note of that.
3728 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3729 PrevPartial->setMemberSpecialization();
3730
3731 CheckTemplatePartialSpecialization(Partial);
3732 } else {
3733 // Create a new class template specialization declaration node for
3734 // this explicit specialization or friend declaration.
3735 Specialization = VarTemplateSpecializationDecl::Create(
3736 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
3737 VarTemplate, DI->getType(), DI, SC, Converted);
3738 Specialization->setTemplateArgsInfo(TemplateArgs);
3739
3740 if (!PrevDecl)
3741 VarTemplate->AddSpecialization(Specialization, InsertPos);
3742 }
3743
3744 // C++ [temp.expl.spec]p6:
3745 // If a template, a member template or the member of a class template is
3746 // explicitly specialized then that specialization shall be declared
3747 // before the first use of that specialization that would cause an implicit
3748 // instantiation to take place, in every translation unit in which such a
3749 // use occurs; no diagnostic is required.
3750 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3751 bool Okay = false;
3752 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
3753 // Is there any previous explicit specialization declaration?
3754 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3755 Okay = true;
3756 break;
3757 }
3758 }
3759
3760 if (!Okay) {
3761 SourceRange Range(TemplateNameLoc, RAngleLoc);
3762 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3763 << Name << Range;
3764
3765 Diag(PrevDecl->getPointOfInstantiation(),
3766 diag::note_instantiation_required_here)
3767 << (PrevDecl->getTemplateSpecializationKind() !=
3768 TSK_ImplicitInstantiation);
3769 return true;
3770 }
3771 }
3772
3773 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
3774 Specialization->setLexicalDeclContext(CurContext);
3775
3776 // Add the specialization into its lexical context, so that it can
3777 // be seen when iterating through the list of declarations in that
3778 // context. However, specializations are not found by name lookup.
3779 CurContext->addDecl(Specialization);
3780
3781 // Note that this is an explicit specialization.
3782 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3783
3784 if (PrevDecl) {
3785 // Check that this isn't a redefinition of this specialization,
3786 // merging with previous declarations.
3787 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
3788 forRedeclarationInCurContext());
3789 PrevSpec.addDecl(PrevDecl);
3790 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
3791 } else if (Specialization->isStaticDataMember() &&
3792 Specialization->isOutOfLine()) {
3793 Specialization->setAccess(VarTemplate->getAccess());
3794 }
3795
3796 // Link instantiations of static data members back to the template from
3797 // which they were instantiated.
3798 if (Specialization->isStaticDataMember())
3799 Specialization->setInstantiationOfStaticDataMember(
3800 VarTemplate->getTemplatedDecl(),
3801 Specialization->getSpecializationKind());
3802
3803 return Specialization;
3804}
3805
3806namespace {
3807/// \brief A partial specialization whose template arguments have matched
3808/// a given template-id.
3809struct PartialSpecMatchResult {
3810 VarTemplatePartialSpecializationDecl *Partial;
3811 TemplateArgumentList *Args;
3812};
3813} // end anonymous namespace
3814
3815DeclResult
3816Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
3817 SourceLocation TemplateNameLoc,
3818 const TemplateArgumentListInfo &TemplateArgs) {
3819 assert(Template && "A variable template id without template?")(static_cast <bool> (Template && "A variable template id without template?"
) ? void (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3819, __extension__ __PRETTY_FUNCTION__))
;
3820
3821 // Check that the template argument list is well-formed for this template.
3822 SmallVector<TemplateArgument, 4> Converted;
3823 if (CheckTemplateArgumentList(
3824 Template, TemplateNameLoc,
3825 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
3826 Converted))
3827 return true;
3828
3829 // Find the variable template specialization declaration that
3830 // corresponds to these arguments.
3831 void *InsertPos = nullptr;
3832 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
3833 Converted, InsertPos)) {
3834 checkSpecializationVisibility(TemplateNameLoc, Spec);
3835 // If we already have a variable template specialization, return it.
3836 return Spec;
3837 }
3838
3839 // This is the first time we have referenced this variable template
3840 // specialization. Create the canonical declaration and add it to
3841 // the set of specializations, based on the closest partial specialization
3842 // that it represents. That is,
3843 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
3844 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
3845 Converted);
3846 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
3847 bool AmbiguousPartialSpec = false;
3848 typedef PartialSpecMatchResult MatchResult;
3849 SmallVector<MatchResult, 4> Matched;
3850 SourceLocation PointOfInstantiation = TemplateNameLoc;
3851 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
3852 /*ForTakingAddress=*/false);
3853
3854 // 1. Attempt to find the closest partial specialization that this
3855 // specializes, if any.
3856 // If any of the template arguments is dependent, then this is probably
3857 // a placeholder for an incomplete declarative context; which must be
3858 // complete by instantiation time. Thus, do not search through the partial
3859 // specializations yet.
3860 // TODO: Unify with InstantiateClassTemplateSpecialization()?
3861 // Perhaps better after unification of DeduceTemplateArguments() and
3862 // getMoreSpecializedPartialSpecialization().
3863 bool InstantiationDependent = false;
3864 if (!TemplateSpecializationType::anyDependentTemplateArguments(
3865 TemplateArgs, InstantiationDependent)) {
3866
3867 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
3868 Template->getPartialSpecializations(PartialSpecs);
3869
3870 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
3871 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
3872 TemplateDeductionInfo Info(FailedCandidates.getLocation());
3873
3874 if (TemplateDeductionResult Result =
3875 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
3876 // Store the failed-deduction information for use in diagnostics, later.
3877 // TODO: Actually use the failed-deduction info?
3878 FailedCandidates.addCandidate().set(
3879 DeclAccessPair::make(Template, AS_public), Partial,
3880 MakeDeductionFailureInfo(Context, Result, Info));
3881 (void)Result;
3882 } else {
3883 Matched.push_back(PartialSpecMatchResult());
3884 Matched.back().Partial = Partial;
3885 Matched.back().Args = Info.take();
3886 }
3887 }
3888
3889 if (Matched.size() >= 1) {
3890 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
3891 if (Matched.size() == 1) {
3892 // -- If exactly one matching specialization is found, the
3893 // instantiation is generated from that specialization.
3894 // We don't need to do anything for this.
3895 } else {
3896 // -- If more than one matching specialization is found, the
3897 // partial order rules (14.5.4.2) are used to determine
3898 // whether one of the specializations is more specialized
3899 // than the others. If none of the specializations is more
3900 // specialized than all of the other matching
3901 // specializations, then the use of the variable template is
3902 // ambiguous and the program is ill-formed.
3903 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
3904 PEnd = Matched.end();
3905 P != PEnd; ++P) {
3906 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
3907 PointOfInstantiation) ==
3908 P->Partial)
3909 Best = P;
3910 }
3911
3912 // Determine if the best partial specialization is more specialized than
3913 // the others.
3914 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
3915 PEnd = Matched.end();
3916 P != PEnd; ++P) {
3917 if (P != Best && getMoreSpecializedPartialSpecialization(
3918 P->Partial, Best->Partial,
3919 PointOfInstantiation) != Best->Partial) {
3920 AmbiguousPartialSpec = true;
3921 break;
3922 }
3923 }
3924 }
3925
3926 // Instantiate using the best variable template partial specialization.
3927 InstantiationPattern = Best->Partial;
3928 InstantiationArgs = Best->Args;
3929 } else {
3930 // -- If no match is found, the instantiation is generated
3931 // from the primary template.
3932 // InstantiationPattern = Template->getTemplatedDecl();
3933 }
3934 }
3935
3936 // 2. Create the canonical declaration.
3937 // Note that we do not instantiate a definition until we see an odr-use
3938 // in DoMarkVarDeclReferenced().
3939 // FIXME: LateAttrs et al.?
3940 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
3941 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
3942 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
3943 if (!Decl)
3944 return true;
3945
3946 if (AmbiguousPartialSpec) {
3947 // Partial ordering did not produce a clear winner. Complain.
3948 Decl->setInvalidDecl();
3949 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
3950 << Decl;
3951
3952 // Print the matching partial specializations.
3953 for (MatchResult P : Matched)
3954 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
3955 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
3956 *P.Args);
3957 return true;
3958 }
3959
3960 if (VarTemplatePartialSpecializationDecl *D =
3961 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
3962 Decl->setInstantiationOf(D, InstantiationArgs);
3963
3964 checkSpecializationVisibility(TemplateNameLoc, Decl);
3965
3966 assert(Decl && "No variable template specialization?")(static_cast <bool> (Decl && "No variable template specialization?"
) ? void (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3966, __extension__ __PRETTY_FUNCTION__))
;
3967 return Decl;
3968}
3969
3970ExprResult
3971Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
3972 const DeclarationNameInfo &NameInfo,
3973 VarTemplateDecl *Template, SourceLocation TemplateLoc,
3974 const TemplateArgumentListInfo *TemplateArgs) {
3975
3976 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
3977 *TemplateArgs);
3978 if (Decl.isInvalid())
3979 return ExprError();
3980
3981 VarDecl *Var = cast<VarDecl>(Decl.get());
3982 if (!Var->getTemplateSpecializationKind())
3983 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
3984 NameInfo.getLoc());
3985
3986 // Build an ordinary singleton decl ref.
3987 return BuildDeclarationNameExpr(SS, NameInfo, Var,
3988 /*FoundD=*/nullptr, TemplateArgs);
3989}
3990
3991ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
3992 SourceLocation TemplateKWLoc,
3993 LookupResult &R,
3994 bool RequiresADL,
3995 const TemplateArgumentListInfo *TemplateArgs) {
3996 // FIXME: Can we do any checking at this point? I guess we could check the
3997 // template arguments that we have against the template name, if the template
3998 // name refers to a single template. That's not a terribly common case,
3999 // though.
4000 // foo<int> could identify a single function unambiguously
4001 // This approach does NOT work, since f<int>(1);
4002 // gets resolved prior to resorting to overload resolution
4003 // i.e., template<class T> void f(double);
4004 // vs template<class T, class U> void f(U);
4005
4006 // These should be filtered out by our callers.
4007 assert(!R.empty() && "empty lookup results when building templateid")(static_cast <bool> (!R.empty() && "empty lookup results when building templateid"
) ? void (0) : __assert_fail ("!R.empty() && \"empty lookup results when building templateid\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4007, __extension__ __PRETTY_FUNCTION__))
;
4008 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")(static_cast <bool> (!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4008, __extension__ __PRETTY_FUNCTION__))
;
4009
4010 // In C++1y, check variable template ids.
4011 bool InstantiationDependent;
4012 if (R.getAsSingle<VarTemplateDecl>() &&
4013 !TemplateSpecializationType::anyDependentTemplateArguments(
4014 *TemplateArgs, InstantiationDependent)) {
4015 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
4016 R.getAsSingle<VarTemplateDecl>(),
4017 TemplateKWLoc, TemplateArgs);
4018 }
4019
4020 // We don't want lookup warnings at this point.
4021 R.suppressDiagnostics();
4022
4023 UnresolvedLookupExpr *ULE
4024 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4025 SS.getWithLocInContext(Context),
4026 TemplateKWLoc,
4027 R.getLookupNameInfo(),
4028 RequiresADL, TemplateArgs,
4029 R.begin(), R.end());
4030
4031 return ULE;
4032}
4033
4034// We actually only call this from template instantiation.
4035ExprResult
4036Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4037 SourceLocation TemplateKWLoc,
4038 const DeclarationNameInfo &NameInfo,
4039 const TemplateArgumentListInfo *TemplateArgs) {
4040
4041 assert(TemplateArgs || TemplateKWLoc.isValid())(static_cast <bool> (TemplateArgs || TemplateKWLoc.isValid
()) ? void (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4041, __extension__ __PRETTY_FUNCTION__))
;
4042 DeclContext *DC;
4043 if (!(DC = computeDeclContext(SS, false)) ||
4044 DC->isDependentContext() ||
4045 RequireCompleteDeclContext(SS, DC))
4046 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4047
4048 bool MemberOfUnknownSpecialization;
4049 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4050 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
4051 MemberOfUnknownSpecialization);
4052
4053 if (R.isAmbiguous())
4054 return ExprError();
4055
4056 if (R.empty()) {
4057 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
4058 << NameInfo.getName() << SS.getRange();
4059 return ExprError();
4060 }
4061
4062 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4063 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4064 << SS.getScopeRep()
4065 << NameInfo.getName().getAsString() << SS.getRange();
4066 Diag(Temp->getLocation(), diag::note_referenced_class_template);
4067 return ExprError();
4068 }
4069
4070 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4071}
4072
4073/// \brief Form a dependent template name.
4074///
4075/// This action forms a dependent template name given the template
4076/// name and its (presumably dependent) scope specifier. For
4077/// example, given "MetaFun::template apply", the scope specifier \p
4078/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
4079/// of the "template" keyword, and "apply" is the \p Name.
4080TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
4081 CXXScopeSpec &SS,
4082 SourceLocation TemplateKWLoc,
4083 UnqualifiedId &Name,
4084 ParsedType ObjectType,
4085 bool EnteringContext,
4086 TemplateTy &Result,
4087 bool AllowInjectedClassName) {
4088 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4089 Diag(TemplateKWLoc,
4090 getLangOpts().CPlusPlus11 ?
4091 diag::warn_cxx98_compat_template_outside_of_template :
4092 diag::ext_template_outside_of_template)
4093 << FixItHint::CreateRemoval(TemplateKWLoc);
4094
4095 DeclContext *LookupCtx = nullptr;
4096 if (SS.isSet())
4097 LookupCtx = computeDeclContext(SS, EnteringContext);
4098 if (!LookupCtx && ObjectType)
4099 LookupCtx = computeDeclContext(ObjectType.get());
4100 if (LookupCtx) {
4101 // C++0x [temp.names]p5:
4102 // If a name prefixed by the keyword template is not the name of
4103 // a template, the program is ill-formed. [Note: the keyword
4104 // template may not be applied to non-template members of class
4105 // templates. -end note ] [ Note: as is the case with the
4106 // typename prefix, the template prefix is allowed in cases
4107 // where it is not strictly necessary; i.e., when the
4108 // nested-name-specifier or the expression on the left of the ->
4109 // or . is not dependent on a template-parameter, or the use
4110 // does not appear in the scope of a template. -end note]
4111 //
4112 // Note: C++03 was more strict here, because it banned the use of
4113 // the "template" keyword prior to a template-name that was not a
4114 // dependent name. C++ DR468 relaxed this requirement (the
4115 // "template" keyword is now permitted). We follow the C++0x
4116 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4117 bool MemberOfUnknownSpecialization;
4118 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4119 ObjectType, EnteringContext, Result,
4120 MemberOfUnknownSpecialization);
4121 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
4122 isa<CXXRecordDecl>(LookupCtx) &&
4123 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
4124 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
4125 // This is a dependent template. Handle it below.
4126 } else if (TNK == TNK_Non_template) {
4127 Diag(Name.getLocStart(),
4128 diag::err_template_kw_refers_to_non_template)
4129 << GetNameFromUnqualifiedId(Name).getName()
4130 << Name.getSourceRange()
4131 << TemplateKWLoc;
4132 return TNK_Non_template;
4133 } else {
4134 // We found something; return it.
4135 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
4136 if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
4137 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4138 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4139 // C++14 [class.qual]p2:
4140 // In a lookup in which function names are not ignored and the
4141 // nested-name-specifier nominates a class C, if the name specified
4142 // [...] is the injected-class-name of C, [...] the name is instead
4143 // considered to name the constructor
4144 //
4145 // We don't get here if naming the constructor would be valid, so we
4146 // just reject immediately and recover by treating the
4147 // injected-class-name as naming the template.
4148 Diag(Name.getLocStart(),
4149 diag::ext_out_of_line_qualified_id_type_names_constructor)
4150 << Name.Identifier << 0 /*injected-class-name used as template name*/
4151 << 1 /*'template' keyword was used*/;
4152 }
4153 return TNK;
4154 }
4155 }
4156
4157 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4158
4159 switch (Name.getKind()) {
4160 case UnqualifiedIdKind::IK_Identifier:
4161 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4162 Name.Identifier));
4163 return TNK_Dependent_template_name;
4164
4165 case UnqualifiedIdKind::IK_OperatorFunctionId:
4166 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4167 Name.OperatorFunctionId.Operator));
4168 return TNK_Function_template;
4169
4170 case UnqualifiedIdKind::IK_LiteralOperatorId:
4171 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4171)
;
4172
4173 default:
4174 break;
4175 }
4176
4177 Diag(Name.getLocStart(),
4178 diag::err_template_kw_refers_to_non_template)
4179 << GetNameFromUnqualifiedId(Name).getName()
4180 << Name.getSourceRange()
4181 << TemplateKWLoc;
4182 return TNK_Non_template;
4183}
4184
4185bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4186 TemplateArgumentLoc &AL,
4187 SmallVectorImpl<TemplateArgument> &Converted) {
4188 const TemplateArgument &Arg = AL.getArgument();
4189 QualType ArgType;
4190 TypeSourceInfo *TSI = nullptr;
4191
4192 // Check template type parameter.
4193 switch(Arg.getKind()) {
4194 case TemplateArgument::Type:
4195 // C++ [temp.arg.type]p1:
4196 // A template-argument for a template-parameter which is a
4197 // type shall be a type-id.
4198 ArgType = Arg.getAsType();
4199 TSI = AL.getTypeSourceInfo();
4200 break;
4201 case TemplateArgument::Template:
4202 case TemplateArgument::TemplateExpansion: {
4203 // We have a template type parameter but the template argument
4204 // is a template without any arguments.
4205 SourceRange SR = AL.getSourceRange();
4206 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4207 Diag(SR.getBegin(), diag::err_template_missing_args)
4208 << (int)getTemplateNameKindForDiagnostics(Name) << Name << SR;
4209 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
4210 Diag(Decl->getLocation(), diag::note_template_decl_here);
4211
4212 return true;
4213 }
4214 case TemplateArgument::Expression: {
4215 // We have a template type parameter but the template argument is an
4216 // expression; see if maybe it is missing the "typename" keyword.
4217 CXXScopeSpec SS;
4218 DeclarationNameInfo NameInfo;
4219
4220 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
4221 SS.Adopt(ArgExpr->getQualifierLoc());
4222 NameInfo = ArgExpr->getNameInfo();
4223 } else if (DependentScopeDeclRefExpr *ArgExpr =
4224 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4225 SS.Adopt(ArgExpr->getQualifierLoc());
4226 NameInfo = ArgExpr->getNameInfo();
4227 } else if (CXXDependentScopeMemberExpr *ArgExpr =
4228 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4229 if (ArgExpr->isImplicitAccess()) {
4230 SS.Adopt(ArgExpr->getQualifierLoc());
4231 NameInfo = ArgExpr->getMemberNameInfo();
4232 }
4233 }
4234
4235 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4236 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4237 LookupParsedName(Result, CurScope, &SS);
4238
4239 if (Result.getAsSingle<TypeDecl>() ||
4240 Result.getResultKind() ==
4241 LookupResult::NotFoundInCurrentInstantiation) {
4242 // Suggest that the user add 'typename' before the NNS.
4243 SourceLocation Loc = AL.getSourceRange().getBegin();
4244 Diag(Loc, getLangOpts().MSVCCompat
4245 ? diag::ext_ms_template_type_arg_missing_typename
4246 : diag::err_template_arg_must_be_type_suggest)
4247 << FixItHint::CreateInsertion(Loc, "typename ");
4248 Diag(Param->getLocation(), diag::note_template_param_here);
4249
4250 // Recover by synthesizing a type using the location information that we
4251 // already have.
4252 ArgType =
4253 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4254 TypeLocBuilder TLB;
4255 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4256 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4257 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4258 TL.setNameLoc(NameInfo.getLoc());
4259 TSI = TLB.getTypeSourceInfo(Context, ArgType);
4260
4261 // Overwrite our input TemplateArgumentLoc so that we can recover
4262 // properly.
4263 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4264 TemplateArgumentLocInfo(TSI));
4265
4266 break;
4267 }
4268 }
4269 // fallthrough
4270 LLVM_FALLTHROUGH[[clang::fallthrough]];
4271 }
4272 default: {
4273 // We have a template type parameter but the template argument
4274 // is not a type.
4275 SourceRange SR = AL.getSourceRange();
4276 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4277 Diag(Param->getLocation(), diag::note_template_param_here);
4278
4279 return true;
4280 }
4281 }
4282
4283 if (CheckTemplateArgument(Param, TSI))
4284 return true;
4285
4286 // Add the converted template type argument.
4287 ArgType = Context.getCanonicalType(ArgType);
4288
4289 // Objective-C ARC:
4290 // If an explicitly-specified template argument type is a lifetime type
4291 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4292 if (getLangOpts().ObjCAutoRefCount &&
4293 ArgType->isObjCLifetimeType() &&
4294 !ArgType.getObjCLifetime()) {
4295 Qualifiers Qs;
4296 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4297 ArgType = Context.getQualifiedType(ArgType, Qs);
4298 }
4299
4300 Converted.push_back(TemplateArgument(ArgType));
4301 return false;
4302}
4303
4304/// \brief Substitute template arguments into the default template argument for
4305/// the given template type parameter.
4306///
4307/// \param SemaRef the semantic analysis object for which we are performing
4308/// the substitution.
4309///
4310/// \param Template the template that we are synthesizing template arguments
4311/// for.
4312///
4313/// \param TemplateLoc the location of the template name that started the
4314/// template-id we are checking.
4315///
4316/// \param RAngleLoc the location of the right angle bracket ('>') that
4317/// terminates the template-id.
4318///
4319/// \param Param the template template parameter whose default we are
4320/// substituting into.
4321///
4322/// \param Converted the list of template arguments provided for template
4323/// parameters that precede \p Param in the template parameter list.
4324/// \returns the substituted template argument, or NULL if an error occurred.
4325static TypeSourceInfo *
4326SubstDefaultTemplateArgument(Sema &SemaRef,
4327 TemplateDecl *Template,
4328 SourceLocation TemplateLoc,
4329 SourceLocation RAngleLoc,
4330 TemplateTypeParmDecl *Param,
4331 SmallVectorImpl<TemplateArgument> &Converted) {
4332 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4333
4334 // If the argument type is dependent, instantiate it now based
4335 // on the previously-computed template arguments.
4336 if (ArgType->getType()->isDependentType()) {
4337 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4338 Param, Template, Converted,
4339 SourceRange(TemplateLoc, RAngleLoc));
4340 if (Inst.isInvalid())
4341 return nullptr;
4342
4343 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4344
4345 // Only substitute for the innermost template argument list.
4346 MultiLevelTemplateArgumentList TemplateArgLists;
4347 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4348 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4349 TemplateArgLists.addOuterTemplateArguments(None);
4350
4351 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4352 ArgType =
4353 SemaRef.SubstType(ArgType, TemplateArgLists,
4354 Param->getDefaultArgumentLoc(), Param->getDeclName());
4355 }
4356
4357 return ArgType;
4358}
4359
4360/// \brief Substitute template arguments into the default template argument for
4361/// the given non-type template parameter.
4362///
4363/// \param SemaRef the semantic analysis object for which we are performing
4364/// the substitution.
4365///
4366/// \param Template the template that we are synthesizing template arguments
4367/// for.
4368///
4369/// \param TemplateLoc the location of the template name that started the
4370/// template-id we are checking.
4371///
4372/// \param RAngleLoc the location of the right angle bracket ('>') that
4373/// terminates the template-id.
4374///
4375/// \param Param the non-type template parameter whose default we are
4376/// substituting into.
4377///
4378/// \param Converted the list of template arguments provided for template
4379/// parameters that precede \p Param in the template parameter list.
4380///
4381/// \returns the substituted template argument, or NULL if an error occurred.
4382static ExprResult
4383SubstDefaultTemplateArgument(Sema &SemaRef,
4384 TemplateDecl *Template,
4385 SourceLocation TemplateLoc,
4386 SourceLocation RAngleLoc,
4387 NonTypeTemplateParmDecl *Param,
4388 SmallVectorImpl<TemplateArgument> &Converted) {
4389 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4390 Param, Template, Converted,
4391 SourceRange(TemplateLoc, RAngleLoc));
4392 if (Inst.isInvalid())
4393 return ExprError();
4394
4395 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4396
4397 // Only substitute for the innermost template argument list.
4398 MultiLevelTemplateArgumentList TemplateArgLists;
4399 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4400 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4401 TemplateArgLists.addOuterTemplateArguments(None);
4402
4403 EnterExpressionEvaluationContext ConstantEvaluated(
4404 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4405 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4406}
4407
4408/// \brief Substitute template arguments into the default template argument for
4409/// the given template template parameter.
4410///
4411/// \param SemaRef the semantic analysis object for which we are performing
4412/// the substitution.
4413///
4414/// \param Template the template that we are synthesizing template arguments
4415/// for.
4416///
4417/// \param TemplateLoc the location of the template name that started the
4418/// template-id we are checking.
4419///
4420/// \param RAngleLoc the location of the right angle bracket ('>') that
4421/// terminates the template-id.
4422///
4423/// \param Param the template template parameter whose default we are
4424/// substituting into.
4425///
4426/// \param Converted the list of template arguments provided for template
4427/// parameters that precede \p Param in the template parameter list.
4428///
4429/// \param QualifierLoc Will be set to the nested-name-specifier (with
4430/// source-location information) that precedes the template name.
4431///
4432/// \returns the substituted template argument, or NULL if an error occurred.
4433static TemplateName
4434SubstDefaultTemplateArgument(Sema &SemaRef,
4435 TemplateDecl *Template,
4436 SourceLocation TemplateLoc,
4437 SourceLocation RAngleLoc,
4438 TemplateTemplateParmDecl *Param,
4439 SmallVectorImpl<TemplateArgument> &Converted,
4440 NestedNameSpecifierLoc &QualifierLoc) {
4441 Sema::InstantiatingTemplate Inst(
4442 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4443 SourceRange(TemplateLoc, RAngleLoc));
4444 if (Inst.isInvalid())
4445 return TemplateName();
4446
4447 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4448
4449 // Only substitute for the innermost template argument list.
4450 MultiLevelTemplateArgumentList TemplateArgLists;
4451 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4452 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4453 TemplateArgLists.addOuterTemplateArguments(None);
4454
4455 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4456 // Substitute into the nested-name-specifier first,
4457 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4458 if (QualifierLoc) {
4459 QualifierLoc =
4460 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4461 if (!QualifierLoc)
4462 return TemplateName();
4463 }
4464
4465 return SemaRef.SubstTemplateName(
4466 QualifierLoc,
4467 Param->getDefaultArgument().getArgument().getAsTemplate(),
4468 Param->getDefaultArgument().getTemplateNameLoc(),
4469 TemplateArgLists);
4470}
4471
4472/// \brief If the given template parameter has a default template
4473/// argument, substitute into that default template argument and
4474/// return the corresponding template argument.
4475TemplateArgumentLoc
4476Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
4477 SourceLocation TemplateLoc,
4478 SourceLocation RAngleLoc,
4479 Decl *Param,
4480 SmallVectorImpl<TemplateArgument>
4481 &Converted,
4482 bool &HasDefaultArg) {
4483 HasDefaultArg = false;
4484
4485 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4486 if (!hasVisibleDefaultArgument(TypeParm))
4487 return TemplateArgumentLoc();
4488
4489 HasDefaultArg = true;
4490 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
4491 TemplateLoc,
4492 RAngleLoc,
4493 TypeParm,
4494 Converted);
4495 if (DI)
4496 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4497
4498 return TemplateArgumentLoc();
4499 }
4500
4501 if (NonTypeTemplateParmDecl *NonTypeParm
4502 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4503 if (!hasVisibleDefaultArgument(NonTypeParm))
4504 return TemplateArgumentLoc();
4505
4506 HasDefaultArg = true;
4507 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
4508 TemplateLoc,
4509 RAngleLoc,
4510 NonTypeParm,
4511 Converted);
4512 if (Arg.isInvalid())
4513 return TemplateArgumentLoc();
4514
4515 Expr *ArgE = Arg.getAs<Expr>();
4516 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
4517 }
4518
4519 TemplateTemplateParmDecl *TempTempParm
4520 = cast<TemplateTemplateParmDecl>(Param);
4521 if (!hasVisibleDefaultArgument(TempTempParm))
4522 return TemplateArgumentLoc();
4523
4524 HasDefaultArg = true;
4525 NestedNameSpecifierLoc QualifierLoc;
4526 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
4527 TemplateLoc,
4528 RAngleLoc,
4529 TempTempParm,
4530 Converted,
4531 QualifierLoc);
4532 if (TName.isNull())
4533 return TemplateArgumentLoc();
4534
4535 return TemplateArgumentLoc(TemplateArgument(TName),
4536 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4537 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4538}
4539
4540/// Convert a template-argument that we parsed as a type into a template, if
4541/// possible. C++ permits injected-class-names to perform dual service as
4542/// template template arguments and as template type arguments.
4543static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
4544 // Extract and step over any surrounding nested-name-specifier.
4545 NestedNameSpecifierLoc QualLoc;
4546 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4547 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
4548 return TemplateArgumentLoc();
4549
4550 QualLoc = ETLoc.getQualifierLoc();
4551 TLoc = ETLoc.getNamedTypeLoc();
4552 }
4553
4554 // If this type was written as an injected-class-name, it can be used as a
4555 // template template argument.
4556 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4557 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
4558 QualLoc, InjLoc.getNameLoc());
4559
4560 // If this type was written as an injected-class-name, it may have been
4561 // converted to a RecordType during instantiation. If the RecordType is
4562 // *not* wrapped in a TemplateSpecializationType and denotes a class
4563 // template specialization, it must have come from an injected-class-name.
4564 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4565 if (auto *CTSD =
4566 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4567 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
4568 QualLoc, RecLoc.getNameLoc());
4569
4570 return TemplateArgumentLoc();
4571}
4572
4573/// \brief Check that the given template argument corresponds to the given
4574/// template parameter.
4575///
4576/// \param Param The template parameter against which the argument will be
4577/// checked.
4578///
4579/// \param Arg The template argument, which may be updated due to conversions.
4580///
4581/// \param Template The template in which the template argument resides.
4582///
4583/// \param TemplateLoc The location of the template name for the template
4584/// whose argument list we're matching.
4585///
4586/// \param RAngleLoc The location of the right angle bracket ('>') that closes
4587/// the template argument list.
4588///
4589/// \param ArgumentPackIndex The index into the argument pack where this
4590/// argument will be placed. Only valid if the parameter is a parameter pack.
4591///
4592/// \param Converted The checked, converted argument will be added to the
4593/// end of this small vector.
4594///
4595/// \param CTAK Describes how we arrived at this particular template argument:
4596/// explicitly written, deduced, etc.
4597///
4598/// \returns true on error, false otherwise.
4599bool Sema::CheckTemplateArgument(NamedDecl *Param,
4600 TemplateArgumentLoc &Arg,
4601 NamedDecl *Template,
4602 SourceLocation TemplateLoc,
4603 SourceLocation RAngleLoc,
4604 unsigned ArgumentPackIndex,
4605 SmallVectorImpl<TemplateArgument> &Converted,
4606 CheckTemplateArgumentKind CTAK) {
4607 // Check template type parameters.
4608 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4609 return CheckTemplateTypeArgument(TTP, Arg, Converted);
4610
4611 // Check non-type template parameters.
4612 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4613 // Do substitution on the type of the non-type template parameter
4614 // with the template arguments we've seen thus far. But if the
4615 // template has a dependent context then we cannot substitute yet.
4616 QualType NTTPType = NTTP->getType();
4617 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
4618 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
4619
4620 // FIXME: Do we need to substitute into parameters here if they're
4621 // instantiation-dependent but not dependent?
4622 if (NTTPType->isDependentType() &&
4623 !isa<TemplateTemplateParmDecl>(Template) &&
4624 !Template->getDeclContext()->isDependentContext()) {
4625 // Do substitution on the type of the non-type template parameter.
4626 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4627 NTTP, Converted,
4628 SourceRange(TemplateLoc, RAngleLoc));
4629 if (Inst.isInvalid())
4630 return true;
4631
4632 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
4633 Converted);
4634 NTTPType = SubstType(NTTPType,
4635 MultiLevelTemplateArgumentList(TemplateArgs),
4636 NTTP->getLocation(),
4637 NTTP->getDeclName());
4638 // If that worked, check the non-type template parameter type
4639 // for validity.
4640 if (!NTTPType.isNull())
4641 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
4642 NTTP->getLocation());
4643 if (NTTPType.isNull())
4644 return true;
4645 }
4646
4647 switch (Arg.getArgument().getKind()) {
4648 case TemplateArgument::Null:
4649 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4649)
;
4650
4651 case TemplateArgument::Expression: {
4652 TemplateArgument Result;
4653 ExprResult Res =
4654 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
4655 Result, CTAK);
4656 if (Res.isInvalid())
4657 return true;
4658
4659 // If the resulting expression is new, then use it in place of the
4660 // old expression in the template argument.
4661 if (Res.get() != Arg.getArgument().getAsExpr()) {
4662 TemplateArgument TA(Res.get());
4663 Arg = TemplateArgumentLoc(TA, Res.get());
4664 }
4665
4666 Converted.push_back(Result);
4667 break;
4668 }
4669
4670 case TemplateArgument::Declaration:
4671 case TemplateArgument::Integral:
4672 case TemplateArgument::NullPtr:
4673 // We've already checked this template argument, so just copy
4674 // it to the list of converted arguments.
4675 Converted.push_back(Arg.getArgument());
4676 break;
4677
4678 case TemplateArgument::Template:
4679 case TemplateArgument::TemplateExpansion:
4680 // We were given a template template argument. It may not be ill-formed;
4681 // see below.
4682 if (DependentTemplateName *DTN
4683 = Arg.getArgument().getAsTemplateOrTemplatePattern()
4684 .getAsDependentTemplateName()) {
4685 // We have a template argument such as \c T::template X, which we
4686 // parsed as a template template argument. However, since we now
4687 // know that we need a non-type template argument, convert this
4688 // template name into an expression.
4689
4690 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
4691 Arg.getTemplateNameLoc());
4692
4693 CXXScopeSpec SS;
4694 SS.Adopt(Arg.getTemplateQualifierLoc());
4695 // FIXME: the template-template arg was a DependentTemplateName,
4696 // so it was provided with a template keyword. However, its source
4697 // location is not stored in the template argument structure.
4698 SourceLocation TemplateKWLoc;
4699 ExprResult E = DependentScopeDeclRefExpr::Create(
4700 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
4701 nullptr);
4702
4703 // If we parsed the template argument as a pack expansion, create a
4704 // pack expansion expression.
4705 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
4706 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
4707 if (E.isInvalid())
4708 return true;
4709 }
4710
4711 TemplateArgument Result;
4712 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
4713 if (E.isInvalid())
4714 return true;
4715
4716 Converted.push_back(Result);
4717 break;
4718 }
4719
4720 // We have a template argument that actually does refer to a class
4721 // template, alias template, or template template parameter, and
4722 // therefore cannot be a non-type template argument.
4723 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
4724 << Arg.getSourceRange();
4725
4726 Diag(Param->getLocation(), diag::note_template_param_here);
4727 return true;
4728
4729 case TemplateArgument::Type: {
4730 // We have a non-type template parameter but the template
4731 // argument is a type.
4732
4733 // C++ [temp.arg]p2:
4734 // In a template-argument, an ambiguity between a type-id and
4735 // an expression is resolved to a type-id, regardless of the
4736 // form of the corresponding template-parameter.
4737 //
4738 // We warn specifically about this case, since it can be rather
4739 // confusing for users.
4740 QualType T = Arg.getArgument().getAsType();
4741 SourceRange SR = Arg.getSourceRange();
4742 if (T->isFunctionType())
4743 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
4744 else
4745 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
4746 Diag(Param->getLocation(), diag::note_template_param_here);
4747 return true;
4748 }
4749
4750 case TemplateArgument::Pack:
4751 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4751)
;
4752 }
4753
4754 return false;
4755 }
4756
4757
4758 // Check template template parameters.
