Bug Summary

File:build/source/clang/lib/Sema/SemaTemplate.cpp
Warning:line 1407, column 5
Value stored to 'RD' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplate.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1680300532 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-04-01-083001-16331-1 -x c++ /build/source/clang/lib/Sema/SemaTemplate.cpp
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8// This file implements semantic analysis for C++ templates.
9//===----------------------------------------------------------------------===//
10
11#include "TreeTransform.h"
12#include "clang/AST/ASTConsumer.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TemplateName.h"
21#include "clang/AST/TypeVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/DiagnosticSema.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/Stack.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Initialization.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/SemaInternal.h"
35#include "clang/Sema/Template.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "llvm/ADT/SmallBitVector.h"
38#include "llvm/ADT/SmallString.h"
39#include "llvm/ADT/StringExtras.h"
40
41#include <iterator>
42#include <optional>
43using namespace clang;
44using namespace sema;
45
46// Exported for use by Parser.
47SourceRange
48clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
49 unsigned N) {
50 if (!N) return SourceRange();
51 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
52}
53
54unsigned Sema::getTemplateDepth(Scope *S) const {
55 unsigned Depth = 0;
56
57 // Each template parameter scope represents one level of template parameter
58 // depth.
59 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
60 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
61 ++Depth;
62 }
63
64 // Note that there are template parameters with the given depth.
65 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
66
67 // Look for parameters of an enclosing generic lambda. We don't create a
68 // template parameter scope for these.
69 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
70 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
71 if (!LSI->TemplateParams.empty()) {
72 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
73 break;
74 }
75 if (LSI->GLTemplateParameterList) {
76 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
77 break;
78 }
79 }
80 }
81
82 // Look for parameters of an enclosing terse function template. We don't
83 // create a template parameter scope for these either.
84 for (const InventedTemplateParameterInfo &Info :
85 getInventedParameterInfos()) {
86 if (!Info.TemplateParams.empty()) {
87 ParamsAtDepth(Info.AutoTemplateParameterDepth);
88 break;
89 }
90 }
91
92 return Depth;
93}
94
95/// \brief Determine whether the declaration found is acceptable as the name
96/// of a template and, if so, return that template declaration. Otherwise,
97/// returns null.
98///
99/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
100/// is true. In all other cases it will return a TemplateDecl (or null).
101NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
102 bool AllowFunctionTemplates,
103 bool AllowDependent) {
104 D = D->getUnderlyingDecl();
105
106 if (isa<TemplateDecl>(D)) {
107 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
108 return nullptr;
109
110 return D;
111 }
112
113 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
114 // C++ [temp.local]p1:
115 // Like normal (non-template) classes, class templates have an
116 // injected-class-name (Clause 9). The injected-class-name
117 // can be used with or without a template-argument-list. When
118 // it is used without a template-argument-list, it is
119 // equivalent to the injected-class-name followed by the
120 // template-parameters of the class template enclosed in
121 // <>. When it is used with a template-argument-list, it
122 // refers to the specified class template specialization,
123 // which could be the current specialization or another
124 // specialization.
125 if (Record->isInjectedClassName()) {
126 Record = cast<CXXRecordDecl>(Record->getDeclContext());
127 if (Record->getDescribedClassTemplate())
128 return Record->getDescribedClassTemplate();
129
130 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
131 return Spec->getSpecializedTemplate();
132 }
133
134 return nullptr;
135 }
136
137 // 'using Dependent::foo;' can resolve to a template name.
138 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
139 // injected-class-name).
140 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
141 return D;
142
143 return nullptr;
144}
145
146void Sema::FilterAcceptableTemplateNames(LookupResult &R,
147 bool AllowFunctionTemplates,
148 bool AllowDependent) {
149 LookupResult::Filter filter = R.makeFilter();
150 while (filter.hasNext()) {
151 NamedDecl *Orig = filter.next();
152 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
153 filter.erase();
154 }
155 filter.done();
156}
157
158bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
159 bool AllowFunctionTemplates,
160 bool AllowDependent,
161 bool AllowNonTemplateFunctions) {
162 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
163 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
164 return true;
165 if (AllowNonTemplateFunctions &&
166 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
167 return true;
168 }
169
170 return false;
171}
172
173TemplateNameKind Sema::isTemplateName(Scope *S,
174 CXXScopeSpec &SS,
175 bool hasTemplateKeyword,
176 const UnqualifiedId &Name,
177 ParsedType ObjectTypePtr,
178 bool EnteringContext,
179 TemplateTy &TemplateResult,
180 bool &MemberOfUnknownSpecialization,
181 bool Disambiguation) {
182 assert(getLangOpts().CPlusPlus && "No template names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No template names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "clang/lib/Sema/SemaTemplate.cpp", 182, __extension__ __PRETTY_FUNCTION__
))
;
183
184 DeclarationName TName;
185 MemberOfUnknownSpecialization = false;
186
187 switch (Name.getKind()) {
188 case UnqualifiedIdKind::IK_Identifier:
189 TName = DeclarationName(Name.Identifier);
190 break;
191
192 case UnqualifiedIdKind::IK_OperatorFunctionId:
193 TName = Context.DeclarationNames.getCXXOperatorName(
194 Name.OperatorFunctionId.Operator);
195 break;
196
197 case UnqualifiedIdKind::IK_LiteralOperatorId:
198 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
199 break;
200
201 default:
202 return TNK_Non_template;
203 }
204
205 QualType ObjectType = ObjectTypePtr.get();
206
207 AssumedTemplateKind AssumedTemplate;
208 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
209 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
210 MemberOfUnknownSpecialization, SourceLocation(),
211 &AssumedTemplate,
212 /*AllowTypoCorrection=*/!Disambiguation))
213 return TNK_Non_template;
214
215 if (AssumedTemplate != AssumedTemplateKind::None) {
216 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
217 // Let the parser know whether we found nothing or found functions; if we
218 // found nothing, we want to more carefully check whether this is actually
219 // a function template name versus some other kind of undeclared identifier.
220 return AssumedTemplate == AssumedTemplateKind::FoundNothing
221 ? TNK_Undeclared_template
222 : TNK_Function_template;
223 }
224
225 if (R.empty())
226 return TNK_Non_template;
227
228 NamedDecl *D = nullptr;
229 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
230 if (R.isAmbiguous()) {
231 // If we got an ambiguity involving a non-function template, treat this
232 // as a template name, and pick an arbitrary template for error recovery.
233 bool AnyFunctionTemplates = false;
234 for (NamedDecl *FoundD : R) {
235 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
236 if (isa<FunctionTemplateDecl>(FoundTemplate))
237 AnyFunctionTemplates = true;
238 else {
239 D = FoundTemplate;
240 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
241 break;
242 }
243 }
244 }
245
246 // If we didn't find any templates at all, this isn't a template name.
247 // Leave the ambiguity for a later lookup to diagnose.
248 if (!D && !AnyFunctionTemplates) {
249 R.suppressDiagnostics();
250 return TNK_Non_template;
251 }
252
253 // If the only templates were function templates, filter out the rest.
254 // We'll diagnose the ambiguity later.
255 if (!D)
256 FilterAcceptableTemplateNames(R);
257 }
258
259 // At this point, we have either picked a single template name declaration D
260 // or we have a non-empty set of results R containing either one template name
261 // declaration or a set of function templates.
262
263 TemplateName Template;
264 TemplateNameKind TemplateKind;
265
266 unsigned ResultCount = R.end() - R.begin();
267 if (!D && ResultCount > 1) {
268 // We assume that we'll preserve the qualifier from a function
269 // template name in other ways.
270 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
271 TemplateKind = TNK_Function_template;
272
273 // We'll do this lookup again later.
274 R.suppressDiagnostics();
275 } else {
276 if (!D) {
277 D = getAsTemplateNameDecl(*R.begin());
278 assert(D && "unambiguous result is not a template name")(static_cast <bool> (D && "unambiguous result is not a template name"
) ? void (0) : __assert_fail ("D && \"unambiguous result is not a template name\""
, "clang/lib/Sema/SemaTemplate.cpp", 278, __extension__ __PRETTY_FUNCTION__
))
;
279 }
280
281 if (isa<UnresolvedUsingValueDecl>(D)) {
282 // We don't yet know whether this is a template-name or not.
283 MemberOfUnknownSpecialization = true;
284 return TNK_Non_template;
285 }
286
287 TemplateDecl *TD = cast<TemplateDecl>(D);
288 Template =
289 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
290 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD)(static_cast <bool> (!FoundUsingShadow || FoundUsingShadow
->getTargetDecl() == TD) ? void (0) : __assert_fail ("!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD"
, "clang/lib/Sema/SemaTemplate.cpp", 290, __extension__ __PRETTY_FUNCTION__
))
;
291 if (SS.isSet() && !SS.isInvalid()) {
292 NestedNameSpecifier *Qualifier = SS.getScopeRep();
293 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
294 Template);
295 }
296
297 if (isa<FunctionTemplateDecl>(TD)) {
298 TemplateKind = TNK_Function_template;
299
300 // We'll do this lookup again later.
301 R.suppressDiagnostics();
302 } else {
303 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||(static_cast <bool> (isa<ClassTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl
>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl
>(TD) || isa<ConceptDecl>(TD)) ? void (0) : __assert_fail
("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)"
, "clang/lib/Sema/SemaTemplate.cpp", 305, __extension__ __PRETTY_FUNCTION__
))
304 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||(static_cast <bool> (isa<ClassTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl
>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl
>(TD) || isa<ConceptDecl>(TD)) ? void (0) : __assert_fail
("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)"
, "clang/lib/Sema/SemaTemplate.cpp", 305, __extension__ __PRETTY_FUNCTION__
))
305 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD))(static_cast <bool> (isa<ClassTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl
>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl
>(TD) || isa<ConceptDecl>(TD)) ? void (0) : __assert_fail
("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)"
, "clang/lib/Sema/SemaTemplate.cpp", 305, __extension__ __PRETTY_FUNCTION__
))
;
306 TemplateKind =
307 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
308 isa<ConceptDecl>(TD) ? TNK_Concept_template :
309 TNK_Type_template;
310 }
311 }
312
313 TemplateResult = TemplateTy::make(Template);
314 return TemplateKind;
315}
316
317bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
318 SourceLocation NameLoc,
319 ParsedTemplateTy *Template) {
320 CXXScopeSpec SS;
321 bool MemberOfUnknownSpecialization = false;
322
323 // We could use redeclaration lookup here, but we don't need to: the
324 // syntactic form of a deduction guide is enough to identify it even
325 // if we can't look up the template name at all.
326 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
327 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
328 /*EnteringContext*/ false,
329 MemberOfUnknownSpecialization))
330 return false;
331
332 if (R.empty()) return false;
333 if (R.isAmbiguous()) {
334 // FIXME: Diagnose an ambiguity if we find at least one template.
335 R.suppressDiagnostics();
336 return false;
337 }
338
339 // We only treat template-names that name type templates as valid deduction
340 // guide names.
341 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
342 if (!TD || !getAsTypeTemplateDecl(TD))
343 return false;
344
345 if (Template)
346 *Template = TemplateTy::make(TemplateName(TD));
347 return true;
348}
349
350bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
351 SourceLocation IILoc,
352 Scope *S,
353 const CXXScopeSpec *SS,
354 TemplateTy &SuggestedTemplate,
355 TemplateNameKind &SuggestedKind) {
356 // We can't recover unless there's a dependent scope specifier preceding the
357 // template name.
358 // FIXME: Typo correction?
359 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
360 computeDeclContext(*SS))
361 return false;
362
363 // The code is missing a 'template' keyword prior to the dependent template
364 // name.
365 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
366 Diag(IILoc, diag::err_template_kw_missing)
367 << Qualifier << II.getName()
368 << FixItHint::CreateInsertion(IILoc, "template ");
369 SuggestedTemplate
370 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
371 SuggestedKind = TNK_Dependent_template_name;
372 return true;
373}
374
375bool Sema::LookupTemplateName(LookupResult &Found,
376 Scope *S, CXXScopeSpec &SS,
377 QualType ObjectType,
378 bool EnteringContext,
379 bool &MemberOfUnknownSpecialization,
380 RequiredTemplateKind RequiredTemplate,
381 AssumedTemplateKind *ATK,
382 bool AllowTypoCorrection) {
383 if (ATK)
384 *ATK = AssumedTemplateKind::None;
385
386 if (SS.isInvalid())
387 return true;
388
389 Found.setTemplateNameLookup(true);
390
391 // Determine where to perform name lookup
392 MemberOfUnknownSpecialization = false;
393 DeclContext *LookupCtx = nullptr;
394 bool IsDependent = false;
395 if (!ObjectType.isNull()) {
396 // This nested-name-specifier occurs in a member access expression, e.g.,
397 // x->B::f, and we are looking into the type of the object.
398 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist")(static_cast <bool> (SS.isEmpty() && "ObjectType and scope specifier cannot coexist"
) ? void (0) : __assert_fail ("SS.isEmpty() && \"ObjectType and scope specifier cannot coexist\""
, "clang/lib/Sema/SemaTemplate.cpp", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 LookupCtx = computeDeclContext(ObjectType);
400 IsDependent = !LookupCtx && ObjectType->isDependentType();
401 assert((IsDependent || !ObjectType->isIncompleteType() ||(static_cast <bool> ((IsDependent || !ObjectType->isIncompleteType
() || !ObjectType->getAs<TagType>() || ObjectType->
castAs<TagType>()->isBeingDefined()) && "Caller should have completed object type"
) ? void (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "clang/lib/Sema/SemaTemplate.cpp", 404, __extension__ __PRETTY_FUNCTION__
))
402 !ObjectType->getAs<TagType>() ||(static_cast <bool> ((IsDependent || !ObjectType->isIncompleteType
() || !ObjectType->getAs<TagType>() || ObjectType->
castAs<TagType>()->isBeingDefined()) && "Caller should have completed object type"
) ? void (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "clang/lib/Sema/SemaTemplate.cpp", 404, __extension__ __PRETTY_FUNCTION__
))
403 ObjectType->castAs<TagType>()->isBeingDefined()) &&(static_cast <bool> ((IsDependent || !ObjectType->isIncompleteType
() || !ObjectType->getAs<TagType>() || ObjectType->
castAs<TagType>()->isBeingDefined()) && "Caller should have completed object type"
) ? void (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "clang/lib/Sema/SemaTemplate.cpp", 404, __extension__ __PRETTY_FUNCTION__
))
404 "Caller should have completed object type")(static_cast <bool> ((IsDependent || !ObjectType->isIncompleteType
() || !ObjectType->getAs<TagType>() || ObjectType->
castAs<TagType>()->isBeingDefined()) && "Caller should have completed object type"
) ? void (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "clang/lib/Sema/SemaTemplate.cpp", 404, __extension__ __PRETTY_FUNCTION__
))
;
405
406 // Template names cannot appear inside an Objective-C class or object type
407 // or a vector type.
408 //
409 // FIXME: This is wrong. For example:
410 //
411 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
412 // Vec<int> vi;
413 // vi.Vec<int>::~Vec<int>();
414 //
415 // ... should be accepted but we will not treat 'Vec' as a template name
416 // here. The right thing to do would be to check if the name is a valid
417 // vector component name, and look up a template name if not. And similarly
418 // for lookups into Objective-C class and object types, where the same
419 // problem can arise.
420 if (ObjectType->isObjCObjectOrInterfaceType() ||
421 ObjectType->isVectorType()) {
422 Found.clear();
423 return false;
424 }
425 } else if (SS.isNotEmpty()) {
426 // This nested-name-specifier occurs after another nested-name-specifier,
427 // so long into the context associated with the prior nested-name-specifier.
428 LookupCtx = computeDeclContext(SS, EnteringContext);
429 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
430
431 // The declaration context must be complete.
432 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
433 return true;
434 }
435
436 bool ObjectTypeSearchedInScope = false;
437 bool AllowFunctionTemplatesInLookup = true;
438 if (LookupCtx) {
439 // Perform "qualified" name lookup into the declaration context we
440 // computed, which is either the type of the base of a member access
441 // expression or the declaration context associated with a prior
442 // nested-name-specifier.
443 LookupQualifiedName(Found, LookupCtx);
444
445 // FIXME: The C++ standard does not clearly specify what happens in the
446 // case where the object type is dependent, and implementations vary. In
447 // Clang, we treat a name after a . or -> as a template-name if lookup
448 // finds a non-dependent member or member of the current instantiation that
449 // is a type template, or finds no such members and lookup in the context
450 // of the postfix-expression finds a type template. In the latter case, the
451 // name is nonetheless dependent, and we may resolve it to a member of an
452 // unknown specialization when we come to instantiate the template.
453 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
454 }
455
456 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
457 // C++ [basic.lookup.classref]p1:
458 // In a class member access expression (5.2.5), if the . or -> token is
459 // immediately followed by an identifier followed by a <, the
460 // identifier must be looked up to determine whether the < is the
461 // beginning of a template argument list (14.2) or a less-than operator.
462 // The identifier is first looked up in the class of the object
463 // expression. If the identifier is not found, it is then looked up in
464 // the context of the entire postfix-expression and shall name a class
465 // template.
466 if (S)
467 LookupName(Found, S);
468
469 if (!ObjectType.isNull()) {
470 // FIXME: We should filter out all non-type templates here, particularly
471 // variable templates and concepts. But the exclusion of alias templates
472 // and template template parameters is a wording defect.
473 AllowFunctionTemplatesInLookup = false;
474 ObjectTypeSearchedInScope = true;
475 }
476
477 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
478 }
479
480 if (Found.isAmbiguous())
481 return false;
482
483 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
484 !RequiredTemplate.hasTemplateKeyword()) {
485 // C++2a [temp.names]p2:
486 // A name is also considered to refer to a template if it is an
487 // unqualified-id followed by a < and name lookup finds either one or more
488 // functions or finds nothing.
489 //
490 // To keep our behavior consistent, we apply the "finds nothing" part in
491 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
492 // successfully form a call to an undeclared template-id.
493 bool AllFunctions =
494 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
495 return isa<FunctionDecl>(ND->getUnderlyingDecl());
496 });
497 if (AllFunctions || (Found.empty() && !IsDependent)) {
498 // If lookup found any functions, or if this is a name that can only be
499 // used for a function, then strongly assume this is a function
500 // template-id.
501 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
502 ? AssumedTemplateKind::FoundNothing
503 : AssumedTemplateKind::FoundFunctions;
504 Found.clear();
505 return false;
506 }
507 }
508
509 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
510 // If we did not find any names, and this is not a disambiguation, attempt
511 // to correct any typos.
512 DeclarationName Name = Found.getLookupName();
513 Found.clear();
514 // Simple filter callback that, for keywords, only accepts the C++ *_cast
515 DefaultFilterCCC FilterCCC{};
516 FilterCCC.WantTypeSpecifiers = false;
517 FilterCCC.WantExpressionKeywords = false;
518 FilterCCC.WantRemainingKeywords = false;
519 FilterCCC.WantCXXNamedCasts = true;
520 if (TypoCorrection Corrected =
521 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
522 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
523 if (auto *ND = Corrected.getFoundDecl())
524 Found.addDecl(ND);
525 FilterAcceptableTemplateNames(Found);
526 if (Found.isAmbiguous()) {
527 Found.clear();
528 } else if (!Found.empty()) {
529 Found.setLookupName(Corrected.getCorrection());
530 if (LookupCtx) {
531 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
532 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
533 Name.getAsString() == CorrectedStr;
534 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
535 << Name << LookupCtx << DroppedSpecifier
536 << SS.getRange());
537 } else {
538 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
539 }
540 }
541 }
542 }
543
544 NamedDecl *ExampleLookupResult =
545 Found.empty() ? nullptr : Found.getRepresentativeDecl();
546 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
547 if (Found.empty()) {
548 if (IsDependent) {
549 MemberOfUnknownSpecialization = true;
550 return false;
551 }
552
553 // If a 'template' keyword was used, a lookup that finds only non-template
554 // names is an error.
555 if (ExampleLookupResult && RequiredTemplate) {
556 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
557 << Found.getLookupName() << SS.getRange()
558 << RequiredTemplate.hasTemplateKeyword()
559 << RequiredTemplate.getTemplateKeywordLoc();
560 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
561 diag::note_template_kw_refers_to_non_template)
562 << Found.getLookupName();
563 return true;
564 }
565
566 return false;
567 }
568
569 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
570 !getLangOpts().CPlusPlus11) {
571 // C++03 [basic.lookup.classref]p1:
572 // [...] If the lookup in the class of the object expression finds a
573 // template, the name is also looked up in the context of the entire
574 // postfix-expression and [...]
575 //
576 // Note: C++11 does not perform this second lookup.
577 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
578 LookupOrdinaryName);
579 FoundOuter.setTemplateNameLookup(true);
580 LookupName(FoundOuter, S);
581 // FIXME: We silently accept an ambiguous lookup here, in violation of
582 // [basic.lookup]/1.
583 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
584
585 NamedDecl *OuterTemplate;
586 if (FoundOuter.empty()) {
587 // - if the name is not found, the name found in the class of the
588 // object expression is used, otherwise
589 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
590 !(OuterTemplate =
591 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
592 // - if the name is found in the context of the entire
593 // postfix-expression and does not name a class template, the name
594 // found in the class of the object expression is used, otherwise
595 FoundOuter.clear();
596 } else if (!Found.isSuppressingDiagnostics()) {
597 // - if the name found is a class template, it must refer to the same
598 // entity as the one found in the class of the object expression,
599 // otherwise the program is ill-formed.
600 if (!Found.isSingleResult() ||
601 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
602 OuterTemplate->getCanonicalDecl()) {
603 Diag(Found.getNameLoc(),
604 diag::ext_nested_name_member_ref_lookup_ambiguous)
605 << Found.getLookupName()
606 << ObjectType;
607 Diag(Found.getRepresentativeDecl()->getLocation(),
608 diag::note_ambig_member_ref_object_type)
609 << ObjectType;
610 Diag(FoundOuter.getFoundDecl()->getLocation(),
611 diag::note_ambig_member_ref_scope);
612
613 // Recover by taking the template that we found in the object
614 // expression's type.
615 }
616 }
617 }
618
619 return false;
620}
621
622void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
623 SourceLocation Less,
624 SourceLocation Greater) {
625 if (TemplateName.isInvalid())
626 return;
627
628 DeclarationNameInfo NameInfo;
629 CXXScopeSpec SS;
630 LookupNameKind LookupKind;
631
632 DeclContext *LookupCtx = nullptr;
633 NamedDecl *Found = nullptr;
634 bool MissingTemplateKeyword = false;
635
636 // Figure out what name we looked up.
637 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
638 NameInfo = DRE->getNameInfo();
639 SS.Adopt(DRE->getQualifierLoc());
640 LookupKind = LookupOrdinaryName;
641 Found = DRE->getFoundDecl();
642 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
643 NameInfo = ME->getMemberNameInfo();
644 SS.Adopt(ME->getQualifierLoc());
645 LookupKind = LookupMemberName;
646 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
647 Found = ME->getMemberDecl();
648 } else if (auto *DSDRE =
649 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
650 NameInfo = DSDRE->getNameInfo();
651 SS.Adopt(DSDRE->getQualifierLoc());
652 MissingTemplateKeyword = true;
653 } else if (auto *DSME =
654 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
655 NameInfo = DSME->getMemberNameInfo();
656 SS.Adopt(DSME->getQualifierLoc());
657 MissingTemplateKeyword = true;
658 } else {
659 llvm_unreachable("unexpected kind of potential template name")::llvm::llvm_unreachable_internal("unexpected kind of potential template name"
, "clang/lib/Sema/SemaTemplate.cpp", 659)
;
660 }
661
662 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
663 // was missing.
664 if (MissingTemplateKeyword) {
665 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
666 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
667 return;
668 }
669
670 // Try to correct the name by looking for templates and C++ named casts.
671 struct TemplateCandidateFilter : CorrectionCandidateCallback {
672 Sema &S;
673 TemplateCandidateFilter(Sema &S) : S(S) {
674 WantTypeSpecifiers = false;
675 WantExpressionKeywords = false;
676 WantRemainingKeywords = false;
677 WantCXXNamedCasts = true;
678 };
679 bool ValidateCandidate(const TypoCorrection &Candidate) override {
680 if (auto *ND = Candidate.getCorrectionDecl())
681 return S.getAsTemplateNameDecl(ND);
682 return Candidate.isKeyword();
683 }
684
685 std::unique_ptr<CorrectionCandidateCallback> clone() override {
686 return std::make_unique<TemplateCandidateFilter>(*this);
687 }
688 };
689
690 DeclarationName Name = NameInfo.getName();
691 TemplateCandidateFilter CCC(*this);
692 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
693 CTK_ErrorRecovery, LookupCtx)) {
694 auto *ND = Corrected.getFoundDecl();
695 if (ND)
696 ND = getAsTemplateNameDecl(ND);
697 if (ND || Corrected.isKeyword()) {
698 if (LookupCtx) {
699 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
700 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
701 Name.getAsString() == CorrectedStr;
702 diagnoseTypo(Corrected,
703 PDiag(diag::err_non_template_in_member_template_id_suggest)
704 << Name << LookupCtx << DroppedSpecifier
705 << SS.getRange(), false);
706 } else {
707 diagnoseTypo(Corrected,
708 PDiag(diag::err_non_template_in_template_id_suggest)
709 << Name, false);
710 }
711 if (Found)
712 Diag(Found->getLocation(),
713 diag::note_non_template_in_template_id_found);
714 return;
715 }
716 }
717
718 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
719 << Name << SourceRange(Less, Greater);
720 if (Found)
721 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
722}
723
724/// ActOnDependentIdExpression - Handle a dependent id-expression that
725/// was just parsed. This is only possible with an explicit scope
726/// specifier naming a dependent type.
727ExprResult
728Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
729 SourceLocation TemplateKWLoc,
730 const DeclarationNameInfo &NameInfo,
731 bool isAddressOfOperand,
732 const TemplateArgumentListInfo *TemplateArgs) {
733 DeclContext *DC = getFunctionLevelDeclContext();
734
735 // C++11 [expr.prim.general]p12:
736 // An id-expression that denotes a non-static data member or non-static
737 // member function of a class can only be used:
738 // (...)
739 // - if that id-expression denotes a non-static data member and it
740 // appears in an unevaluated operand.
741 //
742 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
743 // CXXDependentScopeMemberExpr. The former can instantiate to either
744 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
745 // always a MemberExpr.
746 bool MightBeCxx11UnevalField =
747 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
748
749 // Check if the nested name specifier is an enum type.
750 bool IsEnum = false;
751 if (NestedNameSpecifier *NNS = SS.getScopeRep())
752 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
753
754 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
755 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
756 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
757
758 // Since the 'this' expression is synthesized, we don't need to
759 // perform the double-lookup check.
