Bug Summary

File:tools/clang/include/clang/AST/DeclTemplate.h
Warning:line 2737, column 31
Access to field 'PartialSpecialization' results in a dereference of a null pointer (loaded from variable 'PS')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplate.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8// This file implements semantic analysis for C++ templates.
9//===----------------------------------------------------------------------===//
10
11#include "TreeTransform.h"
12#include "clang/AST/ASTConsumer.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclFriend.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/TypeVisitor.h"
20#include "clang/Basic/Builtins.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Sema/DeclSpec.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Sema/Scope.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateDeduction.h"
31#include "llvm/ADT/SmallBitVector.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34
35#include <iterator>
36using namespace clang;
37using namespace sema;
38
39// Exported for use by Parser.
40SourceRange
41clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
42 unsigned N) {
43 if (!N) return SourceRange();
44 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
45}
46
47namespace clang {
48/// [temp.constr.decl]p2: A template's associated constraints are
49/// defined as a single constraint-expression derived from the introduced
50/// constraint-expressions [ ... ].
51///
52/// \param Params The template parameter list and optional requires-clause.
53///
54/// \param FD The underlying templated function declaration for a function
55/// template.
56static Expr *formAssociatedConstraints(TemplateParameterList *Params,
57 FunctionDecl *FD);
58}
59
60static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params,
61 FunctionDecl *FD) {
62 // FIXME: Concepts: collect additional introduced constraint-expressions
63 assert(!FD && "Cannot collect constraints from function declaration yet.")((!FD && "Cannot collect constraints from function declaration yet."
) ? static_cast<void> (0) : __assert_fail ("!FD && \"Cannot collect constraints from function declaration yet.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 63, __PRETTY_FUNCTION__))
;
64 return Params->getRequiresClause();
65}
66
67/// Determine whether the declaration found is acceptable as the name
68/// of a template and, if so, return that template declaration. Otherwise,
69/// returns null.
70///
71/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
72/// is true. In all other cases it will return a TemplateDecl (or null).
73NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
74 bool AllowFunctionTemplates,
75 bool AllowDependent) {
76 D = D->getUnderlyingDecl();
77
78 if (isa<TemplateDecl>(D)) {
79 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
80 return nullptr;
81
82 return D;
83 }
84
85 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
86 // C++ [temp.local]p1:
87 // Like normal (non-template) classes, class templates have an
88 // injected-class-name (Clause 9). The injected-class-name
89 // can be used with or without a template-argument-list. When
90 // it is used without a template-argument-list, it is
91 // equivalent to the injected-class-name followed by the
92 // template-parameters of the class template enclosed in
93 // <>. When it is used with a template-argument-list, it
94 // refers to the specified class template specialization,
95 // which could be the current specialization or another
96 // specialization.
97 if (Record->isInjectedClassName()) {
98 Record = cast<CXXRecordDecl>(Record->getDeclContext());
99 if (Record->getDescribedClassTemplate())
100 return Record->getDescribedClassTemplate();
101
102 if (ClassTemplateSpecializationDecl *Spec
103 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
104 return Spec->getSpecializedTemplate();
105 }
106
107 return nullptr;
108 }
109
110 // 'using Dependent::foo;' can resolve to a template name.
111 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
112 // injected-class-name).
113 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
114 return D;
115
116 return nullptr;
117}
118
119void Sema::FilterAcceptableTemplateNames(LookupResult &R,
120 bool AllowFunctionTemplates,
121 bool AllowDependent) {
122 LookupResult::Filter filter = R.makeFilter();
123 while (filter.hasNext()) {
124 NamedDecl *Orig = filter.next();
125 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
126 filter.erase();
127 }
128 filter.done();
129}
130
131bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
132 bool AllowFunctionTemplates,
133 bool AllowDependent,
134 bool AllowNonTemplateFunctions) {
135 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
136 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
137 return true;
138 if (AllowNonTemplateFunctions &&
139 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
140 return true;
141 }
142
143 return false;
144}
145
146TemplateNameKind Sema::isTemplateName(Scope *S,
147 CXXScopeSpec &SS,
148 bool hasTemplateKeyword,
149 const UnqualifiedId &Name,
150 ParsedType ObjectTypePtr,
151 bool EnteringContext,
152 TemplateTy &TemplateResult,
153 bool &MemberOfUnknownSpecialization) {
154 assert(getLangOpts().CPlusPlus && "No template names in C!")((getLangOpts().CPlusPlus && "No template names in C!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 154, __PRETTY_FUNCTION__))
;
155
156 DeclarationName TName;
157 MemberOfUnknownSpecialization = false;
158
159 switch (Name.getKind()) {
160 case UnqualifiedIdKind::IK_Identifier:
161 TName = DeclarationName(Name.Identifier);
162 break;
163
164 case UnqualifiedIdKind::IK_OperatorFunctionId:
165 TName = Context.DeclarationNames.getCXXOperatorName(
166 Name.OperatorFunctionId.Operator);
167 break;
168
169 case UnqualifiedIdKind::IK_LiteralOperatorId:
170 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
171 break;
172
173 default:
174 return TNK_Non_template;
175 }
176
177 QualType ObjectType = ObjectTypePtr.get();
178
179 AssumedTemplateKind AssumedTemplate;
180 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
181 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
182 MemberOfUnknownSpecialization, SourceLocation(),
183 &AssumedTemplate))
184 return TNK_Non_template;
185
186 if (AssumedTemplate != AssumedTemplateKind::None) {
187 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
188 // Let the parser know whether we found nothing or found functions; if we
189 // found nothing, we want to more carefully check whether this is actually
190 // a function template name versus some other kind of undeclared identifier.
191 return AssumedTemplate == AssumedTemplateKind::FoundNothing
192 ? TNK_Undeclared_template
193 : TNK_Function_template;
194 }
195
196 if (R.empty())
197 return TNK_Non_template;
198
199 NamedDecl *D = nullptr;
200 if (R.isAmbiguous()) {
201 // If we got an ambiguity involving a non-function template, treat this
202 // as a template name, and pick an arbitrary template for error recovery.
203 bool AnyFunctionTemplates = false;
204 for (NamedDecl *FoundD : R) {
205 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
206 if (isa<FunctionTemplateDecl>(FoundTemplate))
207 AnyFunctionTemplates = true;
208 else {
209 D = FoundTemplate;
210 break;
211 }
212 }
213 }
214
215 // If we didn't find any templates at all, this isn't a template name.
216 // Leave the ambiguity for a later lookup to diagnose.
217 if (!D && !AnyFunctionTemplates) {
218 R.suppressDiagnostics();
219 return TNK_Non_template;
220 }
221
222 // If the only templates were function templates, filter out the rest.
223 // We'll diagnose the ambiguity later.
224 if (!D)
225 FilterAcceptableTemplateNames(R);
226 }
227
228 // At this point, we have either picked a single template name declaration D
229 // or we have a non-empty set of results R containing either one template name
230 // declaration or a set of function templates.
231
232 TemplateName Template;
233 TemplateNameKind TemplateKind;
234
235 unsigned ResultCount = R.end() - R.begin();
236 if (!D && ResultCount > 1) {
237 // We assume that we'll preserve the qualifier from a function
238 // template name in other ways.
239 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
240 TemplateKind = TNK_Function_template;
241
242 // We'll do this lookup again later.
243 R.suppressDiagnostics();
244 } else {
245 if (!D) {
246 D = getAsTemplateNameDecl(*R.begin());
247 assert(D && "unambiguous result is not a template name")((D && "unambiguous result is not a template name") ?
static_cast<void> (0) : __assert_fail ("D && \"unambiguous result is not a template name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 247, __PRETTY_FUNCTION__))
;
248 }
249
250 if (isa<UnresolvedUsingValueDecl>(D)) {
251 // We don't yet know whether this is a template-name or not.
252 MemberOfUnknownSpecialization = true;
253 return TNK_Non_template;
254 }
255
256 TemplateDecl *TD = cast<TemplateDecl>(D);
257
258 if (SS.isSet() && !SS.isInvalid()) {
259 NestedNameSpecifier *Qualifier = SS.getScopeRep();
260 Template = Context.getQualifiedTemplateName(Qualifier,
261 hasTemplateKeyword, TD);
262 } else {
263 Template = TemplateName(TD);
264 }
265
266 if (isa<FunctionTemplateDecl>(TD)) {
267 TemplateKind = TNK_Function_template;
268
269 // We'll do this lookup again later.
270 R.suppressDiagnostics();
271 } else {
272 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 274, __PRETTY_FUNCTION__))
273 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 274, __PRETTY_FUNCTION__))
274 isa<BuiltinTemplateDecl>(TD))((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 274, __PRETTY_FUNCTION__))
;
275 TemplateKind =
276 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
277 }
278 }
279
280 TemplateResult = TemplateTy::make(Template);
281 return TemplateKind;
282}
283
284bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
285 SourceLocation NameLoc,
286 ParsedTemplateTy *Template) {
287 CXXScopeSpec SS;
288 bool MemberOfUnknownSpecialization = false;
289
290 // We could use redeclaration lookup here, but we don't need to: the
291 // syntactic form of a deduction guide is enough to identify it even
292 // if we can't look up the template name at all.
293 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
294 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
295 /*EnteringContext*/ false,
296 MemberOfUnknownSpecialization))
297 return false;
298
299 if (R.empty()) return false;
300 if (R.isAmbiguous()) {
301 // FIXME: Diagnose an ambiguity if we find at least one template.
302 R.suppressDiagnostics();
303 return false;
304 }
305
306 // We only treat template-names that name type templates as valid deduction
307 // guide names.
308 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
309 if (!TD || !getAsTypeTemplateDecl(TD))
310 return false;
311
312 if (Template)
313 *Template = TemplateTy::make(TemplateName(TD));
314 return true;
315}
316
317bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
318 SourceLocation IILoc,
319 Scope *S,
320 const CXXScopeSpec *SS,
321 TemplateTy &SuggestedTemplate,
322 TemplateNameKind &SuggestedKind) {
323 // We can't recover unless there's a dependent scope specifier preceding the
324 // template name.
325 // FIXME: Typo correction?
326 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
327 computeDeclContext(*SS))
328 return false;
329
330 // The code is missing a 'template' keyword prior to the dependent template
331 // name.
332 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
333 Diag(IILoc, diag::err_template_kw_missing)
334 << Qualifier << II.getName()
335 << FixItHint::CreateInsertion(IILoc, "template ");
336 SuggestedTemplate
337 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
338 SuggestedKind = TNK_Dependent_template_name;
339 return true;
340}
341
342bool Sema::LookupTemplateName(LookupResult &Found,
343 Scope *S, CXXScopeSpec &SS,
344 QualType ObjectType,
345 bool EnteringContext,
346 bool &MemberOfUnknownSpecialization,
347 SourceLocation TemplateKWLoc,
348 AssumedTemplateKind *ATK) {
349 if (ATK)
350 *ATK = AssumedTemplateKind::None;
351
352 Found.setTemplateNameLookup(true);
353
354 // Determine where to perform name lookup
355 MemberOfUnknownSpecialization = false;
356 DeclContext *LookupCtx = nullptr;
357 bool IsDependent = false;
358 if (!ObjectType.isNull()) {
359 // This nested-name-specifier occurs in a member access expression, e.g.,
360 // x->B::f, and we are looking into the type of the object.
361 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")((!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? static_cast<void> (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 361, __PRETTY_FUNCTION__))
;
362 LookupCtx = computeDeclContext(ObjectType);
363 IsDependent = !LookupCtx;
364 assert((IsDependent || !ObjectType->isIncompleteType() ||(((IsDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 366, __PRETTY_FUNCTION__))
365 ObjectType->castAs<TagType>()->isBeingDefined()) &&(((IsDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 366, __PRETTY_FUNCTION__))
366 "Caller should have completed object type")(((IsDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 366, __PRETTY_FUNCTION__))
;
367
368 // Template names cannot appear inside an Objective-C class or object type.
369 if (ObjectType->isObjCObjectOrInterfaceType()) {
370 Found.clear();
371 return false;
372 }
373 } else if (SS.isSet()) {
374 // This nested-name-specifier occurs after another nested-name-specifier,
375 // so long into the context associated with the prior nested-name-specifier.
376 LookupCtx = computeDeclContext(SS, EnteringContext);
377 IsDependent = !LookupCtx;
378
379 // The declaration context must be complete.
380 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
381 return true;
382 }
383
384 bool ObjectTypeSearchedInScope = false;
385 bool AllowFunctionTemplatesInLookup = true;
386 if (LookupCtx) {
387 // Perform "qualified" name lookup into the declaration context we
388 // computed, which is either the type of the base of a member access
389 // expression or the declaration context associated with a prior
390 // nested-name-specifier.
391 LookupQualifiedName(Found, LookupCtx);
392
393 // FIXME: The C++ standard does not clearly specify what happens in the
394 // case where the object type is dependent, and implementations vary. In
395 // Clang, we treat a name after a . or -> as a template-name if lookup
396 // finds a non-dependent member or member of the current instantiation that
397 // is a type template, or finds no such members and lookup in the context
398 // of the postfix-expression finds a type template. In the latter case, the
399 // name is nonetheless dependent, and we may resolve it to a member of an
400 // unknown specialization when we come to instantiate the template.
401 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
402 }
403
404 if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) {
405 // C++ [basic.lookup.classref]p1:
406 // In a class member access expression (5.2.5), if the . or -> token is
407 // immediately followed by an identifier followed by a <, the
408 // identifier must be looked up to determine whether the < is the
409 // beginning of a template argument list (14.2) or a less-than operator.
410 // The identifier is first looked up in the class of the object
411 // expression. If the identifier is not found, it is then looked up in
412 // the context of the entire postfix-expression and shall name a class
413 // template.
414 if (S)
415 LookupName(Found, S);
416
417 if (!ObjectType.isNull()) {
418 // FIXME: We should filter out all non-type templates here, particularly
419 // variable templates and concepts. But the exclusion of alias templates
420 // and template template parameters is a wording defect.
421 AllowFunctionTemplatesInLookup = false;
422 ObjectTypeSearchedInScope = true;
423 }
424
425 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
426 }
427
428 if (Found.isAmbiguous())
429 return false;
430
431 if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) {
432 // C++2a [temp.names]p2:
433 // A name is also considered to refer to a template if it is an
434 // unqualified-id followed by a < and name lookup finds either one or more
435 // functions or finds nothing.
436 //
437 // To keep our behavior consistent, we apply the "finds nothing" part in
438 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
439 // successfully form a call to an undeclared template-id.
440 bool AllFunctions =
441 getLangOpts().CPlusPlus2a &&
442 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
443 return isa<FunctionDecl>(ND->getUnderlyingDecl());
444 });
445 if (AllFunctions || (Found.empty() && !IsDependent)) {
446 // If lookup found any functions, or if this is a name that can only be
447 // used for a function, then strongly assume this is a function
448 // template-id.
449 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
450 ? AssumedTemplateKind::FoundNothing
451 : AssumedTemplateKind::FoundFunctions;
452 Found.clear();
453 return false;
454 }
455 }
456
457 if (Found.empty() && !IsDependent) {
458 // If we did not find any names, attempt to correct any typos.
459 DeclarationName Name = Found.getLookupName();
460 Found.clear();
461 // Simple filter callback that, for keywords, only accepts the C++ *_cast
462 DefaultFilterCCC FilterCCC{};
463 FilterCCC.WantTypeSpecifiers = false;
464 FilterCCC.WantExpressionKeywords = false;
465 FilterCCC.WantRemainingKeywords = false;
466 FilterCCC.WantCXXNamedCasts = true;
467 if (TypoCorrection Corrected =
468 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
469 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
470 if (auto *ND = Corrected.getFoundDecl())
471 Found.addDecl(ND);
472 FilterAcceptableTemplateNames(Found);
473 if (Found.isAmbiguous()) {
474 Found.clear();
475 } else if (!Found.empty()) {
476 Found.setLookupName(Corrected.getCorrection());
477 if (LookupCtx) {
478 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
479 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
480 Name.getAsString() == CorrectedStr;
481 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
482 << Name << LookupCtx << DroppedSpecifier
483 << SS.getRange());
484 } else {
485 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
486 }
487 }
488 }
489 }
490
491 NamedDecl *ExampleLookupResult =
492 Found.empty() ? nullptr : Found.getRepresentativeDecl();
493 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
494 if (Found.empty()) {
495 if (IsDependent) {
496 MemberOfUnknownSpecialization = true;
497 return false;
498 }
499
500 // If a 'template' keyword was used, a lookup that finds only non-template
501 // names is an error.
502 if (ExampleLookupResult && TemplateKWLoc.isValid()) {
503 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
504 << Found.getLookupName() << SS.getRange();
505 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
506 diag::note_template_kw_refers_to_non_template)
507 << Found.getLookupName();
508 return true;
509 }
510
511 return false;
512 }
513
514 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
515 !getLangOpts().CPlusPlus11) {
516 // C++03 [basic.lookup.classref]p1:
517 // [...] If the lookup in the class of the object expression finds a
518 // template, the name is also looked up in the context of the entire
519 // postfix-expression and [...]
520 //
521 // Note: C++11 does not perform this second lookup.
522 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
523 LookupOrdinaryName);
524 FoundOuter.setTemplateNameLookup(true);
525 LookupName(FoundOuter, S);
526 // FIXME: We silently accept an ambiguous lookup here, in violation of
527 // [basic.lookup]/1.
528 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
529
530 NamedDecl *OuterTemplate;
531 if (FoundOuter.empty()) {
532 // - if the name is not found, the name found in the class of the
533 // object expression is used, otherwise
534 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
535 !(OuterTemplate =
536 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
537 // - if the name is found in the context of the entire
538 // postfix-expression and does not name a class template, the name
539 // found in the class of the object expression is used, otherwise
540 FoundOuter.clear();
541 } else if (!Found.isSuppressingDiagnostics()) {
542 // - if the name found is a class template, it must refer to the same
543 // entity as the one found in the class of the object expression,
544 // otherwise the program is ill-formed.
545 if (!Found.isSingleResult() ||
546 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
547 OuterTemplate->getCanonicalDecl()) {
548 Diag(Found.getNameLoc(),
549 diag::ext_nested_name_member_ref_lookup_ambiguous)
550 << Found.getLookupName()
551 << ObjectType;
552 Diag(Found.getRepresentativeDecl()->getLocation(),
553 diag::note_ambig_member_ref_object_type)
554 << ObjectType;
555 Diag(FoundOuter.getFoundDecl()->getLocation(),
556 diag::note_ambig_member_ref_scope);
557
558 // Recover by taking the template that we found in the object
559 // expression's type.
560 }
561 }
562 }
563
564 return false;
565}
566
567void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
568 SourceLocation Less,
569 SourceLocation Greater) {
570 if (TemplateName.isInvalid())
571 return;
572
573 DeclarationNameInfo NameInfo;
574 CXXScopeSpec SS;
575 LookupNameKind LookupKind;
576
577 DeclContext *LookupCtx = nullptr;
578 NamedDecl *Found = nullptr;
579 bool MissingTemplateKeyword = false;
580
581 // Figure out what name we looked up.
582 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
583 NameInfo = DRE->getNameInfo();
584 SS.Adopt(DRE->getQualifierLoc());
585 LookupKind = LookupOrdinaryName;
586 Found = DRE->getFoundDecl();
587 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
588 NameInfo = ME->getMemberNameInfo();
589 SS.Adopt(ME->getQualifierLoc());
590 LookupKind = LookupMemberName;
591 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
592 Found = ME->getMemberDecl();
593 } else if (auto *DSDRE =
594 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
595 NameInfo = DSDRE->getNameInfo();
596 SS.Adopt(DSDRE->getQualifierLoc());
597 MissingTemplateKeyword = true;
598 } else if (auto *DSME =
599 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
600 NameInfo = DSME->getMemberNameInfo();
601 SS.Adopt(DSME->getQualifierLoc());
602 MissingTemplateKeyword = true;
603 } else {
604 llvm_unreachable("unexpected kind of potential template name")::llvm::llvm_unreachable_internal("unexpected kind of potential template name"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 604)
;
605 }
606
607 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
608 // was missing.
609 if (MissingTemplateKeyword) {
610 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
611 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
612 return;
613 }
614
615 // Try to correct the name by looking for templates and C++ named casts.
616 struct TemplateCandidateFilter : CorrectionCandidateCallback {
617 Sema &S;
618 TemplateCandidateFilter(Sema &S) : S(S) {
619 WantTypeSpecifiers = false;
620 WantExpressionKeywords = false;
621 WantRemainingKeywords = false;
622 WantCXXNamedCasts = true;
623 };
624 bool ValidateCandidate(const TypoCorrection &Candidate) override {
625 if (auto *ND = Candidate.getCorrectionDecl())
626 return S.getAsTemplateNameDecl(ND);
627 return Candidate.isKeyword();
628 }
629
630 std::unique_ptr<CorrectionCandidateCallback> clone() override {
631 return llvm::make_unique<TemplateCandidateFilter>(*this);
632 }
633 };
634
635 DeclarationName Name = NameInfo.getName();
636 TemplateCandidateFilter CCC(*this);
637 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
638 CTK_ErrorRecovery, LookupCtx)) {
639 auto *ND = Corrected.getFoundDecl();
640 if (ND)
641 ND = getAsTemplateNameDecl(ND);
642 if (ND || Corrected.isKeyword()) {
643 if (LookupCtx) {
644 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
645 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
646 Name.getAsString() == CorrectedStr;
647 diagnoseTypo(Corrected,
648 PDiag(diag::err_non_template_in_member_template_id_suggest)
649 << Name << LookupCtx << DroppedSpecifier
650 << SS.getRange(), false);
651 } else {
652 diagnoseTypo(Corrected,
653 PDiag(diag::err_non_template_in_template_id_suggest)
654 << Name, false);
655 }
656 if (Found)
657 Diag(Found->getLocation(),
658 diag::note_non_template_in_template_id_found);
659 return;
660 }
661 }
662
663 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
664 << Name << SourceRange(Less, Greater);
665 if (Found)
666 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
667}
668
669/// ActOnDependentIdExpression - Handle a dependent id-expression that
670/// was just parsed. This is only possible with an explicit scope
671/// specifier naming a dependent type.
672ExprResult
673Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
674 SourceLocation TemplateKWLoc,
675 const DeclarationNameInfo &NameInfo,
676 bool isAddressOfOperand,
677 const TemplateArgumentListInfo *TemplateArgs) {
678 DeclContext *DC = getFunctionLevelDeclContext();
679
680 // C++11 [expr.prim.general]p12:
681 // An id-expression that denotes a non-static data member or non-static
682 // member function of a class can only be used:
683 // (...)
684 // - if that id-expression denotes a non-static data member and it
685 // appears in an unevaluated operand.
686 //
687 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
688 // CXXDependentScopeMemberExpr. The former can instantiate to either
689 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
690 // always a MemberExpr.
691 bool MightBeCxx11UnevalField =
692 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
693
694 // Check if the nested name specifier is an enum type.
695 bool IsEnum = false;
696 if (NestedNameSpecifier *NNS = SS.getScopeRep())
697 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
698
699 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
700 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
701 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
702
703 // Since the 'this' expression is synthesized, we don't need to
704 // perform the double-lookup check.
705 NamedDecl *FirstQualifierInScope = nullptr;
706
707 return CXXDependentScopeMemberExpr::Create(
708 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
709 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
710 FirstQualifierInScope, NameInfo, TemplateArgs);
711 }
712
713 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
714}
715
716ExprResult
717Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
718 SourceLocation TemplateKWLoc,
719 const DeclarationNameInfo &NameInfo,
720 const TemplateArgumentListInfo *TemplateArgs) {
721 return DependentScopeDeclRefExpr::Create(
722 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
723 TemplateArgs);
724}
725
726
727/// Determine whether we would be unable to instantiate this template (because
728/// it either has no definition, or is in the process of being instantiated).
729bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
730 NamedDecl *Instantiation,
731 bool InstantiatedFromMember,
732 const NamedDecl *Pattern,
733 const NamedDecl *PatternDef,
734 TemplateSpecializationKind TSK,
735 bool Complain /*= true*/) {
736 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 737, __PRETTY_FUNCTION__))
737 isa<VarDecl>(Instantiation))((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 737, __PRETTY_FUNCTION__))
;
738
739 bool IsEntityBeingDefined = false;
740 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
741 IsEntityBeingDefined = TD->isBeingDefined();
742
743 if (PatternDef && !IsEntityBeingDefined) {
744 NamedDecl *SuggestedDef = nullptr;
745 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
746 /*OnlyNeedComplete*/false)) {
747 // If we're allowed to diagnose this and recover, do so.
748 bool Recover = Complain && !isSFINAEContext();
749 if (Complain)
750 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
751 Sema::MissingImportKind::Definition, Recover);
752 return !Recover;
753 }
754 return false;
755 }
756
757 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
758 return true;
759
760 llvm::Optional<unsigned> Note;
761 QualType InstantiationTy;
762 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
763 InstantiationTy = Context.getTypeDeclType(TD);
764 if (PatternDef) {
765 Diag(PointOfInstantiation,
766 diag::err_template_instantiate_within_definition)
767 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
768 << InstantiationTy;
769 // Not much point in noting the template declaration here, since
770 // we're lexically inside it.
771 Instantiation->setInvalidDecl();
772 } else if (InstantiatedFromMember) {
773 if (isa<FunctionDecl>(Instantiation)) {
774 Diag(PointOfInstantiation,
775 diag::err_explicit_instantiation_undefined_member)
776 << /*member function*/ 1 << Instantiation->getDeclName()
777 << Instantiation->getDeclContext();
778 Note = diag::note_explicit_instantiation_here;
779 } else {
780 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")((isa<TagDecl>(Instantiation) && "Must be a TagDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 780, __PRETTY_FUNCTION__))
;
781 Diag(PointOfInstantiation,
782 diag::err_implicit_instantiate_member_undefined)
783 << InstantiationTy;
784 Note = diag::note_member_declared_at;
785 }
786 } else {
787 if (isa<FunctionDecl>(Instantiation)) {
788 Diag(PointOfInstantiation,
789 diag::err_explicit_instantiation_undefined_func_template)
790 << Pattern;
791 Note = diag::note_explicit_instantiation_here;
792 } else if (isa<TagDecl>(Instantiation)) {
793 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
794 << (TSK != TSK_ImplicitInstantiation)
795 << InstantiationTy;
796 Note = diag::note_template_decl_here;
797 } else {
798 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")((isa<VarDecl>(Instantiation) && "Must be a VarDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 798, __PRETTY_FUNCTION__))
;
799 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
800 Diag(PointOfInstantiation,
801 diag::err_explicit_instantiation_undefined_var_template)
802 << Instantiation;
803 Instantiation->setInvalidDecl();
804 } else
805 Diag(PointOfInstantiation,
806 diag::err_explicit_instantiation_undefined_member)
807 << /*static data member*/ 2 << Instantiation->getDeclName()
808 << Instantiation->getDeclContext();
809 Note = diag::note_explicit_instantiation_here;
810 }
811 }
812 if (Note) // Diagnostics were emitted.
813 Diag(Pattern->getLocation(), Note.getValue());
814
815 // In general, Instantiation isn't marked invalid to get more than one
816 // error for multiple undefined instantiations. But the code that does
817 // explicit declaration -> explicit definition conversion can't handle
818 // invalid declarations, so mark as invalid in that case.
819 if (TSK == TSK_ExplicitInstantiationDeclaration)
820 Instantiation->setInvalidDecl();
821 return true;
822}
823
824/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
825/// that the template parameter 'PrevDecl' is being shadowed by a new
826/// declaration at location Loc. Returns true to indicate that this is
827/// an error, and false otherwise.
828void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
829 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")((PrevDecl->isTemplateParameter() && "Not a template parameter"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 829, __PRETTY_FUNCTION__))
;
830
831 // Microsoft Visual C++ permits template parameters to be shadowed.
832 if (getLangOpts().MicrosoftExt)
833 return;
834
835 // C++ [temp.local]p4:
836 // A template-parameter shall not be redeclared within its
837 // scope (including nested scopes).
838 Diag(Loc, diag::err_template_param_shadow)
839 << cast<NamedDecl>(PrevDecl)->getDeclName();
840 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
841}
842
843/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
844/// the parameter D to reference the templated declaration and return a pointer
845/// to the template declaration. Otherwise, do nothing to D and return null.
846TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
847 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
848 D = Temp->getTemplatedDecl();
849 return Temp;
850 }
851 return nullptr;
852}
853
854ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
855 SourceLocation EllipsisLoc) const {
856 assert(Kind == Template &&((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 857, __PRETTY_FUNCTION__))
857 "Only template template arguments can be pack expansions here")((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 857, __PRETTY_FUNCTION__))
;
858 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 859, __PRETTY_FUNCTION__))
859 "Template template argument pack expansion without packs")((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 859, __PRETTY_FUNCTION__))
;
860 ParsedTemplateArgument Result(*this);
861 Result.EllipsisLoc = EllipsisLoc;
862 return Result;
863}
864
865static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
866 const ParsedTemplateArgument &Arg) {
867
868 switch (Arg.getKind()) {
869 case ParsedTemplateArgument::Type: {
870 TypeSourceInfo *DI;
871 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
872 if (!DI)
873 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
874 return TemplateArgumentLoc(TemplateArgument(T), DI);
875 }
876
877 case ParsedTemplateArgument::NonType: {
878 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
879 return TemplateArgumentLoc(TemplateArgument(E), E);
880 }
881
882 case ParsedTemplateArgument::Template: {
883 TemplateName Template = Arg.getAsTemplate().get();
884 TemplateArgument TArg;
885 if (Arg.getEllipsisLoc().isValid())
886 TArg = TemplateArgument(Template, Optional<unsigned int>());
887 else
888 TArg = Template;
889 return TemplateArgumentLoc(TArg,
890 Arg.getScopeSpec().getWithLocInContext(
891 SemaRef.Context),
892 Arg.getLocation(),
893 Arg.getEllipsisLoc());
894 }
895 }
896
897 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 897)
;
898}
899
900/// Translates template arguments as provided by the parser
901/// into template arguments used by semantic analysis.
902void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
903 TemplateArgumentListInfo &TemplateArgs) {
904 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
905 TemplateArgs.addArgument(translateTemplateArgument(*this,
906 TemplateArgsIn[I]));
907}
908
909static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
910 SourceLocation Loc,
911 IdentifierInfo *Name) {
912 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
913 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
914 if (PrevDecl && PrevDecl->isTemplateParameter())
915 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
916}
917
918/// Convert a parsed type into a parsed template argument. This is mostly
919/// trivial, except that we may have parsed a C++17 deduced class template
920/// specialization type, in which case we should form a template template
921/// argument instead of a type template argument.
922ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
923 TypeSourceInfo *TInfo;
924 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
925 if (T.isNull())
926 return ParsedTemplateArgument();
927 assert(TInfo && "template argument with no location")((TInfo && "template argument with no location") ? static_cast
<void> (0) : __assert_fail ("TInfo && \"template argument with no location\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 927, __PRETTY_FUNCTION__))
;
928
929 // If we might have formed a deduced template specialization type, convert
930 // it to a template template argument.
931 if (getLangOpts().CPlusPlus17) {
932 TypeLoc TL = TInfo->getTypeLoc();
933 SourceLocation EllipsisLoc;
934 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
935 EllipsisLoc = PET.getEllipsisLoc();
936 TL = PET.getPatternLoc();
937 }
938
939 CXXScopeSpec SS;
940 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
941 SS.Adopt(ET.getQualifierLoc());
942 TL = ET.getNamedTypeLoc();
943 }
944
945 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
946 TemplateName Name = DTST.getTypePtr()->getTemplateName();
947 if (SS.isSet())
948 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
949 /*HasTemplateKeyword*/ false,
950 Name.getAsTemplateDecl());
951 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
952 DTST.getTemplateNameLoc());
953 if (EllipsisLoc.isValid())
954 Result = Result.getTemplatePackExpansion(EllipsisLoc);
955 return Result;
956 }
957 }
958
959 // This is a normal type template argument. Note, if the type template
960 // argument is an injected-class-name for a template, it has a dual nature
961 // and can be used as either a type or a template. We handle that in
962 // convertTypeTemplateArgumentToTemplate.
963 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
964 ParsedType.get().getAsOpaquePtr(),
965 TInfo->getTypeLoc().getBeginLoc());
966}
967
968/// ActOnTypeParameter - Called when a C++ template type parameter
969/// (e.g., "typename T") has been parsed. Typename specifies whether
970/// the keyword "typename" was used to declare the type parameter
971/// (otherwise, "class" was used), and KeyLoc is the location of the
972/// "class" or "typename" keyword. ParamName is the name of the
973/// parameter (NULL indicates an unnamed template parameter) and
974/// ParamNameLoc is the location of the parameter name (if any).
975/// If the type parameter has a default argument, it will be added
976/// later via ActOnTypeParameterDefault.
977NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
978 SourceLocation EllipsisLoc,
979 SourceLocation KeyLoc,
980 IdentifierInfo *ParamName,
981 SourceLocation ParamNameLoc,
982 unsigned Depth, unsigned Position,
983 SourceLocation EqualLoc,
984 ParsedType DefaultArg) {
985 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 986, __PRETTY_FUNCTION__))
986 "Template type parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 986, __PRETTY_FUNCTION__))
;
987
988 SourceLocation Loc = ParamNameLoc;
989 if (!ParamName)
990 Loc = KeyLoc;
991
992 bool IsParameterPack = EllipsisLoc.isValid();
993 TemplateTypeParmDecl *Param
994 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
995 KeyLoc, Loc, Depth, Position, ParamName,
996 Typename, IsParameterPack);
997 Param->setAccess(AS_public);
998
999 if (ParamName) {
1000 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1001
1002 // Add the template parameter into the current scope.
1003 S->AddDecl(Param);
1004 IdResolver.AddDecl(Param);
1005 }
1006
1007 // C++0x [temp.param]p9:
1008 // A default template-argument may be specified for any kind of
1009 // template-parameter that is not a template parameter pack.
1010 if (DefaultArg && IsParameterPack) {
1011 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1012 DefaultArg = nullptr;
1013 }
1014
1015 // Handle the default argument, if provided.
1016 if (DefaultArg) {
1017 TypeSourceInfo *DefaultTInfo;
1018 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1019
1020 assert(DefaultTInfo && "expected source information for type")((DefaultTInfo && "expected source information for type"
) ? static_cast<void> (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1020, __PRETTY_FUNCTION__))
;
1021
1022 // Check for unexpanded parameter packs.
1023 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
1024 UPPC_DefaultArgument))
1025 return Param;
1026
1027 // Check the template argument itself.
1028 if (CheckTemplateArgument(Param, DefaultTInfo)) {
1029 Param->setInvalidDecl();
1030 return Param;
1031 }
1032
1033 Param->setDefaultArgument(DefaultTInfo);
1034 }
1035
1036 return Param;
1037}
1038
1039/// Check that the type of a non-type template parameter is
1040/// well-formed.
1041///
1042/// \returns the (possibly-promoted) parameter type if valid;
1043/// otherwise, produces a diagnostic and returns a NULL type.
1044QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1045 SourceLocation Loc) {
1046 if (TSI->getType()->isUndeducedType()) {
1047 // C++17 [temp.dep.expr]p3:
1048 // An id-expression is type-dependent if it contains
1049 // - an identifier associated by name lookup with a non-type
1050 // template-parameter declared with a type that contains a
1051 // placeholder type (7.1.7.4),
1052 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1053 }
1054
1055 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1056}
1057
1058QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1059 SourceLocation Loc) {
1060 // We don't allow variably-modified types as the type of non-type template
1061 // parameters.
1062 if (T->isVariablyModifiedType()) {
1063 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1064 << T;
1065 return QualType();
1066 }
1067
1068 // C++ [temp.param]p4:
1069 //
1070 // A non-type template-parameter shall have one of the following
1071 // (optionally cv-qualified) types:
1072 //
1073 // -- integral or enumeration type,
1074 if (T->isIntegralOrEnumerationType() ||
1075 // -- pointer to object or pointer to function,
1076 T->isPointerType() ||
1077 // -- reference to object or reference to function,
1078 T->isReferenceType() ||
1079 // -- pointer to member,
1080 T->isMemberPointerType() ||
1081 // -- std::nullptr_t.
1082 T->isNullPtrType() ||
1083 // If T is a dependent type, we can't do the check now, so we
1084 // assume that it is well-formed.
1085 T->isDependentType() ||
1086 // Allow use of auto in template parameter declarations.
1087 T->isUndeducedType()) {
1088 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1089 // are ignored when determining its type.
1090 return T.getUnqualifiedType();
1091 }
1092
1093 // C++ [temp.param]p8:
1094 //
1095 // A non-type template-parameter of type "array of T" or
1096 // "function returning T" is adjusted to be of type "pointer to
1097 // T" or "pointer to function returning T", respectively.
1098 else if (T->isArrayType() || T->isFunctionType())
1099 return Context.getDecayedType(T);
1100
1101 Diag(Loc, diag::err_template_nontype_parm_bad_type)
1102 << T;
1103
1104 return QualType();
1105}
1106
1107NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1108 unsigned Depth,
1109 unsigned Position,
1110 SourceLocation EqualLoc,
1111 Expr *Default) {
1112 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1113
1114 // Check that we have valid decl-specifiers specified.
1115 auto CheckValidDeclSpecifiers = [this, &D] {
1116 // C++ [temp.param]
1117 // p1
1118 // template-parameter:
1119 // ...
1120 // parameter-declaration
1121 // p2
1122 // ... A storage class shall not be specified in a template-parameter
1123 // declaration.
1124 // [dcl.typedef]p1:
1125 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1126 // of a parameter-declaration
1127 const DeclSpec &DS = D.getDeclSpec();
1128 auto EmitDiag = [this](SourceLocation Loc) {
1129 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1130 << FixItHint::CreateRemoval(Loc);
1131 };
1132 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1133 EmitDiag(DS.getStorageClassSpecLoc());
1134
1135 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1136 EmitDiag(DS.getThreadStorageClassSpecLoc());
1137
1138 // [dcl.inline]p1:
1139 // The inline specifier can be applied only to the declaration or
1140 // definition of a variable or function.
1141
1142 if (DS.isInlineSpecified())
1143 EmitDiag(DS.getInlineSpecLoc());
1144
1145 // [dcl.constexpr]p1:
1146 // The constexpr specifier shall be applied only to the definition of a
1147 // variable or variable template or the declaration of a function or
1148 // function template.
1149
1150 if (DS.isConstexprSpecified())
1151 EmitDiag(DS.getConstexprSpecLoc());
1152
1153 // [dcl.fct.spec]p1:
1154 // Function-specifiers can be used only in function declarations.
1155
1156 if (DS.isVirtualSpecified())
1157 EmitDiag(DS.getVirtualSpecLoc());
1158
1159 if (DS.hasExplicitSpecifier())
1160 EmitDiag(DS.getExplicitSpecLoc());
1161
1162 if (DS.isNoreturnSpecified())
1163 EmitDiag(DS.getNoreturnSpecLoc());
1164 };
1165
1166 CheckValidDeclSpecifiers();
1167
1168 if (TInfo->getType()->isUndeducedType()) {
1169 Diag(D.getIdentifierLoc(),
1170 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1171 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1172 }
1173
1174 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1175, __PRETTY_FUNCTION__))
1175 "Non-type template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1175, __PRETTY_FUNCTION__))
;
1176 bool Invalid = false;
1177
1178 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1179 if (T.isNull()) {
1180 T = Context.IntTy; // Recover with an 'int' type.
1181 Invalid = true;
1182 }
1183
1184 IdentifierInfo *ParamName = D.getIdentifier();
1185 bool IsParameterPack = D.hasEllipsis();
1186 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1187 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1188 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1189 TInfo);
1190 Param->setAccess(AS_public);
1191
1192 if (Invalid)
1193 Param->setInvalidDecl();
1194
1195 if (ParamName) {
1196 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1197 ParamName);
1198
1199 // Add the template parameter into the current scope.
1200 S->AddDecl(Param);
1201 IdResolver.AddDecl(Param);
1202 }
1203
1204 // C++0x [temp.param]p9:
1205 // A default template-argument may be specified for any kind of
1206 // template-parameter that is not a template parameter pack.
1207 if (Default && IsParameterPack) {
1208 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1209 Default = nullptr;
1210 }
1211
1212 // Check the well-formedness of the default template argument, if provided.
1213 if (Default) {
1214 // Check for unexpanded parameter packs.
1215 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1216 return Param;
1217
1218 TemplateArgument Converted;
1219 ExprResult DefaultRes =
1220 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1221 if (DefaultRes.isInvalid()) {
1222 Param->setInvalidDecl();
1223 return Param;
1224 }
1225 Default = DefaultRes.get();
1226
1227 Param->setDefaultArgument(Default);
1228 }
1229
1230 return Param;
1231}
1232
1233/// ActOnTemplateTemplateParameter - Called when a C++ template template
1234/// parameter (e.g. T in template <template \<typename> class T> class array)
1235/// has been parsed. S is the current scope.
1236NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1237 SourceLocation TmpLoc,
1238 TemplateParameterList *Params,
1239 SourceLocation EllipsisLoc,
1240 IdentifierInfo *Name,
1241 SourceLocation NameLoc,
1242 unsigned Depth,
1243 unsigned Position,
1244 SourceLocation EqualLoc,
1245 ParsedTemplateArgument Default) {
1246 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1247, __PRETTY_FUNCTION__))
1247 "Template template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1247, __PRETTY_FUNCTION__))
;
1248
1249 // Construct the parameter object.
1250 bool IsParameterPack = EllipsisLoc.isValid();
1251 TemplateTemplateParmDecl *Param =
1252 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1253 NameLoc.isInvalid()? TmpLoc : NameLoc,
1254 Depth, Position, IsParameterPack,
1255 Name, Params);
1256 Param->setAccess(AS_public);
1257
1258 // If the template template parameter has a name, then link the identifier
1259 // into the scope and lookup mechanisms.
1260 if (Name) {
1261 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1262
1263 S->AddDecl(Param);
1264 IdResolver.AddDecl(Param);
1265 }
1266
1267 if (Params->size() == 0) {
1268 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1269 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1270 Param->setInvalidDecl();
1271 }
1272
1273 // C++0x [temp.param]p9:
1274 // A default template-argument may be specified for any kind of
1275 // template-parameter that is not a template parameter pack.
1276 if (IsParameterPack && !Default.isInvalid()) {
1277 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1278 Default = ParsedTemplateArgument();
1279 }
1280
1281 if (!Default.isInvalid()) {
1282 // Check only that we have a template template argument. We don't want to
1283 // try to check well-formedness now, because our template template parameter
1284 // might have dependent types in its template parameters, which we wouldn't
1285 // be able to match now.
1286 //
1287 // If none of the template template parameter's template arguments mention
1288 // other template parameters, we could actually perform more checking here.
1289 // However, it isn't worth doing.
1290 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1291 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1292 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1293 << DefaultArg.getSourceRange();
1294 return Param;
1295 }
1296
1297 // Check for unexpanded parameter packs.
1298 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1299 DefaultArg.getArgument().getAsTemplate(),
1300 UPPC_DefaultArgument))
1301 return Param;
1302
1303 Param->setDefaultArgument(Context, DefaultArg);
1304 }
1305
1306 return Param;
1307}
1308
1309/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1310/// constrained by RequiresClause, that contains the template parameters in
1311/// Params.
1312TemplateParameterList *
1313Sema::ActOnTemplateParameterList(unsigned Depth,
1314 SourceLocation ExportLoc,
1315 SourceLocation TemplateLoc,
1316 SourceLocation LAngleLoc,
1317 ArrayRef<NamedDecl *> Params,
1318 SourceLocation RAngleLoc,
1319 Expr *RequiresClause) {
1320 if (ExportLoc.isValid())
1321 Diag(ExportLoc, diag::warn_template_export_unsupported);
1322
1323 return TemplateParameterList::Create(
1324 Context, TemplateLoc, LAngleLoc,
1325 llvm::makeArrayRef(Params.data(), Params.size()),
1326 RAngleLoc, RequiresClause);
1327}
1328
1329static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1330 const CXXScopeSpec &SS) {
1331 if (SS.isSet())
1332 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1333}
1334
1335DeclResult Sema::CheckClassTemplate(
1336 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1337 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1338 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1339 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1340 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1341 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1342 assert(TemplateParams && TemplateParams->size() > 0 &&((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1343, __PRETTY_FUNCTION__))
1343 "No template parameters")((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1343, __PRETTY_FUNCTION__))
;
1344 assert(TUK != TUK_Reference && "Can only declare or define class templates")((TUK != TUK_Reference && "Can only declare or define class templates"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1344, __PRETTY_FUNCTION__))
;
1345 bool Invalid = false;
1346
1347 // Check that we can declare a template here.
1348 if (CheckTemplateDeclScope(S, TemplateParams))
1349 return true;
1350
1351 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1352 assert(Kind != TTK_Enum && "can't build template of enumerated type")((Kind != TTK_Enum && "can't build template of enumerated type"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1352, __PRETTY_FUNCTION__))
;
1353
1354 // There is no such thing as an unnamed class template.
1355 if (!Name) {
1356 Diag(KWLoc, diag::err_template_unnamed_class);
1357 return true;
1358 }
1359
1360 // Find any previous declaration with this name. For a friend with no
1361 // scope explicitly specified, we only look for tag declarations (per
1362 // C++11 [basic.lookup.elab]p2).
1363 DeclContext *SemanticContext;
1364 LookupResult Previous(*this, Name, NameLoc,
1365 (SS.isEmpty() && TUK == TUK_Friend)
1366 ? LookupTagName : LookupOrdinaryName,
1367 forRedeclarationInCurContext());
1368 if (SS.isNotEmpty() && !SS.isInvalid()) {
1369 SemanticContext = computeDeclContext(SS, true);
1370 if (!SemanticContext) {
1371 // FIXME: Horrible, horrible hack! We can't currently represent this
1372 // in the AST, and historically we have just ignored such friend
1373 // class templates, so don't complain here.
1374 Diag(NameLoc, TUK == TUK_Friend
1375 ? diag::warn_template_qualified_friend_ignored
1376 : diag::err_template_qualified_declarator_no_match)
1377 << SS.getScopeRep() << SS.getRange();
1378 return TUK != TUK_Friend;
1379 }
1380
1381 if (RequireCompleteDeclContext(SS, SemanticContext))
1382 return true;
1383
1384 // If we're adding a template to a dependent context, we may need to
1385 // rebuilding some of the types used within the template parameter list,
1386 // now that we know what the current instantiation is.
1387 if (SemanticContext->isDependentContext()) {
1388 ContextRAII SavedContext(*this, SemanticContext);
1389 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1390 Invalid = true;
1391 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1392 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1393
1394 LookupQualifiedName(Previous, SemanticContext);
1395 } else {
1396 SemanticContext = CurContext;
1397
1398 // C++14 [class.mem]p14:
1399 // If T is the name of a class, then each of the following shall have a
1400 // name different from T:
1401 // -- every member template of class T
1402 if (TUK != TUK_Friend &&
1403 DiagnoseClassNameShadow(SemanticContext,
1404 DeclarationNameInfo(Name, NameLoc)))
1405 return true;
1406
1407 LookupName(Previous, S);
1408 }
1409
1410 if (Previous.isAmbiguous())
1411 return true;
1412
1413 NamedDecl *PrevDecl = nullptr;
1414 if (Previous.begin() != Previous.end())
1415 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1416
1417 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1418 // Maybe we will complain about the shadowed template parameter.
1419 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1420 // Just pretend that we didn't see the previous declaration.
1421 PrevDecl = nullptr;
1422 }
1423
1424 // If there is a previous declaration with the same name, check
1425 // whether this is a valid redeclaration.
1426 ClassTemplateDecl *PrevClassTemplate =
1427 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1428
1429 // We may have found the injected-class-name of a class template,
1430 // class template partial specialization, or class template specialization.
1431 // In these cases, grab the template that is being defined or specialized.
1432 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1433 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1434 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1435 PrevClassTemplate
1436 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1437 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1438 PrevClassTemplate
1439 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1440 ->getSpecializedTemplate();
1441 }
1442 }
1443
1444 if (TUK == TUK_Friend) {
1445 // C++ [namespace.memdef]p3:
1446 // [...] When looking for a prior declaration of a class or a function
1447 // declared as a friend, and when the name of the friend class or
1448 // function is neither a qualified name nor a template-id, scopes outside
1449 // the innermost enclosing namespace scope are not considered.
1450 if (!SS.isSet()) {
1451 DeclContext *OutermostContext = CurContext;
1452 while (!OutermostContext->isFileContext())
1453 OutermostContext = OutermostContext->getLookupParent();
1454
1455 if (PrevDecl &&
1456 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1457 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1458 SemanticContext = PrevDecl->getDeclContext();
1459 } else {
1460 // Declarations in outer scopes don't matter. However, the outermost
1461 // context we computed is the semantic context for our new
1462 // declaration.
1463 PrevDecl = PrevClassTemplate = nullptr;
1464 SemanticContext = OutermostContext;
1465
1466 // Check that the chosen semantic context doesn't already contain a
1467 // declaration of this name as a non-tag type.
1468 Previous.clear(LookupOrdinaryName);
1469 DeclContext *LookupContext = SemanticContext;
1470 while (LookupContext->isTransparentContext())
1471 LookupContext = LookupContext->getLookupParent();
1472 LookupQualifiedName(Previous, LookupContext);
1473
1474 if (Previous.isAmbiguous())
1475 return true;
1476
1477 if (Previous.begin() != Previous.end())
1478 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1479 }
1480 }
1481 } else if (PrevDecl &&
1482 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1483 S, SS.isValid()))
1484 PrevDecl = PrevClassTemplate = nullptr;
1485
1486 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1487 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1488 if (SS.isEmpty() &&
1489 !(PrevClassTemplate &&
1490 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1491 SemanticContext->getRedeclContext()))) {
1492 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1493 Diag(Shadow->getTargetDecl()->getLocation(),
1494 diag::note_using_decl_target);
1495 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1496 // Recover by ignoring the old declaration.
1497 PrevDecl = PrevClassTemplate = nullptr;
1498 }
1499 }
1500
1501 // TODO Memory management; associated constraints are not always stored.
1502 Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr);
1503
1504 if (PrevClassTemplate) {
1505 // Ensure that the template parameter lists are compatible. Skip this check
1506 // for a friend in a dependent context: the template parameter list itself
1507 // could be dependent.
1508 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1509 !TemplateParameterListsAreEqual(TemplateParams,
1510 PrevClassTemplate->getTemplateParameters(),
1511 /*Complain=*/true,
1512 TPL_TemplateMatch))
1513 return true;
1514
1515 // Check for matching associated constraints on redeclarations.
1516 const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints();
1517 const bool RedeclACMismatch = [&] {
1518 if (!(CurAC || PrevAC))
1519 return false; // Nothing to check; no mismatch.
1520 if (CurAC && PrevAC) {
1521 llvm::FoldingSetNodeID CurACInfo, PrevACInfo;
1522 CurAC->Profile(CurACInfo, Context, /*Canonical=*/true);
1523 PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true);
1524 if (CurACInfo == PrevACInfo)
1525 return false; // All good; no mismatch.
1526 }
1527 return true;
1528 }();
1529
1530 if (RedeclACMismatch) {
1531 Diag(CurAC ? CurAC->getBeginLoc() : NameLoc,
1532 diag::err_template_different_associated_constraints);
1533 Diag(PrevAC ? PrevAC->getBeginLoc() : PrevClassTemplate->getLocation(),
1534 diag::note_template_prev_declaration)
1535 << /*declaration*/ 0;
1536 return true;
1537 }
1538
1539 // C++ [temp.class]p4:
1540 // In a redeclaration, partial specialization, explicit
1541 // specialization or explicit instantiation of a class template,
1542 // the class-key shall agree in kind with the original class
1543 // template declaration (7.1.5.3).
1544 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1545 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1546 TUK == TUK_Definition, KWLoc, Name)) {
1547 Diag(KWLoc, diag::err_use_with_wrong_tag)
1548 << Name
1549 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1550 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1551 Kind = PrevRecordDecl->getTagKind();
1552 }
1553
1554 // Check for redefinition of this class template.
1555 if (TUK == TUK_Definition) {
1556 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1557 // If we have a prior definition that is not visible, treat this as
1558 // simply making that previous definition visible.
1559 NamedDecl *Hidden = nullptr;
1560 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1561 SkipBody->ShouldSkip = true;
1562 SkipBody->Previous = Def;
1563 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1564 assert(Tmpl && "original definition of a class template is not a "((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1565, __PRETTY_FUNCTION__))
1565 "class template?")((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566 makeMergedDefinitionVisible(Hidden);
1567 makeMergedDefinitionVisible(Tmpl);
1568 } else {
1569 Diag(NameLoc, diag::err_redefinition) << Name;
1570 Diag(Def->getLocation(), diag::note_previous_definition);
1571 // FIXME: Would it make sense to try to "forget" the previous
1572 // definition, as part of error recovery?
1573 return true;
1574 }
1575 }
1576 }
1577 } else if (PrevDecl) {
1578 // C++ [temp]p5:
1579 // A class template shall not have the same name as any other
1580 // template, class, function, object, enumeration, enumerator,
1581 // namespace, or type in the same scope (3.3), except as specified
1582 // in (14.5.4).
1583 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1584 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1585 return true;
1586 }
1587
1588 // Check the template parameter list of this declaration, possibly
1589 // merging in the template parameter list from the previous class
1590 // template declaration. Skip this check for a friend in a dependent
1591 // context, because the template parameter list might be dependent.
1592 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1593 CheckTemplateParameterList(
1594 TemplateParams,
1595 PrevClassTemplate
1596 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1597 : nullptr,
1598 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1599 SemanticContext->isDependentContext())
1600 ? TPC_ClassTemplateMember
1601 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1602 SkipBody))
1603 Invalid = true;
1604
1605 if (SS.isSet()) {
1606 // If the name of the template was qualified, we must be defining the
1607 // template out-of-line.
1608 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1609 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1610 : diag::err_member_decl_does_not_match)
1611 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1612 Invalid = true;
1613 }
1614 }
1615
1616 // If this is a templated friend in a dependent context we should not put it
1617 // on the redecl chain. In some cases, the templated friend can be the most
1618 // recent declaration tricking the template instantiator to make substitutions
1619 // there.
1620 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1621 bool ShouldAddRedecl
1622 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1623
1624 CXXRecordDecl *NewClass =
1625 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1626 PrevClassTemplate && ShouldAddRedecl ?
1627 PrevClassTemplate->getTemplatedDecl() : nullptr,
1628 /*DelayTypeCreation=*/true);
1629 SetNestedNameSpecifier(*this, NewClass, SS);
1630 if (NumOuterTemplateParamLists > 0)
1631 NewClass->setTemplateParameterListsInfo(
1632 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1633 NumOuterTemplateParamLists));
1634
1635 // Add alignment attributes if necessary; these attributes are checked when
1636 // the ASTContext lays out the structure.
1637 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1638 AddAlignmentAttributesForRecord(NewClass);
1639 AddMsStructLayoutForRecord(NewClass);
1640 }
1641
1642 // Attach the associated constraints when the declaration will not be part of
1643 // a decl chain.
1644 Expr *const ACtoAttach =
1645 PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC;
1646
1647 ClassTemplateDecl *NewTemplate
1648 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1649 DeclarationName(Name), TemplateParams,
1650 NewClass, ACtoAttach);
1651
1652 if (ShouldAddRedecl)
1653 NewTemplate->setPreviousDecl(PrevClassTemplate);
1654
1655 NewClass->setDescribedClassTemplate(NewTemplate);
1656
1657 if (ModulePrivateLoc.isValid())
1658 NewTemplate->setModulePrivate();
1659
1660 // Build the type for the class template declaration now.
1661 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1662 T = Context.getInjectedClassNameType(NewClass, T);
1663 assert(T->isDependentType() && "Class template type is not dependent?")((T->isDependentType() && "Class template type is not dependent?"
) ? static_cast<void> (0) : __assert_fail ("T->isDependentType() && \"Class template type is not dependent?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1663, __PRETTY_FUNCTION__))
;
1664 (void)T;
1665
1666 // If we are providing an explicit specialization of a member that is a
1667 // class template, make a note of that.
1668 if (PrevClassTemplate &&
1669 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1670 PrevClassTemplate->setMemberSpecialization();
1671
1672 // Set the access specifier.
1673 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1674 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1675
1676 // Set the lexical context of these templates
1677 NewClass->setLexicalDeclContext(CurContext);
1678 NewTemplate->setLexicalDeclContext(CurContext);
1679
1680 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
1681 NewClass->startDefinition();
1682
1683 ProcessDeclAttributeList(S, NewClass, Attr);
1684
1685 if (PrevClassTemplate)
1686 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1687
1688 AddPushedVisibilityAttribute(NewClass);
1689
1690 if (TUK != TUK_Friend) {
1691 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1692 Scope *Outer = S;
1693 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1694 Outer = Outer->getParent();
1695 PushOnScopeChains(NewTemplate, Outer);
1696 } else {
1697 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1698 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1699 NewClass->setAccess(PrevClassTemplate->getAccess());
1700 }
1701
1702 NewTemplate->setObjectOfFriendDecl();
1703
1704 // Friend templates are visible in fairly strange ways.
1705 if (!CurContext->isDependentContext()) {
1706 DeclContext *DC = SemanticContext->getRedeclContext();
1707 DC->makeDeclVisibleInContext(NewTemplate);
1708 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1709 PushOnScopeChains(NewTemplate, EnclosingScope,
1710 /* AddToContext = */ false);
1711 }
1712
1713 FriendDecl *Friend = FriendDecl::Create(
1714 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1715 Friend->setAccess(AS_public);
1716 CurContext->addDecl(Friend);
1717 }
1718
1719 if (PrevClassTemplate)
1720 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
1721
1722 if (Invalid) {
1723 NewTemplate->setInvalidDecl();
1724 NewClass->setInvalidDecl();
1725 }
1726
1727 ActOnDocumentableDecl(NewTemplate);
1728
1729 if (SkipBody && SkipBody->ShouldSkip)
1730 return SkipBody->Previous;
1731
1732 return NewTemplate;
1733}
1734
1735namespace {
1736/// Tree transform to "extract" a transformed type from a class template's
1737/// constructor to a deduction guide.
1738class ExtractTypeForDeductionGuide
1739 : public TreeTransform<ExtractTypeForDeductionGuide> {
1740public:
1741 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
1742 ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {}
1743
1744 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
1745
1746 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
1747 return TransformType(
1748 TLB,
1749 TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc());
1750 }
1751};
1752
1753/// Transform to convert portions of a constructor declaration into the
1754/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1755struct ConvertConstructorToDeductionGuideTransform {
1756 ConvertConstructorToDeductionGuideTransform(Sema &S,
1757 ClassTemplateDecl *Template)
1758 : SemaRef(S), Template(Template) {}
1759
1760 Sema &SemaRef;
1761 ClassTemplateDecl *Template;
1762
1763 DeclContext *DC = Template->getDeclContext();
1764 CXXRecordDecl *Primary = Template->getTemplatedDecl();
1765 DeclarationName DeductionGuideName =
1766 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1767
1768 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1769
1770 // Index adjustment to apply to convert depth-1 template parameters into
1771 // depth-0 template parameters.
1772 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1773
1774 /// Transform a constructor declaration into a deduction guide.
1775 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1776 CXXConstructorDecl *CD) {
1777 SmallVector<TemplateArgument, 16> SubstArgs;
1778
1779 LocalInstantiationScope Scope(SemaRef);
1780
1781 // C++ [over.match.class.deduct]p1:
1782 // -- For each constructor of the class template designated by the
1783 // template-name, a function template with the following properties:
1784
1785 // -- The template parameters are the template parameters of the class
1786 // template followed by the template parameters (including default
1787 // template arguments) of the constructor, if any.
1788 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1789 if (FTD) {
1790 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1791 SmallVector<NamedDecl *, 16> AllParams;
1792 AllParams.reserve(TemplateParams->size() + InnerParams->size());
1793 AllParams.insert(AllParams.begin(),
1794 TemplateParams->begin(), TemplateParams->end());
1795 SubstArgs.reserve(InnerParams->size());
1796
1797 // Later template parameters could refer to earlier ones, so build up
1798 // a list of substituted template arguments as we go.
