Bug Summary

File:clang/lib/Sema/SemaTemplateInstantiate.cpp
Warning:line 2694, column 29
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplateInstantiate.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaTemplateInstantiate.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaTemplateInstantiate.cpp

1//===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements C++ template instantiation.
9//
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/PrettyDeclStackTrace.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/Stack.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Sema/DeclSpec.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaConcept.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateDeduction.h"
31#include "clang/Sema/TemplateInstCallback.h"
32#include "llvm/Support/TimeProfiler.h"
33
34using namespace clang;
35using namespace sema;
36
37//===----------------------------------------------------------------------===/
38// Template Instantiation Support
39//===----------------------------------------------------------------------===/
40
41/// Retrieve the template argument list(s) that should be used to
42/// instantiate the definition of the given declaration.
43///
44/// \param D the declaration for which we are computing template instantiation
45/// arguments.
46///
47/// \param Innermost if non-NULL, the innermost template argument list.
48///
49/// \param RelativeToPrimary true if we should get the template
50/// arguments relative to the primary template, even when we're
51/// dealing with a specialization. This is only relevant for function
52/// template specializations.
53///
54/// \param Pattern If non-NULL, indicates the pattern from which we will be
55/// instantiating the definition of the given declaration, \p D. This is
56/// used to determine the proper set of template instantiation arguments for
57/// friend function template specializations.
58MultiLevelTemplateArgumentList
59Sema::getTemplateInstantiationArgs(NamedDecl *D,
60 const TemplateArgumentList *Innermost,
61 bool RelativeToPrimary,
62 const FunctionDecl *Pattern) {
63 // Accumulate the set of template argument lists in this structure.
64 MultiLevelTemplateArgumentList Result;
65
66 if (Innermost)
67 Result.addOuterTemplateArguments(Innermost);
68
69 DeclContext *Ctx = dyn_cast<DeclContext>(D);
70 if (!Ctx) {
71 Ctx = D->getDeclContext();
72
73 // Add template arguments from a variable template instantiation. For a
74 // class-scope explicit specialization, there are no template arguments
75 // at this level, but there may be enclosing template arguments.
76 VarTemplateSpecializationDecl *Spec =
77 dyn_cast<VarTemplateSpecializationDecl>(D);
78 if (Spec && !Spec->isClassScopeExplicitSpecialization()) {
79 // We're done when we hit an explicit specialization.
80 if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization &&
81 !isa<VarTemplatePartialSpecializationDecl>(Spec))
82 return Result;
83
84 Result.addOuterTemplateArguments(&Spec->getTemplateInstantiationArgs());
85
86 // If this variable template specialization was instantiated from a
87 // specialized member that is a variable template, we're done.
88 assert(Spec->getSpecializedTemplate() && "No variable template?")(static_cast<void> (0));
89 llvm::PointerUnion<VarTemplateDecl*,
90 VarTemplatePartialSpecializationDecl*> Specialized
91 = Spec->getSpecializedTemplateOrPartial();
92 if (VarTemplatePartialSpecializationDecl *Partial =
93 Specialized.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
94 if (Partial->isMemberSpecialization())
95 return Result;
96 } else {
97 VarTemplateDecl *Tmpl = Specialized.get<VarTemplateDecl *>();
98 if (Tmpl->isMemberSpecialization())
99 return Result;
100 }
101 }
102
103 // If we have a template template parameter with translation unit context,
104 // then we're performing substitution into a default template argument of
105 // this template template parameter before we've constructed the template
106 // that will own this template template parameter. In this case, we
107 // use empty template parameter lists for all of the outer templates
108 // to avoid performing any substitutions.
109 if (Ctx->isTranslationUnit()) {
110 if (TemplateTemplateParmDecl *TTP
111 = dyn_cast<TemplateTemplateParmDecl>(D)) {
112 for (unsigned I = 0, N = TTP->getDepth() + 1; I != N; ++I)
113 Result.addOuterTemplateArguments(None);
114 return Result;
115 }
116 }
117 }
118
119 while (!Ctx->isFileContext()) {
120 // Add template arguments from a class template instantiation.
121 ClassTemplateSpecializationDecl *Spec
122 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
123 if (Spec && !Spec->isClassScopeExplicitSpecialization()) {
124 // We're done when we hit an explicit specialization.
125 if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization &&
126 !isa<ClassTemplatePartialSpecializationDecl>(Spec))
127 break;
128
129 Result.addOuterTemplateArguments(&Spec->getTemplateInstantiationArgs());
130
131 // If this class template specialization was instantiated from a
132 // specialized member that is a class template, we're done.
133 assert(Spec->getSpecializedTemplate() && "No class template?")(static_cast<void> (0));
134 if (Spec->getSpecializedTemplate()->isMemberSpecialization())
135 break;
136 }
137 // Add template arguments from a function template specialization.
138 else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Ctx)) {
139 if (!RelativeToPrimary &&
140 Function->getTemplateSpecializationKindForInstantiation() ==
141 TSK_ExplicitSpecialization)
142 break;
143
144 if (!RelativeToPrimary && Function->getTemplateSpecializationKind() ==
145 TSK_ExplicitSpecialization) {
146 // This is an implicit instantiation of an explicit specialization. We
147 // don't get any template arguments from this function but might get
148 // some from an enclosing template.
149 } else if (const TemplateArgumentList *TemplateArgs
150 = Function->getTemplateSpecializationArgs()) {
151 // Add the template arguments for this specialization.
152 Result.addOuterTemplateArguments(TemplateArgs);
153
154 // If this function was instantiated from a specialized member that is
155 // a function template, we're done.
156 assert(Function->getPrimaryTemplate() && "No function template?")(static_cast<void> (0));
157 if (Function->getPrimaryTemplate()->isMemberSpecialization())
158 break;
159
160 // If this function is a generic lambda specialization, we are done.
161 if (isGenericLambdaCallOperatorOrStaticInvokerSpecialization(Function))
162 break;
163
164 } else if (FunctionTemplateDecl *FunTmpl
165 = Function->getDescribedFunctionTemplate()) {
166 // Add the "injected" template arguments.
167 Result.addOuterTemplateArguments(FunTmpl->getInjectedTemplateArgs());
168 }
169
170 // If this is a friend declaration and it declares an entity at
171 // namespace scope, take arguments from its lexical parent
172 // instead of its semantic parent, unless of course the pattern we're
173 // instantiating actually comes from the file's context!
174 if (Function->getFriendObjectKind() &&
175 Function->getDeclContext()->isFileContext() &&
176 (!Pattern || !Pattern->getLexicalDeclContext()->isFileContext())) {
177 Ctx = Function->getLexicalDeclContext();
178 RelativeToPrimary = false;
179 continue;
180 }
181 } else if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Ctx)) {
182 if (ClassTemplateDecl *ClassTemplate = Rec->getDescribedClassTemplate()) {
183 QualType T = ClassTemplate->getInjectedClassNameSpecialization();
184 const TemplateSpecializationType *TST =
185 cast<TemplateSpecializationType>(Context.getCanonicalType(T));
186 Result.addOuterTemplateArguments(
187 llvm::makeArrayRef(TST->getArgs(), TST->getNumArgs()));
188 if (ClassTemplate->isMemberSpecialization())
189 break;
190 }
191 }
192
193 Ctx = Ctx->getParent();
194 RelativeToPrimary = false;
195 }
196
197 return Result;
198}
199
200bool Sema::CodeSynthesisContext::isInstantiationRecord() const {
201 switch (Kind) {
202 case TemplateInstantiation:
203 case ExceptionSpecInstantiation:
204 case DefaultTemplateArgumentInstantiation:
205 case DefaultFunctionArgumentInstantiation:
206 case ExplicitTemplateArgumentSubstitution:
207 case DeducedTemplateArgumentSubstitution:
208 case PriorTemplateArgumentSubstitution:
209 case ConstraintsCheck:
210 case NestedRequirementConstraintsCheck:
211 return true;
212
213 case RequirementInstantiation:
214 case DefaultTemplateArgumentChecking:
215 case DeclaringSpecialMember:
216 case DeclaringImplicitEqualityComparison:
217 case DefiningSynthesizedFunction:
218 case ExceptionSpecEvaluation:
219 case ConstraintSubstitution:
220 case ParameterMappingSubstitution:
221 case ConstraintNormalization:
222 case RewritingOperatorAsSpaceship:
223 case InitializingStructuredBinding:
224 case MarkingClassDllexported:
225 return false;
226
227 // This function should never be called when Kind's value is Memoization.
228 case Memoization:
229 break;
230 }
231
232 llvm_unreachable("Invalid SynthesisKind!")__builtin_unreachable();
233}
234
235Sema::InstantiatingTemplate::InstantiatingTemplate(
236 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
237 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
238 Decl *Entity, NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
239 sema::TemplateDeductionInfo *DeductionInfo)
240 : SemaRef(SemaRef) {
241 // Don't allow further instantiation if a fatal error and an uncompilable
242 // error have occurred. Any diagnostics we might have raised will not be
243 // visible, and we do not need to construct a correct AST.
244 if (SemaRef.Diags.hasFatalErrorOccurred() &&
18
Assuming the condition is false
245 SemaRef.hasUncompilableErrorOccurred()) {
246 Invalid = true;
247 return;
248 }
249 Invalid = CheckInstantiationDepth(PointOfInstantiation, InstantiationRange);
19
Calling 'InstantiatingTemplate::CheckInstantiationDepth'
23
Returning from 'InstantiatingTemplate::CheckInstantiationDepth'
250 if (!Invalid
23.1
Field 'Invalid' is false
23.1
Field 'Invalid' is false
) {
24
Taking true branch
251 CodeSynthesisContext Inst;
252 Inst.Kind = Kind;
253 Inst.PointOfInstantiation = PointOfInstantiation;
254 Inst.Entity = Entity;
255 Inst.Template = Template;
256 Inst.TemplateArgs = TemplateArgs.data();
257 Inst.NumTemplateArgs = TemplateArgs.size();
258 Inst.DeductionInfo = DeductionInfo;
259 Inst.InstantiationRange = InstantiationRange;
260 SemaRef.pushCodeSynthesisContext(Inst);
261
262 AlreadyInstantiating = !Inst.Entity
24.1
Field 'Entity' is non-null
24.1
Field 'Entity' is non-null
? false :
25
'?' condition is false
263 !SemaRef.InstantiatingSpecializations
26
Assuming field 'second' is true
264 .insert({Inst.Entity->getCanonicalDecl(), Inst.Kind})
265 .second;
266 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, Inst);
267 }
268}
269
270Sema::InstantiatingTemplate::InstantiatingTemplate(
271 Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity,
272 SourceRange InstantiationRange)
273 : InstantiatingTemplate(SemaRef,
17
Calling constructor for 'InstantiatingTemplate'
27
Returning from constructor for 'InstantiatingTemplate'
274 CodeSynthesisContext::TemplateInstantiation,
275 PointOfInstantiation, InstantiationRange, Entity) {}
276
277Sema::InstantiatingTemplate::InstantiatingTemplate(
278 Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionDecl *Entity,
279 ExceptionSpecification, SourceRange InstantiationRange)
280 : InstantiatingTemplate(
281 SemaRef, CodeSynthesisContext::ExceptionSpecInstantiation,
282 PointOfInstantiation, InstantiationRange, Entity) {}
283
284Sema::InstantiatingTemplate::InstantiatingTemplate(
285 Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateParameter Param,
286 TemplateDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
287 SourceRange InstantiationRange)
288 : InstantiatingTemplate(
289 SemaRef,
290 CodeSynthesisContext::DefaultTemplateArgumentInstantiation,
291 PointOfInstantiation, InstantiationRange, getAsNamedDecl(Param),
292 Template, TemplateArgs) {}
293
294Sema::InstantiatingTemplate::InstantiatingTemplate(
295 Sema &SemaRef, SourceLocation PointOfInstantiation,
296 FunctionTemplateDecl *FunctionTemplate,
297 ArrayRef<TemplateArgument> TemplateArgs,
298 CodeSynthesisContext::SynthesisKind Kind,
299 sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
300 : InstantiatingTemplate(SemaRef, Kind, PointOfInstantiation,
301 InstantiationRange, FunctionTemplate, nullptr,
302 TemplateArgs, &DeductionInfo) {
303 assert((static_cast<void> (0))
304 Kind == CodeSynthesisContext::ExplicitTemplateArgumentSubstitution ||(static_cast<void> (0))
305 Kind == CodeSynthesisContext::DeducedTemplateArgumentSubstitution)(static_cast<void> (0));
306}
307
308Sema::InstantiatingTemplate::InstantiatingTemplate(
309 Sema &SemaRef, SourceLocation PointOfInstantiation,
310 TemplateDecl *Template,
311 ArrayRef<TemplateArgument> TemplateArgs,
312 sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
313 : InstantiatingTemplate(
314 SemaRef,
315 CodeSynthesisContext::DeducedTemplateArgumentSubstitution,
316 PointOfInstantiation, InstantiationRange, Template, nullptr,
317 TemplateArgs, &DeductionInfo) {}
318
319Sema::InstantiatingTemplate::InstantiatingTemplate(
320 Sema &SemaRef, SourceLocation PointOfInstantiation,
321 ClassTemplatePartialSpecializationDecl *PartialSpec,
322 ArrayRef<TemplateArgument> TemplateArgs,
323 sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
324 : InstantiatingTemplate(
325 SemaRef,
326 CodeSynthesisContext::DeducedTemplateArgumentSubstitution,
327 PointOfInstantiation, InstantiationRange, PartialSpec, nullptr,
328 TemplateArgs, &DeductionInfo) {}
329
330Sema::InstantiatingTemplate::InstantiatingTemplate(
331 Sema &SemaRef, SourceLocation PointOfInstantiation,
332 VarTemplatePartialSpecializationDecl *PartialSpec,
333 ArrayRef<TemplateArgument> TemplateArgs,
334 sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
335 : InstantiatingTemplate(
336 SemaRef,
337 CodeSynthesisContext::DeducedTemplateArgumentSubstitution,
338 PointOfInstantiation, InstantiationRange, PartialSpec, nullptr,
339 TemplateArgs, &DeductionInfo) {}
340
341Sema::InstantiatingTemplate::InstantiatingTemplate(
342 Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param,
343 ArrayRef<TemplateArgument> TemplateArgs, SourceRange InstantiationRange)
344 : InstantiatingTemplate(
345 SemaRef,
346 CodeSynthesisContext::DefaultFunctionArgumentInstantiation,
347 PointOfInstantiation, InstantiationRange, Param, nullptr,
348 TemplateArgs) {}
349
350Sema::InstantiatingTemplate::InstantiatingTemplate(
351 Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template,
352 NonTypeTemplateParmDecl *Param, ArrayRef<TemplateArgument> TemplateArgs,
353 SourceRange InstantiationRange)
354 : InstantiatingTemplate(
355 SemaRef,
356 CodeSynthesisContext::PriorTemplateArgumentSubstitution,
357 PointOfInstantiation, InstantiationRange, Param, Template,
358 TemplateArgs) {}
359
360Sema::InstantiatingTemplate::InstantiatingTemplate(
361 Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template,
362 TemplateTemplateParmDecl *Param, ArrayRef<TemplateArgument> TemplateArgs,
363 SourceRange InstantiationRange)
364 : InstantiatingTemplate(
365 SemaRef,
366 CodeSynthesisContext::PriorTemplateArgumentSubstitution,
367 PointOfInstantiation, InstantiationRange, Param, Template,
368 TemplateArgs) {}
369
370Sema::InstantiatingTemplate::InstantiatingTemplate(
371 Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template,
372 NamedDecl *Param, ArrayRef<TemplateArgument> TemplateArgs,
373 SourceRange InstantiationRange)
374 : InstantiatingTemplate(
375 SemaRef, CodeSynthesisContext::DefaultTemplateArgumentChecking,
376 PointOfInstantiation, InstantiationRange, Param, Template,
377 TemplateArgs) {}
378
379Sema::InstantiatingTemplate::InstantiatingTemplate(
380 Sema &SemaRef, SourceLocation PointOfInstantiation,
381 concepts::Requirement *Req, sema::TemplateDeductionInfo &DeductionInfo,
382 SourceRange InstantiationRange)
383 : InstantiatingTemplate(
384 SemaRef, CodeSynthesisContext::RequirementInstantiation,
385 PointOfInstantiation, InstantiationRange, /*Entity=*/nullptr,
386 /*Template=*/nullptr, /*TemplateArgs=*/None, &DeductionInfo) {}
387
388
389Sema::InstantiatingTemplate::InstantiatingTemplate(
390 Sema &SemaRef, SourceLocation PointOfInstantiation,
391 concepts::NestedRequirement *Req, ConstraintsCheck,
392 SourceRange InstantiationRange)
393 : InstantiatingTemplate(
394 SemaRef, CodeSynthesisContext::NestedRequirementConstraintsCheck,
395 PointOfInstantiation, InstantiationRange, /*Entity=*/nullptr,
396 /*Template=*/nullptr, /*TemplateArgs=*/None) {}
397
398
399Sema::InstantiatingTemplate::InstantiatingTemplate(
400 Sema &SemaRef, SourceLocation PointOfInstantiation,
401 ConstraintsCheck, NamedDecl *Template,
402 ArrayRef<TemplateArgument> TemplateArgs, SourceRange InstantiationRange)
403 : InstantiatingTemplate(
404 SemaRef, CodeSynthesisContext::ConstraintsCheck,
405 PointOfInstantiation, InstantiationRange, Template, nullptr,
406 TemplateArgs) {}
407
408Sema::InstantiatingTemplate::InstantiatingTemplate(
409 Sema &SemaRef, SourceLocation PointOfInstantiation,
410 ConstraintSubstitution, NamedDecl *Template,
411 sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange)
412 : InstantiatingTemplate(
413 SemaRef, CodeSynthesisContext::ConstraintSubstitution,
414 PointOfInstantiation, InstantiationRange, Template, nullptr,
415 {}, &DeductionInfo) {}
416
417Sema::InstantiatingTemplate::InstantiatingTemplate(
418 Sema &SemaRef, SourceLocation PointOfInstantiation,
419 ConstraintNormalization, NamedDecl *Template,
420 SourceRange InstantiationRange)
421 : InstantiatingTemplate(
422 SemaRef, CodeSynthesisContext::ConstraintNormalization,
423 PointOfInstantiation, InstantiationRange, Template) {}
424
425Sema::InstantiatingTemplate::InstantiatingTemplate(
426 Sema &SemaRef, SourceLocation PointOfInstantiation,
427 ParameterMappingSubstitution, NamedDecl *Template,
428 SourceRange InstantiationRange)
429 : InstantiatingTemplate(
430 SemaRef, CodeSynthesisContext::ParameterMappingSubstitution,
431 PointOfInstantiation, InstantiationRange, Template) {}
432
433void Sema::pushCodeSynthesisContext(CodeSynthesisContext Ctx) {
434 Ctx.SavedInNonInstantiationSFINAEContext = InNonInstantiationSFINAEContext;
435 InNonInstantiationSFINAEContext = false;
436
437 CodeSynthesisContexts.push_back(Ctx);
438
439 if (!Ctx.isInstantiationRecord())
440 ++NonInstantiationEntries;
441
442 // Check to see if we're low on stack space. We can't do anything about this
443 // from here, but we can at least warn the user.
444 if (isStackNearlyExhausted())
445 warnStackExhausted(Ctx.PointOfInstantiation);
446}
447
448void Sema::popCodeSynthesisContext() {
449 auto &Active = CodeSynthesisContexts.back();
450 if (!Active.isInstantiationRecord()) {
451 assert(NonInstantiationEntries > 0)(static_cast<void> (0));
452 --NonInstantiationEntries;
453 }
454
455 InNonInstantiationSFINAEContext = Active.SavedInNonInstantiationSFINAEContext;
456
457 // Name lookup no longer looks in this template's defining module.
458 assert(CodeSynthesisContexts.size() >=(static_cast<void> (0))
459 CodeSynthesisContextLookupModules.size() &&(static_cast<void> (0))
460 "forgot to remove a lookup module for a template instantiation")(static_cast<void> (0));
461 if (CodeSynthesisContexts.size() ==
462 CodeSynthesisContextLookupModules.size()) {
463 if (Module *M = CodeSynthesisContextLookupModules.back())
464 LookupModulesCache.erase(M);
465 CodeSynthesisContextLookupModules.pop_back();
466 }
467
468 // If we've left the code synthesis context for the current context stack,
469 // stop remembering that we've emitted that stack.
470 if (CodeSynthesisContexts.size() ==
471 LastEmittedCodeSynthesisContextDepth)
472 LastEmittedCodeSynthesisContextDepth = 0;
473
474 CodeSynthesisContexts.pop_back();
475}
476
477void Sema::InstantiatingTemplate::Clear() {
478 if (!Invalid) {
479 if (!AlreadyInstantiating) {
480 auto &Active = SemaRef.CodeSynthesisContexts.back();
481 if (Active.Entity)
482 SemaRef.InstantiatingSpecializations.erase(
483 {Active.Entity->getCanonicalDecl(), Active.Kind});
484 }
485
486 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef,
487 SemaRef.CodeSynthesisContexts.back());
488
489 SemaRef.popCodeSynthesisContext();
490 Invalid = true;
491 }
492}
493
494bool Sema::InstantiatingTemplate::CheckInstantiationDepth(
495 SourceLocation PointOfInstantiation,
496 SourceRange InstantiationRange) {
497 assert(SemaRef.NonInstantiationEntries <=(static_cast<void> (0))
498 SemaRef.CodeSynthesisContexts.size())(static_cast<void> (0));
499 if ((SemaRef.CodeSynthesisContexts.size() -
20
Assuming the condition is true
21
Taking true branch
500 SemaRef.NonInstantiationEntries)
501 <= SemaRef.getLangOpts().InstantiationDepth)
502 return false;
22
Returning zero, which participates in a condition later
503
504 SemaRef.Diag(PointOfInstantiation,
505 diag::err_template_recursion_depth_exceeded)
506 << SemaRef.getLangOpts().InstantiationDepth
507 << InstantiationRange;
508 SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth)
509 << SemaRef.getLangOpts().InstantiationDepth;
510 return true;
511}
512
513/// Prints the current instantiation stack through a series of
514/// notes.
515void Sema::PrintInstantiationStack() {
516 // Determine which template instantiations to skip, if any.
517 unsigned SkipStart = CodeSynthesisContexts.size(), SkipEnd = SkipStart;
518 unsigned Limit = Diags.getTemplateBacktraceLimit();
519 if (Limit && Limit < CodeSynthesisContexts.size()) {
520 SkipStart = Limit / 2 + Limit % 2;
521 SkipEnd = CodeSynthesisContexts.size() - Limit / 2;
522 }
523
524 // FIXME: In all of these cases, we need to show the template arguments
525 unsigned InstantiationIdx = 0;
526 for (SmallVectorImpl<CodeSynthesisContext>::reverse_iterator
527 Active = CodeSynthesisContexts.rbegin(),
528 ActiveEnd = CodeSynthesisContexts.rend();
529 Active != ActiveEnd;
530 ++Active, ++InstantiationIdx) {
531 // Skip this instantiation?
532 if (InstantiationIdx >= SkipStart && InstantiationIdx < SkipEnd) {
533 if (InstantiationIdx == SkipStart) {
534 // Note that we're skipping instantiations.