760 NamedDecl *FirstQualifierInScope = nullptr;
761
762 return CXXDependentScopeMemberExpr::Create(
763 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
764 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
765 FirstQualifierInScope, NameInfo, TemplateArgs);
766 }
767
768 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
769}
770
771ExprResult
772Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
773 SourceLocation TemplateKWLoc,
774 const DeclarationNameInfo &NameInfo,
775 const TemplateArgumentListInfo *TemplateArgs) {
776 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
777 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
778 if (!QualifierLoc)
779 return ExprError();
780
781 return DependentScopeDeclRefExpr::Create(
782 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
783}
784
785
786/// Determine whether we would be unable to instantiate this template (because
787/// it either has no definition, or is in the process of being instantiated).
788bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
789 NamedDecl *Instantiation,
790 bool InstantiatedFromMember,
791 const NamedDecl *Pattern,
792 const NamedDecl *PatternDef,
793 TemplateSpecializationKind TSK,
794 bool Complain /*= true*/) {
795 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||(static_cast <bool> (isa<TagDecl>(Instantiation) ||
isa<FunctionDecl>(Instantiation) || isa<VarDecl>
(Instantiation)) ? void (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "clang/lib/Sema/SemaTemplate.cpp", 796, __extension__ __PRETTY_FUNCTION__
))
796 isa<VarDecl>(Instantiation))(static_cast <bool> (isa<TagDecl>(Instantiation) ||
isa<FunctionDecl>(Instantiation) || isa<VarDecl>
(Instantiation)) ? void (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "clang/lib/Sema/SemaTemplate.cpp", 796, __extension__ __PRETTY_FUNCTION__
))
;
797
798 bool IsEntityBeingDefined = false;
799 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
800 IsEntityBeingDefined = TD->isBeingDefined();
801
802 if (PatternDef && !IsEntityBeingDefined) {
803 NamedDecl *SuggestedDef = nullptr;
804 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
805 &SuggestedDef,
806 /*OnlyNeedComplete*/ false)) {
807 // If we're allowed to diagnose this and recover, do so.
808 bool Recover = Complain && !isSFINAEContext();
809 if (Complain)
810 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
811 Sema::MissingImportKind::Definition, Recover);
812 return !Recover;
813 }
814 return false;
815 }
816
817 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
818 return true;
819
820 std::optional<unsigned> Note;
821 QualType InstantiationTy;
822 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
823 InstantiationTy = Context.getTypeDeclType(TD);
824 if (PatternDef) {
825 Diag(PointOfInstantiation,
826 diag::err_template_instantiate_within_definition)
827 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
828 << InstantiationTy;
829 // Not much point in noting the template declaration here, since
830 // we're lexically inside it.
831 Instantiation->setInvalidDecl();
832 } else if (InstantiatedFromMember) {
833 if (isa<FunctionDecl>(Instantiation)) {
834 Diag(PointOfInstantiation,
835 diag::err_explicit_instantiation_undefined_member)
836 << /*member function*/ 1 << Instantiation->getDeclName()
837 << Instantiation->getDeclContext();
838 Note = diag::note_explicit_instantiation_here;
839 } else {
840 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")(static_cast <bool> (isa<TagDecl>(Instantiation) &&
"Must be a TagDecl!") ? void (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "clang/lib/Sema/SemaTemplate.cpp", 840, __extension__ __PRETTY_FUNCTION__
))
;
841 Diag(PointOfInstantiation,
842 diag::err_implicit_instantiate_member_undefined)
843 << InstantiationTy;
844 Note = diag::note_member_declared_at;
845 }
846 } else {
847 if (isa<FunctionDecl>(Instantiation)) {
848 Diag(PointOfInstantiation,
849 diag::err_explicit_instantiation_undefined_func_template)
850 << Pattern;
851 Note = diag::note_explicit_instantiation_here;
852 } else if (isa<TagDecl>(Instantiation)) {
853 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
854 << (TSK != TSK_ImplicitInstantiation)
855 << InstantiationTy;
856 Note = diag::note_template_decl_here;
857 } else {
858 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")(static_cast <bool> (isa<VarDecl>(Instantiation) &&
"Must be a VarDecl!") ? void (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "clang/lib/Sema/SemaTemplate.cpp", 858, __extension__ __PRETTY_FUNCTION__
))
;
859 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
860 Diag(PointOfInstantiation,
861 diag::err_explicit_instantiation_undefined_var_template)
862 << Instantiation;
863 Instantiation->setInvalidDecl();
864 } else
865 Diag(PointOfInstantiation,
866 diag::err_explicit_instantiation_undefined_member)
867 << /*static data member*/ 2 << Instantiation->getDeclName()
868 << Instantiation->getDeclContext();
869 Note = diag::note_explicit_instantiation_here;
870 }
871 }
872 if (Note) // Diagnostics were emitted.
873 Diag(Pattern->getLocation(), *Note);
874
875 // In general, Instantiation isn't marked invalid to get more than one
876 // error for multiple undefined instantiations. But the code that does
877 // explicit declaration -> explicit definition conversion can't handle
878 // invalid declarations, so mark as invalid in that case.
879 if (TSK == TSK_ExplicitInstantiationDeclaration)
880 Instantiation->setInvalidDecl();
881 return true;
882}
883
884/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
885/// that the template parameter 'PrevDecl' is being shadowed by a new
886/// declaration at location Loc. Returns true to indicate that this is
887/// an error, and false otherwise.
888void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
889 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")(static_cast <bool> (PrevDecl->isTemplateParameter()
&& "Not a template parameter") ? void (0) : __assert_fail
("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "clang/lib/Sema/SemaTemplate.cpp", 889, __extension__ __PRETTY_FUNCTION__
))
;
890
891 // C++ [temp.local]p4:
892 // A template-parameter shall not be redeclared within its
893 // scope (including nested scopes).
894 //
895 // Make this a warning when MSVC compatibility is requested.
896 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
897 : diag::err_template_param_shadow;
898 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
899 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
900}
901
902/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
903/// the parameter D to reference the templated declaration and return a pointer
904/// to the template declaration. Otherwise, do nothing to D and return null.
905TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
906 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
907 D = Temp->getTemplatedDecl();
908 return Temp;
909 }
910 return nullptr;
911}
912
913ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
914 SourceLocation EllipsisLoc) const {
915 assert(Kind == Template &&(static_cast <bool> (Kind == Template && "Only template template arguments can be pack expansions here"
) ? void (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "clang/lib/Sema/SemaTemplate.cpp", 916, __extension__ __PRETTY_FUNCTION__
))
916 "Only template template arguments can be pack expansions here")(static_cast <bool> (Kind == Template && "Only template template arguments can be pack expansions here"
) ? void (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "clang/lib/Sema/SemaTemplate.cpp", 916, __extension__ __PRETTY_FUNCTION__
))
;
917 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&(static_cast <bool> (getAsTemplate().get().containsUnexpandedParameterPack
() && "Template template argument pack expansion without packs"
) ? void (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "clang/lib/Sema/SemaTemplate.cpp", 918, __extension__ __PRETTY_FUNCTION__
))
918 "Template template argument pack expansion without packs")(static_cast <bool> (getAsTemplate().get().containsUnexpandedParameterPack
() && "Template template argument pack expansion without packs"
) ? void (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "clang/lib/Sema/SemaTemplate.cpp", 918, __extension__ __PRETTY_FUNCTION__
))
;
919 ParsedTemplateArgument Result(*this);
920 Result.EllipsisLoc = EllipsisLoc;
921 return Result;
922}
923
924static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
925 const ParsedTemplateArgument &Arg) {
926
927 switch (Arg.getKind()) {
928 case ParsedTemplateArgument::Type: {
929 TypeSourceInfo *DI;
930 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
931 if (!DI)
932 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
933 return TemplateArgumentLoc(TemplateArgument(T), DI);
934 }
935
936 case ParsedTemplateArgument::NonType: {
937 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
938 return TemplateArgumentLoc(TemplateArgument(E), E);
939 }
940
941 case ParsedTemplateArgument::Template: {
942 TemplateName Template = Arg.getAsTemplate().get();
943 TemplateArgument TArg;
944 if (Arg.getEllipsisLoc().isValid())
945 TArg = TemplateArgument(Template, std::optional<unsigned int>());
946 else
947 TArg = Template;
948 return TemplateArgumentLoc(
949 SemaRef.Context, TArg,
950 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
951 Arg.getLocation(), Arg.getEllipsisLoc());
952 }
953 }
954
955 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "clang/lib/Sema/SemaTemplate.cpp", 955)
;
956}
957
958/// Translates template arguments as provided by the parser
959/// into template arguments used by semantic analysis.
960void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
961 TemplateArgumentListInfo &TemplateArgs) {
962 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
963 TemplateArgs.addArgument(translateTemplateArgument(*this,
964 TemplateArgsIn[I]));
965}
966
967static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
968 SourceLocation Loc,
969 IdentifierInfo *Name) {
970 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
971 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
972 if (PrevDecl && PrevDecl->isTemplateParameter())
973 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
974}
975
976/// Convert a parsed type into a parsed template argument. This is mostly
977/// trivial, except that we may have parsed a C++17 deduced class template
978/// specialization type, in which case we should form a template template
979/// argument instead of a type template argument.
980ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
981 TypeSourceInfo *TInfo;
982 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
983 if (T.isNull())
984 return ParsedTemplateArgument();
985 assert(TInfo && "template argument with no location")(static_cast <bool> (TInfo && "template argument with no location"
) ? void (0) : __assert_fail ("TInfo && \"template argument with no location\""
, "clang/lib/Sema/SemaTemplate.cpp", 985, __extension__ __PRETTY_FUNCTION__
))
;
986
987 // If we might have formed a deduced template specialization type, convert
988 // it to a template template argument.
989 if (getLangOpts().CPlusPlus17) {
990 TypeLoc TL = TInfo->getTypeLoc();
991 SourceLocation EllipsisLoc;
992 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
993 EllipsisLoc = PET.getEllipsisLoc();
994 TL = PET.getPatternLoc();
995 }
996
997 CXXScopeSpec SS;
998 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
999 SS.Adopt(ET.getQualifierLoc());
1000 TL = ET.getNamedTypeLoc();
1001 }
1002
1003 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1004 TemplateName Name = DTST.getTypePtr()->getTemplateName();
1005 if (SS.isSet())
1006 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1007 /*HasTemplateKeyword=*/false,
1008 Name);
1009 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1010 DTST.getTemplateNameLoc());
1011 if (EllipsisLoc.isValid())
1012 Result = Result.getTemplatePackExpansion(EllipsisLoc);
1013 return Result;
1014 }
1015 }
1016
1017 // This is a normal type template argument. Note, if the type template
1018 // argument is an injected-class-name for a template, it has a dual nature
1019 // and can be used as either a type or a template. We handle that in
1020 // convertTypeTemplateArgumentToTemplate.
1021 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1022 ParsedType.get().getAsOpaquePtr(),
1023 TInfo->getTypeLoc().getBeginLoc());
1024}
1025
1026/// ActOnTypeParameter - Called when a C++ template type parameter
1027/// (e.g., "typename T") has been parsed. Typename specifies whether
1028/// the keyword "typename" was used to declare the type parameter
1029/// (otherwise, "class" was used), and KeyLoc is the location of the
1030/// "class" or "typename" keyword. ParamName is the name of the
1031/// parameter (NULL indicates an unnamed template parameter) and
1032/// ParamNameLoc is the location of the parameter name (if any).
1033/// If the type parameter has a default argument, it will be added
1034/// later via ActOnTypeParameterDefault.
1035NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1036 SourceLocation EllipsisLoc,
1037 SourceLocation KeyLoc,
1038 IdentifierInfo *ParamName,
1039 SourceLocation ParamNameLoc,
1040 unsigned Depth, unsigned Position,
1041 SourceLocation EqualLoc,
1042 ParsedType DefaultArg,
1043 bool HasTypeConstraint) {
1044 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"Template type parameter not in template parameter scope!") ?
void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 1045, __extension__ __PRETTY_FUNCTION__
))
1045 "Template type parameter not in template parameter scope!")(static_cast <bool> (S->isTemplateParamScope() &&
"Template type parameter not in template parameter scope!") ?
void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 1045, __extension__ __PRETTY_FUNCTION__
))
;
1046
1047 bool IsParameterPack = EllipsisLoc.isValid();
1048 TemplateTypeParmDecl *Param
1049 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1050 KeyLoc, ParamNameLoc, Depth, Position,
1051 ParamName, Typename, IsParameterPack,
1052 HasTypeConstraint);
1053 Param->setAccess(AS_public);
1054
1055 if (Param->isParameterPack())
1056 if (auto *LSI = getEnclosingLambda())
1057 LSI->LocalPacks.push_back(Param);
1058
1059 if (ParamName) {
1060 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1061
1062 // Add the template parameter into the current scope.
1063 S->AddDecl(Param);
1064 IdResolver.AddDecl(Param);
1065 }
1066
1067 // C++0x [temp.param]p9:
1068 // A default template-argument may be specified for any kind of
1069 // template-parameter that is not a template parameter pack.
1070 if (DefaultArg && IsParameterPack) {
1071 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1072 DefaultArg = nullptr;
1073 }
1074
1075 // Handle the default argument, if provided.
1076 if (DefaultArg) {
1077 TypeSourceInfo *DefaultTInfo;
1078 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1079
1080 assert(DefaultTInfo && "expected source information for type")(static_cast <bool> (DefaultTInfo && "expected source information for type"
) ? void (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "clang/lib/Sema/SemaTemplate.cpp", 1080, __extension__ __PRETTY_FUNCTION__
))
;
1081
1082 // Check for unexpanded parameter packs.
1083 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1084 UPPC_DefaultArgument))
1085 return Param;
1086
1087 // Check the template argument itself.
1088 if (CheckTemplateArgument(DefaultTInfo)) {
1089 Param->setInvalidDecl();
1090 return Param;
1091 }
1092
1093 Param->setDefaultArgument(DefaultTInfo);
1094 }
1095
1096 return Param;
1097}
1098
1099/// Convert the parser's template argument list representation into our form.
1100static TemplateArgumentListInfo
1101makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1102 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1103 TemplateId.RAngleLoc);
1104 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1105 TemplateId.NumArgs);
1106 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1107 return TemplateArgs;
1108}
1109
1110bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1111 TemplateIdAnnotation *TypeConstr,
1112 TemplateTypeParmDecl *ConstrainedParameter,
1113 SourceLocation EllipsisLoc) {
1114 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1115 false);
1116}
1117
1118bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1119 TemplateIdAnnotation *TypeConstr,
1120 TemplateTypeParmDecl *ConstrainedParameter,
1121 SourceLocation EllipsisLoc,
1122 bool AllowUnexpandedPack) {
1123 TemplateName TN = TypeConstr->Template.get();
1124 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1125
1126 // C++2a [temp.param]p4:
1127 // [...] The concept designated by a type-constraint shall be a type
1128 // concept ([temp.concept]).
1129 if (!CD->isTypeConcept()) {
1130 Diag(TypeConstr->TemplateNameLoc,
1131 diag::err_type_constraint_non_type_concept);
1132 return true;
1133 }
1134
1135 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1136
1137 if (!WereArgsSpecified &&
1138 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1139 Diag(TypeConstr->TemplateNameLoc,
1140 diag::err_type_constraint_missing_arguments) << CD;
1141 return true;
1142 }
1143
1144 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1145 TypeConstr->TemplateNameLoc);
1146
1147 TemplateArgumentListInfo TemplateArgs;
1148 if (TypeConstr->LAngleLoc.isValid()) {
1149 TemplateArgs =
1150 makeTemplateArgumentListInfo(*this, *TypeConstr);
1151
1152 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1153 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1154 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1155 return true;
1156 }
1157 }
1158 }
1159 return AttachTypeConstraint(
1160 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1161 ConceptName, CD,
1162 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1163 ConstrainedParameter, EllipsisLoc);
1164}
1165
1166template<typename ArgumentLocAppender>
1167static ExprResult formImmediatelyDeclaredConstraint(
1168 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1169 ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1170 SourceLocation RAngleLoc, QualType ConstrainedType,
1171 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1172 SourceLocation EllipsisLoc) {
1173
1174 TemplateArgumentListInfo ConstraintArgs;
1175 ConstraintArgs.addArgument(
1176 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1177 /*NTTPType=*/QualType(), ParamNameLoc));
1178
1179 ConstraintArgs.setRAngleLoc(RAngleLoc);
1180 ConstraintArgs.setLAngleLoc(LAngleLoc);
1181 Appender(ConstraintArgs);
1182
1183 // C++2a [temp.param]p4:
1184 // [...] This constraint-expression E is called the immediately-declared
1185 // constraint of T. [...]
1186 CXXScopeSpec SS;
1187 SS.Adopt(NS);
1188 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1189 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1190 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1191 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1192 return ImmediatelyDeclaredConstraint;
1193
1194 // C++2a [temp.param]p4:
1195 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1196 //
1197 // We have the following case:
1198 //
1199 // template<typename T> concept C1 = true;
1200 // template<C1... T> struct s1;
1201 //
1202 // The constraint: (C1<T> && ...)
1203 //
1204 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1205 // any unqualified lookups for 'operator&&' here.
1206 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1207 /*LParenLoc=*/SourceLocation(),
1208 ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1209 EllipsisLoc, /*RHS=*/nullptr,
1210 /*RParenLoc=*/SourceLocation(),
1211 /*NumExpansions=*/std::nullopt);
1212}
1213
1214/// Attach a type-constraint to a template parameter.
1215/// \returns true if an error occurred. This can happen if the
1216/// immediately-declared constraint could not be formed (e.g. incorrect number
1217/// of arguments for the named concept).
1218bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1219 DeclarationNameInfo NameInfo,
1220 ConceptDecl *NamedConcept,
1221 const TemplateArgumentListInfo *TemplateArgs,
1222 TemplateTypeParmDecl *ConstrainedParameter,
1223 SourceLocation EllipsisLoc) {
1224 // C++2a [temp.param]p4:
1225 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1226 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1227 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1228 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1229 *TemplateArgs) : nullptr;
1230
1231 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1232
1233 ExprResult ImmediatelyDeclaredConstraint =
1234 formImmediatelyDeclaredConstraint(
1235 *this, NS, NameInfo, NamedConcept,
1236 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1237 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1238 ParamAsArgument, ConstrainedParameter->getLocation(),
1239 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1240 if (TemplateArgs)
1241 for (const auto &ArgLoc : TemplateArgs->arguments())
1242 ConstraintArgs.addArgument(ArgLoc);
1243 }, EllipsisLoc);
1244 if (ImmediatelyDeclaredConstraint.isInvalid())
1245 return true;
1246
1247 ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1248 /*FoundDecl=*/NamedConcept,
1249 NamedConcept, ArgsAsWritten,
1250 ImmediatelyDeclaredConstraint.get());
1251 return false;
1252}
1253
1254bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1255 NonTypeTemplateParmDecl *NewConstrainedParm,
1256 NonTypeTemplateParmDecl *OrigConstrainedParm,
1257 SourceLocation EllipsisLoc) {
1258 if (NewConstrainedParm->getType() != TL.getType() ||
1259 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1260 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1261 diag::err_unsupported_placeholder_constraint)
1262 << NewConstrainedParm->getTypeSourceInfo()
1263 ->getTypeLoc()
1264 .getSourceRange();
1265 return true;
1266 }
1267 // FIXME: Concepts: This should be the type of the placeholder, but this is
1268 // unclear in the wording right now.
1269 DeclRefExpr *Ref =
1270 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1271 VK_PRValue, OrigConstrainedParm->getLocation());
1272 if (!Ref)
1273 return true;
1274 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1275 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1276 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1277 BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(),
1278 [&](TemplateArgumentListInfo &ConstraintArgs) {
1279 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1280 ConstraintArgs.addArgument(TL.getArgLoc(I));
1281 },
1282 EllipsisLoc);
1283 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1284 !ImmediatelyDeclaredConstraint.isUsable())
1285 return true;
1286
1287 NewConstrainedParm->setPlaceholderTypeConstraint(
1288 ImmediatelyDeclaredConstraint.get());
1289 return false;
1290}
1291
1292/// Check that the type of a non-type template parameter is
1293/// well-formed.
1294///
1295/// \returns the (possibly-promoted) parameter type if valid;
1296/// otherwise, produces a diagnostic and returns a NULL type.
1297QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1298 SourceLocation Loc) {
1299 if (TSI->getType()->isUndeducedType()) {
1300 // C++17 [temp.dep.expr]p3:
1301 // An id-expression is type-dependent if it contains
1302 // - an identifier associated by name lookup with a non-type
1303 // template-parameter declared with a type that contains a
1304 // placeholder type (7.1.7.4),
1305 TSI = SubstAutoTypeSourceInfoDependent(TSI);
1306 }
1307
1308 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1309}
1310
1311/// Require the given type to be a structural type, and diagnose if it is not.
1312///
1313/// \return \c true if an error was produced.
1314bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1315 if (T->isDependentType())
1316 return false;
1317
1318 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1319 return true;
1320
1321 if (T->isStructuralType())
1322 return false;
1323
1324 // Structural types are required to be object types or lvalue references.
1325 if (T->isRValueReferenceType()) {
1326 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1327 return true;
1328 }
1329
1330 // Don't mention structural types in our diagnostic prior to C++20. Also,
1331 // there's not much more we can say about non-scalar non-class types --
1332 // because we can't see functions or arrays here, those can only be language
1333 // extensions.
1334 if (!getLangOpts().CPlusPlus20 ||
1335 (!T->isScalarType() && !T->isRecordType())) {
1336 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1337 return true;
1338 }
1339
1340 // Structural types are required to be literal types.
1341 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1342 return true;
1343
1344 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1345
1346 // Drill down into the reason why the class is non-structural.
1347 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1348 // All members are required to be public and non-mutable, and can't be of
1349 // rvalue reference type. Check these conditions first to prefer a "local"
1350 // reason over a more distant one.
1351 for (const FieldDecl *FD : RD->fields()) {
1352 if (FD->getAccess() != AS_public) {
1353 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1354 return true;
1355 }
1356 if (FD->isMutable()) {
1357 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1358 return true;
1359 }
1360 if (FD->getType()->isRValueReferenceType()) {
1361 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1362 << T;
1363 return true;
1364 }
1365 }
1366
1367 // All bases are required to be public.
1368 for (const auto &BaseSpec : RD->bases()) {
1369 if (BaseSpec.getAccessSpecifier() != AS_public) {
1370 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1371 << T << 1;
1372 return true;
1373 }
1374 }
1375
1376 // All subobjects are required to be of structural types.
1377 SourceLocation SubLoc;
1378 QualType SubType;
1379 int Kind = -1;
1380
1381 for (const FieldDecl *FD : RD->fields()) {
1382 QualType T = Context.getBaseElementType(FD->getType());
1383 if (!T->isStructuralType()) {
1384 SubLoc = FD->getLocation();
1385 SubType = T;
1386 Kind = 0;
1387 break;
1388 }
1389 }
1390
1391 if (Kind == -1) {
1392 for (const auto &BaseSpec : RD->bases()) {
1393 QualType T = BaseSpec.getType();
1394 if (!T->isStructuralType()) {
1395 SubLoc = BaseSpec.getBaseTypeLoc();
1396 SubType = T;
1397 Kind = 1;
1398 break;
1399 }
1400 }
1401 }
1402
1403 assert(Kind != -1 && "couldn't find reason why type is not structural")(static_cast <bool> (Kind != -1 && "couldn't find reason why type is not structural"
) ? void (0) : __assert_fail ("Kind != -1 && \"couldn't find reason why type is not structural\""
, "clang/lib/Sema/SemaTemplate.cpp", 1403, __extension__ __PRETTY_FUNCTION__
))
;
1404 Diag(SubLoc, diag::note_not_structural_subobject)
1405 << T << Kind << SubType;
1406 T = SubType;
1407 RD = T->getAsCXXRecordDecl();
Value stored to 'RD' is never read
1408 }
1409
1410 return true;
1411}
1412
1413QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1414 SourceLocation Loc) {
1415 // We don't allow variably-modified types as the type of non-type template
1416 // parameters.
1417 if (T->isVariablyModifiedType()) {
1418 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1419 << T;
1420 return QualType();
1421 }
1422
1423 // C++ [temp.param]p4:
1424 //
1425 // A non-type template-parameter shall have one of the following
1426 // (optionally cv-qualified) types:
1427 //
1428 // -- integral or enumeration type,
1429 if (T->isIntegralOrEnumerationType() ||
1430 // -- pointer to object or pointer to function,
1431 T->isPointerType() ||
1432 // -- lvalue reference to object or lvalue reference to function,
1433 T->isLValueReferenceType() ||
1434 // -- pointer to member,
1435 T->isMemberPointerType() ||
1436 // -- std::nullptr_t, or
1437 T->isNullPtrType() ||
1438 // -- a type that contains a placeholder type.
1439 T->isUndeducedType()) {
1440 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1441 // are ignored when determining its type.
1442 return T.getUnqualifiedType();
1443 }
1444
1445 // C++ [temp.param]p8:
1446 //
1447 // A non-type template-parameter of type "array of T" or
1448 // "function returning T" is adjusted to be of type "pointer to
1449 // T" or "pointer to function returning T", respectively.
1450 if (T->isArrayType() || T->isFunctionType())
1451 return Context.getDecayedType(T);
1452
1453 // If T is a dependent type, we can't do the check now, so we
1454 // assume that it is well-formed. Note that stripping off the
1455 // qualifiers here is not really correct if T turns out to be
1456 // an array type, but we'll recompute the type everywhere it's
1457 // used during instantiation, so that should be OK. (Using the
1458 // qualified type is equally wrong.)
1459 if (T->isDependentType())
1460 return T.getUnqualifiedType();
1461
1462 // C++20 [temp.param]p6:
1463 // -- a structural type
1464 if (RequireStructuralType(T, Loc))
1465 return QualType();
1466
1467 if (!getLangOpts().CPlusPlus20) {
1468 // FIXME: Consider allowing structural types as an extension in C++17. (In
1469 // earlier language modes, the template argument evaluation rules are too
1470 // inflexible.)
1471 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1472 return QualType();
1473 }
1474
1475 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1476 return T.getUnqualifiedType();
1477}
1478
1479NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1480 unsigned Depth,
1481 unsigned Position,
1482 SourceLocation EqualLoc,
1483 Expr *Default) {
1484 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1485
1486 // Check that we have valid decl-specifiers specified.
1487 auto CheckValidDeclSpecifiers = [this, &D] {
1488 // C++ [temp.param]
1489 // p1
1490 // template-parameter:
1491 // ...
1492 // parameter-declaration
1493 // p2
1494 // ... A storage class shall not be specified in a template-parameter
1495 // declaration.
1496 // [dcl.typedef]p1:
1497 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1498 // of a parameter-declaration
1499 const DeclSpec &DS = D.getDeclSpec();
1500 auto EmitDiag = [this](SourceLocation Loc) {
1501 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1502 << FixItHint::CreateRemoval(Loc);
1503 };
1504 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1505 EmitDiag(DS.getStorageClassSpecLoc());
1506
1507 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1508 EmitDiag(DS.getThreadStorageClassSpecLoc());
1509
1510 // [dcl.inline]p1:
1511 // The inline specifier can be applied only to the declaration or
1512 // definition of a variable or function.