4759 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
4760
4761 TemplateParameterList *Params = TempParm->getTemplateParameters();
4762 if (TempParm->isExpandedParameterPack())
4763 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
4764
4765 // Substitute into the template parameter list of the template
4766 // template parameter, since previously-supplied template arguments
4767 // may appear within the template template parameter.
4768 //
4769 // FIXME: Skip this if the parameters aren't instantiation-dependent.
4770 {
4771 // Set up a template instantiation context.
4772 LocalInstantiationScope Scope(*this);
4773 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4774 TempParm, Converted,
4775 SourceRange(TemplateLoc, RAngleLoc));
4776 if (Inst.isInvalid())
4777 return true;
4778
4779 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4780 Params = SubstTemplateParams(Params, CurContext,
4781 MultiLevelTemplateArgumentList(TemplateArgs));
4782 if (!Params)
4783 return true;
4784 }
4785
4786 // C++1z [temp.local]p1: (DR1004)
4787 // When [the injected-class-name] is used [...] as a template-argument for
4788 // a template template-parameter [...] it refers to the class template
4789 // itself.
4790 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
4791 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
4792 Arg.getTypeSourceInfo()->getTypeLoc());
4793 if (!ConvertedArg.getArgument().isNull())
4794 Arg = ConvertedArg;
4795 }
4796
4797 switch (Arg.getArgument().getKind()) {
4798 case TemplateArgument::Null:
4799 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4799)
;
4800
4801 case TemplateArgument::Template:
4802 case TemplateArgument::TemplateExpansion:
4803 if (CheckTemplateTemplateArgument(Params, Arg))
4804 return true;
4805
4806 Converted.push_back(Arg.getArgument());
4807 break;
4808
4809 case TemplateArgument::Expression:
4810 case TemplateArgument::Type:
4811 // We have a template template parameter but the template
4812 // argument does not refer to a template.
4813 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
4814 << getLangOpts().CPlusPlus11;
4815 return true;
4816
4817 case TemplateArgument::Declaration:
4818 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4818)
;
4819 case TemplateArgument::Integral:
4820 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4820)
;
4821 case TemplateArgument::NullPtr:
4822 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4822)
;
4823
4824 case TemplateArgument::Pack:
4825 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4825)
;
4826 }
4827
4828 return false;
4829}
4830
4831/// \brief Diagnose an arity mismatch in the
4832static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
4833 SourceLocation TemplateLoc,
4834 TemplateArgumentListInfo &TemplateArgs) {
4835 TemplateParameterList *Params = Template->getTemplateParameters();
4836 unsigned NumParams = Params->size();
4837 unsigned NumArgs = TemplateArgs.size();
4838
4839 SourceRange Range;
4840 if (NumArgs > NumParams)
4841 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
4842 TemplateArgs.getRAngleLoc());
4843 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4844 << (NumArgs > NumParams)
4845 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(Template))
4846 << Template << Range;
4847 S.Diag(Template->getLocation(), diag::note_template_decl_here)
4848 << Params->getSourceRange();
4849 return true;
4850}
4851
4852/// \brief Check whether the template parameter is a pack expansion, and if so,
4853/// determine the number of parameters produced by that expansion. For instance:
4854///
4855/// \code
4856/// template<typename ...Ts> struct A {
4857/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
4858/// };
4859/// \endcode
4860///
4861/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
4862/// is not a pack expansion, so returns an empty Optional.
4863static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
4864 if (NonTypeTemplateParmDecl *NTTP
4865 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4866 if (NTTP->isExpandedParameterPack())
4867 return NTTP->getNumExpansionTypes();
4868 }
4869
4870 if (TemplateTemplateParmDecl *TTP
4871 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
4872 if (TTP->isExpandedParameterPack())
4873 return TTP->getNumExpansionTemplateParameters();
4874 }
4875
4876 return None;
4877}
4878
4879/// Diagnose a missing template argument.
4880template<typename TemplateParmDecl>
4881static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
4882 TemplateDecl *TD,
4883 const TemplateParmDecl *D,
4884 TemplateArgumentListInfo &Args) {
4885 // Dig out the most recent declaration of the template parameter; there may be
4886 // declarations of the template that are more recent than TD.
4887 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
4888 ->getTemplateParameters()
4889 ->getParam(D->getIndex()));
4890
4891 // If there's a default argument that's not visible, diagnose that we're
4892 // missing a module import.
4893 llvm::SmallVector<Module*, 8> Modules;
4894 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
4895 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
4896 D->getDefaultArgumentLoc(), Modules,
4897 Sema::MissingImportKind::DefaultArgument,
4898 /*Recover*/true);
4899 return true;
4900 }
4901
4902 // FIXME: If there's a more recent default argument that *is* visible,
4903 // diagnose that it was declared too late.
4904
4905 return diagnoseArityMismatch(S, TD, Loc, Args);
4906}
4907
4908/// \brief Check that the given template argument list is well-formed
4909/// for specializing the given template.
4910bool Sema::CheckTemplateArgumentList(
4911 TemplateDecl *Template, SourceLocation TemplateLoc,
4912 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
4913 SmallVectorImpl<TemplateArgument> &Converted,
4914 bool UpdateArgsWithConversions) {
4915 // Make a copy of the template arguments for processing. Only make the
4916 // changes at the end when successful in matching the arguments to the
4917 // template.
4918 TemplateArgumentListInfo NewArgs = TemplateArgs;
4919
4920 // Make sure we get the template parameter list from the most
4921 // recentdeclaration, since that is the only one that has is guaranteed to
4922 // have all the default template argument information.
4923 TemplateParameterList *Params =
4924 cast<TemplateDecl>(Template->getMostRecentDecl())
4925 ->getTemplateParameters();
4926
4927 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
4928
4929 // C++ [temp.arg]p1:
4930 // [...] The type and form of each template-argument specified in
4931 // a template-id shall match the type and form specified for the
4932 // corresponding parameter declared by the template in its
4933 // template-parameter-list.
4934 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
4935 SmallVector<TemplateArgument, 2> ArgumentPack;
4936 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
4937 LocalInstantiationScope InstScope(*this, true);
4938 for (TemplateParameterList::iterator Param = Params->begin(),
4939 ParamEnd = Params->end();
4940 Param != ParamEnd; /* increment in loop */) {
4941 // If we have an expanded parameter pack, make sure we don't have too
4942 // many arguments.
4943 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
4944 if (*Expansions == ArgumentPack.size()) {
4945 // We're done with this parameter pack. Pack up its arguments and add
4946 // them to the list.
4947 Converted.push_back(
4948 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4949 ArgumentPack.clear();
4950
4951 // This argument is assigned to the next parameter.
4952 ++Param;
4953 continue;
4954 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
4955 // Not enough arguments for this parameter pack.
4956 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4957 << false
4958 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
4959 << Template;
4960 Diag(Template->getLocation(), diag::note_template_decl_here)
4961 << Params->getSourceRange();
4962 return true;
4963 }
4964 }
4965
4966 if (ArgIdx < NumArgs) {
4967 // Check the template argument we were given.
4968 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
4969 TemplateLoc, RAngleLoc,
4970 ArgumentPack.size(), Converted))
4971 return true;
4972
4973 bool PackExpansionIntoNonPack =
4974 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
4975 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
4976 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
4977 // Core issue 1430: we have a pack expansion as an argument to an
4978 // alias template, and it's not part of a parameter pack. This
4979 // can't be canonicalized, so reject it now.
4980 Diag(NewArgs[ArgIdx].getLocation(),
4981 diag::err_alias_template_expansion_into_fixed_list)
4982 << NewArgs[ArgIdx].getSourceRange();
4983 Diag((*Param)->getLocation(), diag::note_template_param_here);
4984 return true;
4985 }
4986
4987 // We're now done with this argument.
4988 ++ArgIdx;
4989
4990 if ((*Param)->isTemplateParameterPack()) {
4991 // The template parameter was a template parameter pack, so take the
4992 // deduced argument and place it on the argument pack. Note that we
4993 // stay on the same template parameter so that we can deduce more
4994 // arguments.
4995 ArgumentPack.push_back(Converted.pop_back_val());
4996 } else {
4997 // Move to the next template parameter.
4998 ++Param;
4999 }
5000
5001 // If we just saw a pack expansion into a non-pack, then directly convert
5002 // the remaining arguments, because we don't know what parameters they'll
5003 // match up with.
5004 if (PackExpansionIntoNonPack) {
5005 if (!ArgumentPack.empty()) {
5006 // If we were part way through filling in an expanded parameter pack,
5007 // fall back to just producing individual arguments.
5008 Converted.insert(Converted.end(),
5009 ArgumentPack.begin(), ArgumentPack.end());
5010 ArgumentPack.clear();
5011 }
5012
5013 while (ArgIdx < NumArgs) {
5014 Converted.push_back(NewArgs[ArgIdx].getArgument());
5015 ++ArgIdx;
5016 }
5017
5018 return false;
5019 }
5020
5021 continue;
5022 }
5023
5024 // If we're checking a partial template argument list, we're done.
5025 if (PartialTemplateArgs) {
5026 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5027 Converted.push_back(
5028 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5029
5030 return false;
5031 }
5032
5033 // If we have a template parameter pack with no more corresponding
5034 // arguments, just break out now and we'll fill in the argument pack below.
5035 if ((*Param)->isTemplateParameterPack()) {
5036 assert(!getExpandedPackSize(*Param) &&(static_cast <bool> (!getExpandedPackSize(*Param) &&
"Should have dealt with this already") ? void (0) : __assert_fail
("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5037, __extension__ __PRETTY_FUNCTION__))
5037 "Should have dealt with this already")(static_cast <bool> (!getExpandedPackSize(*Param) &&
"Should have dealt with this already") ? void (0) : __assert_fail
("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5037, __extension__ __PRETTY_FUNCTION__))
;
5038
5039 // A non-expanded parameter pack before the end of the parameter list
5040 // only occurs for an ill-formed template parameter list, unless we've
5041 // got a partial argument list for a function template, so just bail out.
5042 if (Param + 1 != ParamEnd)
5043 return true;
5044
5045 Converted.push_back(
5046 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5047 ArgumentPack.clear();
5048
5049 ++Param;
5050 continue;
5051 }
5052
5053 // Check whether we have a default argument.
5054 TemplateArgumentLoc Arg;
5055
5056 // Retrieve the default template argument from the template
5057 // parameter. For each kind of template parameter, we substitute the
5058 // template arguments provided thus far and any "outer" template arguments
5059 // (when the template parameter was part of a nested template) into
5060 // the default argument.
5061 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5062 if (!hasVisibleDefaultArgument(TTP))
5063 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5064 NewArgs);
5065
5066 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5067 Template,
5068 TemplateLoc,
5069 RAngleLoc,
5070 TTP,
5071 Converted);
5072 if (!ArgType)
5073 return true;
5074
5075 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5076 ArgType);
5077 } else if (NonTypeTemplateParmDecl *NTTP
5078 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5079 if (!hasVisibleDefaultArgument(NTTP))
5080 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5081 NewArgs);
5082
5083 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5084 TemplateLoc,
5085 RAngleLoc,
5086 NTTP,
5087 Converted);
5088 if (E.isInvalid())
5089 return true;
5090
5091 Expr *Ex = E.getAs<Expr>();
5092 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5093 } else {
5094 TemplateTemplateParmDecl *TempParm
5095 = cast<TemplateTemplateParmDecl>(*Param);
5096
5097 if (!hasVisibleDefaultArgument(TempParm))
5098 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5099 NewArgs);
5100
5101 NestedNameSpecifierLoc QualifierLoc;
5102 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5103 TemplateLoc,
5104 RAngleLoc,
5105 TempParm,
5106 Converted,
5107 QualifierLoc);
5108 if (Name.isNull())
5109 return true;
5110
5111 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
5112 TempParm->getDefaultArgument().getTemplateNameLoc());
5113 }
5114
5115 // Introduce an instantiation record that describes where we are using
5116 // the default template argument. We're not actually instantiating a
5117 // template here, we just create this object to put a note into the
5118 // context stack.
5119 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5120 SourceRange(TemplateLoc, RAngleLoc));
5121 if (Inst.isInvalid())
5122 return true;
5123
5124 // Check the default template argument.
5125 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5126 RAngleLoc, 0, Converted))
5127 return true;
5128
5129 // Core issue 150 (assumed resolution): if this is a template template
5130 // parameter, keep track of the default template arguments from the
5131 // template definition.
5132 if (isTemplateTemplateParameter)
5133 NewArgs.addArgument(Arg);
5134
5135 // Move to the next template parameter and argument.
5136 ++Param;
5137 ++ArgIdx;
5138 }
5139
5140 // If we're performing a partial argument substitution, allow any trailing
5141 // pack expansions; they might be empty. This can happen even if
5142 // PartialTemplateArgs is false (the list of arguments is complete but
5143 // still dependent).
5144 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5145 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5146 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5147 Converted.push_back(NewArgs[ArgIdx++].getArgument());
5148 }
5149
5150 // If we have any leftover arguments, then there were too many arguments.
5151 // Complain and fail.
5152 if (ArgIdx < NumArgs)
5153 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
5154
5155 // No problems found with the new argument list, propagate changes back
5156 // to caller.
5157 if (UpdateArgsWithConversions)
5158 TemplateArgs = std::move(NewArgs);
5159
5160 return false;
5161}
5162
5163namespace {
5164 class UnnamedLocalNoLinkageFinder
5165 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5166 {
5167 Sema &S;
5168 SourceRange SR;
5169
5170 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5171
5172 public:
5173 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5174
5175 bool Visit(QualType T) {
5176 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5177 }
5178
5179#define TYPE(Class, Parent) \
5180 bool Visit##Class##Type(const Class##Type *);
5181#define ABSTRACT_TYPE(Class, Parent) \
5182 bool Visit##Class##Type(const Class##Type *) { return false; }
5183#define NON_CANONICAL_TYPE(Class, Parent) \
5184 bool Visit##Class##Type(const Class##Type *) { return false; }
5185#include "clang/AST/TypeNodes.def"
5186
5187 bool VisitTagDecl(const TagDecl *Tag);
5188 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5189 };
5190} // end anonymous namespace
5191
5192bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5193 return false;
5194}
5195
5196bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5197 return Visit(T->getElementType());
5198}
5199
5200bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5201 return Visit(T->getPointeeType());
5202}
5203
5204bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5205 const BlockPointerType* T) {
5206 return Visit(T->getPointeeType());
5207}
5208
5209bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5210 const LValueReferenceType* T) {
5211 return Visit(T->getPointeeType());
5212}
5213
5214bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5215 const RValueReferenceType* T) {
5216 return Visit(T->getPointeeType());
5217}
5218
5219bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5220 const MemberPointerType* T) {
5221 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5222}
5223
5224bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5225 const ConstantArrayType* T) {
5226 return Visit(T->getElementType());
5227}
5228
5229bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5230 const IncompleteArrayType* T) {
5231 return Visit(T->getElementType());
5232}
5233
5234bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5235 const VariableArrayType* T) {
5236 return Visit(T->getElementType());
5237}
5238
5239bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5240 const DependentSizedArrayType* T) {
5241 return Visit(T->getElementType());
5242}
5243
5244bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5245 const DependentSizedExtVectorType* T) {
5246 return Visit(T->getElementType());
5247}
5248
5249bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5250 const DependentAddressSpaceType *T) {
5251 return Visit(T->getPointeeType());
5252}
5253
5254bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5255 return Visit(T->getElementType());
5256}
5257
5258bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5259 return Visit(T->getElementType());
5260}
5261
5262bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5263 const FunctionProtoType* T) {
5264 for (const auto &A : T->param_types()) {
5265 if (Visit(A))
5266 return true;
5267 }
5268
5269 return Visit(T->getReturnType());
5270}
5271
5272bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5273 const FunctionNoProtoType* T) {
5274 return Visit(T->getReturnType());
5275}
5276
5277bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5278 const UnresolvedUsingType*) {
5279 return false;
5280}
5281
5282bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5283 return false;
5284}
5285
5286bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5287 return Visit(T->getUnderlyingType());
5288}
5289
5290bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5291 return false;
5292}
5293
5294bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5295 const UnaryTransformType*) {
5296 return false;
5297}
5298
5299bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5300 return Visit(T->getDeducedType());
5301}
5302
5303bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5304 const DeducedTemplateSpecializationType *T) {
5305 return Visit(T->getDeducedType());
5306}
5307
5308bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5309 return VisitTagDecl(T->getDecl());
5310}
5311
5312bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5313 return VisitTagDecl(T->getDecl());
5314}
5315
5316bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5317 const TemplateTypeParmType*) {
5318 return false;
5319}
5320
5321bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5322 const SubstTemplateTypeParmPackType *) {
5323 return false;
5324}
5325
5326bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5327 const TemplateSpecializationType*) {
5328 return false;
5329}
5330
5331bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5332 const InjectedClassNameType* T) {
5333 return VisitTagDecl(T->getDecl());
5334}
5335
5336bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5337 const DependentNameType* T) {
5338 return VisitNestedNameSpecifier(T->getQualifier());
5339}
5340
5341bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5342 const DependentTemplateSpecializationType* T) {
5343 return VisitNestedNameSpecifier(T->getQualifier());
5344}
5345
5346bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5347 const PackExpansionType* T) {
5348 return Visit(T->getPattern());
5349}
5350
5351bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5352 return false;
5353}
5354
5355bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5356 const ObjCInterfaceType *) {
5357 return false;
5358}
5359
5360bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5361 const ObjCObjectPointerType *) {
5362 return false;
5363}
5364
5365bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5366 return Visit(T->getValueType());
5367}
5368
5369bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5370 return false;
5371}
5372
5373bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5374 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5375 S.Diag(SR.getBegin(),
5376 S.getLangOpts().CPlusPlus11 ?
5377 diag::warn_cxx98_compat_template_arg_local_type :
5378 diag::ext_template_arg_local_type)
5379 << S.Context.getTypeDeclType(Tag) << SR;
5380 return true;
5381 }
5382
5383 if (!Tag->hasNameForLinkage()) {
5384 S.Diag(SR.getBegin(),
5385 S.getLangOpts().CPlusPlus11 ?
5386 diag::warn_cxx98_compat_template_arg_unnamed_type :
5387 diag::ext_template_arg_unnamed_type) << SR;
5388 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5389 return true;
5390 }
5391
5392 return false;
5393}
5394
5395bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5396 NestedNameSpecifier *NNS) {
5397 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5398 return true;
5399
5400 switch (NNS->getKind()) {
5401 case NestedNameSpecifier::Identifier:
5402 case NestedNameSpecifier::Namespace:
5403 case NestedNameSpecifier::NamespaceAlias:
5404 case NestedNameSpecifier::Global:
5405 case NestedNameSpecifier::Super:
5406 return false;
5407
5408 case NestedNameSpecifier::TypeSpec:
5409 case NestedNameSpecifier::TypeSpecWithTemplate:
5410 return Visit(QualType(NNS->getAsType(), 0));
5411 }
5412 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5412)
;
5413}
5414
5415/// \brief Check a template argument against its corresponding
5416/// template type parameter.
5417///
5418/// This routine implements the semantics of C++ [temp.arg.type]. It
5419/// returns true if an error occurred, and false otherwise.
5420bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
5421 TypeSourceInfo *ArgInfo) {
5422 assert(ArgInfo && "invalid TypeSourceInfo")(static_cast <bool> (ArgInfo && "invalid TypeSourceInfo"
) ? void (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5422, __extension__ __PRETTY_FUNCTION__))
;
5423 QualType Arg = ArgInfo->getType();
5424 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5425
5426 if (Arg->isVariablyModifiedType()) {
5427 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5428 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5429 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5430 }
5431
5432 // C++03 [temp.arg.type]p2:
5433 // A local type, a type with no linkage, an unnamed type or a type
5434 // compounded from any of these types shall not be used as a
5435 // template-argument for a template type-parameter.
5436 //
5437 // C++11 allows these, and even in C++03 we allow them as an extension with
5438 // a warning.
5439 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
5440 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5441 (void)Finder.Visit(Context.getCanonicalType(Arg));
5442 }
5443
5444 return false;
5445}
5446
5447enum NullPointerValueKind {
5448 NPV_NotNullPointer,
5449 NPV_NullPointer,
5450 NPV_Error
5451};
5452
5453/// \brief Determine whether the given template argument is a null pointer
5454/// value of the appropriate type.
5455static NullPointerValueKind
5456isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5457 QualType ParamType, Expr *Arg,
5458 Decl *Entity = nullptr) {
5459 if (Arg->isValueDependent() || Arg->isTypeDependent())
5460 return NPV_NotNullPointer;
5461
5462 // dllimport'd entities aren't constant but are available inside of template
5463 // arguments.
5464 if (Entity && Entity->hasAttr<DLLImportAttr>())
5465 return NPV_NotNullPointer;
5466
5467 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5468 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5469)
5469 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5469)
;
5470
5471 if (!S.getLangOpts().CPlusPlus11)
5472 return NPV_NotNullPointer;
5473
5474 // Determine whether we have a constant expression.
5475 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5476 if (ArgRV.isInvalid())
5477 return NPV_Error;
5478 Arg = ArgRV.get();
5479
5480 Expr::EvalResult EvalResult;
5481 SmallVector<PartialDiagnosticAt, 8> Notes;
5482 EvalResult.Diag = &Notes;
5483 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5484 EvalResult.HasSideEffects) {
5485 SourceLocation DiagLoc = Arg->getExprLoc();
5486
5487 // If our only note is the usual "invalid subexpression" note, just point
5488 // the caret at its location rather than producing an essentially
5489 // redundant note.
5490 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5491 diag::note_invalid_subexpr_in_const_expr) {
5492 DiagLoc = Notes[0].first;
5493 Notes.clear();
5494 }
5495
5496 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5497 << Arg->getType() << Arg->getSourceRange();
5498 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5499 S.Diag(Notes[I].first, Notes[I].second);
5500
5501 S.Diag(Param->getLocation(), diag::note_template_param_here);
5502 return NPV_Error;
5503 }
5504
5505 // C++11 [temp.arg.nontype]p1:
5506 // - an address constant expression of type std::nullptr_t
5507 if (Arg->getType()->isNullPtrType())
5508 return NPV_NullPointer;
5509
5510 // - a constant expression that evaluates to a null pointer value (4.10); or
5511 // - a constant expression that evaluates to a null member pointer value
5512 // (4.11); or
5513 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
5514 (EvalResult.Val.isMemberPointer() &&
5515 !EvalResult.Val.getMemberPointerDecl())) {
5516 // If our expression has an appropriate type, we've succeeded.
5517 bool ObjCLifetimeConversion;
5518 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5519 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5520 ObjCLifetimeConversion))
5521 return NPV_NullPointer;
5522
5523 // The types didn't match, but we know we got a null pointer; complain,
5524 // then recover as if the types were correct.
5525 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5526 << Arg->getType() << ParamType << Arg->getSourceRange();
5527 S.Diag(Param->getLocation(), diag::note_template_param_here);
5528 return NPV_NullPointer;
5529 }
5530
5531 // If we don't have a null pointer value, but we do have a NULL pointer
5532 // constant, suggest a cast to the appropriate type.
5533 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
5534 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
5535 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
5536 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
5537 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
5538 ")");
5539 S.Diag(Param->getLocation(), diag::note_template_param_here);
5540 return NPV_NullPointer;
5541 }
5542
5543 // FIXME: If we ever want to support general, address-constant expressions
5544 // as non-type template arguments, we should return the ExprResult here to
5545 // be interpreted by the caller.
5546 return NPV_NotNullPointer;
5547}
5548
5549/// \brief Checks whether the given template argument is compatible with its
5550/// template parameter.
5551static bool CheckTemplateArgumentIsCompatibleWithParameter(
5552 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
5553 Expr *Arg, QualType ArgType) {
5554 bool ObjCLifetimeConversion;
5555 if (ParamType->isPointerType() &&
5556 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
5557 S.IsQualificationConversion(ArgType, ParamType, false,
5558 ObjCLifetimeConversion)) {
5559 // For pointer-to-object types, qualification conversions are
5560 // permitted.
5561 } else {
5562 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
5563 if (!ParamRef->getPointeeType()->isFunctionType()) {
5564 // C++ [temp.arg.nontype]p5b3:
5565 // For a non-type template-parameter of type reference to
5566 // object, no conversions apply. The type referred to by the
5567 // reference may be more cv-qualified than the (otherwise
5568 // identical) type of the template- argument. The
5569 // template-parameter is bound directly to the
5570 // template-argument, which shall be an lvalue.
5571
5572 // FIXME: Other qualifiers?
5573 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
5574 unsigned ArgQuals = ArgType.getCVRQualifiers();
5575
5576 if ((ParamQuals | ArgQuals) != ParamQuals) {
5577 S.Diag(Arg->getLocStart(),
5578 diag::err_template_arg_ref_bind_ignores_quals)
5579 << ParamType << Arg->getType() << Arg->getSourceRange();
5580 S.Diag(Param->getLocation(), diag::note_template_param_here);
5581 return true;
5582 }
5583 }
5584 }
5585
5586 // At this point, the template argument refers to an object or
5587 // function with external linkage. We now need to check whether the
5588 // argument and parameter types are compatible.
5589 if (!S.Context.hasSameUnqualifiedType(ArgType,
5590 ParamType.getNonReferenceType())) {
5591 // We can't perform this conversion or binding.
5592 if (ParamType->isReferenceType())
5593 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
5594 << ParamType << ArgIn->getType() << Arg->getSourceRange();
5595 else
5596 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
5597 << ArgIn->getType() << ParamType << Arg->getSourceRange();
5598 S.Diag(Param->getLocation(), diag::note_template_param_here);
5599 return true;
5600 }
5601 }
5602
5603 return false;
5604}
5605
5606/// \brief Checks whether the given template argument is the address
5607/// of an object or function according to C++ [temp.arg.nontype]p1.
5608static bool
5609CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
5610 NonTypeTemplateParmDecl *Param,
5611 QualType ParamType,
5612 Expr *ArgIn,
5613 TemplateArgument &Converted) {
5614 bool Invalid = false;
5615 Expr *Arg = ArgIn;
5616 QualType ArgType = Arg->getType();
5617
5618 bool AddressTaken = false;
5619 SourceLocation AddrOpLoc;
5620 if (S.getLangOpts().MicrosoftExt) {
5621 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
5622 // dereference and address-of operators.
5623 Arg = Arg->IgnoreParenCasts();
5624
5625 bool ExtWarnMSTemplateArg = false;
5626 UnaryOperatorKind FirstOpKind;
5627 SourceLocation FirstOpLoc;
5628 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5629 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
5630 if (UnOpKind == UO_Deref)
5631 ExtWarnMSTemplateArg = true;
5632 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
5633 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
5634 if (!AddrOpLoc.isValid()) {
5635 FirstOpKind = UnOpKind;
5636 FirstOpLoc = UnOp->getOperatorLoc();
5637 }
5638 } else
5639 break;
5640 }
5641 if (FirstOpLoc.isValid()) {
5642 if (ExtWarnMSTemplateArg)
5643 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
5644 << ArgIn->getSourceRange();
5645
5646 if (FirstOpKind == UO_AddrOf)
5647 AddressTaken = true;
5648 else if (Arg->getType()->isPointerType()) {
5649 // We cannot let pointers get dereferenced here, that is obviously not a
5650 // constant expression.
5651 assert(FirstOpKind == UO_Deref)(static_cast <bool> (FirstOpKind == UO_Deref) ? void (0
) : __assert_fail ("FirstOpKind == UO_Deref", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5651, __extension__ __PRETTY_FUNCTION__))
;
5652 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5653 << Arg->getSourceRange();
5654 }
5655 }
5656 } else {
5657 // See through any implicit casts we added to fix the type.
5658 Arg = Arg->IgnoreImpCasts();
5659
5660 // C++ [temp.arg.nontype]p1:
5661 //
5662 // A template-argument for a non-type, non-template
5663 // template-parameter shall be one of: [...]
5664 //
5665 // -- the address of an object or function with external
5666 // linkage, including function templates and function
5667 // template-ids but excluding non-static class members,
5668 // expressed as & id-expression where the & is optional if
5669 // the name refers to a function or array, or if the
5670 // corresponding template-parameter is a reference; or
5671
5672 // In C++98/03 mode, give an extension warning on any extra parentheses.
5673 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5674 bool ExtraParens = false;
5675 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5676 if (!Invalid && !ExtraParens) {
5677 S.Diag(Arg->getLocStart(),
5678 S.getLangOpts().CPlusPlus11
5679 ? diag::warn_cxx98_compat_template_arg_extra_parens
5680 : diag::ext_template_arg_extra_parens)
5681 << Arg->getSourceRange();
5682 ExtraParens = true;
5683 }
5684
5685 Arg = Parens->getSubExpr();
5686 }
5687
5688 while (SubstNonTypeTemplateParmExpr *subst =
5689 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5690 Arg = subst->getReplacement()->IgnoreImpCasts();
5691
5692 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5693 if (UnOp->getOpcode() == UO_AddrOf) {
5694 Arg = UnOp->getSubExpr();
5695 AddressTaken = true;
5696 AddrOpLoc = UnOp->getOperatorLoc();
5697 }
5698 }
5699
5700 while (SubstNonTypeTemplateParmExpr *subst =
5701 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5702 Arg = subst->getReplacement()->IgnoreImpCasts();
5703 }
5704
5705 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
5706 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5707
5708 // If our parameter has pointer type, check for a null template value.
5709 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
5710 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
5711 Entity)) {
5712 case NPV_NullPointer:
5713 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5714 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5715 /*isNullPtr=*/true);
5716 return false;
5717
5718 case NPV_Error:
5719 return true;
5720
5721 case NPV_NotNullPointer:
5722 break;
5723 }
5724 }
5725
5726 // Stop checking the precise nature of the argument if it is value dependent,
5727 // it should be checked when instantiated.
5728 if (Arg->isValueDependent()) {
5729 Converted = TemplateArgument(ArgIn);
5730 return false;
5731 }
5732
5733 if (isa<CXXUuidofExpr>(Arg)) {
5734 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
5735 ArgIn, Arg, ArgType))
5736 return true;
5737
5738 Converted = TemplateArgument(ArgIn);
5739 return false;
5740 }
5741
5742 if (!DRE) {
5743 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5744 << Arg->getSourceRange();
5745 S.Diag(Param->getLocation(), diag::note_template_param_here);
5746 return true;
5747 }
5748
5749 // Cannot refer to non-static data members
5750 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
5751 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
5752 << Entity << Arg->getSourceRange();
5753 S.Diag(Param->getLocation(), diag::note_template_param_here);
5754 return true;
5755 }
5756
5757 // Cannot refer to non-static member functions
5758 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
5759 if (!Method->isStatic()) {
5760 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
5761 << Method << Arg->getSourceRange();
5762 S.Diag(Param->getLocation(), diag::note_template_param_here);
5763 return true;
5764 }
5765 }
5766
5767 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
5768 VarDecl *Var = dyn_cast<VarDecl>(Entity);
5769
5770 // A non-type template argument must refer to an object or function.
5771 if (!Func && !Var) {
5772 // We found something, but we don't know specifically what it is.
5773 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
5774 << Arg->getSourceRange();
5775 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5776 return true;
5777 }
5778
5779 // Address / reference template args must have external linkage in C++98.
5780 if (Entity->getFormalLinkage() == InternalLinkage) {
5781 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
5782 diag::warn_cxx98_compat_template_arg_object_internal :
5783 diag::ext_template_arg_object_internal)
5784 << !Func << Entity << Arg->getSourceRange();
5785 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5786 << !Func;
5787 } else if (!Entity->hasLinkage()) {
5788 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
5789 << !Func << Entity << Arg->getSourceRange();
5790 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5791 << !Func;
5792 return true;
5793 }
5794
5795 if (Func) {
5796 // If the template parameter has pointer type, the function decays.
5797 if (ParamType->isPointerType() && !AddressTaken)
5798 ArgType = S.Context.getPointerType(Func->getType());
5799 else if (AddressTaken && ParamType->isReferenceType()) {
5800 // If we originally had an address-of operator, but the
5801 // parameter has reference type, complain and (if things look
5802 // like they will work) drop the address-of operator.
5803 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
5804 ParamType.getNonReferenceType())) {
5805 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5806 << ParamType;
5807 S.Diag(Param->getLocation(), diag::note_template_param_here);
5808 return true;
5809 }
5810
5811 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5812 << ParamType
5813 << FixItHint::CreateRemoval(AddrOpLoc);
5814 S.Diag(Param->getLocation(), diag::note_template_param_here);
5815
5816 ArgType = Func->getType();
5817 }
5818 } else {
5819 // A value of reference type is not an object.
5820 if (Var->getType()->isReferenceType()) {
5821 S.Diag(Arg->getLocStart(),
5822 diag::err_template_arg_reference_var)
5823 << Var->getType() << Arg->getSourceRange();
5824 S.Diag(Param->getLocation(), diag::note_template_param_here);
5825 return true;
5826 }
5827
5828 // A template argument must have static storage duration.
5829 if (Var->getTLSKind()) {
5830 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
5831 << Arg->getSourceRange();
5832 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
5833 return true;
5834 }
5835
5836 // If the template parameter has pointer type, we must have taken
5837 // the address of this object.
5838 if (ParamType->isReferenceType()) {
5839 if (AddressTaken) {
5840 // If we originally had an address-of operator, but the
5841 // parameter has reference type, complain and (if things look
5842 // like they will work) drop the address-of operator.
5843 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
5844 ParamType.getNonReferenceType())) {
5845 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5846 << ParamType;
5847 S.Diag(Param->getLocation(), diag::note_template_param_here);
5848 return true;
5849 }
5850
5851 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5852 << ParamType
5853 << FixItHint::CreateRemoval(AddrOpLoc);
5854 S.Diag(Param->getLocation(), diag::note_template_param_here);
5855
5856 ArgType = Var->getType();
5857 }
5858 } else if (!AddressTaken && ParamType->isPointerType()) {
5859 if (Var->getType()->isArrayType()) {
5860 // Array-to-pointer decay.
5861 ArgType = S.Context.getArrayDecayedType(Var->getType());
5862 } else {
5863 // If the template parameter has pointer type but the address of
5864 // this object was not taken, complain and (possibly) recover by
5865 // taking the address of the entity.
5866 ArgType = S.Context.getPointerType(Var->getType());
5867 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
5868 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5869 << ParamType;
5870 S.Diag(Param->getLocation(), diag::note_template_param_here);
5871 return true;
5872 }
5873
5874 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5875 << ParamType
5876 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
5877
5878 S.Diag(Param->getLocation(), diag::note_template_param_here);
5879 }
5880 }
5881 }
5882
5883 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
5884 Arg, ArgType))
5885 return true;
5886
5887 // Create the template argument.
5888 Converted =
5889 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
5890 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
5891 return false;
5892}
5893
5894/// \brief Checks whether the given template argument is a pointer to
5895/// member constant according to C++ [temp.arg.nontype]p1.
5896static bool CheckTemplateArgumentPointerToMember(Sema &S,
5897 NonTypeTemplateParmDecl *Param,
5898 QualType ParamType,
5899 Expr *&ResultArg,
5900 TemplateArgument &Converted) {
5901 bool Invalid = false;
5902
5903 Expr *Arg = ResultArg;
5904 bool ObjCLifetimeConversion;
5905
5906 // C++ [temp.arg.nontype]p1:
5907 //
5908 // A template-argument for a non-type, non-template
5909 // template-parameter shall be one of: [...]
5910 //
5911 // -- a pointer to member expressed as described in 5.3.1.
5912 DeclRefExpr *DRE = nullptr;
5913
5914 // In C++98/03 mode, give an extension warning on any extra parentheses.