535 Diags.Report(Active->PointOfInstantiation,
536 diag::note_instantiation_contexts_suppressed)
537 << unsigned(CodeSynthesisContexts.size() - Limit);
538 }
539 continue;
540 }
541
542 switch (Active->Kind) {
543 case CodeSynthesisContext::TemplateInstantiation: {
544 Decl *D = Active->Entity;
545 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
546 unsigned DiagID = diag::note_template_member_class_here;
547 if (isa<ClassTemplateSpecializationDecl>(Record))
548 DiagID = diag::note_template_class_instantiation_here;
549 Diags.Report(Active->PointOfInstantiation, DiagID)
550 << Record << Active->InstantiationRange;
551 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
552 unsigned DiagID;
553 if (Function->getPrimaryTemplate())
554 DiagID = diag::note_function_template_spec_here;
555 else
556 DiagID = diag::note_template_member_function_here;
557 Diags.Report(Active->PointOfInstantiation, DiagID)
558 << Function
559 << Active->InstantiationRange;
560 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
561 Diags.Report(Active->PointOfInstantiation,
562 VD->isStaticDataMember()?
563 diag::note_template_static_data_member_def_here
564 : diag::note_template_variable_def_here)
565 << VD
566 << Active->InstantiationRange;
567 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
568 Diags.Report(Active->PointOfInstantiation,
569 diag::note_template_enum_def_here)
570 << ED
571 << Active->InstantiationRange;
572 } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
573 Diags.Report(Active->PointOfInstantiation,
574 diag::note_template_nsdmi_here)
575 << FD << Active->InstantiationRange;
576 } else {
577 Diags.Report(Active->PointOfInstantiation,
578 diag::note_template_type_alias_instantiation_here)
579 << cast<TypeAliasTemplateDecl>(D)
580 << Active->InstantiationRange;
581 }
582 break;
583 }
584
585 case CodeSynthesisContext::DefaultTemplateArgumentInstantiation: {
586 TemplateDecl *Template = cast<TemplateDecl>(Active->Template);
587 SmallString<128> TemplateArgsStr;
588 llvm::raw_svector_ostream OS(TemplateArgsStr);
589 Template->printName(OS);
590 printTemplateArgumentList(OS, Active->template_arguments(),
591 getPrintingPolicy());
592 Diags.Report(Active->PointOfInstantiation,
593 diag::note_default_arg_instantiation_here)
594 << OS.str()
595 << Active->InstantiationRange;
596 break;
597 }
598
599 case CodeSynthesisContext::ExplicitTemplateArgumentSubstitution: {
600 FunctionTemplateDecl *FnTmpl = cast<FunctionTemplateDecl>(Active->Entity);
601 Diags.Report(Active->PointOfInstantiation,
602 diag::note_explicit_template_arg_substitution_here)
603 << FnTmpl
604 << getTemplateArgumentBindingsText(FnTmpl->getTemplateParameters(),
605 Active->TemplateArgs,
606 Active->NumTemplateArgs)
607 << Active->InstantiationRange;
608 break;
609 }
610
611 case CodeSynthesisContext::DeducedTemplateArgumentSubstitution: {
612 if (FunctionTemplateDecl *FnTmpl =
613 dyn_cast<FunctionTemplateDecl>(Active->Entity)) {
614 Diags.Report(Active->PointOfInstantiation,
615 diag::note_function_template_deduction_instantiation_here)
616 << FnTmpl
617 << getTemplateArgumentBindingsText(FnTmpl->getTemplateParameters(),
618 Active->TemplateArgs,
619 Active->NumTemplateArgs)
620 << Active->InstantiationRange;
621 } else {
622 bool IsVar = isa<VarTemplateDecl>(Active->Entity) ||
623 isa<VarTemplateSpecializationDecl>(Active->Entity);
624 bool IsTemplate = false;
625 TemplateParameterList *Params;
626 if (auto *D = dyn_cast<TemplateDecl>(Active->Entity)) {
627 IsTemplate = true;
628 Params = D->getTemplateParameters();
629 } else if (auto *D = dyn_cast<ClassTemplatePartialSpecializationDecl>(
630 Active->Entity)) {
631 Params = D->getTemplateParameters();
632 } else if (auto *D = dyn_cast<VarTemplatePartialSpecializationDecl>(
633 Active->Entity)) {
634 Params = D->getTemplateParameters();
635 } else {
636 llvm_unreachable("unexpected template kind")__builtin_unreachable();
637 }
638
639 Diags.Report(Active->PointOfInstantiation,
640 diag::note_deduced_template_arg_substitution_here)
641 << IsVar << IsTemplate << cast<NamedDecl>(Active->Entity)
642 << getTemplateArgumentBindingsText(Params, Active->TemplateArgs,
643 Active->NumTemplateArgs)
644 << Active->InstantiationRange;
645 }
646 break;
647 }
648
649 case CodeSynthesisContext::DefaultFunctionArgumentInstantiation: {
650 ParmVarDecl *Param = cast<ParmVarDecl>(Active->Entity);
651 FunctionDecl *FD = cast<FunctionDecl>(Param->getDeclContext());
652
653 SmallString<128> TemplateArgsStr;
654 llvm::raw_svector_ostream OS(TemplateArgsStr);
655 FD->printName(OS);
656 printTemplateArgumentList(OS, Active->template_arguments(),
657 getPrintingPolicy());
658 Diags.Report(Active->PointOfInstantiation,
659 diag::note_default_function_arg_instantiation_here)
660 << OS.str()
661 << Active->InstantiationRange;
662 break;
663 }
664
665 case CodeSynthesisContext::PriorTemplateArgumentSubstitution: {
666 NamedDecl *Parm = cast<NamedDecl>(Active->Entity);
667 std::string Name;
668 if (!Parm->getName().empty())
669 Name = std::string(" '") + Parm->getName().str() + "'";
670
671 TemplateParameterList *TemplateParams = nullptr;
672 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(Active->Template))
673 TemplateParams = Template->getTemplateParameters();
674 else
675 TemplateParams =
676 cast<ClassTemplatePartialSpecializationDecl>(Active->Template)
677 ->getTemplateParameters();
678 Diags.Report(Active->PointOfInstantiation,
679 diag::note_prior_template_arg_substitution)
680 << isa<TemplateTemplateParmDecl>(Parm)
681 << Name
682 << getTemplateArgumentBindingsText(TemplateParams,
683 Active->TemplateArgs,
684 Active->NumTemplateArgs)
685 << Active->InstantiationRange;
686 break;
687 }
688
689 case CodeSynthesisContext::DefaultTemplateArgumentChecking: {
690 TemplateParameterList *TemplateParams = nullptr;
691 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(Active->Template))
692 TemplateParams = Template->getTemplateParameters();
693 else
694 TemplateParams =
695 cast<ClassTemplatePartialSpecializationDecl>(Active->Template)
696 ->getTemplateParameters();
697
698 Diags.Report(Active->PointOfInstantiation,
699 diag::note_template_default_arg_checking)
700 << getTemplateArgumentBindingsText(TemplateParams,
701 Active->TemplateArgs,
702 Active->NumTemplateArgs)
703 << Active->InstantiationRange;
704 break;
705 }
706
707 case CodeSynthesisContext::ExceptionSpecEvaluation:
708 Diags.Report(Active->PointOfInstantiation,
709 diag::note_evaluating_exception_spec_here)
710 << cast<FunctionDecl>(Active->Entity);
711 break;
712
713 case CodeSynthesisContext::ExceptionSpecInstantiation:
714 Diags.Report(Active->PointOfInstantiation,
715 diag::note_template_exception_spec_instantiation_here)
716 << cast<FunctionDecl>(Active->Entity)
717 << Active->InstantiationRange;
718 break;
719
720 case CodeSynthesisContext::RequirementInstantiation:
721 Diags.Report(Active->PointOfInstantiation,
722 diag::note_template_requirement_instantiation_here)
723 << Active->InstantiationRange;
724 break;
725
726 case CodeSynthesisContext::NestedRequirementConstraintsCheck:
727 Diags.Report(Active->PointOfInstantiation,
728 diag::note_nested_requirement_here)
729 << Active->InstantiationRange;
730 break;
731
732 case CodeSynthesisContext::DeclaringSpecialMember:
733 Diags.Report(Active->PointOfInstantiation,
734 diag::note_in_declaration_of_implicit_special_member)
735 << cast<CXXRecordDecl>(Active->Entity) << Active->SpecialMember;
736 break;
737
738 case CodeSynthesisContext::DeclaringImplicitEqualityComparison:
739 Diags.Report(Active->Entity->getLocation(),
740 diag::note_in_declaration_of_implicit_equality_comparison);
741 break;
742
743 case CodeSynthesisContext::DefiningSynthesizedFunction: {
744 // FIXME: For synthesized functions that are not defaulted,
745 // produce a note.
746 auto *FD = dyn_cast<FunctionDecl>(Active->Entity);
747 DefaultedFunctionKind DFK =
748 FD ? getDefaultedFunctionKind(FD) : DefaultedFunctionKind();
749 if (DFK.isSpecialMember()) {
750 auto *MD = cast<CXXMethodDecl>(FD);
751 Diags.Report(Active->PointOfInstantiation,
752 diag::note_member_synthesized_at)
753 << MD->isExplicitlyDefaulted() << DFK.asSpecialMember()
754 << Context.getTagDeclType(MD->getParent());
755 } else if (DFK.isComparison()) {
756 Diags.Report(Active->PointOfInstantiation,
757 diag::note_comparison_synthesized_at)
758 << (int)DFK.asComparison()
759 << Context.getTagDeclType(
760 cast<CXXRecordDecl>(FD->getLexicalDeclContext()));
761 }
762 break;
763 }
764
765 case CodeSynthesisContext::RewritingOperatorAsSpaceship:
766 Diags.Report(Active->Entity->getLocation(),
767 diag::note_rewriting_operator_as_spaceship);
768 break;
769
770 case CodeSynthesisContext::InitializingStructuredBinding:
771 Diags.Report(Active->PointOfInstantiation,
772 diag::note_in_binding_decl_init)
773 << cast<BindingDecl>(Active->Entity);
774 break;
775
776 case CodeSynthesisContext::MarkingClassDllexported:
777 Diags.Report(Active->PointOfInstantiation,
778 diag::note_due_to_dllexported_class)
779 << cast<CXXRecordDecl>(Active->Entity) << !getLangOpts().CPlusPlus11;
780 break;
781
782 case CodeSynthesisContext::Memoization:
783 break;
784
785 case CodeSynthesisContext::ConstraintsCheck: {
786 unsigned DiagID = 0;
787 if (!Active->Entity) {
788 Diags.Report(Active->PointOfInstantiation,
789 diag::note_nested_requirement_here)
790 << Active->InstantiationRange;
791 break;
792 }
793 if (isa<ConceptDecl>(Active->Entity))
794 DiagID = diag::note_concept_specialization_here;
795 else if (isa<TemplateDecl>(Active->Entity))
796 DiagID = diag::note_checking_constraints_for_template_id_here;
797 else if (isa<VarTemplatePartialSpecializationDecl>(Active->Entity))
798 DiagID = diag::note_checking_constraints_for_var_spec_id_here;
799 else if (isa<ClassTemplatePartialSpecializationDecl>(Active->Entity))
800 DiagID = diag::note_checking_constraints_for_class_spec_id_here;
801 else {
802 assert(isa<FunctionDecl>(Active->Entity))(static_cast<void> (0));
803 DiagID = diag::note_checking_constraints_for_function_here;
804 }
805 SmallString<128> TemplateArgsStr;
806 llvm::raw_svector_ostream OS(TemplateArgsStr);
807 cast<NamedDecl>(Active->Entity)->printName(OS);
808 if (!isa<FunctionDecl>(Active->Entity)) {
809 printTemplateArgumentList(OS, Active->template_arguments(),
810 getPrintingPolicy());
811 }
812 Diags.Report(Active->PointOfInstantiation, DiagID) << OS.str()
813 << Active->InstantiationRange;
814 break;
815 }
816 case CodeSynthesisContext::ConstraintSubstitution:
817 Diags.Report(Active->PointOfInstantiation,
818 diag::note_constraint_substitution_here)
819 << Active->InstantiationRange;
820 break;
821 case CodeSynthesisContext::ConstraintNormalization:
822 Diags.Report(Active->PointOfInstantiation,
823 diag::note_constraint_normalization_here)
824 << cast<NamedDecl>(Active->Entity)->getName()
825 << Active->InstantiationRange;
826 break;
827 case CodeSynthesisContext::ParameterMappingSubstitution:
828 Diags.Report(Active->PointOfInstantiation,
829 diag::note_parameter_mapping_substitution_here)
830 << Active->InstantiationRange;
831 break;
832 }
833 }
834}
835
836Optional<TemplateDeductionInfo *> Sema::isSFINAEContext() const {
837 if (InNonInstantiationSFINAEContext)
838 return Optional<TemplateDeductionInfo *>(nullptr);
839
840 for (SmallVectorImpl<CodeSynthesisContext>::const_reverse_iterator
841 Active = CodeSynthesisContexts.rbegin(),
842 ActiveEnd = CodeSynthesisContexts.rend();
843 Active != ActiveEnd;
844 ++Active)
845 {
846 switch (Active->Kind) {
847 case CodeSynthesisContext::TemplateInstantiation:
848 // An instantiation of an alias template may or may not be a SFINAE
849 // context, depending on what else is on the stack.
850 if (isa<TypeAliasTemplateDecl>(Active->Entity))
851 break;
852 LLVM_FALLTHROUGH[[gnu::fallthrough]];
853 case CodeSynthesisContext::DefaultFunctionArgumentInstantiation:
854 case CodeSynthesisContext::ExceptionSpecInstantiation:
855 case CodeSynthesisContext::ConstraintsCheck:
856 case CodeSynthesisContext::ParameterMappingSubstitution:
857 case CodeSynthesisContext::ConstraintNormalization:
858 case CodeSynthesisContext::NestedRequirementConstraintsCheck:
859 // This is a template instantiation, so there is no SFINAE.
860 return None;
861
862 case CodeSynthesisContext::DefaultTemplateArgumentInstantiation:
863 case CodeSynthesisContext::PriorTemplateArgumentSubstitution:
864 case CodeSynthesisContext::DefaultTemplateArgumentChecking:
865 case CodeSynthesisContext::RewritingOperatorAsSpaceship:
866 // A default template argument instantiation and substitution into
867 // template parameters with arguments for prior parameters may or may
868 // not be a SFINAE context; look further up the stack.
869 break;
870
871 case CodeSynthesisContext::ExplicitTemplateArgumentSubstitution:
872 case CodeSynthesisContext::DeducedTemplateArgumentSubstitution:
873 case CodeSynthesisContext::ConstraintSubstitution:
874 case CodeSynthesisContext::RequirementInstantiation:
875 // We're either substituting explicitly-specified template arguments,
876 // deduced template arguments, a constraint expression or a requirement
877 // in a requires expression, so SFINAE applies.
878 assert(Active->DeductionInfo && "Missing deduction info pointer")(static_cast<void> (0));
879 return Active->DeductionInfo;
880
881 case CodeSynthesisContext::DeclaringSpecialMember:
882 case CodeSynthesisContext::DeclaringImplicitEqualityComparison:
883 case CodeSynthesisContext::DefiningSynthesizedFunction:
884 case CodeSynthesisContext::InitializingStructuredBinding:
885 case CodeSynthesisContext::MarkingClassDllexported:
886 // This happens in a context unrelated to template instantiation, so
887 // there is no SFINAE.
888 return None;
889
890 case CodeSynthesisContext::ExceptionSpecEvaluation:
891 // FIXME: This should not be treated as a SFINAE context, because
892 // we will cache an incorrect exception specification. However, clang
893 // bootstrap relies this! See PR31692.
894 break;
895
896 case CodeSynthesisContext::Memoization:
897 break;
898 }
899
900 // The inner context was transparent for SFINAE. If it occurred within a
901 // non-instantiation SFINAE context, then SFINAE applies.
902 if (Active->SavedInNonInstantiationSFINAEContext)
903 return Optional<TemplateDeductionInfo *>(nullptr);
904 }
905
906 return None;
907}
908
909//===----------------------------------------------------------------------===/
910// Template Instantiation for Types
911//===----------------------------------------------------------------------===/
912namespace {
913 class TemplateInstantiator : public TreeTransform<TemplateInstantiator> {
914 const MultiLevelTemplateArgumentList &TemplateArgs;
915 SourceLocation Loc;
916 DeclarationName Entity;
917
918 public:
919 typedef TreeTransform<TemplateInstantiator> inherited;
920
921 TemplateInstantiator(Sema &SemaRef,
922 const MultiLevelTemplateArgumentList &TemplateArgs,
923 SourceLocation Loc,
924 DeclarationName Entity)
925 : inherited(SemaRef), TemplateArgs(TemplateArgs), Loc(Loc),
926 Entity(Entity) { }
927
928 /// Determine whether the given type \p T has already been
929 /// transformed.
930 ///
931 /// For the purposes of template instantiation, a type has already been
932 /// transformed if it is NULL or if it is not dependent.
933 bool AlreadyTransformed(QualType T);
934
935 /// Returns the location of the entity being instantiated, if known.
936 SourceLocation getBaseLocation() { return Loc; }
937
938 /// Returns the name of the entity being instantiated, if any.
939 DeclarationName getBaseEntity() { return Entity; }
940
941 /// Sets the "base" location and entity when that
942 /// information is known based on another transformation.
943 void setBase(SourceLocation Loc, DeclarationName Entity) {
944 this->Loc = Loc;
945 this->Entity = Entity;
946 }
947
948 unsigned TransformTemplateDepth(unsigned Depth) {
949 return TemplateArgs.getNewDepth(Depth);
950 }
951
952 bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
953 SourceRange PatternRange,
954 ArrayRef<UnexpandedParameterPack> Unexpanded,
955 bool &ShouldExpand, bool &RetainExpansion,
956 Optional<unsigned> &NumExpansions) {
957 return getSema().CheckParameterPacksForExpansion(EllipsisLoc,
958 PatternRange, Unexpanded,
959 TemplateArgs,
960 ShouldExpand,
961 RetainExpansion,
962 NumExpansions);
963 }
964
965 void ExpandingFunctionParameterPack(ParmVarDecl *Pack) {
966 SemaRef.CurrentInstantiationScope->MakeInstantiatedLocalArgPack(Pack);
967 }
968
969 TemplateArgument ForgetPartiallySubstitutedPack() {
970 TemplateArgument Result;
971 if (NamedDecl *PartialPack
972 = SemaRef.CurrentInstantiationScope->getPartiallySubstitutedPack()){
973 MultiLevelTemplateArgumentList &TemplateArgs
974 = const_cast<MultiLevelTemplateArgumentList &>(this->TemplateArgs);
975 unsigned Depth, Index;
976 std::tie(Depth, Index) = getDepthAndIndex(PartialPack);
977 if (TemplateArgs.hasTemplateArgument(Depth, Index)) {
978 Result = TemplateArgs(Depth, Index);
979 TemplateArgs.setArgument(Depth, Index, TemplateArgument());
980 }
981 }
982
983 return Result;
984 }
985
986 void RememberPartiallySubstitutedPack(TemplateArgument Arg) {
987 if (Arg.isNull())
988 return;
989
990 if (NamedDecl *PartialPack
991 = SemaRef.CurrentInstantiationScope->getPartiallySubstitutedPack()){
992 MultiLevelTemplateArgumentList &TemplateArgs
993 = const_cast<MultiLevelTemplateArgumentList &>(this->TemplateArgs);
994 unsigned Depth, Index;
995 std::tie(Depth, Index) = getDepthAndIndex(PartialPack);
996 TemplateArgs.setArgument(Depth, Index, Arg);
997 }
998 }
999
1000 /// Transform the given declaration by instantiating a reference to
1001 /// this declaration.
1002 Decl *TransformDecl(SourceLocation Loc, Decl *D);
1003
1004 void transformAttrs(Decl *Old, Decl *New) {
1005 SemaRef.InstantiateAttrs(TemplateArgs, Old, New);
1006 }
1007
1008 void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> NewDecls) {
1009 if (Old->isParameterPack()) {
1010 SemaRef.CurrentInstantiationScope->MakeInstantiatedLocalArgPack(Old);
1011 for (auto *New : NewDecls)
1012 SemaRef.CurrentInstantiationScope->InstantiatedLocalPackArg(
1013 Old, cast<VarDecl>(New));
1014 return;
1015 }
1016
1017 assert(NewDecls.size() == 1 &&(static_cast<void> (0))
1018 "should only have multiple expansions for a pack")(static_cast<void> (0));
1019 Decl *New = NewDecls.front();
1020
1021 // If we've instantiated the call operator of a lambda or the call
1022 // operator template of a generic lambda, update the "instantiation of"
1023 // information.
1024 auto *NewMD = dyn_cast<CXXMethodDecl>(New);
1025 if (NewMD && isLambdaCallOperator(NewMD)) {
1026 auto *OldMD = dyn_cast<CXXMethodDecl>(Old);
1027 if (auto *NewTD = NewMD->getDescribedFunctionTemplate())
1028 NewTD->setInstantiatedFromMemberTemplate(
1029 OldMD->getDescribedFunctionTemplate());
1030 else
1031 NewMD->setInstantiationOfMemberFunction(OldMD,
1032 TSK_ImplicitInstantiation);
1033 }
1034
1035 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Old, New);
1036
1037 // We recreated a local declaration, but not by instantiating it. There
1038 // may be pending dependent diagnostics to produce.
1039 if (auto *DC = dyn_cast<DeclContext>(Old))
1040 SemaRef.PerformDependentDiagnostics(DC, TemplateArgs);
1041 }
1042
1043 /// Transform the definition of the given declaration by
1044 /// instantiating it.
1045 Decl *TransformDefinition(SourceLocation Loc, Decl *D);
1046
1047 /// Transform the first qualifier within a scope by instantiating the
1048 /// declaration.
1049 NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc);
1050
1051 /// Rebuild the exception declaration and register the declaration
1052 /// as an instantiated local.
1053 VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
1054 TypeSourceInfo *Declarator,
1055 SourceLocation StartLoc,
1056 SourceLocation NameLoc,
1057 IdentifierInfo *Name);
1058
1059 /// Rebuild the Objective-C exception declaration and register the
1060 /// declaration as an instantiated local.
1061 VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1062 TypeSourceInfo *TSInfo, QualType T);
1063
1064 /// Check for tag mismatches when instantiating an
1065 /// elaborated type.
1066 QualType RebuildElaboratedType(SourceLocation KeywordLoc,
1067 ElaboratedTypeKeyword Keyword,
1068 NestedNameSpecifierLoc QualifierLoc,
1069 QualType T);
1070
1071 TemplateName
1072 TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
1073 SourceLocation NameLoc,
1074 QualType ObjectType = QualType(),
1075 NamedDecl *FirstQualifierInScope = nullptr,
1076 bool AllowInjectedClassName = false);
1077
1078 const LoopHintAttr *TransformLoopHintAttr(const LoopHintAttr *LH);
1079
1080 ExprResult TransformPredefinedExpr(PredefinedExpr *E);
1081 ExprResult TransformDeclRefExpr(DeclRefExpr *E);
1082 ExprResult TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E);
1083
1084 ExprResult TransformTemplateParmRefExpr(DeclRefExpr *E,
1085 NonTypeTemplateParmDecl *D);
1086 ExprResult TransformSubstNonTypeTemplateParmPackExpr(
1087 SubstNonTypeTemplateParmPackExpr *E);
1088 ExprResult TransformSubstNonTypeTemplateParmExpr(
1089 SubstNonTypeTemplateParmExpr *E);
1090
1091 /// Rebuild a DeclRefExpr for a VarDecl reference.
1092 ExprResult RebuildVarDeclRefExpr(VarDecl *PD, SourceLocation Loc);
1093
1094 /// Transform a reference to a function or init-capture parameter pack.
1095 ExprResult TransformFunctionParmPackRefExpr(DeclRefExpr *E, VarDecl *PD);
1096
1097 /// Transform a FunctionParmPackExpr which was built when we couldn't
1098 /// expand a function parameter pack reference which refers to an expanded
1099 /// pack.
1100 ExprResult TransformFunctionParmPackExpr(FunctionParmPackExpr *E);
1101
1102 QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
1103 FunctionProtoTypeLoc TL) {
1104 // Call the base version; it will forward to our overridden version below.
1105 return inherited::TransformFunctionProtoType(TLB, TL);
1106 }
1107
1108 template<typename Fn>
1109 QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
1110 FunctionProtoTypeLoc TL,
1111 CXXRecordDecl *ThisContext,
1112 Qualifiers ThisTypeQuals,
1113 Fn TransformExceptionSpec);
1114
1115 ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
1116 int indexAdjustment,
1117 Optional<unsigned> NumExpansions,
1118 bool ExpectParameterPack);
1119
1120 /// Transforms a template type parameter type by performing
1121 /// substitution of the corresponding template type argument.
