Bug Summary

File:clang/lib/Sema/SemaTemplate.cpp
Warning:line 1898, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplate.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8// This file implements semantic analysis for C++ templates.
9//===----------------------------------------------------------------------===//
10
11#include "TreeTransform.h"
12#include "clang/AST/ASTConsumer.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclFriend.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/TypeVisitor.h"
20#include "clang/Basic/Builtins.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/Stack.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/Overload.h"
28#include "clang/Sema/ParsedTemplate.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/SemaInternal.h"
31#include "clang/Sema/Template.h"
32#include "clang/Sema/TemplateDeduction.h"
33#include "llvm/ADT/SmallBitVector.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36
37#include <iterator>
38using namespace clang;
39using namespace sema;
40
41// Exported for use by Parser.
42SourceRange
43clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
44 unsigned N) {
45 if (!N) return SourceRange();
46 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
47}
48
49/// \brief Determine whether the declaration found is acceptable as the name
50/// of a template and, if so, return that template declaration. Otherwise,
51/// returns null.
52///
53/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
54/// is true. In all other cases it will return a TemplateDecl (or null).
55NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
56 bool AllowFunctionTemplates,
57 bool AllowDependent) {
58 D = D->getUnderlyingDecl();
59
60 if (isa<TemplateDecl>(D)) {
61 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
62 return nullptr;
63
64 return D;
65 }
66
67 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
68 // C++ [temp.local]p1:
69 // Like normal (non-template) classes, class templates have an
70 // injected-class-name (Clause 9). The injected-class-name
71 // can be used with or without a template-argument-list. When
72 // it is used without a template-argument-list, it is
73 // equivalent to the injected-class-name followed by the
74 // template-parameters of the class template enclosed in
75 // <>. When it is used with a template-argument-list, it
76 // refers to the specified class template specialization,
77 // which could be the current specialization or another
78 // specialization.
79 if (Record->isInjectedClassName()) {
80 Record = cast<CXXRecordDecl>(Record->getDeclContext());
81 if (Record->getDescribedClassTemplate())
82 return Record->getDescribedClassTemplate();
83
84 if (ClassTemplateSpecializationDecl *Spec
85 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
86 return Spec->getSpecializedTemplate();
87 }
88
89 return nullptr;
90 }
91
92 // 'using Dependent::foo;' can resolve to a template name.
93 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
94 // injected-class-name).
95 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
96 return D;
97
98 return nullptr;
99}
100
101void Sema::FilterAcceptableTemplateNames(LookupResult &R,
102 bool AllowFunctionTemplates,
103 bool AllowDependent) {
104 LookupResult::Filter filter = R.makeFilter();
105 while (filter.hasNext()) {
106 NamedDecl *Orig = filter.next();
107 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
108 filter.erase();
109 }
110 filter.done();
111}
112
113bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
114 bool AllowFunctionTemplates,
115 bool AllowDependent,
116 bool AllowNonTemplateFunctions) {
117 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
118 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
119 return true;
120 if (AllowNonTemplateFunctions &&
121 isa<FunctionDecl>((*I)->getUnderlyingDecl()))
122 return true;
123 }
124
125 return false;
126}
127
128TemplateNameKind Sema::isTemplateName(Scope *S,
129 CXXScopeSpec &SS,
130 bool hasTemplateKeyword,
131 const UnqualifiedId &Name,
132 ParsedType ObjectTypePtr,
133 bool EnteringContext,
134 TemplateTy &TemplateResult,
135 bool &MemberOfUnknownSpecialization) {
136 assert(getLangOpts().CPlusPlus && "No template names in C!")((getLangOpts().CPlusPlus && "No template names in C!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 136, __PRETTY_FUNCTION__))
;
137
138 DeclarationName TName;
139 MemberOfUnknownSpecialization = false;
140
141 switch (Name.getKind()) {
142 case UnqualifiedIdKind::IK_Identifier:
143 TName = DeclarationName(Name.Identifier);
144 break;
145
146 case UnqualifiedIdKind::IK_OperatorFunctionId:
147 TName = Context.DeclarationNames.getCXXOperatorName(
148 Name.OperatorFunctionId.Operator);
149 break;
150
151 case UnqualifiedIdKind::IK_LiteralOperatorId:
152 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
153 break;
154
155 default:
156 return TNK_Non_template;
157 }
158
159 QualType ObjectType = ObjectTypePtr.get();
160
161 AssumedTemplateKind AssumedTemplate;
162 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
163 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
164 MemberOfUnknownSpecialization, SourceLocation(),
165 &AssumedTemplate))
166 return TNK_Non_template;
167
168 if (AssumedTemplate != AssumedTemplateKind::None) {
169 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
170 // Let the parser know whether we found nothing or found functions; if we
171 // found nothing, we want to more carefully check whether this is actually
172 // a function template name versus some other kind of undeclared identifier.
173 return AssumedTemplate == AssumedTemplateKind::FoundNothing
174 ? TNK_Undeclared_template
175 : TNK_Function_template;
176 }
177
178 if (R.empty())
179 return TNK_Non_template;
180
181 NamedDecl *D = nullptr;
182 if (R.isAmbiguous()) {
183 // If we got an ambiguity involving a non-function template, treat this
184 // as a template name, and pick an arbitrary template for error recovery.
185 bool AnyFunctionTemplates = false;
186 for (NamedDecl *FoundD : R) {
187 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
188 if (isa<FunctionTemplateDecl>(FoundTemplate))
189 AnyFunctionTemplates = true;
190 else {
191 D = FoundTemplate;
192 break;
193 }
194 }
195 }
196
197 // If we didn't find any templates at all, this isn't a template name.
198 // Leave the ambiguity for a later lookup to diagnose.
199 if (!D && !AnyFunctionTemplates) {
200 R.suppressDiagnostics();
201 return TNK_Non_template;
202 }
203
204 // If the only templates were function templates, filter out the rest.
205 // We'll diagnose the ambiguity later.
206 if (!D)
207 FilterAcceptableTemplateNames(R);
208 }
209
210 // At this point, we have either picked a single template name declaration D
211 // or we have a non-empty set of results R containing either one template name
212 // declaration or a set of function templates.
213
214 TemplateName Template;
215 TemplateNameKind TemplateKind;
216
217 unsigned ResultCount = R.end() - R.begin();
218 if (!D && ResultCount > 1) {
219 // We assume that we'll preserve the qualifier from a function
220 // template name in other ways.
221 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
222 TemplateKind = TNK_Function_template;
223
224 // We'll do this lookup again later.
225 R.suppressDiagnostics();
226 } else {
227 if (!D) {
228 D = getAsTemplateNameDecl(*R.begin());
229 assert(D && "unambiguous result is not a template name")((D && "unambiguous result is not a template name") ?
static_cast<void> (0) : __assert_fail ("D && \"unambiguous result is not a template name\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 229, __PRETTY_FUNCTION__))
;
230 }
231
232 if (isa<UnresolvedUsingValueDecl>(D)) {
233 // We don't yet know whether this is a template-name or not.
234 MemberOfUnknownSpecialization = true;
235 return TNK_Non_template;
236 }
237
238 TemplateDecl *TD = cast<TemplateDecl>(D);
239
240 if (SS.isSet() && !SS.isInvalid()) {
241 NestedNameSpecifier *Qualifier = SS.getScopeRep();
242 Template = Context.getQualifiedTemplateName(Qualifier,
243 hasTemplateKeyword, TD);
244 } else {
245 Template = TemplateName(TD);
246 }
247
248 if (isa<FunctionTemplateDecl>(TD)) {
249 TemplateKind = TNK_Function_template;
250
251 // We'll do this lookup again later.
252 R.suppressDiagnostics();
253 } else {
254 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl
>(TD)) ? static_cast<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 256, __PRETTY_FUNCTION__))
255 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl
>(TD)) ? static_cast<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 256, __PRETTY_FUNCTION__))
256 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD))((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl
>(TD)) ? static_cast<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 256, __PRETTY_FUNCTION__))
;
257 TemplateKind =
258 isa<VarTemplateDecl>(TD) ? TNK_Var_template :
259 isa<ConceptDecl>(TD) ? TNK_Concept_template :
260 TNK_Type_template;
261 }
262 }
263
264 TemplateResult = TemplateTy::make(Template);
265 return TemplateKind;
266}
267
268bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
269 SourceLocation NameLoc,
270 ParsedTemplateTy *Template) {
271 CXXScopeSpec SS;
272 bool MemberOfUnknownSpecialization = false;
273
274 // We could use redeclaration lookup here, but we don't need to: the
275 // syntactic form of a deduction guide is enough to identify it even
276 // if we can't look up the template name at all.
277 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
278 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
279 /*EnteringContext*/ false,
280 MemberOfUnknownSpecialization))
281 return false;
282
283 if (R.empty()) return false;
284 if (R.isAmbiguous()) {
285 // FIXME: Diagnose an ambiguity if we find at least one template.
286 R.suppressDiagnostics();
287 return false;
288 }
289
290 // We only treat template-names that name type templates as valid deduction
291 // guide names.
292 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
293 if (!TD || !getAsTypeTemplateDecl(TD))
294 return false;
295
296 if (Template)
297 *Template = TemplateTy::make(TemplateName(TD));
298 return true;
299}
300
301bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
302 SourceLocation IILoc,
303 Scope *S,
304 const CXXScopeSpec *SS,
305 TemplateTy &SuggestedTemplate,
306 TemplateNameKind &SuggestedKind) {
307 // We can't recover unless there's a dependent scope specifier preceding the
308 // template name.
309 // FIXME: Typo correction?
310 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
311 computeDeclContext(*SS))
312 return false;
313
314 // The code is missing a 'template' keyword prior to the dependent template
315 // name.
316 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
317 Diag(IILoc, diag::err_template_kw_missing)
318 << Qualifier << II.getName()
319 << FixItHint::CreateInsertion(IILoc, "template ");
320 SuggestedTemplate
321 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
322 SuggestedKind = TNK_Dependent_template_name;
323 return true;
324}
325
326bool Sema::LookupTemplateName(LookupResult &Found,
327 Scope *S, CXXScopeSpec &SS,
328 QualType ObjectType,
329 bool EnteringContext,
330 bool &MemberOfUnknownSpecialization,
331 SourceLocation TemplateKWLoc,
332 AssumedTemplateKind *ATK) {
333 if (ATK)
334 *ATK = AssumedTemplateKind::None;
335
336 Found.setTemplateNameLookup(true);
337
338 // Determine where to perform name lookup
339 MemberOfUnknownSpecialization = false;
340 DeclContext *LookupCtx = nullptr;
341 bool IsDependent = false;
342 if (!ObjectType.isNull()) {
343 // This nested-name-specifier occurs in a member access expression, e.g.,
344 // x->B::f, and we are looking into the type of the object.
345 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")((!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? static_cast<void> (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 LookupCtx = computeDeclContext(ObjectType);
347 IsDependent = !LookupCtx && ObjectType->isDependentType();
348 assert((IsDependent || !ObjectType->isIncompleteType() ||(((IsDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 350, __PRETTY_FUNCTION__))
349 ObjectType->castAs<TagType>()->isBeingDefined()) &&(((IsDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 350, __PRETTY_FUNCTION__))
350 "Caller should have completed object type")(((IsDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 350, __PRETTY_FUNCTION__))
;
351
352 // Template names cannot appear inside an Objective-C class or object type
353 // or a vector type.
354 //
355 // FIXME: This is wrong. For example:
356 //
357 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
358 // Vec<int> vi;
359 // vi.Vec<int>::~Vec<int>();
360 //
361 // ... should be accepted but we will not treat 'Vec' as a template name
362 // here. The right thing to do would be to check if the name is a valid
363 // vector component name, and look up a template name if not. And similarly
364 // for lookups into Objective-C class and object types, where the same
365 // problem can arise.
366 if (ObjectType->isObjCObjectOrInterfaceType() ||
367 ObjectType->isVectorType()) {
368 Found.clear();
369 return false;
370 }
371 } else if (SS.isSet()) {
372 // This nested-name-specifier occurs after another nested-name-specifier,
373 // so long into the context associated with the prior nested-name-specifier.
374 LookupCtx = computeDeclContext(SS, EnteringContext);
375 IsDependent = !LookupCtx;
376
377 // The declaration context must be complete.
378 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
379 return true;
380 }
381
382 bool ObjectTypeSearchedInScope = false;
383 bool AllowFunctionTemplatesInLookup = true;
384 if (LookupCtx) {
385 // Perform "qualified" name lookup into the declaration context we
386 // computed, which is either the type of the base of a member access
387 // expression or the declaration context associated with a prior
388 // nested-name-specifier.
389 LookupQualifiedName(Found, LookupCtx);
390
391 // FIXME: The C++ standard does not clearly specify what happens in the
392 // case where the object type is dependent, and implementations vary. In
393 // Clang, we treat a name after a . or -> as a template-name if lookup
394 // finds a non-dependent member or member of the current instantiation that
395 // is a type template, or finds no such members and lookup in the context
396 // of the postfix-expression finds a type template. In the latter case, the
397 // name is nonetheless dependent, and we may resolve it to a member of an
398 // unknown specialization when we come to instantiate the template.
399 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
400 }
401
402 if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) {
403 // C++ [basic.lookup.classref]p1:
404 // In a class member access expression (5.2.5), if the . or -> token is
405 // immediately followed by an identifier followed by a <, the
406 // identifier must be looked up to determine whether the < is the
407 // beginning of a template argument list (14.2) or a less-than operator.
408 // The identifier is first looked up in the class of the object
409 // expression. If the identifier is not found, it is then looked up in
410 // the context of the entire postfix-expression and shall name a class
411 // template.
412 if (S)
413 LookupName(Found, S);
414
415 if (!ObjectType.isNull()) {
416 // FIXME: We should filter out all non-type templates here, particularly
417 // variable templates and concepts. But the exclusion of alias templates
418 // and template template parameters is a wording defect.
419 AllowFunctionTemplatesInLookup = false;
420 ObjectTypeSearchedInScope = true;
421 }
422
423 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
424 }
425
426 if (Found.isAmbiguous())
427 return false;
428
429 if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) {
430 // C++2a [temp.names]p2:
431 // A name is also considered to refer to a template if it is an
432 // unqualified-id followed by a < and name lookup finds either one or more
433 // functions or finds nothing.
434 //
435 // To keep our behavior consistent, we apply the "finds nothing" part in
436 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
437 // successfully form a call to an undeclared template-id.
438 bool AllFunctions =
439 getLangOpts().CPlusPlus2a &&
440 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
441 return isa<FunctionDecl>(ND->getUnderlyingDecl());
442 });
443 if (AllFunctions || (Found.empty() && !IsDependent)) {
444 // If lookup found any functions, or if this is a name that can only be
445 // used for a function, then strongly assume this is a function
446 // template-id.
447 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
448 ? AssumedTemplateKind::FoundNothing
449 : AssumedTemplateKind::FoundFunctions;
450 Found.clear();
451 return false;
452 }
453 }
454
455 if (Found.empty() && !IsDependent) {
456 // If we did not find any names, attempt to correct any typos.
457 DeclarationName Name = Found.getLookupName();
458 Found.clear();
459 // Simple filter callback that, for keywords, only accepts the C++ *_cast
460 DefaultFilterCCC FilterCCC{};
461 FilterCCC.WantTypeSpecifiers = false;
462 FilterCCC.WantExpressionKeywords = false;
463 FilterCCC.WantRemainingKeywords = false;
464 FilterCCC.WantCXXNamedCasts = true;
465 if (TypoCorrection Corrected =
466 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
467 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
468 if (auto *ND = Corrected.getFoundDecl())
469 Found.addDecl(ND);
470 FilterAcceptableTemplateNames(Found);
471 if (Found.isAmbiguous()) {
472 Found.clear();
473 } else if (!Found.empty()) {
474 Found.setLookupName(Corrected.getCorrection());
475 if (LookupCtx) {
476 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
477 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
478 Name.getAsString() == CorrectedStr;
479 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
480 << Name << LookupCtx << DroppedSpecifier
481 << SS.getRange());
482 } else {
483 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
484 }
485 }
486 }
487 }
488
489 NamedDecl *ExampleLookupResult =
490 Found.empty() ? nullptr : Found.getRepresentativeDecl();
491 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
492 if (Found.empty()) {
493 if (IsDependent) {
494 MemberOfUnknownSpecialization = true;
495 return false;
496 }
497
498 // If a 'template' keyword was used, a lookup that finds only non-template
499 // names is an error.
500 if (ExampleLookupResult && TemplateKWLoc.isValid()) {
501 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
502 << Found.getLookupName() << SS.getRange();
503 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
504 diag::note_template_kw_refers_to_non_template)
505 << Found.getLookupName();
506 return true;
507 }
508
509 return false;
510 }
511
512 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
513 !getLangOpts().CPlusPlus11) {
514 // C++03 [basic.lookup.classref]p1:
515 // [...] If the lookup in the class of the object expression finds a
516 // template, the name is also looked up in the context of the entire
517 // postfix-expression and [...]
518 //
519 // Note: C++11 does not perform this second lookup.
520 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
521 LookupOrdinaryName);
522 FoundOuter.setTemplateNameLookup(true);
523 LookupName(FoundOuter, S);
524 // FIXME: We silently accept an ambiguous lookup here, in violation of
525 // [basic.lookup]/1.
526 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
527
528 NamedDecl *OuterTemplate;
529 if (FoundOuter.empty()) {
530 // - if the name is not found, the name found in the class of the
531 // object expression is used, otherwise
532 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
533 !(OuterTemplate =
534 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
535 // - if the name is found in the context of the entire
536 // postfix-expression and does not name a class template, the name
537 // found in the class of the object expression is used, otherwise
538 FoundOuter.clear();
539 } else if (!Found.isSuppressingDiagnostics()) {
540 // - if the name found is a class template, it must refer to the same
541 // entity as the one found in the class of the object expression,
542 // otherwise the program is ill-formed.
543 if (!Found.isSingleResult() ||
544 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
545 OuterTemplate->getCanonicalDecl()) {
546 Diag(Found.getNameLoc(),
547 diag::ext_nested_name_member_ref_lookup_ambiguous)
548 << Found.getLookupName()
549 << ObjectType;
550 Diag(Found.getRepresentativeDecl()->getLocation(),
551 diag::note_ambig_member_ref_object_type)
552 << ObjectType;
553 Diag(FoundOuter.getFoundDecl()->getLocation(),
554 diag::note_ambig_member_ref_scope);
555
556 // Recover by taking the template that we found in the object
557 // expression's type.
558 }
559 }
560 }
561
562 return false;
563}
564
565void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
566 SourceLocation Less,
567 SourceLocation Greater) {
568 if (TemplateName.isInvalid())
569 return;
570
571 DeclarationNameInfo NameInfo;
572 CXXScopeSpec SS;
573 LookupNameKind LookupKind;
574
575 DeclContext *LookupCtx = nullptr;
576 NamedDecl *Found = nullptr;
577 bool MissingTemplateKeyword = false;
578
579 // Figure out what name we looked up.
580 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
581 NameInfo = DRE->getNameInfo();
582 SS.Adopt(DRE->getQualifierLoc());
583 LookupKind = LookupOrdinaryName;
584 Found = DRE->getFoundDecl();
585 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
586 NameInfo = ME->getMemberNameInfo();
587 SS.Adopt(ME->getQualifierLoc());
588 LookupKind = LookupMemberName;
589 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
590 Found = ME->getMemberDecl();
591 } else if (auto *DSDRE =
592 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
593 NameInfo = DSDRE->getNameInfo();
594 SS.Adopt(DSDRE->getQualifierLoc());
595 MissingTemplateKeyword = true;
596 } else if (auto *DSME =
597 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
598 NameInfo = DSME->getMemberNameInfo();
599 SS.Adopt(DSME->getQualifierLoc());
600 MissingTemplateKeyword = true;
601 } else {
602 llvm_unreachable("unexpected kind of potential template name")::llvm::llvm_unreachable_internal("unexpected kind of potential template name"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 602)
;
603 }
604
605 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
606 // was missing.
607 if (MissingTemplateKeyword) {
608 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
609 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
610 return;
611 }
612
613 // Try to correct the name by looking for templates and C++ named casts.
614 struct TemplateCandidateFilter : CorrectionCandidateCallback {
615 Sema &S;
616 TemplateCandidateFilter(Sema &S) : S(S) {
617 WantTypeSpecifiers = false;
618 WantExpressionKeywords = false;
619 WantRemainingKeywords = false;
620 WantCXXNamedCasts = true;
621 };
622 bool ValidateCandidate(const TypoCorrection &Candidate) override {
623 if (auto *ND = Candidate.getCorrectionDecl())
624 return S.getAsTemplateNameDecl(ND);
625 return Candidate.isKeyword();
626 }
627
628 std::unique_ptr<CorrectionCandidateCallback> clone() override {
629 return std::make_unique<TemplateCandidateFilter>(*this);
630 }
631 };
632
633 DeclarationName Name = NameInfo.getName();
634 TemplateCandidateFilter CCC(*this);
635 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
636 CTK_ErrorRecovery, LookupCtx)) {
637 auto *ND = Corrected.getFoundDecl();
638 if (ND)
639 ND = getAsTemplateNameDecl(ND);
640 if (ND || Corrected.isKeyword()) {
641 if (LookupCtx) {
642 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
643 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
644 Name.getAsString() == CorrectedStr;
645 diagnoseTypo(Corrected,
646 PDiag(diag::err_non_template_in_member_template_id_suggest)
647 << Name << LookupCtx << DroppedSpecifier
648 << SS.getRange(), false);
649 } else {
650 diagnoseTypo(Corrected,
651 PDiag(diag::err_non_template_in_template_id_suggest)
652 << Name, false);
653 }
654 if (Found)
655 Diag(Found->getLocation(),
656 diag::note_non_template_in_template_id_found);
657 return;
658 }
659 }
660
661 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
662 << Name << SourceRange(Less, Greater);
663 if (Found)
664 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
665}
666
667/// ActOnDependentIdExpression - Handle a dependent id-expression that
668/// was just parsed. This is only possible with an explicit scope
669/// specifier naming a dependent type.
670ExprResult
671Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
672 SourceLocation TemplateKWLoc,
673 const DeclarationNameInfo &NameInfo,
674 bool isAddressOfOperand,
675 const TemplateArgumentListInfo *TemplateArgs) {
676 DeclContext *DC = getFunctionLevelDeclContext();
677
678 // C++11 [expr.prim.general]p12:
679 // An id-expression that denotes a non-static data member or non-static
680 // member function of a class can only be used:
681 // (...)
682 // - if that id-expression denotes a non-static data member and it
683 // appears in an unevaluated operand.
684 //
685 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
686 // CXXDependentScopeMemberExpr. The former can instantiate to either
687 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
688 // always a MemberExpr.
689 bool MightBeCxx11UnevalField =
690 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
691
692 // Check if the nested name specifier is an enum type.
693 bool IsEnum = false;
694 if (NestedNameSpecifier *NNS = SS.getScopeRep())
695 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
696
697 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
698 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
699 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
700
701 // Since the 'this' expression is synthesized, we don't need to
702 // perform the double-lookup check.
703 NamedDecl *FirstQualifierInScope = nullptr;
704
705 return CXXDependentScopeMemberExpr::Create(
706 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
707 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
708 FirstQualifierInScope, NameInfo, TemplateArgs);
709 }
710
711 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
712}
713
714ExprResult
715Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
716 SourceLocation TemplateKWLoc,
717 const DeclarationNameInfo &NameInfo,
718 const TemplateArgumentListInfo *TemplateArgs) {
719 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
720 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
721 if (!QualifierLoc)
722 return ExprError();
723
724 return DependentScopeDeclRefExpr::Create(
725 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
726}
727
728
729/// Determine whether we would be unable to instantiate this template (because
730/// it either has no definition, or is in the process of being instantiated).
731bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
732 NamedDecl *Instantiation,
733 bool InstantiatedFromMember,
734 const NamedDecl *Pattern,
735 const NamedDecl *PatternDef,
736 TemplateSpecializationKind TSK,
737 bool Complain /*= true*/) {
738 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 739, __PRETTY_FUNCTION__))
739 isa<VarDecl>(Instantiation))((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 739, __PRETTY_FUNCTION__))
;
740
741 bool IsEntityBeingDefined = false;
742 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
743 IsEntityBeingDefined = TD->isBeingDefined();
744
745 if (PatternDef && !IsEntityBeingDefined) {
746 NamedDecl *SuggestedDef = nullptr;
747 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
748 /*OnlyNeedComplete*/false)) {
749 // If we're allowed to diagnose this and recover, do so.
750 bool Recover = Complain && !isSFINAEContext();
751 if (Complain)
752 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
753 Sema::MissingImportKind::Definition, Recover);
754 return !Recover;
755 }
756 return false;
757 }
758
759 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
760 return true;
761
762 llvm::Optional<unsigned> Note;
763 QualType InstantiationTy;
764 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
765 InstantiationTy = Context.getTypeDeclType(TD);
766 if (PatternDef) {
767 Diag(PointOfInstantiation,
768 diag::err_template_instantiate_within_definition)
769 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
770 << InstantiationTy;
771 // Not much point in noting the template declaration here, since
772 // we're lexically inside it.
773 Instantiation->setInvalidDecl();
774 } else if (InstantiatedFromMember) {
775 if (isa<FunctionDecl>(Instantiation)) {
776 Diag(PointOfInstantiation,
777 diag::err_explicit_instantiation_undefined_member)
778 << /*member function*/ 1 << Instantiation->getDeclName()
779 << Instantiation->getDeclContext();
780 Note = diag::note_explicit_instantiation_here;
781 } else {
782 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")((isa<TagDecl>(Instantiation) && "Must be a TagDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 782, __PRETTY_FUNCTION__))
;
783 Diag(PointOfInstantiation,
784 diag::err_implicit_instantiate_member_undefined)
785 << InstantiationTy;
786 Note = diag::note_member_declared_at;
787 }
788 } else {
789 if (isa<FunctionDecl>(Instantiation)) {
790 Diag(PointOfInstantiation,
791 diag::err_explicit_instantiation_undefined_func_template)
792 << Pattern;
793 Note = diag::note_explicit_instantiation_here;
794 } else if (isa<TagDecl>(Instantiation)) {
795 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
796 << (TSK != TSK_ImplicitInstantiation)
797 << InstantiationTy;
798 Note = diag::note_template_decl_here;
799 } else {
800 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")((isa<VarDecl>(Instantiation) && "Must be a VarDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 800, __PRETTY_FUNCTION__))
;
801 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
802 Diag(PointOfInstantiation,
803 diag::err_explicit_instantiation_undefined_var_template)
804 << Instantiation;
805 Instantiation->setInvalidDecl();
806 } else
807 Diag(PointOfInstantiation,
808 diag::err_explicit_instantiation_undefined_member)
809 << /*static data member*/ 2 << Instantiation->getDeclName()
810 << Instantiation->getDeclContext();
811 Note = diag::note_explicit_instantiation_here;
812 }
813 }
814 if (Note) // Diagnostics were emitted.
815 Diag(Pattern->getLocation(), Note.getValue());
816
817 // In general, Instantiation isn't marked invalid to get more than one
818 // error for multiple undefined instantiations. But the code that does
819 // explicit declaration -> explicit definition conversion can't handle
820 // invalid declarations, so mark as invalid in that case.
821 if (TSK == TSK_ExplicitInstantiationDeclaration)
822 Instantiation->setInvalidDecl();
823 return true;
824}
825
826/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
827/// that the template parameter 'PrevDecl' is being shadowed by a new
828/// declaration at location Loc. Returns true to indicate that this is
829/// an error, and false otherwise.
830void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
831 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")((PrevDecl->isTemplateParameter() && "Not a template parameter"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 831, __PRETTY_FUNCTION__))
;
832
833 // C++ [temp.local]p4:
834 // A template-parameter shall not be redeclared within its
835 // scope (including nested scopes).
836 //
837 // Make this a warning when MSVC compatibility is requested.
838 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
839 : diag::err_template_param_shadow;
840 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
841 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
842}
843
844/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
845/// the parameter D to reference the templated declaration and return a pointer
846/// to the template declaration. Otherwise, do nothing to D and return null.
847TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
848 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
849 D = Temp->getTemplatedDecl();
850 return Temp;
851 }
852 return nullptr;
853}
854
855ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
856 SourceLocation EllipsisLoc) const {
857 assert(Kind == Template &&((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 858, __PRETTY_FUNCTION__))
858 "Only template template arguments can be pack expansions here")((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 858, __PRETTY_FUNCTION__))
;
859 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 860, __PRETTY_FUNCTION__))
860 "Template template argument pack expansion without packs")((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 860, __PRETTY_FUNCTION__))
;
861 ParsedTemplateArgument Result(*this);
862 Result.EllipsisLoc = EllipsisLoc;
863 return Result;
864}
865
866static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
867 const ParsedTemplateArgument &Arg) {
868
869 switch (Arg.getKind()) {
870 case ParsedTemplateArgument::Type: {
871 TypeSourceInfo *DI;
872 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
873 if (!DI)
874 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
875 return TemplateArgumentLoc(TemplateArgument(T), DI);
876 }
877
878 case ParsedTemplateArgument::NonType: {
879 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
880 return TemplateArgumentLoc(TemplateArgument(E), E);
881 }
882
883 case ParsedTemplateArgument::Template: {
884 TemplateName Template = Arg.getAsTemplate().get();
885 TemplateArgument TArg;
886 if (Arg.getEllipsisLoc().isValid())
887 TArg = TemplateArgument(Template, Optional<unsigned int>());
888 else
889 TArg = Template;
890 return TemplateArgumentLoc(TArg,
891 Arg.getScopeSpec().getWithLocInContext(
892 SemaRef.Context),
893 Arg.getLocation(),
894 Arg.getEllipsisLoc());
895 }
896 }
897
898 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 898)
;
899}
900
901/// Translates template arguments as provided by the parser
902/// into template arguments used by semantic analysis.
903void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
904 TemplateArgumentListInfo &TemplateArgs) {
905 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
906 TemplateArgs.addArgument(translateTemplateArgument(*this,
907 TemplateArgsIn[I]));
908}
909
910static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
911 SourceLocation Loc,
912 IdentifierInfo *Name) {
913 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
914 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
915 if (PrevDecl && PrevDecl->isTemplateParameter())
916 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
917}
918
919/// Convert a parsed type into a parsed template argument. This is mostly
920/// trivial, except that we may have parsed a C++17 deduced class template
921/// specialization type, in which case we should form a template template
922/// argument instead of a type template argument.
923ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
924 TypeSourceInfo *TInfo;
925 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
926 if (T.isNull())
927 return ParsedTemplateArgument();
928 assert(TInfo && "template argument with no location")((TInfo && "template argument with no location") ? static_cast
<void> (0) : __assert_fail ("TInfo && \"template argument with no location\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 928, __PRETTY_FUNCTION__))
;
929
930 // If we might have formed a deduced template specialization type, convert
931 // it to a template template argument.
932 if (getLangOpts().CPlusPlus17) {
933 TypeLoc TL = TInfo->getTypeLoc();
934 SourceLocation EllipsisLoc;
935 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
936 EllipsisLoc = PET.getEllipsisLoc();
937 TL = PET.getPatternLoc();
938 }
939
940 CXXScopeSpec SS;
941 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
942 SS.Adopt(ET.getQualifierLoc());
943 TL = ET.getNamedTypeLoc();
944 }
945
946 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
947 TemplateName Name = DTST.getTypePtr()->getTemplateName();
948 if (SS.isSet())
949 Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
950 /*HasTemplateKeyword*/ false,
951 Name.getAsTemplateDecl());
952 ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
953 DTST.getTemplateNameLoc());
954 if (EllipsisLoc.isValid())
955 Result = Result.getTemplatePackExpansion(EllipsisLoc);
956 return Result;
957 }
958 }
959
960 // This is a normal type template argument. Note, if the type template
961 // argument is an injected-class-name for a template, it has a dual nature
962 // and can be used as either a type or a template. We handle that in
963 // convertTypeTemplateArgumentToTemplate.
964 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
965 ParsedType.get().getAsOpaquePtr(),
966 TInfo->getTypeLoc().getBeginLoc());
967}
968
969/// ActOnTypeParameter - Called when a C++ template type parameter
970/// (e.g., "typename T") has been parsed. Typename specifies whether
971/// the keyword "typename" was used to declare the type parameter
972/// (otherwise, "class" was used), and KeyLoc is the location of the
973/// "class" or "typename" keyword. ParamName is the name of the
974/// parameter (NULL indicates an unnamed template parameter) and
975/// ParamNameLoc is the location of the parameter name (if any).
976/// If the type parameter has a default argument, it will be added
977/// later via ActOnTypeParameterDefault.
978NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
979 SourceLocation EllipsisLoc,
980 SourceLocation KeyLoc,
981 IdentifierInfo *ParamName,
982 SourceLocation ParamNameLoc,
983 unsigned Depth, unsigned Position,
984 SourceLocation EqualLoc,
985 ParsedType DefaultArg) {
986 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 987, __PRETTY_FUNCTION__))
987 "Template type parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 987, __PRETTY_FUNCTION__))
;
988
989 bool IsParameterPack = EllipsisLoc.isValid();
990 TemplateTypeParmDecl *Param = TemplateTypeParmDecl::Create(
991 Context, Context.getTranslationUnitDecl(), KeyLoc, ParamNameLoc, Depth,
992 Position, ParamName, Typename, IsParameterPack);
993 Param->setAccess(AS_public);
994
995 if (Param->isParameterPack())
996 if (auto *LSI = getEnclosingLambda())
997 LSI->LocalPacks.push_back(Param);
998
999 if (ParamName) {
1000 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1001
1002 // Add the template parameter into the current scope.
1003 S->AddDecl(Param);
1004 IdResolver.AddDecl(Param);
1005 }
1006
1007 // C++0x [temp.param]p9:
1008 // A default template-argument may be specified for any kind of
1009 // template-parameter that is not a template parameter pack.
1010 if (DefaultArg && IsParameterPack) {
1011 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1012 DefaultArg = nullptr;
1013 }
1014
1015 // Handle the default argument, if provided.
1016 if (DefaultArg) {
1017 TypeSourceInfo *DefaultTInfo;
1018 GetTypeFromParser(DefaultArg, &DefaultTInfo);
1019
1020 assert(DefaultTInfo && "expected source information for type")((DefaultTInfo && "expected source information for type"
) ? static_cast<void> (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1020, __PRETTY_FUNCTION__))
;
1021
1022 // Check for unexpanded parameter packs.
1023 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1024 UPPC_DefaultArgument))
1025 return Param;
1026
1027 // Check the template argument itself.
1028 if (CheckTemplateArgument(Param, DefaultTInfo)) {
1029 Param->setInvalidDecl();
1030 return Param;
1031 }
1032
1033 Param->setDefaultArgument(DefaultTInfo);
1034 }
1035
1036 return Param;
1037}
1038
1039/// Check that the type of a non-type template parameter is
1040/// well-formed.
1041///
1042/// \returns the (possibly-promoted) parameter type if valid;
1043/// otherwise, produces a diagnostic and returns a NULL type.
1044QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1045 SourceLocation Loc) {
1046 if (TSI->getType()->isUndeducedType()) {
1047 // C++17 [temp.dep.expr]p3:
1048 // An id-expression is type-dependent if it contains
1049 // - an identifier associated by name lookup with a non-type
1050 // template-parameter declared with a type that contains a
1051 // placeholder type (7.1.7.4),
1052 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1053 }
1054
1055 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1056}
1057
1058QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1059 SourceLocation Loc) {
1060 // We don't allow variably-modified types as the type of non-type template
1061 // parameters.
1062 if (T->isVariablyModifiedType()) {
1063 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1064 << T;
1065 return QualType();
1066 }
1067
1068 // C++ [temp.param]p4:
1069 //
1070 // A non-type template-parameter shall have one of the following
1071 // (optionally cv-qualified) types:
1072 //
1073 // -- integral or enumeration type,
1074 if (T->isIntegralOrEnumerationType() ||
1075 // -- pointer to object or pointer to function,
1076 T->isPointerType() ||
1077 // -- reference to object or reference to function,
1078 T->isReferenceType() ||
1079 // -- pointer to member,
1080 T->isMemberPointerType() ||
1081 // -- std::nullptr_t.
1082 T->isNullPtrType() ||
1083 // Allow use of auto in template parameter declarations.
1084 T->isUndeducedType()) {
1085 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1086 // are ignored when determining its type.
1087 return T.getUnqualifiedType();
1088 }
1089
1090 // C++ [temp.param]p8:
1091 //
1092 // A non-type template-parameter of type "array of T" or
1093 // "function returning T" is adjusted to be of type "pointer to
1094 // T" or "pointer to function returning T", respectively.
1095 if (T->isArrayType() || T->isFunctionType())
1096 return Context.getDecayedType(T);
1097
1098 // If T is a dependent type, we can't do the check now, so we
1099 // assume that it is well-formed. Note that stripping off the
1100 // qualifiers here is not really correct if T turns out to be
1101 // an array type, but we'll recompute the type everywhere it's
1102 // used during instantiation, so that should be OK. (Using the
1103 // qualified type is equally wrong.)
1104 if (T->isDependentType())
1105 return T.getUnqualifiedType();
1106
1107 Diag(Loc, diag::err_template_nontype_parm_bad_type)
1108 << T;
1109
1110 return QualType();
1111}
1112
1113NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1114 unsigned Depth,
1115 unsigned Position,
1116 SourceLocation EqualLoc,
1117 Expr *Default) {
1118 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1119
1120 // Check that we have valid decl-specifiers specified.
1121 auto CheckValidDeclSpecifiers = [this, &D] {
1122 // C++ [temp.param]
1123 // p1
1124 // template-parameter:
1125 // ...
1126 // parameter-declaration
1127 // p2
1128 // ... A storage class shall not be specified in a template-parameter
1129 // declaration.
1130 // [dcl.typedef]p1:
1131 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1132 // of a parameter-declaration
1133 const DeclSpec &DS = D.getDeclSpec();
1134 auto EmitDiag = [this](SourceLocation Loc) {
1135 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1136 << FixItHint::CreateRemoval(Loc);
1137 };
1138 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1139 EmitDiag(DS.getStorageClassSpecLoc());
1140
1141 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1142 EmitDiag(DS.getThreadStorageClassSpecLoc());
1143
1144 // [dcl.inline]p1:
1145 // The inline specifier can be applied only to the declaration or
1146 // definition of a variable or function.
1147
1148 if (DS.isInlineSpecified())
1149 EmitDiag(DS.getInlineSpecLoc());
1150
1151 // [dcl.constexpr]p1:
1152 // The constexpr specifier shall be applied only to the definition of a
1153 // variable or variable template or the declaration of a function or
1154 // function template.
1155
1156 if (DS.hasConstexprSpecifier())
1157 EmitDiag(DS.getConstexprSpecLoc());
1158
1159 // [dcl.fct.spec]p1:
1160 // Function-specifiers can be used only in function declarations.
1161
1162 if (DS.isVirtualSpecified())
1163 EmitDiag(DS.getVirtualSpecLoc());
1164
1165 if (DS.hasExplicitSpecifier())
1166 EmitDiag(DS.getExplicitSpecLoc());
1167
1168 if (DS.isNoreturnSpecified())
1169 EmitDiag(DS.getNoreturnSpecLoc());
1170 };
1171
1172 CheckValidDeclSpecifiers();
1173
1174 if (TInfo->getType()->isUndeducedType()) {
1175 Diag(D.getIdentifierLoc(),
1176 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1177 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1178 }
1179
1180 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1181, __PRETTY_FUNCTION__))
1181 "Non-type template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1181, __PRETTY_FUNCTION__))
;
1182 bool Invalid = false;
1183
1184 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1185 if (T.isNull()) {
1186 T = Context.IntTy; // Recover with an 'int' type.
1187 Invalid = true;
1188 }
1189
1190 CheckFunctionOrTemplateParamDeclarator(S, D);
1191
1192 IdentifierInfo *ParamName = D.getIdentifier();
1193 bool IsParameterPack = D.hasEllipsis();
1194 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1195 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1196 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1197 TInfo);
1198 Param->setAccess(AS_public);
1199
1200 if (Invalid)
1201 Param->setInvalidDecl();
1202
1203 if (Param->isParameterPack())
1204 if (auto *LSI = getEnclosingLambda())
1205 LSI->LocalPacks.push_back(Param);
1206
1207 if (ParamName) {
1208 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1209 ParamName);
1210
1211 // Add the template parameter into the current scope.
1212 S->AddDecl(Param);
1213 IdResolver.AddDecl(Param);
1214 }
1215
1216 // C++0x [temp.param]p9:
1217 // A default template-argument may be specified for any kind of
1218 // template-parameter that is not a template parameter pack.
1219 if (Default && IsParameterPack) {
1220 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1221 Default = nullptr;
1222 }
1223
1224 // Check the well-formedness of the default template argument, if provided.
1225 if (Default) {
1226 // Check for unexpanded parameter packs.
1227 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1228 return Param;
1229
1230 TemplateArgument Converted;
1231 ExprResult DefaultRes =
1232 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1233 if (DefaultRes.isInvalid()) {
1234 Param->setInvalidDecl();
1235 return Param;
1236 }
1237 Default = DefaultRes.get();
1238
1239 Param->setDefaultArgument(Default);
1240 }
1241
1242 return Param;
1243}
1244
1245/// ActOnTemplateTemplateParameter - Called when a C++ template template
1246/// parameter (e.g. T in template <template \<typename> class T> class array)
1247/// has been parsed. S is the current scope.
1248NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1249 SourceLocation TmpLoc,
1250 TemplateParameterList *Params,
1251 SourceLocation EllipsisLoc,
1252 IdentifierInfo *Name,
1253 SourceLocation NameLoc,
1254 unsigned Depth,
1255 unsigned Position,
1256 SourceLocation EqualLoc,
1257 ParsedTemplateArgument Default) {
1258 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1259, __PRETTY_FUNCTION__))
1259 "Template template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1259, __PRETTY_FUNCTION__))
;
1260
1261 // Construct the parameter object.
1262 bool IsParameterPack = EllipsisLoc.isValid();
1263 TemplateTemplateParmDecl *Param =
1264 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1265 NameLoc.isInvalid()? TmpLoc : NameLoc,
1266 Depth, Position, IsParameterPack,
1267 Name, Params);
1268 Param->setAccess(AS_public);
1269
1270 if (Param->isParameterPack())
1271 if (auto *LSI = getEnclosingLambda())
1272 LSI->LocalPacks.push_back(Param);
1273
1274 // If the template template parameter has a name, then link the identifier
1275 // into the scope and lookup mechanisms.
1276 if (Name) {
1277 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1278
1279 S->AddDecl(Param);
1280 IdResolver.AddDecl(Param);
1281 }
1282
1283 if (Params->size() == 0) {
1284 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1285 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1286 Param->setInvalidDecl();
1287 }
1288
1289 // C++0x [temp.param]p9:
1290 // A default template-argument may be specified for any kind of
1291 // template-parameter that is not a template parameter pack.
1292 if (IsParameterPack && !Default.isInvalid()) {
1293 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1294 Default = ParsedTemplateArgument();
1295 }
1296
1297 if (!Default.isInvalid()) {
1298 // Check only that we have a template template argument. We don't want to
1299 // try to check well-formedness now, because our template template parameter
1300 // might have dependent types in its template parameters, which we wouldn't
1301 // be able to match now.
1302 //
1303 // If none of the template template parameter's template arguments mention
1304 // other template parameters, we could actually perform more checking here.
1305 // However, it isn't worth doing.
1306 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1307 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1308 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1309 << DefaultArg.getSourceRange();
1310 return Param;
1311 }
1312
1313 // Check for unexpanded parameter packs.
1314 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1315 DefaultArg.getArgument().getAsTemplate(),
1316 UPPC_DefaultArgument))
1317 return Param;
1318
1319 Param->setDefaultArgument(Context, DefaultArg);
1320 }
1321
1322 return Param;
1323}
1324
1325/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1326/// constrained by RequiresClause, that contains the template parameters in
1327/// Params.
1328TemplateParameterList *
1329Sema::ActOnTemplateParameterList(unsigned Depth,
1330 SourceLocation ExportLoc,
1331 SourceLocation TemplateLoc,
1332 SourceLocation LAngleLoc,
1333 ArrayRef<NamedDecl *> Params,
1334 SourceLocation RAngleLoc,
1335 Expr *RequiresClause) {
1336 if (ExportLoc.isValid())
1337 Diag(ExportLoc, diag::warn_template_export_unsupported);
1338
1339 return TemplateParameterList::Create(
1340 Context, TemplateLoc, LAngleLoc,
1341 llvm::makeArrayRef(Params.data(), Params.size()),
1342 RAngleLoc, RequiresClause);
1343}
1344
1345static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1346 const CXXScopeSpec &SS) {
1347 if (SS.isSet())
1348 T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1349}
1350
1351DeclResult Sema::CheckClassTemplate(
1352 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1353 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1354 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1355 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1356 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1357 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1358 assert(TemplateParams && TemplateParams->size() > 0 &&((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1359, __PRETTY_FUNCTION__))
1359 "No template parameters")((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1359, __PRETTY_FUNCTION__))
;
1360 assert(TUK != TUK_Reference && "Can only declare or define class templates")((TUK != TUK_Reference && "Can only declare or define class templates"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1360, __PRETTY_FUNCTION__))
;
1361 bool Invalid = false;
1362
1363 // Check that we can declare a template here.