1513
1514 if (DS.isInlineSpecified())
1515 EmitDiag(DS.getInlineSpecLoc());
1516
1517 // [dcl.constexpr]p1:
1518 // The constexpr specifier shall be applied only to the definition of a
1519 // variable or variable template or the declaration of a function or
1520 // function template.
1521
1522 if (DS.hasConstexprSpecifier())
1523 EmitDiag(DS.getConstexprSpecLoc());
1524
1525 // [dcl.fct.spec]p1:
1526 // Function-specifiers can be used only in function declarations.
1527
1528 if (DS.isVirtualSpecified())
1529 EmitDiag(DS.getVirtualSpecLoc());
1530
1531 if (DS.hasExplicitSpecifier())
1532 EmitDiag(DS.getExplicitSpecLoc());
1533
1534 if (DS.isNoreturnSpecified())
1535 EmitDiag(DS.getNoreturnSpecLoc());
1536 };
1537
1538 CheckValidDeclSpecifiers();
1539
1540 if (const auto *T = TInfo->getType()->getContainedDeducedType())
1541 if (isa<AutoType>(T))
1542 Diag(D.getIdentifierLoc(),
1543 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1544 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1545
1546 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"Non-type template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 1547, __extension__ __PRETTY_FUNCTION__
))
1547 "Non-type template parameter not in template parameter scope!")(static_cast <bool> (S->isTemplateParamScope() &&
"Non-type template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 1547, __extension__ __PRETTY_FUNCTION__
))
;
1548 bool Invalid = false;
1549
1550 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1551 if (T.isNull()) {
1552 T = Context.IntTy; // Recover with an 'int' type.
1553 Invalid = true;
1554 }
1555
1556 CheckFunctionOrTemplateParamDeclarator(S, D);
1557
1558 IdentifierInfo *ParamName = D.getIdentifier();
1559 bool IsParameterPack = D.hasEllipsis();
1560 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1561 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1562 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1563 TInfo);
1564 Param->setAccess(AS_public);
1565
1566 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1567 if (TL.isConstrained())
1568 if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
1569 Invalid = true;
1570
1571 if (Invalid)
1572 Param->setInvalidDecl();
1573
1574 if (Param->isParameterPack())
1575 if (auto *LSI = getEnclosingLambda())
1576 LSI->LocalPacks.push_back(Param);
1577
1578 if (ParamName) {
1579 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1580 ParamName);
1581
1582 // Add the template parameter into the current scope.
1583 S->AddDecl(Param);
1584 IdResolver.AddDecl(Param);
1585 }
1586
1587 // C++0x [temp.param]p9:
1588 // A default template-argument may be specified for any kind of
1589 // template-parameter that is not a template parameter pack.
1590 if (Default && IsParameterPack) {
1591 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1592 Default = nullptr;
1593 }
1594
1595 // Check the well-formedness of the default template argument, if provided.
1596 if (Default) {
1597 // Check for unexpanded parameter packs.
1598 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1599 return Param;
1600
1601 TemplateArgument SugaredConverted, CanonicalConverted;
1602 ExprResult DefaultRes = CheckTemplateArgument(
1603 Param, Param->getType(), Default, SugaredConverted, CanonicalConverted,
1604 CTAK_Specified);
1605 if (DefaultRes.isInvalid()) {
1606 Param->setInvalidDecl();
1607 return Param;
1608 }
1609 Default = DefaultRes.get();
1610
1611 Param->setDefaultArgument(Default);
1612 }
1613
1614 return Param;
1615}
1616
1617/// ActOnTemplateTemplateParameter - Called when a C++ template template
1618/// parameter (e.g. T in template <template \<typename> class T> class array)
1619/// has been parsed. S is the current scope.
1620NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1621 SourceLocation TmpLoc,
1622 TemplateParameterList *Params,
1623 SourceLocation EllipsisLoc,
1624 IdentifierInfo *Name,
1625 SourceLocation NameLoc,
1626 unsigned Depth,
1627 unsigned Position,
1628 SourceLocation EqualLoc,
1629 ParsedTemplateArgument Default) {
1630 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"Template template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 1631, __extension__ __PRETTY_FUNCTION__
))
1631 "Template template parameter not in template parameter scope!")(static_cast <bool> (S->isTemplateParamScope() &&
"Template template parameter not in template parameter scope!"
) ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 1631, __extension__ __PRETTY_FUNCTION__
))
;
1632
1633 // Construct the parameter object.
1634 bool IsParameterPack = EllipsisLoc.isValid();
1635 TemplateTemplateParmDecl *Param =
1636 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1637 NameLoc.isInvalid()? TmpLoc : NameLoc,
1638 Depth, Position, IsParameterPack,
1639 Name, Params);
1640 Param->setAccess(AS_public);
1641
1642 if (Param->isParameterPack())
1643 if (auto *LSI = getEnclosingLambda())
1644 LSI->LocalPacks.push_back(Param);
1645
1646 // If the template template parameter has a name, then link the identifier
1647 // into the scope and lookup mechanisms.
1648 if (Name) {
1649 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1650
1651 S->AddDecl(Param);
1652 IdResolver.AddDecl(Param);
1653 }
1654
1655 if (Params->size() == 0) {
1656 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1657 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1658 Param->setInvalidDecl();
1659 }
1660
1661 // C++0x [temp.param]p9:
1662 // A default template-argument may be specified for any kind of
1663 // template-parameter that is not a template parameter pack.
1664 if (IsParameterPack && !Default.isInvalid()) {
1665 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1666 Default = ParsedTemplateArgument();
1667 }
1668
1669 if (!Default.isInvalid()) {
1670 // Check only that we have a template template argument. We don't want to
1671 // try to check well-formedness now, because our template template parameter
1672 // might have dependent types in its template parameters, which we wouldn't
1673 // be able to match now.
1674 //
1675 // If none of the template template parameter's template arguments mention
1676 // other template parameters, we could actually perform more checking here.
1677 // However, it isn't worth doing.
1678 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1679 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1680 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1681 << DefaultArg.getSourceRange();
1682 return Param;
1683 }
1684
1685 // Check for unexpanded parameter packs.
1686 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1687 DefaultArg.getArgument().getAsTemplate(),
1688 UPPC_DefaultArgument))
1689 return Param;
1690
1691 Param->setDefaultArgument(Context, DefaultArg);
1692 }
1693
1694 return Param;
1695}
1696
1697namespace {
1698class ConstraintRefersToContainingTemplateChecker
1699 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1700 bool Result = false;
1701 const FunctionDecl *Friend = nullptr;
1702 unsigned TemplateDepth = 0;
1703
1704 // Check a record-decl that we've seen to see if it is a lexical parent of the
1705 // Friend, likely because it was referred to without its template arguments.
1706 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1707 CheckingRD = CheckingRD->getMostRecentDecl();
1708
1709 for (const DeclContext *DC = Friend->getLexicalDeclContext();
1710 DC && !DC->isFileContext(); DC = DC->getParent())
1711 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1712 if (CheckingRD == RD->getMostRecentDecl())
1713 Result = true;
1714 }
1715
1716 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1717 assert(D->getDepth() <= TemplateDepth &&(static_cast <bool> (D->getDepth() <= TemplateDepth
&& "Nothing should reference a value below the actual template depth, "
"depth is likely wrong") ? void (0) : __assert_fail ("D->getDepth() <= TemplateDepth && \"Nothing should reference a value below the actual template depth, \" \"depth is likely wrong\""
, "clang/lib/Sema/SemaTemplate.cpp", 1719, __extension__ __PRETTY_FUNCTION__
))
1718 "Nothing should reference a value below the actual template depth, "(static_cast <bool> (D->getDepth() <= TemplateDepth
&& "Nothing should reference a value below the actual template depth, "
"depth is likely wrong") ? void (0) : __assert_fail ("D->getDepth() <= TemplateDepth && \"Nothing should reference a value below the actual template depth, \" \"depth is likely wrong\""
, "clang/lib/Sema/SemaTemplate.cpp", 1719, __extension__ __PRETTY_FUNCTION__
))
1719 "depth is likely wrong")(static_cast <bool> (D->getDepth() <= TemplateDepth
&& "Nothing should reference a value below the actual template depth, "
"depth is likely wrong") ? void (0) : __assert_fail ("D->getDepth() <= TemplateDepth && \"Nothing should reference a value below the actual template depth, \" \"depth is likely wrong\""
, "clang/lib/Sema/SemaTemplate.cpp", 1719, __extension__ __PRETTY_FUNCTION__
))
;
1720 if (D->getDepth() != TemplateDepth)
1721 Result = true;
1722
1723 // Necessary because the type of the NTTP might be what refers to the parent
1724 // constriant.
1725 TransformType(D->getType());
1726 }
1727
1728public:
1729 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1730
1731 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1732 const FunctionDecl *Friend,
1733 unsigned TemplateDepth)
1734 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
1735 bool getResult() const { return Result; }
1736
1737 // This should be the only template parm type that we have to deal with.
1738 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1739 // FunctionParmPackExpr are all partially substituted, which cannot happen
1740 // with concepts at this point in translation.
1741 using inherited::TransformTemplateTypeParmType;
1742 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1743 TemplateTypeParmTypeLoc TL, bool) {
1744 assert(TL.getDecl()->getDepth() <= TemplateDepth &&(static_cast <bool> (TL.getDecl()->getDepth() <= TemplateDepth
&& "Nothing should reference a value below the actual template depth, "
"depth is likely wrong") ? void (0) : __assert_fail ("TL.getDecl()->getDepth() <= TemplateDepth && \"Nothing should reference a value below the actual template depth, \" \"depth is likely wrong\""
, "clang/lib/Sema/SemaTemplate.cpp", 1746, __extension__ __PRETTY_FUNCTION__
))
1745 "Nothing should reference a value below the actual template depth, "(static_cast <bool> (TL.getDecl()->getDepth() <= TemplateDepth
&& "Nothing should reference a value below the actual template depth, "
"depth is likely wrong") ? void (0) : __assert_fail ("TL.getDecl()->getDepth() <= TemplateDepth && \"Nothing should reference a value below the actual template depth, \" \"depth is likely wrong\""
, "clang/lib/Sema/SemaTemplate.cpp", 1746, __extension__ __PRETTY_FUNCTION__
))
1746 "depth is likely wrong")(static_cast <bool> (TL.getDecl()->getDepth() <= TemplateDepth
&& "Nothing should reference a value below the actual template depth, "
"depth is likely wrong") ? void (0) : __assert_fail ("TL.getDecl()->getDepth() <= TemplateDepth && \"Nothing should reference a value below the actual template depth, \" \"depth is likely wrong\""
, "clang/lib/Sema/SemaTemplate.cpp", 1746, __extension__ __PRETTY_FUNCTION__
))
;
1747 if (TL.getDecl()->getDepth() != TemplateDepth)
1748 Result = true;
1749 return inherited::TransformTemplateTypeParmType(
1750 TLB, TL,
1751 /*SuppressObjCLifetime=*/false);
1752 }
1753
1754 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1755 if (!D)
1756 return D;
1757 // FIXME : This is possibly an incomplete list, but it is unclear what other
1758 // Decl kinds could be used to refer to the template parameters. This is a
1759 // best guess so far based on examples currently available, but the
1760 // unreachable should catch future instances/cases.
1761 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1762 TransformType(TD->getUnderlyingType());
1763 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1764 CheckNonTypeTemplateParmDecl(NTTPD);
1765 else if (auto *VD = dyn_cast<ValueDecl>(D))
1766 TransformType(VD->getType());
1767 else if (auto *TD = dyn_cast<TemplateDecl>(D))
1768 TransformTemplateParameterList(TD->getTemplateParameters());
1769 else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1770 CheckIfContainingRecord(RD);
1771 else if (isa<NamedDecl>(D)) {
1772 // No direct types to visit here I believe.
1773 } else
1774 llvm_unreachable("Don't know how to handle this declaration type yet")::llvm::llvm_unreachable_internal("Don't know how to handle this declaration type yet"
, "clang/lib/Sema/SemaTemplate.cpp", 1774)
;
1775 return D;
1776 }
1777};
1778} // namespace
1779
1780bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1781 const FunctionDecl *Friend, unsigned TemplateDepth,
1782 const Expr *Constraint) {
1783 assert(Friend->getFriendObjectKind() && "Only works on a friend")(static_cast <bool> (Friend->getFriendObjectKind() &&
"Only works on a friend") ? void (0) : __assert_fail ("Friend->getFriendObjectKind() && \"Only works on a friend\""
, "clang/lib/Sema/SemaTemplate.cpp", 1783, __extension__ __PRETTY_FUNCTION__
))
;
1784 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1785 TemplateDepth);
1786 Checker.TransformExpr(const_cast<Expr *>(Constraint));
1787 return Checker.getResult();
1788}
1789
1790/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1791/// constrained by RequiresClause, that contains the template parameters in
1792/// Params.
1793TemplateParameterList *
1794Sema::ActOnTemplateParameterList(unsigned Depth,
1795 SourceLocation ExportLoc,
1796 SourceLocation TemplateLoc,
1797 SourceLocation LAngleLoc,
1798 ArrayRef<NamedDecl *> Params,
1799 SourceLocation RAngleLoc,
1800 Expr *RequiresClause) {
1801 if (ExportLoc.isValid())
1802 Diag(ExportLoc, diag::warn_template_export_unsupported);
1803
1804 for (NamedDecl *P : Params)
1805 warnOnReservedIdentifier(P);
1806
1807 return TemplateParameterList::Create(
1808 Context, TemplateLoc, LAngleLoc,
1809 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1810}
1811
1812static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1813 const CXXScopeSpec &SS) {
1814 if (SS.isSet())
1815 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1816}
1817
1818DeclResult Sema::CheckClassTemplate(
1819 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1820 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1821 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1822 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1823 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1824 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1825 assert(TemplateParams && TemplateParams->size() > 0 &&(static_cast <bool> (TemplateParams && TemplateParams
->size() > 0 && "No template parameters") ? void
(0) : __assert_fail ("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "clang/lib/Sema/SemaTemplate.cpp", 1826, __extension__ __PRETTY_FUNCTION__
))
1826 "No template parameters")(static_cast <bool> (TemplateParams && TemplateParams
->size() > 0 && "No template parameters") ? void
(0) : __assert_fail ("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "clang/lib/Sema/SemaTemplate.cpp", 1826, __extension__ __PRETTY_FUNCTION__
))
;
1827 assert(TUK != TUK_Reference && "Can only declare or define class templates")(static_cast <bool> (TUK != TUK_Reference && "Can only declare or define class templates"
) ? void (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "clang/lib/Sema/SemaTemplate.cpp", 1827, __extension__ __PRETTY_FUNCTION__
))
;
1828 bool Invalid = false;
1829
1830 // Check that we can declare a template here.
1831 if (CheckTemplateDeclScope(S, TemplateParams))
1832 return true;
1833
1834 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1835 assert(Kind != TTK_Enum && "can't build template of enumerated type")(static_cast <bool> (Kind != TTK_Enum && "can't build template of enumerated type"
) ? void (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "clang/lib/Sema/SemaTemplate.cpp", 1835, __extension__ __PRETTY_FUNCTION__
))
;
1836
1837 // There is no such thing as an unnamed class template.
1838 if (!Name) {
1839 Diag(KWLoc, diag::err_template_unnamed_class);
1840 return true;
1841 }
1842
1843 // Find any previous declaration with this name. For a friend with no
1844 // scope explicitly specified, we only look for tag declarations (per
1845 // C++11 [basic.lookup.elab]p2).
1846 DeclContext *SemanticContext;
1847 LookupResult Previous(*this, Name, NameLoc,
1848 (SS.isEmpty() && TUK == TUK_Friend)
1849 ? LookupTagName : LookupOrdinaryName,
1850 forRedeclarationInCurContext());
1851 if (SS.isNotEmpty() && !SS.isInvalid()) {
1852 SemanticContext = computeDeclContext(SS, true);
1853 if (!SemanticContext) {
1854 // FIXME: Horrible, horrible hack! We can't currently represent this
1855 // in the AST, and historically we have just ignored such friend
1856 // class templates, so don't complain here.
1857 Diag(NameLoc, TUK == TUK_Friend
1858 ? diag::warn_template_qualified_friend_ignored
1859 : diag::err_template_qualified_declarator_no_match)
1860 << SS.getScopeRep() << SS.getRange();
1861 return TUK != TUK_Friend;
1862 }
1863
1864 if (RequireCompleteDeclContext(SS, SemanticContext))
1865 return true;
1866
1867 // If we're adding a template to a dependent context, we may need to
1868 // rebuilding some of the types used within the template parameter list,
1869 // now that we know what the current instantiation is.
1870 if (SemanticContext->isDependentContext()) {
1871 ContextRAII SavedContext(*this, SemanticContext);
1872 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1873 Invalid = true;
1874 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1875 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1876
1877 LookupQualifiedName(Previous, SemanticContext);
1878 } else {
1879 SemanticContext = CurContext;
1880
1881 // C++14 [class.mem]p14:
1882 // If T is the name of a class, then each of the following shall have a
1883 // name different from T:
1884 // -- every member template of class T
1885 if (TUK != TUK_Friend &&
1886 DiagnoseClassNameShadow(SemanticContext,
1887 DeclarationNameInfo(Name, NameLoc)))
1888 return true;
1889
1890 LookupName(Previous, S);
1891 }
1892
1893 if (Previous.isAmbiguous())
1894 return true;
1895
1896 NamedDecl *PrevDecl = nullptr;
1897 if (Previous.begin() != Previous.end())
1898 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1899
1900 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1901 // Maybe we will complain about the shadowed template parameter.
1902 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1903 // Just pretend that we didn't see the previous declaration.
1904 PrevDecl = nullptr;
1905 }
1906
1907 // If there is a previous declaration with the same name, check
1908 // whether this is a valid redeclaration.
1909 ClassTemplateDecl *PrevClassTemplate =
1910 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1911
1912 // We may have found the injected-class-name of a class template,
1913 // class template partial specialization, or class template specialization.
1914 // In these cases, grab the template that is being defined or specialized.
1915 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1916 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1917 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1918 PrevClassTemplate
1919 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1920 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1921 PrevClassTemplate
1922 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1923 ->getSpecializedTemplate();
1924 }
1925 }
1926
1927 if (TUK == TUK_Friend) {
1928 // C++ [namespace.memdef]p3:
1929 // [...] When looking for a prior declaration of a class or a function
1930 // declared as a friend, and when the name of the friend class or
1931 // function is neither a qualified name nor a template-id, scopes outside
1932 // the innermost enclosing namespace scope are not considered.
1933 if (!SS.isSet()) {
1934 DeclContext *OutermostContext = CurContext;
1935 while (!OutermostContext->isFileContext())
1936 OutermostContext = OutermostContext->getLookupParent();
1937
1938 if (PrevDecl &&
1939 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1940 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1941 SemanticContext = PrevDecl->getDeclContext();
1942 } else {
1943 // Declarations in outer scopes don't matter. However, the outermost
1944 // context we computed is the semantic context for our new
1945 // declaration.
1946 PrevDecl = PrevClassTemplate = nullptr;
1947 SemanticContext = OutermostContext;
1948
1949 // Check that the chosen semantic context doesn't already contain a
1950 // declaration of this name as a non-tag type.
1951 Previous.clear(LookupOrdinaryName);
1952 DeclContext *LookupContext = SemanticContext;
1953 while (LookupContext->isTransparentContext())
1954 LookupContext = LookupContext->getLookupParent();
1955 LookupQualifiedName(Previous, LookupContext);
1956
1957 if (Previous.isAmbiguous())
1958 return true;
1959
1960 if (Previous.begin() != Previous.end())
1961 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1962 }
1963 }
1964 } else if (PrevDecl &&
1965 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1966 S, SS.isValid()))
1967 PrevDecl = PrevClassTemplate = nullptr;
1968
1969 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1970 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1971 if (SS.isEmpty() &&
1972 !(PrevClassTemplate &&
1973 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1974 SemanticContext->getRedeclContext()))) {
1975 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1976 Diag(Shadow->getTargetDecl()->getLocation(),
1977 diag::note_using_decl_target);
1978 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
1979 // Recover by ignoring the old declaration.
1980 PrevDecl = PrevClassTemplate = nullptr;
1981 }
1982 }
1983
1984 if (PrevClassTemplate) {
1985 // Ensure that the template parameter lists are compatible. Skip this check
1986 // for a friend in a dependent context: the template parameter list itself
1987 // could be dependent.
1988 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1989 !TemplateParameterListsAreEqual(TemplateParams,
1990 PrevClassTemplate->getTemplateParameters(),
1991 /*Complain=*/true,
1992 TPL_TemplateMatch))
1993 return true;
1994
1995 // C++ [temp.class]p4:
1996 // In a redeclaration, partial specialization, explicit
1997 // specialization or explicit instantiation of a class template,
1998 // the class-key shall agree in kind with the original class
1999 // template declaration (7.1.5.3).
2000 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
2001 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
2002 TUK == TUK_Definition, KWLoc, Name)) {
2003 Diag(KWLoc, diag::err_use_with_wrong_tag)
2004 << Name
2005 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2006 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2007 Kind = PrevRecordDecl->getTagKind();
2008 }
2009
2010 // Check for redefinition of this class template.
2011 if (TUK == TUK_Definition) {
2012 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2013 // If we have a prior definition that is not visible, treat this as
2014 // simply making that previous definition visible.
2015 NamedDecl *Hidden = nullptr;
2016 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2017 SkipBody->ShouldSkip = true;
2018 SkipBody->Previous = Def;
2019 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2020 assert(Tmpl && "original definition of a class template is not a "(static_cast <bool> (Tmpl && "original definition of a class template is not a "
"class template?") ? void (0) : __assert_fail ("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "clang/lib/Sema/SemaTemplate.cpp", 2021, __extension__ __PRETTY_FUNCTION__
))
2021 "class template?")(static_cast <bool> (Tmpl && "original definition of a class template is not a "
"class template?") ? void (0) : __assert_fail ("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "clang/lib/Sema/SemaTemplate.cpp", 2021, __extension__ __PRETTY_FUNCTION__
))
;
2022 makeMergedDefinitionVisible(Hidden);
2023 makeMergedDefinitionVisible(Tmpl);
2024 } else {
2025 Diag(NameLoc, diag::err_redefinition) << Name;
2026 Diag(Def->getLocation(), diag::note_previous_definition);
2027 // FIXME: Would it make sense to try to "forget" the previous
2028 // definition, as part of error recovery?
2029 return true;
2030 }
2031 }
2032 }
2033 } else if (PrevDecl) {
2034 // C++ [temp]p5:
2035 // A class template shall not have the same name as any other
2036 // template, class, function, object, enumeration, enumerator,
2037 // namespace, or type in the same scope (3.3), except as specified
2038 // in (14.5.4).
2039 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2040 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2041 return true;
2042 }
2043
2044 // Check the template parameter list of this declaration, possibly
2045 // merging in the template parameter list from the previous class
2046 // template declaration. Skip this check for a friend in a dependent
2047 // context, because the template parameter list might be dependent.
2048 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2049 CheckTemplateParameterList(
2050 TemplateParams,
2051 PrevClassTemplate
2052 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
2053 : nullptr,
2054 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2055 SemanticContext->isDependentContext())
2056 ? TPC_ClassTemplateMember
2057 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
2058 SkipBody))
2059 Invalid = true;
2060
2061 if (SS.isSet()) {
2062 // If the name of the template was qualified, we must be defining the
2063 // template out-of-line.
2064 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2065 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2066 : diag::err_member_decl_does_not_match)
2067 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2068 Invalid = true;
2069 }
2070 }
2071
2072 // If this is a templated friend in a dependent context we should not put it
2073 // on the redecl chain. In some cases, the templated friend can be the most
2074 // recent declaration tricking the template instantiator to make substitutions
2075 // there.
2076 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2077 bool ShouldAddRedecl
2078 = !(TUK == TUK_Friend && CurContext->isDependentContext());
2079
2080 CXXRecordDecl *NewClass =
2081 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2082 PrevClassTemplate && ShouldAddRedecl ?
2083 PrevClassTemplate->getTemplatedDecl() : nullptr,
2084 /*DelayTypeCreation=*/true);
2085 SetNestedNameSpecifier(*this, NewClass, SS);
2086 if (NumOuterTemplateParamLists > 0)
2087 NewClass->setTemplateParameterListsInfo(
2088 Context,
2089 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2090
2091 // Add alignment attributes if necessary; these attributes are checked when
2092 // the ASTContext lays out the structure.
2093 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2094 AddAlignmentAttributesForRecord(NewClass);
2095 AddMsStructLayoutForRecord(NewClass);
2096 }
2097
2098 ClassTemplateDecl *NewTemplate
2099 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2100 DeclarationName(Name), TemplateParams,
2101 NewClass);
2102
2103 if (ShouldAddRedecl)
2104 NewTemplate->setPreviousDecl(PrevClassTemplate);
2105
2106 NewClass->setDescribedClassTemplate(NewTemplate);
2107
2108 if (ModulePrivateLoc.isValid())
2109 NewTemplate->setModulePrivate();
2110
2111 // Build the type for the class template declaration now.
2112 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2113 T = Context.getInjectedClassNameType(NewClass, T);
2114 assert(T->isDependentType() && "Class template type is not dependent?")(static_cast <bool> (T->isDependentType() &&
"Class template type is not dependent?") ? void (0) : __assert_fail
("T->isDependentType() && \"Class template type is not dependent?\""
, "clang/lib/Sema/SemaTemplate.cpp", 2114, __extension__ __PRETTY_FUNCTION__
))
;
2115 (void)T;
2116
2117 // If we are providing an explicit specialization of a member that is a
2118 // class template, make a note of that.
2119 if (PrevClassTemplate &&
2120 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2121 PrevClassTemplate->setMemberSpecialization();
2122
2123 // Set the access specifier.
2124 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2125 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2126
2127 // Set the lexical context of these templates
2128 NewClass->setLexicalDeclContext(CurContext);
2129 NewTemplate->setLexicalDeclContext(CurContext);
2130
2131 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2132 NewClass->startDefinition();
2133
2134 ProcessDeclAttributeList(S, NewClass, Attr);
2135
2136 if (PrevClassTemplate)
2137 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2138
2139 AddPushedVisibilityAttribute(NewClass);
2140 inferGslOwnerPointerAttribute(NewClass);
2141
2142 if (TUK != TUK_Friend) {
2143 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2144 Scope *Outer = S;
2145 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2146 Outer = Outer->getParent();
2147 PushOnScopeChains(NewTemplate, Outer);
2148 } else {
2149 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2150 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2151 NewClass->setAccess(PrevClassTemplate->getAccess());
2152 }
2153
2154 NewTemplate->setObjectOfFriendDecl();
2155
2156 // Friend templates are visible in fairly strange ways.