1122 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1123 TemplateTypeParmTypeLoc TL);
1124
1125 /// Transforms an already-substituted template type parameter pack
1126 /// into either itself (if we aren't substituting into its pack expansion)
1127 /// or the appropriate substituted argument.
1128 QualType TransformSubstTemplateTypeParmPackType(TypeLocBuilder &TLB,
1129 SubstTemplateTypeParmPackTypeLoc TL);
1130
1131 ExprResult TransformLambdaExpr(LambdaExpr *E) {
1132 LocalInstantiationScope Scope(SemaRef, /*CombineWithOuterScope=*/true);
1133 return TreeTransform<TemplateInstantiator>::TransformLambdaExpr(E);
1134 }
1135
1136 ExprResult TransformRequiresExpr(RequiresExpr *E) {
1137 LocalInstantiationScope Scope(SemaRef, /*CombineWithOuterScope=*/true);
1138 return TreeTransform<TemplateInstantiator>::TransformRequiresExpr(E);
1139 }
1140
1141 bool TransformRequiresExprRequirements(
1142 ArrayRef<concepts::Requirement *> Reqs,
1143 SmallVectorImpl<concepts::Requirement *> &Transformed) {
1144 bool SatisfactionDetermined = false;
1145 for (concepts::Requirement *Req : Reqs) {
1146 concepts::Requirement *TransReq = nullptr;
1147 if (!SatisfactionDetermined) {
1148 if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req))
1149 TransReq = TransformTypeRequirement(TypeReq);
1150 else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req))
1151 TransReq = TransformExprRequirement(ExprReq);
1152 else
1153 TransReq = TransformNestedRequirement(
1154 cast<concepts::NestedRequirement>(Req));
1155 if (!TransReq)
1156 return true;
1157 if (!TransReq->isDependent() && !TransReq->isSatisfied())
1158 // [expr.prim.req]p6
1159 // [...] The substitution and semantic constraint checking
1160 // proceeds in lexical order and stops when a condition that
1161 // determines the result of the requires-expression is
1162 // encountered. [..]
1163 SatisfactionDetermined = true;
1164 } else
1165 TransReq = Req;
1166 Transformed.push_back(TransReq);
1167 }
1168 return false;
1169 }
1170
1171 TemplateParameterList *TransformTemplateParameterList(
1172 TemplateParameterList *OrigTPL) {
1173 if (!OrigTPL || !OrigTPL->size()) return OrigTPL;
1174
1175 DeclContext *Owner = OrigTPL->getParam(0)->getDeclContext();
1176 TemplateDeclInstantiator DeclInstantiator(getSema(),
1177 /* DeclContext *Owner */ Owner, TemplateArgs);
1178 return DeclInstantiator.SubstTemplateParams(OrigTPL);
1179 }
1180
1181 concepts::TypeRequirement *
1182 TransformTypeRequirement(concepts::TypeRequirement *Req);
1183 concepts::ExprRequirement *
1184 TransformExprRequirement(concepts::ExprRequirement *Req);
1185 concepts::NestedRequirement *
1186 TransformNestedRequirement(concepts::NestedRequirement *Req);
1187
1188 private:
1189 ExprResult transformNonTypeTemplateParmRef(NonTypeTemplateParmDecl *parm,
1190 SourceLocation loc,
1191 TemplateArgument arg);
1192 };
1193}
1194
1195bool TemplateInstantiator::AlreadyTransformed(QualType T) {
1196 if (T.isNull())
1197 return true;
1198
1199 if (T->isInstantiationDependentType() || T->isVariablyModifiedType())
1200 return false;
1201
1202 getSema().MarkDeclarationsReferencedInType(Loc, T);
1203 return true;
1204}
1205
1206static TemplateArgument
1207getPackSubstitutedTemplateArgument(Sema &S, TemplateArgument Arg) {
1208 assert(S.ArgumentPackSubstitutionIndex >= 0)(static_cast<void> (0));
1209 assert(S.ArgumentPackSubstitutionIndex < (int)Arg.pack_size())(static_cast<void> (0));
1210 Arg = Arg.pack_begin()[S.ArgumentPackSubstitutionIndex];
1211 if (Arg.isPackExpansion())
1212 Arg = Arg.getPackExpansionPattern();
1213 return Arg;
1214}
1215
1216Decl *TemplateInstantiator::TransformDecl(SourceLocation Loc, Decl *D) {
1217 if (!D)
1218 return nullptr;
1219
1220 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(D)) {
1221 if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
1222 // If the corresponding template argument is NULL or non-existent, it's
1223 // because we are performing instantiation from explicitly-specified
1224 // template arguments in a function template, but there were some
1225 // arguments left unspecified.
1226 if (!TemplateArgs.hasTemplateArgument(TTP->getDepth(),
1227 TTP->getPosition()))
1228 return D;
1229
1230 TemplateArgument Arg = TemplateArgs(TTP->getDepth(), TTP->getPosition());
1231
1232 if (TTP->isParameterPack()) {
1233 assert(Arg.getKind() == TemplateArgument::Pack &&(static_cast<void> (0))
1234 "Missing argument pack")(static_cast<void> (0));
1235 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1236 }
1237
1238 TemplateName Template = Arg.getAsTemplate().getNameToSubstitute();
1239 assert(!Template.isNull() && Template.getAsTemplateDecl() &&(static_cast<void> (0))
1240 "Wrong kind of template template argument")(static_cast<void> (0));
1241 return Template.getAsTemplateDecl();
1242 }
1243
1244 // Fall through to find the instantiated declaration for this template
1245 // template parameter.
1246 }
1247
1248 return SemaRef.FindInstantiatedDecl(Loc, cast<NamedDecl>(D), TemplateArgs);
1249}
1250
1251Decl *TemplateInstantiator::TransformDefinition(SourceLocation Loc, Decl *D) {
1252 Decl *Inst = getSema().SubstDecl(D, getSema().CurContext, TemplateArgs);
1253 if (!Inst)
1254 return nullptr;
1255
1256 getSema().CurrentInstantiationScope->InstantiatedLocal(D, Inst);
1257 return Inst;
1258}
1259
1260NamedDecl *
1261TemplateInstantiator::TransformFirstQualifierInScope(NamedDecl *D,
1262 SourceLocation Loc) {
1263 // If the first part of the nested-name-specifier was a template type
1264 // parameter, instantiate that type parameter down to a tag type.
1265 if (TemplateTypeParmDecl *TTPD = dyn_cast_or_null<TemplateTypeParmDecl>(D)) {
1266 const TemplateTypeParmType *TTP
1267 = cast<TemplateTypeParmType>(getSema().Context.getTypeDeclType(TTPD));
1268
1269 if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
1270 // FIXME: This needs testing w/ member access expressions.
1271 TemplateArgument Arg = TemplateArgs(TTP->getDepth(), TTP->getIndex());
1272
1273 if (TTP->isParameterPack()) {
1274 assert(Arg.getKind() == TemplateArgument::Pack &&(static_cast<void> (0))
1275 "Missing argument pack")(static_cast<void> (0));
1276
1277 if (getSema().ArgumentPackSubstitutionIndex == -1)
1278 return nullptr;
1279
1280 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1281 }
1282
1283 QualType T = Arg.getAsType();
1284 if (T.isNull())
1285 return cast_or_null<NamedDecl>(TransformDecl(Loc, D));
1286
1287 if (const TagType *Tag = T->getAs<TagType>())
1288 return Tag->getDecl();
1289
1290 // The resulting type is not a tag; complain.
1291 getSema().Diag(Loc, diag::err_nested_name_spec_non_tag) << T;
1292 return nullptr;
1293 }
1294 }
1295
1296 return cast_or_null<NamedDecl>(TransformDecl(Loc, D));
1297}
1298
1299VarDecl *
1300TemplateInstantiator::RebuildExceptionDecl(VarDecl *ExceptionDecl,
1301 TypeSourceInfo *Declarator,
1302 SourceLocation StartLoc,
1303 SourceLocation NameLoc,
1304 IdentifierInfo *Name) {
1305 VarDecl *Var = inherited::RebuildExceptionDecl(ExceptionDecl, Declarator,
1306 StartLoc, NameLoc, Name);
1307 if (Var)
1308 getSema().CurrentInstantiationScope->InstantiatedLocal(ExceptionDecl, Var);
1309 return Var;
1310}
1311
1312VarDecl *TemplateInstantiator::RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1313 TypeSourceInfo *TSInfo,
1314 QualType T) {
1315 VarDecl *Var = inherited::RebuildObjCExceptionDecl(ExceptionDecl, TSInfo, T);
1316 if (Var)
1317 getSema().CurrentInstantiationScope->InstantiatedLocal(ExceptionDecl, Var);
1318 return Var;
1319}
1320
1321QualType
1322TemplateInstantiator::RebuildElaboratedType(SourceLocation KeywordLoc,
1323 ElaboratedTypeKeyword Keyword,
1324 NestedNameSpecifierLoc QualifierLoc,
1325 QualType T) {
1326 if (const TagType *TT = T->getAs<TagType>()) {
1327 TagDecl* TD = TT->getDecl();
1328
1329 SourceLocation TagLocation = KeywordLoc;
1330
1331 IdentifierInfo *Id = TD->getIdentifier();
1332
1333 // TODO: should we even warn on struct/class mismatches for this? Seems
1334 // like it's likely to produce a lot of spurious errors.
1335 if (Id && Keyword != ETK_None && Keyword != ETK_Typename) {
1336 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
1337 if (!SemaRef.isAcceptableTagRedeclaration(TD, Kind, /*isDefinition*/false,
1338 TagLocation, Id)) {
1339 SemaRef.Diag(TagLocation, diag::err_use_with_wrong_tag)
1340 << Id
1341 << FixItHint::CreateReplacement(SourceRange(TagLocation),
1342 TD->getKindName());
1343 SemaRef.Diag(TD->getLocation(), diag::note_previous_use);
1344 }
1345 }
1346 }
1347
1348 return TreeTransform<TemplateInstantiator>::RebuildElaboratedType(KeywordLoc,
1349 Keyword,
1350 QualifierLoc,
1351 T);
1352}
1353
1354TemplateName TemplateInstantiator::TransformTemplateName(
1355 CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc,
1356 QualType ObjectType, NamedDecl *FirstQualifierInScope,
1357 bool AllowInjectedClassName) {
1358 if (TemplateTemplateParmDecl *TTP
1359 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())) {
1360 if (TTP->getDepth() < TemplateArgs.getNumLevels()) {
1361 // If the corresponding template argument is NULL or non-existent, it's
1362 // because we are performing instantiation from explicitly-specified
1363 // template arguments in a function template, but there were some
1364 // arguments left unspecified.
1365 if (!TemplateArgs.hasTemplateArgument(TTP->getDepth(),
1366 TTP->getPosition()))
1367 return Name;
1368
1369 TemplateArgument Arg = TemplateArgs(TTP->getDepth(), TTP->getPosition());
1370
1371 if (TemplateArgs.isRewrite()) {
1372 // We're rewriting the template parameter as a reference to another
1373 // template parameter.
1374 if (Arg.getKind() == TemplateArgument::Pack) {
1375 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion() &&(static_cast<void> (0))
1376 "unexpected pack arguments in template rewrite")(static_cast<void> (0));
1377 Arg = Arg.pack_begin()->getPackExpansionPattern();
1378 }
1379 assert(Arg.getKind() == TemplateArgument::Template &&(static_cast<void> (0))
1380 "unexpected nontype template argument kind in template rewrite")(static_cast<void> (0));
1381 return Arg.getAsTemplate();
1382 }
1383
1384 if (TTP->isParameterPack()) {
1385 assert(Arg.getKind() == TemplateArgument::Pack &&(static_cast<void> (0))
1386 "Missing argument pack")(static_cast<void> (0));
1387
1388 if (getSema().ArgumentPackSubstitutionIndex == -1) {
1389 // We have the template argument pack to substitute, but we're not
1390 // actually expanding the enclosing pack expansion yet. So, just
1391 // keep the entire argument pack.
1392 return getSema().Context.getSubstTemplateTemplateParmPack(TTP, Arg);
1393 }
1394
1395 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1396 }
1397
1398 TemplateName Template = Arg.getAsTemplate().getNameToSubstitute();
1399 assert(!Template.isNull() && "Null template template argument")(static_cast<void> (0));
1400 assert(!Template.getAsQualifiedTemplateName() &&(static_cast<void> (0))
1401 "template decl to substitute is qualified?")(static_cast<void> (0));
1402
1403 Template = getSema().Context.getSubstTemplateTemplateParm(TTP, Template);
1404 return Template;
1405 }
1406 }
1407
1408 if (SubstTemplateTemplateParmPackStorage *SubstPack
1409 = Name.getAsSubstTemplateTemplateParmPack()) {
1410 if (getSema().ArgumentPackSubstitutionIndex == -1)
1411 return Name;
1412
1413 TemplateArgument Arg = SubstPack->getArgumentPack();
1414 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1415 return Arg.getAsTemplate().getNameToSubstitute();
1416 }
1417
1418 return inherited::TransformTemplateName(SS, Name, NameLoc, ObjectType,
1419 FirstQualifierInScope,
1420 AllowInjectedClassName);
1421}
1422
1423ExprResult
1424TemplateInstantiator::TransformPredefinedExpr(PredefinedExpr *E) {
1425 if (!E->isTypeDependent())
1426 return E;
1427
1428 return getSema().BuildPredefinedExpr(E->getLocation(), E->getIdentKind());
1429}
1430
1431ExprResult
1432TemplateInstantiator::TransformTemplateParmRefExpr(DeclRefExpr *E,
1433 NonTypeTemplateParmDecl *NTTP) {
1434 // If the corresponding template argument is NULL or non-existent, it's
1435 // because we are performing instantiation from explicitly-specified
1436 // template arguments in a function template, but there were some
1437 // arguments left unspecified.
1438 if (!TemplateArgs.hasTemplateArgument(NTTP->getDepth(),
1439 NTTP->getPosition()))
1440 return E;
1441
1442 TemplateArgument Arg = TemplateArgs(NTTP->getDepth(), NTTP->getPosition());
1443
1444 if (TemplateArgs.isRewrite()) {
1445 // We're rewriting the template parameter as a reference to another
1446 // template parameter.
1447 if (Arg.getKind() == TemplateArgument::Pack) {
1448 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion() &&(static_cast<void> (0))
1449 "unexpected pack arguments in template rewrite")(static_cast<void> (0));
1450 Arg = Arg.pack_begin()->getPackExpansionPattern();
1451 }
1452 assert(Arg.getKind() == TemplateArgument::Expression &&(static_cast<void> (0))
1453 "unexpected nontype template argument kind in template rewrite")(static_cast<void> (0));
1454 // FIXME: This can lead to the same subexpression appearing multiple times
1455 // in a complete expression.
1456 return Arg.getAsExpr();
1457 }
1458
1459 if (NTTP->isParameterPack()) {
1460 assert(Arg.getKind() == TemplateArgument::Pack &&(static_cast<void> (0))
1461 "Missing argument pack")(static_cast<void> (0));
1462
1463 if (getSema().ArgumentPackSubstitutionIndex == -1) {
1464 // We have an argument pack, but we can't select a particular argument
1465 // out of it yet. Therefore, we'll build an expression to hold on to that
1466 // argument pack.
1467 QualType TargetType = SemaRef.SubstType(NTTP->getType(), TemplateArgs,
1468 E->getLocation(),
1469 NTTP->getDeclName());
1470 if (TargetType.isNull())
1471 return ExprError();
1472
1473 QualType ExprType = TargetType.getNonLValueExprType(SemaRef.Context);
1474 if (TargetType->isRecordType())
1475 ExprType.addConst();
1476
1477 return new (SemaRef.Context) SubstNonTypeTemplateParmPackExpr(
1478 ExprType, TargetType->isReferenceType() ? VK_LValue : VK_PRValue,
1479 NTTP, E->getLocation(), Arg);
1480 }
1481
1482 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1483 }
1484
1485 return transformNonTypeTemplateParmRef(NTTP, E->getLocation(), Arg);
1486}
1487
1488const LoopHintAttr *
1489TemplateInstantiator::TransformLoopHintAttr(const LoopHintAttr *LH) {
1490 Expr *TransformedExpr = getDerived().TransformExpr(LH->getValue()).get();
1491
1492 if (TransformedExpr == LH->getValue())
1493 return LH;
1494
1495 // Generate error if there is a problem with the value.
1496 if (getSema().CheckLoopHintExpr(TransformedExpr, LH->getLocation()))
1497 return LH;
1498
1499 // Create new LoopHintValueAttr with integral expression in place of the
1500 // non-type template parameter.
1501 return LoopHintAttr::CreateImplicit(getSema().Context, LH->getOption(),
1502 LH->getState(), TransformedExpr, *LH);
1503}
1504
1505ExprResult TemplateInstantiator::transformNonTypeTemplateParmRef(
1506 NonTypeTemplateParmDecl *parm,
1507 SourceLocation loc,
1508 TemplateArgument arg) {
1509 ExprResult result;
1510
1511 // Determine the substituted parameter type. We can usually infer this from
1512 // the template argument, but not always.
1513 auto SubstParamType = [&] {
1514 QualType T;
1515 if (parm->isExpandedParameterPack())
1516 T = parm->getExpansionType(SemaRef.ArgumentPackSubstitutionIndex);
1517 else
1518 T = parm->getType();
1519 if (parm->isParameterPack() && isa<PackExpansionType>(T))
1520 T = cast<PackExpansionType>(T)->getPattern();
1521 return SemaRef.SubstType(T, TemplateArgs, loc, parm->getDeclName());
1522 };
1523
1524 bool refParam = false;
1525
1526 // The template argument itself might be an expression, in which case we just
1527 // return that expression. This happens when substituting into an alias
1528 // template.
1529 if (arg.getKind() == TemplateArgument::Expression) {
1530 Expr *argExpr = arg.getAsExpr();
1531 result = argExpr;
1532 if (argExpr->isLValue()) {
1533 if (argExpr->getType()->isRecordType()) {
1534 // Check whether the parameter was actually a reference.
1535 QualType paramType = SubstParamType();
1536 if (paramType.isNull())
1537 return ExprError();
1538 refParam = paramType->isReferenceType();
1539 } else {
1540 refParam = true;
1541 }
1542 }
1543 } else if (arg.getKind() == TemplateArgument::Declaration ||
1544 arg.getKind() == TemplateArgument::NullPtr) {
1545 ValueDecl *VD;
1546 if (arg.getKind() == TemplateArgument::Declaration) {
1547 VD = arg.getAsDecl();
1548
1549 // Find the instantiation of the template argument. This is
1550 // required for nested templates.
1551 VD = cast_or_null<ValueDecl>(
1552 getSema().FindInstantiatedDecl(loc, VD, TemplateArgs));
1553 if (!VD)
1554 return ExprError();
1555 } else {
1556 // Propagate NULL template argument.
1557 VD = nullptr;
1558 }
1559
1560 QualType paramType = VD ? arg.getParamTypeForDecl() : arg.getNullPtrType();
1561 assert(!paramType.isNull() && "type substitution failed for param type")(static_cast<void> (0));
1562 assert(!paramType->isDependentType() && "param type still dependent")(static_cast<void> (0));
1563 result = SemaRef.BuildExpressionFromDeclTemplateArgument(arg, paramType, loc);
1564 refParam = paramType->isReferenceType();
1565 } else {
1566 result = SemaRef.BuildExpressionFromIntegralTemplateArgument(arg, loc);
1567 assert(result.isInvalid() ||(static_cast<void> (0))
1568 SemaRef.Context.hasSameType(result.get()->getType(),(static_cast<void> (0))
1569 arg.getIntegralType()))(static_cast<void> (0));
1570 }
1571
1572 if (result.isInvalid())
1573 return ExprError();
1574
1575 Expr *resultExpr = result.get();
1576 return new (SemaRef.Context) SubstNonTypeTemplateParmExpr(
1577 resultExpr->getType(), resultExpr->getValueKind(), loc, parm, refParam,
1578 resultExpr);
1579}
1580
1581ExprResult
1582TemplateInstantiator::TransformSubstNonTypeTemplateParmPackExpr(
1583 SubstNonTypeTemplateParmPackExpr *E) {
1584 if (getSema().ArgumentPackSubstitutionIndex == -1) {
1585 // We aren't expanding the parameter pack, so just return ourselves.
1586 return E;
1587 }
1588
1589 TemplateArgument Arg = E->getArgumentPack();
1590 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1591 return transformNonTypeTemplateParmRef(E->getParameterPack(),
1592 E->getParameterPackLocation(),
1593 Arg);
1594}
1595
1596ExprResult
1597TemplateInstantiator::TransformSubstNonTypeTemplateParmExpr(
1598 SubstNonTypeTemplateParmExpr *E) {
1599 ExprResult SubstReplacement = E->getReplacement();
1600 if (!isa<ConstantExpr>(SubstReplacement.get()))
1601 SubstReplacement = TransformExpr(E->getReplacement());
1602 if (SubstReplacement.isInvalid())
1603 return true;
1604 QualType SubstType = TransformType(E->getParameterType(getSema().Context));
1605 if (SubstType.isNull())
1606 return true;
1607 // The type may have been previously dependent and not now, which means we
1608 // might have to implicit cast the argument to the new type, for example:
1609 // template<auto T, decltype(T) U>
1610 // concept C = sizeof(U) == 4;
1611 // void foo() requires C<2, 'a'> { }
1612 // When normalizing foo(), we first form the normalized constraints of C:
1613 // AtomicExpr(sizeof(U) == 4,
1614 // U=SubstNonTypeTemplateParmExpr(Param=U,
1615 // Expr=DeclRef(U),
1616 // Type=decltype(T)))
1617 // Then we substitute T = 2, U = 'a' into the parameter mapping, and need to
1618 // produce:
1619 // AtomicExpr(sizeof(U) == 4,
1620 // U=SubstNonTypeTemplateParmExpr(Param=U,
1621 // Expr=ImpCast(
1622 // decltype(2),
1623 // SubstNTTPE(Param=U, Expr='a',
1624 // Type=char)),
1625 // Type=decltype(2)))
1626 // The call to CheckTemplateArgument here produces the ImpCast.
1627 TemplateArgument Converted;
1628 if (SemaRef.CheckTemplateArgument(E->getParameter(), SubstType,
1629 SubstReplacement.get(),
1630 Converted).isInvalid())
1631 return true;
1632 return transformNonTypeTemplateParmRef(E->getParameter(),
1633 E->getExprLoc(), Converted);
1634}
1635
1636ExprResult TemplateInstantiator::RebuildVarDeclRefExpr(VarDecl *PD,
1637 SourceLocation Loc) {
1638 DeclarationNameInfo NameInfo(PD->getDeclName(), Loc);
1639 return getSema().BuildDeclarationNameExpr(CXXScopeSpec(), NameInfo, PD);
1640}
1641
1642ExprResult
1643TemplateInstantiator::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
1644 if (getSema().ArgumentPackSubstitutionIndex != -1) {
1645 // We can expand this parameter pack now.
1646 VarDecl *D = E->getExpansion(getSema().ArgumentPackSubstitutionIndex);
1647 VarDecl *VD = cast_or_null<VarDecl>(TransformDecl(E->getExprLoc(), D));
1648 if (!VD)
1649 return ExprError();
1650 return RebuildVarDeclRefExpr(VD, E->getExprLoc());
1651 }
1652
1653 QualType T = TransformType(E->getType());
1654 if (T.isNull())
1655 return ExprError();
1656
1657 // Transform each of the parameter expansions into the corresponding
1658 // parameters in the instantiation of the function decl.