1364 if (CheckTemplateDeclScope(S, TemplateParams))
1365 return true;
1366
1367 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1368 assert(Kind != TTK_Enum && "can't build template of enumerated type")((Kind != TTK_Enum && "can't build template of enumerated type"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1368, __PRETTY_FUNCTION__))
;
1369
1370 // There is no such thing as an unnamed class template.
1371 if (!Name) {
1372 Diag(KWLoc, diag::err_template_unnamed_class);
1373 return true;
1374 }
1375
1376 // Find any previous declaration with this name. For a friend with no
1377 // scope explicitly specified, we only look for tag declarations (per
1378 // C++11 [basic.lookup.elab]p2).
1379 DeclContext *SemanticContext;
1380 LookupResult Previous(*this, Name, NameLoc,
1381 (SS.isEmpty() && TUK == TUK_Friend)
1382 ? LookupTagName : LookupOrdinaryName,
1383 forRedeclarationInCurContext());
1384 if (SS.isNotEmpty() && !SS.isInvalid()) {
1385 SemanticContext = computeDeclContext(SS, true);
1386 if (!SemanticContext) {
1387 // FIXME: Horrible, horrible hack! We can't currently represent this
1388 // in the AST, and historically we have just ignored such friend
1389 // class templates, so don't complain here.
1390 Diag(NameLoc, TUK == TUK_Friend
1391 ? diag::warn_template_qualified_friend_ignored
1392 : diag::err_template_qualified_declarator_no_match)
1393 << SS.getScopeRep() << SS.getRange();
1394 return TUK != TUK_Friend;
1395 }
1396
1397 if (RequireCompleteDeclContext(SS, SemanticContext))
1398 return true;
1399
1400 // If we're adding a template to a dependent context, we may need to
1401 // rebuilding some of the types used within the template parameter list,
1402 // now that we know what the current instantiation is.
1403 if (SemanticContext->isDependentContext()) {
1404 ContextRAII SavedContext(*this, SemanticContext);
1405 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1406 Invalid = true;
1407 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1408 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1409
1410 LookupQualifiedName(Previous, SemanticContext);
1411 } else {
1412 SemanticContext = CurContext;
1413
1414 // C++14 [class.mem]p14:
1415 // If T is the name of a class, then each of the following shall have a
1416 // name different from T:
1417 // -- every member template of class T
1418 if (TUK != TUK_Friend &&
1419 DiagnoseClassNameShadow(SemanticContext,
1420 DeclarationNameInfo(Name, NameLoc)))
1421 return true;
1422
1423 LookupName(Previous, S);
1424 }
1425
1426 if (Previous.isAmbiguous())
1427 return true;
1428
1429 NamedDecl *PrevDecl = nullptr;
1430 if (Previous.begin() != Previous.end())
1431 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1432
1433 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1434 // Maybe we will complain about the shadowed template parameter.
1435 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1436 // Just pretend that we didn't see the previous declaration.
1437 PrevDecl = nullptr;
1438 }
1439
1440 // If there is a previous declaration with the same name, check
1441 // whether this is a valid redeclaration.
1442 ClassTemplateDecl *PrevClassTemplate =
1443 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1444
1445 // We may have found the injected-class-name of a class template,
1446 // class template partial specialization, or class template specialization.
1447 // In these cases, grab the template that is being defined or specialized.
1448 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1449 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1450 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1451 PrevClassTemplate
1452 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1453 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1454 PrevClassTemplate
1455 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1456 ->getSpecializedTemplate();
1457 }
1458 }
1459
1460 if (TUK == TUK_Friend) {
1461 // C++ [namespace.memdef]p3:
1462 // [...] When looking for a prior declaration of a class or a function
1463 // declared as a friend, and when the name of the friend class or
1464 // function is neither a qualified name nor a template-id, scopes outside
1465 // the innermost enclosing namespace scope are not considered.
1466 if (!SS.isSet()) {
1467 DeclContext *OutermostContext = CurContext;
1468 while (!OutermostContext->isFileContext())
1469 OutermostContext = OutermostContext->getLookupParent();
1470
1471 if (PrevDecl &&
1472 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1473 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1474 SemanticContext = PrevDecl->getDeclContext();
1475 } else {
1476 // Declarations in outer scopes don't matter. However, the outermost
1477 // context we computed is the semantic context for our new
1478 // declaration.
1479 PrevDecl = PrevClassTemplate = nullptr;
1480 SemanticContext = OutermostContext;
1481
1482 // Check that the chosen semantic context doesn't already contain a
1483 // declaration of this name as a non-tag type.
1484 Previous.clear(LookupOrdinaryName);
1485 DeclContext *LookupContext = SemanticContext;
1486 while (LookupContext->isTransparentContext())
1487 LookupContext = LookupContext->getLookupParent();
1488 LookupQualifiedName(Previous, LookupContext);
1489
1490 if (Previous.isAmbiguous())
1491 return true;
1492
1493 if (Previous.begin() != Previous.end())
1494 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1495 }
1496 }
1497 } else if (PrevDecl &&
1498 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1499 S, SS.isValid()))
1500 PrevDecl = PrevClassTemplate = nullptr;
1501
1502 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1503 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1504 if (SS.isEmpty() &&
1505 !(PrevClassTemplate &&
1506 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1507 SemanticContext->getRedeclContext()))) {
1508 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1509 Diag(Shadow->getTargetDecl()->getLocation(),
1510 diag::note_using_decl_target);
1511 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1512 // Recover by ignoring the old declaration.
1513 PrevDecl = PrevClassTemplate = nullptr;
1514 }
1515 }
1516
1517 if (PrevClassTemplate) {
1518 // Ensure that the template parameter lists are compatible. Skip this check
1519 // for a friend in a dependent context: the template parameter list itself
1520 // could be dependent.
1521 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1522 !TemplateParameterListsAreEqual(TemplateParams,
1523 PrevClassTemplate->getTemplateParameters(),
1524 /*Complain=*/true,
1525 TPL_TemplateMatch))
1526 return true;
1527
1528 // C++ [temp.class]p4:
1529 // In a redeclaration, partial specialization, explicit
1530 // specialization or explicit instantiation of a class template,
1531 // the class-key shall agree in kind with the original class
1532 // template declaration (7.1.5.3).
1533 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1534 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1535 TUK == TUK_Definition, KWLoc, Name)) {
1536 Diag(KWLoc, diag::err_use_with_wrong_tag)
1537 << Name
1538 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1539 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1540 Kind = PrevRecordDecl->getTagKind();
1541 }
1542
1543 // Check for redefinition of this class template.
1544 if (TUK == TUK_Definition) {
1545 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1546 // If we have a prior definition that is not visible, treat this as
1547 // simply making that previous definition visible.
1548 NamedDecl *Hidden = nullptr;
1549 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1550 SkipBody->ShouldSkip = true;
1551 SkipBody->Previous = Def;
1552 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1553 assert(Tmpl && "original definition of a class template is not a "((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1554, __PRETTY_FUNCTION__))
1554 "class template?")((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1554, __PRETTY_FUNCTION__))
;
1555 makeMergedDefinitionVisible(Hidden);
1556 makeMergedDefinitionVisible(Tmpl);
1557 } else {
1558 Diag(NameLoc, diag::err_redefinition) << Name;
1559 Diag(Def->getLocation(), diag::note_previous_definition);
1560 // FIXME: Would it make sense to try to "forget" the previous
1561 // definition, as part of error recovery?
1562 return true;
1563 }
1564 }
1565 }
1566 } else if (PrevDecl) {
1567 // C++ [temp]p5:
1568 // A class template shall not have the same name as any other
1569 // template, class, function, object, enumeration, enumerator,
1570 // namespace, or type in the same scope (3.3), except as specified
1571 // in (14.5.4).
1572 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1573 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1574 return true;
1575 }
1576
1577 // Check the template parameter list of this declaration, possibly
1578 // merging in the template parameter list from the previous class
1579 // template declaration. Skip this check for a friend in a dependent
1580 // context, because the template parameter list might be dependent.
1581 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1582 CheckTemplateParameterList(
1583 TemplateParams,
1584 PrevClassTemplate
1585 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1586 : nullptr,
1587 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1588 SemanticContext->isDependentContext())
1589 ? TPC_ClassTemplateMember
1590 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1591 SkipBody))
1592 Invalid = true;
1593
1594 if (SS.isSet()) {
1595 // If the name of the template was qualified, we must be defining the
1596 // template out-of-line.
1597 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1598 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1599 : diag::err_member_decl_does_not_match)
1600 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1601 Invalid = true;
1602 }
1603 }
1604
1605 // If this is a templated friend in a dependent context we should not put it
1606 // on the redecl chain. In some cases, the templated friend can be the most
1607 // recent declaration tricking the template instantiator to make substitutions
1608 // there.
1609 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1610 bool ShouldAddRedecl
1611 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1612
1613 CXXRecordDecl *NewClass =
1614 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1615 PrevClassTemplate && ShouldAddRedecl ?
1616 PrevClassTemplate->getTemplatedDecl() : nullptr,
1617 /*DelayTypeCreation=*/true);
1618 SetNestedNameSpecifier(*this, NewClass, SS);
1619 if (NumOuterTemplateParamLists > 0)
1620 NewClass->setTemplateParameterListsInfo(
1621 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1622 NumOuterTemplateParamLists));
1623
1624 // Add alignment attributes if necessary; these attributes are checked when
1625 // the ASTContext lays out the structure.
1626 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1627 AddAlignmentAttributesForRecord(NewClass);
1628 AddMsStructLayoutForRecord(NewClass);
1629 }
1630
1631 ClassTemplateDecl *NewTemplate
1632 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1633 DeclarationName(Name), TemplateParams,
1634 NewClass);
1635
1636 if (ShouldAddRedecl)
1637 NewTemplate->setPreviousDecl(PrevClassTemplate);
1638
1639 NewClass->setDescribedClassTemplate(NewTemplate);
1640
1641 if (ModulePrivateLoc.isValid())
1642 NewTemplate->setModulePrivate();
1643
1644 // Build the type for the class template declaration now.
1645 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1646 T = Context.getInjectedClassNameType(NewClass, T);
1647 assert(T->isDependentType() && "Class template type is not dependent?")((T->isDependentType() && "Class template type is not dependent?"
) ? static_cast<void> (0) : __assert_fail ("T->isDependentType() && \"Class template type is not dependent?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1647, __PRETTY_FUNCTION__))
;
1648 (void)T;
1649
1650 // If we are providing an explicit specialization of a member that is a
1651 // class template, make a note of that.
1652 if (PrevClassTemplate &&
1653 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1654 PrevClassTemplate->setMemberSpecialization();
1655
1656 // Set the access specifier.
1657 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1658 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1659
1660 // Set the lexical context of these templates
1661 NewClass->setLexicalDeclContext(CurContext);
1662 NewTemplate->setLexicalDeclContext(CurContext);
1663
1664 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
1665 NewClass->startDefinition();
1666
1667 ProcessDeclAttributeList(S, NewClass, Attr);
1668
1669 if (PrevClassTemplate)
1670 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1671
1672 AddPushedVisibilityAttribute(NewClass);
1673 inferGslOwnerPointerAttribute(NewClass);
1674
1675 if (TUK != TUK_Friend) {
1676 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1677 Scope *Outer = S;
1678 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1679 Outer = Outer->getParent();
1680 PushOnScopeChains(NewTemplate, Outer);
1681 } else {
1682 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1683 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1684 NewClass->setAccess(PrevClassTemplate->getAccess());
1685 }
1686
1687 NewTemplate->setObjectOfFriendDecl();
1688
1689 // Friend templates are visible in fairly strange ways.
1690 if (!CurContext->isDependentContext()) {
1691 DeclContext *DC = SemanticContext->getRedeclContext();
1692 DC->makeDeclVisibleInContext(NewTemplate);
1693 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1694 PushOnScopeChains(NewTemplate, EnclosingScope,
1695 /* AddToContext = */ false);
1696 }
1697
1698 FriendDecl *Friend = FriendDecl::Create(
1699 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1700 Friend->setAccess(AS_public);
1701 CurContext->addDecl(Friend);
1702 }
1703
1704 if (PrevClassTemplate)
1705 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
1706
1707 if (Invalid) {
1708 NewTemplate->setInvalidDecl();
1709 NewClass->setInvalidDecl();
1710 }
1711
1712 ActOnDocumentableDecl(NewTemplate);
1713
1714 if (SkipBody && SkipBody->ShouldSkip)
1715 return SkipBody->Previous;
1716
1717 return NewTemplate;
1718}
1719
1720namespace {
1721/// Tree transform to "extract" a transformed type from a class template's
1722/// constructor to a deduction guide.
1723class ExtractTypeForDeductionGuide
1724 : public TreeTransform<ExtractTypeForDeductionGuide> {
1725public:
1726 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
1727 ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {}
1728
1729 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
1730
1731 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
1732 return TransformType(
1733 TLB,
1734 TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc());
1735 }
1736};
1737
1738/// Transform to convert portions of a constructor declaration into the
1739/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1740struct ConvertConstructorToDeductionGuideTransform {
1741 ConvertConstructorToDeductionGuideTransform(Sema &S,
1742 ClassTemplateDecl *Template)
1743 : SemaRef(S), Template(Template) {}
1744
1745 Sema &SemaRef;
1746 ClassTemplateDecl *Template;
1747
1748 DeclContext *DC = Template->getDeclContext();
1749 CXXRecordDecl *Primary = Template->getTemplatedDecl();
1750 DeclarationName DeductionGuideName =
1751 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1752
1753 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1754
1755 // Index adjustment to apply to convert depth-1 template parameters into
1756 // depth-0 template parameters.
1757 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1758
1759 /// Transform a constructor declaration into a deduction guide.
1760 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1761 CXXConstructorDecl *CD) {
1762 SmallVector<TemplateArgument, 16> SubstArgs;
1763
1764 LocalInstantiationScope Scope(SemaRef);
1765
1766 // C++ [over.match.class.deduct]p1:
1767 // -- For each constructor of the class template designated by the
1768 // template-name, a function template with the following properties:
1769
1770 // -- The template parameters are the template parameters of the class
1771 // template followed by the template parameters (including default
1772 // template arguments) of the constructor, if any.
1773 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1774 if (FTD
16.1
'FTD' is non-null
) {
17
Taking true branch
1775 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1776 SmallVector<NamedDecl *, 16> AllParams;
1777 AllParams.reserve(TemplateParams->size() + InnerParams->size());
1778 AllParams.insert(AllParams.begin(),
1779 TemplateParams->begin(), TemplateParams->end());
1780 SubstArgs.reserve(InnerParams->size());
1781
1782 // Later template parameters could refer to earlier ones, so build up
1783 // a list of substituted template arguments as we go.
1784 for (NamedDecl *Param : *InnerParams) {
18
Assuming '__begin3' is not equal to '__end3'
1785 MultiLevelTemplateArgumentList Args;
1786 Args.addOuterTemplateArguments(SubstArgs);
1787 Args.addOuterRetainedLevel();
1788 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
19
Calling 'ConvertConstructorToDeductionGuideTransform::transformTemplateParameter'
1789 if (!NewParam)
1790 return nullptr;
1791 AllParams.push_back(NewParam);
1792 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
1793 SemaRef.Context.getInjectedTemplateArg(NewParam)));
1794 }
1795 TemplateParams = TemplateParameterList::Create(
1796 SemaRef.Context, InnerParams->getTemplateLoc(),
1797 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
1798 /*FIXME: RequiresClause*/ nullptr);
1799 }
1800
1801 // If we built a new template-parameter-list, track that we need to
1802 // substitute references to the old parameters into references to the
1803 // new ones.
1804 MultiLevelTemplateArgumentList Args;
1805 if (FTD) {
1806 Args.addOuterTemplateArguments(SubstArgs);
1807 Args.addOuterRetainedLevel();
1808 }
1809
1810 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
1811 .getAsAdjusted<FunctionProtoTypeLoc>();
1812 assert(FPTL && "no prototype for constructor declaration")((FPTL && "no prototype for constructor declaration")
? static_cast<void> (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1812, __PRETTY_FUNCTION__))
;
1813
1814 // Transform the type of the function, adjusting the return type and
1815 // replacing references to the old parameters with references to the
1816 // new ones.
1817 TypeLocBuilder TLB;
1818 SmallVector<ParmVarDecl*, 8> Params;
1819 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
1820 if (NewType.isNull())
1821 return nullptr;
1822 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
1823
1824 return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
1825 NewTInfo, CD->getBeginLoc(), CD->getLocation(),
1826 CD->getEndLoc());
1827 }
1828
1829 /// Build a deduction guide with the specified parameter types.
1830 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
1831 SourceLocation Loc = Template->getLocation();
1832
1833 // Build the requested type.
1834 FunctionProtoType::ExtProtoInfo EPI;
1835 EPI.HasTrailingReturn = true;
1836 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
1837 DeductionGuideName, EPI);
1838 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
1839
1840 FunctionProtoTypeLoc FPTL =
1841 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
1842
1843 // Build the parameters, needed during deduction / substitution.
1844 SmallVector<ParmVarDecl*, 4> Params;
1845 for (auto T : ParamTypes) {
1846 ParmVarDecl *NewParam = ParmVarDecl::Create(
1847 SemaRef.Context, DC, Loc, Loc, nullptr, T,
1848 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
1849 NewParam->setScopeInfo(0, Params.size());
1850 FPTL.setParam(Params.size(), NewParam);
1851 Params.push_back(NewParam);
1852 }
1853
1854 return buildDeductionGuide(Template->getTemplateParameters(),
1855 ExplicitSpecifier(), TSI, Loc, Loc, Loc);
1856 }
1857
1858private:
1859 /// Transform a constructor template parameter into a deduction guide template
1860 /// parameter, rebuilding any internal references to earlier parameters and
1861 /// renumbering as we go.
1862 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
1863 MultiLevelTemplateArgumentList &Args) {
1864 if (auto *TTP
20.1
'TTP' is null
= dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
20
Assuming 'TemplateParam' is not a 'TemplateTypeParmDecl'
21
Taking false branch
1865 // TemplateTypeParmDecl's index cannot be changed after creation, so
1866 // substitute it directly.
1867 auto *NewTTP = TemplateTypeParmDecl::Create(
1868 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
1869 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
1870 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
1871 TTP->isParameterPack());
1872 if (TTP->hasDefaultArgument()) {
1873 TypeSourceInfo *InstantiatedDefaultArg =
1874 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
1875 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
1876 if (InstantiatedDefaultArg)
1877 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
1878 }
1879 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
1880 NewTTP);
1881 return NewTTP;
1882 }
1883
1884 if (auto *TTP
22.1
'TTP' is non-null
= dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
22
Assuming 'TemplateParam' is a 'TemplateTemplateParmDecl'
23
Taking true branch
1885 return transformTemplateParameterImpl(TTP, Args);
24
Calling 'ConvertConstructorToDeductionGuideTransform::transformTemplateParameterImpl'
1886
1887 return transformTemplateParameterImpl(
1888 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
1889 }
1890 template<typename TemplateParmDecl>
1891 TemplateParmDecl *
1892 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
1893 MultiLevelTemplateArgumentList &Args) {
1894 // Ask the template instantiator to do the heavy lifting for us, then adjust
1895 // the index of the parameter once it's done.
1896 auto *NewParam =
26
'NewParam' initialized to a null pointer value
1897 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
25
Assuming null pointer is passed into cast
1898 assert(NewParam->getDepth() == 0 && "unexpected template param depth")((NewParam->getDepth() == 0 && "unexpected template param depth"
) ? static_cast<void> (0) : __assert_fail ("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 1898, __PRETTY_FUNCTION__))
;
27
Called C++ object pointer is null
1899 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
1900 return NewParam;
1901 }
1902
1903 QualType transformFunctionProtoType(TypeLocBuilder &TLB,
1904 FunctionProtoTypeLoc TL,
1905 SmallVectorImpl<ParmVarDecl*> &Params,
1906 MultiLevelTemplateArgumentList &Args) {
1907 SmallVector<QualType, 4> ParamTypes;
1908 const FunctionProtoType *T = TL.getTypePtr();
1909
1910 // -- The types of the function parameters are those of the constructor.
1911 for (auto *OldParam : TL.getParams()) {
1912 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
1913 if (!NewParam)
1914 return QualType();
1915 ParamTypes.push_back(NewParam->getType());
1916 Params.push_back(NewParam);
1917 }
1918
1919 // -- The return type is the class template specialization designated by
1920 // the template-name and template arguments corresponding to the
1921 // template parameters obtained from the class template.
1922 //
1923 // We use the injected-class-name type of the primary template instead.
1924 // This has the convenient property that it is different from any type that
1925 // the user can write in a deduction-guide (because they cannot enter the
1926 // context of the template), so implicit deduction guides can never collide
1927 // with explicit ones.
1928 QualType ReturnType = DeducedType;
1929 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
1930
1931 // Resolving a wording defect, we also inherit the variadicness of the
1932 // constructor.
1933 FunctionProtoType::ExtProtoInfo EPI;
1934 EPI.Variadic = T->isVariadic();
1935 EPI.HasTrailingReturn = true;
1936
1937 QualType Result = SemaRef.BuildFunctionType(
1938 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
1939 if (Result.isNull())
1940 return QualType();
1941
1942 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
1943 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
1944 NewTL.setLParenLoc(TL.getLParenLoc());
1945 NewTL.setRParenLoc(TL.getRParenLoc());
1946 NewTL.setExceptionSpecRange(SourceRange());
1947 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
1948 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
1949 NewTL.setParam(I, Params[I]);
1950
1951 return Result;
1952 }
1953
1954 ParmVarDecl *
1955 transformFunctionTypeParam(ParmVarDecl *OldParam,
1956 MultiLevelTemplateArgumentList &Args) {
1957 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
1958 TypeSourceInfo *NewDI;
1959 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
1960 // Expand out the one and only element in each inner pack.
1961 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
1962 NewDI =
1963 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
1964 OldParam->getLocation(), OldParam->getDeclName());
1965 if (!NewDI) return nullptr;
1966 NewDI =
1967 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
1968 PackTL.getTypePtr()->getNumExpansions());
1969 } else
1970 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
1971 OldParam->getDeclName());
1972 if (!NewDI)
1973 return nullptr;
1974
1975 // Extract the type. This (for instance) replaces references to typedef
1976 // members of the current instantiations with the definitions of those
1977 // typedefs, avoiding triggering instantiation of the deduced type during
1978 // deduction.
1979 NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI);
1980
1981 // Resolving a wording defect, we also inherit default arguments from the
1982 // constructor.
1983 ExprResult NewDefArg;
1984 if (OldParam->hasDefaultArg()) {
1985 NewDefArg = SemaRef.SubstExpr(OldParam->getDefaultArg(), Args);
1986 if (NewDefArg.isInvalid())
1987 return nullptr;
1988 }
1989
1990 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
1991 OldParam->getInnerLocStart(),
1992 OldParam->getLocation(),
1993 OldParam->getIdentifier(),
1994 NewDI->getType(),
1995 NewDI,
1996 OldParam->getStorageClass(),
1997 NewDefArg.get());
1998 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
1999 OldParam->getFunctionScopeIndex());
2000 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2001 return NewParam;
2002 }
2003
2004 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
2005 ExplicitSpecifier ES, TypeSourceInfo *TInfo,
2006 SourceLocation LocStart, SourceLocation Loc,
2007 SourceLocation LocEnd) {
2008 DeclarationNameInfo Name(DeductionGuideName, Loc);
2009 ArrayRef<ParmVarDecl *> Params =
2010 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2011
2012 // Build the implicit deduction guide template.
2013 auto *Guide =
2014 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2015 TInfo->getType(), TInfo, LocEnd);
2016 Guide->setImplicit();
2017 Guide->setParams(Params);
2018
2019 for (auto *Param : Params)
2020 Param->setDeclContext(Guide);
2021
2022 auto *GuideTemplate = FunctionTemplateDecl::Create(
2023 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2024 GuideTemplate->setImplicit();
2025 Guide->setDescribedFunctionTemplate(GuideTemplate);
2026
2027 if (isa<CXXRecordDecl>(DC)) {
2028 Guide->setAccess(AS_public);
2029 GuideTemplate->setAccess(AS_public);
2030 }
2031
2032 DC->addDecl(GuideTemplate);
2033 return GuideTemplate;
2034 }
2035};
2036}
2037
2038void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2039 SourceLocation Loc) {
2040 if (CXXRecordDecl *DefRecord
1.1
'DefRecord' is null
=
2
Taking false branch
2041 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
1
The object is a 'CXXRecordDecl'
2042 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2043 Template = DescribedTemplate ? DescribedTemplate : Template;
2044 }
2045
2046 DeclContext *DC = Template->getDeclContext();
2047 if (DC->isDependentContext())
3
Assuming the condition is false
4
Taking false branch
2048 return;
2049
2050 ConvertConstructorToDeductionGuideTransform Transform(
2051 *this, cast<ClassTemplateDecl>(Template));
5
'Template' is a 'ClassTemplateDecl'
2052 if (!isCompleteType(Loc, Transform.DeducedType))
6
Taking false branch
2053 return;
2054
2055 // Check whether we've already declared deduction guides for this template.
2056 // FIXME: Consider storing a flag on the template to indicate this.
2057 auto Existing = DC->lookup(Transform.DeductionGuideName);
2058 for (auto *D : Existing)
2059 if (D->isImplicit())
2060 return;
2061
2062 // In case we were expanding a pack when we attempted to declare deduction
2063 // guides, turn off pack expansion for everything we're about to do.
2064 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2065 // Create a template instantiation record to track the "instantiation" of
2066 // constructors into deduction guides.
2067 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2068 // this substitution process actually fail?
2069 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2070 if (BuildingDeductionGuides.isInvalid())
7
Assuming the condition is false
8
Taking false branch
2071 return;
2072
2073 // Convert declared constructors into deduction guide templates.
2074 // FIXME: Skip constructors for which deduction must necessarily fail (those
2075 // for which some class template parameter without a default argument never
2076 // appears in a deduced context).
2077 bool AddedAny = false;
2078 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2079 D = D->getUnderlyingDecl();
2080 if (D->isInvalidDecl() || D->isImplicit())
9
Assuming the condition is false
10
Assuming the condition is false
11
Taking false branch
2081 continue;
2082 D = cast<NamedDecl>(D->getCanonicalDecl());
12
The object is a 'NamedDecl'
2083
2084 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
13
Assuming 'D' is a 'FunctionTemplateDecl'
2085 auto *CD =
2086 dyn_cast_or_null<CXXConstructorDecl>(FTD
13.1
'FTD' is non-null
? FTD->getTemplatedDecl() : D)
;
14
'?' condition is true
15
Assuming the object is a 'CXXConstructorDecl'
2087 // Class-scope explicit specializations (MS extension) do not result in
2088 // deduction guides.
2089 if (!CD
15.1
'CD' is non-null
|| (!FTD
15.2
'FTD' is non-null
&& CD->isFunctionTemplateSpecialization()))
2090 continue;
2091
2092 Transform.transformConstructor(FTD, CD);
16
Calling 'ConvertConstructorToDeductionGuideTransform::transformConstructor'
2093 AddedAny = true;
2094 }
2095
2096 // C++17 [over.match.class.deduct]
2097 // -- If C is not defined or does not declare any constructors, an
2098 // additional function template derived as above from a hypothetical
2099 // constructor C().
2100 if (!AddedAny)
2101 Transform.buildSimpleDeductionGuide(None);
2102
2103 // -- An additional function template derived as above from a hypothetical
2104 // constructor C(C), called the copy deduction candidate.
2105 cast<CXXDeductionGuideDecl>(
2106 cast<FunctionTemplateDecl>(
2107 Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2108 ->getTemplatedDecl())
2109 ->setIsCopyDeductionCandidate();
2110}
2111
2112/// Diagnose the presence of a default template argument on a
2113/// template parameter, which is ill-formed in certain contexts.
2114///
2115/// \returns true if the default template argument should be dropped.
2116static bool DiagnoseDefaultTemplateArgument(Sema &S,
2117 Sema::TemplateParamListContext TPC,
2118 SourceLocation ParamLoc,
2119 SourceRange DefArgRange) {
2120 switch (TPC) {
2121 case Sema::TPC_ClassTemplate:
2122 case Sema::TPC_VarTemplate:
2123 case Sema::TPC_TypeAliasTemplate:
2124 return false;
2125
2126 case Sema::TPC_FunctionTemplate:
2127 case Sema::TPC_FriendFunctionTemplateDefinition:
2128 // C++ [temp.param]p9:
2129 // A default template-argument shall not be specified in a
2130 // function template declaration or a function template
2131 // definition [...]
2132 // If a friend function template declaration specifies a default
2133 // template-argument, that declaration shall be a definition and shall be
2134 // the only declaration of the function template in the translation unit.
2135 // (C++98/03 doesn't have this wording; see DR226).
2136 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2137 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2138 : diag::ext_template_parameter_default_in_function_template)
2139 << DefArgRange;
2140 return false;
2141
2142 case Sema::TPC_ClassTemplateMember:
2143 // C++0x [temp.param]p9:
2144 // A default template-argument shall not be specified in the
2145 // template-parameter-lists of the definition of a member of a
2146 // class template that appears outside of the member's class.
2147 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2148 << DefArgRange;
2149 return true;
2150
2151 case Sema::TPC_FriendClassTemplate:
2152 case Sema::TPC_FriendFunctionTemplate:
2153 // C++ [temp.param]p9:
2154 // A default template-argument shall not be specified in a
2155 // friend template declaration.
2156 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2157 << DefArgRange;
2158 return true;
2159
2160 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2161 // for friend function templates if there is only a single
2162 // declaration (and it is a definition). Strange!
2163 }
2164
2165 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2165)
;
2166}
2167
2168/// Check for unexpanded parameter packs within the template parameters
2169/// of a template template parameter, recursively.
2170static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2171 TemplateTemplateParmDecl *TTP) {
2172 // A template template parameter which is a parameter pack is also a pack
2173 // expansion.
2174 if (TTP->isParameterPack())
2175 return false;
2176
2177 TemplateParameterList *Params = TTP->getTemplateParameters();
2178 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2179 NamedDecl *P = Params->getParam(I);
2180 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2181 if (!NTTP->isParameterPack() &&
2182 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2183 NTTP->getTypeSourceInfo(),
2184 Sema::UPPC_NonTypeTemplateParameterType))
2185 return true;
2186
2187 continue;
2188 }
2189
2190 if (TemplateTemplateParmDecl *InnerTTP
2191 = dyn_cast<TemplateTemplateParmDecl>(P))
2192 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2193 return true;
2194 }
2195
2196 return false;
2197}
2198
2199/// Checks the validity of a template parameter list, possibly
2200/// considering the template parameter list from a previous
2201/// declaration.
2202///
2203/// If an "old" template parameter list is provided, it must be
2204/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2205/// template parameter list.
2206///
2207/// \param NewParams Template parameter list for a new template
2208/// declaration. This template parameter list will be updated with any
2209/// default arguments that are carried through from the previous
2210/// template parameter list.
2211///
2212/// \param OldParams If provided, template parameter list from a
2213/// previous declaration of the same template. Default template
2214/// arguments will be merged from the old template parameter list to
2215/// the new template parameter list.
2216///
2217/// \param TPC Describes the context in which we are checking the given
2218/// template parameter list.
2219///
2220/// \param SkipBody If we might have already made a prior merged definition
2221/// of this template visible, the corresponding body-skipping information.
2222/// Default argument redefinition is not an error when skipping such a body,
2223/// because (under the ODR) we can assume the default arguments are the same
2224/// as the prior merged definition.
2225///
2226/// \returns true if an error occurred, false otherwise.
2227bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2228 TemplateParameterList *OldParams,
2229 TemplateParamListContext TPC,
2230 SkipBodyInfo *SkipBody) {
2231 bool Invalid = false;
2232
2233 // C++ [temp.param]p10:
2234 // The set of default template-arguments available for use with a
2235 // template declaration or definition is obtained by merging the
2236 // default arguments from the definition (if in scope) and all
2237 // declarations in scope in the same way default function
2238 // arguments are (8.3.6).
2239 bool SawDefaultArgument = false;
2240 SourceLocation PreviousDefaultArgLoc;
2241
2242 // Dummy initialization to avoid warnings.
2243 TemplateParameterList::iterator OldParam = NewParams->end();
2244 if (OldParams)
2245 OldParam = OldParams->begin();
2246
2247 bool RemoveDefaultArguments = false;
2248 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2249 NewParamEnd = NewParams->end();
2250 NewParam != NewParamEnd; ++NewParam) {
2251 // Variables used to diagnose redundant default arguments
2252 bool RedundantDefaultArg = false;
2253 SourceLocation OldDefaultLoc;
2254 SourceLocation NewDefaultLoc;
2255
2256 // Variable used to diagnose missing default arguments
2257 bool MissingDefaultArg = false;
2258
2259 // Variable used to diagnose non-final parameter packs
2260 bool SawParameterPack = false;
2261
2262 if (TemplateTypeParmDecl *NewTypeParm
2263 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2264 // Check the presence of a default argument here.
2265 if (NewTypeParm->hasDefaultArgument() &&
2266 DiagnoseDefaultTemplateArgument(*this, TPC,
2267 NewTypeParm->getLocation(),
2268 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2269 .getSourceRange()))
2270 NewTypeParm->removeDefaultArgument();
2271
2272 // Merge default arguments for template type parameters.
2273 TemplateTypeParmDecl *OldTypeParm
2274 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2275 if (NewTypeParm->isParameterPack()) {
2276 assert(!NewTypeParm->hasDefaultArgument() &&((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2277, __PRETTY_FUNCTION__))
2277 "Parameter packs can't have a default argument!")((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2277, __PRETTY_FUNCTION__))
;
2278 SawParameterPack = true;
2279 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2280 NewTypeParm->hasDefaultArgument() &&
2281 (!SkipBody || !SkipBody->ShouldSkip)) {
2282 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2283 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2284 SawDefaultArgument = true;
2285 RedundantDefaultArg = true;
2286 PreviousDefaultArgLoc = NewDefaultLoc;
2287 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2288 // Merge the default argument from the old declaration to the
2289 // new declaration.
2290 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2291 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2292 } else if (NewTypeParm->hasDefaultArgument()) {
2293 SawDefaultArgument = true;
2294 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2295 } else if (SawDefaultArgument)
2296 MissingDefaultArg = true;
2297 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2298 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2299 // Check for unexpanded parameter packs.
2300 if (!NewNonTypeParm->isParameterPack() &&
2301 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2302 NewNonTypeParm->getTypeSourceInfo(),
2303 UPPC_NonTypeTemplateParameterType)) {
2304 Invalid = true;
2305 continue;
2306 }
2307
2308 // Check the presence of a default argument here.
2309 if (NewNonTypeParm->hasDefaultArgument() &&
2310 DiagnoseDefaultTemplateArgument(*this, TPC,
2311 NewNonTypeParm->getLocation(),
2312 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2313 NewNonTypeParm->removeDefaultArgument();
2314 }
2315
2316 // Merge default arguments for non-type template parameters
2317 NonTypeTemplateParmDecl *OldNonTypeParm
2318 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2319 if (NewNonTypeParm->isParameterPack()) {
2320 assert(!NewNonTypeParm->hasDefaultArgument() &&((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2321, __PRETTY_FUNCTION__))
2321 "Parameter packs can't have a default argument!")((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2321, __PRETTY_FUNCTION__))
;
2322 if (!NewNonTypeParm->isPackExpansion())
2323 SawParameterPack = true;
2324 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2325 NewNonTypeParm->hasDefaultArgument() &&
2326 (!SkipBody || !SkipBody->ShouldSkip)) {
2327 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2328 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2329 SawDefaultArgument = true;
2330 RedundantDefaultArg = true;
2331 PreviousDefaultArgLoc = NewDefaultLoc;
2332 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2333 // Merge the default argument from the old declaration to the
2334 // new declaration.
2335 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2336 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2337 } else if (NewNonTypeParm->hasDefaultArgument()) {
2338 SawDefaultArgument = true;
2339 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2340 } else if (SawDefaultArgument)
2341 MissingDefaultArg = true;
2342 } else {
2343 TemplateTemplateParmDecl *NewTemplateParm
2344 = cast<TemplateTemplateParmDecl>(*NewParam);
2345
2346 // Check for unexpanded parameter packs, recursively.
2347 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2348 Invalid = true;
2349 continue;
2350 }
2351
2352 // Check the presence of a default argument here.
2353 if (NewTemplateParm->hasDefaultArgument() &&
2354 DiagnoseDefaultTemplateArgument(*this, TPC,
2355 NewTemplateParm->getLocation(),
2356 NewTemplateParm->getDefaultArgument().getSourceRange()))
2357 NewTemplateParm->removeDefaultArgument();
2358
2359 // Merge default arguments for template template parameters
2360 TemplateTemplateParmDecl *OldTemplateParm
2361 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2362 if (NewTemplateParm->isParameterPack()) {
2363 assert(!NewTemplateParm->hasDefaultArgument() &&((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2364, __PRETTY_FUNCTION__))
2364 "Parameter packs can't have a default argument!")((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 2364, __PRETTY_FUNCTION__))
;
2365 if (!NewTemplateParm->isPackExpansion())
2366 SawParameterPack = true;
2367 } else if (OldTemplateParm &&
2368 hasVisibleDefaultArgument(OldTemplateParm) &&
2369 NewTemplateParm->hasDefaultArgument() &&
2370 (!SkipBody || !SkipBody->ShouldSkip)) {
2371 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2372 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2373 SawDefaultArgument = true;
2374 RedundantDefaultArg = true;
2375 PreviousDefaultArgLoc = NewDefaultLoc;
2376 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2377 // Merge the default argument from the old declaration to the
2378 // new declaration.
2379 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2380 PreviousDefaultArgLoc
2381 = OldTemplateParm->getDefaultArgument().getLocation();
2382 } else if (NewTemplateParm->hasDefaultArgument()) {
2383 SawDefaultArgument = true;
2384 PreviousDefaultArgLoc
2385 = NewTemplateParm->getDefaultArgument().getLocation();
2386 } else if (SawDefaultArgument)
2387 MissingDefaultArg = true;
2388 }
2389
2390 // C++11 [temp.param]p11:
2391 // If a template parameter of a primary class template or alias template
2392 // is a template parameter pack, it shall be the last template parameter.
2393 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2394 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2395 TPC == TPC_TypeAliasTemplate)) {
2396 Diag((*NewParam)->getLocation(),
2397 diag::err_template_param_pack_must_be_last_template_parameter);
2398 Invalid = true;
2399 }
2400
2401 if (RedundantDefaultArg) {
2402 // C++ [temp.param]p12:
2403 // A template-parameter shall not be given default arguments
2404 // by two different declarations in the same scope.
2405 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2406 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2407 Invalid = true;
2408 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2409 // C++ [temp.param]p11:
2410 // If a template-parameter of a class template has a default
2411 // template-argument, each subsequent template-parameter shall either
2412 // have a default template-argument supplied or be a template parameter
2413 // pack.
2414 Diag((*NewParam)->getLocation(),
2415 diag::err_template_param_default_arg_missing);
2416 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2417 Invalid = true;
2418 RemoveDefaultArguments = true;
2419 }
2420
2421 // If we have an old template parameter list that we're merging
2422 // in, move on to the next parameter.
2423 if (OldParams)
2424 ++OldParam;
2425 }
2426
2427 // We were missing some default arguments at the end of the list, so remove
2428 // all of the default arguments.
2429 if (RemoveDefaultArguments) {
2430 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2431 NewParamEnd = NewParams->end();
2432 NewParam != NewParamEnd; ++NewParam) {
2433 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2434 TTP->removeDefaultArgument();
2435 else if (NonTypeTemplateParmDecl *NTTP
2436 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2437 NTTP->removeDefaultArgument();
2438 else
2439 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2440 }
2441 }
2442
2443 return Invalid;
2444}
2445
2446namespace {
2447
2448/// A class which looks for a use of a certain level of template
2449/// parameter.
2450struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2451 typedef RecursiveASTVisitor<DependencyChecker> super;
2452
2453 unsigned Depth;
2454
2455 // Whether we're looking for a use of a template parameter that makes the
2456 // overall construct type-dependent / a dependent type. This is strictly
2457 // best-effort for now; we may fail to match at all for a dependent type
2458 // in some cases if this is set.
2459 bool IgnoreNonTypeDependent;
2460
2461 bool Match;
2462 SourceLocation MatchLoc;
2463
2464 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2465 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2466 Match(false) {}
2467
2468 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2469 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2470 NamedDecl *ND = Params->getParam(0);
2471 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2472 Depth = PD->getDepth();
2473 } else if (NonTypeTemplateParmDecl *PD =
2474 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2475 Depth = PD->getDepth();
2476 } else {
2477 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2478 }
2479 }
2480
2481 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2482 if (ParmDepth >= Depth) {
2483 Match = true;
2484 MatchLoc = Loc;
2485 return true;
2486 }
2487 return false;
2488 }
2489
2490 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2491 // Prune out non-type-dependent expressions if requested. This can
2492 // sometimes result in us failing to find a template parameter reference
2493 // (if a value-dependent expression creates a dependent type), but this
2494 // mode is best-effort only.
2495 if (auto *E = dyn_cast_or_null<Expr>(S))
2496 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2497 return true;
2498 return super::TraverseStmt(S, Q);
2499 }
2500
2501 bool TraverseTypeLoc(TypeLoc TL) {
2502 if (IgnoreNonTypeDependent && !TL.isNull() &&
2503 !TL.getType()->isDependentType())
2504 return true;
2505 return super::TraverseTypeLoc(TL);
2506 }
2507
2508 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2509 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2510 }
2511
2512 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2513 // For a best-effort search, keep looking until we find a location.
2514 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2515 }
2516
2517 bool TraverseTemplateName(TemplateName N) {
2518 if (TemplateTemplateParmDecl *PD =
2519 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2520 if (Matches(PD->getDepth()))
2521 return false;
2522 return super::TraverseTemplateName(N);
2523 }
2524
2525 bool VisitDeclRefExpr(DeclRefExpr *E) {
2526 if (NonTypeTemplateParmDecl *PD =
2527 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2528 if (Matches(PD->getDepth(), E->getExprLoc()))
2529 return false;
2530 return super::VisitDeclRefExpr(E);
2531 }
2532
2533 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2534 return TraverseType(T->getReplacementType());
2535 }
2536
2537 bool
2538 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2539 return TraverseTemplateArgument(T->getArgumentPack());
2540 }
2541
2542 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2543 return TraverseType(T->getInjectedSpecializationType());
2544 }
2545};
2546} // end anonymous namespace
2547
2548/// Determines whether a given type depends on the given parameter
2549/// list.
2550static bool
2551DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2552 if (!Params->size())
2553 return false;
2554
2555 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2556 Checker.TraverseType(T);
2557 return Checker.Match;
2558}
2559
2560// Find the source range corresponding to the named type in the given
2561// nested-name-specifier, if any.
2562static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2563 QualType T,
2564 const CXXScopeSpec &SS) {
2565 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2566 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2567 if (const Type *CurType = NNS->getAsType()) {
2568 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2569 return NNSLoc.getTypeLoc().getSourceRange();
2570 } else
2571 break;
2572
2573 NNSLoc = NNSLoc.getPrefix();
2574 }
2575
2576 return SourceRange();
2577}
2578
2579/// Match the given template parameter lists to the given scope
2580/// specifier, returning the template parameter list that applies to the
2581/// name.
2582///
2583/// \param DeclStartLoc the start of the declaration that has a scope
2584/// specifier or a template parameter list.
2585///
2586/// \param DeclLoc The location of the declaration itself.
2587///
2588/// \param SS the scope specifier that will be matched to the given template
2589/// parameter lists. This scope specifier precedes a qualified name that is
2590/// being declared.
2591///
2592/// \param TemplateId The template-id following the scope specifier, if there
2593/// is one. Used to check for a missing 'template<>'.
2594///
2595/// \param ParamLists the template parameter lists, from the outermost to the
2596/// innermost template parameter lists.
2597///
2598/// \param IsFriend Whether to apply the slightly different rules for
2599/// matching template parameters to scope specifiers in friend
2600/// declarations.
2601///
2602/// \param IsMemberSpecialization will be set true if the scope specifier
2603/// denotes a fully-specialized type, and therefore this is a declaration of
2604/// a member specialization.
2605///
2606/// \returns the template parameter list, if any, that corresponds to the
2607/// name that is preceded by the scope specifier @p SS. This template
2608/// parameter list may have template parameters (if we're declaring a
2609/// template) or may have no template parameters (if we're declaring a
2610/// template specialization), or may be NULL (if what we're declaring isn't
2611/// itself a template).