5915 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5916 bool ExtraParens = false;
5917 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5918 if (!Invalid && !ExtraParens) {
5919 S.Diag(Arg->getLocStart(),
5920 S.getLangOpts().CPlusPlus11 ?
5921 diag::warn_cxx98_compat_template_arg_extra_parens :
5922 diag::ext_template_arg_extra_parens)
5923 << Arg->getSourceRange();
5924 ExtraParens = true;
5925 }
5926
5927 Arg = Parens->getSubExpr();
5928 }
5929
5930 while (SubstNonTypeTemplateParmExpr *subst =
5931 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5932 Arg = subst->getReplacement()->IgnoreImpCasts();
5933
5934 // A pointer-to-member constant written &Class::member.
5935 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5936 if (UnOp->getOpcode() == UO_AddrOf) {
5937 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
5938 if (DRE && !DRE->getQualifier())
5939 DRE = nullptr;
5940 }
5941 }
5942 // A constant of pointer-to-member type.
5943 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
5944 ValueDecl *VD = DRE->getDecl();
5945 if (VD->getType()->isMemberPointerType()) {
5946 if (isa<NonTypeTemplateParmDecl>(VD)) {
5947 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5948 Converted = TemplateArgument(Arg);
5949 } else {
5950 VD = cast<ValueDecl>(VD->getCanonicalDecl());
5951 Converted = TemplateArgument(VD, ParamType);
5952 }
5953 return Invalid;
5954 }
5955 }
5956
5957 DRE = nullptr;
5958 }
5959
5960 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5961
5962 // Check for a null pointer value.
5963 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
5964 Entity)) {
5965 case NPV_Error:
5966 return true;
5967 case NPV_NullPointer:
5968 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5969 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5970 /*isNullPtr*/true);
5971 return false;
5972 case NPV_NotNullPointer:
5973 break;
5974 }
5975
5976 if (S.IsQualificationConversion(ResultArg->getType(),
5977 ParamType.getNonReferenceType(), false,
5978 ObjCLifetimeConversion)) {
5979 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
5980 ResultArg->getValueKind())
5981 .get();
5982 } else if (!S.Context.hasSameUnqualifiedType(
5983 ResultArg->getType(), ParamType.getNonReferenceType())) {
5984 // We can't perform this conversion.
5985 S.Diag(ResultArg->getLocStart(), diag::err_template_arg_not_convertible)
5986 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
5987 S.Diag(Param->getLocation(), diag::note_template_param_here);
5988 return true;
5989 }
5990
5991 if (!DRE)
5992 return S.Diag(Arg->getLocStart(),
5993 diag::err_template_arg_not_pointer_to_member_form)
5994 << Arg->getSourceRange();
5995
5996 if (isa<FieldDecl>(DRE->getDecl()) ||
5997 isa<IndirectFieldDecl>(DRE->getDecl()) ||
5998 isa<CXXMethodDecl>(DRE->getDecl())) {
5999 assert((isa<FieldDecl>(DRE->getDecl()) ||(static_cast <bool> ((isa<FieldDecl>(DRE->getDecl
()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast
<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
"Only non-static member pointers can make it here") ? void (
0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6002, __extension__ __PRETTY_FUNCTION__))
6000 isa<IndirectFieldDecl>(DRE->getDecl()) ||(static_cast <bool> ((isa<FieldDecl>(DRE->getDecl
()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast
<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
"Only non-static member pointers can make it here") ? void (
0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6002, __extension__ __PRETTY_FUNCTION__))
6001 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(static_cast <bool> ((isa<FieldDecl>(DRE->getDecl
()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast
<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
"Only non-static member pointers can make it here") ? void (
0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6002, __extension__ __PRETTY_FUNCTION__))
6002 "Only non-static member pointers can make it here")(static_cast <bool> ((isa<FieldDecl>(DRE->getDecl
()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast
<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
"Only non-static member pointers can make it here") ? void (
0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6002, __extension__ __PRETTY_FUNCTION__))
;
6003
6004 // Okay: this is the address of a non-static member, and therefore
6005 // a member pointer constant.
6006 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6007 Converted = TemplateArgument(Arg);
6008 } else {
6009 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6010 Converted = TemplateArgument(D, ParamType);
6011 }
6012 return Invalid;
6013 }
6014
6015 // We found something else, but we don't know specifically what it is.
6016 S.Diag(Arg->getLocStart(),
6017 diag::err_template_arg_not_pointer_to_member_form)
6018 << Arg->getSourceRange();
6019 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6020 return true;
6021}
6022
6023/// \brief Check a template argument against its corresponding
6024/// non-type template parameter.
6025///
6026/// This routine implements the semantics of C++ [temp.arg.nontype].
6027/// If an error occurred, it returns ExprError(); otherwise, it
6028/// returns the converted template argument. \p ParamType is the
6029/// type of the non-type template parameter after it has been instantiated.
6030ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6031 QualType ParamType, Expr *Arg,
6032 TemplateArgument &Converted,
6033 CheckTemplateArgumentKind CTAK) {
6034 SourceLocation StartLoc = Arg->getLocStart();
6035
6036 // If the parameter type somehow involves auto, deduce the type now.
6037 if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
6038 // During template argument deduction, we allow 'decltype(auto)' to
6039 // match an arbitrary dependent argument.
6040 // FIXME: The language rules don't say what happens in this case.
6041 // FIXME: We get an opaque dependent type out of decltype(auto) if the
6042 // expression is merely instantiation-dependent; is this enough?
6043 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6044 auto *AT = dyn_cast<AutoType>(ParamType);
6045 if (AT && AT->isDecltypeAuto()) {
6046 Converted = TemplateArgument(Arg);
6047 return Arg;
6048 }
6049 }
6050
6051 // When checking a deduced template argument, deduce from its type even if
6052 // the type is dependent, in order to check the types of non-type template
6053 // arguments line up properly in partial ordering.
6054 Optional<unsigned> Depth;
6055 if (CTAK != CTAK_Specified)
6056 Depth = Param->getDepth() + 1;
6057 if (DeduceAutoType(
6058 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
6059 Arg, ParamType, Depth) == DAR_Failed) {
6060 Diag(Arg->getExprLoc(),
6061 diag::err_non_type_template_parm_type_deduction_failure)
6062 << Param->getDeclName() << Param->getType() << Arg->getType()
6063 << Arg->getSourceRange();
6064 Diag(Param->getLocation(), diag::note_template_param_here);
6065 return ExprError();
6066 }
6067 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6068 // an error. The error message normally references the parameter
6069 // declaration, but here we'll pass the argument location because that's
6070 // where the parameter type is deduced.
6071 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6072 if (ParamType.isNull()) {
6073 Diag(Param->getLocation(), diag::note_template_param_here);
6074 return ExprError();
6075 }
6076 }
6077
6078 // We should have already dropped all cv-qualifiers by now.
6079 assert(!ParamType.hasQualifiers() &&(static_cast <bool> (!ParamType.hasQualifiers() &&
"non-type template parameter type cannot be qualified") ? void
(0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6080, __extension__ __PRETTY_FUNCTION__))
6080 "non-type template parameter type cannot be qualified")(static_cast <bool> (!ParamType.hasQualifiers() &&
"non-type template parameter type cannot be qualified") ? void
(0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6080, __extension__ __PRETTY_FUNCTION__))
;
6081
6082 if (CTAK == CTAK_Deduced &&
6083 !Context.hasSameType(ParamType.getNonLValueExprType(Context),
6084 Arg->getType())) {
6085 // FIXME: If either type is dependent, we skip the check. This isn't
6086 // correct, since during deduction we're supposed to have replaced each
6087 // template parameter with some unique (non-dependent) placeholder.
6088 // FIXME: If the argument type contains 'auto', we carry on and fail the
6089 // type check in order to force specific types to be more specialized than
6090 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6091 // work.
6092 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6093 !Arg->getType()->getContainedAutoType()) {
6094 Converted = TemplateArgument(Arg);
6095 return Arg;
6096 }
6097 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6098 // we should actually be checking the type of the template argument in P,
6099 // not the type of the template argument deduced from A, against the
6100 // template parameter type.
6101 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6102 << Arg->getType()
6103 << ParamType.getUnqualifiedType();
6104 Diag(Param->getLocation(), diag::note_template_param_here);
6105 return ExprError();
6106 }
6107
6108 // If either the parameter has a dependent type or the argument is
6109 // type-dependent, there's nothing we can check now.
6110 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
6111 // FIXME: Produce a cloned, canonical expression?
6112 Converted = TemplateArgument(Arg);
6113 return Arg;
6114 }
6115
6116 // The initialization of the parameter from the argument is
6117 // a constant-evaluated context.
6118 EnterExpressionEvaluationContext ConstantEvaluated(
6119 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6120
6121 if (getLangOpts().CPlusPlus17) {
6122 // C++17 [temp.arg.nontype]p1:
6123 // A template-argument for a non-type template parameter shall be
6124 // a converted constant expression of the type of the template-parameter.
6125 APValue Value;
6126 ExprResult ArgResult = CheckConvertedConstantExpression(
6127 Arg, ParamType, Value, CCEK_TemplateArg);
6128 if (ArgResult.isInvalid())
6129 return ExprError();
6130
6131 // For a value-dependent argument, CheckConvertedConstantExpression is
6132 // permitted (and expected) to be unable to determine a value.
6133 if (ArgResult.get()->isValueDependent()) {
6134 Converted = TemplateArgument(ArgResult.get());
6135 return ArgResult;
6136 }
6137
6138 QualType CanonParamType = Context.getCanonicalType(ParamType);
6139
6140 // Convert the APValue to a TemplateArgument.
6141 switch (Value.getKind()) {
6142 case APValue::Uninitialized:
6143 assert(ParamType->isNullPtrType())(static_cast <bool> (ParamType->isNullPtrType()) ? void
(0) : __assert_fail ("ParamType->isNullPtrType()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6143, __extension__ __PRETTY_FUNCTION__))
;
6144 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6145 break;
6146 case APValue::Int:
6147 assert(ParamType->isIntegralOrEnumerationType())(static_cast <bool> (ParamType->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6147, __extension__ __PRETTY_FUNCTION__))
;
6148 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6149 break;
6150 case APValue::MemberPointer: {
6151 assert(ParamType->isMemberPointerType())(static_cast <bool> (ParamType->isMemberPointerType(
)) ? void (0) : __assert_fail ("ParamType->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6151, __extension__ __PRETTY_FUNCTION__))
;
6152
6153 // FIXME: We need TemplateArgument representation and mangling for these.
6154 if (!Value.getMemberPointerPath().empty()) {
6155 Diag(Arg->getLocStart(),
6156 diag::err_template_arg_member_ptr_base_derived_not_supported)
6157 << Value.getMemberPointerDecl() << ParamType
6158 << Arg->getSourceRange();
6159 return ExprError();
6160 }
6161
6162 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6163 Converted = VD ? TemplateArgument(VD, CanonParamType)
6164 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6165 break;
6166 }
6167 case APValue::LValue: {
6168 // For a non-type template-parameter of pointer or reference type,
6169 // the value of the constant expression shall not refer to
6170 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||(static_cast <bool> (ParamType->isPointerType() || ParamType
->isReferenceType() || ParamType->isNullPtrType()) ? void
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6171, __extension__ __PRETTY_FUNCTION__))
6171 ParamType->isNullPtrType())(static_cast <bool> (ParamType->isPointerType() || ParamType
->isReferenceType() || ParamType->isNullPtrType()) ? void
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6171, __extension__ __PRETTY_FUNCTION__))
;
6172 // -- a temporary object
6173 // -- a string literal
6174 // -- the result of a typeid expression, or
6175 // -- a predefined __func__ variable
6176 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
6177 if (isa<CXXUuidofExpr>(E)) {
6178 Converted = TemplateArgument(const_cast<Expr*>(E));
6179 break;
6180 }
6181 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
6182 << Arg->getSourceRange();
6183 return ExprError();
6184 }
6185 auto *VD = const_cast<ValueDecl *>(
6186 Value.getLValueBase().dyn_cast<const ValueDecl *>());
6187 // -- a subobject
6188 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6189 VD && VD->getType()->isArrayType() &&
6190 Value.getLValuePath()[0].ArrayIndex == 0 &&
6191 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6192 // Per defect report (no number yet):
6193 // ... other than a pointer to the first element of a complete array
6194 // object.
6195 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6196 Value.isLValueOnePastTheEnd()) {
6197 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6198 << Value.getAsString(Context, ParamType);
6199 return ExprError();
6200 }
6201 assert((VD || !ParamType->isReferenceType()) &&(static_cast <bool> ((VD || !ParamType->isReferenceType
()) && "null reference should not be a constant expression"
) ? void (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6202, __extension__ __PRETTY_FUNCTION__))
6202 "null reference should not be a constant expression")(static_cast <bool> ((VD || !ParamType->isReferenceType
()) && "null reference should not be a constant expression"
) ? void (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6202, __extension__ __PRETTY_FUNCTION__))
;
6203 assert((!VD || !ParamType->isNullPtrType()) &&(static_cast <bool> ((!VD || !ParamType->isNullPtrType
()) && "non-null value of type nullptr_t?") ? void (0
) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6204, __extension__ __PRETTY_FUNCTION__))
6204 "non-null value of type nullptr_t?")(static_cast <bool> ((!VD || !ParamType->isNullPtrType
()) && "non-null value of type nullptr_t?") ? void (0
) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6204, __extension__ __PRETTY_FUNCTION__))
;
6205 Converted = VD ? TemplateArgument(VD, CanonParamType)
6206 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6207 break;
6208 }
6209 case APValue::AddrLabelDiff:
6210 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6211 case APValue::Float:
6212 case APValue::ComplexInt:
6213 case APValue::ComplexFloat:
6214 case APValue::Vector:
6215 case APValue::Array:
6216 case APValue::Struct:
6217 case APValue::Union:
6218 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6218)
;
6219 }
6220
6221 return ArgResult.get();
6222 }
6223
6224 // C++ [temp.arg.nontype]p5:
6225 // The following conversions are performed on each expression used
6226 // as a non-type template-argument. If a non-type
6227 // template-argument cannot be converted to the type of the
6228 // corresponding template-parameter then the program is
6229 // ill-formed.
6230 if (ParamType->isIntegralOrEnumerationType()) {
6231 // C++11:
6232 // -- for a non-type template-parameter of integral or
6233 // enumeration type, conversions permitted in a converted
6234 // constant expression are applied.
6235 //
6236 // C++98:
6237 // -- for a non-type template-parameter of integral or
6238 // enumeration type, integral promotions (4.5) and integral
6239 // conversions (4.7) are applied.
6240
6241 if (getLangOpts().CPlusPlus11) {
6242 // C++ [temp.arg.nontype]p1:
6243 // A template-argument for a non-type, non-template template-parameter
6244 // shall be one of:
6245 //
6246 // -- for a non-type template-parameter of integral or enumeration
6247 // type, a converted constant expression of the type of the
6248 // template-parameter; or
6249 llvm::APSInt Value;
6250 ExprResult ArgResult =
6251 CheckConvertedConstantExpression(Arg, ParamType, Value,
6252 CCEK_TemplateArg);
6253 if (ArgResult.isInvalid())
6254 return ExprError();
6255
6256 // We can't check arbitrary value-dependent arguments.
6257 if (ArgResult.get()->isValueDependent()) {
6258 Converted = TemplateArgument(ArgResult.get());
6259 return ArgResult;
6260 }
6261
6262 // Widen the argument value to sizeof(parameter type). This is almost
6263 // always a no-op, except when the parameter type is bool. In
6264 // that case, this may extend the argument from 1 bit to 8 bits.
6265 QualType IntegerType = ParamType;
6266 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6267 IntegerType = Enum->getDecl()->getIntegerType();
6268 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
6269
6270 Converted = TemplateArgument(Context, Value,
6271 Context.getCanonicalType(ParamType));
6272 return ArgResult;
6273 }
6274
6275 ExprResult ArgResult = DefaultLvalueConversion(Arg);
6276 if (ArgResult.isInvalid())
6277 return ExprError();
6278 Arg = ArgResult.get();
6279
6280 QualType ArgType = Arg->getType();
6281
6282 // C++ [temp.arg.nontype]p1:
6283 // A template-argument for a non-type, non-template
6284 // template-parameter shall be one of:
6285 //
6286 // -- an integral constant-expression of integral or enumeration
6287 // type; or
6288 // -- the name of a non-type template-parameter; or
6289 llvm::APSInt Value;
6290 if (!ArgType->isIntegralOrEnumerationType()) {
6291 Diag(Arg->getLocStart(),
6292 diag::err_template_arg_not_integral_or_enumeral)
6293 << ArgType << Arg->getSourceRange();
6294 Diag(Param->getLocation(), diag::note_template_param_here);
6295 return ExprError();
6296 } else if (!Arg->isValueDependent()) {
6297 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6298 QualType T;
6299
6300 public:
6301 TmplArgICEDiagnoser(QualType T) : T(T) { }
6302
6303 void diagnoseNotICE(Sema &S, SourceLocation Loc,
6304 SourceRange SR) override {
6305 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
6306 }
6307 } Diagnoser(ArgType);
6308
6309 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
6310 false).get();
6311 if (!Arg)
6312 return ExprError();
6313 }
6314
6315 // From here on out, all we care about is the unqualified form
6316 // of the argument type.
6317 ArgType = ArgType.getUnqualifiedType();
6318
6319 // Try to convert the argument to the parameter's type.
6320 if (Context.hasSameType(ParamType, ArgType)) {
6321 // Okay: no conversion necessary
6322 } else if (ParamType->isBooleanType()) {
6323 // This is an integral-to-boolean conversion.
6324 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6325 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6326 !ParamType->isEnumeralType()) {
6327 // This is an integral promotion or conversion.
6328 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6329 } else {
6330 // We can't perform this conversion.
6331 Diag(Arg->getLocStart(),
6332 diag::err_template_arg_not_convertible)
6333 << Arg->getType() << ParamType << Arg->getSourceRange();
6334 Diag(Param->getLocation(), diag::note_template_param_here);
6335 return ExprError();
6336 }
6337
6338 // Add the value of this argument to the list of converted
6339 // arguments. We use the bitwidth and signedness of the template
6340 // parameter.
6341 if (Arg->isValueDependent()) {
6342 // The argument is value-dependent. Create a new
6343 // TemplateArgument with the converted expression.
6344 Converted = TemplateArgument(Arg);
6345 return Arg;
6346 }
6347
6348 QualType IntegerType = Context.getCanonicalType(ParamType);
6349 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6350 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6351
6352 if (ParamType->isBooleanType()) {
6353 // Value must be zero or one.
6354 Value = Value != 0;
6355 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6356 if (Value.getBitWidth() != AllowedBits)
6357 Value = Value.extOrTrunc(AllowedBits);
6358 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6359 } else {
6360 llvm::APSInt OldValue = Value;
6361
6362 // Coerce the template argument's value to the value it will have
6363 // based on the template parameter's type.
6364 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6365 if (Value.getBitWidth() != AllowedBits)
6366 Value = Value.extOrTrunc(AllowedBits);
6367 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6368
6369 // Complain if an unsigned parameter received a negative value.
6370 if (IntegerType->isUnsignedIntegerOrEnumerationType()
6371 && (OldValue.isSigned() && OldValue.isNegative())) {
6372 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
6373 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6374 << Arg->getSourceRange();
6375 Diag(Param->getLocation(), diag::note_template_param_here);
6376 }
6377
6378 // Complain if we overflowed the template parameter's type.
6379 unsigned RequiredBits;
6380 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6381 RequiredBits = OldValue.getActiveBits();
6382 else if (OldValue.isUnsigned())
6383 RequiredBits = OldValue.getActiveBits() + 1;
6384 else
6385 RequiredBits = OldValue.getMinSignedBits();
6386 if (RequiredBits > AllowedBits) {
6387 Diag(Arg->getLocStart(),
6388 diag::warn_template_arg_too_large)
6389 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6390 << Arg->getSourceRange();
6391 Diag(Param->getLocation(), diag::note_template_param_here);
6392 }
6393 }
6394
6395 Converted = TemplateArgument(Context, Value,
6396 ParamType->isEnumeralType()
6397 ? Context.getCanonicalType(ParamType)
6398 : IntegerType);
6399 return Arg;
6400 }
6401
6402 QualType ArgType = Arg->getType();
6403 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6404
6405 // Handle pointer-to-function, reference-to-function, and
6406 // pointer-to-member-function all in (roughly) the same way.
6407 if (// -- For a non-type template-parameter of type pointer to
6408 // function, only the function-to-pointer conversion (4.3) is
6409 // applied. If the template-argument represents a set of
6410 // overloaded functions (or a pointer to such), the matching
6411 // function is selected from the set (13.4).
6412 (ParamType->isPointerType() &&
6413 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6414 // -- For a non-type template-parameter of type reference to
6415 // function, no conversions apply. If the template-argument
6416 // represents a set of overloaded functions, the matching
6417 // function is selected from the set (13.4).
6418 (ParamType->isReferenceType() &&
6419 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6420 // -- For a non-type template-parameter of type pointer to
6421 // member function, no conversions apply. If the
6422 // template-argument represents a set of overloaded member
6423 // functions, the matching member function is selected from
6424 // the set (13.4).
6425 (ParamType->isMemberPointerType() &&
6426 ParamType->getAs<MemberPointerType>()->getPointeeType()
6427 ->isFunctionType())) {
6428
6429 if (Arg->getType() == Context.OverloadTy) {
6430 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6431 true,
6432 FoundResult)) {
6433 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6434 return ExprError();
6435
6436 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6437 ArgType = Arg->getType();
6438 } else
6439 return ExprError();
6440 }
6441
6442 if (!ParamType->isMemberPointerType()) {
6443 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6444 ParamType,
6445 Arg, Converted))
6446 return ExprError();
6447 return Arg;
6448 }
6449
6450 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6451 Converted))
6452 return ExprError();
6453 return Arg;
6454 }
6455
6456 if (ParamType->isPointerType()) {
6457 // -- for a non-type template-parameter of type pointer to
6458 // object, qualification conversions (4.4) and the
6459 // array-to-pointer conversion (4.2) are applied.
6460 // C++0x also allows a value of std::nullptr_t.
6461 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&(static_cast <bool> (ParamType->getPointeeType()->
isIncompleteOrObjectType() && "Only object pointers allowed here"
) ? void (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6462, __extension__ __PRETTY_FUNCTION__))
6462 "Only object pointers allowed here")(static_cast <bool> (ParamType->getPointeeType()->
isIncompleteOrObjectType() && "Only object pointers allowed here"
) ? void (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6462, __extension__ __PRETTY_FUNCTION__))
;
6463
6464 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6465 ParamType,
6466 Arg, Converted))
6467 return ExprError();
6468 return Arg;
6469 }
6470
6471 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
6472 // -- For a non-type template-parameter of type reference to
6473 // object, no conversions apply. The type referred to by the
6474 // reference may be more cv-qualified than the (otherwise
6475 // identical) type of the template-argument. The
6476 // template-parameter is bound directly to the
6477 // template-argument, which must be an lvalue.
6478 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&(static_cast <bool> (ParamRefType->getPointeeType()->
isIncompleteOrObjectType() && "Only object references allowed here"
) ? void (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6479, __extension__ __PRETTY_FUNCTION__))
6479 "Only object references allowed here")(static_cast <bool> (ParamRefType->getPointeeType()->
isIncompleteOrObjectType() && "Only object references allowed here"
) ? void (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6479, __extension__ __PRETTY_FUNCTION__))
;
6480
6481 if (Arg->getType() == Context.OverloadTy) {
6482 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
6483 ParamRefType->getPointeeType(),
6484 true,
6485 FoundResult)) {
6486 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6487 return ExprError();
6488
6489 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6490 ArgType = Arg->getType();
6491 } else
6492 return ExprError();
6493 }
6494
6495 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6496 ParamType,
6497 Arg, Converted))
6498 return ExprError();
6499 return Arg;
6500 }
6501
6502 // Deal with parameters of type std::nullptr_t.
6503 if (ParamType->isNullPtrType()) {
6504 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6505 Converted = TemplateArgument(Arg);
6506 return Arg;
6507 }
6508
6509 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
6510 case NPV_NotNullPointer:
6511 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
6512 << Arg->getType() << ParamType;
6513 Diag(Param->getLocation(), diag::note_template_param_here);
6514 return ExprError();
6515
6516 case NPV_Error:
6517 return ExprError();
6518
6519 case NPV_NullPointer:
6520 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6521 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
6522 /*isNullPtr*/true);
6523 return Arg;
6524 }
6525 }
6526
6527 // -- For a non-type template-parameter of type pointer to data
6528 // member, qualification conversions (4.4) are applied.
6529 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")(static_cast <bool> (ParamType->isMemberPointerType(
) && "Only pointers to members remain") ? void (0) : __assert_fail
("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6529, __extension__ __PRETTY_FUNCTION__))
;
6530
6531 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6532 Converted))
6533 return ExprError();
6534 return Arg;
6535}
6536
6537static void DiagnoseTemplateParameterListArityMismatch(
6538 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
6539 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
6540
6541/// \brief Check a template argument against its corresponding
6542/// template template parameter.
6543///
6544/// This routine implements the semantics of C++ [temp.arg.template].
6545/// It returns true if an error occurred, and false otherwise.
6546bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params,
6547 TemplateArgumentLoc &Arg) {
6548 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
6549 TemplateDecl *Template = Name.getAsTemplateDecl();
6550 if (!Template) {
6551 // Any dependent template name is fine.
6552 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")(static_cast <bool> (Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? void (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6552, __extension__ __PRETTY_FUNCTION__))
;
6553 return false;
6554 }
6555
6556 if (Template->isInvalidDecl())
6557 return true;
6558
6559 // C++0x [temp.arg.template]p1:
6560 // A template-argument for a template template-parameter shall be
6561 // the name of a class template or an alias template, expressed as an
6562 // id-expression. When the template-argument names a class template, only
6563 // primary class templates are considered when matching the
6564 // template template argument with the corresponding parameter;
6565 // partial specializations are not considered even if their
6566 // parameter lists match that of the template template parameter.
6567 //
6568 // Note that we also allow template template parameters here, which
6569 // will happen when we are dealing with, e.g., class template
6570 // partial specializations.
6571 if (!isa<ClassTemplateDecl>(Template) &&
6572 !isa<TemplateTemplateParmDecl>(Template) &&
6573 !isa<TypeAliasTemplateDecl>(Template) &&
6574 !isa<BuiltinTemplateDecl>(Template)) {
6575 assert(isa<FunctionTemplateDecl>(Template) &&(static_cast <bool> (isa<FunctionTemplateDecl>(Template
) && "Only function templates are possible here") ? void
(0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6576, __extension__ __PRETTY_FUNCTION__))
6576 "Only function templates are possible here")(static_cast <bool> (isa<FunctionTemplateDecl>(Template
) && "Only function templates are possible here") ? void
(0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6576, __extension__ __PRETTY_FUNCTION__))
;
6577 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
6578 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
6579 << Template;
6580 }
6581
6582 // C++1z [temp.arg.template]p3: (DR 150)
6583 // A template-argument matches a template template-parameter P when P
6584 // is at least as specialized as the template-argument A.
6585 if (getLangOpts().RelaxedTemplateTemplateArgs) {
6586 // Quick check for the common case:
6587 // If P contains a parameter pack, then A [...] matches P if each of A's
6588 // template parameters matches the corresponding template parameter in
6589 // the template-parameter-list of P.
6590 if (TemplateParameterListsAreEqual(
6591 Template->getTemplateParameters(), Params, false,
6592 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
6593 return false;
6594
6595 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
6596 Arg.getLocation()))
6597 return false;
6598 // FIXME: Produce better diagnostics for deduction failures.
6599 }
6600
6601 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
6602 Params,
6603 true,
6604 TPL_TemplateTemplateArgumentMatch,
6605 Arg.getLocation());
6606}
6607
6608/// \brief Given a non-type template argument that refers to a
6609/// declaration and the type of its corresponding non-type template
6610/// parameter, produce an expression that properly refers to that
6611/// declaration.
6612ExprResult
6613Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
6614 QualType ParamType,
6615 SourceLocation Loc) {
6616 // C++ [temp.param]p8:
6617 //
6618 // A non-type template-parameter of type "array of T" or
6619 // "function returning T" is adjusted to be of type "pointer to
6620 // T" or "pointer to function returning T", respectively.
6621 if (ParamType->isArrayType())
6622 ParamType = Context.getArrayDecayedType(ParamType);
6623 else if (ParamType->isFunctionType())
6624 ParamType = Context.getPointerType(ParamType);
6625
6626 // For a NULL non-type template argument, return nullptr casted to the
6627 // parameter's type.
6628 if (Arg.getKind() == TemplateArgument::NullPtr) {
6629 return ImpCastExprToType(
6630 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
6631 ParamType,
6632 ParamType->getAs<MemberPointerType>()
6633 ? CK_NullToMemberPointer
6634 : CK_NullToPointer);
6635 }
6636 assert(Arg.getKind() == TemplateArgument::Declaration &&(static_cast <bool> (Arg.getKind() == TemplateArgument::
Declaration && "Only declaration template arguments permitted here"
) ? void (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6637, __extension__ __PRETTY_FUNCTION__))
6637 "Only declaration template arguments permitted here")(static_cast <bool> (Arg.getKind() == TemplateArgument::
Declaration && "Only declaration template arguments permitted here"
) ? void (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6637, __extension__ __PRETTY_FUNCTION__))
;
6638
6639 ValueDecl *VD = Arg.getAsDecl();
6640
6641 if (VD->getDeclContext()->isRecord() &&
6642 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
6643 isa<IndirectFieldDecl>(VD))) {
6644 // If the value is a class member, we might have a pointer-to-member.
6645 // Determine whether the non-type template template parameter is of
6646 // pointer-to-member type. If so, we need to build an appropriate
6647 // expression for a pointer-to-member, since a "normal" DeclRefExpr
6648 // would refer to the member itself.
6649 if (ParamType->isMemberPointerType()) {
6650 QualType ClassType
6651 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
6652 NestedNameSpecifier *Qualifier
6653 = NestedNameSpecifier::Create(Context, nullptr, false,
6654 ClassType.getTypePtr());
6655 CXXScopeSpec SS;
6656 SS.MakeTrivial(Context, Qualifier, Loc);
6657
6658 // The actual value-ness of this is unimportant, but for
6659 // internal consistency's sake, references to instance methods
6660 // are r-values.
6661 ExprValueKind VK = VK_LValue;
6662 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
6663 VK = VK_RValue;
6664
6665 ExprResult RefExpr = BuildDeclRefExpr(VD,
6666 VD->getType().getNonReferenceType(),
6667 VK,
6668 Loc,
6669 &SS);
6670 if (RefExpr.isInvalid())
6671 return ExprError();
6672
6673 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6674
6675 // We might need to perform a trailing qualification conversion, since
6676 // the element type on the parameter could be more qualified than the
6677 // element type in the expression we constructed.
6678 bool ObjCLifetimeConversion;
6679 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
6680 ParamType.getUnqualifiedType(), false,
6681 ObjCLifetimeConversion))
6682 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
6683
6684 assert(!RefExpr.isInvalid() &&(static_cast <bool> (!RefExpr.isInvalid() && Context
.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType
.getUnqualifiedType())) ? void (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6686, __extension__ __PRETTY_FUNCTION__))
6685 Context.hasSameType(((Expr*) RefExpr.get())->getType(),(static_cast <bool> (!RefExpr.isInvalid() && Context
.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType
.getUnqualifiedType())) ? void (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6686, __extension__ __PRETTY_FUNCTION__))
6686 ParamType.getUnqualifiedType()))(static_cast <bool> (!RefExpr.isInvalid() && Context
.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType
.getUnqualifiedType())) ? void (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6686, __extension__ __PRETTY_FUNCTION__))
;
6687 return RefExpr;
6688 }
6689 }
6690
6691 QualType T = VD->getType().getNonReferenceType();
6692
6693 if (ParamType->isPointerType()) {
6694 // When the non-type template parameter is a pointer, take the
6695 // address of the declaration.
6696 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
6697 if (RefExpr.isInvalid())
6698 return ExprError();
6699
6700 if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) &&
6701 (T->isFunctionType() || T->isArrayType())) {
6702 // Decay functions and arrays unless we're forming a pointer to array.
6703 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
6704 if (RefExpr.isInvalid())
6705 return ExprError();
6706
6707 return RefExpr;
6708 }
6709
6710 // Take the address of everything else
6711 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6712 }
6713
6714 ExprValueKind VK = VK_RValue;
6715
6716 // If the non-type template parameter has reference type, qualify the
6717 // resulting declaration reference with the extra qualifiers on the
6718 // type that the reference refers to.
6719 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
6720 VK = VK_LValue;
6721 T = Context.getQualifiedType(T,
6722 TargetRef->getPointeeType().getQualifiers());
6723 } else if (isa<FunctionDecl>(VD)) {
6724 // References to functions are always lvalues.
6725 VK = VK_LValue;
6726 }
6727
6728 return BuildDeclRefExpr(VD, T, VK, Loc);
6729}
6730
6731/// \brief Construct a new expression that refers to the given
6732/// integral template argument with the given source-location
6733/// information.
6734///
6735/// This routine takes care of the mapping from an integral template
6736/// argument (which may have any integral type) to the appropriate
6737/// literal value.
6738ExprResult
6739Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
6740 SourceLocation Loc) {
6741 assert(Arg.getKind() == TemplateArgument::Integral &&(static_cast <bool> (Arg.getKind() == TemplateArgument::
Integral && "Operation is only valid for integral template arguments"
) ? void (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6742, __extension__ __PRETTY_FUNCTION__))
6742 "Operation is only valid for integral template arguments")(static_cast <bool> (Arg.getKind() == TemplateArgument::
Integral && "Operation is only valid for integral template arguments"
) ? void (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6742, __extension__ __PRETTY_FUNCTION__))
;
6743 QualType OrigT = Arg.getIntegralType();
6744
6745 // If this is an enum type that we're instantiating, we need to use an integer
6746 // type the same size as the enumerator. We don't want to build an
6747 // IntegerLiteral with enum type. The integer type of an enum type can be of
6748 // any integral type with C++11 enum classes, make sure we create the right
6749 // type of literal for it.
6750 QualType T = OrigT;
6751 if (const EnumType *ET = OrigT->getAs<EnumType>())
6752 T = ET->getDecl()->getIntegerType();
6753
6754 Expr *E;
6755 if (T->isAnyCharacterType()) {
6756 // This does not need to handle u8 character literals because those are
6757 // of type char, and so can also be covered by an ASCII character literal.
6758 CharacterLiteral::CharacterKind Kind;
6759 if (T->isWideCharType())
6760 Kind = CharacterLiteral::Wide;
6761 else if (T->isChar16Type())
6762 Kind = CharacterLiteral::UTF16;
6763 else if (T->isChar32Type())
6764 Kind = CharacterLiteral::UTF32;
6765 else
6766 Kind = CharacterLiteral::Ascii;
6767
6768 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
6769 Kind, T, Loc);
6770 } else if (T->isBooleanType()) {
6771 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
6772 T, Loc);
6773 } else if (T->isNullPtrType()) {
6774 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
6775 } else {
6776 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
6777 }
6778
6779 if (OrigT->isEnumeralType()) {
6780 // FIXME: This is a hack. We need a better way to handle substituted
6781 // non-type template parameters.
6782 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
6783 nullptr,
6784 Context.getTrivialTypeSourceInfo(OrigT, Loc),
6785 Loc, Loc);
6786 }
6787
6788 return E;
6789}
6790
6791/// \brief Match two template parameters within template parameter lists.
6792static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
6793 bool Complain,
6794 Sema::TemplateParameterListEqualKind Kind,
6795 SourceLocation TemplateArgLoc) {
6796 // Check the actual kind (type, non-type, template).