1659 SmallVector<VarDecl *, 8> Vars;
1660 Vars.reserve(E->getNumExpansions());
1661 for (FunctionParmPackExpr::iterator I = E->begin(), End = E->end();
1662 I != End; ++I) {
1663 VarDecl *D = cast_or_null<VarDecl>(TransformDecl(E->getExprLoc(), *I));
1664 if (!D)
1665 return ExprError();
1666 Vars.push_back(D);
1667 }
1668
1669 auto *PackExpr =
1670 FunctionParmPackExpr::Create(getSema().Context, T, E->getParameterPack(),
1671 E->getParameterPackLocation(), Vars);
1672 getSema().MarkFunctionParmPackReferenced(PackExpr);
1673 return PackExpr;
1674}
1675
1676ExprResult
1677TemplateInstantiator::TransformFunctionParmPackRefExpr(DeclRefExpr *E,
1678 VarDecl *PD) {
1679 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
1680 llvm::PointerUnion<Decl *, DeclArgumentPack *> *Found
1681 = getSema().CurrentInstantiationScope->findInstantiationOf(PD);
1682 assert(Found && "no instantiation for parameter pack")(static_cast<void> (0));
1683
1684 Decl *TransformedDecl;
1685 if (DeclArgumentPack *Pack = Found->dyn_cast<DeclArgumentPack *>()) {
1686 // If this is a reference to a function parameter pack which we can
1687 // substitute but can't yet expand, build a FunctionParmPackExpr for it.
1688 if (getSema().ArgumentPackSubstitutionIndex == -1) {
1689 QualType T = TransformType(E->getType());
1690 if (T.isNull())
1691 return ExprError();
1692 auto *PackExpr = FunctionParmPackExpr::Create(getSema().Context, T, PD,
1693 E->getExprLoc(), *Pack);
1694 getSema().MarkFunctionParmPackReferenced(PackExpr);
1695 return PackExpr;
1696 }
1697
1698 TransformedDecl = (*Pack)[getSema().ArgumentPackSubstitutionIndex];
1699 } else {
1700 TransformedDecl = Found->get<Decl*>();
1701 }
1702
1703 // We have either an unexpanded pack or a specific expansion.
1704 return RebuildVarDeclRefExpr(cast<VarDecl>(TransformedDecl), E->getExprLoc());
1705}
1706
1707ExprResult
1708TemplateInstantiator::TransformDeclRefExpr(DeclRefExpr *E) {
1709 NamedDecl *D = E->getDecl();
1710
1711 // Handle references to non-type template parameters and non-type template
1712 // parameter packs.
1713 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) {
1714 if (NTTP->getDepth() < TemplateArgs.getNumLevels())
1715 return TransformTemplateParmRefExpr(E, NTTP);
1716
1717 // We have a non-type template parameter that isn't fully substituted;
1718 // FindInstantiatedDecl will find it in the local instantiation scope.
1719 }
1720
1721 // Handle references to function parameter packs.
1722 if (VarDecl *PD = dyn_cast<VarDecl>(D))
1723 if (PD->isParameterPack())
1724 return TransformFunctionParmPackRefExpr(E, PD);
1725
1726 return TreeTransform<TemplateInstantiator>::TransformDeclRefExpr(E);
1727}
1728
1729ExprResult TemplateInstantiator::TransformCXXDefaultArgExpr(
1730 CXXDefaultArgExpr *E) {
1731 assert(!cast<FunctionDecl>(E->getParam()->getDeclContext())->(static_cast<void> (0))
1732 getDescribedFunctionTemplate() &&(static_cast<void> (0))
1733 "Default arg expressions are never formed in dependent cases.")(static_cast<void> (0));
1734 return SemaRef.BuildCXXDefaultArgExpr(E->getUsedLocation(),
1735 cast<FunctionDecl>(E->getParam()->getDeclContext()),
1736 E->getParam());
1737}
1738
1739template<typename Fn>
1740QualType TemplateInstantiator::TransformFunctionProtoType(TypeLocBuilder &TLB,
1741 FunctionProtoTypeLoc TL,
1742 CXXRecordDecl *ThisContext,
1743 Qualifiers ThisTypeQuals,
1744 Fn TransformExceptionSpec) {
1745 // We need a local instantiation scope for this function prototype.
1746 LocalInstantiationScope Scope(SemaRef, /*CombineWithOuterScope=*/true);
1747 return inherited::TransformFunctionProtoType(
1748 TLB, TL, ThisContext, ThisTypeQuals, TransformExceptionSpec);
1749}
1750
1751ParmVarDecl *
1752TemplateInstantiator::TransformFunctionTypeParam(ParmVarDecl *OldParm,
1753 int indexAdjustment,
1754 Optional<unsigned> NumExpansions,
1755 bool ExpectParameterPack) {
1756 auto NewParm =
1757 SemaRef.SubstParmVarDecl(OldParm, TemplateArgs, indexAdjustment,
1758 NumExpansions, ExpectParameterPack);
1759 if (NewParm && SemaRef.getLangOpts().OpenCL)
1760 SemaRef.deduceOpenCLAddressSpace(NewParm);
1761 return NewParm;
1762}
1763
1764QualType
1765TemplateInstantiator::TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1766 TemplateTypeParmTypeLoc TL) {
1767 const TemplateTypeParmType *T = TL.getTypePtr();
1768 if (T->getDepth() < TemplateArgs.getNumLevels()) {
1769 // Replace the template type parameter with its corresponding
1770 // template argument.
1771
1772 // If the corresponding template argument is NULL or doesn't exist, it's
1773 // because we are performing instantiation from explicitly-specified
1774 // template arguments in a function template class, but there were some
1775 // arguments left unspecified.
1776 if (!TemplateArgs.hasTemplateArgument(T->getDepth(), T->getIndex())) {
1777 TemplateTypeParmTypeLoc NewTL
1778 = TLB.push<TemplateTypeParmTypeLoc>(TL.getType());
1779 NewTL.setNameLoc(TL.getNameLoc());
1780 return TL.getType();
1781 }
1782
1783 TemplateArgument Arg = TemplateArgs(T->getDepth(), T->getIndex());
1784
1785 if (TemplateArgs.isRewrite()) {
1786 // We're rewriting the template parameter as a reference to another
1787 // template parameter.
1788 if (Arg.getKind() == TemplateArgument::Pack) {
1789 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion() &&(static_cast<void> (0))
1790 "unexpected pack arguments in template rewrite")(static_cast<void> (0));
1791 Arg = Arg.pack_begin()->getPackExpansionPattern();
1792 }
1793 assert(Arg.getKind() == TemplateArgument::Type &&(static_cast<void> (0))
1794 "unexpected nontype template argument kind in template rewrite")(static_cast<void> (0));
1795 QualType NewT = Arg.getAsType();
1796 assert(isa<TemplateTypeParmType>(NewT) &&(static_cast<void> (0))
1797 "type parm not rewritten to type parm")(static_cast<void> (0));
1798 auto NewTL = TLB.push<TemplateTypeParmTypeLoc>(NewT);
1799 NewTL.setNameLoc(TL.getNameLoc());
1800 return NewT;
1801 }
1802
1803 if (T->isParameterPack()) {
1804 assert(Arg.getKind() == TemplateArgument::Pack &&(static_cast<void> (0))
1805 "Missing argument pack")(static_cast<void> (0));
1806
1807 if (getSema().ArgumentPackSubstitutionIndex == -1) {
1808 // We have the template argument pack, but we're not expanding the
1809 // enclosing pack expansion yet. Just save the template argument
1810 // pack for later substitution.
1811 QualType Result
1812 = getSema().Context.getSubstTemplateTypeParmPackType(T, Arg);
1813 SubstTemplateTypeParmPackTypeLoc NewTL
1814 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(Result);
1815 NewTL.setNameLoc(TL.getNameLoc());
1816 return Result;
1817 }
1818
1819 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1820 }
1821
1822 assert(Arg.getKind() == TemplateArgument::Type &&(static_cast<void> (0))
1823 "Template argument kind mismatch")(static_cast<void> (0));
1824
1825 QualType Replacement = Arg.getAsType();
1826
1827 // TODO: only do this uniquing once, at the start of instantiation.
1828 QualType Result
1829 = getSema().Context.getSubstTemplateTypeParmType(T, Replacement);
1830 SubstTemplateTypeParmTypeLoc NewTL
1831 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
1832 NewTL.setNameLoc(TL.getNameLoc());
1833 return Result;
1834 }
1835
1836 // The template type parameter comes from an inner template (e.g.,
1837 // the template parameter list of a member template inside the
1838 // template we are instantiating). Create a new template type
1839 // parameter with the template "level" reduced by one.
1840 TemplateTypeParmDecl *NewTTPDecl = nullptr;
1841 if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
1842 NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
1843 TransformDecl(TL.getNameLoc(), OldTTPDecl));
1844
1845 QualType Result = getSema().Context.getTemplateTypeParmType(
1846 T->getDepth() - TemplateArgs.getNumSubstitutedLevels(), T->getIndex(),
1847 T->isParameterPack(), NewTTPDecl);
1848 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
1849 NewTL.setNameLoc(TL.getNameLoc());
1850 return Result;
1851}
1852
1853QualType
1854TemplateInstantiator::TransformSubstTemplateTypeParmPackType(
1855 TypeLocBuilder &TLB,
1856 SubstTemplateTypeParmPackTypeLoc TL) {
1857 if (getSema().ArgumentPackSubstitutionIndex == -1) {
1858 // We aren't expanding the parameter pack, so just return ourselves.
1859 SubstTemplateTypeParmPackTypeLoc NewTL
1860 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(TL.getType());
1861 NewTL.setNameLoc(TL.getNameLoc());
1862 return TL.getType();
1863 }
1864
1865 TemplateArgument Arg = TL.getTypePtr()->getArgumentPack();
1866 Arg = getPackSubstitutedTemplateArgument(getSema(), Arg);
1867 QualType Result = Arg.getAsType();
1868
1869 Result = getSema().Context.getSubstTemplateTypeParmType(
1870 TL.getTypePtr()->getReplacedParameter(),
1871 Result);
1872 SubstTemplateTypeParmTypeLoc NewTL
1873 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
1874 NewTL.setNameLoc(TL.getNameLoc());
1875 return Result;
1876}
1877
1878template<typename EntityPrinter>
1879static concepts::Requirement::SubstitutionDiagnostic *
1880createSubstDiag(Sema &S, TemplateDeductionInfo &Info, EntityPrinter Printer) {
1881 SmallString<128> Message;
1882 SourceLocation ErrorLoc;
1883 if (Info.hasSFINAEDiagnostic()) {
1884 PartialDiagnosticAt PDA(SourceLocation(),
1885 PartialDiagnostic::NullDiagnostic{});
1886 Info.takeSFINAEDiagnostic(PDA);
1887 PDA.second.EmitToString(S.getDiagnostics(), Message);
1888 ErrorLoc = PDA.first;
1889 } else {
1890 ErrorLoc = Info.getLocation();
1891 }
1892 char *MessageBuf = new (S.Context) char[Message.size()];
1893 std::copy(Message.begin(), Message.end(), MessageBuf);
1894 SmallString<128> Entity;
1895 llvm::raw_svector_ostream OS(Entity);
1896 Printer(OS);
1897 char *EntityBuf = new (S.Context) char[Entity.size()];
1898 std::copy(Entity.begin(), Entity.end(), EntityBuf);
1899 return new (S.Context) concepts::Requirement::SubstitutionDiagnostic{
1900 StringRef(EntityBuf, Entity.size()), ErrorLoc,
1901 StringRef(MessageBuf, Message.size())};
1902}
1903
1904concepts::TypeRequirement *
1905TemplateInstantiator::TransformTypeRequirement(concepts::TypeRequirement *Req) {
1906 if (!Req->isDependent() && !AlwaysRebuild())
1907 return Req;
1908 if (Req->isSubstitutionFailure()) {
1909 if (AlwaysRebuild())
1910 return RebuildTypeRequirement(
1911 Req->getSubstitutionDiagnostic());
1912 return Req;
1913 }
1914
1915 Sema::SFINAETrap Trap(SemaRef);
1916 TemplateDeductionInfo Info(Req->getType()->getTypeLoc().getBeginLoc());
1917 Sema::InstantiatingTemplate TypeInst(SemaRef,
1918 Req->getType()->getTypeLoc().getBeginLoc(), Req, Info,
1919 Req->getType()->getTypeLoc().getSourceRange());
1920 if (TypeInst.isInvalid())
1921 return nullptr;
1922 TypeSourceInfo *TransType = TransformType(Req->getType());
1923 if (!TransType || Trap.hasErrorOccurred())
1924 return RebuildTypeRequirement(createSubstDiag(SemaRef, Info,
1925 [&] (llvm::raw_ostream& OS) {
1926 Req->getType()->getType().print(OS, SemaRef.getPrintingPolicy());
1927 }));
1928 return RebuildTypeRequirement(TransType);
1929}
1930
1931concepts::ExprRequirement *
1932TemplateInstantiator::TransformExprRequirement(concepts::ExprRequirement *Req) {
1933 if (!Req->isDependent() && !AlwaysRebuild())
1934 return Req;
1935
1936 Sema::SFINAETrap Trap(SemaRef);
1937
1938 llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *>
1939 TransExpr;
1940 if (Req->isExprSubstitutionFailure())
1941 TransExpr = Req->getExprSubstitutionDiagnostic();
1942 else {
1943 Expr *E = Req->getExpr();
1944 TemplateDeductionInfo Info(E->getBeginLoc());
1945 Sema::InstantiatingTemplate ExprInst(SemaRef, E->getBeginLoc(), Req, Info,
1946 E->getSourceRange());
1947 if (ExprInst.isInvalid())
1948 return nullptr;
1949 ExprResult TransExprRes = TransformExpr(E);
1950 if (TransExprRes.isInvalid() || Trap.hasErrorOccurred())
1951 TransExpr = createSubstDiag(SemaRef, Info, [&](llvm::raw_ostream &OS) {
1952 E->printPretty(OS, nullptr, SemaRef.getPrintingPolicy());
1953 });
1954 else
1955 TransExpr = TransExprRes.get();
1956 }
1957
1958 llvm::Optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq;
1959 const auto &RetReq = Req->getReturnTypeRequirement();
1960 if (RetReq.isEmpty())
1961 TransRetReq.emplace();
1962 else if (RetReq.isSubstitutionFailure())
1963 TransRetReq.emplace(RetReq.getSubstitutionDiagnostic());
1964 else if (RetReq.isTypeConstraint()) {
1965 TemplateParameterList *OrigTPL =
1966 RetReq.getTypeConstraintTemplateParameterList();
1967 TemplateDeductionInfo Info(OrigTPL->getTemplateLoc());
1968 Sema::InstantiatingTemplate TPLInst(SemaRef, OrigTPL->getTemplateLoc(),
1969 Req, Info, OrigTPL->getSourceRange());
1970 if (TPLInst.isInvalid())
1971 return nullptr;
1972 TemplateParameterList *TPL =
1973 TransformTemplateParameterList(OrigTPL);
1974 if (!TPL)
1975 TransRetReq.emplace(createSubstDiag(SemaRef, Info,
1976 [&] (llvm::raw_ostream& OS) {
1977 RetReq.getTypeConstraint()->getImmediatelyDeclaredConstraint()
1978 ->printPretty(OS, nullptr, SemaRef.getPrintingPolicy());
1979 }));
1980 else {
1981 TPLInst.Clear();
1982 TransRetReq.emplace(TPL);
1983 }
1984 }
1985 assert(TransRetReq.hasValue() &&(static_cast<void> (0))
1986 "All code paths leading here must set TransRetReq")(static_cast<void> (0));
1987 if (Expr *E = TransExpr.dyn_cast<Expr *>())
1988 return RebuildExprRequirement(E, Req->isSimple(), Req->getNoexceptLoc(),
1989 std::move(*TransRetReq));
1990 return RebuildExprRequirement(
1991 TransExpr.get<concepts::Requirement::SubstitutionDiagnostic *>(),
1992 Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq));
1993}
1994
1995concepts::NestedRequirement *
1996TemplateInstantiator::TransformNestedRequirement(
1997 concepts::NestedRequirement *Req) {
1998 if (!Req->isDependent() && !AlwaysRebuild())
1999 return Req;
2000 if (Req->isSubstitutionFailure()) {
2001 if (AlwaysRebuild())
2002 return RebuildNestedRequirement(
2003 Req->getSubstitutionDiagnostic());
2004 return Req;
2005 }
2006 Sema::InstantiatingTemplate ReqInst(SemaRef,
2007 Req->getConstraintExpr()->getBeginLoc(), Req,
2008 Sema::InstantiatingTemplate::ConstraintsCheck{},
2009 Req->getConstraintExpr()->getSourceRange());
2010
2011 ExprResult TransConstraint;
2012 TemplateDeductionInfo Info(Req->getConstraintExpr()->getBeginLoc());
2013 {
2014 EnterExpressionEvaluationContext ContextRAII(
2015 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
2016 Sema::SFINAETrap Trap(SemaRef);
2017 Sema::InstantiatingTemplate ConstrInst(SemaRef,
2018 Req->getConstraintExpr()->getBeginLoc(), Req, Info,
2019 Req->getConstraintExpr()->getSourceRange());
2020 if (ConstrInst.isInvalid())
2021 return nullptr;
2022 TransConstraint = TransformExpr(Req->getConstraintExpr());
2023 if (TransConstraint.isInvalid() || Trap.hasErrorOccurred())
2024 return RebuildNestedRequirement(createSubstDiag(SemaRef, Info,
2025 [&] (llvm::raw_ostream& OS) {
2026 Req->getConstraintExpr()->printPretty(OS, nullptr,
2027 SemaRef.getPrintingPolicy());
2028 }));
2029 }
2030 return RebuildNestedRequirement(TransConstraint.get());
2031}
2032
2033
2034/// Perform substitution on the type T with a given set of template
2035/// arguments.
2036///
2037/// This routine substitutes the given template arguments into the
2038/// type T and produces the instantiated type.
2039///
2040/// \param T the type into which the template arguments will be
2041/// substituted. If this type is not dependent, it will be returned
2042/// immediately.
2043///
2044/// \param Args the template arguments that will be
2045/// substituted for the top-level template parameters within T.
2046///
2047/// \param Loc the location in the source code where this substitution
2048/// is being performed. It will typically be the location of the
2049/// declarator (if we're instantiating the type of some declaration)
2050/// or the location of the type in the source code (if, e.g., we're
2051/// instantiating the type of a cast expression).
2052///
2053/// \param Entity the name of the entity associated with a declaration
2054/// being instantiated (if any). May be empty to indicate that there
2055/// is no such entity (if, e.g., this is a type that occurs as part of
2056/// a cast expression) or that the entity has no name (e.g., an
2057/// unnamed function parameter).
2058///
2059/// \param AllowDeducedTST Whether a DeducedTemplateSpecializationType is
2060/// acceptable as the top level type of the result.
2061///
2062/// \returns If the instantiation succeeds, the instantiated
2063/// type. Otherwise, produces diagnostics and returns a NULL type.
2064TypeSourceInfo *Sema::SubstType(TypeSourceInfo *T,
2065 const MultiLevelTemplateArgumentList &Args,
2066 SourceLocation Loc,
2067 DeclarationName Entity,
2068 bool AllowDeducedTST) {
2069 assert(!CodeSynthesisContexts.empty() &&(static_cast<void> (0))
2070 "Cannot perform an instantiation without some context on the "(static_cast<void> (0))
2071 "instantiation stack")(static_cast<void> (0));
2072
2073 if (!T->getType()->isInstantiationDependentType() &&
2074 !T->getType()->isVariablyModifiedType())
2075 return T;
2076
2077 TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
2078 return AllowDeducedTST ? Instantiator.TransformTypeWithDeducedTST(T)
2079 : Instantiator.TransformType(T);
2080}
2081
2082TypeSourceInfo *Sema::SubstType(TypeLoc TL,
2083 const MultiLevelTemplateArgumentList &Args,
2084 SourceLocation Loc,
2085 DeclarationName Entity) {
2086 assert(!CodeSynthesisContexts.empty() &&(static_cast<void> (0))
2087 "Cannot perform an instantiation without some context on the "(static_cast<void> (0))
2088 "instantiation stack")(static_cast<void> (0));
2089
2090 if (TL.getType().isNull())
2091 return nullptr;
2092
2093 if (!TL.getType()->isInstantiationDependentType() &&
2094 !TL.getType()->isVariablyModifiedType()) {
2095 // FIXME: Make a copy of the TypeLoc data here, so that we can
2096 // return a new TypeSourceInfo. Inefficient!
2097 TypeLocBuilder TLB;
2098 TLB.pushFullCopy(TL);
2099 return TLB.getTypeSourceInfo(Context, TL.getType());
2100 }
2101
2102 TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
2103 TypeLocBuilder TLB;
2104 TLB.reserve(TL.getFullDataSize());
2105 QualType Result = Instantiator.TransformType(TLB, TL);
2106 if (Result.isNull())
2107 return nullptr;
2108
2109 return TLB.getTypeSourceInfo(Context, Result);
2110}
2111
2112/// Deprecated form of the above.
2113QualType Sema::SubstType(QualType T,
2114 const MultiLevelTemplateArgumentList &TemplateArgs,
2115 SourceLocation Loc, DeclarationName Entity) {
2116 assert(!CodeSynthesisContexts.empty() &&(static_cast<void> (0))
2117 "Cannot perform an instantiation without some context on the "(static_cast<void> (0))
2118 "instantiation stack")(static_cast<void> (0));
2119
2120 // If T is not a dependent type or a variably-modified type, there
2121 // is nothing to do.
2122 if (!T->isInstantiationDependentType() && !T->isVariablyModifiedType())
2123 return T;
2124
2125 TemplateInstantiator Instantiator(*this, TemplateArgs, Loc, Entity);
2126 return Instantiator.TransformType(T);
2127}
2128
2129static bool NeedsInstantiationAsFunctionType(TypeSourceInfo *T) {
2130 if (T->getType()->isInstantiationDependentType() ||
2131 T->getType()->isVariablyModifiedType())
2132 return true;
2133
2134 TypeLoc TL = T->getTypeLoc().IgnoreParens();
2135 if (!TL.getAs<FunctionProtoTypeLoc>())
2136 return false;
2137
2138 FunctionProtoTypeLoc FP = TL.castAs<FunctionProtoTypeLoc>();
2139 for (ParmVarDecl *P : FP.getParams()) {
2140 // This must be synthesized from a typedef.
2141 if (!P) continue;
2142
2143 // If there are any parameters, a new TypeSourceInfo that refers to the
2144 // instantiated parameters must be built.
2145 return true;
2146 }
2147
2148 return false;
2149}
2150
2151/// A form of SubstType intended specifically for instantiating the
2152/// type of a FunctionDecl. Its purpose is solely to force the
2153/// instantiation of default-argument expressions and to avoid
2154/// instantiating an exception-specification.
2155TypeSourceInfo *Sema::SubstFunctionDeclType(TypeSourceInfo *T,
2156 const MultiLevelTemplateArgumentList &Args,
2157 SourceLocation Loc,
2158 DeclarationName Entity,
2159 CXXRecordDecl *ThisContext,
2160 Qualifiers ThisTypeQuals) {
2161 assert(!CodeSynthesisContexts.empty() &&(static_cast<void> (0))
2162 "Cannot perform an instantiation without some context on the "(static_cast<void> (0))
2163 "instantiation stack")(static_cast<void> (0));
2164
2165 if (!NeedsInstantiationAsFunctionType(T))
2166 return T;
2167
2168 TemplateInstantiator Instantiator(*this, Args, Loc, Entity);
2169
2170 TypeLocBuilder TLB;
2171
2172 TypeLoc TL = T->getTypeLoc();
2173 TLB.reserve(TL.getFullDataSize());
2174
2175 QualType Result;
2176
2177 if (FunctionProtoTypeLoc Proto =
2178 TL.IgnoreParens().getAs<FunctionProtoTypeLoc>()) {
2179 // Instantiate the type, other than its exception specification. The
2180 // exception specification is instantiated in InitFunctionInstantiation
2181 // once we've built the FunctionDecl.
2182 // FIXME: Set the exception specification to EST_Uninstantiated here,
2183 // instead of rebuilding the function type again later.