2612TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2613 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2614 TemplateIdAnnotation *TemplateId,
2615 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2616 bool &IsMemberSpecialization, bool &Invalid) {
2617 IsMemberSpecialization = false;
2618 Invalid = false;
2619
2620 // The sequence of nested types to which we will match up the template
2621 // parameter lists. We first build this list by starting with the type named
2622 // by the nested-name-specifier and walking out until we run out of types.
2623 SmallVector<QualType, 4> NestedTypes;
2624 QualType T;
2625 if (SS.getScopeRep()) {
2626 if (CXXRecordDecl *Record
2627 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2628 T = Context.getTypeDeclType(Record);
2629 else
2630 T = QualType(SS.getScopeRep()->getAsType(), 0);
2631 }
2632
2633 // If we found an explicit specialization that prevents us from needing
2634 // 'template<>' headers, this will be set to the location of that
2635 // explicit specialization.
2636 SourceLocation ExplicitSpecLoc;
2637
2638 while (!T.isNull()) {
2639 NestedTypes.push_back(T);
2640
2641 // Retrieve the parent of a record type.
2642 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2643 // If this type is an explicit specialization, we're done.
2644 if (ClassTemplateSpecializationDecl *Spec
2645 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2646 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2647 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2648 ExplicitSpecLoc = Spec->getLocation();
2649 break;
2650 }
2651 } else if (Record->getTemplateSpecializationKind()
2652 == TSK_ExplicitSpecialization) {
2653 ExplicitSpecLoc = Record->getLocation();
2654 break;
2655 }
2656
2657 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2658 T = Context.getTypeDeclType(Parent);
2659 else
2660 T = QualType();
2661 continue;
2662 }
2663
2664 if (const TemplateSpecializationType *TST
2665 = T->getAs<TemplateSpecializationType>()) {
2666 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2667 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2668 T = Context.getTypeDeclType(Parent);
2669 else
2670 T = QualType();
2671 continue;
2672 }
2673 }
2674
2675 // Look one step prior in a dependent template specialization type.
2676 if (const DependentTemplateSpecializationType *DependentTST
2677 = T->getAs<DependentTemplateSpecializationType>()) {
2678 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2679 T = QualType(NNS->getAsType(), 0);
2680 else
2681 T = QualType();
2682 continue;
2683 }
2684
2685 // Look one step prior in a dependent name type.
2686 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2687 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2688 T = QualType(NNS->getAsType(), 0);
2689 else
2690 T = QualType();
2691 continue;
2692 }
2693
2694 // Retrieve the parent of an enumeration type.
2695 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2696 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2697 // check here.
2698 EnumDecl *Enum = EnumT->getDecl();
2699
2700 // Get to the parent type.
2701 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2702 T = Context.getTypeDeclType(Parent);
2703 else
2704 T = QualType();
2705 continue;
2706 }
2707
2708 T = QualType();
2709 }
2710 // Reverse the nested types list, since we want to traverse from the outermost
2711 // to the innermost while checking template-parameter-lists.
2712 std::reverse(NestedTypes.begin(), NestedTypes.end());
2713
2714 // C++0x [temp.expl.spec]p17:
2715 // A member or a member template may be nested within many
2716 // enclosing class templates. In an explicit specialization for
2717 // such a member, the member declaration shall be preceded by a
2718 // template<> for each enclosing class template that is
2719 // explicitly specialized.
2720 bool SawNonEmptyTemplateParameterList = false;
2721
2722 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2723 if (SawNonEmptyTemplateParameterList) {
2724 Diag(DeclLoc, diag::err_specialize_member_of_template)
2725 << !Recovery << Range;
2726 Invalid = true;
2727 IsMemberSpecialization = false;
2728 return true;
2729 }
2730
2731 return false;
2732 };
2733
2734 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2735 // Check that we can have an explicit specialization here.
2736 if (CheckExplicitSpecialization(Range, true))
2737 return true;
2738
2739 // We don't have a template header, but we should.
2740 SourceLocation ExpectedTemplateLoc;
2741 if (!ParamLists.empty())
2742 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2743 else
2744 ExpectedTemplateLoc = DeclStartLoc;
2745
2746 Diag(DeclLoc, diag::err_template_spec_needs_header)
2747 << Range
2748 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2749 return false;
2750 };
2751
2752 unsigned ParamIdx = 0;
2753 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2754 ++TypeIdx) {
2755 T = NestedTypes[TypeIdx];
2756
2757 // Whether we expect a 'template<>' header.
2758 bool NeedEmptyTemplateHeader = false;
2759
2760 // Whether we expect a template header with parameters.
2761 bool NeedNonemptyTemplateHeader = false;
2762
2763 // For a dependent type, the set of template parameters that we
2764 // expect to see.
2765 TemplateParameterList *ExpectedTemplateParams = nullptr;
2766
2767 // C++0x [temp.expl.spec]p15:
2768 // A member or a member template may be nested within many enclosing
2769 // class templates. In an explicit specialization for such a member, the
2770 // member declaration shall be preceded by a template<> for each
2771 // enclosing class template that is explicitly specialized.
2772 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2773 if (ClassTemplatePartialSpecializationDecl *Partial
2774 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2775 ExpectedTemplateParams = Partial->getTemplateParameters();
2776 NeedNonemptyTemplateHeader = true;
2777 } else if (Record->isDependentType()) {
2778 if (Record->getDescribedClassTemplate()) {
2779 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2780 ->getTemplateParameters();
2781 NeedNonemptyTemplateHeader = true;
2782 }
2783 } else if (ClassTemplateSpecializationDecl *Spec
2784 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2785 // C++0x [temp.expl.spec]p4:
2786 // Members of an explicitly specialized class template are defined
2787 // in the same manner as members of normal classes, and not using
2788 // the template<> syntax.
2789 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2790 NeedEmptyTemplateHeader = true;
2791 else
2792 continue;
2793 } else if (Record->getTemplateSpecializationKind()) {
2794 if (Record->getTemplateSpecializationKind()
2795 != TSK_ExplicitSpecialization &&
2796 TypeIdx == NumTypes - 1)
2797 IsMemberSpecialization = true;
2798
2799 continue;
2800 }
2801 } else if (const TemplateSpecializationType *TST
2802 = T->getAs<TemplateSpecializationType>()) {
2803 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2804 ExpectedTemplateParams = Template->getTemplateParameters();
2805 NeedNonemptyTemplateHeader = true;
2806 }
2807 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2808 // FIXME: We actually could/should check the template arguments here
2809 // against the corresponding template parameter list.
2810 NeedNonemptyTemplateHeader = false;
2811 }
2812
2813 // C++ [temp.expl.spec]p16:
2814 // In an explicit specialization declaration for a member of a class
2815 // template or a member template that ap- pears in namespace scope, the
2816 // member template and some of its enclosing class templates may remain
2817 // unspecialized, except that the declaration shall not explicitly
2818 // specialize a class member template if its en- closing class templates
2819 // are not explicitly specialized as well.
2820 if (ParamIdx < ParamLists.size()) {
2821 if (ParamLists[ParamIdx]->size() == 0) {
2822 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2823 false))
2824 return nullptr;
2825 } else
2826 SawNonEmptyTemplateParameterList = true;
2827 }
2828
2829 if (NeedEmptyTemplateHeader) {
2830 // If we're on the last of the types, and we need a 'template<>' header
2831 // here, then it's a member specialization.
2832 if (TypeIdx == NumTypes - 1)
2833 IsMemberSpecialization = true;
2834
2835 if (ParamIdx < ParamLists.size()) {
2836 if (ParamLists[ParamIdx]->size() > 0) {
2837 // The header has template parameters when it shouldn't. Complain.
2838 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2839 diag::err_template_param_list_matches_nontemplate)
2840 << T
2841 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2842 ParamLists[ParamIdx]->getRAngleLoc())
2843 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2844 Invalid = true;
2845 return nullptr;
2846 }
2847
2848 // Consume this template header.
2849 ++ParamIdx;
2850 continue;
2851 }
2852
2853 if (!IsFriend)
2854 if (DiagnoseMissingExplicitSpecialization(
2855 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2856 return nullptr;
2857
2858 continue;
2859 }
2860
2861 if (NeedNonemptyTemplateHeader) {
2862 // In friend declarations we can have template-ids which don't
2863 // depend on the corresponding template parameter lists. But
2864 // assume that empty parameter lists are supposed to match this
2865 // template-id.
2866 if (IsFriend && T->isDependentType()) {
2867 if (ParamIdx < ParamLists.size() &&
2868 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2869 ExpectedTemplateParams = nullptr;
2870 else
2871 continue;
2872 }
2873
2874 if (ParamIdx < ParamLists.size()) {
2875 // Check the template parameter list, if we can.
2876 if (ExpectedTemplateParams &&
2877 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2878 ExpectedTemplateParams,
2879 true, TPL_TemplateMatch))
2880 Invalid = true;
2881
2882 if (!Invalid &&
2883 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2884 TPC_ClassTemplateMember))
2885 Invalid = true;
2886
2887 ++ParamIdx;
2888 continue;
2889 }
2890
2891 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2892 << T
2893 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2894 Invalid = true;
2895 continue;
2896 }
2897 }
2898
2899 // If there were at least as many template-ids as there were template
2900 // parameter lists, then there are no template parameter lists remaining for
2901 // the declaration itself.
2902 if (ParamIdx >= ParamLists.size()) {
2903 if (TemplateId && !IsFriend) {
2904 // We don't have a template header for the declaration itself, but we
2905 // should.
2906 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2907 TemplateId->RAngleLoc));
2908
2909 // Fabricate an empty template parameter list for the invented header.
2910 return TemplateParameterList::Create(Context, SourceLocation(),
2911 SourceLocation(), None,
2912 SourceLocation(), nullptr);
2913 }
2914
2915 return nullptr;
2916 }
2917
2918 // If there were too many template parameter lists, complain about that now.
2919 if (ParamIdx < ParamLists.size() - 1) {
2920 bool HasAnyExplicitSpecHeader = false;
2921 bool AllExplicitSpecHeaders = true;
2922 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2923 if (ParamLists[I]->size() == 0)
2924 HasAnyExplicitSpecHeader = true;
2925 else
2926 AllExplicitSpecHeaders = false;
2927 }
2928
2929 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2930 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2931 : diag::err_template_spec_extra_headers)
2932 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2933 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2934
2935 // If there was a specialization somewhere, such that 'template<>' is
2936 // not required, and there were any 'template<>' headers, note where the
2937 // specialization occurred.
2938 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2939 Diag(ExplicitSpecLoc,
2940 diag::note_explicit_template_spec_does_not_need_header)
2941 << NestedTypes.back();
2942
2943 // We have a template parameter list with no corresponding scope, which
2944 // means that the resulting template declaration can't be instantiated
2945 // properly (we'll end up with dependent nodes when we shouldn't).
2946 if (!AllExplicitSpecHeaders)
2947 Invalid = true;
2948 }
2949
2950 // C++ [temp.expl.spec]p16:
2951 // In an explicit specialization declaration for a member of a class
2952 // template or a member template that ap- pears in namespace scope, the
2953 // member template and some of its enclosing class templates may remain
2954 // unspecialized, except that the declaration shall not explicitly
2955 // specialize a class member template if its en- closing class templates
2956 // are not explicitly specialized as well.
2957 if (ParamLists.back()->size() == 0 &&
2958 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2959 false))
2960 return nullptr;
2961
2962 // Return the last template parameter list, which corresponds to the
2963 // entity being declared.
2964 return ParamLists.back();
2965}
2966
2967void Sema::NoteAllFoundTemplates(TemplateName Name) {
2968 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2969 Diag(Template->getLocation(), diag::note_template_declared_here)
2970 << (isa<FunctionTemplateDecl>(Template)
2971 ? 0
2972 : isa<ClassTemplateDecl>(Template)
2973 ? 1
2974 : isa<VarTemplateDecl>(Template)
2975 ? 2
2976 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2977 << Template->getDeclName();
2978 return;
2979 }
2980
2981 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2982 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2983 IEnd = OST->end();
2984 I != IEnd; ++I)
2985 Diag((*I)->getLocation(), diag::note_template_declared_here)
2986 << 0 << (*I)->getDeclName();
2987
2988 return;
2989 }
2990}
2991
2992static QualType
2993checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2994 const SmallVectorImpl<TemplateArgument> &Converted,
2995 SourceLocation TemplateLoc,
2996 TemplateArgumentListInfo &TemplateArgs) {
2997 ASTContext &Context = SemaRef.getASTContext();
2998 switch (BTD->getBuiltinTemplateKind()) {
2999 case BTK__make_integer_seq: {
3000 // Specializations of __make_integer_seq<S, T, N> are treated like
3001 // S<T, 0, ..., N-1>.
3002
3003 // C++14 [inteseq.intseq]p1:
3004 // T shall be an integer type.
3005 if (!Converted[1].getAsType()->isIntegralType(Context)) {
3006 SemaRef.Diag(TemplateArgs[1].getLocation(),
3007 diag::err_integer_sequence_integral_element_type);
3008 return QualType();
3009 }
3010
3011 // C++14 [inteseq.make]p1:
3012 // If N is negative the program is ill-formed.
3013 TemplateArgument NumArgsArg = Converted[2];
3014 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3015 if (NumArgs < 0) {
3016 SemaRef.Diag(TemplateArgs[2].getLocation(),
3017 diag::err_integer_sequence_negative_length);
3018 return QualType();
3019 }
3020
3021 QualType ArgTy = NumArgsArg.getIntegralType();
3022 TemplateArgumentListInfo SyntheticTemplateArgs;
3023 // The type argument gets reused as the first template argument in the
3024 // synthetic template argument list.
3025 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3026 // Expand N into 0 ... N-1.
3027 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3028 I < NumArgs; ++I) {
3029 TemplateArgument TA(Context, I, ArgTy);
3030 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3031 TA, ArgTy, TemplateArgs[2].getLocation()));
3032 }
3033 // The first template argument will be reused as the template decl that
3034 // our synthetic template arguments will be applied to.
3035 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3036 TemplateLoc, SyntheticTemplateArgs);
3037 }
3038
3039 case BTK__type_pack_element:
3040 // Specializations of
3041 // __type_pack_element<Index, T_1, ..., T_N>
3042 // are treated like T_Index.
3043 assert(Converted.size() == 2 &&((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3044, __PRETTY_FUNCTION__))
3044 "__type_pack_element should be given an index and a parameter pack")((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3044, __PRETTY_FUNCTION__))
;
3045
3046 // If the Index is out of bounds, the program is ill-formed.
3047 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3048 llvm::APSInt Index = IndexArg.getAsIntegral();
3049 assert(Index >= 0 && "the index used with __type_pack_element should be of "((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3050, __PRETTY_FUNCTION__))
3050 "type std::size_t, and hence be non-negative")((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3050, __PRETTY_FUNCTION__))
;
3051 if (Index >= Ts.pack_size()) {
3052 SemaRef.Diag(TemplateArgs[0].getLocation(),
3053 diag::err_type_pack_element_out_of_bounds);
3054 return QualType();
3055 }
3056
3057 // We simply return the type at index `Index`.
3058 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3059 return Nth->getAsType();
3060 }
3061 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3061)
;
3062}
3063
3064/// Determine whether this alias template is "enable_if_t".
3065static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3066 return AliasTemplate->getName().equals("enable_if_t");
3067}
3068
3069/// Collect all of the separable terms in the given condition, which
3070/// might be a conjunction.
3071///
3072/// FIXME: The right answer is to convert the logical expression into
3073/// disjunctive normal form, so we can find the first failed term
3074/// within each possible clause.
3075static void collectConjunctionTerms(Expr *Clause,
3076 SmallVectorImpl<Expr *> &Terms) {
3077 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3078 if (BinOp->getOpcode() == BO_LAnd) {
3079 collectConjunctionTerms(BinOp->getLHS(), Terms);
3080 collectConjunctionTerms(BinOp->getRHS(), Terms);
3081 }
3082
3083 return;
3084 }
3085
3086 Terms.push_back(Clause);
3087}
3088
3089// The ranges-v3 library uses an odd pattern of a top-level "||" with
3090// a left-hand side that is value-dependent but never true. Identify
3091// the idiom and ignore that term.
3092static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3093 // Top-level '||'.
3094 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3095 if (!BinOp) return Cond;
3096
3097 if (BinOp->getOpcode() != BO_LOr) return Cond;
3098
3099 // With an inner '==' that has a literal on the right-hand side.
3100 Expr *LHS = BinOp->getLHS();
3101 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3102 if (!InnerBinOp) return Cond;
3103
3104 if (InnerBinOp->getOpcode() != BO_EQ ||
3105 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3106 return Cond;
3107
3108 // If the inner binary operation came from a macro expansion named
3109 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3110 // of the '||', which is the real, user-provided condition.
3111 SourceLocation Loc = InnerBinOp->getExprLoc();
3112 if (!Loc.isMacroID()) return Cond;
3113
3114 StringRef MacroName = PP.getImmediateMacroName(Loc);
3115 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3116 return BinOp->getRHS();
3117
3118 return Cond;
3119}
3120
3121namespace {
3122
3123// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3124// within failing boolean expression, such as substituting template parameters
3125// for actual types.
3126class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3127public:
3128 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3129 : Policy(P) {}
3130
3131 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3132 const auto *DR = dyn_cast<DeclRefExpr>(E);
3133 if (DR && DR->getQualifier()) {
3134 // If this is a qualified name, expand the template arguments in nested
3135 // qualifiers.
3136 DR->getQualifier()->print(OS, Policy, true);
3137 // Then print the decl itself.
3138 const ValueDecl *VD = DR->getDecl();
3139 OS << VD->getName();
3140 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3141 // This is a template variable, print the expanded template arguments.
3142 printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
3143 }
3144 return true;
3145 }
3146 return false;
3147 }
3148
3149private:
3150 const PrintingPolicy Policy;
3151};
3152
3153} // end anonymous namespace
3154
3155std::pair<Expr *, std::string>
3156Sema::findFailedBooleanCondition(Expr *Cond) {
3157 Cond = lookThroughRangesV3Condition(PP, Cond);
3158
3159 // Separate out all of the terms in a conjunction.
3160 SmallVector<Expr *, 4> Terms;
3161 collectConjunctionTerms(Cond, Terms);
3162
3163 // Determine which term failed.
3164 Expr *FailedCond = nullptr;
3165 for (Expr *Term : Terms) {
3166 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3167
3168 // Literals are uninteresting.
3169 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3170 isa<IntegerLiteral>(TermAsWritten))
3171 continue;
3172
3173 // The initialization of the parameter from the argument is
3174 // a constant-evaluated context.
3175 EnterExpressionEvaluationContext ConstantEvaluated(
3176 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3177
3178 bool Succeeded;
3179 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3180 !Succeeded) {
3181 FailedCond = TermAsWritten;
3182 break;
3183 }
3184 }
3185 if (!FailedCond)
3186 FailedCond = Cond->IgnoreParenImpCasts();
3187
3188 std::string Description;
3189 {
3190 llvm::raw_string_ostream Out(Description);
3191 PrintingPolicy Policy = getPrintingPolicy();
3192 Policy.PrintCanonicalTypes = true;
3193 FailedBooleanConditionPrinterHelper Helper(Policy);
3194 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3195 }
3196 return { FailedCond, Description };
3197}
3198
3199QualType Sema::CheckTemplateIdType(TemplateName Name,
3200 SourceLocation TemplateLoc,
3201 TemplateArgumentListInfo &TemplateArgs) {
3202 DependentTemplateName *DTN
3203 = Name.getUnderlying().getAsDependentTemplateName();
3204 if (DTN && DTN->isIdentifier())
3205 // When building a template-id where the template-name is dependent,
3206 // assume the template is a type template. Either our assumption is
3207 // correct, or the code is ill-formed and will be diagnosed when the
3208 // dependent name is substituted.
3209 return Context.getDependentTemplateSpecializationType(ETK_None,
3210 DTN->getQualifier(),
3211 DTN->getIdentifier(),
3212 TemplateArgs);
3213
3214 TemplateDecl *Template = Name.getAsTemplateDecl();
3215 if (!Template || isa<FunctionTemplateDecl>(Template) ||
3216 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3217 // We might have a substituted template template parameter pack. If so,
3218 // build a template specialization type for it.
3219 if (Name.getAsSubstTemplateTemplateParmPack())
3220 return Context.getTemplateSpecializationType(Name, TemplateArgs);
3221
3222 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3223 << Name;
3224 NoteAllFoundTemplates(Name);
3225 return QualType();
3226 }
3227
3228 // Check that the template argument list is well-formed for this
3229 // template.
3230 SmallVector<TemplateArgument, 4> Converted;
3231 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3232 false, Converted,
3233 /*UpdateArgsWithConversion=*/true))
3234 return QualType();
3235
3236 QualType CanonType;
3237
3238 bool InstantiationDependent = false;
3239 if (TypeAliasTemplateDecl *AliasTemplate =
3240 dyn_cast<TypeAliasTemplateDecl>(Template)) {
3241
3242 // Find the canonical type for this type alias template specialization.
3243 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3244 if (Pattern->isInvalidDecl())
3245 return QualType();
3246
3247 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3248 Converted);
3249
3250 // Only substitute for the innermost template argument list.
3251 MultiLevelTemplateArgumentList TemplateArgLists;
3252 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3253 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
3254 for (unsigned I = 0; I < Depth; ++I)
3255 TemplateArgLists.addOuterTemplateArguments(None);
3256
3257 LocalInstantiationScope Scope(*this);
3258 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3259 if (Inst.isInvalid())
3260 return QualType();
3261
3262 CanonType = SubstType(Pattern->getUnderlyingType(),
3263 TemplateArgLists, AliasTemplate->getLocation(),
3264 AliasTemplate->getDeclName());
3265 if (CanonType.isNull()) {
3266 // If this was enable_if and we failed to find the nested type
3267 // within enable_if in a SFINAE context, dig out the specific
3268 // enable_if condition that failed and present that instead.
3269 if (isEnableIfAliasTemplate(AliasTemplate)) {
3270 if (auto DeductionInfo = isSFINAEContext()) {
3271 if (*DeductionInfo &&
3272 (*DeductionInfo)->hasSFINAEDiagnostic() &&
3273 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3274 diag::err_typename_nested_not_found_enable_if &&
3275 TemplateArgs[0].getArgument().getKind()
3276 == TemplateArgument::Expression) {
3277 Expr *FailedCond;
3278 std::string FailedDescription;
3279 std::tie(FailedCond, FailedDescription) =
3280 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3281
3282 // Remove the old SFINAE diagnostic.
3283 PartialDiagnosticAt OldDiag =
3284 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3285 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3286
3287 // Add a new SFINAE diagnostic specifying which condition
3288 // failed.
3289 (*DeductionInfo)->addSFINAEDiagnostic(
3290 OldDiag.first,
3291 PDiag(diag::err_typename_nested_not_found_requirement)
3292 << FailedDescription
3293 << FailedCond->getSourceRange());
3294 }
3295 }
3296 }
3297
3298 return QualType();
3299 }
3300 } else if (Name.isDependent() ||
3301 TemplateSpecializationType::anyDependentTemplateArguments(
3302 TemplateArgs, InstantiationDependent)) {
3303 // This class template specialization is a dependent
3304 // type. Therefore, its canonical type is another class template
3305 // specialization type that contains all of the converted
3306 // arguments in canonical form. This ensures that, e.g., A<T> and
3307 // A<T, T> have identical types when A is declared as:
3308 //
3309 // template<typename T, typename U = T> struct A;
3310 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3311
3312 // This might work out to be a current instantiation, in which
3313 // case the canonical type needs to be the InjectedClassNameType.
3314 //
3315 // TODO: in theory this could be a simple hashtable lookup; most
3316 // changes to CurContext don't change the set of current
3317 // instantiations.
3318 if (isa<ClassTemplateDecl>(Template)) {
3319 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3320 // If we get out to a namespace, we're done.
3321 if (Ctx->isFileContext()) break;
3322
3323 // If this isn't a record, keep looking.
3324 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3325 if (!Record) continue;
3326
3327 // Look for one of the two cases with InjectedClassNameTypes
3328 // and check whether it's the same template.
3329 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3330 !Record->getDescribedClassTemplate())
3331 continue;
3332
3333 // Fetch the injected class name type and check whether its
3334 // injected type is equal to the type we just built.
3335 QualType ICNT = Context.getTypeDeclType(Record);
3336 QualType Injected = cast<InjectedClassNameType>(ICNT)
3337 ->getInjectedSpecializationType();
3338
3339 if (CanonType != Injected->getCanonicalTypeInternal())
3340 continue;
3341
3342 // If so, the canonical type of this TST is the injected
3343 // class name type of the record we just found.
3344 assert(ICNT.isCanonical())((ICNT.isCanonical()) ? static_cast<void> (0) : __assert_fail
("ICNT.isCanonical()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3344, __PRETTY_FUNCTION__))
;
3345 CanonType = ICNT;
3346 break;
3347 }
3348 }
3349 } else if (ClassTemplateDecl *ClassTemplate
3350 = dyn_cast<ClassTemplateDecl>(Template)) {
3351 // Find the class template specialization declaration that
3352 // corresponds to these arguments.
3353 void *InsertPos = nullptr;
3354 ClassTemplateSpecializationDecl *Decl
3355 = ClassTemplate->findSpecialization(Converted, InsertPos);
3356 if (!Decl) {
3357 // This is the first time we have referenced this class template
3358 // specialization. Create the canonical declaration and add it to
3359 // the set of specializations.
3360 Decl = ClassTemplateSpecializationDecl::Create(
3361 Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3362 ClassTemplate->getDeclContext(),
3363 ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3364 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3365 ClassTemplate->AddSpecialization(Decl, InsertPos);
3366 if (ClassTemplate->isOutOfLine())
3367 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3368 }
3369
3370 if (Decl->getSpecializationKind() == TSK_Undeclared) {
3371 MultiLevelTemplateArgumentList TemplateArgLists;
3372 TemplateArgLists.addOuterTemplateArguments(Converted);
3373 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3374 Decl);
3375 }
3376
3377 // Diagnose uses of this specialization.
3378 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3379
3380 CanonType = Context.getTypeDeclType(Decl);
3381 assert(isa<RecordType>(CanonType) &&((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3382, __PRETTY_FUNCTION__))
3382 "type of non-dependent specialization is not a RecordType")((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3382, __PRETTY_FUNCTION__))
;
3383 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3384 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3385 TemplateArgs);
3386 }
3387
3388 // Build the fully-sugared type for this class template
3389 // specialization, which refers back to the class template
3390 // specialization we created or found.
3391 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3392}
3393
3394void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3395 TemplateNameKind &TNK,
3396 SourceLocation NameLoc,
3397 IdentifierInfo *&II) {
3398 assert(TNK == TNK_Undeclared_template && "not an undeclared template name")((TNK == TNK_Undeclared_template && "not an undeclared template name"
) ? static_cast<void> (0) : __assert_fail ("TNK == TNK_Undeclared_template && \"not an undeclared template name\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3398, __PRETTY_FUNCTION__))
;
3399
3400 TemplateName Name = ParsedName.get();
3401 auto *ATN = Name.getAsAssumedTemplateName();
3402 assert(ATN && "not an assumed template name")((ATN && "not an assumed template name") ? static_cast
<void> (0) : __assert_fail ("ATN && \"not an assumed template name\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3402, __PRETTY_FUNCTION__))
;
3403 II = ATN->getDeclName().getAsIdentifierInfo();
3404
3405 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3406 // Resolved to a type template name.
3407 ParsedName = TemplateTy::make(Name);
3408 TNK = TNK_Type_template;
3409 }
3410}
3411
3412bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3413 SourceLocation NameLoc,
3414 bool Diagnose) {
3415 // We assumed this undeclared identifier to be an (ADL-only) function
3416 // template name, but it was used in a context where a type was required.
3417 // Try to typo-correct it now.
3418 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3419 assert(ATN && "not an assumed template name")((ATN && "not an assumed template name") ? static_cast
<void> (0) : __assert_fail ("ATN && \"not an assumed template name\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3419, __PRETTY_FUNCTION__))
;
3420
3421 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3422 struct CandidateCallback : CorrectionCandidateCallback {
3423 bool ValidateCandidate(const TypoCorrection &TC) override {
3424 return TC.getCorrectionDecl() &&
3425 getAsTypeTemplateDecl(TC.getCorrectionDecl());
3426 }
3427 std::unique_ptr<CorrectionCandidateCallback> clone() override {
3428 return std::make_unique<CandidateCallback>(*this);
3429 }
3430 } FilterCCC;
3431
3432 TypoCorrection Corrected =
3433 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3434 FilterCCC, CTK_ErrorRecovery);
3435 if (Corrected && Corrected.getFoundDecl()) {
3436 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3437 << ATN->getDeclName());
3438 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3439 return false;
3440 }
3441
3442 if (Diagnose)
3443 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3444 return true;
3445}
3446
3447TypeResult Sema::ActOnTemplateIdType(
3448 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3449 TemplateTy TemplateD, IdentifierInfo *TemplateII,
3450 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3451 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3452 bool IsCtorOrDtorName, bool IsClassName) {
3453 if (SS.isInvalid())
3454 return true;
3455
3456 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3457 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3458
3459 // C++ [temp.res]p3:
3460 // A qualified-id that refers to a type and in which the
3461 // nested-name-specifier depends on a template-parameter (14.6.2)
3462 // shall be prefixed by the keyword typename to indicate that the
3463 // qualified-id denotes a type, forming an
3464 // elaborated-type-specifier (7.1.5.3).
3465 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3466 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3467 << SS.getScopeRep() << TemplateII->getName();
3468 // Recover as if 'typename' were specified.
3469 // FIXME: This is not quite correct recovery as we don't transform SS
3470 // into the corresponding dependent form (and we don't diagnose missing
3471 // 'template' keywords within SS as a result).
3472 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3473 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3474 TemplateArgsIn, RAngleLoc);
3475 }
3476
3477 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3478 // it's not actually allowed to be used as a type in most cases. Because
3479 // we annotate it before we know whether it's valid, we have to check for
3480 // this case here.
3481 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3482 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3483 Diag(TemplateIILoc,
3484 TemplateKWLoc.isInvalid()
3485 ? diag::err_out_of_line_qualified_id_type_names_constructor
3486 : diag::ext_out_of_line_qualified_id_type_names_constructor)
3487 << TemplateII << 0 /*injected-class-name used as template name*/
3488 << 1 /*if any keyword was present, it was 'template'*/;
3489 }
3490 }
3491
3492 TemplateName Template = TemplateD.get();
3493 if (Template.getAsAssumedTemplateName() &&
3494 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3495 return true;
3496
3497 // Translate the parser's template argument list in our AST format.
3498 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3499 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3500
3501 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3502 QualType T
3503 = Context.getDependentTemplateSpecializationType(ETK_None,
3504 DTN->getQualifier(),
3505 DTN->getIdentifier(),
3506 TemplateArgs);
3507 // Build type-source information.
3508 TypeLocBuilder TLB;
3509 DependentTemplateSpecializationTypeLoc SpecTL
3510 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3511 SpecTL.setElaboratedKeywordLoc(SourceLocation());
3512 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3513 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3514 SpecTL.setTemplateNameLoc(TemplateIILoc);
3515 SpecTL.setLAngleLoc(LAngleLoc);
3516 SpecTL.setRAngleLoc(RAngleLoc);
3517 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3518 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3519 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3520 }
3521
3522 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3523 if (Result.isNull())
3524 return true;
3525
3526 // Build type-source information.
3527 TypeLocBuilder TLB;
3528 TemplateSpecializationTypeLoc SpecTL
3529 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3530 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3531 SpecTL.setTemplateNameLoc(TemplateIILoc);
3532 SpecTL.setLAngleLoc(LAngleLoc);
3533 SpecTL.setRAngleLoc(RAngleLoc);
3534 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3535 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3536
3537 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3538 // constructor or destructor name (in such a case, the scope specifier
3539 // will be attached to the enclosing Decl or Expr node).
3540 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3541 // Create an elaborated-type-specifier containing the nested-name-specifier.
3542 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3543 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3544 ElabTL.setElaboratedKeywordLoc(SourceLocation());
3545 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3546 }
3547
3548 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3549}
3550
3551TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3552 TypeSpecifierType TagSpec,
3553 SourceLocation TagLoc,
3554 CXXScopeSpec &SS,
3555 SourceLocation TemplateKWLoc,
3556 TemplateTy TemplateD,
3557 SourceLocation TemplateLoc,
3558 SourceLocation LAngleLoc,
3559 ASTTemplateArgsPtr TemplateArgsIn,
3560 SourceLocation RAngleLoc) {
3561 TemplateName Template = TemplateD.get();
3562
3563 // Translate the parser's template argument list in our AST format.
3564 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3565 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3566
3567 // Determine the tag kind
3568 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3569 ElaboratedTypeKeyword Keyword
3570 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3571
3572 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3573 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3574 DTN->getQualifier(),
3575 DTN->getIdentifier(),
3576 TemplateArgs);
3577
3578 // Build type-source information.
3579 TypeLocBuilder TLB;
3580 DependentTemplateSpecializationTypeLoc SpecTL
3581 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3582 SpecTL.setElaboratedKeywordLoc(TagLoc);
3583 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3584 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3585 SpecTL.setTemplateNameLoc(TemplateLoc);
3586 SpecTL.setLAngleLoc(LAngleLoc);
3587 SpecTL.setRAngleLoc(RAngleLoc);
3588 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3589 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3590 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3591 }
3592
3593 if (TypeAliasTemplateDecl *TAT =
3594 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3595 // C++0x [dcl.type.elab]p2:
3596 // If the identifier resolves to a typedef-name or the simple-template-id
3597 // resolves to an alias template specialization, the
3598 // elaborated-type-specifier is ill-formed.
3599 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3600 << TAT << NTK_TypeAliasTemplate << TagKind;
3601 Diag(TAT->getLocation(), diag::note_declared_at);
3602 }
3603
3604 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3605 if (Result.isNull())
3606 return TypeResult(true);
3607
3608 // Check the tag kind
3609 if (const RecordType *RT = Result->getAs<RecordType>()) {
3610 RecordDecl *D = RT->getDecl();
3611
3612 IdentifierInfo *Id = D->getIdentifier();
3613 assert(Id && "templated class must have an identifier")((Id && "templated class must have an identifier") ? static_cast
<void> (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3613, __PRETTY_FUNCTION__))
;
3614
3615 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3616 TagLoc, Id)) {
3617 Diag(TagLoc, diag::err_use_with_wrong_tag)
3618 << Result
3619 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3620 Diag(D->getLocation(), diag::note_previous_use);
3621 }
3622 }
3623
3624 // Provide source-location information for the template specialization.
3625 TypeLocBuilder TLB;
3626 TemplateSpecializationTypeLoc SpecTL
3627 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3628 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3629 SpecTL.setTemplateNameLoc(TemplateLoc);
3630 SpecTL.setLAngleLoc(LAngleLoc);
3631 SpecTL.setRAngleLoc(RAngleLoc);
3632 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3633 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3634
3635 // Construct an elaborated type containing the nested-name-specifier (if any)
3636 // and tag keyword.
3637 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3638 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3639 ElabTL.setElaboratedKeywordLoc(TagLoc);
3640 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3641 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3642}
3643
3644static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3645 NamedDecl *PrevDecl,
3646 SourceLocation Loc,
3647 bool IsPartialSpecialization);
3648
3649static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3650
3651static bool isTemplateArgumentTemplateParameter(
3652 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3653 switch (Arg.getKind()) {
3654 case TemplateArgument::Null:
3655 case TemplateArgument::NullPtr:
3656 case TemplateArgument::Integral:
3657 case TemplateArgument::Declaration:
3658 case TemplateArgument::Pack:
3659 case TemplateArgument::TemplateExpansion:
3660 return false;
3661
3662 case TemplateArgument::Type: {
3663 QualType Type = Arg.getAsType();
3664 const TemplateTypeParmType *TPT =
3665 Arg.getAsType()->getAs<TemplateTypeParmType>();
3666 return TPT && !Type.hasQualifiers() &&
3667 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3668 }
3669
3670 case TemplateArgument::Expression: {
3671 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3672 if (!DRE || !DRE->getDecl())
3673 return false;
3674 const NonTypeTemplateParmDecl *NTTP =
3675 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3676 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3677 }
3678
3679 case TemplateArgument::Template:
3680 const TemplateTemplateParmDecl *TTP =
3681 dyn_cast_or_null<TemplateTemplateParmDecl>(
3682 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3683 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3684 }
3685 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3685)
;
3686}
3687
3688static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3689 ArrayRef<TemplateArgument> Args) {
3690 if (Params->size() != Args.size())
3691 return false;
3692
3693 unsigned Depth = Params->getDepth();
3694
3695 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3696 TemplateArgument Arg = Args[I];
3697
3698 // If the parameter is a pack expansion, the argument must be a pack
3699 // whose only element is a pack expansion.
3700 if (Params->getParam(I)->isParameterPack()) {
3701 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3702 !Arg.pack_begin()->isPackExpansion())
3703 return false;
3704 Arg = Arg.pack_begin()->getPackExpansionPattern();
3705 }
3706
3707 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3708 return false;
3709 }
3710
3711 return true;
3712}
3713
3714/// Convert the parser's template argument list representation into our form.
3715static TemplateArgumentListInfo
3716makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
3717 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
3718 TemplateId.RAngleLoc);
3719 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
3720 TemplateId.NumArgs);
3721 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
3722 return TemplateArgs;
3723}
3724
3725template<typename PartialSpecDecl>
3726static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3727 if (Partial->getDeclContext()->isDependentContext())
3728 return;
3729
3730 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3731 // for non-substitution-failure issues?
3732 TemplateDeductionInfo Info(Partial->getLocation());
3733 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3734 return;
3735
3736 auto *Template = Partial->getSpecializedTemplate();
3737 S.Diag(Partial->getLocation(),
3738 diag::ext_partial_spec_not_more_specialized_than_primary)
3739 << isa<VarTemplateDecl>(Template);
3740
3741 if (Info.hasSFINAEDiagnostic()) {
3742 PartialDiagnosticAt Diag = {SourceLocation(),
3743 PartialDiagnostic::NullDiagnostic()};
3744 Info.takeSFINAEDiagnostic(Diag);
3745 SmallString<128> SFINAEArgString;
3746 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3747 S.Diag(Diag.first,
3748 diag::note_partial_spec_not_more_specialized_than_primary)
3749 << SFINAEArgString;
3750 }
3751
3752 S.Diag(Template->getLocation(), diag::note_template_decl_here);
3753 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
3754 Template->getAssociatedConstraints(TemplateAC);
3755 Partial->getAssociatedConstraints(PartialAC);
3756 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
3757 TemplateAC);
3758}
3759
3760static void
3761noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3762 const llvm::SmallBitVector &DeducibleParams) {
3763 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3764 if (!DeducibleParams[I]) {
3765 NamedDecl *Param = TemplateParams->getParam(I);
3766 if (Param->getDeclName())
3767 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3768 << Param->getDeclName();
3769 else
3770 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3771 << "(anonymous)";
3772 }
3773 }
3774}
3775
3776
3777template<typename PartialSpecDecl>
3778static void checkTemplatePartialSpecialization(Sema &S,
3779 PartialSpecDecl *Partial) {
3780 // C++1z [temp.class.spec]p8: (DR1495)
3781 // - The specialization shall be more specialized than the primary
3782 // template (14.5.5.2).
3783 checkMoreSpecializedThanPrimary(S, Partial);
3784
3785 // C++ [temp.class.spec]p8: (DR1315)
3786 // - Each template-parameter shall appear at least once in the
3787 // template-id outside a non-deduced context.
3788 // C++1z [temp.class.spec.match]p3 (P0127R2)
3789 // If the template arguments of a partial specialization cannot be
3790 // deduced because of the structure of its template-parameter-list
3791 // and the template-id, the program is ill-formed.
3792 auto *TemplateParams = Partial->getTemplateParameters();
3793 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3794 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3795 TemplateParams->getDepth(), DeducibleParams);
3796
3797 if (!DeducibleParams.all()) {
3798 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3799 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3800 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3801 << (NumNonDeducible > 1)
3802 << SourceRange(Partial->getLocation(),
3803 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3804 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3805 }
3806}
3807
3808void Sema::CheckTemplatePartialSpecialization(
3809 ClassTemplatePartialSpecializationDecl *Partial) {
3810 checkTemplatePartialSpecialization(*this, Partial);
3811}
3812
3813void Sema::CheckTemplatePartialSpecialization(
3814 VarTemplatePartialSpecializationDecl *Partial) {
3815 checkTemplatePartialSpecialization(*this, Partial);
3816}
3817
3818void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3819 // C++1z [temp.param]p11:
3820 // A template parameter of a deduction guide template that does not have a
3821 // default-argument shall be deducible from the parameter-type-list of the
3822 // deduction guide template.
3823 auto *TemplateParams = TD->getTemplateParameters();
3824 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3825 MarkDeducedTemplateParameters(TD, DeducibleParams);
3826 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3827 // A parameter pack is deducible (to an empty pack).
3828 auto *Param = TemplateParams->getParam(I);
3829 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3830 DeducibleParams[I] = true;
3831 }
3832
3833 if (!DeducibleParams.all()) {
3834 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3835 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3836 << (NumNonDeducible > 1);
3837 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3838 }
3839}
3840
3841DeclResult Sema::ActOnVarTemplateSpecialization(
3842 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
3843 TemplateParameterList *TemplateParams, StorageClass SC,
3844 bool IsPartialSpecialization) {
3845 // D must be variable template id.
3846 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&((D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3847, __PRETTY_FUNCTION__))
3847 "Variable template specialization is declared with a template it.")((D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 3847, __PRETTY_FUNCTION__))
;
3848
3849 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3850 TemplateArgumentListInfo TemplateArgs =
3851 makeTemplateArgumentListInfo(*this, *TemplateId);
3852 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3853 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3854 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3855
3856 TemplateName Name = TemplateId->Template.get();
3857
3858 // The template-id must name a variable template.
3859 VarTemplateDecl *VarTemplate =
3860 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3861 if (!VarTemplate) {
3862 NamedDecl *FnTemplate;
3863 if (auto *OTS = Name.getAsOverloadedTemplate())
3864 FnTemplate = *OTS->begin();
3865 else
3866 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3867 if (FnTemplate)
3868 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3869 << FnTemplate->getDeclName();
3870 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3871 << IsPartialSpecialization;
3872 }
3873
3874 // Check for unexpanded parameter packs in any of the template arguments.
3875 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3876 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3877 UPPC_PartialSpecialization))
3878 return true;
3879
3880 // Check that the template argument list is well-formed for this
3881 // template.
3882 SmallVector<TemplateArgument, 4> Converted;
3883 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3884 false, Converted,
3885 /*UpdateArgsWithConversion=*/true))
3886 return true;
3887
3888 // Find the variable template (partial) specialization declaration that
3889 // corresponds to these arguments.
3890 if (IsPartialSpecialization) {
3891 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3892 TemplateArgs.size(), Converted))
3893 return true;
3894
3895 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
3896 // also do them during instantiation.
3897 bool InstantiationDependent;
3898 if (!Name.isDependent() &&
3899 !TemplateSpecializationType::anyDependentTemplateArguments(
3900 TemplateArgs.arguments(),
3901 InstantiationDependent)) {
3902 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3903 << VarTemplate->getDeclName();
3904 IsPartialSpecialization = false;
3905 }
3906
3907 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
3908 Converted) &&
3909 (!Context.getLangOpts().ConceptsTS ||
3910 !TemplateParams->hasAssociatedConstraints())) {
3911 // C++ [temp.class.spec]p9b3:
3912 //
3913 // -- The argument list of the specialization shall not be identical
3914 // to the implicit argument list of the primary template.
3915 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3916 << /*variable template*/ 1
3917 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
3918 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3919 // FIXME: Recover from this by treating the declaration as a redeclaration
3920 // of the primary template.
3921 return true;
3922 }
3923 }
3924
3925 void *InsertPos = nullptr;
3926 VarTemplateSpecializationDecl *PrevDecl = nullptr;
3927
3928 if (IsPartialSpecialization)
3929 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
3930 InsertPos);
3931 else
3932 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
3933
3934 VarTemplateSpecializationDecl *Specialization = nullptr;
3935
3936 // Check whether we can declare a variable template specialization in
3937 // the current scope.
3938 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
3939 TemplateNameLoc,
3940 IsPartialSpecialization))
3941 return true;
3942
3943 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3944 // Since the only prior variable template specialization with these
3945 // arguments was referenced but not declared, reuse that
3946 // declaration node as our own, updating its source location and
3947 // the list of outer template parameters to reflect our new declaration.
3948 Specialization = PrevDecl;
3949 Specialization->setLocation(TemplateNameLoc);
3950 PrevDecl = nullptr;
3951 } else if (IsPartialSpecialization) {
3952 // Create a new class template partial specialization declaration node.
3953 VarTemplatePartialSpecializationDecl *PrevPartial =
3954 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
3955 VarTemplatePartialSpecializationDecl *Partial =
3956 VarTemplatePartialSpecializationDecl::Create(
3957 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
3958 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
3959 Converted, TemplateArgs);
3960
3961 if (!PrevPartial)
3962 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
3963 Specialization = Partial;
3964
3965 // If we are providing an explicit specialization of a member variable
3966 // template specialization, make a note of that.