1799 for (NamedDecl *Param : *InnerParams) {
1800 MultiLevelTemplateArgumentList Args;
1801 Args.addOuterTemplateArguments(SubstArgs);
1802 Args.addOuterRetainedLevel();
1803 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
1804 if (!NewParam)
1805 return nullptr;
1806 AllParams.push_back(NewParam);
1807 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
1808 SemaRef.Context.getInjectedTemplateArg(NewParam)));
1809 }
1810 TemplateParams = TemplateParameterList::Create(
1811 SemaRef.Context, InnerParams->getTemplateLoc(),
1812 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
1813 /*FIXME: RequiresClause*/ nullptr);
1814 }
1815
1816 // If we built a new template-parameter-list, track that we need to
1817 // substitute references to the old parameters into references to the
1818 // new ones.
1819 MultiLevelTemplateArgumentList Args;
1820 if (FTD) {
1821 Args.addOuterTemplateArguments(SubstArgs);
1822 Args.addOuterRetainedLevel();
1823 }
1824
1825 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
1826 .getAsAdjusted<FunctionProtoTypeLoc>();
1827 assert(FPTL && "no prototype for constructor declaration")((FPTL && "no prototype for constructor declaration")
? static_cast<void> (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1827, __PRETTY_FUNCTION__))
;
1828
1829 // Transform the type of the function, adjusting the return type and
1830 // replacing references to the old parameters with references to the
1831 // new ones.
1832 TypeLocBuilder TLB;
1833 SmallVector<ParmVarDecl*, 8> Params;
1834 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
1835 if (NewType.isNull())
1836 return nullptr;
1837 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
1838
1839 return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
1840 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
1841 CD->getEndLoc());
1842 }
1843
1844 /// Build a deduction guide with the specified parameter types.
1845 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
1846 SourceLocation Loc = Template->getLocation();
1847
1848 // Build the requested type.
1849 FunctionProtoType::ExtProtoInfo EPI;
1850 EPI.HasTrailingReturn = true;
1851 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
1852 DeductionGuideName, EPI);
1853 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
1854
1855 FunctionProtoTypeLoc FPTL =
1856 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
1857
1858 // Build the parameters, needed during deduction / substitution.
1859 SmallVector<ParmVarDecl*, 4> Params;
1860 for (auto T : ParamTypes) {
1861 ParmVarDecl *NewParam = ParmVarDecl::Create(
1862 SemaRef.Context, DC, Loc, Loc, nullptr, T,
1863 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
1864 NewParam->setScopeInfo(0, Params.size());
1865 FPTL.setParam(Params.size(), NewParam);
1866 Params.push_back(NewParam);
1867 }
1868
1869 return buildDeductionGuide(Template->getTemplateParameters(),
1870 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
1871 }
1872
1873private:
1874 /// Transform a constructor template parameter into a deduction guide template
1875 /// parameter, rebuilding any internal references to earlier parameters and
1876 /// renumbering as we go.
1877 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
1878 MultiLevelTemplateArgumentList &Args) {
1879 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
1880 // TemplateTypeParmDecl's index cannot be changed after creation, so
1881 // substitute it directly.
1882 auto *NewTTP = TemplateTypeParmDecl::Create(
1883 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
1884 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
1885 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
1886 TTP->isParameterPack());
1887 if (TTP->hasDefaultArgument()) {
1888 TypeSourceInfo *InstantiatedDefaultArg =
1889 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
1890 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
1891 if (InstantiatedDefaultArg)
1892 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
1893 }
1894 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
1895 NewTTP);
1896 return NewTTP;
1897 }
1898
1899 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
1900 return transformTemplateParameterImpl(TTP, Args);
1901
1902 return transformTemplateParameterImpl(
1903 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
1904 }
1905 template<typename TemplateParmDecl>
1906 TemplateParmDecl *
1907 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
1908 MultiLevelTemplateArgumentList &Args) {
1909 // Ask the template instantiator to do the heavy lifting for us, then adjust
1910 // the index of the parameter once it's done.
1911 auto *NewParam =
1912 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
1913 assert(NewParam->getDepth() == 0 && "unexpected template param depth")((NewParam->getDepth() == 0 && "unexpected template param depth"
) ? static_cast<void> (0) : __assert_fail ("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1913, __PRETTY_FUNCTION__))
;
1914 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
1915 return NewParam;
1916 }
1917
1918 QualType transformFunctionProtoType(TypeLocBuilder &TLB,
1919 FunctionProtoTypeLoc TL,
1920 SmallVectorImpl<ParmVarDecl*> &Params,
1921 MultiLevelTemplateArgumentList &Args) {
1922 SmallVector<QualType, 4> ParamTypes;
1923 const FunctionProtoType *T = TL.getTypePtr();
1924
1925 // -- The types of the function parameters are those of the constructor.
1926 for (auto *OldParam : TL.getParams()) {
1927 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
1928 if (!NewParam)
1929 return QualType();
1930 ParamTypes.push_back(NewParam->getType());
1931 Params.push_back(NewParam);
1932 }
1933
1934 // -- The return type is the class template specialization designated by
1935 // the template-name and template arguments corresponding to the
1936 // template parameters obtained from the class template.
1937 //
1938 // We use the injected-class-name type of the primary template instead.
1939 // This has the convenient property that it is different from any type that
1940 // the user can write in a deduction-guide (because they cannot enter the
1941 // context of the template), so implicit deduction guides can never collide
1942 // with explicit ones.
1943 QualType ReturnType = DeducedType;
1944 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
1945
1946 // Resolving a wording defect, we also inherit the variadicness of the
1947 // constructor.
1948 FunctionProtoType::ExtProtoInfo EPI;
1949 EPI.Variadic = T->isVariadic();
1950 EPI.HasTrailingReturn = true;
1951
1952 QualType Result = SemaRef.BuildFunctionType(
1953 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
1954 if (Result.isNull())
1955 return QualType();
1956
1957 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
1958 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
1959 NewTL.setLParenLoc(TL.getLParenLoc());
1960 NewTL.setRParenLoc(TL.getRParenLoc());
1961 NewTL.setExceptionSpecRange(SourceRange());
1962 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
1963 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
1964 NewTL.setParam(I, Params[I]);
1965
1966 return Result;
1967 }
1968
1969 ParmVarDecl *
1970 transformFunctionTypeParam(ParmVarDecl *OldParam,
1971 MultiLevelTemplateArgumentList &Args) {
1972 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
1973 TypeSourceInfo *NewDI;
1974 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
1975 // Expand out the one and only element in each inner pack.
1976 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
1977 NewDI =
1978 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
1979 OldParam->getLocation(), OldParam->getDeclName());
1980 if (!NewDI) return nullptr;
1981 NewDI =
1982 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
1983 PackTL.getTypePtr()->getNumExpansions());
1984 } else
1985 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
1986 OldParam->getDeclName());
1987 if (!NewDI)
1988 return nullptr;
1989
1990 // Extract the type. This (for instance) replaces references to typedef
1991 // members of the current instantiations with the definitions of those
1992 // typedefs, avoiding triggering instantiation of the deduced type during
1993 // deduction.
1994 NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI);
1995
1996 // Resolving a wording defect, we also inherit default arguments from the
1997 // constructor.
1998 ExprResult NewDefArg;
1999 if (OldParam->hasDefaultArg()) {
2000 NewDefArg = SemaRef.SubstExpr(OldParam->getDefaultArg(), Args);
2001 if (NewDefArg.isInvalid())
2002 return nullptr;
2003 }
2004
2005 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2006 OldParam->getInnerLocStart(),
2007 OldParam->getLocation(),
2008 OldParam->getIdentifier(),
2009 NewDI->getType(),
2010 NewDI,
2011 OldParam->getStorageClass(),
2012 NewDefArg.get());
2013 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2014 OldParam->getFunctionScopeIndex());
2015 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2016 return NewParam;
2017 }
2018
2019 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
2020 ExplicitSpecifier ES, TypeSourceInfo *TInfo,
2021 SourceLocation LocStart, SourceLocation Loc,
2022 SourceLocation LocEnd) {
2023 DeclarationNameInfo Name(DeductionGuideName, Loc);
2024 ArrayRef<ParmVarDecl *> Params =
2025 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2026
2027 // Build the implicit deduction guide template.
2028 auto *Guide =
2029 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2030 TInfo->getType(), TInfo, LocEnd);
2031 Guide->setImplicit();
2032 Guide->setParams(Params);
2033
2034 for (auto *Param : Params)
2035 Param->setDeclContext(Guide);
2036
2037 auto *GuideTemplate = FunctionTemplateDecl::Create(
2038 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2039 GuideTemplate->setImplicit();
2040 Guide->setDescribedFunctionTemplate(GuideTemplate);
2041
2042 if (isa<CXXRecordDecl>(DC)) {
2043 Guide->setAccess(AS_public);
2044 GuideTemplate->setAccess(AS_public);
2045 }
2046
2047 DC->addDecl(GuideTemplate);
2048 return GuideTemplate;
2049 }
2050};
2051}
2052
2053void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2054 SourceLocation Loc) {
2055 DeclContext *DC = Template->getDeclContext();
2056 if (DC->isDependentContext())
2057 return;
2058
2059 ConvertConstructorToDeductionGuideTransform Transform(
2060 *this, cast<ClassTemplateDecl>(Template));
2061 if (!isCompleteType(Loc, Transform.DeducedType))
2062 return;
2063
2064 // Check whether we've already declared deduction guides for this template.
2065 // FIXME: Consider storing a flag on the template to indicate this.
2066 auto Existing = DC->lookup(Transform.DeductionGuideName);
2067 for (auto *D : Existing)
2068 if (D->isImplicit())
2069 return;
2070
2071 // In case we were expanding a pack when we attempted to declare deduction
2072 // guides, turn off pack expansion for everything we're about to do.
2073 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2074 // Create a template instantiation record to track the "instantiation" of
2075 // constructors into deduction guides.
2076 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2077 // this substitution process actually fail?
2078 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2079 if (BuildingDeductionGuides.isInvalid())
2080 return;
2081
2082 // Convert declared constructors into deduction guide templates.
2083 // FIXME: Skip constructors for which deduction must necessarily fail (those
2084 // for which some class template parameter without a default argument never
2085 // appears in a deduced context).
2086 bool AddedAny = false;
2087 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2088 D = D->getUnderlyingDecl();
2089 if (D->isInvalidDecl() || D->isImplicit())
2090 continue;
2091 D = cast<NamedDecl>(D->getCanonicalDecl());
2092
2093 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2094 auto *CD =
2095 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2096 // Class-scope explicit specializations (MS extension) do not result in
2097 // deduction guides.
2098 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2099 continue;
2100
2101 Transform.transformConstructor(FTD, CD);
2102 AddedAny = true;
2103 }
2104
2105 // C++17 [over.match.class.deduct]
2106 // -- If C is not defined or does not declare any constructors, an
2107 // additional function template derived as above from a hypothetical
2108 // constructor C().
2109 if (!AddedAny)
2110 Transform.buildSimpleDeductionGuide(None);
2111
2112 // -- An additional function template derived as above from a hypothetical
2113 // constructor C(C), called the copy deduction candidate.
2114 cast<CXXDeductionGuideDecl>(
2115 cast<FunctionTemplateDecl>(
2116 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2117 ->getTemplatedDecl())
2118 ->setIsCopyDeductionCandidate();
2119}
2120
2121/// Diagnose the presence of a default template argument on a
2122/// template parameter, which is ill-formed in certain contexts.
2123///
2124/// \returns true if the default template argument should be dropped.
2125static bool DiagnoseDefaultTemplateArgument(Sema &S,
2126 Sema::TemplateParamListContext TPC,
2127 SourceLocation ParamLoc,
2128 SourceRange DefArgRange) {
2129 switch (TPC) {
2130 case Sema::TPC_ClassTemplate:
2131 case Sema::TPC_VarTemplate:
2132 case Sema::TPC_TypeAliasTemplate:
2133 return false;
2134
2135 case Sema::TPC_FunctionTemplate:
2136 case Sema::TPC_FriendFunctionTemplateDefinition:
2137 // C++ [temp.param]p9:
2138 // A default template-argument shall not be specified in a
2139 // function template declaration or a function template
2140 // definition [...]
2141 // If a friend function template declaration specifies a default
2142 // template-argument, that declaration shall be a definition and shall be
2143 // the only declaration of the function template in the translation unit.
2144 // (C++98/03 doesn't have this wording; see DR226).
2145 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2146 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2147 : diag::ext_template_parameter_default_in_function_template)
2148 << DefArgRange;
2149 return false;
2150
2151 case Sema::TPC_ClassTemplateMember:
2152 // C++0x [temp.param]p9:
2153 // A default template-argument shall not be specified in the
2154 // template-parameter-lists of the definition of a member of a
2155 // class template that appears outside of the member's class.
2156 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2157 << DefArgRange;
2158 return true;
2159
2160 case Sema::TPC_FriendClassTemplate:
2161 case Sema::TPC_FriendFunctionTemplate:
2162 // C++ [temp.param]p9:
2163 // A default template-argument shall not be specified in a
2164 // friend template declaration.
2165 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2166 << DefArgRange;
2167 return true;
2168
2169 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2170 // for friend function templates if there is only a single
2171 // declaration (and it is a definition). Strange!
2172 }
2173
2174 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2174)
;
2175}
2176
2177/// Check for unexpanded parameter packs within the template parameters
2178/// of a template template parameter, recursively.
2179static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2180 TemplateTemplateParmDecl *TTP) {
2181 // A template template parameter which is a parameter pack is also a pack
2182 // expansion.
2183 if (TTP->isParameterPack())
2184 return false;
2185
2186 TemplateParameterList *Params = TTP->getTemplateParameters();
2187 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2188 NamedDecl *P = Params->getParam(I);
2189 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2190 if (!NTTP->isParameterPack() &&
2191 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2192 NTTP->getTypeSourceInfo(),
2193 Sema::UPPC_NonTypeTemplateParameterType))
2194 return true;
2195
2196 continue;
2197 }
2198
2199 if (TemplateTemplateParmDecl *InnerTTP
2200 = dyn_cast<TemplateTemplateParmDecl>(P))
2201 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2202 return true;
2203 }
2204
2205 return false;
2206}
2207
2208/// Checks the validity of a template parameter list, possibly
2209/// considering the template parameter list from a previous
2210/// declaration.
2211///
2212/// If an "old" template parameter list is provided, it must be
2213/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2214/// template parameter list.
2215///
2216/// \param NewParams Template parameter list for a new template
2217/// declaration. This template parameter list will be updated with any
2218/// default arguments that are carried through from the previous
2219/// template parameter list.
2220///
2221/// \param OldParams If provided, template parameter list from a
2222/// previous declaration of the same template. Default template
2223/// arguments will be merged from the old template parameter list to
2224/// the new template parameter list.
2225///
2226/// \param TPC Describes the context in which we are checking the given
2227/// template parameter list.
2228///
2229/// \param SkipBody If we might have already made a prior merged definition
2230/// of this template visible, the corresponding body-skipping information.
2231/// Default argument redefinition is not an error when skipping such a body,
2232/// because (under the ODR) we can assume the default arguments are the same
2233/// as the prior merged definition.
2234///
2235/// \returns true if an error occurred, false otherwise.
2236bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2237 TemplateParameterList *OldParams,
2238 TemplateParamListContext TPC,
2239 SkipBodyInfo *SkipBody) {
2240 bool Invalid = false;
2241
2242 // C++ [temp.param]p10:
2243 // The set of default template-arguments available for use with a
2244 // template declaration or definition is obtained by merging the
2245 // default arguments from the definition (if in scope) and all
2246 // declarations in scope in the same way default function
2247 // arguments are (8.3.6).
2248 bool SawDefaultArgument = false;
2249 SourceLocation PreviousDefaultArgLoc;
2250
2251 // Dummy initialization to avoid warnings.
2252 TemplateParameterList::iterator OldParam = NewParams->end();
2253 if (OldParams)
2254 OldParam = OldParams->begin();
2255
2256 bool RemoveDefaultArguments = false;
2257 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2258 NewParamEnd = NewParams->end();
2259 NewParam != NewParamEnd; ++NewParam) {
2260 // Variables used to diagnose redundant default arguments
2261 bool RedundantDefaultArg = false;
2262 SourceLocation OldDefaultLoc;
2263 SourceLocation NewDefaultLoc;
2264
2265 // Variable used to diagnose missing default arguments
2266 bool MissingDefaultArg = false;
2267
2268 // Variable used to diagnose non-final parameter packs
2269 bool SawParameterPack = false;
2270
2271 if (TemplateTypeParmDecl *NewTypeParm
2272 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2273 // Check the presence of a default argument here.
2274 if (NewTypeParm->hasDefaultArgument() &&
2275 DiagnoseDefaultTemplateArgument(*this, TPC,
2276 NewTypeParm->getLocation(),
2277 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2278 .getSourceRange()))
2279 NewTypeParm->removeDefaultArgument();
2280
2281 // Merge default arguments for template type parameters.
2282 TemplateTypeParmDecl *OldTypeParm
2283 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2284 if (NewTypeParm->isParameterPack()) {
2285 assert(!NewTypeParm->hasDefaultArgument() &&((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2286, __PRETTY_FUNCTION__))
2286 "Parameter packs can't have a default argument!")((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2286, __PRETTY_FUNCTION__))
;
2287 SawParameterPack = true;
2288 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2289 NewTypeParm->hasDefaultArgument() &&
2290 (!SkipBody || !SkipBody->ShouldSkip)) {
2291 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2292 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2293 SawDefaultArgument = true;
2294 RedundantDefaultArg = true;
2295 PreviousDefaultArgLoc = NewDefaultLoc;
2296 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2297 // Merge the default argument from the old declaration to the
2298 // new declaration.
2299 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2300 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2301 } else if (NewTypeParm->hasDefaultArgument()) {
2302 SawDefaultArgument = true;
2303 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2304 } else if (SawDefaultArgument)
2305 MissingDefaultArg = true;
2306 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2307 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2308 // Check for unexpanded parameter packs.
2309 if (!NewNonTypeParm->isParameterPack() &&
2310 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2311 NewNonTypeParm->getTypeSourceInfo(),
2312 UPPC_NonTypeTemplateParameterType)) {
2313 Invalid = true;
2314 continue;
2315 }
2316
2317 // Check the presence of a default argument here.
2318 if (NewNonTypeParm->hasDefaultArgument() &&
2319 DiagnoseDefaultTemplateArgument(*this, TPC,
2320 NewNonTypeParm->getLocation(),
2321 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2322 NewNonTypeParm->removeDefaultArgument();
2323 }
2324
2325 // Merge default arguments for non-type template parameters
2326 NonTypeTemplateParmDecl *OldNonTypeParm
2327 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2328 if (NewNonTypeParm->isParameterPack()) {
2329 assert(!NewNonTypeParm->hasDefaultArgument() &&((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2330, __PRETTY_FUNCTION__))
2330 "Parameter packs can't have a default argument!")((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2330, __PRETTY_FUNCTION__))
;
2331 if (!NewNonTypeParm->isPackExpansion())
2332 SawParameterPack = true;
2333 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2334 NewNonTypeParm->hasDefaultArgument() &&
2335 (!SkipBody || !SkipBody->ShouldSkip)) {
2336 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2337 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2338 SawDefaultArgument = true;
2339 RedundantDefaultArg = true;
2340 PreviousDefaultArgLoc = NewDefaultLoc;
2341 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2342 // Merge the default argument from the old declaration to the
2343 // new declaration.
2344 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2345 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2346 } else if (NewNonTypeParm->hasDefaultArgument()) {
2347 SawDefaultArgument = true;
2348 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2349 } else if (SawDefaultArgument)
2350 MissingDefaultArg = true;
2351 } else {
2352 TemplateTemplateParmDecl *NewTemplateParm
2353 = cast<TemplateTemplateParmDecl>(*NewParam);
2354
2355 // Check for unexpanded parameter packs, recursively.
2356 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2357 Invalid = true;
2358 continue;
2359 }
2360
2361 // Check the presence of a default argument here.
2362 if (NewTemplateParm->hasDefaultArgument() &&
2363 DiagnoseDefaultTemplateArgument(*this, TPC,
2364 NewTemplateParm->getLocation(),
2365 NewTemplateParm->getDefaultArgument().getSourceRange()))
2366 NewTemplateParm->removeDefaultArgument();
2367
2368 // Merge default arguments for template template parameters
2369 TemplateTemplateParmDecl *OldTemplateParm
2370 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2371 if (NewTemplateParm->isParameterPack()) {
2372 assert(!NewTemplateParm->hasDefaultArgument() &&((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2373, __PRETTY_FUNCTION__))
2373 "Parameter packs can't have a default argument!")((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2373, __PRETTY_FUNCTION__))
;
2374 if (!NewTemplateParm->isPackExpansion())
2375 SawParameterPack = true;
2376 } else if (OldTemplateParm &&
2377 hasVisibleDefaultArgument(OldTemplateParm) &&
2378 NewTemplateParm->hasDefaultArgument() &&
2379 (!SkipBody || !SkipBody->ShouldSkip)) {
2380 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2381 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2382 SawDefaultArgument = true;
2383 RedundantDefaultArg = true;
2384 PreviousDefaultArgLoc = NewDefaultLoc;
2385 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2386 // Merge the default argument from the old declaration to the
2387 // new declaration.
2388 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2389 PreviousDefaultArgLoc
2390 = OldTemplateParm->getDefaultArgument().getLocation();
2391 } else if (NewTemplateParm->hasDefaultArgument()) {
2392 SawDefaultArgument = true;
2393 PreviousDefaultArgLoc
2394 = NewTemplateParm->getDefaultArgument().getLocation();
2395 } else if (SawDefaultArgument)
2396 MissingDefaultArg = true;
2397 }
2398
2399 // C++11 [temp.param]p11:
2400 // If a template parameter of a primary class template or alias template
2401 // is a template parameter pack, it shall be the last template parameter.
2402 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2403 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2404 TPC == TPC_TypeAliasTemplate)) {
2405 Diag((*NewParam)->getLocation(),
2406 diag::err_template_param_pack_must_be_last_template_parameter);
2407 Invalid = true;
2408 }
2409
2410 if (RedundantDefaultArg) {
2411 // C++ [temp.param]p12:
2412 // A template-parameter shall not be given default arguments
2413 // by two different declarations in the same scope.
2414 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2415 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2416 Invalid = true;
2417 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2418 // C++ [temp.param]p11:
2419 // If a template-parameter of a class template has a default
2420 // template-argument, each subsequent template-parameter shall either
2421 // have a default template-argument supplied or be a template parameter
2422 // pack.
2423 Diag((*NewParam)->getLocation(),
2424 diag::err_template_param_default_arg_missing);
2425 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2426 Invalid = true;
2427 RemoveDefaultArguments = true;
2428 }
2429
2430 // If we have an old template parameter list that we're merging
2431 // in, move on to the next parameter.
2432 if (OldParams)
2433 ++OldParam;
2434 }
2435
2436 // We were missing some default arguments at the end of the list, so remove
2437 // all of the default arguments.
2438 if (RemoveDefaultArguments) {
2439 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2440 NewParamEnd = NewParams->end();
2441 NewParam != NewParamEnd; ++NewParam) {
2442 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2443 TTP->removeDefaultArgument();
2444 else if (NonTypeTemplateParmDecl *NTTP
2445 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2446 NTTP->removeDefaultArgument();
2447 else
2448 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2449 }
2450 }
2451
2452 return Invalid;
2453}
2454
2455namespace {
2456
2457/// A class which looks for a use of a certain level of template
2458/// parameter.
2459struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2460 typedef RecursiveASTVisitor<DependencyChecker> super;
2461
2462 unsigned Depth;
2463
2464 // Whether we're looking for a use of a template parameter that makes the
2465 // overall construct type-dependent / a dependent type. This is strictly
2466 // best-effort for now; we may fail to match at all for a dependent type
2467 // in some cases if this is set.
2468 bool IgnoreNonTypeDependent;
2469
2470 bool Match;
2471 SourceLocation MatchLoc;
2472
2473 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2474 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2475 Match(false) {}
2476
2477 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2478 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2479 NamedDecl *ND = Params->getParam(0);
2480 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2481 Depth = PD->getDepth();
2482 } else if (NonTypeTemplateParmDecl *PD =
2483 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2484 Depth = PD->getDepth();
2485 } else {
2486 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2487 }
2488 }
2489
2490 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2491 if (ParmDepth >= Depth) {
2492 Match = true;
2493 MatchLoc = Loc;
2494 return true;
2495 }
2496 return false;
2497 }
2498
2499 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2500 // Prune out non-type-dependent expressions if requested. This can
2501 // sometimes result in us failing to find a template parameter reference
2502 // (if a value-dependent expression creates a dependent type), but this
2503 // mode is best-effort only.
2504 if (auto *E = dyn_cast_or_null<Expr>(S))
2505 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2506 return true;
2507 return super::TraverseStmt(S, Q);
2508 }
2509
2510 bool TraverseTypeLoc(TypeLoc TL) {
2511 if (IgnoreNonTypeDependent && !TL.isNull() &&
2512 !TL.getType()->isDependentType())
2513 return true;
2514 return super::TraverseTypeLoc(TL);
2515 }
2516
2517 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2518 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2519 }
2520
2521 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2522 // For a best-effort search, keep looking until we find a location.
2523 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2524 }
2525
2526 bool TraverseTemplateName(TemplateName N) {
2527 if (TemplateTemplateParmDecl *PD =
2528 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2529 if (Matches(PD->getDepth()))
2530 return false;
2531 return super::TraverseTemplateName(N);
2532 }
2533
2534 bool VisitDeclRefExpr(DeclRefExpr *E) {
2535 if (NonTypeTemplateParmDecl *PD =
2536 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2537 if (Matches(PD->getDepth(), E->getExprLoc()))
2538 return false;
2539 return super::VisitDeclRefExpr(E);
2540 }
2541
2542 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2543 return TraverseType(T->getReplacementType());
2544 }
2545
2546 bool
2547 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2548 return TraverseTemplateArgument(T->getArgumentPack());
2549 }
2550
2551 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2552 return TraverseType(T->getInjectedSpecializationType());
2553 }
2554};
2555} // end anonymous namespace
2556
2557/// Determines whether a given type depends on the given parameter
2558/// list.
2559static bool
2560DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2561 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2562 Checker.TraverseType(T);
2563 return Checker.Match;
2564}
2565
2566// Find the source range corresponding to the named type in the given
2567// nested-name-specifier, if any.
2568static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2569 QualType T,
2570 const CXXScopeSpec &SS) {
2571 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2572 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2573 if (const Type *CurType = NNS->getAsType()) {
2574 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2575 return NNSLoc.getTypeLoc().getSourceRange();
2576 } else
2577 break;
2578
2579 NNSLoc = NNSLoc.getPrefix();
2580 }
2581
2582 return SourceRange();
2583}
2584
2585/// Match the given template parameter lists to the given scope
2586/// specifier, returning the template parameter list that applies to the
2587/// name.
2588///
2589/// \param DeclStartLoc the start of the declaration that has a scope
2590/// specifier or a template parameter list.
2591///
2592/// \param DeclLoc The location of the declaration itself.
2593///
2594/// \param SS the scope specifier that will be matched to the given template
2595/// parameter lists. This scope specifier precedes a qualified name that is
2596/// being declared.
2597///
2598/// \param TemplateId The template-id following the scope specifier, if there
2599/// is one. Used to check for a missing 'template<>'.
2600///
2601/// \param ParamLists the template parameter lists, from the outermost to the
2602/// innermost template parameter lists.
2603///
2604/// \param IsFriend Whether to apply the slightly different rules for
2605/// matching template parameters to scope specifiers in friend
2606/// declarations.
2607///
2608/// \param IsMemberSpecialization will be set true if the scope specifier
2609/// denotes a fully-specialized type, and therefore this is a declaration of
2610/// a member specialization.
2611///
2612/// \returns the template parameter list, if any, that corresponds to the
2613/// name that is preceded by the scope specifier @p SS. This template
2614/// parameter list may have template parameters (if we're declaring a
2615/// template) or may have no template parameters (if we're declaring a
2616/// template specialization), or may be NULL (if what we're declaring isn't
2617/// itself a template).
2618TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2619 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2620 TemplateIdAnnotation *TemplateId,
2621 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2622 bool &IsMemberSpecialization, bool &Invalid) {
2623 IsMemberSpecialization = false;
2624 Invalid = false;
2625
2626 // The sequence of nested types to which we will match up the template
2627 // parameter lists. We first build this list by starting with the type named
2628 // by the nested-name-specifier and walking out until we run out of types.
2629 SmallVector<QualType, 4> NestedTypes;
2630 QualType T;
2631 if (SS.getScopeRep()) {
2632 if (CXXRecordDecl *Record
2633 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2634 T = Context.getTypeDeclType(Record);
2635 else
2636 T = QualType(SS.getScopeRep()->getAsType(), 0);
2637 }
2638
2639 // If we found an explicit specialization that prevents us from needing
2640 // 'template<>' headers, this will be set to the location of that
2641 // explicit specialization.
2642 SourceLocation ExplicitSpecLoc;
2643
2644 while (!T.isNull()) {
2645 NestedTypes.push_back(T);
2646
2647 // Retrieve the parent of a record type.
2648 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2649 // If this type is an explicit specialization, we're done.
2650 if (ClassTemplateSpecializationDecl *Spec
2651 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2652 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2653 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2654 ExplicitSpecLoc = Spec->getLocation();
2655 break;
2656 }
2657 } else if (Record->getTemplateSpecializationKind()
2658 == TSK_ExplicitSpecialization) {
2659 ExplicitSpecLoc = Record->getLocation();
2660 break;
2661 }
2662
2663 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2664 T = Context.getTypeDeclType(Parent);
2665 else
2666 T = QualType();
2667 continue;
2668 }
2669
2670 if (const TemplateSpecializationType *TST
2671 = T->getAs<TemplateSpecializationType>()) {
2672 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2673 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2674 T = Context.getTypeDeclType(Parent);
2675 else
2676 T = QualType();
2677 continue;
2678 }
2679 }
2680
2681 // Look one step prior in a dependent template specialization type.
2682 if (const DependentTemplateSpecializationType *DependentTST
2683 = T->getAs<DependentTemplateSpecializationType>()) {
2684 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2685 T = QualType(NNS->getAsType(), 0);
2686 else
2687 T = QualType();
2688 continue;
2689 }
2690
2691 // Look one step prior in a dependent name type.
2692 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2693 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2694 T = QualType(NNS->getAsType(), 0);
2695 else
2696 T = QualType();
2697 continue;
2698 }
2699
2700 // Retrieve the parent of an enumeration type.
2701 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2702 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2703 // check here.
2704 EnumDecl *Enum = EnumT->getDecl();
2705
2706 // Get to the parent type.
2707 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2708 T = Context.getTypeDeclType(Parent);
2709 else
2710 T = QualType();
2711 continue;
2712 }
2713
2714 T = QualType();
2715 }
2716 // Reverse the nested types list, since we want to traverse from the outermost
2717 // to the innermost while checking template-parameter-lists.
2718 std::reverse(NestedTypes.begin(), NestedTypes.end());
2719
2720 // C++0x [temp.expl.spec]p17:
2721 // A member or a member template may be nested within many
2722 // enclosing class templates. In an explicit specialization for
2723 // such a member, the member declaration shall be preceded by a
2724 // template<> for each enclosing class template that is
2725 // explicitly specialized.
2726 bool SawNonEmptyTemplateParameterList = false;
2727
2728 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2729 if (SawNonEmptyTemplateParameterList) {
2730 Diag(DeclLoc, diag::err_specialize_member_of_template)
2731 << !Recovery << Range;
2732 Invalid = true;
2733 IsMemberSpecialization = false;
2734 return true;
2735 }
2736
2737 return false;
2738 };
2739
2740 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2741 // Check that we can have an explicit specialization here.
2742 if (CheckExplicitSpecialization(Range, true))
2743 return true;
2744
2745 // We don't have a template header, but we should.
2746 SourceLocation ExpectedTemplateLoc;
2747 if (!ParamLists.empty())
2748 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2749 else
2750 ExpectedTemplateLoc = DeclStartLoc;
2751
2752 Diag(DeclLoc, diag::err_template_spec_needs_header)
2753 << Range
2754 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2755 return false;
2756 };
2757
2758 unsigned ParamIdx = 0;
2759 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2760 ++TypeIdx) {
2761 T = NestedTypes[TypeIdx];
2762
2763 // Whether we expect a 'template<>' header.
2764 bool NeedEmptyTemplateHeader = false;
2765
2766 // Whether we expect a template header with parameters.
2767 bool NeedNonemptyTemplateHeader = false;
2768
2769 // For a dependent type, the set of template parameters that we
2770 // expect to see.
2771 TemplateParameterList *ExpectedTemplateParams = nullptr;
2772
2773 // C++0x [temp.expl.spec]p15:
2774 // A member or a member template may be nested within many enclosing
2775 // class templates. In an explicit specialization for such a member, the
2776 // member declaration shall be preceded by a template<> for each
2777 // enclosing class template that is explicitly specialized.
2778 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2779 if (ClassTemplatePartialSpecializationDecl *Partial
2780 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2781 ExpectedTemplateParams = Partial->getTemplateParameters();
2782 NeedNonemptyTemplateHeader = true;
2783 } else if (Record->isDependentType()) {
2784 if (Record->getDescribedClassTemplate()) {
2785 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2786 ->getTemplateParameters();
2787 NeedNonemptyTemplateHeader = true;
2788 }
2789 } else if (ClassTemplateSpecializationDecl *Spec
2790 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2791 // C++0x [temp.expl.spec]p4:
2792 // Members of an explicitly specialized class template are defined
2793 // in the same manner as members of normal classes, and not using
2794 // the template<> syntax.
2795 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2796 NeedEmptyTemplateHeader = true;
2797 else
2798 continue;
2799 } else if (Record->getTemplateSpecializationKind()) {
2800 if (Record->getTemplateSpecializationKind()
2801 != TSK_ExplicitSpecialization &&
2802 TypeIdx == NumTypes - 1)
2803 IsMemberSpecialization = true;
2804
2805 continue;
2806 }
2807 } else if (const TemplateSpecializationType *TST
2808 = T->getAs<TemplateSpecializationType>()) {
2809 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2810 ExpectedTemplateParams = Template->getTemplateParameters();
2811 NeedNonemptyTemplateHeader = true;
2812 }
2813 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2814 // FIXME: We actually could/should check the template arguments here
2815 // against the corresponding template parameter list.
2816 NeedNonemptyTemplateHeader = false;
2817 }
2818
2819 // C++ [temp.expl.spec]p16:
2820 // In an explicit specialization declaration for a member of a class
2821 // template or a member template that ap- pears in namespace scope, the
2822 // member template and some of its enclosing class templates may remain
2823 // unspecialized, except that the declaration shall not explicitly
2824 // specialize a class member template if its en- closing class templates
2825 // are not explicitly specialized as well.
2826 if (ParamIdx < ParamLists.size()) {
2827 if (ParamLists[ParamIdx]->size() == 0) {
2828 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2829 false))
2830 return nullptr;
2831 } else
2832 SawNonEmptyTemplateParameterList = true;
2833 }
2834
2835 if (NeedEmptyTemplateHeader) {
2836 // If we're on the last of the types, and we need a 'template<>' header
2837 // here, then it's a member specialization.
2838 if (TypeIdx == NumTypes - 1)
2839 IsMemberSpecialization = true;
2840
2841 if (ParamIdx < ParamLists.size()) {
2842 if (ParamLists[ParamIdx]->size() > 0) {
2843 // The header has template parameters when it shouldn't. Complain.
2844 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2845 diag::err_template_param_list_matches_nontemplate)
2846 << T
2847 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2848 ParamLists[ParamIdx]->getRAngleLoc())
2849 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2850 Invalid = true;
2851 return nullptr;
2852 }
2853
2854 // Consume this template header.
2855 ++ParamIdx;
2856 continue;
2857 }
2858
2859 if (!IsFriend)
2860 if (DiagnoseMissingExplicitSpecialization(
2861 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2862 return nullptr;
2863
2864 continue;
2865 }
2866
2867 if (NeedNonemptyTemplateHeader) {
2868 // In friend declarations we can have template-ids which don't
2869 // depend on the corresponding template parameter lists. But
2870 // assume that empty parameter lists are supposed to match this
2871 // template-id.
2872 if (IsFriend && T->isDependentType()) {
2873 if (ParamIdx < ParamLists.size() &&
2874 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2875 ExpectedTemplateParams = nullptr;
2876 else
2877 continue;
2878 }
2879
2880 if (ParamIdx < ParamLists.size()) {
2881 // Check the template parameter list, if we can.
2882 if (ExpectedTemplateParams &&
2883 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2884 ExpectedTemplateParams,
2885 true, TPL_TemplateMatch))
2886 Invalid = true;
2887
2888 if (!Invalid &&
2889 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2890 TPC_ClassTemplateMember))
2891 Invalid = true;
2892
2893 ++ParamIdx;
2894 continue;
2895 }
2896
2897 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2898 << T
2899 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2900 Invalid = true;
2901 continue;
2902 }
2903 }
2904
2905 // If there were at least as many template-ids as there were template
2906 // parameter lists, then there are no template parameter lists remaining for
2907 // the declaration itself.
2908 if (ParamIdx >= ParamLists.size()) {
2909 if (TemplateId && !IsFriend) {
2910 // We don't have a template header for the declaration itself, but we
2911 // should.
2912 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2913 TemplateId->RAngleLoc));
2914
2915 // Fabricate an empty template parameter list for the invented header.
2916 return TemplateParameterList::Create(Context, SourceLocation(),
2917 SourceLocation(), None,
2918 SourceLocation(), nullptr);
2919 }
2920
2921 return nullptr;
2922 }
2923
2924 // If there were too many template parameter lists, complain about that now.
2925 if (ParamIdx < ParamLists.size() - 1) {
2926 bool HasAnyExplicitSpecHeader = false;
2927 bool AllExplicitSpecHeaders = true;
2928 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2929 if (ParamLists[I]->size() == 0)
2930 HasAnyExplicitSpecHeader = true;
2931 else
2932 AllExplicitSpecHeaders = false;
2933 }
2934
2935 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2936 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2937 : diag::err_template_spec_extra_headers)
2938 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2939 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2940
2941 // If there was a specialization somewhere, such that 'template<>' is
2942 // not required, and there were any 'template<>' headers, note where the
2943 // specialization occurred.
2944 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2945 Diag(ExplicitSpecLoc,
2946 diag::note_explicit_template_spec_does_not_need_header)
2947 << NestedTypes.back();
2948
2949 // We have a template parameter list with no corresponding scope, which
2950 // means that the resulting template declaration can't be instantiated
2951 // properly (we'll end up with dependent nodes when we shouldn't).
2952 if (!AllExplicitSpecHeaders)
2953 Invalid = true;
2954 }
2955
2956 // C++ [temp.expl.spec]p16:
2957 // In an explicit specialization declaration for a member of a class
2958 // template or a member template that ap- pears in namespace scope, the
2959 // member template and some of its enclosing class templates may remain
2960 // unspecialized, except that the declaration shall not explicitly
2961 // specialize a class member template if its en- closing class templates
2962 // are not explicitly specialized as well.
2963 if (ParamLists.back()->size() == 0 &&
2964 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2965 false))
2966 return nullptr;
2967
2968 // Return the last template parameter list, which corresponds to the
2969 // entity being declared.
2970 return ParamLists.back();
2971}
2972
2973void Sema::NoteAllFoundTemplates(TemplateName Name) {
2974 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2975 Diag(Template->getLocation(), diag::note_template_declared_here)
2976 << (isa<FunctionTemplateDecl>(Template)
2977 ? 0
2978 : isa<ClassTemplateDecl>(Template)
2979 ? 1
2980 : isa<VarTemplateDecl>(Template)
2981 ? 2
2982 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2983 << Template->getDeclName();
2984 return;
2985 }
2986
2987 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2988 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2989 IEnd = OST->end();
2990 I != IEnd; ++I)
2991 Diag((*I)->getLocation(), diag::note_template_declared_here)
2992 << 0 << (*I)->getDeclName();
2993
2994 return;
2995 }
2996}
2997
2998static QualType
2999checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3000 const SmallVectorImpl<TemplateArgument> &Converted,
3001 SourceLocation TemplateLoc,
3002 TemplateArgumentListInfo &TemplateArgs) {
3003 ASTContext &Context = SemaRef.getASTContext();
3004 switch (BTD->getBuiltinTemplateKind()) {
3005 case BTK__make_integer_seq: {
3006 // Specializations of __make_integer_seq<S, T, N> are treated like
3007 // S<T, 0, ..., N-1>.
3008
3009 // C++14 [inteseq.intseq]p1:
3010 // T shall be an integer type.
3011 if (!Converted[1].getAsType()->isIntegralType(Context)) {
3012 SemaRef.Diag(TemplateArgs[1].getLocation(),
3013 diag::err_integer_sequence_integral_element_type);
3014 return QualType();
3015 }
3016
3017 // C++14 [inteseq.make]p1:
3018 // If N is negative the program is ill-formed.
3019 TemplateArgument NumArgsArg = Converted[2];
3020 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3021 if (NumArgs < 0) {
3022 SemaRef.Diag(TemplateArgs[2].getLocation(),
3023 diag::err_integer_sequence_negative_length);
3024 return QualType();
3025 }
3026
3027 QualType ArgTy = NumArgsArg.getIntegralType();
3028 TemplateArgumentListInfo SyntheticTemplateArgs;
3029 // The type argument gets reused as the first template argument in the
3030 // synthetic template argument list.
3031 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3032 // Expand N into 0 ... N-1.
3033 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3034 I < NumArgs; ++I) {
3035 TemplateArgument TA(Context, I, ArgTy);
3036 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3037 TA, ArgTy, TemplateArgs[2].getLocation()));
3038 }
3039 // The first template argument will be reused as the template decl that
3040 // our synthetic template arguments will be applied to.
3041 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3042 TemplateLoc, SyntheticTemplateArgs);
3043 }
3044
3045 case BTK__type_pack_element:
3046 // Specializations of
3047 // __type_pack_element<Index, T_1, ..., T_N>
3048 // are treated like T_Index.
3049 assert(Converted.size() == 2 &&((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3050, __PRETTY_FUNCTION__))
3050 "__type_pack_element should be given an index and a parameter pack")((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3050, __PRETTY_FUNCTION__))
;
3051
3052 // If the Index is out of bounds, the program is ill-formed.
3053 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3054 llvm::APSInt Index = IndexArg.getAsIntegral();
3055 assert(Index >= 0 && "the index used with __type_pack_element should be of "((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3056, __PRETTY_FUNCTION__))
3056 "type std::size_t, and hence be non-negative")((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3056, __PRETTY_FUNCTION__))
;
3057 if (Index >= Ts.pack_size()) {
3058 SemaRef.Diag(TemplateArgs[0].getLocation(),
3059 diag::err_type_pack_element_out_of_bounds);
3060 return QualType();
3061 }
3062
3063 // We simply return the type at index `Index`.
3064 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3065 return Nth->getAsType();
3066 }
3067 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3067)
;
3068}
3069
3070/// Determine whether this alias template is "enable_if_t".
3071static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3072 return AliasTemplate->getName().equals("enable_if_t");
3073}
3074
3075/// Collect all of the separable terms in the given condition, which
3076/// might be a conjunction.
3077///
3078/// FIXME: The right answer is to convert the logical expression into
3079/// disjunctive normal form, so we can find the first failed term
3080/// within each possible clause.
3081static void collectConjunctionTerms(Expr *Clause,
3082 SmallVectorImpl<Expr *> &Terms) {
3083 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3084 if (BinOp->getOpcode() == BO_LAnd) {
3085 collectConjunctionTerms(BinOp->getLHS(), Terms);
3086 collectConjunctionTerms(BinOp->getRHS(), Terms);
3087 }
3088
3089 return;
3090 }
3091
3092 Terms.push_back(Clause);
3093}
3094
3095// The ranges-v3 library uses an odd pattern of a top-level "||" with
3096// a left-hand side that is value-dependent but never true. Identify
3097// the idiom and ignore that term.
3098static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3099 // Top-level '||'.
3100 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3101 if (!BinOp) return Cond;
3102
3103 if (BinOp->getOpcode() != BO_LOr) return Cond;
3104
3105 // With an inner '==' that has a literal on the right-hand side.
3106 Expr *LHS = BinOp->getLHS();
3107 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3108 if (!InnerBinOp) return Cond;
3109
3110 if (InnerBinOp->getOpcode() != BO_EQ ||
3111 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3112 return Cond;
3113
3114 // If the inner binary operation came from a macro expansion named
3115 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3116 // of the '||', which is the real, user-provided condition.
3117 SourceLocation Loc = InnerBinOp->getExprLoc();
3118 if (!Loc.isMacroID()) return Cond;
3119
3120 StringRef MacroName = PP.getImmediateMacroName(Loc);
3121 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3122 return BinOp->getRHS();
3123
3124 return Cond;
3125}
3126
3127namespace {
3128
3129// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3130// within failing boolean expression, such as substituting template parameters
3131// for actual types.
3132class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3133public:
3134 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3135 : Policy(P) {}
3136
3137 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3138 const auto *DR = dyn_cast<DeclRefExpr>(E);
3139 if (DR && DR->getQualifier()) {
3140 // If this is a qualified name, expand the template arguments in nested
3141 // qualifiers.
3142 DR->getQualifier()->print(OS, Policy, true);
3143 // Then print the decl itself.
3144 const ValueDecl *VD = DR->getDecl();
3145 OS << VD->getName();
3146 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3147 // This is a template variable, print the expanded template arguments.
3148 printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
3149 }
3150 return true;
3151 }
3152 return false;
3153 }
3154
3155private:
3156 const PrintingPolicy Policy;
3157};
3158
3159} // end anonymous namespace
3160
3161std::pair<Expr *, std::string>
3162Sema::findFailedBooleanCondition(Expr *Cond) {
3163 Cond = lookThroughRangesV3Condition(PP, Cond);
3164
3165 // Separate out all of the terms in a conjunction.
3166 SmallVector<Expr *, 4> Terms;
3167 collectConjunctionTerms(Cond, Terms);
3168
3169 // Determine which term failed.
3170 Expr *FailedCond = nullptr;
3171 for (Expr *Term : Terms) {
3172 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3173
3174 // Literals are uninteresting.
3175 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3176 isa<IntegerLiteral>(TermAsWritten))
3177 continue;
3178
3179 // The initialization of the parameter from the argument is
3180 // a constant-evaluated context.
3181 EnterExpressionEvaluationContext ConstantEvaluated(
3182 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3183
3184 bool Succeeded;
3185 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3186 !Succeeded) {
3187 FailedCond = TermAsWritten;
3188 break;
3189 }
3190 }
3191 if (!FailedCond)
3192 FailedCond = Cond->IgnoreParenImpCasts();
3193
3194 std::string Description;
3195 {
3196 llvm::raw_string_ostream Out(Description);
3197 PrintingPolicy Policy = getPrintingPolicy();
3198 Policy.PrintCanonicalTypes = true;
3199 FailedBooleanConditionPrinterHelper Helper(Policy);
3200 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3201 }
3202 return { FailedCond, Description };
3203}
3204
3205QualType Sema::CheckTemplateIdType(TemplateName Name,
3206 SourceLocation TemplateLoc,
3207 TemplateArgumentListInfo &TemplateArgs) {
3208 DependentTemplateName *DTN
3209 = Name.getUnderlying().getAsDependentTemplateName();
3210 if (DTN && DTN->isIdentifier())
3211 // When building a template-id where the template-name is dependent,
3212 // assume the template is a type template. Either our assumption is
3213 // correct, or the code is ill-formed and will be diagnosed when the
3214 // dependent name is substituted.
3215 return Context.getDependentTemplateSpecializationType(ETK_None,
3216 DTN->getQualifier(),
3217 DTN->getIdentifier(),
3218 TemplateArgs);
3219
3220 TemplateDecl *Template = Name.getAsTemplateDecl();
3221 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3222 isa<VarTemplateDecl>(Template)) {
3223 // We might have a substituted template template parameter pack. If so,
3224 // build a template specialization type for it.
3225 if (Name.getAsSubstTemplateTemplateParmPack())
3226 return Context.getTemplateSpecializationType(Name, TemplateArgs);
3227
3228 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3229 << Name;
3230 NoteAllFoundTemplates(Name);
3231 return QualType();
3232 }
3233
3234 // Check that the template argument list is well-formed for this
3235 // template.
3236 SmallVector<TemplateArgument, 4> Converted;
3237 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3238 false, Converted))
3239 return QualType();
3240
3241 QualType CanonType;
3242
3243 bool InstantiationDependent = false;
3244 if (TypeAliasTemplateDecl *AliasTemplate =
3245 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3246 // Find the canonical type for this type alias template specialization.
3247 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3248 if (Pattern->isInvalidDecl())
3249 return QualType();
3250
3251 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3252 Converted);
3253
3254 // Only substitute for the innermost template argument list.
3255 MultiLevelTemplateArgumentList TemplateArgLists;
3256 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3257 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
3258 for (unsigned I = 0; I < Depth; ++I)
3259 TemplateArgLists.addOuterTemplateArguments(None);
3260
3261 LocalInstantiationScope Scope(*this);
3262 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3263 if (Inst.isInvalid())
3264 return QualType();
3265
3266 CanonType = SubstType(Pattern->getUnderlyingType(),
3267 TemplateArgLists, AliasTemplate->getLocation(),
3268 AliasTemplate->getDeclName());
3269 if (CanonType.isNull()) {
3270 // If this was enable_if and we failed to find the nested type
3271 // within enable_if in a SFINAE context, dig out the specific
3272 // enable_if condition that failed and present that instead.
3273 if (isEnableIfAliasTemplate(AliasTemplate)) {
3274 if (auto DeductionInfo = isSFINAEContext()) {
3275 if (*DeductionInfo &&
3276 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3277 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3278 diag::err_typename_nested_not_found_enable_if &&
3279 TemplateArgs[0].getArgument().getKind()
3280 == TemplateArgument::Expression) {
3281 Expr *FailedCond;
3282 std::string FailedDescription;
3283 std::tie(FailedCond, FailedDescription) =
3284 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3285
3286 // Remove the old SFINAE diagnostic.
3287 PartialDiagnosticAt OldDiag =
3288 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3289 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3290
3291 // Add a new SFINAE diagnostic specifying which condition
3292 // failed.
3293 (*DeductionInfo)->addSFINAEDiagnostic(
3294 OldDiag.first,
3295 PDiag(diag::err_typename_nested_not_found_requirement)
3296 << FailedDescription
3297 << FailedCond->getSourceRange());
3298 }
3299 }
3300 }
3301
3302 return QualType();
3303 }
3304 } else if (Name.isDependent() ||
3305 TemplateSpecializationType::anyDependentTemplateArguments(
3306 TemplateArgs, InstantiationDependent)) {
3307 // This class template specialization is a dependent
3308 // type. Therefore, its canonical type is another class template
3309 // specialization type that contains all of the converted
3310 // arguments in canonical form. This ensures that, e.g., A<T> and
3311 // A<T, T> have identical types when A is declared as:
3312 //
3313 // template<typename T, typename U = T> struct A;
3314 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3315
3316 // This might work out to be a current instantiation, in which
3317 // case the canonical type needs to be the InjectedClassNameType.
3318 //
3319 // TODO: in theory this could be a simple hashtable lookup; most
3320 // changes to CurContext don't change the set of current
3321 // instantiations.
3322 if (isa<ClassTemplateDecl>(Template)) {
3323 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3324 // If we get out to a namespace, we're done.
3325 if (Ctx->isFileContext()) break;
3326
3327 // If this isn't a record, keep looking.
3328 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3329 if (!Record) continue;
3330
3331 // Look for one of the two cases with InjectedClassNameTypes
3332 // and check whether it's the same template.
3333 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3334 !Record->getDescribedClassTemplate())
3335 continue;
3336
3337 // Fetch the injected class name type and check whether its
3338 // injected type is equal to the type we just built.
3339 QualType ICNT = Context.getTypeDeclType(Record);
3340 QualType Injected = cast<InjectedClassNameType>(ICNT)
3341 ->getInjectedSpecializationType();
3342
3343 if (CanonType != Injected->getCanonicalTypeInternal())
3344 continue;
3345
3346 // If so, the canonical type of this TST is the injected
3347 // class name type of the record we just found.
3348 assert(ICNT.isCanonical())((ICNT.isCanonical()) ? static_cast<void> (0) : __assert_fail
("ICNT.isCanonical()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3348, __PRETTY_FUNCTION__))
;
3349 CanonType = ICNT;
3350 break;
3351 }
3352 }
3353 } else if (ClassTemplateDecl *ClassTemplate
3354 = dyn_cast<ClassTemplateDecl>(Template)) {
3355 // Find the class template specialization declaration that
3356 // corresponds to these arguments.
3357 void *InsertPos = nullptr;
3358 ClassTemplateSpecializationDecl *Decl
3359 = ClassTemplate->findSpecialization(Converted, InsertPos);
3360 if (!Decl) {
3361 // This is the first time we have referenced this class template
3362 // specialization. Create the canonical declaration and add it to
3363 // the set of specializations.
3364 Decl = ClassTemplateSpecializationDecl::Create(
3365 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3366 ClassTemplate->getDeclContext(),
3367 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3368 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3369 ClassTemplate->AddSpecialization(Decl, InsertPos);
3370 if (ClassTemplate->isOutOfLine())
3371 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3372 }
3373
3374 if (Decl->getSpecializationKind() == TSK_Undeclared) {
3375 MultiLevelTemplateArgumentList TemplateArgLists;
3376 TemplateArgLists.addOuterTemplateArguments(Converted);
3377 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3378 Decl);
3379 }
3380
3381 // Diagnose uses of this specialization.
3382 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3383
3384 CanonType = Context.getTypeDeclType(Decl);
3385 assert(isa<RecordType>(CanonType) &&((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3386, __PRETTY_FUNCTION__))
3386 "type of non-dependent specialization is not a RecordType")((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3386, __PRETTY_FUNCTION__))
;
3387 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3388 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3389 TemplateArgs);
3390 }
3391
3392 // Build the fully-sugared type for this class template
3393 // specialization, which refers back to the class template
3394 // specialization we created or found.
3395 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3396}
3397
3398void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3399 TemplateNameKind &TNK,
3400 SourceLocation NameLoc,
3401 IdentifierInfo *&II) {
3402 assert(TNK == TNK_Undeclared_template && "not an undeclared template name")((TNK == TNK_Undeclared_template && "not an undeclared template name"
) ? static_cast<void> (0) : __assert_fail ("TNK == TNK_Undeclared_template && \"not an undeclared template name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3402, __PRETTY_FUNCTION__))
;
3403
3404 TemplateName Name = ParsedName.get();
3405 auto *ATN = Name.getAsAssumedTemplateName();
3406 assert(ATN && "not an assumed template name")((ATN && "not an assumed template name") ? static_cast
<void> (0) : __assert_fail ("ATN && \"not an assumed template name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3406, __PRETTY_FUNCTION__))
;
3407 II = ATN->getDeclName().getAsIdentifierInfo();
3408
3409 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3410 // Resolved to a type template name.
3411 ParsedName = TemplateTy::make(Name);
3412 TNK = TNK_Type_template;
3413 }
3414}
3415
3416bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3417 SourceLocation NameLoc,
3418 bool Diagnose) {
3419 // We assumed this undeclared identifier to be an (ADL-only) function
3420 // template name, but it was used in a context where a type was required.
3421 // Try to typo-correct it now.
3422 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3423 assert(ATN && "not an assumed template name")((ATN && "not an assumed template name") ? static_cast
<void> (0) : __assert_fail ("ATN && \"not an assumed template name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3423, __PRETTY_FUNCTION__))
;
3424
3425 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3426 struct CandidateCallback : CorrectionCandidateCallback {
3427 bool ValidateCandidate(const TypoCorrection &TC) override {
3428 return TC.getCorrectionDecl() &&
3429 getAsTypeTemplateDecl(TC.getCorrectionDecl());
3430 }
3431 std::unique_ptr<CorrectionCandidateCallback> clone() override {
3432 return llvm::make_unique<CandidateCallback>(*this);
3433 }
3434 } FilterCCC;
3435
3436 TypoCorrection Corrected =
3437 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3438 FilterCCC, CTK_ErrorRecovery);
3439 if (Corrected && Corrected.getFoundDecl()) {
3440 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3441 << ATN->getDeclName());
3442 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3443 return false;
3444 }
3445
3446 if (Diagnose)
3447 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3448 return true;
3449}
3450
3451TypeResult Sema::ActOnTemplateIdType(
3452 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3453 TemplateTy TemplateD, IdentifierInfo *TemplateII,
3454 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3455 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3456 bool IsCtorOrDtorName, bool IsClassName) {
3457 if (SS.isInvalid())
3458 return true;
3459
3460 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3461 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3462
3463 // C++ [temp.res]p3:
3464 // A qualified-id that refers to a type and in which the
3465 // nested-name-specifier depends on a template-parameter (14.6.2)
3466 // shall be prefixed by the keyword typename to indicate that the
3467 // qualified-id denotes a type, forming an
3468 // elaborated-type-specifier (7.1.5.3).
3469 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3470 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3471 << SS.getScopeRep() << TemplateII->getName();
3472 // Recover as if 'typename' were specified.
3473 // FIXME: This is not quite correct recovery as we don't transform SS
3474 // into the corresponding dependent form (and we don't diagnose missing
3475 // 'template' keywords within SS as a result).
3476 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3477 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3478 TemplateArgsIn, RAngleLoc);
3479 }
3480
3481 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3482 // it's not actually allowed to be used as a type in most cases. Because
3483 // we annotate it before we know whether it's valid, we have to check for
3484 // this case here.
3485 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3486 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3487 Diag(TemplateIILoc,
3488 TemplateKWLoc.isInvalid()
3489 ? diag::err_out_of_line_qualified_id_type_names_constructor
3490 : diag::ext_out_of_line_qualified_id_type_names_constructor)
3491 << TemplateII << 0 /*injected-class-name used as template name*/
3492 << 1 /*if any keyword was present, it was 'template'*/;
3493 }
3494 }
3495
3496 TemplateName Template = TemplateD.get();
3497 if (Template.getAsAssumedTemplateName() &&
3498 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3499 return true;
3500
3501 // Translate the parser's template argument list in our AST format.
3502 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3503 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3504
3505 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3506 QualType T
3507 = Context.getDependentTemplateSpecializationType(ETK_None,
3508 DTN->getQualifier(),
3509 DTN->getIdentifier(),
3510 TemplateArgs);
3511 // Build type-source information.
3512 TypeLocBuilder TLB;
3513 DependentTemplateSpecializationTypeLoc SpecTL
3514 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3515 SpecTL.setElaboratedKeywordLoc(SourceLocation());
3516 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3517 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3518 SpecTL.setTemplateNameLoc(TemplateIILoc);
3519 SpecTL.setLAngleLoc(LAngleLoc);
3520 SpecTL.setRAngleLoc(RAngleLoc);
3521 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3522 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3523 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3524 }
3525
3526 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3527 if (Result.isNull())
3528 return true;
3529
3530 // Build type-source information.
3531 TypeLocBuilder TLB;
3532 TemplateSpecializationTypeLoc SpecTL
3533 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3534 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3535 SpecTL.setTemplateNameLoc(TemplateIILoc);
3536 SpecTL.setLAngleLoc(LAngleLoc);
3537 SpecTL.setRAngleLoc(RAngleLoc);
3538 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3539 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3540
3541 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3542 // constructor or destructor name (in such a case, the scope specifier
3543 // will be attached to the enclosing Decl or Expr node).
3544 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3545 // Create an elaborated-type-specifier containing the nested-name-specifier.