2184 Result = Instantiator.TransformFunctionProtoType(
2185 TLB, Proto, ThisContext, ThisTypeQuals,
2186 [](FunctionProtoType::ExceptionSpecInfo &ESI,
2187 bool &Changed) { return false; });
2188 } else {
2189 Result = Instantiator.TransformType(TLB, TL);
2190 }
2191 if (Result.isNull())
2192 return nullptr;
2193
2194 return TLB.getTypeSourceInfo(Context, Result);
2195}
2196
2197bool Sema::SubstExceptionSpec(SourceLocation Loc,
2198 FunctionProtoType::ExceptionSpecInfo &ESI,
2199 SmallVectorImpl<QualType> &ExceptionStorage,
2200 const MultiLevelTemplateArgumentList &Args) {
2201 assert(ESI.Type != EST_Uninstantiated)(static_cast<void> (0));
2202
2203 bool Changed = false;
2204 TemplateInstantiator Instantiator(*this, Args, Loc, DeclarationName());
2205 return Instantiator.TransformExceptionSpec(Loc, ESI, ExceptionStorage,
2206 Changed);
2207}
2208
2209void Sema::SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
2210 const MultiLevelTemplateArgumentList &Args) {
2211 FunctionProtoType::ExceptionSpecInfo ESI =
2212 Proto->getExtProtoInfo().ExceptionSpec;
2213
2214 SmallVector<QualType, 4> ExceptionStorage;
2215 if (SubstExceptionSpec(New->getTypeSourceInfo()->getTypeLoc().getEndLoc(),
2216 ESI, ExceptionStorage, Args))
2217 // On error, recover by dropping the exception specification.
2218 ESI.Type = EST_None;
2219
2220 UpdateExceptionSpec(New, ESI);
2221}
2222
2223namespace {
2224
2225 struct GetContainedInventedTypeParmVisitor :
2226 public TypeVisitor<GetContainedInventedTypeParmVisitor,
2227 TemplateTypeParmDecl *> {
2228 using TypeVisitor<GetContainedInventedTypeParmVisitor,
2229 TemplateTypeParmDecl *>::Visit;
2230
2231 TemplateTypeParmDecl *Visit(QualType T) {
2232 if (T.isNull())
2233 return nullptr;
2234 return Visit(T.getTypePtr());
2235 }
2236 // The deduced type itself.
2237 TemplateTypeParmDecl *VisitTemplateTypeParmType(
2238 const TemplateTypeParmType *T) {
2239 if (!T->getDecl() || !T->getDecl()->isImplicit())
2240 return nullptr;
2241 return T->getDecl();
2242 }
2243
2244 // Only these types can contain 'auto' types, and subsequently be replaced
2245 // by references to invented parameters.
2246
2247 TemplateTypeParmDecl *VisitElaboratedType(const ElaboratedType *T) {
2248 return Visit(T->getNamedType());
2249 }
2250
2251 TemplateTypeParmDecl *VisitPointerType(const PointerType *T) {
2252 return Visit(T->getPointeeType());
2253 }
2254
2255 TemplateTypeParmDecl *VisitBlockPointerType(const BlockPointerType *T) {
2256 return Visit(T->getPointeeType());
2257 }
2258
2259 TemplateTypeParmDecl *VisitReferenceType(const ReferenceType *T) {
2260 return Visit(T->getPointeeTypeAsWritten());
2261 }
2262
2263 TemplateTypeParmDecl *VisitMemberPointerType(const MemberPointerType *T) {
2264 return Visit(T->getPointeeType());
2265 }
2266
2267 TemplateTypeParmDecl *VisitArrayType(const ArrayType *T) {
2268 return Visit(T->getElementType());
2269 }
2270
2271 TemplateTypeParmDecl *VisitDependentSizedExtVectorType(
2272 const DependentSizedExtVectorType *T) {
2273 return Visit(T->getElementType());
2274 }
2275
2276 TemplateTypeParmDecl *VisitVectorType(const VectorType *T) {
2277 return Visit(T->getElementType());
2278 }
2279
2280 TemplateTypeParmDecl *VisitFunctionProtoType(const FunctionProtoType *T) {
2281 return VisitFunctionType(T);
2282 }
2283
2284 TemplateTypeParmDecl *VisitFunctionType(const FunctionType *T) {
2285 return Visit(T->getReturnType());
2286 }
2287
2288 TemplateTypeParmDecl *VisitParenType(const ParenType *T) {
2289 return Visit(T->getInnerType());
2290 }
2291
2292 TemplateTypeParmDecl *VisitAttributedType(const AttributedType *T) {
2293 return Visit(T->getModifiedType());
2294 }
2295
2296 TemplateTypeParmDecl *VisitMacroQualifiedType(const MacroQualifiedType *T) {
2297 return Visit(T->getUnderlyingType());
2298 }
2299
2300 TemplateTypeParmDecl *VisitAdjustedType(const AdjustedType *T) {
2301 return Visit(T->getOriginalType());
2302 }
2303
2304 TemplateTypeParmDecl *VisitPackExpansionType(const PackExpansionType *T) {
2305 return Visit(T->getPattern());
2306 }
2307 };
2308
2309} // namespace
2310
2311ParmVarDecl *Sema::SubstParmVarDecl(ParmVarDecl *OldParm,
2312 const MultiLevelTemplateArgumentList &TemplateArgs,
2313 int indexAdjustment,
2314 Optional<unsigned> NumExpansions,
2315 bool ExpectParameterPack) {
2316 TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
2317 TypeSourceInfo *NewDI = nullptr;
2318
2319 TypeLoc OldTL = OldDI->getTypeLoc();
2320 if (PackExpansionTypeLoc ExpansionTL = OldTL.getAs<PackExpansionTypeLoc>()) {
2321
2322 // We have a function parameter pack. Substitute into the pattern of the
2323 // expansion.
2324 NewDI = SubstType(ExpansionTL.getPatternLoc(), TemplateArgs,
2325 OldParm->getLocation(), OldParm->getDeclName());
2326 if (!NewDI)
2327 return nullptr;
2328
2329 if (NewDI->getType()->containsUnexpandedParameterPack()) {
2330 // We still have unexpanded parameter packs, which means that
2331 // our function parameter is still a function parameter pack.
2332 // Therefore, make its type a pack expansion type.
2333 NewDI = CheckPackExpansion(NewDI, ExpansionTL.getEllipsisLoc(),
2334 NumExpansions);
2335 } else if (ExpectParameterPack) {
2336 // We expected to get a parameter pack but didn't (because the type
2337 // itself is not a pack expansion type), so complain. This can occur when
2338 // the substitution goes through an alias template that "loses" the
2339 // pack expansion.
2340 Diag(OldParm->getLocation(),
2341 diag::err_function_parameter_pack_without_parameter_packs)
2342 << NewDI->getType();
2343 return nullptr;
2344 }
2345 } else {
2346 NewDI = SubstType(OldDI, TemplateArgs, OldParm->getLocation(),
2347 OldParm->getDeclName());
2348 }
2349
2350 if (!NewDI)
2351 return nullptr;
2352
2353 if (NewDI->getType()->isVoidType()) {
2354 Diag(OldParm->getLocation(), diag::err_param_with_void_type);
2355 return nullptr;
2356 }
2357
2358 // In abbreviated templates, TemplateTypeParmDecls with possible
2359 // TypeConstraints are created when the parameter list is originally parsed.
2360 // The TypeConstraints can therefore reference other functions parameters in
2361 // the abbreviated function template, which is why we must instantiate them
2362 // here, when the instantiated versions of those referenced parameters are in
2363 // scope.
2364 if (TemplateTypeParmDecl *TTP =
2365 GetContainedInventedTypeParmVisitor().Visit(OldDI->getType())) {
2366 if (const TypeConstraint *TC = TTP->getTypeConstraint()) {
2367 auto *Inst = cast_or_null<TemplateTypeParmDecl>(
2368 FindInstantiatedDecl(TTP->getLocation(), TTP, TemplateArgs));
2369 // We will first get here when instantiating the abbreviated function
2370 // template's described function, but we might also get here later.
2371 // Make sure we do not instantiate the TypeConstraint more than once.
2372 if (Inst && !Inst->getTypeConstraint()) {
2373 // TODO: Concepts: do not instantiate the constraint (delayed constraint
2374 // substitution)
2375 const ASTTemplateArgumentListInfo *TemplArgInfo
2376 = TC->getTemplateArgsAsWritten();
2377 TemplateArgumentListInfo InstArgs;
2378
2379 if (TemplArgInfo) {
2380 InstArgs.setLAngleLoc(TemplArgInfo->LAngleLoc);
2381 InstArgs.setRAngleLoc(TemplArgInfo->RAngleLoc);
2382 if (Subst(TemplArgInfo->getTemplateArgs(),
2383 TemplArgInfo->NumTemplateArgs, InstArgs, TemplateArgs))
2384 return nullptr;
2385 }
2386 if (AttachTypeConstraint(
2387 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2388 TC->getNamedConcept(), TemplArgInfo ? &InstArgs : nullptr, Inst,
2389 TTP->isParameterPack()
2390 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2391 ->getEllipsisLoc()
2392 : SourceLocation()))
2393 return nullptr;
2394 }
2395 }
2396 }
2397
2398 ParmVarDecl *NewParm = CheckParameter(Context.getTranslationUnitDecl(),
2399 OldParm->getInnerLocStart(),
2400 OldParm->getLocation(),
2401 OldParm->getIdentifier(),
2402 NewDI->getType(), NewDI,
2403 OldParm->getStorageClass());
2404 if (!NewParm)
2405 return nullptr;
2406
2407 // Mark the (new) default argument as uninstantiated (if any).
2408 if (OldParm->hasUninstantiatedDefaultArg()) {
2409 Expr *Arg = OldParm->getUninstantiatedDefaultArg();
2410 NewParm->setUninstantiatedDefaultArg(Arg);
2411 } else if (OldParm->hasUnparsedDefaultArg()) {
2412 NewParm->setUnparsedDefaultArg();
2413 UnparsedDefaultArgInstantiations[OldParm].push_back(NewParm);
2414 } else if (Expr *Arg = OldParm->getDefaultArg()) {
2415 FunctionDecl *OwningFunc = cast<FunctionDecl>(OldParm->getDeclContext());
2416 if (OwningFunc->isInLocalScopeForInstantiation()) {
2417 // Instantiate default arguments for methods of local classes (DR1484)
2418 // and non-defining declarations.
2419 Sema::ContextRAII SavedContext(*this, OwningFunc);
2420 LocalInstantiationScope Local(*this, true);
2421 ExprResult NewArg = SubstExpr(Arg, TemplateArgs);
2422 if (NewArg.isUsable()) {
2423 // It would be nice if we still had this.
2424 SourceLocation EqualLoc = NewArg.get()->getBeginLoc();
2425 ExprResult Result =
2426 ConvertParamDefaultArgument(NewParm, NewArg.get(), EqualLoc);
2427 if (Result.isInvalid())
2428 return nullptr;
2429
2430 SetParamDefaultArgument(NewParm, Result.getAs<Expr>(), EqualLoc);
2431 }
2432 } else {
2433 // FIXME: if we non-lazily instantiated non-dependent default args for
2434 // non-dependent parameter types we could remove a bunch of duplicate
2435 // conversion warnings for such arguments.
2436 NewParm->setUninstantiatedDefaultArg(Arg);
2437 }
2438 }
2439
2440 NewParm->setHasInheritedDefaultArg(OldParm->hasInheritedDefaultArg());
2441
2442 if (OldParm->isParameterPack() && !NewParm->isParameterPack()) {
2443 // Add the new parameter to the instantiated parameter pack.
2444 CurrentInstantiationScope->InstantiatedLocalPackArg(OldParm, NewParm);
2445 } else {
2446 // Introduce an Old -> New mapping
2447 CurrentInstantiationScope->InstantiatedLocal(OldParm, NewParm);
2448 }
2449
2450 // FIXME: OldParm may come from a FunctionProtoType, in which case CurContext
2451 // can be anything, is this right ?
2452 NewParm->setDeclContext(CurContext);
2453
2454 NewParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
2455 OldParm->getFunctionScopeIndex() + indexAdjustment);
2456
2457 InstantiateAttrs(TemplateArgs, OldParm, NewParm);
2458
2459 return NewParm;
2460}
2461
2462/// Substitute the given template arguments into the given set of
2463/// parameters, producing the set of parameter types that would be generated
2464/// from such a substitution.
2465bool Sema::SubstParmTypes(
2466 SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
2467 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
2468 const MultiLevelTemplateArgumentList &TemplateArgs,
2469 SmallVectorImpl<QualType> &ParamTypes,
2470 SmallVectorImpl<ParmVarDecl *> *OutParams,
2471 ExtParameterInfoBuilder &ParamInfos) {
2472 assert(!CodeSynthesisContexts.empty() &&(static_cast<void> (0))
2473 "Cannot perform an instantiation without some context on the "(static_cast<void> (0))
2474 "instantiation stack")(static_cast<void> (0));
2475
2476 TemplateInstantiator Instantiator(*this, TemplateArgs, Loc,
2477 DeclarationName());
2478 return Instantiator.TransformFunctionTypeParams(
2479 Loc, Params, nullptr, ExtParamInfos, ParamTypes, OutParams, ParamInfos);
2480}
2481
2482/// Perform substitution on the base class specifiers of the
2483/// given class template specialization.
2484///
2485/// Produces a diagnostic and returns true on error, returns false and
2486/// attaches the instantiated base classes to the class template
2487/// specialization if successful.
2488bool
2489Sema::SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
2490 CXXRecordDecl *Pattern,
2491 const MultiLevelTemplateArgumentList &TemplateArgs) {
2492 bool Invalid = false;
2493 SmallVector<CXXBaseSpecifier*, 4> InstantiatedBases;
2494 for (const auto &Base : Pattern->bases()) {
2495 if (!Base.getType()->isDependentType()) {
2496 if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) {
2497 if (RD->isInvalidDecl())
2498 Instantiation->setInvalidDecl();
2499 }
2500 InstantiatedBases.push_back(new (Context) CXXBaseSpecifier(Base));
2501 continue;
2502 }
2503
2504 SourceLocation EllipsisLoc;
2505 TypeSourceInfo *BaseTypeLoc;
2506 if (Base.isPackExpansion()) {
2507 // This is a pack expansion. See whether we should expand it now, or
2508 // wait until later.
2509 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2510 collectUnexpandedParameterPacks(Base.getTypeSourceInfo()->getTypeLoc(),
2511 Unexpanded);
2512 bool ShouldExpand = false;
2513 bool RetainExpansion = false;
2514 Optional<unsigned> NumExpansions;
2515 if (CheckParameterPacksForExpansion(Base.getEllipsisLoc(),
2516 Base.getSourceRange(),
2517 Unexpanded,
2518 TemplateArgs, ShouldExpand,
2519 RetainExpansion,
2520 NumExpansions)) {
2521 Invalid = true;
2522 continue;
2523 }
2524
2525 // If we should expand this pack expansion now, do so.
2526 if (ShouldExpand) {
2527 for (unsigned I = 0; I != *NumExpansions; ++I) {
2528 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
2529
2530 TypeSourceInfo *BaseTypeLoc = SubstType(Base.getTypeSourceInfo(),
2531 TemplateArgs,
2532 Base.getSourceRange().getBegin(),
2533 DeclarationName());
2534 if (!BaseTypeLoc) {
2535 Invalid = true;
2536 continue;
2537 }
2538
2539 if (CXXBaseSpecifier *InstantiatedBase
2540 = CheckBaseSpecifier(Instantiation,
2541 Base.getSourceRange(),
2542 Base.isVirtual(),
2543 Base.getAccessSpecifierAsWritten(),
2544 BaseTypeLoc,
2545 SourceLocation()))
2546 InstantiatedBases.push_back(InstantiatedBase);
2547 else
2548 Invalid = true;
2549 }
2550
2551 continue;
2552 }
2553
2554 // The resulting base specifier will (still) be a pack expansion.
2555 EllipsisLoc = Base.getEllipsisLoc();
2556 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2557 BaseTypeLoc = SubstType(Base.getTypeSourceInfo(),
2558 TemplateArgs,
2559 Base.getSourceRange().getBegin(),
2560 DeclarationName());
2561 } else {
2562 BaseTypeLoc = SubstType(Base.getTypeSourceInfo(),
2563 TemplateArgs,
2564 Base.getSourceRange().getBegin(),
2565 DeclarationName());
2566 }
2567
2568 if (!BaseTypeLoc) {
2569 Invalid = true;
2570 continue;
2571 }
2572
2573 if (CXXBaseSpecifier *InstantiatedBase
2574 = CheckBaseSpecifier(Instantiation,
2575 Base.getSourceRange(),
2576 Base.isVirtual(),
2577 Base.getAccessSpecifierAsWritten(),
2578 BaseTypeLoc,
2579 EllipsisLoc))
2580 InstantiatedBases.push_back(InstantiatedBase);
2581 else
2582 Invalid = true;
2583 }
2584
2585 if (!Invalid && AttachBaseSpecifiers(Instantiation, InstantiatedBases))
2586 Invalid = true;
2587
2588 return Invalid;
2589}
2590
2591// Defined via #include from SemaTemplateInstantiateDecl.cpp
2592namespace clang {
2593 namespace sema {
2594 Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, Sema &S,
2595 const MultiLevelTemplateArgumentList &TemplateArgs);
2596 Attr *instantiateTemplateAttributeForDecl(
2597 const Attr *At, ASTContext &C, Sema &S,
2598 const MultiLevelTemplateArgumentList &TemplateArgs);
2599 }
2600}
2601
2602/// Instantiate the definition of a class from a given pattern.
2603///
2604/// \param PointOfInstantiation The point of instantiation within the
2605/// source code.
2606///
2607/// \param Instantiation is the declaration whose definition is being
2608/// instantiated. This will be either a class template specialization
2609/// or a member class of a class template specialization.
2610///
2611/// \param Pattern is the pattern from which the instantiation
2612/// occurs. This will be either the declaration of a class template or
2613/// the declaration of a member class of a class template.
2614///
2615/// \param TemplateArgs The template arguments to be substituted into
2616/// the pattern.
2617///
2618/// \param TSK the kind of implicit or explicit instantiation to perform.
2619///
2620/// \param Complain whether to complain if the class cannot be instantiated due
2621/// to the lack of a definition.
2622///
2623/// \returns true if an error occurred, false otherwise.
2624bool
2625Sema::InstantiateClass(SourceLocation PointOfInstantiation,
2626 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
2627 const MultiLevelTemplateArgumentList &TemplateArgs,
2628 TemplateSpecializationKind TSK,
2629 bool Complain) {
2630 CXXRecordDecl *PatternDef
8
'PatternDef' initialized to a null pointer value
2631 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7
Assuming null pointer is passed into cast
2632 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Instantiation,
9
Assuming the condition is false
10
Taking false branch
2633 Instantiation->getInstantiatedFromMemberClass(),
2634 Pattern, PatternDef, TSK, Complain))
2635 return true;
2636
2637 llvm::TimeTraceScope TimeScope("InstantiateClass", [&]() {
2638 std::string Name;
2639 llvm::raw_string_ostream OS(Name);
2640 Instantiation->getNameForDiagnostic(OS, getPrintingPolicy(),
2641 /*Qualified=*/true);
2642 return Name;
2643 });
2644
2645 Pattern = PatternDef;
11
Null pointer value stored to 'Pattern'
2646
2647 // Record the point of instantiation.