3967 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3968 PrevPartial->setMemberSpecialization();
3969
3970 CheckTemplatePartialSpecialization(Partial);
3971 } else {
3972 // Create a new class template specialization declaration node for
3973 // this explicit specialization or friend declaration.
3974 Specialization = VarTemplateSpecializationDecl::Create(
3975 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
3976 VarTemplate, DI->getType(), DI, SC, Converted);
3977 Specialization->setTemplateArgsInfo(TemplateArgs);
3978
3979 if (!PrevDecl)
3980 VarTemplate->AddSpecialization(Specialization, InsertPos);
3981 }
3982
3983 // C++ [temp.expl.spec]p6:
3984 // If a template, a member template or the member of a class template is
3985 // explicitly specialized then that specialization shall be declared
3986 // before the first use of that specialization that would cause an implicit
3987 // instantiation to take place, in every translation unit in which such a
3988 // use occurs; no diagnostic is required.
3989 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3990 bool Okay = false;
3991 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
3992 // Is there any previous explicit specialization declaration?
3993 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3994 Okay = true;
3995 break;
3996 }
3997 }
3998
3999 if (!Okay) {
4000 SourceRange Range(TemplateNameLoc, RAngleLoc);
4001 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4002 << Name << Range;
4003
4004 Diag(PrevDecl->getPointOfInstantiation(),
4005 diag::note_instantiation_required_here)
4006 << (PrevDecl->getTemplateSpecializationKind() !=
4007 TSK_ImplicitInstantiation);
4008 return true;
4009 }
4010 }
4011
4012 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4013 Specialization->setLexicalDeclContext(CurContext);
4014
4015 // Add the specialization into its lexical context, so that it can
4016 // be seen when iterating through the list of declarations in that
4017 // context. However, specializations are not found by name lookup.
4018 CurContext->addDecl(Specialization);
4019
4020 // Note that this is an explicit specialization.
4021 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4022
4023 if (PrevDecl) {
4024 // Check that this isn't a redefinition of this specialization,
4025 // merging with previous declarations.
4026 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4027 forRedeclarationInCurContext());
4028 PrevSpec.addDecl(PrevDecl);
4029 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4030 } else if (Specialization->isStaticDataMember() &&
4031 Specialization->isOutOfLine()) {
4032 Specialization->setAccess(VarTemplate->getAccess());
4033 }
4034
4035 return Specialization;
4036}
4037
4038namespace {
4039/// A partial specialization whose template arguments have matched
4040/// a given template-id.
4041struct PartialSpecMatchResult {
4042 VarTemplatePartialSpecializationDecl *Partial;
4043 TemplateArgumentList *Args;
4044};
4045} // end anonymous namespace
4046
4047DeclResult
4048Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4049 SourceLocation TemplateNameLoc,
4050 const TemplateArgumentListInfo &TemplateArgs) {
4051 assert(Template && "A variable template id without template?")((Template && "A variable template id without template?"
) ? static_cast<void> (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4051, __PRETTY_FUNCTION__))
;
4052
4053 // Check that the template argument list is well-formed for this template.
4054 SmallVector<TemplateArgument, 4> Converted;
4055 if (CheckTemplateArgumentList(
4056 Template, TemplateNameLoc,
4057 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4058 Converted, /*UpdateArgsWithConversion=*/true))
4059 return true;
4060
4061 // Find the variable template specialization declaration that
4062 // corresponds to these arguments.
4063 void *InsertPos = nullptr;
4064 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4065 Converted, InsertPos)) {
4066 checkSpecializationVisibility(TemplateNameLoc, Spec);
4067 // If we already have a variable template specialization, return it.
4068 return Spec;
4069 }
4070
4071 // This is the first time we have referenced this variable template
4072 // specialization. Create the canonical declaration and add it to
4073 // the set of specializations, based on the closest partial specialization
4074 // that it represents. That is,
4075 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4076 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4077 Converted);
4078 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4079 bool AmbiguousPartialSpec = false;
4080 typedef PartialSpecMatchResult MatchResult;
4081 SmallVector<MatchResult, 4> Matched;
4082 SourceLocation PointOfInstantiation = TemplateNameLoc;
4083 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4084 /*ForTakingAddress=*/false);
4085
4086 // 1. Attempt to find the closest partial specialization that this
4087 // specializes, if any.
4088 // If any of the template arguments is dependent, then this is probably
4089 // a placeholder for an incomplete declarative context; which must be
4090 // complete by instantiation time. Thus, do not search through the partial
4091 // specializations yet.
4092 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4093 // Perhaps better after unification of DeduceTemplateArguments() and
4094 // getMoreSpecializedPartialSpecialization().
4095 bool InstantiationDependent = false;
4096 if (!TemplateSpecializationType::anyDependentTemplateArguments(
4097 TemplateArgs, InstantiationDependent)) {
4098
4099 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4100 Template->getPartialSpecializations(PartialSpecs);
4101
4102 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4103 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4104 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4105
4106 if (TemplateDeductionResult Result =
4107 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4108 // Store the failed-deduction information for use in diagnostics, later.
4109 // TODO: Actually use the failed-deduction info?
4110 FailedCandidates.addCandidate().set(
4111 DeclAccessPair::make(Template, AS_public), Partial,
4112 MakeDeductionFailureInfo(Context, Result, Info));
4113 (void)Result;
4114 } else {
4115 Matched.push_back(PartialSpecMatchResult());
4116 Matched.back().Partial = Partial;
4117 Matched.back().Args = Info.take();
4118 }
4119 }
4120
4121 if (Matched.size() >= 1) {
4122 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4123 if (Matched.size() == 1) {
4124 // -- If exactly one matching specialization is found, the
4125 // instantiation is generated from that specialization.
4126 // We don't need to do anything for this.
4127 } else {
4128 // -- If more than one matching specialization is found, the
4129 // partial order rules (14.5.4.2) are used to determine
4130 // whether one of the specializations is more specialized
4131 // than the others. If none of the specializations is more
4132 // specialized than all of the other matching
4133 // specializations, then the use of the variable template is
4134 // ambiguous and the program is ill-formed.
4135 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4136 PEnd = Matched.end();
4137 P != PEnd; ++P) {
4138 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4139 PointOfInstantiation) ==
4140 P->Partial)
4141 Best = P;
4142 }
4143
4144 // Determine if the best partial specialization is more specialized than
4145 // the others.
4146 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4147 PEnd = Matched.end();
4148 P != PEnd; ++P) {
4149 if (P != Best && getMoreSpecializedPartialSpecialization(
4150 P->Partial, Best->Partial,
4151 PointOfInstantiation) != Best->Partial) {
4152 AmbiguousPartialSpec = true;
4153 break;
4154 }
4155 }
4156 }
4157
4158 // Instantiate using the best variable template partial specialization.
4159 InstantiationPattern = Best->Partial;
4160 InstantiationArgs = Best->Args;
4161 } else {
4162 // -- If no match is found, the instantiation is generated
4163 // from the primary template.
4164 // InstantiationPattern = Template->getTemplatedDecl();
4165 }
4166 }
4167
4168 // 2. Create the canonical declaration.
4169 // Note that we do not instantiate a definition until we see an odr-use
4170 // in DoMarkVarDeclReferenced().
4171 // FIXME: LateAttrs et al.?
4172 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4173 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4174 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
4175 if (!Decl)
4176 return true;
4177
4178 if (AmbiguousPartialSpec) {
4179 // Partial ordering did not produce a clear winner. Complain.
4180 Decl->setInvalidDecl();
4181 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4182 << Decl;
4183
4184 // Print the matching partial specializations.
4185 for (MatchResult P : Matched)
4186 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4187 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4188 *P.Args);
4189 return true;
4190 }
4191
4192 if (VarTemplatePartialSpecializationDecl *D =
4193 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4194 Decl->setInstantiationOf(D, InstantiationArgs);
4195
4196 checkSpecializationVisibility(TemplateNameLoc, Decl);
4197
4198 assert(Decl && "No variable template specialization?")((Decl && "No variable template specialization?") ? static_cast
<void> (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4198, __PRETTY_FUNCTION__))
;
4199 return Decl;
4200}
4201
4202ExprResult
4203Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4204 const DeclarationNameInfo &NameInfo,
4205 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4206 const TemplateArgumentListInfo *TemplateArgs) {
4207
4208 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4209 *TemplateArgs);
4210 if (Decl.isInvalid())
4211 return ExprError();
4212
4213 VarDecl *Var = cast<VarDecl>(Decl.get());
4214 if (!Var->getTemplateSpecializationKind())
4215 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4216 NameInfo.getLoc());
4217
4218 // Build an ordinary singleton decl ref.
4219 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4220 /*FoundD=*/nullptr, TemplateArgs);
4221}
4222
4223void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4224 SourceLocation Loc) {
4225 Diag(Loc, diag::err_template_missing_args)
4226 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4227 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4228 Diag(TD->getLocation(), diag::note_template_decl_here)
4229 << TD->getTemplateParameters()->getSourceRange();
4230 }
4231}
4232
4233ExprResult
4234Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4235 SourceLocation TemplateKWLoc,
4236 SourceLocation ConceptNameLoc,
4237 NamedDecl *FoundDecl,
4238 ConceptDecl *NamedConcept,
4239 const TemplateArgumentListInfo *TemplateArgs) {
4240 assert(NamedConcept && "A concept template id without a template?")((NamedConcept && "A concept template id without a template?"
) ? static_cast<void> (0) : __assert_fail ("NamedConcept && \"A concept template id without a template?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4240, __PRETTY_FUNCTION__))
;
4241
4242 llvm::SmallVector<TemplateArgument, 4> Converted;
4243 if (CheckTemplateArgumentList(NamedConcept, ConceptNameLoc,
4244 const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4245 /*PartialTemplateArgs=*/false, Converted,
4246 /*UpdateArgsWithConversion=*/false))
4247 return ExprError();
4248
4249 ConstraintSatisfaction Satisfaction;
4250 bool AreArgsDependent = false;
4251 for (TemplateArgument &Arg : Converted) {
4252 if (Arg.isDependent()) {
4253 AreArgsDependent = true;
4254 break;
4255 }
4256 }
4257 if (!AreArgsDependent &&
4258 CheckConstraintSatisfaction(NamedConcept,
4259 {NamedConcept->getConstraintExpr()},
4260 Converted,
4261 SourceRange(SS.isSet() ? SS.getBeginLoc() :
4262 ConceptNameLoc,
4263 TemplateArgs->getRAngleLoc()),
4264 Satisfaction))
4265 return ExprError();
4266
4267 return ConceptSpecializationExpr::Create(Context,
4268 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4269 TemplateKWLoc, ConceptNameLoc, FoundDecl, NamedConcept,
4270 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4271 AreArgsDependent ? nullptr : &Satisfaction);
4272}
4273
4274ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4275 SourceLocation TemplateKWLoc,
4276 LookupResult &R,
4277 bool RequiresADL,
4278 const TemplateArgumentListInfo *TemplateArgs) {
4279 // FIXME: Can we do any checking at this point? I guess we could check the
4280 // template arguments that we have against the template name, if the template
4281 // name refers to a single template. That's not a terribly common case,
4282 // though.
4283 // foo<int> could identify a single function unambiguously
4284 // This approach does NOT work, since f<int>(1);
4285 // gets resolved prior to resorting to overload resolution
4286 // i.e., template<class T> void f(double);
4287 // vs template<class T, class U> void f(U);
4288
4289 // These should be filtered out by our callers.
4290 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")((!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4290, __PRETTY_FUNCTION__))
;
4291
4292 // Non-function templates require a template argument list.
4293 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4294 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4295 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4296 return ExprError();
4297 }
4298 }
4299
4300 auto AnyDependentArguments = [&]() -> bool {
4301 bool InstantiationDependent;
4302 return TemplateArgs &&
4303 TemplateSpecializationType::anyDependentTemplateArguments(
4304 *TemplateArgs, InstantiationDependent);
4305 };
4306
4307 // In C++1y, check variable template ids.
4308 if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) {
4309 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
4310 R.getAsSingle<VarTemplateDecl>(),
4311 TemplateKWLoc, TemplateArgs);
4312 }
4313
4314 if (R.getAsSingle<ConceptDecl>()) {
4315 return CheckConceptTemplateId(SS, TemplateKWLoc,
4316 R.getLookupNameInfo().getBeginLoc(),
4317 R.getFoundDecl(),
4318 R.getAsSingle<ConceptDecl>(), TemplateArgs);
4319 }
4320
4321 // We don't want lookup warnings at this point.
4322 R.suppressDiagnostics();
4323
4324 UnresolvedLookupExpr *ULE
4325 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4326 SS.getWithLocInContext(Context),
4327 TemplateKWLoc,
4328 R.getLookupNameInfo(),
4329 RequiresADL, TemplateArgs,
4330 R.begin(), R.end());
4331
4332 return ULE;
4333}
4334
4335// We actually only call this from template instantiation.
4336ExprResult
4337Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4338 SourceLocation TemplateKWLoc,
4339 const DeclarationNameInfo &NameInfo,
4340 const TemplateArgumentListInfo *TemplateArgs) {
4341
4342 assert(TemplateArgs || TemplateKWLoc.isValid())((TemplateArgs || TemplateKWLoc.isValid()) ? static_cast<void
> (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4342, __PRETTY_FUNCTION__))
;
4343 DeclContext *DC;
4344 if (!(DC = computeDeclContext(SS, false)) ||
4345 DC->isDependentContext() ||
4346 RequireCompleteDeclContext(SS, DC))
4347 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4348
4349 bool MemberOfUnknownSpecialization;
4350 LookupResult R(*this, NameInfo, LookupOrdinaryName);
4351 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4352 /*Entering*/false, MemberOfUnknownSpecialization,
4353 TemplateKWLoc))
4354 return ExprError();
4355
4356 if (R.isAmbiguous())
4357 return ExprError();
4358
4359 if (R.empty()) {
4360 Diag(NameInfo.getLoc(), diag::err_no_member)
4361 << NameInfo.getName() << DC << SS.getRange();
4362 return ExprError();
4363 }
4364
4365 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4366 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4367 << SS.getScopeRep()
4368 << NameInfo.getName().getAsString() << SS.getRange();
4369 Diag(Temp->getLocation(), diag::note_referenced_class_template);
4370 return ExprError();
4371 }
4372
4373 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4374}
4375
4376/// Form a dependent template name.
4377///
4378/// This action forms a dependent template name given the template
4379/// name and its (presumably dependent) scope specifier. For
4380/// example, given "MetaFun::template apply", the scope specifier \p
4381/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
4382/// of the "template" keyword, and "apply" is the \p Name.
4383TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
4384 CXXScopeSpec &SS,
4385 SourceLocation TemplateKWLoc,
4386 const UnqualifiedId &Name,
4387 ParsedType ObjectType,
4388 bool EnteringContext,
4389 TemplateTy &Result,
4390 bool AllowInjectedClassName) {
4391 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4392 Diag(TemplateKWLoc,
4393 getLangOpts().CPlusPlus11 ?
4394 diag::warn_cxx98_compat_template_outside_of_template :
4395 diag::ext_template_outside_of_template)
4396 << FixItHint::CreateRemoval(TemplateKWLoc);
4397
4398 DeclContext *LookupCtx = nullptr;
4399 if (SS.isSet())
4400 LookupCtx = computeDeclContext(SS, EnteringContext);
4401 if (!LookupCtx && ObjectType)
4402 LookupCtx = computeDeclContext(ObjectType.get());
4403 if (LookupCtx) {
4404 // C++0x [temp.names]p5:
4405 // If a name prefixed by the keyword template is not the name of
4406 // a template, the program is ill-formed. [Note: the keyword
4407 // template may not be applied to non-template members of class
4408 // templates. -end note ] [ Note: as is the case with the
4409 // typename prefix, the template prefix is allowed in cases
4410 // where it is not strictly necessary; i.e., when the
4411 // nested-name-specifier or the expression on the left of the ->
4412 // or . is not dependent on a template-parameter, or the use
4413 // does not appear in the scope of a template. -end note]
4414 //
4415 // Note: C++03 was more strict here, because it banned the use of
4416 // the "template" keyword prior to a template-name that was not a
4417 // dependent name. C++ DR468 relaxed this requirement (the
4418 // "template" keyword is now permitted). We follow the C++0x
4419 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4420 bool MemberOfUnknownSpecialization;
4421 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4422 ObjectType, EnteringContext, Result,
4423 MemberOfUnknownSpecialization);
4424 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) {
4425 // This is a dependent template. Handle it below.
4426 } else if (TNK == TNK_Non_template) {
4427 // Do the lookup again to determine if this is a "nothing found" case or
4428 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4429 // need to do this.
4430 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4431 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4432 LookupOrdinaryName);
4433 bool MOUS;
4434 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext,
4435 MOUS, TemplateKWLoc) && !R.isAmbiguous())
4436 Diag(Name.getBeginLoc(), diag::err_no_member)
4437 << DNI.getName() << LookupCtx << SS.getRange();
4438 return TNK_Non_template;
4439 } else {
4440 // We found something; return it.
4441 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
4442 if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
4443 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4444 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4445 // C++14 [class.qual]p2:
4446 // In a lookup in which function names are not ignored and the
4447 // nested-name-specifier nominates a class C, if the name specified
4448 // [...] is the injected-class-name of C, [...] the name is instead
4449 // considered to name the constructor
4450 //
4451 // We don't get here if naming the constructor would be valid, so we
4452 // just reject immediately and recover by treating the
4453 // injected-class-name as naming the template.
4454 Diag(Name.getBeginLoc(),
4455 diag::ext_out_of_line_qualified_id_type_names_constructor)
4456 << Name.Identifier
4457 << 0 /*injected-class-name used as template name*/
4458 << 1 /*'template' keyword was used*/;
4459 }
4460 return TNK;
4461 }
4462 }
4463
4464 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4465
4466 switch (Name.getKind()) {
4467 case UnqualifiedIdKind::IK_Identifier:
4468 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4469 Name.Identifier));
4470 return TNK_Dependent_template_name;
4471
4472 case UnqualifiedIdKind::IK_OperatorFunctionId:
4473 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4474 Name.OperatorFunctionId.Operator));
4475 return TNK_Function_template;
4476
4477 case UnqualifiedIdKind::IK_LiteralOperatorId:
4478 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4478)
;
4479
4480 default:
4481 break;
4482 }
4483
4484 Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template)
4485 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4486 << TemplateKWLoc;
4487 return TNK_Non_template;
4488}
4489
4490bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4491 TemplateArgumentLoc &AL,
4492 SmallVectorImpl<TemplateArgument> &Converted) {
4493 const TemplateArgument &Arg = AL.getArgument();
4494 QualType ArgType;
4495 TypeSourceInfo *TSI = nullptr;
4496
4497 // Check template type parameter.
4498 switch(Arg.getKind()) {
4499 case TemplateArgument::Type:
4500 // C++ [temp.arg.type]p1:
4501 // A template-argument for a template-parameter which is a
4502 // type shall be a type-id.
4503 ArgType = Arg.getAsType();
4504 TSI = AL.getTypeSourceInfo();
4505 break;
4506 case TemplateArgument::Template:
4507 case TemplateArgument::TemplateExpansion: {
4508 // We have a template type parameter but the template argument
4509 // is a template without any arguments.
4510 SourceRange SR = AL.getSourceRange();
4511 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4512 diagnoseMissingTemplateArguments(Name, SR.getEnd());
4513 return true;
4514 }
4515 case TemplateArgument::Expression: {
4516 // We have a template type parameter but the template argument is an
4517 // expression; see if maybe it is missing the "typename" keyword.
4518 CXXScopeSpec SS;
4519 DeclarationNameInfo NameInfo;
4520
4521 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
4522 SS.Adopt(ArgExpr->getQualifierLoc());
4523 NameInfo = ArgExpr->getNameInfo();
4524 } else if (DependentScopeDeclRefExpr *ArgExpr =
4525 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4526 SS.Adopt(ArgExpr->getQualifierLoc());
4527 NameInfo = ArgExpr->getNameInfo();
4528 } else if (CXXDependentScopeMemberExpr *ArgExpr =
4529 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4530 if (ArgExpr->isImplicitAccess()) {
4531 SS.Adopt(ArgExpr->getQualifierLoc());
4532 NameInfo = ArgExpr->getMemberNameInfo();
4533 }
4534 }
4535
4536 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4537 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4538 LookupParsedName(Result, CurScope, &SS);
4539
4540 if (Result.getAsSingle<TypeDecl>() ||
4541 Result.getResultKind() ==
4542 LookupResult::NotFoundInCurrentInstantiation) {
4543 // Suggest that the user add 'typename' before the NNS.
4544 SourceLocation Loc = AL.getSourceRange().getBegin();
4545 Diag(Loc, getLangOpts().MSVCCompat
4546 ? diag::ext_ms_template_type_arg_missing_typename
4547 : diag::err_template_arg_must_be_type_suggest)
4548 << FixItHint::CreateInsertion(Loc, "typename ");
4549 Diag(Param->getLocation(), diag::note_template_param_here);
4550
4551 // Recover by synthesizing a type using the location information that we
4552 // already have.
4553 ArgType =
4554 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4555 TypeLocBuilder TLB;
4556 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4557 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4558 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4559 TL.setNameLoc(NameInfo.getLoc());
4560 TSI = TLB.getTypeSourceInfo(Context, ArgType);
4561
4562 // Overwrite our input TemplateArgumentLoc so that we can recover
4563 // properly.
4564 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4565 TemplateArgumentLocInfo(TSI));
4566
4567 break;
4568 }
4569 }
4570 // fallthrough
4571 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4572 }
4573 default: {
4574 // We have a template type parameter but the template argument
4575 // is not a type.
4576 SourceRange SR = AL.getSourceRange();
4577 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4578 Diag(Param->getLocation(), diag::note_template_param_here);
4579
4580 return true;
4581 }
4582 }
4583
4584 if (CheckTemplateArgument(Param, TSI))
4585 return true;
4586
4587 // Add the converted template type argument.
4588 ArgType = Context.getCanonicalType(ArgType);
4589
4590 // Objective-C ARC:
4591 // If an explicitly-specified template argument type is a lifetime type
4592 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4593 if (getLangOpts().ObjCAutoRefCount &&
4594 ArgType->isObjCLifetimeType() &&
4595 !ArgType.getObjCLifetime()) {
4596 Qualifiers Qs;
4597 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4598 ArgType = Context.getQualifiedType(ArgType, Qs);
4599 }
4600
4601 Converted.push_back(TemplateArgument(ArgType));
4602 return false;
4603}
4604
4605/// Substitute template arguments into the default template argument for
4606/// the given template type parameter.
4607///
4608/// \param SemaRef the semantic analysis object for which we are performing
4609/// the substitution.
4610///
4611/// \param Template the template that we are synthesizing template arguments
4612/// for.
4613///
4614/// \param TemplateLoc the location of the template name that started the
4615/// template-id we are checking.
4616///
4617/// \param RAngleLoc the location of the right angle bracket ('>') that
4618/// terminates the template-id.
4619///
4620/// \param Param the template template parameter whose default we are
4621/// substituting into.
4622///
4623/// \param Converted the list of template arguments provided for template
4624/// parameters that precede \p Param in the template parameter list.
4625/// \returns the substituted template argument, or NULL if an error occurred.
4626static TypeSourceInfo *
4627SubstDefaultTemplateArgument(Sema &SemaRef,
4628 TemplateDecl *Template,
4629 SourceLocation TemplateLoc,
4630 SourceLocation RAngleLoc,
4631 TemplateTypeParmDecl *Param,
4632 SmallVectorImpl<TemplateArgument> &Converted) {
4633 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4634
4635 // If the argument type is dependent, instantiate it now based
4636 // on the previously-computed template arguments.
4637 if (ArgType->getType()->isInstantiationDependentType()) {
4638 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4639 Param, Template, Converted,
4640 SourceRange(TemplateLoc, RAngleLoc));
4641 if (Inst.isInvalid())
4642 return nullptr;
4643
4644 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4645
4646 // Only substitute for the innermost template argument list.
4647 MultiLevelTemplateArgumentList TemplateArgLists;
4648 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4649 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4650 TemplateArgLists.addOuterTemplateArguments(None);
4651
4652 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4653 ArgType =
4654 SemaRef.SubstType(ArgType, TemplateArgLists,
4655 Param->getDefaultArgumentLoc(), Param->getDeclName());
4656 }
4657
4658 return ArgType;
4659}
4660
4661/// Substitute template arguments into the default template argument for
4662/// the given non-type template parameter.
4663///
4664/// \param SemaRef the semantic analysis object for which we are performing
4665/// the substitution.
4666///
4667/// \param Template the template that we are synthesizing template arguments
4668/// for.
4669///
4670/// \param TemplateLoc the location of the template name that started the
4671/// template-id we are checking.
4672///
4673/// \param RAngleLoc the location of the right angle bracket ('>') that
4674/// terminates the template-id.
4675///
4676/// \param Param the non-type template parameter whose default we are
4677/// substituting into.
4678///
4679/// \param Converted the list of template arguments provided for template
4680/// parameters that precede \p Param in the template parameter list.
4681///
4682/// \returns the substituted template argument, or NULL if an error occurred.
4683static ExprResult
4684SubstDefaultTemplateArgument(Sema &SemaRef,
4685 TemplateDecl *Template,
4686 SourceLocation TemplateLoc,
4687 SourceLocation RAngleLoc,
4688 NonTypeTemplateParmDecl *Param,
4689 SmallVectorImpl<TemplateArgument> &Converted) {
4690 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4691 Param, Template, Converted,
4692 SourceRange(TemplateLoc, RAngleLoc));
4693 if (Inst.isInvalid())
4694 return ExprError();
4695
4696 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4697
4698 // Only substitute for the innermost template argument list.
4699 MultiLevelTemplateArgumentList TemplateArgLists;
4700 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4701 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4702 TemplateArgLists.addOuterTemplateArguments(None);
4703
4704 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4705 EnterExpressionEvaluationContext ConstantEvaluated(
4706 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4707 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4708}
4709
4710/// Substitute template arguments into the default template argument for
4711/// the given template template parameter.
4712///
4713/// \param SemaRef the semantic analysis object for which we are performing
4714/// the substitution.
4715///
4716/// \param Template the template that we are synthesizing template arguments
4717/// for.
4718///
4719/// \param TemplateLoc the location of the template name that started the
4720/// template-id we are checking.
4721///
4722/// \param RAngleLoc the location of the right angle bracket ('>') that
4723/// terminates the template-id.
4724///
4725/// \param Param the template template parameter whose default we are
4726/// substituting into.
4727///
4728/// \param Converted the list of template arguments provided for template
4729/// parameters that precede \p Param in the template parameter list.
4730///
4731/// \param QualifierLoc Will be set to the nested-name-specifier (with
4732/// source-location information) that precedes the template name.
4733///
4734/// \returns the substituted template argument, or NULL if an error occurred.
4735static TemplateName
4736SubstDefaultTemplateArgument(Sema &SemaRef,
4737 TemplateDecl *Template,
4738 SourceLocation TemplateLoc,
4739 SourceLocation RAngleLoc,
4740 TemplateTemplateParmDecl *Param,
4741 SmallVectorImpl<TemplateArgument> &Converted,
4742 NestedNameSpecifierLoc &QualifierLoc) {
4743 Sema::InstantiatingTemplate Inst(
4744 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4745 SourceRange(TemplateLoc, RAngleLoc));
4746 if (Inst.isInvalid())
4747 return TemplateName();
4748
4749 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4750
4751 // Only substitute for the innermost template argument list.
4752 MultiLevelTemplateArgumentList TemplateArgLists;
4753 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4754 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4755 TemplateArgLists.addOuterTemplateArguments(None);
4756
4757 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4758 // Substitute into the nested-name-specifier first,
4759 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4760 if (QualifierLoc) {
4761 QualifierLoc =
4762 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4763 if (!QualifierLoc)
4764 return TemplateName();
4765 }
4766
4767 return SemaRef.SubstTemplateName(
4768 QualifierLoc,
4769 Param->getDefaultArgument().getArgument().getAsTemplate(),
4770 Param->getDefaultArgument().getTemplateNameLoc(),
4771 TemplateArgLists);
4772}
4773
4774/// If the given template parameter has a default template
4775/// argument, substitute into that default template argument and
4776/// return the corresponding template argument.
4777TemplateArgumentLoc
4778Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
4779 SourceLocation TemplateLoc,
4780 SourceLocation RAngleLoc,
4781 Decl *Param,
4782 SmallVectorImpl<TemplateArgument>
4783 &Converted,
4784 bool &HasDefaultArg) {
4785 HasDefaultArg = false;
4786
4787 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4788 if (!hasVisibleDefaultArgument(TypeParm))
4789 return TemplateArgumentLoc();
4790
4791 HasDefaultArg = true;
4792 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
4793 TemplateLoc,
4794 RAngleLoc,
4795 TypeParm,
4796 Converted);
4797 if (DI)
4798 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4799
4800 return TemplateArgumentLoc();
4801 }
4802
4803 if (NonTypeTemplateParmDecl *NonTypeParm
4804 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4805 if (!hasVisibleDefaultArgument(NonTypeParm))
4806 return TemplateArgumentLoc();
4807
4808 HasDefaultArg = true;
4809 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
4810 TemplateLoc,
4811 RAngleLoc,
4812 NonTypeParm,
4813 Converted);
4814 if (Arg.isInvalid())
4815 return TemplateArgumentLoc();
4816
4817 Expr *ArgE = Arg.getAs<Expr>();
4818 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
4819 }
4820
4821 TemplateTemplateParmDecl *TempTempParm
4822 = cast<TemplateTemplateParmDecl>(Param);
4823 if (!hasVisibleDefaultArgument(TempTempParm))
4824 return TemplateArgumentLoc();
4825
4826 HasDefaultArg = true;
4827 NestedNameSpecifierLoc QualifierLoc;
4828 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
4829 TemplateLoc,
4830 RAngleLoc,
4831 TempTempParm,
4832 Converted,
4833 QualifierLoc);
4834 if (TName.isNull())
4835 return TemplateArgumentLoc();
4836
4837 return TemplateArgumentLoc(TemplateArgument(TName),
4838 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4839 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4840}
4841
4842/// Convert a template-argument that we parsed as a type into a template, if
4843/// possible. C++ permits injected-class-names to perform dual service as
4844/// template template arguments and as template type arguments.
4845static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
4846 // Extract and step over any surrounding nested-name-specifier.
4847 NestedNameSpecifierLoc QualLoc;
4848 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4849 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
4850 return TemplateArgumentLoc();
4851
4852 QualLoc = ETLoc.getQualifierLoc();
4853 TLoc = ETLoc.getNamedTypeLoc();
4854 }
4855
4856 // If this type was written as an injected-class-name, it can be used as a
4857 // template template argument.
4858 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4859 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
4860 QualLoc, InjLoc.getNameLoc());
4861
4862 // If this type was written as an injected-class-name, it may have been
4863 // converted to a RecordType during instantiation. If the RecordType is
4864 // *not* wrapped in a TemplateSpecializationType and denotes a class
4865 // template specialization, it must have come from an injected-class-name.
4866 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4867 if (auto *CTSD =
4868 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4869 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
4870 QualLoc, RecLoc.getNameLoc());
4871
4872 return TemplateArgumentLoc();
4873}
4874
4875/// Check that the given template argument corresponds to the given
4876/// template parameter.
4877///
4878/// \param Param The template parameter against which the argument will be
4879/// checked.
4880///
4881/// \param Arg The template argument, which may be updated due to conversions.
4882///
4883/// \param Template The template in which the template argument resides.
4884///
4885/// \param TemplateLoc The location of the template name for the template
4886/// whose argument list we're matching.
4887///
4888/// \param RAngleLoc The location of the right angle bracket ('>') that closes
4889/// the template argument list.
4890///
4891/// \param ArgumentPackIndex The index into the argument pack where this
4892/// argument will be placed. Only valid if the parameter is a parameter pack.
4893///
4894/// \param Converted The checked, converted argument will be added to the
4895/// end of this small vector.
4896///
4897/// \param CTAK Describes how we arrived at this particular template argument:
4898/// explicitly written, deduced, etc.
4899///
4900/// \returns true on error, false otherwise.
4901bool Sema::CheckTemplateArgument(NamedDecl *Param,
4902 TemplateArgumentLoc &Arg,
4903 NamedDecl *Template,
4904 SourceLocation TemplateLoc,
4905 SourceLocation RAngleLoc,
4906 unsigned ArgumentPackIndex,
4907 SmallVectorImpl<TemplateArgument> &Converted,
4908 CheckTemplateArgumentKind CTAK) {
4909 // Check template type parameters.
4910 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4911 return CheckTemplateTypeArgument(TTP, Arg, Converted);
4912
4913 // Check non-type template parameters.
4914 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4915 // Do substitution on the type of the non-type template parameter
4916 // with the template arguments we've seen thus far. But if the
4917 // template has a dependent context then we cannot substitute yet.
4918 QualType NTTPType = NTTP->getType();
4919 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
4920 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
4921
4922 if (NTTPType->isInstantiationDependentType() &&
4923 !isa<TemplateTemplateParmDecl>(Template) &&
4924 !Template->getDeclContext()->isDependentContext()) {
4925 // Do substitution on the type of the non-type template parameter.
4926 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4927 NTTP, Converted,
4928 SourceRange(TemplateLoc, RAngleLoc));
4929 if (Inst.isInvalid())
4930 return true;
4931
4932 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
4933 Converted);
4934
4935 // If the parameter is a pack expansion, expand this slice of the pack.
4936 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
4937 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
4938 ArgumentPackIndex);
4939 NTTPType = SubstType(PET->getPattern(),
4940 MultiLevelTemplateArgumentList(TemplateArgs),
4941 NTTP->getLocation(),
4942 NTTP->getDeclName());
4943 } else {
4944 NTTPType = SubstType(NTTPType,
4945 MultiLevelTemplateArgumentList(TemplateArgs),
4946 NTTP->getLocation(),
4947 NTTP->getDeclName());
4948 }
4949
4950 // If that worked, check the non-type template parameter type
4951 // for validity.
4952 if (!NTTPType.isNull())
4953 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
4954 NTTP->getLocation());
4955 if (NTTPType.isNull())
4956 return true;
4957 }
4958
4959 switch (Arg.getArgument().getKind()) {
4960 case TemplateArgument::Null:
4961 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 4961)
;
4962
4963 case TemplateArgument::Expression: {
4964 TemplateArgument Result;
4965 unsigned CurSFINAEErrors = NumSFINAEErrors;
4966 ExprResult Res =
4967 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
4968 Result, CTAK);
4969 if (Res.isInvalid())
4970 return true;
4971 // If the current template argument causes an error, give up now.
4972 if (CurSFINAEErrors < NumSFINAEErrors)
4973 return true;
4974
4975 // If the resulting expression is new, then use it in place of the
4976 // old expression in the template argument.
4977 if (Res.get() != Arg.getArgument().getAsExpr()) {
4978 TemplateArgument TA(Res.get());
4979 Arg = TemplateArgumentLoc(TA, Res.get());
4980 }
4981
4982 Converted.push_back(Result);
4983 break;
4984 }
4985
4986 case TemplateArgument::Declaration:
4987 case TemplateArgument::Integral:
4988 case TemplateArgument::NullPtr:
4989 // We've already checked this template argument, so just copy
4990 // it to the list of converted arguments.
4991 Converted.push_back(Arg.getArgument());
4992 break;
4993
4994 case TemplateArgument::Template:
4995 case TemplateArgument::TemplateExpansion:
4996 // We were given a template template argument. It may not be ill-formed;
4997 // see below.
4998 if (DependentTemplateName *DTN
4999 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5000 .getAsDependentTemplateName()) {
5001 // We have a template argument such as \c T::template X, which we
5002 // parsed as a template template argument. However, since we now
5003 // know that we need a non-type template argument, convert this
5004 // template name into an expression.
5005
5006 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5007 Arg.getTemplateNameLoc());
5008
5009 CXXScopeSpec SS;
5010 SS.Adopt(Arg.getTemplateQualifierLoc());
5011 // FIXME: the template-template arg was a DependentTemplateName,
5012 // so it was provided with a template keyword. However, its source
5013 // location is not stored in the template argument structure.
5014 SourceLocation TemplateKWLoc;
5015 ExprResult E = DependentScopeDeclRefExpr::Create(
5016 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5017 nullptr);
5018
5019 // If we parsed the template argument as a pack expansion, create a
5020 // pack expansion expression.
5021 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5022 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5023 if (E.isInvalid())
5024 return true;
5025 }
5026
5027 TemplateArgument Result;
5028 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5029 if (E.isInvalid())
5030 return true;
5031
5032 Converted.push_back(Result);
5033 break;
5034 }
5035
5036 // We have a template argument that actually does refer to a class
5037 // template, alias template, or template template parameter, and
5038 // therefore cannot be a non-type template argument.
5039 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5040 << Arg.getSourceRange();
5041
5042 Diag(Param->getLocation(), diag::note_template_param_here);
5043 return true;
5044
5045 case TemplateArgument::Type: {
5046 // We have a non-type template parameter but the template
5047 // argument is a type.
5048
5049 // C++ [temp.arg]p2:
5050 // In a template-argument, an ambiguity between a type-id and
5051 // an expression is resolved to a type-id, regardless of the
5052 // form of the corresponding template-parameter.
5053 //
5054 // We warn specifically about this case, since it can be rather
5055 // confusing for users.
5056 QualType T = Arg.getArgument().getAsType();
5057 SourceRange SR = Arg.getSourceRange();
5058 if (T->isFunctionType())
5059 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5060 else
5061 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5062 Diag(Param->getLocation(), diag::note_template_param_here);
5063 return true;
5064 }
5065
5066 case TemplateArgument::Pack:
5067 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5067)
;
5068 }
5069
5070 return false;
5071 }
5072
5073
5074 // Check template template parameters.
5075 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5076
5077 TemplateParameterList *Params = TempParm->getTemplateParameters();
5078 if (TempParm->isExpandedParameterPack())
5079 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5080
5081 // Substitute into the template parameter list of the template
5082 // template parameter, since previously-supplied template arguments
5083 // may appear within the template template parameter.
5084 //
5085 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5086 {
5087 // Set up a template instantiation context.
5088 LocalInstantiationScope Scope(*this);
5089 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5090 TempParm, Converted,
5091 SourceRange(TemplateLoc, RAngleLoc));
5092 if (Inst.isInvalid())
5093 return true;
5094
5095 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5096 Params = SubstTemplateParams(Params, CurContext,
5097 MultiLevelTemplateArgumentList(TemplateArgs));
5098 if (!Params)
5099 return true;
5100 }
5101
5102 // C++1z [temp.local]p1: (DR1004)
5103 // When [the injected-class-name] is used [...] as a template-argument for
5104 // a template template-parameter [...] it refers to the class template
5105 // itself.
5106 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5107 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5108 Arg.getTypeSourceInfo()->getTypeLoc());
5109 if (!ConvertedArg.getArgument().isNull())
5110 Arg = ConvertedArg;
5111 }
5112
5113 switch (Arg.getArgument().getKind()) {
5114 case TemplateArgument::Null:
5115 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5115)
;
5116
5117 case TemplateArgument::Template:
5118 case TemplateArgument::TemplateExpansion:
5119 if (CheckTemplateTemplateArgument(Params, Arg))
5120 return true;
5121
5122 Converted.push_back(Arg.getArgument());
5123 break;
5124
5125 case TemplateArgument::Expression:
5126 case TemplateArgument::Type:
5127 // We have a template template parameter but the template
5128 // argument does not refer to a template.
5129 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5130 << getLangOpts().CPlusPlus11;
5131 return true;
5132
5133 case TemplateArgument::Declaration:
5134 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5134)
;
5135 case TemplateArgument::Integral:
5136 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5136)
;
5137 case TemplateArgument::NullPtr:
5138 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5138)
;
5139
5140 case TemplateArgument::Pack:
5141 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5141)
;
5142 }
5143
5144 return false;
5145}
5146
5147/// Check whether the template parameter is a pack expansion, and if so,
5148/// determine the number of parameters produced by that expansion. For instance:
5149///
5150/// \code
5151/// template<typename ...Ts> struct A {
5152/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
5153/// };
5154/// \endcode
5155///
5156/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
5157/// is not a pack expansion, so returns an empty Optional.
5158static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
5159 if (NonTypeTemplateParmDecl *NTTP
5160 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5161 if (NTTP->isExpandedParameterPack())
5162 return NTTP->getNumExpansionTypes();
5163 }
5164
5165 if (TemplateTemplateParmDecl *TTP
5166 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
5167 if (TTP->isExpandedParameterPack())
5168 return TTP->getNumExpansionTemplateParameters();
5169 }
5170
5171 return None;
5172}
5173
5174/// Diagnose a missing template argument.
5175template<typename TemplateParmDecl>
5176static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5177 TemplateDecl *TD,
5178 const TemplateParmDecl *D,
5179 TemplateArgumentListInfo &Args) {
5180 // Dig out the most recent declaration of the template parameter; there may be
5181 // declarations of the template that are more recent than TD.
5182 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5183 ->getTemplateParameters()
5184 ->getParam(D->getIndex()));
5185
5186 // If there's a default argument that's not visible, diagnose that we're
5187 // missing a module import.
5188 llvm::SmallVector<Module*, 8> Modules;
5189 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5190 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5191 D->getDefaultArgumentLoc(), Modules,
5192 Sema::MissingImportKind::DefaultArgument,
5193 /*Recover*/true);
5194 return true;
5195 }
5196
5197 // FIXME: If there's a more recent default argument that *is* visible,
5198 // diagnose that it was declared too late.
5199
5200 TemplateParameterList *Params = TD->getTemplateParameters();
5201
5202 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5203 << /*not enough args*/0
5204 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5205 << TD;
5206 S.Diag(TD->getLocation(), diag::note_template_decl_here)
5207 << Params->getSourceRange();
5208 return true;
5209}
5210
5211/// Check that the given template argument list is well-formed
5212/// for specializing the given template.
5213bool Sema::CheckTemplateArgumentList(
5214 TemplateDecl *Template, SourceLocation TemplateLoc,
5215 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5216 SmallVectorImpl<TemplateArgument> &Converted,
5217 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5218
5219 if (ConstraintsNotSatisfied)
5220 *ConstraintsNotSatisfied = false;
5221
5222 // Make a copy of the template arguments for processing. Only make the
5223 // changes at the end when successful in matching the arguments to the
5224 // template.
5225 TemplateArgumentListInfo NewArgs = TemplateArgs;
5226
5227 // Make sure we get the template parameter list from the most
5228 // recentdeclaration, since that is the only one that has is guaranteed to
5229 // have all the default template argument information.
5230 TemplateParameterList *Params =
5231 cast<TemplateDecl>(Template->getMostRecentDecl())
5232 ->getTemplateParameters();
5233
5234 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5235
5236 // C++ [temp.arg]p1:
5237 // [...] The type and form of each template-argument specified in
5238 // a template-id shall match the type and form specified for the
5239 // corresponding parameter declared by the template in its
5240 // template-parameter-list.
5241 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5242 SmallVector<TemplateArgument, 2> ArgumentPack;
5243 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5244 LocalInstantiationScope InstScope(*this, true);
5245 for (TemplateParameterList::iterator Param = Params->begin(),
5246 ParamEnd = Params->end();
5247 Param != ParamEnd; /* increment in loop */) {
5248 // If we have an expanded parameter pack, make sure we don't have too
5249 // many arguments.
5250 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5251 if (*Expansions == ArgumentPack.size()) {
5252 // We're done with this parameter pack. Pack up its arguments and add
5253 // them to the list.
5254 Converted.push_back(
5255 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5256 ArgumentPack.clear();
5257
5258 // This argument is assigned to the next parameter.
5259 ++Param;
5260 continue;
5261 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5262 // Not enough arguments for this parameter pack.
5263 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5264 << /*not enough args*/0
5265 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5266 << Template;
5267 Diag(Template->getLocation(), diag::note_template_decl_here)
5268 << Params->getSourceRange();
5269 return true;
5270 }
5271 }
5272
5273 if (ArgIdx < NumArgs) {
5274 // Check the template argument we were given.
5275 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5276 TemplateLoc, RAngleLoc,
5277 ArgumentPack.size(), Converted))
5278 return true;
5279
5280 bool PackExpansionIntoNonPack =
5281 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5282 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5283 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5284 isa<ConceptDecl>(Template))) {
5285 // Core issue 1430: we have a pack expansion as an argument to an
5286 // alias template, and it's not part of a parameter pack. This
5287 // can't be canonicalized, so reject it now.
5288 // As for concepts - we cannot normalize constraints where this
5289 // situation exists.
5290 Diag(NewArgs[ArgIdx].getLocation(),
5291 diag::err_template_expansion_into_fixed_list)
5292 << (isa<ConceptDecl>(Template) ? 1 : 0)
5293 << NewArgs[ArgIdx].getSourceRange();
5294 Diag((*Param)->getLocation(), diag::note_template_param_here);
5295 return true;
5296 }
5297
5298 // We're now done with this argument.