3546 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3547 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3548 ElabTL.setElaboratedKeywordLoc(SourceLocation());
3549 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3550 }
3551
3552 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3553}
3554
3555TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3556 TypeSpecifierType TagSpec,
3557 SourceLocation TagLoc,
3558 CXXScopeSpec &SS,
3559 SourceLocation TemplateKWLoc,
3560 TemplateTy TemplateD,
3561 SourceLocation TemplateLoc,
3562 SourceLocation LAngleLoc,
3563 ASTTemplateArgsPtr TemplateArgsIn,
3564 SourceLocation RAngleLoc) {
3565 TemplateName Template = TemplateD.get();
3566
3567 // Translate the parser's template argument list in our AST format.
3568 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3569 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3570
3571 // Determine the tag kind
3572 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3573 ElaboratedTypeKeyword Keyword
3574 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3575
3576 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3577 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3578 DTN->getQualifier(),
3579 DTN->getIdentifier(),
3580 TemplateArgs);
3581
3582 // Build type-source information.
3583 TypeLocBuilder TLB;
3584 DependentTemplateSpecializationTypeLoc SpecTL
3585 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3586 SpecTL.setElaboratedKeywordLoc(TagLoc);
3587 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3588 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3589 SpecTL.setTemplateNameLoc(TemplateLoc);
3590 SpecTL.setLAngleLoc(LAngleLoc);
3591 SpecTL.setRAngleLoc(RAngleLoc);
3592 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3593 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3594 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3595 }
3596
3597 if (TypeAliasTemplateDecl *TAT =
3598 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3599 // C++0x [dcl.type.elab]p2:
3600 // If the identifier resolves to a typedef-name or the simple-template-id
3601 // resolves to an alias template specialization, the
3602 // elaborated-type-specifier is ill-formed.
3603 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3604 << TAT << NTK_TypeAliasTemplate << TagKind;
3605 Diag(TAT->getLocation(), diag::note_declared_at);
3606 }
3607
3608 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3609 if (Result.isNull())
3610 return TypeResult(true);
3611
3612 // Check the tag kind
3613 if (const RecordType *RT = Result->getAs<RecordType>()) {
3614 RecordDecl *D = RT->getDecl();
3615
3616 IdentifierInfo *Id = D->getIdentifier();
3617 assert(Id && "templated class must have an identifier")((Id && "templated class must have an identifier") ? static_cast
<void> (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3617, __PRETTY_FUNCTION__))
;
3618
3619 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3620 TagLoc, Id)) {
3621 Diag(TagLoc, diag::err_use_with_wrong_tag)
3622 << Result
3623 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3624 Diag(D->getLocation(), diag::note_previous_use);
3625 }
3626 }
3627
3628 // Provide source-location information for the template specialization.
3629 TypeLocBuilder TLB;
3630 TemplateSpecializationTypeLoc SpecTL
3631 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3632 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3633 SpecTL.setTemplateNameLoc(TemplateLoc);
3634 SpecTL.setLAngleLoc(LAngleLoc);
3635 SpecTL.setRAngleLoc(RAngleLoc);
3636 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3637 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3638
3639 // Construct an elaborated type containing the nested-name-specifier (if any)
3640 // and tag keyword.
3641 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3642 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3643 ElabTL.setElaboratedKeywordLoc(TagLoc);
3644 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3645 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3646}
3647
3648static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3649 NamedDecl *PrevDecl,
3650 SourceLocation Loc,
3651 bool IsPartialSpecialization);
3652
3653static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3654
3655static bool isTemplateArgumentTemplateParameter(
3656 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3657 switch (Arg.getKind()) {
3658 case TemplateArgument::Null:
3659 case TemplateArgument::NullPtr:
3660 case TemplateArgument::Integral:
3661 case TemplateArgument::Declaration:
3662 case TemplateArgument::Pack:
3663 case TemplateArgument::TemplateExpansion:
3664 return false;
3665
3666 case TemplateArgument::Type: {
3667 QualType Type = Arg.getAsType();
3668 const TemplateTypeParmType *TPT =
3669 Arg.getAsType()->getAs<TemplateTypeParmType>();
3670 return TPT && !Type.hasQualifiers() &&
3671 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3672 }
3673
3674 case TemplateArgument::Expression: {
3675 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3676 if (!DRE || !DRE->getDecl())
3677 return false;
3678 const NonTypeTemplateParmDecl *NTTP =
3679 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3680 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3681 }
3682
3683 case TemplateArgument::Template:
3684 const TemplateTemplateParmDecl *TTP =
3685 dyn_cast_or_null<TemplateTemplateParmDecl>(
3686 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3687 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3688 }
3689 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3689)
;
3690}
3691
3692static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3693 ArrayRef<TemplateArgument> Args) {
3694 if (Params->size() != Args.size())
3695 return false;
3696
3697 unsigned Depth = Params->getDepth();
3698
3699 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3700 TemplateArgument Arg = Args[I];
3701
3702 // If the parameter is a pack expansion, the argument must be a pack
3703 // whose only element is a pack expansion.
3704 if (Params->getParam(I)->isParameterPack()) {
3705 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3706 !Arg.pack_begin()->isPackExpansion())
3707 return false;
3708 Arg = Arg.pack_begin()->getPackExpansionPattern();
3709 }
3710
3711 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3712 return false;
3713 }
3714
3715 return true;
3716}
3717
3718/// Convert the parser's template argument list representation into our form.
3719static TemplateArgumentListInfo
3720makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
3721 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
3722 TemplateId.RAngleLoc);
3723 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
3724 TemplateId.NumArgs);
3725 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
3726 return TemplateArgs;
3727}
3728
3729template<typename PartialSpecDecl>
3730static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3731 if (Partial->getDeclContext()->isDependentContext())
3732 return;
3733
3734 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3735 // for non-substitution-failure issues?
3736 TemplateDeductionInfo Info(Partial->getLocation());
3737 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3738 return;
3739
3740 auto *Template = Partial->getSpecializedTemplate();
3741 S.Diag(Partial->getLocation(),
3742 diag::ext_partial_spec_not_more_specialized_than_primary)
3743 << isa<VarTemplateDecl>(Template);
3744
3745 if (Info.hasSFINAEDiagnostic()) {
3746 PartialDiagnosticAt Diag = {SourceLocation(),
3747 PartialDiagnostic::NullDiagnostic()};
3748 Info.takeSFINAEDiagnostic(Diag);
3749 SmallString<128> SFINAEArgString;
3750 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3751 S.Diag(Diag.first,
3752 diag::note_partial_spec_not_more_specialized_than_primary)
3753 << SFINAEArgString;
3754 }
3755
3756 S.Diag(Template->getLocation(), diag::note_template_decl_here);
3757}
3758
3759static void
3760noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3761 const llvm::SmallBitVector &DeducibleParams) {
3762 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3763 if (!DeducibleParams[I]) {
3764 NamedDecl *Param = TemplateParams->getParam(I);
3765 if (Param->getDeclName())
3766 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3767 << Param->getDeclName();
3768 else
3769 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3770 << "(anonymous)";
3771 }
3772 }
3773}
3774
3775
3776template<typename PartialSpecDecl>
3777static void checkTemplatePartialSpecialization(Sema &S,
3778 PartialSpecDecl *Partial) {
3779 // C++1z [temp.class.spec]p8: (DR1495)
3780 // - The specialization shall be more specialized than the primary
3781 // template (14.5.5.2).
3782 checkMoreSpecializedThanPrimary(S, Partial);
3783
3784 // C++ [temp.class.spec]p8: (DR1315)
3785 // - Each template-parameter shall appear at least once in the
3786 // template-id outside a non-deduced context.
3787 // C++1z [temp.class.spec.match]p3 (P0127R2)
3788 // If the template arguments of a partial specialization cannot be
3789 // deduced because of the structure of its template-parameter-list
3790 // and the template-id, the program is ill-formed.
3791 auto *TemplateParams = Partial->getTemplateParameters();
3792 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3793 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3794 TemplateParams->getDepth(), DeducibleParams);
3795
3796 if (!DeducibleParams.all()) {
3797 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3798 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3799 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3800 << (NumNonDeducible > 1)
3801 << SourceRange(Partial->getLocation(),
3802 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3803 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3804 }
3805}
3806
3807void Sema::CheckTemplatePartialSpecialization(
3808 ClassTemplatePartialSpecializationDecl *Partial) {
3809 checkTemplatePartialSpecialization(*this, Partial);
3810}
3811
3812void Sema::CheckTemplatePartialSpecialization(
3813 VarTemplatePartialSpecializationDecl *Partial) {
3814 checkTemplatePartialSpecialization(*this, Partial);
3815}
3816
3817void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3818 // C++1z [temp.param]p11:
3819 // A template parameter of a deduction guide template that does not have a
3820 // default-argument shall be deducible from the parameter-type-list of the
3821 // deduction guide template.
3822 auto *TemplateParams = TD->getTemplateParameters();
3823 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3824 MarkDeducedTemplateParameters(TD, DeducibleParams);
3825 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3826 // A parameter pack is deducible (to an empty pack).
3827 auto *Param = TemplateParams->getParam(I);
3828 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3829 DeducibleParams[I] = true;
3830 }
3831
3832 if (!DeducibleParams.all()) {
3833 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3834 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3835 << (NumNonDeducible > 1);
3836 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3837 }
3838}
3839
3840DeclResult Sema::ActOnVarTemplateSpecialization(
3841 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
3842 TemplateParameterList *TemplateParams, StorageClass SC,
3843 bool IsPartialSpecialization) {
3844 // D must be variable template id.
3845 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&((D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3846, __PRETTY_FUNCTION__))
3846 "Variable template specialization is declared with a template it.")((D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3846, __PRETTY_FUNCTION__))
;
3847
3848 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3849 TemplateArgumentListInfo TemplateArgs =
3850 makeTemplateArgumentListInfo(*this, *TemplateId);
3851 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3852 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3853 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3854
3855 TemplateName Name = TemplateId->Template.get();
3856
3857 // The template-id must name a variable template.
3858 VarTemplateDecl *VarTemplate =
3859 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3860 if (!VarTemplate) {
3861 NamedDecl *FnTemplate;
3862 if (auto *OTS = Name.getAsOverloadedTemplate())
3863 FnTemplate = *OTS->begin();
3864 else
3865 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3866 if (FnTemplate)
3867 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3868 << FnTemplate->getDeclName();
3869 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3870 << IsPartialSpecialization;
3871 }
3872
3873 // Check for unexpanded parameter packs in any of the template arguments.
3874 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3875 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3876 UPPC_PartialSpecialization))
3877 return true;
3878
3879 // Check that the template argument list is well-formed for this
3880 // template.
3881 SmallVector<TemplateArgument, 4> Converted;
3882 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3883 false, Converted))
3884 return true;
3885
3886 // Find the variable template (partial) specialization declaration that
3887 // corresponds to these arguments.
3888 if (IsPartialSpecialization) {
3889 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3890 TemplateArgs.size(), Converted))
3891 return true;
3892
3893 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
3894 // also do them during instantiation.
3895 bool InstantiationDependent;
3896 if (!Name.isDependent() &&
3897 !TemplateSpecializationType::anyDependentTemplateArguments(
3898 TemplateArgs.arguments(),
3899 InstantiationDependent)) {
3900 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3901 << VarTemplate->getDeclName();
3902 IsPartialSpecialization = false;
3903 }
3904
3905 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
3906 Converted)) {
3907 // C++ [temp.class.spec]p9b3:
3908 //
3909 // -- The argument list of the specialization shall not be identical
3910 // to the implicit argument list of the primary template.
3911 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3912 << /*variable template*/ 1
3913 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
3914 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3915 // FIXME: Recover from this by treating the declaration as a redeclaration
3916 // of the primary template.
3917 return true;
3918 }
3919 }
3920
3921 void *InsertPos = nullptr;
3922 VarTemplateSpecializationDecl *PrevDecl = nullptr;
3923
3924 if (IsPartialSpecialization)
3925 // FIXME: Template parameter list matters too
3926 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
3927 else
3928 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
3929
3930 VarTemplateSpecializationDecl *Specialization = nullptr;
3931
3932 // Check whether we can declare a variable template specialization in
3933 // the current scope.
3934 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
3935 TemplateNameLoc,
3936 IsPartialSpecialization))
3937 return true;
3938
3939 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3940 // Since the only prior variable template specialization with these
3941 // arguments was referenced but not declared, reuse that
3942 // declaration node as our own, updating its source location and
3943 // the list of outer template parameters to reflect our new declaration.
3944 Specialization = PrevDecl;
3945 Specialization->setLocation(TemplateNameLoc);
3946 PrevDecl = nullptr;
3947 } else if (IsPartialSpecialization) {
3948 // Create a new class template partial specialization declaration node.
3949 VarTemplatePartialSpecializationDecl *PrevPartial =
3950 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
3951 VarTemplatePartialSpecializationDecl *Partial =
3952 VarTemplatePartialSpecializationDecl::Create(
3953 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
3954 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
3955 Converted, TemplateArgs);
3956
3957 if (!PrevPartial)
3958 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
3959 Specialization = Partial;
3960
3961 // If we are providing an explicit specialization of a member variable
3962 // template specialization, make a note of that.
3963 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3964 PrevPartial->setMemberSpecialization();
3965
3966 CheckTemplatePartialSpecialization(Partial);
3967 } else {
3968 // Create a new class template specialization declaration node for
3969 // this explicit specialization or friend declaration.
3970 Specialization = VarTemplateSpecializationDecl::Create(
3971 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
3972 VarTemplate, DI->getType(), DI, SC, Converted);
3973 Specialization->setTemplateArgsInfo(TemplateArgs);
3974
3975 if (!PrevDecl)
3976 VarTemplate->AddSpecialization(Specialization, InsertPos);
3977 }
3978
3979 // C++ [temp.expl.spec]p6:
3980 // If a template, a member template or the member of a class template is
3981 // explicitly specialized then that specialization shall be declared
3982 // before the first use of that specialization that would cause an implicit
3983 // instantiation to take place, in every translation unit in which such a
3984 // use occurs; no diagnostic is required.
3985 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3986 bool Okay = false;
3987 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
3988 // Is there any previous explicit specialization declaration?
3989 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3990 Okay = true;
3991 break;
3992 }
3993 }
3994
3995 if (!Okay) {
3996 SourceRange Range(TemplateNameLoc, RAngleLoc);
3997 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3998 << Name << Range;
3999
4000 Diag(PrevDecl->getPointOfInstantiation(),
4001 diag::note_instantiation_required_here)
4002 << (PrevDecl->getTemplateSpecializationKind() !=
4003 TSK_ImplicitInstantiation);
4004 return true;
4005 }
4006 }
4007
4008 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4009 Specialization->setLexicalDeclContext(CurContext);
4010
4011 // Add the specialization into its lexical context, so that it can
4012 // be seen when iterating through the list of declarations in that
4013 // context. However, specializations are not found by name lookup.
4014 CurContext->addDecl(Specialization);
4015
4016 // Note that this is an explicit specialization.
4017 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4018
4019 if (PrevDecl) {
4020 // Check that this isn't a redefinition of this specialization,
4021 // merging with previous declarations.
4022 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4023 forRedeclarationInCurContext());
4024 PrevSpec.addDecl(PrevDecl);
4025 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4026 } else if (Specialization->isStaticDataMember() &&
4027 Specialization->isOutOfLine()) {
4028 Specialization->setAccess(VarTemplate->getAccess());
4029 }
4030
4031 return Specialization;
4032}
4033
4034namespace {
4035/// A partial specialization whose template arguments have matched
4036/// a given template-id.
4037struct PartialSpecMatchResult {
4038 VarTemplatePartialSpecializationDecl *Partial;
4039 TemplateArgumentList *Args;
4040};
4041} // end anonymous namespace
4042
4043DeclResult
4044Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4045 SourceLocation TemplateNameLoc,
4046 const TemplateArgumentListInfo &TemplateArgs) {
4047 assert(Template && "A variable template id without template?")((Template && "A variable template id without template?"
) ? static_cast<void> (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4047, __PRETTY_FUNCTION__))
;
25
'?' condition is true
4048
4049 // Check that the template argument list is well-formed for this template.
4050 SmallVector<TemplateArgument, 4> Converted;
4051 if (CheckTemplateArgumentList(
26
Taking false branch
4052 Template, TemplateNameLoc,
4053 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4054 Converted))
4055 return true;
4056
4057 // Find the variable template specialization declaration that
4058 // corresponds to these arguments.
4059 void *InsertPos = nullptr;
4060 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
27
Assuming 'Spec' is null
28
Taking false branch
4061 Converted, InsertPos)) {
4062 checkSpecializationVisibility(TemplateNameLoc, Spec);
4063 // If we already have a variable template specialization, return it.
4064 return Spec;
4065 }
4066
4067 // This is the first time we have referenced this variable template
4068 // specialization. Create the canonical declaration and add it to
4069 // the set of specializations, based on the closest partial specialization
4070 // that it represents. That is,
4071 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4072 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4073 Converted);
4074 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4075 bool AmbiguousPartialSpec = false;
4076 typedef PartialSpecMatchResult MatchResult;
4077 SmallVector<MatchResult, 4> Matched;
4078 SourceLocation PointOfInstantiation = TemplateNameLoc;
4079 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4080 /*ForTakingAddress=*/false);
4081
4082 // 1. Attempt to find the closest partial specialization that this
4083 // specializes, if any.
4084 // If any of the template arguments is dependent, then this is probably
4085 // a placeholder for an incomplete declarative context; which must be
4086 // complete by instantiation time. Thus, do not search through the partial
4087 // specializations yet.
4088 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4089 // Perhaps better after unification of DeduceTemplateArguments() and
4090 // getMoreSpecializedPartialSpecialization().
4091 bool InstantiationDependent = false;
4092 if (!TemplateSpecializationType::anyDependentTemplateArguments(
29
Assuming the condition is false
30
Taking false branch
4093 TemplateArgs, InstantiationDependent)) {
4094
4095 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4096 Template->getPartialSpecializations(PartialSpecs);
4097
4098 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4099 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4100 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4101
4102 if (TemplateDeductionResult Result =
4103 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4104 // Store the failed-deduction information for use in diagnostics, later.
4105 // TODO: Actually use the failed-deduction info?
4106 FailedCandidates.addCandidate().set(
4107 DeclAccessPair::make(Template, AS_public), Partial,
4108 MakeDeductionFailureInfo(Context, Result, Info));
4109 (void)Result;
4110 } else {
4111 Matched.push_back(PartialSpecMatchResult());
4112 Matched.back().Partial = Partial;
4113 Matched.back().Args = Info.take();
4114 }
4115 }
4116
4117 if (Matched.size() >= 1) {
4118 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4119 if (Matched.size() == 1) {
4120 // -- If exactly one matching specialization is found, the
4121 // instantiation is generated from that specialization.
4122 // We don't need to do anything for this.
4123 } else {
4124 // -- If more than one matching specialization is found, the
4125 // partial order rules (14.5.4.2) are used to determine
4126 // whether one of the specializations is more specialized
4127 // than the others. If none of the specializations is more
4128 // specialized than all of the other matching
4129 // specializations, then the use of the variable template is
4130 // ambiguous and the program is ill-formed.
4131 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4132 PEnd = Matched.end();
4133 P != PEnd; ++P) {
4134 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4135 PointOfInstantiation) ==
4136 P->Partial)
4137 Best = P;
4138 }
4139
4140 // Determine if the best partial specialization is more specialized than
4141 // the others.
4142 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4143 PEnd = Matched.end();
4144 P != PEnd; ++P) {
4145 if (P != Best && getMoreSpecializedPartialSpecialization(
4146 P->Partial, Best->Partial,
4147 PointOfInstantiation) != Best->Partial) {
4148 AmbiguousPartialSpec = true;
4149 break;
4150 }
4151 }
4152 }
4153
4154 // Instantiate using the best variable template partial specialization.
4155 InstantiationPattern = Best->Partial;
4156 InstantiationArgs = Best->Args;
4157 } else {
4158 // -- If no match is found, the instantiation is generated
4159 // from the primary template.
4160 // InstantiationPattern = Template->getTemplatedDecl();
4161 }
4162 }
4163
4164 // 2. Create the canonical declaration.
4165 // Note that we do not instantiate a definition until we see an odr-use
4166 // in DoMarkVarDeclReferenced().
4167 // FIXME: LateAttrs et al.?
4168 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4169 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4170 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
4171 if (!Decl)
31
Assuming 'Decl' is non-null
32
Taking false branch
4172 return true;
4173
4174 if (AmbiguousPartialSpec) {
33
Taking false branch
4175 // Partial ordering did not produce a clear winner. Complain.
4176 Decl->setInvalidDecl();
4177 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4178 << Decl;
4179
4180 // Print the matching partial specializations.
4181 for (MatchResult P : Matched)
4182 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4183 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4184 *P.Args);
4185 return true;
4186 }
4187
4188 if (VarTemplatePartialSpecializationDecl *D =
34
Assuming 'D' is non-null
35
Taking true branch
4189 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4190 Decl->setInstantiationOf(D, InstantiationArgs);
36
Calling 'VarTemplateSpecializationDecl::setInstantiationOf'
4191
4192 checkSpecializationVisibility(TemplateNameLoc, Decl);
4193
4194 assert(Decl && "No variable template specialization?")((Decl && "No variable template specialization?") ? static_cast
<void> (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4194, __PRETTY_FUNCTION__))
;
4195 return Decl;
4196}
4197
4198ExprResult
4199Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4200 const DeclarationNameInfo &NameInfo,
4201 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4202 const TemplateArgumentListInfo *TemplateArgs) {
4203
4204 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4205 *TemplateArgs);
4206 if (Decl.isInvalid())
4207 return ExprError();
4208
4209 VarDecl *Var = cast<VarDecl>(Decl.get());
4210 if (!Var->getTemplateSpecializationKind())
4211 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4212 NameInfo.getLoc());
4213
4214 // Build an ordinary singleton decl ref.
4215 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4216 /*FoundD=*/nullptr, TemplateArgs);
4217}
4218
4219void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4220 SourceLocation Loc) {
4221 Diag(Loc, diag::err_template_missing_args)
4222 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4223 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4224 Diag(TD->getLocation(), diag::note_template_decl_here)
4225 << TD->getTemplateParameters()->getSourceRange();
4226 }
4227}
4228
4229ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4230 SourceLocation TemplateKWLoc,
4231 LookupResult &R,
4232 bool RequiresADL,
4233 const TemplateArgumentListInfo *TemplateArgs) {
4234 // FIXME: Can we do any checking at this point? I guess we could check the
4235 // template arguments that we have against the template name, if the template
4236 // name refers to a single template. That's not a terribly common case,
4237 // though.
4238 // foo<int> could identify a single function unambiguously
4239 // This approach does NOT work, since f<int>(1);
4240 // gets resolved prior to resorting to overload resolution
4241 // i.e., template<class T> void f(double);
4242 // vs template<class T, class U> void f(U);
4243
4244 // These should be filtered out by our callers.
4245 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")((!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4245, __PRETTY_FUNCTION__))
;
4246
4247 // Non-function templates require a template argument list.
4248 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4249 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4250 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4251 return ExprError();
4252 }
4253 }
4254
4255 auto AnyDependentArguments = [&]() -> bool {
4256 bool InstantiationDependent;
4257 return TemplateArgs &&
4258 TemplateSpecializationType::anyDependentTemplateArguments(
4259 *TemplateArgs, InstantiationDependent);
4260 };
4261
4262 // In C++1y, check variable template ids.
4263 if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) {
4264 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
4265 R.getAsSingle<VarTemplateDecl>(),
4266 TemplateKWLoc, TemplateArgs);
4267 }
4268
4269 // We don't want lookup warnings at this point.
4270 R.suppressDiagnostics();
4271
4272 UnresolvedLookupExpr *ULE
4273 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4274 SS.getWithLocInContext(Context),
4275 TemplateKWLoc,
4276 R.getLookupNameInfo(),
4277 RequiresADL, TemplateArgs,
4278 R.begin(), R.end());
4279
4280 return ULE;
4281}
4282
4283// We actually only call this from template instantiation.
4284ExprResult
4285Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4286 SourceLocation TemplateKWLoc,
4287 const DeclarationNameInfo &NameInfo,
4288 const TemplateArgumentListInfo *TemplateArgs) {
4289
4290 assert(TemplateArgs || TemplateKWLoc.isValid())((TemplateArgs || TemplateKWLoc.isValid()) ? static_cast<void
> (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4290, __PRETTY_FUNCTION__))
;
4291 DeclContext *DC;
4292 if (!(DC = computeDeclContext(SS, false)) ||
4293 DC->isDependentContext() ||
4294 RequireCompleteDeclContext(SS, DC))
4295 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4296
4297 bool MemberOfUnknownSpecialization;
4298 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4299 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4300 /*Entering*/false, MemberOfUnknownSpecialization,
4301 TemplateKWLoc))
4302 return ExprError();
4303
4304 if (R.isAmbiguous())
4305 return ExprError();
4306
4307 if (R.empty()) {
4308 Diag(NameInfo.getLoc(), diag::err_no_member)
4309 << NameInfo.getName() << DC << SS.getRange();
4310 return ExprError();
4311 }
4312
4313 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4314 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4315 << SS.getScopeRep()
4316 << NameInfo.getName().getAsString() << SS.getRange();
4317 Diag(Temp->getLocation(), diag::note_referenced_class_template);
4318 return ExprError();
4319 }
4320
4321 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4322}
4323
4324/// Form a dependent template name.
4325///
4326/// This action forms a dependent template name given the template
4327/// name and its (presumably dependent) scope specifier. For
4328/// example, given "MetaFun::template apply", the scope specifier \p
4329/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
4330/// of the "template" keyword, and "apply" is the \p Name.
4331TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
4332 CXXScopeSpec &SS,
4333 SourceLocation TemplateKWLoc,
4334 const UnqualifiedId &Name,
4335 ParsedType ObjectType,
4336 bool EnteringContext,
4337 TemplateTy &Result,
4338 bool AllowInjectedClassName) {
4339 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4340 Diag(TemplateKWLoc,
4341 getLangOpts().CPlusPlus11 ?
4342 diag::warn_cxx98_compat_template_outside_of_template :
4343 diag::ext_template_outside_of_template)
4344 << FixItHint::CreateRemoval(TemplateKWLoc);
4345
4346 DeclContext *LookupCtx = nullptr;
4347 if (SS.isSet())
4348 LookupCtx = computeDeclContext(SS, EnteringContext);
4349 if (!LookupCtx && ObjectType)
4350 LookupCtx = computeDeclContext(ObjectType.get());
4351 if (LookupCtx) {
4352 // C++0x [temp.names]p5:
4353 // If a name prefixed by the keyword template is not the name of
4354 // a template, the program is ill-formed. [Note: the keyword
4355 // template may not be applied to non-template members of class
4356 // templates. -end note ] [ Note: as is the case with the
4357 // typename prefix, the template prefix is allowed in cases
4358 // where it is not strictly necessary; i.e., when the
4359 // nested-name-specifier or the expression on the left of the ->
4360 // or . is not dependent on a template-parameter, or the use
4361 // does not appear in the scope of a template. -end note]
4362 //
4363 // Note: C++03 was more strict here, because it banned the use of
4364 // the "template" keyword prior to a template-name that was not a
4365 // dependent name. C++ DR468 relaxed this requirement (the
4366 // "template" keyword is now permitted). We follow the C++0x
4367 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4368 bool MemberOfUnknownSpecialization;
4369 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4370 ObjectType, EnteringContext, Result,
4371 MemberOfUnknownSpecialization);
4372 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) {
4373 // This is a dependent template. Handle it below.
4374 } else if (TNK == TNK_Non_template) {
4375 // Do the lookup again to determine if this is a "nothing found" case or
4376 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4377 // need to do this.
4378 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4379 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4380 LookupOrdinaryName);
4381 bool MOUS;
4382 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext,
4383 MOUS, TemplateKWLoc) && !R.isAmbiguous())
4384 Diag(Name.getBeginLoc(), diag::err_no_member)
4385 << DNI.getName() << LookupCtx << SS.getRange();
4386 return TNK_Non_template;
4387 } else {
4388 // We found something; return it.
4389 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
4390 if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
4391 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4392 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4393 // C++14 [class.qual]p2:
4394 // In a lookup in which function names are not ignored and the
4395 // nested-name-specifier nominates a class C, if the name specified
4396 // [...] is the injected-class-name of C, [...] the name is instead
4397 // considered to name the constructor
4398 //
4399 // We don't get here if naming the constructor would be valid, so we
4400 // just reject immediately and recover by treating the
4401 // injected-class-name as naming the template.
4402 Diag(Name.getBeginLoc(),
4403 diag::ext_out_of_line_qualified_id_type_names_constructor)
4404 << Name.Identifier
4405 << 0 /*injected-class-name used as template name*/
4406 << 1 /*'template' keyword was used*/;
4407 }
4408 return TNK;
4409 }
4410 }
4411
4412 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4413
4414 switch (Name.getKind()) {
4415 case UnqualifiedIdKind::IK_Identifier:
4416 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4417 Name.Identifier));
4418 return TNK_Dependent_template_name;
4419
4420 case UnqualifiedIdKind::IK_OperatorFunctionId:
4421 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4422 Name.OperatorFunctionId.Operator));
4423 return TNK_Function_template;
4424
4425 case UnqualifiedIdKind::IK_LiteralOperatorId:
4426 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4426)
;
4427
4428 default:
4429 break;
4430 }
4431
4432 Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template)
4433 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4434 << TemplateKWLoc;
4435 return TNK_Non_template;
4436}
4437
4438bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4439 TemplateArgumentLoc &AL,
4440 SmallVectorImpl<TemplateArgument> &Converted) {
4441 const TemplateArgument &Arg = AL.getArgument();
4442 QualType ArgType;
4443 TypeSourceInfo *TSI = nullptr;
4444
4445 // Check template type parameter.
4446 switch(Arg.getKind()) {
4447 case TemplateArgument::Type:
4448 // C++ [temp.arg.type]p1:
4449 // A template-argument for a template-parameter which is a
4450 // type shall be a type-id.
4451 ArgType = Arg.getAsType();
4452 TSI = AL.getTypeSourceInfo();
4453 break;
4454 case TemplateArgument::Template:
4455 case TemplateArgument::TemplateExpansion: {
4456 // We have a template type parameter but the template argument
4457 // is a template without any arguments.
4458 SourceRange SR = AL.getSourceRange();
4459 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4460 diagnoseMissingTemplateArguments(Name, SR.getEnd());
4461 return true;
4462 }
4463 case TemplateArgument::Expression: {
4464 // We have a template type parameter but the template argument is an
4465 // expression; see if maybe it is missing the "typename" keyword.
4466 CXXScopeSpec SS;
4467 DeclarationNameInfo NameInfo;
4468
4469 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
4470 SS.Adopt(ArgExpr->getQualifierLoc());
4471 NameInfo = ArgExpr->getNameInfo();
4472 } else if (DependentScopeDeclRefExpr *ArgExpr =
4473 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4474 SS.Adopt(ArgExpr->getQualifierLoc());
4475 NameInfo = ArgExpr->getNameInfo();
4476 } else if (CXXDependentScopeMemberExpr *ArgExpr =
4477 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4478 if (ArgExpr->isImplicitAccess()) {
4479 SS.Adopt(ArgExpr->getQualifierLoc());
4480 NameInfo = ArgExpr->getMemberNameInfo();
4481 }
4482 }
4483
4484 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4485 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4486 LookupParsedName(Result, CurScope, &SS);
4487
4488 if (Result.getAsSingle<TypeDecl>() ||
4489 Result.getResultKind() ==
4490 LookupResult::NotFoundInCurrentInstantiation) {
4491 // Suggest that the user add 'typename' before the NNS.
4492 SourceLocation Loc = AL.getSourceRange().getBegin();
4493 Diag(Loc, getLangOpts().MSVCCompat
4494 ? diag::ext_ms_template_type_arg_missing_typename
4495 : diag::err_template_arg_must_be_type_suggest)
4496 << FixItHint::CreateInsertion(Loc, "typename ");
4497 Diag(Param->getLocation(), diag::note_template_param_here);
4498
4499 // Recover by synthesizing a type using the location information that we
4500 // already have.
4501 ArgType =
4502 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4503 TypeLocBuilder TLB;
4504 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4505 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4506 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4507 TL.setNameLoc(NameInfo.getLoc());
4508 TSI = TLB.getTypeSourceInfo(Context, ArgType);
4509
4510 // Overwrite our input TemplateArgumentLoc so that we can recover
4511 // properly.
4512 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4513 TemplateArgumentLocInfo(TSI));
4514
4515 break;
4516 }
4517 }
4518 // fallthrough
4519 LLVM_FALLTHROUGH[[clang::fallthrough]];
4520 }
4521 default: {
4522 // We have a template type parameter but the template argument
4523 // is not a type.
4524 SourceRange SR = AL.getSourceRange();
4525 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4526 Diag(Param->getLocation(), diag::note_template_param_here);
4527
4528 return true;
4529 }
4530 }
4531
4532 if (CheckTemplateArgument(Param, TSI))
4533 return true;
4534
4535 // Add the converted template type argument.
4536 ArgType = Context.getCanonicalType(ArgType);
4537
4538 // Objective-C ARC:
4539 // If an explicitly-specified template argument type is a lifetime type
4540 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4541 if (getLangOpts().ObjCAutoRefCount &&
4542 ArgType->isObjCLifetimeType() &&
4543 !ArgType.getObjCLifetime()) {
4544 Qualifiers Qs;
4545 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4546 ArgType = Context.getQualifiedType(ArgType, Qs);
4547 }
4548
4549 Converted.push_back(TemplateArgument(ArgType));
4550 return false;
4551}
4552
4553/// Substitute template arguments into the default template argument for
4554/// the given template type parameter.
4555///
4556/// \param SemaRef the semantic analysis object for which we are performing
4557/// the substitution.
4558///
4559/// \param Template the template that we are synthesizing template arguments
4560/// for.
4561///
4562/// \param TemplateLoc the location of the template name that started the
4563/// template-id we are checking.
4564///
4565/// \param RAngleLoc the location of the right angle bracket ('>') that
4566/// terminates the template-id.
4567///
4568/// \param Param the template template parameter whose default we are
4569/// substituting into.
4570///
4571/// \param Converted the list of template arguments provided for template
4572/// parameters that precede \p Param in the template parameter list.
4573/// \returns the substituted template argument, or NULL if an error occurred.
4574static TypeSourceInfo *
4575SubstDefaultTemplateArgument(Sema &SemaRef,
4576 TemplateDecl *Template,
4577 SourceLocation TemplateLoc,
4578 SourceLocation RAngleLoc,
4579 TemplateTypeParmDecl *Param,
4580 SmallVectorImpl<TemplateArgument> &Converted) {
4581 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4582
4583 // If the argument type is dependent, instantiate it now based
4584 // on the previously-computed template arguments.
4585 if (ArgType->getType()->isInstantiationDependentType()) {
4586 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4587 Param, Template, Converted,
4588 SourceRange(TemplateLoc, RAngleLoc));
4589 if (Inst.isInvalid())
4590 return nullptr;
4591
4592 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4593
4594 // Only substitute for the innermost template argument list.
4595 MultiLevelTemplateArgumentList TemplateArgLists;
4596 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4597 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4598 TemplateArgLists.addOuterTemplateArguments(None);
4599
4600 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4601 ArgType =
4602 SemaRef.SubstType(ArgType, TemplateArgLists,
4603 Param->getDefaultArgumentLoc(), Param->getDeclName());
4604 }
4605
4606 return ArgType;
4607}
4608
4609/// Substitute template arguments into the default template argument for
4610/// the given non-type template parameter.
4611///
4612/// \param SemaRef the semantic analysis object for which we are performing
4613/// the substitution.
4614///
4615/// \param Template the template that we are synthesizing template arguments
4616/// for.
4617///
4618/// \param TemplateLoc the location of the template name that started the
4619/// template-id we are checking.
4620///
4621/// \param RAngleLoc the location of the right angle bracket ('>') that
4622/// terminates the template-id.
4623///
4624/// \param Param the non-type template parameter whose default we are
4625/// substituting into.
4626///
4627/// \param Converted the list of template arguments provided for template
4628/// parameters that precede \p Param in the template parameter list.
4629///
4630/// \returns the substituted template argument, or NULL if an error occurred.
4631static ExprResult
4632SubstDefaultTemplateArgument(Sema &SemaRef,
4633 TemplateDecl *Template,
4634 SourceLocation TemplateLoc,
4635 SourceLocation RAngleLoc,
4636 NonTypeTemplateParmDecl *Param,
4637 SmallVectorImpl<TemplateArgument> &Converted) {
4638 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4639 Param, Template, Converted,
4640 SourceRange(TemplateLoc, RAngleLoc));
4641 if (Inst.isInvalid())
4642 return ExprError();
4643
4644 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4645
4646 // Only substitute for the innermost template argument list.
4647 MultiLevelTemplateArgumentList TemplateArgLists;
4648 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4649 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4650 TemplateArgLists.addOuterTemplateArguments(None);
4651
4652 EnterExpressionEvaluationContext ConstantEvaluated(
4653 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4654 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4655}
4656
4657/// Substitute template arguments into the default template argument for
4658/// the given template template parameter.
4659///
4660/// \param SemaRef the semantic analysis object for which we are performing
4661/// the substitution.
4662///
4663/// \param Template the template that we are synthesizing template arguments
4664/// for.
4665///
4666/// \param TemplateLoc the location of the template name that started the
4667/// template-id we are checking.
4668///
4669/// \param RAngleLoc the location of the right angle bracket ('>') that
4670/// terminates the template-id.
4671///
4672/// \param Param the template template parameter whose default we are
4673/// substituting into.
4674///
4675/// \param Converted the list of template arguments provided for template
4676/// parameters that precede \p Param in the template parameter list.
4677///
4678/// \param QualifierLoc Will be set to the nested-name-specifier (with
4679/// source-location information) that precedes the template name.
4680///
4681/// \returns the substituted template argument, or NULL if an error occurred.
4682static TemplateName
4683SubstDefaultTemplateArgument(Sema &SemaRef,
4684 TemplateDecl *Template,
4685 SourceLocation TemplateLoc,
4686 SourceLocation RAngleLoc,
4687 TemplateTemplateParmDecl *Param,
4688 SmallVectorImpl<TemplateArgument> &Converted,
4689 NestedNameSpecifierLoc &QualifierLoc) {
4690 Sema::InstantiatingTemplate Inst(
4691 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4692 SourceRange(TemplateLoc, RAngleLoc));
4693 if (Inst.isInvalid())
4694 return TemplateName();
4695
4696 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4697
4698 // Only substitute for the innermost template argument list.
4699 MultiLevelTemplateArgumentList TemplateArgLists;
4700 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4701 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4702 TemplateArgLists.addOuterTemplateArguments(None);
4703
4704 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4705 // Substitute into the nested-name-specifier first,
4706 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4707 if (QualifierLoc) {
4708 QualifierLoc =
4709 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4710 if (!QualifierLoc)
4711 return TemplateName();
4712 }
4713
4714 return SemaRef.SubstTemplateName(
4715 QualifierLoc,
4716 Param->getDefaultArgument().getArgument().getAsTemplate(),
4717 Param->getDefaultArgument().getTemplateNameLoc(),
4718 TemplateArgLists);
4719}
4720
4721/// If the given template parameter has a default template
4722/// argument, substitute into that default template argument and
4723/// return the corresponding template argument.
4724TemplateArgumentLoc
4725Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
4726 SourceLocation TemplateLoc,
4727 SourceLocation RAngleLoc,
4728 Decl *Param,
4729 SmallVectorImpl<TemplateArgument>
4730 &Converted,
4731 bool &HasDefaultArg) {
4732 HasDefaultArg = false;
4733
4734 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4735 if (!hasVisibleDefaultArgument(TypeParm))
4736 return TemplateArgumentLoc();
4737
4738 HasDefaultArg = true;
4739 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
4740 TemplateLoc,
4741 RAngleLoc,
4742 TypeParm,
4743 Converted);
4744 if (DI)
4745 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4746
4747 return TemplateArgumentLoc();
4748 }
4749
4750 if (NonTypeTemplateParmDecl *NonTypeParm
4751 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4752 if (!hasVisibleDefaultArgument(NonTypeParm))
4753 return TemplateArgumentLoc();
4754
4755 HasDefaultArg = true;
4756 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
4757 TemplateLoc,
4758 RAngleLoc,
4759 NonTypeParm,
4760 Converted);
4761 if (Arg.isInvalid())
4762 return TemplateArgumentLoc();
4763
4764 Expr *ArgE = Arg.getAs<Expr>();
4765 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
4766 }
4767
4768 TemplateTemplateParmDecl *TempTempParm
4769 = cast<TemplateTemplateParmDecl>(Param);
4770 if (!hasVisibleDefaultArgument(TempTempParm))
4771 return TemplateArgumentLoc();
4772
4773 HasDefaultArg = true;
4774 NestedNameSpecifierLoc QualifierLoc;
4775 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
4776 TemplateLoc,
4777 RAngleLoc,
4778 TempTempParm,
4779 Converted,
4780 QualifierLoc);
4781 if (TName.isNull())
4782 return TemplateArgumentLoc();
4783
4784 return TemplateArgumentLoc(TemplateArgument(TName),
4785 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4786 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4787}
4788
4789/// Convert a template-argument that we parsed as a type into a template, if
4790/// possible. C++ permits injected-class-names to perform dual service as
4791/// template template arguments and as template type arguments.
4792static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
4793 // Extract and step over any surrounding nested-name-specifier.
4794 NestedNameSpecifierLoc QualLoc;
4795 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4796 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
4797 return TemplateArgumentLoc();
4798
4799 QualLoc = ETLoc.getQualifierLoc();
4800 TLoc = ETLoc.getNamedTypeLoc();
4801 }
4802
4803 // If this type was written as an injected-class-name, it can be used as a
4804 // template template argument.
4805 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4806 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
4807 QualLoc, InjLoc.getNameLoc());
4808
4809 // If this type was written as an injected-class-name, it may have been
4810 // converted to a RecordType during instantiation. If the RecordType is
4811 // *not* wrapped in a TemplateSpecializationType and denotes a class
4812 // template specialization, it must have come from an injected-class-name.
4813 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4814 if (auto *CTSD =
4815 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4816 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
4817 QualLoc, RecLoc.getNameLoc());
4818
4819 return TemplateArgumentLoc();
4820}
4821
4822/// Check that the given template argument corresponds to the given
4823/// template parameter.
4824///
4825/// \param Param The template parameter against which the argument will be
4826/// checked.
4827///
4828/// \param Arg The template argument, which may be updated due to conversions.
4829///
4830/// \param Template The template in which the template argument resides.
4831///
4832/// \param TemplateLoc The location of the template name for the template
4833/// whose argument list we're matching.
4834///
4835/// \param RAngleLoc The location of the right angle bracket ('>') that closes
4836/// the template argument list.
4837///
4838/// \param ArgumentPackIndex The index into the argument pack where this
4839/// argument will be placed. Only valid if the parameter is a parameter pack.
4840///
4841/// \param Converted The checked, converted argument will be added to the
4842/// end of this small vector.
4843///
4844/// \param CTAK Describes how we arrived at this particular template argument:
4845/// explicitly written, deduced, etc.
4846///
4847/// \returns true on error, false otherwise.
4848bool Sema::CheckTemplateArgument(NamedDecl *Param,
4849 TemplateArgumentLoc &Arg,
4850 NamedDecl *Template,
4851 SourceLocation TemplateLoc,
4852 SourceLocation RAngleLoc,
4853 unsigned ArgumentPackIndex,
4854 SmallVectorImpl<TemplateArgument> &Converted,
4855 CheckTemplateArgumentKind CTAK) {
4856 // Check template type parameters.
4857 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4858 return CheckTemplateTypeArgument(TTP, Arg, Converted);
4859
4860 // Check non-type template parameters.
4861 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4862 // Do substitution on the type of the non-type template parameter
4863 // with the template arguments we've seen thus far. But if the
4864 // template has a dependent context then we cannot substitute yet.
4865 QualType NTTPType = NTTP->getType();
4866 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
4867 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
4868
4869 // FIXME: Do we need to substitute into parameters here if they're
4870 // instantiation-dependent but not dependent?
4871 if (NTTPType->isDependentType() &&
4872 !isa<TemplateTemplateParmDecl>(Template) &&
4873 !Template->getDeclContext()->isDependentContext()) {
4874 // Do substitution on the type of the non-type template parameter.
4875 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4876 NTTP, Converted,
4877 SourceRange(TemplateLoc, RAngleLoc));
4878 if (Inst.isInvalid())
4879 return true;
4880
4881 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
4882 Converted);
4883 NTTPType = SubstType(NTTPType,
4884 MultiLevelTemplateArgumentList(TemplateArgs),
4885 NTTP->getLocation(),
4886 NTTP->getDeclName());
4887 // If that worked, check the non-type template parameter type
4888 // for validity.
4889 if (!NTTPType.isNull())
4890 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
4891 NTTP->getLocation());
4892 if (NTTPType.isNull())
4893 return true;
4894 }
4895
4896 switch (Arg.getArgument().getKind()) {
4897 case TemplateArgument::Null:
4898 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4898)
;
4899
4900 case TemplateArgument::Expression: {
4901 TemplateArgument Result;
4902 unsigned CurSFINAEErrors = NumSFINAEErrors;
4903 ExprResult Res =
4904 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
4905 Result, CTAK);
4906 if (Res.isInvalid())
4907 return true;
4908 // If the current template argument causes an error, give up now.
4909 if (CurSFINAEErrors < NumSFINAEErrors)
4910 return true;
4911
4912 // If the resulting expression is new, then use it in place of the
4913 // old expression in the template argument.
4914 if (Res.get() != Arg.getArgument().getAsExpr()) {
4915 TemplateArgument TA(Res.get());
4916 Arg = TemplateArgumentLoc(TA, Res.get());
4917 }
4918
4919 Converted.push_back(Result);
4920 break;
4921 }
4922
4923 case TemplateArgument::Declaration:
4924 case TemplateArgument::Integral:
4925 case TemplateArgument::NullPtr:
4926 // We've already checked this template argument, so just copy
4927 // it to the list of converted arguments.
4928 Converted.push_back(Arg.getArgument());
4929 break;
4930
4931 case TemplateArgument::Template:
4932 case TemplateArgument::TemplateExpansion:
4933 // We were given a template template argument. It may not be ill-formed;
4934 // see below.
4935 if (DependentTemplateName *DTN
4936 = Arg.getArgument().getAsTemplateOrTemplatePattern()
4937 .getAsDependentTemplateName()) {
4938 // We have a template argument such as \c T::template X, which we
4939 // parsed as a template template argument. However, since we now
4940 // know that we need a non-type template argument, convert this
4941 // template name into an expression.
4942
4943 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
4944 Arg.getTemplateNameLoc());
4945
4946 CXXScopeSpec SS;
4947 SS.Adopt(Arg.getTemplateQualifierLoc());
4948 // FIXME: the template-template arg was a DependentTemplateName,
4949 // so it was provided with a template keyword. However, its source
4950 // location is not stored in the template argument structure.
4951 SourceLocation TemplateKWLoc;
4952 ExprResult E = DependentScopeDeclRefExpr::Create(
4953 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
4954 nullptr);
4955
4956 // If we parsed the template argument as a pack expansion, create a
4957 // pack expansion expression.
4958 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
4959 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
4960 if (E.isInvalid())
4961 return true;
4962 }
4963
4964 TemplateArgument Result;
4965 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
4966 if (E.isInvalid())
4967 return true;
4968
4969 Converted.push_back(Result);
4970 break;
4971 }
4972
4973 // We have a template argument that actually does refer to a class
4974 // template, alias template, or template template parameter, and
4975 // therefore cannot be a non-type template argument.
4976 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
4977 << Arg.getSourceRange();
4978
4979 Diag(Param->getLocation(), diag::note_template_param_here);
4980 return true;
4981
4982 case TemplateArgument::Type: {
4983 // We have a non-type template parameter but the template
4984 // argument is a type.
4985
4986 // C++ [temp.arg]p2:
4987 // In a template-argument, an ambiguity between a type-id and
4988 // an expression is resolved to a type-id, regardless of the
4989 // form of the corresponding template-parameter.
4990 //
4991 // We warn specifically about this case, since it can be rather
4992 // confusing for users.
4993 QualType T = Arg.getArgument().getAsType();
4994 SourceRange SR = Arg.getSourceRange();
4995 if (T->isFunctionType())
4996 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
4997 else
4998 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
4999 Diag(Param->getLocation(), diag::note_template_param_here);
5000 return true;
5001 }
5002
5003 case TemplateArgument::Pack:
5004 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5004)
;
5005 }
5006
5007 return false;
5008 }
5009
5010
5011 // Check template template parameters.
5012 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5013
5014 TemplateParameterList *Params = TempParm->getTemplateParameters();
5015 if (TempParm->isExpandedParameterPack())
5016 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5017
5018 // Substitute into the template parameter list of the template
5019 // template parameter, since previously-supplied template arguments
5020 // may appear within the template template parameter.
5021 //
5022 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5023 {
5024 // Set up a template instantiation context.
5025 LocalInstantiationScope Scope(*this);
5026 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5027 TempParm, Converted,
5028 SourceRange(TemplateLoc, RAngleLoc));
5029 if (Inst.isInvalid())
5030 return true;
5031
5032 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5033 Params = SubstTemplateParams(Params, CurContext,
5034 MultiLevelTemplateArgumentList(TemplateArgs));
5035 if (!Params)
5036 return true;
5037 }
5038
5039 // C++1z [temp.local]p1: (DR1004)
5040 // When [the injected-class-name] is used [...] as a template-argument for
5041 // a template template-parameter [...] it refers to the class template
5042 // itself.
5043 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5044 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5045 Arg.getTypeSourceInfo()->getTypeLoc());
5046 if (!ConvertedArg.getArgument().isNull())
5047 Arg = ConvertedArg;
5048 }
5049
5050 switch (Arg.getArgument().getKind()) {
5051 case TemplateArgument::Null:
5052 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5052)
;
5053
5054 case TemplateArgument::Template:
5055 case TemplateArgument::TemplateExpansion:
5056 if (CheckTemplateTemplateArgument(Params, Arg))
5057 return true;
5058
5059 Converted.push_back(Arg.getArgument());
5060 break;
5061
5062 case TemplateArgument::Expression:
5063 case TemplateArgument::Type:
5064 // We have a template template parameter but the template
5065 // argument does not refer to a template.
5066 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5067 << getLangOpts().CPlusPlus11;
5068 return true;
5069
5070 case TemplateArgument::Declaration:
5071 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5071)
;
5072 case TemplateArgument::Integral:
5073 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5073)
;
5074 case TemplateArgument::NullPtr:
5075 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5075)
;
5076
5077 case TemplateArgument::Pack:
5078 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5078)
;
5079 }
5080
5081 return false;
5082}
5083
5084/// Check whether the template parameter is a pack expansion, and if so,
5085/// determine the number of parameters produced by that expansion. For instance:
5086///
5087/// \code
5088/// template<typename ...Ts> struct A {
5089/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
5090/// };
5091/// \endcode
5092///
5093/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
5094/// is not a pack expansion, so returns an empty Optional.
5095static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
5096 if (NonTypeTemplateParmDecl *NTTP
5097 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5098 if (NTTP->isExpandedParameterPack())
5099 return NTTP->getNumExpansionTypes();
5100 }
5101
5102 if (TemplateTemplateParmDecl *TTP
5103 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
5104 if (TTP->isExpandedParameterPack())
5105 return TTP->getNumExpansionTemplateParameters();
5106 }
5107
5108 return None;
5109}
5110
5111/// Diagnose a missing template argument.
5112template<typename TemplateParmDecl>
5113static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5114 TemplateDecl *TD,
5115 const TemplateParmDecl *D,
5116 TemplateArgumentListInfo &Args) {
5117 // Dig out the most recent declaration of the template parameter; there may be
5118 // declarations of the template that are more recent than TD.
5119 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5120 ->getTemplateParameters()
5121 ->getParam(D->getIndex()));
5122
5123 // If there's a default argument that's not visible, diagnose that we're
5124 // missing a module import.
5125 llvm::SmallVector<Module*, 8> Modules;
5126 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5127 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5128 D->getDefaultArgumentLoc(), Modules,
5129 Sema::MissingImportKind::DefaultArgument,
5130 /*Recover*/true);
5131 return true;
5132 }
5133
5134 // FIXME: If there's a more recent default argument that *is* visible,
5135 // diagnose that it was declared too late.
5136
5137 TemplateParameterList *Params = TD->getTemplateParameters();
5138
5139 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5140 << /*not enough args*/0
5141 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5142 << TD;
5143 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5144 << Params->getSourceRange();
5145 return true;
5146}
5147
5148/// Check that the given template argument list is well-formed
5149/// for specializing the given template.
5150bool Sema::CheckTemplateArgumentList(
5151 TemplateDecl *Template, SourceLocation TemplateLoc,
5152 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5153 SmallVectorImpl<TemplateArgument> &Converted,
5154 bool UpdateArgsWithConversions) {
5155 // Make a copy of the template arguments for processing. Only make the
5156 // changes at the end when successful in matching the arguments to the
5157 // template.
5158 TemplateArgumentListInfo NewArgs = TemplateArgs;
5159
5160 // Make sure we get the template parameter list from the most
5161 // recentdeclaration, since that is the only one that has is guaranteed to
5162 // have all the default template argument information.
5163 TemplateParameterList *Params =
5164 cast<TemplateDecl>(Template->getMostRecentDecl())
5165 ->getTemplateParameters();
5166
5167 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5168
5169 // C++ [temp.arg]p1:
5170 // [...] The type and form of each template-argument specified in
5171 // a template-id shall match the type and form specified for the
5172 // corresponding parameter declared by the template in its
5173 // template-parameter-list.
5174 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5175 SmallVector<TemplateArgument, 2> ArgumentPack;
5176 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5177 LocalInstantiationScope InstScope(*this, true);
5178 for (TemplateParameterList::iterator Param = Params->begin(),
5179 ParamEnd = Params->end();
5180 Param != ParamEnd; /* increment in loop */) {
5181 // If we have an expanded parameter pack, make sure we don't have too
5182 // many arguments.
5183 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5184 if (*Expansions == ArgumentPack.size()) {
5185 // We're done with this parameter pack. Pack up its arguments and add
5186 // them to the list.
5187 Converted.push_back(
5188 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5189 ArgumentPack.clear();
5190
5191 // This argument is assigned to the next parameter.
5192 ++Param;
5193 continue;
5194 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5195 // Not enough arguments for this parameter pack.
5196 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5197 << /*not enough args*/0
5198 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5199 << Template;
5200 Diag(Template->getLocation(), diag::note_template_decl_here)
5201 << Params->getSourceRange();
5202 return true;
5203 }
5204 }
5205
5206 if (ArgIdx < NumArgs) {
5207 // Check the template argument we were given.
5208 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5209 TemplateLoc, RAngleLoc,
5210 ArgumentPack.size(), Converted))
5211 return true;
5212
5213 bool PackExpansionIntoNonPack =
5214 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5215 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5216 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
5217 // Core issue 1430: we have a pack expansion as an argument to an
5218 // alias template, and it's not part of a parameter pack. This
5219 // can't be canonicalized, so reject it now.
5220 Diag(NewArgs[ArgIdx].getLocation(),
5221 diag::err_alias_template_expansion_into_fixed_list)
5222 << NewArgs[ArgIdx].getSourceRange();
5223 Diag((*Param)->getLocation(), diag::note_template_param_here);
5224 return true;
5225 }
5226
5227 // We're now done with this argument.
5228 ++ArgIdx;
5229
5230 if ((*Param)->isTemplateParameterPack()) {
5231 // The template parameter was a template parameter pack, so take the
5232 // deduced argument and place it on the argument pack. Note that we
5233 // stay on the same template parameter so that we can deduce more
5234 // arguments.
5235 ArgumentPack.push_back(Converted.pop_back_val());
5236 } else {
5237 // Move to the next template parameter.
5238 ++Param;
5239 }
5240
5241 // If we just saw a pack expansion into a non-pack, then directly convert
5242 // the remaining arguments, because we don't know what parameters they'll
5243 // match up with.
5244 if (PackExpansionIntoNonPack) {
5245 if (!ArgumentPack.empty()) {
5246 // If we were part way through filling in an expanded parameter pack,
5247 // fall back to just producing individual arguments.
5248 Converted.insert(Converted.end(),
5249 ArgumentPack.begin(), ArgumentPack.end());
5250 ArgumentPack.clear();
5251 }
5252
5253 while (ArgIdx < NumArgs) {
5254 Converted.push_back(NewArgs[ArgIdx].getArgument());
5255 ++ArgIdx;
5256 }
5257
5258 return false;
5259 }
5260
5261 continue;
5262 }
5263
5264 // If we're checking a partial template argument list, we're done.
5265 if (PartialTemplateArgs) {
5266 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5267 Converted.push_back(
5268 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5269
5270 return false;
5271 }
5272
5273 // If we have a template parameter pack with no more corresponding
5274 // arguments, just break out now and we'll fill in the argument pack below.
5275 if ((*Param)->isTemplateParameterPack()) {
5276 assert(!getExpandedPackSize(*Param) &&((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5277, __PRETTY_FUNCTION__))
5277 "Should have dealt with this already")((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5277, __PRETTY_FUNCTION__))
;
5278
5279 // A non-expanded parameter pack before the end of the parameter list
5280 // only occurs for an ill-formed template parameter list, unless we've
5281 // got a partial argument list for a function template, so just bail out.
5282 if (Param + 1 != ParamEnd)
5283 return true;
5284
5285 Converted.push_back(
5286 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5287 ArgumentPack.clear();
5288
5289 ++Param;
5290 continue;
5291 }
5292
5293 // Check whether we have a default argument.
5294 TemplateArgumentLoc Arg;
5295
5296 // Retrieve the default template argument from the template
5297 // parameter. For each kind of template parameter, we substitute the
5298 // template arguments provided thus far and any "outer" template arguments
5299 // (when the template parameter was part of a nested template) into
5300 // the default argument.
5301 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5302 if (!hasVisibleDefaultArgument(TTP))
5303 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5304 NewArgs);
5305
5306 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5307 Template,
5308 TemplateLoc,
5309 RAngleLoc,
5310 TTP,
5311 Converted);
5312 if (!ArgType)
5313 return true;
5314
5315 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5316 ArgType);
5317 } else if (NonTypeTemplateParmDecl *NTTP
5318 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5319 if (!hasVisibleDefaultArgument(NTTP))
5320 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5321 NewArgs);
5322
5323 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5324 TemplateLoc,
5325 RAngleLoc,
5326 NTTP,
5327 Converted);
5328 if (E.isInvalid())
5329 return true;
5330
5331 Expr *Ex = E.getAs<Expr>();
5332 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5333 } else {
5334 TemplateTemplateParmDecl *TempParm
5335 = cast<TemplateTemplateParmDecl>(*Param);
5336
5337 if (!hasVisibleDefaultArgument(TempParm))
5338 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5339 NewArgs);
5340
5341 NestedNameSpecifierLoc QualifierLoc;
5342 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5343 TemplateLoc,
5344 RAngleLoc,
5345 TempParm,
5346 Converted,
5347 QualifierLoc);
5348 if (Name.isNull())
5349 return true;
5350
5351 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
5352 TempParm->getDefaultArgument().getTemplateNameLoc());
5353 }
5354
5355 // Introduce an instantiation record that describes where we are using
5356 // the default template argument. We're not actually instantiating a
5357 // template here, we just create this object to put a note into the
5358 // context stack.
5359 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5360 SourceRange(TemplateLoc, RAngleLoc));
5361 if (Inst.isInvalid())
5362 return true;
5363
5364 // Check the default template argument.
5365 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5366 RAngleLoc, 0, Converted))
5367 return true;
5368
5369 // Core issue 150 (assumed resolution): if this is a template template
5370 // parameter, keep track of the default template arguments from the
5371 // template definition.
5372 if (isTemplateTemplateParameter)
5373 NewArgs.addArgument(Arg);
5374
5375 // Move to the next template parameter and argument.