2648 if (MemberSpecializationInfo *MSInfo
12
Assuming 'MSInfo' is null
13
Taking false branch
2649 = Instantiation->getMemberSpecializationInfo()) {
2650 MSInfo->setTemplateSpecializationKind(TSK);
2651 MSInfo->setPointOfInstantiation(PointOfInstantiation);
2652 } else if (ClassTemplateSpecializationDecl *Spec
14.1
'Spec' is null
14.1
'Spec' is null
15
Taking false branch
2653 = dyn_cast<ClassTemplateSpecializationDecl>(Instantiation)) {
14
Assuming 'Instantiation' is not a 'ClassTemplateSpecializationDecl'
2654 Spec->setTemplateSpecializationKind(TSK); 2655 Spec->setPointOfInstantiation(PointOfInstantiation); 2656 } 2657 2658 InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation);
16
Calling constructor for 'InstantiatingTemplate'
28
Returning from constructor for 'InstantiatingTemplate'
2659 if (Inst.isInvalid())
29
Calling 'InstantiatingTemplate::isInvalid'
31
Returning from 'InstantiatingTemplate::isInvalid'
32
Taking false branch
2660 return true; 2661 assert(!Inst.isAlreadyInstantiating() && "should have been caught by caller")(static_cast<void> (0)); 2662 PrettyDeclStackTraceEntry CrashInfo(Context, Instantiation, SourceLocation(), 2663 "instantiating class definition"); 2664 2665 // Enter the scope of this instantiation. We don't use 2666 // PushDeclContext because we don't have a scope. 2667 ContextRAII SavedContext(*this, Instantiation); 2668 EnterExpressionEvaluationContext EvalContext( 2669 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 2670 2671 // If this is an instantiation of a local class, merge this local 2672 // instantiation scope with the enclosing scope. Otherwise, every 2673 // instantiation of a class has its own local instantiation scope. 2674 bool MergeWithParentScope = !Instantiation->isDefinedOutsideFunctionOrMethod(); 2675 LocalInstantiationScope Scope(*this, MergeWithParentScope); 2676 2677 // Some class state isn't processed immediately but delayed till class 2678 // instantiation completes. We may not be ready to handle any delayed state 2679 // already on the stack as it might correspond to a different class, so save 2680 // it now and put it back later. 2681 SavePendingParsedClassStateRAII SavedPendingParsedClassState(*this); 2682 2683 // Pull attributes from the pattern onto the instantiation. 2684 InstantiateAttrs(TemplateArgs, Pattern, Instantiation); 2685 2686 // Start the definition of this instantiation. 2687 Instantiation->startDefinition(); 2688 2689 // The instantiation is visible here, even if it was first declared in an 2690 // unimported module. 2691 Instantiation->setVisibleDespiteOwningModule(); 2692 2693 // FIXME: This loses the as-written tag kind for an explicit instantiation. 2694 Instantiation->setTagKind(Pattern->getTagKind());
33
Called C++ object pointer is null
2695 2696 // Do substitution on the base class specifiers. 2697 if (SubstBaseSpecifiers(Instantiation, Pattern, TemplateArgs)) 2698 Instantiation->setInvalidDecl(); 2699 2700 TemplateDeclInstantiator Instantiator(*this, Instantiation, TemplateArgs); 2701 SmallVector<Decl*, 4> Fields; 2702 // Delay instantiation of late parsed attributes. 2703 LateInstantiatedAttrVec LateAttrs; 2704 Instantiator.enableLateAttributeInstantiation(&LateAttrs); 2705 2706 bool MightHaveConstexprVirtualFunctions = false; 2707 for (auto *Member : Pattern->decls()) { 2708 // Don't instantiate members not belonging in this semantic context. 2709 // e.g. for: 2710 // @code 2711 // template <int i> class A { 2712 // class B *g; 2713 // }; 2714 // @endcode 2715 // 'class B' has the template as lexical context but semantically it is 2716 // introduced in namespace scope. 2717 if (Member->getDeclContext() != Pattern) 2718 continue; 2719 2720 // BlockDecls can appear in a default-member-initializer. They must be the 2721 // child of a BlockExpr, so we only know how to instantiate them from there. 2722 // Similarly, lambda closure types are recreated when instantiating the 2723 // corresponding LambdaExpr. 2724 if (isa<BlockDecl>(Member) || 2725 (isa<CXXRecordDecl>(Member) && cast<CXXRecordDecl>(Member)->isLambda())) 2726 continue; 2727 2728 if (Member->isInvalidDecl()) { 2729 Instantiation->setInvalidDecl(); 2730 continue; 2731 } 2732 2733 Decl *NewMember = Instantiator.Visit(Member); 2734 if (NewMember) { 2735 if (FieldDecl *Field = dyn_cast<FieldDecl>(NewMember)) { 2736 Fields.push_back(Field); 2737 } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(NewMember)) { 2738 // C++11 [temp.inst]p1: The implicit instantiation of a class template 2739 // specialization causes the implicit instantiation of the definitions 2740 // of unscoped member enumerations. 2741 // Record a point of instantiation for this implicit instantiation. 2742 if (TSK == TSK_ImplicitInstantiation && !Enum->isScoped() && 2743 Enum->isCompleteDefinition()) { 2744 MemberSpecializationInfo *MSInfo =Enum->getMemberSpecializationInfo(); 2745 assert(MSInfo && "no spec info for member enum specialization")(static_cast<void> (0)); 2746 MSInfo->setTemplateSpecializationKind(TSK_ImplicitInstantiation); 2747 MSInfo->setPointOfInstantiation(PointOfInstantiation); 2748 } 2749 } else if (StaticAssertDecl *SA = dyn_cast<StaticAssertDecl>(NewMember)) { 2750 if (SA->isFailed()) { 2751 // A static_assert failed. Bail out; instantiating this 2752 // class is probably not meaningful. 2753 Instantiation->setInvalidDecl(); 2754 break; 2755 } 2756 } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewMember)) { 2757 if (MD->isConstexpr() && !MD->getFriendObjectKind() && 2758 (MD->isVirtualAsWritten() || Instantiation->getNumBases())) 2759 MightHaveConstexprVirtualFunctions = true; 2760 } 2761 2762 if (NewMember->isInvalidDecl()) 2763 Instantiation->setInvalidDecl(); 2764 } else { 2765 // FIXME: Eventually, a NULL return will mean that one of the 2766 // instantiations was a semantic disaster, and we'll want to mark the 2767 // declaration invalid. 2768 // For now, we expect to skip some members that we can't yet handle. 2769 } 2770 } 2771 2772 // Finish checking fields. 2773 ActOnFields(nullptr, Instantiation->getLocation(), Instantiation, Fields, 2774 SourceLocation(), SourceLocation(), ParsedAttributesView()); 2775 CheckCompletedCXXClass(nullptr, Instantiation); 2776 2777 // Default arguments are parsed, if not instantiated. We can go instantiate 2778 // default arg exprs for default constructors if necessary now. Unless we're 2779 // parsing a class, in which case wait until that's finished. 2780 if (ParsingClassDepth == 0) 2781 ActOnFinishCXXNonNestedClass(); 2782 2783 // Instantiate late parsed attributes, and attach them to their decls. 2784 // See Sema::InstantiateAttrs 2785 for (LateInstantiatedAttrVec::iterator I = LateAttrs.begin(), 2786 E = LateAttrs.end(); I != E; ++I) { 2787 assert(CurrentInstantiationScope == Instantiator.getStartingScope())(static_cast<void> (0)); 2788 CurrentInstantiationScope = I->Scope; 2789 2790 // Allow 'this' within late-parsed attributes. 2791 NamedDecl *ND = dyn_cast<NamedDecl>(I->NewDecl); 2792 CXXRecordDecl *ThisContext = 2793 dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 2794 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 2795 ND && ND->isCXXInstanceMember()); 2796 2797 Attr *NewAttr = 2798 instantiateTemplateAttribute(I->TmplAttr, Context, *this, TemplateArgs); 2799 if (NewAttr) 2800 I->NewDecl->addAttr(NewAttr); 2801 LocalInstantiationScope::deleteScopes(I->Scope, 2802 Instantiator.getStartingScope()); 2803 } 2804 Instantiator.disableLateAttributeInstantiation(); 2805 LateAttrs.clear(); 2806 2807 ActOnFinishDelayedMemberInitializers(Instantiation); 2808 2809 // FIXME: We should do something similar for explicit instantiations so they 2810 // end up in the right module. 2811 if (TSK == TSK_ImplicitInstantiation) { 2812 Instantiation->setLocation(Pattern->getLocation()); 2813 Instantiation->setLocStart(Pattern->getInnerLocStart()); 2814 Instantiation->setBraceRange(Pattern->getBraceRange()); 2815 } 2816 2817 if (!Instantiation->isInvalidDecl()) { 2818 // Perform any dependent diagnostics from the pattern. 2819 if (Pattern->isDependentContext()) 2820 PerformDependentDiagnostics(Pattern, TemplateArgs); 2821 2822 // Instantiate any out-of-line class template partial 2823 // specializations now. 2824 for (TemplateDeclInstantiator::delayed_partial_spec_iterator 2825 P = Instantiator.delayed_partial_spec_begin(), 2826 PEnd = Instantiator.delayed_partial_spec_end(); 2827 P != PEnd; ++P) { 2828 if (!Instantiator.InstantiateClassTemplatePartialSpecialization( 2829 P->first, P->second)) { 2830 Instantiation->setInvalidDecl(); 2831 break; 2832 } 2833 } 2834 2835 // Instantiate any out-of-line variable template partial 2836 // specializations now. 2837 for (TemplateDeclInstantiator::delayed_var_partial_spec_iterator 2838 P = Instantiator.delayed_var_partial_spec_begin(), 2839 PEnd = Instantiator.delayed_var_partial_spec_end(); 2840 P != PEnd; ++P) { 2841 if (!Instantiator.InstantiateVarTemplatePartialSpecialization( 2842 P->first, P->second)) { 2843 Instantiation->setInvalidDecl(); 2844 break; 2845 } 2846 } 2847 } 2848 2849 // Exit the scope of this instantiation. 2850 SavedContext.pop(); 2851 2852 if (!Instantiation->isInvalidDecl()) { 2853 // Always emit the vtable for an explicit instantiation definition 2854 // of a polymorphic class template specialization. Otherwise, eagerly 2855 // instantiate only constexpr virtual functions in preparation for their use 2856 // in constant evaluation. 2857 if (TSK == TSK_ExplicitInstantiationDefinition) 2858 MarkVTableUsed(PointOfInstantiation, Instantiation, true); 2859 else if (MightHaveConstexprVirtualFunctions) 2860 MarkVirtualMembersReferenced(PointOfInstantiation, Instantiation, 2861 /*ConstexprOnly*/ true); 2862 } 2863 2864 Consumer.HandleTagDeclDefinition(Instantiation); 2865 2866 return Instantiation->isInvalidDecl(); 2867} 2868 2869/// Instantiate the definition of an enum from a given pattern. 2870/// 2871/// \param PointOfInstantiation The point of instantiation within the 2872/// source code. 2873/// \param Instantiation is the declaration whose definition is being 2874/// instantiated. This will be a member enumeration of a class 2875/// temploid specialization, or a local enumeration within a 2876/// function temploid specialization. 2877/// \param Pattern The templated declaration from which the instantiation 2878/// occurs. 2879/// \param TemplateArgs The template arguments to be substituted into 2880/// the pattern. 2881/// \param TSK The kind of implicit or explicit instantiation to perform. 2882/// 2883/// \return \c true if an error occurred, \c false otherwise. 2884bool Sema::InstantiateEnum(SourceLocation PointOfInstantiation, 2885 EnumDecl *Instantiation, EnumDecl *Pattern, 2886 const MultiLevelTemplateArgumentList &TemplateArgs, 2887 TemplateSpecializationKind TSK) { 2888 EnumDecl *PatternDef = Pattern->getDefinition(); 2889 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Instantiation, 2890 Instantiation->getInstantiatedFromMemberEnum(), 2891 Pattern, PatternDef, TSK,/*Complain*/true)) 2892 return true; 2893 Pattern = PatternDef; 2894 2895 // Record the point of instantiation. 2896 if (MemberSpecializationInfo *MSInfo 2897 = Instantiation->getMemberSpecializationInfo()) { 2898 MSInfo->setTemplateSpecializationKind(TSK); 2899 MSInfo->setPointOfInstantiation(PointOfInstantiation); 2900 } 2901 2902 InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation); 2903 if (Inst.isInvalid()) 2904 return true; 2905 if (Inst.isAlreadyInstantiating()) 2906 return false; 2907 PrettyDeclStackTraceEntry CrashInfo(Context, Instantiation, SourceLocation(), 2908 "instantiating enum definition"); 2909 2910 // The instantiation is visible here, even if it was first declared in an 2911 // unimported module. 2912 Instantiation->setVisibleDespiteOwningModule(); 2913 2914 // Enter the scope of this instantiation. We don't use 2915 // PushDeclContext because we don't have a scope. 2916 ContextRAII SavedContext(*this, Instantiation); 2917 EnterExpressionEvaluationContext EvalContext( 2918 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 2919 2920 LocalInstantiationScope Scope(*this, /*MergeWithParentScope*/true); 2921 2922 // Pull attributes from the pattern onto the instantiation. 2923 InstantiateAttrs(TemplateArgs, Pattern, Instantiation); 2924 2925 TemplateDeclInstantiator Instantiator(*this, Instantiation, TemplateArgs); 2926 Instantiator.InstantiateEnumDefinition(Instantiation, Pattern); 2927 2928 // Exit the scope of this instantiation. 2929 SavedContext.pop(); 2930 2931 return Instantiation->isInvalidDecl(); 2932} 2933 2934 2935/// Instantiate the definition of a field from the given pattern. 2936/// 2937/// \param PointOfInstantiation The point of instantiation within the 2938/// source code. 2939/// \param Instantiation is the declaration whose definition is being 2940/// instantiated. This will be a class of a class temploid 2941/// specialization, or a local enumeration within a function temploid 2942/// specialization. 2943/// \param Pattern The templated declaration from which the instantiation 2944/// occurs. 2945/// \param TemplateArgs The template arguments to be substituted into 2946/// the pattern. 2947/// 2948/// \return \c true if an error occurred, \c false otherwise. 2949bool Sema::InstantiateInClassInitializer( 2950 SourceLocation PointOfInstantiation, FieldDecl *Instantiation, 2951 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs) { 2952 // If there is no initializer, we don't need to do anything. 2953 if (!Pattern->hasInClassInitializer()) 2954 return false; 2955 2956 assert(Instantiation->getInClassInitStyle() ==(static_cast<void> (0)) 2957 Pattern->getInClassInitStyle() &&(static_cast<void> (0)) 2958 "pattern and instantiation disagree about init style")(static_cast<void> (0)); 2959 2960 // Error out if we haven't parsed the initializer of the pattern yet because 2961 // we are waiting for the closing brace of the outer class. 2962 Expr *OldInit = Pattern->getInClassInitializer(); 2963 if (!OldInit) { 2964 RecordDecl *PatternRD = Pattern->getParent(); 2965 RecordDecl *OutermostClass = PatternRD->getOuterLexicalRecordContext(); 2966 Diag(PointOfInstantiation, 2967 diag::err_default_member_initializer_not_yet_parsed) 2968 << OutermostClass << Pattern; 2969 Diag(Pattern->getEndLoc(), 2970 diag::note_default_member_initializer_not_yet_parsed); 2971 Instantiation->setInvalidDecl(); 2972 return true; 2973 } 2974 2975 InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation); 2976 if (Inst.isInvalid()) 2977 return true; 2978 if (Inst.isAlreadyInstantiating()) { 2979 // Error out if we hit an instantiation cycle for this initializer. 2980 Diag(PointOfInstantiation, diag::err_default_member_initializer_cycle) 2981 << Instantiation; 2982 return true; 2983 } 2984 PrettyDeclStackTraceEntry CrashInfo(Context, Instantiation, SourceLocation(), 2985 "instantiating default member init"); 2986 2987 // Enter the scope of this instantiation. We don't use PushDeclContext because 2988 // we don't have a scope. 2989 ContextRAII SavedContext(*this, Instantiation->getParent()); 2990 EnterExpressionEvaluationContext EvalContext( 2991 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 2992 2993 LocalInstantiationScope Scope(*this, true); 2994 2995 // Instantiate the initializer. 2996 ActOnStartCXXInClassMemberInitializer(); 2997 CXXThisScopeRAII ThisScope(*this, Instantiation->getParent(), Qualifiers()); 2998 2999 ExprResult NewInit = SubstInitializer(OldInit, TemplateArgs, 3000 /*CXXDirectInit=*/false); 3001 Expr *Init = NewInit.get(); 3002 assert((!Init || !isa<ParenListExpr>(Init)) && "call-style init in class")(static_cast<void> (0)); 3003 ActOnFinishCXXInClassMemberInitializer( 3004 Instantiation, Init ? Init->getBeginLoc() : SourceLocation(), Init); 3005 3006 if (auto *L = getASTMutationListener()) 3007 L->DefaultMemberInitializerInstantiated(Instantiation); 3008 3009 // Return true if the in-class initializer is still missing. 3010 return !Instantiation->getInClassInitializer(); 3011} 3012 3013namespace { 3014 /// A partial specialization whose template arguments have matched 3015 /// a given template-id. 3016 struct PartialSpecMatchResult { 3017 ClassTemplatePartialSpecializationDecl *Partial; 3018 TemplateArgumentList *Args; 3019 }; 3020} 3021 3022bool Sema::usesPartialOrExplicitSpecialization( 3023 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec) { 3024 if (ClassTemplateSpec->getTemplateSpecializationKind() == 3025 TSK_ExplicitSpecialization) 3026 return true; 3027 3028 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 3029 ClassTemplateSpec->getSpecializedTemplate() 3030 ->getPartialSpecializations(PartialSpecs); 3031 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 3032 TemplateDeductionInfo Info(Loc); 3033 if (!DeduceTemplateArguments(PartialSpecs[I], 3034 ClassTemplateSpec->getTemplateArgs(), Info)) 3035 return true; 3036 } 3037 3038 return false; 3039} 3040 3041/// Get the instantiation pattern to use to instantiate the definition of a 3042/// given ClassTemplateSpecializationDecl (either the pattern of the primary 3043/// template or of a partial specialization). 3044static ActionResult<CXXRecordDecl *> 3045getPatternForClassTemplateSpecialization( 3046 Sema &S, SourceLocation PointOfInstantiation, 3047 ClassTemplateSpecializationDecl *ClassTemplateSpec, 3048 TemplateSpecializationKind TSK) { 3049 Sema::InstantiatingTemplate Inst(S, PointOfInstantiation, ClassTemplateSpec); 3050 if (Inst.isInvalid()) 3051 return {/*Invalid=*/true}; 3052 if (Inst.isAlreadyInstantiating()) 3053 return {/*Invalid=*/false}; 3054 3055 llvm::PointerUnion<ClassTemplateDecl *, 3056 ClassTemplatePartialSpecializationDecl *> 3057 Specialized = ClassTemplateSpec->getSpecializedTemplateOrPartial(); 3058 if (!Specialized.is<ClassTemplatePartialSpecializationDecl *>()) { 3059 // Find best matching specialization. 3060 ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate(); 3061 3062 // C++ [temp.class.spec.match]p1: 3063 // When a class template is used in a context that requires an 3064 // instantiation of the class, it is necessary to determine 3065 // whether the instantiation is to be generated using the primary 3066 // template or one of the partial specializations. This is done by 3067 // matching the template arguments of the class template 3068 // specialization with the template argument lists of the partial 3069 // specializations. 3070 typedef PartialSpecMatchResult MatchResult; 3071 SmallVector<MatchResult, 4> Matched; 3072 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 3073 Template->getPartialSpecializations(PartialSpecs); 3074 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation); 3075 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 3076 ClassTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 3077 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 3078 if (Sema::TemplateDeductionResult Result = S.DeduceTemplateArguments( 3079 Partial, ClassTemplateSpec->getTemplateArgs(), Info)) { 3080 // Store the failed-deduction information for use in diagnostics, later. 3081 // TODO: Actually use the failed-deduction info? 3082 FailedCandidates.addCandidate().set( 3083 DeclAccessPair::make(Template, AS_public), Partial, 3084 MakeDeductionFailureInfo(S.Context, Result, Info)); 3085 (void)Result; 3086 } else { 3087 Matched.push_back(PartialSpecMatchResult()); 3088 Matched.back().Partial = Partial; 3089 Matched.back().Args = Info.take(); 3090 } 3091 } 3092 3093 // If we're dealing with a member template where the template parameters 3094 // have been instantiated, this provides the original template parameters 3095 // from which the member template's parameters were instantiated. 3096 3097 if (Matched.size() >= 1) { 3098 SmallVectorImpl<MatchResult>::iterator Best = Matched.begin(); 3099 if (Matched.size() == 1) { 3100 // -- If exactly one matching specialization is found, the 3101 // instantiation is generated from that specialization. 3102 // We don't need to do anything for this. 3103 } else { 3104 // -- If more than one matching specialization is found, the 3105 // partial order rules (14.5.4.2) are used to determine 3106 // whether one of the specializations is more specialized 3107 // than the others. If none of the specializations is more 3108 // specialized than all of the other matching 3109 // specializations, then the use of the class template is 3110 // ambiguous and the program is ill-formed. 3111 for (SmallVectorImpl<MatchResult>::iterator P = Best + 1, 3112 PEnd = Matched.end(); 3113 P != PEnd; ++P) { 3114 if (S.getMoreSpecializedPartialSpecialization( 3115 P->Partial, Best->Partial, PointOfInstantiation) == 3116 P->Partial) 3117 Best = P; 3118 } 3119 3120 // Determine if the best partial specialization is more specialized than 3121 // the others. 3122 bool Ambiguous = false; 3123 for (SmallVectorImpl<MatchResult>::iterator P = Matched.begin(), 3124 PEnd = Matched.end(); 3125 P != PEnd; ++P) { 3126 if (P != Best && S.getMoreSpecializedPartialSpecialization( 3127 P->Partial, Best->Partial, 3128 PointOfInstantiation) != Best->Partial) { 3129 Ambiguous = true; 3130 break; 3131 } 3132 } 3133 3134 if (Ambiguous) { 3135 // Partial ordering did not produce a clear winner. Complain. 3136 Inst.Clear(); 3137 ClassTemplateSpec->setInvalidDecl(); 3138 S.Diag(PointOfInstantiation, 3139 diag::err_partial_spec_ordering_ambiguous) 3140 << ClassTemplateSpec; 3141 3142 // Print the matching partial specializations. 3143 for (SmallVectorImpl<MatchResult>::iterator P = Matched.begin(), 3144 PEnd = Matched.end(); 3145 P != PEnd; ++P) 3146 S.Diag(P->Partial->getLocation(), diag::note_partial_spec_match) 3147 << S.getTemplateArgumentBindingsText( 3148 P->Partial->getTemplateParameters(), *P->Args); 3149 3150 return {/*Invalid=*/true}; 3151 } 3152 } 3153 3154 ClassTemplateSpec->setInstantiationOf(Best->Partial, Best->Args); 3155 } else { 3156 // -- If no matches are found, the instantiation is generated 3157 // from the primary template. 3158 } 3159 } 3160 3161 CXXRecordDecl *Pattern = nullptr; 3162 Specialized = ClassTemplateSpec->getSpecializedTemplateOrPartial(); 3163 if (auto *PartialSpec = 3164 Specialized.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 3165 // Instantiate using the best class template partial specialization. 3166 while (PartialSpec->getInstantiatedFromMember()) { 3167 // If we've found an explicit specialization of this class template, 3168 // stop here and use that as the pattern. 3169 if (PartialSpec->isMemberSpecialization()) 3170 break; 3171 3172 PartialSpec = PartialSpec->getInstantiatedFromMember(); 3173 } 3174 Pattern = PartialSpec; 3175 } else { 3176 ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate(); 3177 while (Template->getInstantiatedFromMemberTemplate()) { 3178 // If we've found an explicit specialization of this class template, 3179 // stop here and use that as the pattern. 3180 if (Template->isMemberSpecialization()) 3181 break; 3182 3183 Template = Template->getInstantiatedFromMemberTemplate(); 3184 } 3185 Pattern = Template->getTemplatedDecl(); 3186 } 3187 3188 return Pattern; 3189} 3190 3191bool Sema::InstantiateClassTemplateSpecialization( 3192 SourceLocation PointOfInstantiation, 3193 ClassTemplateSpecializationDecl *ClassTemplateSpec, 3194 TemplateSpecializationKind TSK, bool Complain) { 3195 // Perform the actual instantiation on the canonical declaration. 3196 ClassTemplateSpec = cast<ClassTemplateSpecializationDecl>(
1
The object is a 'ClassTemplateSpecializationDecl'
3197 ClassTemplateSpec->getCanonicalDecl()); 3198 if (ClassTemplateSpec->isInvalidDecl())
2
Assuming the condition is false
3
Taking false branch
3199 return true; 3200 3201 ActionResult<CXXRecordDecl *> Pattern = 3202 getPatternForClassTemplateSpecialization(*this, PointOfInstantiation, 3203 ClassTemplateSpec, TSK); 3204 if (!Pattern.isUsable())
4
Assuming the condition is false
5
Taking false branch
3205 return Pattern.isInvalid(); 3206 3207 return InstantiateClass(
6
Calling 'Sema::InstantiateClass'