2157 if (!CurContext->isDependentContext()) {
2158 DeclContext *DC = SemanticContext->getRedeclContext();
2159 DC->makeDeclVisibleInContext(NewTemplate);
2160 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2161 PushOnScopeChains(NewTemplate, EnclosingScope,
2162 /* AddToContext = */ false);
2163 }
2164
2165 FriendDecl *Friend = FriendDecl::Create(
2166 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2167 Friend->setAccess(AS_public);
2168 CurContext->addDecl(Friend);
2169 }
2170
2171 if (PrevClassTemplate)
2172 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2173
2174 if (Invalid) {
2175 NewTemplate->setInvalidDecl();
2176 NewClass->setInvalidDecl();
2177 }
2178
2179 ActOnDocumentableDecl(NewTemplate);
2180
2181 if (SkipBody && SkipBody->ShouldSkip)
2182 return SkipBody->Previous;
2183
2184 return NewTemplate;
2185}
2186
2187namespace {
2188/// Tree transform to "extract" a transformed type from a class template's
2189/// constructor to a deduction guide.
2190class ExtractTypeForDeductionGuide
2191 : public TreeTransform<ExtractTypeForDeductionGuide> {
2192 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2193
2194public:
2195 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2196 ExtractTypeForDeductionGuide(
2197 Sema &SemaRef,
2198 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2199 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2200
2201 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2202
2203 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2204 ASTContext &Context = SemaRef.getASTContext();
2205 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2206 TypedefNameDecl *Decl = OrigDecl;
2207 // Transform the underlying type of the typedef and clone the Decl only if
2208 // the typedef has a dependent context.
2209 if (OrigDecl->getDeclContext()->isDependentContext()) {
2210 TypeLocBuilder InnerTLB;
2211 QualType Transformed =
2212 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2213 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2214 if (isa<TypeAliasDecl>(OrigDecl))
2215 Decl = TypeAliasDecl::Create(
2216 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2217 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2218 else {
2219 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef")(static_cast <bool> (isa<TypedefDecl>(OrigDecl) &&
"Not a Type alias or typedef") ? void (0) : __assert_fail ("isa<TypedefDecl>(OrigDecl) && \"Not a Type alias or typedef\""
, "clang/lib/Sema/SemaTemplate.cpp", 2219, __extension__ __PRETTY_FUNCTION__
))
;
2220 Decl = TypedefDecl::Create(
2221 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2222 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2223 }
2224 MaterializedTypedefs.push_back(Decl);
2225 }
2226
2227 QualType TDTy = Context.getTypedefType(Decl);
2228 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2229 TypedefTL.setNameLoc(TL.getNameLoc());
2230
2231 return TDTy;
2232 }
2233};
2234
2235/// Transform to convert portions of a constructor declaration into the
2236/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2237struct ConvertConstructorToDeductionGuideTransform {
2238 ConvertConstructorToDeductionGuideTransform(Sema &S,
2239 ClassTemplateDecl *Template)
2240 : SemaRef(S), Template(Template) {}
2241
2242 Sema &SemaRef;
2243 ClassTemplateDecl *Template;
2244
2245 DeclContext *DC = Template->getDeclContext();
2246 CXXRecordDecl *Primary = Template->getTemplatedDecl();
2247 DeclarationName DeductionGuideName =
2248 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2249
2250 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2251
2252 // Index adjustment to apply to convert depth-1 template parameters into
2253 // depth-0 template parameters.
2254 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2255
2256 /// Transform a constructor declaration into a deduction guide.
2257 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2258 CXXConstructorDecl *CD) {
2259 SmallVector<TemplateArgument, 16> SubstArgs;
2260
2261 LocalInstantiationScope Scope(SemaRef);
2262
2263 // C++ [over.match.class.deduct]p1:
2264 // -- For each constructor of the class template designated by the
2265 // template-name, a function template with the following properties:
2266
2267 // -- The template parameters are the template parameters of the class
2268 // template followed by the template parameters (including default
2269 // template arguments) of the constructor, if any.
2270 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2271 if (FTD) {
2272 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2273 SmallVector<NamedDecl *, 16> AllParams;
2274 AllParams.reserve(TemplateParams->size() + InnerParams->size());
2275 AllParams.insert(AllParams.begin(),
2276 TemplateParams->begin(), TemplateParams->end());
2277 SubstArgs.reserve(InnerParams->size());
2278
2279 // Later template parameters could refer to earlier ones, so build up
2280 // a list of substituted template arguments as we go.
2281 for (NamedDecl *Param : *InnerParams) {
2282 MultiLevelTemplateArgumentList Args;
2283 Args.setKind(TemplateSubstitutionKind::Rewrite);
2284 Args.addOuterTemplateArguments(SubstArgs);
2285 Args.addOuterRetainedLevel();
2286 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2287 if (!NewParam)
2288 return nullptr;
2289 AllParams.push_back(NewParam);
2290 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2291 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2292 }
2293
2294 // Substitute new template parameters into requires-clause if present.
2295 Expr *RequiresClause = nullptr;
2296 if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2297 MultiLevelTemplateArgumentList Args;
2298 Args.setKind(TemplateSubstitutionKind::Rewrite);
2299 Args.addOuterTemplateArguments(SubstArgs);
2300 Args.addOuterRetainedLevel();
2301 ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2302 if (E.isInvalid())
2303 return nullptr;
2304 RequiresClause = E.getAs<Expr>();
2305 }
2306
2307 TemplateParams = TemplateParameterList::Create(
2308 SemaRef.Context, InnerParams->getTemplateLoc(),
2309 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2310 RequiresClause);
2311 }
2312
2313 // If we built a new template-parameter-list, track that we need to
2314 // substitute references to the old parameters into references to the
2315 // new ones.
2316 MultiLevelTemplateArgumentList Args;
2317 Args.setKind(TemplateSubstitutionKind::Rewrite);
2318 if (FTD) {
2319 Args.addOuterTemplateArguments(SubstArgs);
2320 Args.addOuterRetainedLevel();
2321 }
2322
2323 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2324 .getAsAdjusted<FunctionProtoTypeLoc>();
2325 assert(FPTL && "no prototype for constructor declaration")(static_cast <bool> (FPTL && "no prototype for constructor declaration"
) ? void (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "clang/lib/Sema/SemaTemplate.cpp", 2325, __extension__ __PRETTY_FUNCTION__
))
;
2326
2327 // Transform the type of the function, adjusting the return type and
2328 // replacing references to the old parameters with references to the
2329 // new ones.
2330 TypeLocBuilder TLB;
2331 SmallVector<ParmVarDecl*, 8> Params;
2332 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2333 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2334 MaterializedTypedefs);
2335 if (NewType.isNull())
2336 return nullptr;
2337 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2338
2339 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2340 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2341 CD->getEndLoc(), MaterializedTypedefs);
2342 }
2343
2344 /// Build a deduction guide with the specified parameter types.
2345 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2346 SourceLocation Loc = Template->getLocation();
2347
2348 // Build the requested type.
2349 FunctionProtoType::ExtProtoInfo EPI;
2350 EPI.HasTrailingReturn = true;
2351 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2352 DeductionGuideName, EPI);
2353 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2354
2355 FunctionProtoTypeLoc FPTL =
2356 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2357
2358 // Build the parameters, needed during deduction / substitution.
2359 SmallVector<ParmVarDecl*, 4> Params;
2360 for (auto T : ParamTypes) {
2361 ParmVarDecl *NewParam = ParmVarDecl::Create(
2362 SemaRef.Context, DC, Loc, Loc, nullptr, T,
2363 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2364 NewParam->setScopeInfo(0, Params.size());
2365 FPTL.setParam(Params.size(), NewParam);
2366 Params.push_back(NewParam);
2367 }
2368
2369 return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
2370 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2371 }
2372
2373private:
2374 /// Transform a constructor template parameter into a deduction guide template
2375 /// parameter, rebuilding any internal references to earlier parameters and
2376 /// renumbering as we go.
2377 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2378 MultiLevelTemplateArgumentList &Args) {
2379 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2380 // TemplateTypeParmDecl's index cannot be changed after creation, so
2381 // substitute it directly.
2382 auto *NewTTP = TemplateTypeParmDecl::Create(
2383 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2384 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2385 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2386 TTP->isParameterPack(), TTP->hasTypeConstraint(),
2387 TTP->isExpandedParameterPack()
2388 ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2389 : std::nullopt);
2390 if (const auto *TC = TTP->getTypeConstraint())
2391 SemaRef.SubstTypeConstraint(NewTTP, TC, Args,
2392 /*EvaluateConstraint*/ true);
2393 if (TTP->hasDefaultArgument()) {
2394 TypeSourceInfo *InstantiatedDefaultArg =
2395 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2396 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2397 if (InstantiatedDefaultArg)
2398 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2399 }
2400 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2401 NewTTP);
2402 return NewTTP;
2403 }
2404
2405 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2406 return transformTemplateParameterImpl(TTP, Args);
2407
2408 return transformTemplateParameterImpl(
2409 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2410 }
2411 template<typename TemplateParmDecl>
2412 TemplateParmDecl *
2413 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2414 MultiLevelTemplateArgumentList &Args) {
2415 // Ask the template instantiator to do the heavy lifting for us, then adjust
2416 // the index of the parameter once it's done.
2417 auto *NewParam =
2418 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2419 assert(NewParam->getDepth() == 0 && "unexpected template param depth")(static_cast <bool> (NewParam->getDepth() == 0 &&
"unexpected template param depth") ? void (0) : __assert_fail
("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "clang/lib/Sema/SemaTemplate.cpp", 2419, __extension__ __PRETTY_FUNCTION__
))
;
2420 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2421 return NewParam;
2422 }
2423
2424 QualType transformFunctionProtoType(
2425 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2426 SmallVectorImpl<ParmVarDecl *> &Params,
2427 MultiLevelTemplateArgumentList &Args,
2428 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2429 SmallVector<QualType, 4> ParamTypes;
2430 const FunctionProtoType *T = TL.getTypePtr();
2431
2432 // -- The types of the function parameters are those of the constructor.
2433 for (auto *OldParam : TL.getParams()) {
2434 ParmVarDecl *NewParam =
2435 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2436 if (!NewParam)
2437 return QualType();
2438 ParamTypes.push_back(NewParam->getType());
2439 Params.push_back(NewParam);
2440 }
2441
2442 // -- The return type is the class template specialization designated by
2443 // the template-name and template arguments corresponding to the
2444 // template parameters obtained from the class template.
2445 //
2446 // We use the injected-class-name type of the primary template instead.
2447 // This has the convenient property that it is different from any type that
2448 // the user can write in a deduction-guide (because they cannot enter the
2449 // context of the template), so implicit deduction guides can never collide
2450 // with explicit ones.
2451 QualType ReturnType = DeducedType;
2452 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2453
2454 // Resolving a wording defect, we also inherit the variadicness of the
2455 // constructor.
2456 FunctionProtoType::ExtProtoInfo EPI;
2457 EPI.Variadic = T->isVariadic();
2458 EPI.HasTrailingReturn = true;
2459
2460 QualType Result = SemaRef.BuildFunctionType(
2461 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2462 if (Result.isNull())
2463 return QualType();
2464
2465 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2466 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2467 NewTL.setLParenLoc(TL.getLParenLoc());
2468 NewTL.setRParenLoc(TL.getRParenLoc());
2469 NewTL.setExceptionSpecRange(SourceRange());
2470 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2471 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2472 NewTL.setParam(I, Params[I]);
2473
2474 return Result;
2475 }
2476
2477 ParmVarDecl *transformFunctionTypeParam(
2478 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2479 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2480 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2481 TypeSourceInfo *NewDI;
2482 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2483 // Expand out the one and only element in each inner pack.
2484 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2485 NewDI =
2486 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2487 OldParam->getLocation(), OldParam->getDeclName());
2488 if (!NewDI) return nullptr;
2489 NewDI =
2490 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2491 PackTL.getTypePtr()->getNumExpansions());
2492 } else
2493 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2494 OldParam->getDeclName());
2495 if (!NewDI)
2496 return nullptr;
2497
2498 // Extract the type. This (for instance) replaces references to typedef
2499 // members of the current instantiations with the definitions of those
2500 // typedefs, avoiding triggering instantiation of the deduced type during
2501 // deduction.
2502 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2503 .transform(NewDI);
2504
2505 // Resolving a wording defect, we also inherit default arguments from the
2506 // constructor.
2507 ExprResult NewDefArg;
2508 if (OldParam->hasDefaultArg()) {
2509 // We don't care what the value is (we won't use it); just create a
2510 // placeholder to indicate there is a default argument.
2511 QualType ParamTy = NewDI->getType();
2512 NewDefArg = new (SemaRef.Context)
2513 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2514 ParamTy.getNonLValueExprType(SemaRef.Context),
2515 ParamTy->isLValueReferenceType() ? VK_LValue
2516 : ParamTy->isRValueReferenceType() ? VK_XValue
2517 : VK_PRValue);
2518 }
2519
2520 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2521 OldParam->getInnerLocStart(),
2522 OldParam->getLocation(),
2523 OldParam->getIdentifier(),
2524 NewDI->getType(),
2525 NewDI,
2526 OldParam->getStorageClass(),
2527 NewDefArg.get());
2528 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2529 OldParam->getFunctionScopeIndex());
2530 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2531 return NewParam;
2532 }
2533
2534 FunctionTemplateDecl *buildDeductionGuide(
2535 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2536 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2537 SourceLocation Loc, SourceLocation LocEnd,
2538 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2539 DeclarationNameInfo Name(DeductionGuideName, Loc);
2540 ArrayRef<ParmVarDecl *> Params =
2541 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2542
2543 // Build the implicit deduction guide template.
2544 auto *Guide =
2545 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2546 TInfo->getType(), TInfo, LocEnd, Ctor);
2547 Guide->setImplicit();
2548 Guide->setParams(Params);
2549
2550 for (auto *Param : Params)
2551 Param->setDeclContext(Guide);
2552 for (auto *TD : MaterializedTypedefs)
2553 TD->setDeclContext(Guide);
2554
2555 auto *GuideTemplate = FunctionTemplateDecl::Create(
2556 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2557 GuideTemplate->setImplicit();
2558 Guide->setDescribedFunctionTemplate(GuideTemplate);
2559
2560 if (isa<CXXRecordDecl>(DC)) {
2561 Guide->setAccess(AS_public);
2562 GuideTemplate->setAccess(AS_public);
2563 }
2564
2565 DC->addDecl(GuideTemplate);
2566 return GuideTemplate;
2567 }
2568};
2569}
2570
2571void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2572 SourceLocation Loc) {
2573 if (CXXRecordDecl *DefRecord =
2574 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2575 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2576 Template = DescribedTemplate ? DescribedTemplate : Template;
2577 }
2578
2579 DeclContext *DC = Template->getDeclContext();
2580 if (DC->isDependentContext())
2581 return;
2582
2583 ConvertConstructorToDeductionGuideTransform Transform(
2584 *this, cast<ClassTemplateDecl>(Template));
2585 if (!isCompleteType(Loc, Transform.DeducedType))
2586 return;
2587
2588 // Check whether we've already declared deduction guides for this template.
2589 // FIXME: Consider storing a flag on the template to indicate this.
2590 auto Existing = DC->lookup(Transform.DeductionGuideName);
2591 for (auto *D : Existing)
2592 if (D->isImplicit())
2593 return;
2594
2595 // In case we were expanding a pack when we attempted to declare deduction
2596 // guides, turn off pack expansion for everything we're about to do.
2597 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2598 // Create a template instantiation record to track the "instantiation" of
2599 // constructors into deduction guides.
2600 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2601 // this substitution process actually fail?
2602 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2603 if (BuildingDeductionGuides.isInvalid())
2604 return;
2605
2606 // Convert declared constructors into deduction guide templates.
2607 // FIXME: Skip constructors for which deduction must necessarily fail (those
2608 // for which some class template parameter without a default argument never
2609 // appears in a deduced context).
2610 llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors;
2611 bool AddedAny = false;
2612 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2613 D = D->getUnderlyingDecl();
2614 if (D->isInvalidDecl() || D->isImplicit())
2615 continue;
2616
2617 D = cast<NamedDecl>(D->getCanonicalDecl());
2618
2619 // Within C++20 modules, we may have multiple same constructors in
2620 // multiple same RecordDecls. And it doesn't make sense to create
2621 // duplicated deduction guides for the duplicated constructors.
2622 if (ProcessedCtors.count(D))
2623 continue;
2624
2625 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2626 auto *CD =
2627 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2628 // Class-scope explicit specializations (MS extension) do not result in
2629 // deduction guides.
2630 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2631 continue;
2632
2633 // Cannot make a deduction guide when unparsed arguments are present.
2634 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2635 return !P || P->hasUnparsedDefaultArg();
2636 }))
2637 continue;
2638
2639 ProcessedCtors.insert(D);
2640 Transform.transformConstructor(FTD, CD);
2641 AddedAny = true;
2642 }
2643
2644 // C++17 [over.match.class.deduct]
2645 // -- If C is not defined or does not declare any constructors, an
2646 // additional function template derived as above from a hypothetical
2647 // constructor C().
2648 if (!AddedAny)
2649 Transform.buildSimpleDeductionGuide(std::nullopt);
2650
2651 // -- An additional function template derived as above from a hypothetical
2652 // constructor C(C), called the copy deduction candidate.
2653 cast<CXXDeductionGuideDecl>(
2654 cast<FunctionTemplateDecl>(
2655 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2656 ->getTemplatedDecl())
2657 ->setIsCopyDeductionCandidate();
2658}
2659
2660/// Diagnose the presence of a default template argument on a
2661/// template parameter, which is ill-formed in certain contexts.
2662///
2663/// \returns true if the default template argument should be dropped.
2664static bool DiagnoseDefaultTemplateArgument(Sema &S,
2665 Sema::TemplateParamListContext TPC,
2666 SourceLocation ParamLoc,
2667 SourceRange DefArgRange) {
2668 switch (TPC) {
2669 case Sema::TPC_ClassTemplate:
2670 case Sema::TPC_VarTemplate:
2671 case Sema::TPC_TypeAliasTemplate:
2672 return false;
2673
2674 case Sema::TPC_FunctionTemplate:
2675 case Sema::TPC_FriendFunctionTemplateDefinition:
2676 // C++ [temp.param]p9:
2677 // A default template-argument shall not be specified in a
2678 // function template declaration or a function template
2679 // definition [...]
2680 // If a friend function template declaration specifies a default
2681 // template-argument, that declaration shall be a definition and shall be
2682 // the only declaration of the function template in the translation unit.
2683 // (C++98/03 doesn't have this wording; see DR226).
2684 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2685 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2686 : diag::ext_template_parameter_default_in_function_template)
2687 << DefArgRange;
2688 return false;
2689
2690 case Sema::TPC_ClassTemplateMember:
2691 // C++0x [temp.param]p9:
2692 // A default template-argument shall not be specified in the
2693 // template-parameter-lists of the definition of a member of a
2694 // class template that appears outside of the member's class.
2695 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2696 << DefArgRange;
2697 return true;
2698
2699 case Sema::TPC_FriendClassTemplate:
2700 case Sema::TPC_FriendFunctionTemplate:
2701 // C++ [temp.param]p9:
2702 // A default template-argument shall not be specified in a
2703 // friend template declaration.
2704 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2705 << DefArgRange;
2706 return true;
2707
2708 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2709 // for friend function templates if there is only a single
2710 // declaration (and it is a definition). Strange!
2711 }
2712
2713 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "clang/lib/Sema/SemaTemplate.cpp", 2713)
;
2714}
2715
2716/// Check for unexpanded parameter packs within the template parameters
2717/// of a template template parameter, recursively.
2718static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2719 TemplateTemplateParmDecl *TTP) {
2720 // A template template parameter which is a parameter pack is also a pack
2721 // expansion.
2722 if (TTP->isParameterPack())
2723 return false;
2724
2725 TemplateParameterList *Params = TTP->getTemplateParameters();
2726 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2727 NamedDecl *P = Params->getParam(I);
2728 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2729 if (!TTP->isParameterPack())
2730 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2731 if (TC->hasExplicitTemplateArgs())
2732 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2733 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2734 Sema::UPPC_TypeConstraint))
2735 return true;
2736 continue;
2737 }
2738
2739 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2740 if (!NTTP->isParameterPack() &&
2741 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2742 NTTP->getTypeSourceInfo(),
2743 Sema::UPPC_NonTypeTemplateParameterType))
2744 return true;
2745
2746 continue;
2747 }
2748
2749 if (TemplateTemplateParmDecl *InnerTTP
2750 = dyn_cast<TemplateTemplateParmDecl>(P))
2751 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2752 return true;
2753 }
2754
2755 return false;
2756}
2757
2758/// Checks the validity of a template parameter list, possibly
2759/// considering the template parameter list from a previous
2760/// declaration.
2761///
2762/// If an "old" template parameter list is provided, it must be
2763/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2764/// template parameter list.
2765///
2766/// \param NewParams Template parameter list for a new template
2767/// declaration. This template parameter list will be updated with any
2768/// default arguments that are carried through from the previous
2769/// template parameter list.
2770///
2771/// \param OldParams If provided, template parameter list from a
2772/// previous declaration of the same template. Default template
2773/// arguments will be merged from the old template parameter list to
2774/// the new template parameter list.
2775///
2776/// \param TPC Describes the context in which we are checking the given
2777/// template parameter list.
2778///
2779/// \param SkipBody If we might have already made a prior merged definition
2780/// of this template visible, the corresponding body-skipping information.
2781/// Default argument redefinition is not an error when skipping such a body,
2782/// because (under the ODR) we can assume the default arguments are the same
2783/// as the prior merged definition.
2784///
2785/// \returns true if an error occurred, false otherwise.
2786bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2787 TemplateParameterList *OldParams,
2788 TemplateParamListContext TPC,
2789 SkipBodyInfo *SkipBody) {
2790 bool Invalid = false;
2791
2792 // C++ [temp.param]p10:
2793 // The set of default template-arguments available for use with a
2794 // template declaration or definition is obtained by merging the
2795 // default arguments from the definition (if in scope) and all
2796 // declarations in scope in the same way default function
2797 // arguments are (8.3.6).
2798 bool SawDefaultArgument = false;
2799 SourceLocation PreviousDefaultArgLoc;
2800
2801 // Dummy initialization to avoid warnings.
2802 TemplateParameterList::iterator OldParam = NewParams->end();
2803 if (OldParams)
2804 OldParam = OldParams->begin();
2805
2806 bool RemoveDefaultArguments = false;
2807 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2808 NewParamEnd = NewParams->end();
2809 NewParam != NewParamEnd; ++NewParam) {
2810 // Whether we've seen a duplicate default argument in the same translation
2811 // unit.
2812 bool RedundantDefaultArg = false;
2813 // Whether we've found inconsis inconsitent default arguments in different
2814 // translation unit.
2815 bool InconsistentDefaultArg = false;
2816 // The name of the module which contains the inconsistent default argument.
2817 std::string PrevModuleName;
2818
2819 SourceLocation OldDefaultLoc;
2820 SourceLocation NewDefaultLoc;
2821
2822 // Variable used to diagnose missing default arguments
2823 bool MissingDefaultArg = false;
2824
2825 // Variable used to diagnose non-final parameter packs
2826 bool SawParameterPack = false;
2827
2828 if (TemplateTypeParmDecl *NewTypeParm
2829 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2830 // Check the presence of a default argument here.
2831 if (NewTypeParm->hasDefaultArgument() &&
2832 DiagnoseDefaultTemplateArgument(*this, TPC,
2833 NewTypeParm->getLocation(),
2834 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2835 .getSourceRange()))
2836 NewTypeParm->removeDefaultArgument();
2837
2838 // Merge default arguments for template type parameters.
2839 TemplateTypeParmDecl *OldTypeParm
2840 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2841 if (NewTypeParm->isParameterPack()) {
2842 assert(!NewTypeParm->hasDefaultArgument() &&(static_cast <bool> (!NewTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "clang/lib/Sema/SemaTemplate.cpp", 2843, __extension__ __PRETTY_FUNCTION__
))
2843 "Parameter packs can't have a default argument!")(static_cast <bool> (!NewTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "clang/lib/Sema/SemaTemplate.cpp", 2843, __extension__ __PRETTY_FUNCTION__
))
;
2844 SawParameterPack = true;
2845 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2846 NewTypeParm->hasDefaultArgument() &&
2847 (!SkipBody || !SkipBody->ShouldSkip)) {
2848 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2849 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2850 SawDefaultArgument = true;
2851
2852 if (!OldTypeParm->getOwningModule() ||
2853 isModuleUnitOfCurrentTU(OldTypeParm->getOwningModule()))
2854 RedundantDefaultArg = true;
2855 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2856 NewTypeParm)) {
2857 InconsistentDefaultArg = true;
2858 PrevModuleName =
2859 OldTypeParm->getImportedOwningModule()->getFullModuleName();
2860 }
2861 PreviousDefaultArgLoc = NewDefaultLoc;
2862 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2863 // Merge the default argument from the old declaration to the
2864 // new declaration.
2865 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2866 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2867 } else if (NewTypeParm->hasDefaultArgument()) {
2868 SawDefaultArgument = true;
2869 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2870 } else if (SawDefaultArgument)
2871 MissingDefaultArg = true;
2872 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2873 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2874 // Check for unexpanded parameter packs.
2875 if (!NewNonTypeParm->isParameterPack() &&
2876 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2877 NewNonTypeParm->getTypeSourceInfo(),
2878 UPPC_NonTypeTemplateParameterType)) {
2879 Invalid = true;
2880 continue;
2881 }
2882
2883 // Check the presence of a default argument here.
2884 if (NewNonTypeParm->hasDefaultArgument() &&
2885 DiagnoseDefaultTemplateArgument(*this, TPC,
2886 NewNonTypeParm->getLocation(),
2887 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2888 NewNonTypeParm->removeDefaultArgument();
2889 }
2890
2891 // Merge default arguments for non-type template parameters
2892 NonTypeTemplateParmDecl *OldNonTypeParm
2893 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2894 if (NewNonTypeParm->isParameterPack()) {
2895 assert(!NewNonTypeParm->hasDefaultArgument() &&(static_cast <bool> (!NewNonTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "clang/lib/Sema/SemaTemplate.cpp", 2896, __extension__ __PRETTY_FUNCTION__
))
2896 "Parameter packs can't have a default argument!")(static_cast <bool> (!NewNonTypeParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "clang/lib/Sema/SemaTemplate.cpp", 2896, __extension__ __PRETTY_FUNCTION__
))
;
2897 if (!NewNonTypeParm->isPackExpansion())
2898 SawParameterPack = true;
2899 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2900 NewNonTypeParm->hasDefaultArgument() &&
2901 (!SkipBody || !SkipBody->ShouldSkip)) {
2902 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2903 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2904 SawDefaultArgument = true;
2905 if (!OldNonTypeParm->getOwningModule() ||
2906 isModuleUnitOfCurrentTU(OldNonTypeParm->getOwningModule()))
2907 RedundantDefaultArg = true;
2908 else if (!getASTContext().isSameDefaultTemplateArgument(
2909 OldNonTypeParm, NewNonTypeParm)) {
2910 InconsistentDefaultArg = true;
2911 PrevModuleName =
2912 OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
2913 }
2914 PreviousDefaultArgLoc = NewDefaultLoc;
2915 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2916 // Merge the default argument from the old declaration to the
2917 // new declaration.