5376 ++Param;
5377 ++ArgIdx;
5378 }
5379
5380 // If we're performing a partial argument substitution, allow any trailing
5381 // pack expansions; they might be empty. This can happen even if
5382 // PartialTemplateArgs is false (the list of arguments is complete but
5383 // still dependent).
5384 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5385 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5386 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5387 Converted.push_back(NewArgs[ArgIdx++].getArgument());
5388 }
5389
5390 // If we have any leftover arguments, then there were too many arguments.
5391 // Complain and fail.
5392 if (ArgIdx < NumArgs) {
5393 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5394 << /*too many args*/1
5395 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5396 << Template
5397 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5398 Diag(Template->getLocation(), diag::note_template_decl_here)
5399 << Params->getSourceRange();
5400 return true;
5401 }
5402
5403 // No problems found with the new argument list, propagate changes back
5404 // to caller.
5405 if (UpdateArgsWithConversions)
5406 TemplateArgs = std::move(NewArgs);
5407
5408 return false;
5409}
5410
5411namespace {
5412 class UnnamedLocalNoLinkageFinder
5413 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5414 {
5415 Sema &S;
5416 SourceRange SR;
5417
5418 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5419
5420 public:
5421 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5422
5423 bool Visit(QualType T) {
5424 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5425 }
5426
5427#define TYPE(Class, Parent) \
5428 bool Visit##Class##Type(const Class##Type *);
5429#define ABSTRACT_TYPE(Class, Parent) \
5430 bool Visit##Class##Type(const Class##Type *) { return false; }
5431#define NON_CANONICAL_TYPE(Class, Parent) \
5432 bool Visit##Class##Type(const Class##Type *) { return false; }
5433#include "clang/AST/TypeNodes.def"
5434
5435 bool VisitTagDecl(const TagDecl *Tag);
5436 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5437 };
5438} // end anonymous namespace
5439
5440bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5441 return false;
5442}
5443
5444bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5445 return Visit(T->getElementType());
5446}
5447
5448bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5449 return Visit(T->getPointeeType());
5450}
5451
5452bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5453 const BlockPointerType* T) {
5454 return Visit(T->getPointeeType());
5455}
5456
5457bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5458 const LValueReferenceType* T) {
5459 return Visit(T->getPointeeType());
5460}
5461
5462bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5463 const RValueReferenceType* T) {
5464 return Visit(T->getPointeeType());
5465}
5466
5467bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5468 const MemberPointerType* T) {
5469 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5470}
5471
5472bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5473 const ConstantArrayType* T) {
5474 return Visit(T->getElementType());
5475}
5476
5477bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5478 const IncompleteArrayType* T) {
5479 return Visit(T->getElementType());
5480}
5481
5482bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5483 const VariableArrayType* T) {
5484 return Visit(T->getElementType());
5485}
5486
5487bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5488 const DependentSizedArrayType* T) {
5489 return Visit(T->getElementType());
5490}
5491
5492bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5493 const DependentSizedExtVectorType* T) {
5494 return Visit(T->getElementType());
5495}
5496
5497bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5498 const DependentAddressSpaceType *T) {
5499 return Visit(T->getPointeeType());
5500}
5501
5502bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5503 return Visit(T->getElementType());
5504}
5505
5506bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
5507 const DependentVectorType *T) {
5508 return Visit(T->getElementType());
5509}
5510
5511bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5512 return Visit(T->getElementType());
5513}
5514
5515bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5516 const FunctionProtoType* T) {
5517 for (const auto &A : T->param_types()) {
5518 if (Visit(A))
5519 return true;
5520 }
5521
5522 return Visit(T->getReturnType());
5523}
5524
5525bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5526 const FunctionNoProtoType* T) {
5527 return Visit(T->getReturnType());
5528}
5529
5530bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5531 const UnresolvedUsingType*) {
5532 return false;
5533}
5534
5535bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5536 return false;
5537}
5538
5539bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5540 return Visit(T->getUnderlyingType());
5541}
5542
5543bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5544 return false;
5545}
5546
5547bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5548 const UnaryTransformType*) {
5549 return false;
5550}
5551
5552bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5553 return Visit(T->getDeducedType());
5554}
5555
5556bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5557 const DeducedTemplateSpecializationType *T) {
5558 return Visit(T->getDeducedType());
5559}
5560
5561bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5562 return VisitTagDecl(T->getDecl());
5563}
5564
5565bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5566 return VisitTagDecl(T->getDecl());
5567}
5568
5569bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5570 const TemplateTypeParmType*) {
5571 return false;
5572}
5573
5574bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5575 const SubstTemplateTypeParmPackType *) {
5576 return false;
5577}
5578
5579bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5580 const TemplateSpecializationType*) {
5581 return false;
5582}
5583
5584bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5585 const InjectedClassNameType* T) {
5586 return VisitTagDecl(T->getDecl());
5587}
5588
5589bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5590 const DependentNameType* T) {
5591 return VisitNestedNameSpecifier(T->getQualifier());
5592}
5593
5594bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5595 const DependentTemplateSpecializationType* T) {
5596 return VisitNestedNameSpecifier(T->getQualifier());
5597}
5598
5599bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5600 const PackExpansionType* T) {
5601 return Visit(T->getPattern());
5602}
5603
5604bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5605 return false;
5606}
5607
5608bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5609 const ObjCInterfaceType *) {
5610 return false;
5611}
5612
5613bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5614 const ObjCObjectPointerType *) {
5615 return false;
5616}
5617
5618bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5619 return Visit(T->getValueType());
5620}
5621
5622bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5623 return false;
5624}
5625
5626bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5627 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5628 S.Diag(SR.getBegin(),
5629 S.getLangOpts().CPlusPlus11 ?
5630 diag::warn_cxx98_compat_template_arg_local_type :
5631 diag::ext_template_arg_local_type)
5632 << S.Context.getTypeDeclType(Tag) << SR;
5633 return true;
5634 }
5635
5636 if (!Tag->hasNameForLinkage()) {
5637 S.Diag(SR.getBegin(),
5638 S.getLangOpts().CPlusPlus11 ?
5639 diag::warn_cxx98_compat_template_arg_unnamed_type :
5640 diag::ext_template_arg_unnamed_type) << SR;
5641 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5642 return true;
5643 }
5644
5645 return false;
5646}
5647
5648bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5649 NestedNameSpecifier *NNS) {
5650 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5651 return true;
5652
5653 switch (NNS->getKind()) {
5654 case NestedNameSpecifier::Identifier:
5655 case NestedNameSpecifier::Namespace:
5656 case NestedNameSpecifier::NamespaceAlias:
5657 case NestedNameSpecifier::Global:
5658 case NestedNameSpecifier::Super:
5659 return false;
5660
5661 case NestedNameSpecifier::TypeSpec:
5662 case NestedNameSpecifier::TypeSpecWithTemplate:
5663 return Visit(QualType(NNS->getAsType(), 0));
5664 }
5665 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5665)
;
5666}
5667
5668/// Check a template argument against its corresponding
5669/// template type parameter.
5670///
5671/// This routine implements the semantics of C++ [temp.arg.type]. It
5672/// returns true if an error occurred, and false otherwise.
5673bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
5674 TypeSourceInfo *ArgInfo) {
5675 assert(ArgInfo && "invalid TypeSourceInfo")((ArgInfo && "invalid TypeSourceInfo") ? static_cast<
void> (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5675, __PRETTY_FUNCTION__))
;
5676 QualType Arg = ArgInfo->getType();
5677 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5678
5679 if (Arg->isVariablyModifiedType()) {
5680 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5681 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5682 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5683 }
5684
5685 // C++03 [temp.arg.type]p2:
5686 // A local type, a type with no linkage, an unnamed type or a type
5687 // compounded from any of these types shall not be used as a
5688 // template-argument for a template type-parameter.
5689 //
5690 // C++11 allows these, and even in C++03 we allow them as an extension with
5691 // a warning.
5692 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
5693 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5694 (void)Finder.Visit(Context.getCanonicalType(Arg));
5695 }
5696
5697 return false;
5698}
5699
5700enum NullPointerValueKind {
5701 NPV_NotNullPointer,
5702 NPV_NullPointer,
5703 NPV_Error
5704};
5705
5706/// Determine whether the given template argument is a null pointer
5707/// value of the appropriate type.
5708static NullPointerValueKind
5709isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5710 QualType ParamType, Expr *Arg,
5711 Decl *Entity = nullptr) {
5712 if (Arg->isValueDependent() || Arg->isTypeDependent())
5713 return NPV_NotNullPointer;
5714
5715 // dllimport'd entities aren't constant but are available inside of template
5716 // arguments.
5717 if (Entity && Entity->hasAttr<DLLImportAttr>())
5718 return NPV_NotNullPointer;
5719
5720 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5721 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5722)
5722 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5722)
;
5723
5724 if (!S.getLangOpts().CPlusPlus11)
5725 return NPV_NotNullPointer;
5726
5727 // Determine whether we have a constant expression.
5728 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5729 if (ArgRV.isInvalid())
5730 return NPV_Error;
5731 Arg = ArgRV.get();
5732
5733 Expr::EvalResult EvalResult;
5734 SmallVector<PartialDiagnosticAt, 8> Notes;
5735 EvalResult.Diag = &Notes;
5736 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5737 EvalResult.HasSideEffects) {
5738 SourceLocation DiagLoc = Arg->getExprLoc();
5739
5740 // If our only note is the usual "invalid subexpression" note, just point
5741 // the caret at its location rather than producing an essentially
5742 // redundant note.
5743 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5744 diag::note_invalid_subexpr_in_const_expr) {
5745 DiagLoc = Notes[0].first;
5746 Notes.clear();
5747 }
5748
5749 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5750 << Arg->getType() << Arg->getSourceRange();
5751 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5752 S.Diag(Notes[I].first, Notes[I].second);
5753
5754 S.Diag(Param->getLocation(), diag::note_template_param_here);
5755 return NPV_Error;
5756 }
5757
5758 // C++11 [temp.arg.nontype]p1:
5759 // - an address constant expression of type std::nullptr_t
5760 if (Arg->getType()->isNullPtrType())
5761 return NPV_NullPointer;
5762
5763 // - a constant expression that evaluates to a null pointer value (4.10); or
5764 // - a constant expression that evaluates to a null member pointer value
5765 // (4.11); or
5766 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
5767 (EvalResult.Val.isMemberPointer() &&
5768 !EvalResult.Val.getMemberPointerDecl())) {
5769 // If our expression has an appropriate type, we've succeeded.
5770 bool ObjCLifetimeConversion;
5771 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5772 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5773 ObjCLifetimeConversion))
5774 return NPV_NullPointer;
5775
5776 // The types didn't match, but we know we got a null pointer; complain,
5777 // then recover as if the types were correct.
5778 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5779 << Arg->getType() << ParamType << Arg->getSourceRange();
5780 S.Diag(Param->getLocation(), diag::note_template_param_here);
5781 return NPV_NullPointer;
5782 }
5783
5784 // If we don't have a null pointer value, but we do have a NULL pointer
5785 // constant, suggest a cast to the appropriate type.
5786 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
5787 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
5788 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
5789 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
5790 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
5791 ")");
5792 S.Diag(Param->getLocation(), diag::note_template_param_here);
5793 return NPV_NullPointer;
5794 }
5795
5796 // FIXME: If we ever want to support general, address-constant expressions
5797 // as non-type template arguments, we should return the ExprResult here to
5798 // be interpreted by the caller.
5799 return NPV_NotNullPointer;
5800}
5801
5802/// Checks whether the given template argument is compatible with its
5803/// template parameter.
5804static bool CheckTemplateArgumentIsCompatibleWithParameter(
5805 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
5806 Expr *Arg, QualType ArgType) {
5807 bool ObjCLifetimeConversion;
5808 if (ParamType->isPointerType() &&
5809 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
5810 S.IsQualificationConversion(ArgType, ParamType, false,
5811 ObjCLifetimeConversion)) {
5812 // For pointer-to-object types, qualification conversions are
5813 // permitted.
5814 } else {
5815 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
5816 if (!ParamRef->getPointeeType()->isFunctionType()) {
5817 // C++ [temp.arg.nontype]p5b3:
5818 // For a non-type template-parameter of type reference to
5819 // object, no conversions apply. The type referred to by the
5820 // reference may be more cv-qualified than the (otherwise
5821 // identical) type of the template- argument. The
5822 // template-parameter is bound directly to the
5823 // template-argument, which shall be an lvalue.
5824
5825 // FIXME: Other qualifiers?
5826 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
5827 unsigned ArgQuals = ArgType.getCVRQualifiers();
5828
5829 if ((ParamQuals | ArgQuals) != ParamQuals) {
5830 S.Diag(Arg->getBeginLoc(),
5831 diag::err_template_arg_ref_bind_ignores_quals)
5832 << ParamType << Arg->getType() << Arg->getSourceRange();
5833 S.Diag(Param->getLocation(), diag::note_template_param_here);
5834 return true;
5835 }
5836 }
5837 }
5838
5839 // At this point, the template argument refers to an object or
5840 // function with external linkage. We now need to check whether the
5841 // argument and parameter types are compatible.
5842 if (!S.Context.hasSameUnqualifiedType(ArgType,
5843 ParamType.getNonReferenceType())) {
5844 // We can't perform this conversion or binding.
5845 if (ParamType->isReferenceType())
5846 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
5847 << ParamType << ArgIn->getType() << Arg->getSourceRange();
5848 else
5849 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
5850 << ArgIn->getType() << ParamType << Arg->getSourceRange();
5851 S.Diag(Param->getLocation(), diag::note_template_param_here);
5852 return true;
5853 }
5854 }
5855
5856 return false;
5857}
5858
5859/// Checks whether the given template argument is the address
5860/// of an object or function according to C++ [temp.arg.nontype]p1.
5861static bool
5862CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
5863 NonTypeTemplateParmDecl *Param,
5864 QualType ParamType,
5865 Expr *ArgIn,
5866 TemplateArgument &Converted) {
5867 bool Invalid = false;
5868 Expr *Arg = ArgIn;
5869 QualType ArgType = Arg->getType();
5870
5871 bool AddressTaken = false;
5872 SourceLocation AddrOpLoc;
5873 if (S.getLangOpts().MicrosoftExt) {
5874 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
5875 // dereference and address-of operators.
5876 Arg = Arg->IgnoreParenCasts();
5877
5878 bool ExtWarnMSTemplateArg = false;
5879 UnaryOperatorKind FirstOpKind;
5880 SourceLocation FirstOpLoc;
5881 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5882 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
5883 if (UnOpKind == UO_Deref)
5884 ExtWarnMSTemplateArg = true;
5885 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
5886 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
5887 if (!AddrOpLoc.isValid()) {
5888 FirstOpKind = UnOpKind;
5889 FirstOpLoc = UnOp->getOperatorLoc();
5890 }
5891 } else
5892 break;
5893 }
5894 if (FirstOpLoc.isValid()) {
5895 if (ExtWarnMSTemplateArg)
5896 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
5897 << ArgIn->getSourceRange();
5898
5899 if (FirstOpKind == UO_AddrOf)
5900 AddressTaken = true;
5901 else if (Arg->getType()->isPointerType()) {
5902 // We cannot let pointers get dereferenced here, that is obviously not a
5903 // constant expression.
5904 assert(FirstOpKind == UO_Deref)((FirstOpKind == UO_Deref) ? static_cast<void> (0) : __assert_fail
("FirstOpKind == UO_Deref", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5904, __PRETTY_FUNCTION__))
;
5905 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
5906 << Arg->getSourceRange();
5907 }
5908 }
5909 } else {
5910 // See through any implicit casts we added to fix the type.
5911 Arg = Arg->IgnoreImpCasts();
5912
5913 // C++ [temp.arg.nontype]p1:
5914 //
5915 // A template-argument for a non-type, non-template
5916 // template-parameter shall be one of: [...]
5917 //
5918 // -- the address of an object or function with external
5919 // linkage, including function templates and function
5920 // template-ids but excluding non-static class members,
5921 // expressed as & id-expression where the & is optional if
5922 // the name refers to a function or array, or if the
5923 // corresponding template-parameter is a reference; or
5924
5925 // In C++98/03 mode, give an extension warning on any extra parentheses.
5926 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5927 bool ExtraParens = false;
5928 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5929 if (!Invalid && !ExtraParens) {
5930 S.Diag(Arg->getBeginLoc(),
5931 S.getLangOpts().CPlusPlus11
5932 ? diag::warn_cxx98_compat_template_arg_extra_parens
5933 : diag::ext_template_arg_extra_parens)
5934 << Arg->getSourceRange();
5935 ExtraParens = true;
5936 }
5937
5938 Arg = Parens->getSubExpr();
5939 }
5940
5941 while (SubstNonTypeTemplateParmExpr *subst =
5942 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5943 Arg = subst->getReplacement()->IgnoreImpCasts();
5944
5945 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5946 if (UnOp->getOpcode() == UO_AddrOf) {
5947 Arg = UnOp->getSubExpr();
5948 AddressTaken = true;
5949 AddrOpLoc = UnOp->getOperatorLoc();
5950 }
5951 }
5952
5953 while (SubstNonTypeTemplateParmExpr *subst =
5954 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5955 Arg = subst->getReplacement()->IgnoreImpCasts();
5956 }
5957
5958 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
5959 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5960
5961 // If our parameter has pointer type, check for a null template value.
5962 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
5963 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
5964 Entity)) {
5965 case NPV_NullPointer:
5966 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5967 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5968 /*isNullPtr=*/true);
5969 return false;
5970
5971 case NPV_Error:
5972 return true;
5973
5974 case NPV_NotNullPointer:
5975 break;
5976 }
5977 }
5978
5979 // Stop checking the precise nature of the argument if it is value dependent,
5980 // it should be checked when instantiated.
5981 if (Arg->isValueDependent()) {
5982 Converted = TemplateArgument(ArgIn);
5983 return false;
5984 }
5985
5986 if (isa<CXXUuidofExpr>(Arg)) {
5987 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
5988 ArgIn, Arg, ArgType))
5989 return true;
5990
5991 Converted = TemplateArgument(ArgIn);
5992 return false;
5993 }
5994
5995 if (!DRE) {
5996 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
5997 << Arg->getSourceRange();
5998 S.Diag(Param->getLocation(), diag::note_template_param_here);
5999 return true;
6000 }
6001
6002 // Cannot refer to non-static data members
6003 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6004 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6005 << Entity << Arg->getSourceRange();
6006 S.Diag(Param->getLocation(), diag::note_template_param_here);
6007 return true;
6008 }
6009
6010 // Cannot refer to non-static member functions
6011 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6012 if (!Method->isStatic()) {
6013 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6014 << Method << Arg->getSourceRange();
6015 S.Diag(Param->getLocation(), diag::note_template_param_here);
6016 return true;
6017 }
6018 }
6019
6020 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6021 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6022
6023 // A non-type template argument must refer to an object or function.
6024 if (!Func && !Var) {
6025 // We found something, but we don't know specifically what it is.
6026 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6027 << Arg->getSourceRange();
6028 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6029 return true;
6030 }
6031
6032 // Address / reference template args must have external linkage in C++98.
6033 if (Entity->getFormalLinkage() == InternalLinkage) {
6034 S.Diag(Arg->getBeginLoc(),
6035 S.getLangOpts().CPlusPlus11
6036 ? diag::warn_cxx98_compat_template_arg_object_internal
6037 : diag::ext_template_arg_object_internal)
6038 << !Func << Entity << Arg->getSourceRange();
6039 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6040 << !Func;
6041 } else if (!Entity->hasLinkage()) {
6042 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6043 << !Func << Entity << Arg->getSourceRange();
6044 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6045 << !Func;
6046 return true;
6047 }
6048
6049 if (Func) {
6050 // If the template parameter has pointer type, the function decays.
6051 if (ParamType->isPointerType() && !AddressTaken)
6052 ArgType = S.Context.getPointerType(Func->getType());
6053 else if (AddressTaken && ParamType->isReferenceType()) {
6054 // If we originally had an address-of operator, but the
6055 // parameter has reference type, complain and (if things look
6056 // like they will work) drop the address-of operator.
6057 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
6058 ParamType.getNonReferenceType())) {
6059 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6060 << ParamType;
6061 S.Diag(Param->getLocation(), diag::note_template_param_here);
6062 return true;
6063 }
6064
6065 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6066 << ParamType
6067 << FixItHint::CreateRemoval(AddrOpLoc);
6068 S.Diag(Param->getLocation(), diag::note_template_param_here);
6069
6070 ArgType = Func->getType();
6071 }
6072 } else {
6073 // A value of reference type is not an object.
6074 if (Var->getType()->isReferenceType()) {
6075 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6076 << Var->getType() << Arg->getSourceRange();
6077 S.Diag(Param->getLocation(), diag::note_template_param_here);
6078 return true;
6079 }
6080
6081 // A template argument must have static storage duration.
6082 if (Var->getTLSKind()) {
6083 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6084 << Arg->getSourceRange();
6085 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6086 return true;
6087 }
6088
6089 // If the template parameter has pointer type, we must have taken
6090 // the address of this object.
6091 if (ParamType->isReferenceType()) {
6092 if (AddressTaken) {
6093 // If we originally had an address-of operator, but the
6094 // parameter has reference type, complain and (if things look
6095 // like they will work) drop the address-of operator.
6096 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
6097 ParamType.getNonReferenceType())) {
6098 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6099 << ParamType;
6100 S.Diag(Param->getLocation(), diag::note_template_param_here);
6101 return true;
6102 }
6103
6104 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6105 << ParamType
6106 << FixItHint::CreateRemoval(AddrOpLoc);
6107 S.Diag(Param->getLocation(), diag::note_template_param_here);
6108
6109 ArgType = Var->getType();
6110 }
6111 } else if (!AddressTaken && ParamType->isPointerType()) {
6112 if (Var->getType()->isArrayType()) {
6113 // Array-to-pointer decay.
6114 ArgType = S.Context.getArrayDecayedType(Var->getType());
6115 } else {
6116 // If the template parameter has pointer type but the address of
6117 // this object was not taken, complain and (possibly) recover by
6118 // taking the address of the entity.
6119 ArgType = S.Context.getPointerType(Var->getType());
6120 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6121 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6122 << ParamType;
6123 S.Diag(Param->getLocation(), diag::note_template_param_here);
6124 return true;
6125 }
6126
6127 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6128 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6129
6130 S.Diag(Param->getLocation(), diag::note_template_param_here);
6131 }
6132 }
6133 }
6134
6135 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6136 Arg, ArgType))
6137 return true;
6138
6139 // Create the template argument.
6140 Converted =
6141 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
6142 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6143 return false;
6144}
6145
6146/// Checks whether the given template argument is a pointer to
6147/// member constant according to C++ [temp.arg.nontype]p1.
6148static bool CheckTemplateArgumentPointerToMember(Sema &S,
6149 NonTypeTemplateParmDecl *Param,
6150 QualType ParamType,
6151 Expr *&ResultArg,
6152 TemplateArgument &Converted) {
6153 bool Invalid = false;
6154
6155 Expr *Arg = ResultArg;
6156 bool ObjCLifetimeConversion;
6157
6158 // C++ [temp.arg.nontype]p1:
6159 //
6160 // A template-argument for a non-type, non-template
6161 // template-parameter shall be one of: [...]
6162 //
6163 // -- a pointer to member expressed as described in 5.3.1.
6164 DeclRefExpr *DRE = nullptr;
6165
6166 // In C++98/03 mode, give an extension warning on any extra parentheses.
6167 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6168 bool ExtraParens = false;
6169 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6170 if (!Invalid && !ExtraParens) {
6171 S.Diag(Arg->getBeginLoc(),
6172 S.getLangOpts().CPlusPlus11
6173 ? diag::warn_cxx98_compat_template_arg_extra_parens
6174 : diag::ext_template_arg_extra_parens)
6175 << Arg->getSourceRange();
6176 ExtraParens = true;
6177 }
6178
6179 Arg = Parens->getSubExpr();
6180 }
6181
6182 while (SubstNonTypeTemplateParmExpr *subst =
6183 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6184 Arg = subst->getReplacement()->IgnoreImpCasts();
6185
6186 // A pointer-to-member constant written &Class::member.
6187 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6188 if (UnOp->getOpcode() == UO_AddrOf) {
6189 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6190 if (DRE && !DRE->getQualifier())
6191 DRE = nullptr;
6192 }
6193 }
6194 // A constant of pointer-to-member type.
6195 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6196 ValueDecl *VD = DRE->getDecl();
6197 if (VD->getType()->isMemberPointerType()) {
6198 if (isa<NonTypeTemplateParmDecl>(VD)) {
6199 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6200 Converted = TemplateArgument(Arg);
6201 } else {
6202 VD = cast<ValueDecl>(VD->getCanonicalDecl());
6203 Converted = TemplateArgument(VD, ParamType);
6204 }
6205 return Invalid;
6206 }
6207 }
6208
6209 DRE = nullptr;
6210 }
6211
6212 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6213
6214 // Check for a null pointer value.
6215 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6216 Entity)) {
6217 case NPV_Error:
6218 return true;
6219 case NPV_NullPointer:
6220 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6221 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6222 /*isNullPtr*/true);
6223 return false;
6224 case NPV_NotNullPointer:
6225 break;
6226 }
6227
6228 if (S.IsQualificationConversion(ResultArg->getType(),
6229 ParamType.getNonReferenceType(), false,
6230 ObjCLifetimeConversion)) {
6231 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6232 ResultArg->getValueKind())
6233 .get();
6234 } else if (!S.Context.hasSameUnqualifiedType(
6235 ResultArg->getType(), ParamType.getNonReferenceType())) {
6236 // We can't perform this conversion.
6237 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6238 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6239 S.Diag(Param->getLocation(), diag::note_template_param_here);
6240 return true;
6241 }
6242
6243 if (!DRE)
6244 return S.Diag(Arg->getBeginLoc(),
6245 diag::err_template_arg_not_pointer_to_member_form)
6246 << Arg->getSourceRange();
6247
6248 if (isa<FieldDecl>(DRE->getDecl()) ||
6249 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6250 isa<CXXMethodDecl>(DRE->getDecl())) {
6251 assert((isa<FieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6254, __PRETTY_FUNCTION__))
6252 isa<IndirectFieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6254, __PRETTY_FUNCTION__))
6253 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6254, __PRETTY_FUNCTION__))
6254 "Only non-static member pointers can make it here")(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6254, __PRETTY_FUNCTION__))
;
6255
6256 // Okay: this is the address of a non-static member, and therefore
6257 // a member pointer constant.
6258 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6259 Converted = TemplateArgument(Arg);
6260 } else {
6261 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6262 Converted = TemplateArgument(D, ParamType);
6263 }
6264 return Invalid;
6265 }
6266
6267 // We found something else, but we don't know specifically what it is.
6268 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6269 << Arg->getSourceRange();
6270 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6271 return true;
6272}
6273
6274/// Check a template argument against its corresponding
6275/// non-type template parameter.
6276///
6277/// This routine implements the semantics of C++ [temp.arg.nontype].
6278/// If an error occurred, it returns ExprError(); otherwise, it
6279/// returns the converted template argument. \p ParamType is the
6280/// type of the non-type template parameter after it has been instantiated.
6281ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6282 QualType ParamType, Expr *Arg,
6283 TemplateArgument &Converted,
6284 CheckTemplateArgumentKind CTAK) {
6285 SourceLocation StartLoc = Arg->getBeginLoc();
6286
6287 // If the parameter type somehow involves auto, deduce the type now.
6288 if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
6289 // During template argument deduction, we allow 'decltype(auto)' to
6290 // match an arbitrary dependent argument.
6291 // FIXME: The language rules don't say what happens in this case.
6292 // FIXME: We get an opaque dependent type out of decltype(auto) if the
6293 // expression is merely instantiation-dependent; is this enough?
6294 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6295 auto *AT = dyn_cast<AutoType>(ParamType);
6296 if (AT && AT->isDecltypeAuto()) {
6297 Converted = TemplateArgument(Arg);
6298 return Arg;
6299 }
6300 }
6301
6302 // When checking a deduced template argument, deduce from its type even if
6303 // the type is dependent, in order to check the types of non-type template
6304 // arguments line up properly in partial ordering.
6305 Optional<unsigned> Depth;
6306 if (CTAK != CTAK_Specified)
6307 Depth = Param->getDepth() + 1;
6308 if (DeduceAutoType(
6309 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
6310 Arg, ParamType, Depth) == DAR_Failed) {
6311 Diag(Arg->getExprLoc(),
6312 diag::err_non_type_template_parm_type_deduction_failure)
6313 << Param->getDeclName() << Param->getType() << Arg->getType()
6314 << Arg->getSourceRange();
6315 Diag(Param->getLocation(), diag::note_template_param_here);
6316 return ExprError();
6317 }
6318 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6319 // an error. The error message normally references the parameter
6320 // declaration, but here we'll pass the argument location because that's
6321 // where the parameter type is deduced.
6322 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6323 if (ParamType.isNull()) {
6324 Diag(Param->getLocation(), diag::note_template_param_here);
6325 return ExprError();
6326 }
6327 }
6328
6329 // We should have already dropped all cv-qualifiers by now.
6330 assert(!ParamType.hasQualifiers() &&((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6331, __PRETTY_FUNCTION__))
6331 "non-type template parameter type cannot be qualified")((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6331, __PRETTY_FUNCTION__))
;
6332
6333 if (CTAK == CTAK_Deduced &&
6334 !Context.hasSameType(ParamType.getNonLValueExprType(Context),
6335 Arg->getType())) {
6336 // FIXME: If either type is dependent, we skip the check. This isn't
6337 // correct, since during deduction we're supposed to have replaced each
6338 // template parameter with some unique (non-dependent) placeholder.
6339 // FIXME: If the argument type contains 'auto', we carry on and fail the
6340 // type check in order to force specific types to be more specialized than
6341 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6342 // work.
6343 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6344 !Arg->getType()->getContainedAutoType()) {
6345 Converted = TemplateArgument(Arg);
6346 return Arg;
6347 }
6348 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6349 // we should actually be checking the type of the template argument in P,
6350 // not the type of the template argument deduced from A, against the
6351 // template parameter type.
6352 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6353 << Arg->getType()
6354 << ParamType.getUnqualifiedType();
6355 Diag(Param->getLocation(), diag::note_template_param_here);
6356 return ExprError();
6357 }
6358
6359 // If either the parameter has a dependent type or the argument is
6360 // type-dependent, there's nothing we can check now.
6361 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
6362 // FIXME: Produce a cloned, canonical expression?
6363 Converted = TemplateArgument(Arg);
6364 return Arg;
6365 }
6366
6367 // The initialization of the parameter from the argument is
6368 // a constant-evaluated context.
6369 EnterExpressionEvaluationContext ConstantEvaluated(
6370 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6371
6372 if (getLangOpts().CPlusPlus17) {
6373 // C++17 [temp.arg.nontype]p1:
6374 // A template-argument for a non-type template parameter shall be
6375 // a converted constant expression of the type of the template-parameter.
6376 APValue Value;
6377 ExprResult ArgResult = CheckConvertedConstantExpression(
6378 Arg, ParamType, Value, CCEK_TemplateArg);
6379 if (ArgResult.isInvalid())
6380 return ExprError();
6381
6382 // For a value-dependent argument, CheckConvertedConstantExpression is
6383 // permitted (and expected) to be unable to determine a value.
6384 if (ArgResult.get()->isValueDependent()) {
6385 Converted = TemplateArgument(ArgResult.get());
6386 return ArgResult;
6387 }
6388
6389 QualType CanonParamType = Context.getCanonicalType(ParamType);
6390
6391 // Convert the APValue to a TemplateArgument.
6392 switch (Value.getKind()) {
6393 case APValue::None:
6394 assert(ParamType->isNullPtrType())((ParamType->isNullPtrType()) ? static_cast<void> (0
) : __assert_fail ("ParamType->isNullPtrType()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6394, __PRETTY_FUNCTION__))
;
6395 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6396 break;
6397 case APValue::Indeterminate:
6398 llvm_unreachable("result of constant evaluation should be initialized")::llvm::llvm_unreachable_internal("result of constant evaluation should be initialized"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6398)
;
6399 break;
6400 case APValue::Int:
6401 assert(ParamType->isIntegralOrEnumerationType())((ParamType->isIntegralOrEnumerationType()) ? static_cast<
void> (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6401, __PRETTY_FUNCTION__))
;
6402 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6403 break;
6404 case APValue::MemberPointer: {
6405 assert(ParamType->isMemberPointerType())((ParamType->isMemberPointerType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isMemberPointerType()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6405, __PRETTY_FUNCTION__))
;
6406
6407 // FIXME: We need TemplateArgument representation and mangling for these.
6408 if (!Value.getMemberPointerPath().empty()) {
6409 Diag(Arg->getBeginLoc(),
6410 diag::err_template_arg_member_ptr_base_derived_not_supported)
6411 << Value.getMemberPointerDecl() << ParamType
6412 << Arg->getSourceRange();
6413 return ExprError();
6414 }
6415
6416 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6417 Converted = VD ? TemplateArgument(VD, CanonParamType)
6418 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6419 break;
6420 }
6421 case APValue::LValue: {
6422 // For a non-type template-parameter of pointer or reference type,
6423 // the value of the constant expression shall not refer to
6424 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6425, __PRETTY_FUNCTION__))
6425 ParamType->isNullPtrType())((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6425, __PRETTY_FUNCTION__))
;
6426 // -- a temporary object
6427 // -- a string literal
6428 // -- the result of a typeid expression, or
6429 // -- a predefined __func__ variable
6430 APValue::LValueBase Base = Value.getLValueBase();
6431 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
6432 if (Base && !VD) {
6433 auto *E = Base.dyn_cast<const Expr *>();
6434 if (E && isa<CXXUuidofExpr>(E)) {
6435 Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts());
6436 break;
6437 }
6438 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6439 << Arg->getSourceRange();
6440 return ExprError();
6441 }
6442 // -- a subobject
6443 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6444 VD && VD->getType()->isArrayType() &&
6445 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
6446 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6447 // Per defect report (no number yet):
6448 // ... other than a pointer to the first element of a complete array
6449 // object.
6450 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6451 Value.isLValueOnePastTheEnd()) {
6452 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6453 << Value.getAsString(Context, ParamType);
6454 return ExprError();
6455 }
6456 assert((VD || !ParamType->isReferenceType()) &&(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6457, __PRETTY_FUNCTION__))
6457 "null reference should not be a constant expression")(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6457, __PRETTY_FUNCTION__))
;
6458 assert((!VD || !ParamType->isNullPtrType()) &&(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6459, __PRETTY_FUNCTION__))
6459 "non-null value of type nullptr_t?")(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6459, __PRETTY_FUNCTION__))
;
6460 Converted = VD ? TemplateArgument(VD, CanonParamType)
6461 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6462 break;
6463 }
6464 case APValue::AddrLabelDiff:
6465 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6466 case APValue::FixedPoint:
6467 case APValue::Float:
6468 case APValue::ComplexInt:
6469 case APValue::ComplexFloat:
6470 case APValue::Vector:
6471 case APValue::Array:
6472 case APValue::Struct:
6473 case APValue::Union:
6474 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6474)
;
6475 }
6476
6477 return ArgResult.get();
6478 }
6479
6480 // C++ [temp.arg.nontype]p5:
6481 // The following conversions are performed on each expression used
6482 // as a non-type template-argument. If a non-type
6483 // template-argument cannot be converted to the type of the
6484 // corresponding template-parameter then the program is
6485 // ill-formed.
6486 if (ParamType->isIntegralOrEnumerationType()) {
6487 // C++11:
6488 // -- for a non-type template-parameter of integral or
6489 // enumeration type, conversions permitted in a converted
6490 // constant expression are applied.
6491 //
6492 // C++98:
6493 // -- for a non-type template-parameter of integral or
6494 // enumeration type, integral promotions (4.5) and integral
6495 // conversions (4.7) are applied.
6496
6497 if (getLangOpts().CPlusPlus11) {
6498 // C++ [temp.arg.nontype]p1:
6499 // A template-argument for a non-type, non-template template-parameter
6500 // shall be one of:
6501 //
6502 // -- for a non-type template-parameter of integral or enumeration
6503 // type, a converted constant expression of the type of the
6504 // template-parameter; or
6505 llvm::APSInt Value;
6506 ExprResult ArgResult =
6507 CheckConvertedConstantExpression(Arg, ParamType, Value,
6508 CCEK_TemplateArg);
6509 if (ArgResult.isInvalid())
6510 return ExprError();
6511
6512 // We can't check arbitrary value-dependent arguments.
6513 if (ArgResult.get()->isValueDependent()) {
6514 Converted = TemplateArgument(ArgResult.get());
6515 return ArgResult;
6516 }
6517
6518 // Widen the argument value to sizeof(parameter type). This is almost
6519 // always a no-op, except when the parameter type is bool. In
6520 // that case, this may extend the argument from 1 bit to 8 bits.
6521 QualType IntegerType = ParamType;
6522 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6523 IntegerType = Enum->getDecl()->getIntegerType();
6524 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
6525
6526 Converted = TemplateArgument(Context, Value,
6527 Context.getCanonicalType(ParamType));
6528 return ArgResult;
6529 }
6530
6531 ExprResult ArgResult = DefaultLvalueConversion(Arg);
6532 if (ArgResult.isInvalid())
6533 return ExprError();
6534 Arg = ArgResult.get();
6535
6536 QualType ArgType = Arg->getType();
6537
6538 // C++ [temp.arg.nontype]p1:
6539 // A template-argument for a non-type, non-template
6540 // template-parameter shall be one of:
6541 //
6542 // -- an integral constant-expression of integral or enumeration
6543 // type; or
6544 // -- the name of a non-type template-parameter; or
6545 llvm::APSInt Value;
6546 if (!ArgType->isIntegralOrEnumerationType()) {
6547 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
6548 << ArgType << Arg->getSourceRange();
6549 Diag(Param->getLocation(), diag::note_template_param_here);
6550 return ExprError();
6551 } else if (!Arg->isValueDependent()) {
6552 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6553 QualType T;
6554
6555 public:
6556 TmplArgICEDiagnoser(QualType T) : T(T) { }
6557
6558 void diagnoseNotICE(Sema &S, SourceLocation Loc,
6559 SourceRange SR) override {
6560 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
6561 }
6562 } Diagnoser(ArgType);
6563
6564 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
6565 false).get();
6566 if (!Arg)
6567 return ExprError();
6568 }
6569
6570 // From here on out, all we care about is the unqualified form
6571 // of the argument type.
6572 ArgType = ArgType.getUnqualifiedType();
6573
6574 // Try to convert the argument to the parameter's type.
6575 if (Context.hasSameType(ParamType, ArgType)) {
6576 // Okay: no conversion necessary
6577 } else if (ParamType->isBooleanType()) {
6578 // This is an integral-to-boolean conversion.
6579 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6580 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6581 !ParamType->isEnumeralType()) {
6582 // This is an integral promotion or conversion.
6583 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6584 } else {
6585 // We can't perform this conversion.
6586 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6587 << Arg->getType() << ParamType << Arg->getSourceRange();
6588 Diag(Param->getLocation(), diag::note_template_param_here);
6589 return ExprError();
6590 }
6591
6592 // Add the value of this argument to the list of converted
6593 // arguments. We use the bitwidth and signedness of the template
6594 // parameter.
6595 if (Arg->isValueDependent()) {
6596 // The argument is value-dependent. Create a new
6597 // TemplateArgument with the converted expression.
6598 Converted = TemplateArgument(Arg);
6599 return Arg;
6600 }
6601
6602 QualType IntegerType = Context.getCanonicalType(ParamType);
6603 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6604 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6605
6606 if (ParamType->isBooleanType()) {
6607 // Value must be zero or one.
6608 Value = Value != 0;
6609 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6610 if (Value.getBitWidth() != AllowedBits)
6611 Value = Value.extOrTrunc(AllowedBits);
6612 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6613 } else {
6614 llvm::APSInt OldValue = Value;
6615
6616 // Coerce the template argument's value to the value it will have
6617 // based on the template parameter's type.
6618 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6619 if (Value.getBitWidth() != AllowedBits)
6620 Value = Value.extOrTrunc(AllowedBits);
6621 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6622
6623 // Complain if an unsigned parameter received a negative value.
6624 if (IntegerType->isUnsignedIntegerOrEnumerationType()
6625 && (OldValue.isSigned() && OldValue.isNegative())) {
6626 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
6627 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6628 << Arg->getSourceRange();
6629 Diag(Param->getLocation(), diag::note_template_param_here);
6630 }
6631
6632 // Complain if we overflowed the template parameter's type.
6633 unsigned RequiredBits;
6634 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6635 RequiredBits = OldValue.getActiveBits();
6636 else if (OldValue.isUnsigned())
6637 RequiredBits = OldValue.getActiveBits() + 1;
6638 else
6639 RequiredBits = OldValue.getMinSignedBits();
6640 if (RequiredBits > AllowedBits) {
6641 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
6642 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6643 << Arg->getSourceRange();
6644 Diag(Param->getLocation(), diag::note_template_param_here);
6645 }
6646 }
6647
6648 Converted = TemplateArgument(Context, Value,
6649 ParamType->isEnumeralType()
6650 ? Context.getCanonicalType(ParamType)
6651 : IntegerType);
6652 return Arg;
6653 }
6654
6655 QualType ArgType = Arg->getType();
6656 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6657
6658 // Handle pointer-to-function, reference-to-function, and
6659 // pointer-to-member-function all in (roughly) the same way.
6660 if (// -- For a non-type template-parameter of type pointer to
6661 // function, only the function-to-pointer conversion (4.3) is
6662 // applied. If the template-argument represents a set of
6663 // overloaded functions (or a pointer to such), the matching
6664 // function is selected from the set (13.4).
6665 (ParamType->isPointerType() &&
6666 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6667 // -- For a non-type template-parameter of type reference to
6668 // function, no conversions apply. If the template-argument
6669 // represents a set of overloaded functions, the matching
6670 // function is selected from the set (13.4).
6671 (ParamType->isReferenceType() &&
6672 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6673 // -- For a non-type template-parameter of type pointer to
6674 // member function, no conversions apply. If the
6675 // template-argument represents a set of overloaded member
6676 // functions, the matching member function is selected from
6677 // the set (13.4).
6678 (ParamType->isMemberPointerType() &&
6679 ParamType->getAs<MemberPointerType>()->getPointeeType()
6680 ->isFunctionType())) {
6681
6682 if (Arg->getType() == Context.OverloadTy) {
6683 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6684 true,
6685 FoundResult)) {
6686 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
6687 return ExprError();
6688
6689 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6690 ArgType = Arg->getType();
6691 } else
6692 return ExprError();
6693 }
6694
6695 if (!ParamType->isMemberPointerType()) {
6696 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6697 ParamType,
6698 Arg, Converted))
6699 return ExprError();
6700 return Arg;
6701 }
6702
6703 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6704 Converted))
6705 return ExprError();
6706 return Arg;
6707 }
6708
6709 if (ParamType->isPointerType()) {
6710 // -- for a non-type template-parameter of type pointer to
6711 // object, qualification conversions (4.4) and the
6712 // array-to-pointer conversion (4.2) are applied.
6713 // C++0x also allows a value of std::nullptr_t.
6714 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6715, __PRETTY_FUNCTION__))
6715 "Only object pointers allowed here")((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6715, __PRETTY_FUNCTION__))
;
6716
6717 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6718 ParamType,
6719 Arg, Converted))
6720 return ExprError();
6721 return Arg;
6722 }
6723
6724 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
6725 // -- For a non-type template-parameter of type reference to
6726 // object, no conversions apply. The type referred to by the
6727 // reference may be more cv-qualified than the (otherwise
6728 // identical) type of the template-argument. The
6729 // template-parameter is bound directly to the
6730 // template-argument, which must be an lvalue.
6731 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6732, __PRETTY_FUNCTION__))
6732 "Only object references allowed here")((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6732, __PRETTY_FUNCTION__))
;
6733
6734 if (Arg->getType() == Context.OverloadTy) {
6735 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
6736 ParamRefType->getPointeeType(),
6737 true,
6738 FoundResult)) {
6739 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
6740 return ExprError();
6741
6742 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6743 ArgType = Arg->getType();
6744 } else
6745 return ExprError();
6746 }
6747
6748 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6749 ParamType,
6750 Arg, Converted))
6751 return ExprError();
6752 return Arg;
6753 }
6754
6755 // Deal with parameters of type std::nullptr_t.
6756 if (ParamType->isNullPtrType()) {
6757 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6758 Converted = TemplateArgument(Arg);
6759 return Arg;
6760 }
6761
6762 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
6763 case NPV_NotNullPointer:
6764 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
6765 << Arg->getType() << ParamType;
6766 Diag(Param->getLocation(), diag::note_template_param_here);
6767 return ExprError();
6768
6769 case NPV_Error:
6770 return ExprError();
6771
6772 case NPV_NullPointer:
6773 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6774 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
6775 /*isNullPtr*/true);
6776 return Arg;
6777 }
6778 }
6779
6780 // -- For a non-type template-parameter of type pointer to data
6781 // member, qualification conversions (4.4) are applied.
6782 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")((ParamType->isMemberPointerType() && "Only pointers to members remain"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6782, __PRETTY_FUNCTION__))
;
6783
6784 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6785 Converted))
6786 return ExprError();
6787 return Arg;
6788}
6789
6790static void DiagnoseTemplateParameterListArityMismatch(
6791 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
6792 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
6793
6794/// Check a template argument against its corresponding
6795/// template template parameter.
6796///
6797/// This routine implements the semantics of C++ [temp.arg.template].
6798/// It returns true if an error occurred, and false otherwise.
6799bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params,
6800 TemplateArgumentLoc &Arg) {
6801 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
6802 TemplateDecl *Template = Name.getAsTemplateDecl();
6803 if (!Template) {
6804 // Any dependent template name is fine.
6805 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")((Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? static_cast<void> (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6805, __PRETTY_FUNCTION__))
;
6806 return false;
6807 }
6808
6809 if (Template->isInvalidDecl())
6810 return true;
6811
6812 // C++0x [temp.arg.template]p1:
6813 // A template-argument for a template template-parameter shall be
6814 // the name of a class template or an alias template, expressed as an
6815 // id-expression. When the template-argument names a class template, only
6816 // primary class templates are considered when matching the
6817 // template template argument with the corresponding parameter;
6818 // partial specializations are not considered even if their
6819 // parameter lists match that of the template template parameter.
6820 //
6821 // Note that we also allow template template parameters here, which
6822 // will happen when we are dealing with, e.g., class template
6823 // partial specializations.
6824 if (!isa<ClassTemplateDecl>(Template) &&
6825 !isa<TemplateTemplateParmDecl>(Template) &&
6826 !isa<TypeAliasTemplateDecl>(Template) &&
6827 !isa<BuiltinTemplateDecl>(Template)) {
6828 assert(isa<FunctionTemplateDecl>(Template) &&((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6829, __PRETTY_FUNCTION__))
6829 "Only function templates are possible here")((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6829, __PRETTY_FUNCTION__))
;
6830 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
6831 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
6832 << Template;
6833 }
6834
6835 // C++1z [temp.arg.template]p3: (DR 150)
6836 // A template-argument matches a template template-parameter P when P
6837 // is at least as specialized as the template-argument A.
6838 if (getLangOpts().RelaxedTemplateTemplateArgs) {
6839 // Quick check for the common case:
6840 // If P contains a parameter pack, then A [...] matches P if each of A's
6841 // template parameters matches the corresponding template parameter in
6842 // the template-parameter-list of P.
6843 if (TemplateParameterListsAreEqual(
6844 Template->getTemplateParameters(), Params, false,
6845 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
6846 return false;
6847
6848 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
6849 Arg.getLocation()))
6850 return false;
6851 // FIXME: Produce better diagnostics for deduction failures.
6852 }
6853
6854 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
6855 Params,
6856 true,
6857 TPL_TemplateTemplateArgumentMatch,
6858 Arg.getLocation());
6859}
6860
6861/// Given a non-type template argument that refers to a
6862/// declaration and the type of its corresponding non-type template
6863/// parameter, produce an expression that properly refers to that
6864/// declaration.
6865ExprResult
6866Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
6867 QualType ParamType,
6868 SourceLocation Loc) {
6869 // C++ [temp.param]p8:
6870 //
6871 // A non-type template-parameter of type "array of T" or
6872 // "function returning T" is adjusted to be of type "pointer to
6873 // T" or "pointer to function returning T", respectively.
6874 if (ParamType->isArrayType())
6875 ParamType = Context.getArrayDecayedType(ParamType);
6876 else if (ParamType->isFunctionType())
6877 ParamType = Context.getPointerType(ParamType);
6878
6879 // For a NULL non-type template argument, return nullptr casted to the
6880 // parameter's type.
6881 if (Arg.getKind() == TemplateArgument::NullPtr) {
6882 return ImpCastExprToType(
6883 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
6884 ParamType,
6885 ParamType->getAs<MemberPointerType>()
6886 ? CK_NullToMemberPointer
6887 : CK_NullToPointer);
6888 }
6889 assert(Arg.getKind() == TemplateArgument::Declaration &&((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6890, __PRETTY_FUNCTION__))
6890 "Only declaration template arguments permitted here")((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6890, __PRETTY_FUNCTION__))
;
6891
6892 ValueDecl *VD = Arg.getAsDecl();
6893
6894 if (VD->getDeclContext()->isRecord() &&
6895 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
6896 isa<IndirectFieldDecl>(VD))) {
6897 // If the value is a class member, we might have a pointer-to-member.
6898 // Determine whether the non-type template template parameter is of
6899 // pointer-to-member type. If so, we need to build an appropriate
6900 // expression for a pointer-to-member, since a "normal" DeclRefExpr
6901 // would refer to the member itself.
6902 if (ParamType->isMemberPointerType()) {
6903 QualType ClassType
6904 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
6905 NestedNameSpecifier *Qualifier
6906 = NestedNameSpecifier::Create(Context, nullptr, false,
6907 ClassType.getTypePtr());
6908 CXXScopeSpec SS;
6909 SS.MakeTrivial(Context, Qualifier, Loc);
6910
6911 // The actual value-ness of this is unimportant, but for
6912 // internal consistency's sake, references to instance methods
6913 // are r-values.
6914 ExprValueKind VK = VK_LValue;
6915 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
6916 VK = VK_RValue;
6917
6918 ExprResult RefExpr = BuildDeclRefExpr(VD,
6919 VD->getType().getNonReferenceType(),
6920 VK,
6921 Loc,
6922 &SS);
6923 if (RefExpr.isInvalid())
6924 return ExprError();
6925
6926 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6927
6928 // We might need to perform a trailing qualification conversion, since
6929 // the element type on the parameter could be more qualified than the
6930 // element type in the expression we constructed.
6931 bool ObjCLifetimeConversion;
6932 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
6933 ParamType.getUnqualifiedType(), false,
6934 ObjCLifetimeConversion))
6935 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
6936
6937 assert(!RefExpr.isInvalid() &&((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6939, __PRETTY_FUNCTION__))
6938 Context.hasSameType(((Expr*) RefExpr.get())->getType(),((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6939, __PRETTY_FUNCTION__))
6939 ParamType.getUnqualifiedType()))((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6939, __PRETTY_FUNCTION__))
;
6940 return RefExpr;
6941 }
6942 }
6943
6944 QualType T = VD->getType().getNonReferenceType();
6945
6946 if (ParamType->isPointerType()) {
6947 // When the non-type template parameter is a pointer, take the
6948 // address of the declaration.
6949 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
6950 if (RefExpr.isInvalid())
6951 return ExprError();
6952
6953 if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) &&
6954 (T->isFunctionType() || T->isArrayType())) {
6955 // Decay functions and arrays unless we're forming a pointer to array.
6956 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
6957 if (RefExpr.isInvalid())
6958 return ExprError();
6959
6960 return RefExpr;
6961 }
6962
6963 // Take the address of everything else
6964 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6965 }
6966
6967 ExprValueKind VK = VK_RValue;
6968
6969 // If the non-type template parameter has reference type, qualify the
6970 // resulting declaration reference with the extra qualifiers on the
6971 // type that the reference refers to.
6972 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
6973 VK = VK_LValue;
6974 T = Context.getQualifiedType(T,
6975 TargetRef->getPointeeType().getQualifiers());
6976 } else if (isa<FunctionDecl>(VD)) {
6977 // References to functions are always lvalues.
6978 VK = VK_LValue;
6979 }
6980
6981 return BuildDeclRefExpr(VD, T, VK, Loc);
6982}
6983
6984/// Construct a new expression that refers to the given
6985/// integral template argument with the given source-location
6986/// information.
6987///
6988/// This routine takes care of the mapping from an integral template
6989/// argument (which may have any integral type) to the appropriate
6990/// literal value.
6991ExprResult
6992Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
6993 SourceLocation Loc) {
6994 assert(Arg.getKind() == TemplateArgument::Integral &&((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6995, __PRETTY_FUNCTION__))
6995 "Operation is only valid for integral template arguments")((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6995, __PRETTY_FUNCTION__))
;
6996 QualType OrigT = Arg.getIntegralType();
6997
6998 // If this is an enum type that we're instantiating, we need to use an integer
6999 // type the same size as the enumerator. We don't want to build an
7000 // IntegerLiteral with enum type. The integer type of an enum type can be of
7001 // any integral type with C++11 enum classes, make sure we create the right
7002 // type of literal for it.
7003 QualType T = OrigT;
7004 if (const EnumType *ET = OrigT->getAs<EnumType>())
7005 T = ET->getDecl()->getIntegerType();
7006
7007 Expr *E;
7008 if (T->isAnyCharacterType()) {
7009 CharacterLiteral::CharacterKind Kind;
7010 if (T->isWideCharType())
7011 Kind = CharacterLiteral::Wide;
7012 else if (T->isChar8Type() && getLangOpts().Char8)
7013 Kind = CharacterLiteral::UTF8;
7014 else if (T->isChar16Type())
7015 Kind = CharacterLiteral::UTF16;
7016 else if (T->isChar32Type())
7017 Kind = CharacterLiteral::UTF32;
7018 else
7019 Kind = CharacterLiteral::Ascii;
7020
7021 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7022 Kind, T, Loc);
7023 } else if (T->isBooleanType()) {
7024 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7025 T, Loc);
7026 } else if (T->isNullPtrType()) {
7027 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7028 } else {
7029 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7030 }
7031
7032 if (OrigT->isEnumeralType()) {
7033 // FIXME: This is a hack. We need a better way to handle substituted
7034 // non-type template parameters.
7035 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
7036 nullptr,
7037 Context.getTrivialTypeSourceInfo(OrigT, Loc),
7038 Loc, Loc);
7039 }
7040
7041 return E;
7042}
7043
7044/// Match two template parameters within template parameter lists.
7045static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7046 bool Complain,
7047 Sema::TemplateParameterListEqualKind Kind,
7048 SourceLocation TemplateArgLoc) {
7049 // Check the actual kind (type, non-type, template).
7050 if (Old->getKind() != New->getKind()) {
7051 if (Complain) {
7052 unsigned NextDiag = diag::err_template_param_different_kind;
7053 if (TemplateArgLoc.isValid()) {
7054 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7055 NextDiag = diag::note_template_param_different_kind;
7056 }
7057 S.Diag(New->getLocation(), NextDiag)
7058 << (Kind != Sema::TPL_TemplateMatch);
7059 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7060 << (Kind != Sema::TPL_TemplateMatch);
7061 }
7062
7063 return false;
7064 }
7065
7066 // Check that both are parameter packs or neither are parameter packs.
7067 // However, if we are matching a template template argument to a
7068 // template template parameter, the template template parameter can have
7069 // a parameter pack where the template template argument does not.
7070 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7071 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7072 Old->isTemplateParameterPack())) {
7073 if (Complain) {
7074 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7075 if (TemplateArgLoc.isValid()) {
7076 S.Diag(TemplateArgLoc,
7077 diag::err_template_arg_template_params_mismatch);
7078 NextDiag = diag::note_template_parameter_pack_non_pack;
7079 }
7080
7081 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7082 : isa<NonTypeTemplateParmDecl>(New)? 1
7083 : 2;
7084 S.Diag(New->getLocation(), NextDiag)
7085 << ParamKind << New->isParameterPack();
7086 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7087 << ParamKind << Old->isParameterPack();
7088 }
7089
7090 return false;
7091 }
7092
7093 // For non-type template parameters, check the type of the parameter.
7094 if (NonTypeTemplateParmDecl *OldNTTP
7095 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7096 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7097
7098 // If we are matching a template template argument to a template
7099 // template parameter and one of the non-type template parameter types
7100 // is dependent, then we must wait until template instantiation time
7101 // to actually compare the arguments.
7102 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7103 (OldNTTP->getType()->isDependentType() ||
7104 NewNTTP->getType()->isDependentType()))
7105 return true;
7106
7107 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7108 if (Complain) {
7109 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7110 if (TemplateArgLoc.isValid()) {
7111 S.Diag(TemplateArgLoc,
7112 diag::err_template_arg_template_params_mismatch);
7113 NextDiag = diag::note_template_nontype_parm_different_type;
7114 }
7115 S.Diag(NewNTTP->getLocation(), NextDiag)
7116 << NewNTTP->getType()
7117 << (Kind != Sema::TPL_TemplateMatch);
7118 S.Diag(OldNTTP->getLocation(),
7119 diag::note_template_nontype_parm_prev_declaration)
7120 << OldNTTP->getType();
7121 }
7122
7123 return false;
7124 }
7125
7126 return true;
7127 }
7128
7129 // For template template parameters, check the template parameter types.
7130 // The template parameter lists of template template
7131 // parameters must agree.
7132 if (TemplateTemplateParmDecl *OldTTP
7133 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7134 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7135 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7136 OldTTP->getTemplateParameters(),
7137 Complain,
7138 (Kind == Sema::TPL_TemplateMatch
7139 ? Sema::TPL_TemplateTemplateParmMatch
7140 : Kind),
7141 TemplateArgLoc);
7142 }
7143
7144 return true;
7145}
7146
7147/// Diagnose a known arity mismatch when comparing template argument
7148/// lists.
7149static
7150void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7151 TemplateParameterList *New,
7152 TemplateParameterList *Old,
7153 Sema::TemplateParameterListEqualKind Kind,
7154 SourceLocation TemplateArgLoc) {
7155 unsigned NextDiag = diag::err_template_param_list_different_arity;
7156 if (TemplateArgLoc.isValid()) {
7157 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7158 NextDiag = diag::note_template_param_list_different_arity;
7159 }
7160 S.Diag(New->getTemplateLoc(), NextDiag)
7161 << (New->size() > Old->size())
7162 << (Kind != Sema::TPL_TemplateMatch)
7163 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7164 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7165 << (Kind != Sema::TPL_TemplateMatch)
7166 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7167}
7168
7169/// Determine whether the given template parameter lists are
7170/// equivalent.
7171///
7172/// \param New The new template parameter list, typically written in the
7173/// source code as part of a new template declaration.
7174///
7175/// \param Old The old template parameter list, typically found via
7176/// name lookup of the template declared with this template parameter
7177/// list.
7178///
7179/// \param Complain If true, this routine will produce a diagnostic if
7180/// the template parameter lists are not equivalent.
7181///
7182/// \param Kind describes how we are to match the template parameter lists.
7183///
7184/// \param TemplateArgLoc If this source location is valid, then we
7185/// are actually checking the template parameter list of a template
7186/// argument (New) against the template parameter list of its
7187/// corresponding template template parameter (Old). We produce
7188/// slightly different diagnostics in this scenario.
7189///
7190/// \returns True if the template parameter lists are equal, false
7191/// otherwise.
7192bool
7193Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7194 TemplateParameterList *Old,
7195 bool Complain,
7196 TemplateParameterListEqualKind Kind,
7197 SourceLocation TemplateArgLoc) {
7198 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7199 if (Complain)
7200 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7201 TemplateArgLoc);
7202
7203 return false;
7204 }
7205
7206 // C++0x [temp.arg.template]p3:
7207 // A template-argument matches a template template-parameter (call it P)
7208 // when each of the template parameters in the template-parameter-list of
7209 // the template-argument's corresponding class template or alias template
7210 // (call it A) matches the corresponding template parameter in the
7211 // template-parameter-list of P. [...]