6797 if (Old->getKind() != New->getKind()) {
6798 if (Complain) {
6799 unsigned NextDiag = diag::err_template_param_different_kind;
6800 if (TemplateArgLoc.isValid()) {
6801 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6802 NextDiag = diag::note_template_param_different_kind;
6803 }
6804 S.Diag(New->getLocation(), NextDiag)
6805 << (Kind != Sema::TPL_TemplateMatch);
6806 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
6807 << (Kind != Sema::TPL_TemplateMatch);
6808 }
6809
6810 return false;
6811 }
6812
6813 // Check that both are parameter packs or neither are parameter packs.
6814 // However, if we are matching a template template argument to a
6815 // template template parameter, the template template parameter can have
6816 // a parameter pack where the template template argument does not.
6817 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
6818 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6819 Old->isTemplateParameterPack())) {
6820 if (Complain) {
6821 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
6822 if (TemplateArgLoc.isValid()) {
6823 S.Diag(TemplateArgLoc,
6824 diag::err_template_arg_template_params_mismatch);
6825 NextDiag = diag::note_template_parameter_pack_non_pack;
6826 }
6827
6828 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
6829 : isa<NonTypeTemplateParmDecl>(New)? 1
6830 : 2;
6831 S.Diag(New->getLocation(), NextDiag)
6832 << ParamKind << New->isParameterPack();
6833 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
6834 << ParamKind << Old->isParameterPack();
6835 }
6836
6837 return false;
6838 }
6839
6840 // For non-type template parameters, check the type of the parameter.
6841 if (NonTypeTemplateParmDecl *OldNTTP
6842 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
6843 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
6844
6845 // If we are matching a template template argument to a template
6846 // template parameter and one of the non-type template parameter types
6847 // is dependent, then we must wait until template instantiation time
6848 // to actually compare the arguments.
6849 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6850 (OldNTTP->getType()->isDependentType() ||
6851 NewNTTP->getType()->isDependentType()))
6852 return true;
6853
6854 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
6855 if (Complain) {
6856 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
6857 if (TemplateArgLoc.isValid()) {
6858 S.Diag(TemplateArgLoc,
6859 diag::err_template_arg_template_params_mismatch);
6860 NextDiag = diag::note_template_nontype_parm_different_type;
6861 }
6862 S.Diag(NewNTTP->getLocation(), NextDiag)
6863 << NewNTTP->getType()
6864 << (Kind != Sema::TPL_TemplateMatch);
6865 S.Diag(OldNTTP->getLocation(),
6866 diag::note_template_nontype_parm_prev_declaration)
6867 << OldNTTP->getType();
6868 }
6869
6870 return false;
6871 }
6872
6873 return true;
6874 }
6875
6876 // For template template parameters, check the template parameter types.
6877 // The template parameter lists of template template
6878 // parameters must agree.
6879 if (TemplateTemplateParmDecl *OldTTP
6880 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
6881 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
6882 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
6883 OldTTP->getTemplateParameters(),
6884 Complain,
6885 (Kind == Sema::TPL_TemplateMatch
6886 ? Sema::TPL_TemplateTemplateParmMatch
6887 : Kind),
6888 TemplateArgLoc);
6889 }
6890
6891 return true;
6892}
6893
6894/// \brief Diagnose a known arity mismatch when comparing template argument
6895/// lists.
6896static
6897void DiagnoseTemplateParameterListArityMismatch(Sema &S,
6898 TemplateParameterList *New,
6899 TemplateParameterList *Old,
6900 Sema::TemplateParameterListEqualKind Kind,
6901 SourceLocation TemplateArgLoc) {
6902 unsigned NextDiag = diag::err_template_param_list_different_arity;
6903 if (TemplateArgLoc.isValid()) {
6904 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6905 NextDiag = diag::note_template_param_list_different_arity;
6906 }
6907 S.Diag(New->getTemplateLoc(), NextDiag)
6908 << (New->size() > Old->size())
6909 << (Kind != Sema::TPL_TemplateMatch)
6910 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
6911 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
6912 << (Kind != Sema::TPL_TemplateMatch)
6913 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
6914}
6915
6916/// \brief Determine whether the given template parameter lists are
6917/// equivalent.
6918///
6919/// \param New The new template parameter list, typically written in the
6920/// source code as part of a new template declaration.
6921///
6922/// \param Old The old template parameter list, typically found via
6923/// name lookup of the template declared with this template parameter
6924/// list.
6925///
6926/// \param Complain If true, this routine will produce a diagnostic if
6927/// the template parameter lists are not equivalent.
6928///
6929/// \param Kind describes how we are to match the template parameter lists.
6930///
6931/// \param TemplateArgLoc If this source location is valid, then we
6932/// are actually checking the template parameter list of a template
6933/// argument (New) against the template parameter list of its
6934/// corresponding template template parameter (Old). We produce
6935/// slightly different diagnostics in this scenario.
6936///
6937/// \returns True if the template parameter lists are equal, false
6938/// otherwise.
6939bool
6940Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
6941 TemplateParameterList *Old,
6942 bool Complain,
6943 TemplateParameterListEqualKind Kind,
6944 SourceLocation TemplateArgLoc) {
6945 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
6946 if (Complain)
6947 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6948 TemplateArgLoc);
6949
6950 return false;
6951 }
6952
6953 // C++0x [temp.arg.template]p3:
6954 // A template-argument matches a template template-parameter (call it P)
6955 // when each of the template parameters in the template-parameter-list of
6956 // the template-argument's corresponding class template or alias template
6957 // (call it A) matches the corresponding template parameter in the
6958 // template-parameter-list of P. [...]
6959 TemplateParameterList::iterator NewParm = New->begin();
6960 TemplateParameterList::iterator NewParmEnd = New->end();
6961 for (TemplateParameterList::iterator OldParm = Old->begin(),
6962 OldParmEnd = Old->end();
6963 OldParm != OldParmEnd; ++OldParm) {
6964 if (Kind != TPL_TemplateTemplateArgumentMatch ||
6965 !(*OldParm)->isTemplateParameterPack()) {
6966 if (NewParm == NewParmEnd) {
6967 if (Complain)
6968 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6969 TemplateArgLoc);
6970
6971 return false;
6972 }
6973
6974 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6975 Kind, TemplateArgLoc))
6976 return false;
6977
6978 ++NewParm;
6979 continue;
6980 }
6981
6982 // C++0x [temp.arg.template]p3:
6983 // [...] When P's template- parameter-list contains a template parameter
6984 // pack (14.5.3), the template parameter pack will match zero or more
6985 // template parameters or template parameter packs in the
6986 // template-parameter-list of A with the same type and form as the
6987 // template parameter pack in P (ignoring whether those template
6988 // parameters are template parameter packs).
6989 for (; NewParm != NewParmEnd; ++NewParm) {
6990 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6991 Kind, TemplateArgLoc))
6992 return false;
6993 }
6994 }
6995
6996 // Make sure we exhausted all of the arguments.
6997 if (NewParm != NewParmEnd) {
6998 if (Complain)
6999 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7000 TemplateArgLoc);
7001
7002 return false;
7003 }
7004
7005 return true;
7006}
7007
7008/// \brief Check whether a template can be declared within this scope.
7009///
7010/// If the template declaration is valid in this scope, returns
7011/// false. Otherwise, issues a diagnostic and returns true.
7012bool
7013Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7014 if (!S)
7015 return false;
7016
7017 // Find the nearest enclosing declaration scope.
7018 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7019 (S->getFlags() & Scope::TemplateParamScope) != 0)
7020 S = S->getParent();
7021
7022 // C++ [temp]p4:
7023 // A template [...] shall not have C linkage.
7024 DeclContext *Ctx = S->getEntity();
7025 if (Ctx && Ctx->isExternCContext()) {
7026 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7027 << TemplateParams->getSourceRange();
7028 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7029 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7030 return true;
7031 }
7032 Ctx = Ctx->getRedeclContext();
7033
7034 // C++ [temp]p2:
7035 // A template-declaration can appear only as a namespace scope or
7036 // class scope declaration.
7037 if (Ctx) {
7038 if (Ctx->isFileContext())
7039 return false;
7040 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7041 // C++ [temp.mem]p2:
7042 // A local class shall not have member templates.
7043 if (RD->isLocalClass())
7044 return Diag(TemplateParams->getTemplateLoc(),
7045 diag::err_template_inside_local_class)
7046 << TemplateParams->getSourceRange();
7047 else
7048 return false;
7049 }
7050 }
7051
7052 return Diag(TemplateParams->getTemplateLoc(),
7053 diag::err_template_outside_namespace_or_class_scope)
7054 << TemplateParams->getSourceRange();
7055}
7056
7057/// \brief Determine what kind of template specialization the given declaration
7058/// is.
7059static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7060 if (!D)
7061 return TSK_Undeclared;
7062
7063 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7064 return Record->getTemplateSpecializationKind();
7065 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7066 return Function->getTemplateSpecializationKind();
7067 if (VarDecl *Var = dyn_cast<VarDecl>(D))
7068 return Var->getTemplateSpecializationKind();
7069
7070 return TSK_Undeclared;
7071}
7072
7073/// \brief Check whether a specialization is well-formed in the current
7074/// context.
7075///
7076/// This routine determines whether a template specialization can be declared
7077/// in the current context (C++ [temp.expl.spec]p2).
7078///
7079/// \param S the semantic analysis object for which this check is being
7080/// performed.
7081///
7082/// \param Specialized the entity being specialized or instantiated, which
7083/// may be a kind of template (class template, function template, etc.) or
7084/// a member of a class template (member function, static data member,
7085/// member class).
7086///
7087/// \param PrevDecl the previous declaration of this entity, if any.
7088///
7089/// \param Loc the location of the explicit specialization or instantiation of
7090/// this entity.
7091///
7092/// \param IsPartialSpecialization whether this is a partial specialization of
7093/// a class template.
7094///
7095/// \returns true if there was an error that we cannot recover from, false
7096/// otherwise.
7097static bool CheckTemplateSpecializationScope(Sema &S,
7098 NamedDecl *Specialized,
7099 NamedDecl *PrevDecl,
7100 SourceLocation Loc,
7101 bool IsPartialSpecialization) {
7102 // Keep these "kind" numbers in sync with the %select statements in the
7103 // various diagnostics emitted by this routine.
7104 int EntityKind = 0;
7105 if (isa<ClassTemplateDecl>(Specialized))
7106 EntityKind = IsPartialSpecialization? 1 : 0;
7107 else if (isa<VarTemplateDecl>(Specialized))
7108 EntityKind = IsPartialSpecialization ? 3 : 2;
7109 else if (isa<FunctionTemplateDecl>(Specialized))
7110 EntityKind = 4;
7111 else if (isa<CXXMethodDecl>(Specialized))
7112 EntityKind = 5;
7113 else if (isa<VarDecl>(Specialized))
7114 EntityKind = 6;
7115 else if (isa<RecordDecl>(Specialized))
7116 EntityKind = 7;
7117 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7118 EntityKind = 8;
7119 else {
7120 S.Diag(Loc, diag::err_template_spec_unknown_kind)
7121 << S.getLangOpts().CPlusPlus11;
7122 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7123 return true;
7124 }
7125
7126 // C++ [temp.expl.spec]p2:
7127 // An explicit specialization may be declared in any scope in which
7128 // the corresponding primary template may be defined.
7129 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7130 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7131 << Specialized;
7132 return true;
7133 }
7134
7135 // C++ [temp.class.spec]p6:
7136 // A class template partial specialization may be declared in any
7137 // scope in which the primary template may be defined.
7138 DeclContext *SpecializedContext =
7139 Specialized->getDeclContext()->getRedeclContext();
7140 DeclContext *DC = S.CurContext->getRedeclContext();
7141
7142 // Make sure that this redeclaration (or definition) occurs in the same
7143 // scope or an enclosing namespace.
7144 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
7145 : DC->Equals(SpecializedContext))) {
7146 if (isa<TranslationUnitDecl>(SpecializedContext))
7147 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7148 << EntityKind << Specialized;
7149 else {
7150 auto *ND = cast<NamedDecl>(SpecializedContext);
7151 int Diag = diag::err_template_spec_redecl_out_of_scope;
7152 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
7153 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7154 S.Diag(Loc, Diag) << EntityKind << Specialized
7155 << ND << isa<CXXRecordDecl>(ND);
7156 }
7157
7158 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7159
7160 // Don't allow specializing in the wrong class during error recovery.
7161 // Otherwise, things can go horribly wrong.
7162 if (DC->isRecord())
7163 return true;
7164 }
7165
7166 return false;
7167}
7168
7169static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7170 if (!E->isTypeDependent())
7171 return SourceLocation();
7172 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7173 Checker.TraverseStmt(E);
7174 if (Checker.MatchLoc.isInvalid())
7175 return E->getSourceRange();
7176 return Checker.MatchLoc;
7177}
7178
7179static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7180 if (!TL.getType()->isDependentType())
7181 return SourceLocation();
7182 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7183 Checker.TraverseTypeLoc(TL);
7184 if (Checker.MatchLoc.isInvalid())
7185 return TL.getSourceRange();
7186 return Checker.MatchLoc;
7187}
7188
7189/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7190/// that checks non-type template partial specialization arguments.
7191static bool CheckNonTypeTemplatePartialSpecializationArgs(
7192 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7193 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7194 for (unsigned I = 0; I != NumArgs; ++I) {
7195 if (Args[I].getKind() == TemplateArgument::Pack) {
7196 if (CheckNonTypeTemplatePartialSpecializationArgs(
7197 S, TemplateNameLoc, Param, Args[I].pack_begin(),
7198 Args[I].pack_size(), IsDefaultArgument))
7199 return true;
7200
7201 continue;
7202 }
7203
7204 if (Args[I].getKind() != TemplateArgument::Expression)
7205 continue;
7206
7207 Expr *ArgExpr = Args[I].getAsExpr();
7208
7209 // We can have a pack expansion of any of the bullets below.
7210 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7211 ArgExpr = Expansion->getPattern();
7212
7213 // Strip off any implicit casts we added as part of type checking.
7214 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7215 ArgExpr = ICE->getSubExpr();
7216
7217 // C++ [temp.class.spec]p8:
7218 // A non-type argument is non-specialized if it is the name of a
7219 // non-type parameter. All other non-type arguments are
7220 // specialized.
7221 //
7222 // Below, we check the two conditions that only apply to
7223 // specialized non-type arguments, so skip any non-specialized
7224 // arguments.
7225 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7226 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7227 continue;
7228
7229 // C++ [temp.class.spec]p9:
7230 // Within the argument list of a class template partial
7231 // specialization, the following restrictions apply:
7232 // -- A partially specialized non-type argument expression
7233 // shall not involve a template parameter of the partial
7234 // specialization except when the argument expression is a
7235 // simple identifier.
7236 // -- The type of a template parameter corresponding to a
7237 // specialized non-type argument shall not be dependent on a
7238 // parameter of the specialization.
7239 // DR1315 removes the first bullet, leaving an incoherent set of rules.
7240 // We implement a compromise between the original rules and DR1315:
7241 // -- A specialized non-type template argument shall not be
7242 // type-dependent and the corresponding template parameter
7243 // shall have a non-dependent type.
7244 SourceRange ParamUseRange =
7245 findTemplateParameterInType(Param->getDepth(), ArgExpr);
7246 if (ParamUseRange.isValid()) {
7247 if (IsDefaultArgument) {
7248 S.Diag(TemplateNameLoc,
7249 diag::err_dependent_non_type_arg_in_partial_spec);
7250 S.Diag(ParamUseRange.getBegin(),
7251 diag::note_dependent_non_type_default_arg_in_partial_spec)
7252 << ParamUseRange;
7253 } else {
7254 S.Diag(ParamUseRange.getBegin(),
7255 diag::err_dependent_non_type_arg_in_partial_spec)
7256 << ParamUseRange;
7257 }
7258 return true;
7259 }
7260
7261 ParamUseRange = findTemplateParameter(
7262 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7263 if (ParamUseRange.isValid()) {
7264 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
7265 diag::err_dependent_typed_non_type_arg_in_partial_spec)
7266 << Param->getType();
7267 S.Diag(Param->getLocation(), diag::note_template_param_here)
7268 << (IsDefaultArgument ? ParamUseRange : SourceRange())
7269 << ParamUseRange;
7270 return true;
7271 }
7272 }
7273
7274 return false;
7275}
7276
7277/// \brief Check the non-type template arguments of a class template
7278/// partial specialization according to C++ [temp.class.spec]p9.
7279///
7280/// \param TemplateNameLoc the location of the template name.
7281/// \param PrimaryTemplate the template parameters of the primary class
7282/// template.
7283/// \param NumExplicit the number of explicitly-specified template arguments.
7284/// \param TemplateArgs the template arguments of the class template
7285/// partial specialization.
7286///
7287/// \returns \c true if there was an error, \c false otherwise.
7288bool Sema::CheckTemplatePartialSpecializationArgs(
7289 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7290 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7291 // We have to be conservative when checking a template in a dependent
7292 // context.
7293 if (PrimaryTemplate->getDeclContext()->isDependentContext())
7294 return false;
7295
7296 TemplateParameterList *TemplateParams =
7297 PrimaryTemplate->getTemplateParameters();
7298 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7299 NonTypeTemplateParmDecl *Param
7300 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7301 if (!Param)
7302 continue;
7303
7304 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7305 Param, &TemplateArgs[I],
7306 1, I >= NumExplicit))
7307 return true;
7308 }
7309
7310 return false;
7311}
7312
7313DeclResult
7314Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
7315 TagUseKind TUK,
7316 SourceLocation KWLoc,
7317 SourceLocation ModulePrivateLoc,
7318 TemplateIdAnnotation &TemplateId,
7319 AttributeList *Attr,
7320 MultiTemplateParamsArg
7321 TemplateParameterLists,
7322 SkipBodyInfo *SkipBody) {
7323 assert(TUK != TUK_Reference && "References are not specializations")(static_cast <bool> (TUK != TUK_Reference && "References are not specializations"
) ? void (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7323, __extension__ __PRETTY_FUNCTION__))
;
7324
7325 CXXScopeSpec &SS = TemplateId.SS;
7326
7327 // NOTE: KWLoc is the location of the tag keyword. This will instead
7328 // store the location of the outermost template keyword in the declaration.
7329 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
7330 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
7331 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
7332 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
7333 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
7334
7335 // Find the class template we're specializing
7336 TemplateName Name = TemplateId.Template.get();
7337 ClassTemplateDecl *ClassTemplate
7338 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
7339
7340 if (!ClassTemplate) {
7341 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
7342 << (Name.getAsTemplateDecl() &&
7343 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
7344 return true;
7345 }
7346
7347 bool isMemberSpecialization = false;
7348 bool isPartialSpecialization = false;
7349
7350 // Check the validity of the template headers that introduce this
7351 // template.
7352 // FIXME: We probably shouldn't complain about these headers for
7353 // friend declarations.
7354 bool Invalid = false;
7355 TemplateParameterList *TemplateParams =
7356 MatchTemplateParametersToScopeSpecifier(
7357 KWLoc, TemplateNameLoc, SS, &TemplateId,
7358 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
7359 Invalid);
7360 if (Invalid)
7361 return true;
7362
7363 if (TemplateParams && TemplateParams->size() > 0) {
7364 isPartialSpecialization = true;
7365
7366 if (TUK == TUK_Friend) {
7367 Diag(KWLoc, diag::err_partial_specialization_friend)
7368 << SourceRange(LAngleLoc, RAngleLoc);
7369 return true;
7370 }
7371
7372 // C++ [temp.class.spec]p10:
7373 // The template parameter list of a specialization shall not
7374 // contain default template argument values.
7375 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7376 Decl *Param = TemplateParams->getParam(I);
7377 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
7378 if (TTP->hasDefaultArgument()) {
7379 Diag(TTP->getDefaultArgumentLoc(),
7380 diag::err_default_arg_in_partial_spec);
7381 TTP->removeDefaultArgument();
7382 }
7383 } else if (NonTypeTemplateParmDecl *NTTP
7384 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
7385 if (Expr *DefArg = NTTP->getDefaultArgument()) {
7386 Diag(NTTP->getDefaultArgumentLoc(),
7387 diag::err_default_arg_in_partial_spec)
7388 << DefArg->getSourceRange();
7389 NTTP->removeDefaultArgument();
7390 }
7391 } else {
7392 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
7393 if (TTP->hasDefaultArgument()) {
7394 Diag(TTP->getDefaultArgument().getLocation(),
7395 diag::err_default_arg_in_partial_spec)
7396 << TTP->getDefaultArgument().getSourceRange();
7397 TTP->removeDefaultArgument();
7398 }
7399 }
7400 }
7401 } else if (TemplateParams) {
7402 if (TUK == TUK_Friend)
7403 Diag(KWLoc, diag::err_template_spec_friend)
7404 << FixItHint::CreateRemoval(
7405 SourceRange(TemplateParams->getTemplateLoc(),
7406 TemplateParams->getRAngleLoc()))
7407 << SourceRange(LAngleLoc, RAngleLoc);
7408 } else {
7409 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")(static_cast <bool> (TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7409, __extension__ __PRETTY_FUNCTION__))
;
7410 }
7411
7412 // Check that the specialization uses the same tag kind as the
7413 // original template.
7414 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7415 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")(static_cast <bool> (Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? void (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7415, __extension__ __PRETTY_FUNCTION__))
;
7416 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7417 Kind, TUK == TUK_Definition, KWLoc,
7418 ClassTemplate->getIdentifier())) {
7419 Diag(KWLoc, diag::err_use_with_wrong_tag)
7420 << ClassTemplate
7421 << FixItHint::CreateReplacement(KWLoc,
7422 ClassTemplate->getTemplatedDecl()->getKindName());
7423 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7424 diag::note_previous_use);
7425 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7426 }
7427
7428 // Translate the parser's template argument list in our AST format.
7429 TemplateArgumentListInfo TemplateArgs =
7430 makeTemplateArgumentListInfo(*this, TemplateId);
7431
7432 // Check for unexpanded parameter packs in any of the template arguments.
7433 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7434 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
7435 UPPC_PartialSpecialization))
7436 return true;
7437
7438 // Check that the template argument list is well-formed for this
7439 // template.
7440 SmallVector<TemplateArgument, 4> Converted;
7441 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7442 TemplateArgs, false, Converted))
7443 return true;
7444
7445 // Find the class template (partial) specialization declaration that
7446 // corresponds to these arguments.
7447 if (isPartialSpecialization) {
7448 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
7449 TemplateArgs.size(), Converted))
7450 return true;
7451
7452 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
7453 // also do it during instantiation.
7454 bool InstantiationDependent;
7455 if (!Name.isDependent() &&
7456 !TemplateSpecializationType::anyDependentTemplateArguments(
7457 TemplateArgs.arguments(), InstantiationDependent)) {
7458 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
7459 << ClassTemplate->getDeclName();
7460 isPartialSpecialization = false;
7461 }
7462 }
7463
7464 void *InsertPos = nullptr;
7465 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
7466
7467 if (isPartialSpecialization)
7468 // FIXME: Template parameter list matters, too
7469 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
7470 else
7471 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
7472
7473 ClassTemplateSpecializationDecl *Specialization = nullptr;
7474
7475 // Check whether we can declare a class template specialization in
7476 // the current scope.
7477 if (TUK != TUK_Friend &&
7478 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
7479 TemplateNameLoc,
7480 isPartialSpecialization))
7481 return true;
7482
7483 // The canonical type
7484 QualType CanonType;
7485 if (isPartialSpecialization) {
7486 // Build the canonical type that describes the converted template
7487 // arguments of the class template partial specialization.
7488 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7489 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
7490 Converted);
7491
7492 if (Context.hasSameType(CanonType,
7493 ClassTemplate->getInjectedClassNameSpecialization())) {
7494 // C++ [temp.class.spec]p9b3:
7495 //
7496 // -- The argument list of the specialization shall not be identical
7497 // to the implicit argument list of the primary template.
7498 //
7499 // This rule has since been removed, because it's redundant given DR1495,
7500 // but we keep it because it produces better diagnostics and recovery.
7501 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
7502 << /*class template*/0 << (TUK == TUK_Definition)
7503 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
7504 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
7505 ClassTemplate->getIdentifier(),
7506 TemplateNameLoc,
7507 Attr,
7508 TemplateParams,
7509 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
7510 /*FriendLoc*/SourceLocation(),
7511 TemplateParameterLists.size() - 1,
7512 TemplateParameterLists.data());
7513 }
7514
7515 // Create a new class template partial specialization declaration node.
7516 ClassTemplatePartialSpecializationDecl *PrevPartial
7517 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
7518 ClassTemplatePartialSpecializationDecl *Partial
7519 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
7520 ClassTemplate->getDeclContext(),
7521 KWLoc, TemplateNameLoc,
7522 TemplateParams,
7523 ClassTemplate,
7524 Converted,
7525 TemplateArgs,
7526 CanonType,
7527 PrevPartial);
7528 SetNestedNameSpecifier(Partial, SS);
7529 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
7530 Partial->setTemplateParameterListsInfo(
7531 Context, TemplateParameterLists.drop_back(1));
7532 }
7533
7534 if (!PrevPartial)
7535 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
7536 Specialization = Partial;
7537
7538 // If we are providing an explicit specialization of a member class
7539 // template specialization, make a note of that.
7540 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
7541 PrevPartial->setMemberSpecialization();
7542
7543 CheckTemplatePartialSpecialization(Partial);
7544 } else {
7545 // Create a new class template specialization declaration node for
7546 // this explicit specialization or friend declaration.
7547 Specialization
7548 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7549 ClassTemplate->getDeclContext(),
7550 KWLoc, TemplateNameLoc,
7551 ClassTemplate,
7552 Converted,
7553 PrevDecl);
7554 SetNestedNameSpecifier(Specialization, SS);
7555 if (TemplateParameterLists.size() > 0) {
7556 Specialization->setTemplateParameterListsInfo(Context,
7557 TemplateParameterLists);
7558 }
7559
7560 if (!PrevDecl)
7561 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7562
7563 if (CurContext->isDependentContext()) {
7564 // -fms-extensions permits specialization of nested classes without
7565 // fully specializing the outer class(es).
7566 assert(getLangOpts().MicrosoftExt &&(static_cast <bool> (getLangOpts().MicrosoftExt &&
"Only possible with -fms-extensions!") ? void (0) : __assert_fail
("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7567, __extension__ __PRETTY_FUNCTION__))
7567 "Only possible with -fms-extensions!")(static_cast <bool> (getLangOpts().MicrosoftExt &&
"Only possible with -fms-extensions!") ? void (0) : __assert_fail
("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7567, __extension__ __PRETTY_FUNCTION__))
;
7568 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7569 CanonType = Context.getTemplateSpecializationType(
7570 CanonTemplate, Converted);
7571 } else {
7572 CanonType = Context.getTypeDeclType(Specialization);
7573 }
7574 }
7575
7576 // C++ [temp.expl.spec]p6:
7577 // If a template, a member template or the member of a class template is
7578 // explicitly specialized then that specialization shall be declared
7579 // before the first use of that specialization that would cause an implicit
7580 // instantiation to take place, in every translation unit in which such a
7581 // use occurs; no diagnostic is required.
7582 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
7583 bool Okay = false;
7584 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7585 // Is there any previous explicit specialization declaration?
7586 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7587 Okay = true;
7588 break;
7589 }
7590 }
7591
7592 if (!Okay) {
7593 SourceRange Range(TemplateNameLoc, RAngleLoc);
7594 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
7595 << Context.getTypeDeclType(Specialization) << Range;
7596
7597 Diag(PrevDecl->getPointOfInstantiation(),
7598 diag::note_instantiation_required_here)
7599 << (PrevDecl->getTemplateSpecializationKind()
7600 != TSK_ImplicitInstantiation);
7601 return true;
7602 }
7603 }
7604
7605 // If this is not a friend, note that this is an explicit specialization.
7606 if (TUK != TUK_Friend)
7607 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
7608
7609 // Check that this isn't a redefinition of this specialization.
7610 if (TUK == TUK_Definition) {
7611 RecordDecl *Def = Specialization->getDefinition();
7612 NamedDecl *Hidden = nullptr;
7613 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
7614 SkipBody->ShouldSkip = true;
7615 makeMergedDefinitionVisible(Hidden);
7616 // From here on out, treat this as just a redeclaration.
7617 TUK = TUK_Declaration;
7618 } else if (Def) {
7619 SourceRange Range(TemplateNameLoc, RAngleLoc);
7620 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
7621 Diag(Def->getLocation(), diag::note_previous_definition);
7622 Specialization->setInvalidDecl();
7623 return true;
7624 }
7625 }
7626
7627 if (Attr)
7628 ProcessDeclAttributeList(S, Specialization, Attr);
7629
7630 // Add alignment attributes if necessary; these attributes are checked when
7631 // the ASTContext lays out the structure.
7632 if (TUK == TUK_Definition) {
7633 AddAlignmentAttributesForRecord(Specialization);
7634 AddMsStructLayoutForRecord(Specialization);
7635 }
7636
7637 if (ModulePrivateLoc.isValid())
7638 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
7639 << (isPartialSpecialization? 1 : 0)
7640 << FixItHint::CreateRemoval(ModulePrivateLoc);
7641
7642 // Build the fully-sugared type for this class template
7643 // specialization as the user wrote in the specialization
7644 // itself. This means that we'll pretty-print the type retrieved
7645 // from the specialization's declaration the way that the user
7646 // actually wrote the specialization, rather than formatting the
7647 // name based on the "canonical" representation used to store the
7648 // template arguments in the specialization.
7649 TypeSourceInfo *WrittenTy
7650 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7651 TemplateArgs, CanonType);
7652 if (TUK != TUK_Friend) {
7653 Specialization->setTypeAsWritten(WrittenTy);
7654 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
7655 }
7656
7657 // C++ [temp.expl.spec]p9:
7658 // A template explicit specialization is in the scope of the
7659 // namespace in which the template was defined.
7660 //
7661 // We actually implement this paragraph where we set the semantic
7662 // context (in the creation of the ClassTemplateSpecializationDecl),
7663 // but we also maintain the lexical context where the actual
7664 // definition occurs.
7665 Specialization->setLexicalDeclContext(CurContext);
7666
7667 // We may be starting the definition of this specialization.
7668 if (TUK == TUK_Definition)
7669 Specialization->startDefinition();
7670
7671 if (TUK == TUK_Friend) {
7672 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
7673 TemplateNameLoc,
7674 WrittenTy,
7675 /*FIXME:*/KWLoc);
7676 Friend->setAccess(AS_public);
7677 CurContext->addDecl(Friend);
7678 } else {
7679 // Add the specialization into its lexical context, so that it can
7680 // be seen when iterating through the list of declarations in that
7681 // context. However, specializations are not found by name lookup.
7682 CurContext->addDecl(Specialization);
7683 }
7684 return Specialization;
7685}
7686
7687Decl *Sema::ActOnTemplateDeclarator(Scope *S,
7688 MultiTemplateParamsArg TemplateParameterLists,
7689 Declarator &D) {
7690 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
7691 ActOnDocumentableDecl(NewDecl);
7692 return NewDecl;
7693}
7694
7695/// \brief Strips various properties off an implicit instantiation
7696/// that has just been explicitly specialized.
7697static void StripImplicitInstantiation(NamedDecl *D) {
7698 D->dropAttr<DLLImportAttr>();
7699 D->dropAttr<DLLExportAttr>();
7700
7701 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
7702 FD->setInlineSpecified(false);
7703}
7704
7705/// \brief Compute the diagnostic location for an explicit instantiation
7706// declaration or definition.
7707static SourceLocation DiagLocForExplicitInstantiation(
7708 NamedDecl* D, SourceLocation PointOfInstantiation) {
7709 // Explicit instantiations following a specialization have no effect and
7710 // hence no PointOfInstantiation. In that case, walk decl backwards
7711 // until a valid name loc is found.
7712 SourceLocation PrevDiagLoc = PointOfInstantiation;
7713 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
7714 Prev = Prev->getPreviousDecl()) {
7715 PrevDiagLoc = Prev->getLocation();
7716 }
7717 assert(PrevDiagLoc.isValid() &&(static_cast <bool> (PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? void (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7718, __extension__ __PRETTY_FUNCTION__))
7718 "Explicit instantiation without point of instantiation?")(static_cast <bool> (PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? void (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7718, __extension__ __PRETTY_FUNCTION__))
;
7719 return PrevDiagLoc;
7720}
7721
7722/// \brief Diagnose cases where we have an explicit template specialization
7723/// before/after an explicit template instantiation, producing diagnostics
7724/// for those cases where they are required and determining whether the
7725/// new specialization/instantiation will have any effect.
7726///
7727/// \param NewLoc the location of the new explicit specialization or
7728/// instantiation.
7729///
7730/// \param NewTSK the kind of the new explicit specialization or instantiation.
7731///
7732/// \param PrevDecl the previous declaration of the entity.
7733///
7734/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
7735///
7736/// \param PrevPointOfInstantiation if valid, indicates where the previus
7737/// declaration was instantiated (either implicitly or explicitly).
7738///
7739/// \param HasNoEffect will be set to true to indicate that the new
7740/// specialization or instantiation has no effect and should be ignored.
7741///
7742/// \returns true if there was an error that should prevent the introduction of
7743/// the new declaration into the AST, false otherwise.
7744bool
7745Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7746 TemplateSpecializationKind NewTSK,
7747 NamedDecl *PrevDecl,
7748 TemplateSpecializationKind PrevTSK,
7749 SourceLocation PrevPointOfInstantiation,
7750 bool &HasNoEffect) {
7751 HasNoEffect = false;
7752
7753 switch (NewTSK) {
7754 case TSK_Undeclared:
7755 case TSK_ImplicitInstantiation:
7756 assert((static_cast <bool> ((PrevTSK == TSK_Undeclared || PrevTSK
== TSK_ImplicitInstantiation) && "previous declaration must be implicit!"
) ? void (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7758, __extension__ __PRETTY_FUNCTION__))
7757 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(static_cast <bool> ((PrevTSK == TSK_Undeclared || PrevTSK
== TSK_ImplicitInstantiation) && "previous declaration must be implicit!"
) ? void (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7758, __extension__ __PRETTY_FUNCTION__))
7758 "previous declaration must be implicit!")(static_cast <bool> ((PrevTSK == TSK_Undeclared || PrevTSK
== TSK_ImplicitInstantiation) && "previous declaration must be implicit!"
) ? void (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7758, __extension__ __PRETTY_FUNCTION__))
;
7759 return false;
7760
7761 case TSK_ExplicitSpecialization:
7762 switch (PrevTSK) {
7763 case TSK_Undeclared:
7764 case TSK_ExplicitSpecialization:
7765 // Okay, we're just specializing something that is either already
7766 // explicitly specialized or has merely been mentioned without any
7767 // instantiation.
7768 return false;
7769
7770 case TSK_ImplicitInstantiation:
7771 if (PrevPointOfInstantiation.isInvalid()) {
7772 // The declaration itself has not actually been instantiated, so it is
7773 // still okay to specialize it.
7774 StripImplicitInstantiation(PrevDecl);
7775 return false;
7776 }
7777 // Fall through
7778 LLVM_FALLTHROUGH[[clang::fallthrough]];
7779
7780 case TSK_ExplicitInstantiationDeclaration:
7781 case TSK_ExplicitInstantiationDefinition:
7782 assert((PrevTSK == TSK_ImplicitInstantiation ||(static_cast <bool> ((PrevTSK == TSK_ImplicitInstantiation
|| PrevPointOfInstantiation.isValid()) && "Explicit instantiation without point of instantiation?"
) ? void (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7784, __extension__ __PRETTY_FUNCTION__))
7783 PrevPointOfInstantiation.isValid()) &&(static_cast <bool> ((PrevTSK == TSK_ImplicitInstantiation
|| PrevPointOfInstantiation.isValid()) && "Explicit instantiation without point of instantiation?"