2918 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2919 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2920 } else if (NewNonTypeParm->hasDefaultArgument()) {
2921 SawDefaultArgument = true;
2922 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2923 } else if (SawDefaultArgument)
2924 MissingDefaultArg = true;
2925 } else {
2926 TemplateTemplateParmDecl *NewTemplateParm
2927 = cast<TemplateTemplateParmDecl>(*NewParam);
2928
2929 // Check for unexpanded parameter packs, recursively.
2930 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2931 Invalid = true;
2932 continue;
2933 }
2934
2935 // Check the presence of a default argument here.
2936 if (NewTemplateParm->hasDefaultArgument() &&
2937 DiagnoseDefaultTemplateArgument(*this, TPC,
2938 NewTemplateParm->getLocation(),
2939 NewTemplateParm->getDefaultArgument().getSourceRange()))
2940 NewTemplateParm->removeDefaultArgument();
2941
2942 // Merge default arguments for template template parameters
2943 TemplateTemplateParmDecl *OldTemplateParm
2944 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2945 if (NewTemplateParm->isParameterPack()) {
2946 assert(!NewTemplateParm->hasDefaultArgument() &&(static_cast <bool> (!NewTemplateParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "clang/lib/Sema/SemaTemplate.cpp", 2947, __extension__ __PRETTY_FUNCTION__
))
2947 "Parameter packs can't have a default argument!")(static_cast <bool> (!NewTemplateParm->hasDefaultArgument
() && "Parameter packs can't have a default argument!"
) ? void (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "clang/lib/Sema/SemaTemplate.cpp", 2947, __extension__ __PRETTY_FUNCTION__
))
;
2948 if (!NewTemplateParm->isPackExpansion())
2949 SawParameterPack = true;
2950 } else if (OldTemplateParm &&
2951 hasVisibleDefaultArgument(OldTemplateParm) &&
2952 NewTemplateParm->hasDefaultArgument() &&
2953 (!SkipBody || !SkipBody->ShouldSkip)) {
2954 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2955 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2956 SawDefaultArgument = true;
2957 if (!OldTemplateParm->getOwningModule() ||
2958 isModuleUnitOfCurrentTU(OldTemplateParm->getOwningModule()))
2959 RedundantDefaultArg = true;
2960 else if (!getASTContext().isSameDefaultTemplateArgument(
2961 OldTemplateParm, NewTemplateParm)) {
2962 InconsistentDefaultArg = true;
2963 PrevModuleName =
2964 OldTemplateParm->getImportedOwningModule()->getFullModuleName();
2965 }
2966 PreviousDefaultArgLoc = NewDefaultLoc;
2967 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2968 // Merge the default argument from the old declaration to the
2969 // new declaration.
2970 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2971 PreviousDefaultArgLoc
2972 = OldTemplateParm->getDefaultArgument().getLocation();
2973 } else if (NewTemplateParm->hasDefaultArgument()) {
2974 SawDefaultArgument = true;
2975 PreviousDefaultArgLoc
2976 = NewTemplateParm->getDefaultArgument().getLocation();
2977 } else if (SawDefaultArgument)
2978 MissingDefaultArg = true;
2979 }
2980
2981 // C++11 [temp.param]p11:
2982 // If a template parameter of a primary class template or alias template
2983 // is a template parameter pack, it shall be the last template parameter.
2984 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2985 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2986 TPC == TPC_TypeAliasTemplate)) {
2987 Diag((*NewParam)->getLocation(),
2988 diag::err_template_param_pack_must_be_last_template_parameter);
2989 Invalid = true;
2990 }
2991
2992 // [basic.def.odr]/13:
2993 // There can be more than one definition of a
2994 // ...
2995 // default template argument
2996 // ...
2997 // in a program provided that each definition appears in a different
2998 // translation unit and the definitions satisfy the [same-meaning
2999 // criteria of the ODR].
3000 //
3001 // Simply, the design of modules allows the definition of template default
3002 // argument to be repeated across translation unit. Note that the ODR is
3003 // checked elsewhere. But it is still not allowed to repeat template default
3004 // argument in the same translation unit.
3005 if (RedundantDefaultArg) {
3006 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
3007 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
3008 Invalid = true;
3009 } else if (InconsistentDefaultArg) {
3010 // We could only diagnose about the case that the OldParam is imported.
3011 // The case NewParam is imported should be handled in ASTReader.
3012 Diag(NewDefaultLoc,
3013 diag::err_template_param_default_arg_inconsistent_redefinition);
3014 Diag(OldDefaultLoc,
3015 diag::note_template_param_prev_default_arg_in_other_module)
3016 << PrevModuleName;
3017 Invalid = true;
3018 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3019 // C++ [temp.param]p11:
3020 // If a template-parameter of a class template has a default
3021 // template-argument, each subsequent template-parameter shall either
3022 // have a default template-argument supplied or be a template parameter
3023 // pack.
3024 Diag((*NewParam)->getLocation(),
3025 diag::err_template_param_default_arg_missing);
3026 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3027 Invalid = true;
3028 RemoveDefaultArguments = true;
3029 }
3030
3031 // If we have an old template parameter list that we're merging
3032 // in, move on to the next parameter.
3033 if (OldParams)
3034 ++OldParam;
3035 }
3036
3037 // We were missing some default arguments at the end of the list, so remove
3038 // all of the default arguments.
3039 if (RemoveDefaultArguments) {
3040 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3041 NewParamEnd = NewParams->end();
3042 NewParam != NewParamEnd; ++NewParam) {
3043 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
3044 TTP->removeDefaultArgument();
3045 else if (NonTypeTemplateParmDecl *NTTP
3046 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
3047 NTTP->removeDefaultArgument();
3048 else
3049 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
3050 }
3051 }
3052
3053 return Invalid;
3054}
3055
3056namespace {
3057
3058/// A class which looks for a use of a certain level of template
3059/// parameter.
3060struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3061 typedef RecursiveASTVisitor<DependencyChecker> super;
3062
3063 unsigned Depth;
3064
3065 // Whether we're looking for a use of a template parameter that makes the
3066 // overall construct type-dependent / a dependent type. This is strictly
3067 // best-effort for now; we may fail to match at all for a dependent type
3068 // in some cases if this is set.
3069 bool IgnoreNonTypeDependent;
3070
3071 bool Match;
3072 SourceLocation MatchLoc;
3073
3074 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3075 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3076 Match(false) {}
3077
3078 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3079 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3080 NamedDecl *ND = Params->getParam(0);
3081 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
3082 Depth = PD->getDepth();
3083 } else if (NonTypeTemplateParmDecl *PD =
3084 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
3085 Depth = PD->getDepth();
3086 } else {
3087 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
3088 }
3089 }
3090
3091 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3092 if (ParmDepth >= Depth) {
3093 Match = true;
3094 MatchLoc = Loc;
3095 return true;
3096 }
3097 return false;
3098 }
3099
3100 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3101 // Prune out non-type-dependent expressions if requested. This can
3102 // sometimes result in us failing to find a template parameter reference
3103 // (if a value-dependent expression creates a dependent type), but this
3104 // mode is best-effort only.
3105 if (auto *E = dyn_cast_or_null<Expr>(S))
3106 if (IgnoreNonTypeDependent && !E->isTypeDependent())
3107 return true;
3108 return super::TraverseStmt(S, Q);
3109 }
3110
3111 bool TraverseTypeLoc(TypeLoc TL) {
3112 if (IgnoreNonTypeDependent && !TL.isNull() &&
3113 !TL.getType()->isDependentType())
3114 return true;
3115 return super::TraverseTypeLoc(TL);
3116 }
3117
3118 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3119 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3120 }
3121
3122 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3123 // For a best-effort search, keep looking until we find a location.
3124 return IgnoreNonTypeDependent || !Matches(T->getDepth());
3125 }
3126
3127 bool TraverseTemplateName(TemplateName N) {
3128 if (TemplateTemplateParmDecl *PD =
3129 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3130 if (Matches(PD->getDepth()))
3131 return false;
3132 return super::TraverseTemplateName(N);
3133 }
3134
3135 bool VisitDeclRefExpr(DeclRefExpr *E) {
3136 if (NonTypeTemplateParmDecl *PD =
3137 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3138 if (Matches(PD->getDepth(), E->getExprLoc()))
3139 return false;
3140 return super::VisitDeclRefExpr(E);
3141 }
3142
3143 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3144 return TraverseType(T->getReplacementType());
3145 }
3146
3147 bool
3148 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3149 return TraverseTemplateArgument(T->getArgumentPack());
3150 }
3151
3152 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3153 return TraverseType(T->getInjectedSpecializationType());
3154 }
3155};
3156} // end anonymous namespace
3157
3158/// Determines whether a given type depends on the given parameter
3159/// list.
3160static bool
3161DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3162 if (!Params->size())
3163 return false;
3164
3165 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3166 Checker.TraverseType(T);
3167 return Checker.Match;
3168}
3169
3170// Find the source range corresponding to the named type in the given
3171// nested-name-specifier, if any.
3172static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3173 QualType T,
3174 const CXXScopeSpec &SS) {
3175 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3176 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3177 if (const Type *CurType = NNS->getAsType()) {
3178 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3179 return NNSLoc.getTypeLoc().getSourceRange();
3180 } else
3181 break;
3182
3183 NNSLoc = NNSLoc.getPrefix();
3184 }
3185
3186 return SourceRange();
3187}
3188
3189/// Match the given template parameter lists to the given scope
3190/// specifier, returning the template parameter list that applies to the
3191/// name.
3192///
3193/// \param DeclStartLoc the start of the declaration that has a scope
3194/// specifier or a template parameter list.
3195///
3196/// \param DeclLoc The location of the declaration itself.
3197///
3198/// \param SS the scope specifier that will be matched to the given template
3199/// parameter lists. This scope specifier precedes a qualified name that is
3200/// being declared.
3201///
3202/// \param TemplateId The template-id following the scope specifier, if there
3203/// is one. Used to check for a missing 'template<>'.
3204///
3205/// \param ParamLists the template parameter lists, from the outermost to the
3206/// innermost template parameter lists.
3207///
3208/// \param IsFriend Whether to apply the slightly different rules for
3209/// matching template parameters to scope specifiers in friend
3210/// declarations.
3211///
3212/// \param IsMemberSpecialization will be set true if the scope specifier
3213/// denotes a fully-specialized type, and therefore this is a declaration of
3214/// a member specialization.
3215///
3216/// \returns the template parameter list, if any, that corresponds to the
3217/// name that is preceded by the scope specifier @p SS. This template
3218/// parameter list may have template parameters (if we're declaring a
3219/// template) or may have no template parameters (if we're declaring a
3220/// template specialization), or may be NULL (if what we're declaring isn't
3221/// itself a template).
3222TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3223 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3224 TemplateIdAnnotation *TemplateId,
3225 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3226 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3227 IsMemberSpecialization = false;
3228 Invalid = false;
3229
3230 // The sequence of nested types to which we will match up the template
3231 // parameter lists. We first build this list by starting with the type named
3232 // by the nested-name-specifier and walking out until we run out of types.
3233 SmallVector<QualType, 4> NestedTypes;
3234 QualType T;
3235 if (SS.getScopeRep()) {
3236 if (CXXRecordDecl *Record
3237 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3238 T = Context.getTypeDeclType(Record);
3239 else
3240 T = QualType(SS.getScopeRep()->getAsType(), 0);
3241 }
3242
3243 // If we found an explicit specialization that prevents us from needing
3244 // 'template<>' headers, this will be set to the location of that
3245 // explicit specialization.
3246 SourceLocation ExplicitSpecLoc;
3247
3248 while (!T.isNull()) {
3249 NestedTypes.push_back(T);
3250
3251 // Retrieve the parent of a record type.
3252 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3253 // If this type is an explicit specialization, we're done.
3254 if (ClassTemplateSpecializationDecl *Spec
3255 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3256 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3257 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3258 ExplicitSpecLoc = Spec->getLocation();
3259 break;
3260 }
3261 } else if (Record->getTemplateSpecializationKind()
3262 == TSK_ExplicitSpecialization) {
3263 ExplicitSpecLoc = Record->getLocation();
3264 break;
3265 }
3266
3267 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3268 T = Context.getTypeDeclType(Parent);
3269 else
3270 T = QualType();
3271 continue;
3272 }
3273
3274 if (const TemplateSpecializationType *TST
3275 = T->getAs<TemplateSpecializationType>()) {
3276 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3277 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3278 T = Context.getTypeDeclType(Parent);
3279 else
3280 T = QualType();
3281 continue;
3282 }
3283 }
3284
3285 // Look one step prior in a dependent template specialization type.
3286 if (const DependentTemplateSpecializationType *DependentTST
3287 = T->getAs<DependentTemplateSpecializationType>()) {
3288 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3289 T = QualType(NNS->getAsType(), 0);
3290 else
3291 T = QualType();
3292 continue;
3293 }
3294
3295 // Look one step prior in a dependent name type.
3296 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3297 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3298 T = QualType(NNS->getAsType(), 0);
3299 else
3300 T = QualType();
3301 continue;
3302 }
3303
3304 // Retrieve the parent of an enumeration type.
3305 if (const EnumType *EnumT = T->getAs<EnumType>()) {
3306 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3307 // check here.
3308 EnumDecl *Enum = EnumT->getDecl();
3309
3310 // Get to the parent type.
3311 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3312 T = Context.getTypeDeclType(Parent);
3313 else
3314 T = QualType();
3315 continue;
3316 }
3317
3318 T = QualType();
3319 }
3320 // Reverse the nested types list, since we want to traverse from the outermost
3321 // to the innermost while checking template-parameter-lists.
3322 std::reverse(NestedTypes.begin(), NestedTypes.end());
3323
3324 // C++0x [temp.expl.spec]p17:
3325 // A member or a member template may be nested within many
3326 // enclosing class templates. In an explicit specialization for
3327 // such a member, the member declaration shall be preceded by a
3328 // template<> for each enclosing class template that is
3329 // explicitly specialized.
3330 bool SawNonEmptyTemplateParameterList = false;
3331
3332 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3333 if (SawNonEmptyTemplateParameterList) {
3334 if (!SuppressDiagnostic)
3335 Diag(DeclLoc, diag::err_specialize_member_of_template)
3336 << !Recovery << Range;
3337 Invalid = true;
3338 IsMemberSpecialization = false;
3339 return true;
3340 }
3341
3342 return false;
3343 };
3344
3345 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3346 // Check that we can have an explicit specialization here.
3347 if (CheckExplicitSpecialization(Range, true))
3348 return true;
3349
3350 // We don't have a template header, but we should.
3351 SourceLocation ExpectedTemplateLoc;
3352 if (!ParamLists.empty())
3353 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3354 else
3355 ExpectedTemplateLoc = DeclStartLoc;
3356
3357 if (!SuppressDiagnostic)
3358 Diag(DeclLoc, diag::err_template_spec_needs_header)
3359 << Range
3360 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3361 return false;
3362 };
3363
3364 unsigned ParamIdx = 0;
3365 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3366 ++TypeIdx) {
3367 T = NestedTypes[TypeIdx];
3368
3369 // Whether we expect a 'template<>' header.
3370 bool NeedEmptyTemplateHeader = false;
3371
3372 // Whether we expect a template header with parameters.
3373 bool NeedNonemptyTemplateHeader = false;
3374
3375 // For a dependent type, the set of template parameters that we
3376 // expect to see.
3377 TemplateParameterList *ExpectedTemplateParams = nullptr;
3378
3379 // C++0x [temp.expl.spec]p15:
3380 // A member or a member template may be nested within many enclosing
3381 // class templates. In an explicit specialization for such a member, the
3382 // member declaration shall be preceded by a template<> for each
3383 // enclosing class template that is explicitly specialized.
3384 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3385 if (ClassTemplatePartialSpecializationDecl *Partial
3386 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3387 ExpectedTemplateParams = Partial->getTemplateParameters();
3388 NeedNonemptyTemplateHeader = true;
3389 } else if (Record->isDependentType()) {
3390 if (Record->getDescribedClassTemplate()) {
3391 ExpectedTemplateParams = Record->getDescribedClassTemplate()
3392 ->getTemplateParameters();
3393 NeedNonemptyTemplateHeader = true;
3394 }
3395 } else if (ClassTemplateSpecializationDecl *Spec
3396 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3397 // C++0x [temp.expl.spec]p4:
3398 // Members of an explicitly specialized class template are defined
3399 // in the same manner as members of normal classes, and not using
3400 // the template<> syntax.
3401 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3402 NeedEmptyTemplateHeader = true;
3403 else
3404 continue;
3405 } else if (Record->getTemplateSpecializationKind()) {
3406 if (Record->getTemplateSpecializationKind()
3407 != TSK_ExplicitSpecialization &&
3408 TypeIdx == NumTypes - 1)
3409 IsMemberSpecialization = true;
3410
3411 continue;
3412 }
3413 } else if (const TemplateSpecializationType *TST
3414 = T->getAs<TemplateSpecializationType>()) {
3415 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3416 ExpectedTemplateParams = Template->getTemplateParameters();
3417 NeedNonemptyTemplateHeader = true;
3418 }
3419 } else if (T->getAs<DependentTemplateSpecializationType>()) {
3420 // FIXME: We actually could/should check the template arguments here
3421 // against the corresponding template parameter list.
3422 NeedNonemptyTemplateHeader = false;
3423 }
3424
3425 // C++ [temp.expl.spec]p16:
3426 // In an explicit specialization declaration for a member of a class
3427 // template or a member template that ap- pears in namespace scope, the
3428 // member template and some of its enclosing class templates may remain
3429 // unspecialized, except that the declaration shall not explicitly
3430 // specialize a class member template if its en- closing class templates
3431 // are not explicitly specialized as well.
3432 if (ParamIdx < ParamLists.size()) {
3433 if (ParamLists[ParamIdx]->size() == 0) {
3434 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3435 false))
3436 return nullptr;
3437 } else
3438 SawNonEmptyTemplateParameterList = true;
3439 }
3440
3441 if (NeedEmptyTemplateHeader) {
3442 // If we're on the last of the types, and we need a 'template<>' header
3443 // here, then it's a member specialization.
3444 if (TypeIdx == NumTypes - 1)
3445 IsMemberSpecialization = true;
3446
3447 if (ParamIdx < ParamLists.size()) {
3448 if (ParamLists[ParamIdx]->size() > 0) {
3449 // The header has template parameters when it shouldn't. Complain.
3450 if (!SuppressDiagnostic)
3451 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3452 diag::err_template_param_list_matches_nontemplate)
3453 << T
3454 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3455 ParamLists[ParamIdx]->getRAngleLoc())
3456 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3457 Invalid = true;
3458 return nullptr;
3459 }
3460
3461 // Consume this template header.
3462 ++ParamIdx;
3463 continue;
3464 }
3465
3466 if (!IsFriend)
3467 if (DiagnoseMissingExplicitSpecialization(
3468 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3469 return nullptr;
3470
3471 continue;
3472 }
3473
3474 if (NeedNonemptyTemplateHeader) {
3475 // In friend declarations we can have template-ids which don't
3476 // depend on the corresponding template parameter lists. But
3477 // assume that empty parameter lists are supposed to match this
3478 // template-id.
3479 if (IsFriend && T->isDependentType()) {
3480 if (ParamIdx < ParamLists.size() &&
3481 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3482 ExpectedTemplateParams = nullptr;
3483 else
3484 continue;
3485 }
3486
3487 if (ParamIdx < ParamLists.size()) {
3488 // Check the template parameter list, if we can.
3489 if (ExpectedTemplateParams &&
3490 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3491 ExpectedTemplateParams,
3492 !SuppressDiagnostic, TPL_TemplateMatch))
3493 Invalid = true;
3494
3495 if (!Invalid &&
3496 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3497 TPC_ClassTemplateMember))
3498 Invalid = true;
3499
3500 ++ParamIdx;
3501 continue;
3502 }
3503
3504 if (!SuppressDiagnostic)
3505 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3506 << T
3507 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3508 Invalid = true;
3509 continue;
3510 }
3511 }
3512
3513 // If there were at least as many template-ids as there were template
3514 // parameter lists, then there are no template parameter lists remaining for
3515 // the declaration itself.
3516 if (ParamIdx >= ParamLists.size()) {
3517 if (TemplateId && !IsFriend) {
3518 // We don't have a template header for the declaration itself, but we
3519 // should.
3520 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3521 TemplateId->RAngleLoc));
3522
3523 // Fabricate an empty template parameter list for the invented header.
3524 return TemplateParameterList::Create(Context, SourceLocation(),
3525 SourceLocation(), std::nullopt,
3526 SourceLocation(), nullptr);
3527 }
3528
3529 return nullptr;
3530 }
3531
3532 // If there were too many template parameter lists, complain about that now.
3533 if (ParamIdx < ParamLists.size() - 1) {
3534 bool HasAnyExplicitSpecHeader = false;
3535 bool AllExplicitSpecHeaders = true;
3536 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3537 if (ParamLists[I]->size() == 0)
3538 HasAnyExplicitSpecHeader = true;
3539 else
3540 AllExplicitSpecHeaders = false;
3541 }
3542
3543 if (!SuppressDiagnostic)
3544 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3545 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3546 : diag::err_template_spec_extra_headers)
3547 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3548 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3549
3550 // If there was a specialization somewhere, such that 'template<>' is
3551 // not required, and there were any 'template<>' headers, note where the
3552 // specialization occurred.
3553 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3554 !SuppressDiagnostic)
3555 Diag(ExplicitSpecLoc,
3556 diag::note_explicit_template_spec_does_not_need_header)
3557 << NestedTypes.back();
3558
3559 // We have a template parameter list with no corresponding scope, which
3560 // means that the resulting template declaration can't be instantiated
3561 // properly (we'll end up with dependent nodes when we shouldn't).
3562 if (!AllExplicitSpecHeaders)
3563 Invalid = true;
3564 }
3565
3566 // C++ [temp.expl.spec]p16:
3567 // In an explicit specialization declaration for a member of a class
3568 // template or a member template that ap- pears in namespace scope, the
3569 // member template and some of its enclosing class templates may remain
3570 // unspecialized, except that the declaration shall not explicitly
3571 // specialize a class member template if its en- closing class templates
3572 // are not explicitly specialized as well.
3573 if (ParamLists.back()->size() == 0 &&
3574 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3575 false))
3576 return nullptr;
3577
3578 // Return the last template parameter list, which corresponds to the
3579 // entity being declared.
3580 return ParamLists.back();
3581}
3582
3583void Sema::NoteAllFoundTemplates(TemplateName Name) {
3584 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3585 Diag(Template->getLocation(), diag::note_template_declared_here)
3586 << (isa<FunctionTemplateDecl>(Template)
3587 ? 0
3588 : isa<ClassTemplateDecl>(Template)
3589 ? 1
3590 : isa<VarTemplateDecl>(Template)
3591 ? 2
3592 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3593 << Template->getDeclName();
3594 return;
3595 }
3596
3597 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3598 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3599 IEnd = OST->end();
3600 I != IEnd; ++I)
3601 Diag((*I)->getLocation(), diag::note_template_declared_here)
3602 << 0 << (*I)->getDeclName();
3603
3604 return;
3605 }
3606}
3607
3608static QualType
3609checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3610 ArrayRef<TemplateArgument> Converted,
3611 SourceLocation TemplateLoc,
3612 TemplateArgumentListInfo &TemplateArgs) {
3613 ASTContext &Context = SemaRef.getASTContext();
3614
3615 switch (BTD->getBuiltinTemplateKind()) {
3616 case BTK__make_integer_seq: {
3617 // Specializations of __make_integer_seq<S, T, N> are treated like
3618 // S<T, 0, ..., N-1>.
3619
3620 QualType OrigType = Converted[1].getAsType();
3621 // C++14 [inteseq.intseq]p1:
3622 // T shall be an integer type.
3623 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3624 SemaRef.Diag(TemplateArgs[1].getLocation(),
3625 diag::err_integer_sequence_integral_element_type);
3626 return QualType();
3627 }
3628
3629 TemplateArgument NumArgsArg = Converted[2];
3630 if (NumArgsArg.isDependent())
3631 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3632 Converted);
3633
3634 TemplateArgumentListInfo SyntheticTemplateArgs;
3635 // The type argument, wrapped in substitution sugar, gets reused as the
3636 // first template argument in the synthetic template argument list.
3637 SyntheticTemplateArgs.addArgument(
3638 TemplateArgumentLoc(TemplateArgument(OrigType),
3639 SemaRef.Context.getTrivialTypeSourceInfo(
3640 OrigType, TemplateArgs[1].getLocation())));
3641
3642 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3643 // Expand N into 0 ... N-1.
3644 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3645 I < NumArgs; ++I) {
3646 TemplateArgument TA(Context, I, OrigType);
3647 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3648 TA, OrigType, TemplateArgs[2].getLocation()));
3649 }
3650 } else {
3651 // C++14 [inteseq.make]p1:
3652 // If N is negative the program is ill-formed.
3653 SemaRef.Diag(TemplateArgs[2].getLocation(),
3654 diag::err_integer_sequence_negative_length);
3655 return QualType();
3656 }
3657
3658 // The first template argument will be reused as the template decl that
3659 // our synthetic template arguments will be applied to.
3660 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3661 TemplateLoc, SyntheticTemplateArgs);
3662 }
3663
3664 case BTK__type_pack_element:
3665 // Specializations of
3666 // __type_pack_element<Index, T_1, ..., T_N>
3667 // are treated like T_Index.
3668 assert(Converted.size() == 2 &&(static_cast <bool> (Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? void (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "clang/lib/Sema/SemaTemplate.cpp", 3669, __extension__ __PRETTY_FUNCTION__
))
3669 "__type_pack_element should be given an index and a parameter pack")(static_cast <bool> (Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? void (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "clang/lib/Sema/SemaTemplate.cpp", 3669, __extension__ __PRETTY_FUNCTION__
))
;
3670
3671 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3672 if (IndexArg.isDependent() || Ts.isDependent())
3673 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3674 Converted);
3675
3676 llvm::APSInt Index = IndexArg.getAsIntegral();
3677 assert(Index >= 0 && "the index used with __type_pack_element should be of "(static_cast <bool> (Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? void (0) : __assert_fail
("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "clang/lib/Sema/SemaTemplate.cpp", 3678, __extension__ __PRETTY_FUNCTION__
))
3678 "type std::size_t, and hence be non-negative")(static_cast <bool> (Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? void (0) : __assert_fail
("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "clang/lib/Sema/SemaTemplate.cpp", 3678, __extension__ __PRETTY_FUNCTION__
))
;
3679 // If the Index is out of bounds, the program is ill-formed.