7212 TemplateParameterList::iterator NewParm = New->begin();
7213 TemplateParameterList::iterator NewParmEnd = New->end();
7214 for (TemplateParameterList::iterator OldParm = Old->begin(),
7215 OldParmEnd = Old->end();
7216 OldParm != OldParmEnd; ++OldParm) {
7217 if (Kind != TPL_TemplateTemplateArgumentMatch ||
7218 !(*OldParm)->isTemplateParameterPack()) {
7219 if (NewParm == NewParmEnd) {
7220 if (Complain)
7221 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7222 TemplateArgLoc);
7223
7224 return false;
7225 }
7226
7227 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7228 Kind, TemplateArgLoc))
7229 return false;
7230
7231 ++NewParm;
7232 continue;
7233 }
7234
7235 // C++0x [temp.arg.template]p3:
7236 // [...] When P's template- parameter-list contains a template parameter
7237 // pack (14.5.3), the template parameter pack will match zero or more
7238 // template parameters or template parameter packs in the
7239 // template-parameter-list of A with the same type and form as the
7240 // template parameter pack in P (ignoring whether those template
7241 // parameters are template parameter packs).
7242 for (; NewParm != NewParmEnd; ++NewParm) {
7243 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7244 Kind, TemplateArgLoc))
7245 return false;
7246 }
7247 }
7248
7249 // Make sure we exhausted all of the arguments.
7250 if (NewParm != NewParmEnd) {
7251 if (Complain)
7252 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7253 TemplateArgLoc);
7254
7255 return false;
7256 }
7257
7258 return true;
7259}
7260
7261/// Check whether a template can be declared within this scope.
7262///
7263/// If the template declaration is valid in this scope, returns
7264/// false. Otherwise, issues a diagnostic and returns true.
7265bool
7266Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7267 if (!S)
7268 return false;
7269
7270 // Find the nearest enclosing declaration scope.
7271 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7272 (S->getFlags() & Scope::TemplateParamScope) != 0)
7273 S = S->getParent();
7274
7275 // C++ [temp]p4:
7276 // A template [...] shall not have C linkage.
7277 DeclContext *Ctx = S->getEntity();
7278 if (Ctx && Ctx->isExternCContext()) {
7279 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7280 << TemplateParams->getSourceRange();
7281 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7282 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7283 return true;
7284 }
7285 Ctx = Ctx->getRedeclContext();
7286
7287 // C++ [temp]p2:
7288 // A template-declaration can appear only as a namespace scope or
7289 // class scope declaration.
7290 if (Ctx) {
7291 if (Ctx->isFileContext())
7292 return false;
7293 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7294 // C++ [temp.mem]p2:
7295 // A local class shall not have member templates.
7296 if (RD->isLocalClass())
7297 return Diag(TemplateParams->getTemplateLoc(),
7298 diag::err_template_inside_local_class)
7299 << TemplateParams->getSourceRange();
7300 else
7301 return false;
7302 }
7303 }
7304
7305 return Diag(TemplateParams->getTemplateLoc(),
7306 diag::err_template_outside_namespace_or_class_scope)
7307 << TemplateParams->getSourceRange();
7308}
7309
7310/// Determine what kind of template specialization the given declaration
7311/// is.
7312static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7313 if (!D)
7314 return TSK_Undeclared;
7315
7316 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7317 return Record->getTemplateSpecializationKind();
7318 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7319 return Function->getTemplateSpecializationKind();
7320 if (VarDecl *Var = dyn_cast<VarDecl>(D))
7321 return Var->getTemplateSpecializationKind();
7322
7323 return TSK_Undeclared;
7324}
7325
7326/// Check whether a specialization is well-formed in the current
7327/// context.
7328///
7329/// This routine determines whether a template specialization can be declared
7330/// in the current context (C++ [temp.expl.spec]p2).
7331///
7332/// \param S the semantic analysis object for which this check is being
7333/// performed.
7334///
7335/// \param Specialized the entity being specialized or instantiated, which
7336/// may be a kind of template (class template, function template, etc.) or
7337/// a member of a class template (member function, static data member,
7338/// member class).
7339///
7340/// \param PrevDecl the previous declaration of this entity, if any.
7341///
7342/// \param Loc the location of the explicit specialization or instantiation of
7343/// this entity.
7344///
7345/// \param IsPartialSpecialization whether this is a partial specialization of
7346/// a class template.
7347///
7348/// \returns true if there was an error that we cannot recover from, false
7349/// otherwise.
7350static bool CheckTemplateSpecializationScope(Sema &S,
7351 NamedDecl *Specialized,
7352 NamedDecl *PrevDecl,
7353 SourceLocation Loc,
7354 bool IsPartialSpecialization) {
7355 // Keep these "kind" numbers in sync with the %select statements in the
7356 // various diagnostics emitted by this routine.
7357 int EntityKind = 0;
7358 if (isa<ClassTemplateDecl>(Specialized))
7359 EntityKind = IsPartialSpecialization? 1 : 0;
7360 else if (isa<VarTemplateDecl>(Specialized))
7361 EntityKind = IsPartialSpecialization ? 3 : 2;
7362 else if (isa<FunctionTemplateDecl>(Specialized))
7363 EntityKind = 4;
7364 else if (isa<CXXMethodDecl>(Specialized))
7365 EntityKind = 5;
7366 else if (isa<VarDecl>(Specialized))
7367 EntityKind = 6;
7368 else if (isa<RecordDecl>(Specialized))
7369 EntityKind = 7;
7370 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7371 EntityKind = 8;
7372 else {
7373 S.Diag(Loc, diag::err_template_spec_unknown_kind)
7374 << S.getLangOpts().CPlusPlus11;
7375 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7376 return true;
7377 }
7378
7379 // C++ [temp.expl.spec]p2:
7380 // An explicit specialization may be declared in any scope in which
7381 // the corresponding primary template may be defined.
7382 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7383 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7384 << Specialized;
7385 return true;
7386 }
7387
7388 // C++ [temp.class.spec]p6:
7389 // A class template partial specialization may be declared in any
7390 // scope in which the primary template may be defined.
7391 DeclContext *SpecializedContext =
7392 Specialized->getDeclContext()->getRedeclContext();
7393 DeclContext *DC = S.CurContext->getRedeclContext();
7394
7395 // Make sure that this redeclaration (or definition) occurs in the same
7396 // scope or an enclosing namespace.
7397 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
7398 : DC->Equals(SpecializedContext))) {
7399 if (isa<TranslationUnitDecl>(SpecializedContext))
7400 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7401 << EntityKind << Specialized;
7402 else {
7403 auto *ND = cast<NamedDecl>(SpecializedContext);
7404 int Diag = diag::err_template_spec_redecl_out_of_scope;
7405 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
7406 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7407 S.Diag(Loc, Diag) << EntityKind << Specialized
7408 << ND << isa<CXXRecordDecl>(ND);
7409 }
7410
7411 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7412
7413 // Don't allow specializing in the wrong class during error recovery.
7414 // Otherwise, things can go horribly wrong.
7415 if (DC->isRecord())
7416 return true;
7417 }
7418
7419 return false;
7420}
7421
7422static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7423 if (!E->isTypeDependent())
7424 return SourceLocation();
7425 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7426 Checker.TraverseStmt(E);
7427 if (Checker.MatchLoc.isInvalid())
7428 return E->getSourceRange();
7429 return Checker.MatchLoc;
7430}
7431
7432static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7433 if (!TL.getType()->isDependentType())
7434 return SourceLocation();
7435 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7436 Checker.TraverseTypeLoc(TL);
7437 if (Checker.MatchLoc.isInvalid())
7438 return TL.getSourceRange();
7439 return Checker.MatchLoc;
7440}
7441
7442/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7443/// that checks non-type template partial specialization arguments.
7444static bool CheckNonTypeTemplatePartialSpecializationArgs(
7445 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7446 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7447 for (unsigned I = 0; I != NumArgs; ++I) {
7448 if (Args[I].getKind() == TemplateArgument::Pack) {
7449 if (CheckNonTypeTemplatePartialSpecializationArgs(
7450 S, TemplateNameLoc, Param, Args[I].pack_begin(),
7451 Args[I].pack_size(), IsDefaultArgument))
7452 return true;
7453
7454 continue;
7455 }
7456
7457 if (Args[I].getKind() != TemplateArgument::Expression)
7458 continue;
7459
7460 Expr *ArgExpr = Args[I].getAsExpr();
7461
7462 // We can have a pack expansion of any of the bullets below.
7463 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7464 ArgExpr = Expansion->getPattern();
7465
7466 // Strip off any implicit casts we added as part of type checking.
7467 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7468 ArgExpr = ICE->getSubExpr();
7469
7470 // C++ [temp.class.spec]p8:
7471 // A non-type argument is non-specialized if it is the name of a
7472 // non-type parameter. All other non-type arguments are
7473 // specialized.
7474 //
7475 // Below, we check the two conditions that only apply to
7476 // specialized non-type arguments, so skip any non-specialized
7477 // arguments.
7478 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7479 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7480 continue;
7481
7482 // C++ [temp.class.spec]p9:
7483 // Within the argument list of a class template partial
7484 // specialization, the following restrictions apply:
7485 // -- A partially specialized non-type argument expression
7486 // shall not involve a template parameter of the partial
7487 // specialization except when the argument expression is a
7488 // simple identifier.
7489 // -- The type of a template parameter corresponding to a
7490 // specialized non-type argument shall not be dependent on a
7491 // parameter of the specialization.
7492 // DR1315 removes the first bullet, leaving an incoherent set of rules.
7493 // We implement a compromise between the original rules and DR1315:
7494 // -- A specialized non-type template argument shall not be
7495 // type-dependent and the corresponding template parameter
7496 // shall have a non-dependent type.
7497 SourceRange ParamUseRange =
7498 findTemplateParameterInType(Param->getDepth(), ArgExpr);
7499 if (ParamUseRange.isValid()) {
7500 if (IsDefaultArgument) {
7501 S.Diag(TemplateNameLoc,
7502 diag::err_dependent_non_type_arg_in_partial_spec);
7503 S.Diag(ParamUseRange.getBegin(),
7504 diag::note_dependent_non_type_default_arg_in_partial_spec)
7505 << ParamUseRange;
7506 } else {
7507 S.Diag(ParamUseRange.getBegin(),
7508 diag::err_dependent_non_type_arg_in_partial_spec)
7509 << ParamUseRange;
7510 }
7511 return true;
7512 }
7513
7514 ParamUseRange = findTemplateParameter(
7515 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7516 if (ParamUseRange.isValid()) {
7517 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
7518 diag::err_dependent_typed_non_type_arg_in_partial_spec)
7519 << Param->getType();
7520 S.Diag(Param->getLocation(), diag::note_template_param_here)
7521 << (IsDefaultArgument ? ParamUseRange : SourceRange())
7522 << ParamUseRange;
7523 return true;
7524 }
7525 }
7526
7527 return false;
7528}
7529
7530/// Check the non-type template arguments of a class template
7531/// partial specialization according to C++ [temp.class.spec]p9.
7532///
7533/// \param TemplateNameLoc the location of the template name.
7534/// \param PrimaryTemplate the template parameters of the primary class
7535/// template.
7536/// \param NumExplicit the number of explicitly-specified template arguments.
7537/// \param TemplateArgs the template arguments of the class template
7538/// partial specialization.
7539///
7540/// \returns \c true if there was an error, \c false otherwise.
7541bool Sema::CheckTemplatePartialSpecializationArgs(
7542 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7543 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7544 // We have to be conservative when checking a template in a dependent
7545 // context.
7546 if (PrimaryTemplate->getDeclContext()->isDependentContext())
7547 return false;
7548
7549 TemplateParameterList *TemplateParams =
7550 PrimaryTemplate->getTemplateParameters();
7551 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7552 NonTypeTemplateParmDecl *Param
7553 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7554 if (!Param)
7555 continue;
7556
7557 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7558 Param, &TemplateArgs[I],
7559 1, I >= NumExplicit))
7560 return true;
7561 }
7562
7563 return false;
7564}
7565
7566DeclResult Sema::ActOnClassTemplateSpecialization(
7567 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7568 SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId,
7569 const ParsedAttributesView &Attr,
7570 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
7571 assert(TUK != TUK_Reference && "References are not specializations")((TUK != TUK_Reference && "References are not specializations"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7571, __PRETTY_FUNCTION__))
;
7572
7573 CXXScopeSpec &SS = TemplateId.SS;
7574
7575 // NOTE: KWLoc is the location of the tag keyword. This will instead
7576 // store the location of the outermost template keyword in the declaration.
7577 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
7578 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
7579 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
7580 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
7581 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
7582
7583 // Find the class template we're specializing
7584 TemplateName Name = TemplateId.Template.get();
7585 ClassTemplateDecl *ClassTemplate
7586 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
7587
7588 if (!ClassTemplate) {
7589 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
7590 << (Name.getAsTemplateDecl() &&
7591 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
7592 return true;
7593 }
7594
7595 bool isMemberSpecialization = false;
7596 bool isPartialSpecialization = false;
7597
7598 // Check the validity of the template headers that introduce this
7599 // template.
7600 // FIXME: We probably shouldn't complain about these headers for
7601 // friend declarations.
7602 bool Invalid = false;
7603 TemplateParameterList *TemplateParams =
7604 MatchTemplateParametersToScopeSpecifier(
7605 KWLoc, TemplateNameLoc, SS, &TemplateId,
7606 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
7607 Invalid);
7608 if (Invalid)
7609 return true;
7610
7611 if (TemplateParams && TemplateParams->size() > 0) {
7612 isPartialSpecialization = true;
7613
7614 if (TUK == TUK_Friend) {
7615 Diag(KWLoc, diag::err_partial_specialization_friend)
7616 << SourceRange(LAngleLoc, RAngleLoc);
7617 return true;
7618 }
7619
7620 // C++ [temp.class.spec]p10:
7621 // The template parameter list of a specialization shall not
7622 // contain default template argument values.
7623 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7624 Decl *Param = TemplateParams->getParam(I);
7625 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
7626 if (TTP->hasDefaultArgument()) {
7627 Diag(TTP->getDefaultArgumentLoc(),
7628 diag::err_default_arg_in_partial_spec);
7629 TTP->removeDefaultArgument();
7630 }
7631 } else if (NonTypeTemplateParmDecl *NTTP
7632 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
7633 if (Expr *DefArg = NTTP->getDefaultArgument()) {
7634 Diag(NTTP->getDefaultArgumentLoc(),
7635 diag::err_default_arg_in_partial_spec)
7636 << DefArg->getSourceRange();
7637 NTTP->removeDefaultArgument();
7638 }
7639 } else {
7640 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
7641 if (TTP->hasDefaultArgument()) {
7642 Diag(TTP->getDefaultArgument().getLocation(),
7643 diag::err_default_arg_in_partial_spec)
7644 << TTP->getDefaultArgument().getSourceRange();
7645 TTP->removeDefaultArgument();
7646 }
7647 }
7648 }
7649 } else if (TemplateParams) {
7650 if (TUK == TUK_Friend)
7651 Diag(KWLoc, diag::err_template_spec_friend)
7652 << FixItHint::CreateRemoval(
7653 SourceRange(TemplateParams->getTemplateLoc(),
7654 TemplateParams->getRAngleLoc()))
7655 << SourceRange(LAngleLoc, RAngleLoc);
7656 } else {
7657 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")((TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7657, __PRETTY_FUNCTION__))
;
7658 }
7659
7660 // Check that the specialization uses the same tag kind as the
7661 // original template.
7662 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7663 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")((Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7663, __PRETTY_FUNCTION__))
;
7664 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7665 Kind, TUK == TUK_Definition, KWLoc,
7666 ClassTemplate->getIdentifier())) {
7667 Diag(KWLoc, diag::err_use_with_wrong_tag)
7668 << ClassTemplate
7669 << FixItHint::CreateReplacement(KWLoc,
7670 ClassTemplate->getTemplatedDecl()->getKindName());
7671 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7672 diag::note_previous_use);
7673 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7674 }
7675
7676 // Translate the parser's template argument list in our AST format.
7677 TemplateArgumentListInfo TemplateArgs =
7678 makeTemplateArgumentListInfo(*this, TemplateId);
7679
7680 // Check for unexpanded parameter packs in any of the template arguments.
7681 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7682 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
7683 UPPC_PartialSpecialization))
7684 return true;
7685
7686 // Check that the template argument list is well-formed for this
7687 // template.
7688 SmallVector<TemplateArgument, 4> Converted;
7689 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7690 TemplateArgs, false, Converted))
7691 return true;
7692
7693 // Find the class template (partial) specialization declaration that
7694 // corresponds to these arguments.
7695 if (isPartialSpecialization) {
7696 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
7697 TemplateArgs.size(), Converted))
7698 return true;
7699
7700 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
7701 // also do it during instantiation.
7702 bool InstantiationDependent;
7703 if (!Name.isDependent() &&
7704 !TemplateSpecializationType::anyDependentTemplateArguments(
7705 TemplateArgs.arguments(), InstantiationDependent)) {
7706 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
7707 << ClassTemplate->getDeclName();
7708 isPartialSpecialization = false;
7709 }
7710 }
7711
7712 void *InsertPos = nullptr;
7713 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
7714
7715 if (isPartialSpecialization)
7716 // FIXME: Template parameter list matters, too
7717 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
7718 else
7719 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
7720
7721 ClassTemplateSpecializationDecl *Specialization = nullptr;
7722
7723 // Check whether we can declare a class template specialization in
7724 // the current scope.
7725 if (TUK != TUK_Friend &&
7726 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
7727 TemplateNameLoc,
7728 isPartialSpecialization))
7729 return true;
7730
7731 // The canonical type
7732 QualType CanonType;
7733 if (isPartialSpecialization) {
7734 // Build the canonical type that describes the converted template
7735 // arguments of the class template partial specialization.
7736 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7737 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
7738 Converted);
7739
7740 if (Context.hasSameType(CanonType,
7741 ClassTemplate->getInjectedClassNameSpecialization())) {
7742 // C++ [temp.class.spec]p9b3:
7743 //
7744 // -- The argument list of the specialization shall not be identical
7745 // to the implicit argument list of the primary template.
7746 //
7747 // This rule has since been removed, because it's redundant given DR1495,
7748 // but we keep it because it produces better diagnostics and recovery.
7749 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
7750 << /*class template*/0 << (TUK == TUK_Definition)
7751 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
7752 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
7753 ClassTemplate->getIdentifier(),
7754 TemplateNameLoc,
7755 Attr,
7756 TemplateParams,
7757 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
7758 /*FriendLoc*/SourceLocation(),
7759 TemplateParameterLists.size() - 1,
7760 TemplateParameterLists.data());
7761 }
7762
7763 // Create a new class template partial specialization declaration node.
7764 ClassTemplatePartialSpecializationDecl *PrevPartial
7765 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
7766 ClassTemplatePartialSpecializationDecl *Partial
7767 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
7768 ClassTemplate->getDeclContext(),
7769 KWLoc, TemplateNameLoc,
7770 TemplateParams,
7771 ClassTemplate,
7772 Converted,
7773 TemplateArgs,
7774 CanonType,
7775 PrevPartial);
7776 SetNestedNameSpecifier(*this, Partial, SS);
7777 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
7778 Partial->setTemplateParameterListsInfo(
7779 Context, TemplateParameterLists.drop_back(1));
7780 }
7781
7782 if (!PrevPartial)
7783 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
7784 Specialization = Partial;
7785
7786 // If we are providing an explicit specialization of a member class
7787 // template specialization, make a note of that.
7788 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
7789 PrevPartial->setMemberSpecialization();
7790
7791 CheckTemplatePartialSpecialization(Partial);
7792 } else {
7793 // Create a new class template specialization declaration node for
7794 // this explicit specialization or friend declaration.
7795 Specialization
7796 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7797 ClassTemplate->getDeclContext(),
7798 KWLoc, TemplateNameLoc,
7799 ClassTemplate,
7800 Converted,
7801 PrevDecl);
7802 SetNestedNameSpecifier(*this, Specialization, SS);
7803 if (TemplateParameterLists.size() > 0) {
7804 Specialization->setTemplateParameterListsInfo(Context,
7805 TemplateParameterLists);
7806 }
7807
7808 if (!PrevDecl)
7809 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7810
7811 if (CurContext->isDependentContext()) {
7812 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7813 CanonType = Context.getTemplateSpecializationType(
7814 CanonTemplate, Converted);
7815 } else {
7816 CanonType = Context.getTypeDeclType(Specialization);
7817 }
7818 }
7819
7820 // C++ [temp.expl.spec]p6:
7821 // If a template, a member template or the member of a class template is
7822 // explicitly specialized then that specialization shall be declared
7823 // before the first use of that specialization that would cause an implicit
7824 // instantiation to take place, in every translation unit in which such a
7825 // use occurs; no diagnostic is required.
7826 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
7827 bool Okay = false;
7828 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7829 // Is there any previous explicit specialization declaration?
7830 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7831 Okay = true;
7832 break;
7833 }
7834 }
7835
7836 if (!Okay) {
7837 SourceRange Range(TemplateNameLoc, RAngleLoc);
7838 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
7839 << Context.getTypeDeclType(Specialization) << Range;
7840
7841 Diag(PrevDecl->getPointOfInstantiation(),
7842 diag::note_instantiation_required_here)
7843 << (PrevDecl->getTemplateSpecializationKind()
7844 != TSK_ImplicitInstantiation);
7845 return true;
7846 }
7847 }
7848
7849 // If this is not a friend, note that this is an explicit specialization.
7850 if (TUK != TUK_Friend)
7851 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
7852
7853 // Check that this isn't a redefinition of this specialization.
7854 if (TUK == TUK_Definition) {
7855 RecordDecl *Def = Specialization->getDefinition();
7856 NamedDecl *Hidden = nullptr;
7857 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
7858 SkipBody->ShouldSkip = true;
7859 SkipBody->Previous = Def;
7860 makeMergedDefinitionVisible(Hidden);
7861 } else if (Def) {
7862 SourceRange Range(TemplateNameLoc, RAngleLoc);
7863 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
7864 Diag(Def->getLocation(), diag::note_previous_definition);
7865 Specialization->setInvalidDecl();
7866 return true;
7867 }
7868 }
7869
7870 ProcessDeclAttributeList(S, Specialization, Attr);
7871
7872 // Add alignment attributes if necessary; these attributes are checked when
7873 // the ASTContext lays out the structure.
7874 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
7875 AddAlignmentAttributesForRecord(Specialization);
7876 AddMsStructLayoutForRecord(Specialization);
7877 }
7878
7879 if (ModulePrivateLoc.isValid())
7880 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
7881 << (isPartialSpecialization? 1 : 0)
7882 << FixItHint::CreateRemoval(ModulePrivateLoc);
7883
7884 // Build the fully-sugared type for this class template
7885 // specialization as the user wrote in the specialization
7886 // itself. This means that we'll pretty-print the type retrieved
7887 // from the specialization's declaration the way that the user
7888 // actually wrote the specialization, rather than formatting the
7889 // name based on the "canonical" representation used to store the
7890 // template arguments in the specialization.
7891 TypeSourceInfo *WrittenTy
7892 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7893 TemplateArgs, CanonType);
7894 if (TUK != TUK_Friend) {
7895 Specialization->setTypeAsWritten(WrittenTy);
7896 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
7897 }
7898
7899 // C++ [temp.expl.spec]p9:
7900 // A template explicit specialization is in the scope of the
7901 // namespace in which the template was defined.
7902 //
7903 // We actually implement this paragraph where we set the semantic
7904 // context (in the creation of the ClassTemplateSpecializationDecl),
7905 // but we also maintain the lexical context where the actual
7906 // definition occurs.
7907 Specialization->setLexicalDeclContext(CurContext);
7908
7909 // We may be starting the definition of this specialization.
7910 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
7911 Specialization->startDefinition();
7912
7913 if (TUK == TUK_Friend) {
7914 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
7915 TemplateNameLoc,
7916 WrittenTy,
7917 /*FIXME:*/KWLoc);
7918 Friend->setAccess(AS_public);
7919 CurContext->addDecl(Friend);
7920 } else {
7921 // Add the specialization into its lexical context, so that it can
7922 // be seen when iterating through the list of declarations in that
7923 // context. However, specializations are not found by name lookup.
7924 CurContext->addDecl(Specialization);
7925 }
7926
7927 if (SkipBody && SkipBody->ShouldSkip)
7928 return SkipBody->Previous;
7929
7930 return Specialization;
7931}
7932
7933Decl *Sema::ActOnTemplateDeclarator(Scope *S,
7934 MultiTemplateParamsArg TemplateParameterLists,
7935 Declarator &D) {
7936 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
7937 ActOnDocumentableDecl(NewDecl);
7938 return NewDecl;
7939}
7940
7941/// Strips various properties off an implicit instantiation
7942/// that has just been explicitly specialized.
7943static void StripImplicitInstantiation(NamedDecl *D) {
7944 D->dropAttr<DLLImportAttr>();
7945 D->dropAttr<DLLExportAttr>();
7946
7947 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
7948 FD->setInlineSpecified(false);
7949}
7950
7951/// Compute the diagnostic location for an explicit instantiation
7952// declaration or definition.
7953static SourceLocation DiagLocForExplicitInstantiation(
7954 NamedDecl* D, SourceLocation PointOfInstantiation) {
7955 // Explicit instantiations following a specialization have no effect and
7956 // hence no PointOfInstantiation. In that case, walk decl backwards
7957 // until a valid name loc is found.
7958 SourceLocation PrevDiagLoc = PointOfInstantiation;
7959 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
7960 Prev = Prev->getPreviousDecl()) {
7961 PrevDiagLoc = Prev->getLocation();
7962 }
7963 assert(PrevDiagLoc.isValid() &&((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7964, __PRETTY_FUNCTION__))
7964 "Explicit instantiation without point of instantiation?")((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7964, __PRETTY_FUNCTION__))
;
7965 return PrevDiagLoc;
7966}
7967
7968/// Diagnose cases where we have an explicit template specialization
7969/// before/after an explicit template instantiation, producing diagnostics
7970/// for those cases where they are required and determining whether the
7971/// new specialization/instantiation will have any effect.
7972///
7973/// \param NewLoc the location of the new explicit specialization or
7974/// instantiation.
7975///
7976/// \param NewTSK the kind of the new explicit specialization or instantiation.
7977///
7978/// \param PrevDecl the previous declaration of the entity.
7979///
7980/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
7981///
7982/// \param PrevPointOfInstantiation if valid, indicates where the previus
7983/// declaration was instantiated (either implicitly or explicitly).
7984///
7985/// \param HasNoEffect will be set to true to indicate that the new
7986/// specialization or instantiation has no effect and should be ignored.
7987///
7988/// \returns true if there was an error that should prevent the introduction of
7989/// the new declaration into the AST, false otherwise.
7990bool
7991Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7992 TemplateSpecializationKind NewTSK,
7993 NamedDecl *PrevDecl,
7994 TemplateSpecializationKind PrevTSK,
7995 SourceLocation PrevPointOfInstantiation,
7996 bool &HasNoEffect) {
7997 HasNoEffect = false;
7998
7999 switch (NewTSK) {
8000 case TSK_Undeclared:
8001 case TSK_ImplicitInstantiation:
8002 assert((((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8004, __PRETTY_FUNCTION__))
8003 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8004, __PRETTY_FUNCTION__))
8004 "previous declaration must be implicit!")(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8004, __PRETTY_FUNCTION__))
;
8005 return false;
8006
8007 case TSK_ExplicitSpecialization:
8008 switch (PrevTSK) {
8009 case TSK_Undeclared:
8010 case TSK_ExplicitSpecialization:
8011 // Okay, we're just specializing something that is either already
8012 // explicitly specialized or has merely been mentioned without any
8013 // instantiation.
8014 return false;
8015
8016 case TSK_ImplicitInstantiation:
8017 if (PrevPointOfInstantiation.isInvalid()) {
8018 // The declaration itself has not actually been instantiated, so it is
8019 // still okay to specialize it.
8020 StripImplicitInstantiation(PrevDecl);
8021 return false;
8022 }
8023 // Fall through
8024 LLVM_FALLTHROUGH[[clang::fallthrough]];
8025
8026 case TSK_ExplicitInstantiationDeclaration:
8027 case TSK_ExplicitInstantiationDefinition:
8028 assert((PrevTSK == TSK_ImplicitInstantiation ||(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8030, __PRETTY_FUNCTION__))
8029 PrevPointOfInstantiation.isValid()) &&(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8030, __PRETTY_FUNCTION__))
8030 "Explicit instantiation without point of instantiation?")(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8030, __PRETTY_FUNCTION__))
;
8031
8032 // C++ [temp.expl.spec]p6:
8033 // If a template, a member template or the member of a class template
8034 // is explicitly specialized then that specialization shall be declared
8035 // before the first use of that specialization that would cause an
8036 // implicit instantiation to take place, in every translation unit in
8037 // which such a use occurs; no diagnostic is required.
8038 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8039 // Is there any previous explicit specialization declaration?
8040 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8041 return false;
8042 }
8043
8044 Diag(NewLoc, diag::err_specialization_after_instantiation)
8045 << PrevDecl;
8046 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8047 << (PrevTSK != TSK_ImplicitInstantiation);
8048
8049 return true;
8050 }
8051 llvm_unreachable("The switch over PrevTSK must be exhaustive.")::llvm::llvm_unreachable_internal("The switch over PrevTSK must be exhaustive."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8051)
;
8052
8053 case TSK_ExplicitInstantiationDeclaration:
8054 switch (PrevTSK) {
8055 case TSK_ExplicitInstantiationDeclaration:
8056 // This explicit instantiation declaration is redundant (that's okay).
8057 HasNoEffect = true;
8058 return false;
8059
8060 case TSK_Undeclared:
8061 case TSK_ImplicitInstantiation:
8062 // We're explicitly instantiating something that may have already been
8063 // implicitly instantiated; that's fine.
8064 return false;
8065
8066 case TSK_ExplicitSpecialization:
8067 // C++0x [temp.explicit]p4:
8068 // For a given set of template parameters, if an explicit instantiation
8069 // of a template appears after a declaration of an explicit
8070 // specialization for that template, the explicit instantiation has no
8071 // effect.
8072 HasNoEffect = true;
8073 return false;
8074
8075 case TSK_ExplicitInstantiationDefinition:
8076 // C++0x [temp.explicit]p10:
8077 // If an entity is the subject of both an explicit instantiation
8078 // declaration and an explicit instantiation definition in the same
8079 // translation unit, the definition shall follow the declaration.
8080 Diag(NewLoc,
8081 diag::err_explicit_instantiation_declaration_after_definition);
8082
8083 // Explicit instantiations following a specialization have no effect and
8084 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8085 // until a valid name loc is found.
8086 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8087 diag::note_explicit_instantiation_definition_here);
8088 HasNoEffect = true;
8089 return false;
8090 }
8091 llvm_unreachable("Unexpected TemplateSpecializationKind!")::llvm::llvm_unreachable_internal("Unexpected TemplateSpecializationKind!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8091)
;
8092
8093 case TSK_ExplicitInstantiationDefinition:
8094 switch (PrevTSK) {
8095 case TSK_Undeclared:
8096 case TSK_ImplicitInstantiation:
8097 // We're explicitly instantiating something that may have already been
8098 // implicitly instantiated; that's fine.
8099 return false;
8100
8101 case TSK_ExplicitSpecialization:
8102 // C++ DR 259, C++0x [temp.explicit]p4:
8103 // For a given set of template parameters, if an explicit
8104 // instantiation of a template appears after a declaration of
8105 // an explicit specialization for that template, the explicit
8106 // instantiation has no effect.
8107 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8108 << PrevDecl;
8109 Diag(PrevDecl->getLocation(),
8110 diag::note_previous_template_specialization);
8111 HasNoEffect = true;
8112 return false;
8113
8114 case TSK_ExplicitInstantiationDeclaration:
8115 // We're explicitly instantiating a definition for something for which we
8116 // were previously asked to suppress instantiations. That's fine.
8117
8118 // C++0x [temp.explicit]p4:
8119 // For a given set of template parameters, if an explicit instantiation
8120 // of a template appears after a declaration of an explicit
8121 // specialization for that template, the explicit instantiation has no
8122 // effect.
8123 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8124 // Is there any previous explicit specialization declaration?
8125 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8126 HasNoEffect = true;
8127 break;
8128 }
8129 }
8130
8131 return false;
8132
8133 case TSK_ExplicitInstantiationDefinition:
8134 // C++0x [temp.spec]p5:
8135 // For a given template and a given set of template-arguments,
8136 // - an explicit instantiation definition shall appear at most once
8137 // in a program,
8138
8139 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8140 Diag(NewLoc, (getLangOpts().MSVCCompat)
8141 ? diag::ext_explicit_instantiation_duplicate
8142 : diag::err_explicit_instantiation_duplicate)
8143 << PrevDecl;
8144 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8145 diag::note_previous_explicit_instantiation);
8146 HasNoEffect = true;
8147 return false;
8148 }
8149 }
8150
8151 llvm_unreachable("Missing specialization/instantiation case?")::llvm::llvm_unreachable_internal("Missing specialization/instantiation case?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8151)
;
8152}
8153
8154/// Perform semantic analysis for the given dependent function
8155/// template specialization.
8156///
8157/// The only possible way to get a dependent function template specialization
8158/// is with a friend declaration, like so:
8159///
8160/// \code
8161/// template \<class T> void foo(T);
8162/// template \<class T> class A {
8163/// friend void foo<>(T);
8164/// };
8165/// \endcode
8166///
8167/// There really isn't any useful analysis we can do here, so we
8168/// just store the information.
8169bool
8170Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8171 const TemplateArgumentListInfo &ExplicitTemplateArgs,
8172 LookupResult &Previous) {
8173 // Remove anything from Previous that isn't a function template in
8174 // the correct context.
8175 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8176 LookupResult::Filter F = Previous.makeFilter();
8177 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8178 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8179 while (F.hasNext()) {
8180 NamedDecl *D = F.next()->getUnderlyingDecl();
8181 if (!isa<FunctionTemplateDecl>(D)) {
8182 F.erase();
8183 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8184 continue;
8185 }
8186
8187 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8188 D->getDeclContext()->getRedeclContext())) {
8189 F.erase();
8190 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8191 continue;
8192 }
8193 }
8194 F.done();
8195
8196 if (Previous.empty()) {
8197 Diag(FD->getLocation(),
8198 diag::err_dependent_function_template_spec_no_match);
8199 for (auto &P : DiscardedCandidates)
8200 Diag(P.second->getLocation(),
8201 diag::note_dependent_function_template_spec_discard_reason)
8202 << P.first;
8203 return true;
8204 }
8205
8206 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8207 ExplicitTemplateArgs);
8208 return false;
8209}
8210
8211/// Perform semantic analysis for the given function template
8212/// specialization.
8213///
8214/// This routine performs all of the semantic analysis required for an
8215/// explicit function template specialization. On successful completion,
8216/// the function declaration \p FD will become a function template
8217/// specialization.
8218///
8219/// \param FD the function declaration, which will be updated to become a
8220/// function template specialization.
8221///
8222/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8223/// if any. Note that this may be valid info even when 0 arguments are
8224/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8225/// as it anyway contains info on the angle brackets locations.
8226///
8227/// \param Previous the set of declarations that may be specialized by
8228/// this function specialization.
8229///
8230/// \param QualifiedFriend whether this is a lookup for a qualified friend
8231/// declaration with no explicit template argument list that might be
8232/// befriending a function template specialization.
8233bool Sema::CheckFunctionTemplateSpecialization(
8234 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8235 LookupResult &Previous, bool QualifiedFriend) {
8236 // The set of function template specializations that could match this
8237 // explicit function template specialization.
8238 UnresolvedSet<8> Candidates;
8239 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8240 /*ForTakingAddress=*/false);
8241
8242 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8243 ConvertedTemplateArgs;
8244
8245 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8246 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8247 I != E; ++I) {
8248 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8249 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8250 // Only consider templates found within the same semantic lookup scope as
8251 // FD.
8252 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8253 Ovl->getDeclContext()->getRedeclContext()))
8254 continue;
8255
8256 // When matching a constexpr member function template specialization
8257 // against the primary template, we don't yet know whether the
8258 // specialization has an implicit 'const' (because we don't know whether
8259 // it will be a static member function until we know which template it
8260 // specializes), so adjust it now assuming it specializes this template.
8261 QualType FT = FD->getType();
8262 if (FD->isConstexpr()) {
8263 CXXMethodDecl *OldMD =
8264 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8265 if (OldMD && OldMD->isConst()) {
8266 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8267 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8268 EPI.TypeQuals.addConst();
8269 FT = Context.getFunctionType(FPT->getReturnType(),
8270 FPT->getParamTypes(), EPI);
8271 }
8272 }
8273
8274 TemplateArgumentListInfo Args;
8275 if (ExplicitTemplateArgs)
8276 Args = *ExplicitTemplateArgs;
8277
8278 // C++ [temp.expl.spec]p11:
8279 // A trailing template-argument can be left unspecified in the
8280 // template-id naming an explicit function template specialization
8281 // provided it can be deduced from the function argument type.
8282 // Perform template argument deduction to determine whether we may be
8283 // specializing this template.
8284 // FIXME: It is somewhat wasteful to build
8285 TemplateDeductionInfo Info(FailedCandidates.getLocation());
8286 FunctionDecl *Specialization = nullptr;
8287 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8288 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8289 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
8290 Info)) {
8291 // Template argument deduction failed; record why it failed, so
8292 // that we can provide nifty diagnostics.
8293 FailedCandidates.addCandidate().set(
8294 I.getPair(), FunTmpl->getTemplatedDecl(),
8295 MakeDeductionFailureInfo(Context, TDK, Info));
8296 (void)TDK;
8297 continue;
8298 }
8299
8300 // Target attributes are part of the cuda function signature, so
8301 // the deduced template's cuda target must match that of the
8302 // specialization. Given that C++ template deduction does not
8303 // take target attributes into account, we reject candidates
8304 // here that have a different target.
8305 if (LangOpts.CUDA &&
8306 IdentifyCUDATarget(Specialization,
8307 /* IgnoreImplicitHDAttributes = */ true) !=
8308 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttributes = */ true)) {
8309 FailedCandidates.addCandidate().set(
8310 I.getPair(), FunTmpl->getTemplatedDecl(),
8311 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
8312 continue;
8313 }
8314
8315 // Record this candidate.
8316 if (ExplicitTemplateArgs)
8317 ConvertedTemplateArgs[Specialization] = std::move(Args);
8318 Candidates.addDecl(Specialization, I.getAccess());
8319 }
8320 }
8321
8322 // For a qualified friend declaration (with no explicit marker to indicate
8323 // that a template specialization was intended), note all (template and
8324 // non-template) candidates.
8325 if (QualifiedFriend && Candidates.empty()) {
8326 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
8327 << FD->getDeclName() << FDLookupContext;
8328 // FIXME: We should form a single candidate list and diagnose all
8329 // candidates at once, to get proper sorting and limiting.
8330 for (auto *OldND : Previous) {
8331 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
8332 NoteOverloadCandidate(OldND, OldFD, FD->getType(), false);
8333 }
8334 FailedCandidates.NoteCandidates(*this, FD->getLocation());
8335 return true;
8336 }
8337
8338 // Find the most specialized function template.
8339 UnresolvedSetIterator Result = getMostSpecialized(
8340 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
8341 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
8342 PDiag(diag::err_function_template_spec_ambiguous)
8343 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
8344 PDiag(diag::note_function_template_spec_matched));
8345
8346 if (Result == Candidates.end())
8347 return true;
8348
8349 // Ignore access information; it doesn't figure into redeclaration checking.
8350 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8351
8352 FunctionTemplateSpecializationInfo *SpecInfo
8353 = Specialization->getTemplateSpecializationInfo();
8354 assert(SpecInfo && "Function template specialization info missing?")((SpecInfo && "Function template specialization info missing?"
) ? static_cast<void> (0) : __assert_fail ("SpecInfo && \"Function template specialization info missing?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8354, __PRETTY_FUNCTION__))
;
8355
8356 // Note: do not overwrite location info if previous template
8357 // specialization kind was explicit.
8358 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
8359 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
8360 Specialization->setLocation(FD->getLocation());
8361 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
8362 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
8363 // function can differ from the template declaration with respect to
8364 // the constexpr specifier.
8365 // FIXME: We need an update record for this AST mutation.
8366 // FIXME: What if there are multiple such prior declarations (for instance,
8367 // from different modules)?
8368 Specialization->setConstexpr(FD->isConstexpr());
8369 }
8370
8371 // FIXME: Check if the prior specialization has a point of instantiation.
8372 // If so, we have run afoul of .
8373
8374 // If this is a friend declaration, then we're not really declaring
8375 // an explicit specialization.
8376 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
8377
8378 // Check the scope of this explicit specialization.
8379 if (!isFriend &&
8380 CheckTemplateSpecializationScope(*this,
8381 Specialization->getPrimaryTemplate(),
8382 Specialization, FD->getLocation(),
8383 false))
8384 return true;
8385
8386 // C++ [temp.expl.spec]p6:
8387 // If a template, a member template or the member of a class template is
8388 // explicitly specialized then that specialization shall be declared
8389 // before the first use of that specialization that would cause an implicit
8390 // instantiation to take place, in every translation unit in which such a
8391 // use occurs; no diagnostic is required.
8392 bool HasNoEffect = false;
8393 if (!isFriend &&
8394 CheckSpecializationInstantiationRedecl(FD->getLocation(),
8395 TSK_ExplicitSpecialization,
8396 Specialization,
8397 SpecInfo->getTemplateSpecializationKind(),
8398 SpecInfo->getPointOfInstantiation(),
8399 HasNoEffect))
8400 return true;
8401
8402 // Mark the prior declaration as an explicit specialization, so that later
8403 // clients know that this is an explicit specialization.
8404 if (!isFriend) {
8405 // Since explicit specializations do not inherit '=delete' from their
8406 // primary function template - check if the 'specialization' that was
8407 // implicitly generated (during template argument deduction for partial
8408 // ordering) from the most specialized of all the function templates that
8409 // 'FD' could have been specializing, has a 'deleted' definition. If so,
8410 // first check that it was implicitly generated during template argument
8411 // deduction by making sure it wasn't referenced, and then reset the deleted
8412 // flag to not-deleted, so that we can inherit that information from 'FD'.
8413 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
8414 !Specialization->getCanonicalDecl()->isReferenced()) {
8415 // FIXME: This assert will not hold in the presence of modules.
8416 assert(((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8418, __PRETTY_FUNCTION__))
8417 Specialization->getCanonicalDecl() == Specialization &&((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8418, __PRETTY_FUNCTION__))
8418 "This must be the only existing declaration of this specialization")((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8418, __PRETTY_FUNCTION__))
;
8419 // FIXME: We need an update record for this AST mutation.
8420 Specialization->setDeletedAsWritten(false);
8421 }
8422 // FIXME: We need an update record for this AST mutation.
8423 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8424 MarkUnusedFileScopedDecl(Specialization);
8425 }
8426
8427 // Turn the given function declaration into a function template
8428 // specialization, with the template arguments from the previous
8429 // specialization.
8430 // Take copies of (semantic and syntactic) template argument lists.
8431 const TemplateArgumentList* TemplArgs = new (Context)
8432 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
8433 FD->setFunctionTemplateSpecialization(
8434 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
8435 SpecInfo->getTemplateSpecializationKind(),
8436 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
8437
8438 // A function template specialization inherits the target attributes
8439 // of its template. (We require the attributes explicitly in the
8440 // code to match, but a template may have implicit attributes by
8441 // virtue e.g. of being constexpr, and it passes these implicit
8442 // attributes on to its specializations.)
8443 if (LangOpts.CUDA)
8444 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
8445
8446 // The "previous declaration" for this function template specialization is
8447 // the prior function template specialization.
8448 Previous.clear();
8449 Previous.addDecl(Specialization);
8450 return false;
8451}
8452
8453/// Perform semantic analysis for the given non-template member
8454/// specialization.
8455///
8456/// This routine performs all of the semantic analysis required for an
8457/// explicit member function specialization. On successful completion,
8458/// the function declaration \p FD will become a member function
8459/// specialization.
8460///
8461/// \param Member the member declaration, which will be updated to become a
8462/// specialization.
8463///
8464/// \param Previous the set of declarations, one of which may be specialized
8465/// by this function specialization; the set will be modified to contain the
8466/// redeclared member.
8467bool
8468Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
8469 assert(!isa<TemplateDecl>(Member) && "Only for non-template members")((!isa<TemplateDecl>(Member) && "Only for non-template members"
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateDecl>(Member) && \"Only for non-template members\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8469, __PRETTY_FUNCTION__))
;
8470
8471 // Try to find the member we are instantiating.
8472 NamedDecl *FoundInstantiation = nullptr;
8473 NamedDecl *Instantiation = nullptr;
8474 NamedDecl *InstantiatedFrom = nullptr;
8475 MemberSpecializationInfo *MSInfo = nullptr;
8476
8477 if (Previous.empty()) {
8478 // Nowhere to look anyway.
8479 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
8480 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8481 I != E; ++I) {
8482 NamedDecl *D = (*I)->getUnderlyingDecl();
8483 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
8484 QualType Adjusted = Function->getType();
8485 if (!hasExplicitCallingConv(Adjusted))
8486 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
8487 // This doesn't handle deduced return types, but both function
8488 // declarations should be undeduced at this point.
8489 if (Context.hasSameType(Adjusted, Method->getType())) {
8490 FoundInstantiation = *I;
8491 Instantiation = Method;
8492 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
8493 MSInfo = Method->getMemberSpecializationInfo();
8494 break;
8495 }
8496 }
8497 }
8498 } else if (isa<VarDecl>(Member)) {
8499 VarDecl *PrevVar;
8500 if (Previous.isSingleResult() &&
8501 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
8502 if (PrevVar->isStaticDataMember()) {
8503 FoundInstantiation = Previous.getRepresentativeDecl();
8504 Instantiation = PrevVar;
8505 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
8506 MSInfo = PrevVar->getMemberSpecializationInfo();
8507 }
8508 } else if (isa<RecordDecl>(Member)) {
8509 CXXRecordDecl *PrevRecord;
8510 if (Previous.isSingleResult() &&
8511 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
8512 FoundInstantiation = Previous.getRepresentativeDecl();
8513 Instantiation = PrevRecord;
8514 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
8515 MSInfo = PrevRecord->getMemberSpecializationInfo();
8516 }
8517 } else if (isa<EnumDecl>(Member)) {
8518 EnumDecl *PrevEnum;
8519 if (Previous.isSingleResult() &&
8520 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
8521 FoundInstantiation = Previous.getRepresentativeDecl();
8522 Instantiation = PrevEnum;
8523 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
8524 MSInfo = PrevEnum->getMemberSpecializationInfo();
8525 }
8526 }
8527
8528 if (!Instantiation) {
8529 // There is no previous declaration that matches. Since member
8530 // specializations are always out-of-line, the caller will complain about
8531 // this mismatch later.
8532 return false;
8533 }
8534
8535 // A member specialization in a friend declaration isn't really declaring
8536 // an explicit specialization, just identifying a specific (possibly implicit)
8537 // specialization. Don't change the template specialization kind.
8538 //
8539 // FIXME: Is this really valid? Other compilers reject.
8540 if (Member->getFriendObjectKind() != Decl::FOK_None) {
8541 // Preserve instantiation information.
8542 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
8543 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
8544 cast<CXXMethodDecl>(InstantiatedFrom),
8545 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
8546 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
8547 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
8548 cast<CXXRecordDecl>(InstantiatedFrom),
8549 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
8550 }
8551
8552 Previous.clear();
8553 Previous.addDecl(FoundInstantiation);
8554 return false;
8555 }
8556
8557 // Make sure that this is a specialization of a member.
8558 if (!InstantiatedFrom) {
8559 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
8560 << Member;
8561 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
8562 return true;
8563 }
8564
8565 // C++ [temp.expl.spec]p6:
8566 // If a template, a member template or the member of a class template is
8567 // explicitly specialized then that specialization shall be declared
8568 // before the first use of that specialization that would cause an implicit
8569 // instantiation to take place, in every translation unit in which such a
8570 // use occurs; no diagnostic is required.
8571 assert(MSInfo && "Member specialization info missing?")((MSInfo && "Member specialization info missing?") ? static_cast
<void> (0) : __assert_fail ("MSInfo && \"Member specialization info missing?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8571, __PRETTY_FUNCTION__))
;
8572
8573 bool HasNoEffect = false;
8574 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
8575 TSK_ExplicitSpecialization,
8576 Instantiation,
8577 MSInfo->getTemplateSpecializationKind(),
8578 MSInfo->getPointOfInstantiation(),
8579 HasNoEffect))
8580 return true;
8581
8582 // Check the scope of this explicit specialization.
8583 if (CheckTemplateSpecializationScope(*this,
8584 InstantiatedFrom,
8585 Instantiation, Member->getLocation(),
8586 false))
8587 return true;
8588
8589 // Note that this member specialization is an "instantiation of" the
8590 // corresponding member of the original template.
8591 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
8592 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
8593 if (InstantiationFunction->getTemplateSpecializationKind() ==
8594 TSK_ImplicitInstantiation) {
8595 // Explicit specializations of member functions of class templates do not
8596 // inherit '=delete' from the member function they are specializing.
8597 if (InstantiationFunction->isDeleted()) {
8598 // FIXME: This assert will not hold in the presence of modules.
8599 assert(InstantiationFunction->getCanonicalDecl() ==((InstantiationFunction->getCanonicalDecl() == InstantiationFunction
) ? static_cast<void> (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8600, __PRETTY_FUNCTION__))
8600 InstantiationFunction)((InstantiationFunction->getCanonicalDecl() == InstantiationFunction
) ? static_cast<void> (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8600, __PRETTY_FUNCTION__))
;
8601 // FIXME: We need an update record for this AST mutation.
8602 InstantiationFunction->setDeletedAsWritten(false);
8603 }
8604 }
8605
8606 MemberFunction->setInstantiationOfMemberFunction(
8607 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8608 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
8609 MemberVar->setInstantiationOfStaticDataMember(
8610 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8611 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
8612 MemberClass->setInstantiationOfMemberClass(
8613 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8614 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
8615 MemberEnum->setInstantiationOfMemberEnum(
8616 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8617 } else {
8618 llvm_unreachable("unknown member specialization kind")::llvm::llvm_unreachable_internal("unknown member specialization kind"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8618)
;
8619 }
8620
8621 // Save the caller the trouble of having to figure out which declaration
8622 // this specialization matches.
8623 Previous.clear();
8624 Previous.addDecl(FoundInstantiation);
8625 return false;
8626}
8627
8628/// Complete the explicit specialization of a member of a class template by
8629/// updating the instantiated member to be marked as an explicit specialization.
8630///
8631/// \param OrigD The member declaration instantiated from the template.
8632/// \param Loc The location of the explicit specialization of the member.
8633template<typename DeclT>
8634static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
8635 SourceLocation Loc) {
8636 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
8637 return;
8638
8639 // FIXME: Inform AST mutation listeners of this AST mutation.
8640 // FIXME: If there are multiple in-class declarations of the member (from
8641 // multiple modules, or a declaration and later definition of a member type),
8642 // should we update all of them?
8643 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8644 OrigD->setLocation(Loc);
8645}
8646
8647void Sema::CompleteMemberSpecialization(NamedDecl *Member,
8648 LookupResult &Previous) {
8649 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
8650 if (Instantiation == Member)
8651 return;
8652
8653 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
8654 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
8655 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
8656 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
8657 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
8658 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
8659 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
8660 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
8661 else
8662 llvm_unreachable("unknown member specialization kind")::llvm::llvm_unreachable_internal("unknown member specialization kind"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8662)
;
8663}
8664
8665/// Check the scope of an explicit instantiation.
8666///
8667/// \returns true if a serious error occurs, false otherwise.
8668static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
8669 SourceLocation InstLoc,
8670 bool WasQualifiedName) {
8671 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
8672 DeclContext *CurContext = S.CurContext->getRedeclContext();
8673
8674 if (CurContext->isRecord()) {
8675 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
8676 << D;
8677 return true;
8678 }
8679
8680 // C++11 [temp.explicit]p3:
8681 // An explicit instantiation shall appear in an enclosing namespace of its
8682 // template. If the name declared in the explicit instantiation is an
8683 // unqualified name, the explicit instantiation shall appear in the
8684 // namespace where its template is declared or, if that namespace is inline
8685 // (7.3.1), any namespace from its enclosing namespace set.
8686 //
8687 // This is DR275, which we do not retroactively apply to C++98/03.
8688 if (WasQualifiedName) {
8689 if (CurContext->Encloses(OrigContext))
8690 return false;
8691 } else {
8692 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
8693 return false;
8694 }
8695
8696 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
8697 if (WasQualifiedName)
8698 S.Diag(InstLoc,
8699 S.getLangOpts().CPlusPlus11?
8700 diag::err_explicit_instantiation_out_of_scope :
8701 diag::warn_explicit_instantiation_out_of_scope_0x)
8702 << D << NS;
8703 else
8704 S.Diag(InstLoc,
8705 S.getLangOpts().CPlusPlus11?
8706 diag::err_explicit_instantiation_unqualified_wrong_namespace :
8707 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
8708 << D << NS;
8709 } else
8710 S.Diag(InstLoc,
8711 S.getLangOpts().CPlusPlus11?
8712 diag::err_explicit_instantiation_must_be_global :
8713 diag::warn_explicit_instantiation_must_be_global_0x)
8714 << D;
8715 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
8716 return false;
8717}
8718
8719/// Common checks for whether an explicit instantiation of \p D is valid.
8720static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
8721 SourceLocation InstLoc,
8722 bool WasQualifiedName,
8723 TemplateSpecializationKind TSK) {
8724 // C++ [temp.explicit]p13:
8725 // An explicit instantiation declaration shall not name a specialization of
8726 // a template with internal linkage.
8727 if (TSK == TSK_ExplicitInstantiationDeclaration &&
8728 D->getFormalLinkage() == InternalLinkage) {
8729 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
8730 return true;
8731 }
8732
8733 // C++11 [temp.explicit]p3: [DR 275]
8734 // An explicit instantiation shall appear in an enclosing namespace of its
8735 // template.
8736 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
8737 return true;
8738
8739 return false;
8740}
8741
8742/// Determine whether the given scope specifier has a template-id in it.
8743static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
8744 if (!SS.isSet())
8745 return false;
8746
8747 // C++11 [temp.explicit]p3:
8748 // If the explicit instantiation is for a member function, a member class
8749 // or a static data member of a class template specialization, the name of
8750 // the class template specialization in the qualified-id for the member
8751 // name shall be a simple-template-id.
8752 //
8753 // C++98 has the same restriction, just worded differently.
8754 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
8755 NNS = NNS->getPrefix())
8756 if (const Type *T = NNS->getAsType())
8757 if (isa<TemplateSpecializationType>(T))
8758 return true;
8759
8760 return false;
8761}
8762
8763/// Make a dllexport or dllimport attr on a class template specialization take
8764/// effect.
8765static void dllExportImportClassTemplateSpecialization(
8766 Sema &S, ClassTemplateSpecializationDecl *Def) {
8767 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
8768 assert(A && "dllExportImportClassTemplateSpecialization called "((A && "dllExportImportClassTemplateSpecialization called "
"on Def without dllexport or dllimport") ? static_cast<void
> (0) : __assert_fail ("A && \"dllExportImportClassTemplateSpecialization called \" \"on Def without dllexport or dllimport\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8769, __PRETTY_FUNCTION__))
8769 "on Def without dllexport or dllimport")((A && "dllExportImportClassTemplateSpecialization called "
"on Def without dllexport or dllimport") ? static_cast<void
> (0) : __assert_fail ("A && \"dllExportImportClassTemplateSpecialization called \" \"on Def without dllexport or dllimport\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8769, __PRETTY_FUNCTION__))
;
8770
8771 // We reject explicit instantiations in class scope, so there should
8772 // never be any delayed exported classes to worry about.
8773 assert(S.DelayedDllExportClasses.empty() &&((S.DelayedDllExportClasses.empty() && "delayed exports present at explicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("S.DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8774, __PRETTY_FUNCTION__))
8774 "delayed exports present at explicit instantiation")((S.DelayedDllExportClasses.empty() && "delayed exports present at explicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("S.DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8774, __PRETTY_FUNCTION__))
;
8775 S.checkClassLevelDLLAttribute(Def);
8776
8777 // Propagate attribute to base class templates.
8778 for (auto &B : Def->bases()) {
8779 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
8780 B.getType()->getAsCXXRecordDecl()))
8781 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
8782 }
8783
8784 S.referenceDLLExportedClassMethods();
8785}
8786
8787// Explicit instantiation of a class template specialization
8788DeclResult Sema::ActOnExplicitInstantiation(
8789 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
8790 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
8791 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
8792 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
8793 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
8794 // Find the class template we're specializing
8795 TemplateName Name = TemplateD.get();
8796 TemplateDecl *TD = Name.getAsTemplateDecl();
8797 // Check that the specialization uses the same tag kind as the
8798 // original template.
8799 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8800 assert(Kind != TTK_Enum &&((Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8801, __PRETTY_FUNCTION__))
8801 "Invalid enum tag in class template explicit instantiation!")((Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8801, __PRETTY_FUNCTION__))
;
8802
8803 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
8804
8805 if (!ClassTemplate) {
8806 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
8807 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
8808 Diag(TD->getLocation(), diag::note_previous_use);
8809 return true;
8810 }
8811
8812 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8813 Kind, /*isDefinition*/false, KWLoc,
8814 ClassTemplate->getIdentifier())) {
8815 Diag(KWLoc, diag::err_use_with_wrong_tag)
8816 << ClassTemplate
8817 << FixItHint::CreateReplacement(KWLoc,
8818 ClassTemplate->getTemplatedDecl()->getKindName());
8819 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8820 diag::note_previous_use);
8821 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8822 }
8823
8824 // C++0x [temp.explicit]p2:
8825 // There are two forms of explicit instantiation: an explicit instantiation
8826 // definition and an explicit instantiation declaration. An explicit
8827 // instantiation declaration begins with the extern keyword. [...]
8828 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
8829 ? TSK_ExplicitInstantiationDefinition
8830 : TSK_ExplicitInstantiationDeclaration;
8831
8832 if (TSK == TSK_ExplicitInstantiationDeclaration &&
8833 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
8834 // Check for dllexport class template instantiation declarations,
8835 // except for MinGW mode.
8836 for (const ParsedAttr &AL : Attr) {
8837 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
8838 Diag(ExternLoc,
8839 diag::warn_attribute_dllexport_explicit_instantiation_decl);
8840 Diag(AL.getLoc(), diag::note_attribute);
8841 break;
8842 }
8843 }
8844
8845 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
8846 Diag(ExternLoc,
8847 diag::warn_attribute_dllexport_explicit_instantiation_decl);
8848 Diag(A->getLocation(), diag::note_attribute);
8849 }
8850 }
8851
8852 // In MSVC mode, dllimported explicit instantiation definitions are treated as
8853 // instantiation declarations for most purposes.
8854 bool DLLImportExplicitInstantiationDef = false;
8855 if (TSK == TSK_ExplicitInstantiationDefinition &&
8856 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8857 // Check for dllimport class template instantiation definitions.
8858 bool DLLImport =
8859 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
8860 for (const ParsedAttr &AL : Attr) {
8861 if (AL.getKind() == ParsedAttr::AT_DLLImport)
8862 DLLImport = true;
8863 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
8864 // dllexport trumps dllimport here.
8865 DLLImport = false;
8866 break;
8867 }
8868 }
8869 if (DLLImport) {
8870 TSK = TSK_ExplicitInstantiationDeclaration;
8871 DLLImportExplicitInstantiationDef = true;
8872 }
8873 }
8874
8875 // Translate the parser's template argument list in our AST format.
8876 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
8877 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
8878
8879 // Check that the template argument list is well-formed for this
8880 // template.