3208 PointOfInstantiation, ClassTemplateSpec, Pattern.get(), 3209 getTemplateInstantiationArgs(ClassTemplateSpec), TSK, Complain); 3210} 3211 3212/// Instantiates the definitions of all of the member 3213/// of the given class, which is an instantiation of a class template 3214/// or a member class of a template. 3215void 3216Sema::InstantiateClassMembers(SourceLocation PointOfInstantiation, 3217 CXXRecordDecl *Instantiation, 3218 const MultiLevelTemplateArgumentList &TemplateArgs, 3219 TemplateSpecializationKind TSK) { 3220 // FIXME: We need to notify the ASTMutationListener that we did all of these 3221 // things, in case we have an explicit instantiation definition in a PCM, a 3222 // module, or preamble, and the declaration is in an imported AST. 3223 assert((static_cast<void> (0)) 3224 (TSK == TSK_ExplicitInstantiationDefinition ||(static_cast<void> (0)) 3225 TSK == TSK_ExplicitInstantiationDeclaration ||(static_cast<void> (0)) 3226 (TSK == TSK_ImplicitInstantiation && Instantiation->isLocalClass())) &&(static_cast<void> (0)) 3227 "Unexpected template specialization kind!")(static_cast<void> (0)); 3228 for (auto *D : Instantiation->decls()) { 3229 bool SuppressNew = false; 3230 if (auto *Function = dyn_cast<FunctionDecl>(D)) { 3231 if (FunctionDecl *Pattern = 3232 Function->getInstantiatedFromMemberFunction()) { 3233 3234 if (Function->hasAttr<ExcludeFromExplicitInstantiationAttr>()) 3235 continue; 3236 3237 MemberSpecializationInfo *MSInfo = 3238 Function->getMemberSpecializationInfo(); 3239 assert(MSInfo && "No member specialization information?")(static_cast<void> (0)); 3240 if (MSInfo->getTemplateSpecializationKind() 3241 == TSK_ExplicitSpecialization) 3242 continue; 3243 3244 if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK, 3245 Function, 3246 MSInfo->getTemplateSpecializationKind(), 3247 MSInfo->getPointOfInstantiation(), 3248 SuppressNew) || 3249 SuppressNew) 3250 continue; 3251 3252 // C++11 [temp.explicit]p8: 3253 // An explicit instantiation definition that names a class template 3254 // specialization explicitly instantiates the class template 3255 // specialization and is only an explicit instantiation definition 3256 // of members whose definition is visible at the point of 3257 // instantiation. 3258 if (TSK == TSK_ExplicitInstantiationDefinition && !Pattern->isDefined()) 3259 continue; 3260 3261 Function->setTemplateSpecializationKind(TSK, PointOfInstantiation); 3262 3263 if (Function->isDefined()) { 3264 // Let the ASTConsumer know that this function has been explicitly 3265 // instantiated now, and its linkage might have changed. 3266 Consumer.HandleTopLevelDecl(DeclGroupRef(Function)); 3267 } else if (TSK == TSK_ExplicitInstantiationDefinition) { 3268 InstantiateFunctionDefinition(PointOfInstantiation, Function); 3269 } else if (TSK == TSK_ImplicitInstantiation) { 3270 PendingLocalImplicitInstantiations.push_back( 3271 std::make_pair(Function, PointOfInstantiation)); 3272 } 3273 } 3274 } else if (auto *Var = dyn_cast<VarDecl>(D)) { 3275 if (isa<VarTemplateSpecializationDecl>(Var)) 3276 continue; 3277 3278 if (Var->isStaticDataMember()) { 3279 if (Var->hasAttr<ExcludeFromExplicitInstantiationAttr>()) 3280 continue; 3281 3282 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); 3283 assert(MSInfo && "No member specialization information?")(static_cast<void> (0)); 3284 if (MSInfo->getTemplateSpecializationKind() 3285 == TSK_ExplicitSpecialization) 3286 continue; 3287 3288 if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK, 3289 Var, 3290 MSInfo->getTemplateSpecializationKind(), 3291 MSInfo->getPointOfInstantiation(), 3292 SuppressNew) || 3293 SuppressNew) 3294 continue; 3295 3296 if (TSK == TSK_ExplicitInstantiationDefinition) { 3297 // C++0x [temp.explicit]p8: 3298 // An explicit instantiation definition that names a class template 3299 // specialization explicitly instantiates the class template 3300 // specialization and is only an explicit instantiation definition 3301 // of members whose definition is visible at the point of 3302 // instantiation. 3303 if (!Var->getInstantiatedFromStaticDataMember()->getDefinition()) 3304 continue; 3305 3306 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); 3307 InstantiateVariableDefinition(PointOfInstantiation, Var); 3308 } else { 3309 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); 3310 } 3311 } 3312 } else if (auto *Record = dyn_cast<CXXRecordDecl>(D)) { 3313 if (Record->hasAttr<ExcludeFromExplicitInstantiationAttr>()) 3314 continue; 3315 3316 // Always skip the injected-class-name, along with any 3317 // redeclarations of nested classes, since both would cause us 3318 // to try to instantiate the members of a class twice. 3319 // Skip closure types; they'll get instantiated when we instantiate 3320 // the corresponding lambda-expression. 3321 if (Record->isInjectedClassName() || Record->getPreviousDecl() || 3322 Record->isLambda()) 3323 continue; 3324 3325 MemberSpecializationInfo *MSInfo = Record->getMemberSpecializationInfo(); 3326 assert(MSInfo && "No member specialization information?")(static_cast<void> (0)); 3327 3328 if (MSInfo->getTemplateSpecializationKind() 3329 == TSK_ExplicitSpecialization) 3330 continue; 3331 3332 if (Context.getTargetInfo().getTriple().isOSWindows() && 3333 TSK == TSK_ExplicitInstantiationDeclaration) { 3334 // On Windows, explicit instantiation decl of the outer class doesn't 3335 // affect the inner class. Typically extern template declarations are 3336 // used in combination with dll import/export annotations, but those 3337 // are not propagated from the outer class templates to inner classes. 3338 // Therefore, do not instantiate inner classes on this platform, so 3339 // that users don't end up with undefined symbols during linking. 3340 continue; 3341 } 3342 3343 if (CheckSpecializationInstantiationRedecl(PointOfInstantiation, TSK, 3344 Record, 3345 MSInfo->getTemplateSpecializationKind(), 3346 MSInfo->getPointOfInstantiation(), 3347 SuppressNew) || 3348 SuppressNew) 3349 continue; 3350 3351 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 3352 assert(Pattern && "Missing instantiated-from-template information")(static_cast<void> (0)); 3353 3354 if (!Record->getDefinition()) { 3355 if (!Pattern->getDefinition()) { 3356 // C++0x [temp.explicit]p8: 3357 // An explicit instantiation definition that names a class template 3358 // specialization explicitly instantiates the class template 3359 // specialization and is only an explicit instantiation definition 3360 // of members whose definition is visible at the point of 3361 // instantiation. 3362 if (TSK == TSK_ExplicitInstantiationDeclaration) { 3363 MSInfo->setTemplateSpecializationKind(TSK); 3364 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3365 } 3366 3367 continue; 3368 } 3369 3370 InstantiateClass(PointOfInstantiation, Record, Pattern, 3371 TemplateArgs, 3372 TSK); 3373 } else { 3374 if (TSK == TSK_ExplicitInstantiationDefinition && 3375 Record->getTemplateSpecializationKind() == 3376 TSK_ExplicitInstantiationDeclaration) { 3377 Record->setTemplateSpecializationKind(TSK); 3378 MarkVTableUsed(PointOfInstantiation, Record, true); 3379 } 3380 } 3381 3382 Pattern = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 3383 if (Pattern) 3384 InstantiateClassMembers(PointOfInstantiation, Pattern, TemplateArgs, 3385 TSK); 3386 } else if (auto *Enum = dyn_cast<EnumDecl>(D)) { 3387 MemberSpecializationInfo *MSInfo = Enum->getMemberSpecializationInfo(); 3388 assert(MSInfo && "No member specialization information?")(static_cast<void> (0)); 3389 3390 if (MSInfo->getTemplateSpecializationKind() 3391 == TSK_ExplicitSpecialization) 3392 continue; 3393 3394 if (CheckSpecializationInstantiationRedecl( 3395 PointOfInstantiation, TSK, Enum, 3396 MSInfo->getTemplateSpecializationKind(), 3397 MSInfo->getPointOfInstantiation(), SuppressNew) || 3398 SuppressNew) 3399 continue; 3400 3401 if (Enum->getDefinition()) 3402 continue; 3403 3404 EnumDecl *Pattern = Enum->getTemplateInstantiationPattern(); 3405 assert(Pattern && "Missing instantiated-from-template information")(static_cast<void> (0)); 3406 3407 if (TSK == TSK_ExplicitInstantiationDefinition) { 3408 if (!Pattern->getDefinition()) 3409 continue; 3410 3411 InstantiateEnum(PointOfInstantiation, Enum, Pattern, TemplateArgs, TSK); 3412 } else { 3413 MSInfo->setTemplateSpecializationKind(TSK); 3414 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3415 } 3416 } else if (auto *Field = dyn_cast<FieldDecl>(D)) { 3417 // No need to instantiate in-class initializers during explicit 3418 // instantiation. 3419 if (Field->hasInClassInitializer() && TSK == TSK_ImplicitInstantiation) { 3420 CXXRecordDecl *ClassPattern = 3421 Instantiation->getTemplateInstantiationPattern(); 3422 DeclContext::lookup_result Lookup = 3423 ClassPattern->lookup(Field->getDeclName()); 3424 FieldDecl *Pattern = Lookup.find_first<FieldDecl>(); 3425 assert(Pattern)(static_cast<void> (0)); 3426 InstantiateInClassInitializer(PointOfInstantiation, Field, Pattern, 3427 TemplateArgs); 3428 } 3429 } 3430 } 3431} 3432 3433/// Instantiate the definitions of all of the members of the 3434/// given class template specialization, which was named as part of an 3435/// explicit instantiation. 3436void 3437Sema::InstantiateClassTemplateSpecializationMembers( 3438 SourceLocation PointOfInstantiation, 3439 ClassTemplateSpecializationDecl *ClassTemplateSpec, 3440 TemplateSpecializationKind TSK) { 3441 // C++0x [temp.explicit]p7: 3442 // An explicit instantiation that names a class template 3443 // specialization is an explicit instantion of the same kind 3444 // (declaration or definition) of each of its members (not 3445 // including members inherited from base classes) that has not 3446 // been previously explicitly specialized in the translation unit 3447 // containing the explicit instantiation, except as described 3448 // below. 3449 InstantiateClassMembers(PointOfInstantiation, ClassTemplateSpec, 3450 getTemplateInstantiationArgs(ClassTemplateSpec), 3451 TSK); 3452} 3453 3454StmtResult 3455Sema::SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs) { 3456 if (!S) 3457 return S; 3458 3459 TemplateInstantiator Instantiator(*this, TemplateArgs, 3460 SourceLocation(), 3461 DeclarationName()); 3462 return Instantiator.TransformStmt(S); 3463} 3464 3465bool Sema::SubstTemplateArguments( 3466 ArrayRef<TemplateArgumentLoc> Args, 3467 const MultiLevelTemplateArgumentList &TemplateArgs, 3468 TemplateArgumentListInfo &Out) { 3469 TemplateInstantiator Instantiator(*this, TemplateArgs, 3470 SourceLocation(), 3471 DeclarationName()); 3472 return Instantiator.TransformTemplateArguments(Args.begin(), Args.end(), 3473 Out); 3474} 3475 3476ExprResult 3477Sema::SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs) { 3478 if (!E) 3479 return E; 3480 3481 TemplateInstantiator Instantiator(*this, TemplateArgs, 3482 SourceLocation(), 3483 DeclarationName()); 3484 return Instantiator.TransformExpr(E); 3485} 3486 3487ExprResult Sema::SubstInitializer(Expr *Init, 3488 const MultiLevelTemplateArgumentList &TemplateArgs, 3489 bool CXXDirectInit) { 3490 TemplateInstantiator Instantiator(*this, TemplateArgs, 3491 SourceLocation(), 3492 DeclarationName()); 3493 return Instantiator.TransformInitializer(Init, CXXDirectInit); 3494} 3495 3496bool Sema::SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall, 3497 const MultiLevelTemplateArgumentList &TemplateArgs, 3498 SmallVectorImpl<Expr *> &Outputs) { 3499 if (Exprs.empty()) 3500 return false; 3501 3502 TemplateInstantiator Instantiator(*this, TemplateArgs, 3503 SourceLocation(), 3504 DeclarationName()); 3505 return Instantiator.TransformExprs(Exprs.data(), Exprs.size(), 3506 IsCall, Outputs); 3507} 3508 3509NestedNameSpecifierLoc 3510Sema::SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, 3511 const MultiLevelTemplateArgumentList &TemplateArgs) { 3512 if (!NNS) 3513 return NestedNameSpecifierLoc(); 3514 3515 TemplateInstantiator Instantiator(*this, TemplateArgs, NNS.getBeginLoc(), 3516 DeclarationName()); 3517 return Instantiator.TransformNestedNameSpecifierLoc(NNS); 3518} 3519 3520/// Do template substitution on declaration name info. 3521DeclarationNameInfo 3522Sema::SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo, 3523 const MultiLevelTemplateArgumentList &TemplateArgs) { 3524 TemplateInstantiator Instantiator(*this, TemplateArgs, NameInfo.getLoc(), 3525 NameInfo.getName()); 3526 return Instantiator.TransformDeclarationNameInfo(NameInfo); 3527} 3528 3529TemplateName 3530Sema::SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, 3531 TemplateName Name, SourceLocation Loc, 3532 const MultiLevelTemplateArgumentList &TemplateArgs) { 3533 TemplateInstantiator Instantiator(*this, TemplateArgs, Loc, 3534 DeclarationName()); 3535 CXXScopeSpec SS; 3536 SS.Adopt(QualifierLoc); 3537 return Instantiator.TransformTemplateName(SS, Name, Loc); 3538} 3539 3540bool Sema::Subst(const TemplateArgumentLoc *Args, unsigned NumArgs, 3541 TemplateArgumentListInfo &Result, 3542 const MultiLevelTemplateArgumentList &TemplateArgs) { 3543 TemplateInstantiator Instantiator(*this, TemplateArgs, SourceLocation(), 3544 DeclarationName()); 3545 3546 return Instantiator.TransformTemplateArguments(Args, NumArgs, Result); 3547} 3548 3549static const Decl *getCanonicalParmVarDecl(const Decl *D) { 3550 // When storing ParmVarDecls in the local instantiation scope, we always 3551 // want to use the ParmVarDecl from the canonical function declaration, 3552 // since the map is then valid for any redeclaration or definition of that 3553 // function. 3554 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(D)) { 3555 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 3556 unsigned i = PV->getFunctionScopeIndex(); 3557 // This parameter might be from a freestanding function type within the 3558 // function and isn't necessarily referring to one of FD's parameters. 3559 if (i < FD->getNumParams() && FD->getParamDecl(i) == PV) 3560 return FD->getCanonicalDecl()->getParamDecl(i); 3561 } 3562 } 3563 return D; 3564} 3565 3566 3567llvm::PointerUnion<Decl *, LocalInstantiationScope::DeclArgumentPack *> * 3568LocalInstantiationScope::findInstantiationOf(const Decl *D) { 3569 D = getCanonicalParmVarDecl(D); 3570 for (LocalInstantiationScope *Current = this; Current; 3571 Current = Current->Outer) { 3572 3573 // Check if we found something within this scope. 3574 const Decl *CheckD = D; 3575 do { 3576 LocalDeclsMap::iterator Found = Current->LocalDecls.find(CheckD); 3577 if (Found != Current->LocalDecls.end()) 3578 return &Found->second; 3579 3580 // If this is a tag declaration, it's possible that we need to look for 3581 // a previous declaration. 3582 if (const TagDecl *Tag = dyn_cast<TagDecl>(CheckD)) 3583 CheckD = Tag->getPreviousDecl(); 3584 else 3585 CheckD = nullptr; 3586 } while (CheckD); 3587 3588 // If we aren't combined with our outer scope, we're done. 3589 if (!Current->CombineWithOuterScope) 3590 break; 3591 } 3592 3593 // If we're performing a partial substitution during template argument 3594 // deduction, we may not have values for template parameters yet. 3595 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 3596 isa<TemplateTemplateParmDecl>(D)) 3597 return nullptr; 3598 3599 // Local types referenced prior to definition may require instantiation. 3600 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 3601 if (RD->isLocalClass()) 3602 return nullptr; 3603 3604 // Enumeration types referenced prior to definition may appear as a result of 3605 // error recovery. 3606 if (isa<EnumDecl>(D)) 3607 return nullptr; 3608 3609 // Materialized typedefs/type alias for implicit deduction guides may require 3610 // instantiation. 3611 if (isa<TypedefNameDecl>(D) && 3612 isa<CXXDeductionGuideDecl>(D->getDeclContext())) 3613 return nullptr; 3614 3615 // If we didn't find the decl, then we either have a sema bug, or we have a 3616 // forward reference to a label declaration. Return null to indicate that 3617 // we have an uninstantiated label. 3618 assert(isa<LabelDecl>(D) && "declaration not instantiated in this scope")(static_cast<void> (0)); 3619 return nullptr; 3620} 3621 3622void LocalInstantiationScope::InstantiatedLocal(const Decl *D, Decl *Inst) { 3623 D = getCanonicalParmVarDecl(D); 3624 llvm::PointerUnion<Decl *, DeclArgumentPack *> &Stored = LocalDecls[D]; 3625 if (Stored.isNull()) { 3626#ifndef NDEBUG1 3627 // It should not be present in any surrounding scope either. 3628 LocalInstantiationScope *Current = this; 3629 while (Current->CombineWithOuterScope && Current->Outer) { 3630 Current = Current->Outer; 3631 assert(Current->LocalDecls.find(D) == Current->LocalDecls.end() &&(static_cast<void> (0)) 3632 "Instantiated local in inner and outer scopes")(static_cast<void> (0)); 3633 } 3634#endif 3635 Stored = Inst; 3636 } else if (DeclArgumentPack *Pack = Stored.dyn_cast<DeclArgumentPack *>()) { 3637 Pack->push_back(cast<VarDecl>(Inst)); 3638 } else { 3639 assert(Stored.get<Decl *>() == Inst && "Already instantiated this local")(static_cast<void> (0)); 3640 } 3641} 3642 3643void LocalInstantiationScope::InstantiatedLocalPackArg(const Decl *D, 3644 VarDecl *Inst) { 3645 D = getCanonicalParmVarDecl(D); 3646 DeclArgumentPack *Pack = LocalDecls[D].get<DeclArgumentPack *>(); 3647 Pack->push_back(Inst); 3648} 3649 3650void LocalInstantiationScope::MakeInstantiatedLocalArgPack(const Decl *D) { 3651#ifndef NDEBUG1 3652 // This should be the first time we've been told about this decl. 3653 for (LocalInstantiationScope *Current = this; 3654 Current && Current->CombineWithOuterScope; Current = Current->Outer) 3655 assert(Current->LocalDecls.find(D) == Current->LocalDecls.end() &&(static_cast<void> (0)) 3656 "Creating local pack after instantiation of local")(static_cast<void> (0)); 3657#endif 3658 3659 D = getCanonicalParmVarDecl(D); 3660 llvm::PointerUnion<Decl *, DeclArgumentPack *> &Stored = LocalDecls[D]; 3661 DeclArgumentPack *Pack = new DeclArgumentPack; 3662 Stored = Pack; 3663 ArgumentPacks.push_back(Pack); 3664} 3665 3666bool LocalInstantiationScope::isLocalPackExpansion(const Decl *D) { 3667 for (DeclArgumentPack *Pack : ArgumentPacks) 3668 if (std::find(Pack->begin(), Pack->end(), D) != Pack->end()) 3669 return true; 3670 return false; 3671} 3672 3673void LocalInstantiationScope::SetPartiallySubstitutedPack(NamedDecl *Pack, 3674 const TemplateArgument *ExplicitArgs, 3675 unsigned NumExplicitArgs) { 3676 assert((!PartiallySubstitutedPack || PartiallySubstitutedPack == Pack) &&(static_cast<void> (0)) 3677 "Already have a partially-substituted pack")(static_cast<void> (0)); 3678 assert((!PartiallySubstitutedPack(static_cast<void> (0)) 3679 || NumArgsInPartiallySubstitutedPack == NumExplicitArgs) &&(static_cast<void> (0)) 3680 "Wrong number of arguments in partially-substituted pack")(static_cast<void> (0)); 3681 PartiallySubstitutedPack = Pack; 3682 ArgsInPartiallySubstitutedPack = ExplicitArgs; 3683 NumArgsInPartiallySubstitutedPack = NumExplicitArgs; 3684} 3685 3686NamedDecl *LocalInstantiationScope::getPartiallySubstitutedPack( 3687 const TemplateArgument **ExplicitArgs, 3688 unsigned *NumExplicitArgs) const { 3689 if (ExplicitArgs) 3690 *ExplicitArgs = nullptr; 3691 if (NumExplicitArgs) 3692 *NumExplicitArgs = 0; 3693 3694 for (const LocalInstantiationScope *Current = this; Current; 3695 Current = Current->Outer) { 3696 if (Current->PartiallySubstitutedPack) { 3697 if (ExplicitArgs) 3698 *ExplicitArgs = Current->ArgsInPartiallySubstitutedPack; 3699 if (NumExplicitArgs) 3700 *NumExplicitArgs = Current->NumArgsInPartiallySubstitutedPack; 3701 3702 return Current->PartiallySubstitutedPack; 3703 } 3704 3705 if (!Current->CombineWithOuterScope) 3706 break; 3707 } 3708 3709 return nullptr; 3710}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&(static_cast<void> (0))
380 "should not have found a non-externally-declarable previous decl")(static_cast<void> (0));
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 30;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")(static_cast<void> (0));
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&(static_cast<void> (0))
655 "Can only push / pop #pragma stack sentinels!")(static_cast<void> (0));
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)(static_cast<void> (0));
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")(static_cast<void> (0));
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))(static_cast<void> (0));
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)(static_cast<void> (0));
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.CurFPFeatures) {
1506 OldOverrides = S.FpPragmaStack.CurrentValue;
1507 }
1508 ~FPFeaturesStateRAII() {
1509 S.CurFPFeatures = OldFPFeaturesState;
1510 S.FpPragmaStack.CurrentValue = OldOverrides;
1511 }
1512 FPOptionsOverride getOverrides() { return OldOverrides; }
1513
1514 private:
1515 Sema& S;
1516 FPOptions OldFPFeaturesState;
1517 FPOptionsOverride OldOverrides;
1518 };
1519
1520 void addImplicitTypedef(StringRef Name, QualType T);
1521
1522 bool WarnedStackExhausted = false;
1523
1524 /// Increment when we find a reference; decrement when we find an ignored
1525 /// assignment. Ultimately the value is 0 if every reference is an ignored
1526 /// assignment.
1527 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1528
1529 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1530
1531public:
1532 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1533 TranslationUnitKind TUKind = TU_Complete,
1534 CodeCompleteConsumer *CompletionConsumer = nullptr);
1535 ~Sema();
1536
1537 /// Perform initialization that occurs after the parser has been
1538 /// initialized but before it parses anything.
1539 void Initialize();
1540
1541 /// This virtual key function only exists to limit the emission of debug info
1542 /// describing the Sema class. GCC and Clang only emit debug info for a class
1543 /// with a vtable when the vtable is emitted. Sema is final and not
1544 /// polymorphic, but the debug info size savings are so significant that it is
1545 /// worth adding a vtable just to take advantage of this optimization.
1546 virtual void anchor();
1547
1548 const LangOptions &getLangOpts() const { return LangOpts; }
1549 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1550 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1551
1552 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1553 SourceManager &getSourceManager() const { return SourceMgr; }
1554 Preprocessor &getPreprocessor() const { return PP; }
1555 ASTContext &getASTContext() const { return Context; }
1556 ASTConsumer &getASTConsumer() const { return Consumer; }
1557 ASTMutationListener *getASTMutationListener() const;
1558 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1559 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1560 StringRef Platform);
1561
1562 ///Registers an external source. If an external source already exists,
1563 /// creates a multiplex external source and appends to it.
1564 ///
1565 ///\param[in] E - A non-null external sema source.
1566 ///
1567 void addExternalSource(ExternalSemaSource *E);
1568
1569 void PrintStats() const;
1570
1571 /// Warn that the stack is nearly exhausted.
1572 void warnStackExhausted(SourceLocation Loc);
1573
1574 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1575 /// guaranteed). Produces a warning if we're low on stack space and allocates
1576 /// more in that case. Use this in code that may recurse deeply (for example,
1577 /// in template instantiation) to avoid stack overflow.
1578 void runWithSufficientStackSpace(SourceLocation Loc,
1579 llvm::function_ref<void()> Fn);
1580
1581 /// Helper class that creates diagnostics with optional
1582 /// template instantiation stacks.
1583 ///
1584 /// This class provides a wrapper around the basic DiagnosticBuilder
1585 /// class that emits diagnostics. ImmediateDiagBuilder is
1586 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1587 /// does) and, if the diagnostic comes from inside a template
1588 /// instantiation, printing the template instantiation stack as
1589 /// well.
1590 class ImmediateDiagBuilder : public DiagnosticBuilder {
1591 Sema &SemaRef;
1592 unsigned DiagID;
1593
1594 public:
1595 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1596 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1597 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1598 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1599
1600 // This is a cunning lie. DiagnosticBuilder actually performs move
1601 // construction in its copy constructor (but due to varied uses, it's not
1602 // possible to conveniently express this as actual move construction). So
1603 // the default copy ctor here is fine, because the base class disables the
1604 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1605 // in that case anwyay.
1606 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1607
1608 ~ImmediateDiagBuilder() {
1609 // If we aren't active, there is nothing to do.
1610 if (!isActive()) return;
1611
1612 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1613 // builder itself so it won't emit the diagnostic in its own destructor.
1614 //
1615 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1616 // do its own needless checks to see if the diagnostic needs to be
1617 // emitted. However, because we take care to ensure that the builder
1618 // objects never escape, a sufficiently smart compiler will be able to
1619 // eliminate that code.
1620 Clear();
1621
1622 // Dispatch to Sema to emit the diagnostic.
1623 SemaRef.EmitCurrentDiagnostic(DiagID);
1624 }
1625
1626 /// Teach operator<< to produce an object of the correct type.
1627 template <typename T>
1628 friend const ImmediateDiagBuilder &
1629 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1630 const DiagnosticBuilder &BaseDiag = Diag;
1631 BaseDiag << Value;
1632 return Diag;
1633 }
1634
1635 // It is necessary to limit this to rvalue reference to avoid calling this
1636 // function with a bitfield lvalue argument since non-const reference to
1637 // bitfield is not allowed.
1638 template <typename T, typename = typename std::enable_if<
1639 !std::is_lvalue_reference<T>::value>::type>
1640 const ImmediateDiagBuilder &operator<<(T &&V) const {
1641 const DiagnosticBuilder &BaseDiag = *this;
1642 BaseDiag << std::move(V);
1643 return *this;
1644 }
1645 };
1646
1647 /// A generic diagnostic builder for errors which may or may not be deferred.