3680 if (Index >= Ts.pack_size()) {
3681 SemaRef.Diag(TemplateArgs[0].getLocation(),
3682 diag::err_type_pack_element_out_of_bounds);
3683 return QualType();
3684 }
3685
3686 // We simply return the type at index `Index`.
3687 int64_t N = Index.getExtValue();
3688 return Ts.getPackAsArray()[N].getAsType();
3689 }
3690 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "clang/lib/Sema/SemaTemplate.cpp", 3690)
;
3691}
3692
3693/// Determine whether this alias template is "enable_if_t".
3694/// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3695static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3696 return AliasTemplate->getName().equals("enable_if_t") ||
3697 AliasTemplate->getName().equals("__enable_if_t");
3698}
3699
3700/// Collect all of the separable terms in the given condition, which
3701/// might be a conjunction.
3702///
3703/// FIXME: The right answer is to convert the logical expression into
3704/// disjunctive normal form, so we can find the first failed term
3705/// within each possible clause.
3706static void collectConjunctionTerms(Expr *Clause,
3707 SmallVectorImpl<Expr *> &Terms) {
3708 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3709 if (BinOp->getOpcode() == BO_LAnd) {
3710 collectConjunctionTerms(BinOp->getLHS(), Terms);
3711 collectConjunctionTerms(BinOp->getRHS(), Terms);
3712 return;
3713 }
3714 }
3715
3716 Terms.push_back(Clause);
3717}
3718
3719// The ranges-v3 library uses an odd pattern of a top-level "||" with
3720// a left-hand side that is value-dependent but never true. Identify
3721// the idiom and ignore that term.
3722static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3723 // Top-level '||'.
3724 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3725 if (!BinOp) return Cond;
3726
3727 if (BinOp->getOpcode() != BO_LOr) return Cond;
3728
3729 // With an inner '==' that has a literal on the right-hand side.
3730 Expr *LHS = BinOp->getLHS();
3731 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3732 if (!InnerBinOp) return Cond;
3733
3734 if (InnerBinOp->getOpcode() != BO_EQ ||
3735 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3736 return Cond;
3737
3738 // If the inner binary operation came from a macro expansion named
3739 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3740 // of the '||', which is the real, user-provided condition.
3741 SourceLocation Loc = InnerBinOp->getExprLoc();
3742 if (!Loc.isMacroID()) return Cond;
3743
3744 StringRef MacroName = PP.getImmediateMacroName(Loc);
3745 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3746 return BinOp->getRHS();
3747
3748 return Cond;
3749}
3750
3751namespace {
3752
3753// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3754// within failing boolean expression, such as substituting template parameters
3755// for actual types.
3756class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3757public:
3758 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3759 : Policy(P) {}
3760
3761 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3762 const auto *DR = dyn_cast<DeclRefExpr>(E);
3763 if (DR && DR->getQualifier()) {
3764 // If this is a qualified name, expand the template arguments in nested
3765 // qualifiers.
3766 DR->getQualifier()->print(OS, Policy, true);
3767 // Then print the decl itself.
3768 const ValueDecl *VD = DR->getDecl();
3769 OS << VD->getName();
3770 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3771 // This is a template variable, print the expanded template arguments.
3772 printTemplateArgumentList(
3773 OS, IV->getTemplateArgs().asArray(), Policy,
3774 IV->getSpecializedTemplate()->getTemplateParameters());
3775 }
3776 return true;
3777 }
3778 return false;
3779 }
3780
3781private:
3782 const PrintingPolicy Policy;
3783};
3784
3785} // end anonymous namespace
3786
3787std::pair<Expr *, std::string>
3788Sema::findFailedBooleanCondition(Expr *Cond) {
3789 Cond = lookThroughRangesV3Condition(PP, Cond);
3790
3791 // Separate out all of the terms in a conjunction.
3792 SmallVector<Expr *, 4> Terms;
3793 collectConjunctionTerms(Cond, Terms);
3794
3795 // Determine which term failed.
3796 Expr *FailedCond = nullptr;
3797 for (Expr *Term : Terms) {
3798 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3799
3800 // Literals are uninteresting.
3801 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3802 isa<IntegerLiteral>(TermAsWritten))
3803 continue;
3804
3805 // The initialization of the parameter from the argument is
3806 // a constant-evaluated context.
3807 EnterExpressionEvaluationContext ConstantEvaluated(
3808 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3809
3810 bool Succeeded;
3811 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3812 !Succeeded) {
3813 FailedCond = TermAsWritten;
3814 break;
3815 }
3816 }
3817 if (!FailedCond)
3818 FailedCond = Cond->IgnoreParenImpCasts();
3819
3820 std::string Description;
3821 {
3822 llvm::raw_string_ostream Out(Description);
3823 PrintingPolicy Policy = getPrintingPolicy();
3824 Policy.PrintCanonicalTypes = true;
3825 FailedBooleanConditionPrinterHelper Helper(Policy);
3826 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3827 }
3828 return { FailedCond, Description };
3829}
3830
3831QualType Sema::CheckTemplateIdType(TemplateName Name,
3832 SourceLocation TemplateLoc,
3833 TemplateArgumentListInfo &TemplateArgs) {
3834 DependentTemplateName *DTN
3835 = Name.getUnderlying().getAsDependentTemplateName();
3836 if (DTN && DTN->isIdentifier())
3837 // When building a template-id where the template-name is dependent,
3838 // assume the template is a type template. Either our assumption is
3839 // correct, or the code is ill-formed and will be diagnosed when the
3840 // dependent name is substituted.
3841 return Context.getDependentTemplateSpecializationType(
3842 ETK_None, DTN->getQualifier(), DTN->getIdentifier(),
3843 TemplateArgs.arguments());
3844
3845 if (Name.getAsAssumedTemplateName() &&
3846 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3847 return QualType();
3848
3849 TemplateDecl *Template = Name.getAsTemplateDecl();
3850 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3851 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3852 // We might have a substituted template template parameter pack. If so,
3853 // build a template specialization type for it.
3854 if (Name.getAsSubstTemplateTemplateParmPack())
3855 return Context.getTemplateSpecializationType(Name,
3856 TemplateArgs.arguments());
3857
3858 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3859 << Name;
3860 NoteAllFoundTemplates(Name);
3861 return QualType();
3862 }
3863
3864 // Check that the template argument list is well-formed for this
3865 // template.
3866 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3867 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
3868 SugaredConverted, CanonicalConverted,
3869 /*UpdateArgsWithConversions=*/true))
3870 return QualType();
3871
3872 QualType CanonType;
3873
3874 if (TypeAliasTemplateDecl *AliasTemplate =
3875 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3876
3877 // Find the canonical type for this type alias template specialization.
3878 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3879 if (Pattern->isInvalidDecl())
3880 return QualType();
3881
3882 // Only substitute for the innermost template argument list.
3883 MultiLevelTemplateArgumentList TemplateArgLists;
3884 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
3885 /*Final=*/false);
3886 TemplateArgLists.addOuterRetainedLevels(
3887 AliasTemplate->getTemplateParameters()->getDepth());
3888
3889 LocalInstantiationScope Scope(*this);
3890 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3891 if (Inst.isInvalid())
3892 return QualType();
3893
3894 CanonType = SubstType(Pattern->getUnderlyingType(),
3895 TemplateArgLists, AliasTemplate->getLocation(),
3896 AliasTemplate->getDeclName());
3897 if (CanonType.isNull()) {
3898 // If this was enable_if and we failed to find the nested type
3899 // within enable_if in a SFINAE context, dig out the specific
3900 // enable_if condition that failed and present that instead.
3901 if (isEnableIfAliasTemplate(AliasTemplate)) {
3902 if (auto DeductionInfo = isSFINAEContext()) {
3903 if (*DeductionInfo &&
3904 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3905 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3906 diag::err_typename_nested_not_found_enable_if &&
3907 TemplateArgs[0].getArgument().getKind()
3908 == TemplateArgument::Expression) {
3909 Expr *FailedCond;
3910 std::string FailedDescription;
3911 std::tie(FailedCond, FailedDescription) =
3912 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3913
3914 // Remove the old SFINAE diagnostic.
3915 PartialDiagnosticAt OldDiag =
3916 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3917 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3918
3919 // Add a new SFINAE diagnostic specifying which condition
3920 // failed.
3921 (*DeductionInfo)->addSFINAEDiagnostic(
3922 OldDiag.first,
3923 PDiag(diag::err_typename_nested_not_found_requirement)
3924 << FailedDescription
3925 << FailedCond->getSourceRange());
3926 }
3927 }
3928 }
3929
3930 return QualType();
3931 }
3932 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3933 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
3934 TemplateLoc, TemplateArgs);
3935 } else if (Name.isDependent() ||
3936 TemplateSpecializationType::anyDependentTemplateArguments(
3937 TemplateArgs, CanonicalConverted)) {
3938 // This class template specialization is a dependent
3939 // type. Therefore, its canonical type is another class template
3940 // specialization type that contains all of the converted
3941 // arguments in canonical form. This ensures that, e.g., A<T> and
3942 // A<T, T> have identical types when A is declared as:
3943 //
3944 // template<typename T, typename U = T> struct A;
3945 CanonType = Context.getCanonicalTemplateSpecializationType(
3946 Name, CanonicalConverted);
3947
3948 // This might work out to be a current instantiation, in which
3949 // case the canonical type needs to be the InjectedClassNameType.
3950 //
3951 // TODO: in theory this could be a simple hashtable lookup; most
3952 // changes to CurContext don't change the set of current
3953 // instantiations.
3954 if (isa<ClassTemplateDecl>(Template)) {
3955 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3956 // If we get out to a namespace, we're done.
3957 if (Ctx->isFileContext()) break;
3958
3959 // If this isn't a record, keep looking.
3960 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3961 if (!Record) continue;
3962
3963 // Look for one of the two cases with InjectedClassNameTypes
3964 // and check whether it's the same template.
3965 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3966 !Record->getDescribedClassTemplate())
3967 continue;
3968
3969 // Fetch the injected class name type and check whether its
3970 // injected type is equal to the type we just built.
3971 QualType ICNT = Context.getTypeDeclType(Record);
3972 QualType Injected = cast<InjectedClassNameType>(ICNT)
3973 ->getInjectedSpecializationType();
3974
3975 if (CanonType != Injected->getCanonicalTypeInternal())
3976 continue;
3977
3978 // If so, the canonical type of this TST is the injected
3979 // class name type of the record we just found.
3980 assert(ICNT.isCanonical())(static_cast <bool> (ICNT.isCanonical()) ? void (0) : __assert_fail
("ICNT.isCanonical()", "clang/lib/Sema/SemaTemplate.cpp", 3980
, __extension__ __PRETTY_FUNCTION__))
;
3981 CanonType = ICNT;
3982 break;
3983 }
3984 }
3985 } else if (ClassTemplateDecl *ClassTemplate =
3986 dyn_cast<ClassTemplateDecl>(Template)) {
3987 // Find the class template specialization declaration that
3988 // corresponds to these arguments.
3989 void *InsertPos = nullptr;
3990 ClassTemplateSpecializationDecl *Decl =
3991 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
3992 if (!Decl) {
3993 // This is the first time we have referenced this class template
3994 // specialization. Create the canonical declaration and add it to
3995 // the set of specializations.
3996 Decl = ClassTemplateSpecializationDecl::Create(
3997 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3998 ClassTemplate->getDeclContext(),
3999 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
4000 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
4001 nullptr);
4002 ClassTemplate->AddSpecialization(Decl, InsertPos);
4003 if (ClassTemplate->isOutOfLine())
4004 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
4005 }
4006
4007 if (Decl->getSpecializationKind() == TSK_Undeclared &&
4008 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
4009 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
4010 if (!Inst.isInvalid()) {
4011 MultiLevelTemplateArgumentList TemplateArgLists(Template,
4012 CanonicalConverted,
4013 /*Final=*/false);
4014 InstantiateAttrsForDecl(TemplateArgLists,
4015 ClassTemplate->getTemplatedDecl(), Decl);
4016 }
4017 }
4018
4019 // Diagnose uses of this specialization.
4020 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4021
4022 CanonType = Context.getTypeDeclType(Decl);
4023 assert(isa<RecordType>(CanonType) &&(static_cast <bool> (isa<RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType") ?
void (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "clang/lib/Sema/SemaTemplate.cpp", 4024, __extension__ __PRETTY_FUNCTION__
))
4024 "type of non-dependent specialization is not a RecordType")(static_cast <bool> (isa<RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType") ?
void (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "clang/lib/Sema/SemaTemplate.cpp", 4024, __extension__ __PRETTY_FUNCTION__
))
;
4025 } else {
4026 llvm_unreachable("Unhandled template kind")::llvm::llvm_unreachable_internal("Unhandled template kind", "clang/lib/Sema/SemaTemplate.cpp"
, 4026)
;
4027 }
4028
4029 // Build the fully-sugared type for this class template
4030 // specialization, which refers back to the class template
4031 // specialization we created or found.
4032 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
4033 CanonType);
4034}
4035
4036void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4037 TemplateNameKind &TNK,
4038 SourceLocation NameLoc,
4039 IdentifierInfo *&II) {
4040 assert(TNK == TNK_Undeclared_template && "not an undeclared template name")(static_cast <bool> (TNK == TNK_Undeclared_template &&
"not an undeclared template name") ? void (0) : __assert_fail
("TNK == TNK_Undeclared_template && \"not an undeclared template name\""
, "clang/lib/Sema/SemaTemplate.cpp", 4040, __extension__ __PRETTY_FUNCTION__
))
;
4041
4042 TemplateName Name = ParsedName.get();
4043 auto *ATN = Name.getAsAssumedTemplateName();
4044 assert(ATN && "not an assumed template name")(static_cast <bool> (ATN && "not an assumed template name"
) ? void (0) : __assert_fail ("ATN && \"not an assumed template name\""
, "clang/lib/Sema/SemaTemplate.cpp", 4044, __extension__ __PRETTY_FUNCTION__
))
;
4045 II = ATN->getDeclName().getAsIdentifierInfo();
4046
4047 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4048 // Resolved to a type template name.
4049 ParsedName = TemplateTy::make(Name);
4050 TNK = TNK_Type_template;
4051 }
4052}
4053
4054bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4055 SourceLocation NameLoc,
4056 bool Diagnose) {
4057 // We assumed this undeclared identifier to be an (ADL-only) function
4058 // template name, but it was used in a context where a type was required.
4059 // Try to typo-correct it now.
4060 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4061 assert(ATN && "not an assumed template name")(static_cast <bool> (ATN && "not an assumed template name"
) ? void (0) : __assert_fail ("ATN && \"not an assumed template name\""
, "clang/lib/Sema/SemaTemplate.cpp", 4061, __extension__ __PRETTY_FUNCTION__
))
;
4062
4063 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4064 struct CandidateCallback : CorrectionCandidateCallback {
4065 bool ValidateCandidate(const TypoCorrection &TC) override {
4066 return TC.getCorrectionDecl() &&
4067 getAsTypeTemplateDecl(TC.getCorrectionDecl());
4068 }
4069 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4070 return std::make_unique<CandidateCallback>(*this);
4071 }
4072 } FilterCCC;
4073
4074 TypoCorrection Corrected =
4075 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
4076 FilterCCC, CTK_ErrorRecovery);
4077 if (Corrected && Corrected.getFoundDecl()) {
4078 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4079 << ATN->getDeclName());
4080 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4081 return false;
4082 }
4083
4084 if (Diagnose)
4085 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4086 return true;
4087}
4088
4089TypeResult Sema::ActOnTemplateIdType(
4090 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4091 TemplateTy TemplateD, IdentifierInfo *TemplateII,
4092 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4093 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4094 bool IsCtorOrDtorName, bool IsClassName,
4095 ImplicitTypenameContext AllowImplicitTypename) {
4096 if (SS.isInvalid())
4097 return true;
4098
4099 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4100 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4101
4102 // C++ [temp.res]p3:
4103 // A qualified-id that refers to a type and in which the
4104 // nested-name-specifier depends on a template-parameter (14.6.2)
4105 // shall be prefixed by the keyword typename to indicate that the
4106 // qualified-id denotes a type, forming an
4107 // elaborated-type-specifier (7.1.5.3).
4108 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4109 // C++2a relaxes some of those restrictions in [temp.res]p5.
4110 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4111 if (getLangOpts().CPlusPlus20)
4112 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4113 else
4114 Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4115 << SS.getScopeRep() << TemplateII->getName()
4116 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4117 } else
4118 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4119 << SS.getScopeRep() << TemplateII->getName();
4120
4121 // FIXME: This is not quite correct recovery as we don't transform SS
4122 // into the corresponding dependent form (and we don't diagnose missing
4123 // 'template' keywords within SS as a result).
4124 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
4125 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4126 TemplateArgsIn, RAngleLoc);
4127 }
4128
4129 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4130 // it's not actually allowed to be used as a type in most cases. Because
4131 // we annotate it before we know whether it's valid, we have to check for
4132 // this case here.
4133 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4134 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4135 Diag(TemplateIILoc,
4136 TemplateKWLoc.isInvalid()
4137 ? diag::err_out_of_line_qualified_id_type_names_constructor
4138 : diag::ext_out_of_line_qualified_id_type_names_constructor)
4139 << TemplateII << 0 /*injected-class-name used as template name*/
4140 << 1 /*if any keyword was present, it was 'template'*/;
4141 }
4142 }
4143
4144 TemplateName Template = TemplateD.get();
4145 if (Template.getAsAssumedTemplateName() &&
4146 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4147 return true;
4148
4149 // Translate the parser's template argument list in our AST format.
4150 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4151 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4152
4153 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4154 assert(SS.getScopeRep() == DTN->getQualifier())(static_cast <bool> (SS.getScopeRep() == DTN->getQualifier
()) ? void (0) : __assert_fail ("SS.getScopeRep() == DTN->getQualifier()"
, "clang/lib/Sema/SemaTemplate.cpp", 4154, __extension__ __PRETTY_FUNCTION__
))
;
4155 QualType T = Context.getDependentTemplateSpecializationType(
4156 ETK_None, DTN->getQualifier(), DTN->getIdentifier(),
4157 TemplateArgs.arguments());
4158 // Build type-source information.
4159 TypeLocBuilder TLB;
4160 DependentTemplateSpecializationTypeLoc SpecTL
4161 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4162 SpecTL.setElaboratedKeywordLoc(SourceLocation());
4163 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4164 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4165 SpecTL.setTemplateNameLoc(TemplateIILoc);
4166 SpecTL.setLAngleLoc(LAngleLoc);
4167 SpecTL.setRAngleLoc(RAngleLoc);
4168 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4169 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4170 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4171 }
4172
4173 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4174 if (SpecTy.isNull())
4175 return true;
4176
4177 // Build type-source information.
4178 TypeLocBuilder TLB;
4179 TemplateSpecializationTypeLoc SpecTL =
4180 TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
4181 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4182 SpecTL.setTemplateNameLoc(TemplateIILoc);
4183 SpecTL.setLAngleLoc(LAngleLoc);
4184 SpecTL.setRAngleLoc(RAngleLoc);
4185 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4186 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4187
4188 // Create an elaborated-type-specifier containing the nested-name-specifier.
4189 QualType ElTy = getElaboratedType(
4190 ETK_None, !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
4191 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
4192 ElabTL.setElaboratedKeywordLoc(SourceLocation());
4193 if (!ElabTL.isEmpty())
4194 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4195 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
4196}
4197
4198TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4199 TypeSpecifierType TagSpec,
4200 SourceLocation TagLoc,
4201 CXXScopeSpec &SS,
4202 SourceLocation TemplateKWLoc,
4203 TemplateTy TemplateD,
4204 SourceLocation TemplateLoc,
4205 SourceLocation LAngleLoc,
4206 ASTTemplateArgsPtr TemplateArgsIn,
4207 SourceLocation RAngleLoc) {
4208 if (SS.isInvalid())
4209 return TypeResult(true);
4210
4211 TemplateName Template = TemplateD.get();
4212
4213 // Translate the parser's template argument list in our AST format.
4214 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4215 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4216
4217 // Determine the tag kind
4218 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4219 ElaboratedTypeKeyword Keyword
4220 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4221
4222 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4223 assert(SS.getScopeRep() == DTN->getQualifier())(static_cast <bool> (SS.getScopeRep() == DTN->getQualifier
()) ? void (0) : __assert_fail ("SS.getScopeRep() == DTN->getQualifier()"
, "clang/lib/Sema/SemaTemplate.cpp", 4223, __extension__ __PRETTY_FUNCTION__
))
;
4224 QualType T = Context.getDependentTemplateSpecializationType(
4225 Keyword, DTN->getQualifier(), DTN->getIdentifier(),
4226 TemplateArgs.arguments());
4227
4228 // Build type-source information.
4229 TypeLocBuilder TLB;
4230 DependentTemplateSpecializationTypeLoc SpecTL
4231 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4232 SpecTL.setElaboratedKeywordLoc(TagLoc);
4233 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4234 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4235 SpecTL.setTemplateNameLoc(TemplateLoc);
4236 SpecTL.setLAngleLoc(LAngleLoc);
4237 SpecTL.setRAngleLoc(RAngleLoc);
4238 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4239 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4240 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4241 }
4242
4243 if (TypeAliasTemplateDecl *TAT =
4244 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4245 // C++0x [dcl.type.elab]p2:
4246 // If the identifier resolves to a typedef-name or the simple-template-id
4247 // resolves to an alias template specialization, the
4248 // elaborated-type-specifier is ill-formed.
4249 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4250 << TAT << NTK_TypeAliasTemplate << TagKind;
4251 Diag(TAT->getLocation(), diag::note_declared_at);
4252 }
4253
4254 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4255 if (Result.isNull())
4256 return TypeResult(true);
4257
4258 // Check the tag kind
4259 if (const RecordType *RT = Result->getAs<RecordType>()) {
4260 RecordDecl *D = RT->getDecl();
4261
4262 IdentifierInfo *Id = D->getIdentifier();
4263 assert(Id && "templated class must have an identifier")(static_cast <bool> (Id && "templated class must have an identifier"
) ? void (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "clang/lib/Sema/SemaTemplate.cpp", 4263, __extension__ __PRETTY_FUNCTION__
))
;
4264
4265 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4266 TagLoc, Id)) {
4267 Diag(TagLoc, diag::err_use_with_wrong_tag)
4268 << Result
4269 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4270 Diag(D->getLocation(), diag::note_previous_use);
4271 }
4272 }
4273
4274 // Provide source-location information for the template specialization.
4275 TypeLocBuilder TLB;
4276 TemplateSpecializationTypeLoc SpecTL
4277 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4278 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4279 SpecTL.setTemplateNameLoc(TemplateLoc);
4280 SpecTL.setLAngleLoc(LAngleLoc);
4281 SpecTL.setRAngleLoc(RAngleLoc);
4282 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4283 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4284
4285 // Construct an elaborated type containing the nested-name-specifier (if any)
4286 // and tag keyword.
4287 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4288 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4289 ElabTL.setElaboratedKeywordLoc(TagLoc);
4290 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4291 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4292}
4293
4294static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4295 NamedDecl *PrevDecl,
4296 SourceLocation Loc,
4297 bool IsPartialSpecialization);
4298
4299static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4300
4301static bool isTemplateArgumentTemplateParameter(
4302 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4303 switch (Arg.getKind()) {
4304 case TemplateArgument::Null:
4305 case TemplateArgument::NullPtr:
4306 case TemplateArgument::Integral:
4307 case TemplateArgument::Declaration:
4308 case TemplateArgument::Pack:
4309 case TemplateArgument::TemplateExpansion:
4310 return false;
4311
4312 case TemplateArgument::Type: {
4313 QualType Type = Arg.getAsType();
4314 const TemplateTypeParmType *TPT =
4315 Arg.getAsType()->getAs<TemplateTypeParmType>();
4316 return TPT && !Type.hasQualifiers() &&
4317 TPT->getDepth() == Depth && TPT->getIndex() == Index;
4318 }
4319
4320 case TemplateArgument::Expression: {
4321 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4322 if (!DRE || !DRE->getDecl())
4323 return false;
4324 const NonTypeTemplateParmDecl *NTTP =
4325 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4326 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4327 }
4328
4329 case TemplateArgument::Template:
4330 const TemplateTemplateParmDecl *TTP =
4331 dyn_cast_or_null<TemplateTemplateParmDecl>(
4332 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4333 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4334 }
4335 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "clang/lib/Sema/SemaTemplate.cpp", 4335)
;
4336}
4337
4338static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4339 ArrayRef<TemplateArgument> Args) {
4340 if (Params->size() != Args.size())
4341 return false;
4342
4343 unsigned Depth = Params->getDepth();
4344
4345 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4346 TemplateArgument Arg = Args[I];
4347
4348 // If the parameter is a pack expansion, the argument must be a pack
4349 // whose only element is a pack expansion.
4350 if (Params->getParam(I)->isParameterPack()) {
4351 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4352 !Arg.pack_begin()->isPackExpansion())
4353 return false;
4354 Arg = Arg.pack_begin()->getPackExpansionPattern();
4355 }
4356
4357 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4358 return false;
4359 }
4360
4361 return true;
4362}
4363
4364template<typename PartialSpecDecl>
4365static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4366 if (Partial->getDeclContext()->isDependentContext())
4367 return;
4368
4369 // FIXME: Get the TDK from deduction in order to provide better diagnostics
4370 // for non-substitution-failure issues?
4371 TemplateDeductionInfo Info(Partial->getLocation());
4372 if (S.isMoreSpecializedThanPrimary(Partial, Info))
4373 return;
4374
4375 auto *Template = Partial->getSpecializedTemplate();
4376 S.Diag(Partial->getLocation(),
4377 diag::ext_partial_spec_not_more_specialized_than_primary)
4378 << isa<VarTemplateDecl>(Template);
4379
4380 if (Info.hasSFINAEDiagnostic()) {
4381 PartialDiagnosticAt Diag = {SourceLocation(),
4382 PartialDiagnostic::NullDiagnostic()};
4383 Info.takeSFINAEDiagnostic(Diag);
4384 SmallString<128> SFINAEArgString;
4385 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4386 S.Diag(Diag.first,
4387 diag::note_partial_spec_not_more_specialized_than_primary)
4388 << SFINAEArgString;
4389 }
4390
4391 S.Diag(Template->getLocation(), diag::note_template_decl_here);
4392 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4393 Template->getAssociatedConstraints(TemplateAC);
4394 Partial->getAssociatedConstraints(PartialAC);
4395 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4396 TemplateAC);
4397}
4398
4399static void
4400noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4401 const llvm::SmallBitVector &DeducibleParams) {
4402 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4403 if (!DeducibleParams[I]) {
4404 NamedDecl *Param = TemplateParams->getParam(I);
4405 if (Param->getDeclName())
4406 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4407 << Param->getDeclName();
4408 else
4409 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4410 << "(anonymous)";
4411 }
4412 }
4413}
4414
4415
4416template<typename PartialSpecDecl>
4417static void checkTemplatePartialSpecialization(Sema &S,
4418 PartialSpecDecl *Partial) {
4419 // C++1z [temp.class.spec]p8: (DR1495)
4420 // - The specialization shall be more specialized than the primary
4421 // template (14.5.5.2).