8881 SmallVector<TemplateArgument, 4> Converted;
8882 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8883 TemplateArgs, false, Converted))
8884 return true;
8885
8886 // Find the class template specialization declaration that
8887 // corresponds to these arguments.
8888 void *InsertPos = nullptr;
8889 ClassTemplateSpecializationDecl *PrevDecl
8890 = ClassTemplate->findSpecialization(Converted, InsertPos);
8891
8892 TemplateSpecializationKind PrevDecl_TSK
8893 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
8894
8895 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
8896 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
8897 // Check for dllexport class template instantiation definitions in MinGW
8898 // mode, if a previous declaration of the instantiation was seen.
8899 for (const ParsedAttr &AL : Attr) {
8900 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
8901 Diag(AL.getLoc(),
8902 diag::warn_attribute_dllexport_explicit_instantiation_def);
8903 break;
8904 }
8905 }
8906 }
8907
8908 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
8909 SS.isSet(), TSK))
8910 return true;
8911
8912 ClassTemplateSpecializationDecl *Specialization = nullptr;
8913
8914 bool HasNoEffect = false;
8915 if (PrevDecl) {
8916 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
8917 PrevDecl, PrevDecl_TSK,
8918 PrevDecl->getPointOfInstantiation(),
8919 HasNoEffect))
8920 return PrevDecl;
8921
8922 // Even though HasNoEffect == true means that this explicit instantiation
8923 // has no effect on semantics, we go on to put its syntax in the AST.
8924
8925 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
8926 PrevDecl_TSK == TSK_Undeclared) {
8927 // Since the only prior class template specialization with these
8928 // arguments was referenced but not declared, reuse that
8929 // declaration node as our own, updating the source location
8930 // for the template name to reflect our new declaration.
8931 // (Other source locations will be updated later.)
8932 Specialization = PrevDecl;
8933 Specialization->setLocation(TemplateNameLoc);
8934 PrevDecl = nullptr;
8935 }
8936
8937 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
8938 DLLImportExplicitInstantiationDef) {
8939 // The new specialization might add a dllimport attribute.
8940 HasNoEffect = false;
8941 }
8942 }
8943
8944 if (!Specialization) {
8945 // Create a new class template specialization declaration node for
8946 // this explicit specialization.
8947 Specialization
8948 = ClassTemplateSpecializationDecl::Create(Context, Kind,
8949 ClassTemplate->getDeclContext(),
8950 KWLoc, TemplateNameLoc,
8951 ClassTemplate,
8952 Converted,
8953 PrevDecl);
8954 SetNestedNameSpecifier(*this, Specialization, SS);
8955
8956 if (!HasNoEffect && !PrevDecl) {
8957 // Insert the new specialization.
8958 ClassTemplate->AddSpecialization(Specialization, InsertPos);
8959 }
8960 }
8961
8962 // Build the fully-sugared type for this explicit instantiation as
8963 // the user wrote in the explicit instantiation itself. This means
8964 // that we'll pretty-print the type retrieved from the
8965 // specialization's declaration the way that the user actually wrote
8966 // the explicit instantiation, rather than formatting the name based
8967 // on the "canonical" representation used to store the template
8968 // arguments in the specialization.
8969 TypeSourceInfo *WrittenTy
8970 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8971 TemplateArgs,
8972 Context.getTypeDeclType(Specialization));
8973 Specialization->setTypeAsWritten(WrittenTy);
8974
8975 // Set source locations for keywords.
8976 Specialization->setExternLoc(ExternLoc);
8977 Specialization->setTemplateKeywordLoc(TemplateLoc);
8978 Specialization->setBraceRange(SourceRange());
8979
8980 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
8981 ProcessDeclAttributeList(S, Specialization, Attr);
8982
8983 // Add the explicit instantiation into its lexical context. However,
8984 // since explicit instantiations are never found by name lookup, we
8985 // just put it into the declaration context directly.
8986 Specialization->setLexicalDeclContext(CurContext);
8987 CurContext->addDecl(Specialization);
8988
8989 // Syntax is now OK, so return if it has no other effect on semantics.
8990 if (HasNoEffect) {
8991 // Set the template specialization kind.
8992 Specialization->setTemplateSpecializationKind(TSK);
8993 return Specialization;
8994 }
8995
8996 // C++ [temp.explicit]p3:
8997 // A definition of a class template or class member template
8998 // shall be in scope at the point of the explicit instantiation of
8999 // the class template or class member template.
9000 //
9001 // This check comes when we actually try to perform the
9002 // instantiation.
9003 ClassTemplateSpecializationDecl *Def
9004 = cast_or_null<ClassTemplateSpecializationDecl>(
9005 Specialization->getDefinition());
9006 if (!Def)
9007 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9008 else if (TSK == TSK_ExplicitInstantiationDefinition) {
9009 MarkVTableUsed(TemplateNameLoc, Specialization, true);
9010 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9011 }
9012
9013 // Instantiate the members of this class template specialization.
9014 Def = cast_or_null<ClassTemplateSpecializationDecl>(
9015 Specialization->getDefinition());
9016 if (Def) {
9017 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9018 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9019 // TSK_ExplicitInstantiationDefinition
9020 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9021 (TSK == TSK_ExplicitInstantiationDefinition ||
9022 DLLImportExplicitInstantiationDef)) {
9023 // FIXME: Need to notify the ASTMutationListener that we did this.
9024 Def->setTemplateSpecializationKind(TSK);
9025
9026 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9027 (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9028 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9029 // In the MS ABI, an explicit instantiation definition can add a dll
9030 // attribute to a template with a previous instantiation declaration.
9031 // MinGW doesn't allow this.
9032 auto *A = cast<InheritableAttr>(
9033 getDLLAttr(Specialization)->clone(getASTContext()));
9034 A->setInherited(true);
9035 Def->addAttr(A);
9036 dllExportImportClassTemplateSpecialization(*this, Def);
9037 }
9038 }
9039
9040 // Fix a TSK_ImplicitInstantiation followed by a
9041 // TSK_ExplicitInstantiationDefinition
9042 bool NewlyDLLExported =
9043 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9044 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9045 (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9046 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9047 // In the MS ABI, an explicit instantiation definition can add a dll
9048 // attribute to a template with a previous implicit instantiation.
9049 // MinGW doesn't allow this. We limit clang to only adding dllexport, to
9050 // avoid potentially strange codegen behavior. For example, if we extend
9051 // this conditional to dllimport, and we have a source file calling a
9052 // method on an implicitly instantiated template class instance and then
9053 // declaring a dllimport explicit instantiation definition for the same
9054 // template class, the codegen for the method call will not respect the
9055 // dllimport, while it will with cl. The Def will already have the DLL
9056 // attribute, since the Def and Specialization will be the same in the
9057 // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
9058 // attribute to the Specialization; we just need to make it take effect.
9059 assert(Def == Specialization &&((Def == Specialization && "Def and Specialization should match for implicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("Def == Specialization && \"Def and Specialization should match for implicit instantiation\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9060, __PRETTY_FUNCTION__))
9060 "Def and Specialization should match for implicit instantiation")((Def == Specialization && "Def and Specialization should match for implicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("Def == Specialization && \"Def and Specialization should match for implicit instantiation\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9060, __PRETTY_FUNCTION__))
;
9061 dllExportImportClassTemplateSpecialization(*this, Def);
9062 }
9063
9064 // In MinGW mode, export the template instantiation if the declaration
9065 // was marked dllexport.
9066 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9067 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9068 PrevDecl->hasAttr<DLLExportAttr>()) {
9069 dllExportImportClassTemplateSpecialization(*this, Def);
9070 }
9071
9072 // Set the template specialization kind. Make sure it is set before
9073 // instantiating the members which will trigger ASTConsumer callbacks.
9074 Specialization->setTemplateSpecializationKind(TSK);
9075 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9076 } else {
9077
9078 // Set the template specialization kind.
9079 Specialization->setTemplateSpecializationKind(TSK);
9080 }
9081
9082 return Specialization;
9083}
9084
9085// Explicit instantiation of a member class of a class template.
9086DeclResult
9087Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9088 SourceLocation TemplateLoc, unsigned TagSpec,
9089 SourceLocation KWLoc, CXXScopeSpec &SS,
9090 IdentifierInfo *Name, SourceLocation NameLoc,
9091 const ParsedAttributesView &Attr) {
9092
9093 bool Owned = false;
9094 bool IsDependent = false;
9095 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9096 KWLoc, SS, Name, NameLoc, Attr, AS_none,
9097 /*ModulePrivateLoc=*/SourceLocation(),
9098 MultiTemplateParamsArg(), Owned, IsDependent,
9099 SourceLocation(), false, TypeResult(),
9100 /*IsTypeSpecifier*/false,
9101 /*IsTemplateParamOrArg*/false);
9102 assert(!IsDependent && "explicit instantiation of dependent name not yet handled")((!IsDependent && "explicit instantiation of dependent name not yet handled"
) ? static_cast<void> (0) : __assert_fail ("!IsDependent && \"explicit instantiation of dependent name not yet handled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9102, __PRETTY_FUNCTION__))
;
9103
9104 if (!TagD)
9105 return true;
9106
9107 TagDecl *Tag = cast<TagDecl>(TagD);
9108 assert(!Tag->isEnum() && "shouldn't see enumerations here")((!Tag->isEnum() && "shouldn't see enumerations here"
) ? static_cast<void> (0) : __assert_fail ("!Tag->isEnum() && \"shouldn't see enumerations here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9108, __PRETTY_FUNCTION__))
;
9109
9110 if (Tag->isInvalidDecl())
9111 return true;
9112
9113 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9114 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9115 if (!Pattern) {
9116 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9117 << Context.getTypeDeclType(Record);
9118 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9119 return true;
9120 }
9121
9122 // C++0x [temp.explicit]p2:
9123 // If the explicit instantiation is for a class or member class, the
9124 // elaborated-type-specifier in the declaration shall include a
9125 // simple-template-id.
9126 //
9127 // C++98 has the same restriction, just worded differently.
9128 if (!ScopeSpecifierHasTemplateId(SS))
9129 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9130 << Record << SS.getRange();
9131
9132 // C++0x [temp.explicit]p2:
9133 // There are two forms of explicit instantiation: an explicit instantiation
9134 // definition and an explicit instantiation declaration. An explicit
9135 // instantiation declaration begins with the extern keyword. [...]
9136 TemplateSpecializationKind TSK
9137 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9138 : TSK_ExplicitInstantiationDeclaration;
9139
9140 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9141
9142 // Verify that it is okay to explicitly instantiate here.
9143 CXXRecordDecl *PrevDecl
9144 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9145 if (!PrevDecl && Record->getDefinition())
9146 PrevDecl = Record;
9147 if (PrevDecl) {
9148 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9149 bool HasNoEffect = false;
9150 assert(MSInfo && "No member specialization information?")((MSInfo && "No member specialization information?") ?
static_cast<void> (0) : __assert_fail ("MSInfo && \"No member specialization information?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9150, __PRETTY_FUNCTION__))
;
9151 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9152 PrevDecl,
9153 MSInfo->getTemplateSpecializationKind(),
9154 MSInfo->getPointOfInstantiation(),
9155 HasNoEffect))
9156 return true;
9157 if (HasNoEffect)
9158 return TagD;
9159 }
9160
9161 CXXRecordDecl *RecordDef
9162 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9163 if (!RecordDef) {
9164 // C++ [temp.explicit]p3:
9165 // A definition of a member class of a class template shall be in scope
9166 // at the point of an explicit instantiation of the member class.
9167 CXXRecordDecl *Def
9168 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9169 if (!Def) {
9170 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9171 << 0 << Record->getDeclName() << Record->getDeclContext();
9172 Diag(Pattern->getLocation(), diag::note_forward_declaration)
9173 << Pattern;
9174 return true;
9175 } else {
9176 if (InstantiateClass(NameLoc, Record, Def,
9177 getTemplateInstantiationArgs(Record),
9178 TSK))
9179 return true;
9180
9181 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9182 if (!RecordDef)
9183 return true;
9184 }
9185 }
9186
9187 // Instantiate all of the members of the class.
9188 InstantiateClassMembers(NameLoc, RecordDef,
9189 getTemplateInstantiationArgs(Record), TSK);
9190
9191 if (TSK == TSK_ExplicitInstantiationDefinition)
9192 MarkVTableUsed(NameLoc, RecordDef, true);
9193
9194 // FIXME: We don't have any representation for explicit instantiations of
9195 // member classes. Such a representation is not needed for compilation, but it
9196 // should be available for clients that want to see all of the declarations in
9197 // the source code.
9198 return TagD;
9199}
9200
9201DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9202 SourceLocation ExternLoc,
9203 SourceLocation TemplateLoc,
9204 Declarator &D) {
9205 // Explicit instantiations always require a name.
9206 // TODO: check if/when DNInfo should replace Name.
9207 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9208 DeclarationName Name = NameInfo.getName();
9209 if (!Name) {
1
Taking false branch
9210 if (!D.isInvalidType())
9211 Diag(D.getDeclSpec().getBeginLoc(),
9212 diag::err_explicit_instantiation_requires_name)
9213 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9214
9215 return true;
9216 }
9217
9218 // The scope passed in may not be a decl scope. Zip up the scope tree until
9219 // we find one that is.
9220 while ((S->getFlags() & Scope::DeclScope) == 0 ||
2
Assuming the condition is false
4
Loop condition is false. Execution continues on line 9225
9221 (S->getFlags() & Scope::TemplateParamScope) != 0)
3
Assuming the condition is false
9222 S = S->getParent();
9223
9224 // Determine the type of the declaration.
9225 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9226 QualType R = T->getType();
9227 if (R.isNull())
5
Taking false branch
9228 return true;
9229
9230 // C++ [dcl.stc]p1:
9231 // A storage-class-specifier shall not be specified in [...] an explicit
9232 // instantiation (14.7.2) directive.
9233 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6
Assuming the condition is false
7
Taking false branch
9234 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9235 << Name;
9236 return true;
9237 } else if (D.getDeclSpec().getStorageClassSpec()
8
Assuming the condition is false
9
Taking false branch
9238 != DeclSpec::SCS_unspecified) {
9239 // Complain about then remove the storage class specifier.
9240 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9241 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9242
9243 D.getMutableDeclSpec().ClearStorageClassSpecs();
9244 }
9245
9246 // C++0x [temp.explicit]p1:
9247 // [...] An explicit instantiation of a function template shall not use the
9248 // inline or constexpr specifiers.
9249 // Presumably, this also applies to member functions of class templates as
9250 // well.
9251 if (D.getDeclSpec().isInlineSpecified())
10
Assuming the condition is false
11
Taking false branch
9252 Diag(D.getDeclSpec().getInlineSpecLoc(),
9253 getLangOpts().CPlusPlus11 ?
9254 diag::err_explicit_instantiation_inline :
9255 diag::warn_explicit_instantiation_inline_0x)
9256 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9257 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
12
Assuming the condition is false
9258 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9259 // not already specified.
9260 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9261 diag::err_explicit_instantiation_constexpr);
9262
9263 // A deduction guide is not on the list of entities that can be explicitly
9264 // instantiated.
9265 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
13
Assuming the condition is false
14
Taking false branch
9266 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9267 << /*explicit instantiation*/ 0;
9268 return true;
9269 }
9270
9271 // C++0x [temp.explicit]p2:
9272 // There are two forms of explicit instantiation: an explicit instantiation
9273 // definition and an explicit instantiation declaration. An explicit
9274 // instantiation declaration begins with the extern keyword. [...]
9275 TemplateSpecializationKind TSK
9276 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
15
'?' condition is false
9277 : TSK_ExplicitInstantiationDeclaration;
9278
9279 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
9280 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
9281
9282 if (!R->isFunctionType()) {
16
Taking true branch
9283 // C++ [temp.explicit]p1:
9284 // A [...] static data member of a class template can be explicitly
9285 // instantiated from the member definition associated with its class
9286 // template.
9287 // C++1y [temp.explicit]p1:
9288 // A [...] variable [...] template specialization can be explicitly
9289 // instantiated from its template.
9290 if (Previous.isAmbiguous())
17
Assuming the condition is false
18
Taking false branch
9291 return true;
9292
9293 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
9294 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
9295
9296 if (!PrevTemplate) {
19
Assuming 'PrevTemplate' is non-null
20
Taking false branch
9297 if (!Prev || !Prev->isStaticDataMember()) {
9298 // We expect to see a static data member here.
9299 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
9300 << Name;
9301 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9302 P != PEnd; ++P)
9303 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
9304 return true;
9305 }
9306
9307 if (!Prev->getInstantiatedFromStaticDataMember()) {
9308 // FIXME: Check for explicit specialization?
9309 Diag(D.getIdentifierLoc(),
9310 diag::err_explicit_instantiation_data_member_not_instantiated)
9311 << Prev;
9312 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
9313 // FIXME: Can we provide a note showing where this was declared?
9314 return true;
9315 }
9316 } else {
9317 // Explicitly instantiate a variable template.
9318
9319 // C++1y [dcl.spec.auto]p6:
9320 // ... A program that uses auto or decltype(auto) in a context not
9321 // explicitly allowed in this section is ill-formed.
9322 //
9323 // This includes auto-typed variable template instantiations.
9324 if (R->isUndeducedType()) {
21
Taking false branch
9325 Diag(T->getTypeLoc().getBeginLoc(),
9326 diag::err_auto_not_allowed_var_inst);
9327 return true;
9328 }
9329
9330 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
22
Assuming the condition is false
23
Taking false branch
9331 // C++1y [temp.explicit]p3:
9332 // If the explicit instantiation is for a variable, the unqualified-id
9333 // in the declaration shall be a template-id.
9334 Diag(D.getIdentifierLoc(),
9335 diag::err_explicit_instantiation_without_template_id)
9336 << PrevTemplate;
9337 Diag(PrevTemplate->getLocation(),
9338 diag::note_explicit_instantiation_here);
9339 return true;
9340 }
9341
9342 // Translate the parser's template argument list into our AST format.
9343 TemplateArgumentListInfo TemplateArgs =
9344 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9345
9346 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
24
Calling 'Sema::CheckVarTemplateId'
9347 D.getIdentifierLoc(), TemplateArgs);
9348 if (Res.isInvalid())
9349 return true;
9350
9351 // Ignore access control bits, we don't need them for redeclaration
9352 // checking.
9353 Prev = cast<VarDecl>(Res.get());
9354 }
9355
9356 // C++0x [temp.explicit]p2:
9357 // If the explicit instantiation is for a member function, a member class
9358 // or a static data member of a class template specialization, the name of
9359 // the class template specialization in the qualified-id for the member
9360 // name shall be a simple-template-id.
9361 //
9362 // C++98 has the same restriction, just worded differently.
9363 //
9364 // This does not apply to variable template specializations, where the
9365 // template-id is in the unqualified-id instead.
9366 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
9367 Diag(D.getIdentifierLoc(),
9368 diag::ext_explicit_instantiation_without_qualified_id)
9369 << Prev << D.getCXXScopeSpec().getRange();
9370
9371 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
9372
9373 // Verify that it is okay to explicitly instantiate here.
9374 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
9375 SourceLocation POI = Prev->getPointOfInstantiation();
9376 bool HasNoEffect = false;
9377 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
9378 PrevTSK, POI, HasNoEffect))
9379 return true;
9380
9381 if (!HasNoEffect) {
9382 // Instantiate static data member or variable template.
9383 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9384 // Merge attributes.
9385 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
9386 if (TSK == TSK_ExplicitInstantiationDefinition)
9387 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
9388 }
9389
9390 // Check the new variable specialization against the parsed input.
9391 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
9392 Diag(T->getTypeLoc().getBeginLoc(),
9393 diag::err_invalid_var_template_spec_type)
9394 << 0 << PrevTemplate << R << Prev->getType();
9395 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
9396 << 2 << PrevTemplate->getDeclName();
9397 return true;
9398 }
9399
9400 // FIXME: Create an ExplicitInstantiation node?
9401 return (Decl*) nullptr;
9402 }
9403
9404 // If the declarator is a template-id, translate the parser's template
9405 // argument list into our AST format.
9406 bool HasExplicitTemplateArgs = false;
9407 TemplateArgumentListInfo TemplateArgs;
9408 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9409 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9410 HasExplicitTemplateArgs = true;
9411 }
9412
9413 // C++ [temp.explicit]p1:
9414 // A [...] function [...] can be explicitly instantiated from its template.
9415 // A member function [...] of a class template can be explicitly
9416 // instantiated from the member definition associated with its class
9417 // template.
9418 UnresolvedSet<8> TemplateMatches;
9419 FunctionDecl *NonTemplateMatch = nullptr;
9420 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
9421 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9422 P != PEnd; ++P) {
9423 NamedDecl *Prev = *P;
9424 if (!HasExplicitTemplateArgs) {
9425 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
9426 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
9427 /*AdjustExceptionSpec*/true);
9428 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
9429 if (Method->getPrimaryTemplate()) {
9430 TemplateMatches.addDecl(Method, P.getAccess());
9431 } else {
9432 // FIXME: Can this assert ever happen? Needs a test.
9433 assert(!NonTemplateMatch && "Multiple NonTemplateMatches")((!NonTemplateMatch && "Multiple NonTemplateMatches")
? static_cast<void> (0) : __assert_fail ("!NonTemplateMatch && \"Multiple NonTemplateMatches\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9433, __PRETTY_FUNCTION__))
;
9434 NonTemplateMatch = Method;
9435 }
9436 }
9437 }
9438 }
9439
9440 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
9441 if (!FunTmpl)
9442 continue;
9443
9444 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9445 FunctionDecl *Specialization = nullptr;
9446 if (TemplateDeductionResult TDK
9447 = DeduceTemplateArguments(FunTmpl,
9448 (HasExplicitTemplateArgs ? &TemplateArgs
9449 : nullptr),
9450 R, Specialization, Info)) {
9451 // Keep track of almost-matches.
9452 FailedCandidates.addCandidate()
9453 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
9454 MakeDeductionFailureInfo(Context, TDK, Info));
9455 (void)TDK;
9456 continue;
9457 }
9458
9459 // Target attributes are part of the cuda function signature, so
9460 // the cuda target of the instantiated function must match that of its
9461 // template. Given that C++ template deduction does not take
9462 // target attributes into account, we reject candidates here that
9463 // have a different target.
9464 if (LangOpts.CUDA &&
9465 IdentifyCUDATarget(Specialization,
9466 /* IgnoreImplicitHDAttributes = */ true) !=
9467 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
9468 FailedCandidates.addCandidate().set(
9469 P.getPair(), FunTmpl->getTemplatedDecl(),
9470 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9471 continue;
9472 }
9473
9474 TemplateMatches.addDecl(Specialization, P.getAccess());
9475 }
9476
9477 FunctionDecl *Specialization = NonTemplateMatch;
9478 if (!Specialization) {
9479 // Find the most specialized function template specialization.
9480 UnresolvedSetIterator Result = getMostSpecialized(
9481 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
9482 D.getIdentifierLoc(),
9483 PDiag(diag::err_explicit_instantiation_not_known) << Name,
9484 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
9485 PDiag(diag::note_explicit_instantiation_candidate));
9486
9487 if (Result == TemplateMatches.end())
9488 return true;
9489
9490 // Ignore access control bits, we don't need them for redeclaration checking.
9491 Specialization = cast<FunctionDecl>(*Result);
9492 }
9493
9494 // C++11 [except.spec]p4
9495 // In an explicit instantiation an exception-specification may be specified,
9496 // but is not required.
9497 // If an exception-specification is specified in an explicit instantiation
9498 // directive, it shall be compatible with the exception-specifications of
9499 // other declarations of that function.
9500 if (auto *FPT = R->getAs<FunctionProtoType>())
9501 if (FPT->hasExceptionSpec()) {
9502 unsigned DiagID =
9503 diag::err_mismatched_exception_spec_explicit_instantiation;
9504 if (getLangOpts().MicrosoftExt)
9505 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
9506 bool Result = CheckEquivalentExceptionSpec(
9507 PDiag(DiagID) << Specialization->getType(),
9508 PDiag(diag::note_explicit_instantiation_here),
9509 Specialization->getType()->getAs<FunctionProtoType>(),
9510 Specialization->getLocation(), FPT, D.getBeginLoc());
9511 // In Microsoft mode, mismatching exception specifications just cause a
9512 // warning.
9513 if (!getLangOpts().MicrosoftExt && Result)
9514 return true;
9515 }
9516
9517 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
9518 Diag(D.getIdentifierLoc(),
9519 diag::err_explicit_instantiation_member_function_not_instantiated)
9520 << Specialization
9521 << (Specialization->getTemplateSpecializationKind() ==
9522 TSK_ExplicitSpecialization);
9523 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
9524 return true;
9525 }
9526
9527 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
9528 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
9529 PrevDecl = Specialization;
9530
9531 if (PrevDecl) {
9532 bool HasNoEffect = false;
9533 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
9534 PrevDecl,
9535 PrevDecl->getTemplateSpecializationKind(),
9536 PrevDecl->getPointOfInstantiation(),
9537 HasNoEffect))
9538 return true;
9539
9540 // FIXME: We may still want to build some representation of this
9541 // explicit specialization.
9542 if (HasNoEffect)
9543 return (Decl*) nullptr;
9544 }
9545
9546 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
9547 // functions
9548 // valarray<size_t>::valarray(size_t) and
9549 // valarray<size_t>::~valarray()
9550 // that it declared to have internal linkage with the internal_linkage
9551 // attribute. Ignore the explicit instantiation declaration in this case.
9552 if (Specialization->hasAttr<InternalLinkageAttr>() &&
9553 TSK == TSK_ExplicitInstantiationDeclaration) {
9554 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
9555 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
9556 RD->isInStdNamespace())
9557 return (Decl*) nullptr;
9558 }
9559
9560 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
9561
9562 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9563 // instantiation declarations.
9564 if (TSK == TSK_ExplicitInstantiationDefinition &&
9565 Specialization->hasAttr<DLLImportAttr>() &&
9566 Context.getTargetInfo().getCXXABI().isMicrosoft())
9567 TSK = TSK_ExplicitInstantiationDeclaration;
9568
9569 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9570
9571 if (Specialization->isDefined()) {
9572 // Let the ASTConsumer know that this function has been explicitly
9573 // instantiated now, and its linkage might have changed.
9574 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
9575 } else if (TSK == TSK_ExplicitInstantiationDefinition)
9576 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
9577
9578 // C++0x [temp.explicit]p2:
9579 // If the explicit instantiation is for a member function, a member class
9580 // or a static data member of a class template specialization, the name of
9581 // the class template specialization in the qualified-id for the member
9582 // name shall be a simple-template-id.
9583 //
9584 // C++98 has the same restriction, just worded differently.
9585 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
9586 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
9587 D.getCXXScopeSpec().isSet() &&
9588 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
9589 Diag(D.getIdentifierLoc(),
9590 diag::ext_explicit_instantiation_without_qualified_id)
9591 << Specialization << D.getCXXScopeSpec().getRange();
9592
9593 CheckExplicitInstantiation(
9594 *this,
9595 FunTmpl ? (NamedDecl *)FunTmpl
9596 : Specialization->getInstantiatedFromMemberFunction(),
9597 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
9598
9599 // FIXME: Create some kind of ExplicitInstantiationDecl here.
9600 return (Decl*) nullptr;
9601}
9602
9603TypeResult
9604Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9605 const CXXScopeSpec &SS, IdentifierInfo *Name,
9606 SourceLocation TagLoc, SourceLocation NameLoc) {
9607 // This has to hold, because SS is expected to be defined.
9608 assert(Name && "Expected a name in a dependent tag")((Name && "Expected a name in a dependent tag") ? static_cast
<void> (0) : __assert_fail ("Name && \"Expected a name in a dependent tag\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9608, __PRETTY_FUNCTION__))
;
9609
9610 NestedNameSpecifier *NNS = SS.getScopeRep();
9611 if (!NNS)
9612 return true;
9613
9614 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9615
9616 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
9617 Diag(NameLoc, diag::err_dependent_tag_decl)
9618 << (TUK == TUK_Definition) << Kind << SS.getRange();
9619 return true;
9620 }
9621
9622 // Create the resulting type.
9623 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9624 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
9625
9626 // Create type-source location information for this type.
9627 TypeLocBuilder TLB;
9628 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
9629 TL.setElaboratedKeywordLoc(TagLoc);
9630 TL.setQualifierLoc(SS.getWithLocInContext(Context));
9631 TL.setNameLoc(NameLoc);
9632 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
9633}
9634
9635TypeResult
9636Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
9637 const CXXScopeSpec &SS, const IdentifierInfo &II,
9638 SourceLocation IdLoc) {
9639 if (SS.isInvalid())
9640 return true;
9641
9642 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
9643 Diag(TypenameLoc,
9644 getLangOpts().CPlusPlus11 ?
9645 diag::warn_cxx98_compat_typename_outside_of_template :
9646 diag::ext_typename_outside_of_template)
9647 << FixItHint::CreateRemoval(TypenameLoc);
9648
9649 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9650 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
9651 TypenameLoc, QualifierLoc, II, IdLoc);
9652 if (T.isNull())
9653 return true;
9654
9655 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9656 if (isa<DependentNameType>(T)) {
9657 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
9658 TL.setElaboratedKeywordLoc(TypenameLoc);
9659 TL.setQualifierLoc(QualifierLoc);
9660 TL.setNameLoc(IdLoc);
9661 } else {
9662 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
9663 TL.setElaboratedKeywordLoc(TypenameLoc);
9664 TL.setQualifierLoc(QualifierLoc);
9665 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
9666 }
9667
9668 return CreateParsedType(T, TSI);
9669}
9670
9671TypeResult
9672Sema::ActOnTypenameType(Scope *S,
9673 SourceLocation TypenameLoc,
9674 const CXXScopeSpec &SS,
9675 SourceLocation TemplateKWLoc,
9676 TemplateTy TemplateIn,
9677 IdentifierInfo *TemplateII,
9678 SourceLocation TemplateIILoc,
9679 SourceLocation LAngleLoc,
9680 ASTTemplateArgsPtr TemplateArgsIn,
9681 SourceLocation RAngleLoc) {
9682 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
9683 Diag(TypenameLoc,
9684 getLangOpts().CPlusPlus11 ?
9685 diag::warn_cxx98_compat_typename_outside_of_template :
9686 diag::ext_typename_outside_of_template)
9687 << FixItHint::CreateRemoval(TypenameLoc);
9688
9689 // Strangely, non-type results are not ignored by this lookup, so the
9690 // program is ill-formed if it finds an injected-class-name.
9691 if (TypenameLoc.isValid()) {
9692 auto *LookupRD =
9693 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
9694 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
9695 Diag(TemplateIILoc,
9696 diag::ext_out_of_line_qualified_id_type_names_constructor)
9697 << TemplateII << 0 /*injected-class-name used as template name*/
9698 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
9699 }
9700 }
9701
9702 // Translate the parser's template argument list in our AST format.
9703 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9704 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9705
9706 TemplateName Template = TemplateIn.get();
9707 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
9708 // Construct a dependent template specialization type.
9709 assert(DTN && "dependent template has non-dependent name?")((DTN && "dependent template has non-dependent name?"
) ? static_cast<void> (0) : __assert_fail ("DTN && \"dependent template has non-dependent name?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9709, __PRETTY_FUNCTION__))
;
9710 assert(DTN->getQualifier() == SS.getScopeRep())((DTN->getQualifier() == SS.getScopeRep()) ? static_cast<
void> (0) : __assert_fail ("DTN->getQualifier() == SS.getScopeRep()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9710, __PRETTY_FUNCTION__))
;
9711 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
9712 DTN->getQualifier(),
9713 DTN->getIdentifier(),
9714 TemplateArgs);
9715
9716 // Create source-location information for this type.
9717 TypeLocBuilder Builder;
9718 DependentTemplateSpecializationTypeLoc SpecTL
9719 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
9720 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
9721 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
9722 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
9723 SpecTL.setTemplateNameLoc(TemplateIILoc);
9724 SpecTL.setLAngleLoc(LAngleLoc);
9725 SpecTL.setRAngleLoc(RAngleLoc);
9726 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
9727 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
9728 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
9729 }
9730
9731 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
9732 if (T.isNull())
9733 return true;
9734
9735 // Provide source-location information for the template specialization type.
9736 TypeLocBuilder Builder;
9737 TemplateSpecializationTypeLoc SpecTL
9738 = Builder.push<TemplateSpecializationTypeLoc>(T);
9739 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
9740 SpecTL.setTemplateNameLoc(TemplateIILoc);
9741 SpecTL.setLAngleLoc(LAngleLoc);
9742 SpecTL.setRAngleLoc(RAngleLoc);
9743 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
9744 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
9745
9746 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
9747 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
9748 TL.setElaboratedKeywordLoc(TypenameLoc);
9749 TL.setQualifierLoc(SS.getWithLocInContext(Context));
9750
9751 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
9752 return CreateParsedType(T, TSI);
9753}
9754
9755
9756/// Determine whether this failed name lookup should be treated as being
9757/// disabled by a usage of std::enable_if.
9758static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
9759 SourceRange &CondRange, Expr *&Cond) {
9760 // We must be looking for a ::type...
9761 if (!II.isStr("type"))
9762 return false;
9763
9764 // ... within an explicitly-written template specialization...
9765 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
9766 return false;
9767 TypeLoc EnableIfTy = NNS.getTypeLoc();
9768 TemplateSpecializationTypeLoc EnableIfTSTLoc =
9769 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
9770 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
9771 return false;
9772 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
9773
9774 // ... which names a complete class template declaration...
9775 const TemplateDecl *EnableIfDecl =
9776 EnableIfTST->getTemplateName().getAsTemplateDecl();
9777 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
9778 return false;
9779
9780 // ... called "enable_if".
9781 const IdentifierInfo *EnableIfII =
9782 EnableIfDecl->getDeclName().getAsIdentifierInfo();
9783 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
9784 return false;
9785
9786 // Assume the first template argument is the condition.
9787 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
9788
9789 // Dig out the condition.
9790 Cond = nullptr;
9791 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
9792 != TemplateArgument::Expression)
9793 return true;
9794
9795 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
9796
9797 // Ignore Boolean literals; they add no value.
9798 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
9799 Cond = nullptr;
9800
9801 return true;
9802}
9803
9804/// Build the type that describes a C++ typename specifier,
9805/// e.g., "typename T::type".
9806QualType
9807Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
9808 SourceLocation KeywordLoc,
9809 NestedNameSpecifierLoc QualifierLoc,
9810 const IdentifierInfo &II,
9811 SourceLocation IILoc) {
9812 CXXScopeSpec SS;
9813 SS.Adopt(QualifierLoc);
9814
9815 DeclContext *Ctx = computeDeclContext(SS);
9816 if (!Ctx) {
9817 // If the nested-name-specifier is dependent and couldn't be
9818 // resolved to a type, build a typename type.
9819 assert(QualifierLoc.getNestedNameSpecifier()->isDependent())((QualifierLoc.getNestedNameSpecifier()->isDependent()) ? static_cast
<void> (0) : __assert_fail ("QualifierLoc.getNestedNameSpecifier()->isDependent()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaTemplate.cpp"
, 9819, __PRETTY_FUNCTION__))
;
9820 return Context.getDependentNameType(Keyword,
9821 QualifierLoc.getNestedNameSpecifier(),
9822 &II);
9823 }
9824
9825 // If the nested-name-specifier refers to the current instantiation,
9826 // the "typename" keyword itself is superfluous. In C++03, the
9827 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
9828 // allows such extraneous "typename" keywords, and we retroactively
9829 // apply this DR to C++03 code with only a warning. In any case we continue.
9830
9831 if (RequireCompleteDeclContext(SS, Ctx))
9832 return QualType();
9833
9834 DeclarationName Name(&II);
9835 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
9836 LookupQualifiedName(Result, Ctx, SS);
9837 unsigned DiagID = 0;
9838 Decl *Referenced = nullptr;
9839 switch (Result.getResultKind()) {
9840 case LookupResult::NotFound: {
9841 // If we're looking up 'type' within a template named 'enable_if', produce
9842 // a more specific diagnostic.
9843 SourceRange CondRange;
9844 Expr *Cond = nullptr;
9845 if (isEnableIf(QualifierLoc, II, CondRange, Cond)) {
9846 // If we have a condition, narrow it down to the specific failed
9847 // condition.
9848 if (Cond) {
9849 Expr *FailedCond;
9850 std::string FailedDescription;
9851 std::tie(FailedCond, FailedDescription) =
9852 findFailedBooleanCondition(Cond);
9853
9854 Diag(FailedCond->getExprLoc(),
9855 diag::err_typename_nested_not_found_requirement)
9856 << FailedDescription
9857 << FailedCond->getSourceRange();
9858 return QualType();
9859 }
9860
9861 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
9862 << Ctx << CondRange;
9863 return QualType();
9864 }
9865
9866 DiagID = diag::err_typename_nested_not_found;
9867 break;
9868 }
9869
9870 case LookupResult::FoundUnresolvedValue: {
9871 // We found a using declaration that is a value. Most likely, the using
9872 // declaration itself is meant to have the 'typename' keyword.
9873 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
9874 IILoc);
9875 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
9876 << Name << Ctx << FullRange;
9877 if (UnresolvedUsingValueDecl *Using
9878 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
9879 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
9880 Diag(Loc, diag::note_using_value_decl_missing_typename)
9881 << FixItHint::CreateInsertion(Loc, "typename ");
9882 }
9883 }
9884 // Fall through to create a dependent typename type, from which we can recover
9885 // better.
9886 LLVM_FALLTHROUGH[[clang::fallthrough]];
9887
9888 case LookupResult::NotFoundInCurrentInstantiation:
9889 // Okay, it's a member of an unknown instantiation.
9890 return Context.getDependentNameType(Keyword,
9891 QualifierLoc.getNestedNameSpecifier(),
9892 &II);
9893
9894 case LookupResult::Found:
9895 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
9896 // C++ [class.qual]p2:
9897 // In a lookup in which function names are not ignored and the
9898 // nested-name-specifier nominates a class C, if the name specified
9899 // after the nested-name-specifier, when looked up in C, is the
9900 // injected-class-name of C [...] then the name is instead considered
9901 // to name the constructor of class C.
9902 //
9903 // Unlike in an elaborated-type-specifier, function names are not ignored
9904 // in typename-specifier lookup. However, they are ignored in all the
9905 // contexts where we form a typename type with no keyword (that is, in
9906 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
9907 //
9908 // FIXME: That's not strictly true: mem-initializer-id lookup does not
9909 // ignore functions, but that appears to be an oversight.
9910 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
9911 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
9912 if (Keyword == ETK_Typename && LookupRD && FoundRD &&
9913 FoundRD->isInjectedClassName() &&
9914 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
9915 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
9916 << &II << 1 << 0 /*'typename' keyword used*/;
9917
9918 // We found a type. Build an ElaboratedType, since the
9919 // typename-specifier was just sugar.
9920 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
9921 return Context.getElaboratedType(Keyword,
9922 QualifierLoc.getNestedNameSpecifier(),
9923 Context.getTypeDeclType(Type));
9924 }
9925
9926 // C++ [dcl.type.simple]p2:
9927 // A type-specifier of the form
9928 // typename[opt] nested-name-specifier[opt] template-name
9929 // is a placeholder for a deduced class type [...].
9930 if (getLangOpts().CPlusPlus17) {
9931 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
9932 return Context.getElaboratedType(
9933 Keyword, QualifierLoc.getNestedNameSpecifier(),
9934 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
9935 QualType(), false));
9936 }
9937 }
9938
9939 DiagID = diag::err_typename_nested_not_type;
9940 Referenced = Result.getFoundDecl();
9941 break;
9942
9943 case LookupResult::FoundOverloaded:
9944 DiagID = diag::err_typename_nested_not_type;
9945 Referenced = *Result.begin();
9946 break;
9947
9948 case LookupResult::Ambiguous:
9949 return QualType();
9950 }
9951
9952 // If we get here, it's because name lookup did not find a
9953 // type. Emit an appropriate diagnostic and return an error.
9954 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
9955 IILoc);
9956 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
9957 if (Referenced)
9958 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
9959 << Name;
9960 return QualType();
9961}
9962
9963namespace {
9964 // See Sema::RebuildTypeInCurrentInstantiation
9965 class CurrentInstantiationRebuilder
9966 : public TreeTransform<CurrentInstantiationRebuilder> {
9967 SourceLocation Loc;
9968 DeclarationName Entity;
9969
9970 public:
9971 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
9972
9973 CurrentInstantiationRebuilder(Sema &SemaRef,
9974 SourceLocation Loc,
9975 DeclarationName Entity)
9976 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
9977 Loc(Loc), Entity(Entity) { }
9978
9979 /// Determine whether the given type \p T has already been
9980 /// transformed.
9981 ///
9982 /// For the purposes of type reconstruction, a type has already been
9983 /// transformed if it is NULL or if it is not dependent.
9984 bool AlreadyTransformed(QualType T) {
9985 return T.isNull() || !T->isDependentType();
9986 }
9987
9988 /// Returns the location of the entity whose type is being
9989 /// rebuilt.
9990 SourceLocation getBaseLocation() { return Loc; }
9991
9992 /// Returns the name of the entity whose type is being rebuilt.
9993 DeclarationName getBaseEntity() { return Entity; }
9994
9995 /// Sets the "base" location and entity when that
9996 /// information is known based on another transformation.
9997 void setBase(SourceLocation Loc, DeclarationName Entity) {
9998 this->Loc = Loc;
9999 this->Entity = Entity;
10000 }
10001
10002 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10003 // Lambdas never need to be transformed.
10004 return E;
10005 }
10006 };
10007} // end anonymous namespace
10008
10009/// Rebuilds a type within the context of the current instantiation.
10010///
10011/// The type \p T is part of the type of an out-of-line member definition of
10012/// a class template (or class template partial specialization) that was parsed
10013/// and constructed before we entered the scope of the class template (or
10014/// partial specialization thereof). This routine will rebuild that type now
10015/// that we have entered the declarator's scope, which may produce different
10016/// canonical types, e.g.,
10017///
10018/// \code
10019/// template<typename T>
10020/// struct X {
10021/// typedef T* pointer;
10022/// pointer data();
10023/// };
10024///
10025/// template<typename T>
10026/// typename X<T>::pointer X<T>::data() { ... }
10027/// \endcode
10028///
10029/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10030/// since we do not know that we can look into X<T> when we parsed the type.
10031/// This function will rebuild the type, performing the lookup of "pointer"
10032/// in X<T> and returning an ElaboratedType whose canonical type is the same
10033/// as the canonical type of T*, allowing the return types of the out-of-line
10034/// definition and the declaration to match.
10035TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10036 SourceLocation Loc,
10037 DeclarationName Name) {
10038 if (!T || !T->getType()->isDependentType())
10039 return T;
10040
10041 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10042 return Rebuilder.TransformType(T);
10043}
10044
10045ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10046 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10047 DeclarationName());
10048 return Rebuilder.TransformExpr(E);
10049}
10050
10051bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10052 if (SS.isInvalid())
10053 return true;
10054
10055 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10056 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10057 DeclarationName());
10058 NestedNameSpecifierLoc Rebuilt
10059 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10060 if (!Rebuilt)
10061 return true;
10062
10063 SS.Adopt(Rebuilt);
10064 return false;
10065}
10066
10067/// Rebuild the template parameters now that we know we're in a current
10068/// instantiation.
10069bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10070 TemplateParameterList *Params) {
10071 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10072 Decl *Param = Params->getParam(I);
10073
10074 // There is nothing to rebuild in a type parameter.
10075 if (isa<TemplateTypeParmDecl>(Param))
10076 continue;
10077
10078 // Rebuild the template parameter list of a template template parameter.
10079 if (TemplateTemplateParmDecl *TTP
10080 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10081 if (RebuildTemplateParamsInCurrentInstantiation(
10082 TTP->getTemplateParameters()))
10083 return true;
10084
10085 continue;
10086 }
10087
10088 // Rebuild the type of a non-type template parameter.
10089 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10090 TypeSourceInfo *NewTSI
10091 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10092 NTTP->getLocation(),
10093 NTTP->getDeclName());
10094 if (!NewTSI)
10095 return true;
10096
10097 if (NewTSI->getType()->isUndeducedType()) {
10098 // C++17 [temp.dep.expr]p3:
10099 // An id-expression is type-dependent if it contains
10100 // - an identifier associated by name lookup with a non-type
10101 // template-parameter declared with a type that contains a
10102 // placeholder type (7.1.7.4),
10103 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10104 }
10105
10106 if (NewTSI != NTTP->getTypeSourceInfo()) {
10107 NTTP->setTypeSourceInfo(NewTSI);
10108 NTTP->setType(NewTSI->getType());
10109 }
10110 }
10111
10112 return false;
10113}
10114
10115/// Produces a formatted string that describes the binding of
10116/// template parameters to template arguments.
10117std::string
10118Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10119 const TemplateArgumentList &Args) {
10120 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10121}
10122
10123std::string
10124Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10125 const TemplateArgument *Args,
10126 unsigned NumArgs) {
10127 SmallString<128> Str;
10128 llvm::raw_svector_ostream Out(Str);
10129
10130 if (!Params || Params->size() == 0 || NumArgs == 0)
10131 return std::string();
10132
10133 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10134 if (I >= NumArgs)
10135 break;
10136
10137 if (I == 0)
10138 Out << "[with ";
10139 else
10140 Out << ", ";
10141
10142 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10143 Out << Id->getName();
10144 } else {
10145 Out << '$' << I;
10146 }
10147
10148 Out << " = ";
10149 Args[I].print(getPrintingPolicy(), Out);
10150 }
10151
10152 Out << ']';
10153 return Out.str();
10154}
10155
10156void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10157 CachedTokens &Toks) {
10158 if (!FD)
10159 return;
10160
10161 auto LPT = llvm::make_unique<LateParsedTemplate>();
10162
10163 // Take tokens to avoid allocations
10164 LPT->Toks.swap(Toks);
10165 LPT->D = FnD;
10166 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10167
10168 FD->setLateTemplateParsed(true);
10169}
10170
10171void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10172 if (!FD)
10173 return;
10174 FD->setLateTemplateParsed(false);
10175}
10176
10177bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10178 DeclContext *DC = CurContext;
10179
10180 while (DC) {
10181 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10182 const FunctionDecl *FD = RD->isLocalClass();
10183 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10184 } else if (DC->isTranslationUnit() || DC->isNamespace())
10185 return false;
10186
10187 DC = DC->getParent();
10188 }
10189 return false;
10190}
10191
10192namespace {
10193/// Walk the path from which a declaration was instantiated, and check
10194/// that every explicit specialization along that path is visible. This enforces
10195/// C++ [temp.expl.spec]/6:
10196///
10197/// If a template, a member template or a member of a class template is
10198/// explicitly specialized then that specialization shall be declared before
10199/// the first use of that specialization that would cause an implicit
10200/// instantiation to take place, in every translation unit in which such a
10201/// use occurs; no diagnostic is required.
10202///
10203/// and also C++ [temp.class.spec]/1:
10204///
10205/// A partial specialization shall be declared before the first use of a
10206/// class template specialization that would make use of the partial
10207/// specialization as the result of an implicit or explicit instantiation
10208/// in every translation unit in which such a use occurs; no diagnostic is
10209/// required.
10210class ExplicitSpecializationVisibilityChecker {
10211 Sema &S;
10212 SourceLocation Loc;
10213 llvm::SmallVector<Module *, 8> Modules;
10214
10215public:
10216 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
10217 : S(S), Loc(Loc) {}
10218
10219 void check(NamedDecl *ND) {
10220 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10221 return checkImpl(FD);
10222 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
10223 return checkImpl(RD);
10224 if (auto *VD = dyn_cast<VarDecl>(ND))
10225 return checkImpl(VD);
10226 if (auto *ED = dyn_cast<EnumDecl>(ND))
10227 return checkImpl(ED);
10228 }
10229
10230private:
10231 void diagnose(NamedDecl *D, bool IsPartialSpec) {
10232 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
10233 : Sema::MissingImportKind::ExplicitSpecialization;
10234 const bool Recover = true;
10235
10236 // If we got a custom set of modules (because only a subset of the
10237 // declarations are interesting), use them, otherwise let
10238 // diagnoseMissingImport intelligently pick some.
10239 if (Modules.empty())
10240 S.diagnoseMissingImport(Loc, D, Kind, Recover);
10241 else
10242 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
10243 }
10244
10245 // Check a specific declaration. There are three problematic cases:
10246 //
10247 // 1) The declaration is an explicit specialization of a template
10248 // specialization.
10249 // 2) The declaration is an explicit specialization of a member of an
10250 // templated class.
10251 // 3) The declaration is an instantiation of a template, and that template
10252 // is an explicit specialization of a member of a templated class.
10253 //
10254 // We don't need to go any deeper than that, as the instantiation of the
10255 // surrounding class / etc is not triggered by whatever triggered this
10256 // instantiation, and thus should be checked elsewhere.
10257 template<typename SpecDecl>
10258 void checkImpl(SpecDecl *Spec) {
10259 bool IsHiddenExplicitSpecialization = false;
10260 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
10261 IsHiddenExplicitSpecialization =
10262 Spec->getMemberSpecializationInfo()
10263 ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
10264 : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
10265 } else {
10266 checkInstantiated(Spec);
10267 }
10268
10269 if (IsHiddenExplicitSpecialization)
10270 diagnose(Spec->getMostRecentDecl(), false);
10271 }
10272
10273 void checkInstantiated(FunctionDecl *FD) {
10274 if (auto *TD = FD->getPrimaryTemplate())
10275 checkTemplate(TD);
10276 }
10277
10278 void checkInstantiated(CXXRecordDecl *RD) {
10279 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
10280 if (!SD)
10281 return;
10282
10283 auto From = SD->getSpecializedTemplateOrPartial();
10284 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
10285 checkTemplate(TD);
10286 else if (auto *TD =
10287 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
10288 if (!S.hasVisibleDeclaration(TD))
10289 diagnose(TD, true);
10290 checkTemplate(TD);
10291 }
10292 }
10293
10294 void checkInstantiated(VarDecl *RD) {
10295 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
10296 if (!SD)
10297 return;
10298
10299 auto From = SD->getSpecializedTemplateOrPartial();
10300 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
10301 checkTemplate(TD);
10302 else if (auto *TD =
10303 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
10304 if (!S.hasVisibleDeclaration(TD))
10305 diagnose(TD, true);
10306 checkTemplate(TD);
10307 }
10308 }
10309
10310 void checkInstantiated(EnumDecl *FD) {}
10311
10312 template<typename TemplDecl>
10313 void checkTemplate(TemplDecl *TD) {
10314 if (TD->isMemberSpecialization()) {
10315 if (!S.hasVisibleMemberSpecialization(TD, &Modules))
10316 diagnose(TD->getMostRecentDecl(), false);
10317 }
10318 }
10319};
10320} // end anonymous namespace
10321
10322void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
10323 if (!getLangOpts().Modules)
10324 return;
10325
10326 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
10327}
10328
10329/// Check whether a template partial specialization that we've discovered
10330/// is hidden, and produce suitable diagnostics if so.
10331void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
10332 NamedDecl *Spec) {
10333 llvm::SmallVector<Module *, 8> Modules;
10334 if (!hasVisibleDeclaration(Spec, &Modules))
10335 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
10336 MissingImportKind::PartialSpecialization,
10337 /*Recover*/true);
10338}

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h

1//===- DeclTemplate.h - Classes for representing C++ templates --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the C++ template declaration subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECLTEMPLATE_H
15#define LLVM_CLANG_AST_DECLTEMPLATE_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/Redeclarable.h"
22#include "clang/AST/TemplateBase.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/LLVM.h"
25#include "clang/Basic/SourceLocation.h"
26#include "clang/Basic/Specifiers.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/PointerUnion.h"
31#include "llvm/ADT/iterator.h"
32#include "llvm/ADT/iterator_range.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/TrailingObjects.h"
36#include <cassert>
37#include <cstddef>
38#include <cstdint>
39#include <iterator>
40#include <utility>
41
42namespace clang {
43
44enum BuiltinTemplateKind : int;
45class ClassTemplateDecl;
46class ClassTemplatePartialSpecializationDecl;
47class Expr;
48class FunctionTemplateDecl;
49class IdentifierInfo;
50class NonTypeTemplateParmDecl;
51class TemplateDecl;
52class TemplateTemplateParmDecl;
53class TemplateTypeParmDecl;
54class UnresolvedSetImpl;
55class VarTemplateDecl;
56class VarTemplatePartialSpecializationDecl;
57
58/// Stores a template parameter of any kind.
59using TemplateParameter =
60 llvm::PointerUnion3<TemplateTypeParmDecl *, NonTypeTemplateParmDecl *,
61 TemplateTemplateParmDecl *>;
62
63NamedDecl *getAsNamedDecl(TemplateParameter P);
64
65/// Stores a list of template parameters for a TemplateDecl and its
66/// derived classes.
67class TemplateParameterList final
68 : private llvm::TrailingObjects<TemplateParameterList, NamedDecl *,
69 Expr *> {
70 /// The location of the 'template' keyword.
71 SourceLocation TemplateLoc;
72
73 /// The locations of the '<' and '>' angle brackets.
74 SourceLocation LAngleLoc, RAngleLoc;
75
76 /// The number of template parameters in this template
77 /// parameter list.
78 unsigned NumParams : 30;
79
80 /// Whether this template parameter list contains an unexpanded parameter
81 /// pack.
82 unsigned ContainsUnexpandedParameterPack : 1;
83
84 /// Whether this template parameter list has an associated requires-clause
85 unsigned HasRequiresClause : 1;
86
87protected:
88 TemplateParameterList(SourceLocation TemplateLoc, SourceLocation LAngleLoc,
89 ArrayRef<NamedDecl *> Params, SourceLocation RAngleLoc,
90 Expr *RequiresClause);
91
92 size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
93 return NumParams;
94 }
95
96 size_t numTrailingObjects(OverloadToken<Expr *>) const {
97 return HasRequiresClause;
98 }
99
100public:
101 template <size_t N, bool HasRequiresClause>
102 friend class FixedSizeTemplateParameterListStorage;
103 friend TrailingObjects;
104
105 static TemplateParameterList *Create(const ASTContext &C,
106 SourceLocation TemplateLoc,
107 SourceLocation LAngleLoc,
108 ArrayRef<NamedDecl *> Params,
109 SourceLocation RAngleLoc,
110 Expr *RequiresClause);
111
112 /// Iterates through the template parameters in this list.
113 using iterator = NamedDecl **;
114
115 /// Iterates through the template parameters in this list.
116 using const_iterator = NamedDecl * const *;
117
118 iterator begin() { return getTrailingObjects<NamedDecl *>(); }
119 const_iterator begin() const { return getTrailingObjects<NamedDecl *>(); }
120 iterator end() { return begin() + NumParams; }
121 const_iterator end() const { return begin() + NumParams; }
122
123 unsigned size() const { return NumParams; }
124
125 ArrayRef<NamedDecl*> asArray() {
126 return llvm::makeArrayRef(begin(), end());
127 }
128 ArrayRef<const NamedDecl*> asArray() const {
129 return llvm::makeArrayRef(begin(), size());
130 }
131
132 NamedDecl* getParam(unsigned Idx) {
133 assert(Idx < size() && "Template parameter index out-of-range")((Idx < size() && "Template parameter index out-of-range"
) ? static_cast<void> (0) : __assert_fail ("Idx < size() && \"Template parameter index out-of-range\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 133, __PRETTY_FUNCTION__))
;
134 return begin()[Idx];
135 }
136 const NamedDecl* getParam(unsigned Idx) const {
137 assert(Idx < size() && "Template parameter index out-of-range")((Idx < size() && "Template parameter index out-of-range"
) ? static_cast<void> (0) : __assert_fail ("Idx < size() && \"Template parameter index out-of-range\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 137, __PRETTY_FUNCTION__))
;
138 return begin()[Idx];
139 }
140
141 /// Returns the minimum number of arguments needed to form a
142 /// template specialization.
143 ///
144 /// This may be fewer than the number of template parameters, if some of
145 /// the parameters have default arguments or if there is a parameter pack.
146 unsigned getMinRequiredArguments() const;
147
148 /// Get the depth of this template parameter list in the set of
149 /// template parameter lists.
150 ///
151 /// The first template parameter list in a declaration will have depth 0,
152 /// the second template parameter list will have depth 1, etc.
153 unsigned getDepth() const;
154
155 /// Determine whether this template parameter list contains an
156 /// unexpanded parameter pack.
157 bool containsUnexpandedParameterPack() const {
158 return ContainsUnexpandedParameterPack;
159 }
160
161 /// The constraint-expression of the associated requires-clause.
162 Expr *getRequiresClause() {
163 return HasRequiresClause ? *getTrailingObjects<Expr *>() : nullptr;
164 }
165
166 /// The constraint-expression of the associated requires-clause.
167 const Expr *getRequiresClause() const {
168 return HasRequiresClause ? *getTrailingObjects<Expr *>() : nullptr;
169 }
170
171 SourceLocation getTemplateLoc() const { return TemplateLoc; }
172 SourceLocation getLAngleLoc() const { return LAngleLoc; }
173 SourceLocation getRAngleLoc() const { return RAngleLoc; }
174
175 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
176 return SourceRange(TemplateLoc, RAngleLoc);
177 }
178
179 void print(raw_ostream &Out, const ASTContext &Context,
180 bool OmitTemplateKW = false) const;
181 void print(raw_ostream &Out, const ASTContext &Context,
182 const PrintingPolicy &Policy, bool OmitTemplateKW = false) const;
183
184public:
185 // FIXME: workaround for MSVC 2013; remove when no longer needed
186 using FixedSizeStorageOwner = TrailingObjects::FixedSizeStorageOwner;
187};
188
189/// Stores a list of template parameters and the associated
190/// requires-clause (if any) for a TemplateDecl and its derived classes.
191/// Suitable for creating on the stack.
192template <size_t N, bool HasRequiresClause>
193class FixedSizeTemplateParameterListStorage
194 : public TemplateParameterList::FixedSizeStorageOwner {
195 typename TemplateParameterList::FixedSizeStorage<
196 NamedDecl *, Expr *>::with_counts<
197 N, HasRequiresClause ? 1u : 0u
198 >::type storage;
199
200public:
201 FixedSizeTemplateParameterListStorage(SourceLocation TemplateLoc,
202 SourceLocation LAngleLoc,
203 ArrayRef<NamedDecl *> Params,
204 SourceLocation RAngleLoc,
205 Expr *RequiresClause)
206 : FixedSizeStorageOwner(
207 (assert(N == Params.size())((N == Params.size()) ? static_cast<void> (0) : __assert_fail
("N == Params.size()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 207, __PRETTY_FUNCTION__))
,
208 assert(HasRequiresClause == static_cast<bool>(RequiresClause))((HasRequiresClause == static_cast<bool>(RequiresClause
)) ? static_cast<void> (0) : __assert_fail ("HasRequiresClause == static_cast<bool>(RequiresClause)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 208, __PRETTY_FUNCTION__))
,
209 new (static_cast<void *>(&storage)) TemplateParameterList(
210 TemplateLoc, LAngleLoc, Params, RAngleLoc, RequiresClause))) {}
211};
212
213/// A template argument list.
214class TemplateArgumentList final
215 : private llvm::TrailingObjects<TemplateArgumentList, TemplateArgument> {
216 /// The template argument list.
217 const TemplateArgument *Arguments;
218
219 /// The number of template arguments in this template
220 /// argument list.
221 unsigned NumArguments;
222
223 // Constructs an instance with an internal Argument list, containing
224 // a copy of the Args array. (Called by CreateCopy)
225 TemplateArgumentList(ArrayRef<TemplateArgument> Args);
226
227public:
228 friend TrailingObjects;
229
230 TemplateArgumentList(const TemplateArgumentList &) = delete;
231 TemplateArgumentList &operator=(const TemplateArgumentList &) = delete;
232
233 /// Type used to indicate that the template argument list itself is a
234 /// stack object. It does not own its template arguments.
235 enum OnStackType { OnStack };
236
237 /// Create a new template argument list that copies the given set of
238 /// template arguments.