5299 ++ArgIdx;
5300
5301 if ((*Param)->isTemplateParameterPack()) {
5302 // The template parameter was a template parameter pack, so take the
5303 // deduced argument and place it on the argument pack. Note that we
5304 // stay on the same template parameter so that we can deduce more
5305 // arguments.
5306 ArgumentPack.push_back(Converted.pop_back_val());
5307 } else {
5308 // Move to the next template parameter.
5309 ++Param;
5310 }
5311
5312 // If we just saw a pack expansion into a non-pack, then directly convert
5313 // the remaining arguments, because we don't know what parameters they'll
5314 // match up with.
5315 if (PackExpansionIntoNonPack) {
5316 if (!ArgumentPack.empty()) {
5317 // If we were part way through filling in an expanded parameter pack,
5318 // fall back to just producing individual arguments.
5319 Converted.insert(Converted.end(),
5320 ArgumentPack.begin(), ArgumentPack.end());
5321 ArgumentPack.clear();
5322 }
5323
5324 while (ArgIdx < NumArgs) {
5325 Converted.push_back(NewArgs[ArgIdx].getArgument());
5326 ++ArgIdx;
5327 }
5328
5329 return false;
5330 }
5331
5332 continue;
5333 }
5334
5335 // If we're checking a partial template argument list, we're done.
5336 if (PartialTemplateArgs) {
5337 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5338 Converted.push_back(
5339 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5340 return false;
5341 }
5342
5343 // If we have a template parameter pack with no more corresponding
5344 // arguments, just break out now and we'll fill in the argument pack below.
5345 if ((*Param)->isTemplateParameterPack()) {
5346 assert(!getExpandedPackSize(*Param) &&((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5347, __PRETTY_FUNCTION__))
5347 "Should have dealt with this already")((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5347, __PRETTY_FUNCTION__))
;
5348
5349 // A non-expanded parameter pack before the end of the parameter list
5350 // only occurs for an ill-formed template parameter list, unless we've
5351 // got a partial argument list for a function template, so just bail out.
5352 if (Param + 1 != ParamEnd)
5353 return true;
5354
5355 Converted.push_back(
5356 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5357 ArgumentPack.clear();
5358
5359 ++Param;
5360 continue;
5361 }
5362
5363 // Check whether we have a default argument.
5364 TemplateArgumentLoc Arg;
5365
5366 // Retrieve the default template argument from the template
5367 // parameter. For each kind of template parameter, we substitute the
5368 // template arguments provided thus far and any "outer" template arguments
5369 // (when the template parameter was part of a nested template) into
5370 // the default argument.
5371 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5372 if (!hasVisibleDefaultArgument(TTP))
5373 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5374 NewArgs);
5375
5376 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5377 Template,
5378 TemplateLoc,
5379 RAngleLoc,
5380 TTP,
5381 Converted);
5382 if (!ArgType)
5383 return true;
5384
5385 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5386 ArgType);
5387 } else if (NonTypeTemplateParmDecl *NTTP
5388 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5389 if (!hasVisibleDefaultArgument(NTTP))
5390 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5391 NewArgs);
5392
5393 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5394 TemplateLoc,
5395 RAngleLoc,
5396 NTTP,
5397 Converted);
5398 if (E.isInvalid())
5399 return true;
5400
5401 Expr *Ex = E.getAs<Expr>();
5402 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5403 } else {
5404 TemplateTemplateParmDecl *TempParm
5405 = cast<TemplateTemplateParmDecl>(*Param);
5406
5407 if (!hasVisibleDefaultArgument(TempParm))
5408 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5409 NewArgs);
5410
5411 NestedNameSpecifierLoc QualifierLoc;
5412 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5413 TemplateLoc,
5414 RAngleLoc,
5415 TempParm,
5416 Converted,
5417 QualifierLoc);
5418 if (Name.isNull())
5419 return true;
5420
5421 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
5422 TempParm->getDefaultArgument().getTemplateNameLoc());
5423 }
5424
5425 // Introduce an instantiation record that describes where we are using
5426 // the default template argument. We're not actually instantiating a
5427 // template here, we just create this object to put a note into the
5428 // context stack.
5429 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5430 SourceRange(TemplateLoc, RAngleLoc));
5431 if (Inst.isInvalid())
5432 return true;
5433
5434 // Check the default template argument.
5435 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5436 RAngleLoc, 0, Converted))
5437 return true;
5438
5439 // Core issue 150 (assumed resolution): if this is a template template
5440 // parameter, keep track of the default template arguments from the
5441 // template definition.
5442 if (isTemplateTemplateParameter)
5443 NewArgs.addArgument(Arg);
5444
5445 // Move to the next template parameter and argument.
5446 ++Param;
5447 ++ArgIdx;
5448 }
5449
5450 // If we're performing a partial argument substitution, allow any trailing
5451 // pack expansions; they might be empty. This can happen even if
5452 // PartialTemplateArgs is false (the list of arguments is complete but
5453 // still dependent).
5454 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5455 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5456 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5457 Converted.push_back(NewArgs[ArgIdx++].getArgument());
5458 }
5459
5460 // If we have any leftover arguments, then there were too many arguments.
5461 // Complain and fail.
5462 if (ArgIdx < NumArgs) {
5463 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5464 << /*too many args*/1
5465 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5466 << Template
5467 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5468 Diag(Template->getLocation(), diag::note_template_decl_here)
5469 << Params->getSourceRange();
5470 return true;
5471 }
5472
5473 // No problems found with the new argument list, propagate changes back
5474 // to caller.
5475 if (UpdateArgsWithConversions)
5476 TemplateArgs = std::move(NewArgs);
5477
5478 if (!PartialTemplateArgs &&
5479 EnsureTemplateArgumentListConstraints(
5480 Template, Converted, SourceRange(TemplateLoc,
5481 TemplateArgs.getRAngleLoc()))) {
5482 if (ConstraintsNotSatisfied)
5483 *ConstraintsNotSatisfied = true;
5484 return true;
5485 }
5486
5487 return false;
5488}
5489
5490namespace {
5491 class UnnamedLocalNoLinkageFinder
5492 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5493 {
5494 Sema &S;
5495 SourceRange SR;
5496
5497 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5498
5499 public:
5500 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5501
5502 bool Visit(QualType T) {
5503 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5504 }
5505
5506#define TYPE(Class, Parent) \
5507 bool Visit##Class##Type(const Class##Type *);
5508#define ABSTRACT_TYPE(Class, Parent) \
5509 bool Visit##Class##Type(const Class##Type *) { return false; }
5510#define NON_CANONICAL_TYPE(Class, Parent) \
5511 bool Visit##Class##Type(const Class##Type *) { return false; }
5512#include "clang/AST/TypeNodes.inc"
5513
5514 bool VisitTagDecl(const TagDecl *Tag);
5515 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5516 };
5517} // end anonymous namespace
5518
5519bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5520 return false;
5521}
5522
5523bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5524 return Visit(T->getElementType());
5525}
5526
5527bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5528 return Visit(T->getPointeeType());
5529}
5530
5531bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5532 const BlockPointerType* T) {
5533 return Visit(T->getPointeeType());
5534}
5535
5536bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5537 const LValueReferenceType* T) {
5538 return Visit(T->getPointeeType());
5539}
5540
5541bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5542 const RValueReferenceType* T) {
5543 return Visit(T->getPointeeType());
5544}
5545
5546bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5547 const MemberPointerType* T) {
5548 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5549}
5550
5551bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5552 const ConstantArrayType* T) {
5553 return Visit(T->getElementType());
5554}
5555
5556bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5557 const IncompleteArrayType* T) {
5558 return Visit(T->getElementType());
5559}
5560
5561bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5562 const VariableArrayType* T) {
5563 return Visit(T->getElementType());
5564}
5565
5566bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5567 const DependentSizedArrayType* T) {
5568 return Visit(T->getElementType());
5569}
5570
5571bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5572 const DependentSizedExtVectorType* T) {
5573 return Visit(T->getElementType());
5574}
5575
5576bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5577 const DependentAddressSpaceType *T) {
5578 return Visit(T->getPointeeType());
5579}
5580
5581bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5582 return Visit(T->getElementType());
5583}
5584
5585bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
5586 const DependentVectorType *T) {
5587 return Visit(T->getElementType());
5588}
5589
5590bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5591 return Visit(T->getElementType());
5592}
5593
5594bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5595 const FunctionProtoType* T) {
5596 for (const auto &A : T->param_types()) {
5597 if (Visit(A))
5598 return true;
5599 }
5600
5601 return Visit(T->getReturnType());
5602}
5603
5604bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5605 const FunctionNoProtoType* T) {
5606 return Visit(T->getReturnType());
5607}
5608
5609bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5610 const UnresolvedUsingType*) {
5611 return false;
5612}
5613
5614bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5615 return false;
5616}
5617
5618bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5619 return Visit(T->getUnderlyingType());
5620}
5621
5622bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5623 return false;
5624}
5625
5626bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5627 const UnaryTransformType*) {
5628 return false;
5629}
5630
5631bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5632 return Visit(T->getDeducedType());
5633}
5634
5635bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5636 const DeducedTemplateSpecializationType *T) {
5637 return Visit(T->getDeducedType());
5638}
5639
5640bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5641 return VisitTagDecl(T->getDecl());
5642}
5643
5644bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5645 return VisitTagDecl(T->getDecl());
5646}
5647
5648bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5649 const TemplateTypeParmType*) {
5650 return false;
5651}
5652
5653bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5654 const SubstTemplateTypeParmPackType *) {
5655 return false;
5656}
5657
5658bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5659 const TemplateSpecializationType*) {
5660 return false;
5661}
5662
5663bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5664 const InjectedClassNameType* T) {
5665 return VisitTagDecl(T->getDecl());
5666}
5667
5668bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5669 const DependentNameType* T) {
5670 return VisitNestedNameSpecifier(T->getQualifier());
5671}
5672
5673bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5674 const DependentTemplateSpecializationType* T) {
5675 return VisitNestedNameSpecifier(T->getQualifier());
5676}
5677
5678bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5679 const PackExpansionType* T) {
5680 return Visit(T->getPattern());
5681}
5682
5683bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5684 return false;
5685}
5686
5687bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5688 const ObjCInterfaceType *) {
5689 return false;
5690}
5691
5692bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5693 const ObjCObjectPointerType *) {
5694 return false;
5695}
5696
5697bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5698 return Visit(T->getValueType());
5699}
5700
5701bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5702 return false;
5703}
5704
5705bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5706 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5707 S.Diag(SR.getBegin(),
5708 S.getLangOpts().CPlusPlus11 ?
5709 diag::warn_cxx98_compat_template_arg_local_type :
5710 diag::ext_template_arg_local_type)
5711 << S.Context.getTypeDeclType(Tag) << SR;
5712 return true;
5713 }
5714
5715 if (!Tag->hasNameForLinkage()) {
5716 S.Diag(SR.getBegin(),
5717 S.getLangOpts().CPlusPlus11 ?
5718 diag::warn_cxx98_compat_template_arg_unnamed_type :
5719 diag::ext_template_arg_unnamed_type) << SR;
5720 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5721 return true;
5722 }
5723
5724 return false;
5725}
5726
5727bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5728 NestedNameSpecifier *NNS) {
5729 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5730 return true;
5731
5732 switch (NNS->getKind()) {
5733 case NestedNameSpecifier::Identifier:
5734 case NestedNameSpecifier::Namespace:
5735 case NestedNameSpecifier::NamespaceAlias:
5736 case NestedNameSpecifier::Global:
5737 case NestedNameSpecifier::Super:
5738 return false;
5739
5740 case NestedNameSpecifier::TypeSpec:
5741 case NestedNameSpecifier::TypeSpecWithTemplate:
5742 return Visit(QualType(NNS->getAsType(), 0));
5743 }
5744 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5744)
;
5745}
5746
5747/// Check a template argument against its corresponding
5748/// template type parameter.
5749///
5750/// This routine implements the semantics of C++ [temp.arg.type]. It
5751/// returns true if an error occurred, and false otherwise.
5752bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
5753 TypeSourceInfo *ArgInfo) {
5754 assert(ArgInfo && "invalid TypeSourceInfo")((ArgInfo && "invalid TypeSourceInfo") ? static_cast<
void> (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5754, __PRETTY_FUNCTION__))
;
5755 QualType Arg = ArgInfo->getType();
5756 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5757
5758 if (Arg->isVariablyModifiedType()) {
5759 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5760 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5761 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5762 }
5763
5764 // C++03 [temp.arg.type]p2:
5765 // A local type, a type with no linkage, an unnamed type or a type
5766 // compounded from any of these types shall not be used as a
5767 // template-argument for a template type-parameter.
5768 //
5769 // C++11 allows these, and even in C++03 we allow them as an extension with
5770 // a warning.
5771 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
5772 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5773 (void)Finder.Visit(Context.getCanonicalType(Arg));
5774 }
5775
5776 return false;
5777}
5778
5779enum NullPointerValueKind {
5780 NPV_NotNullPointer,
5781 NPV_NullPointer,
5782 NPV_Error
5783};
5784
5785/// Determine whether the given template argument is a null pointer
5786/// value of the appropriate type.
5787static NullPointerValueKind
5788isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5789 QualType ParamType, Expr *Arg,
5790 Decl *Entity = nullptr) {
5791 if (Arg->isValueDependent() || Arg->isTypeDependent())
5792 return NPV_NotNullPointer;
5793
5794 // dllimport'd entities aren't constant but are available inside of template
5795 // arguments.
5796 if (Entity && Entity->hasAttr<DLLImportAttr>())
5797 return NPV_NotNullPointer;
5798
5799 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5800 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5801)
5801 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5801)
;
5802
5803 if (!S.getLangOpts().CPlusPlus11)
5804 return NPV_NotNullPointer;
5805
5806 // Determine whether we have a constant expression.
5807 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5808 if (ArgRV.isInvalid())
5809 return NPV_Error;
5810 Arg = ArgRV.get();
5811
5812 Expr::EvalResult EvalResult;
5813 SmallVector<PartialDiagnosticAt, 8> Notes;
5814 EvalResult.Diag = &Notes;
5815 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5816 EvalResult.HasSideEffects) {
5817 SourceLocation DiagLoc = Arg->getExprLoc();
5818
5819 // If our only note is the usual "invalid subexpression" note, just point
5820 // the caret at its location rather than producing an essentially
5821 // redundant note.
5822 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5823 diag::note_invalid_subexpr_in_const_expr) {
5824 DiagLoc = Notes[0].first;
5825 Notes.clear();
5826 }
5827
5828 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5829 << Arg->getType() << Arg->getSourceRange();
5830 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5831 S.Diag(Notes[I].first, Notes[I].second);
5832
5833 S.Diag(Param->getLocation(), diag::note_template_param_here);
5834 return NPV_Error;
5835 }
5836
5837 // C++11 [temp.arg.nontype]p1:
5838 // - an address constant expression of type std::nullptr_t
5839 if (Arg->getType()->isNullPtrType())
5840 return NPV_NullPointer;
5841
5842 // - a constant expression that evaluates to a null pointer value (4.10); or
5843 // - a constant expression that evaluates to a null member pointer value
5844 // (4.11); or
5845 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
5846 (EvalResult.Val.isMemberPointer() &&
5847 !EvalResult.Val.getMemberPointerDecl())) {
5848 // If our expression has an appropriate type, we've succeeded.
5849 bool ObjCLifetimeConversion;
5850 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5851 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5852 ObjCLifetimeConversion))
5853 return NPV_NullPointer;
5854
5855 // The types didn't match, but we know we got a null pointer; complain,
5856 // then recover as if the types were correct.
5857 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5858 << Arg->getType() << ParamType << Arg->getSourceRange();
5859 S.Diag(Param->getLocation(), diag::note_template_param_here);
5860 return NPV_NullPointer;
5861 }
5862
5863 // If we don't have a null pointer value, but we do have a NULL pointer
5864 // constant, suggest a cast to the appropriate type.
5865 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
5866 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
5867 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
5868 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
5869 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
5870 ")");
5871 S.Diag(Param->getLocation(), diag::note_template_param_here);
5872 return NPV_NullPointer;
5873 }
5874
5875 // FIXME: If we ever want to support general, address-constant expressions
5876 // as non-type template arguments, we should return the ExprResult here to
5877 // be interpreted by the caller.
5878 return NPV_NotNullPointer;
5879}
5880
5881/// Checks whether the given template argument is compatible with its
5882/// template parameter.
5883static bool CheckTemplateArgumentIsCompatibleWithParameter(
5884 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
5885 Expr *Arg, QualType ArgType) {
5886 bool ObjCLifetimeConversion;
5887 if (ParamType->isPointerType() &&
5888 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
5889 S.IsQualificationConversion(ArgType, ParamType, false,
5890 ObjCLifetimeConversion)) {
5891 // For pointer-to-object types, qualification conversions are
5892 // permitted.
5893 } else {
5894 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
5895 if (!ParamRef->getPointeeType()->isFunctionType()) {
5896 // C++ [temp.arg.nontype]p5b3:
5897 // For a non-type template-parameter of type reference to
5898 // object, no conversions apply. The type referred to by the
5899 // reference may be more cv-qualified than the (otherwise
5900 // identical) type of the template- argument. The
5901 // template-parameter is bound directly to the
5902 // template-argument, which shall be an lvalue.
5903
5904 // FIXME: Other qualifiers?
5905 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
5906 unsigned ArgQuals = ArgType.getCVRQualifiers();
5907
5908 if ((ParamQuals | ArgQuals) != ParamQuals) {
5909 S.Diag(Arg->getBeginLoc(),
5910 diag::err_template_arg_ref_bind_ignores_quals)
5911 << ParamType << Arg->getType() << Arg->getSourceRange();
5912 S.Diag(Param->getLocation(), diag::note_template_param_here);
5913 return true;
5914 }
5915 }
5916 }
5917
5918 // At this point, the template argument refers to an object or
5919 // function with external linkage. We now need to check whether the
5920 // argument and parameter types are compatible.
5921 if (!S.Context.hasSameUnqualifiedType(ArgType,
5922 ParamType.getNonReferenceType())) {
5923 // We can't perform this conversion or binding.
5924 if (ParamType->isReferenceType())
5925 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
5926 << ParamType << ArgIn->getType() << Arg->getSourceRange();
5927 else
5928 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
5929 << ArgIn->getType() << ParamType << Arg->getSourceRange();
5930 S.Diag(Param->getLocation(), diag::note_template_param_here);
5931 return true;
5932 }
5933 }
5934
5935 return false;
5936}
5937
5938/// Checks whether the given template argument is the address
5939/// of an object or function according to C++ [temp.arg.nontype]p1.
5940static bool
5941CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
5942 NonTypeTemplateParmDecl *Param,
5943 QualType ParamType,
5944 Expr *ArgIn,
5945 TemplateArgument &Converted) {
5946 bool Invalid = false;
5947 Expr *Arg = ArgIn;
5948 QualType ArgType = Arg->getType();
5949
5950 bool AddressTaken = false;
5951 SourceLocation AddrOpLoc;
5952 if (S.getLangOpts().MicrosoftExt) {
5953 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
5954 // dereference and address-of operators.
5955 Arg = Arg->IgnoreParenCasts();
5956
5957 bool ExtWarnMSTemplateArg = false;
5958 UnaryOperatorKind FirstOpKind;
5959 SourceLocation FirstOpLoc;
5960 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5961 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
5962 if (UnOpKind == UO_Deref)
5963 ExtWarnMSTemplateArg = true;
5964 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
5965 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
5966 if (!AddrOpLoc.isValid()) {
5967 FirstOpKind = UnOpKind;
5968 FirstOpLoc = UnOp->getOperatorLoc();
5969 }
5970 } else
5971 break;
5972 }
5973 if (FirstOpLoc.isValid()) {
5974 if (ExtWarnMSTemplateArg)
5975 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
5976 << ArgIn->getSourceRange();
5977
5978 if (FirstOpKind == UO_AddrOf)
5979 AddressTaken = true;
5980 else if (Arg->getType()->isPointerType()) {
5981 // We cannot let pointers get dereferenced here, that is obviously not a
5982 // constant expression.
5983 assert(FirstOpKind == UO_Deref)((FirstOpKind == UO_Deref) ? static_cast<void> (0) : __assert_fail
("FirstOpKind == UO_Deref", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 5983, __PRETTY_FUNCTION__))
;
5984 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
5985 << Arg->getSourceRange();
5986 }
5987 }
5988 } else {
5989 // See through any implicit casts we added to fix the type.
5990 Arg = Arg->IgnoreImpCasts();
5991
5992 // C++ [temp.arg.nontype]p1:
5993 //
5994 // A template-argument for a non-type, non-template
5995 // template-parameter shall be one of: [...]
5996 //
5997 // -- the address of an object or function with external
5998 // linkage, including function templates and function
5999 // template-ids but excluding non-static class members,
6000 // expressed as & id-expression where the & is optional if
6001 // the name refers to a function or array, or if the
6002 // corresponding template-parameter is a reference; or
6003
6004 // In C++98/03 mode, give an extension warning on any extra parentheses.
6005 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6006 bool ExtraParens = false;
6007 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6008 if (!Invalid && !ExtraParens) {
6009 S.Diag(Arg->getBeginLoc(),
6010 S.getLangOpts().CPlusPlus11
6011 ? diag::warn_cxx98_compat_template_arg_extra_parens
6012 : diag::ext_template_arg_extra_parens)
6013 << Arg->getSourceRange();
6014 ExtraParens = true;
6015 }
6016
6017 Arg = Parens->getSubExpr();
6018 }
6019
6020 while (SubstNonTypeTemplateParmExpr *subst =
6021 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6022 Arg = subst->getReplacement()->IgnoreImpCasts();
6023
6024 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6025 if (UnOp->getOpcode() == UO_AddrOf) {
6026 Arg = UnOp->getSubExpr();
6027 AddressTaken = true;
6028 AddrOpLoc = UnOp->getOperatorLoc();
6029 }
6030 }
6031
6032 while (SubstNonTypeTemplateParmExpr *subst =
6033 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6034 Arg = subst->getReplacement()->IgnoreImpCasts();
6035 }
6036
6037 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
6038 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6039
6040 // If our parameter has pointer type, check for a null template value.
6041 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6042 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6043 Entity)) {
6044 case NPV_NullPointer:
6045 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6046 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6047 /*isNullPtr=*/true);
6048 return false;
6049
6050 case NPV_Error:
6051 return true;
6052
6053 case NPV_NotNullPointer:
6054 break;
6055 }
6056 }
6057
6058 // Stop checking the precise nature of the argument if it is value dependent,
6059 // it should be checked when instantiated.
6060 if (Arg->isValueDependent()) {
6061 Converted = TemplateArgument(ArgIn);
6062 return false;
6063 }
6064
6065 if (isa<CXXUuidofExpr>(Arg)) {
6066 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
6067 ArgIn, Arg, ArgType))
6068 return true;
6069
6070 Converted = TemplateArgument(ArgIn);
6071 return false;
6072 }
6073
6074 if (!DRE) {
6075 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6076 << Arg->getSourceRange();
6077 S.Diag(Param->getLocation(), diag::note_template_param_here);
6078 return true;
6079 }
6080
6081 // Cannot refer to non-static data members
6082 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6083 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6084 << Entity << Arg->getSourceRange();
6085 S.Diag(Param->getLocation(), diag::note_template_param_here);
6086 return true;
6087 }
6088
6089 // Cannot refer to non-static member functions
6090 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6091 if (!Method->isStatic()) {
6092 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6093 << Method << Arg->getSourceRange();
6094 S.Diag(Param->getLocation(), diag::note_template_param_here);
6095 return true;
6096 }
6097 }
6098
6099 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6100 VarDecl *Var = dyn_cast<VarDecl>(Entity);
6101
6102 // A non-type template argument must refer to an object or function.
6103 if (!Func && !Var) {
6104 // We found something, but we don't know specifically what it is.
6105 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6106 << Arg->getSourceRange();
6107 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6108 return true;
6109 }
6110
6111 // Address / reference template args must have external linkage in C++98.
6112 if (Entity->getFormalLinkage() == InternalLinkage) {
6113 S.Diag(Arg->getBeginLoc(),
6114 S.getLangOpts().CPlusPlus11
6115 ? diag::warn_cxx98_compat_template_arg_object_internal
6116 : diag::ext_template_arg_object_internal)
6117 << !Func << Entity << Arg->getSourceRange();
6118 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6119 << !Func;
6120 } else if (!Entity->hasLinkage()) {
6121 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6122 << !Func << Entity << Arg->getSourceRange();
6123 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6124 << !Func;
6125 return true;
6126 }
6127
6128 if (Func) {
6129 // If the template parameter has pointer type, the function decays.
6130 if (ParamType->isPointerType() && !AddressTaken)
6131 ArgType = S.Context.getPointerType(Func->getType());
6132 else if (AddressTaken && ParamType->isReferenceType()) {
6133 // If we originally had an address-of operator, but the
6134 // parameter has reference type, complain and (if things look
6135 // like they will work) drop the address-of operator.
6136 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
6137 ParamType.getNonReferenceType())) {
6138 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6139 << ParamType;
6140 S.Diag(Param->getLocation(), diag::note_template_param_here);
6141 return true;
6142 }
6143
6144 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6145 << ParamType
6146 << FixItHint::CreateRemoval(AddrOpLoc);
6147 S.Diag(Param->getLocation(), diag::note_template_param_here);
6148
6149 ArgType = Func->getType();
6150 }
6151 } else {
6152 // A value of reference type is not an object.
6153 if (Var->getType()->isReferenceType()) {
6154 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6155 << Var->getType() << Arg->getSourceRange();
6156 S.Diag(Param->getLocation(), diag::note_template_param_here);
6157 return true;
6158 }
6159
6160 // A template argument must have static storage duration.
6161 if (Var->getTLSKind()) {
6162 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6163 << Arg->getSourceRange();
6164 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6165 return true;
6166 }
6167
6168 // If the template parameter has pointer type, we must have taken
6169 // the address of this object.
6170 if (ParamType->isReferenceType()) {
6171 if (AddressTaken) {
6172 // If we originally had an address-of operator, but the
6173 // parameter has reference type, complain and (if things look
6174 // like they will work) drop the address-of operator.
6175 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
6176 ParamType.getNonReferenceType())) {
6177 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6178 << ParamType;
6179 S.Diag(Param->getLocation(), diag::note_template_param_here);
6180 return true;
6181 }
6182
6183 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6184 << ParamType
6185 << FixItHint::CreateRemoval(AddrOpLoc);
6186 S.Diag(Param->getLocation(), diag::note_template_param_here);
6187
6188 ArgType = Var->getType();
6189 }
6190 } else if (!AddressTaken && ParamType->isPointerType()) {
6191 if (Var->getType()->isArrayType()) {
6192 // Array-to-pointer decay.
6193 ArgType = S.Context.getArrayDecayedType(Var->getType());
6194 } else {
6195 // If the template parameter has pointer type but the address of
6196 // this object was not taken, complain and (possibly) recover by
6197 // taking the address of the entity.
6198 ArgType = S.Context.getPointerType(Var->getType());
6199 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6200 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6201 << ParamType;
6202 S.Diag(Param->getLocation(), diag::note_template_param_here);
6203 return true;
6204 }
6205
6206 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6207 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6208
6209 S.Diag(Param->getLocation(), diag::note_template_param_here);
6210 }
6211 }
6212 }
6213
6214 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6215 Arg, ArgType))
6216 return true;
6217
6218 // Create the template argument.
6219 Converted =
6220 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
6221 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6222 return false;
6223}
6224
6225/// Checks whether the given template argument is a pointer to
6226/// member constant according to C++ [temp.arg.nontype]p1.
6227static bool CheckTemplateArgumentPointerToMember(Sema &S,
6228 NonTypeTemplateParmDecl *Param,
6229 QualType ParamType,
6230 Expr *&ResultArg,
6231 TemplateArgument &Converted) {
6232 bool Invalid = false;
6233
6234 Expr *Arg = ResultArg;
6235 bool ObjCLifetimeConversion;
6236
6237 // C++ [temp.arg.nontype]p1:
6238 //
6239 // A template-argument for a non-type, non-template
6240 // template-parameter shall be one of: [...]
6241 //
6242 // -- a pointer to member expressed as described in 5.3.1.
6243 DeclRefExpr *DRE = nullptr;
6244
6245 // In C++98/03 mode, give an extension warning on any extra parentheses.
6246 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6247 bool ExtraParens = false;
6248 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6249 if (!Invalid && !ExtraParens) {
6250 S.Diag(Arg->getBeginLoc(),
6251 S.getLangOpts().CPlusPlus11
6252 ? diag::warn_cxx98_compat_template_arg_extra_parens
6253 : diag::ext_template_arg_extra_parens)
6254 << Arg->getSourceRange();
6255 ExtraParens = true;
6256 }
6257
6258 Arg = Parens->getSubExpr();
6259 }
6260
6261 while (SubstNonTypeTemplateParmExpr *subst =
6262 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6263 Arg = subst->getReplacement()->IgnoreImpCasts();
6264
6265 // A pointer-to-member constant written &Class::member.
6266 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6267 if (UnOp->getOpcode() == UO_AddrOf) {
6268 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6269 if (DRE && !DRE->getQualifier())
6270 DRE = nullptr;
6271 }
6272 }
6273 // A constant of pointer-to-member type.
6274 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6275 ValueDecl *VD = DRE->getDecl();
6276 if (VD->getType()->isMemberPointerType()) {
6277 if (isa<NonTypeTemplateParmDecl>(VD)) {
6278 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6279 Converted = TemplateArgument(Arg);
6280 } else {
6281 VD = cast<ValueDecl>(VD->getCanonicalDecl());
6282 Converted = TemplateArgument(VD, ParamType);
6283 }
6284 return Invalid;
6285 }
6286 }
6287
6288 DRE = nullptr;
6289 }
6290
6291 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6292
6293 // Check for a null pointer value.
6294 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6295 Entity)) {
6296 case NPV_Error:
6297 return true;
6298 case NPV_NullPointer:
6299 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6300 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6301 /*isNullPtr*/true);
6302 return false;
6303 case NPV_NotNullPointer:
6304 break;
6305 }
6306
6307 if (S.IsQualificationConversion(ResultArg->getType(),
6308 ParamType.getNonReferenceType(), false,
6309 ObjCLifetimeConversion)) {
6310 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6311 ResultArg->getValueKind())
6312 .get();
6313 } else if (!S.Context.hasSameUnqualifiedType(
6314 ResultArg->getType(), ParamType.getNonReferenceType())) {
6315 // We can't perform this conversion.
6316 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6317 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6318 S.Diag(Param->getLocation(), diag::note_template_param_here);
6319 return true;
6320 }
6321
6322 if (!DRE)
6323 return S.Diag(Arg->getBeginLoc(),
6324 diag::err_template_arg_not_pointer_to_member_form)
6325 << Arg->getSourceRange();
6326
6327 if (isa<FieldDecl>(DRE->getDecl()) ||
6328 isa<IndirectFieldDecl>(DRE->getDecl()) ||
6329 isa<CXXMethodDecl>(DRE->getDecl())) {
6330 assert((isa<FieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6333, __PRETTY_FUNCTION__))
6331 isa<IndirectFieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6333, __PRETTY_FUNCTION__))
6332 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6333, __PRETTY_FUNCTION__))
6333 "Only non-static member pointers can make it here")(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6333, __PRETTY_FUNCTION__))
;
6334
6335 // Okay: this is the address of a non-static member, and therefore
6336 // a member pointer constant.
6337 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6338 Converted = TemplateArgument(Arg);
6339 } else {
6340 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6341 Converted = TemplateArgument(D, ParamType);
6342 }
6343 return Invalid;
6344 }
6345
6346 // We found something else, but we don't know specifically what it is.
6347 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6348 << Arg->getSourceRange();
6349 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6350 return true;
6351}
6352
6353/// Check a template argument against its corresponding
6354/// non-type template parameter.
6355///
6356/// This routine implements the semantics of C++ [temp.arg.nontype].
6357/// If an error occurred, it returns ExprError(); otherwise, it
6358/// returns the converted template argument. \p ParamType is the
6359/// type of the non-type template parameter after it has been instantiated.
6360ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6361 QualType ParamType, Expr *Arg,
6362 TemplateArgument &Converted,
6363 CheckTemplateArgumentKind CTAK) {
6364 SourceLocation StartLoc = Arg->getBeginLoc();
6365
6366 // If the parameter type somehow involves auto, deduce the type now.
6367 if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
6368 // During template argument deduction, we allow 'decltype(auto)' to
6369 // match an arbitrary dependent argument.
6370 // FIXME: The language rules don't say what happens in this case.
6371 // FIXME: We get an opaque dependent type out of decltype(auto) if the
6372 // expression is merely instantiation-dependent; is this enough?
6373 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6374 auto *AT = dyn_cast<AutoType>(ParamType);
6375 if (AT && AT->isDecltypeAuto()) {
6376 Converted = TemplateArgument(Arg);
6377 return Arg;
6378 }
6379 }
6380
6381 // When checking a deduced template argument, deduce from its type even if
6382 // the type is dependent, in order to check the types of non-type template
6383 // arguments line up properly in partial ordering.
6384 Optional<unsigned> Depth = Param->getDepth() + 1;
6385 Expr *DeductionArg = Arg;
6386 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6387 DeductionArg = PE->getPattern();
6388 if (DeduceAutoType(
6389 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
6390 DeductionArg, ParamType, Depth) == DAR_Failed) {
6391 Diag(Arg->getExprLoc(),
6392 diag::err_non_type_template_parm_type_deduction_failure)
6393 << Param->getDeclName() << Param->getType() << Arg->getType()
6394 << Arg->getSourceRange();
6395 Diag(Param->getLocation(), diag::note_template_param_here);
6396 return ExprError();
6397 }
6398 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6399 // an error. The error message normally references the parameter
6400 // declaration, but here we'll pass the argument location because that's
6401 // where the parameter type is deduced.
6402 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6403 if (ParamType.isNull()) {
6404 Diag(Param->getLocation(), diag::note_template_param_here);
6405 return ExprError();
6406 }
6407 }
6408
6409 // We should have already dropped all cv-qualifiers by now.
6410 assert(!ParamType.hasQualifiers() &&((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6411, __PRETTY_FUNCTION__))
6411 "non-type template parameter type cannot be qualified")((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6411, __PRETTY_FUNCTION__))
;
6412
6413 if (CTAK == CTAK_Deduced &&
6414 !Context.hasSameType(ParamType.getNonLValueExprType(Context),
6415 Arg->getType())) {
6416 // FIXME: If either type is dependent, we skip the check. This isn't
6417 // correct, since during deduction we're supposed to have replaced each
6418 // template parameter with some unique (non-dependent) placeholder.
6419 // FIXME: If the argument type contains 'auto', we carry on and fail the
6420 // type check in order to force specific types to be more specialized than
6421 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6422 // work.
6423 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6424 !Arg->getType()->getContainedAutoType()) {
6425 Converted = TemplateArgument(Arg);
6426 return Arg;
6427 }
6428 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6429 // we should actually be checking the type of the template argument in P,
6430 // not the type of the template argument deduced from A, against the
6431 // template parameter type.
6432 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6433 << Arg->getType()
6434 << ParamType.getUnqualifiedType();
6435 Diag(Param->getLocation(), diag::note_template_param_here);
6436 return ExprError();
6437 }
6438
6439 // If either the parameter has a dependent type or the argument is
6440 // type-dependent, there's nothing we can check now. The argument only
6441 // contains an unexpanded pack during partial ordering, and there's
6442 // nothing more we can check in that case.
6443 if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6444 Arg->containsUnexpandedParameterPack()) {
6445 // Force the argument to the type of the parameter to maintain invariants.
6446 auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6447 if (PE)
6448 Arg = PE->getPattern();
6449 ExprResult E = ImpCastExprToType(
6450 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6451 ParamType->isLValueReferenceType() ? VK_LValue :
6452 ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue);
6453 if (E.isInvalid())
6454 return ExprError();
6455 if (PE) {
6456 // Recreate a pack expansion if we unwrapped one.
6457 E = new (Context)
6458 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6459 PE->getNumExpansions());
6460 }
6461 Converted = TemplateArgument(E.get());
6462 return E;
6463 }
6464
6465 // The initialization of the parameter from the argument is
6466 // a constant-evaluated context.
6467 EnterExpressionEvaluationContext ConstantEvaluated(
6468 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6469
6470 if (getLangOpts().CPlusPlus17) {
6471 // C++17 [temp.arg.nontype]p1:
6472 // A template-argument for a non-type template parameter shall be
6473 // a converted constant expression of the type of the template-parameter.
6474 APValue Value;
6475 ExprResult ArgResult = CheckConvertedConstantExpression(
6476 Arg, ParamType, Value, CCEK_TemplateArg);
6477 if (ArgResult.isInvalid())
6478 return ExprError();
6479
6480 // For a value-dependent argument, CheckConvertedConstantExpression is
6481 // permitted (and expected) to be unable to determine a value.
6482 if (ArgResult.get()->isValueDependent()) {
6483 Converted = TemplateArgument(ArgResult.get());
6484 return ArgResult;
6485 }
6486
6487 QualType CanonParamType = Context.getCanonicalType(ParamType);
6488
6489 // Convert the APValue to a TemplateArgument.
6490 switch (Value.getKind()) {
6491 case APValue::None:
6492 assert(ParamType->isNullPtrType())((ParamType->isNullPtrType()) ? static_cast<void> (0
) : __assert_fail ("ParamType->isNullPtrType()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6492, __PRETTY_FUNCTION__))
;
6493 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6494 break;
6495 case APValue::Indeterminate:
6496 llvm_unreachable("result of constant evaluation should be initialized")::llvm::llvm_unreachable_internal("result of constant evaluation should be initialized"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6496)
;
6497 break;
6498 case APValue::Int:
6499 assert(ParamType->isIntegralOrEnumerationType())((ParamType->isIntegralOrEnumerationType()) ? static_cast<
void> (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6499, __PRETTY_FUNCTION__))
;
6500 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6501 break;
6502 case APValue::MemberPointer: {
6503 assert(ParamType->isMemberPointerType())((ParamType->isMemberPointerType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isMemberPointerType()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6503, __PRETTY_FUNCTION__))
;
6504
6505 // FIXME: We need TemplateArgument representation and mangling for these.
6506 if (!Value.getMemberPointerPath().empty()) {
6507 Diag(Arg->getBeginLoc(),
6508 diag::err_template_arg_member_ptr_base_derived_not_supported)
6509 << Value.getMemberPointerDecl() << ParamType
6510 << Arg->getSourceRange();
6511 return ExprError();
6512 }
6513
6514 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6515 Converted = VD ? TemplateArgument(VD, CanonParamType)
6516 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6517 break;
6518 }
6519 case APValue::LValue: {
6520 // For a non-type template-parameter of pointer or reference type,
6521 // the value of the constant expression shall not refer to
6522 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6523, __PRETTY_FUNCTION__))
6523 ParamType->isNullPtrType())((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6523, __PRETTY_FUNCTION__))
;
6524 // -- a temporary object
6525 // -- a string literal
6526 // -- the result of a typeid expression, or
6527 // -- a predefined __func__ variable
6528 APValue::LValueBase Base = Value.getLValueBase();
6529 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
6530 if (Base && !VD) {
6531 auto *E = Base.dyn_cast<const Expr *>();
6532 if (E && isa<CXXUuidofExpr>(E)) {
6533 Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts());
6534 break;
6535 }
6536 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6537 << Arg->getSourceRange();
6538 return ExprError();
6539 }
6540 // -- a subobject
6541 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6542 VD && VD->getType()->isArrayType() &&
6543 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
6544 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6545 // Per defect report (no number yet):
6546 // ... other than a pointer to the first element of a complete array
6547 // object.
6548 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6549 Value.isLValueOnePastTheEnd()) {
6550 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6551 << Value.getAsString(Context, ParamType);
6552 return ExprError();
6553 }
6554 assert((VD || !ParamType->isReferenceType()) &&(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6555, __PRETTY_FUNCTION__))
6555 "null reference should not be a constant expression")(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6555, __PRETTY_FUNCTION__))
;
6556 assert((!VD || !ParamType->isNullPtrType()) &&(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6557, __PRETTY_FUNCTION__))
6557 "non-null value of type nullptr_t?")(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6557, __PRETTY_FUNCTION__))
;
6558 Converted = VD ? TemplateArgument(VD, CanonParamType)
6559 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6560 break;
6561 }
6562 case APValue::AddrLabelDiff:
6563 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6564 case APValue::FixedPoint:
6565 case APValue::Float:
6566 case APValue::ComplexInt:
6567 case APValue::ComplexFloat:
6568 case APValue::Vector:
6569 case APValue::Array:
6570 case APValue::Struct:
6571 case APValue::Union:
6572 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6572)
;
6573 }
6574
6575 return ArgResult.get();
6576 }
6577
6578 // C++ [temp.arg.nontype]p5:
6579 // The following conversions are performed on each expression used
6580 // as a non-type template-argument. If a non-type
6581 // template-argument cannot be converted to the type of the
6582 // corresponding template-parameter then the program is
6583 // ill-formed.
6584 if (ParamType->isIntegralOrEnumerationType()) {
6585 // C++11:
6586 // -- for a non-type template-parameter of integral or
6587 // enumeration type, conversions permitted in a converted
6588 // constant expression are applied.
6589 //
6590 // C++98:
6591 // -- for a non-type template-parameter of integral or
6592 // enumeration type, integral promotions (4.5) and integral
6593 // conversions (4.7) are applied.
6594
6595 if (getLangOpts().CPlusPlus11) {
6596 // C++ [temp.arg.nontype]p1:
6597 // A template-argument for a non-type, non-template template-parameter
6598 // shall be one of:
6599 //
6600 // -- for a non-type template-parameter of integral or enumeration
6601 // type, a converted constant expression of the type of the
6602 // template-parameter; or
6603 llvm::APSInt Value;
6604 ExprResult ArgResult =
6605 CheckConvertedConstantExpression(Arg, ParamType, Value,
6606 CCEK_TemplateArg);
6607 if (ArgResult.isInvalid())
6608 return ExprError();
6609
6610 // We can't check arbitrary value-dependent arguments.
6611 if (ArgResult.get()->isValueDependent()) {
6612 Converted = TemplateArgument(ArgResult.get());
6613 return ArgResult;
6614 }
6615
6616 // Widen the argument value to sizeof(parameter type). This is almost
6617 // always a no-op, except when the parameter type is bool. In
6618 // that case, this may extend the argument from 1 bit to 8 bits.
6619 QualType IntegerType = ParamType;
6620 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6621 IntegerType = Enum->getDecl()->getIntegerType();
6622 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
6623
6624 Converted = TemplateArgument(Context, Value,
6625 Context.getCanonicalType(ParamType));
6626 return ArgResult;
6627 }
6628
6629 ExprResult ArgResult = DefaultLvalueConversion(Arg);
6630 if (ArgResult.isInvalid())
6631 return ExprError();
6632 Arg = ArgResult.get();
6633
6634 QualType ArgType = Arg->getType();
6635
6636 // C++ [temp.arg.nontype]p1:
6637 // A template-argument for a non-type, non-template
6638 // template-parameter shall be one of:
6639 //
6640 // -- an integral constant-expression of integral or enumeration
6641 // type; or
6642 // -- the name of a non-type template-parameter; or
6643 llvm::APSInt Value;
6644 if (!ArgType->isIntegralOrEnumerationType()) {
6645 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
6646 << ArgType << Arg->getSourceRange();
6647 Diag(Param->getLocation(), diag::note_template_param_here);
6648 return ExprError();
6649 } else if (!Arg->isValueDependent()) {
6650 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6651 QualType T;
6652
6653 public:
6654 TmplArgICEDiagnoser(QualType T) : T(T) { }
6655
6656 void diagnoseNotICE(Sema &S, SourceLocation Loc,
6657 SourceRange SR) override {
6658 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
6659 }
6660 } Diagnoser(ArgType);
6661
6662 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
6663 false).get();
6664 if (!Arg)
6665 return ExprError();
6666 }
6667
6668 // From here on out, all we care about is the unqualified form
6669 // of the argument type.
6670 ArgType = ArgType.getUnqualifiedType();
6671
6672 // Try to convert the argument to the parameter's type.
6673 if (Context.hasSameType(ParamType, ArgType)) {
6674 // Okay: no conversion necessary
6675 } else if (ParamType->isBooleanType()) {
6676 // This is an integral-to-boolean conversion.
6677 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6678 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6679 !ParamType->isEnumeralType()) {
6680 // This is an integral promotion or conversion.
6681 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6682 } else {
6683 // We can't perform this conversion.
6684 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6685 << Arg->getType() << ParamType << Arg->getSourceRange();
6686 Diag(Param->getLocation(), diag::note_template_param_here);
6687 return ExprError();
6688 }
6689
6690 // Add the value of this argument to the list of converted
6691 // arguments. We use the bitwidth and signedness of the template
6692 // parameter.
6693 if (Arg->isValueDependent()) {
6694 // The argument is value-dependent. Create a new
6695 // TemplateArgument with the converted expression.
6696 Converted = TemplateArgument(Arg);
6697 return Arg;
6698 }
6699
6700 QualType IntegerType = Context.getCanonicalType(ParamType);
6701 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6702 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6703
6704 if (ParamType->isBooleanType()) {
6705 // Value must be zero or one.