4422 checkMoreSpecializedThanPrimary(S, Partial);
4423
4424 // C++ [temp.class.spec]p8: (DR1315)
4425 // - Each template-parameter shall appear at least once in the
4426 // template-id outside a non-deduced context.
4427 // C++1z [temp.class.spec.match]p3 (P0127R2)
4428 // If the template arguments of a partial specialization cannot be
4429 // deduced because of the structure of its template-parameter-list
4430 // and the template-id, the program is ill-formed.
4431 auto *TemplateParams = Partial->getTemplateParameters();
4432 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4433 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4434 TemplateParams->getDepth(), DeducibleParams);
4435
4436 if (!DeducibleParams.all()) {
4437 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4438 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4439 << isa<VarTemplatePartialSpecializationDecl>(Partial)
4440 << (NumNonDeducible > 1)
4441 << SourceRange(Partial->getLocation(),
4442 Partial->getTemplateArgsAsWritten()->RAngleLoc);
4443 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4444 }
4445}
4446
4447void Sema::CheckTemplatePartialSpecialization(
4448 ClassTemplatePartialSpecializationDecl *Partial) {
4449 checkTemplatePartialSpecialization(*this, Partial);
4450}
4451
4452void Sema::CheckTemplatePartialSpecialization(
4453 VarTemplatePartialSpecializationDecl *Partial) {
4454 checkTemplatePartialSpecialization(*this, Partial);
4455}
4456
4457void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4458 // C++1z [temp.param]p11:
4459 // A template parameter of a deduction guide template that does not have a
4460 // default-argument shall be deducible from the parameter-type-list of the
4461 // deduction guide template.
4462 auto *TemplateParams = TD->getTemplateParameters();
4463 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4464 MarkDeducedTemplateParameters(TD, DeducibleParams);
4465 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4466 // A parameter pack is deducible (to an empty pack).
4467 auto *Param = TemplateParams->getParam(I);
4468 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4469 DeducibleParams[I] = true;
4470 }
4471
4472 if (!DeducibleParams.all()) {
4473 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4474 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4475 << (NumNonDeducible > 1);
4476 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4477 }
4478}
4479
4480DeclResult Sema::ActOnVarTemplateSpecialization(
4481 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4482 TemplateParameterList *TemplateParams, StorageClass SC,
4483 bool IsPartialSpecialization) {
4484 // D must be variable template id.
4485 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&(static_cast <bool> (D.getName().getKind() == UnqualifiedIdKind
::IK_TemplateId && "Variable template specialization is declared with a template id."
) ? void (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template id.\""
, "clang/lib/Sema/SemaTemplate.cpp", 4486, __extension__ __PRETTY_FUNCTION__
))
4486 "Variable template specialization is declared with a template id.")(static_cast <bool> (D.getName().getKind() == UnqualifiedIdKind
::IK_TemplateId && "Variable template specialization is declared with a template id."
) ? void (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template id.\""
, "clang/lib/Sema/SemaTemplate.cpp", 4486, __extension__ __PRETTY_FUNCTION__
))
;
4487
4488 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4489 TemplateArgumentListInfo TemplateArgs =
4490 makeTemplateArgumentListInfo(*this, *TemplateId);
4491 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4492 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4493 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4494
4495 TemplateName Name = TemplateId->Template.get();
4496
4497 // The template-id must name a variable template.
4498 VarTemplateDecl *VarTemplate =
4499 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4500 if (!VarTemplate) {
4501 NamedDecl *FnTemplate;
4502 if (auto *OTS = Name.getAsOverloadedTemplate())
4503 FnTemplate = *OTS->begin();
4504 else
4505 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4506 if (FnTemplate)
4507 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4508 << FnTemplate->getDeclName();
4509 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4510 << IsPartialSpecialization;
4511 }
4512
4513 // Check for unexpanded parameter packs in any of the template arguments.
4514 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4515 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4516 UPPC_PartialSpecialization))
4517 return true;
4518
4519 // Check that the template argument list is well-formed for this
4520 // template.
4521 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4522 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4523 false, SugaredConverted, CanonicalConverted,
4524 /*UpdateArgsWithConversions=*/true))
4525 return true;
4526
4527 // Find the variable template (partial) specialization declaration that
4528 // corresponds to these arguments.
4529 if (IsPartialSpecialization) {
4530 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4531 TemplateArgs.size(),
4532 CanonicalConverted))
4533 return true;
4534
4535 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4536 // also do them during instantiation.
4537 if (!Name.isDependent() &&
4538 !TemplateSpecializationType::anyDependentTemplateArguments(
4539 TemplateArgs, CanonicalConverted)) {
4540 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4541 << VarTemplate->getDeclName();
4542 IsPartialSpecialization = false;
4543 }
4544
4545 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4546 CanonicalConverted) &&
4547 (!Context.getLangOpts().CPlusPlus20 ||
4548 !TemplateParams->hasAssociatedConstraints())) {
4549 // C++ [temp.class.spec]p9b3:
4550 //
4551 // -- The argument list of the specialization shall not be identical
4552 // to the implicit argument list of the primary template.
4553 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4554 << /*variable template*/ 1
4555 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4556 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4557 // FIXME: Recover from this by treating the declaration as a redeclaration
4558 // of the primary template.
4559 return true;
4560 }
4561 }
4562
4563 void *InsertPos = nullptr;
4564 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4565
4566 if (IsPartialSpecialization)
4567 PrevDecl = VarTemplate->findPartialSpecialization(
4568 CanonicalConverted, TemplateParams, InsertPos);
4569 else
4570 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4571
4572 VarTemplateSpecializationDecl *Specialization = nullptr;
4573
4574 // Check whether we can declare a variable template specialization in
4575 // the current scope.
4576 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4577 TemplateNameLoc,
4578 IsPartialSpecialization))
4579 return true;
4580
4581 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4582 // Since the only prior variable template specialization with these
4583 // arguments was referenced but not declared, reuse that
4584 // declaration node as our own, updating its source location and
4585 // the list of outer template parameters to reflect our new declaration.
4586 Specialization = PrevDecl;
4587 Specialization->setLocation(TemplateNameLoc);
4588 PrevDecl = nullptr;
4589 } else if (IsPartialSpecialization) {
4590 // Create a new class template partial specialization declaration node.
4591 VarTemplatePartialSpecializationDecl *PrevPartial =
4592 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4593 VarTemplatePartialSpecializationDecl *Partial =
4594 VarTemplatePartialSpecializationDecl::Create(
4595 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4596 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4597 CanonicalConverted, TemplateArgs);
4598
4599 if (!PrevPartial)
4600 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4601 Specialization = Partial;
4602
4603 // If we are providing an explicit specialization of a member variable
4604 // template specialization, make a note of that.
4605 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4606 PrevPartial->setMemberSpecialization();
4607
4608 CheckTemplatePartialSpecialization(Partial);
4609 } else {
4610 // Create a new class template specialization declaration node for
4611 // this explicit specialization or friend declaration.
4612 Specialization = VarTemplateSpecializationDecl::Create(
4613 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4614 VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4615 Specialization->setTemplateArgsInfo(TemplateArgs);
4616
4617 if (!PrevDecl)
4618 VarTemplate->AddSpecialization(Specialization, InsertPos);
4619 }
4620
4621 // C++ [temp.expl.spec]p6:
4622 // If a template, a member template or the member of a class template is
4623 // explicitly specialized then that specialization shall be declared
4624 // before the first use of that specialization that would cause an implicit
4625 // instantiation to take place, in every translation unit in which such a
4626 // use occurs; no diagnostic is required.
4627 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4628 bool Okay = false;
4629 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4630 // Is there any previous explicit specialization declaration?
4631 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4632 Okay = true;
4633 break;
4634 }
4635 }
4636
4637 if (!Okay) {
4638 SourceRange Range(TemplateNameLoc, RAngleLoc);
4639 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4640 << Name << Range;
4641
4642 Diag(PrevDecl->getPointOfInstantiation(),
4643 diag::note_instantiation_required_here)
4644 << (PrevDecl->getTemplateSpecializationKind() !=
4645 TSK_ImplicitInstantiation);
4646 return true;
4647 }
4648 }
4649
4650 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4651 Specialization->setLexicalDeclContext(CurContext);
4652
4653 // Add the specialization into its lexical context, so that it can
4654 // be seen when iterating through the list of declarations in that
4655 // context. However, specializations are not found by name lookup.
4656 CurContext->addDecl(Specialization);
4657
4658 // Note that this is an explicit specialization.
4659 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4660
4661 if (PrevDecl) {
4662 // Check that this isn't a redefinition of this specialization,
4663 // merging with previous declarations.
4664 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4665 forRedeclarationInCurContext());
4666 PrevSpec.addDecl(PrevDecl);
4667 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4668 } else if (Specialization->isStaticDataMember() &&
4669 Specialization->isOutOfLine()) {
4670 Specialization->setAccess(VarTemplate->getAccess());
4671 }
4672
4673 return Specialization;
4674}
4675
4676namespace {
4677/// A partial specialization whose template arguments have matched
4678/// a given template-id.
4679struct PartialSpecMatchResult {
4680 VarTemplatePartialSpecializationDecl *Partial;
4681 TemplateArgumentList *Args;
4682};
4683} // end anonymous namespace
4684
4685DeclResult
4686Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4687 SourceLocation TemplateNameLoc,
4688 const TemplateArgumentListInfo &TemplateArgs) {
4689 assert(Template && "A variable template id without template?")(static_cast <bool> (Template && "A variable template id without template?"
) ? void (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "clang/lib/Sema/SemaTemplate.cpp", 4689, __extension__ __PRETTY_FUNCTION__
))
;
4690
4691 // Check that the template argument list is well-formed for this template.
4692 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4693 if (CheckTemplateArgumentList(
4694 Template, TemplateNameLoc,
4695 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4696 SugaredConverted, CanonicalConverted,
4697 /*UpdateArgsWithConversions=*/true))
4698 return true;
4699
4700 // Produce a placeholder value if the specialization is dependent.
4701 if (Template->getDeclContext()->isDependentContext() ||
4702 TemplateSpecializationType::anyDependentTemplateArguments(
4703 TemplateArgs, CanonicalConverted))
4704 return DeclResult();
4705
4706 // Find the variable template specialization declaration that
4707 // corresponds to these arguments.
4708 void *InsertPos = nullptr;
4709 if (VarTemplateSpecializationDecl *Spec =
4710 Template->findSpecialization(CanonicalConverted, InsertPos)) {
4711 checkSpecializationReachability(TemplateNameLoc, Spec);
4712 // If we already have a variable template specialization, return it.
4713 return Spec;
4714 }
4715
4716 // This is the first time we have referenced this variable template
4717 // specialization. Create the canonical declaration and add it to
4718 // the set of specializations, based on the closest partial specialization
4719 // that it represents. That is,
4720 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4721 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4722 CanonicalConverted);
4723 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4724 bool AmbiguousPartialSpec = false;
4725 typedef PartialSpecMatchResult MatchResult;
4726 SmallVector<MatchResult, 4> Matched;
4727 SourceLocation PointOfInstantiation = TemplateNameLoc;
4728 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4729 /*ForTakingAddress=*/false);
4730
4731 // 1. Attempt to find the closest partial specialization that this
4732 // specializes, if any.
4733 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4734 // Perhaps better after unification of DeduceTemplateArguments() and
4735 // getMoreSpecializedPartialSpecialization().
4736 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4737 Template->getPartialSpecializations(PartialSpecs);
4738
4739 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4740 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4741 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4742
4743 if (TemplateDeductionResult Result =
4744 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4745 // Store the failed-deduction information for use in diagnostics, later.
4746 // TODO: Actually use the failed-deduction info?
4747 FailedCandidates.addCandidate().set(
4748 DeclAccessPair::make(Template, AS_public), Partial,
4749 MakeDeductionFailureInfo(Context, Result, Info));
4750 (void)Result;
4751 } else {
4752 Matched.push_back(PartialSpecMatchResult());
4753 Matched.back().Partial = Partial;
4754 Matched.back().Args = Info.takeCanonical();
4755 }
4756 }
4757
4758 if (Matched.size() >= 1) {
4759 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4760 if (Matched.size() == 1) {
4761 // -- If exactly one matching specialization is found, the
4762 // instantiation is generated from that specialization.
4763 // We don't need to do anything for this.
4764 } else {
4765 // -- If more than one matching specialization is found, the
4766 // partial order rules (14.5.4.2) are used to determine
4767 // whether one of the specializations is more specialized
4768 // than the others. If none of the specializations is more
4769 // specialized than all of the other matching
4770 // specializations, then the use of the variable template is
4771 // ambiguous and the program is ill-formed.
4772 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4773 PEnd = Matched.end();
4774 P != PEnd; ++P) {
4775 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4776 PointOfInstantiation) ==
4777 P->Partial)
4778 Best = P;
4779 }
4780
4781 // Determine if the best partial specialization is more specialized than
4782 // the others.
4783 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4784 PEnd = Matched.end();
4785 P != PEnd; ++P) {
4786 if (P != Best && getMoreSpecializedPartialSpecialization(
4787 P->Partial, Best->Partial,
4788 PointOfInstantiation) != Best->Partial) {
4789 AmbiguousPartialSpec = true;
4790 break;
4791 }
4792 }
4793 }
4794
4795 // Instantiate using the best variable template partial specialization.
4796 InstantiationPattern = Best->Partial;
4797 InstantiationArgs = Best->Args;
4798 } else {
4799 // -- If no match is found, the instantiation is generated
4800 // from the primary template.
4801 // InstantiationPattern = Template->getTemplatedDecl();
4802 }
4803
4804 // 2. Create the canonical declaration.
4805 // Note that we do not instantiate a definition until we see an odr-use
4806 // in DoMarkVarDeclReferenced().
4807 // FIXME: LateAttrs et al.?
4808 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4809 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4810 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4811 if (!Decl)
4812 return true;
4813
4814 if (AmbiguousPartialSpec) {
4815 // Partial ordering did not produce a clear winner. Complain.
4816 Decl->setInvalidDecl();
4817 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4818 << Decl;
4819
4820 // Print the matching partial specializations.
4821 for (MatchResult P : Matched)
4822 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4823 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4824 *P.Args);
4825 return true;
4826 }
4827
4828 if (VarTemplatePartialSpecializationDecl *D =
4829 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4830 Decl->setInstantiationOf(D, InstantiationArgs);
4831
4832 checkSpecializationReachability(TemplateNameLoc, Decl);
4833
4834 assert(Decl && "No variable template specialization?")(static_cast <bool> (Decl && "No variable template specialization?"
) ? void (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "clang/lib/Sema/SemaTemplate.cpp", 4834, __extension__ __PRETTY_FUNCTION__
))
;
4835 return Decl;
4836}
4837
4838ExprResult
4839Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4840 const DeclarationNameInfo &NameInfo,
4841 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4842 const TemplateArgumentListInfo *TemplateArgs) {
4843
4844 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4845 *TemplateArgs);
4846 if (Decl.isInvalid())
4847 return ExprError();
4848
4849 if (!Decl.get())
4850 return ExprResult();
4851
4852 VarDecl *Var = cast<VarDecl>(Decl.get());
4853 if (!Var->getTemplateSpecializationKind())
4854 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4855 NameInfo.getLoc());
4856
4857 // Build an ordinary singleton decl ref.
4858 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4859 /*FoundD=*/nullptr, TemplateArgs);
4860}
4861
4862void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4863 SourceLocation Loc) {
4864 Diag(Loc, diag::err_template_missing_args)
4865 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4866 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4867 Diag(TD->getLocation(), diag::note_template_decl_here)
4868 << TD->getTemplateParameters()->getSourceRange();
4869 }
4870}
4871
4872ExprResult
4873Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4874 SourceLocation TemplateKWLoc,
4875 const DeclarationNameInfo &ConceptNameInfo,
4876 NamedDecl *FoundDecl,
4877 ConceptDecl *NamedConcept,
4878 const TemplateArgumentListInfo *TemplateArgs) {
4879 assert(NamedConcept && "A concept template id without a template?")(static_cast <bool> (NamedConcept && "A concept template id without a template?"
) ? void (0) : __assert_fail ("NamedConcept && \"A concept template id without a template?\""
, "clang/lib/Sema/SemaTemplate.cpp", 4879, __extension__ __PRETTY_FUNCTION__
))
;
4880
4881 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4882 if (CheckTemplateArgumentList(
4883 NamedConcept, ConceptNameInfo.getLoc(),
4884 const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
4885 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
4886 /*UpdateArgsWithConversions=*/false))
4887 return ExprError();
4888
4889 auto *CSD = ImplicitConceptSpecializationDecl::Create(
4890 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
4891 CanonicalConverted);
4892 ConstraintSatisfaction Satisfaction;
4893 bool AreArgsDependent =
4894 TemplateSpecializationType::anyDependentTemplateArguments(
4895 *TemplateArgs, CanonicalConverted);
4896 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
4897 /*Final=*/false);
4898 LocalInstantiationScope Scope(*this);
4899
4900 EnterExpressionEvaluationContext EECtx{
4901 *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
4902
4903 if (!AreArgsDependent &&
4904 CheckConstraintSatisfaction(
4905 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
4906 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
4907 TemplateArgs->getRAngleLoc()),
4908 Satisfaction))
4909 return ExprError();
4910
4911 return ConceptSpecializationExpr::Create(
4912 Context,
4913 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4914 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4915 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), CSD,
4916 AreArgsDependent ? nullptr : &Satisfaction);
4917}
4918
4919ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4920 SourceLocation TemplateKWLoc,
4921 LookupResult &R,
4922 bool RequiresADL,
4923 const TemplateArgumentListInfo *TemplateArgs) {
4924 // FIXME: Can we do any checking at this point? I guess we could check the
4925 // template arguments that we have against the template name, if the template
4926 // name refers to a single template. That's not a terribly common case,
4927 // though.
4928 // foo<int> could identify a single function unambiguously
4929 // This approach does NOT work, since f<int>(1);
4930 // gets resolved prior to resorting to overload resolution
4931 // i.e., template<class T> void f(double);
4932 // vs template<class T, class U> void f(U);
4933
4934 // These should be filtered out by our callers.
4935 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")(static_cast <bool> (!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "clang/lib/Sema/SemaTemplate.cpp", 4935, __extension__ __PRETTY_FUNCTION__
))
;
4936
4937 // Non-function templates require a template argument list.
4938 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4939 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4940 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4941 return ExprError();
4942 }
4943 }
4944
4945 // In C++1y, check variable template ids.
4946 if (R.getAsSingle<VarTemplateDecl>()) {
4947 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
4948 R.getAsSingle<VarTemplateDecl>(),
4949 TemplateKWLoc, TemplateArgs);
4950 if (Res.isInvalid() || Res.isUsable())
4951 return Res;
4952 // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4953 }
4954
4955 if (R.getAsSingle<ConceptDecl>()) {
4956 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4957 R.getFoundDecl(),
4958 R.getAsSingle<ConceptDecl>(), TemplateArgs);
4959 }
4960
4961 // We don't want lookup warnings at this point.
4962 R.suppressDiagnostics();
4963
4964 UnresolvedLookupExpr *ULE
4965 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4966 SS.getWithLocInContext(Context),
4967 TemplateKWLoc,
4968 R.getLookupNameInfo(),
4969 RequiresADL, TemplateArgs,
4970 R.begin(), R.end());
4971
4972 return ULE;
4973}
4974
4975// We actually only call this from template instantiation.
4976ExprResult
4977Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4978 SourceLocation TemplateKWLoc,
4979 const DeclarationNameInfo &NameInfo,
4980 const TemplateArgumentListInfo *TemplateArgs) {
4981
4982 assert(TemplateArgs || TemplateKWLoc.isValid())(static_cast <bool> (TemplateArgs || TemplateKWLoc.isValid
()) ? void (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "clang/lib/Sema/SemaTemplate.cpp", 4982, __extension__ __PRETTY_FUNCTION__
))
;
4983 DeclContext *DC;
4984 if (!(DC = computeDeclContext(SS, false)) ||
4985 DC->isDependentContext() ||
4986 RequireCompleteDeclContext(SS, DC))
4987 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4988
4989 bool MemberOfUnknownSpecialization;
4990 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4991 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4992 /*Entering*/false, MemberOfUnknownSpecialization,
4993 TemplateKWLoc))
4994 return ExprError();
4995
4996 if (R.isAmbiguous())
4997 return ExprError();
4998
4999 if (R.empty()) {
5000 Diag(NameInfo.getLoc(), diag::err_no_member)
5001 << NameInfo.getName() << DC << SS.getRange();
5002 return ExprError();
5003 }
5004
5005 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
5006 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
5007 << SS.getScopeRep()
5008 << NameInfo.getName().getAsString() << SS.getRange();
5009 Diag(Temp->getLocation(), diag::note_referenced_class_template);
5010 return ExprError();
5011 }
5012
5013 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
5014}
5015
5016/// Form a template name from a name that is syntactically required to name a
5017/// template, either due to use of the 'template' keyword or because a name in
5018/// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5019///
5020/// This action forms a template name given the name of the template and its
5021/// optional scope specifier. This is used when the 'template' keyword is used
5022/// or when the parsing context unambiguously treats a following '<' as
5023/// introducing a template argument list. Note that this may produce a
5024/// non-dependent template name if we can perform the lookup now and identify
5025/// the named template.
5026///
5027/// For example, given "x.MetaFun::template apply", the scope specifier
5028/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5029/// of the "template" keyword, and "apply" is the \p Name.
5030TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5031 CXXScopeSpec &SS,
5032 SourceLocation TemplateKWLoc,
5033 const UnqualifiedId &Name,
5034 ParsedType ObjectType,
5035 bool EnteringContext,
5036 TemplateTy &Result,
5037 bool AllowInjectedClassName) {
5038 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5039 Diag(TemplateKWLoc,
5040 getLangOpts().CPlusPlus11 ?
5041 diag::warn_cxx98_compat_template_outside_of_template :
5042 diag::ext_template_outside_of_template)
5043 << FixItHint::CreateRemoval(TemplateKWLoc);
5044
5045 if (SS.isInvalid())
5046 return TNK_Non_template;
5047
5048 // Figure out where isTemplateName is going to look.
5049 DeclContext *LookupCtx = nullptr;
5050 if (SS.isNotEmpty())
5051 LookupCtx = computeDeclContext(SS, EnteringContext);
5052 else if (ObjectType)
5053 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
5054
5055 // C++0x [temp.names]p5:
5056 // If a name prefixed by the keyword template is not the name of
5057 // a template, the program is ill-formed. [Note: the keyword
5058 // template may not be applied to non-template members of class
5059 // templates. -end note ] [ Note: as is the case with the
5060 // typename prefix, the template prefix is allowed in cases
5061 // where it is not strictly necessary; i.e., when the
5062 // nested-name-specifier or the expression on the left of the ->
5063 // or . is not dependent on a template-parameter, or the use
5064 // does not appear in the scope of a template. -end note]
5065 //
5066 // Note: C++03 was more strict here, because it banned the use of
5067 // the "template" keyword prior to a template-name that was not a
5068 // dependent name. C++ DR468 relaxed this requirement (the
5069 // "template" keyword is now permitted). We follow the C++0x
5070 // rules, even in C++03 mode with a warning, retroactively applying the DR.
5071 bool MemberOfUnknownSpecialization;
5072 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
5073 ObjectType, EnteringContext, Result,
5074 MemberOfUnknownSpecialization);
5075 if (TNK != TNK_Non_template) {
5076 // We resolved this to a (non-dependent) template name. Return it.
5077 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
5078 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5079 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5080 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5081 // C++14 [class.qual]p2:
5082 // In a lookup in which function names are not ignored and the
5083 // nested-name-specifier nominates a class C, if the name specified
5084 // [...] is the injected-class-name of C, [...] the name is instead
5085 // considered to name the constructor
5086 //
5087 // We don't get here if naming the constructor would be valid, so we
5088 // just reject immediately and recover by treating the
5089 // injected-class-name as naming the template.
5090 Diag(Name.getBeginLoc(),
5091 diag::ext_out_of_line_qualified_id_type_names_constructor)
5092 << Name.Identifier
5093 << 0 /*injected-class-name used as template name*/
5094 << TemplateKWLoc.isValid();
5095 }
5096 return TNK;
5097 }
5098
5099 if (!MemberOfUnknownSpecialization) {
5100 // Didn't find a template name, and the lookup wasn't dependent.
5101 // Do the lookup again to determine if this is a "nothing found" case or
5102 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5103 // need to do this.
5104 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5105 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5106 LookupOrdinaryName);
5107 bool MOUS;
5108 // Tell LookupTemplateName that we require a template so that it diagnoses
5109 // cases where it finds a non-template.
5110 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5111 ? RequiredTemplateKind(TemplateKWLoc)
5112 : TemplateNameIsRequired;
5113 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
5114 RTK, nullptr, /*AllowTypoCorrection=*/false) &&
5115 !R.isAmbiguous()) {
5116 if (LookupCtx)
5117 Diag(Name.getBeginLoc(), diag::err_no_member)
5118 << DNI.getName() << LookupCtx << SS.getRange();
5119 else
5120 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5121 << DNI.getName() << SS.getRange();
5122 }
5123 return TNK_Non_template;
5124 }
5125
5126 NestedNameSpecifier *Qualifier = SS.getScopeRep();
5127
5128 switch (Name.getKind()) {
5129 case UnqualifiedIdKind::IK_Identifier:
5130 Result = TemplateTy::make(
5131 Context.getDependentTemplateName(Qualifier, Name.Identifier));
5132 return TNK_Dependent_template_name;
5133
5134 case UnqualifiedIdKind::IK_OperatorFunctionId:
5135 Result = TemplateTy::make(Context.getDependentTemplateName(
5136 Qualifier, Name.OperatorFunctionId.Operator));
5137 return TNK_Function_template;
5138
5139 case UnqualifiedIdKind::IK_LiteralOperatorId:
5140 // This is a kind of template name, but can never occur in a dependent
5141 // scope (literal operators can only be declared at namespace scope).
5142 break;
5143
5144 default:
5145 break;
5146 }
5147
5148 // This name cannot possibly name a dependent template. Diagnose this now
5149 // rather than building a dependent template name that can never be valid.