239 static TemplateArgumentList *CreateCopy(ASTContext &Context,
240 ArrayRef<TemplateArgument> Args);
241
242 /// Construct a new, temporary template argument list on the stack.
243 ///
244 /// The template argument list does not own the template arguments
245 /// provided.
246 explicit TemplateArgumentList(OnStackType, ArrayRef<TemplateArgument> Args)
247 : Arguments(Args.data()), NumArguments(Args.size()) {}
248
249 /// Produces a shallow copy of the given template argument list.
250 ///
251 /// This operation assumes that the input argument list outlives it.
252 /// This takes the list as a pointer to avoid looking like a copy
253 /// constructor, since this really really isn't safe to use that
254 /// way.
255 explicit TemplateArgumentList(const TemplateArgumentList *Other)
256 : Arguments(Other->data()), NumArguments(Other->size()) {}
257
258 /// Retrieve the template argument at a given index.
259 const TemplateArgument &get(unsigned Idx) const {
260 assert(Idx < NumArguments && "Invalid template argument index")((Idx < NumArguments && "Invalid template argument index"
) ? static_cast<void> (0) : __assert_fail ("Idx < NumArguments && \"Invalid template argument index\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 260, __PRETTY_FUNCTION__))
;
261 return data()[Idx];
262 }
263
264 /// Retrieve the template argument at a given index.
265 const TemplateArgument &operator[](unsigned Idx) const { return get(Idx); }
266
267 /// Produce this as an array ref.
268 ArrayRef<TemplateArgument> asArray() const {
269 return llvm::makeArrayRef(data(), size());
270 }
271
272 /// Retrieve the number of template arguments in this
273 /// template argument list.
274 unsigned size() const { return NumArguments; }
275
276 /// Retrieve a pointer to the template argument list.
277 const TemplateArgument *data() const { return Arguments; }
278};
279
280void *allocateDefaultArgStorageChain(const ASTContext &C);
281
282/// Storage for a default argument. This is conceptually either empty, or an
283/// argument value, or a pointer to a previous declaration that had a default
284/// argument.
285///
286/// However, this is complicated by modules: while we require all the default
287/// arguments for a template to be equivalent, there may be more than one, and
288/// we need to track all the originating parameters to determine if the default
289/// argument is visible.
290template<typename ParmDecl, typename ArgType>
291class DefaultArgStorage {
292 /// Storage for both the value *and* another parameter from which we inherit
293 /// the default argument. This is used when multiple default arguments for a
294 /// parameter are merged together from different modules.
295 struct Chain {
296 ParmDecl *PrevDeclWithDefaultArg;
297 ArgType Value;
298 };
299 static_assert(sizeof(Chain) == sizeof(void *) * 2,
300 "non-pointer argument type?");
301
302 llvm::PointerUnion3<ArgType, ParmDecl*, Chain*> ValueOrInherited;
303
304 static ParmDecl *getParmOwningDefaultArg(ParmDecl *Parm) {
305 const DefaultArgStorage &Storage = Parm->getDefaultArgStorage();
306 if (auto *Prev = Storage.ValueOrInherited.template dyn_cast<ParmDecl *>())
307 Parm = Prev;
308 assert(!Parm->getDefaultArgStorage()((!Parm->getDefaultArgStorage() .ValueOrInherited.template
is<ParmDecl *>() && "should only be one level of indirection"
) ? static_cast<void> (0) : __assert_fail ("!Parm->getDefaultArgStorage() .ValueOrInherited.template is<ParmDecl *>() && \"should only be one level of indirection\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 310, __PRETTY_FUNCTION__))
309 .ValueOrInherited.template is<ParmDecl *>() &&((!Parm->getDefaultArgStorage() .ValueOrInherited.template
is<ParmDecl *>() && "should only be one level of indirection"
) ? static_cast<void> (0) : __assert_fail ("!Parm->getDefaultArgStorage() .ValueOrInherited.template is<ParmDecl *>() && \"should only be one level of indirection\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 310, __PRETTY_FUNCTION__))
310 "should only be one level of indirection")((!Parm->getDefaultArgStorage() .ValueOrInherited.template
is<ParmDecl *>() && "should only be one level of indirection"
) ? static_cast<void> (0) : __assert_fail ("!Parm->getDefaultArgStorage() .ValueOrInherited.template is<ParmDecl *>() && \"should only be one level of indirection\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 310, __PRETTY_FUNCTION__))
;
311 return Parm;
312 }
313
314public:
315 DefaultArgStorage() : ValueOrInherited(ArgType()) {}
316
317 /// Determine whether there is a default argument for this parameter.
318 bool isSet() const { return !ValueOrInherited.isNull(); }
319
320 /// Determine whether the default argument for this parameter was inherited
321 /// from a previous declaration of the same entity.
322 bool isInherited() const { return ValueOrInherited.template is<ParmDecl*>(); }
323
324 /// Get the default argument's value. This does not consider whether the
325 /// default argument is visible.
326 ArgType get() const {
327 const DefaultArgStorage *Storage = this;
328 if (const auto *Prev = ValueOrInherited.template dyn_cast<ParmDecl *>())
329 Storage = &Prev->getDefaultArgStorage();
330 if (const auto *C = Storage->ValueOrInherited.template dyn_cast<Chain *>())
331 return C->Value;
332 return Storage->ValueOrInherited.template get<ArgType>();
333 }
334
335 /// Get the parameter from which we inherit the default argument, if any.
336 /// This is the parameter on which the default argument was actually written.
337 const ParmDecl *getInheritedFrom() const {
338 if (const auto *D = ValueOrInherited.template dyn_cast<ParmDecl *>())
339 return D;
340 if (const auto *C = ValueOrInherited.template dyn_cast<Chain *>())
341 return C->PrevDeclWithDefaultArg;
342 return nullptr;
343 }
344
345 /// Set the default argument.
346 void set(ArgType Arg) {
347 assert(!isSet() && "default argument already set")((!isSet() && "default argument already set") ? static_cast
<void> (0) : __assert_fail ("!isSet() && \"default argument already set\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 347, __PRETTY_FUNCTION__))
;
348 ValueOrInherited = Arg;
349 }
350
351 /// Set that the default argument was inherited from another parameter.
352 void setInherited(const ASTContext &C, ParmDecl *InheritedFrom) {
353 assert(!isInherited() && "default argument already inherited")((!isInherited() && "default argument already inherited"
) ? static_cast<void> (0) : __assert_fail ("!isInherited() && \"default argument already inherited\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 353, __PRETTY_FUNCTION__))
;
354 InheritedFrom = getParmOwningDefaultArg(InheritedFrom);
355 if (!isSet())
356 ValueOrInherited = InheritedFrom;
357 else
358 ValueOrInherited = new (allocateDefaultArgStorageChain(C))
359 Chain{InheritedFrom, ValueOrInherited.template get<ArgType>()};
360 }
361
362 /// Remove the default argument, even if it was inherited.
363 void clear() {
364 ValueOrInherited = ArgType();
365 }
366};
367
368//===----------------------------------------------------------------------===//
369// Kinds of Templates
370//===----------------------------------------------------------------------===//
371
372/// Stores the template parameter list and associated constraints for
373/// \c TemplateDecl objects that track associated constraints.
374class ConstrainedTemplateDeclInfo {
375 friend TemplateDecl;
376
377public:
378 ConstrainedTemplateDeclInfo() = default;
379
380 TemplateParameterList *getTemplateParameters() const {
381 return TemplateParams;
382 }
383
384 Expr *getAssociatedConstraints() const { return AssociatedConstraints; }
385
386protected:
387 void setTemplateParameters(TemplateParameterList *TParams) {
388 TemplateParams = TParams;
389 }
390
391 void setAssociatedConstraints(Expr *AC) { AssociatedConstraints = AC; }
392
393 TemplateParameterList *TemplateParams = nullptr;
394 Expr *AssociatedConstraints = nullptr;
395};
396
397
398/// The base class of all kinds of template declarations (e.g.,
399/// class, function, etc.).
400///
401/// The TemplateDecl class stores the list of template parameters and a
402/// reference to the templated scoped declaration: the underlying AST node.
403class TemplateDecl : public NamedDecl {
404 void anchor() override;
405
406protected:
407 // Construct a template decl with the given name and parameters.
408 // Used when there is no templated element (e.g., for tt-params).
409 TemplateDecl(ConstrainedTemplateDeclInfo *CTDI, Kind DK, DeclContext *DC,
410 SourceLocation L, DeclarationName Name,
411 TemplateParameterList *Params)
412 : NamedDecl(DK, DC, L, Name), TemplatedDecl(nullptr),
413 TemplateParams(CTDI) {
414 this->setTemplateParameters(Params);
415 }
416
417 TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName Name,
418 TemplateParameterList *Params)
419 : TemplateDecl(nullptr, DK, DC, L, Name, Params) {}
420
421 // Construct a template decl with name, parameters, and templated element.
422 TemplateDecl(ConstrainedTemplateDeclInfo *CTDI, Kind DK, DeclContext *DC,
423 SourceLocation L, DeclarationName Name,
424 TemplateParameterList *Params, NamedDecl *Decl)
425 : NamedDecl(DK, DC, L, Name), TemplatedDecl(Decl),
426 TemplateParams(CTDI) {
427 this->setTemplateParameters(Params);
428 }
429
430 TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName Name,
431 TemplateParameterList *Params, NamedDecl *Decl)
432 : TemplateDecl(nullptr, DK, DC, L, Name, Params, Decl) {}
433
434public:
435 /// Get the list of template parameters
436 TemplateParameterList *getTemplateParameters() const {
437 const auto *const CTDI =
438 TemplateParams.dyn_cast<ConstrainedTemplateDeclInfo *>();
439 return CTDI ? CTDI->getTemplateParameters()
440 : TemplateParams.get<TemplateParameterList *>();
441 }
442
443 /// Get the constraint-expression from the associated requires-clause (if any)
444 const Expr *getRequiresClause() const {
445 const TemplateParameterList *const TP = getTemplateParameters();
446 return TP ? TP->getRequiresClause() : nullptr;
447 }
448
449 Expr *getAssociatedConstraints() const {
450 const auto *const C = cast<TemplateDecl>(getCanonicalDecl());
451 const auto *const CTDI =
452 C->TemplateParams.dyn_cast<ConstrainedTemplateDeclInfo *>();
453 return CTDI ? CTDI->getAssociatedConstraints() : nullptr;
454 }
455
456 /// Get the underlying, templated declaration.
457 NamedDecl *getTemplatedDecl() const { return TemplatedDecl; }
458
459 // Implement isa/cast/dyncast/etc.
460 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
461
462 static bool classofKind(Kind K) {
463 return K >= firstTemplate && K <= lastTemplate;
464 }
465
466 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
467 return SourceRange(getTemplateParameters()->getTemplateLoc(),
468 TemplatedDecl->getSourceRange().getEnd());
469 }
470
471protected:
472 NamedDecl *TemplatedDecl;
473
474 /// The template parameter list and optional requires-clause
475 /// associated with this declaration; alternatively, a
476 /// \c ConstrainedTemplateDeclInfo if the associated constraints of the
477 /// template are being tracked by this particular declaration.
478 llvm::PointerUnion<TemplateParameterList *,
479 ConstrainedTemplateDeclInfo *>
480 TemplateParams;
481
482 void setTemplateParameters(TemplateParameterList *TParams) {
483 if (auto *const CTDI =
484 TemplateParams.dyn_cast<ConstrainedTemplateDeclInfo *>()) {
485 CTDI->setTemplateParameters(TParams);
486 } else {
487 TemplateParams = TParams;
488 }
489 }
490
491 void setAssociatedConstraints(Expr *AC) {
492 assert(isCanonicalDecl() &&((isCanonicalDecl() && "Attaching associated constraints to non-canonical Decl"
) ? static_cast<void> (0) : __assert_fail ("isCanonicalDecl() && \"Attaching associated constraints to non-canonical Decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 493, __PRETTY_FUNCTION__))
493 "Attaching associated constraints to non-canonical Decl")((isCanonicalDecl() && "Attaching associated constraints to non-canonical Decl"
) ? static_cast<void> (0) : __assert_fail ("isCanonicalDecl() && \"Attaching associated constraints to non-canonical Decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 493, __PRETTY_FUNCTION__))
;
494 TemplateParams.get<ConstrainedTemplateDeclInfo *>()
495 ->setAssociatedConstraints(AC);
496 }
497
498public:
499 /// Initialize the underlying templated declaration and
500 /// template parameters.
501 void init(NamedDecl *templatedDecl, TemplateParameterList* templateParams) {
502 assert(!TemplatedDecl && "TemplatedDecl already set!")((!TemplatedDecl && "TemplatedDecl already set!") ? static_cast
<void> (0) : __assert_fail ("!TemplatedDecl && \"TemplatedDecl already set!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 502, __PRETTY_FUNCTION__))
;
503 assert(!TemplateParams && "TemplateParams already set!")((!TemplateParams && "TemplateParams already set!") ?
static_cast<void> (0) : __assert_fail ("!TemplateParams && \"TemplateParams already set!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 503, __PRETTY_FUNCTION__))
;
504 TemplatedDecl = templatedDecl;
505 TemplateParams = templateParams;
506 }
507};
508
509/// Provides information about a function template specialization,
510/// which is a FunctionDecl that has been explicitly specialization or
511/// instantiated from a function template.
512class FunctionTemplateSpecializationInfo final
513 : public llvm::FoldingSetNode,
514 private llvm::TrailingObjects<FunctionTemplateSpecializationInfo,
515 MemberSpecializationInfo *> {
516 /// The function template specialization that this structure describes and a
517 /// flag indicating if the function is a member specialization.
518 llvm::PointerIntPair<FunctionDecl *, 1, bool> Function;
519
520 /// The function template from which this function template
521 /// specialization was generated.
522 ///
523 /// The two bits contain the top 4 values of TemplateSpecializationKind.
524 llvm::PointerIntPair<FunctionTemplateDecl *, 2> Template;
525
526public:
527 /// The template arguments used to produce the function template
528 /// specialization from the function template.
529 const TemplateArgumentList *TemplateArguments;
530
531 /// The template arguments as written in the sources, if provided.
532 /// FIXME: Normally null; tail-allocate this.
533 const ASTTemplateArgumentListInfo *TemplateArgumentsAsWritten;
534
535 /// The point at which this function template specialization was
536 /// first instantiated.
537 SourceLocation PointOfInstantiation;
538
539private:
540 FunctionTemplateSpecializationInfo(
541 FunctionDecl *FD, FunctionTemplateDecl *Template,
542 TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs,
543 const ASTTemplateArgumentListInfo *TemplateArgsAsWritten,
544 SourceLocation POI, MemberSpecializationInfo *MSInfo)
545 : Function(FD, MSInfo ? 1 : 0), Template(Template, TSK - 1),
546 TemplateArguments(TemplateArgs),
547 TemplateArgumentsAsWritten(TemplateArgsAsWritten),
548 PointOfInstantiation(POI) {
549 if (MSInfo)
550 getTrailingObjects<MemberSpecializationInfo *>()[0] = MSInfo;
551 }
552
553 size_t numTrailingObjects(OverloadToken<MemberSpecializationInfo*>) const {
554 return Function.getInt();
555 }
556
557public:
558 friend TrailingObjects;
559
560 static FunctionTemplateSpecializationInfo *
561 Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template,
562 TemplateSpecializationKind TSK,
563 const TemplateArgumentList *TemplateArgs,
564 const TemplateArgumentListInfo *TemplateArgsAsWritten,
565 SourceLocation POI, MemberSpecializationInfo *MSInfo);
566
567 /// Retrieve the declaration of the function template specialization.
568 FunctionDecl *getFunction() const { return Function.getPointer(); }
569
570 /// Retrieve the template from which this function was specialized.
571 FunctionTemplateDecl *getTemplate() const { return Template.getPointer(); }
572
573 /// Determine what kind of template specialization this is.
574 TemplateSpecializationKind getTemplateSpecializationKind() const {
575 return (TemplateSpecializationKind)(Template.getInt() + 1);
576 }
577
578 bool isExplicitSpecialization() const {
579 return getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
580 }
581
582 /// True if this declaration is an explicit specialization,
583 /// explicit instantiation declaration, or explicit instantiation
584 /// definition.
585 bool isExplicitInstantiationOrSpecialization() const {
586 return isTemplateExplicitInstantiationOrSpecialization(
587 getTemplateSpecializationKind());
588 }
589
590 /// Set the template specialization kind.
591 void setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
592 assert(TSK != TSK_Undeclared &&((TSK != TSK_Undeclared && "Cannot encode TSK_Undeclared for a function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Cannot encode TSK_Undeclared for a function template specialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 593, __PRETTY_FUNCTION__))
593 "Cannot encode TSK_Undeclared for a function template specialization")((TSK != TSK_Undeclared && "Cannot encode TSK_Undeclared for a function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Cannot encode TSK_Undeclared for a function template specialization\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 593, __PRETTY_FUNCTION__))
;
594 Template.setInt(TSK - 1);
595 }
596
597 /// Retrieve the first point of instantiation of this function
598 /// template specialization.
599 ///
600 /// The point of instantiation may be an invalid source location if this
601 /// function has yet to be instantiated.
602 SourceLocation getPointOfInstantiation() const {
603 return PointOfInstantiation;
604 }
605
606 /// Set the (first) point of instantiation of this function template
607 /// specialization.
608 void setPointOfInstantiation(SourceLocation POI) {
609 PointOfInstantiation = POI;
610 }
611
612 /// Get the specialization info if this function template specialization is
613 /// also a member specialization:
614 ///
615 /// \code
616 /// template<typename> struct A {
617 /// template<typename> void f();
618 /// template<> void f<int>(); // ClassScopeFunctionSpecializationDecl
619 /// };
620 /// \endcode
621 ///
622 /// Here, A<int>::f<int> is a function template specialization that is
623 /// an explicit specialization of A<int>::f, but it's also a member
624 /// specialization (an implicit instantiation in this case) of A::f<int>.
625 /// Further:
626 ///
627 /// \code
628 /// template<> template<> void A<int>::f<int>() {}
629 /// \endcode
630 ///
631 /// ... declares a function template specialization that is an explicit
632 /// specialization of A<int>::f, and is also an explicit member
633 /// specialization of A::f<int>.
634 ///
635 /// Note that the TemplateSpecializationKind of the MemberSpecializationInfo
636 /// need not be the same as that returned by getTemplateSpecializationKind(),
637 /// and represents the relationship between the function and the class-scope
638 /// explicit specialization in the original templated class -- whereas our
639 /// TemplateSpecializationKind represents the relationship between the
640 /// function and the function template, and should always be
641 /// TSK_ExplicitSpecialization whenever we have MemberSpecializationInfo.
642 MemberSpecializationInfo *getMemberSpecializationInfo() const {
643 return numTrailingObjects(OverloadToken<MemberSpecializationInfo *>())
644 ? getTrailingObjects<MemberSpecializationInfo *>()[0]
645 : nullptr;
646 }
647
648 void Profile(llvm::FoldingSetNodeID &ID) {
649 Profile(ID, TemplateArguments->asArray(), getFunction()->getASTContext());
650 }
651
652 static void
653 Profile(llvm::FoldingSetNodeID &ID, ArrayRef<TemplateArgument> TemplateArgs,
654 ASTContext &Context) {
655 ID.AddInteger(TemplateArgs.size());
656 for (const TemplateArgument &TemplateArg : TemplateArgs)
657 TemplateArg.Profile(ID, Context);
658 }
659};
660
661/// Provides information a specialization of a member of a class
662/// template, which may be a member function, static data member,
663/// member class or member enumeration.
664class MemberSpecializationInfo {
665 // The member declaration from which this member was instantiated, and the
666 // manner in which the instantiation occurred (in the lower two bits).
667 llvm::PointerIntPair<NamedDecl *, 2> MemberAndTSK;
668
669 // The point at which this member was first instantiated.
670 SourceLocation PointOfInstantiation;
671
672public:
673 explicit
674 MemberSpecializationInfo(NamedDecl *IF, TemplateSpecializationKind TSK,
675 SourceLocation POI = SourceLocation())
676 : MemberAndTSK(IF, TSK - 1), PointOfInstantiation(POI) {
677 assert(TSK != TSK_Undeclared &&((TSK != TSK_Undeclared && "Cannot encode undeclared template specializations for members"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Cannot encode undeclared template specializations for members\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 678, __PRETTY_FUNCTION__))
678 "Cannot encode undeclared template specializations for members")((TSK != TSK_Undeclared && "Cannot encode undeclared template specializations for members"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Cannot encode undeclared template specializations for members\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 678, __PRETTY_FUNCTION__))
;
679 }
680
681 /// Retrieve the member declaration from which this member was
682 /// instantiated.
683 NamedDecl *getInstantiatedFrom() const { return MemberAndTSK.getPointer(); }
684
685 /// Determine what kind of template specialization this is.
686 TemplateSpecializationKind getTemplateSpecializationKind() const {
687 return (TemplateSpecializationKind)(MemberAndTSK.getInt() + 1);
688 }
689
690 bool isExplicitSpecialization() const {
691 return getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
692 }
693
694 /// Set the template specialization kind.
695 void setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
696 assert(TSK != TSK_Undeclared &&((TSK != TSK_Undeclared && "Cannot encode undeclared template specializations for members"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Cannot encode undeclared template specializations for members\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 697, __PRETTY_FUNCTION__))
697 "Cannot encode undeclared template specializations for members")((TSK != TSK_Undeclared && "Cannot encode undeclared template specializations for members"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Cannot encode undeclared template specializations for members\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 697, __PRETTY_FUNCTION__))
;
698 MemberAndTSK.setInt(TSK - 1);
699 }
700
701 /// Retrieve the first point of instantiation of this member.
702 /// If the point of instantiation is an invalid location, then this member
703 /// has not yet been instantiated.
704 SourceLocation getPointOfInstantiation() const {
705 return PointOfInstantiation;
706 }
707
708 /// Set the first point of instantiation.
709 void setPointOfInstantiation(SourceLocation POI) {
710 PointOfInstantiation = POI;
711 }
712};
713
714/// Provides information about a dependent function-template
715/// specialization declaration.
716///
717/// Since explicit function template specialization and instantiation
718/// declarations can only appear in namespace scope, and you can only
719/// specialize a member of a fully-specialized class, the only way to
720/// get one of these is in a friend declaration like the following:
721///
722/// \code
723/// template \<class T> void foo(T);
724/// template \<class T> class A {
725/// friend void foo<>(T);
726/// };
727/// \endcode
728class DependentFunctionTemplateSpecializationInfo final
729 : private llvm::TrailingObjects<DependentFunctionTemplateSpecializationInfo,
730 TemplateArgumentLoc,
731 FunctionTemplateDecl *> {
732 /// The number of potential template candidates.
733 unsigned NumTemplates;
734
735 /// The number of template arguments.
736 unsigned NumArgs;
737
738 /// The locations of the left and right angle brackets.
739 SourceRange AngleLocs;
740
741 size_t numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
742 return NumArgs;
743 }
744 size_t numTrailingObjects(OverloadToken<FunctionTemplateDecl *>) const {
745 return NumTemplates;
746 }
747
748 DependentFunctionTemplateSpecializationInfo(
749 const UnresolvedSetImpl &Templates,
750 const TemplateArgumentListInfo &TemplateArgs);
751
752public:
753 friend TrailingObjects;
754
755 static DependentFunctionTemplateSpecializationInfo *
756 Create(ASTContext &Context, const UnresolvedSetImpl &Templates,
757 const TemplateArgumentListInfo &TemplateArgs);
758
759 /// Returns the number of function templates that this might
760 /// be a specialization of.
761 unsigned getNumTemplates() const { return NumTemplates; }
762
763 /// Returns the i'th template candidate.
764 FunctionTemplateDecl *getTemplate(unsigned I) const {
765 assert(I < getNumTemplates() && "template index out of range")((I < getNumTemplates() && "template index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumTemplates() && \"template index out of range\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 765, __PRETTY_FUNCTION__))
;
766 return getTrailingObjects<FunctionTemplateDecl *>()[I];
767 }
768
769 /// Returns the explicit template arguments that were given.
770 const TemplateArgumentLoc *getTemplateArgs() const {
771 return getTrailingObjects<TemplateArgumentLoc>();
772 }
773
774 /// Returns the number of explicit template arguments that were given.
775 unsigned getNumTemplateArgs() const { return NumArgs; }
776
777 /// Returns the nth template argument.
778 const TemplateArgumentLoc &getTemplateArg(unsigned I) const {
779 assert(I < getNumTemplateArgs() && "template arg index out of range")((I < getNumTemplateArgs() && "template arg index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumTemplateArgs() && \"template arg index out of range\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 779, __PRETTY_FUNCTION__))
;
780 return getTemplateArgs()[I];
781 }
782
783 SourceLocation getLAngleLoc() const {
784 return AngleLocs.getBegin();
785 }
786
787 SourceLocation getRAngleLoc() const {
788 return AngleLocs.getEnd();
789 }
790};
791
792/// Declaration of a redeclarable template.
793class RedeclarableTemplateDecl : public TemplateDecl,
794 public Redeclarable<RedeclarableTemplateDecl>
795{
796 using redeclarable_base = Redeclarable<RedeclarableTemplateDecl>;
797
798 RedeclarableTemplateDecl *getNextRedeclarationImpl() override {
799 return getNextRedeclaration();
800 }
801
802 RedeclarableTemplateDecl *getPreviousDeclImpl() override {
803 return getPreviousDecl();
804 }
805
806 RedeclarableTemplateDecl *getMostRecentDeclImpl() override {
807 return getMostRecentDecl();
808 }
809
810 void anchor() override;
811protected:
812 template <typename EntryType> struct SpecEntryTraits {
813 using DeclType = EntryType;
814
815 static DeclType *getDecl(EntryType *D) {
816 return D;
817 }
818
819 static ArrayRef<TemplateArgument> getTemplateArgs(EntryType *D) {
820 return D->getTemplateArgs().asArray();
821 }
822 };
823
824 template <typename EntryType, typename SETraits = SpecEntryTraits<EntryType>,
825 typename DeclType = typename SETraits::DeclType>
826 struct SpecIterator
827 : llvm::iterator_adaptor_base<
828 SpecIterator<EntryType, SETraits, DeclType>,
829 typename llvm::FoldingSetVector<EntryType>::iterator,
830 typename std::iterator_traits<typename llvm::FoldingSetVector<
831 EntryType>::iterator>::iterator_category,
832 DeclType *, ptrdiff_t, DeclType *, DeclType *> {
833 SpecIterator() = default;
834 explicit SpecIterator(
835 typename llvm::FoldingSetVector<EntryType>::iterator SetIter)
836 : SpecIterator::iterator_adaptor_base(std::move(SetIter)) {}
837
838 DeclType *operator*() const {
839 return SETraits::getDecl(&*this->I)->getMostRecentDecl();
840 }
841
842 DeclType *operator->() const { return **this; }
843 };
844
845 template <typename EntryType>
846 static SpecIterator<EntryType>
847 makeSpecIterator(llvm::FoldingSetVector<EntryType> &Specs, bool isEnd) {
848 return SpecIterator<EntryType>(isEnd ? Specs.end() : Specs.begin());
849 }
850
851 void loadLazySpecializationsImpl() const;
852
853 template <class EntryType> typename SpecEntryTraits<EntryType>::DeclType*
854 findSpecializationImpl(llvm::FoldingSetVector<EntryType> &Specs,
855 ArrayRef<TemplateArgument> Args, void *&InsertPos);
856
857 template <class Derived, class EntryType>
858 void addSpecializationImpl(llvm::FoldingSetVector<EntryType> &Specs,
859 EntryType *Entry, void *InsertPos);
860
861 struct CommonBase {
862 CommonBase() : InstantiatedFromMember(nullptr, false) {}
863
864 /// The template from which this was most
865 /// directly instantiated (or null).
866 ///
867 /// The boolean value indicates whether this template
868 /// was explicitly specialized.
869 llvm::PointerIntPair<RedeclarableTemplateDecl*, 1, bool>
870 InstantiatedFromMember;
871
872 /// If non-null, points to an array of specializations (including
873 /// partial specializations) known only by their external declaration IDs.
874 ///
875 /// The first value in the array is the number of specializations/partial
876 /// specializations that follow.
877 uint32_t *LazySpecializations = nullptr;
878 };
879
880 /// Pointer to the common data shared by all declarations of this
881 /// template.
882 mutable CommonBase *Common = nullptr;
883
884 /// Retrieves the "common" pointer shared by all (re-)declarations of
885 /// the same template. Calling this routine may implicitly allocate memory
886 /// for the common pointer.
887 CommonBase *getCommonPtr() const;
888
889 virtual CommonBase *newCommon(ASTContext &C) const = 0;
890
891 // Construct a template decl with name, parameters, and templated element.
892 RedeclarableTemplateDecl(ConstrainedTemplateDeclInfo *CTDI, Kind DK,
893 ASTContext &C, DeclContext *DC, SourceLocation L,
894 DeclarationName Name, TemplateParameterList *Params,
895 NamedDecl *Decl)
896 : TemplateDecl(CTDI, DK, DC, L, Name, Params, Decl), redeclarable_base(C)
897 {}
898
899 RedeclarableTemplateDecl(Kind DK, ASTContext &C, DeclContext *DC,
900 SourceLocation L, DeclarationName Name,
901 TemplateParameterList *Params, NamedDecl *Decl)
902 : RedeclarableTemplateDecl(nullptr, DK, C, DC, L, Name, Params, Decl) {}
903
904public:
905 friend class ASTDeclReader;
906 friend class ASTDeclWriter;
907 friend class ASTReader;
908 template <class decl_type> friend class RedeclarableTemplate;
909
910 /// Retrieves the canonical declaration of this template.
911 RedeclarableTemplateDecl *getCanonicalDecl() override {
912 return getFirstDecl();
913 }
914 const RedeclarableTemplateDecl *getCanonicalDecl() const {
915 return getFirstDecl();
916 }
917
918 /// Determines whether this template was a specialization of a
919 /// member template.
920 ///
921 /// In the following example, the function template \c X<int>::f and the
922 /// member template \c X<int>::Inner are member specializations.
923 ///
924 /// \code
925 /// template<typename T>
926 /// struct X {
927 /// template<typename U> void f(T, U);
928 /// template<typename U> struct Inner;
929 /// };
930 ///
931 /// template<> template<typename T>
932 /// void X<int>::f(int, T);
933 /// template<> template<typename T>
934 /// struct X<int>::Inner { /* ... */ };
935 /// \endcode
936 bool isMemberSpecialization() const {
937 return getCommonPtr()->InstantiatedFromMember.getInt();
938 }
939
940 /// Note that this member template is a specialization.
941 void setMemberSpecialization() {
942 assert(getCommonPtr()->InstantiatedFromMember.getPointer() &&((getCommonPtr()->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations"
) ? static_cast<void> (0) : __assert_fail ("getCommonPtr()->InstantiatedFromMember.getPointer() && \"Only member templates can be member template specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 943, __PRETTY_FUNCTION__))
943 "Only member templates can be member template specializations")((getCommonPtr()->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations"
) ? static_cast<void> (0) : __assert_fail ("getCommonPtr()->InstantiatedFromMember.getPointer() && \"Only member templates can be member template specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 943, __PRETTY_FUNCTION__))
;
944 getCommonPtr()->InstantiatedFromMember.setInt(true);
945 }
946
947 /// Retrieve the member template from which this template was
948 /// instantiated, or nullptr if this template was not instantiated from a
949 /// member template.
950 ///
951 /// A template is instantiated from a member template when the member
952 /// template itself is part of a class template (or member thereof). For
953 /// example, given
954 ///
955 /// \code
956 /// template<typename T>
957 /// struct X {
958 /// template<typename U> void f(T, U);
959 /// };
960 ///
961 /// void test(X<int> x) {
962 /// x.f(1, 'a');
963 /// };
964 /// \endcode
965 ///
966 /// \c X<int>::f is a FunctionTemplateDecl that describes the function
967 /// template
968 ///
969 /// \code
970 /// template<typename U> void X<int>::f(int, U);
971 /// \endcode
972 ///
973 /// which was itself created during the instantiation of \c X<int>. Calling
974 /// getInstantiatedFromMemberTemplate() on this FunctionTemplateDecl will
975 /// retrieve the FunctionTemplateDecl for the original template \c f within
976 /// the class template \c X<T>, i.e.,
977 ///
978 /// \code
979 /// template<typename T>
980 /// template<typename U>
981 /// void X<T>::f(T, U);
982 /// \endcode
983 RedeclarableTemplateDecl *getInstantiatedFromMemberTemplate() const {
984 return getCommonPtr()->InstantiatedFromMember.getPointer();
985 }
986
987 void setInstantiatedFromMemberTemplate(RedeclarableTemplateDecl *TD) {
988 assert(!getCommonPtr()->InstantiatedFromMember.getPointer())((!getCommonPtr()->InstantiatedFromMember.getPointer()) ? static_cast
<void> (0) : __assert_fail ("!getCommonPtr()->InstantiatedFromMember.getPointer()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 988, __PRETTY_FUNCTION__))
;
989 getCommonPtr()->InstantiatedFromMember.setPointer(TD);
990 }
991
992 using redecl_range = redeclarable_base::redecl_range;
993 using redecl_iterator = redeclarable_base::redecl_iterator;
994
995 using redeclarable_base::redecls_begin;
996 using redeclarable_base::redecls_end;
997 using redeclarable_base::redecls;
998 using redeclarable_base::getPreviousDecl;
999 using redeclarable_base::getMostRecentDecl;
1000 using redeclarable_base::isFirstDecl;
1001
1002 // Implement isa/cast/dyncast/etc.
1003 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1004
1005 static bool classofKind(Kind K) {
1006 return K >= firstRedeclarableTemplate && K <= lastRedeclarableTemplate;
1007 }
1008};
1009
1010template <> struct RedeclarableTemplateDecl::
1011SpecEntryTraits<FunctionTemplateSpecializationInfo> {
1012 using DeclType = FunctionDecl;
1013
1014 static DeclType *getDecl(FunctionTemplateSpecializationInfo *I) {
1015 return I->getFunction();
1016 }
1017
1018 static ArrayRef<TemplateArgument>
1019 getTemplateArgs(FunctionTemplateSpecializationInfo *I) {
1020 return I->TemplateArguments->asArray();
1021 }
1022};
1023
1024/// Declaration of a template function.
1025class FunctionTemplateDecl : public RedeclarableTemplateDecl {
1026protected:
1027 friend class FunctionDecl;
1028
1029 /// Data that is common to all of the declarations of a given
1030 /// function template.
1031 struct Common : CommonBase {
1032 /// The function template specializations for this function
1033 /// template, including explicit specializations and instantiations.
1034 llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> Specializations;
1035
1036 /// The set of "injected" template arguments used within this
1037 /// function template.
1038 ///
1039 /// This pointer refers to the template arguments (there are as
1040 /// many template arguments as template parameaters) for the function
1041 /// template, and is allocated lazily, since most function templates do not
1042 /// require the use of this information.
1043 TemplateArgument *InjectedArgs = nullptr;
1044
1045 Common() = default;
1046 };
1047
1048 FunctionTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
1049 DeclarationName Name, TemplateParameterList *Params,
1050 NamedDecl *Decl)
1051 : RedeclarableTemplateDecl(FunctionTemplate, C, DC, L, Name, Params,
1052 Decl) {}
1053
1054 CommonBase *newCommon(ASTContext &C) const override;
1055
1056 Common *getCommonPtr() const {
1057 return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
1058 }
1059
1060 /// Retrieve the set of function template specializations of this
1061 /// function template.
1062 llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> &
1063 getSpecializations() const;
1064
1065 /// Add a specialization of this function template.
1066 ///
1067 /// \param InsertPos Insert position in the FoldingSetVector, must have been
1068 /// retrieved by an earlier call to findSpecialization().
1069 void addSpecialization(FunctionTemplateSpecializationInfo* Info,
1070 void *InsertPos);
1071
1072public:
1073 friend class ASTDeclReader;
1074 friend class ASTDeclWriter;
1075
1076 /// Load any lazily-loaded specializations from the external source.
1077 void LoadLazySpecializations() const;
1078
1079 /// Get the underlying function declaration of the template.
1080 FunctionDecl *getTemplatedDecl() const {
1081 return static_cast<FunctionDecl *>(TemplatedDecl);
1082 }
1083
1084 /// Returns whether this template declaration defines the primary
1085 /// pattern.
1086 bool isThisDeclarationADefinition() const {
1087 return getTemplatedDecl()->isThisDeclarationADefinition();
1088 }
1089
1090 /// Return the specialization with the provided arguments if it exists,
1091 /// otherwise return the insertion point.
1092 FunctionDecl *findSpecialization(ArrayRef<TemplateArgument> Args,
1093 void *&InsertPos);
1094
1095 FunctionTemplateDecl *getCanonicalDecl() override {
1096 return cast<FunctionTemplateDecl>(
1097 RedeclarableTemplateDecl::getCanonicalDecl());
1098 }
1099 const FunctionTemplateDecl *getCanonicalDecl() const {
1100 return cast<FunctionTemplateDecl>(
1101 RedeclarableTemplateDecl::getCanonicalDecl());
1102 }
1103
1104 /// Retrieve the previous declaration of this function template, or
1105 /// nullptr if no such declaration exists.
1106 FunctionTemplateDecl *getPreviousDecl() {
1107 return cast_or_null<FunctionTemplateDecl>(
1108 static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
1109 }
1110 const FunctionTemplateDecl *getPreviousDecl() const {
1111 return cast_or_null<FunctionTemplateDecl>(
1112 static_cast<const RedeclarableTemplateDecl *>(this)->getPreviousDecl());
1113 }
1114
1115 FunctionTemplateDecl *getMostRecentDecl() {
1116 return cast<FunctionTemplateDecl>(
1117 static_cast<RedeclarableTemplateDecl *>(this)
1118 ->getMostRecentDecl());
1119 }
1120 const FunctionTemplateDecl *getMostRecentDecl() const {
1121 return const_cast<FunctionTemplateDecl*>(this)->getMostRecentDecl();
1122 }
1123
1124 FunctionTemplateDecl *getInstantiatedFromMemberTemplate() const {
1125 return cast_or_null<FunctionTemplateDecl>(
1126 RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
1127 }
1128
1129 using spec_iterator = SpecIterator<FunctionTemplateSpecializationInfo>;
1130 using spec_range = llvm::iterator_range<spec_iterator>;
1131
1132 spec_range specializations() const {
1133 return spec_range(spec_begin(), spec_end());
1134 }
1135
1136 spec_iterator spec_begin() const {
1137 return makeSpecIterator(getSpecializations(), false);
1138 }
1139
1140 spec_iterator spec_end() const {
1141 return makeSpecIterator(getSpecializations(), true);
1142 }
1143
1144 /// Retrieve the "injected" template arguments that correspond to the
1145 /// template parameters of this function template.
1146 ///
1147 /// Although the C++ standard has no notion of the "injected" template
1148 /// arguments for a function template, the notion is convenient when
1149 /// we need to perform substitutions inside the definition of a function
1150 /// template.
1151 ArrayRef<TemplateArgument> getInjectedTemplateArgs();
1152
1153 /// Merge \p Prev with our RedeclarableTemplateDecl::Common.
1154 void mergePrevDecl(FunctionTemplateDecl *Prev);
1155
1156 /// Create a function template node.
1157 static FunctionTemplateDecl *Create(ASTContext &C, DeclContext *DC,
1158 SourceLocation L,
1159 DeclarationName Name,
1160 TemplateParameterList *Params,
1161 NamedDecl *Decl);
1162
1163 /// Create an empty function template node.
1164 static FunctionTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1165
1166 // Implement isa/cast/dyncast support
1167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1168 static bool classofKind(Kind K) { return K == FunctionTemplate; }
1169};
1170
1171//===----------------------------------------------------------------------===//
1172// Kinds of Template Parameters
1173//===----------------------------------------------------------------------===//
1174
1175/// Defines the position of a template parameter within a template
1176/// parameter list.
1177///
1178/// Because template parameter can be listed
1179/// sequentially for out-of-line template members, each template parameter is
1180/// given a Depth - the nesting of template parameter scopes - and a Position -
1181/// the occurrence within the parameter list.
1182/// This class is inheritedly privately by different kinds of template
1183/// parameters and is not part of the Decl hierarchy. Just a facility.
1184class TemplateParmPosition {
1185protected:
1186 // FIXME: These probably don't need to be ints. int:5 for depth, int:8 for
1187 // position? Maybe?
1188 unsigned Depth;
1189 unsigned Position;
1190
1191 TemplateParmPosition(unsigned D, unsigned P) : Depth(D), Position(P) {}
1192
1193public:
1194 TemplateParmPosition() = delete;
1195
1196 /// Get the nesting depth of the template parameter.
1197 unsigned getDepth() const { return Depth; }
1198 void setDepth(unsigned D) { Depth = D; }
1199
1200 /// Get the position of the template parameter within its parameter list.
1201 unsigned getPosition() const { return Position; }
1202 void setPosition(unsigned P) { Position = P; }
1203
1204 /// Get the index of the template parameter within its parameter list.
1205 unsigned getIndex() const { return Position; }
1206};
1207
1208/// Declaration of a template type parameter.
1209///
1210/// For example, "T" in
1211/// \code
1212/// template<typename T> class vector;
1213/// \endcode
1214class TemplateTypeParmDecl : public TypeDecl {
1215 /// Sema creates these on the stack during auto type deduction.
1216 friend class Sema;
1217
1218 /// Whether this template type parameter was declaration with
1219 /// the 'typename' keyword.
1220 ///
1221 /// If false, it was declared with the 'class' keyword.
1222 bool Typename : 1;
1223
1224 /// The default template argument, if any.
1225 using DefArgStorage =
1226 DefaultArgStorage<TemplateTypeParmDecl, TypeSourceInfo *>;
1227 DefArgStorage DefaultArgument;
1228
1229 TemplateTypeParmDecl(DeclContext *DC, SourceLocation KeyLoc,
1230 SourceLocation IdLoc, IdentifierInfo *Id,
1231 bool Typename)
1232 : TypeDecl(TemplateTypeParm, DC, IdLoc, Id, KeyLoc), Typename(Typename) {}
1233
1234public:
1235 static TemplateTypeParmDecl *Create(const ASTContext &C, DeclContext *DC,
1236 SourceLocation KeyLoc,
1237 SourceLocation NameLoc,
1238 unsigned D, unsigned P,
1239 IdentifierInfo *Id, bool Typename,
1240 bool ParameterPack);
1241 static TemplateTypeParmDecl *CreateDeserialized(const ASTContext &C,
1242 unsigned ID);
1243
1244 /// Whether this template type parameter was declared with
1245 /// the 'typename' keyword.
1246 ///
1247 /// If not, it was declared with the 'class' keyword.
1248 bool wasDeclaredWithTypename() const { return Typename; }
1249
1250 const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
1251
1252 /// Determine whether this template parameter has a default
1253 /// argument.
1254 bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
1255
1256 /// Retrieve the default argument, if any.
1257 QualType getDefaultArgument() const {
1258 return DefaultArgument.get()->getType();
1259 }
1260
1261 /// Retrieves the default argument's source information, if any.
1262 TypeSourceInfo *getDefaultArgumentInfo() const {
1263 return DefaultArgument.get();
1264 }
1265
1266 /// Retrieves the location of the default argument declaration.
1267 SourceLocation getDefaultArgumentLoc() const;
1268
1269 /// Determines whether the default argument was inherited
1270 /// from a previous declaration of this template.
1271 bool defaultArgumentWasInherited() const {
1272 return DefaultArgument.isInherited();
1273 }
1274
1275 /// Set the default argument for this template parameter.
1276 void setDefaultArgument(TypeSourceInfo *DefArg) {
1277 DefaultArgument.set(DefArg);
1278 }
1279
1280 /// Set that this default argument was inherited from another
1281 /// parameter.
1282 void setInheritedDefaultArgument(const ASTContext &C,
1283 TemplateTypeParmDecl *Prev) {
1284 DefaultArgument.setInherited(C, Prev);
1285 }
1286
1287 /// Removes the default argument of this template parameter.
1288 void removeDefaultArgument() {
1289 DefaultArgument.clear();
1290 }
1291
1292 /// Set whether this template type parameter was declared with
1293 /// the 'typename' or 'class' keyword.
1294 void setDeclaredWithTypename(bool withTypename) { Typename = withTypename; }
1295
1296 /// Retrieve the depth of the template parameter.
1297 unsigned getDepth() const;
1298
1299 /// Retrieve the index of the template parameter.
1300 unsigned getIndex() const;
1301
1302 /// Returns whether this is a parameter pack.
1303 bool isParameterPack() const;
1304
1305 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1306
1307 // Implement isa/cast/dyncast/etc.
1308 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1309 static bool classofKind(Kind K) { return K == TemplateTypeParm; }
1310};
1311
1312/// NonTypeTemplateParmDecl - Declares a non-type template parameter,
1313/// e.g., "Size" in
1314/// @code
1315/// template<int Size> class array { };
1316/// @endcode
1317class NonTypeTemplateParmDecl final
1318 : public DeclaratorDecl,
1319 protected TemplateParmPosition,
1320 private llvm::TrailingObjects<NonTypeTemplateParmDecl,
1321 std::pair<QualType, TypeSourceInfo *>> {
1322 friend class ASTDeclReader;
1323 friend TrailingObjects;
1324
1325 /// The default template argument, if any, and whether or not
1326 /// it was inherited.
1327 using DefArgStorage = DefaultArgStorage<NonTypeTemplateParmDecl, Expr *>;
1328 DefArgStorage DefaultArgument;
1329
1330 // FIXME: Collapse this into TemplateParamPosition; or, just move depth/index
1331 // down here to save memory.
1332
1333 /// Whether this non-type template parameter is a parameter pack.
1334 bool ParameterPack;
1335
1336 /// Whether this non-type template parameter is an "expanded"
1337 /// parameter pack, meaning that its type is a pack expansion and we
1338 /// already know the set of types that expansion expands to.
1339 bool ExpandedParameterPack = false;
1340
1341 /// The number of types in an expanded parameter pack.
1342 unsigned NumExpandedTypes = 0;
1343
1344 size_t numTrailingObjects(
1345 OverloadToken<std::pair<QualType, TypeSourceInfo *>>) const {
1346 return NumExpandedTypes;
1347 }
1348
1349 NonTypeTemplateParmDecl(DeclContext *DC, SourceLocation StartLoc,
1350 SourceLocation IdLoc, unsigned D, unsigned P,
1351 IdentifierInfo *Id, QualType T,
1352 bool ParameterPack, TypeSourceInfo *TInfo)
1353 : DeclaratorDecl(NonTypeTemplateParm, DC, IdLoc, Id, T, TInfo, StartLoc),
1354 TemplateParmPosition(D, P), ParameterPack(ParameterPack) {}
1355
1356 NonTypeTemplateParmDecl(DeclContext *DC, SourceLocation StartLoc,
1357 SourceLocation IdLoc, unsigned D, unsigned P,
1358 IdentifierInfo *Id, QualType T,
1359 TypeSourceInfo *TInfo,
1360 ArrayRef<QualType> ExpandedTypes,
1361 ArrayRef<TypeSourceInfo *> ExpandedTInfos);
1362
1363public:
1364 static NonTypeTemplateParmDecl *
1365 Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1366 SourceLocation IdLoc, unsigned D, unsigned P, IdentifierInfo *Id,
1367 QualType T, bool ParameterPack, TypeSourceInfo *TInfo);
1368
1369 static NonTypeTemplateParmDecl *
1370 Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1371 SourceLocation IdLoc, unsigned D, unsigned P, IdentifierInfo *Id,
1372 QualType T, TypeSourceInfo *TInfo, ArrayRef<QualType> ExpandedTypes,
1373 ArrayRef<TypeSourceInfo *> ExpandedTInfos);
1374
1375 static NonTypeTemplateParmDecl *CreateDeserialized(ASTContext &C,
1376 unsigned ID);
1377 static NonTypeTemplateParmDecl *CreateDeserialized(ASTContext &C,
1378 unsigned ID,
1379 unsigned NumExpandedTypes);
1380
1381 using TemplateParmPosition::getDepth;
1382 using TemplateParmPosition::setDepth;
1383 using TemplateParmPosition::getPosition;
1384 using TemplateParmPosition::setPosition;
1385 using TemplateParmPosition::getIndex;
1386
1387 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1388
1389 const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
1390
1391 /// Determine whether this template parameter has a default
1392 /// argument.
1393 bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
1394
1395 /// Retrieve the default argument, if any.
1396 Expr *getDefaultArgument() const { return DefaultArgument.get(); }
1397
1398 /// Retrieve the location of the default argument, if any.
1399 SourceLocation getDefaultArgumentLoc() const;
1400
1401 /// Determines whether the default argument was inherited
1402 /// from a previous declaration of this template.
1403 bool defaultArgumentWasInherited() const {
1404 return DefaultArgument.isInherited();
1405 }
1406
1407 /// Set the default argument for this template parameter, and
1408 /// whether that default argument was inherited from another
1409 /// declaration.
1410 void setDefaultArgument(Expr *DefArg) { DefaultArgument.set(DefArg); }
1411 void setInheritedDefaultArgument(const ASTContext &C,
1412 NonTypeTemplateParmDecl *Parm) {
1413 DefaultArgument.setInherited(C, Parm);
1414 }
1415
1416 /// Removes the default argument of this template parameter.
1417 void removeDefaultArgument() { DefaultArgument.clear(); }
1418
1419 /// Whether this parameter is a non-type template parameter pack.
1420 ///
1421 /// If the parameter is a parameter pack, the type may be a
1422 /// \c PackExpansionType. In the following example, the \c Dims parameter
1423 /// is a parameter pack (whose type is 'unsigned').
1424 ///
1425 /// \code
1426 /// template<typename T, unsigned ...Dims> struct multi_array;
1427 /// \endcode
1428 bool isParameterPack() const { return ParameterPack; }
1429
1430 /// Whether this parameter pack is a pack expansion.
1431 ///
1432 /// A non-type template parameter pack is a pack expansion if its type
1433 /// contains an unexpanded parameter pack. In this case, we will have
1434 /// built a PackExpansionType wrapping the type.
1435 bool isPackExpansion() const {
1436 return ParameterPack && getType()->getAs<PackExpansionType>();
1437 }
1438
1439 /// Whether this parameter is a non-type template parameter pack
1440 /// that has a known list of different types at different positions.
1441 ///
1442 /// A parameter pack is an expanded parameter pack when the original
1443 /// parameter pack's type was itself a pack expansion, and that expansion
1444 /// has already been expanded. For example, given:
1445 ///
1446 /// \code
1447 /// template<typename ...Types>
1448 /// struct X {
1449 /// template<Types ...Values>
1450 /// struct Y { /* ... */ };
1451 /// };
1452 /// \endcode
1453 ///
1454 /// The parameter pack \c Values has a \c PackExpansionType as its type,
1455 /// which expands \c Types. When \c Types is supplied with template arguments
1456 /// by instantiating \c X, the instantiation of \c Values becomes an
1457 /// expanded parameter pack. For example, instantiating
1458 /// \c X<int, unsigned int> results in \c Values being an expanded parameter
1459 /// pack with expansion types \c int and \c unsigned int.
1460 ///
1461 /// The \c getExpansionType() and \c getExpansionTypeSourceInfo() functions
1462 /// return the expansion types.
1463 bool isExpandedParameterPack() const { return ExpandedParameterPack; }
1464
1465 /// Retrieves the number of expansion types in an expanded parameter
1466 /// pack.
1467 unsigned getNumExpansionTypes() const {
1468 assert(ExpandedParameterPack && "Not an expansion parameter pack")((ExpandedParameterPack && "Not an expansion parameter pack"
) ? static_cast<void> (0) : __assert_fail ("ExpandedParameterPack && \"Not an expansion parameter pack\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1468, __PRETTY_FUNCTION__))
;
1469 return NumExpandedTypes;
1470 }
1471
1472 /// Retrieve a particular expansion type within an expanded parameter
1473 /// pack.
1474 QualType getExpansionType(unsigned I) const {
1475 assert(I < NumExpandedTypes && "Out-of-range expansion type index")((I < NumExpandedTypes && "Out-of-range expansion type index"
) ? static_cast<void> (0) : __assert_fail ("I < NumExpandedTypes && \"Out-of-range expansion type index\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1475, __PRETTY_FUNCTION__))
;
1476 auto TypesAndInfos =
1477 getTrailingObjects<std::pair<QualType, TypeSourceInfo *>>();
1478 return TypesAndInfos[I].first;
1479 }
1480
1481 /// Retrieve a particular expansion type source info within an
1482 /// expanded parameter pack.
1483 TypeSourceInfo *getExpansionTypeSourceInfo(unsigned I) const {
1484 assert(I < NumExpandedTypes && "Out-of-range expansion type index")((I < NumExpandedTypes && "Out-of-range expansion type index"
) ? static_cast<void> (0) : __assert_fail ("I < NumExpandedTypes && \"Out-of-range expansion type index\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1484, __PRETTY_FUNCTION__))
;
1485 auto TypesAndInfos =
1486 getTrailingObjects<std::pair<QualType, TypeSourceInfo *>>();
1487 return TypesAndInfos[I].second;
1488 }
1489
1490 // Implement isa/cast/dyncast/etc.
1491 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1492 static bool classofKind(Kind K) { return K == NonTypeTemplateParm; }
1493};
1494
1495/// TemplateTemplateParmDecl - Declares a template template parameter,
1496/// e.g., "T" in
1497/// @code
1498/// template <template <typename> class T> class container { };
1499/// @endcode
1500/// A template template parameter is a TemplateDecl because it defines the
1501/// name of a template and the template parameters allowable for substitution.
1502class TemplateTemplateParmDecl final
1503 : public TemplateDecl,
1504 protected TemplateParmPosition,
1505 private llvm::TrailingObjects<TemplateTemplateParmDecl,
1506 TemplateParameterList *> {
1507 /// The default template argument, if any.
1508 using DefArgStorage =
1509 DefaultArgStorage<TemplateTemplateParmDecl, TemplateArgumentLoc *>;
1510 DefArgStorage DefaultArgument;
1511
1512 /// Whether this parameter is a parameter pack.
1513 bool ParameterPack;
1514
1515 /// Whether this template template parameter is an "expanded"
1516 /// parameter pack, meaning that it is a pack expansion and we
1517 /// already know the set of template parameters that expansion expands to.
1518 bool ExpandedParameterPack = false;
1519
1520 /// The number of parameters in an expanded parameter pack.
1521 unsigned NumExpandedParams = 0;
1522
1523 TemplateTemplateParmDecl(DeclContext *DC, SourceLocation L,
1524 unsigned D, unsigned P, bool ParameterPack,
1525 IdentifierInfo *Id, TemplateParameterList *Params)
1526 : TemplateDecl(TemplateTemplateParm, DC, L, Id, Params),
1527 TemplateParmPosition(D, P), ParameterPack(ParameterPack) {}
1528
1529 TemplateTemplateParmDecl(DeclContext *DC, SourceLocation L,
1530 unsigned D, unsigned P,
1531 IdentifierInfo *Id, TemplateParameterList *Params,
1532 ArrayRef<TemplateParameterList *> Expansions);
1533
1534 void anchor() override;
1535
1536public:
1537 friend class ASTDeclReader;
1538 friend class ASTDeclWriter;
1539 friend TrailingObjects;
1540
1541 static TemplateTemplateParmDecl *Create(const ASTContext &C, DeclContext *DC,
1542 SourceLocation L, unsigned D,
1543 unsigned P, bool ParameterPack,
1544 IdentifierInfo *Id,
1545 TemplateParameterList *Params);
1546 static TemplateTemplateParmDecl *Create(const ASTContext &C, DeclContext *DC,
1547 SourceLocation L, unsigned D,
1548 unsigned P,
1549 IdentifierInfo *Id,
1550 TemplateParameterList *Params,
1551 ArrayRef<TemplateParameterList *> Expansions);
1552
1553 static TemplateTemplateParmDecl *CreateDeserialized(ASTContext &C,
1554 unsigned ID);
1555 static TemplateTemplateParmDecl *CreateDeserialized(ASTContext &C,
1556 unsigned ID,
1557 unsigned NumExpansions);
1558
1559 using TemplateParmPosition::getDepth;
1560 using TemplateParmPosition::setDepth;
1561 using TemplateParmPosition::getPosition;
1562 using TemplateParmPosition::setPosition;
1563 using TemplateParmPosition::getIndex;
1564
1565 /// Whether this template template parameter is a template
1566 /// parameter pack.
1567 ///
1568 /// \code
1569 /// template<template <class T> ...MetaFunctions> struct Apply;
1570 /// \endcode
1571 bool isParameterPack() const { return ParameterPack; }
1572
1573 /// Whether this parameter pack is a pack expansion.
1574 ///
1575 /// A template template parameter pack is a pack expansion if its template
1576 /// parameter list contains an unexpanded parameter pack.
1577 bool isPackExpansion() const {
1578 return ParameterPack &&
1579 getTemplateParameters()->containsUnexpandedParameterPack();
1580 }
1581
1582 /// Whether this parameter is a template template parameter pack that
1583 /// has a known list of different template parameter lists at different
1584 /// positions.
1585 ///
1586 /// A parameter pack is an expanded parameter pack when the original parameter
1587 /// pack's template parameter list was itself a pack expansion, and that
1588 /// expansion has already been expanded. For exampe, given:
1589 ///
1590 /// \code
1591 /// template<typename...Types> struct Outer {
1592 /// template<template<Types> class...Templates> struct Inner;
1593 /// };
1594 /// \endcode
1595 ///
1596 /// The parameter pack \c Templates is a pack expansion, which expands the
1597 /// pack \c Types. When \c Types is supplied with template arguments by
1598 /// instantiating \c Outer, the instantiation of \c Templates is an expanded
1599 /// parameter pack.
1600 bool isExpandedParameterPack() const { return ExpandedParameterPack; }
1601
1602 /// Retrieves the number of expansion template parameters in
1603 /// an expanded parameter pack.
1604 unsigned getNumExpansionTemplateParameters() const {
1605 assert(ExpandedParameterPack && "Not an expansion parameter pack")((ExpandedParameterPack && "Not an expansion parameter pack"
) ? static_cast<void> (0) : __assert_fail ("ExpandedParameterPack && \"Not an expansion parameter pack\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1605, __PRETTY_FUNCTION__))
;
1606 return NumExpandedParams;
1607 }
1608
1609 /// Retrieve a particular expansion type within an expanded parameter
1610 /// pack.
1611 TemplateParameterList *getExpansionTemplateParameters(unsigned I) const {
1612 assert(I < NumExpandedParams && "Out-of-range expansion type index")((I < NumExpandedParams && "Out-of-range expansion type index"
) ? static_cast<void> (0) : __assert_fail ("I < NumExpandedParams && \"Out-of-range expansion type index\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1612, __PRETTY_FUNCTION__))
;
1613 return getTrailingObjects<TemplateParameterList *>()[I];
1614 }
1615
1616 const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
1617
1618 /// Determine whether this template parameter has a default
1619 /// argument.
1620 bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
1621
1622 /// Retrieve the default argument, if any.
1623 const TemplateArgumentLoc &getDefaultArgument() const {
1624 static const TemplateArgumentLoc None;
1625 return DefaultArgument.isSet() ? *DefaultArgument.get() : None;
1626 }
1627
1628 /// Retrieve the location of the default argument, if any.
1629 SourceLocation getDefaultArgumentLoc() const;
1630
1631 /// Determines whether the default argument was inherited
1632 /// from a previous declaration of this template.
1633 bool defaultArgumentWasInherited() const {
1634 return DefaultArgument.isInherited();
1635 }
1636
1637 /// Set the default argument for this template parameter, and
1638 /// whether that default argument was inherited from another
1639 /// declaration.
1640 void setDefaultArgument(const ASTContext &C,
1641 const TemplateArgumentLoc &DefArg);
1642 void setInheritedDefaultArgument(const ASTContext &C,
1643 TemplateTemplateParmDecl *Prev) {
1644 DefaultArgument.setInherited(C, Prev);
1645 }
1646
1647 /// Removes the default argument of this template parameter.