6706 Value = Value != 0;
6707 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6708 if (Value.getBitWidth() != AllowedBits)
6709 Value = Value.extOrTrunc(AllowedBits);
6710 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6711 } else {
6712 llvm::APSInt OldValue = Value;
6713
6714 // Coerce the template argument's value to the value it will have
6715 // based on the template parameter's type.
6716 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6717 if (Value.getBitWidth() != AllowedBits)
6718 Value = Value.extOrTrunc(AllowedBits);
6719 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6720
6721 // Complain if an unsigned parameter received a negative value.
6722 if (IntegerType->isUnsignedIntegerOrEnumerationType()
6723 && (OldValue.isSigned() && OldValue.isNegative())) {
6724 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
6725 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6726 << Arg->getSourceRange();
6727 Diag(Param->getLocation(), diag::note_template_param_here);
6728 }
6729
6730 // Complain if we overflowed the template parameter's type.
6731 unsigned RequiredBits;
6732 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6733 RequiredBits = OldValue.getActiveBits();
6734 else if (OldValue.isUnsigned())
6735 RequiredBits = OldValue.getActiveBits() + 1;
6736 else
6737 RequiredBits = OldValue.getMinSignedBits();
6738 if (RequiredBits > AllowedBits) {
6739 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
6740 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6741 << Arg->getSourceRange();
6742 Diag(Param->getLocation(), diag::note_template_param_here);
6743 }
6744 }
6745
6746 Converted = TemplateArgument(Context, Value,
6747 ParamType->isEnumeralType()
6748 ? Context.getCanonicalType(ParamType)
6749 : IntegerType);
6750 return Arg;
6751 }
6752
6753 QualType ArgType = Arg->getType();
6754 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6755
6756 // Handle pointer-to-function, reference-to-function, and
6757 // pointer-to-member-function all in (roughly) the same way.
6758 if (// -- For a non-type template-parameter of type pointer to
6759 // function, only the function-to-pointer conversion (4.3) is
6760 // applied. If the template-argument represents a set of
6761 // overloaded functions (or a pointer to such), the matching
6762 // function is selected from the set (13.4).
6763 (ParamType->isPointerType() &&
6764 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6765 // -- For a non-type template-parameter of type reference to
6766 // function, no conversions apply. If the template-argument
6767 // represents a set of overloaded functions, the matching
6768 // function is selected from the set (13.4).
6769 (ParamType->isReferenceType() &&
6770 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6771 // -- For a non-type template-parameter of type pointer to
6772 // member function, no conversions apply. If the
6773 // template-argument represents a set of overloaded member
6774 // functions, the matching member function is selected from
6775 // the set (13.4).
6776 (ParamType->isMemberPointerType() &&
6777 ParamType->castAs<MemberPointerType>()->getPointeeType()
6778 ->isFunctionType())) {
6779
6780 if (Arg->getType() == Context.OverloadTy) {
6781 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6782 true,
6783 FoundResult)) {
6784 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
6785 return ExprError();
6786
6787 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6788 ArgType = Arg->getType();
6789 } else
6790 return ExprError();
6791 }
6792
6793 if (!ParamType->isMemberPointerType()) {
6794 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6795 ParamType,
6796 Arg, Converted))
6797 return ExprError();
6798 return Arg;
6799 }
6800
6801 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6802 Converted))
6803 return ExprError();
6804 return Arg;
6805 }
6806
6807 if (ParamType->isPointerType()) {
6808 // -- for a non-type template-parameter of type pointer to
6809 // object, qualification conversions (4.4) and the
6810 // array-to-pointer conversion (4.2) are applied.
6811 // C++0x also allows a value of std::nullptr_t.
6812 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6813, __PRETTY_FUNCTION__))
6813 "Only object pointers allowed here")((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6813, __PRETTY_FUNCTION__))
;
6814
6815 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6816 ParamType,
6817 Arg, Converted))
6818 return ExprError();
6819 return Arg;
6820 }
6821
6822 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
6823 // -- For a non-type template-parameter of type reference to
6824 // object, no conversions apply. The type referred to by the
6825 // reference may be more cv-qualified than the (otherwise
6826 // identical) type of the template-argument. The
6827 // template-parameter is bound directly to the
6828 // template-argument, which must be an lvalue.
6829 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6830, __PRETTY_FUNCTION__))
6830 "Only object references allowed here")((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6830, __PRETTY_FUNCTION__))
;
6831
6832 if (Arg->getType() == Context.OverloadTy) {
6833 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
6834 ParamRefType->getPointeeType(),
6835 true,
6836 FoundResult)) {
6837 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
6838 return ExprError();
6839
6840 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6841 ArgType = Arg->getType();
6842 } else
6843 return ExprError();
6844 }
6845
6846 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6847 ParamType,
6848 Arg, Converted))
6849 return ExprError();
6850 return Arg;
6851 }
6852
6853 // Deal with parameters of type std::nullptr_t.
6854 if (ParamType->isNullPtrType()) {
6855 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6856 Converted = TemplateArgument(Arg);
6857 return Arg;
6858 }
6859
6860 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
6861 case NPV_NotNullPointer:
6862 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
6863 << Arg->getType() << ParamType;
6864 Diag(Param->getLocation(), diag::note_template_param_here);
6865 return ExprError();
6866
6867 case NPV_Error:
6868 return ExprError();
6869
6870 case NPV_NullPointer:
6871 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6872 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
6873 /*isNullPtr*/true);
6874 return Arg;
6875 }
6876 }
6877
6878 // -- For a non-type template-parameter of type pointer to data
6879 // member, qualification conversions (4.4) are applied.
6880 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")((ParamType->isMemberPointerType() && "Only pointers to members remain"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6880, __PRETTY_FUNCTION__))
;
6881
6882 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6883 Converted))
6884 return ExprError();
6885 return Arg;
6886}
6887
6888static void DiagnoseTemplateParameterListArityMismatch(
6889 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
6890 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
6891
6892/// Check a template argument against its corresponding
6893/// template template parameter.
6894///
6895/// This routine implements the semantics of C++ [temp.arg.template].
6896/// It returns true if an error occurred, and false otherwise.
6897bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params,
6898 TemplateArgumentLoc &Arg) {
6899 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
6900 TemplateDecl *Template = Name.getAsTemplateDecl();
6901 if (!Template) {
6902 // Any dependent template name is fine.
6903 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")((Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? static_cast<void> (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6903, __PRETTY_FUNCTION__))
;
6904 return false;
6905 }
6906
6907 if (Template->isInvalidDecl())
6908 return true;
6909
6910 // C++0x [temp.arg.template]p1:
6911 // A template-argument for a template template-parameter shall be
6912 // the name of a class template or an alias template, expressed as an
6913 // id-expression. When the template-argument names a class template, only
6914 // primary class templates are considered when matching the
6915 // template template argument with the corresponding parameter;
6916 // partial specializations are not considered even if their
6917 // parameter lists match that of the template template parameter.
6918 //
6919 // Note that we also allow template template parameters here, which
6920 // will happen when we are dealing with, e.g., class template
6921 // partial specializations.
6922 if (!isa<ClassTemplateDecl>(Template) &&
6923 !isa<TemplateTemplateParmDecl>(Template) &&
6924 !isa<TypeAliasTemplateDecl>(Template) &&
6925 !isa<BuiltinTemplateDecl>(Template)) {
6926 assert(isa<FunctionTemplateDecl>(Template) &&((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6927, __PRETTY_FUNCTION__))
6927 "Only function templates are possible here")((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6927, __PRETTY_FUNCTION__))
;
6928 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
6929 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
6930 << Template;
6931 }
6932
6933 // C++1z [temp.arg.template]p3: (DR 150)
6934 // A template-argument matches a template template-parameter P when P
6935 // is at least as specialized as the template-argument A.
6936 if (getLangOpts().RelaxedTemplateTemplateArgs) {
6937 // Quick check for the common case:
6938 // If P contains a parameter pack, then A [...] matches P if each of A's
6939 // template parameters matches the corresponding template parameter in
6940 // the template-parameter-list of P.
6941 if (TemplateParameterListsAreEqual(
6942 Template->getTemplateParameters(), Params, false,
6943 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
6944 return false;
6945
6946 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
6947 Arg.getLocation()))
6948 return false;
6949 // FIXME: Produce better diagnostics for deduction failures.
6950 }
6951
6952 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
6953 Params,
6954 true,
6955 TPL_TemplateTemplateArgumentMatch,
6956 Arg.getLocation());
6957}
6958
6959/// Given a non-type template argument that refers to a
6960/// declaration and the type of its corresponding non-type template
6961/// parameter, produce an expression that properly refers to that
6962/// declaration.
6963ExprResult
6964Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
6965 QualType ParamType,
6966 SourceLocation Loc) {
6967 // C++ [temp.param]p8:
6968 //
6969 // A non-type template-parameter of type "array of T" or
6970 // "function returning T" is adjusted to be of type "pointer to
6971 // T" or "pointer to function returning T", respectively.
6972 if (ParamType->isArrayType())
6973 ParamType = Context.getArrayDecayedType(ParamType);
6974 else if (ParamType->isFunctionType())
6975 ParamType = Context.getPointerType(ParamType);
6976
6977 // For a NULL non-type template argument, return nullptr casted to the
6978 // parameter's type.
6979 if (Arg.getKind() == TemplateArgument::NullPtr) {
6980 return ImpCastExprToType(
6981 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
6982 ParamType,
6983 ParamType->getAs<MemberPointerType>()
6984 ? CK_NullToMemberPointer
6985 : CK_NullToPointer);
6986 }
6987 assert(Arg.getKind() == TemplateArgument::Declaration &&((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6988, __PRETTY_FUNCTION__))
6988 "Only declaration template arguments permitted here")((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6988, __PRETTY_FUNCTION__))
;
6989
6990 ValueDecl *VD = Arg.getAsDecl();
6991
6992 CXXScopeSpec SS;
6993 if (ParamType->isMemberPointerType()) {
6994 // If this is a pointer to member, we need to use a qualified name to
6995 // form a suitable pointer-to-member constant.
6996 assert(VD->getDeclContext()->isRecord() &&((VD->getDeclContext()->isRecord() && (isa<CXXMethodDecl
>(VD) || isa<FieldDecl>(VD) || isa<IndirectFieldDecl
>(VD))) ? static_cast<void> (0) : __assert_fail ("VD->getDeclContext()->isRecord() && (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6998, __PRETTY_FUNCTION__))
6997 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||((VD->getDeclContext()->isRecord() && (isa<CXXMethodDecl
>(VD) || isa<FieldDecl>(VD) || isa<IndirectFieldDecl
>(VD))) ? static_cast<void> (0) : __assert_fail ("VD->getDeclContext()->isRecord() && (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6998, __PRETTY_FUNCTION__))
6998 isa<IndirectFieldDecl>(VD)))((VD->getDeclContext()->isRecord() && (isa<CXXMethodDecl
>(VD) || isa<FieldDecl>(VD) || isa<IndirectFieldDecl
>(VD))) ? static_cast<void> (0) : __assert_fail ("VD->getDeclContext()->isRecord() && (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 6998, __PRETTY_FUNCTION__))
;
6999 QualType ClassType
7000 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7001 NestedNameSpecifier *Qualifier
7002 = NestedNameSpecifier::Create(Context, nullptr, false,
7003 ClassType.getTypePtr());
7004 SS.MakeTrivial(Context, Qualifier, Loc);
7005 }
7006
7007 ExprResult RefExpr = BuildDeclarationNameExpr(
7008 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7009 if (RefExpr.isInvalid())
7010 return ExprError();
7011
7012 // For a pointer, the argument declaration is the pointee. Take its address.
7013 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7014 if (ParamType->isPointerType() && !ElemT.isNull() &&
7015 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7016 // Decay an array argument if we want a pointer to its first element.
7017 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7018 if (RefExpr.isInvalid())
7019 return ExprError();
7020 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7021 // For any other pointer, take the address (or form a pointer-to-member).
7022 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7023 if (RefExpr.isInvalid())
7024 return ExprError();
7025 } else {
7026 assert(ParamType->isReferenceType() &&((ParamType->isReferenceType() && "unexpected type for decl template argument"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isReferenceType() && \"unexpected type for decl template argument\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7027, __PRETTY_FUNCTION__))
7027 "unexpected type for decl template argument")((ParamType->isReferenceType() && "unexpected type for decl template argument"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isReferenceType() && \"unexpected type for decl template argument\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7027, __PRETTY_FUNCTION__))
;
7028 }
7029
7030 // At this point we should have the right value category.
7031 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&((ParamType->isReferenceType() == RefExpr.get()->isLValue
() && "value kind mismatch for non-type template argument"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isReferenceType() == RefExpr.get()->isLValue() && \"value kind mismatch for non-type template argument\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7032, __PRETTY_FUNCTION__))
7032 "value kind mismatch for non-type template argument")((ParamType->isReferenceType() == RefExpr.get()->isLValue
() && "value kind mismatch for non-type template argument"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isReferenceType() == RefExpr.get()->isLValue() && \"value kind mismatch for non-type template argument\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7032, __PRETTY_FUNCTION__))
;
7033
7034 // The type of the template parameter can differ from the type of the
7035 // argument in various ways; convert it now if necessary.
7036 QualType DestExprType = ParamType.getNonLValueExprType(Context);
7037 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7038 CastKind CK;
7039 QualType Ignored;
7040 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7041 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7042 CK = CK_NoOp;
7043 } else if (ParamType->isVoidPointerType() &&
7044 RefExpr.get()->getType()->isPointerType()) {
7045 CK = CK_BitCast;
7046 } else {
7047 // FIXME: Pointers to members can need conversion derived-to-base or
7048 // base-to-derived conversions. We currently don't retain enough
7049 // information to convert properly (we need to track a cast path or
7050 // subobject number in the template argument).
7051 llvm_unreachable(::llvm::llvm_unreachable_internal("unexpected conversion required for non-type template argument"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7052)
7052 "unexpected conversion required for non-type template argument")::llvm::llvm_unreachable_internal("unexpected conversion required for non-type template argument"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7052)
;
7053 }
7054 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7055 RefExpr.get()->getValueKind());
7056 }
7057
7058 return RefExpr;
7059}
7060
7061/// Construct a new expression that refers to the given
7062/// integral template argument with the given source-location
7063/// information.
7064///
7065/// This routine takes care of the mapping from an integral template
7066/// argument (which may have any integral type) to the appropriate
7067/// literal value.
7068ExprResult
7069Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7070 SourceLocation Loc) {
7071 assert(Arg.getKind() == TemplateArgument::Integral &&((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7072, __PRETTY_FUNCTION__))
7072 "Operation is only valid for integral template arguments")((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7072, __PRETTY_FUNCTION__))
;
7073 QualType OrigT = Arg.getIntegralType();
7074
7075 // If this is an enum type that we're instantiating, we need to use an integer
7076 // type the same size as the enumerator. We don't want to build an
7077 // IntegerLiteral with enum type. The integer type of an enum type can be of
7078 // any integral type with C++11 enum classes, make sure we create the right
7079 // type of literal for it.
7080 QualType T = OrigT;
7081 if (const EnumType *ET = OrigT->getAs<EnumType>())
7082 T = ET->getDecl()->getIntegerType();
7083
7084 Expr *E;
7085 if (T->isAnyCharacterType()) {
7086 CharacterLiteral::CharacterKind Kind;
7087 if (T->isWideCharType())
7088 Kind = CharacterLiteral::Wide;
7089 else if (T->isChar8Type() && getLangOpts().Char8)
7090 Kind = CharacterLiteral::UTF8;
7091 else if (T->isChar16Type())
7092 Kind = CharacterLiteral::UTF16;
7093 else if (T->isChar32Type())
7094 Kind = CharacterLiteral::UTF32;
7095 else
7096 Kind = CharacterLiteral::Ascii;
7097
7098 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7099 Kind, T, Loc);
7100 } else if (T->isBooleanType()) {
7101 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7102 T, Loc);
7103 } else if (T->isNullPtrType()) {
7104 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7105 } else {
7106 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7107 }
7108
7109 if (OrigT->isEnumeralType()) {
7110 // FIXME: This is a hack. We need a better way to handle substituted
7111 // non-type template parameters.
7112 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
7113 nullptr,
7114 Context.getTrivialTypeSourceInfo(OrigT, Loc),
7115 Loc, Loc);
7116 }
7117
7118 return E;
7119}
7120
7121/// Match two template parameters within template parameter lists.
7122static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7123 bool Complain,
7124 Sema::TemplateParameterListEqualKind Kind,
7125 SourceLocation TemplateArgLoc) {
7126 // TODO: Concepts: Check constrained-parameter constraints here.
7127 // Check the actual kind (type, non-type, template).
7128 if (Old->getKind() != New->getKind()) {
7129 if (Complain) {
7130 unsigned NextDiag = diag::err_template_param_different_kind;
7131 if (TemplateArgLoc.isValid()) {
7132 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7133 NextDiag = diag::note_template_param_different_kind;
7134 }
7135 S.Diag(New->getLocation(), NextDiag)
7136 << (Kind != Sema::TPL_TemplateMatch);
7137 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7138 << (Kind != Sema::TPL_TemplateMatch);
7139 }
7140
7141 return false;
7142 }
7143
7144 // Check that both are parameter packs or neither are parameter packs.
7145 // However, if we are matching a template template argument to a
7146 // template template parameter, the template template parameter can have
7147 // a parameter pack where the template template argument does not.
7148 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7149 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7150 Old->isTemplateParameterPack())) {
7151 if (Complain) {
7152 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7153 if (TemplateArgLoc.isValid()) {
7154 S.Diag(TemplateArgLoc,
7155 diag::err_template_arg_template_params_mismatch);
7156 NextDiag = diag::note_template_parameter_pack_non_pack;
7157 }
7158
7159 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7160 : isa<NonTypeTemplateParmDecl>(New)? 1
7161 : 2;
7162 S.Diag(New->getLocation(), NextDiag)
7163 << ParamKind << New->isParameterPack();
7164 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7165 << ParamKind << Old->isParameterPack();
7166 }
7167
7168 return false;
7169 }
7170
7171 // For non-type template parameters, check the type of the parameter.
7172 if (NonTypeTemplateParmDecl *OldNTTP
7173 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7174 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7175
7176 // If we are matching a template template argument to a template
7177 // template parameter and one of the non-type template parameter types
7178 // is dependent, then we must wait until template instantiation time
7179 // to actually compare the arguments.
7180 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7181 (OldNTTP->getType()->isDependentType() ||
7182 NewNTTP->getType()->isDependentType()))
7183 return true;
7184
7185 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7186 if (Complain) {
7187 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7188 if (TemplateArgLoc.isValid()) {
7189 S.Diag(TemplateArgLoc,
7190 diag::err_template_arg_template_params_mismatch);
7191 NextDiag = diag::note_template_nontype_parm_different_type;
7192 }
7193 S.Diag(NewNTTP->getLocation(), NextDiag)
7194 << NewNTTP->getType()
7195 << (Kind != Sema::TPL_TemplateMatch);
7196 S.Diag(OldNTTP->getLocation(),
7197 diag::note_template_nontype_parm_prev_declaration)
7198 << OldNTTP->getType();
7199 }
7200
7201 return false;
7202 }
7203
7204 return true;
7205 }
7206
7207 // For template template parameters, check the template parameter types.
7208 // The template parameter lists of template template
7209 // parameters must agree.
7210 if (TemplateTemplateParmDecl *OldTTP
7211 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7212 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7213 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7214 OldTTP->getTemplateParameters(),
7215 Complain,
7216 (Kind == Sema::TPL_TemplateMatch
7217 ? Sema::TPL_TemplateTemplateParmMatch
7218 : Kind),
7219 TemplateArgLoc);
7220 }
7221
7222 // TODO: Concepts: Match immediately-introduced-constraint for type
7223 // constraints
7224
7225 return true;
7226}
7227
7228/// Diagnose a known arity mismatch when comparing template argument
7229/// lists.
7230static
7231void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7232 TemplateParameterList *New,
7233 TemplateParameterList *Old,
7234 Sema::TemplateParameterListEqualKind Kind,
7235 SourceLocation TemplateArgLoc) {
7236 unsigned NextDiag = diag::err_template_param_list_different_arity;
7237 if (TemplateArgLoc.isValid()) {
7238 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7239 NextDiag = diag::note_template_param_list_different_arity;
7240 }
7241 S.Diag(New->getTemplateLoc(), NextDiag)
7242 << (New->size() > Old->size())
7243 << (Kind != Sema::TPL_TemplateMatch)
7244 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7245 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7246 << (Kind != Sema::TPL_TemplateMatch)
7247 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7248}
7249
7250static void
7251DiagnoseTemplateParameterListRequiresClauseMismatch(Sema &S,
7252 TemplateParameterList *New,
7253 TemplateParameterList *Old){
7254 S.Diag(New->getTemplateLoc(), diag::err_template_different_requires_clause);
7255 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7256 << /*declaration*/0;
7257}
7258
7259/// Determine whether the given template parameter lists are
7260/// equivalent.
7261///
7262/// \param New The new template parameter list, typically written in the
7263/// source code as part of a new template declaration.
7264///
7265/// \param Old The old template parameter list, typically found via
7266/// name lookup of the template declared with this template parameter
7267/// list.
7268///
7269/// \param Complain If true, this routine will produce a diagnostic if
7270/// the template parameter lists are not equivalent.
7271///
7272/// \param Kind describes how we are to match the template parameter lists.
7273///
7274/// \param TemplateArgLoc If this source location is valid, then we
7275/// are actually checking the template parameter list of a template
7276/// argument (New) against the template parameter list of its
7277/// corresponding template template parameter (Old). We produce
7278/// slightly different diagnostics in this scenario.
7279///
7280/// \returns True if the template parameter lists are equal, false
7281/// otherwise.
7282bool
7283Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7284 TemplateParameterList *Old,
7285 bool Complain,
7286 TemplateParameterListEqualKind Kind,
7287 SourceLocation TemplateArgLoc) {
7288 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7289 if (Complain)
7290 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7291 TemplateArgLoc);
7292
7293 return false;
7294 }
7295
7296 // C++0x [temp.arg.template]p3:
7297 // A template-argument matches a template template-parameter (call it P)
7298 // when each of the template parameters in the template-parameter-list of
7299 // the template-argument's corresponding class template or alias template
7300 // (call it A) matches the corresponding template parameter in the
7301 // template-parameter-list of P. [...]
7302 TemplateParameterList::iterator NewParm = New->begin();
7303 TemplateParameterList::iterator NewParmEnd = New->end();
7304 for (TemplateParameterList::iterator OldParm = Old->begin(),
7305 OldParmEnd = Old->end();
7306 OldParm != OldParmEnd; ++OldParm) {
7307 if (Kind != TPL_TemplateTemplateArgumentMatch ||
7308 !(*OldParm)->isTemplateParameterPack()) {
7309 if (NewParm == NewParmEnd) {
7310 if (Complain)
7311 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7312 TemplateArgLoc);
7313
7314 return false;
7315 }
7316
7317 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7318 Kind, TemplateArgLoc))
7319 return false;
7320
7321 ++NewParm;
7322 continue;
7323 }
7324
7325 // C++0x [temp.arg.template]p3:
7326 // [...] When P's template- parameter-list contains a template parameter
7327 // pack (14.5.3), the template parameter pack will match zero or more
7328 // template parameters or template parameter packs in the
7329 // template-parameter-list of A with the same type and form as the
7330 // template parameter pack in P (ignoring whether those template
7331 // parameters are template parameter packs).
7332 for (; NewParm != NewParmEnd; ++NewParm) {
7333 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7334 Kind, TemplateArgLoc))
7335 return false;
7336 }
7337 }
7338
7339 // Make sure we exhausted all of the arguments.
7340 if (NewParm != NewParmEnd) {
7341 if (Complain)
7342 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7343 TemplateArgLoc);
7344
7345 return false;
7346 }
7347
7348 if (Kind != TPL_TemplateTemplateArgumentMatch) {
7349 const Expr *NewRC = New->getRequiresClause();
7350 const Expr *OldRC = Old->getRequiresClause();
7351 if (!NewRC != !OldRC) {
7352 if (Complain)
7353 DiagnoseTemplateParameterListRequiresClauseMismatch(*this, New, Old);
7354 return false;
7355 }
7356
7357 if (NewRC) {
7358 llvm::FoldingSetNodeID OldRCID, NewRCID;
7359 OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7360 NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7361 if (OldRCID != NewRCID) {
7362 if (Complain)
7363 DiagnoseTemplateParameterListRequiresClauseMismatch(*this, New, Old);
7364 return false;
7365 }
7366 }
7367 }
7368
7369 return true;
7370}
7371
7372/// Check whether a template can be declared within this scope.
7373///
7374/// If the template declaration is valid in this scope, returns
7375/// false. Otherwise, issues a diagnostic and returns true.
7376bool
7377Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7378 if (!S)
7379 return false;
7380
7381 // Find the nearest enclosing declaration scope.
7382 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7383 (S->getFlags() & Scope::TemplateParamScope) != 0)
7384 S = S->getParent();
7385
7386 // C++ [temp]p4:
7387 // A template [...] shall not have C linkage.
7388 DeclContext *Ctx = S->getEntity();
7389 if (Ctx && Ctx->isExternCContext()) {
7390 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7391 << TemplateParams->getSourceRange();
7392 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7393 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7394 return true;
7395 }
7396 Ctx = Ctx->getRedeclContext();
7397
7398 // C++ [temp]p2:
7399 // A template-declaration can appear only as a namespace scope or
7400 // class scope declaration.
7401 if (Ctx) {
7402 if (Ctx->isFileContext())
7403 return false;
7404 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7405 // C++ [temp.mem]p2:
7406 // A local class shall not have member templates.
7407 if (RD->isLocalClass())
7408 return Diag(TemplateParams->getTemplateLoc(),
7409 diag::err_template_inside_local_class)
7410 << TemplateParams->getSourceRange();
7411 else
7412 return false;
7413 }
7414 }
7415
7416 return Diag(TemplateParams->getTemplateLoc(),
7417 diag::err_template_outside_namespace_or_class_scope)
7418 << TemplateParams->getSourceRange();
7419}
7420
7421/// Determine what kind of template specialization the given declaration
7422/// is.
7423static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7424 if (!D)
7425 return TSK_Undeclared;
7426
7427 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7428 return Record->getTemplateSpecializationKind();
7429 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7430 return Function->getTemplateSpecializationKind();
7431 if (VarDecl *Var = dyn_cast<VarDecl>(D))
7432 return Var->getTemplateSpecializationKind();
7433
7434 return TSK_Undeclared;
7435}
7436
7437/// Check whether a specialization is well-formed in the current
7438/// context.
7439///
7440/// This routine determines whether a template specialization can be declared
7441/// in the current context (C++ [temp.expl.spec]p2).
7442///
7443/// \param S the semantic analysis object for which this check is being
7444/// performed.
7445///
7446/// \param Specialized the entity being specialized or instantiated, which
7447/// may be a kind of template (class template, function template, etc.) or
7448/// a member of a class template (member function, static data member,
7449/// member class).
7450///
7451/// \param PrevDecl the previous declaration of this entity, if any.
7452///
7453/// \param Loc the location of the explicit specialization or instantiation of
7454/// this entity.
7455///
7456/// \param IsPartialSpecialization whether this is a partial specialization of
7457/// a class template.
7458///
7459/// \returns true if there was an error that we cannot recover from, false
7460/// otherwise.
7461static bool CheckTemplateSpecializationScope(Sema &S,
7462 NamedDecl *Specialized,
7463 NamedDecl *PrevDecl,
7464 SourceLocation Loc,
7465 bool IsPartialSpecialization) {
7466 // Keep these "kind" numbers in sync with the %select statements in the
7467 // various diagnostics emitted by this routine.
7468 int EntityKind = 0;
7469 if (isa<ClassTemplateDecl>(Specialized))
7470 EntityKind = IsPartialSpecialization? 1 : 0;
7471 else if (isa<VarTemplateDecl>(Specialized))
7472 EntityKind = IsPartialSpecialization ? 3 : 2;
7473 else if (isa<FunctionTemplateDecl>(Specialized))
7474 EntityKind = 4;
7475 else if (isa<CXXMethodDecl>(Specialized))
7476 EntityKind = 5;
7477 else if (isa<VarDecl>(Specialized))
7478 EntityKind = 6;
7479 else if (isa<RecordDecl>(Specialized))
7480 EntityKind = 7;
7481 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7482 EntityKind = 8;
7483 else {
7484 S.Diag(Loc, diag::err_template_spec_unknown_kind)
7485 << S.getLangOpts().CPlusPlus11;
7486 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7487 return true;
7488 }
7489
7490 // C++ [temp.expl.spec]p2:
7491 // An explicit specialization may be declared in any scope in which
7492 // the corresponding primary template may be defined.
7493 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7494 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7495 << Specialized;
7496 return true;
7497 }
7498
7499 // C++ [temp.class.spec]p6:
7500 // A class template partial specialization may be declared in any
7501 // scope in which the primary template may be defined.
7502 DeclContext *SpecializedContext =
7503 Specialized->getDeclContext()->getRedeclContext();
7504 DeclContext *DC = S.CurContext->getRedeclContext();
7505
7506 // Make sure that this redeclaration (or definition) occurs in the same
7507 // scope or an enclosing namespace.
7508 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
7509 : DC->Equals(SpecializedContext))) {
7510 if (isa<TranslationUnitDecl>(SpecializedContext))
7511 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7512 << EntityKind << Specialized;
7513 else {
7514 auto *ND = cast<NamedDecl>(SpecializedContext);
7515 int Diag = diag::err_template_spec_redecl_out_of_scope;
7516 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
7517 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7518 S.Diag(Loc, Diag) << EntityKind << Specialized
7519 << ND << isa<CXXRecordDecl>(ND);
7520 }
7521
7522 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7523
7524 // Don't allow specializing in the wrong class during error recovery.
7525 // Otherwise, things can go horribly wrong.
7526 if (DC->isRecord())
7527 return true;
7528 }
7529
7530 return false;
7531}
7532
7533static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7534 if (!E->isTypeDependent())
7535 return SourceLocation();
7536 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7537 Checker.TraverseStmt(E);
7538 if (Checker.MatchLoc.isInvalid())
7539 return E->getSourceRange();
7540 return Checker.MatchLoc;
7541}
7542
7543static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7544 if (!TL.getType()->isDependentType())
7545 return SourceLocation();
7546 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7547 Checker.TraverseTypeLoc(TL);
7548 if (Checker.MatchLoc.isInvalid())
7549 return TL.getSourceRange();
7550 return Checker.MatchLoc;
7551}
7552
7553/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7554/// that checks non-type template partial specialization arguments.
7555static bool CheckNonTypeTemplatePartialSpecializationArgs(
7556 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7557 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7558 for (unsigned I = 0; I != NumArgs; ++I) {
7559 if (Args[I].getKind() == TemplateArgument::Pack) {
7560 if (CheckNonTypeTemplatePartialSpecializationArgs(
7561 S, TemplateNameLoc, Param, Args[I].pack_begin(),
7562 Args[I].pack_size(), IsDefaultArgument))
7563 return true;
7564
7565 continue;
7566 }
7567
7568 if (Args[I].getKind() != TemplateArgument::Expression)
7569 continue;
7570
7571 Expr *ArgExpr = Args[I].getAsExpr();
7572
7573 // We can have a pack expansion of any of the bullets below.
7574 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7575 ArgExpr = Expansion->getPattern();
7576
7577 // Strip off any implicit casts we added as part of type checking.
7578 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7579 ArgExpr = ICE->getSubExpr();
7580
7581 // C++ [temp.class.spec]p8:
7582 // A non-type argument is non-specialized if it is the name of a
7583 // non-type parameter. All other non-type arguments are
7584 // specialized.
7585 //
7586 // Below, we check the two conditions that only apply to
7587 // specialized non-type arguments, so skip any non-specialized
7588 // arguments.
7589 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7590 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7591 continue;
7592
7593 // C++ [temp.class.spec]p9:
7594 // Within the argument list of a class template partial
7595 // specialization, the following restrictions apply:
7596 // -- A partially specialized non-type argument expression
7597 // shall not involve a template parameter of the partial
7598 // specialization except when the argument expression is a
7599 // simple identifier.
7600 // -- The type of a template parameter corresponding to a
7601 // specialized non-type argument shall not be dependent on a
7602 // parameter of the specialization.
7603 // DR1315 removes the first bullet, leaving an incoherent set of rules.
7604 // We implement a compromise between the original rules and DR1315:
7605 // -- A specialized non-type template argument shall not be
7606 // type-dependent and the corresponding template parameter
7607 // shall have a non-dependent type.
7608 SourceRange ParamUseRange =
7609 findTemplateParameterInType(Param->getDepth(), ArgExpr);
7610 if (ParamUseRange.isValid()) {
7611 if (IsDefaultArgument) {
7612 S.Diag(TemplateNameLoc,
7613 diag::err_dependent_non_type_arg_in_partial_spec);
7614 S.Diag(ParamUseRange.getBegin(),
7615 diag::note_dependent_non_type_default_arg_in_partial_spec)
7616 << ParamUseRange;
7617 } else {
7618 S.Diag(ParamUseRange.getBegin(),
7619 diag::err_dependent_non_type_arg_in_partial_spec)
7620 << ParamUseRange;
7621 }
7622 return true;
7623 }
7624
7625 ParamUseRange = findTemplateParameter(
7626 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7627 if (ParamUseRange.isValid()) {
7628 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
7629 diag::err_dependent_typed_non_type_arg_in_partial_spec)
7630 << Param->getType();
7631 S.Diag(Param->getLocation(), diag::note_template_param_here)
7632 << (IsDefaultArgument ? ParamUseRange : SourceRange())
7633 << ParamUseRange;
7634 return true;
7635 }
7636 }
7637
7638 return false;
7639}
7640
7641/// Check the non-type template arguments of a class template
7642/// partial specialization according to C++ [temp.class.spec]p9.
7643///
7644/// \param TemplateNameLoc the location of the template name.
7645/// \param PrimaryTemplate the template parameters of the primary class
7646/// template.
7647/// \param NumExplicit the number of explicitly-specified template arguments.
7648/// \param TemplateArgs the template arguments of the class template
7649/// partial specialization.
7650///
7651/// \returns \c true if there was an error, \c false otherwise.
7652bool Sema::CheckTemplatePartialSpecializationArgs(
7653 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7654 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7655 // We have to be conservative when checking a template in a dependent
7656 // context.
7657 if (PrimaryTemplate->getDeclContext()->isDependentContext())
7658 return false;
7659
7660 TemplateParameterList *TemplateParams =
7661 PrimaryTemplate->getTemplateParameters();
7662 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7663 NonTypeTemplateParmDecl *Param
7664 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7665 if (!Param)
7666 continue;
7667
7668 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7669 Param, &TemplateArgs[I],
7670 1, I >= NumExplicit))
7671 return true;
7672 }
7673
7674 return false;
7675}
7676
7677DeclResult Sema::ActOnClassTemplateSpecialization(
7678 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7679 SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId,
7680 const ParsedAttributesView &Attr,
7681 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
7682 assert(TUK != TUK_Reference && "References are not specializations")((TUK != TUK_Reference && "References are not specializations"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7682, __PRETTY_FUNCTION__))
;
7683
7684 CXXScopeSpec &SS = TemplateId.SS;
7685
7686 // NOTE: KWLoc is the location of the tag keyword. This will instead
7687 // store the location of the outermost template keyword in the declaration.
7688 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
7689 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
7690 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
7691 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
7692 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
7693
7694 // Find the class template we're specializing
7695 TemplateName Name = TemplateId.Template.get();
7696 ClassTemplateDecl *ClassTemplate
7697 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
7698
7699 if (!ClassTemplate) {
7700 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
7701 << (Name.getAsTemplateDecl() &&
7702 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
7703 return true;
7704 }
7705
7706 bool isMemberSpecialization = false;
7707 bool isPartialSpecialization = false;
7708
7709 // Check the validity of the template headers that introduce this
7710 // template.
7711 // FIXME: We probably shouldn't complain about these headers for
7712 // friend declarations.
7713 bool Invalid = false;
7714 TemplateParameterList *TemplateParams =
7715 MatchTemplateParametersToScopeSpecifier(
7716 KWLoc, TemplateNameLoc, SS, &TemplateId,
7717 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
7718 Invalid);
7719 if (Invalid)
7720 return true;
7721
7722 if (TemplateParams && TemplateParams->size() > 0) {
7723 isPartialSpecialization = true;
7724
7725 if (TUK == TUK_Friend) {
7726 Diag(KWLoc, diag::err_partial_specialization_friend)
7727 << SourceRange(LAngleLoc, RAngleLoc);
7728 return true;
7729 }
7730
7731 // C++ [temp.class.spec]p10:
7732 // The template parameter list of a specialization shall not
7733 // contain default template argument values.
7734 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7735 Decl *Param = TemplateParams->getParam(I);
7736 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
7737 if (TTP->hasDefaultArgument()) {
7738 Diag(TTP->getDefaultArgumentLoc(),
7739 diag::err_default_arg_in_partial_spec);
7740 TTP->removeDefaultArgument();
7741 }
7742 } else if (NonTypeTemplateParmDecl *NTTP
7743 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
7744 if (Expr *DefArg = NTTP->getDefaultArgument()) {
7745 Diag(NTTP->getDefaultArgumentLoc(),
7746 diag::err_default_arg_in_partial_spec)
7747 << DefArg->getSourceRange();
7748 NTTP->removeDefaultArgument();
7749 }
7750 } else {
7751 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
7752 if (TTP->hasDefaultArgument()) {
7753 Diag(TTP->getDefaultArgument().getLocation(),
7754 diag::err_default_arg_in_partial_spec)
7755 << TTP->getDefaultArgument().getSourceRange();
7756 TTP->removeDefaultArgument();
7757 }
7758 }
7759 }
7760 } else if (TemplateParams) {
7761 if (TUK == TUK_Friend)
7762 Diag(KWLoc, diag::err_template_spec_friend)
7763 << FixItHint::CreateRemoval(
7764 SourceRange(TemplateParams->getTemplateLoc(),
7765 TemplateParams->getRAngleLoc()))
7766 << SourceRange(LAngleLoc, RAngleLoc);
7767 } else {
7768 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")((TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7768, __PRETTY_FUNCTION__))
;
7769 }
7770
7771 // Check that the specialization uses the same tag kind as the
7772 // original template.
7773 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7774 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")((Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 7774, __PRETTY_FUNCTION__))
;
7775 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7776 Kind, TUK == TUK_Definition, KWLoc,
7777 ClassTemplate->getIdentifier())) {
7778 Diag(KWLoc, diag::err_use_with_wrong_tag)
7779 << ClassTemplate
7780 << FixItHint::CreateReplacement(KWLoc,
7781 ClassTemplate->getTemplatedDecl()->getKindName());
7782 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7783 diag::note_previous_use);
7784 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7785 }
7786
7787 // Translate the parser's template argument list in our AST format.
7788 TemplateArgumentListInfo TemplateArgs =
7789 makeTemplateArgumentListInfo(*this, TemplateId);
7790
7791 // Check for unexpanded parameter packs in any of the template arguments.
7792 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7793 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
7794 UPPC_PartialSpecialization))
7795 return true;
7796
7797 // Check that the template argument list is well-formed for this
7798 // template.
7799 SmallVector<TemplateArgument, 4> Converted;
7800 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7801 TemplateArgs, false, Converted,
7802 /*UpdateArgsWithConversion=*/true))
7803 return true;
7804
7805 // Find the class template (partial) specialization declaration that
7806 // corresponds to these arguments.
7807 if (isPartialSpecialization) {
7808 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
7809 TemplateArgs.size(), Converted))
7810 return true;
7811
7812 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
7813 // also do it during instantiation.
7814 bool InstantiationDependent;
7815 if (!Name.isDependent() &&
7816 !TemplateSpecializationType::anyDependentTemplateArguments(
7817 TemplateArgs.arguments(), InstantiationDependent)) {
7818 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
7819 << ClassTemplate->getDeclName();
7820 isPartialSpecialization = false;
7821 }
7822 }
7823
7824 void *InsertPos = nullptr;
7825 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
7826
7827 if (isPartialSpecialization)
7828 PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
7829 TemplateParams,
7830 InsertPos);
7831 else
7832 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
7833
7834 ClassTemplateSpecializationDecl *Specialization = nullptr;
7835
7836 // Check whether we can declare a class template specialization in
7837 // the current scope.
7838 if (TUK != TUK_Friend &&
7839 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
7840 TemplateNameLoc,
7841 isPartialSpecialization))
7842 return true;
7843
7844 // The canonical type
7845 QualType CanonType;
7846 if (isPartialSpecialization) {
7847 // Build the canonical type that describes the converted template
7848 // arguments of the class template partial specialization.
7849 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7850 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
7851 Converted);
7852
7853 if (Context.hasSameType(CanonType,
7854 ClassTemplate->getInjectedClassNameSpecialization()) &&
7855 (!Context.getLangOpts().ConceptsTS ||
7856 !TemplateParams->hasAssociatedConstraints())) {
7857 // C++ [temp.class.spec]p9b3:
7858 //
7859 // -- The argument list of the specialization shall not be identical
7860 // to the implicit argument list of the primary template.
7861 //
7862 // This rule has since been removed, because it's redundant given DR1495,
7863 // but we keep it because it produces better diagnostics and recovery.
7864 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
7865 << /*class template*/0 << (TUK == TUK_Definition)
7866 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
7867 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
7868 ClassTemplate->getIdentifier(),
7869 TemplateNameLoc,
7870 Attr,
7871 TemplateParams,
7872 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
7873 /*FriendLoc*/SourceLocation(),
7874 TemplateParameterLists.size() - 1,
7875 TemplateParameterLists.data());
7876 }
7877
7878 // Create a new class template partial specialization declaration node.
7879 ClassTemplatePartialSpecializationDecl *PrevPartial
7880 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
7881 ClassTemplatePartialSpecializationDecl *Partial
7882 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
7883 ClassTemplate->getDeclContext(),
7884 KWLoc, TemplateNameLoc,
7885 TemplateParams,
7886 ClassTemplate,
7887 Converted,
7888 TemplateArgs,
7889 CanonType,
7890 PrevPartial);
7891 SetNestedNameSpecifier(*this, Partial, SS);
7892 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
7893 Partial->setTemplateParameterListsInfo(
7894 Context, TemplateParameterLists.drop_back(1));
7895 }
7896
7897 if (!PrevPartial)
7898 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
7899 Specialization = Partial;
7900
7901 // If we are providing an explicit specialization of a member class
7902 // template specialization, make a note of that.
7903 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
7904 PrevPartial->setMemberSpecialization();
7905
7906 CheckTemplatePartialSpecialization(Partial);
7907 } else {
7908 // Create a new class template specialization declaration node for
7909 // this explicit specialization or friend declaration.
7910 Specialization
7911 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7912 ClassTemplate->getDeclContext(),
7913 KWLoc, TemplateNameLoc,
7914 ClassTemplate,
7915 Converted,
7916 PrevDecl);
7917 SetNestedNameSpecifier(*this, Specialization, SS);
7918 if (TemplateParameterLists.size() > 0) {
7919 Specialization->setTemplateParameterListsInfo(Context,
7920 TemplateParameterLists);
7921 }
7922
7923 if (!PrevDecl)
7924 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7925
7926 if (CurContext->isDependentContext()) {
7927 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7928 CanonType = Context.getTemplateSpecializationType(
7929 CanonTemplate, Converted);
7930 } else {
7931 CanonType = Context.getTypeDeclType(Specialization);
7932 }
7933 }
7934
7935 // C++ [temp.expl.spec]p6:
7936 // If a template, a member template or the member of a class template is
7937 // explicitly specialized then that specialization shall be declared
7938 // before the first use of that specialization that would cause an implicit
7939 // instantiation to take place, in every translation unit in which such a
7940 // use occurs; no diagnostic is required.
7941 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
7942 bool Okay = false;
7943 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7944 // Is there any previous explicit specialization declaration?
7945 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7946 Okay = true;
7947 break;
7948 }
7949 }
7950
7951 if (!Okay) {
7952 SourceRange Range(TemplateNameLoc, RAngleLoc);
7953 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
7954 << Context.getTypeDeclType(Specialization) << Range;
7955
7956 Diag(PrevDecl->getPointOfInstantiation(),
7957 diag::note_instantiation_required_here)
7958 << (PrevDecl->getTemplateSpecializationKind()
7959 != TSK_ImplicitInstantiation);
7960 return true;
7961 }
7962 }
7963
7964 // If this is not a friend, note that this is an explicit specialization.
7965 if (TUK != TUK_Friend)
7966 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
7967
7968 // Check that this isn't a redefinition of this specialization.