) ? void (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7784, __extension__ __PRETTY_FUNCTION__))
7784 "Explicit instantiation without point of instantiation?")(static_cast <bool> ((PrevTSK == TSK_ImplicitInstantiation
|| PrevPointOfInstantiation.isValid()) && "Explicit instantiation without point of instantiation?"
) ? void (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7784, __extension__ __PRETTY_FUNCTION__))
;
7785
7786 // C++ [temp.expl.spec]p6:
7787 // If a template, a member template or the member of a class template
7788 // is explicitly specialized then that specialization shall be declared
7789 // before the first use of that specialization that would cause an
7790 // implicit instantiation to take place, in every translation unit in
7791 // which such a use occurs; no diagnostic is required.
7792 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7793 // Is there any previous explicit specialization declaration?
7794 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
7795 return false;
7796 }
7797
7798 Diag(NewLoc, diag::err_specialization_after_instantiation)
7799 << PrevDecl;
7800 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
7801 << (PrevTSK != TSK_ImplicitInstantiation);
7802
7803 return true;
7804 }
7805 llvm_unreachable("The switch over PrevTSK must be exhaustive.")::llvm::llvm_unreachable_internal("The switch over PrevTSK must be exhaustive."
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7805)
;
7806
7807 case TSK_ExplicitInstantiationDeclaration:
7808 switch (PrevTSK) {
7809 case TSK_ExplicitInstantiationDeclaration:
7810 // This explicit instantiation declaration is redundant (that's okay).
7811 HasNoEffect = true;
7812 return false;
7813
7814 case TSK_Undeclared:
7815 case TSK_ImplicitInstantiation:
7816 // We're explicitly instantiating something that may have already been
7817 // implicitly instantiated; that's fine.
7818 return false;
7819
7820 case TSK_ExplicitSpecialization:
7821 // C++0x [temp.explicit]p4:
7822 // For a given set of template parameters, if an explicit instantiation
7823 // of a template appears after a declaration of an explicit
7824 // specialization for that template, the explicit instantiation has no
7825 // effect.
7826 HasNoEffect = true;
7827 return false;
7828
7829 case TSK_ExplicitInstantiationDefinition:
7830 // C++0x [temp.explicit]p10:
7831 // If an entity is the subject of both an explicit instantiation
7832 // declaration and an explicit instantiation definition in the same
7833 // translation unit, the definition shall follow the declaration.
7834 Diag(NewLoc,
7835 diag::err_explicit_instantiation_declaration_after_definition);
7836
7837 // Explicit instantiations following a specialization have no effect and
7838 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
7839 // until a valid name loc is found.
7840 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
7841 diag::note_explicit_instantiation_definition_here);
7842 HasNoEffect = true;
7843 return false;
7844 }
7845
7846 case TSK_ExplicitInstantiationDefinition:
7847 switch (PrevTSK) {
7848 case TSK_Undeclared:
7849 case TSK_ImplicitInstantiation:
7850 // We're explicitly instantiating something that may have already been
7851 // implicitly instantiated; that's fine.
7852 return false;
7853
7854 case TSK_ExplicitSpecialization:
7855 // C++ DR 259, C++0x [temp.explicit]p4:
7856 // For a given set of template parameters, if an explicit
7857 // instantiation of a template appears after a declaration of
7858 // an explicit specialization for that template, the explicit
7859 // instantiation has no effect.
7860 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
7861 << PrevDecl;
7862 Diag(PrevDecl->getLocation(),
7863 diag::note_previous_template_specialization);
7864 HasNoEffect = true;
7865 return false;
7866
7867 case TSK_ExplicitInstantiationDeclaration:
7868 // We're explicitly instantiating a definition for something for which we
7869 // were previously asked to suppress instantiations. That's fine.
7870
7871 // C++0x [temp.explicit]p4:
7872 // For a given set of template parameters, if an explicit instantiation
7873 // of a template appears after a declaration of an explicit
7874 // specialization for that template, the explicit instantiation has no
7875 // effect.
7876 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7877 // Is there any previous explicit specialization declaration?
7878 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7879 HasNoEffect = true;
7880 break;
7881 }
7882 }
7883
7884 return false;
7885
7886 case TSK_ExplicitInstantiationDefinition:
7887 // C++0x [temp.spec]p5:
7888 // For a given template and a given set of template-arguments,
7889 // - an explicit instantiation definition shall appear at most once
7890 // in a program,
7891
7892 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
7893 Diag(NewLoc, (getLangOpts().MSVCCompat)
7894 ? diag::ext_explicit_instantiation_duplicate
7895 : diag::err_explicit_instantiation_duplicate)
7896 << PrevDecl;
7897 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
7898 diag::note_previous_explicit_instantiation);
7899 HasNoEffect = true;
7900 return false;
7901 }
7902 }
7903
7904 llvm_unreachable("Missing specialization/instantiation case?")::llvm::llvm_unreachable_internal("Missing specialization/instantiation case?"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7904)
;
7905}
7906
7907/// \brief Perform semantic analysis for the given dependent function
7908/// template specialization.
7909///
7910/// The only possible way to get a dependent function template specialization
7911/// is with a friend declaration, like so:
7912///
7913/// \code
7914/// template \<class T> void foo(T);
7915/// template \<class T> class A {
7916/// friend void foo<>(T);
7917/// };
7918/// \endcode
7919///
7920/// There really isn't any useful analysis we can do here, so we
7921/// just store the information.
7922bool
7923Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7924 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7925 LookupResult &Previous) {
7926 // Remove anything from Previous that isn't a function template in
7927 // the correct context.
7928 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
7929 LookupResult::Filter F = Previous.makeFilter();
7930 while (F.hasNext()) {
7931 NamedDecl *D = F.next()->getUnderlyingDecl();
7932 if (!isa<FunctionTemplateDecl>(D) ||
7933 !FDLookupContext->InEnclosingNamespaceSetOf(
7934 D->getDeclContext()->getRedeclContext()))
7935 F.erase();
7936 }
7937 F.done();
7938
7939 // Should this be diagnosed here?
7940 if (Previous.empty()) return true;
7941
7942 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
7943 ExplicitTemplateArgs);
7944 return false;
7945}
7946
7947/// \brief Perform semantic analysis for the given function template
7948/// specialization.
7949///
7950/// This routine performs all of the semantic analysis required for an
7951/// explicit function template specialization. On successful completion,
7952/// the function declaration \p FD will become a function template
7953/// specialization.
7954///
7955/// \param FD the function declaration, which will be updated to become a
7956/// function template specialization.
7957///
7958/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
7959/// if any. Note that this may be valid info even when 0 arguments are
7960/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
7961/// as it anyway contains info on the angle brackets locations.
7962///
7963/// \param Previous the set of declarations that may be specialized by
7964/// this function specialization.
7965bool Sema::CheckFunctionTemplateSpecialization(
7966 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7967 LookupResult &Previous) {
7968 // The set of function template specializations that could match this
7969 // explicit function template specialization.
7970 UnresolvedSet<8> Candidates;
7971 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
7972 /*ForTakingAddress=*/false);
7973
7974 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
7975 ConvertedTemplateArgs;
7976
7977 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
7978 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
1
Loop condition is false. Execution continues on line 8055
7979 I != E; ++I) {
7980 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
7981 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
7982 // Only consider templates found within the same semantic lookup scope as
7983 // FD.
7984 if (!FDLookupContext->InEnclosingNamespaceSetOf(
7985 Ovl->getDeclContext()->getRedeclContext()))
7986 continue;
7987
7988 // When matching a constexpr member function template specialization
7989 // against the primary template, we don't yet know whether the
7990 // specialization has an implicit 'const' (because we don't know whether
7991 // it will be a static member function until we know which template it
7992 // specializes), so adjust it now assuming it specializes this template.
7993 QualType FT = FD->getType();
7994 if (FD->isConstexpr()) {
7995 CXXMethodDecl *OldMD =
7996 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
7997 if (OldMD && OldMD->isConst()) {
7998 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
7999 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8000 EPI.TypeQuals |= Qualifiers::Const;
8001 FT = Context.getFunctionType(FPT->getReturnType(),
8002 FPT->getParamTypes(), EPI);
8003 }
8004 }
8005
8006 TemplateArgumentListInfo Args;
8007 if (ExplicitTemplateArgs)
8008 Args = *ExplicitTemplateArgs;
8009
8010 // C++ [temp.expl.spec]p11:
8011 // A trailing template-argument can be left unspecified in the
8012 // template-id naming an explicit function template specialization
8013 // provided it can be deduced from the function argument type.
8014 // Perform template argument deduction to determine whether we may be
8015 // specializing this template.
8016 // FIXME: It is somewhat wasteful to build
8017 TemplateDeductionInfo Info(FailedCandidates.getLocation());
8018 FunctionDecl *Specialization = nullptr;
8019 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8020 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8021 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
8022 Info)) {
8023 // Template argument deduction failed; record why it failed, so
8024 // that we can provide nifty diagnostics.
8025 FailedCandidates.addCandidate().set(
8026 I.getPair(), FunTmpl->getTemplatedDecl(),
8027 MakeDeductionFailureInfo(Context, TDK, Info));
8028 (void)TDK;
8029 continue;
8030 }
8031
8032 // Target attributes are part of the cuda function signature, so
8033 // the deduced template's cuda target must match that of the
8034 // specialization. Given that C++ template deduction does not
8035 // take target attributes into account, we reject candidates
8036 // here that have a different target.
8037 if (LangOpts.CUDA &&
8038 IdentifyCUDATarget(Specialization,
8039 /* IgnoreImplicitHDAttributes = */ true) !=
8040 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttributes = */ true)) {
8041 FailedCandidates.addCandidate().set(
8042 I.getPair(), FunTmpl->getTemplatedDecl(),
8043 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
8044 continue;
8045 }
8046
8047 // Record this candidate.
8048 if (ExplicitTemplateArgs)
8049 ConvertedTemplateArgs[Specialization] = std::move(Args);
8050 Candidates.addDecl(Specialization, I.getAccess());
8051 }
8052 }
8053
8054 // Find the most specialized function template.
8055 UnresolvedSetIterator Result = getMostSpecialized(
8056 Candidates.begin(), Candidates.end(), FailedCandidates,
8057 FD->getLocation(),
8058 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
2
Calling 'operator<<'
15
Returned allocated memory
8059 PDiag(diag::err_function_template_spec_ambiguous)
16
Calling 'Sema::PDiag'
8060 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
8061 PDiag(diag::note_function_template_spec_matched));
8062
8063 if (Result == Candidates.end())
8064 return true;
8065
8066 // Ignore access information; it doesn't figure into redeclaration checking.
8067 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8068
8069 FunctionTemplateSpecializationInfo *SpecInfo
8070 = Specialization->getTemplateSpecializationInfo();
8071 assert(SpecInfo && "Function template specialization info missing?")(static_cast <bool> (SpecInfo && "Function template specialization info missing?"
) ? void (0) : __assert_fail ("SpecInfo && \"Function template specialization info missing?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8071, __extension__ __PRETTY_FUNCTION__))
;
8072
8073 // Note: do not overwrite location info if previous template
8074 // specialization kind was explicit.
8075 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
8076 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
8077 Specialization->setLocation(FD->getLocation());
8078 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
8079 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
8080 // function can differ from the template declaration with respect to
8081 // the constexpr specifier.
8082 // FIXME: We need an update record for this AST mutation.
8083 // FIXME: What if there are multiple such prior declarations (for instance,
8084 // from different modules)?
8085 Specialization->setConstexpr(FD->isConstexpr());
8086 }
8087
8088 // FIXME: Check if the prior specialization has a point of instantiation.
8089 // If so, we have run afoul of .
8090
8091 // If this is a friend declaration, then we're not really declaring
8092 // an explicit specialization.
8093 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
8094
8095 // Check the scope of this explicit specialization.
8096 if (!isFriend &&
8097 CheckTemplateSpecializationScope(*this,
8098 Specialization->getPrimaryTemplate(),
8099 Specialization, FD->getLocation(),
8100 false))
8101 return true;
8102
8103 // C++ [temp.expl.spec]p6:
8104 // If a template, a member template or the member of a class template is
8105 // explicitly specialized then that specialization shall be declared
8106 // before the first use of that specialization that would cause an implicit
8107 // instantiation to take place, in every translation unit in which such a
8108 // use occurs; no diagnostic is required.
8109 bool HasNoEffect = false;
8110 if (!isFriend &&
8111 CheckSpecializationInstantiationRedecl(FD->getLocation(),
8112 TSK_ExplicitSpecialization,
8113 Specialization,
8114 SpecInfo->getTemplateSpecializationKind(),
8115 SpecInfo->getPointOfInstantiation(),
8116 HasNoEffect))
8117 return true;
8118
8119 // Mark the prior declaration as an explicit specialization, so that later
8120 // clients know that this is an explicit specialization.
8121 if (!isFriend) {
8122 // Since explicit specializations do not inherit '=delete' from their
8123 // primary function template - check if the 'specialization' that was
8124 // implicitly generated (during template argument deduction for partial
8125 // ordering) from the most specialized of all the function templates that
8126 // 'FD' could have been specializing, has a 'deleted' definition. If so,
8127 // first check that it was implicitly generated during template argument
8128 // deduction by making sure it wasn't referenced, and then reset the deleted
8129 // flag to not-deleted, so that we can inherit that information from 'FD'.
8130 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
8131 !Specialization->getCanonicalDecl()->isReferenced()) {
8132 // FIXME: This assert will not hold in the presence of modules.
8133 assert((static_cast <bool> (Specialization->getCanonicalDecl
() == Specialization && "This must be the only existing declaration of this specialization"
) ? void (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8135, __extension__ __PRETTY_FUNCTION__))
8134 Specialization->getCanonicalDecl() == Specialization &&(static_cast <bool> (Specialization->getCanonicalDecl
() == Specialization && "This must be the only existing declaration of this specialization"
) ? void (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8135, __extension__ __PRETTY_FUNCTION__))
8135 "This must be the only existing declaration of this specialization")(static_cast <bool> (Specialization->getCanonicalDecl
() == Specialization && "This must be the only existing declaration of this specialization"
) ? void (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8135, __extension__ __PRETTY_FUNCTION__))
;
8136 // FIXME: We need an update record for this AST mutation.
8137 Specialization->setDeletedAsWritten(false);
8138 }
8139 // FIXME: We need an update record for this AST mutation.
8140 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8141 MarkUnusedFileScopedDecl(Specialization);
8142 }
8143
8144 // Turn the given function declaration into a function template
8145 // specialization, with the template arguments from the previous
8146 // specialization.
8147 // Take copies of (semantic and syntactic) template argument lists.
8148 const TemplateArgumentList* TemplArgs = new (Context)
8149 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
8150 FD->setFunctionTemplateSpecialization(
8151 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
8152 SpecInfo->getTemplateSpecializationKind(),
8153 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
8154
8155 // A function template specialization inherits the target attributes
8156 // of its template. (We require the attributes explicitly in the
8157 // code to match, but a template may have implicit attributes by
8158 // virtue e.g. of being constexpr, and it passes these implicit
8159 // attributes on to its specializations.)
8160 if (LangOpts.CUDA)
8161 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
8162
8163 // The "previous declaration" for this function template specialization is
8164 // the prior function template specialization.
8165 Previous.clear();
8166 Previous.addDecl(Specialization);
8167 return false;
8168}
8169
8170/// \brief Perform semantic analysis for the given non-template member
8171/// specialization.
8172///
8173/// This routine performs all of the semantic analysis required for an
8174/// explicit member function specialization. On successful completion,
8175/// the function declaration \p FD will become a member function
8176/// specialization.
8177///
8178/// \param Member the member declaration, which will be updated to become a
8179/// specialization.
8180///
8181/// \param Previous the set of declarations, one of which may be specialized
8182/// by this function specialization; the set will be modified to contain the
8183/// redeclared member.
8184bool
8185Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
8186 assert(!isa<TemplateDecl>(Member) && "Only for non-template members")(static_cast <bool> (!isa<TemplateDecl>(Member) &&
"Only for non-template members") ? void (0) : __assert_fail (
"!isa<TemplateDecl>(Member) && \"Only for non-template members\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8186, __extension__ __PRETTY_FUNCTION__))
;
8187
8188 // Try to find the member we are instantiating.
8189 NamedDecl *FoundInstantiation = nullptr;
8190 NamedDecl *Instantiation = nullptr;
8191 NamedDecl *InstantiatedFrom = nullptr;
8192 MemberSpecializationInfo *MSInfo = nullptr;
8193
8194 if (Previous.empty()) {
8195 // Nowhere to look anyway.
8196 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
8197 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8198 I != E; ++I) {
8199 NamedDecl *D = (*I)->getUnderlyingDecl();
8200 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
8201 QualType Adjusted = Function->getType();
8202 if (!hasExplicitCallingConv(Adjusted))
8203 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
8204 if (Context.hasSameType(Adjusted, Method->getType())) {
8205 FoundInstantiation = *I;
8206 Instantiation = Method;
8207 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
8208 MSInfo = Method->getMemberSpecializationInfo();
8209 break;
8210 }
8211 }
8212 }
8213 } else if (isa<VarDecl>(Member)) {
8214 VarDecl *PrevVar;
8215 if (Previous.isSingleResult() &&
8216 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
8217 if (PrevVar->isStaticDataMember()) {
8218 FoundInstantiation = Previous.getRepresentativeDecl();
8219 Instantiation = PrevVar;
8220 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
8221 MSInfo = PrevVar->getMemberSpecializationInfo();
8222 }
8223 } else if (isa<RecordDecl>(Member)) {
8224 CXXRecordDecl *PrevRecord;
8225 if (Previous.isSingleResult() &&
8226 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
8227 FoundInstantiation = Previous.getRepresentativeDecl();
8228 Instantiation = PrevRecord;
8229 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
8230 MSInfo = PrevRecord->getMemberSpecializationInfo();
8231 }
8232 } else if (isa<EnumDecl>(Member)) {
8233 EnumDecl *PrevEnum;
8234 if (Previous.isSingleResult() &&
8235 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
8236 FoundInstantiation = Previous.getRepresentativeDecl();
8237 Instantiation = PrevEnum;
8238 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
8239 MSInfo = PrevEnum->getMemberSpecializationInfo();
8240 }
8241 }
8242
8243 if (!Instantiation) {
8244 // There is no previous declaration that matches. Since member
8245 // specializations are always out-of-line, the caller will complain about
8246 // this mismatch later.
8247 return false;
8248 }
8249
8250 // A member specialization in a friend declaration isn't really declaring
8251 // an explicit specialization, just identifying a specific (possibly implicit)
8252 // specialization. Don't change the template specialization kind.
8253 //
8254 // FIXME: Is this really valid? Other compilers reject.
8255 if (Member->getFriendObjectKind() != Decl::FOK_None) {
8256 // Preserve instantiation information.
8257 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
8258 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
8259 cast<CXXMethodDecl>(InstantiatedFrom),
8260 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
8261 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
8262 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
8263 cast<CXXRecordDecl>(InstantiatedFrom),
8264 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
8265 }
8266
8267 Previous.clear();
8268 Previous.addDecl(FoundInstantiation);
8269 return false;
8270 }
8271
8272 // Make sure that this is a specialization of a member.
8273 if (!InstantiatedFrom) {
8274 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
8275 << Member;
8276 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
8277 return true;
8278 }
8279
8280 // C++ [temp.expl.spec]p6:
8281 // If a template, a member template or the member of a class template is
8282 // explicitly specialized then that specialization shall be declared
8283 // before the first use of that specialization that would cause an implicit
8284 // instantiation to take place, in every translation unit in which such a
8285 // use occurs; no diagnostic is required.
8286 assert(MSInfo && "Member specialization info missing?")(static_cast <bool> (MSInfo && "Member specialization info missing?"
) ? void (0) : __assert_fail ("MSInfo && \"Member specialization info missing?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8286, __extension__ __PRETTY_FUNCTION__))
;
8287
8288 bool HasNoEffect = false;
8289 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
8290 TSK_ExplicitSpecialization,
8291 Instantiation,
8292 MSInfo->getTemplateSpecializationKind(),
8293 MSInfo->getPointOfInstantiation(),
8294 HasNoEffect))
8295 return true;
8296
8297 // Check the scope of this explicit specialization.
8298 if (CheckTemplateSpecializationScope(*this,
8299 InstantiatedFrom,
8300 Instantiation, Member->getLocation(),
8301 false))
8302 return true;
8303
8304 // Note that this member specialization is an "instantiation of" the
8305 // corresponding member of the original template.
8306 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
8307 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
8308 if (InstantiationFunction->getTemplateSpecializationKind() ==
8309 TSK_ImplicitInstantiation) {
8310 // Explicit specializations of member functions of class templates do not
8311 // inherit '=delete' from the member function they are specializing.
8312 if (InstantiationFunction->isDeleted()) {
8313 // FIXME: This assert will not hold in the presence of modules.
8314 assert(InstantiationFunction->getCanonicalDecl() ==(static_cast <bool> (InstantiationFunction->getCanonicalDecl
() == InstantiationFunction) ? void (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8315, __extension__ __PRETTY_FUNCTION__))
8315 InstantiationFunction)(static_cast <bool> (InstantiationFunction->getCanonicalDecl
() == InstantiationFunction) ? void (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8315, __extension__ __PRETTY_FUNCTION__))
;
8316 // FIXME: We need an update record for this AST mutation.
8317 InstantiationFunction->setDeletedAsWritten(false);
8318 }
8319 }
8320
8321 MemberFunction->setInstantiationOfMemberFunction(
8322 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8323 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
8324 MemberVar->setInstantiationOfStaticDataMember(
8325 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8326 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
8327 MemberClass->setInstantiationOfMemberClass(
8328 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8329 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
8330 MemberEnum->setInstantiationOfMemberEnum(
8331 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8332 } else {
8333 llvm_unreachable("unknown member specialization kind")::llvm::llvm_unreachable_internal("unknown member specialization kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8333)
;
8334 }
8335
8336 // Save the caller the trouble of having to figure out which declaration
8337 // this specialization matches.
8338 Previous.clear();
8339 Previous.addDecl(FoundInstantiation);
8340 return false;
8341}
8342
8343/// Complete the explicit specialization of a member of a class template by
8344/// updating the instantiated member to be marked as an explicit specialization.
8345///
8346/// \param OrigD The member declaration instantiated from the template.
8347/// \param Loc The location of the explicit specialization of the member.
8348template<typename DeclT>
8349static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
8350 SourceLocation Loc) {
8351 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
8352 return;
8353
8354 // FIXME: Inform AST mutation listeners of this AST mutation.
8355 // FIXME: If there are multiple in-class declarations of the member (from
8356 // multiple modules, or a declaration and later definition of a member type),
8357 // should we update all of them?
8358 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8359 OrigD->setLocation(Loc);
8360}
8361
8362void Sema::CompleteMemberSpecialization(NamedDecl *Member,
8363 LookupResult &Previous) {
8364 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
8365 if (Instantiation == Member)
8366 return;
8367
8368 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
8369 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
8370 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
8371 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
8372 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
8373 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
8374 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
8375 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
8376 else
8377 llvm_unreachable("unknown member specialization kind")::llvm::llvm_unreachable_internal("unknown member specialization kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8377)
;
8378}
8379
8380/// \brief Check the scope of an explicit instantiation.
8381///
8382/// \returns true if a serious error occurs, false otherwise.
8383static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
8384 SourceLocation InstLoc,
8385 bool WasQualifiedName) {
8386 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
8387 DeclContext *CurContext = S.CurContext->getRedeclContext();
8388
8389 if (CurContext->isRecord()) {
8390 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
8391 << D;
8392 return true;
8393 }
8394
8395 // C++11 [temp.explicit]p3:
8396 // An explicit instantiation shall appear in an enclosing namespace of its
8397 // template. If the name declared in the explicit instantiation is an
8398 // unqualified name, the explicit instantiation shall appear in the
8399 // namespace where its template is declared or, if that namespace is inline
8400 // (7.3.1), any namespace from its enclosing namespace set.
8401 //
8402 // This is DR275, which we do not retroactively apply to C++98/03.
8403 if (WasQualifiedName) {
8404 if (CurContext->Encloses(OrigContext))
8405 return false;
8406 } else {
8407 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
8408 return false;
8409 }
8410
8411 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
8412 if (WasQualifiedName)
8413 S.Diag(InstLoc,
8414 S.getLangOpts().CPlusPlus11?
8415 diag::err_explicit_instantiation_out_of_scope :
8416 diag::warn_explicit_instantiation_out_of_scope_0x)
8417 << D << NS;
8418 else
8419 S.Diag(InstLoc,
8420 S.getLangOpts().CPlusPlus11?
8421 diag::err_explicit_instantiation_unqualified_wrong_namespace :
8422 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
8423 << D << NS;
8424 } else
8425 S.Diag(InstLoc,
8426 S.getLangOpts().CPlusPlus11?
8427 diag::err_explicit_instantiation_must_be_global :
8428 diag::warn_explicit_instantiation_must_be_global_0x)
8429 << D;
8430 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
8431 return false;
8432}
8433
8434/// \brief Determine whether the given scope specifier has a template-id in it.
8435static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
8436 if (!SS.isSet())
8437 return false;
8438
8439 // C++11 [temp.explicit]p3:
8440 // If the explicit instantiation is for a member function, a member class
8441 // or a static data member of a class template specialization, the name of
8442 // the class template specialization in the qualified-id for the member
8443 // name shall be a simple-template-id.
8444 //
8445 // C++98 has the same restriction, just worded differently.
8446 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
8447 NNS = NNS->getPrefix())
8448 if (const Type *T = NNS->getAsType())
8449 if (isa<TemplateSpecializationType>(T))
8450 return true;
8451
8452 return false;
8453}
8454
8455/// Make a dllexport or dllimport attr on a class template specialization take
8456/// effect.
8457static void dllExportImportClassTemplateSpecialization(
8458 Sema &S, ClassTemplateSpecializationDecl *Def) {
8459 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
8460 assert(A && "dllExportImportClassTemplateSpecialization called "(static_cast <bool> (A && "dllExportImportClassTemplateSpecialization called "
"on Def without dllexport or dllimport") ? void (0) : __assert_fail
("A && \"dllExportImportClassTemplateSpecialization called \" \"on Def without dllexport or dllimport\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8461, __extension__ __PRETTY_FUNCTION__))
8461 "on Def without dllexport or dllimport")(static_cast <bool> (A && "dllExportImportClassTemplateSpecialization called "
"on Def without dllexport or dllimport") ? void (0) : __assert_fail
("A && \"dllExportImportClassTemplateSpecialization called \" \"on Def without dllexport or dllimport\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8461, __extension__ __PRETTY_FUNCTION__))
;
8462
8463 // We reject explicit instantiations in class scope, so there should
8464 // never be any delayed exported classes to worry about.
8465 assert(S.DelayedDllExportClasses.empty() &&(static_cast <bool> (S.DelayedDllExportClasses.empty() &&
"delayed exports present at explicit instantiation") ? void (
0) : __assert_fail ("S.DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8466, __extension__ __PRETTY_FUNCTION__))
8466 "delayed exports present at explicit instantiation")(static_cast <bool> (S.DelayedDllExportClasses.empty() &&
"delayed exports present at explicit instantiation") ? void (
0) : __assert_fail ("S.DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8466, __extension__ __PRETTY_FUNCTION__))
;
8467 S.checkClassLevelDLLAttribute(Def);
8468
8469 // Propagate attribute to base class templates.
8470 for (auto &B : Def->bases()) {
8471 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
8472 B.getType()->getAsCXXRecordDecl()))
8473 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
8474 }
8475
8476 S.referenceDLLExportedClassMethods();
8477}
8478
8479// Explicit instantiation of a class template specialization
8480DeclResult
8481Sema::ActOnExplicitInstantiation(Scope *S,
8482 SourceLocation ExternLoc,
8483 SourceLocation TemplateLoc,
8484 unsigned TagSpec,
8485 SourceLocation KWLoc,
8486 const CXXScopeSpec &SS,
8487 TemplateTy TemplateD,
8488 SourceLocation TemplateNameLoc,
8489 SourceLocation LAngleLoc,
8490 ASTTemplateArgsPtr TemplateArgsIn,
8491 SourceLocation RAngleLoc,
8492 AttributeList *Attr) {
8493 // Find the class template we're specializing
8494 TemplateName Name = TemplateD.get();
8495 TemplateDecl *TD = Name.getAsTemplateDecl();
8496 // Check that the specialization uses the same tag kind as the
8497 // original template.
8498 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8499 assert(Kind != TTK_Enum &&(static_cast <bool> (Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? void (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8500, __extension__ __PRETTY_FUNCTION__))
8500 "Invalid enum tag in class template explicit instantiation!")(static_cast <bool> (Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? void (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8500, __extension__ __PRETTY_FUNCTION__))
;
8501
8502 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
8503
8504 if (!ClassTemplate) {
8505 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
8506 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
8507 Diag(TD->getLocation(), diag::note_previous_use);
8508 return true;
8509 }
8510
8511 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8512 Kind, /*isDefinition*/false, KWLoc,
8513 ClassTemplate->getIdentifier())) {
8514 Diag(KWLoc, diag::err_use_with_wrong_tag)
8515 << ClassTemplate
8516 << FixItHint::CreateReplacement(KWLoc,
8517 ClassTemplate->getTemplatedDecl()->getKindName());
8518 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8519 diag::note_previous_use);
8520 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8521 }
8522
8523 // C++0x [temp.explicit]p2:
8524 // There are two forms of explicit instantiation: an explicit instantiation
8525 // definition and an explicit instantiation declaration. An explicit
8526 // instantiation declaration begins with the extern keyword. [...]
8527 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
8528 ? TSK_ExplicitInstantiationDefinition
8529 : TSK_ExplicitInstantiationDeclaration;
8530
8531 if (TSK == TSK_ExplicitInstantiationDeclaration) {
8532 // Check for dllexport class template instantiation declarations.
8533 for (AttributeList *A = Attr; A; A = A->getNext()) {
8534 if (A->getKind() == AttributeList::AT_DLLExport) {
8535 Diag(ExternLoc,
8536 diag::warn_attribute_dllexport_explicit_instantiation_decl);
8537 Diag(A->getLoc(), diag::note_attribute);
8538 break;
8539 }
8540 }
8541
8542 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
8543 Diag(ExternLoc,
8544 diag::warn_attribute_dllexport_explicit_instantiation_decl);
8545 Diag(A->getLocation(), diag::note_attribute);
8546 }
8547 }
8548
8549 // In MSVC mode, dllimported explicit instantiation definitions are treated as
8550 // instantiation declarations for most purposes.
8551 bool DLLImportExplicitInstantiationDef = false;
8552 if (TSK == TSK_ExplicitInstantiationDefinition &&
8553 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8554 // Check for dllimport class template instantiation definitions.
8555 bool DLLImport =
8556 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
8557 for (AttributeList *A = Attr; A; A = A->getNext()) {
8558 if (A->getKind() == AttributeList::AT_DLLImport)
8559 DLLImport = true;
8560 if (A->getKind() == AttributeList::AT_DLLExport) {
8561 // dllexport trumps dllimport here.
8562 DLLImport = false;
8563 break;
8564 }
8565 }
8566 if (DLLImport) {
8567 TSK = TSK_ExplicitInstantiationDeclaration;
8568 DLLImportExplicitInstantiationDef = true;
8569 }
8570 }
8571
8572 // Translate the parser's template argument list in our AST format.
8573 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
8574 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
8575
8576 // Check that the template argument list is well-formed for this
8577 // template.
8578 SmallVector<TemplateArgument, 4> Converted;
8579 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8580 TemplateArgs, false, Converted))
8581 return true;
8582
8583 // Find the class template specialization declaration that
8584 // corresponds to these arguments.
8585 void *InsertPos = nullptr;
8586 ClassTemplateSpecializationDecl *PrevDecl
8587 = ClassTemplate->findSpecialization(Converted, InsertPos);
8588
8589 TemplateSpecializationKind PrevDecl_TSK
8590 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
8591
8592 // C++0x [temp.explicit]p2:
8593 // [...] An explicit instantiation shall appear in an enclosing
8594 // namespace of its template. [...]
8595 //
8596 // This is C++ DR 275.
8597 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
8598 SS.isSet()))
8599 return true;
8600
8601 ClassTemplateSpecializationDecl *Specialization = nullptr;
8602
8603 bool HasNoEffect = false;
8604 if (PrevDecl) {
8605 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
8606 PrevDecl, PrevDecl_TSK,
8607 PrevDecl->getPointOfInstantiation(),
8608 HasNoEffect))
8609 return PrevDecl;
8610
8611 // Even though HasNoEffect == true means that this explicit instantiation
8612 // has no effect on semantics, we go on to put its syntax in the AST.
8613
8614 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
8615 PrevDecl_TSK == TSK_Undeclared) {
8616 // Since the only prior class template specialization with these
8617 // arguments was referenced but not declared, reuse that
8618 // declaration node as our own, updating the source location
8619 // for the template name to reflect our new declaration.
8620 // (Other source locations will be updated later.)
8621 Specialization = PrevDecl;
8622 Specialization->setLocation(TemplateNameLoc);
8623 PrevDecl = nullptr;
8624 }
8625
8626 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
8627 DLLImportExplicitInstantiationDef) {
8628 // The new specialization might add a dllimport attribute.
8629 HasNoEffect = false;
8630 }
8631 }
8632
8633 if (!Specialization) {
8634 // Create a new class template specialization declaration node for
8635 // this explicit specialization.
8636 Specialization
8637 = ClassTemplateSpecializationDecl::Create(Context, Kind,
8638 ClassTemplate->getDeclContext(),
8639 KWLoc, TemplateNameLoc,
8640 ClassTemplate,
8641 Converted,
8642 PrevDecl);
8643 SetNestedNameSpecifier(Specialization, SS);
8644
8645 if (!HasNoEffect && !PrevDecl) {
8646 // Insert the new specialization.
8647 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8648 }
8649 }
8650
8651 // Build the fully-sugared type for this explicit instantiation as
8652 // the user wrote in the explicit instantiation itself. This means
8653 // that we'll pretty-print the type retrieved from the
8654 // specialization's declaration the way that the user actually wrote
8655 // the explicit instantiation, rather than formatting the name based
8656 // on the "canonical" representation used to store the template
8657 // arguments in the specialization.
8658 TypeSourceInfo *WrittenTy
8659 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8660 TemplateArgs,
8661 Context.getTypeDeclType(Specialization));
8662 Specialization->setTypeAsWritten(WrittenTy);
8663
8664 // Set source locations for keywords.
8665 Specialization->setExternLoc(ExternLoc);
8666 Specialization->setTemplateKeywordLoc(TemplateLoc);
8667 Specialization->setBraceRange(SourceRange());
8668
8669 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
8670 if (Attr)
8671 ProcessDeclAttributeList(S, Specialization, Attr);
8672
8673 // Add the explicit instantiation into its lexical context. However,
8674 // since explicit instantiations are never found by name lookup, we
8675 // just put it into the declaration context directly.
8676 Specialization->setLexicalDeclContext(CurContext);
8677 CurContext->addDecl(Specialization);
8678
8679 // Syntax is now OK, so return if it has no other effect on semantics.
8680 if (HasNoEffect) {
8681 // Set the template specialization kind.
8682 Specialization->setTemplateSpecializationKind(TSK);
8683 return Specialization;
8684 }
8685
8686 // C++ [temp.explicit]p3:
8687 // A definition of a class template or class member template
8688 // shall be in scope at the point of the explicit instantiation of
8689 // the class template or class member template.
8690 //
8691 // This check comes when we actually try to perform the
8692 // instantiation.
8693 ClassTemplateSpecializationDecl *Def
8694 = cast_or_null<ClassTemplateSpecializationDecl>(
8695 Specialization->getDefinition());
8696 if (!Def)
8697 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
8698 else if (TSK == TSK_ExplicitInstantiationDefinition) {
8699 MarkVTableUsed(TemplateNameLoc, Specialization, true);
8700 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
8701 }
8702
8703 // Instantiate the members of this class template specialization.