1648 void removeDefaultArgument() { DefaultArgument.clear(); }
1649
1650 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
1651 SourceLocation End = getLocation();
1652 if (hasDefaultArgument() && !defaultArgumentWasInherited())
1653 End = getDefaultArgument().getSourceRange().getEnd();
1654 return SourceRange(getTemplateParameters()->getTemplateLoc(), End);
1655 }
1656
1657 // Implement isa/cast/dyncast/etc.
1658 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1659 static bool classofKind(Kind K) { return K == TemplateTemplateParm; }
1660};
1661
1662/// Represents the builtin template declaration which is used to
1663/// implement __make_integer_seq and other builtin templates. It serves
1664/// no real purpose beyond existing as a place to hold template parameters.
1665class BuiltinTemplateDecl : public TemplateDecl {
1666 BuiltinTemplateKind BTK;
1667
1668 BuiltinTemplateDecl(const ASTContext &C, DeclContext *DC,
1669 DeclarationName Name, BuiltinTemplateKind BTK);
1670
1671 void anchor() override;
1672
1673public:
1674 // Implement isa/cast/dyncast support
1675 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1676 static bool classofKind(Kind K) { return K == BuiltinTemplate; }
1677
1678 static BuiltinTemplateDecl *Create(const ASTContext &C, DeclContext *DC,
1679 DeclarationName Name,
1680 BuiltinTemplateKind BTK) {
1681 return new (C, DC) BuiltinTemplateDecl(C, DC, Name, BTK);
1682 }
1683
1684 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
1685 return {};
1686 }
1687
1688 BuiltinTemplateKind getBuiltinTemplateKind() const { return BTK; }
1689};
1690
1691/// Represents a class template specialization, which refers to
1692/// a class template with a given set of template arguments.
1693///
1694/// Class template specializations represent both explicit
1695/// specialization of class templates, as in the example below, and
1696/// implicit instantiations of class templates.
1697///
1698/// \code
1699/// template<typename T> class array;
1700///
1701/// template<>
1702/// class array<bool> { }; // class template specialization array<bool>
1703/// \endcode
1704class ClassTemplateSpecializationDecl
1705 : public CXXRecordDecl, public llvm::FoldingSetNode {
1706 /// Structure that stores information about a class template
1707 /// specialization that was instantiated from a class template partial
1708 /// specialization.
1709 struct SpecializedPartialSpecialization {
1710 /// The class template partial specialization from which this
1711 /// class template specialization was instantiated.
1712 ClassTemplatePartialSpecializationDecl *PartialSpecialization;
1713
1714 /// The template argument list deduced for the class template
1715 /// partial specialization itself.
1716 const TemplateArgumentList *TemplateArgs;
1717 };
1718
1719 /// The template that this specialization specializes
1720 llvm::PointerUnion<ClassTemplateDecl *, SpecializedPartialSpecialization *>
1721 SpecializedTemplate;
1722
1723 /// Further info for explicit template specialization/instantiation.
1724 struct ExplicitSpecializationInfo {
1725 /// The type-as-written.
1726 TypeSourceInfo *TypeAsWritten = nullptr;
1727
1728 /// The location of the extern keyword.
1729 SourceLocation ExternLoc;
1730
1731 /// The location of the template keyword.
1732 SourceLocation TemplateKeywordLoc;
1733
1734 ExplicitSpecializationInfo() = default;
1735 };
1736
1737 /// Further info for explicit template specialization/instantiation.
1738 /// Does not apply to implicit specializations.
1739 ExplicitSpecializationInfo *ExplicitInfo = nullptr;
1740
1741 /// The template arguments used to describe this specialization.
1742 const TemplateArgumentList *TemplateArgs;
1743
1744 /// The point where this template was instantiated (if any)
1745 SourceLocation PointOfInstantiation;
1746
1747 /// The kind of specialization this declaration refers to.
1748 /// Really a value of type TemplateSpecializationKind.
1749 unsigned SpecializationKind : 3;
1750
1751protected:
1752 ClassTemplateSpecializationDecl(ASTContext &Context, Kind DK, TagKind TK,
1753 DeclContext *DC, SourceLocation StartLoc,
1754 SourceLocation IdLoc,
1755 ClassTemplateDecl *SpecializedTemplate,
1756 ArrayRef<TemplateArgument> Args,
1757 ClassTemplateSpecializationDecl *PrevDecl);
1758
1759 explicit ClassTemplateSpecializationDecl(ASTContext &C, Kind DK);
1760
1761public:
1762 friend class ASTDeclReader;
1763 friend class ASTDeclWriter;
1764
1765 static ClassTemplateSpecializationDecl *
1766 Create(ASTContext &Context, TagKind TK, DeclContext *DC,
1767 SourceLocation StartLoc, SourceLocation IdLoc,
1768 ClassTemplateDecl *SpecializedTemplate,
1769 ArrayRef<TemplateArgument> Args,
1770 ClassTemplateSpecializationDecl *PrevDecl);
1771 static ClassTemplateSpecializationDecl *
1772 CreateDeserialized(ASTContext &C, unsigned ID);
1773
1774 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
1775 bool Qualified) const override;
1776
1777 // FIXME: This is broken. CXXRecordDecl::getMostRecentDecl() returns a
1778 // different "most recent" declaration from this function for the same
1779 // declaration, because we don't override getMostRecentDeclImpl(). But
1780 // it's not clear that we should override that, because the most recent
1781 // declaration as a CXXRecordDecl sometimes is the injected-class-name.
1782 ClassTemplateSpecializationDecl *getMostRecentDecl() {
1783 return cast<ClassTemplateSpecializationDecl>(
1784 getMostRecentNonInjectedDecl());
1785 }
1786
1787 /// Retrieve the template that this specialization specializes.
1788 ClassTemplateDecl *getSpecializedTemplate() const;
1789
1790 /// Retrieve the template arguments of the class template
1791 /// specialization.
1792 const TemplateArgumentList &getTemplateArgs() const {
1793 return *TemplateArgs;
1794 }
1795
1796 /// Determine the kind of specialization that this
1797 /// declaration represents.
1798 TemplateSpecializationKind getSpecializationKind() const {
1799 return static_cast<TemplateSpecializationKind>(SpecializationKind);
1800 }
1801
1802 bool isExplicitSpecialization() const {
1803 return getSpecializationKind() == TSK_ExplicitSpecialization;
1804 }
1805
1806 /// Is this an explicit specialization at class scope (within the class that
1807 /// owns the primary template)? For example:
1808 ///
1809 /// \code
1810 /// template<typename T> struct Outer {
1811 /// template<typename U> struct Inner;
1812 /// template<> struct Inner; // class-scope explicit specialization
1813 /// };
1814 /// \endcode
1815 bool isClassScopeExplicitSpecialization() const {
1816 return isExplicitSpecialization() &&
1817 isa<CXXRecordDecl>(getLexicalDeclContext());
1818 }
1819
1820 /// True if this declaration is an explicit specialization,
1821 /// explicit instantiation declaration, or explicit instantiation
1822 /// definition.
1823 bool isExplicitInstantiationOrSpecialization() const {
1824 return isTemplateExplicitInstantiationOrSpecialization(
1825 getTemplateSpecializationKind());
1826 }
1827
1828 void setSpecializationKind(TemplateSpecializationKind TSK) {
1829 SpecializationKind = TSK;
1830 }
1831
1832 /// Get the point of instantiation (if any), or null if none.
1833 SourceLocation getPointOfInstantiation() const {
1834 return PointOfInstantiation;
1835 }
1836
1837 void setPointOfInstantiation(SourceLocation Loc) {
1838 assert(Loc.isValid() && "point of instantiation must be valid!")((Loc.isValid() && "point of instantiation must be valid!"
) ? static_cast<void> (0) : __assert_fail ("Loc.isValid() && \"point of instantiation must be valid!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1838, __PRETTY_FUNCTION__))
;
1839 PointOfInstantiation = Loc;
1840 }
1841
1842 /// If this class template specialization is an instantiation of
1843 /// a template (rather than an explicit specialization), return the
1844 /// class template or class template partial specialization from which it
1845 /// was instantiated.
1846 llvm::PointerUnion<ClassTemplateDecl *,
1847 ClassTemplatePartialSpecializationDecl *>
1848 getInstantiatedFrom() const {
1849 if (!isTemplateInstantiation(getSpecializationKind()))
1850 return llvm::PointerUnion<ClassTemplateDecl *,
1851 ClassTemplatePartialSpecializationDecl *>();
1852
1853 return getSpecializedTemplateOrPartial();
1854 }
1855
1856 /// Retrieve the class template or class template partial
1857 /// specialization which was specialized by this.
1858 llvm::PointerUnion<ClassTemplateDecl *,
1859 ClassTemplatePartialSpecializationDecl *>
1860 getSpecializedTemplateOrPartial() const {
1861 if (const auto *PartialSpec =
1862 SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
1863 return PartialSpec->PartialSpecialization;
1864
1865 return SpecializedTemplate.get<ClassTemplateDecl*>();
1866 }
1867
1868 /// Retrieve the set of template arguments that should be used
1869 /// to instantiate members of the class template or class template partial
1870 /// specialization from which this class template specialization was
1871 /// instantiated.
1872 ///
1873 /// \returns For a class template specialization instantiated from the primary
1874 /// template, this function will return the same template arguments as
1875 /// getTemplateArgs(). For a class template specialization instantiated from
1876 /// a class template partial specialization, this function will return the
1877 /// deduced template arguments for the class template partial specialization
1878 /// itself.
1879 const TemplateArgumentList &getTemplateInstantiationArgs() const {
1880 if (const auto *PartialSpec =
1881 SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
1882 return *PartialSpec->TemplateArgs;
1883
1884 return getTemplateArgs();
1885 }
1886
1887 /// Note that this class template specialization is actually an
1888 /// instantiation of the given class template partial specialization whose
1889 /// template arguments have been deduced.
1890 void setInstantiationOf(ClassTemplatePartialSpecializationDecl *PartialSpec,
1891 const TemplateArgumentList *TemplateArgs) {
1892 assert(!SpecializedTemplate.is<SpecializedPartialSpecialization*>() &&((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Already set to a class template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization*>() && \"Already set to a class template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1893, __PRETTY_FUNCTION__))
1893 "Already set to a class template partial specialization!")((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Already set to a class template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization*>() && \"Already set to a class template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1893, __PRETTY_FUNCTION__))
;
1894 auto *PS = new (getASTContext()) SpecializedPartialSpecialization();
1895 PS->PartialSpecialization = PartialSpec;
1896 PS->TemplateArgs = TemplateArgs;
1897 SpecializedTemplate = PS;
1898 }
1899
1900 /// Note that this class template specialization is an instantiation
1901 /// of the given class template.
1902 void setInstantiationOf(ClassTemplateDecl *TemplDecl) {
1903 assert(!SpecializedTemplate.is<SpecializedPartialSpecialization*>() &&((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Previously set to a class template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization*>() && \"Previously set to a class template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1904, __PRETTY_FUNCTION__))
1904 "Previously set to a class template partial specialization!")((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Previously set to a class template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization*>() && \"Previously set to a class template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 1904, __PRETTY_FUNCTION__))
;
1905 SpecializedTemplate = TemplDecl;
1906 }
1907
1908 /// Sets the type of this specialization as it was written by
1909 /// the user. This will be a class template specialization type.
1910 void setTypeAsWritten(TypeSourceInfo *T) {
1911 if (!ExplicitInfo)
1912 ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
1913 ExplicitInfo->TypeAsWritten = T;
1914 }
1915
1916 /// Gets the type of this specialization as it was written by
1917 /// the user, if it was so written.
1918 TypeSourceInfo *getTypeAsWritten() const {
1919 return ExplicitInfo ? ExplicitInfo->TypeAsWritten : nullptr;
1920 }
1921
1922 /// Gets the location of the extern keyword, if present.
1923 SourceLocation getExternLoc() const {
1924 return ExplicitInfo ? ExplicitInfo->ExternLoc : SourceLocation();
1925 }
1926
1927 /// Sets the location of the extern keyword.
1928 void setExternLoc(SourceLocation Loc) {
1929 if (!ExplicitInfo)
1930 ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
1931 ExplicitInfo->ExternLoc = Loc;
1932 }
1933
1934 /// Sets the location of the template keyword.
1935 void setTemplateKeywordLoc(SourceLocation Loc) {
1936 if (!ExplicitInfo)
1937 ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
1938 ExplicitInfo->TemplateKeywordLoc = Loc;
1939 }
1940
1941 /// Gets the location of the template keyword, if present.
1942 SourceLocation getTemplateKeywordLoc() const {
1943 return ExplicitInfo ? ExplicitInfo->TemplateKeywordLoc : SourceLocation();
1944 }
1945
1946 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1947
1948 void Profile(llvm::FoldingSetNodeID &ID) const {
1949 Profile(ID, TemplateArgs->asArray(), getASTContext());
1950 }
1951
1952 static void
1953 Profile(llvm::FoldingSetNodeID &ID, ArrayRef<TemplateArgument> TemplateArgs,
1954 ASTContext &Context) {
1955 ID.AddInteger(TemplateArgs.size());
1956 for (const TemplateArgument &TemplateArg : TemplateArgs)
1957 TemplateArg.Profile(ID, Context);
1958 }
1959
1960 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1961
1962 static bool classofKind(Kind K) {
1963 return K >= firstClassTemplateSpecialization &&
1964 K <= lastClassTemplateSpecialization;
1965 }
1966};
1967
1968class ClassTemplatePartialSpecializationDecl
1969 : public ClassTemplateSpecializationDecl {
1970 /// The list of template parameters
1971 TemplateParameterList* TemplateParams = nullptr;
1972
1973 /// The source info for the template arguments as written.
1974 /// FIXME: redundant with TypeAsWritten?
1975 const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;
1976
1977 /// The class template partial specialization from which this
1978 /// class template partial specialization was instantiated.
1979 ///
1980 /// The boolean value will be true to indicate that this class template
1981 /// partial specialization was specialized at this level.
1982 llvm::PointerIntPair<ClassTemplatePartialSpecializationDecl *, 1, bool>
1983 InstantiatedFromMember;
1984
1985 ClassTemplatePartialSpecializationDecl(ASTContext &Context, TagKind TK,
1986 DeclContext *DC,
1987 SourceLocation StartLoc,
1988 SourceLocation IdLoc,
1989 TemplateParameterList *Params,
1990 ClassTemplateDecl *SpecializedTemplate,
1991 ArrayRef<TemplateArgument> Args,
1992 const ASTTemplateArgumentListInfo *ArgsAsWritten,
1993 ClassTemplatePartialSpecializationDecl *PrevDecl);
1994
1995 ClassTemplatePartialSpecializationDecl(ASTContext &C)
1996 : ClassTemplateSpecializationDecl(C, ClassTemplatePartialSpecialization),
1997 InstantiatedFromMember(nullptr, false) {}
1998
1999 void anchor() override;
2000
2001public:
2002 friend class ASTDeclReader;
2003 friend class ASTDeclWriter;
2004
2005 static ClassTemplatePartialSpecializationDecl *
2006 Create(ASTContext &Context, TagKind TK, DeclContext *DC,
2007 SourceLocation StartLoc, SourceLocation IdLoc,
2008 TemplateParameterList *Params,
2009 ClassTemplateDecl *SpecializedTemplate,
2010 ArrayRef<TemplateArgument> Args,
2011 const TemplateArgumentListInfo &ArgInfos,
2012 QualType CanonInjectedType,
2013 ClassTemplatePartialSpecializationDecl *PrevDecl);
2014
2015 static ClassTemplatePartialSpecializationDecl *
2016 CreateDeserialized(ASTContext &C, unsigned ID);
2017
2018 ClassTemplatePartialSpecializationDecl *getMostRecentDecl() {
2019 return cast<ClassTemplatePartialSpecializationDecl>(
2020 static_cast<ClassTemplateSpecializationDecl *>(
2021 this)->getMostRecentDecl());
2022 }
2023
2024 /// Get the list of template parameters
2025 TemplateParameterList *getTemplateParameters() const {
2026 return TemplateParams;
2027 }
2028
2029 /// Get the template arguments as written.
2030 const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
2031 return ArgsAsWritten;
2032 }
2033
2034 /// Retrieve the member class template partial specialization from
2035 /// which this particular class template partial specialization was
2036 /// instantiated.
2037 ///
2038 /// \code
2039 /// template<typename T>
2040 /// struct Outer {
2041 /// template<typename U> struct Inner;
2042 /// template<typename U> struct Inner<U*> { }; // #1
2043 /// };
2044 ///
2045 /// Outer<float>::Inner<int*> ii;
2046 /// \endcode
2047 ///
2048 /// In this example, the instantiation of \c Outer<float>::Inner<int*> will
2049 /// end up instantiating the partial specialization
2050 /// \c Outer<float>::Inner<U*>, which itself was instantiated from the class
2051 /// template partial specialization \c Outer<T>::Inner<U*>. Given
2052 /// \c Outer<float>::Inner<U*>, this function would return
2053 /// \c Outer<T>::Inner<U*>.
2054 ClassTemplatePartialSpecializationDecl *getInstantiatedFromMember() const {
2055 const auto *First =
2056 cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
2057 return First->InstantiatedFromMember.getPointer();
2058 }
2059 ClassTemplatePartialSpecializationDecl *
2060 getInstantiatedFromMemberTemplate() const {
2061 return getInstantiatedFromMember();
2062 }
2063
2064 void setInstantiatedFromMember(
2065 ClassTemplatePartialSpecializationDecl *PartialSpec) {
2066 auto *First = cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
2067 First->InstantiatedFromMember.setPointer(PartialSpec);
2068 }
2069
2070 /// Determines whether this class template partial specialization
2071 /// template was a specialization of a member partial specialization.
2072 ///
2073 /// In the following example, the member template partial specialization
2074 /// \c X<int>::Inner<T*> is a member specialization.
2075 ///
2076 /// \code
2077 /// template<typename T>
2078 /// struct X {
2079 /// template<typename U> struct Inner;
2080 /// template<typename U> struct Inner<U*>;
2081 /// };
2082 ///
2083 /// template<> template<typename T>
2084 /// struct X<int>::Inner<T*> { /* ... */ };
2085 /// \endcode
2086 bool isMemberSpecialization() {
2087 const auto *First =
2088 cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
2089 return First->InstantiatedFromMember.getInt();
2090 }
2091
2092 /// Note that this member template is a specialization.
2093 void setMemberSpecialization() {
2094 auto *First = cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
2095 assert(First->InstantiatedFromMember.getPointer() &&((First->InstantiatedFromMember.getPointer() && "Only member templates can be member template specializations"
) ? static_cast<void> (0) : __assert_fail ("First->InstantiatedFromMember.getPointer() && \"Only member templates can be member template specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2096, __PRETTY_FUNCTION__))
2096 "Only member templates can be member template specializations")((First->InstantiatedFromMember.getPointer() && "Only member templates can be member template specializations"
) ? static_cast<void> (0) : __assert_fail ("First->InstantiatedFromMember.getPointer() && \"Only member templates can be member template specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2096, __PRETTY_FUNCTION__))
;
2097 return First->InstantiatedFromMember.setInt(true);
2098 }
2099
2100 /// Retrieves the injected specialization type for this partial
2101 /// specialization. This is not the same as the type-decl-type for
2102 /// this partial specialization, which is an InjectedClassNameType.
2103 QualType getInjectedSpecializationType() const {
2104 assert(getTypeForDecl() && "partial specialization has no type set!")((getTypeForDecl() && "partial specialization has no type set!"
) ? static_cast<void> (0) : __assert_fail ("getTypeForDecl() && \"partial specialization has no type set!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2104, __PRETTY_FUNCTION__))
;
2105 return cast<InjectedClassNameType>(getTypeForDecl())
2106 ->getInjectedSpecializationType();
2107 }
2108
2109 // FIXME: Add Profile support!
2110
2111 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2112
2113 static bool classofKind(Kind K) {
2114 return K == ClassTemplatePartialSpecialization;
2115 }
2116};
2117
2118/// Declaration of a class template.
2119class ClassTemplateDecl : public RedeclarableTemplateDecl {
2120protected:
2121 /// Data that is common to all of the declarations of a given
2122 /// class template.
2123 struct Common : CommonBase {
2124 /// The class template specializations for this class
2125 /// template, including explicit specializations and instantiations.
2126 llvm::FoldingSetVector<ClassTemplateSpecializationDecl> Specializations;
2127
2128 /// The class template partial specializations for this class
2129 /// template.
2130 llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl>
2131 PartialSpecializations;
2132
2133 /// The injected-class-name type for this class template.
2134 QualType InjectedClassNameType;
2135
2136 Common() = default;
2137 };
2138
2139 /// Retrieve the set of specializations of this class template.
2140 llvm::FoldingSetVector<ClassTemplateSpecializationDecl> &
2141 getSpecializations() const;
2142
2143 /// Retrieve the set of partial specializations of this class
2144 /// template.
2145 llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl> &
2146 getPartialSpecializations();
2147
2148 ClassTemplateDecl(ConstrainedTemplateDeclInfo *CTDI, ASTContext &C,
2149 DeclContext *DC, SourceLocation L, DeclarationName Name,
2150 TemplateParameterList *Params, NamedDecl *Decl)
2151 : RedeclarableTemplateDecl(CTDI, ClassTemplate, C, DC, L, Name, Params,
2152 Decl) {}
2153
2154 ClassTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2155 DeclarationName Name, TemplateParameterList *Params,
2156 NamedDecl *Decl)
2157 : ClassTemplateDecl(nullptr, C, DC, L, Name, Params, Decl) {}
2158
2159 CommonBase *newCommon(ASTContext &C) const override;
2160
2161 Common *getCommonPtr() const {
2162 return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
2163 }
2164
2165public:
2166 friend class ASTDeclReader;
2167 friend class ASTDeclWriter;
2168
2169 /// Load any lazily-loaded specializations from the external source.
2170 void LoadLazySpecializations() const;
2171
2172 /// Get the underlying class declarations of the template.
2173 CXXRecordDecl *getTemplatedDecl() const {
2174 return static_cast<CXXRecordDecl *>(TemplatedDecl);
2175 }
2176
2177 /// Returns whether this template declaration defines the primary
2178 /// class pattern.
2179 bool isThisDeclarationADefinition() const {
2180 return getTemplatedDecl()->isThisDeclarationADefinition();
2181 }
2182
2183 // FIXME: remove default argument for AssociatedConstraints
2184 /// Create a class template node.
2185 static ClassTemplateDecl *Create(ASTContext &C, DeclContext *DC,
2186 SourceLocation L,
2187 DeclarationName Name,
2188 TemplateParameterList *Params,
2189 NamedDecl *Decl,
2190 Expr *AssociatedConstraints = nullptr);
2191
2192 /// Create an empty class template node.
2193 static ClassTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2194
2195 /// Return the specialization with the provided arguments if it exists,
2196 /// otherwise return the insertion point.
2197 ClassTemplateSpecializationDecl *
2198 findSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
2199
2200 /// Insert the specified specialization knowing that it is not already
2201 /// in. InsertPos must be obtained from findSpecialization.
2202 void AddSpecialization(ClassTemplateSpecializationDecl *D, void *InsertPos);
2203
2204 ClassTemplateDecl *getCanonicalDecl() override {
2205 return cast<ClassTemplateDecl>(
2206 RedeclarableTemplateDecl::getCanonicalDecl());
2207 }
2208 const ClassTemplateDecl *getCanonicalDecl() const {
2209 return cast<ClassTemplateDecl>(
2210 RedeclarableTemplateDecl::getCanonicalDecl());
2211 }
2212
2213 /// Retrieve the previous declaration of this class template, or
2214 /// nullptr if no such declaration exists.
2215 ClassTemplateDecl *getPreviousDecl() {
2216 return cast_or_null<ClassTemplateDecl>(
2217 static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
2218 }
2219 const ClassTemplateDecl *getPreviousDecl() const {
2220 return cast_or_null<ClassTemplateDecl>(
2221 static_cast<const RedeclarableTemplateDecl *>(
2222 this)->getPreviousDecl());
2223 }
2224
2225 ClassTemplateDecl *getMostRecentDecl() {
2226 return cast<ClassTemplateDecl>(
2227 static_cast<RedeclarableTemplateDecl *>(this)->getMostRecentDecl());
2228 }
2229 const ClassTemplateDecl *getMostRecentDecl() const {
2230 return const_cast<ClassTemplateDecl*>(this)->getMostRecentDecl();
2231 }
2232
2233 ClassTemplateDecl *getInstantiatedFromMemberTemplate() const {
2234 return cast_or_null<ClassTemplateDecl>(
2235 RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
2236 }
2237
2238 /// Return the partial specialization with the provided arguments if it
2239 /// exists, otherwise return the insertion point.
2240 ClassTemplatePartialSpecializationDecl *
2241 findPartialSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
2242
2243 /// Insert the specified partial specialization knowing that it is not
2244 /// already in. InsertPos must be obtained from findPartialSpecialization.
2245 void AddPartialSpecialization(ClassTemplatePartialSpecializationDecl *D,
2246 void *InsertPos);
2247
2248 /// Retrieve the partial specializations as an ordered list.
2249 void getPartialSpecializations(
2250 SmallVectorImpl<ClassTemplatePartialSpecializationDecl *> &PS);
2251
2252 /// Find a class template partial specialization with the given
2253 /// type T.
2254 ///
2255 /// \param T a dependent type that names a specialization of this class
2256 /// template.
2257 ///
2258 /// \returns the class template partial specialization that exactly matches
2259 /// the type \p T, or nullptr if no such partial specialization exists.
2260 ClassTemplatePartialSpecializationDecl *findPartialSpecialization(QualType T);
2261
2262 /// Find a class template partial specialization which was instantiated
2263 /// from the given member partial specialization.
2264 ///
2265 /// \param D a member class template partial specialization.
2266 ///
2267 /// \returns the class template partial specialization which was instantiated
2268 /// from the given member partial specialization, or nullptr if no such
2269 /// partial specialization exists.
2270 ClassTemplatePartialSpecializationDecl *
2271 findPartialSpecInstantiatedFromMember(
2272 ClassTemplatePartialSpecializationDecl *D);
2273
2274 /// Retrieve the template specialization type of the
2275 /// injected-class-name for this class template.
2276 ///
2277 /// The injected-class-name for a class template \c X is \c
2278 /// X<template-args>, where \c template-args is formed from the
2279 /// template arguments that correspond to the template parameters of
2280 /// \c X. For example:
2281 ///
2282 /// \code
2283 /// template<typename T, int N>
2284 /// struct array {
2285 /// typedef array this_type; // "array" is equivalent to "array<T, N>"
2286 /// };
2287 /// \endcode
2288 QualType getInjectedClassNameSpecialization();
2289
2290 using spec_iterator = SpecIterator<ClassTemplateSpecializationDecl>;
2291 using spec_range = llvm::iterator_range<spec_iterator>;
2292
2293 spec_range specializations() const {
2294 return spec_range(spec_begin(), spec_end());
2295 }
2296
2297 spec_iterator spec_begin() const {
2298 return makeSpecIterator(getSpecializations(), false);
2299 }
2300
2301 spec_iterator spec_end() const {
2302 return makeSpecIterator(getSpecializations(), true);
2303 }
2304
2305 // Implement isa/cast/dyncast support
2306 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2307 static bool classofKind(Kind K) { return K == ClassTemplate; }
2308};
2309
2310/// Declaration of a friend template.
2311///
2312/// For example:
2313/// \code
2314/// template \<typename T> class A {
2315/// friend class MyVector<T>; // not a friend template
2316/// template \<typename U> friend class B; // not a friend template
2317/// template \<typename U> friend class Foo<T>::Nested; // friend template
2318/// };
2319/// \endcode
2320///
2321/// \note This class is not currently in use. All of the above
2322/// will yield a FriendDecl, not a FriendTemplateDecl.
2323class FriendTemplateDecl : public Decl {
2324 virtual void anchor();
2325
2326public:
2327 using FriendUnion = llvm::PointerUnion<NamedDecl *,TypeSourceInfo *>;
2328
2329private:
2330 // The number of template parameters; always non-zero.
2331 unsigned NumParams = 0;
2332
2333 // The parameter list.
2334 TemplateParameterList **Params = nullptr;
2335
2336 // The declaration that's a friend of this class.
2337 FriendUnion Friend;
2338
2339 // Location of the 'friend' specifier.
2340 SourceLocation FriendLoc;
2341
2342 FriendTemplateDecl(DeclContext *DC, SourceLocation Loc,
2343 MutableArrayRef<TemplateParameterList *> Params,
2344 FriendUnion Friend, SourceLocation FriendLoc)
2345 : Decl(Decl::FriendTemplate, DC, Loc), NumParams(Params.size()),
2346 Params(Params.data()), Friend(Friend), FriendLoc(FriendLoc) {}
2347
2348 FriendTemplateDecl(EmptyShell Empty) : Decl(Decl::FriendTemplate, Empty) {}
2349
2350public:
2351 friend class ASTDeclReader;
2352
2353 static FriendTemplateDecl *
2354 Create(ASTContext &Context, DeclContext *DC, SourceLocation Loc,
2355 MutableArrayRef<TemplateParameterList *> Params, FriendUnion Friend,
2356 SourceLocation FriendLoc);
2357
2358 static FriendTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2359
2360 /// If this friend declaration names a templated type (or
2361 /// a dependent member type of a templated type), return that
2362 /// type; otherwise return null.
2363 TypeSourceInfo *getFriendType() const {
2364 return Friend.dyn_cast<TypeSourceInfo*>();
2365 }
2366
2367 /// If this friend declaration names a templated function (or
2368 /// a member function of a templated type), return that type;
2369 /// otherwise return null.
2370 NamedDecl *getFriendDecl() const {
2371 return Friend.dyn_cast<NamedDecl*>();
2372 }
2373
2374 /// Retrieves the location of the 'friend' keyword.
2375 SourceLocation getFriendLoc() const {
2376 return FriendLoc;
2377 }
2378
2379 TemplateParameterList *getTemplateParameterList(unsigned i) const {
2380 assert(i <= NumParams)((i <= NumParams) ? static_cast<void> (0) : __assert_fail
("i <= NumParams", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2380, __PRETTY_FUNCTION__))
;
2381 return Params[i];
2382 }
2383
2384 unsigned getNumTemplateParameters() const {
2385 return NumParams;
2386 }
2387
2388 // Implement isa/cast/dyncast/etc.
2389 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2390 static bool classofKind(Kind K) { return K == Decl::FriendTemplate; }
2391};
2392
2393/// Declaration of an alias template.
2394///
2395/// For example:
2396/// \code
2397/// template \<typename T> using V = std::map<T*, int, MyCompare<T>>;
2398/// \endcode
2399class TypeAliasTemplateDecl : public RedeclarableTemplateDecl {
2400protected:
2401 using Common = CommonBase;
2402
2403 TypeAliasTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2404 DeclarationName Name, TemplateParameterList *Params,
2405 NamedDecl *Decl)
2406 : RedeclarableTemplateDecl(TypeAliasTemplate, C, DC, L, Name, Params,
2407 Decl) {}
2408
2409 CommonBase *newCommon(ASTContext &C) const override;
2410
2411 Common *getCommonPtr() {
2412 return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
2413 }
2414
2415public:
2416 friend class ASTDeclReader;
2417 friend class ASTDeclWriter;
2418
2419 /// Get the underlying function declaration of the template.
2420 TypeAliasDecl *getTemplatedDecl() const {
2421 return static_cast<TypeAliasDecl *>(TemplatedDecl);
2422 }
2423
2424
2425 TypeAliasTemplateDecl *getCanonicalDecl() override {
2426 return cast<TypeAliasTemplateDecl>(
2427 RedeclarableTemplateDecl::getCanonicalDecl());
2428 }
2429 const TypeAliasTemplateDecl *getCanonicalDecl() const {
2430 return cast<TypeAliasTemplateDecl>(
2431 RedeclarableTemplateDecl::getCanonicalDecl());
2432 }
2433
2434 /// Retrieve the previous declaration of this function template, or
2435 /// nullptr if no such declaration exists.
2436 TypeAliasTemplateDecl *getPreviousDecl() {
2437 return cast_or_null<TypeAliasTemplateDecl>(
2438 static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
2439 }
2440 const TypeAliasTemplateDecl *getPreviousDecl() const {
2441 return cast_or_null<TypeAliasTemplateDecl>(
2442 static_cast<const RedeclarableTemplateDecl *>(
2443 this)->getPreviousDecl());
2444 }
2445
2446 TypeAliasTemplateDecl *getInstantiatedFromMemberTemplate() const {
2447 return cast_or_null<TypeAliasTemplateDecl>(
2448 RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
2449 }
2450
2451 /// Create a function template node.
2452 static TypeAliasTemplateDecl *Create(ASTContext &C, DeclContext *DC,
2453 SourceLocation L,
2454 DeclarationName Name,
2455 TemplateParameterList *Params,
2456 NamedDecl *Decl);
2457
2458 /// Create an empty alias template node.
2459 static TypeAliasTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2460
2461 // Implement isa/cast/dyncast support
2462 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2463 static bool classofKind(Kind K) { return K == TypeAliasTemplate; }
2464};
2465
2466/// Declaration of a function specialization at template class scope.
2467///
2468/// For example:
2469/// \code
2470/// template <class T>
2471/// class A {
2472/// template <class U> void foo(U a) { }
2473/// template<> void foo(int a) { }
2474/// }
2475/// \endcode
2476///
2477/// "template<> foo(int a)" will be saved in Specialization as a normal
2478/// CXXMethodDecl. Then during an instantiation of class A, it will be
2479/// transformed into an actual function specialization.
2480///
2481/// FIXME: This is redundant; we could store the same information directly on
2482/// the CXXMethodDecl as a DependentFunctionTemplateSpecializationInfo.
2483class ClassScopeFunctionSpecializationDecl : public Decl {
2484 CXXMethodDecl *Specialization;
2485 const ASTTemplateArgumentListInfo *TemplateArgs;
2486
2487 ClassScopeFunctionSpecializationDecl(
2488 DeclContext *DC, SourceLocation Loc, CXXMethodDecl *FD,
2489 const ASTTemplateArgumentListInfo *TemplArgs)
2490 : Decl(Decl::ClassScopeFunctionSpecialization, DC, Loc),
2491 Specialization(FD), TemplateArgs(TemplArgs) {}
2492
2493 ClassScopeFunctionSpecializationDecl(EmptyShell Empty)
2494 : Decl(Decl::ClassScopeFunctionSpecialization, Empty) {}
2495
2496 virtual void anchor();
2497
2498public:
2499 friend class ASTDeclReader;
2500 friend class ASTDeclWriter;
2501
2502 CXXMethodDecl *getSpecialization() const { return Specialization; }
2503 bool hasExplicitTemplateArgs() const { return TemplateArgs; }
2504 const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
2505 return TemplateArgs;
2506 }
2507
2508 static ClassScopeFunctionSpecializationDecl *
2509 Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, CXXMethodDecl *FD,
2510 bool HasExplicitTemplateArgs,
2511 const TemplateArgumentListInfo &TemplateArgs) {
2512 return new (C, DC) ClassScopeFunctionSpecializationDecl(
2513 DC, Loc, FD,
2514 HasExplicitTemplateArgs
2515 ? ASTTemplateArgumentListInfo::Create(C, TemplateArgs)
2516 : nullptr);
2517 }
2518
2519 static ClassScopeFunctionSpecializationDecl *
2520 CreateDeserialized(ASTContext &Context, unsigned ID);
2521
2522 // Implement isa/cast/dyncast/etc.
2523 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2524
2525 static bool classofKind(Kind K) {
2526 return K == Decl::ClassScopeFunctionSpecialization;
2527 }
2528};
2529
2530/// Implementation of inline functions that require the template declarations
2531inline AnyFunctionDecl::AnyFunctionDecl(FunctionTemplateDecl *FTD)
2532 : Function(FTD) {}
2533
2534/// Represents a variable template specialization, which refers to
2535/// a variable template with a given set of template arguments.
2536///
2537/// Variable template specializations represent both explicit
2538/// specializations of variable templates, as in the example below, and
2539/// implicit instantiations of variable templates.
2540///
2541/// \code
2542/// template<typename T> constexpr T pi = T(3.1415926535897932385);
2543///
2544/// template<>
2545/// constexpr float pi<float>; // variable template specialization pi<float>
2546/// \endcode
2547class VarTemplateSpecializationDecl : public VarDecl,
2548 public llvm::FoldingSetNode {
2549
2550 /// Structure that stores information about a variable template
2551 /// specialization that was instantiated from a variable template partial
2552 /// specialization.
2553 struct SpecializedPartialSpecialization {
2554 /// The variable template partial specialization from which this
2555 /// variable template specialization was instantiated.
2556 VarTemplatePartialSpecializationDecl *PartialSpecialization;
2557
2558 /// The template argument list deduced for the variable template
2559 /// partial specialization itself.
2560 const TemplateArgumentList *TemplateArgs;
2561 };
2562
2563 /// The template that this specialization specializes.
2564 llvm::PointerUnion<VarTemplateDecl *, SpecializedPartialSpecialization *>
2565 SpecializedTemplate;
2566
2567 /// Further info for explicit template specialization/instantiation.
2568 struct ExplicitSpecializationInfo {
2569 /// The type-as-written.
2570 TypeSourceInfo *TypeAsWritten = nullptr;
2571
2572 /// The location of the extern keyword.
2573 SourceLocation ExternLoc;
2574
2575 /// The location of the template keyword.
2576 SourceLocation TemplateKeywordLoc;
2577
2578 ExplicitSpecializationInfo() = default;
2579 };
2580
2581 /// Further info for explicit template specialization/instantiation.
2582 /// Does not apply to implicit specializations.
2583 ExplicitSpecializationInfo *ExplicitInfo = nullptr;
2584
2585 /// The template arguments used to describe this specialization.
2586 const TemplateArgumentList *TemplateArgs;
2587 TemplateArgumentListInfo TemplateArgsInfo;
2588
2589 /// The point where this template was instantiated (if any).
2590 SourceLocation PointOfInstantiation;
2591
2592 /// The kind of specialization this declaration refers to.
2593 /// Really a value of type TemplateSpecializationKind.
2594 unsigned SpecializationKind : 3;
2595
2596 /// Whether this declaration is a complete definition of the
2597 /// variable template specialization. We can't otherwise tell apart
2598 /// an instantiated declaration from an instantiated definition with
2599 /// no initializer.
2600 unsigned IsCompleteDefinition : 1;
2601
2602protected:
2603 VarTemplateSpecializationDecl(Kind DK, ASTContext &Context, DeclContext *DC,
2604 SourceLocation StartLoc, SourceLocation IdLoc,
2605 VarTemplateDecl *SpecializedTemplate,
2606 QualType T, TypeSourceInfo *TInfo,
2607 StorageClass S,
2608 ArrayRef<TemplateArgument> Args);
2609
2610 explicit VarTemplateSpecializationDecl(Kind DK, ASTContext &Context);
2611
2612public:
2613 friend class ASTDeclReader;
2614 friend class ASTDeclWriter;
2615 friend class VarDecl;
2616
2617 static VarTemplateSpecializationDecl *
2618 Create(ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
2619 SourceLocation IdLoc, VarTemplateDecl *SpecializedTemplate, QualType T,
2620 TypeSourceInfo *TInfo, StorageClass S,
2621 ArrayRef<TemplateArgument> Args);
2622 static VarTemplateSpecializationDecl *CreateDeserialized(ASTContext &C,
2623 unsigned ID);
2624
2625 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2626 bool Qualified) const override;
2627
2628 VarTemplateSpecializationDecl *getMostRecentDecl() {
2629 VarDecl *Recent = static_cast<VarDecl *>(this)->getMostRecentDecl();
2630 return cast<VarTemplateSpecializationDecl>(Recent);
2631 }
2632
2633 /// Retrieve the template that this specialization specializes.
2634 VarTemplateDecl *getSpecializedTemplate() const;
2635
2636 /// Retrieve the template arguments of the variable template
2637 /// specialization.
2638 const TemplateArgumentList &getTemplateArgs() const { return *TemplateArgs; }
2639
2640 // TODO: Always set this when creating the new specialization?
2641 void setTemplateArgsInfo(const TemplateArgumentListInfo &ArgsInfo);
2642
2643 const TemplateArgumentListInfo &getTemplateArgsInfo() const {
2644 return TemplateArgsInfo;
2645 }
2646
2647 /// Determine the kind of specialization that this
2648 /// declaration represents.
2649 TemplateSpecializationKind getSpecializationKind() const {
2650 return static_cast<TemplateSpecializationKind>(SpecializationKind);
2651 }
2652
2653 bool isExplicitSpecialization() const {
2654 return getSpecializationKind() == TSK_ExplicitSpecialization;
2655 }
2656
2657 bool isClassScopeExplicitSpecialization() const {
2658 return isExplicitSpecialization() &&
2659 isa<CXXRecordDecl>(getLexicalDeclContext());
2660 }
2661
2662 /// True if this declaration is an explicit specialization,
2663 /// explicit instantiation declaration, or explicit instantiation
2664 /// definition.
2665 bool isExplicitInstantiationOrSpecialization() const {
2666 return isTemplateExplicitInstantiationOrSpecialization(
2667 getTemplateSpecializationKind());
2668 }
2669
2670 void setSpecializationKind(TemplateSpecializationKind TSK) {
2671 SpecializationKind = TSK;
2672 }
2673
2674 /// Get the point of instantiation (if any), or null if none.
2675 SourceLocation getPointOfInstantiation() const {
2676 return PointOfInstantiation;
2677 }
2678
2679 void setPointOfInstantiation(SourceLocation Loc) {
2680 assert(Loc.isValid() && "point of instantiation must be valid!")((Loc.isValid() && "point of instantiation must be valid!"
) ? static_cast<void> (0) : __assert_fail ("Loc.isValid() && \"point of instantiation must be valid!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2680, __PRETTY_FUNCTION__))
;
2681 PointOfInstantiation = Loc;
2682 }
2683
2684 void setCompleteDefinition() { IsCompleteDefinition = true; }
2685
2686 /// If this variable template specialization is an instantiation of
2687 /// a template (rather than an explicit specialization), return the
2688 /// variable template or variable template partial specialization from which
2689 /// it was instantiated.
2690 llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
2691 getInstantiatedFrom() const {
2692 if (!isTemplateInstantiation(getSpecializationKind()))
2693 return llvm::PointerUnion<VarTemplateDecl *,
2694 VarTemplatePartialSpecializationDecl *>();
2695
2696 return getSpecializedTemplateOrPartial();
2697 }
2698
2699 /// Retrieve the variable template or variable template partial
2700 /// specialization which was specialized by this.
2701 llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
2702 getSpecializedTemplateOrPartial() const {
2703 if (const auto *PartialSpec =
2704 SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
2705 return PartialSpec->PartialSpecialization;
2706
2707 return SpecializedTemplate.get<VarTemplateDecl *>();
2708 }
2709
2710 /// Retrieve the set of template arguments that should be used
2711 /// to instantiate the initializer of the variable template or variable
2712 /// template partial specialization from which this variable template
2713 /// specialization was instantiated.
2714 ///
2715 /// \returns For a variable template specialization instantiated from the
2716 /// primary template, this function will return the same template arguments
2717 /// as getTemplateArgs(). For a variable template specialization instantiated
2718 /// from a variable template partial specialization, this function will the
2719 /// return deduced template arguments for the variable template partial
2720 /// specialization itself.
2721 const TemplateArgumentList &getTemplateInstantiationArgs() const {
2722 if (const auto *PartialSpec =
2723 SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
2724 return *PartialSpec->TemplateArgs;
2725
2726 return getTemplateArgs();
2727 }
2728
2729 /// Note that this variable template specialization is actually an
2730 /// instantiation of the given variable template partial specialization whose
2731 /// template arguments have been deduced.
2732 void setInstantiationOf(VarTemplatePartialSpecializationDecl *PartialSpec,
2733 const TemplateArgumentList *TemplateArgs) {
2734 assert(!SpecializedTemplate.is<SpecializedPartialSpecialization *>() &&((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Already set to a variable template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization *>() && \"Already set to a variable template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2735, __PRETTY_FUNCTION__))
37
'?' condition is true
2735 "Already set to a variable template partial specialization!")((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Already set to a variable template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization *>() && \"Already set to a variable template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2735, __PRETTY_FUNCTION__))
;
2736 auto *PS = new (getASTContext()) SpecializedPartialSpecialization();
38
'PS' initialized to a null pointer value
2737 PS->PartialSpecialization = PartialSpec;
39
Access to field 'PartialSpecialization' results in a dereference of a null pointer (loaded from variable 'PS')
2738 PS->TemplateArgs = TemplateArgs;
2739 SpecializedTemplate = PS;
2740 }
2741
2742 /// Note that this variable template specialization is an instantiation
2743 /// of the given variable template.
2744 void setInstantiationOf(VarTemplateDecl *TemplDecl) {
2745 assert(!SpecializedTemplate.is<SpecializedPartialSpecialization *>() &&((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Previously set to a variable template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization *>() && \"Previously set to a variable template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2746, __PRETTY_FUNCTION__))
2746 "Previously set to a variable template partial specialization!")((!SpecializedTemplate.is<SpecializedPartialSpecialization
*>() && "Previously set to a variable template partial specialization!"
) ? static_cast<void> (0) : __assert_fail ("!SpecializedTemplate.is<SpecializedPartialSpecialization *>() && \"Previously set to a variable template partial specialization!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2746, __PRETTY_FUNCTION__))
;
2747 SpecializedTemplate = TemplDecl;
2748 }
2749
2750 /// Sets the type of this specialization as it was written by
2751 /// the user.
2752 void setTypeAsWritten(TypeSourceInfo *T) {
2753 if (!ExplicitInfo)
2754 ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
2755 ExplicitInfo->TypeAsWritten = T;
2756 }
2757
2758 /// Gets the type of this specialization as it was written by
2759 /// the user, if it was so written.
2760 TypeSourceInfo *getTypeAsWritten() const {
2761 return ExplicitInfo ? ExplicitInfo->TypeAsWritten : nullptr;
2762 }
2763
2764 /// Gets the location of the extern keyword, if present.
2765 SourceLocation getExternLoc() const {
2766 return ExplicitInfo ? ExplicitInfo->ExternLoc : SourceLocation();
2767 }
2768
2769 /// Sets the location of the extern keyword.
2770 void setExternLoc(SourceLocation Loc) {
2771 if (!ExplicitInfo)
2772 ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
2773 ExplicitInfo->ExternLoc = Loc;
2774 }
2775
2776 /// Sets the location of the template keyword.
2777 void setTemplateKeywordLoc(SourceLocation Loc) {
2778 if (!ExplicitInfo)
2779 ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
2780 ExplicitInfo->TemplateKeywordLoc = Loc;
2781 }
2782
2783 /// Gets the location of the template keyword, if present.
2784 SourceLocation getTemplateKeywordLoc() const {
2785 return ExplicitInfo ? ExplicitInfo->TemplateKeywordLoc : SourceLocation();
2786 }
2787
2788 void Profile(llvm::FoldingSetNodeID &ID) const {
2789 Profile(ID, TemplateArgs->asArray(), getASTContext());
2790 }
2791
2792 static void Profile(llvm::FoldingSetNodeID &ID,
2793 ArrayRef<TemplateArgument> TemplateArgs,
2794 ASTContext &Context) {
2795 ID.AddInteger(TemplateArgs.size());
2796 for (const TemplateArgument &TemplateArg : TemplateArgs)
2797 TemplateArg.Profile(ID, Context);
2798 }
2799
2800 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2801
2802 static bool classofKind(Kind K) {
2803 return K >= firstVarTemplateSpecialization &&
2804 K <= lastVarTemplateSpecialization;
2805 }
2806};
2807
2808class VarTemplatePartialSpecializationDecl
2809 : public VarTemplateSpecializationDecl {
2810 /// The list of template parameters
2811 TemplateParameterList *TemplateParams = nullptr;
2812
2813 /// The source info for the template arguments as written.
2814 /// FIXME: redundant with TypeAsWritten?
2815 const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;
2816
2817 /// The variable template partial specialization from which this
2818 /// variable template partial specialization was instantiated.
2819 ///
2820 /// The boolean value will be true to indicate that this variable template
2821 /// partial specialization was specialized at this level.
2822 llvm::PointerIntPair<VarTemplatePartialSpecializationDecl *, 1, bool>
2823 InstantiatedFromMember;
2824
2825 VarTemplatePartialSpecializationDecl(
2826 ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
2827 SourceLocation IdLoc, TemplateParameterList *Params,
2828 VarTemplateDecl *SpecializedTemplate, QualType T, TypeSourceInfo *TInfo,
2829 StorageClass S, ArrayRef<TemplateArgument> Args,
2830 const ASTTemplateArgumentListInfo *ArgInfos);
2831
2832 VarTemplatePartialSpecializationDecl(ASTContext &Context)
2833 : VarTemplateSpecializationDecl(VarTemplatePartialSpecialization,
2834 Context),
2835 InstantiatedFromMember(nullptr, false) {}
2836
2837 void anchor() override;
2838
2839public:
2840 friend class ASTDeclReader;
2841 friend class ASTDeclWriter;
2842
2843 static VarTemplatePartialSpecializationDecl *
2844 Create(ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
2845 SourceLocation IdLoc, TemplateParameterList *Params,
2846 VarTemplateDecl *SpecializedTemplate, QualType T,
2847 TypeSourceInfo *TInfo, StorageClass S, ArrayRef<TemplateArgument> Args,
2848 const TemplateArgumentListInfo &ArgInfos);
2849
2850 static VarTemplatePartialSpecializationDecl *CreateDeserialized(ASTContext &C,
2851 unsigned ID);
2852
2853 VarTemplatePartialSpecializationDecl *getMostRecentDecl() {
2854 return cast<VarTemplatePartialSpecializationDecl>(
2855 static_cast<VarTemplateSpecializationDecl *>(
2856 this)->getMostRecentDecl());
2857 }
2858
2859 /// Get the list of template parameters
2860 TemplateParameterList *getTemplateParameters() const {
2861 return TemplateParams;
2862 }
2863
2864 /// Get the template arguments as written.
2865 const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
2866 return ArgsAsWritten;
2867 }
2868
2869 /// Retrieve the member variable template partial specialization from
2870 /// which this particular variable template partial specialization was
2871 /// instantiated.
2872 ///
2873 /// \code
2874 /// template<typename T>
2875 /// struct Outer {
2876 /// template<typename U> U Inner;
2877 /// template<typename U> U* Inner<U*> = (U*)(0); // #1
2878 /// };
2879 ///
2880 /// template int* Outer<float>::Inner<int*>;
2881 /// \endcode
2882 ///
2883 /// In this example, the instantiation of \c Outer<float>::Inner<int*> will
2884 /// end up instantiating the partial specialization
2885 /// \c Outer<float>::Inner<U*>, which itself was instantiated from the
2886 /// variable template partial specialization \c Outer<T>::Inner<U*>. Given
2887 /// \c Outer<float>::Inner<U*>, this function would return
2888 /// \c Outer<T>::Inner<U*>.
2889 VarTemplatePartialSpecializationDecl *getInstantiatedFromMember() const {
2890 const auto *First =
2891 cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
2892 return First->InstantiatedFromMember.getPointer();
2893 }
2894
2895 void
2896 setInstantiatedFromMember(VarTemplatePartialSpecializationDecl *PartialSpec) {
2897 auto *First = cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
2898 First->InstantiatedFromMember.setPointer(PartialSpec);
2899 }
2900
2901 /// Determines whether this variable template partial specialization
2902 /// was a specialization of a member partial specialization.
2903 ///
2904 /// In the following example, the member template partial specialization
2905 /// \c X<int>::Inner<T*> is a member specialization.
2906 ///
2907 /// \code
2908 /// template<typename T>
2909 /// struct X {
2910 /// template<typename U> U Inner;
2911 /// template<typename U> U* Inner<U*> = (U*)(0);
2912 /// };
2913 ///
2914 /// template<> template<typename T>
2915 /// U* X<int>::Inner<T*> = (T*)(0) + 1;
2916 /// \endcode
2917 bool isMemberSpecialization() {
2918 const auto *First =
2919 cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
2920 return First->InstantiatedFromMember.getInt();
2921 }
2922
2923 /// Note that this member template is a specialization.
2924 void setMemberSpecialization() {
2925 auto *First = cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
2926 assert(First->InstantiatedFromMember.getPointer() &&((First->InstantiatedFromMember.getPointer() && "Only member templates can be member template specializations"
) ? static_cast<void> (0) : __assert_fail ("First->InstantiatedFromMember.getPointer() && \"Only member templates can be member template specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2927, __PRETTY_FUNCTION__))
2927 "Only member templates can be member template specializations")((First->InstantiatedFromMember.getPointer() && "Only member templates can be member template specializations"
) ? static_cast<void> (0) : __assert_fail ("First->InstantiatedFromMember.getPointer() && \"Only member templates can be member template specializations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/DeclTemplate.h"
, 2927, __PRETTY_FUNCTION__))
;
2928 return First->InstantiatedFromMember.setInt(true);
2929 }
2930
2931 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2932
2933 static bool classofKind(Kind K) {
2934 return K == VarTemplatePartialSpecialization;
2935 }
2936};
2937
2938/// Declaration of a variable template.
2939class VarTemplateDecl : public RedeclarableTemplateDecl {
2940protected:
2941 /// Data that is common to all of the declarations of a given
2942 /// variable template.
2943 struct Common : CommonBase {
2944 /// The variable template specializations for this variable
2945 /// template, including explicit specializations and instantiations.
2946 llvm::FoldingSetVector<VarTemplateSpecializationDecl> Specializations;
2947
2948 /// The variable template partial specializations for this variable
2949 /// template.
2950 llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl>
2951 PartialSpecializations;
2952
2953 Common() = default;
2954 };
2955
2956 /// Retrieve the set of specializations of this variable template.
2957 llvm::FoldingSetVector<VarTemplateSpecializationDecl> &
2958 getSpecializations() const;
2959
2960 /// Retrieve the set of partial specializations of this class
2961 /// template.
2962 llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl> &
2963 getPartialSpecializations();
2964
2965 VarTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2966 DeclarationName Name, TemplateParameterList *Params,
2967 NamedDecl *Decl)
2968 : RedeclarableTemplateDecl(VarTemplate, C, DC, L, Name, Params, Decl) {}
2969
2970 CommonBase *newCommon(ASTContext &C) const override;
2971
2972 Common *getCommonPtr() const {
2973 return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
2974 }
2975
2976public:
2977 friend class ASTDeclReader;
2978 friend class ASTDeclWriter;
2979
2980 /// Load any lazily-loaded specializations from the external source.
2981 void LoadLazySpecializations() const;
2982
2983 /// Get the underlying variable declarations of the template.
2984 VarDecl *getTemplatedDecl() const {
2985 return static_cast<VarDecl *>(TemplatedDecl);
2986 }
2987
2988 /// Returns whether this template declaration defines the primary
2989 /// variable pattern.
2990 bool isThisDeclarationADefinition() const {
2991 return getTemplatedDecl()->isThisDeclarationADefinition();
2992 }
2993
2994 VarTemplateDecl *getDefinition();
2995
2996 /// Create a variable template node.
2997 static VarTemplateDecl *Create(ASTContext &C, DeclContext *DC,
2998 SourceLocation L, DeclarationName Name,
2999 TemplateParameterList *Params,
3000 VarDecl *Decl);
3001
3002 /// Create an empty variable template node.
3003 static VarTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3004
3005 /// Return the specialization with the provided arguments if it exists,
3006 /// otherwise return the insertion point.
3007 VarTemplateSpecializationDecl *
3008 findSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
3009
3010 /// Insert the specified specialization knowing that it is not already
3011 /// in. InsertPos must be obtained from findSpecialization.
3012 void AddSpecialization(VarTemplateSpecializationDecl *D, void *InsertPos);
3013
3014 VarTemplateDecl *getCanonicalDecl() override {
3015 return cast<VarTemplateDecl>(RedeclarableTemplateDecl::getCanonicalDecl());
3016 }
3017 const VarTemplateDecl *getCanonicalDecl() const {
3018 return cast<VarTemplateDecl>(RedeclarableTemplateDecl::getCanonicalDecl());
3019 }
3020
3021 /// Retrieve the previous declaration of this variable template, or
3022 /// nullptr if no such declaration exists.
3023 VarTemplateDecl *getPreviousDecl() {
3024 return cast_or_null<VarTemplateDecl>(
3025 static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
3026 }
3027 const VarTemplateDecl *getPreviousDecl() const {
3028 return cast_or_null<VarTemplateDecl>(
3029 static_cast<const RedeclarableTemplateDecl *>(
3030 this)->getPreviousDecl());
3031 }
3032
3033 VarTemplateDecl *getMostRecentDecl() {
3034 return cast<VarTemplateDecl>(
3035 static_cast<RedeclarableTemplateDecl *>(this)->getMostRecentDecl());
3036 }
3037 const VarTemplateDecl *getMostRecentDecl() const {
3038 return const_cast<VarTemplateDecl *>(this)->getMostRecentDecl();
3039 }
3040
3041 VarTemplateDecl *getInstantiatedFromMemberTemplate() const {
3042 return cast_or_null<VarTemplateDecl>(
3043 RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
3044 }
3045
3046 /// Return the partial specialization with the provided arguments if it
3047 /// exists, otherwise return the insertion point.
3048 VarTemplatePartialSpecializationDecl *
3049 findPartialSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
3050
3051 /// Insert the specified partial specialization knowing that it is not
3052 /// already in. InsertPos must be obtained from findPartialSpecialization.
3053 void AddPartialSpecialization(VarTemplatePartialSpecializationDecl *D,
3054 void *InsertPos);
3055
3056 /// Retrieve the partial specializations as an ordered list.
3057 void getPartialSpecializations(
3058 SmallVectorImpl<VarTemplatePartialSpecializationDecl *> &PS);
3059
3060 /// Find a variable template partial specialization which was
3061 /// instantiated
3062 /// from the given member partial specialization.
3063 ///
3064 /// \param D a member variable template partial specialization.
3065 ///
3066 /// \returns the variable template partial specialization which was
3067 /// instantiated
3068 /// from the given member partial specialization, or nullptr if no such
3069 /// partial specialization exists.
3070 VarTemplatePartialSpecializationDecl *findPartialSpecInstantiatedFromMember(
3071 VarTemplatePartialSpecializationDecl *D);
3072
3073 using spec_iterator = SpecIterator<VarTemplateSpecializationDecl>;
3074 using spec_range = llvm::iterator_range<spec_iterator>;
3075
3076 spec_range specializations() const {
3077 return spec_range(spec_begin(), spec_end());
3078 }
3079
3080 spec_iterator spec_begin() const {
3081 return makeSpecIterator(getSpecializations(), false);
3082 }
3083
3084 spec_iterator spec_end() const {
3085 return makeSpecIterator(getSpecializations(), true);
3086 }
3087
3088 // Implement isa/cast/dyncast support
3089 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3090 static bool classofKind(Kind K) { return K == VarTemplate; }
3091};
3092
3093inline NamedDecl *getAsNamedDecl(TemplateParameter P) {
3094 if (auto *PD = P.dyn_cast<TemplateTypeParmDecl *>())
3095 return PD;
3096 if (auto *PD = P.dyn_cast<NonTypeTemplateParmDecl *>())
3097 return PD;
3098 return P.get<TemplateTemplateParmDecl *>();
3099}
3100
3101inline TemplateDecl *getAsTypeTemplateDecl(Decl *D) {
3102 auto *TD = dyn_cast<TemplateDecl>(D);
3103 return TD && (isa<ClassTemplateDecl>(TD) ||
3104 isa<ClassTemplatePartialSpecializationDecl>(TD) ||
3105 isa<TypeAliasTemplateDecl>(TD) ||
3106 isa<TemplateTemplateParmDecl>(TD))
3107 ? TD
3108 : nullptr;
3109}
3110
3111} // namespace clang
3112
3113#endif // LLVM_CLANG_AST_DECLTEMPLATE_H