7969 if (TUK == TUK_Definition) {
7970 RecordDecl *Def = Specialization->getDefinition();
7971 NamedDecl *Hidden = nullptr;
7972 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
7973 SkipBody->ShouldSkip = true;
7974 SkipBody->Previous = Def;
7975 makeMergedDefinitionVisible(Hidden);
7976 } else if (Def) {
7977 SourceRange Range(TemplateNameLoc, RAngleLoc);
7978 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
7979 Diag(Def->getLocation(), diag::note_previous_definition);
7980 Specialization->setInvalidDecl();
7981 return true;
7982 }
7983 }
7984
7985 ProcessDeclAttributeList(S, Specialization, Attr);
7986
7987 // Add alignment attributes if necessary; these attributes are checked when
7988 // the ASTContext lays out the structure.
7989 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
7990 AddAlignmentAttributesForRecord(Specialization);
7991 AddMsStructLayoutForRecord(Specialization);
7992 }
7993
7994 if (ModulePrivateLoc.isValid())
7995 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
7996 << (isPartialSpecialization? 1 : 0)
7997 << FixItHint::CreateRemoval(ModulePrivateLoc);
7998
7999 // Build the fully-sugared type for this class template
8000 // specialization as the user wrote in the specialization
8001 // itself. This means that we'll pretty-print the type retrieved
8002 // from the specialization's declaration the way that the user
8003 // actually wrote the specialization, rather than formatting the
8004 // name based on the "canonical" representation used to store the
8005 // template arguments in the specialization.
8006 TypeSourceInfo *WrittenTy
8007 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8008 TemplateArgs, CanonType);
8009 if (TUK != TUK_Friend) {
8010 Specialization->setTypeAsWritten(WrittenTy);
8011 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8012 }
8013
8014 // C++ [temp.expl.spec]p9:
8015 // A template explicit specialization is in the scope of the
8016 // namespace in which the template was defined.
8017 //
8018 // We actually implement this paragraph where we set the semantic
8019 // context (in the creation of the ClassTemplateSpecializationDecl),
8020 // but we also maintain the lexical context where the actual
8021 // definition occurs.
8022 Specialization->setLexicalDeclContext(CurContext);
8023
8024 // We may be starting the definition of this specialization.
8025 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8026 Specialization->startDefinition();
8027
8028 if (TUK == TUK_Friend) {
8029 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8030 TemplateNameLoc,
8031 WrittenTy,
8032 /*FIXME:*/KWLoc);
8033 Friend->setAccess(AS_public);
8034 CurContext->addDecl(Friend);
8035 } else {
8036 // Add the specialization into its lexical context, so that it can
8037 // be seen when iterating through the list of declarations in that
8038 // context. However, specializations are not found by name lookup.
8039 CurContext->addDecl(Specialization);
8040 }
8041
8042 if (SkipBody && SkipBody->ShouldSkip)
8043 return SkipBody->Previous;
8044
8045 return Specialization;
8046}
8047
8048Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8049 MultiTemplateParamsArg TemplateParameterLists,
8050 Declarator &D) {
8051 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8052 ActOnDocumentableDecl(NewDecl);
8053 return NewDecl;
8054}
8055
8056Decl *Sema::ActOnConceptDefinition(Scope *S,
8057 MultiTemplateParamsArg TemplateParameterLists,
8058 IdentifierInfo *Name, SourceLocation NameLoc,
8059 Expr *ConstraintExpr) {
8060 DeclContext *DC = CurContext;
8061
8062 if (!DC->getRedeclContext()->isFileContext()) {
8063 Diag(NameLoc,
8064 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8065 return nullptr;
8066 }
8067
8068 if (TemplateParameterLists.size() > 1) {
8069 Diag(NameLoc, diag::err_concept_extra_headers);
8070 return nullptr;
8071 }
8072
8073 if (TemplateParameterLists.front()->size() == 0) {
8074 Diag(NameLoc, diag::err_concept_no_parameters);
8075 return nullptr;
8076 }
8077
8078 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8079 TemplateParameterLists.front(),
8080 ConstraintExpr);
8081
8082 if (NewDecl->hasAssociatedConstraints()) {
8083 // C++2a [temp.concept]p4:
8084 // A concept shall not have associated constraints.
8085 Diag(NameLoc, diag::err_concept_no_associated_constraints);
8086 NewDecl->setInvalidDecl();
8087 }
8088
8089 // Check for conflicting previous declaration.
8090 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8091 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8092 ForVisibleRedeclaration);
8093 LookupName(Previous, S);
8094
8095 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8096 /*AllowInlineNamespace*/false);
8097 if (!Previous.empty()) {
8098 auto *Old = Previous.getRepresentativeDecl();
8099 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
8100 diag::err_redefinition_different_kind) << NewDecl->getDeclName();
8101 Diag(Old->getLocation(), diag::note_previous_definition);
8102 }
8103
8104 ActOnDocumentableDecl(NewDecl);
8105 PushOnScopeChains(NewDecl, S);
8106 return NewDecl;
8107}
8108
8109/// \brief Strips various properties off an implicit instantiation
8110/// that has just been explicitly specialized.
8111static void StripImplicitInstantiation(NamedDecl *D) {
8112 D->dropAttr<DLLImportAttr>();
8113 D->dropAttr<DLLExportAttr>();
8114
8115 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8116 FD->setInlineSpecified(false);
8117}
8118
8119/// Compute the diagnostic location for an explicit instantiation
8120// declaration or definition.
8121static SourceLocation DiagLocForExplicitInstantiation(
8122 NamedDecl* D, SourceLocation PointOfInstantiation) {
8123 // Explicit instantiations following a specialization have no effect and
8124 // hence no PointOfInstantiation. In that case, walk decl backwards
8125 // until a valid name loc is found.
8126 SourceLocation PrevDiagLoc = PointOfInstantiation;
8127 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8128 Prev = Prev->getPreviousDecl()) {
8129 PrevDiagLoc = Prev->getLocation();
8130 }
8131 assert(PrevDiagLoc.isValid() &&((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8132, __PRETTY_FUNCTION__))
8132 "Explicit instantiation without point of instantiation?")((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8132, __PRETTY_FUNCTION__))
;
8133 return PrevDiagLoc;
8134}
8135
8136/// Diagnose cases where we have an explicit template specialization
8137/// before/after an explicit template instantiation, producing diagnostics
8138/// for those cases where they are required and determining whether the
8139/// new specialization/instantiation will have any effect.
8140///
8141/// \param NewLoc the location of the new explicit specialization or
8142/// instantiation.
8143///
8144/// \param NewTSK the kind of the new explicit specialization or instantiation.
8145///
8146/// \param PrevDecl the previous declaration of the entity.
8147///
8148/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8149///
8150/// \param PrevPointOfInstantiation if valid, indicates where the previus
8151/// declaration was instantiated (either implicitly or explicitly).
8152///
8153/// \param HasNoEffect will be set to true to indicate that the new
8154/// specialization or instantiation has no effect and should be ignored.
8155///
8156/// \returns true if there was an error that should prevent the introduction of
8157/// the new declaration into the AST, false otherwise.
8158bool
8159Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8160 TemplateSpecializationKind NewTSK,
8161 NamedDecl *PrevDecl,
8162 TemplateSpecializationKind PrevTSK,
8163 SourceLocation PrevPointOfInstantiation,
8164 bool &HasNoEffect) {
8165 HasNoEffect = false;
8166
8167 switch (NewTSK) {
8168 case TSK_Undeclared:
8169 case TSK_ImplicitInstantiation:
8170 assert((((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8172, __PRETTY_FUNCTION__))
8171 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8172, __PRETTY_FUNCTION__))
8172 "previous declaration must be implicit!")(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8172, __PRETTY_FUNCTION__))
;
8173 return false;
8174
8175 case TSK_ExplicitSpecialization:
8176 switch (PrevTSK) {
8177 case TSK_Undeclared:
8178 case TSK_ExplicitSpecialization:
8179 // Okay, we're just specializing something that is either already
8180 // explicitly specialized or has merely been mentioned without any
8181 // instantiation.
8182 return false;
8183
8184 case TSK_ImplicitInstantiation:
8185 if (PrevPointOfInstantiation.isInvalid()) {
8186 // The declaration itself has not actually been instantiated, so it is
8187 // still okay to specialize it.
8188 StripImplicitInstantiation(PrevDecl);
8189 return false;
8190 }
8191 // Fall through
8192 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8193
8194 case TSK_ExplicitInstantiationDeclaration:
8195 case TSK_ExplicitInstantiationDefinition:
8196 assert((PrevTSK == TSK_ImplicitInstantiation ||(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8198, __PRETTY_FUNCTION__))
8197 PrevPointOfInstantiation.isValid()) &&(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8198, __PRETTY_FUNCTION__))
8198 "Explicit instantiation without point of instantiation?")(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8198, __PRETTY_FUNCTION__))
;
8199
8200 // C++ [temp.expl.spec]p6:
8201 // If a template, a member template or the member of a class template
8202 // is explicitly specialized then that specialization shall be declared
8203 // before the first use of that specialization that would cause an
8204 // implicit instantiation to take place, in every translation unit in
8205 // which such a use occurs; no diagnostic is required.
8206 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8207 // Is there any previous explicit specialization declaration?
8208 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8209 return false;
8210 }
8211
8212 Diag(NewLoc, diag::err_specialization_after_instantiation)
8213 << PrevDecl;
8214 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8215 << (PrevTSK != TSK_ImplicitInstantiation);
8216
8217 return true;
8218 }
8219 llvm_unreachable("The switch over PrevTSK must be exhaustive.")::llvm::llvm_unreachable_internal("The switch over PrevTSK must be exhaustive."
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8219)
;
8220
8221 case TSK_ExplicitInstantiationDeclaration:
8222 switch (PrevTSK) {
8223 case TSK_ExplicitInstantiationDeclaration:
8224 // This explicit instantiation declaration is redundant (that's okay).
8225 HasNoEffect = true;
8226 return false;
8227
8228 case TSK_Undeclared:
8229 case TSK_ImplicitInstantiation:
8230 // We're explicitly instantiating something that may have already been
8231 // implicitly instantiated; that's fine.
8232 return false;
8233
8234 case TSK_ExplicitSpecialization:
8235 // C++0x [temp.explicit]p4:
8236 // For a given set of template parameters, if an explicit instantiation
8237 // of a template appears after a declaration of an explicit
8238 // specialization for that template, the explicit instantiation has no
8239 // effect.
8240 HasNoEffect = true;
8241 return false;
8242
8243 case TSK_ExplicitInstantiationDefinition:
8244 // C++0x [temp.explicit]p10:
8245 // If an entity is the subject of both an explicit instantiation
8246 // declaration and an explicit instantiation definition in the same
8247 // translation unit, the definition shall follow the declaration.
8248 Diag(NewLoc,
8249 diag::err_explicit_instantiation_declaration_after_definition);
8250
8251 // Explicit instantiations following a specialization have no effect and
8252 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8253 // until a valid name loc is found.
8254 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8255 diag::note_explicit_instantiation_definition_here);
8256 HasNoEffect = true;
8257 return false;
8258 }
8259 llvm_unreachable("Unexpected TemplateSpecializationKind!")::llvm::llvm_unreachable_internal("Unexpected TemplateSpecializationKind!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8259)
;
8260
8261 case TSK_ExplicitInstantiationDefinition:
8262 switch (PrevTSK) {
8263 case TSK_Undeclared:
8264 case TSK_ImplicitInstantiation:
8265 // We're explicitly instantiating something that may have already been
8266 // implicitly instantiated; that's fine.
8267 return false;
8268
8269 case TSK_ExplicitSpecialization:
8270 // C++ DR 259, C++0x [temp.explicit]p4:
8271 // For a given set of template parameters, if an explicit
8272 // instantiation of a template appears after a declaration of
8273 // an explicit specialization for that template, the explicit
8274 // instantiation has no effect.
8275 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8276 << PrevDecl;
8277 Diag(PrevDecl->getLocation(),
8278 diag::note_previous_template_specialization);
8279 HasNoEffect = true;
8280 return false;
8281
8282 case TSK_ExplicitInstantiationDeclaration:
8283 // We're explicitly instantiating a definition for something for which we
8284 // were previously asked to suppress instantiations. That's fine.
8285
8286 // C++0x [temp.explicit]p4:
8287 // For a given set of template parameters, if an explicit instantiation
8288 // of a template appears after a declaration of an explicit
8289 // specialization for that template, the explicit instantiation has no
8290 // effect.
8291 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8292 // Is there any previous explicit specialization declaration?
8293 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8294 HasNoEffect = true;
8295 break;
8296 }
8297 }
8298
8299 return false;
8300
8301 case TSK_ExplicitInstantiationDefinition:
8302 // C++0x [temp.spec]p5:
8303 // For a given template and a given set of template-arguments,
8304 // - an explicit instantiation definition shall appear at most once
8305 // in a program,
8306
8307 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8308 Diag(NewLoc, (getLangOpts().MSVCCompat)
8309 ? diag::ext_explicit_instantiation_duplicate
8310 : diag::err_explicit_instantiation_duplicate)
8311 << PrevDecl;
8312 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8313 diag::note_previous_explicit_instantiation);
8314 HasNoEffect = true;
8315 return false;
8316 }
8317 }
8318
8319 llvm_unreachable("Missing specialization/instantiation case?")::llvm::llvm_unreachable_internal("Missing specialization/instantiation case?"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8319)
;
8320}
8321
8322/// Perform semantic analysis for the given dependent function
8323/// template specialization.
8324///
8325/// The only possible way to get a dependent function template specialization
8326/// is with a friend declaration, like so:
8327///
8328/// \code
8329/// template \<class T> void foo(T);
8330/// template \<class T> class A {
8331/// friend void foo<>(T);
8332/// };
8333/// \endcode
8334///
8335/// There really isn't any useful analysis we can do here, so we
8336/// just store the information.
8337bool
8338Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8339 const TemplateArgumentListInfo &ExplicitTemplateArgs,
8340 LookupResult &Previous) {
8341 // Remove anything from Previous that isn't a function template in
8342 // the correct context.
8343 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8344 LookupResult::Filter F = Previous.makeFilter();
8345 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8346 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8347 while (F.hasNext()) {
8348 NamedDecl *D = F.next()->getUnderlyingDecl();
8349 if (!isa<FunctionTemplateDecl>(D)) {
8350 F.erase();
8351 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8352 continue;
8353 }
8354
8355 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8356 D->getDeclContext()->getRedeclContext())) {
8357 F.erase();
8358 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8359 continue;
8360 }
8361 }
8362 F.done();
8363
8364 if (Previous.empty()) {
8365 Diag(FD->getLocation(),
8366 diag::err_dependent_function_template_spec_no_match);
8367 for (auto &P : DiscardedCandidates)
8368 Diag(P.second->getLocation(),
8369 diag::note_dependent_function_template_spec_discard_reason)
8370 << P.first;
8371 return true;
8372 }
8373
8374 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8375 ExplicitTemplateArgs);
8376 return false;
8377}
8378
8379/// Perform semantic analysis for the given function template
8380/// specialization.
8381///
8382/// This routine performs all of the semantic analysis required for an
8383/// explicit function template specialization. On successful completion,
8384/// the function declaration \p FD will become a function template
8385/// specialization.
8386///
8387/// \param FD the function declaration, which will be updated to become a
8388/// function template specialization.
8389///
8390/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8391/// if any. Note that this may be valid info even when 0 arguments are
8392/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8393/// as it anyway contains info on the angle brackets locations.
8394///
8395/// \param Previous the set of declarations that may be specialized by
8396/// this function specialization.
8397///
8398/// \param QualifiedFriend whether this is a lookup for a qualified friend
8399/// declaration with no explicit template argument list that might be
8400/// befriending a function template specialization.
8401bool Sema::CheckFunctionTemplateSpecialization(
8402 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8403 LookupResult &Previous, bool QualifiedFriend) {
8404 // The set of function template specializations that could match this
8405 // explicit function template specialization.
8406 UnresolvedSet<8> Candidates;
8407 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8408 /*ForTakingAddress=*/false);
8409
8410 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8411 ConvertedTemplateArgs;
8412
8413 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8414 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8415 I != E; ++I) {
8416 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8417 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8418 // Only consider templates found within the same semantic lookup scope as
8419 // FD.
8420 if (!FDLookupContext->InEnclosingNamespaceSetOf(
8421 Ovl->getDeclContext()->getRedeclContext()))
8422 continue;
8423
8424 // When matching a constexpr member function template specialization
8425 // against the primary template, we don't yet know whether the
8426 // specialization has an implicit 'const' (because we don't know whether
8427 // it will be a static member function until we know which template it
8428 // specializes), so adjust it now assuming it specializes this template.
8429 QualType FT = FD->getType();
8430 if (FD->isConstexpr()) {
8431 CXXMethodDecl *OldMD =
8432 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8433 if (OldMD && OldMD->isConst()) {
8434 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8435 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8436 EPI.TypeQuals.addConst();
8437 FT = Context.getFunctionType(FPT->getReturnType(),
8438 FPT->getParamTypes(), EPI);
8439 }
8440 }
8441
8442 TemplateArgumentListInfo Args;
8443 if (ExplicitTemplateArgs)
8444 Args = *ExplicitTemplateArgs;
8445
8446 // C++ [temp.expl.spec]p11:
8447 // A trailing template-argument can be left unspecified in the
8448 // template-id naming an explicit function template specialization
8449 // provided it can be deduced from the function argument type.
8450 // Perform template argument deduction to determine whether we may be
8451 // specializing this template.
8452 // FIXME: It is somewhat wasteful to build
8453 TemplateDeductionInfo Info(FailedCandidates.getLocation());
8454 FunctionDecl *Specialization = nullptr;
8455 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8456 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8457 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
8458 Info)) {
8459 // Template argument deduction failed; record why it failed, so
8460 // that we can provide nifty diagnostics.
8461 FailedCandidates.addCandidate().set(
8462 I.getPair(), FunTmpl->getTemplatedDecl(),
8463 MakeDeductionFailureInfo(Context, TDK, Info));
8464 (void)TDK;
8465 continue;
8466 }
8467
8468 // Target attributes are part of the cuda function signature, so
8469 // the deduced template's cuda target must match that of the
8470 // specialization. Given that C++ template deduction does not
8471 // take target attributes into account, we reject candidates
8472 // here that have a different target.
8473 if (LangOpts.CUDA &&
8474 IdentifyCUDATarget(Specialization,
8475 /* IgnoreImplicitHDAttr = */ true) !=
8476 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
8477 FailedCandidates.addCandidate().set(
8478 I.getPair(), FunTmpl->getTemplatedDecl(),
8479 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
8480 continue;
8481 }
8482
8483 // Record this candidate.
8484 if (ExplicitTemplateArgs)
8485 ConvertedTemplateArgs[Specialization] = std::move(Args);
8486 Candidates.addDecl(Specialization, I.getAccess());
8487 }
8488 }
8489
8490 // For a qualified friend declaration (with no explicit marker to indicate
8491 // that a template specialization was intended), note all (template and
8492 // non-template) candidates.
8493 if (QualifiedFriend && Candidates.empty()) {
8494 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
8495 << FD->getDeclName() << FDLookupContext;
8496 // FIXME: We should form a single candidate list and diagnose all
8497 // candidates at once, to get proper sorting and limiting.
8498 for (auto *OldND : Previous) {
8499 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
8500 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
8501 }
8502 FailedCandidates.NoteCandidates(*this, FD->getLocation());
8503 return true;
8504 }
8505
8506 // Find the most specialized function template.
8507 UnresolvedSetIterator Result = getMostSpecialized(
8508 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
8509 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
8510 PDiag(diag::err_function_template_spec_ambiguous)
8511 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
8512 PDiag(diag::note_function_template_spec_matched));
8513
8514 if (Result == Candidates.end())
8515 return true;
8516
8517 // Ignore access information; it doesn't figure into redeclaration checking.
8518 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8519
8520 FunctionTemplateSpecializationInfo *SpecInfo
8521 = Specialization->getTemplateSpecializationInfo();
8522 assert(SpecInfo && "Function template specialization info missing?")((SpecInfo && "Function template specialization info missing?"
) ? static_cast<void> (0) : __assert_fail ("SpecInfo && \"Function template specialization info missing?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8522, __PRETTY_FUNCTION__))
;
8523
8524 // Note: do not overwrite location info if previous template
8525 // specialization kind was explicit.
8526 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
8527 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
8528 Specialization->setLocation(FD->getLocation());
8529 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
8530 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
8531 // function can differ from the template declaration with respect to
8532 // the constexpr specifier.
8533 // FIXME: We need an update record for this AST mutation.
8534 // FIXME: What if there are multiple such prior declarations (for instance,
8535 // from different modules)?
8536 Specialization->setConstexprKind(FD->getConstexprKind());
8537 }
8538
8539 // FIXME: Check if the prior specialization has a point of instantiation.
8540 // If so, we have run afoul of .
8541
8542 // If this is a friend declaration, then we're not really declaring
8543 // an explicit specialization.
8544 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
8545
8546 // Check the scope of this explicit specialization.
8547 if (!isFriend &&
8548 CheckTemplateSpecializationScope(*this,
8549 Specialization->getPrimaryTemplate(),
8550 Specialization, FD->getLocation(),
8551 false))
8552 return true;
8553
8554 // C++ [temp.expl.spec]p6:
8555 // If a template, a member template or the member of a class template is
8556 // explicitly specialized then that specialization shall be declared
8557 // before the first use of that specialization that would cause an implicit
8558 // instantiation to take place, in every translation unit in which such a
8559 // use occurs; no diagnostic is required.
8560 bool HasNoEffect = false;
8561 if (!isFriend &&
8562 CheckSpecializationInstantiationRedecl(FD->getLocation(),
8563 TSK_ExplicitSpecialization,
8564 Specialization,
8565 SpecInfo->getTemplateSpecializationKind(),
8566 SpecInfo->getPointOfInstantiation(),
8567 HasNoEffect))
8568 return true;
8569
8570 // Mark the prior declaration as an explicit specialization, so that later
8571 // clients know that this is an explicit specialization.
8572 if (!isFriend) {
8573 // Since explicit specializations do not inherit '=delete' from their
8574 // primary function template - check if the 'specialization' that was
8575 // implicitly generated (during template argument deduction for partial
8576 // ordering) from the most specialized of all the function templates that
8577 // 'FD' could have been specializing, has a 'deleted' definition. If so,
8578 // first check that it was implicitly generated during template argument
8579 // deduction by making sure it wasn't referenced, and then reset the deleted
8580 // flag to not-deleted, so that we can inherit that information from 'FD'.
8581 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
8582 !Specialization->getCanonicalDecl()->isReferenced()) {
8583 // FIXME: This assert will not hold in the presence of modules.
8584 assert(((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8586, __PRETTY_FUNCTION__))
8585 Specialization->getCanonicalDecl() == Specialization &&((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8586, __PRETTY_FUNCTION__))
8586 "This must be the only existing declaration of this specialization")((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8586, __PRETTY_FUNCTION__))
;
8587 // FIXME: We need an update record for this AST mutation.
8588 Specialization->setDeletedAsWritten(false);
8589 }
8590 // FIXME: We need an update record for this AST mutation.
8591 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8592 MarkUnusedFileScopedDecl(Specialization);
8593 }
8594
8595 // Turn the given function declaration into a function template
8596 // specialization, with the template arguments from the previous
8597 // specialization.
8598 // Take copies of (semantic and syntactic) template argument lists.
8599 const TemplateArgumentList* TemplArgs = new (Context)
8600 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
8601 FD->setFunctionTemplateSpecialization(
8602 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
8603 SpecInfo->getTemplateSpecializationKind(),
8604 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
8605
8606 // A function template specialization inherits the target attributes
8607 // of its template. (We require the attributes explicitly in the
8608 // code to match, but a template may have implicit attributes by
8609 // virtue e.g. of being constexpr, and it passes these implicit
8610 // attributes on to its specializations.)
8611 if (LangOpts.CUDA)
8612 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
8613
8614 // The "previous declaration" for this function template specialization is
8615 // the prior function template specialization.
8616 Previous.clear();
8617 Previous.addDecl(Specialization);
8618 return false;
8619}
8620
8621/// Perform semantic analysis for the given non-template member
8622/// specialization.
8623///
8624/// This routine performs all of the semantic analysis required for an
8625/// explicit member function specialization. On successful completion,
8626/// the function declaration \p FD will become a member function
8627/// specialization.
8628///
8629/// \param Member the member declaration, which will be updated to become a
8630/// specialization.
8631///
8632/// \param Previous the set of declarations, one of which may be specialized
8633/// by this function specialization; the set will be modified to contain the
8634/// redeclared member.
8635bool
8636Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
8637 assert(!isa<TemplateDecl>(Member) && "Only for non-template members")((!isa<TemplateDecl>(Member) && "Only for non-template members"
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateDecl>(Member) && \"Only for non-template members\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8637, __PRETTY_FUNCTION__))
;
8638
8639 // Try to find the member we are instantiating.
8640 NamedDecl *FoundInstantiation = nullptr;
8641 NamedDecl *Instantiation = nullptr;
8642 NamedDecl *InstantiatedFrom = nullptr;
8643 MemberSpecializationInfo *MSInfo = nullptr;
8644
8645 if (Previous.empty()) {
8646 // Nowhere to look anyway.
8647 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
8648 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8649 I != E; ++I) {
8650 NamedDecl *D = (*I)->getUnderlyingDecl();
8651 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
8652 QualType Adjusted = Function->getType();
8653 if (!hasExplicitCallingConv(Adjusted))
8654 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
8655 // This doesn't handle deduced return types, but both function
8656 // declarations should be undeduced at this point.
8657 if (Context.hasSameType(Adjusted, Method->getType())) {
8658 FoundInstantiation = *I;
8659 Instantiation = Method;
8660 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
8661 MSInfo = Method->getMemberSpecializationInfo();
8662 break;
8663 }
8664 }
8665 }
8666 } else if (isa<VarDecl>(Member)) {
8667 VarDecl *PrevVar;
8668 if (Previous.isSingleResult() &&
8669 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
8670 if (PrevVar->isStaticDataMember()) {
8671 FoundInstantiation = Previous.getRepresentativeDecl();
8672 Instantiation = PrevVar;
8673 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
8674 MSInfo = PrevVar->getMemberSpecializationInfo();
8675 }
8676 } else if (isa<RecordDecl>(Member)) {
8677 CXXRecordDecl *PrevRecord;
8678 if (Previous.isSingleResult() &&
8679 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
8680 FoundInstantiation = Previous.getRepresentativeDecl();
8681 Instantiation = PrevRecord;
8682 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
8683 MSInfo = PrevRecord->getMemberSpecializationInfo();
8684 }
8685 } else if (isa<EnumDecl>(Member)) {
8686 EnumDecl *PrevEnum;
8687 if (Previous.isSingleResult() &&
8688 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
8689 FoundInstantiation = Previous.getRepresentativeDecl();
8690 Instantiation = PrevEnum;
8691 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
8692 MSInfo = PrevEnum->getMemberSpecializationInfo();
8693 }
8694 }
8695
8696 if (!Instantiation) {
8697 // There is no previous declaration that matches. Since member
8698 // specializations are always out-of-line, the caller will complain about
8699 // this mismatch later.
8700 return false;
8701 }
8702
8703 // A member specialization in a friend declaration isn't really declaring
8704 // an explicit specialization, just identifying a specific (possibly implicit)
8705 // specialization. Don't change the template specialization kind.
8706 //
8707 // FIXME: Is this really valid? Other compilers reject.
8708 if (Member->getFriendObjectKind() != Decl::FOK_None) {
8709 // Preserve instantiation information.
8710 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
8711 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
8712 cast<CXXMethodDecl>(InstantiatedFrom),
8713 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
8714 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
8715 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
8716 cast<CXXRecordDecl>(InstantiatedFrom),
8717 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
8718 }
8719
8720 Previous.clear();
8721 Previous.addDecl(FoundInstantiation);
8722 return false;
8723 }
8724
8725 // Make sure that this is a specialization of a member.
8726 if (!InstantiatedFrom) {
8727 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
8728 << Member;
8729 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
8730 return true;
8731 }
8732
8733 // C++ [temp.expl.spec]p6:
8734 // If a template, a member template or the member of a class template is
8735 // explicitly specialized then that specialization shall be declared
8736 // before the first use of that specialization that would cause an implicit
8737 // instantiation to take place, in every translation unit in which such a
8738 // use occurs; no diagnostic is required.
8739 assert(MSInfo && "Member specialization info missing?")((MSInfo && "Member specialization info missing?") ? static_cast
<void> (0) : __assert_fail ("MSInfo && \"Member specialization info missing?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8739, __PRETTY_FUNCTION__))
;
8740
8741 bool HasNoEffect = false;
8742 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
8743 TSK_ExplicitSpecialization,
8744 Instantiation,
8745 MSInfo->getTemplateSpecializationKind(),
8746 MSInfo->getPointOfInstantiation(),
8747 HasNoEffect))
8748 return true;
8749
8750 // Check the scope of this explicit specialization.
8751 if (CheckTemplateSpecializationScope(*this,
8752 InstantiatedFrom,
8753 Instantiation, Member->getLocation(),
8754 false))
8755 return true;
8756
8757 // Note that this member specialization is an "instantiation of" the
8758 // corresponding member of the original template.
8759 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
8760 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
8761 if (InstantiationFunction->getTemplateSpecializationKind() ==
8762 TSK_ImplicitInstantiation) {
8763 // Explicit specializations of member functions of class templates do not
8764 // inherit '=delete' from the member function they are specializing.
8765 if (InstantiationFunction->isDeleted()) {
8766 // FIXME: This assert will not hold in the presence of modules.
8767 assert(InstantiationFunction->getCanonicalDecl() ==((InstantiationFunction->getCanonicalDecl() == InstantiationFunction
) ? static_cast<void> (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8768, __PRETTY_FUNCTION__))
8768 InstantiationFunction)((InstantiationFunction->getCanonicalDecl() == InstantiationFunction
) ? static_cast<void> (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8768, __PRETTY_FUNCTION__))
;
8769 // FIXME: We need an update record for this AST mutation.
8770 InstantiationFunction->setDeletedAsWritten(false);
8771 }
8772 }
8773
8774 MemberFunction->setInstantiationOfMemberFunction(
8775 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8776 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
8777 MemberVar->setInstantiationOfStaticDataMember(
8778 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8779 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
8780 MemberClass->setInstantiationOfMemberClass(
8781 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8782 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
8783 MemberEnum->setInstantiationOfMemberEnum(
8784 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
8785 } else {
8786 llvm_unreachable("unknown member specialization kind")::llvm::llvm_unreachable_internal("unknown member specialization kind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8786)
;
8787 }
8788
8789 // Save the caller the trouble of having to figure out which declaration
8790 // this specialization matches.
8791 Previous.clear();
8792 Previous.addDecl(FoundInstantiation);
8793 return false;
8794}
8795
8796/// Complete the explicit specialization of a member of a class template by
8797/// updating the instantiated member to be marked as an explicit specialization.
8798///
8799/// \param OrigD The member declaration instantiated from the template.
8800/// \param Loc The location of the explicit specialization of the member.
8801template<typename DeclT>
8802static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
8803 SourceLocation Loc) {
8804 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
8805 return;
8806
8807 // FIXME: Inform AST mutation listeners of this AST mutation.
8808 // FIXME: If there are multiple in-class declarations of the member (from
8809 // multiple modules, or a declaration and later definition of a member type),
8810 // should we update all of them?
8811 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8812 OrigD->setLocation(Loc);
8813}
8814
8815void Sema::CompleteMemberSpecialization(NamedDecl *Member,
8816 LookupResult &Previous) {
8817 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
8818 if (Instantiation == Member)
8819 return;
8820
8821 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
8822 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
8823 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
8824 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
8825 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
8826 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
8827 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
8828 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
8829 else
8830 llvm_unreachable("unknown member specialization kind")::llvm::llvm_unreachable_internal("unknown member specialization kind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8830)
;
8831}
8832
8833/// Check the scope of an explicit instantiation.
8834///
8835/// \returns true if a serious error occurs, false otherwise.
8836static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
8837 SourceLocation InstLoc,
8838 bool WasQualifiedName) {
8839 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
8840 DeclContext *CurContext = S.CurContext->getRedeclContext();
8841
8842 if (CurContext->isRecord()) {
8843 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
8844 << D;
8845 return true;
8846 }
8847
8848 // C++11 [temp.explicit]p3:
8849 // An explicit instantiation shall appear in an enclosing namespace of its
8850 // template. If the name declared in the explicit instantiation is an
8851 // unqualified name, the explicit instantiation shall appear in the
8852 // namespace where its template is declared or, if that namespace is inline
8853 // (7.3.1), any namespace from its enclosing namespace set.
8854 //
8855 // This is DR275, which we do not retroactively apply to C++98/03.
8856 if (WasQualifiedName) {
8857 if (CurContext->Encloses(OrigContext))
8858 return false;
8859 } else {
8860 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
8861 return false;
8862 }
8863
8864 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
8865 if (WasQualifiedName)
8866 S.Diag(InstLoc,
8867 S.getLangOpts().CPlusPlus11?
8868 diag::err_explicit_instantiation_out_of_scope :
8869 diag::warn_explicit_instantiation_out_of_scope_0x)
8870 << D << NS;
8871 else
8872 S.Diag(InstLoc,
8873 S.getLangOpts().CPlusPlus11?
8874 diag::err_explicit_instantiation_unqualified_wrong_namespace :
8875 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
8876 << D << NS;
8877 } else
8878 S.Diag(InstLoc,
8879 S.getLangOpts().CPlusPlus11?
8880 diag::err_explicit_instantiation_must_be_global :
8881 diag::warn_explicit_instantiation_must_be_global_0x)
8882 << D;
8883 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
8884 return false;
8885}
8886
8887/// Common checks for whether an explicit instantiation of \p D is valid.
8888static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
8889 SourceLocation InstLoc,
8890 bool WasQualifiedName,
8891 TemplateSpecializationKind TSK) {
8892 // C++ [temp.explicit]p13:
8893 // An explicit instantiation declaration shall not name a specialization of
8894 // a template with internal linkage.
8895 if (TSK == TSK_ExplicitInstantiationDeclaration &&
8896 D->getFormalLinkage() == InternalLinkage) {
8897 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
8898 return true;
8899 }
8900
8901 // C++11 [temp.explicit]p3: [DR 275]
8902 // An explicit instantiation shall appear in an enclosing namespace of its
8903 // template.
8904 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
8905 return true;
8906
8907 return false;
8908}
8909
8910/// Determine whether the given scope specifier has a template-id in it.
8911static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
8912 if (!SS.isSet())
8913 return false;
8914
8915 // C++11 [temp.explicit]p3:
8916 // If the explicit instantiation is for a member function, a member class
8917 // or a static data member of a class template specialization, the name of
8918 // the class template specialization in the qualified-id for the member
8919 // name shall be a simple-template-id.
8920 //
8921 // C++98 has the same restriction, just worded differently.
8922 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
8923 NNS = NNS->getPrefix())
8924 if (const Type *T = NNS->getAsType())
8925 if (isa<TemplateSpecializationType>(T))
8926 return true;
8927
8928 return false;
8929}
8930
8931/// Make a dllexport or dllimport attr on a class template specialization take
8932/// effect.
8933static void dllExportImportClassTemplateSpecialization(
8934 Sema &S, ClassTemplateSpecializationDecl *Def) {
8935 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
8936 assert(A && "dllExportImportClassTemplateSpecialization called "((A && "dllExportImportClassTemplateSpecialization called "
"on Def without dllexport or dllimport") ? static_cast<void
> (0) : __assert_fail ("A && \"dllExportImportClassTemplateSpecialization called \" \"on Def without dllexport or dllimport\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8937, __PRETTY_FUNCTION__))
8937 "on Def without dllexport or dllimport")((A && "dllExportImportClassTemplateSpecialization called "
"on Def without dllexport or dllimport") ? static_cast<void
> (0) : __assert_fail ("A && \"dllExportImportClassTemplateSpecialization called \" \"on Def without dllexport or dllimport\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8937, __PRETTY_FUNCTION__))
;
8938
8939 // We reject explicit instantiations in class scope, so there should
8940 // never be any delayed exported classes to worry about.
8941 assert(S.DelayedDllExportClasses.empty() &&((S.DelayedDllExportClasses.empty() && "delayed exports present at explicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("S.DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8942, __PRETTY_FUNCTION__))
8942 "delayed exports present at explicit instantiation")((S.DelayedDllExportClasses.empty() && "delayed exports present at explicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("S.DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8942, __PRETTY_FUNCTION__))
;
8943 S.checkClassLevelDLLAttribute(Def);
8944
8945 // Propagate attribute to base class templates.
8946 for (auto &B : Def->bases()) {
8947 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
8948 B.getType()->getAsCXXRecordDecl()))
8949 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
8950 }
8951
8952 S.referenceDLLExportedClassMethods();
8953}
8954
8955// Explicit instantiation of a class template specialization
8956DeclResult Sema::ActOnExplicitInstantiation(
8957 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
8958 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
8959 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
8960 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
8961 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
8962 // Find the class template we're specializing
8963 TemplateName Name = TemplateD.get();
8964 TemplateDecl *TD = Name.getAsTemplateDecl();
8965 // Check that the specialization uses the same tag kind as the
8966 // original template.
8967 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8968 assert(Kind != TTK_Enum &&((Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8969, __PRETTY_FUNCTION__))
8969 "Invalid enum tag in class template explicit instantiation!")((Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 8969, __PRETTY_FUNCTION__))
;
8970
8971 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
8972
8973 if (!ClassTemplate) {
8974 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
8975 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
8976 Diag(TD->getLocation(), diag::note_previous_use);
8977 return true;
8978 }
8979
8980 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8981 Kind, /*isDefinition*/false, KWLoc,
8982 ClassTemplate->getIdentifier())) {
8983 Diag(KWLoc, diag::err_use_with_wrong_tag)
8984 << ClassTemplate
8985 << FixItHint::CreateReplacement(KWLoc,
8986 ClassTemplate->getTemplatedDecl()->getKindName());
8987 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8988 diag::note_previous_use);
8989 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8990 }
8991
8992 // C++0x [temp.explicit]p2:
8993 // There are two forms of explicit instantiation: an explicit instantiation
8994 // definition and an explicit instantiation declaration. An explicit
8995 // instantiation declaration begins with the extern keyword. [...]
8996 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
8997 ? TSK_ExplicitInstantiationDefinition
8998 : TSK_ExplicitInstantiationDeclaration;
8999
9000 if (TSK == TSK_ExplicitInstantiationDeclaration &&
9001 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9002 // Check for dllexport class template instantiation declarations,
9003 // except for MinGW mode.
9004 for (const ParsedAttr &AL : Attr) {
9005 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9006 Diag(ExternLoc,
9007 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9008 Diag(AL.getLoc(), diag::note_attribute);
9009 break;
9010 }
9011 }
9012
9013 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9014 Diag(ExternLoc,
9015 diag::warn_attribute_dllexport_explicit_instantiation_decl);
9016 Diag(A->getLocation(), diag::note_attribute);
9017 }
9018 }
9019
9020 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9021 // instantiation declarations for most purposes.
9022 bool DLLImportExplicitInstantiationDef = false;
9023 if (TSK == TSK_ExplicitInstantiationDefinition &&
9024 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9025 // Check for dllimport class template instantiation definitions.
9026 bool DLLImport =
9027 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9028 for (const ParsedAttr &AL : Attr) {
9029 if (AL.getKind() == ParsedAttr::AT_DLLImport)
9030 DLLImport = true;
9031 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9032 // dllexport trumps dllimport here.
9033 DLLImport = false;
9034 break;
9035 }
9036 }
9037 if (DLLImport) {
9038 TSK = TSK_ExplicitInstantiationDeclaration;
9039 DLLImportExplicitInstantiationDef = true;
9040 }
9041 }
9042
9043 // Translate the parser's template argument list in our AST format.
9044 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9045 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9046
9047 // Check that the template argument list is well-formed for this
9048 // template.
9049 SmallVector<TemplateArgument, 4> Converted;
9050 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9051 TemplateArgs, false, Converted,
9052 /*UpdateArgsWithConversion=*/true))
9053 return true;
9054
9055 // Find the class template specialization declaration that
9056 // corresponds to these arguments.
9057 void *InsertPos = nullptr;
9058 ClassTemplateSpecializationDecl *PrevDecl
9059 = ClassTemplate->findSpecialization(Converted, InsertPos);
9060
9061 TemplateSpecializationKind PrevDecl_TSK
9062 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9063
9064 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9065 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9066 // Check for dllexport class template instantiation definitions in MinGW
9067 // mode, if a previous declaration of the instantiation was seen.
9068 for (const ParsedAttr &AL : Attr) {
9069 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9070 Diag(AL.getLoc(),
9071 diag::warn_attribute_dllexport_explicit_instantiation_def);
9072 break;
9073 }
9074 }
9075 }
9076
9077 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9078 SS.isSet(), TSK))
9079 return true;
9080
9081 ClassTemplateSpecializationDecl *Specialization = nullptr;
9082
9083 bool HasNoEffect = false;
9084 if (PrevDecl) {
9085 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9086 PrevDecl, PrevDecl_TSK,
9087 PrevDecl->getPointOfInstantiation(),
9088 HasNoEffect))
9089 return PrevDecl;
9090
9091 // Even though HasNoEffect == true means that this explicit instantiation
9092 // has no effect on semantics, we go on to put its syntax in the AST.
9093
9094 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9095 PrevDecl_TSK == TSK_Undeclared) {
9096 // Since the only prior class template specialization with these
9097 // arguments was referenced but not declared, reuse that
9098 // declaration node as our own, updating the source location
9099 // for the template name to reflect our new declaration.
9100 // (Other source locations will be updated later.)
9101 Specialization = PrevDecl;
9102 Specialization->setLocation(TemplateNameLoc);
9103 PrevDecl = nullptr;
9104 }
9105
9106 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9107 DLLImportExplicitInstantiationDef) {
9108 // The new specialization might add a dllimport attribute.
9109 HasNoEffect = false;
9110 }
9111 }
9112
9113 if (!Specialization) {
9114 // Create a new class template specialization declaration node for
9115 // this explicit specialization.
9116 Specialization
9117 = ClassTemplateSpecializationDecl::Create(Context, Kind,
9118 ClassTemplate->getDeclContext(),
9119 KWLoc, TemplateNameLoc,
9120 ClassTemplate,
9121 Converted,
9122 PrevDecl);
9123 SetNestedNameSpecifier(*this, Specialization, SS);
9124
9125 if (!HasNoEffect && !PrevDecl) {
9126 // Insert the new specialization.
9127 ClassTemplate->AddSpecialization(Specialization, InsertPos);
9128 }
9129 }
9130
9131 // Build the fully-sugared type for this explicit instantiation as
9132 // the user wrote in the explicit instantiation itself. This means
9133 // that we'll pretty-print the type retrieved from the
9134 // specialization's declaration the way that the user actually wrote
9135 // the explicit instantiation, rather than formatting the name based
9136 // on the "canonical" representation used to store the template
9137 // arguments in the specialization.
9138 TypeSourceInfo *WrittenTy
9139 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9140 TemplateArgs,
9141 Context.getTypeDeclType(Specialization));
9142 Specialization->setTypeAsWritten(WrittenTy);
9143
9144 // Set source locations for keywords.
9145 Specialization->setExternLoc(ExternLoc);
9146 Specialization->setTemplateKeywordLoc(TemplateLoc);
9147 Specialization->setBraceRange(SourceRange());
9148
9149 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9150 ProcessDeclAttributeList(S, Specialization, Attr);
9151
9152 // Add the explicit instantiation into its lexical context. However,
9153 // since explicit instantiations are never found by name lookup, we
9154 // just put it into the declaration context directly.
9155 Specialization->setLexicalDeclContext(CurContext);
9156 CurContext->addDecl(Specialization);
9157
9158 // Syntax is now OK, so return if it has no other effect on semantics.
9159 if (HasNoEffect) {
9160 // Set the template specialization kind.
9161 Specialization->setTemplateSpecializationKind(TSK);
9162 return Specialization;
9163 }
9164
9165 // C++ [temp.explicit]p3:
9166 // A definition of a class template or class member template
9167 // shall be in scope at the point of the explicit instantiation of
9168 // the class template or class member template.
9169 //
9170 // This check comes when we actually try to perform the
9171 // instantiation.
9172 ClassTemplateSpecializationDecl *Def
9173 = cast_or_null<ClassTemplateSpecializationDecl>(
9174 Specialization->getDefinition());
9175 if (!Def)
9176 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9177 else if (TSK == TSK_ExplicitInstantiationDefinition) {
9178 MarkVTableUsed(TemplateNameLoc, Specialization, true);
9179 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9180 }
9181
9182 // Instantiate the members of this class template specialization.
9183 Def = cast_or_null<ClassTemplateSpecializationDecl>(
9184 Specialization->getDefinition());
9185 if (Def) {
9186 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9187 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9188 // TSK_ExplicitInstantiationDefinition
9189 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9190 (TSK == TSK_ExplicitInstantiationDefinition ||
9191 DLLImportExplicitInstantiationDef)) {
9192 // FIXME: Need to notify the ASTMutationListener that we did this.
9193 Def->setTemplateSpecializationKind(TSK);
9194
9195 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9196 (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9197 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9198 // In the MS ABI, an explicit instantiation definition can add a dll
9199 // attribute to a template with a previous instantiation declaration.