8704 Def = cast_or_null<ClassTemplateSpecializationDecl>(
8705 Specialization->getDefinition());
8706 if (Def) {
8707 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
8708 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
8709 // TSK_ExplicitInstantiationDefinition
8710 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
8711 (TSK == TSK_ExplicitInstantiationDefinition ||
8712 DLLImportExplicitInstantiationDef)) {
8713 // FIXME: Need to notify the ASTMutationListener that we did this.
8714 Def->setTemplateSpecializationKind(TSK);
8715
8716 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
8717 (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
8718 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
8719 // In the MS ABI, an explicit instantiation definition can add a dll
8720 // attribute to a template with a previous instantiation declaration.
8721 // MinGW doesn't allow this.
8722 auto *A = cast<InheritableAttr>(
8723 getDLLAttr(Specialization)->clone(getASTContext()));
8724 A->setInherited(true);
8725 Def->addAttr(A);
8726 dllExportImportClassTemplateSpecialization(*this, Def);
8727 }
8728 }
8729
8730 // Fix a TSK_ImplicitInstantiation followed by a
8731 // TSK_ExplicitInstantiationDefinition
8732 bool NewlyDLLExported =
8733 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
8734 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
8735 (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
8736 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
8737 // In the MS ABI, an explicit instantiation definition can add a dll
8738 // attribute to a template with a previous implicit instantiation.
8739 // MinGW doesn't allow this. We limit clang to only adding dllexport, to
8740 // avoid potentially strange codegen behavior. For example, if we extend
8741 // this conditional to dllimport, and we have a source file calling a
8742 // method on an implicitly instantiated template class instance and then
8743 // declaring a dllimport explicit instantiation definition for the same
8744 // template class, the codegen for the method call will not respect the
8745 // dllimport, while it will with cl. The Def will already have the DLL
8746 // attribute, since the Def and Specialization will be the same in the
8747 // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
8748 // attribute to the Specialization; we just need to make it take effect.
8749 assert(Def == Specialization &&(static_cast <bool> (Def == Specialization && "Def and Specialization should match for implicit instantiation"
) ? void (0) : __assert_fail ("Def == Specialization && \"Def and Specialization should match for implicit instantiation\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8750, __extension__ __PRETTY_FUNCTION__))
8750 "Def and Specialization should match for implicit instantiation")(static_cast <bool> (Def == Specialization && "Def and Specialization should match for implicit instantiation"
) ? void (0) : __assert_fail ("Def == Specialization && \"Def and Specialization should match for implicit instantiation\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8750, __extension__ __PRETTY_FUNCTION__))
;
8751 dllExportImportClassTemplateSpecialization(*this, Def);
8752 }
8753
8754 // Set the template specialization kind. Make sure it is set before
8755 // instantiating the members which will trigger ASTConsumer callbacks.
8756 Specialization->setTemplateSpecializationKind(TSK);
8757 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
8758 } else {
8759
8760 // Set the template specialization kind.
8761 Specialization->setTemplateSpecializationKind(TSK);
8762 }
8763
8764 return Specialization;
8765}
8766
8767// Explicit instantiation of a member class of a class template.
8768DeclResult
8769Sema::ActOnExplicitInstantiation(Scope *S,
8770 SourceLocation ExternLoc,
8771 SourceLocation TemplateLoc,
8772 unsigned TagSpec,
8773 SourceLocation KWLoc,
8774 CXXScopeSpec &SS,
8775 IdentifierInfo *Name,
8776 SourceLocation NameLoc,
8777 AttributeList *Attr) {
8778
8779 bool Owned = false;
8780 bool IsDependent = false;
8781 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
8782 KWLoc, SS, Name, NameLoc, Attr, AS_none,
8783 /*ModulePrivateLoc=*/SourceLocation(),
8784 MultiTemplateParamsArg(), Owned, IsDependent,
8785 SourceLocation(), false, TypeResult(),
8786 /*IsTypeSpecifier*/false,
8787 /*IsTemplateParamOrArg*/false);
8788 assert(!IsDependent && "explicit instantiation of dependent name not yet handled")(static_cast <bool> (!IsDependent && "explicit instantiation of dependent name not yet handled"
) ? void (0) : __assert_fail ("!IsDependent && \"explicit instantiation of dependent name not yet handled\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8788, __extension__ __PRETTY_FUNCTION__))
;
8789
8790 if (!TagD)
8791 return true;
8792
8793 TagDecl *Tag = cast<TagDecl>(TagD);
8794 assert(!Tag->isEnum() && "shouldn't see enumerations here")(static_cast <bool> (!Tag->isEnum() && "shouldn't see enumerations here"
) ? void (0) : __assert_fail ("!Tag->isEnum() && \"shouldn't see enumerations here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8794, __extension__ __PRETTY_FUNCTION__))
;
8795
8796 if (Tag->isInvalidDecl())
8797 return true;
8798
8799 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
8800 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
8801 if (!Pattern) {
8802 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
8803 << Context.getTypeDeclType(Record);
8804 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
8805 return true;
8806 }
8807
8808 // C++0x [temp.explicit]p2:
8809 // If the explicit instantiation is for a class or member class, the
8810 // elaborated-type-specifier in the declaration shall include a
8811 // simple-template-id.
8812 //
8813 // C++98 has the same restriction, just worded differently.
8814 if (!ScopeSpecifierHasTemplateId(SS))
8815 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
8816 << Record << SS.getRange();
8817
8818 // C++0x [temp.explicit]p2:
8819 // There are two forms of explicit instantiation: an explicit instantiation
8820 // definition and an explicit instantiation declaration. An explicit
8821 // instantiation declaration begins with the extern keyword. [...]
8822 TemplateSpecializationKind TSK
8823 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
8824 : TSK_ExplicitInstantiationDeclaration;
8825
8826 // C++0x [temp.explicit]p2:
8827 // [...] An explicit instantiation shall appear in an enclosing
8828 // namespace of its template. [...]
8829 //
8830 // This is C++ DR 275.
8831 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
8832
8833 // Verify that it is okay to explicitly instantiate here.
8834 CXXRecordDecl *PrevDecl
8835 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
8836 if (!PrevDecl && Record->getDefinition())
8837 PrevDecl = Record;
8838 if (PrevDecl) {
8839 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
8840 bool HasNoEffect = false;
8841 assert(MSInfo && "No member specialization information?")(static_cast <bool> (MSInfo && "No member specialization information?"
) ? void (0) : __assert_fail ("MSInfo && \"No member specialization information?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8841, __extension__ __PRETTY_FUNCTION__))
;
8842 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
8843 PrevDecl,
8844 MSInfo->getTemplateSpecializationKind(),
8845 MSInfo->getPointOfInstantiation(),
8846 HasNoEffect))
8847 return true;
8848 if (HasNoEffect)
8849 return TagD;
8850 }
8851
8852 CXXRecordDecl *RecordDef
8853 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
8854 if (!RecordDef) {
8855 // C++ [temp.explicit]p3:
8856 // A definition of a member class of a class template shall be in scope
8857 // at the point of an explicit instantiation of the member class.
8858 CXXRecordDecl *Def
8859 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
8860 if (!Def) {
8861 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
8862 << 0 << Record->getDeclName() << Record->getDeclContext();
8863 Diag(Pattern->getLocation(), diag::note_forward_declaration)
8864 << Pattern;
8865 return true;
8866 } else {
8867 if (InstantiateClass(NameLoc, Record, Def,
8868 getTemplateInstantiationArgs(Record),
8869 TSK))
8870 return true;
8871
8872 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
8873 if (!RecordDef)
8874 return true;
8875 }
8876 }
8877
8878 // Instantiate all of the members of the class.
8879 InstantiateClassMembers(NameLoc, RecordDef,
8880 getTemplateInstantiationArgs(Record), TSK);
8881
8882 if (TSK == TSK_ExplicitInstantiationDefinition)
8883 MarkVTableUsed(NameLoc, RecordDef, true);
8884
8885 // FIXME: We don't have any representation for explicit instantiations of
8886 // member classes. Such a representation is not needed for compilation, but it
8887 // should be available for clients that want to see all of the declarations in
8888 // the source code.
8889 return TagD;
8890}
8891
8892DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
8893 SourceLocation ExternLoc,
8894 SourceLocation TemplateLoc,
8895 Declarator &D) {
8896 // Explicit instantiations always require a name.
8897 // TODO: check if/when DNInfo should replace Name.
8898 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8899 DeclarationName Name = NameInfo.getName();
8900 if (!Name) {
8901 if (!D.isInvalidType())
8902 Diag(D.getDeclSpec().getLocStart(),
8903 diag::err_explicit_instantiation_requires_name)
8904 << D.getDeclSpec().getSourceRange()
8905 << D.getSourceRange();
8906
8907 return true;
8908 }
8909
8910 // The scope passed in may not be a decl scope. Zip up the scope tree until
8911 // we find one that is.
8912 while ((S->getFlags() & Scope::DeclScope) == 0 ||
8913 (S->getFlags() & Scope::TemplateParamScope) != 0)
8914 S = S->getParent();
8915
8916 // Determine the type of the declaration.
8917 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
8918 QualType R = T->getType();
8919 if (R.isNull())
8920 return true;
8921
8922 // C++ [dcl.stc]p1:
8923 // A storage-class-specifier shall not be specified in [...] an explicit
8924 // instantiation (14.7.2) directive.
8925 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
8926 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
8927 << Name;
8928 return true;
8929 } else if (D.getDeclSpec().getStorageClassSpec()
8930 != DeclSpec::SCS_unspecified) {
8931 // Complain about then remove the storage class specifier.
8932 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
8933 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8934
8935 D.getMutableDeclSpec().ClearStorageClassSpecs();
8936 }
8937
8938 // C++0x [temp.explicit]p1:
8939 // [...] An explicit instantiation of a function template shall not use the
8940 // inline or constexpr specifiers.
8941 // Presumably, this also applies to member functions of class templates as
8942 // well.
8943 if (D.getDeclSpec().isInlineSpecified())
8944 Diag(D.getDeclSpec().getInlineSpecLoc(),
8945 getLangOpts().CPlusPlus11 ?
8946 diag::err_explicit_instantiation_inline :
8947 diag::warn_explicit_instantiation_inline_0x)
8948 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8949 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
8950 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
8951 // not already specified.
8952 Diag(D.getDeclSpec().getConstexprSpecLoc(),
8953 diag::err_explicit_instantiation_constexpr);
8954
8955 // A deduction guide is not on the list of entities that can be explicitly
8956 // instantiated.
8957 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8958 Diag(D.getDeclSpec().getLocStart(), diag::err_deduction_guide_specialized)
8959 << /*explicit instantiation*/ 0;
8960 return true;
8961 }
8962
8963 // C++0x [temp.explicit]p2:
8964 // There are two forms of explicit instantiation: an explicit instantiation
8965 // definition and an explicit instantiation declaration. An explicit
8966 // instantiation declaration begins with the extern keyword. [...]
8967 TemplateSpecializationKind TSK
8968 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
8969 : TSK_ExplicitInstantiationDeclaration;
8970
8971 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
8972 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
8973
8974 if (!R->isFunctionType()) {
8975 // C++ [temp.explicit]p1:
8976 // A [...] static data member of a class template can be explicitly
8977 // instantiated from the member definition associated with its class
8978 // template.
8979 // C++1y [temp.explicit]p1:
8980 // A [...] variable [...] template specialization can be explicitly
8981 // instantiated from its template.
8982 if (Previous.isAmbiguous())
8983 return true;
8984
8985 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
8986 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
8987
8988 if (!PrevTemplate) {
8989 if (!Prev || !Prev->isStaticDataMember()) {
8990 // We expect to see a data data member here.
8991 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
8992 << Name;
8993 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
8994 P != PEnd; ++P)
8995 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
8996 return true;
8997 }
8998
8999 if (!Prev->getInstantiatedFromStaticDataMember()) {
9000 // FIXME: Check for explicit specialization?
9001 Diag(D.getIdentifierLoc(),
9002 diag::err_explicit_instantiation_data_member_not_instantiated)
9003 << Prev;
9004 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
9005 // FIXME: Can we provide a note showing where this was declared?
9006 return true;
9007 }
9008 } else {
9009 // Explicitly instantiate a variable template.
9010
9011 // C++1y [dcl.spec.auto]p6:
9012 // ... A program that uses auto or decltype(auto) in a context not
9013 // explicitly allowed in this section is ill-formed.
9014 //
9015 // This includes auto-typed variable template instantiations.
9016 if (R->isUndeducedType()) {
9017 Diag(T->getTypeLoc().getLocStart(),
9018 diag::err_auto_not_allowed_var_inst);
9019 return true;
9020 }
9021
9022 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9023 // C++1y [temp.explicit]p3:
9024 // If the explicit instantiation is for a variable, the unqualified-id
9025 // in the declaration shall be a template-id.
9026 Diag(D.getIdentifierLoc(),
9027 diag::err_explicit_instantiation_without_template_id)
9028 << PrevTemplate;
9029 Diag(PrevTemplate->getLocation(),
9030 diag::note_explicit_instantiation_here);
9031 return true;
9032 }
9033
9034 // Translate the parser's template argument list into our AST format.
9035 TemplateArgumentListInfo TemplateArgs =
9036 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9037
9038 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
9039 D.getIdentifierLoc(), TemplateArgs);
9040 if (Res.isInvalid())
9041 return true;
9042
9043 // Ignore access control bits, we don't need them for redeclaration
9044 // checking.
9045 Prev = cast<VarDecl>(Res.get());
9046 }
9047
9048 // C++0x [temp.explicit]p2:
9049 // If the explicit instantiation is for a member function, a member class
9050 // or a static data member of a class template specialization, the name of
9051 // the class template specialization in the qualified-id for the member
9052 // name shall be a simple-template-id.
9053 //
9054 // C++98 has the same restriction, just worded differently.
9055 //
9056 // This does not apply to variable template specializations, where the
9057 // template-id is in the unqualified-id instead.
9058 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
9059 Diag(D.getIdentifierLoc(),
9060 diag::ext_explicit_instantiation_without_qualified_id)
9061 << Prev << D.getCXXScopeSpec().getRange();
9062
9063 // Check the scope of this explicit instantiation.
9064 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
9065
9066 // Verify that it is okay to explicitly instantiate here.
9067 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
9068 SourceLocation POI = Prev->getPointOfInstantiation();
9069 bool HasNoEffect = false;
9070 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
9071 PrevTSK, POI, HasNoEffect))
9072 return true;
9073
9074 if (!HasNoEffect) {
9075 // Instantiate static data member or variable template.
9076 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9077 if (PrevTemplate) {
9078 // Merge attributes.
9079 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
9080 ProcessDeclAttributeList(S, Prev, Attr);
9081 }
9082 if (TSK == TSK_ExplicitInstantiationDefinition)
9083 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
9084 }
9085
9086 // Check the new variable specialization against the parsed input.
9087 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
9088 Diag(T->getTypeLoc().getLocStart(),
9089 diag::err_invalid_var_template_spec_type)
9090 << 0 << PrevTemplate << R << Prev->getType();
9091 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
9092 << 2 << PrevTemplate->getDeclName();
9093 return true;
9094 }
9095
9096 // FIXME: Create an ExplicitInstantiation node?
9097 return (Decl*) nullptr;
9098 }
9099
9100 // If the declarator is a template-id, translate the parser's template
9101 // argument list into our AST format.
9102 bool HasExplicitTemplateArgs = false;
9103 TemplateArgumentListInfo TemplateArgs;
9104 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9105 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9106 HasExplicitTemplateArgs = true;
9107 }
9108
9109 // C++ [temp.explicit]p1:
9110 // A [...] function [...] can be explicitly instantiated from its template.
9111 // A member function [...] of a class template can be explicitly
9112 // instantiated from the member definition associated with its class
9113 // template.
9114 UnresolvedSet<8> TemplateMatches;
9115 FunctionDecl *NonTemplateMatch = nullptr;
9116 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
9117 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
9118 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9119 P != PEnd; ++P) {
9120 NamedDecl *Prev = *P;
9121 if (!HasExplicitTemplateArgs) {
9122 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
9123 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
9124 /*AdjustExceptionSpec*/true);
9125 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
9126 if (Method->getPrimaryTemplate()) {
9127 TemplateMatches.addDecl(Method, P.getAccess());
9128 } else {
9129 // FIXME: Can this assert ever happen? Needs a test.
9130 assert(!NonTemplateMatch && "Multiple NonTemplateMatches")(static_cast <bool> (!NonTemplateMatch && "Multiple NonTemplateMatches"
) ? void (0) : __assert_fail ("!NonTemplateMatch && \"Multiple NonTemplateMatches\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9130, __extension__ __PRETTY_FUNCTION__))
;
9131 NonTemplateMatch = Method;
9132 }
9133 }
9134 }
9135 }
9136
9137 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
9138 if (!FunTmpl)
9139 continue;
9140
9141 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9142 FunctionDecl *Specialization = nullptr;
9143 if (TemplateDeductionResult TDK
9144 = DeduceTemplateArguments(FunTmpl,
9145 (HasExplicitTemplateArgs ? &TemplateArgs
9146 : nullptr),
9147 R, Specialization, Info)) {
9148 // Keep track of almost-matches.
9149 FailedCandidates.addCandidate()
9150 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
9151 MakeDeductionFailureInfo(Context, TDK, Info));
9152 (void)TDK;
9153 continue;
9154 }
9155
9156 // Target attributes are part of the cuda function signature, so
9157 // the cuda target of the instantiated function must match that of its
9158 // template. Given that C++ template deduction does not take
9159 // target attributes into account, we reject candidates here that
9160 // have a different target.
9161 if (LangOpts.CUDA &&
9162 IdentifyCUDATarget(Specialization,
9163 /* IgnoreImplicitHDAttributes = */ true) !=
9164 IdentifyCUDATarget(Attr)) {
9165 FailedCandidates.addCandidate().set(
9166 P.getPair(), FunTmpl->getTemplatedDecl(),
9167 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9168 continue;
9169 }
9170
9171 TemplateMatches.addDecl(Specialization, P.getAccess());
9172 }
9173
9174 FunctionDecl *Specialization = NonTemplateMatch;
9175 if (!Specialization) {
9176 // Find the most specialized function template specialization.
9177 UnresolvedSetIterator Result = getMostSpecialized(
9178 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
9179 D.getIdentifierLoc(),
9180 PDiag(diag::err_explicit_instantiation_not_known) << Name,
9181 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
9182 PDiag(diag::note_explicit_instantiation_candidate));
9183
9184 if (Result == TemplateMatches.end())
9185 return true;
9186
9187 // Ignore access control bits, we don't need them for redeclaration checking.
9188 Specialization = cast<FunctionDecl>(*Result);
9189 }
9190
9191 // C++11 [except.spec]p4
9192 // In an explicit instantiation an exception-specification may be specified,
9193 // but is not required.
9194 // If an exception-specification is specified in an explicit instantiation
9195 // directive, it shall be compatible with the exception-specifications of
9196 // other declarations of that function.
9197 if (auto *FPT = R->getAs<FunctionProtoType>())
9198 if (FPT->hasExceptionSpec()) {
9199 unsigned DiagID =
9200 diag::err_mismatched_exception_spec_explicit_instantiation;
9201 if (getLangOpts().MicrosoftExt)
9202 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
9203 bool Result = CheckEquivalentExceptionSpec(
9204 PDiag(DiagID) << Specialization->getType(),
9205 PDiag(diag::note_explicit_instantiation_here),
9206 Specialization->getType()->getAs<FunctionProtoType>(),
9207 Specialization->getLocation(), FPT, D.getLocStart());
9208 // In Microsoft mode, mismatching exception specifications just cause a
9209 // warning.
9210 if (!getLangOpts().MicrosoftExt && Result)
9211 return true;
9212 }
9213
9214 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
9215 Diag(D.getIdentifierLoc(),
9216 diag::err_explicit_instantiation_member_function_not_instantiated)
9217 << Specialization
9218 << (Specialization->getTemplateSpecializationKind() ==
9219 TSK_ExplicitSpecialization);
9220 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
9221 return true;
9222 }
9223
9224 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
9225 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
9226 PrevDecl = Specialization;
9227
9228 if (PrevDecl) {
9229 bool HasNoEffect = false;
9230 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
9231 PrevDecl,
9232 PrevDecl->getTemplateSpecializationKind(),
9233 PrevDecl->getPointOfInstantiation(),
9234 HasNoEffect))
9235 return true;
9236
9237 // FIXME: We may still want to build some representation of this
9238 // explicit specialization.
9239 if (HasNoEffect)
9240 return (Decl*) nullptr;
9241 }
9242
9243 if (Attr)
9244 ProcessDeclAttributeList(S, Specialization, Attr);
9245
9246 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9247 // instantiation declarations.
9248 if (TSK == TSK_ExplicitInstantiationDefinition &&
9249 Specialization->hasAttr<DLLImportAttr>() &&
9250 Context.getTargetInfo().getCXXABI().isMicrosoft())
9251 TSK = TSK_ExplicitInstantiationDeclaration;
9252
9253 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9254
9255 if (Specialization->isDefined()) {
9256 // Let the ASTConsumer know that this function has been explicitly
9257 // instantiated now, and its linkage might have changed.
9258 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
9259 } else if (TSK == TSK_ExplicitInstantiationDefinition)
9260 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
9261
9262 // C++0x [temp.explicit]p2:
9263 // If the explicit instantiation is for a member function, a member class
9264 // or a static data member of a class template specialization, the name of
9265 // the class template specialization in the qualified-id for the member
9266 // name shall be a simple-template-id.
9267 //
9268 // C++98 has the same restriction, just worded differently.
9269 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
9270 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
9271 D.getCXXScopeSpec().isSet() &&
9272 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
9273 Diag(D.getIdentifierLoc(),
9274 diag::ext_explicit_instantiation_without_qualified_id)
9275 << Specialization << D.getCXXScopeSpec().getRange();
9276
9277 CheckExplicitInstantiationScope(*this,
9278 FunTmpl? (NamedDecl *)FunTmpl
9279 : Specialization->getInstantiatedFromMemberFunction(),
9280 D.getIdentifierLoc(),
9281 D.getCXXScopeSpec().isSet());
9282
9283 // FIXME: Create some kind of ExplicitInstantiationDecl here.
9284 return (Decl*) nullptr;
9285}
9286
9287TypeResult
9288Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9289 const CXXScopeSpec &SS, IdentifierInfo *Name,
9290 SourceLocation TagLoc, SourceLocation NameLoc) {
9291 // This has to hold, because SS is expected to be defined.
9292 assert(Name && "Expected a name in a dependent tag")(static_cast <bool> (Name && "Expected a name in a dependent tag"
) ? void (0) : __assert_fail ("Name && \"Expected a name in a dependent tag\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9292, __extension__ __PRETTY_FUNCTION__))
;
9293
9294 NestedNameSpecifier *NNS = SS.getScopeRep();
9295 if (!NNS)
9296 return true;
9297
9298 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9299
9300 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
9301 Diag(NameLoc, diag::err_dependent_tag_decl)
9302 << (TUK == TUK_Definition) << Kind << SS.getRange();
9303 return true;
9304 }
9305
9306 // Create the resulting type.
9307 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9308 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
9309
9310 // Create type-source location information for this type.
9311 TypeLocBuilder TLB;
9312 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
9313 TL.setElaboratedKeywordLoc(TagLoc);
9314 TL.setQualifierLoc(SS.getWithLocInContext(Context));
9315 TL.setNameLoc(NameLoc);
9316 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
9317}
9318
9319TypeResult
9320Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
9321 const CXXScopeSpec &SS, const IdentifierInfo &II,
9322 SourceLocation IdLoc) {
9323 if (SS.isInvalid())
9324 return true;
9325
9326 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
9327 Diag(TypenameLoc,
9328 getLangOpts().CPlusPlus11 ?
9329 diag::warn_cxx98_compat_typename_outside_of_template :
9330 diag::ext_typename_outside_of_template)
9331 << FixItHint::CreateRemoval(TypenameLoc);
9332
9333 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9334 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
9335 TypenameLoc, QualifierLoc, II, IdLoc);
9336 if (T.isNull())
9337 return true;
9338
9339 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9340 if (isa<DependentNameType>(T)) {
9341 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
9342 TL.setElaboratedKeywordLoc(TypenameLoc);
9343 TL.setQualifierLoc(QualifierLoc);
9344 TL.setNameLoc(IdLoc);
9345 } else {
9346 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
9347 TL.setElaboratedKeywordLoc(TypenameLoc);
9348 TL.setQualifierLoc(QualifierLoc);
9349 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
9350 }
9351
9352 return CreateParsedType(T, TSI);
9353}
9354
9355TypeResult
9356Sema::ActOnTypenameType(Scope *S,
9357 SourceLocation TypenameLoc,
9358 const CXXScopeSpec &SS,
9359 SourceLocation TemplateKWLoc,
9360 TemplateTy TemplateIn,
9361 IdentifierInfo *TemplateII,
9362 SourceLocation TemplateIILoc,
9363 SourceLocation LAngleLoc,
9364 ASTTemplateArgsPtr TemplateArgsIn,
9365 SourceLocation RAngleLoc) {
9366 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
9367 Diag(TypenameLoc,
9368 getLangOpts().CPlusPlus11 ?
9369 diag::warn_cxx98_compat_typename_outside_of_template :
9370 diag::ext_typename_outside_of_template)
9371 << FixItHint::CreateRemoval(TypenameLoc);
9372
9373 // Strangely, non-type results are not ignored by this lookup, so the
9374 // program is ill-formed if it finds an injected-class-name.
9375 if (TypenameLoc.isValid()) {
9376 auto *LookupRD =
9377 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
9378 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
9379 Diag(TemplateIILoc,
9380 diag::ext_out_of_line_qualified_id_type_names_constructor)
9381 << TemplateII << 0 /*injected-class-name used as template name*/
9382 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
9383 }
9384 }
9385
9386 // Translate the parser's template argument list in our AST format.
9387 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9388 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9389
9390 TemplateName Template = TemplateIn.get();
9391 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
9392 // Construct a dependent template specialization type.
9393 assert(DTN && "dependent template has non-dependent name?")(static_cast <bool> (DTN && "dependent template has non-dependent name?"
) ? void (0) : __assert_fail ("DTN && \"dependent template has non-dependent name?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9393, __extension__ __PRETTY_FUNCTION__))
;
9394 assert(DTN->getQualifier() == SS.getScopeRep())(static_cast <bool> (DTN->getQualifier() == SS.getScopeRep
()) ? void (0) : __assert_fail ("DTN->getQualifier() == SS.getScopeRep()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9394, __extension__ __PRETTY_FUNCTION__))
;
9395 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
9396 DTN->getQualifier(),
9397 DTN->getIdentifier(),
9398 TemplateArgs);
9399
9400 // Create source-location information for this type.
9401 TypeLocBuilder Builder;
9402 DependentTemplateSpecializationTypeLoc SpecTL
9403 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
9404 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
9405 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
9406 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
9407 SpecTL.setTemplateNameLoc(TemplateIILoc);
9408 SpecTL.setLAngleLoc(LAngleLoc);
9409 SpecTL.setRAngleLoc(RAngleLoc);
9410 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
9411 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
9412 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
9413 }
9414
9415 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
9416 if (T.isNull())
9417 return true;
9418
9419 // Provide source-location information for the template specialization type.
9420 TypeLocBuilder Builder;
9421 TemplateSpecializationTypeLoc SpecTL
9422 = Builder.push<TemplateSpecializationTypeLoc>(T);
9423 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
9424 SpecTL.setTemplateNameLoc(TemplateIILoc);
9425 SpecTL.setLAngleLoc(LAngleLoc);
9426 SpecTL.setRAngleLoc(RAngleLoc);
9427 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
9428 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
9429
9430 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
9431 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
9432 TL.setElaboratedKeywordLoc(TypenameLoc);
9433 TL.setQualifierLoc(SS.getWithLocInContext(Context));
9434
9435 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
9436 return CreateParsedType(T, TSI);
9437}
9438
9439
9440/// Determine whether this failed name lookup should be treated as being
9441/// disabled by a usage of std::enable_if.
9442static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
9443 SourceRange &CondRange, Expr *&Cond) {
9444 // We must be looking for a ::type...
9445 if (!II.isStr("type"))
9446 return false;
9447
9448 // ... within an explicitly-written template specialization...
9449 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
9450 return false;
9451 TypeLoc EnableIfTy = NNS.getTypeLoc();
9452 TemplateSpecializationTypeLoc EnableIfTSTLoc =
9453 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
9454 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
9455 return false;
9456 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
9457
9458 // ... which names a complete class template declaration...
9459 const TemplateDecl *EnableIfDecl =
9460 EnableIfTST->getTemplateName().getAsTemplateDecl();
9461 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
9462 return false;
9463
9464 // ... called "enable_if".
9465 const IdentifierInfo *EnableIfII =
9466 EnableIfDecl->getDeclName().getAsIdentifierInfo();
9467 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
9468 return false;
9469
9470 // Assume the first template argument is the condition.
9471 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
9472
9473 // Dig out the condition.
9474 Cond = nullptr;
9475 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
9476 != TemplateArgument::Expression)
9477 return true;
9478
9479 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
9480
9481 // Ignore Boolean literals; they add no value.
9482 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
9483 Cond = nullptr;
9484
9485 return true;
9486}
9487
9488/// \brief Build the type that describes a C++ typename specifier,
9489/// e.g., "typename T::type".
9490QualType
9491Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
9492 SourceLocation KeywordLoc,
9493 NestedNameSpecifierLoc QualifierLoc,
9494 const IdentifierInfo &II,
9495 SourceLocation IILoc) {
9496 CXXScopeSpec SS;
9497 SS.Adopt(QualifierLoc);
9498
9499 DeclContext *Ctx = computeDeclContext(SS);
9500 if (!Ctx) {
9501 // If the nested-name-specifier is dependent and couldn't be
9502 // resolved to a type, build a typename type.
9503 assert(QualifierLoc.getNestedNameSpecifier()->isDependent())(static_cast <bool> (QualifierLoc.getNestedNameSpecifier
()->isDependent()) ? void (0) : __assert_fail ("QualifierLoc.getNestedNameSpecifier()->isDependent()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9503, __extension__ __PRETTY_FUNCTION__))
;
9504 return Context.getDependentNameType(Keyword,
9505 QualifierLoc.getNestedNameSpecifier(),
9506 &II);
9507 }
9508
9509 // If the nested-name-specifier refers to the current instantiation,
9510 // the "typename" keyword itself is superfluous. In C++03, the
9511 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
9512 // allows such extraneous "typename" keywords, and we retroactively
9513 // apply this DR to C++03 code with only a warning. In any case we continue.
9514
9515 if (RequireCompleteDeclContext(SS, Ctx))
9516 return QualType();
9517
9518 DeclarationName Name(&II);
9519 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
9520 LookupQualifiedName(Result, Ctx, SS);
9521 unsigned DiagID = 0;
9522 Decl *Referenced = nullptr;
9523 switch (Result.getResultKind()) {
9524 case LookupResult::NotFound: {
9525 // If we're looking up 'type' within a template named 'enable_if', produce
9526 // a more specific diagnostic.
9527 SourceRange CondRange;
9528 Expr *Cond = nullptr;
9529 if (isEnableIf(QualifierLoc, II, CondRange, Cond)) {
9530 // If we have a condition, narrow it down to the specific failed
9531 // condition.
9532 if (Cond) {
9533 Expr *FailedCond;
9534 std::string FailedDescription;
9535 std::tie(FailedCond, FailedDescription) =
9536 findFailedBooleanCondition(Cond, /*AllowTopLevelCond=*/true);
9537
9538 Diag(FailedCond->getExprLoc(),
9539 diag::err_typename_nested_not_found_requirement)
9540 << FailedDescription
9541 << FailedCond->getSourceRange();
9542 return QualType();
9543 }
9544
9545 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
9546 << Ctx << CondRange;
9547 return QualType();
9548 }
9549
9550 DiagID = diag::err_typename_nested_not_found;
9551 break;
9552 }
9553
9554 case LookupResult::FoundUnresolvedValue: {
9555 // We found a using declaration that is a value. Most likely, the using
9556 // declaration itself is meant to have the 'typename' keyword.
9557 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
9558 IILoc);
9559 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
9560 << Name << Ctx << FullRange;
9561 if (UnresolvedUsingValueDecl *Using
9562 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
9563 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
9564 Diag(Loc, diag::note_using_value_decl_missing_typename)
9565 << FixItHint::CreateInsertion(Loc, "typename ");
9566 }
9567 }
9568 // Fall through to create a dependent typename type, from which we can recover
9569 // better.
9570 LLVM_FALLTHROUGH[[clang::fallthrough]];
9571
9572 case LookupResult::NotFoundInCurrentInstantiation:
9573 // Okay, it's a member of an unknown instantiation.
9574 return Context.getDependentNameType(Keyword,
9575 QualifierLoc.getNestedNameSpecifier(),
9576 &II);
9577
9578 case LookupResult::Found:
9579 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
9580 // C++ [class.qual]p2:
9581 // In a lookup in which function names are not ignored and the
9582 // nested-name-specifier nominates a class C, if the name specified
9583 // after the nested-name-specifier, when looked up in C, is the
9584 // injected-class-name of C [...] then the name is instead considered
9585 // to name the constructor of class C.
9586 //
9587 // Unlike in an elaborated-type-specifier, function names are not ignored
9588 // in typename-specifier lookup. However, they are ignored in all the
9589 // contexts where we form a typename type with no keyword (that is, in
9590 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
9591 //
9592 // FIXME: That's not strictly true: mem-initializer-id lookup does not
9593 // ignore functions, but that appears to be an oversight.
9594 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
9595 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
9596 if (Keyword == ETK_Typename && LookupRD && FoundRD &&
9597 FoundRD->isInjectedClassName() &&
9598 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
9599 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
9600 << &II << 1 << 0 /*'typename' keyword used*/;
9601
9602 // We found a type. Build an ElaboratedType, since the
9603 // typename-specifier was just sugar.
9604 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
9605 return Context.getElaboratedType(Keyword,
9606 QualifierLoc.getNestedNameSpecifier(),
9607 Context.getTypeDeclType(Type));
9608 }
9609
9610 // C++ [dcl.type.simple]p2:
9611 // A type-specifier of the form
9612 // typename[opt] nested-name-specifier[opt] template-name
9613 // is a placeholder for a deduced class type [...].
9614 if (getLangOpts().CPlusPlus17) {
9615 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
9616 return Context.getElaboratedType(
9617 Keyword, QualifierLoc.getNestedNameSpecifier(),
9618 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
9619 QualType(), false));
9620 }
9621 }
9622
9623 DiagID = diag::err_typename_nested_not_type;
9624 Referenced = Result.getFoundDecl();
9625 break;
9626
9627 case LookupResult::FoundOverloaded:
9628 DiagID = diag::err_typename_nested_not_type;
9629 Referenced = *Result.begin();
9630 break;
9631
9632 case LookupResult::Ambiguous:
9633 return QualType();
9634 }
9635
9636 // If we get here, it's because name lookup did not find a
9637 // type. Emit an appropriate diagnostic and return an error.
9638 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
9639 IILoc);
9640 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
9641 if (Referenced)
9642 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
9643 << Name;
9644 return QualType();
9645}
9646
9647namespace {
9648 // See Sema::RebuildTypeInCurrentInstantiation
9649 class CurrentInstantiationRebuilder
9650 : public TreeTransform<CurrentInstantiationRebuilder> {
9651 SourceLocation Loc;
9652 DeclarationName Entity;
9653
9654 public:
9655 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
9656
9657 CurrentInstantiationRebuilder(Sema &SemaRef,
9658 SourceLocation Loc,
9659 DeclarationName Entity)
9660 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
9661 Loc(Loc), Entity(Entity) { }
9662
9663 /// \brief Determine whether the given type \p T has already been
9664 /// transformed.