5150 Diag(Name.getBeginLoc(),
5151 diag::err_template_kw_refers_to_dependent_non_template)
5152 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5153 << TemplateKWLoc.isValid() << TemplateKWLoc;
5154 return TNK_Non_template;
5155}
5156
5157bool Sema::CheckTemplateTypeArgument(
5158 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5159 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5160 SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5161 const TemplateArgument &Arg = AL.getArgument();
5162 QualType ArgType;
5163 TypeSourceInfo *TSI = nullptr;
5164
5165 // Check template type parameter.
5166 switch(Arg.getKind()) {
5167 case TemplateArgument::Type:
5168 // C++ [temp.arg.type]p1:
5169 // A template-argument for a template-parameter which is a
5170 // type shall be a type-id.
5171 ArgType = Arg.getAsType();
5172 TSI = AL.getTypeSourceInfo();
5173 break;
5174 case TemplateArgument::Template:
5175 case TemplateArgument::TemplateExpansion: {
5176 // We have a template type parameter but the template argument
5177 // is a template without any arguments.
5178 SourceRange SR = AL.getSourceRange();
5179 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5180 diagnoseMissingTemplateArguments(Name, SR.getEnd());
5181 return true;
5182 }
5183 case TemplateArgument::Expression: {
5184 // We have a template type parameter but the template argument is an
5185 // expression; see if maybe it is missing the "typename" keyword.
5186 CXXScopeSpec SS;
5187 DeclarationNameInfo NameInfo;
5188
5189 if (DependentScopeDeclRefExpr *ArgExpr =
5190 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5191 SS.Adopt(ArgExpr->getQualifierLoc());
5192 NameInfo = ArgExpr->getNameInfo();
5193 } else if (CXXDependentScopeMemberExpr *ArgExpr =
5194 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5195 if (ArgExpr->isImplicitAccess()) {
5196 SS.Adopt(ArgExpr->getQualifierLoc());
5197 NameInfo = ArgExpr->getMemberNameInfo();
5198 }
5199 }
5200
5201 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5202 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5203 LookupParsedName(Result, CurScope, &SS);
5204
5205 if (Result.getAsSingle<TypeDecl>() ||
5206 Result.getResultKind() ==
5207 LookupResult::NotFoundInCurrentInstantiation) {
5208 assert(SS.getScopeRep() && "dependent scope expr must has a scope!")(static_cast <bool> (SS.getScopeRep() && "dependent scope expr must has a scope!"
) ? void (0) : __assert_fail ("SS.getScopeRep() && \"dependent scope expr must has a scope!\""
, "clang/lib/Sema/SemaTemplate.cpp", 5208, __extension__ __PRETTY_FUNCTION__
))
;
5209 // Suggest that the user add 'typename' before the NNS.
5210 SourceLocation Loc = AL.getSourceRange().getBegin();
5211 Diag(Loc, getLangOpts().MSVCCompat
5212 ? diag::ext_ms_template_type_arg_missing_typename
5213 : diag::err_template_arg_must_be_type_suggest)
5214 << FixItHint::CreateInsertion(Loc, "typename ");
5215 Diag(Param->getLocation(), diag::note_template_param_here);
5216
5217 // Recover by synthesizing a type using the location information that we
5218 // already have.
5219 ArgType =
5220 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
5221 TypeLocBuilder TLB;
5222 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5223 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5224 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5225 TL.setNameLoc(NameInfo.getLoc());
5226 TSI = TLB.getTypeSourceInfo(Context, ArgType);
5227
5228 // Overwrite our input TemplateArgumentLoc so that we can recover
5229 // properly.
5230 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5231 TemplateArgumentLocInfo(TSI));
5232
5233 break;
5234 }
5235 }
5236 // fallthrough
5237 [[fallthrough]];
5238 }
5239 default: {
5240 // We have a template type parameter but the template argument
5241 // is not a type.
5242 SourceRange SR = AL.getSourceRange();
5243 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5244 Diag(Param->getLocation(), diag::note_template_param_here);
5245
5246 return true;
5247 }
5248 }
5249
5250 if (CheckTemplateArgument(TSI))
5251 return true;
5252
5253 // Objective-C ARC:
5254 // If an explicitly-specified template argument type is a lifetime type
5255 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5256 if (getLangOpts().ObjCAutoRefCount &&
5257 ArgType->isObjCLifetimeType() &&
5258 !ArgType.getObjCLifetime()) {
5259 Qualifiers Qs;
5260 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5261 ArgType = Context.getQualifiedType(ArgType, Qs);
5262 }
5263
5264 SugaredConverted.push_back(TemplateArgument(ArgType));
5265 CanonicalConverted.push_back(
5266 TemplateArgument(Context.getCanonicalType(ArgType)));
5267 return false;
5268}
5269
5270/// Substitute template arguments into the default template argument for
5271/// the given template type parameter.
5272///
5273/// \param SemaRef the semantic analysis object for which we are performing
5274/// the substitution.
5275///
5276/// \param Template the template that we are synthesizing template arguments
5277/// for.
5278///
5279/// \param TemplateLoc the location of the template name that started the
5280/// template-id we are checking.
5281///
5282/// \param RAngleLoc the location of the right angle bracket ('>') that
5283/// terminates the template-id.
5284///
5285/// \param Param the template template parameter whose default we are
5286/// substituting into.
5287///
5288/// \param Converted the list of template arguments provided for template
5289/// parameters that precede \p Param in the template parameter list.
5290/// \returns the substituted template argument, or NULL if an error occurred.
5291static TypeSourceInfo *SubstDefaultTemplateArgument(
5292 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5293 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5294 ArrayRef<TemplateArgument> SugaredConverted,
5295 ArrayRef<TemplateArgument> CanonicalConverted) {
5296 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5297
5298 // If the argument type is dependent, instantiate it now based
5299 // on the previously-computed template arguments.
5300 if (ArgType->getType()->isInstantiationDependentType()) {
5301 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5302 SugaredConverted,
5303 SourceRange(TemplateLoc, RAngleLoc));
5304 if (Inst.isInvalid())
5305 return nullptr;
5306
5307 // Only substitute for the innermost template argument list.
5308 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5309 /*Final=*/true);
5310 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5311 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5312
5313 bool ForLambdaCallOperator = false;
5314 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5315 ForLambdaCallOperator = Rec->isLambda();
5316 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5317 !ForLambdaCallOperator);
5318 ArgType =
5319 SemaRef.SubstType(ArgType, TemplateArgLists,
5320 Param->getDefaultArgumentLoc(), Param->getDeclName());
5321 }
5322
5323 return ArgType;
5324}
5325
5326/// Substitute template arguments into the default template argument for
5327/// the given non-type template parameter.
5328///
5329/// \param SemaRef the semantic analysis object for which we are performing
5330/// the substitution.
5331///
5332/// \param Template the template that we are synthesizing template arguments
5333/// for.
5334///
5335/// \param TemplateLoc the location of the template name that started the
5336/// template-id we are checking.
5337///
5338/// \param RAngleLoc the location of the right angle bracket ('>') that
5339/// terminates the template-id.
5340///
5341/// \param Param the non-type template parameter whose default we are
5342/// substituting into.
5343///
5344/// \param Converted the list of template arguments provided for template
5345/// parameters that precede \p Param in the template parameter list.
5346///
5347/// \returns the substituted template argument, or NULL if an error occurred.
5348static ExprResult SubstDefaultTemplateArgument(
5349 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5350 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5351 ArrayRef<TemplateArgument> SugaredConverted,
5352 ArrayRef<TemplateArgument> CanonicalConverted) {
5353 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5354 SugaredConverted,
5355 SourceRange(TemplateLoc, RAngleLoc));
5356 if (Inst.isInvalid())
5357 return ExprError();
5358
5359 // Only substitute for the innermost template argument list.
5360 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5361 /*Final=*/true);
5362 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5363 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5364
5365 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5366 EnterExpressionEvaluationContext ConstantEvaluated(
5367 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5368 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5369}
5370
5371/// Substitute template arguments into the default template argument for
5372/// the given template template parameter.
5373///
5374/// \param SemaRef the semantic analysis object for which we are performing
5375/// the substitution.
5376///
5377/// \param Template the template that we are synthesizing template arguments
5378/// for.
5379///
5380/// \param TemplateLoc the location of the template name that started the
5381/// template-id we are checking.
5382///
5383/// \param RAngleLoc the location of the right angle bracket ('>') that
5384/// terminates the template-id.
5385///
5386/// \param Param the template template parameter whose default we are
5387/// substituting into.
5388///
5389/// \param Converted the list of template arguments provided for template
5390/// parameters that precede \p Param in the template parameter list.
5391///
5392/// \param QualifierLoc Will be set to the nested-name-specifier (with
5393/// source-location information) that precedes the template name.
5394///
5395/// \returns the substituted template argument, or NULL if an error occurred.
5396static TemplateName SubstDefaultTemplateArgument(
5397 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5398 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5399 ArrayRef<TemplateArgument> SugaredConverted,
5400 ArrayRef<TemplateArgument> CanonicalConverted,
5401 NestedNameSpecifierLoc &QualifierLoc) {
5402 Sema::InstantiatingTemplate Inst(
5403 SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5404 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5405 if (Inst.isInvalid())
5406 return TemplateName();
5407
5408 // Only substitute for the innermost template argument list.
5409 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5410 /*Final=*/true);
5411 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5412 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5413
5414 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5415 // Substitute into the nested-name-specifier first,
5416 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5417 if (QualifierLoc) {
5418 QualifierLoc =
5419 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5420 if (!QualifierLoc)
5421 return TemplateName();
5422 }
5423
5424 return SemaRef.SubstTemplateName(
5425 QualifierLoc,
5426 Param->getDefaultArgument().getArgument().getAsTemplate(),
5427 Param->getDefaultArgument().getTemplateNameLoc(),
5428 TemplateArgLists);
5429}
5430
5431/// If the given template parameter has a default template
5432/// argument, substitute into that default template argument and
5433/// return the corresponding template argument.
5434TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5435 TemplateDecl *Template, SourceLocation TemplateLoc,
5436 SourceLocation RAngleLoc, Decl *Param,
5437 ArrayRef<TemplateArgument> SugaredConverted,
5438 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5439 HasDefaultArg = false;
5440
5441 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5442 if (!hasReachableDefaultArgument(TypeParm))
5443 return TemplateArgumentLoc();
5444
5445 HasDefaultArg = true;
5446 TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5447 *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted,
5448 CanonicalConverted);
5449 if (DI)
5450 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5451
5452 return TemplateArgumentLoc();
5453 }
5454
5455 if (NonTypeTemplateParmDecl *NonTypeParm
5456 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5457 if (!hasReachableDefaultArgument(NonTypeParm))
5458 return TemplateArgumentLoc();
5459
5460 HasDefaultArg = true;
5461 ExprResult Arg = SubstDefaultTemplateArgument(
5462 *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted,
5463 CanonicalConverted);
5464 if (Arg.isInvalid())
5465 return TemplateArgumentLoc();
5466
5467 Expr *ArgE = Arg.getAs<Expr>();
5468 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5469 }
5470
5471 TemplateTemplateParmDecl *TempTempParm
5472 = cast<TemplateTemplateParmDecl>(Param);
5473 if (!hasReachableDefaultArgument(TempTempParm))
5474 return TemplateArgumentLoc();
5475
5476 HasDefaultArg = true;
5477 NestedNameSpecifierLoc QualifierLoc;
5478 TemplateName TName = SubstDefaultTemplateArgument(
5479 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
5480 CanonicalConverted, QualifierLoc);
5481 if (TName.isNull())
5482 return TemplateArgumentLoc();
5483
5484 return TemplateArgumentLoc(
5485 Context, TemplateArgument(TName),
5486 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5487 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5488}
5489
5490/// Convert a template-argument that we parsed as a type into a template, if
5491/// possible. C++ permits injected-class-names to perform dual service as
5492/// template template arguments and as template type arguments.
5493static TemplateArgumentLoc
5494convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5495 // Extract and step over any surrounding nested-name-specifier.
5496 NestedNameSpecifierLoc QualLoc;
5497 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5498 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5499 return TemplateArgumentLoc();
5500
5501 QualLoc = ETLoc.getQualifierLoc();
5502 TLoc = ETLoc.getNamedTypeLoc();
5503 }
5504 // If this type was written as an injected-class-name, it can be used as a
5505 // template template argument.
5506 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5507 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5508 QualLoc, InjLoc.getNameLoc());
5509
5510 // If this type was written as an injected-class-name, it may have been
5511 // converted to a RecordType during instantiation. If the RecordType is
5512 // *not* wrapped in a TemplateSpecializationType and denotes a class
5513 // template specialization, it must have come from an injected-class-name.
5514 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5515 if (auto *CTSD =
5516 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5517 return TemplateArgumentLoc(Context,
5518 TemplateName(CTSD->getSpecializedTemplate()),
5519 QualLoc, RecLoc.getNameLoc());
5520
5521 return TemplateArgumentLoc();
5522}
5523
5524/// Check that the given template argument corresponds to the given
5525/// template parameter.
5526///
5527/// \param Param The template parameter against which the argument will be
5528/// checked.
5529///
5530/// \param Arg The template argument, which may be updated due to conversions.
5531///
5532/// \param Template The template in which the template argument resides.
5533///
5534/// \param TemplateLoc The location of the template name for the template
5535/// whose argument list we're matching.
5536///
5537/// \param RAngleLoc The location of the right angle bracket ('>') that closes
5538/// the template argument list.
5539///
5540/// \param ArgumentPackIndex The index into the argument pack where this
5541/// argument will be placed. Only valid if the parameter is a parameter pack.
5542///
5543/// \param Converted The checked, converted argument will be added to the
5544/// end of this small vector.
5545///
5546/// \param CTAK Describes how we arrived at this particular template argument:
5547/// explicitly written, deduced, etc.
5548///
5549/// \returns true on error, false otherwise.
5550bool Sema::CheckTemplateArgument(
5551 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5552 SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5553 unsigned ArgumentPackIndex,
5554 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5555 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5556 CheckTemplateArgumentKind CTAK) {
5557 // Check template type parameters.
5558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5559 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
5560 CanonicalConverted);
5561
5562 // Check non-type template parameters.
5563 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5564 // Do substitution on the type of the non-type template parameter
5565 // with the template arguments we've seen thus far. But if the
5566 // template has a dependent context then we cannot substitute yet.
5567 QualType NTTPType = NTTP->getType();
5568 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5569 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5570
5571 if (NTTPType->isInstantiationDependentType() &&
5572 !isa<TemplateTemplateParmDecl>(Template) &&
5573 !Template->getDeclContext()->isDependentContext()) {
5574 // Do substitution on the type of the non-type template parameter.
5575 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5576 SugaredConverted,
5577 SourceRange(TemplateLoc, RAngleLoc));
5578 if (Inst.isInvalid())
5579 return true;
5580
5581 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5582 /*Final=*/true);
5583 // If the parameter is a pack expansion, expand this slice of the pack.
5584 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5585 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5586 ArgumentPackIndex);
5587 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5588 NTTP->getDeclName());
5589 } else {
5590 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5591 NTTP->getDeclName());
5592 }
5593
5594 // If that worked, check the non-type template parameter type
5595 // for validity.
5596 if (!NTTPType.isNull())
5597 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5598 NTTP->getLocation());
5599 if (NTTPType.isNull())
5600 return true;
5601 }
5602
5603 switch (Arg.getArgument().getKind()) {
5604 case TemplateArgument::Null:
5605 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "clang/lib/Sema/SemaTemplate.cpp", 5605)
;
5606
5607 case TemplateArgument::Expression: {
5608 Expr *E = Arg.getArgument().getAsExpr();
5609 TemplateArgument SugaredResult, CanonicalResult;
5610 unsigned CurSFINAEErrors = NumSFINAEErrors;
5611 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5612 CanonicalResult, CTAK);
5613 if (Res.isInvalid())
5614 return true;
5615 // If the current template argument causes an error, give up now.
5616 if (CurSFINAEErrors < NumSFINAEErrors)
5617 return true;
5618
5619 // If the resulting expression is new, then use it in place of the
5620 // old expression in the template argument.
5621 if (Res.get() != E) {
5622 TemplateArgument TA(Res.get());
5623 Arg = TemplateArgumentLoc(TA, Res.get());
5624 }
5625
5626 SugaredConverted.push_back(SugaredResult);
5627 CanonicalConverted.push_back(CanonicalResult);
5628 break;
5629 }
5630
5631 case TemplateArgument::Declaration:
5632 case TemplateArgument::Integral:
5633 case TemplateArgument::NullPtr:
5634 // We've already checked this template argument, so just copy
5635 // it to the list of converted arguments.
5636 SugaredConverted.push_back(Arg.getArgument());
5637 CanonicalConverted.push_back(
5638 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5639 break;
5640
5641 case TemplateArgument::Template:
5642 case TemplateArgument::TemplateExpansion:
5643 // We were given a template template argument. It may not be ill-formed;
5644 // see below.
5645 if (DependentTemplateName *DTN
5646 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5647 .getAsDependentTemplateName()) {
5648 // We have a template argument such as \c T::template X, which we
5649 // parsed as a template template argument. However, since we now
5650 // know that we need a non-type template argument, convert this
5651 // template name into an expression.
5652
5653 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5654 Arg.getTemplateNameLoc());
5655
5656 CXXScopeSpec SS;
5657 SS.Adopt(Arg.getTemplateQualifierLoc());
5658 // FIXME: the template-template arg was a DependentTemplateName,
5659 // so it was provided with a template keyword. However, its source
5660 // location is not stored in the template argument structure.
5661 SourceLocation TemplateKWLoc;
5662 ExprResult E = DependentScopeDeclRefExpr::Create(
5663 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5664 nullptr);
5665
5666 // If we parsed the template argument as a pack expansion, create a
5667 // pack expansion expression.
5668 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5669 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5670 if (E.isInvalid())
5671 return true;
5672 }
5673
5674 TemplateArgument SugaredResult, CanonicalResult;
5675 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5676 CanonicalResult, CTAK_Specified);
5677 if (E.isInvalid())
5678 return true;
5679
5680 SugaredConverted.push_back(SugaredResult);
5681 CanonicalConverted.push_back(CanonicalResult);
5682 break;
5683 }
5684
5685 // We have a template argument that actually does refer to a class
5686 // template, alias template, or template template parameter, and
5687 // therefore cannot be a non-type template argument.
5688 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5689 << Arg.getSourceRange();
5690
5691 Diag(Param->getLocation(), diag::note_template_param_here);
5692 return true;
5693
5694 case TemplateArgument::Type: {
5695 // We have a non-type template parameter but the template
5696 // argument is a type.
5697
5698 // C++ [temp.arg]p2:
5699 // In a template-argument, an ambiguity between a type-id and
5700 // an expression is resolved to a type-id, regardless of the
5701 // form of the corresponding template-parameter.
5702 //
5703 // We warn specifically about this case, since it can be rather
5704 // confusing for users.
5705 QualType T = Arg.getArgument().getAsType();
5706 SourceRange SR = Arg.getSourceRange();
5707 if (T->isFunctionType())
5708 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5709 else
5710 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5711 Diag(Param->getLocation(), diag::note_template_param_here);
5712 return true;
5713 }
5714
5715 case TemplateArgument::Pack:
5716 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "clang/lib/Sema/SemaTemplate.cpp", 5716)
;
5717 }
5718
5719 return false;
5720 }
5721
5722
5723 // Check template template parameters.
5724 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5725
5726 TemplateParameterList *Params = TempParm->getTemplateParameters();
5727 if (TempParm->isExpandedParameterPack())
5728 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5729
5730 // Substitute into the template parameter list of the template
5731 // template parameter, since previously-supplied template arguments
5732 // may appear within the template template parameter.
5733 //
5734 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5735 {
5736 // Set up a template instantiation context.
5737 LocalInstantiationScope Scope(*this);
5738 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5739 SugaredConverted,
5740 SourceRange(TemplateLoc, RAngleLoc));
5741 if (Inst.isInvalid())
5742 return true;
5743
5744 Params =
5745 SubstTemplateParams(Params, CurContext,
5746 MultiLevelTemplateArgumentList(
5747 Template, SugaredConverted, /*Final=*/true),
5748 /*EvaluateConstraints=*/false);
5749 if (!Params)
5750 return true;
5751 }
5752
5753 // C++1z [temp.local]p1: (DR1004)
5754 // When [the injected-class-name] is used [...] as a template-argument for
5755 // a template template-parameter [...] it refers to the class template
5756 // itself.
5757 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5758 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5759 Context, Arg.getTypeSourceInfo()->getTypeLoc());
5760 if (!ConvertedArg.getArgument().isNull())
5761 Arg = ConvertedArg;
5762 }
5763
5764 switch (Arg.getArgument().getKind()) {
5765 case TemplateArgument::Null:
5766 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "clang/lib/Sema/SemaTemplate.cpp", 5766)
;
5767
5768 case TemplateArgument::Template:
5769 case TemplateArgument::TemplateExpansion:
5770 if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5771 return true;
5772
5773 SugaredConverted.push_back(Arg.getArgument());
5774 CanonicalConverted.push_back(
5775 Context.getCanonicalTemplateArgument(Arg.getArgument()));
5776 break;
5777
5778 case TemplateArgument::Expression:
5779 case TemplateArgument::Type:
5780 // We have a template template parameter but the template
5781 // argument does not refer to a template.
5782 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5783 << getLangOpts().CPlusPlus11;
5784 return true;
5785
5786 case TemplateArgument::Declaration:
5787 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "clang/lib/Sema/SemaTemplate.cpp", 5787)
;
5788 case TemplateArgument::Integral:
5789 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "clang/lib/Sema/SemaTemplate.cpp", 5789)
;
5790 case TemplateArgument::NullPtr:
5791 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "clang/lib/Sema/SemaTemplate.cpp", 5791)
;
5792
5793 case TemplateArgument::Pack:
5794 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "clang/lib/Sema/SemaTemplate.cpp", 5794)
;
5795 }
5796
5797 return false;
5798}
5799
5800/// Diagnose a missing template argument.
5801template<typename TemplateParmDecl>
5802static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5803 TemplateDecl *TD,
5804 const TemplateParmDecl *D,
5805 TemplateArgumentListInfo &Args) {
5806 // Dig out the most recent declaration of the template parameter; there may be
5807 // declarations of the template that are more recent than TD.
5808 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5809 ->getTemplateParameters()
5810 ->getParam(D->getIndex()));
5811
5812 // If there's a default argument that's not reachable, diagnose that we're
5813 // missing a module import.
5814 llvm::SmallVector<Module*, 8> Modules;
5815 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5816 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5817 D->getDefaultArgumentLoc(), Modules,
5818 Sema::MissingImportKind::DefaultArgument,
5819 /*Recover*/true);
5820 return true;
5821 }
5822
5823 // FIXME: If there's a more recent default argument that *is* visible,
5824 // diagnose that it was declared too late.
5825
5826 TemplateParameterList *Params = TD->getTemplateParameters();
5827
5828 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5829 << /*not enough args*/0
5830 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5831 << TD;
5832 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5833 << Params->getSourceRange();
5834 return true;
5835}
5836
5837/// Check that the given template argument list is well-formed
5838/// for specializing the given template.
5839bool Sema::CheckTemplateArgumentList(
5840 TemplateDecl *Template, SourceLocation TemplateLoc,
5841 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5842 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5843 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5844 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5845
5846 if (ConstraintsNotSatisfied)
5847 *ConstraintsNotSatisfied = false;
5848
5849 // Make a copy of the template arguments for processing. Only make the
5850 // changes at the end when successful in matching the arguments to the
5851 // template.
5852 TemplateArgumentListInfo NewArgs = TemplateArgs;
5853
5854 // Make sure we get the template parameter list from the most
5855 // recent declaration, since that is the only one that is guaranteed to
5856 // have all the default template argument information.
5857 TemplateParameterList *Params =
5858 cast<TemplateDecl>(Template->getMostRecentDecl())
5859 ->getTemplateParameters();
5860
5861 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5862
5863 // C++ [temp.arg]p1:
5864 // [...] The type and form of each template-argument specified in
5865 // a template-id shall match the type and form specified for the
5866 // corresponding parameter declared by the template in its
5867 // template-parameter-list.
5868 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5869 SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5870 SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5871 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5872 LocalInstantiationScope InstScope(*this, true);
5873 for (TemplateParameterList::iterator Param = Params->begin(),
5874 ParamEnd = Params->end();
5875 Param != ParamEnd; /* increment in loop */) {
5876 // If we have an expanded parameter pack, make sure we don't have too
5877 // many arguments.
5878 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5879 if (*Expansions == SugaredArgumentPack.size()) {
5880 // We're done with this parameter pack. Pack up its arguments and add
5881 // them to the list.
5882 SugaredConverted.push_back(
5883 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
5884 SugaredArgumentPack.clear();
5885
5886 CanonicalConverted.push_back(
5887 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
5888 CanonicalArgumentPack.clear();
5889
5890 // This argument is assigned to the next parameter.
5891 ++Param;
5892 continue;
5893 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5894 // Not enough arguments for this parameter pack.
5895 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5896 << /*not enough args*/0
5897 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5898 << Template;
5899 Diag(Template->getLocation(), diag::note_template_decl_here)
5900 << Params->getSourceRange();
5901 return true;
5902 }
5903 }
5904
5905 if (ArgIdx < NumArgs) {
5906 // Check the template argument we were given.
5907 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
5908 RAngleLoc, SugaredArgumentPack.size(),
5909 SugaredConverted, CanonicalConverted,
5910 CTAK_Specified))
5911 return true;
5912
5913 CanonicalConverted.back().setIsDefaulted(
5914 clang::isSubstitutedDefaultArgument(
5915 Context, NewArgs[ArgIdx].getArgument(), *Param,
5916 CanonicalConverted, Params->getDepth()));
5917
5918 bool PackExpansionIntoNonPack =
5919 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5920 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5921 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5922 isa<ConceptDecl>(Template))) {
5923 // Core issue 1430: we have a pack expansion as an argument to an
5924 // alias template, and it's not part of a parameter pack. This
5925 // can't be canonicalized, so reject it now.
5926 // As for concepts - we cannot normalize constraints where this
5927 // situation exists.
5928 Diag(NewArgs[ArgIdx].getLocation(),
5929 diag::err_template_expansion_into_fixed_list)
5930 << (isa<ConceptDecl>(Template) ? 1 : 0)
5931 << NewArgs[ArgIdx].getSourceRange();
5932 Diag((*Param)->getLocation(), diag::note_template_param_here);
5933 return true;
5934 }
5935
5936 // We're now done with this argument.
5937 ++ArgIdx;
5938
5939 if ((*Param)->isTemplateParameterPack()) {
5940 // The template parameter was a template parameter pack, so take the
5941 // deduced argument and place it on the argument pack. Note that we
5942 // stay on the same template parameter so that we can deduce more
5943 // arguments.
5944 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
5945 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
5946 } else {
5947 // Move to the next template parameter.
5948