9200 // MinGW doesn't allow this.
9201 auto *A = cast<InheritableAttr>(
9202 getDLLAttr(Specialization)->clone(getASTContext()));
9203 A->setInherited(true);
9204 Def->addAttr(A);
9205 dllExportImportClassTemplateSpecialization(*this, Def);
9206 }
9207 }
9208
9209 // Fix a TSK_ImplicitInstantiation followed by a
9210 // TSK_ExplicitInstantiationDefinition
9211 bool NewlyDLLExported =
9212 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9213 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9214 (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9215 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9216 // In the MS ABI, an explicit instantiation definition can add a dll
9217 // attribute to a template with a previous implicit instantiation.
9218 // MinGW doesn't allow this. We limit clang to only adding dllexport, to
9219 // avoid potentially strange codegen behavior. For example, if we extend
9220 // this conditional to dllimport, and we have a source file calling a
9221 // method on an implicitly instantiated template class instance and then
9222 // declaring a dllimport explicit instantiation definition for the same
9223 // template class, the codegen for the method call will not respect the
9224 // dllimport, while it will with cl. The Def will already have the DLL
9225 // attribute, since the Def and Specialization will be the same in the
9226 // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
9227 // attribute to the Specialization; we just need to make it take effect.
9228 assert(Def == Specialization &&((Def == Specialization && "Def and Specialization should match for implicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("Def == Specialization && \"Def and Specialization should match for implicit instantiation\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9229, __PRETTY_FUNCTION__))
9229 "Def and Specialization should match for implicit instantiation")((Def == Specialization && "Def and Specialization should match for implicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("Def == Specialization && \"Def and Specialization should match for implicit instantiation\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9229, __PRETTY_FUNCTION__))
;
9230 dllExportImportClassTemplateSpecialization(*this, Def);
9231 }
9232
9233 // In MinGW mode, export the template instantiation if the declaration
9234 // was marked dllexport.
9235 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9236 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9237 PrevDecl->hasAttr<DLLExportAttr>()) {
9238 dllExportImportClassTemplateSpecialization(*this, Def);
9239 }
9240
9241 // Set the template specialization kind. Make sure it is set before
9242 // instantiating the members which will trigger ASTConsumer callbacks.
9243 Specialization->setTemplateSpecializationKind(TSK);
9244 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9245 } else {
9246
9247 // Set the template specialization kind.
9248 Specialization->setTemplateSpecializationKind(TSK);
9249 }
9250
9251 return Specialization;
9252}
9253
9254// Explicit instantiation of a member class of a class template.
9255DeclResult
9256Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9257 SourceLocation TemplateLoc, unsigned TagSpec,
9258 SourceLocation KWLoc, CXXScopeSpec &SS,
9259 IdentifierInfo *Name, SourceLocation NameLoc,
9260 const ParsedAttributesView &Attr) {
9261
9262 bool Owned = false;
9263 bool IsDependent = false;
9264 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9265 KWLoc, SS, Name, NameLoc, Attr, AS_none,
9266 /*ModulePrivateLoc=*/SourceLocation(),
9267 MultiTemplateParamsArg(), Owned, IsDependent,
9268 SourceLocation(), false, TypeResult(),
9269 /*IsTypeSpecifier*/false,
9270 /*IsTemplateParamOrArg*/false);
9271 assert(!IsDependent && "explicit instantiation of dependent name not yet handled")((!IsDependent && "explicit instantiation of dependent name not yet handled"
) ? static_cast<void> (0) : __assert_fail ("!IsDependent && \"explicit instantiation of dependent name not yet handled\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9271, __PRETTY_FUNCTION__))
;
9272
9273 if (!TagD)
9274 return true;
9275
9276 TagDecl *Tag = cast<TagDecl>(TagD);
9277 assert(!Tag->isEnum() && "shouldn't see enumerations here")((!Tag->isEnum() && "shouldn't see enumerations here"
) ? static_cast<void> (0) : __assert_fail ("!Tag->isEnum() && \"shouldn't see enumerations here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9277, __PRETTY_FUNCTION__))
;
9278
9279 if (Tag->isInvalidDecl())
9280 return true;
9281
9282 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9283 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9284 if (!Pattern) {
9285 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9286 << Context.getTypeDeclType(Record);
9287 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9288 return true;
9289 }
9290
9291 // C++0x [temp.explicit]p2:
9292 // If the explicit instantiation is for a class or member class, the
9293 // elaborated-type-specifier in the declaration shall include a
9294 // simple-template-id.
9295 //
9296 // C++98 has the same restriction, just worded differently.
9297 if (!ScopeSpecifierHasTemplateId(SS))
9298 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9299 << Record << SS.getRange();
9300
9301 // C++0x [temp.explicit]p2:
9302 // There are two forms of explicit instantiation: an explicit instantiation
9303 // definition and an explicit instantiation declaration. An explicit
9304 // instantiation declaration begins with the extern keyword. [...]
9305 TemplateSpecializationKind TSK
9306 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9307 : TSK_ExplicitInstantiationDeclaration;
9308
9309 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9310
9311 // Verify that it is okay to explicitly instantiate here.
9312 CXXRecordDecl *PrevDecl
9313 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9314 if (!PrevDecl && Record->getDefinition())
9315 PrevDecl = Record;
9316 if (PrevDecl) {
9317 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9318 bool HasNoEffect = false;
9319 assert(MSInfo && "No member specialization information?")((MSInfo && "No member specialization information?") ?
static_cast<void> (0) : __assert_fail ("MSInfo && \"No member specialization information?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9319, __PRETTY_FUNCTION__))
;
9320 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9321 PrevDecl,
9322 MSInfo->getTemplateSpecializationKind(),
9323 MSInfo->getPointOfInstantiation(),
9324 HasNoEffect))
9325 return true;
9326 if (HasNoEffect)
9327 return TagD;
9328 }
9329
9330 CXXRecordDecl *RecordDef
9331 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9332 if (!RecordDef) {
9333 // C++ [temp.explicit]p3:
9334 // A definition of a member class of a class template shall be in scope
9335 // at the point of an explicit instantiation of the member class.
9336 CXXRecordDecl *Def
9337 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9338 if (!Def) {
9339 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9340 << 0 << Record->getDeclName() << Record->getDeclContext();
9341 Diag(Pattern->getLocation(), diag::note_forward_declaration)
9342 << Pattern;
9343 return true;
9344 } else {
9345 if (InstantiateClass(NameLoc, Record, Def,
9346 getTemplateInstantiationArgs(Record),
9347 TSK))
9348 return true;
9349
9350 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9351 if (!RecordDef)
9352 return true;
9353 }
9354 }
9355
9356 // Instantiate all of the members of the class.
9357 InstantiateClassMembers(NameLoc, RecordDef,
9358 getTemplateInstantiationArgs(Record), TSK);
9359
9360 if (TSK == TSK_ExplicitInstantiationDefinition)
9361 MarkVTableUsed(NameLoc, RecordDef, true);
9362
9363 // FIXME: We don't have any representation for explicit instantiations of
9364 // member classes. Such a representation is not needed for compilation, but it
9365 // should be available for clients that want to see all of the declarations in
9366 // the source code.
9367 return TagD;
9368}
9369
9370DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9371 SourceLocation ExternLoc,
9372 SourceLocation TemplateLoc,
9373 Declarator &D) {
9374 // Explicit instantiations always require a name.
9375 // TODO: check if/when DNInfo should replace Name.
9376 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9377 DeclarationName Name = NameInfo.getName();
9378 if (!Name) {
9379 if (!D.isInvalidType())
9380 Diag(D.getDeclSpec().getBeginLoc(),
9381 diag::err_explicit_instantiation_requires_name)
9382 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9383
9384 return true;
9385 }
9386
9387 // The scope passed in may not be a decl scope. Zip up the scope tree until
9388 // we find one that is.
9389 while ((S->getFlags() & Scope::DeclScope) == 0 ||
9390 (S->getFlags() & Scope::TemplateParamScope) != 0)
9391 S = S->getParent();
9392
9393 // Determine the type of the declaration.
9394 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9395 QualType R = T->getType();
9396 if (R.isNull())
9397 return true;
9398
9399 // C++ [dcl.stc]p1:
9400 // A storage-class-specifier shall not be specified in [...] an explicit
9401 // instantiation (14.7.2) directive.
9402 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9403 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9404 << Name;
9405 return true;
9406 } else if (D.getDeclSpec().getStorageClassSpec()
9407 != DeclSpec::SCS_unspecified) {
9408 // Complain about then remove the storage class specifier.
9409 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9410 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9411
9412 D.getMutableDeclSpec().ClearStorageClassSpecs();
9413 }
9414
9415 // C++0x [temp.explicit]p1:
9416 // [...] An explicit instantiation of a function template shall not use the
9417 // inline or constexpr specifiers.
9418 // Presumably, this also applies to member functions of class templates as
9419 // well.
9420 if (D.getDeclSpec().isInlineSpecified())
9421 Diag(D.getDeclSpec().getInlineSpecLoc(),
9422 getLangOpts().CPlusPlus11 ?
9423 diag::err_explicit_instantiation_inline :
9424 diag::warn_explicit_instantiation_inline_0x)
9425 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9426 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9427 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9428 // not already specified.
9429 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9430 diag::err_explicit_instantiation_constexpr);
9431
9432 // A deduction guide is not on the list of entities that can be explicitly
9433 // instantiated.
9434 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9435 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9436 << /*explicit instantiation*/ 0;
9437 return true;
9438 }
9439
9440 // C++0x [temp.explicit]p2:
9441 // There are two forms of explicit instantiation: an explicit instantiation
9442 // definition and an explicit instantiation declaration. An explicit
9443 // instantiation declaration begins with the extern keyword. [...]
9444 TemplateSpecializationKind TSK
9445 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9446 : TSK_ExplicitInstantiationDeclaration;
9447
9448 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
9449 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
9450
9451 if (!R->isFunctionType()) {
9452 // C++ [temp.explicit]p1:
9453 // A [...] static data member of a class template can be explicitly
9454 // instantiated from the member definition associated with its class
9455 // template.
9456 // C++1y [temp.explicit]p1:
9457 // A [...] variable [...] template specialization can be explicitly
9458 // instantiated from its template.
9459 if (Previous.isAmbiguous())
9460 return true;
9461
9462 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
9463 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
9464
9465 if (!PrevTemplate) {
9466 if (!Prev || !Prev->isStaticDataMember()) {
9467 // We expect to see a static data member here.
9468 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
9469 << Name;
9470 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9471 P != PEnd; ++P)
9472 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
9473 return true;
9474 }
9475
9476 if (!Prev->getInstantiatedFromStaticDataMember()) {
9477 // FIXME: Check for explicit specialization?
9478 Diag(D.getIdentifierLoc(),
9479 diag::err_explicit_instantiation_data_member_not_instantiated)
9480 << Prev;
9481 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
9482 // FIXME: Can we provide a note showing where this was declared?
9483 return true;
9484 }
9485 } else {
9486 // Explicitly instantiate a variable template.
9487
9488 // C++1y [dcl.spec.auto]p6:
9489 // ... A program that uses auto or decltype(auto) in a context not
9490 // explicitly allowed in this section is ill-formed.
9491 //
9492 // This includes auto-typed variable template instantiations.
9493 if (R->isUndeducedType()) {
9494 Diag(T->getTypeLoc().getBeginLoc(),
9495 diag::err_auto_not_allowed_var_inst);
9496 return true;
9497 }
9498
9499 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9500 // C++1y [temp.explicit]p3:
9501 // If the explicit instantiation is for a variable, the unqualified-id
9502 // in the declaration shall be a template-id.
9503 Diag(D.getIdentifierLoc(),
9504 diag::err_explicit_instantiation_without_template_id)
9505 << PrevTemplate;
9506 Diag(PrevTemplate->getLocation(),
9507 diag::note_explicit_instantiation_here);
9508 return true;
9509 }
9510
9511 // Translate the parser's template argument list into our AST format.
9512 TemplateArgumentListInfo TemplateArgs =
9513 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9514
9515 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
9516 D.getIdentifierLoc(), TemplateArgs);
9517 if (Res.isInvalid())
9518 return true;
9519
9520 // Ignore access control bits, we don't need them for redeclaration
9521 // checking.
9522 Prev = cast<VarDecl>(Res.get());
9523 }
9524
9525 // C++0x [temp.explicit]p2:
9526 // If the explicit instantiation is for a member function, a member class
9527 // or a static data member of a class template specialization, the name of
9528 // the class template specialization in the qualified-id for the member
9529 // name shall be a simple-template-id.
9530 //
9531 // C++98 has the same restriction, just worded differently.
9532 //
9533 // This does not apply to variable template specializations, where the
9534 // template-id is in the unqualified-id instead.
9535 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
9536 Diag(D.getIdentifierLoc(),
9537 diag::ext_explicit_instantiation_without_qualified_id)
9538 << Prev << D.getCXXScopeSpec().getRange();
9539
9540 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
9541
9542 // Verify that it is okay to explicitly instantiate here.
9543 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
9544 SourceLocation POI = Prev->getPointOfInstantiation();
9545 bool HasNoEffect = false;
9546 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
9547 PrevTSK, POI, HasNoEffect))
9548 return true;
9549
9550 if (!HasNoEffect) {
9551 // Instantiate static data member or variable template.
9552 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9553 // Merge attributes.
9554 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
9555 if (TSK == TSK_ExplicitInstantiationDefinition)
9556 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
9557 }
9558
9559 // Check the new variable specialization against the parsed input.
9560 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
9561 Diag(T->getTypeLoc().getBeginLoc(),
9562 diag::err_invalid_var_template_spec_type)
9563 << 0 << PrevTemplate << R << Prev->getType();
9564 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
9565 << 2 << PrevTemplate->getDeclName();
9566 return true;
9567 }
9568
9569 // FIXME: Create an ExplicitInstantiation node?
9570 return (Decl*) nullptr;
9571 }
9572
9573 // If the declarator is a template-id, translate the parser's template
9574 // argument list into our AST format.
9575 bool HasExplicitTemplateArgs = false;
9576 TemplateArgumentListInfo TemplateArgs;
9577 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9578 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9579 HasExplicitTemplateArgs = true;
9580 }
9581
9582 // C++ [temp.explicit]p1:
9583 // A [...] function [...] can be explicitly instantiated from its template.
9584 // A member function [...] of a class template can be explicitly
9585 // instantiated from the member definition associated with its class
9586 // template.
9587 UnresolvedSet<8> TemplateMatches;
9588 FunctionDecl *NonTemplateMatch = nullptr;
9589 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
9590 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9591 P != PEnd; ++P) {
9592 NamedDecl *Prev = *P;
9593 if (!HasExplicitTemplateArgs) {
9594 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
9595 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
9596 /*AdjustExceptionSpec*/true);
9597 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
9598 if (Method->getPrimaryTemplate()) {
9599 TemplateMatches.addDecl(Method, P.getAccess());
9600 } else {
9601 // FIXME: Can this assert ever happen? Needs a test.
9602 assert(!NonTemplateMatch && "Multiple NonTemplateMatches")((!NonTemplateMatch && "Multiple NonTemplateMatches")
? static_cast<void> (0) : __assert_fail ("!NonTemplateMatch && \"Multiple NonTemplateMatches\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9602, __PRETTY_FUNCTION__))
;
9603 NonTemplateMatch = Method;
9604 }
9605 }
9606 }
9607 }
9608
9609 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
9610 if (!FunTmpl)
9611 continue;
9612
9613 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9614 FunctionDecl *Specialization = nullptr;
9615 if (TemplateDeductionResult TDK
9616 = DeduceTemplateArguments(FunTmpl,
9617 (HasExplicitTemplateArgs ? &TemplateArgs
9618 : nullptr),
9619 R, Specialization, Info)) {
9620 // Keep track of almost-matches.
9621 FailedCandidates.addCandidate()
9622 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
9623 MakeDeductionFailureInfo(Context, TDK, Info));
9624 (void)TDK;
9625 continue;
9626 }
9627
9628 // Target attributes are part of the cuda function signature, so
9629 // the cuda target of the instantiated function must match that of its
9630 // template. Given that C++ template deduction does not take
9631 // target attributes into account, we reject candidates here that
9632 // have a different target.
9633 if (LangOpts.CUDA &&
9634 IdentifyCUDATarget(Specialization,
9635 /* IgnoreImplicitHDAttr = */ true) !=
9636 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
9637 FailedCandidates.addCandidate().set(
9638 P.getPair(), FunTmpl->getTemplatedDecl(),
9639 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9640 continue;
9641 }
9642
9643 TemplateMatches.addDecl(Specialization, P.getAccess());
9644 }
9645
9646 FunctionDecl *Specialization = NonTemplateMatch;
9647 if (!Specialization) {
9648 // Find the most specialized function template specialization.
9649 UnresolvedSetIterator Result = getMostSpecialized(
9650 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
9651 D.getIdentifierLoc(),
9652 PDiag(diag::err_explicit_instantiation_not_known) << Name,
9653 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
9654 PDiag(diag::note_explicit_instantiation_candidate));
9655
9656 if (Result == TemplateMatches.end())
9657 return true;
9658
9659 // Ignore access control bits, we don't need them for redeclaration checking.
9660 Specialization = cast<FunctionDecl>(*Result);
9661 }
9662
9663 // C++11 [except.spec]p4
9664 // In an explicit instantiation an exception-specification may be specified,
9665 // but is not required.
9666 // If an exception-specification is specified in an explicit instantiation
9667 // directive, it shall be compatible with the exception-specifications of
9668 // other declarations of that function.
9669 if (auto *FPT = R->getAs<FunctionProtoType>())
9670 if (FPT->hasExceptionSpec()) {
9671 unsigned DiagID =
9672 diag::err_mismatched_exception_spec_explicit_instantiation;
9673 if (getLangOpts().MicrosoftExt)
9674 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
9675 bool Result = CheckEquivalentExceptionSpec(
9676 PDiag(DiagID) << Specialization->getType(),
9677 PDiag(diag::note_explicit_instantiation_here),
9678 Specialization->getType()->getAs<FunctionProtoType>(),
9679 Specialization->getLocation(), FPT, D.getBeginLoc());
9680 // In Microsoft mode, mismatching exception specifications just cause a
9681 // warning.
9682 if (!getLangOpts().MicrosoftExt && Result)
9683 return true;
9684 }
9685
9686 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
9687 Diag(D.getIdentifierLoc(),
9688 diag::err_explicit_instantiation_member_function_not_instantiated)
9689 << Specialization
9690 << (Specialization->getTemplateSpecializationKind() ==
9691 TSK_ExplicitSpecialization);
9692 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
9693 return true;
9694 }
9695
9696 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
9697 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
9698 PrevDecl = Specialization;
9699
9700 if (PrevDecl) {
9701 bool HasNoEffect = false;
9702 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
9703 PrevDecl,
9704 PrevDecl->getTemplateSpecializationKind(),
9705 PrevDecl->getPointOfInstantiation(),
9706 HasNoEffect))
9707 return true;
9708
9709 // FIXME: We may still want to build some representation of this
9710 // explicit specialization.
9711 if (HasNoEffect)
9712 return (Decl*) nullptr;
9713 }
9714
9715 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
9716 // functions
9717 // valarray<size_t>::valarray(size_t) and
9718 // valarray<size_t>::~valarray()
9719 // that it declared to have internal linkage with the internal_linkage
9720 // attribute. Ignore the explicit instantiation declaration in this case.
9721 if (Specialization->hasAttr<InternalLinkageAttr>() &&
9722 TSK == TSK_ExplicitInstantiationDeclaration) {
9723 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
9724 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
9725 RD->isInStdNamespace())
9726 return (Decl*) nullptr;
9727 }
9728
9729 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
9730
9731 // In MSVC mode, dllimported explicit instantiation definitions are treated as
9732 // instantiation declarations.
9733 if (TSK == TSK_ExplicitInstantiationDefinition &&
9734 Specialization->hasAttr<DLLImportAttr>() &&
9735 Context.getTargetInfo().getCXXABI().isMicrosoft())
9736 TSK = TSK_ExplicitInstantiationDeclaration;
9737
9738 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9739
9740 if (Specialization->isDefined()) {
9741 // Let the ASTConsumer know that this function has been explicitly
9742 // instantiated now, and its linkage might have changed.
9743 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
9744 } else if (TSK == TSK_ExplicitInstantiationDefinition)
9745 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
9746
9747 // C++0x [temp.explicit]p2:
9748 // If the explicit instantiation is for a member function, a member class
9749 // or a static data member of a class template specialization, the name of
9750 // the class template specialization in the qualified-id for the member
9751 // name shall be a simple-template-id.
9752 //
9753 // C++98 has the same restriction, just worded differently.
9754 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
9755 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
9756 D.getCXXScopeSpec().isSet() &&
9757 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
9758 Diag(D.getIdentifierLoc(),
9759 diag::ext_explicit_instantiation_without_qualified_id)
9760 << Specialization << D.getCXXScopeSpec().getRange();
9761
9762 CheckExplicitInstantiation(
9763 *this,
9764 FunTmpl ? (NamedDecl *)FunTmpl
9765 : Specialization->getInstantiatedFromMemberFunction(),
9766 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
9767
9768 // FIXME: Create some kind of ExplicitInstantiationDecl here.
9769 return (Decl*) nullptr;
9770}
9771
9772TypeResult
9773Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9774 const CXXScopeSpec &SS, IdentifierInfo *Name,
9775 SourceLocation TagLoc, SourceLocation NameLoc) {
9776 // This has to hold, because SS is expected to be defined.
9777 assert(Name && "Expected a name in a dependent tag")((Name && "Expected a name in a dependent tag") ? static_cast
<void> (0) : __assert_fail ("Name && \"Expected a name in a dependent tag\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9777, __PRETTY_FUNCTION__))
;
9778
9779 NestedNameSpecifier *NNS = SS.getScopeRep();
9780 if (!NNS)
9781 return true;
9782
9783 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9784
9785 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
9786 Diag(NameLoc, diag::err_dependent_tag_decl)
9787 << (TUK == TUK_Definition) << Kind << SS.getRange();
9788 return true;
9789 }
9790
9791 // Create the resulting type.
9792 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9793 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
9794
9795 // Create type-source location information for this type.
9796 TypeLocBuilder TLB;
9797 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
9798 TL.setElaboratedKeywordLoc(TagLoc);
9799 TL.setQualifierLoc(SS.getWithLocInContext(Context));
9800 TL.setNameLoc(NameLoc);
9801 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
9802}
9803
9804TypeResult
9805Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
9806 const CXXScopeSpec &SS, const IdentifierInfo &II,
9807 SourceLocation IdLoc) {
9808 if (SS.isInvalid())
9809 return true;
9810
9811 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
9812 Diag(TypenameLoc,
9813 getLangOpts().CPlusPlus11 ?
9814 diag::warn_cxx98_compat_typename_outside_of_template :
9815 diag::ext_typename_outside_of_template)
9816 << FixItHint::CreateRemoval(TypenameLoc);
9817
9818 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9819 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
9820 TypenameLoc, QualifierLoc, II, IdLoc);
9821 if (T.isNull())
9822 return true;
9823
9824 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9825 if (isa<DependentNameType>(T)) {
9826 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
9827 TL.setElaboratedKeywordLoc(TypenameLoc);
9828 TL.setQualifierLoc(QualifierLoc);
9829 TL.setNameLoc(IdLoc);
9830 } else {
9831 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
9832 TL.setElaboratedKeywordLoc(TypenameLoc);
9833 TL.setQualifierLoc(QualifierLoc);
9834 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
9835 }
9836
9837 return CreateParsedType(T, TSI);
9838}
9839
9840TypeResult
9841Sema::ActOnTypenameType(Scope *S,
9842 SourceLocation TypenameLoc,
9843 const CXXScopeSpec &SS,
9844 SourceLocation TemplateKWLoc,
9845 TemplateTy TemplateIn,
9846 IdentifierInfo *TemplateII,
9847 SourceLocation TemplateIILoc,
9848 SourceLocation LAngleLoc,
9849 ASTTemplateArgsPtr TemplateArgsIn,
9850 SourceLocation RAngleLoc) {
9851 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
9852 Diag(TypenameLoc,
9853 getLangOpts().CPlusPlus11 ?
9854 diag::warn_cxx98_compat_typename_outside_of_template :
9855 diag::ext_typename_outside_of_template)
9856 << FixItHint::CreateRemoval(TypenameLoc);
9857
9858 // Strangely, non-type results are not ignored by this lookup, so the
9859 // program is ill-formed if it finds an injected-class-name.
9860 if (TypenameLoc.isValid()) {
9861 auto *LookupRD =
9862 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
9863 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
9864 Diag(TemplateIILoc,
9865 diag::ext_out_of_line_qualified_id_type_names_constructor)
9866 << TemplateII << 0 /*injected-class-name used as template name*/
9867 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
9868 }
9869 }
9870
9871 // Translate the parser's template argument list in our AST format.
9872 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9873 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9874
9875 TemplateName Template = TemplateIn.get();
9876 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
9877 // Construct a dependent template specialization type.
9878 assert(DTN && "dependent template has non-dependent name?")((DTN && "dependent template has non-dependent name?"
) ? static_cast<void> (0) : __assert_fail ("DTN && \"dependent template has non-dependent name?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9878, __PRETTY_FUNCTION__))
;
9879 assert(DTN->getQualifier() == SS.getScopeRep())((DTN->getQualifier() == SS.getScopeRep()) ? static_cast<
void> (0) : __assert_fail ("DTN->getQualifier() == SS.getScopeRep()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9879, __PRETTY_FUNCTION__))
;
9880 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
9881 DTN->getQualifier(),
9882 DTN->getIdentifier(),
9883 TemplateArgs);
9884
9885 // Create source-location information for this type.
9886 TypeLocBuilder Builder;
9887 DependentTemplateSpecializationTypeLoc SpecTL
9888 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
9889 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
9890 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
9891 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
9892 SpecTL.setTemplateNameLoc(TemplateIILoc);
9893 SpecTL.setLAngleLoc(LAngleLoc);
9894 SpecTL.setRAngleLoc(RAngleLoc);
9895 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
9896 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
9897 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
9898 }
9899
9900 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
9901 if (T.isNull())
9902 return true;
9903
9904 // Provide source-location information for the template specialization type.
9905 TypeLocBuilder Builder;
9906 TemplateSpecializationTypeLoc SpecTL
9907 = Builder.push<TemplateSpecializationTypeLoc>(T);
9908 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
9909 SpecTL.setTemplateNameLoc(TemplateIILoc);
9910 SpecTL.setLAngleLoc(LAngleLoc);
9911 SpecTL.setRAngleLoc(RAngleLoc);
9912 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
9913 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
9914
9915 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
9916 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
9917 TL.setElaboratedKeywordLoc(TypenameLoc);
9918 TL.setQualifierLoc(SS.getWithLocInContext(Context));
9919
9920 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
9921 return CreateParsedType(T, TSI);
9922}
9923
9924
9925/// Determine whether this failed name lookup should be treated as being
9926/// disabled by a usage of std::enable_if.
9927static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
9928 SourceRange &CondRange, Expr *&Cond) {
9929 // We must be looking for a ::type...
9930 if (!II.isStr("type"))
9931 return false;
9932
9933 // ... within an explicitly-written template specialization...
9934 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
9935 return false;
9936 TypeLoc EnableIfTy = NNS.getTypeLoc();
9937 TemplateSpecializationTypeLoc EnableIfTSTLoc =
9938 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
9939 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
9940 return false;
9941 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
9942
9943 // ... which names a complete class template declaration...
9944 const TemplateDecl *EnableIfDecl =
9945 EnableIfTST->getTemplateName().getAsTemplateDecl();
9946 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
9947 return false;
9948
9949 // ... called "enable_if".
9950 const IdentifierInfo *EnableIfII =
9951 EnableIfDecl->getDeclName().getAsIdentifierInfo();
9952 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
9953 return false;
9954
9955 // Assume the first template argument is the condition.
9956 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
9957
9958 // Dig out the condition.
9959 Cond = nullptr;
9960 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
9961 != TemplateArgument::Expression)
9962 return true;
9963
9964 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
9965
9966 // Ignore Boolean literals; they add no value.
9967 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
9968 Cond = nullptr;
9969
9970 return true;
9971}
9972
9973/// Build the type that describes a C++ typename specifier,
9974/// e.g., "typename T::type".
9975QualType
9976Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
9977 SourceLocation KeywordLoc,
9978 NestedNameSpecifierLoc QualifierLoc,
9979 const IdentifierInfo &II,
9980 SourceLocation IILoc) {
9981 CXXScopeSpec SS;
9982 SS.Adopt(QualifierLoc);
9983
9984 DeclContext *Ctx = computeDeclContext(SS);
9985 if (!Ctx) {
9986 // If the nested-name-specifier is dependent and couldn't be
9987 // resolved to a type, build a typename type.
9988 assert(QualifierLoc.getNestedNameSpecifier()->isDependent())((QualifierLoc.getNestedNameSpecifier()->isDependent()) ? static_cast
<void> (0) : __assert_fail ("QualifierLoc.getNestedNameSpecifier()->isDependent()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/Sema/SemaTemplate.cpp"
, 9988, __PRETTY_FUNCTION__))
;
9989 return Context.getDependentNameType(Keyword,
9990 QualifierLoc.getNestedNameSpecifier(),
9991 &II);
9992 }
9993
9994 // If the nested-name-specifier refers to the current instantiation,
9995 // the "typename" keyword itself is superfluous. In C++03, the
9996 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
9997 // allows such extraneous "typename" keywords, and we retroactively
9998 // apply this DR to C++03 code with only a warning. In any case we continue.
9999
10000 if (RequireCompleteDeclContext(SS, Ctx))
10001 return QualType();
10002
10003 DeclarationName Name(&II);
10004 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10005 LookupQualifiedName(Result, Ctx, SS);
10006 unsigned DiagID = 0;
10007 Decl *Referenced = nullptr;
10008 switch (Result.getResultKind()) {
10009 case LookupResult::NotFound: {
10010 // If we're looking up 'type' within a template named 'enable_if', produce
10011 // a more specific diagnostic.
10012 SourceRange CondRange;
10013 Expr *Cond = nullptr;
10014 if (isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10015 // If we have a condition, narrow it down to the specific failed
10016 // condition.
10017 if (Cond) {
10018 Expr *FailedCond;
10019 std::string FailedDescription;
10020 std::tie(FailedCond, FailedDescription) =
10021 findFailedBooleanCondition(Cond);
10022
10023 Diag(FailedCond->getExprLoc(),
10024 diag::err_typename_nested_not_found_requirement)
10025 << FailedDescription
10026 << FailedCond->getSourceRange();
10027 return QualType();
10028 }
10029
10030 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
10031 << Ctx << CondRange;
10032 return QualType();
10033 }
10034
10035 DiagID = diag::err_typename_nested_not_found;
10036 break;
10037 }
10038
10039 case LookupResult::FoundUnresolvedValue: {
10040 // We found a using declaration that is a value. Most likely, the using
10041 // declaration itself is meant to have the 'typename' keyword.
10042 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10043 IILoc);
10044 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10045 << Name << Ctx << FullRange;
10046 if (UnresolvedUsingValueDecl *Using
10047 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10048 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10049 Diag(Loc, diag::note_using_value_decl_missing_typename)
10050 << FixItHint::CreateInsertion(Loc, "typename ");
10051 }
10052 }
10053 // Fall through to create a dependent typename type, from which we can recover
10054 // better.
10055 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10056
10057 case LookupResult::NotFoundInCurrentInstantiation:
10058 // Okay, it's a member of an unknown instantiation.
10059 return Context.getDependentNameType(Keyword,
10060 QualifierLoc.getNestedNameSpecifier(),
10061 &II);
10062
10063 case LookupResult::Found:
10064 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10065 // C++ [class.qual]p2:
10066 // In a lookup in which function names are not ignored and the
10067 // nested-name-specifier nominates a class C, if the name specified
10068 // after the nested-name-specifier, when looked up in C, is the
10069 // injected-class-name of C [...] then the name is instead considered
10070 // to name the constructor of class C.
10071 //
10072 // Unlike in an elaborated-type-specifier, function names are not ignored
10073 // in typename-specifier lookup. However, they are ignored in all the
10074 // contexts where we form a typename type with no keyword (that is, in
10075 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10076 //
10077 // FIXME: That's not strictly true: mem-initializer-id lookup does not
10078 // ignore functions, but that appears to be an oversight.
10079 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10080 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10081 if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10082 FoundRD->isInjectedClassName() &&
10083 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10084 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10085 << &II << 1 << 0 /*'typename' keyword used*/;
10086
10087 // We found a type. Build an ElaboratedType, since the
10088 // typename-specifier was just sugar.
10089 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10090 return Context.getElaboratedType(Keyword,
10091 QualifierLoc.getNestedNameSpecifier(),
10092 Context.getTypeDeclType(Type));
10093 }
10094
10095 // C++ [dcl.type.simple]p2:
10096 // A type-specifier of the form
10097 // typename[opt] nested-name-specifier[opt] template-name
10098 // is a placeholder for a deduced class type [...].
10099 if (getLangOpts().CPlusPlus17) {
10100 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10101 return Context.getElaboratedType(
10102 Keyword, QualifierLoc.getNestedNameSpecifier(),
10103 Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10104 QualType(), false));
10105 }
10106 }
10107
10108 DiagID = diag::err_typename_nested_not_type;
10109 Referenced = Result.getFoundDecl();
10110 break;
10111
10112 case LookupResult::FoundOverloaded:
10113 DiagID = diag::err_typename_nested_not_type;
10114 Referenced = *Result.begin();
10115 break;
10116
10117 case LookupResult::Ambiguous:
10118 return QualType();
10119 }
10120
10121 // If we get here, it's because name lookup did not find a
10122 // type. Emit an appropriate diagnostic and return an error.
10123 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10124 IILoc);
10125 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10126 if (Referenced)
10127 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
10128 << Name;
10129 return QualType();
10130}
10131
10132namespace {
10133 // See Sema::RebuildTypeInCurrentInstantiation
10134 class CurrentInstantiationRebuilder
10135 : public TreeTransform<CurrentInstantiationRebuilder> {
10136 SourceLocation Loc;
10137 DeclarationName Entity;
10138
10139 public:
10140 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10141
10142 CurrentInstantiationRebuilder(Sema &SemaRef,
10143 SourceLocation Loc,
10144 DeclarationName Entity)
10145 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10146 Loc(Loc), Entity(Entity) { }
10147
10148 /// Determine whether the given type \p T has already been
10149 /// transformed.
10150 ///
10151 /// For the purposes of type reconstruction, a type has already been
10152 /// transformed if it is NULL or if it is not dependent.
10153 bool AlreadyTransformed(QualType T) {
10154 return T.isNull() || !T->isDependentType();
10155 }
10156
10157 /// Returns the location of the entity whose type is being
10158 /// rebuilt.
10159 SourceLocation getBaseLocation() { return Loc; }
10160
10161 /// Returns the name of the entity whose type is being rebuilt.
10162 DeclarationName getBaseEntity() { return Entity; }
10163
10164 /// Sets the "base" location and entity when that
10165 /// information is known based on another transformation.
10166 void setBase(SourceLocation Loc, DeclarationName Entity) {
10167 this->Loc = Loc;
10168 this->Entity = Entity;
10169 }
10170
10171 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10172 // Lambdas never need to be transformed.
10173 return E;
10174 }
10175 };
10176} // end anonymous namespace
10177
10178/// Rebuilds a type within the context of the current instantiation.
10179///
10180/// The type \p T is part of the type of an out-of-line member definition of
10181/// a class template (or class template partial specialization) that was parsed
10182/// and constructed before we entered the scope of the class template (or
10183/// partial specialization thereof). This routine will rebuild that type now
10184/// that we have entered the declarator's scope, which may produce different
10185/// canonical types, e.g.,
10186///
10187/// \code
10188/// template<typename T>
10189/// struct X {
10190/// typedef T* pointer;
10191/// pointer data();
10192/// };
10193///
10194/// template<typename T>
10195/// typename X<T>::pointer X<T>::data() { ... }
10196/// \endcode
10197///
10198/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10199/// since we do not know that we can look into X<T> when we parsed the type.
10200/// This function will rebuild the type, performing the lookup of "pointer"
10201/// in X<T> and returning an ElaboratedType whose canonical type is the same
10202/// as the canonical type of T*, allowing the return types of the out-of-line
10203/// definition and the declaration to match.
10204TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10205 SourceLocation Loc,
10206 DeclarationName Name) {
10207 if (!T || !T->getType()->isDependentType())
10208 return T;
10209
10210 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10211 return Rebuilder.TransformType(T);
10212}
10213
10214ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10215 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10216 DeclarationName());
10217 return Rebuilder.TransformExpr(E);
10218}
10219
10220bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10221 if (SS.isInvalid())
10222 return true;
10223
10224 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10225 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10226 DeclarationName());
10227 NestedNameSpecifierLoc Rebuilt
10228 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10229 if (!Rebuilt)
10230 return true;
10231
10232 SS.Adopt(Rebuilt);
10233 return false;
10234}
10235
10236/// Rebuild the template parameters now that we know we're in a current
10237/// instantiation.
10238bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10239 TemplateParameterList *Params) {
10240 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10241 Decl *Param = Params->getParam(I);
10242
10243 // There is nothing to rebuild in a type parameter.
10244 if (isa<TemplateTypeParmDecl>(Param))
10245 continue;
10246
10247 // Rebuild the template parameter list of a template template parameter.
10248 if (TemplateTemplateParmDecl *TTP
10249 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10250 if (RebuildTemplateParamsInCurrentInstantiation(
10251 TTP->getTemplateParameters()))
10252 return true;
10253
10254 continue;
10255 }
10256
10257 // Rebuild the type of a non-type template parameter.
10258 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10259 TypeSourceInfo *NewTSI
10260 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10261 NTTP->getLocation(),
10262 NTTP->getDeclName());
10263 if (!NewTSI)
10264 return true;
10265
10266 if (NewTSI->getType()->isUndeducedType()) {
10267 // C++17 [temp.dep.expr]p3:
10268 // An id-expression is type-dependent if it contains
10269 // - an identifier associated by name lookup with a non-type
10270 // template-parameter declared with a type that contains a
10271 // placeholder type (7.1.7.4),
10272 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10273 }
10274
10275 if (NewTSI != NTTP->getTypeSourceInfo()) {
10276 NTTP->setTypeSourceInfo(NewTSI);
10277 NTTP->setType(NewTSI->getType());
10278 }
10279 }
10280
10281 return false;
10282}
10283
10284/// Produces a formatted string that describes the binding of
10285/// template parameters to template arguments.
10286std::string
10287Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10288 const TemplateArgumentList &Args) {
10289 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10290}
10291
10292std::string
10293Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10294 const TemplateArgument *Args,
10295 unsigned NumArgs) {
10296 SmallString<128> Str;
10297 llvm::raw_svector_ostream Out(Str);
10298
10299 if (!Params || Params->size() == 0 || NumArgs == 0)
10300 return std::string();
10301
10302 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10303 if (I >= NumArgs)
10304 break;
10305
10306 if (I == 0)
10307 Out << "[with ";
10308 else
10309 Out << ", ";
10310
10311 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10312 Out << Id->getName();
10313 } else {
10314 Out << '$' << I;
10315 }
10316
10317 Out << " = ";
10318 Args[I].print(getPrintingPolicy(), Out);
10319 }
10320
10321 Out << ']';
10322 return Out.str();
10323}
10324
10325void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10326 CachedTokens &Toks) {
10327 if (!FD)
10328 return;
10329
10330 auto LPT = std::make_unique<LateParsedTemplate>();
10331
10332 // Take tokens to avoid allocations
10333 LPT->Toks.swap(Toks);
10334 LPT->D = FnD;
10335 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10336
10337 FD->setLateTemplateParsed(true);
10338}
10339
10340void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10341 if (!FD)
10342 return;
10343 FD->setLateTemplateParsed(false);
10344}
10345
10346bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10347 DeclContext *DC = CurContext;
10348
10349 while (DC) {
10350 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10351 const FunctionDecl *FD = RD->isLocalClass();
10352 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10353 } else if (DC->isTranslationUnit() || DC->isNamespace())
10354 return false;
10355
10356 DC = DC->getParent();
10357 }
10358 return false;
10359}
10360
10361namespace {
10362/// Walk the path from which a declaration was instantiated, and check
10363/// that every explicit specialization along that path is visible. This enforces
10364/// C++ [temp.expl.spec]/6:
10365///
10366/// If a template, a member template or a member of a class template is
10367/// explicitly specialized then that specialization shall be declared before
10368/// the first use of that specialization that would cause an implicit
10369/// instantiation to take place, in every translation unit in which such a
10370/// use occurs; no diagnostic is required.
10371///
10372/// and also C++ [temp.class.spec]/1:
10373///
10374/// A partial specialization shall be declared before the first use of a
10375/// class template specialization that would make use of the partial
10376/// specialization as the result of an implicit or explicit instantiation
10377/// in every translation unit in which such a use occurs; no diagnostic is
10378/// required.
10379class ExplicitSpecializationVisibilityChecker {
10380 Sema &S;
10381 SourceLocation Loc;
10382 llvm::SmallVector<Module *, 8> Modules;
10383
10384public:
10385 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
10386 : S(S), Loc(Loc) {}
10387
10388 void check(NamedDecl *ND) {
10389 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10390 return checkImpl(FD);
10391 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
10392 return checkImpl(RD);
10393 if (auto *VD = dyn_cast<VarDecl>(ND))
10394 return checkImpl(VD);
10395 if (auto *ED = dyn_cast<EnumDecl>(ND))
10396 return checkImpl(ED);
10397 }
10398
10399private:
10400 void diagnose(NamedDecl *D, bool IsPartialSpec) {
10401 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
10402 : Sema::MissingImportKind::ExplicitSpecialization;
10403 const bool Recover = true;
10404
10405 // If we got a custom set of modules (because only a subset of the
10406 // declarations are interesting), use them, otherwise let
10407 // diagnoseMissingImport intelligently pick some.
10408 if (Modules.empty())
10409 S.diagnoseMissingImport(Loc, D, Kind, Recover);
10410 else
10411 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
10412 }
10413
10414 // Check a specific declaration. There are three problematic cases:
10415 //
10416 // 1) The declaration is an explicit specialization of a template
10417 // specialization.
10418 // 2) The declaration is an explicit specialization of a member of an
10419 // templated class.
10420 // 3) The declaration is an instantiation of a template, and that template
10421 // is an explicit specialization of a member of a templated class.
10422 //
10423 // We don't need to go any deeper than that, as the instantiation of the
10424 // surrounding class / etc is not triggered by whatever triggered this
10425 // instantiation, and thus should be checked elsewhere.
10426 template<typename SpecDecl>
10427 void checkImpl(SpecDecl *Spec) {
10428 bool IsHiddenExplicitSpecialization = false;
10429 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
10430 IsHiddenExplicitSpecialization =
10431 Spec->getMemberSpecializationInfo()
10432 ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
10433 : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
10434 } else {
10435 checkInstantiated(Spec);
10436 }
10437
10438 if (IsHiddenExplicitSpecialization)
10439 diagnose(Spec->getMostRecentDecl(), false);
10440 }
10441
10442 void checkInstantiated(FunctionDecl *FD) {
10443 if (auto *TD = FD->getPrimaryTemplate())
10444 checkTemplate(TD);
10445 }
10446
10447 void checkInstantiated(CXXRecordDecl *RD) {
10448 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
10449 if (!SD)
10450 return;
10451
10452 auto From = SD->getSpecializedTemplateOrPartial();
10453 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
10454 checkTemplate(TD);
10455 else if (auto *TD =
10456 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
10457 if (!S.hasVisibleDeclaration(TD))
10458 diagnose(TD, true);
10459 checkTemplate(TD);
10460 }
10461 }
10462
10463 void checkInstantiated(VarDecl *RD) {
10464 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
10465 if (!SD)
10466 return;
10467
10468 auto From = SD->getSpecializedTemplateOrPartial();
10469 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
10470 checkTemplate(TD);
10471 else if (auto *TD =
10472 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
10473 if (!S.hasVisibleDeclaration(TD))
10474 diagnose(TD, true);
10475 checkTemplate(TD);
10476 }
10477 }
10478
10479 void checkInstantiated(EnumDecl *FD) {}
10480
10481 template<typename TemplDecl>
10482 void checkTemplate(TemplDecl *TD) {
10483 if (TD->isMemberSpecialization()) {
10484 if (!S.hasVisibleMemberSpecialization(TD, &Modules))
10485 diagnose(TD->getMostRecentDecl(), false);
10486 }
10487 }
10488};
10489} // end anonymous namespace
10490
10491void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
10492 if (!getLangOpts().Modules)
10493 return;
10494
10495 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
10496}
10497
10498/// Check whether a template partial specialization that we've discovered
10499/// is hidden, and produce suitable diagnostics if so.
10500void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
10501 NamedDecl *Spec) {
10502 llvm::SmallVector<Module *, 8> Modules;
10503 if (!hasVisibleDeclaration(Spec, &Modules))
10504 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
10505 MissingImportKind::PartialSpecialization,
10506 /*Recover*/true);
10507}