9665 ///
9666 /// For the purposes of type reconstruction, a type has already been
9667 /// transformed if it is NULL or if it is not dependent.
9668 bool AlreadyTransformed(QualType T) {
9669 return T.isNull() || !T->isDependentType();
9670 }
9671
9672 /// \brief Returns the location of the entity whose type is being
9673 /// rebuilt.
9674 SourceLocation getBaseLocation() { return Loc; }
9675
9676 /// \brief Returns the name of the entity whose type is being rebuilt.
9677 DeclarationName getBaseEntity() { return Entity; }
9678
9679 /// \brief Sets the "base" location and entity when that
9680 /// information is known based on another transformation.
9681 void setBase(SourceLocation Loc, DeclarationName Entity) {
9682 this->Loc = Loc;
9683 this->Entity = Entity;
9684 }
9685
9686 ExprResult TransformLambdaExpr(LambdaExpr *E) {
9687 // Lambdas never need to be transformed.
9688 return E;
9689 }
9690 };
9691} // end anonymous namespace
9692
9693/// \brief Rebuilds a type within the context of the current instantiation.
9694///
9695/// The type \p T is part of the type of an out-of-line member definition of
9696/// a class template (or class template partial specialization) that was parsed
9697/// and constructed before we entered the scope of the class template (or
9698/// partial specialization thereof). This routine will rebuild that type now
9699/// that we have entered the declarator's scope, which may produce different
9700/// canonical types, e.g.,
9701///
9702/// \code
9703/// template<typename T>
9704/// struct X {
9705/// typedef T* pointer;
9706/// pointer data();
9707/// };
9708///
9709/// template<typename T>
9710/// typename X<T>::pointer X<T>::data() { ... }
9711/// \endcode
9712///
9713/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
9714/// since we do not know that we can look into X<T> when we parsed the type.
9715/// This function will rebuild the type, performing the lookup of "pointer"
9716/// in X<T> and returning an ElaboratedType whose canonical type is the same
9717/// as the canonical type of T*, allowing the return types of the out-of-line
9718/// definition and the declaration to match.
9719TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
9720 SourceLocation Loc,
9721 DeclarationName Name) {
9722 if (!T || !T->getType()->isDependentType())
9723 return T;
9724
9725 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
9726 return Rebuilder.TransformType(T);
9727}
9728
9729ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
9730 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
9731 DeclarationName());
9732 return Rebuilder.TransformExpr(E);
9733}
9734
9735bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
9736 if (SS.isInvalid())
9737 return true;
9738
9739 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9740 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
9741 DeclarationName());
9742 NestedNameSpecifierLoc Rebuilt
9743 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
9744 if (!Rebuilt)
9745 return true;
9746
9747 SS.Adopt(Rebuilt);
9748 return false;
9749}
9750
9751/// \brief Rebuild the template parameters now that we know we're in a current
9752/// instantiation.
9753bool Sema::RebuildTemplateParamsInCurrentInstantiation(
9754 TemplateParameterList *Params) {
9755 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
9756 Decl *Param = Params->getParam(I);
9757
9758 // There is nothing to rebuild in a type parameter.
9759 if (isa<TemplateTypeParmDecl>(Param))
9760 continue;
9761
9762 // Rebuild the template parameter list of a template template parameter.
9763 if (TemplateTemplateParmDecl *TTP
9764 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
9765 if (RebuildTemplateParamsInCurrentInstantiation(
9766 TTP->getTemplateParameters()))
9767 return true;
9768
9769 continue;
9770 }
9771
9772 // Rebuild the type of a non-type template parameter.
9773 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
9774 TypeSourceInfo *NewTSI
9775 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
9776 NTTP->getLocation(),
9777 NTTP->getDeclName());
9778 if (!NewTSI)
9779 return true;
9780
9781 if (NewTSI != NTTP->getTypeSourceInfo()) {
9782 NTTP->setTypeSourceInfo(NewTSI);
9783 NTTP->setType(NewTSI->getType());
9784 }
9785 }
9786
9787 return false;
9788}
9789
9790/// \brief Produces a formatted string that describes the binding of
9791/// template parameters to template arguments.
9792std::string
9793Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
9794 const TemplateArgumentList &Args) {
9795 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
9796}
9797
9798std::string
9799Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
9800 const TemplateArgument *Args,
9801 unsigned NumArgs) {
9802 SmallString<128> Str;
9803 llvm::raw_svector_ostream Out(Str);
9804
9805 if (!Params || Params->size() == 0 || NumArgs == 0)
9806 return std::string();
9807
9808 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
9809 if (I >= NumArgs)
9810 break;
9811
9812 if (I == 0)
9813 Out << "[with ";
9814 else
9815 Out << ", ";
9816
9817 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
9818 Out << Id->getName();
9819 } else {
9820 Out << '$' << I;
9821 }
9822
9823 Out << " = ";
9824 Args[I].print(getPrintingPolicy(), Out);
9825 }
9826
9827 Out << ']';
9828 return Out.str();
9829}
9830
9831void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
9832 CachedTokens &Toks) {
9833 if (!FD)
9834 return;
9835
9836 auto LPT = llvm::make_unique<LateParsedTemplate>();
9837
9838 // Take tokens to avoid allocations
9839 LPT->Toks.swap(Toks);
9840 LPT->D = FnD;
9841 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
9842
9843 FD->setLateTemplateParsed(true);
9844}
9845
9846void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
9847 if (!FD)
9848 return;
9849 FD->setLateTemplateParsed(false);
9850}
9851
9852bool Sema::IsInsideALocalClassWithinATemplateFunction() {
9853 DeclContext *DC = CurContext;
9854
9855 while (DC) {
9856 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
9857 const FunctionDecl *FD = RD->isLocalClass();
9858 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
9859 } else if (DC->isTranslationUnit() || DC->isNamespace())
9860 return false;
9861
9862 DC = DC->getParent();
9863 }
9864 return false;
9865}
9866
9867namespace {
9868/// \brief Walk the path from which a declaration was instantiated, and check
9869/// that every explicit specialization along that path is visible. This enforces
9870/// C++ [temp.expl.spec]/6:
9871///
9872/// If a template, a member template or a member of a class template is
9873/// explicitly specialized then that specialization shall be declared before
9874/// the first use of that specialization that would cause an implicit
9875/// instantiation to take place, in every translation unit in which such a
9876/// use occurs; no diagnostic is required.
9877///
9878/// and also C++ [temp.class.spec]/1:
9879///
9880/// A partial specialization shall be declared before the first use of a
9881/// class template specialization that would make use of the partial
9882/// specialization as the result of an implicit or explicit instantiation
9883/// in every translation unit in which such a use occurs; no diagnostic is
9884/// required.
9885class ExplicitSpecializationVisibilityChecker {
9886 Sema &S;
9887 SourceLocation Loc;
9888 llvm::SmallVector<Module *, 8> Modules;
9889
9890public:
9891 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
9892 : S(S), Loc(Loc) {}
9893
9894 void check(NamedDecl *ND) {
9895 if (auto *FD = dyn_cast<FunctionDecl>(ND))
9896 return checkImpl(FD);
9897 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
9898 return checkImpl(RD);
9899 if (auto *VD = dyn_cast<VarDecl>(ND))
9900 return checkImpl(VD);
9901 if (auto *ED = dyn_cast<EnumDecl>(ND))
9902 return checkImpl(ED);
9903 }
9904
9905private:
9906 void diagnose(NamedDecl *D, bool IsPartialSpec) {
9907 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
9908 : Sema::MissingImportKind::ExplicitSpecialization;
9909 const bool Recover = true;
9910
9911 // If we got a custom set of modules (because only a subset of the
9912 // declarations are interesting), use them, otherwise let
9913 // diagnoseMissingImport intelligently pick some.
9914 if (Modules.empty())
9915 S.diagnoseMissingImport(Loc, D, Kind, Recover);
9916 else
9917 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
9918 }
9919
9920 // Check a specific declaration. There are three problematic cases:
9921 //
9922 // 1) The declaration is an explicit specialization of a template
9923 // specialization.
9924 // 2) The declaration is an explicit specialization of a member of an
9925 // templated class.
9926 // 3) The declaration is an instantiation of a template, and that template
9927 // is an explicit specialization of a member of a templated class.
9928 //
9929 // We don't need to go any deeper than that, as the instantiation of the
9930 // surrounding class / etc is not triggered by whatever triggered this
9931 // instantiation, and thus should be checked elsewhere.
9932 template<typename SpecDecl>
9933 void checkImpl(SpecDecl *Spec) {
9934 bool IsHiddenExplicitSpecialization = false;
9935 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
9936 IsHiddenExplicitSpecialization =
9937 Spec->getMemberSpecializationInfo()
9938 ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
9939 : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
9940 } else {
9941 checkInstantiated(Spec);
9942 }
9943
9944 if (IsHiddenExplicitSpecialization)
9945 diagnose(Spec->getMostRecentDecl(), false);
9946 }
9947
9948 void checkInstantiated(FunctionDecl *FD) {
9949 if (auto *TD = FD->getPrimaryTemplate())
9950 checkTemplate(TD);
9951 }
9952
9953 void checkInstantiated(CXXRecordDecl *RD) {
9954 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
9955 if (!SD)
9956 return;
9957
9958 auto From = SD->getSpecializedTemplateOrPartial();
9959 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
9960 checkTemplate(TD);
9961 else if (auto *TD =
9962 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
9963 if (!S.hasVisibleDeclaration(TD))
9964 diagnose(TD, true);
9965 checkTemplate(TD);
9966 }
9967 }
9968
9969 void checkInstantiated(VarDecl *RD) {
9970 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
9971 if (!SD)
9972 return;
9973
9974 auto From = SD->getSpecializedTemplateOrPartial();
9975 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
9976 checkTemplate(TD);
9977 else if (auto *TD =
9978 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
9979 if (!S.hasVisibleDeclaration(TD))
9980 diagnose(TD, true);
9981 checkTemplate(TD);
9982 }
9983 }
9984
9985 void checkInstantiated(EnumDecl *FD) {}
9986
9987 template<typename TemplDecl>
9988 void checkTemplate(TemplDecl *TD) {
9989 if (TD->isMemberSpecialization()) {
9990 if (!S.hasVisibleMemberSpecialization(TD, &Modules))
9991 diagnose(TD->getMostRecentDecl(), false);
9992 }
9993 }
9994};
9995} // end anonymous namespace
9996
9997void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
9998 if (!getLangOpts().Modules)
9999 return;
10000
10001 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
10002}
10003
10004/// \brief Check whether a template partial specialization that we've discovered
10005/// is hidden, and produce suitable diagnostics if so.
10006void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
10007 NamedDecl *Spec) {
10008 llvm::SmallVector<Module *, 8> Modules;
10009 if (!hasVisibleDeclaration(Spec, &Modules))
10010 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
10011 MissingImportKind::PartialSpecialization,
10012 /*Recover*/true);
10013}

/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h

1//===- DeclarationName.h - Representation of declaration names --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the DeclarationName and DeclarationNameTable classes.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECLARATIONNAME_H
15#define LLVM_CLANG_AST_DECLARATIONNAME_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/PartialDiagnostic.h"
20#include "clang/Basic/SourceLocation.h"
21#include "llvm/ADT/DenseMapInfo.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/type_traits.h"
24#include <cassert>
25#include <cstdint>
26#include <cstring>
27#include <string>
28
29namespace clang {
30
31class ASTContext;
32template <typename> class CanQual;
33class CXXDeductionGuideNameExtra;
34class CXXLiteralOperatorIdName;
35class CXXOperatorIdName;
36class CXXSpecialName;
37class DeclarationNameExtra;
38class IdentifierInfo;
39class MultiKeywordSelector;
40enum OverloadedOperatorKind : int;
41struct PrintingPolicy;
42class QualType;
43class TemplateDecl;
44class Type;
45class TypeSourceInfo;
46class UsingDirectiveDecl;
47
48using CanQualType = CanQual<Type>;
49
50/// DeclarationName - The name of a declaration. In the common case,
51/// this just stores an IdentifierInfo pointer to a normal
52/// name. However, it also provides encodings for Objective-C
53/// selectors (optimizing zero- and one-argument selectors, which make
54/// up 78% percent of all selectors in Cocoa.h) and special C++ names
55/// for constructors, destructors, and conversion functions.
56class DeclarationName {
57public:
58 /// NameKind - The kind of name this object contains.
59 enum NameKind {
60 Identifier,
61 ObjCZeroArgSelector,
62 ObjCOneArgSelector,
63 ObjCMultiArgSelector,
64 CXXConstructorName,
65 CXXDestructorName,
66 CXXConversionFunctionName,
67 CXXDeductionGuideName,
68 CXXOperatorName,
69 CXXLiteralOperatorName,
70 CXXUsingDirective
71 };
72
73 static const unsigned NumNameKinds = CXXUsingDirective + 1;
74
75private:
76 friend class DeclarationNameTable;
77 friend class NamedDecl;
78
79 /// StoredNameKind - The kind of name that is actually stored in the
80 /// upper bits of the Ptr field. This is only used internally.
81 ///
82 /// Note: The entries here are synchronized with the entries in Selector,
83 /// for efficient translation between the two.
84 enum StoredNameKind {
85 StoredIdentifier = 0,
86 StoredObjCZeroArgSelector = 0x01,
87 StoredObjCOneArgSelector = 0x02,
88 StoredDeclarationNameExtra = 0x03,
89 PtrMask = 0x03
90 };
91
92 /// Ptr - The lowest two bits are used to express what kind of name
93 /// we're actually storing, using the values of NameKind. Depending
94 /// on the kind of name this is, the upper bits of Ptr may have one
95 /// of several different meanings:
96 ///
97 /// StoredIdentifier - The name is a normal identifier, and Ptr is
98 /// a normal IdentifierInfo pointer.
99 ///
100 /// StoredObjCZeroArgSelector - The name is an Objective-C
101 /// selector with zero arguments, and Ptr is an IdentifierInfo
102 /// pointer pointing to the selector name.
103 ///
104 /// StoredObjCOneArgSelector - The name is an Objective-C selector
105 /// with one argument, and Ptr is an IdentifierInfo pointer
106 /// pointing to the selector name.
107 ///
108 /// StoredDeclarationNameExtra - Ptr is actually a pointer to a
109 /// DeclarationNameExtra structure, whose first value will tell us
110 /// whether this is an Objective-C selector, C++ operator-id name,
111 /// or special C++ name.
112 uintptr_t Ptr = 0;
113
114 // Construct a declaration name from the name of a C++ constructor,
115 // destructor, or conversion function.
116 DeclarationName(DeclarationNameExtra *Name)
117 : Ptr(reinterpret_cast<uintptr_t>(Name)) {
118 assert((Ptr & PtrMask) == 0 && "Improperly aligned DeclarationNameExtra")(static_cast <bool> ((Ptr & PtrMask) == 0 &&
"Improperly aligned DeclarationNameExtra") ? void (0) : __assert_fail
("(Ptr & PtrMask) == 0 && \"Improperly aligned DeclarationNameExtra\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 118, __extension__ __PRETTY_FUNCTION__))
;
119 Ptr |= StoredDeclarationNameExtra;
120 }
121
122 /// Construct a declaration name from a raw pointer.
123 DeclarationName(uintptr_t Ptr) : Ptr(Ptr) {}
124
125 /// getStoredNameKind - Return the kind of object that is stored in
126 /// Ptr.
127 StoredNameKind getStoredNameKind() const {
128 return static_cast<StoredNameKind>(Ptr & PtrMask);
129 }
130
131 /// getExtra - Get the "extra" information associated with this
132 /// multi-argument selector or C++ special name.
133 DeclarationNameExtra *getExtra() const {
134 assert(getStoredNameKind() == StoredDeclarationNameExtra &&(static_cast <bool> (getStoredNameKind() == StoredDeclarationNameExtra
&& "Declaration name does not store an Extra structure"
) ? void (0) : __assert_fail ("getStoredNameKind() == StoredDeclarationNameExtra && \"Declaration name does not store an Extra structure\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 135, __extension__ __PRETTY_FUNCTION__))
135 "Declaration name does not store an Extra structure")(static_cast <bool> (getStoredNameKind() == StoredDeclarationNameExtra
&& "Declaration name does not store an Extra structure"
) ? void (0) : __assert_fail ("getStoredNameKind() == StoredDeclarationNameExtra && \"Declaration name does not store an Extra structure\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 135, __extension__ __PRETTY_FUNCTION__))
;
136 return reinterpret_cast<DeclarationNameExtra *>(Ptr & ~PtrMask);
137 }
138
139 /// getAsCXXSpecialName - If the stored pointer is actually a
140 /// CXXSpecialName, returns a pointer to it. Otherwise, returns
141 /// a NULL pointer.
142 CXXSpecialName *getAsCXXSpecialName() const {
143 NameKind Kind = getNameKind();
144 if (Kind >= CXXConstructorName && Kind <= CXXConversionFunctionName)
145 return reinterpret_cast<CXXSpecialName *>(getExtra());
146 return nullptr;
147 }
148
149 /// If the stored pointer is actually a CXXDeductionGuideNameExtra, returns a
150 /// pointer to it. Otherwise, returns a NULL pointer.
151 CXXDeductionGuideNameExtra *getAsCXXDeductionGuideNameExtra() const {
152 if (getNameKind() == CXXDeductionGuideName)
153 return reinterpret_cast<CXXDeductionGuideNameExtra *>(getExtra());
154 return nullptr;
155 }
156
157 /// getAsCXXOperatorIdName
158 CXXOperatorIdName *getAsCXXOperatorIdName() const {
159 if (getNameKind() == CXXOperatorName)
160 return reinterpret_cast<CXXOperatorIdName *>(getExtra());
161 return nullptr;
162 }
163
164 CXXLiteralOperatorIdName *getAsCXXLiteralOperatorIdName() const {
165 if (getNameKind() == CXXLiteralOperatorName)
166 return reinterpret_cast<CXXLiteralOperatorIdName *>(getExtra());
167 return nullptr;
168 }
169
170 /// getFETokenInfoAsVoidSlow - Retrieves the front end-specified pointer
171 /// for this name as a void pointer if it's not an identifier.
172 void *getFETokenInfoAsVoidSlow() const;
173
174public:
175 /// DeclarationName - Used to create an empty selector.
176 DeclarationName() = default;
177
178 // Construct a declaration name from an IdentifierInfo *.
179 DeclarationName(const IdentifierInfo *II)
180 : Ptr(reinterpret_cast<uintptr_t>(II)) {
181 assert((Ptr & PtrMask) == 0 && "Improperly aligned IdentifierInfo")(static_cast <bool> ((Ptr & PtrMask) == 0 &&
"Improperly aligned IdentifierInfo") ? void (0) : __assert_fail
("(Ptr & PtrMask) == 0 && \"Improperly aligned IdentifierInfo\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 181, __extension__ __PRETTY_FUNCTION__))
;
182 }
183
184 // Construct a declaration name from an Objective-C selector.
185 DeclarationName(Selector Sel) : Ptr(Sel.InfoPtr) {}
186
187 /// getUsingDirectiveName - Return name for all using-directives.
188 static DeclarationName getUsingDirectiveName();
189
190 // operator bool() - Evaluates true when this declaration name is
191 // non-empty.
192 explicit operator bool() const {
193 return ((Ptr & PtrMask) != 0) ||
194 (reinterpret_cast<IdentifierInfo *>(Ptr & ~PtrMask));
195 }
196
197 /// \brief Evaluates true when this declaration name is empty.
198 bool isEmpty() const {
199 return !*this;
200 }
201
202 /// Predicate functions for querying what type of name this is.
203 bool isIdentifier() const { return getStoredNameKind() == StoredIdentifier; }
204 bool isObjCZeroArgSelector() const {
205 return getStoredNameKind() == StoredObjCZeroArgSelector;
206 }
207 bool isObjCOneArgSelector() const {
208 return getStoredNameKind() == StoredObjCOneArgSelector;
209 }
210
211 /// getNameKind - Determine what kind of name this is.
212 NameKind getNameKind() const;
213
214 /// \brief Determines whether the name itself is dependent, e.g., because it
215 /// involves a C++ type that is itself dependent.
216 ///
217 /// Note that this does not capture all of the notions of "dependent name",
218 /// because an identifier can be a dependent name if it is used as the
219 /// callee in a call expression with dependent arguments.
220 bool isDependentName() const;
221
222 /// getNameAsString - Retrieve the human-readable string for this name.
223 std::string getAsString() const;
224
225 /// getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in
226 /// this declaration name, or NULL if this declaration name isn't a
227 /// simple identifier.
228 IdentifierInfo *getAsIdentifierInfo() const {
229 if (isIdentifier())
230 return reinterpret_cast<IdentifierInfo *>(Ptr);
231 return nullptr;
232 }
233
234 /// getAsOpaqueInteger - Get the representation of this declaration
235 /// name as an opaque integer.
236 uintptr_t getAsOpaqueInteger() const { return Ptr; }
237
238 /// getAsOpaquePtr - Get the representation of this declaration name as
239 /// an opaque pointer.
240 void *getAsOpaquePtr() const { return reinterpret_cast<void*>(Ptr); }
241
242 static DeclarationName getFromOpaquePtr(void *P) {
243 DeclarationName N;
244 N.Ptr = reinterpret_cast<uintptr_t> (P);
245 return N;
246 }
247
248 static DeclarationName getFromOpaqueInteger(uintptr_t P) {
249 DeclarationName N;
250 N.Ptr = P;
251 return N;
252 }
253
254 /// getCXXNameType - If this name is one of the C++ names (of a
255 /// constructor, destructor, or conversion function), return the
256 /// type associated with that name.
257 QualType getCXXNameType() const;
258
259 /// If this name is the name of a C++ deduction guide, return the
260 /// template associated with that name.
261 TemplateDecl *getCXXDeductionGuideTemplate() const;
262
263 /// getCXXOverloadedOperator - If this name is the name of an
264 /// overloadable operator in C++ (e.g., @c operator+), retrieve the
265 /// kind of overloaded operator.
266 OverloadedOperatorKind getCXXOverloadedOperator() const;
267
268 /// getCXXLiteralIdentifier - If this name is the name of a literal
269 /// operator, retrieve the identifier associated with it.
270 IdentifierInfo *getCXXLiteralIdentifier() const;
271
272 /// getObjCSelector - Get the Objective-C selector stored in this
273 /// declaration name.
274 Selector getObjCSelector() const {
275 assert((getNameKind() == ObjCZeroArgSelector ||(static_cast <bool> ((getNameKind() == ObjCZeroArgSelector
|| getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector
|| Ptr == 0) && "Not a selector!") ? void (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || Ptr == 0) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 278, __extension__ __PRETTY_FUNCTION__))
276 getNameKind() == ObjCOneArgSelector ||(static_cast <bool> ((getNameKind() == ObjCZeroArgSelector
|| getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector
|| Ptr == 0) && "Not a selector!") ? void (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || Ptr == 0) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 278, __extension__ __PRETTY_FUNCTION__))
277 getNameKind() == ObjCMultiArgSelector ||(static_cast <bool> ((getNameKind() == ObjCZeroArgSelector
|| getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector
|| Ptr == 0) && "Not a selector!") ? void (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || Ptr == 0) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 278, __extension__ __PRETTY_FUNCTION__))
278 Ptr == 0) && "Not a selector!")(static_cast <bool> ((getNameKind() == ObjCZeroArgSelector
|| getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector
|| Ptr == 0) && "Not a selector!") ? void (0) : __assert_fail
("(getNameKind() == ObjCZeroArgSelector || getNameKind() == ObjCOneArgSelector || getNameKind() == ObjCMultiArgSelector || Ptr == 0) && \"Not a selector!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 278, __extension__ __PRETTY_FUNCTION__))
;
279 return Selector(Ptr);
280 }
281
282 /// getFETokenInfo/setFETokenInfo - The language front-end is
283 /// allowed to associate arbitrary metadata with some kinds of
284 /// declaration names, including normal identifiers and C++
285 /// constructors, destructors, and conversion functions.
286 template<typename T>
287 T *getFETokenInfo() const {
288 if (const IdentifierInfo *Info = getAsIdentifierInfo())
289 return Info->getFETokenInfo<T>();
290 return static_cast<T*>(getFETokenInfoAsVoidSlow());
291 }
292
293 void setFETokenInfo(void *T);
294
295 /// operator== - Determine whether the specified names are identical..
296 friend bool operator==(DeclarationName LHS, DeclarationName RHS) {
297 return LHS.Ptr == RHS.Ptr;
298 }
299
300 /// operator!= - Determine whether the specified names are different.
301 friend bool operator!=(DeclarationName LHS, DeclarationName RHS) {
302 return LHS.Ptr != RHS.Ptr;
303 }
304
305 static DeclarationName getEmptyMarker() {
306 return DeclarationName(uintptr_t(-1));
307 }
308
309 static DeclarationName getTombstoneMarker() {
310 return DeclarationName(uintptr_t(-2));
311 }
312
313 static int compare(DeclarationName LHS, DeclarationName RHS);
314
315 void print(raw_ostream &OS, const PrintingPolicy &Policy);
316
317 void dump() const;
318};
319
320raw_ostream &operator<<(raw_ostream &OS, DeclarationName N);
321
322/// Ordering on two declaration names. If both names are identifiers,
323/// this provides a lexicographical ordering.
324inline bool operator<(DeclarationName LHS, DeclarationName RHS) {
325 return DeclarationName::compare(LHS, RHS) < 0;
326}
327
328/// Ordering on two declaration names. If both names are identifiers,
329/// this provides a lexicographical ordering.
330inline bool operator>(DeclarationName LHS, DeclarationName RHS) {
331 return DeclarationName::compare(LHS, RHS) > 0;
332}
333
334/// Ordering on two declaration names. If both names are identifiers,
335/// this provides a lexicographical ordering.
336inline bool operator<=(DeclarationName LHS, DeclarationName RHS) {
337 return DeclarationName::compare(LHS, RHS) <= 0;
338}
339
340/// Ordering on two declaration names. If both names are identifiers,
341/// this provides a lexicographical ordering.
342inline bool operator>=(DeclarationName LHS, DeclarationName RHS) {
343 return DeclarationName::compare(LHS, RHS) >= 0;
344}
345
346/// DeclarationNameTable - Used to store and retrieve DeclarationName
347/// instances for the various kinds of declaration names, e.g., normal
348/// identifiers, C++ constructor names, etc. This class contains
349/// uniqued versions of each of the C++ special names, which can be
350/// retrieved using its member functions (e.g.,
351/// getCXXConstructorName).
352class DeclarationNameTable {
353 const ASTContext &Ctx;
354
355 // Actually a FoldingSet<CXXSpecialName> *
356 void *CXXSpecialNamesImpl;
357
358 // Operator names
359 CXXOperatorIdName *CXXOperatorNames;
360
361 // Actually a CXXOperatorIdName*
362 void *CXXLiteralOperatorNames;
363
364 // FoldingSet<CXXDeductionGuideNameExtra> *
365 void *CXXDeductionGuideNames;
366
367public:
368 DeclarationNameTable(const ASTContext &C);
369 DeclarationNameTable(const DeclarationNameTable &) = delete;
370 DeclarationNameTable &operator=(const DeclarationNameTable &) = delete;
371
372 ~DeclarationNameTable();
373
374 /// getIdentifier - Create a declaration name that is a simple
375 /// identifier.
376 DeclarationName getIdentifier(const IdentifierInfo *ID) {
377 return DeclarationName(ID);
378 }
379
380 /// getCXXConstructorName - Returns the name of a C++ constructor
381 /// for the given Type.
382 DeclarationName getCXXConstructorName(CanQualType Ty);
383
384 /// getCXXDestructorName - Returns the name of a C++ destructor
385 /// for the given Type.
386 DeclarationName getCXXDestructorName(CanQualType Ty);
387
388 /// Returns the name of a C++ deduction guide for the given template.
389 DeclarationName getCXXDeductionGuideName(TemplateDecl *TD);
390
391 /// getCXXConversionFunctionName - Returns the name of a C++
392 /// conversion function for the given Type.
393 DeclarationName getCXXConversionFunctionName(CanQualType Ty);
394
395 /// getCXXSpecialName - Returns a declaration name for special kind
396 /// of C++ name, e.g., for a constructor, destructor, or conversion
397 /// function.
398 DeclarationName getCXXSpecialName(DeclarationName::NameKind Kind,
399 CanQualType Ty);
400
401 /// getCXXOperatorName - Get the name of the overloadable C++
402 /// operator corresponding to Op.
403 DeclarationName getCXXOperatorName(OverloadedOperatorKind Op);
404
405 /// getCXXLiteralOperatorName - Get the name of the literal operator function
406 /// with II as the identifier.
407 DeclarationName getCXXLiteralOperatorName(IdentifierInfo *II);
408};
409
410/// DeclarationNameLoc - Additional source/type location info
411/// for a declaration name. Needs a DeclarationName in order
412/// to be interpreted correctly.
413struct DeclarationNameLoc {
414 // The source location for identifier stored elsewhere.
415 // struct {} Identifier;
416
417 // Type info for constructors, destructors and conversion functions.
418 // Locations (if any) for the tilde (destructor) or operator keyword
419 // (conversion) are stored elsewhere.
420 struct NT {
421 TypeSourceInfo *TInfo;
422 };
423
424 // The location (if any) of the operator keyword is stored elsewhere.
425 struct CXXOpName {
426 unsigned BeginOpNameLoc;
427 unsigned EndOpNameLoc;
428 };
429
430 // The location (if any) of the operator keyword is stored elsewhere.
431 struct CXXLitOpName {
432 unsigned OpNameLoc;
433 };
434
435 // struct {} CXXUsingDirective;
436 // struct {} ObjCZeroArgSelector;
437 // struct {} ObjCOneArgSelector;
438 // struct {} ObjCMultiArgSelector;
439 union {
440 struct NT NamedType;
441 struct CXXOpName CXXOperatorName;
442 struct CXXLitOpName CXXLiteralOperatorName;
443 };
444
445 DeclarationNameLoc(DeclarationName Name);
446
447 // FIXME: this should go away once all DNLocs are properly initialized.
448 DeclarationNameLoc() { memset((void*) this, 0, sizeof(*this)); }
449};
450
451/// DeclarationNameInfo - A collector data type for bundling together
452/// a DeclarationName and the correspnding source/type location info.
453struct DeclarationNameInfo {
454private:
455 /// Name - The declaration name, also encoding name kind.
456 DeclarationName Name;
457
458 /// Loc - The main source location for the declaration name.
459 SourceLocation NameLoc;
460
461 /// Info - Further source/type location info for special kinds of names.
462 DeclarationNameLoc LocInfo;
463
464public:
465 // FIXME: remove it.
466 DeclarationNameInfo() = default;
467
468 DeclarationNameInfo(DeclarationName Name, SourceLocation NameLoc)
469 : Name(Name), NameLoc(NameLoc), LocInfo(Name) {}
470
471 DeclarationNameInfo(DeclarationName Name, SourceLocation NameLoc,
472 DeclarationNameLoc LocInfo)
473 : Name(Name), NameLoc(NameLoc), LocInfo(LocInfo) {}
474
475 /// getName - Returns the embedded declaration name.
476 DeclarationName getName() const { return Name; }
477
478 /// setName - Sets the embedded declaration name.
479 void setName(DeclarationName N) { Name = N; }
480
481 /// getLoc - Returns the main location of the declaration name.
482 SourceLocation getLoc() const { return NameLoc; }
483
484 /// setLoc - Sets the main location of the declaration name.
485 void setLoc(SourceLocation L) { NameLoc = L; }
486
487 const DeclarationNameLoc &getInfo() const { return LocInfo; }
488 DeclarationNameLoc &getInfo() { return LocInfo; }
489 void setInfo(const DeclarationNameLoc &Info) { LocInfo = Info; }
490
491 /// getNamedTypeInfo - Returns the source type info associated to
492 /// the name. Assumes it is a constructor, destructor or conversion.
493 TypeSourceInfo *getNamedTypeInfo() const {
494 assert(Name.getNameKind() == DeclarationName::CXXConstructorName ||(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXConstructorName || Name.getNameKind() == DeclarationName
::CXXDestructorName || Name.getNameKind() == DeclarationName::
CXXConversionFunctionName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 496, __extension__ __PRETTY_FUNCTION__))
495 Name.getNameKind() == DeclarationName::CXXDestructorName ||(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXConstructorName || Name.getNameKind() == DeclarationName
::CXXDestructorName || Name.getNameKind() == DeclarationName::
CXXConversionFunctionName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 496, __extension__ __PRETTY_FUNCTION__))
496 Name.getNameKind() == DeclarationName::CXXConversionFunctionName)(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXConstructorName || Name.getNameKind() == DeclarationName
::CXXDestructorName || Name.getNameKind() == DeclarationName::
CXXConversionFunctionName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 496, __extension__ __PRETTY_FUNCTION__))
;
497 return LocInfo.NamedType.TInfo;
498 }
499
500 /// setNamedTypeInfo - Sets the source type info associated to
501 /// the name. Assumes it is a constructor, destructor or conversion.
502 void setNamedTypeInfo(TypeSourceInfo *TInfo) {
503 assert(Name.getNameKind() == DeclarationName::CXXConstructorName ||(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXConstructorName || Name.getNameKind() == DeclarationName
::CXXDestructorName || Name.getNameKind() == DeclarationName::
CXXConversionFunctionName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 505, __extension__ __PRETTY_FUNCTION__))
504 Name.getNameKind() == DeclarationName::CXXDestructorName ||(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXConstructorName || Name.getNameKind() == DeclarationName
::CXXDestructorName || Name.getNameKind() == DeclarationName::
CXXConversionFunctionName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 505, __extension__ __PRETTY_FUNCTION__))
505 Name.getNameKind() == DeclarationName::CXXConversionFunctionName)(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXConstructorName || Name.getNameKind() == DeclarationName
::CXXDestructorName || Name.getNameKind() == DeclarationName::
CXXConversionFunctionName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXConstructorName || Name.getNameKind() == DeclarationName::CXXDestructorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 505, __extension__ __PRETTY_FUNCTION__))
;
506 LocInfo.NamedType.TInfo = TInfo;
507 }
508
509 /// getCXXOperatorNameRange - Gets the range of the operator name
510 /// (without the operator keyword). Assumes it is a (non-literal) operator.
511 SourceRange getCXXOperatorNameRange() const {
512 assert(Name.getNameKind() == DeclarationName::CXXOperatorName)(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXOperatorName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 512, __extension__ __PRETTY_FUNCTION__))
;
513 return SourceRange(
514 SourceLocation::getFromRawEncoding(LocInfo.CXXOperatorName.BeginOpNameLoc),
515 SourceLocation::getFromRawEncoding(LocInfo.CXXOperatorName.EndOpNameLoc)
516 );
517 }
518
519 /// setCXXOperatorNameRange - Sets the range of the operator name
520 /// (without the operator keyword). Assumes it is a C++ operator.
521 void setCXXOperatorNameRange(SourceRange R) {
522 assert(Name.getNameKind() == DeclarationName::CXXOperatorName)(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXOperatorName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 522, __extension__ __PRETTY_FUNCTION__))
;
523 LocInfo.CXXOperatorName.BeginOpNameLoc = R.getBegin().getRawEncoding();
524 LocInfo.CXXOperatorName.EndOpNameLoc = R.getEnd().getRawEncoding();
525 }
526
527 /// getCXXLiteralOperatorNameLoc - Returns the location of the literal
528 /// operator name (not the operator keyword).
529 /// Assumes it is a literal operator.
530 SourceLocation getCXXLiteralOperatorNameLoc() const {
531 assert(Name.getNameKind() == DeclarationName::CXXLiteralOperatorName)(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXLiteralOperatorName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXLiteralOperatorName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 531, __extension__ __PRETTY_FUNCTION__))
;
532 return SourceLocation::
533 getFromRawEncoding(LocInfo.CXXLiteralOperatorName.OpNameLoc);
534 }
535
536 /// setCXXLiteralOperatorNameLoc - Sets the location of the literal
537 /// operator name (not the operator keyword).
538 /// Assumes it is a literal operator.
539 void setCXXLiteralOperatorNameLoc(SourceLocation Loc) {
540 assert(Name.getNameKind() == DeclarationName::CXXLiteralOperatorName)(static_cast <bool> (Name.getNameKind() == DeclarationName
::CXXLiteralOperatorName) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::CXXLiteralOperatorName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/AST/DeclarationName.h"
, 540, __extension__ __PRETTY_FUNCTION__))
;
541 LocInfo.CXXLiteralOperatorName.OpNameLoc = Loc.getRawEncoding();
542 }
543
544 /// \brief Determine whether this name involves a template parameter.
545 bool isInstantiationDependent() const;
546
547 /// \brief Determine whether this name contains an unexpanded
548 /// parameter pack.
549 bool containsUnexpandedParameterPack() const;
550
551 /// getAsString - Retrieve the human-readable string for this name.
552 std::string getAsString() const;
553
554 /// printName - Print the human-readable name to a stream.
555 void printName(raw_ostream &OS) const;
556
557 /// getBeginLoc - Retrieve the location of the first token.
558 SourceLocation getBeginLoc() const { return NameLoc; }
559
560 /// getEndLoc - Retrieve the location of the last token.
561 SourceLocation getEndLoc() const;
562
563 /// getSourceRange - The range of the declaration name.
564 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
565 return SourceRange(getLocStart(), getLocEnd());
566 }
567
568 SourceLocation getLocStart() const LLVM_READONLY__attribute__((__pure__)) {
569 return getBeginLoc();
570 }
571
572 SourceLocation getLocEnd() const LLVM_READONLY__attribute__((__pure__)) {
573 SourceLocation EndLoc = getEndLoc();
574 return EndLoc.isValid() ? EndLoc : getLocStart();
575 }
576};
577
578/// Insertion operator for diagnostics. This allows sending DeclarationName's
579/// into a diagnostic with <<.
580inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
581 DeclarationName N) {
582 DB.AddTaggedVal(N.getAsOpaqueInteger(),
583 DiagnosticsEngine::ak_declarationname);
584 return DB;
585}
586
587/// Insertion operator for partial diagnostics. This allows binding
588/// DeclarationName's into a partial diagnostic with <<.
589inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
590 DeclarationName N) {
591 PD.AddTaggedVal(N.getAsOpaqueInteger(),
3
Calling 'PartialDiagnostic::AddTaggedVal'
14
Returned allocated memory
592 DiagnosticsEngine::ak_declarationname);
593 return PD;
594}
595
596inline raw_ostream &operator<<(raw_ostream &OS,
597 DeclarationNameInfo DNInfo) {
598 DNInfo.printName(OS);
599 return OS;
600}
601
602} // namespace clang
603
604namespace llvm {
605
606/// Define DenseMapInfo so that DeclarationNames can be used as keys
607/// in DenseMap and DenseSets.
608template<>
609struct DenseMapInfo<clang::DeclarationName> {
610 static inline clang::DeclarationName getEmptyKey() {
611 return clang::DeclarationName::getEmptyMarker();
612 }
613
614 static inline clang::DeclarationName getTombstoneKey() {
615 return clang::DeclarationName::getTombstoneMarker();
616 }
617
618 static unsigned getHashValue(clang::DeclarationName Name) {
619 return DenseMapInfo<void*>::getHashValue(Name.getAsOpaquePtr());
620 }
621
622 static inline bool
623 isEqual(clang::DeclarationName LHS, clang::DeclarationName RHS) {
624 return LHS == RHS;
625 }
626};
627
628template <>
629struct isPodLike<clang::DeclarationName> { static const bool value = true; };
630
631} // namespace llvm
632
633#endif // LLVM_CLANG_AST_DECLARATIONNAME_H

/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h

1//===- PartialDiagnostic.h - Diagnostic "closures" --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Implements a partial diagnostic that can be emitted anwyhere
12/// in a DiagnosticBuilder stream.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CLANG_BASIC_PARTIALDIAGNOSTIC_H
17#define LLVM_CLANG_BASIC_PARTIALDIAGNOSTIC_H
18
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <cassert>
25#include <cstdint>
26#include <string>
27#include <type_traits>
28#include <utility>
29
30namespace clang {
31
32class DeclContext;
33class IdentifierInfo;
34
35class PartialDiagnostic {
36public:
37 enum {
38 // The MaxArguments and MaxFixItHints member enum values from
39 // DiagnosticsEngine are private but DiagnosticsEngine declares
40 // PartialDiagnostic a friend. These enum values are redeclared
41 // here so that the nested Storage class below can access them.
42 MaxArguments = DiagnosticsEngine::MaxArguments
43 };
44
45 struct Storage {
46 enum {
47 /// \brief The maximum number of arguments we can hold. We
48 /// currently only support up to 10 arguments (%0-%9).
49 ///
50 /// A single diagnostic with more than that almost certainly has to
51 /// be simplified anyway.
52 MaxArguments = PartialDiagnostic::MaxArguments
53 };
54
55 /// \brief The number of entries in Arguments.
56 unsigned char NumDiagArgs = 0;
57
58 /// \brief Specifies for each argument whether it is in DiagArgumentsStr
59 /// or in DiagArguments.
60 unsigned char DiagArgumentsKind[MaxArguments];
61
62 /// \brief The values for the various substitution positions.
63 ///
64 /// This is used when the argument is not an std::string. The specific value
65 /// is mangled into an intptr_t and the interpretation depends on exactly
66 /// what sort of argument kind it is.
67 intptr_t DiagArgumentsVal[MaxArguments];
68
69 /// \brief The values for the various substitution positions that have
70 /// string arguments.
71 std::string DiagArgumentsStr[MaxArguments];
72
73 /// \brief The list of ranges added to this diagnostic.
74 SmallVector<CharSourceRange, 8> DiagRanges;
75
76 /// \brief If valid, provides a hint with some code to insert, remove, or
77 /// modify at a particular position.
78 SmallVector<FixItHint, 6> FixItHints;
79
80 Storage() = default;
81 };
82
83 /// \brief An allocator for Storage objects, which uses a small cache to
84 /// objects, used to reduce malloc()/free() traffic for partial diagnostics.
85 class StorageAllocator {
86 static const unsigned NumCached = 16;
87 Storage Cached[NumCached];
88 Storage *FreeList[NumCached];
89 unsigned NumFreeListEntries;
90
91 public:
92 StorageAllocator();
93 ~StorageAllocator();
94
95 /// \brief Allocate new storage.
96 Storage *Allocate() {
97 if (NumFreeListEntries == 0)
9
Assuming the condition is true
10
Taking true branch
98 return new Storage;
11
Memory is allocated
99
100 Storage *Result = FreeList[--NumFreeListEntries];
101 Result->NumDiagArgs = 0;
102 Result->DiagRanges.clear();
103 Result->FixItHints.clear();
104 return Result;
105 }
106
107 /// \brief Free the given storage object.
108 void Deallocate(Storage *S) {
109 if (S >= Cached && S <= Cached + NumCached) {
110 FreeList[NumFreeListEntries++] = S;
111 return;
112 }
113
114 delete S;
115 }
116 };
117
118private:
119 // NOTE: Sema assumes that PartialDiagnostic is location-invariant
120 // in the sense that its bits can be safely memcpy'ed and destructed
121 // in the new location.
122
123 /// \brief The diagnostic ID.
124 mutable unsigned DiagID = 0;
125
126 /// \brief Storage for args and ranges.
127 mutable Storage *DiagStorage = nullptr;
128
129 /// \brief Allocator used to allocate storage for this diagnostic.
130 StorageAllocator *Allocator = nullptr;
131
132 /// \brief Retrieve storage for this particular diagnostic.
133 Storage *getStorage() const {
134 if (DiagStorage)
6
Taking false branch
135 return DiagStorage;
136
137 if (Allocator)
7
Taking true branch
138 DiagStorage = Allocator->Allocate();
8
Calling 'StorageAllocator::Allocate'
12
Returned allocated memory
139 else {
140 assert(Allocator != reinterpret_cast<StorageAllocator *>(~uintptr_t(0)))(static_cast <bool> (Allocator != reinterpret_cast<StorageAllocator
*>(~uintptr_t(0))) ? void (0) : __assert_fail ("Allocator != reinterpret_cast<StorageAllocator *>(~uintptr_t(0))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 140, __extension__ __PRETTY_FUNCTION__))
;
141 DiagStorage = new Storage;
142 }
143 return DiagStorage;
144 }
145
146 void freeStorage() {
147 if (!DiagStorage)
148 return;
149
150 // The hot path for PartialDiagnostic is when we just used it to wrap an ID
151 // (typically so we have the flexibility of passing a more complex
152 // diagnostic into the callee, but that does not commonly occur).
153 //
154 // Split this out into a slow function for silly compilers (*cough*) which
155 // can't do decent partial inlining.
156 freeStorageSlow();
157 }
158
159 void freeStorageSlow() {
160 if (Allocator)
161 Allocator->Deallocate(DiagStorage);
162 else if (Allocator != reinterpret_cast<StorageAllocator *>(~uintptr_t(0)))
163 delete DiagStorage;
164 DiagStorage = nullptr;
165 }
166
167 void AddSourceRange(const CharSourceRange &R) const {
168 if (!DiagStorage)
169 DiagStorage = getStorage();
170
171 DiagStorage->DiagRanges.push_back(R);
172 }
173
174 void AddFixItHint(const FixItHint &Hint) const {
175 if (Hint.isNull())
176 return;
177
178 if (!DiagStorage)
179 DiagStorage = getStorage();
180
181 DiagStorage->FixItHints.push_back(Hint);
182 }
183
184public:
185 struct NullDiagnostic {};
186
187 /// \brief Create a null partial diagnostic, which cannot carry a payload,
188 /// and only exists to be swapped with a real partial diagnostic.
189 PartialDiagnostic(NullDiagnostic) {}
190
191 PartialDiagnostic(unsigned DiagID, StorageAllocator &Allocator)
192 : DiagID(DiagID), Allocator(&Allocator) {}
193
194 PartialDiagnostic(const PartialDiagnostic &Other)
195 : DiagID(Other.DiagID), Allocator(Other.Allocator) {
196 if (Other.DiagStorage) {
197 DiagStorage = getStorage();
198 *DiagStorage = *Other.DiagStorage;
199 }
200 }
201
202 PartialDiagnostic(PartialDiagnostic &&Other)
203 : DiagID(Other.DiagID), DiagStorage(Other.DiagStorage),
204 Allocator(Other.Allocator) {
18
Potential leak of memory pointed to by field 'DiagStorage'
205 Other.DiagStorage = nullptr;
206 }
207
208 PartialDiagnostic(const PartialDiagnostic &Other, Storage *DiagStorage)
209 : DiagID(Other.DiagID), DiagStorage(DiagStorage),
210 Allocator(reinterpret_cast<StorageAllocator *>(~uintptr_t(0))) {
211 if (Other.DiagStorage)
212 *this->DiagStorage = *Other.DiagStorage;
213 }
214
215 PartialDiagnostic(const Diagnostic &Other, StorageAllocator &Allocator)
216 : DiagID(Other.getID()), Allocator(&Allocator) {
217 // Copy arguments.
218 for (unsigned I = 0, N = Other.getNumArgs(); I != N; ++I) {
219 if (Other.getArgKind(I) == DiagnosticsEngine::ak_std_string)
220 AddString(Other.getArgStdStr(I));
221 else
222 AddTaggedVal(Other.getRawArg(I), Other.getArgKind(I));
223 }
224
225 // Copy source ranges.
226 for (unsigned I = 0, N = Other.getNumRanges(); I != N; ++I)
227 AddSourceRange(Other.getRange(I));
228
229 // Copy fix-its.
230 for (unsigned I = 0, N = Other.getNumFixItHints(); I != N; ++I)
231 AddFixItHint(Other.getFixItHint(I));
232 }
233
234 PartialDiagnostic &operator=(const PartialDiagnostic &Other) {
235 DiagID = Other.DiagID;
236 if (Other.DiagStorage) {
237 if (!DiagStorage)
238 DiagStorage = getStorage();
239
240 *DiagStorage = *Other.DiagStorage;
241 } else {
242 freeStorage();
243 }
244
245 return *this;
246 }
247
248 PartialDiagnostic &operator=(PartialDiagnostic &&Other) {
249 freeStorage();
250
251 DiagID = Other.DiagID;
252 DiagStorage = Other.DiagStorage;
253 Allocator = Other.Allocator;
254
255 Other.DiagStorage = nullptr;
256 return *this;
257 }
258
259 ~PartialDiagnostic() {
260 freeStorage();
261 }
262
263 void swap(PartialDiagnostic &PD) {
264 std::swap(DiagID, PD.DiagID);
265 std::swap(DiagStorage, PD.DiagStorage);
266 std::swap(Allocator, PD.Allocator);
267 }
268
269 unsigned getDiagID() const { return DiagID; }
270
271 void AddTaggedVal(intptr_t V, DiagnosticsEngine::ArgumentKind Kind) const {
272 if (!DiagStorage)
4
Taking true branch
273 DiagStorage = getStorage();
5
Calling 'PartialDiagnostic::getStorage'
13
Returned allocated memory
274
275 assert(DiagStorage->NumDiagArgs < Storage::MaxArguments &&(static_cast <bool> (DiagStorage->NumDiagArgs < Storage
::MaxArguments && "Too many arguments to diagnostic!"
) ? void (0) : __assert_fail ("DiagStorage->NumDiagArgs < Storage::MaxArguments && \"Too many arguments to diagnostic!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 276, __extension__ __PRETTY_FUNCTION__))
276 "Too many arguments to diagnostic!")(static_cast <bool> (DiagStorage->NumDiagArgs < Storage
::MaxArguments && "Too many arguments to diagnostic!"
) ? void (0) : __assert_fail ("DiagStorage->NumDiagArgs < Storage::MaxArguments && \"Too many arguments to diagnostic!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 276, __extension__ __PRETTY_FUNCTION__))
;
277 DiagStorage->DiagArgumentsKind[DiagStorage->NumDiagArgs] = Kind;
278 DiagStorage->DiagArgumentsVal[DiagStorage->NumDiagArgs++] = V;
279 }
280
281 void AddString(StringRef V) const {
282 if (!DiagStorage)
283 DiagStorage = getStorage();
284
285 assert(DiagStorage->NumDiagArgs < Storage::MaxArguments &&(static_cast <bool> (DiagStorage->NumDiagArgs < Storage
::MaxArguments && "Too many arguments to diagnostic!"
) ? void (0) : __assert_fail ("DiagStorage->NumDiagArgs < Storage::MaxArguments && \"Too many arguments to diagnostic!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 286, __extension__ __PRETTY_FUNCTION__))
286 "Too many arguments to diagnostic!")(static_cast <bool> (DiagStorage->NumDiagArgs < Storage
::MaxArguments && "Too many arguments to diagnostic!"
) ? void (0) : __assert_fail ("DiagStorage->NumDiagArgs < Storage::MaxArguments && \"Too many arguments to diagnostic!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 286, __extension__ __PRETTY_FUNCTION__))
;
287 DiagStorage->DiagArgumentsKind[DiagStorage->NumDiagArgs]
288 = DiagnosticsEngine::ak_std_string;
289 DiagStorage->DiagArgumentsStr[DiagStorage->NumDiagArgs++] = V;
290 }
291
292 void Emit(const DiagnosticBuilder &DB) const {
293 if (!DiagStorage)
294 return;
295
296 // Add all arguments.
297 for (unsigned i = 0, e = DiagStorage->NumDiagArgs; i != e; ++i) {
298 if ((DiagnosticsEngine::ArgumentKind)DiagStorage->DiagArgumentsKind[i]
299 == DiagnosticsEngine::ak_std_string)
300 DB.AddString(DiagStorage->DiagArgumentsStr[i]);
301 else
302 DB.AddTaggedVal(DiagStorage->DiagArgumentsVal[i],
303 (DiagnosticsEngine::ArgumentKind)DiagStorage->DiagArgumentsKind[i]);
304 }
305
306 // Add all ranges.
307 for (const CharSourceRange &Range : DiagStorage->DiagRanges)
308 DB.AddSourceRange(Range);
309
310 // Add all fix-its.
311 for (const FixItHint &Fix : DiagStorage->FixItHints)
312 DB.AddFixItHint(Fix);
313 }
314
315 void EmitToString(DiagnosticsEngine &Diags,
316 SmallVectorImpl<char> &Buf) const {
317 // FIXME: It should be possible to render a diagnostic to a string without
318 // messing with the state of the diagnostics engine.
319 DiagnosticBuilder DB(Diags.Report(getDiagID()));
320 Emit(DB);
321 DB.FlushCounts();
322 Diagnostic(&Diags).FormatDiagnostic(Buf);
323 DB.Clear();
324 Diags.Clear();
325 }
326
327 /// \brief Clear out this partial diagnostic, giving it a new diagnostic ID
328 /// and removing all of its arguments, ranges, and fix-it hints.
329 void Reset(unsigned DiagID = 0) {
330 this->DiagID = DiagID;
331 freeStorage();
332 }
333
334 bool hasStorage() const { return DiagStorage != nullptr; }
335
336 /// Retrieve the string argument at the given index.
337 StringRef getStringArg(unsigned I) {
338 assert(DiagStorage && "No diagnostic storage?")(static_cast <bool> (DiagStorage && "No diagnostic storage?"
) ? void (0) : __assert_fail ("DiagStorage && \"No diagnostic storage?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 338, __extension__ __PRETTY_FUNCTION__))
;
339 assert(I < DiagStorage->NumDiagArgs && "Not enough diagnostic args")(static_cast <bool> (I < DiagStorage->NumDiagArgs
&& "Not enough diagnostic args") ? void (0) : __assert_fail
("I < DiagStorage->NumDiagArgs && \"Not enough diagnostic args\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 339, __extension__ __PRETTY_FUNCTION__))
;
340 assert(DiagStorage->DiagArgumentsKind[I](static_cast <bool> (DiagStorage->DiagArgumentsKind[
I] == DiagnosticsEngine::ak_std_string && "Not a string arg"
) ? void (0) : __assert_fail ("DiagStorage->DiagArgumentsKind[I] == DiagnosticsEngine::ak_std_string && \"Not a string arg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 341, __extension__ __PRETTY_FUNCTION__))
341 == DiagnosticsEngine::ak_std_string && "Not a string arg")(static_cast <bool> (DiagStorage->DiagArgumentsKind[
I] == DiagnosticsEngine::ak_std_string && "Not a string arg"
) ? void (0) : __assert_fail ("DiagStorage->DiagArgumentsKind[I] == DiagnosticsEngine::ak_std_string && \"Not a string arg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Basic/PartialDiagnostic.h"
, 341, __extension__ __PRETTY_FUNCTION__))
;
342 return DiagStorage->DiagArgumentsStr[I];
343 }
344
345 friend const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
346 unsigned I) {
347 PD.AddTaggedVal(I, DiagnosticsEngine::ak_uint);
348 return PD;
349 }
350
351 friend const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
352 int I) {
353 PD.AddTaggedVal(I, DiagnosticsEngine::ak_sint);
354 return PD;
355 }
356
357 friend inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
358 const char *S) {
359 PD.AddTaggedVal(reinterpret_cast<intptr_t>(S),
360 DiagnosticsEngine::ak_c_string);
361 return PD;
362 }
363
364 friend inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
365 StringRef S) {
366
367 PD.AddString(S);
368 return PD;
369 }
370
371 friend inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
372 const IdentifierInfo *II) {
373 PD.AddTaggedVal(reinterpret_cast<intptr_t>(II),
374 DiagnosticsEngine::ak_identifierinfo);
375 return PD;
376 }
377
378 // Adds a DeclContext to the diagnostic. The enable_if template magic is here
379 // so that we only match those arguments that are (statically) DeclContexts;
380 // other arguments that derive from DeclContext (e.g., RecordDecls) will not
381 // match.
382 template<typename T>
383 friend inline
384 typename std::enable_if<std::is_same<T, DeclContext>::value,
385 const PartialDiagnostic &>::type
386 operator<<(const PartialDiagnostic &PD, T *DC) {
387 PD.AddTaggedVal(reinterpret_cast<intptr_t>(DC),
388 DiagnosticsEngine::ak_declcontext);
389 return PD;
390 }
391
392 friend inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
393 SourceRange R) {
394 PD.AddSourceRange(CharSourceRange::getTokenRange(R));
395 return PD;
396 }
397
398 friend inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
399 const CharSourceRange &R) {
400 PD.AddSourceRange(R);
401 return PD;
402 }
403
404 friend const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
405 const FixItHint &Hint) {
406 PD.AddFixItHint(Hint);
407 return PD;
408 }
409};
410
411inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
412 const PartialDiagnostic &PD) {
413 PD.Emit(DB);
414 return DB;
415}
416
417/// \brief A partial diagnostic along with the source location where this
418/// diagnostic occurs.
419using PartialDiagnosticAt = std::pair<SourceLocation, PartialDiagnostic>;
420
421} // namespace clang
422
423#endif // LLVM_CLANG_BASIC_PARTIALDIAGNOSTIC_H

/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Sema/SemaInternal.h

1//===--- SemaInternal.h - Internal Sema Interfaces --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides common API and #includes for the internal
11// implementation of Sema.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_SEMA_SEMAINTERNAL_H
16#define LLVM_CLANG_SEMA_SEMAINTERNAL_H
17
18#include "clang/AST/ASTContext.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/Sema.h"
21#include "clang/Sema/SemaDiagnostic.h"
22
23namespace clang {
24
25inline PartialDiagnostic Sema::PDiag(unsigned DiagID) {
26 return PartialDiagnostic(DiagID, Context.getDiagAllocator());
17
Calling move constructor for 'PartialDiagnostic'
27}
28
29inline bool
30FTIHasSingleVoidParameter(const DeclaratorChunk::FunctionTypeInfo &FTI) {
31 return FTI.NumParams == 1 && !FTI.isVariadic &&
32 FTI.Params[0].Ident == nullptr && FTI.Params[0].Param &&
33 cast<ParmVarDecl>(FTI.Params[0].Param)->getType()->isVoidType();
34}
35
36inline bool
37FTIHasNonVoidParameters(const DeclaratorChunk::FunctionTypeInfo &FTI) {
38 // Assume FTI is well-formed.
39 return FTI.NumParams && !FTIHasSingleVoidParameter(FTI);
40}
41
42// This requires the variable to be non-dependent and the initializer
43// to not be value dependent.
44inline bool IsVariableAConstantExpression(VarDecl *Var, ASTContext &Context) {
45 const VarDecl *DefVD = nullptr;
46 return !isa<ParmVarDecl>(Var) &&
47 Var->isUsableInConstantExpressions(Context) &&
48 Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE();
49}
50
51// Helper function to check whether D's attributes match current CUDA mode.
52// Decls with mismatched attributes and related diagnostics may have to be
53// ignored during this CUDA compilation pass.
54inline bool DeclAttrsMatchCUDAMode(const LangOptions &LangOpts, Decl *D) {
55 if (!LangOpts.CUDA || !D)
56 return true;
57 bool isDeviceSideDecl = D->hasAttr<CUDADeviceAttr>() ||
58 D->hasAttr<CUDASharedAttr>() ||
59 D->hasAttr<CUDAGlobalAttr>();
60 return isDeviceSideDecl == LangOpts.CUDAIsDevice;
61}
62
63// Directly mark a variable odr-used. Given a choice, prefer to use
64// MarkVariableReferenced since it does additional checks and then
65// calls MarkVarDeclODRUsed.
66// If the variable must be captured:
67// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
68// - else capture it in the DeclContext that maps to the
69// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
70inline void MarkVarDeclODRUsed(VarDecl *Var,
71 SourceLocation Loc, Sema &SemaRef,
72 const unsigned *const FunctionScopeIndexToStopAt) {
73 // Keep track of used but undefined variables.
74 // FIXME: We shouldn't suppress this warning for static data members.
75 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
76 (!Var->isExternallyVisible() || Var->isInline() ||
77 SemaRef.isExternalWithNoLinkageType(Var)) &&
78 !(Var->isStaticDataMember() && Var->hasInit())) {
79 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
80 if (old.isInvalid())
81 old = Loc;
82 }
83 QualType CaptureType, DeclRefType;
84 SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
85 /*EllipsisLoc*/ SourceLocation(),
86 /*BuildAndDiagnose*/ true,
87 CaptureType, DeclRefType,
88 FunctionScopeIndexToStopAt);
89
90 Var->markUsed(SemaRef.Context);
91}
92
93/// Return a DLL attribute from the declaration.
94inline InheritableAttr *getDLLAttr(Decl *D) {
95 assert(!(D->hasAttr<DLLImportAttr>() && D->hasAttr<DLLExportAttr>()) &&(static_cast <bool> (!(D->hasAttr<DLLImportAttr>
() && D->hasAttr<DLLExportAttr>()) &&
"A declaration cannot be both dllimport and dllexport.") ? void
(0) : __assert_fail ("!(D->hasAttr<DLLImportAttr>() && D->hasAttr<DLLExportAttr>()) && \"A declaration cannot be both dllimport and dllexport.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Sema/SemaInternal.h"
, 96, __extension__ __PRETTY_FUNCTION__))
96 "A declaration cannot be both dllimport and dllexport.")(static_cast <bool> (!(D->hasAttr<DLLImportAttr>
() && D->hasAttr<DLLExportAttr>()) &&
"A declaration cannot be both dllimport and dllexport.") ? void
(0) : __assert_fail ("!(D->hasAttr<DLLImportAttr>() && D->hasAttr<DLLExportAttr>()) && \"A declaration cannot be both dllimport and dllexport.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Sema/SemaInternal.h"
, 96, __extension__ __PRETTY_FUNCTION__))
;
97 if (auto *Import = D->getAttr<DLLImportAttr>())
98 return Import;
99 if (auto *Export = D->getAttr<DLLExportAttr>())
100 return Export;
101 return nullptr;
102}
103
104class TypoCorrectionConsumer : public VisibleDeclConsumer {
105 typedef SmallVector<TypoCorrection, 1> TypoResultList;
106 typedef llvm::StringMap<TypoResultList> TypoResultsMap;
107 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
108
109public:
110 TypoCorrectionConsumer(Sema &SemaRef,
111 const DeclarationNameInfo &TypoName,
112 Sema::LookupNameKind LookupKind,
113 Scope *S, CXXScopeSpec *SS,
114 std::unique_ptr<CorrectionCandidateCallback> CCC,
115 DeclContext *MemberContext,
116 bool EnteringContext)
117 : Typo(TypoName.getName().getAsIdentifierInfo()), CurrentTCIndex(0),
118 SavedTCIndex(0), SemaRef(SemaRef), S(S),
119 SS(SS ? llvm::make_unique<CXXScopeSpec>(*SS) : nullptr),
120 CorrectionValidator(std::move(CCC)), MemberContext(MemberContext),
121 Result(SemaRef, TypoName, LookupKind),
122 Namespaces(SemaRef.Context, SemaRef.CurContext, SS),
123 EnteringContext(EnteringContext), SearchNamespaces(false) {
124 Result.suppressDiagnostics();
125 // Arrange for ValidatedCorrections[0] to always be an empty correction.
126 ValidatedCorrections.push_back(TypoCorrection());
127 }
128
129 bool includeHiddenDecls() const override { return true; }
130
131 // Methods for adding potential corrections to the consumer.
132 void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
133 bool InBaseClass) override;
134 void FoundName(StringRef Name);
135 void addKeywordResult(StringRef Keyword);
136 void addCorrection(TypoCorrection Correction);
137
138 bool empty() const {
139 return CorrectionResults.empty() && ValidatedCorrections.size() == 1;
140 }
141
142 /// \brief Return the list of TypoCorrections for the given identifier from
143 /// the set of corrections that have the closest edit distance, if any.
144 TypoResultList &operator[](StringRef Name) {
145 return CorrectionResults.begin()->second[Name];
146 }
147
148 /// \brief Return the edit distance of the corrections that have the
149 /// closest/best edit distance from the original typop.
150 unsigned getBestEditDistance(bool Normalized) {
151 if (CorrectionResults.empty())
152 return (std::numeric_limits<unsigned>::max)();
153
154 unsigned BestED = CorrectionResults.begin()->first;
155 return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
156 }
157
158 /// \brief Set-up method to add to the consumer the set of namespaces to use
159 /// in performing corrections to nested name specifiers. This method also
160 /// implicitly adds all of the known classes in the current AST context to the
161 /// to the consumer for correcting nested name specifiers.
162 void
163 addNamespaces(const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces);
164
165 /// \brief Return the next typo correction that passes all internal filters
166 /// and is deemed valid by the consumer's CorrectionCandidateCallback,
167 /// starting with the corrections that have the closest edit distance. An
168 /// empty TypoCorrection is returned once no more viable corrections remain
169 /// in the consumer.
170 const TypoCorrection &getNextCorrection();
171
172 /// \brief Get the last correction returned by getNextCorrection().
173 const TypoCorrection &getCurrentCorrection() {
174 return CurrentTCIndex < ValidatedCorrections.size()
175 ? ValidatedCorrections[CurrentTCIndex]
176 : ValidatedCorrections[0]; // The empty correction.
177 }
178
179 /// \brief Return the next typo correction like getNextCorrection, but keep
180 /// the internal state pointed to the current correction (i.e. the next time
181 /// getNextCorrection is called, it will return the same correction returned
182 /// by peekNextcorrection).
183 const TypoCorrection &peekNextCorrection() {
184 auto Current = CurrentTCIndex;
185 const TypoCorrection &TC = getNextCorrection();
186 CurrentTCIndex = Current;
187 return TC;
188 }
189
190 /// \brief Reset the consumer's position in the stream of viable corrections
191 /// (i.e. getNextCorrection() will return each of the previously returned
192 /// corrections in order before returning any new corrections).
193 void resetCorrectionStream() {
194 CurrentTCIndex = 0;
195 }
196
197 /// \brief Return whether the end of the stream of corrections has been
198 /// reached.
199 bool finished() {
200 return CorrectionResults.empty() &&
201 CurrentTCIndex >= ValidatedCorrections.size();
202 }
203
204 /// \brief Save the current position in the correction stream (overwriting any
205 /// previously saved position).
206 void saveCurrentPosition() {
207 SavedTCIndex = CurrentTCIndex;
208 }
209
210 /// \brief Restore the saved position in the correction stream.
211 void restoreSavedPosition() {
212 CurrentTCIndex = SavedTCIndex;
213 }
214
215 ASTContext &getContext() const { return SemaRef.Context; }
216 const LookupResult &getLookupResult() const { return Result; }
217
218 bool isAddressOfOperand() const { return CorrectionValidator->IsAddressOfOperand; }
219 const CXXScopeSpec *getSS() const { return SS.get(); }
220 Scope *getScope() const { return S; }
221 CorrectionCandidateCallback *getCorrectionValidator() const {
222 return CorrectionValidator.get();
223 }
224
225private:
226 class NamespaceSpecifierSet {
227 struct SpecifierInfo {
228 DeclContext* DeclCtx;
229 NestedNameSpecifier* NameSpecifier;
230 unsigned EditDistance;
231 };
232
233 typedef SmallVector<DeclContext*, 4> DeclContextList;
234 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
235
236 ASTContext &Context;
237 DeclContextList CurContextChain;
238 std::string CurNameSpecifier;
239 SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
240 SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
241
242 std::map<unsigned, SpecifierInfoList> DistanceMap;
243
244 /// \brief Helper for building the list of DeclContexts between the current
245 /// context and the top of the translation unit
246 static DeclContextList buildContextChain(DeclContext *Start);
247
248 unsigned buildNestedNameSpecifier(DeclContextList &DeclChain,
249 NestedNameSpecifier *&NNS);
250
251 public:
252 NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
253 CXXScopeSpec *CurScopeSpec);
254
255 /// \brief Add the DeclContext (a namespace or record) to the set, computing
256 /// the corresponding NestedNameSpecifier and its distance in the process.
257 void addNameSpecifier(DeclContext *Ctx);
258
259 /// \brief Provides flat iteration over specifiers, sorted by distance.
260 class iterator
261 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
262 SpecifierInfo> {
263 /// Always points to the last element in the distance map.
264 const std::map<unsigned, SpecifierInfoList>::iterator OuterBack;
265 /// Iterator on the distance map.
266 std::map<unsigned, SpecifierInfoList>::iterator Outer;
267 /// Iterator on an element in the distance map.
268 SpecifierInfoList::iterator Inner;
269
270 public:
271 iterator(NamespaceSpecifierSet &Set, bool IsAtEnd)
272 : OuterBack(std::prev(Set.DistanceMap.end())),
273 Outer(Set.DistanceMap.begin()),
274 Inner(!IsAtEnd ? Outer->second.begin() : OuterBack->second.end()) {
275 assert(!Set.DistanceMap.empty())(static_cast <bool> (!Set.DistanceMap.empty()) ? void (
0) : __assert_fail ("!Set.DistanceMap.empty()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include/clang/Sema/SemaInternal.h"
, 275, __extension__ __PRETTY_FUNCTION__))
;
276 }
277
278 iterator &operator++() {
279 ++Inner;
280 if (Inner == Outer->second.end() && Outer != OuterBack) {
281 ++Outer;
282 Inner = Outer->second.begin();
283 }
284 return *this;
285 }
286
287 SpecifierInfo &operator*() { return *Inner; }
288 bool operator==(const iterator &RHS) const { return Inner == RHS.Inner; }
289 };
290
291 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
292 iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
293 };
294
295 void addName(StringRef Name, NamedDecl *ND,
296 NestedNameSpecifier *NNS = nullptr, bool isKeyword = false);
297
298 /// \brief Find any visible decls for the given typo correction candidate.
299 /// If none are found, it to the set of candidates for which qualified lookups
300 /// will be performed to find possible nested name specifier changes.
301 bool resolveCorrection(TypoCorrection &Candidate);
302
303 /// \brief Perform qualified lookups on the queued set of typo correction
304 /// candidates and add the nested name specifier changes to each candidate if
305 /// a lookup succeeds (at which point the candidate will be returned to the
306 /// main pool of potential corrections).
307 void performQualifiedLookups();
308
309 /// \brief The name written that is a typo in the source.
310 IdentifierInfo *Typo;
311
312 /// \brief The results found that have the smallest edit distance
313 /// found (so far) with the typo name.
314 ///
315 /// The pointer value being set to the current DeclContext indicates
316 /// whether there is a keyword with this name.
317 TypoEditDistanceMap CorrectionResults;
318
319 SmallVector<TypoCorrection, 4> ValidatedCorrections;
320 size_t CurrentTCIndex;
321 size_t SavedTCIndex;
322
323 Sema &SemaRef;
324 Scope *S;
325 std::unique_ptr<CXXScopeSpec> SS;
326 std::unique_ptr<CorrectionCandidateCallback> CorrectionValidator;
327 DeclContext *MemberContext;
328 LookupResult Result;
329 NamespaceSpecifierSet Namespaces;
330 SmallVector<TypoCorrection, 2> QualifiedResults;
331 bool EnteringContext;
332 bool SearchNamespaces;
333};
334
335inline Sema::TypoExprState::TypoExprState() {}
336
337inline Sema::TypoExprState::TypoExprState(TypoExprState &&other) noexcept {
338 *this = std::move(other);
339}
340
341inline Sema::TypoExprState &Sema::TypoExprState::
342operator=(Sema::TypoExprState &&other) noexcept {
343 Consumer = std::move(other.Consumer);
344 DiagHandler = std::move(other.DiagHandler);
345 RecoveryHandler = std::move(other.RecoveryHandler);
346 return *this;
347}
348
349} // end namespace clang
350
351#endif