1648 ///
1649 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1650 /// which are not allowed to appear inside __device__ functions and are
1651 /// allowed to appear in __host__ __device__ functions only if the host+device
1652 /// function is never codegen'ed.
1653 ///
1654 /// To handle this, we use the notion of "deferred diagnostics", where we
1655 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1656 ///
1657 /// This class lets you emit either a regular diagnostic, a deferred
1658 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1659 /// its constructor, thus simplifying the process of creating these "maybe
1660 /// deferred" diagnostics.
1661 class SemaDiagnosticBuilder {
1662 public:
1663 enum Kind {
1664 /// Emit no diagnostics.
1665 K_Nop,
1666 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1667 K_Immediate,
1668 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1669 /// emit a call stack showing how this function can be reached by an a
1670 /// priori known-emitted function.
1671 K_ImmediateWithCallStack,
1672 /// Create a deferred diagnostic, which is emitted only if the function
1673 /// it's attached to is codegen'ed. Also emit a call stack as with
1674 /// K_ImmediateWithCallStack.
1675 K_Deferred
1676 };
1677
1678 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1679 FunctionDecl *Fn, Sema &S);
1680 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1681 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1682 ~SemaDiagnosticBuilder();
1683
1684 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1685
1686 /// Convertible to bool: True if we immediately emitted an error, false if
1687 /// we didn't emit an error or we created a deferred error.
1688 ///
1689 /// Example usage:
1690 ///
1691 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1692 /// return ExprError();
1693 ///
1694 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1695 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1696 operator bool() const { return isImmediate(); }
1697
1698 template <typename T>
1699 friend const SemaDiagnosticBuilder &
1700 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1701 if (Diag.ImmediateDiag.hasValue())
1702 *Diag.ImmediateDiag << Value;
1703 else if (Diag.PartialDiagId.hasValue())
1704 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1705 << Value;
1706 return Diag;
1707 }
1708
1709 // It is necessary to limit this to rvalue reference to avoid calling this
1710 // function with a bitfield lvalue argument since non-const reference to
1711 // bitfield is not allowed.
1712 template <typename T, typename = typename std::enable_if<
1713 !std::is_lvalue_reference<T>::value>::type>
1714 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1715 if (ImmediateDiag.hasValue())
1716 *ImmediateDiag << std::move(V);
1717 else if (PartialDiagId.hasValue())
1718 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1719 return *this;
1720 }
1721
1722 friend const SemaDiagnosticBuilder &
1723 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1724 if (Diag.ImmediateDiag.hasValue())
1725 PD.Emit(*Diag.ImmediateDiag);
1726 else if (Diag.PartialDiagId.hasValue())
1727 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1728 return Diag;
1729 }
1730
1731 void AddFixItHint(const FixItHint &Hint) const {
1732 if (ImmediateDiag.hasValue())
1733 ImmediateDiag->AddFixItHint(Hint);
1734 else if (PartialDiagId.hasValue())
1735 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1736 }
1737
1738 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1739 return ExprError();
1740 }
1741 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1742 return StmtError();
1743 }
1744 operator ExprResult() const { return ExprError(); }
1745 operator StmtResult() const { return StmtError(); }
1746 operator TypeResult() const { return TypeError(); }
1747 operator DeclResult() const { return DeclResult(true); }
1748 operator MemInitResult() const { return MemInitResult(true); }
1749
1750 private:
1751 Sema &S;
1752 SourceLocation Loc;
1753 unsigned DiagID;
1754 FunctionDecl *Fn;
1755 bool ShowCallStack;
1756
1757 // Invariant: At most one of these Optionals has a value.
1758 // FIXME: Switch these to a Variant once that exists.
1759 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1760 llvm::Optional<unsigned> PartialDiagId;
1761 };
1762
1763 /// Is the last error level diagnostic immediate. This is used to determined
1764 /// whether the next info diagnostic should be immediate.
1765 bool IsLastErrorImmediate = true;
1766
1767 /// Emit a diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1769 bool DeferHint = false);
1770
1771 /// Emit a partial diagnostic.
1772 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1773 bool DeferHint = false);
1774
1775 /// Build a partial diagnostic.
1776 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1777
1778 /// Whether deferrable diagnostics should be deferred.
1779 bool DeferDiags = false;
1780
1781 /// RAII class to control scope of DeferDiags.
1782 class DeferDiagsRAII {
1783 Sema &S;
1784 bool SavedDeferDiags = false;
1785
1786 public:
1787 DeferDiagsRAII(Sema &S, bool DeferDiags)
1788 : S(S), SavedDeferDiags(S.DeferDiags) {
1789 S.DeferDiags = DeferDiags;
1790 }
1791 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1792 };
1793
1794 /// Whether uncompilable error has occurred. This includes error happens
1795 /// in deferred diagnostics.
1796 bool hasUncompilableErrorOccurred() const;
1797
1798 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1799
1800 /// Get a string to suggest for zero-initialization of a type.
1801 std::string
1802 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1803 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1804
1805 /// Calls \c Lexer::getLocForEndOfToken()
1806 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1807
1808 /// Retrieve the module loader associated with the preprocessor.
1809 ModuleLoader &getModuleLoader() const;
1810
1811 /// Invent a new identifier for parameters of abbreviated templates.
1812 IdentifierInfo *
1813 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1814 unsigned Index);
1815
1816 void emitAndClearUnusedLocalTypedefWarnings();
1817
1818 private:
1819 /// Function or variable declarations to be checked for whether the deferred
1820 /// diagnostics should be emitted.
1821 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1822
1823 public:
1824 // Emit all deferred diagnostics.
1825 void emitDeferredDiags();
1826
1827 enum TUFragmentKind {
1828 /// The global module fragment, between 'module;' and a module-declaration.
1829 Global,
1830 /// A normal translation unit fragment. For a non-module unit, this is the
1831 /// entire translation unit. Otherwise, it runs from the module-declaration
1832 /// to the private-module-fragment (if any) or the end of the TU (if not).
1833 Normal,
1834 /// The private module fragment, between 'module :private;' and the end of
1835 /// the translation unit.
1836 Private
1837 };
1838
1839 void ActOnStartOfTranslationUnit();
1840 void ActOnEndOfTranslationUnit();
1841 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1842
1843 void CheckDelegatingCtorCycles();
1844
1845 Scope *getScopeForContext(DeclContext *Ctx);
1846
1847 void PushFunctionScope();
1848 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1849 sema::LambdaScopeInfo *PushLambdaScope();
1850
1851 /// This is used to inform Sema what the current TemplateParameterDepth
1852 /// is during Parsing. Currently it is used to pass on the depth
1853 /// when parsing generic lambda 'auto' parameters.
1854 void RecordParsingTemplateParameterDepth(unsigned Depth);
1855
1856 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1857 RecordDecl *RD, CapturedRegionKind K,
1858 unsigned OpenMPCaptureLevel = 0);
1859
1860 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1861 /// time after they've been popped.
1862 class PoppedFunctionScopeDeleter {
1863 Sema *Self;
1864
1865 public:
1866 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1867 void operator()(sema::FunctionScopeInfo *Scope) const;
1868 };
1869
1870 using PoppedFunctionScopePtr =
1871 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1872
1873 PoppedFunctionScopePtr
1874 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1875 const Decl *D = nullptr,
1876 QualType BlockType = QualType());
1877
1878 sema::FunctionScopeInfo *getCurFunction() const {
1879 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
1880 }
1881
1882 sema::FunctionScopeInfo *getEnclosingFunction() const;
1883
1884 void setFunctionHasBranchIntoScope();
1885 void setFunctionHasBranchProtectedScope();
1886 void setFunctionHasIndirectGoto();
1887 void setFunctionHasMustTail();
1888
1889 void PushCompoundScope(bool IsStmtExpr);
1890 void PopCompoundScope();
1891
1892 sema::CompoundScopeInfo &getCurCompoundScope() const;
1893
1894 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1895
1896 /// Retrieve the current block, if any.
1897 sema::BlockScopeInfo *getCurBlock();
1898
1899 /// Get the innermost lambda enclosing the current location, if any. This
1900 /// looks through intervening non-lambda scopes such as local functions and
1901 /// blocks.
1902 sema::LambdaScopeInfo *getEnclosingLambda() const;
1903
1904 /// Retrieve the current lambda scope info, if any.
1905 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1906 /// lambda scope info ignoring all inner capturing scopes that are not
1907 /// lambda scopes.
1908 sema::LambdaScopeInfo *
1909 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1910
1911 /// Retrieve the current generic lambda info, if any.
1912 sema::LambdaScopeInfo *getCurGenericLambda();
1913
1914 /// Retrieve the current captured region, if any.
1915 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1916
1917 /// Retrieve the current function, if any, that should be analyzed for
1918 /// potential availability violations.
1919 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1920
1921 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1922 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1923
1924 /// Called before parsing a function declarator belonging to a function
1925 /// declaration.
1926 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1927 unsigned TemplateParameterDepth);
1928
1929 /// Called after parsing a function declarator belonging to a function
1930 /// declaration.
1931 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1932
1933 void ActOnComment(SourceRange Comment);
1934
1935 //===--------------------------------------------------------------------===//
1936 // Type Analysis / Processing: SemaType.cpp.
1937 //
1938
1939 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1940 const DeclSpec *DS = nullptr);
1941 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1942 const DeclSpec *DS = nullptr);
1943 QualType BuildPointerType(QualType T,
1944 SourceLocation Loc, DeclarationName Entity);
1945 QualType BuildReferenceType(QualType T, bool LValueRef,
1946 SourceLocation Loc, DeclarationName Entity);
1947 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1948 Expr *ArraySize, unsigned Quals,
1949 SourceRange Brackets, DeclarationName Entity);
1950 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1951 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1952 SourceLocation AttrLoc);
1953 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1954 SourceLocation AttrLoc);
1955
1956 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 /// Same as above, but constructs the AddressSpace index if not provided.
1960 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1961 SourceLocation AttrLoc);
1962
1963 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1964
1965 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1966
1967 /// Build a function type.
1968 ///
1969 /// This routine checks the function type according to C++ rules and
1970 /// under the assumption that the result type and parameter types have
1971 /// just been instantiated from a template. It therefore duplicates
1972 /// some of the behavior of GetTypeForDeclarator, but in a much
1973 /// simpler form that is only suitable for this narrow use case.
1974 ///
1975 /// \param T The return type of the function.
1976 ///
1977 /// \param ParamTypes The parameter types of the function. This array
1978 /// will be modified to account for adjustments to the types of the
1979 /// function parameters.
1980 ///
1981 /// \param Loc The location of the entity whose type involves this
1982 /// function type or, if there is no such entity, the location of the
1983 /// type that will have function type.
1984 ///
1985 /// \param Entity The name of the entity that involves the function
1986 /// type, if known.
1987 ///
1988 /// \param EPI Extra information about the function type. Usually this will
1989 /// be taken from an existing function with the same prototype.
1990 ///
1991 /// \returns A suitable function type, if there are no errors. The
1992 /// unqualified type will always be a FunctionProtoType.
1993 /// Otherwise, returns a NULL type.
1994 QualType BuildFunctionType(QualType T,
1995 MutableArrayRef<QualType> ParamTypes,
1996 SourceLocation Loc, DeclarationName Entity,
1997 const FunctionProtoType::ExtProtoInfo &EPI);
1998
1999 QualType BuildMemberPointerType(QualType T, QualType Class,
2000 SourceLocation Loc,
2001 DeclarationName Entity);
2002 QualType BuildBlockPointerType(QualType T,
2003 SourceLocation Loc, DeclarationName Entity);
2004 QualType BuildParenType(QualType T);
2005 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2006 QualType BuildReadPipeType(QualType T,
2007 SourceLocation Loc);
2008 QualType BuildWritePipeType(QualType T,
2009 SourceLocation Loc);
2010 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2011
2012 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2013 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2014
2015 /// Package the given type and TSI into a ParsedType.
2016 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2017 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2018 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2019 static QualType GetTypeFromParser(ParsedType Ty,
2020 TypeSourceInfo **TInfo = nullptr);
2021 CanThrowResult canThrow(const Stmt *E);
2022 /// Determine whether the callee of a particular function call can throw.
2023 /// E, D and Loc are all optional.
2024 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2025 SourceLocation Loc = SourceLocation());
2026 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2027 const FunctionProtoType *FPT);
2028 void UpdateExceptionSpec(FunctionDecl *FD,
2029 const FunctionProtoType::ExceptionSpecInfo &ESI);
2030 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2031 bool CheckDistantExceptionSpec(QualType T);
2032 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2033 bool CheckEquivalentExceptionSpec(
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool CheckEquivalentExceptionSpec(
2037 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2038 const FunctionProtoType *Old, SourceLocation OldLoc,
2039 const FunctionProtoType *New, SourceLocation NewLoc);
2040 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2041 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2042 const PartialDiagnostic &NestedDiagID,
2043 const PartialDiagnostic &NoteID,
2044 const PartialDiagnostic &NoThrowDiagID,
2045 const FunctionProtoType *Superset,
2046 SourceLocation SuperLoc,
2047 const FunctionProtoType *Subset,
2048 SourceLocation SubLoc);
2049 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2050 const PartialDiagnostic &NoteID,
2051 const FunctionProtoType *Target,
2052 SourceLocation TargetLoc,
2053 const FunctionProtoType *Source,
2054 SourceLocation SourceLoc);
2055
2056 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2057
2058 /// The parser has parsed the context-sensitive type 'instancetype'
2059 /// in an Objective-C message declaration. Return the appropriate type.
2060 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2061
2062 /// Abstract class used to diagnose incomplete types.
2063 struct TypeDiagnoser {
2064 TypeDiagnoser() {}
2065
2066 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2067 virtual ~TypeDiagnoser() {}
2068 };
2069
2070 static int getPrintable(int I) { return I; }
2071 static unsigned getPrintable(unsigned I) { return I; }
2072 static bool getPrintable(bool B) { return B; }
2073 static const char * getPrintable(const char *S) { return S; }
2074 static StringRef getPrintable(StringRef S) { return S; }
2075 static const std::string &getPrintable(const std::string &S) { return S; }
2076 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2077 return II;
2078 }
2079 static DeclarationName getPrintable(DeclarationName N) { return N; }
2080 static QualType getPrintable(QualType T) { return T; }
2081 static SourceRange getPrintable(SourceRange R) { return R; }
2082 static SourceRange getPrintable(SourceLocation L) { return L; }
2083 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2084 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2085
2086 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2087 protected:
2088 unsigned DiagID;
2089 std::tuple<const Ts &...> Args;
2090
2091 template <std::size_t... Is>
2092 void emit(const SemaDiagnosticBuilder &DB,
2093 std::index_sequence<Is...>) const {
2094 // Apply all tuple elements to the builder in order.
2095 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2096 (void)Dummy;
2097 }
2098
2099 public:
2100 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2101 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2102 assert(DiagID != 0 && "no diagnostic for type diagnoser")(static_cast<void> (0));
2103 }
2104
2105 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2106 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2107 emit(DB, std::index_sequence_for<Ts...>());
2108 DB << T;
2109 }
2110 };
2111
2112 /// Do a check to make sure \p Name looks like a legal argument for the
2113 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2114 /// is invalid for the given declaration.
2115 ///
2116 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2117 ///
2118 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2119 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2120 const ParsedAttr &AL, bool IsAsync);
2121
2122 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2123 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2124 /// For example, a diagnostic with no other parameters would generally have
2125 /// the form "...%select{incomplete|sizeless}0 type %1...".
2126 template <typename... Ts>
2127 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2128 public:
2129 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2130 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2131
2132 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2133 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2134 this->emit(DB, std::index_sequence_for<Ts...>());
2135 DB << T->isSizelessType() << T;
2136 }
2137 };
2138
2139 enum class CompleteTypeKind {
2140 /// Apply the normal rules for complete types. In particular,
2141 /// treat all sizeless types as incomplete.
2142 Normal,
2143
2144 /// Relax the normal rules for complete types so that they include
2145 /// sizeless built-in types.
2146 AcceptSizeless,
2147
2148 // FIXME: Eventually we should flip the default to Normal and opt in
2149 // to AcceptSizeless rather than opt out of it.
2150 Default = AcceptSizeless
2151 };
2152
2153private:
2154 /// Methods for marking which expressions involve dereferencing a pointer
2155 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2156 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2157 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2158 /// `*p`, but need to check that `address of` is called on it. This requires
2159 /// keeping a container of all pending expressions and checking if the address
2160 /// of them are eventually taken.
2161 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2162 void CheckAddressOfNoDeref(const Expr *E);
2163 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2164
2165 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2166 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2167
2168 struct ModuleScope {
2169 SourceLocation BeginLoc;
2170 clang::Module *Module = nullptr;
2171 bool ModuleInterface = false;
2172 bool ImplicitGlobalModuleFragment = false;
2173 VisibleModuleSet OuterVisibleModules;
2174 };
2175 /// The modules we're currently parsing.
2176 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2177
2178 /// Namespace definitions that we will export when they finish.
2179 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2180
2181 /// Get the module whose scope we are currently within.
2182 Module *getCurrentModule() const {
2183 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2184 }
2185
2186 VisibleModuleSet VisibleModules;
2187
2188public:
2189 /// Get the module owning an entity.
2190 Module *getOwningModule(const Decl *Entity) {
2191 return Entity->getOwningModule();
2192 }
2193
2194 /// Make a merged definition of an existing hidden definition \p ND
2195 /// visible at the specified location.
2196 void makeMergedDefinitionVisible(NamedDecl *ND);
2197
2198 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2199
2200 // When loading a non-modular PCH files, this is used to restore module
2201 // visibility.
2202 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2203 VisibleModules.setVisible(Mod, ImportLoc);
2204 }
2205
2206 /// Determine whether a declaration is visible to name lookup.
2207 bool isVisible(const NamedDecl *D) {
2208 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2209 }
2210
2211 /// Determine whether any declaration of an entity is visible.
2212 bool
2213 hasVisibleDeclaration(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2215 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2216 }
2217 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2218 llvm::SmallVectorImpl<Module *> *Modules);
2219
2220 bool hasVisibleMergedDefinition(NamedDecl *Def);
2221 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2222
2223 /// Determine if \p D and \p Suggested have a structurally compatible
2224 /// layout as described in C11 6.2.7/1.
2225 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2226
2227 /// Determine if \p D has a visible definition. If not, suggest a declaration
2228 /// that should be made visible to expose the definition.
2229 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2230 bool OnlyNeedComplete = false);
2231 bool hasVisibleDefinition(const NamedDecl *D) {
2232 NamedDecl *Hidden;
2233 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2234 }
2235
2236 /// Determine if the template parameter \p D has a visible default argument.
2237 bool
2238 hasVisibleDefaultArgument(const NamedDecl *D,
2239 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2240
2241 /// Determine if there is a visible declaration of \p D that is an explicit
2242 /// specialization declaration for a specialization of a template. (For a
2243 /// member specialization, use hasVisibleMemberSpecialization.)
2244 bool hasVisibleExplicitSpecialization(
2245 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2246
2247 /// Determine if there is a visible declaration of \p D that is a member
2248 /// specialization declaration (as opposed to an instantiated declaration).
2249 bool hasVisibleMemberSpecialization(
2250 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2251
2252 /// Determine if \p A and \p B are equivalent internal linkage declarations
2253 /// from different modules, and thus an ambiguity error can be downgraded to
2254 /// an extension warning.
2255 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2256 const NamedDecl *B);
2257 void diagnoseEquivalentInternalLinkageDeclarations(
2258 SourceLocation Loc, const NamedDecl *D,
2259 ArrayRef<const NamedDecl *> Equiv);
2260
2261 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2262
2263 bool isCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2265 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
2266 }
2267 bool RequireCompleteType(SourceLocation Loc, QualType T,
2268 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2269 bool RequireCompleteType(SourceLocation Loc, QualType T,
2270 CompleteTypeKind Kind, unsigned DiagID);
2271
2272 bool RequireCompleteType(SourceLocation Loc, QualType T,
2273 TypeDiagnoser &Diagnoser) {
2274 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2275 }
2276 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2277 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2278 }
2279
2280 template <typename... Ts>
2281 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2282 const Ts &...Args) {
2283 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2284 return RequireCompleteType(Loc, T, Diagnoser);
2285 }
2286
2287 template <typename... Ts>
2288 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2289 const Ts &... Args) {
2290 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2291 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2292 }
2293
2294 /// Get the type of expression E, triggering instantiation to complete the
2295 /// type if necessary -- that is, if the expression refers to a templated
2296 /// static data member of incomplete array type.
2297 ///
2298 /// May still return an incomplete type if instantiation was not possible or
2299 /// if the type is incomplete for a different reason. Use
2300 /// RequireCompleteExprType instead if a diagnostic is expected for an
2301 /// incomplete expression type.
2302 QualType getCompletedType(Expr *E);
2303
2304 void completeExprArrayBound(Expr *E);
2305 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2306 TypeDiagnoser &Diagnoser);
2307 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2308
2309 template <typename... Ts>
2310 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2311 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2312 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2313 }
2314
2315 template <typename... Ts>
2316 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2317 const Ts &... Args) {
2318 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2319 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2320 }
2321
2322 bool RequireLiteralType(SourceLocation Loc, QualType T,
2323 TypeDiagnoser &Diagnoser);
2324 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2325
2326 template <typename... Ts>
2327 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2328 const Ts &...Args) {
2329 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2330 return RequireLiteralType(Loc, T, Diagnoser);
2331 }
2332
2333 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2334 const CXXScopeSpec &SS, QualType T,
2335 TagDecl *OwnedTagDecl = nullptr);
2336
2337 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2338 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2339 /// context, such as when building a type for decltype(auto).
2340 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2341 bool AsUnevaluated = true);
2342 QualType BuildUnaryTransformType(QualType BaseType,
2343 UnaryTransformType::UTTKind UKind,
2344 SourceLocation Loc);
2345
2346 //===--------------------------------------------------------------------===//
2347 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2348 //
2349
2350 struct SkipBodyInfo {
2351 SkipBodyInfo()
2352 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2353 New(nullptr) {}
2354 bool ShouldSkip;
2355 bool CheckSameAsPrevious;
2356 NamedDecl *Previous;
2357 NamedDecl *New;
2358 };
2359
2360 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2361
2362 void DiagnoseUseOfUnimplementedSelectors();
2363
2364 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2365
2366 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2367 Scope *S, CXXScopeSpec *SS = nullptr,
2368 bool isClassName = false, bool HasTrailingDot = false,
2369 ParsedType ObjectType = nullptr,
2370 bool IsCtorOrDtorName = false,
2371 bool WantNontrivialTypeSourceInfo = false,
2372 bool IsClassTemplateDeductionContext = true,
2373 IdentifierInfo **CorrectedII = nullptr);
2374 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2375 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2376 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2377 SourceLocation IILoc,
2378 Scope *S,
2379 CXXScopeSpec *SS,
2380 ParsedType &SuggestedType,
2381 bool IsTemplateName = false);
2382
2383 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2384 /// type name has failed in a dependent context. In these situations, we
2385 /// automatically form a DependentTypeName that will retry lookup in a related
2386 /// scope during instantiation.
2387 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2388 SourceLocation NameLoc,
2389 bool IsTemplateTypeArg);
2390
2391 /// Describes the result of the name lookup and resolution performed
2392 /// by \c ClassifyName().
2393 enum NameClassificationKind {
2394 /// This name is not a type or template in this context, but might be
2395 /// something else.
2396 NC_Unknown,
2397 /// Classification failed; an error has been produced.
2398 NC_Error,
2399 /// The name has been typo-corrected to a keyword.
2400 NC_Keyword,
2401 /// The name was classified as a type.
2402 NC_Type,
2403 /// The name was classified as a specific non-type, non-template
2404 /// declaration. ActOnNameClassifiedAsNonType should be called to
2405 /// convert the declaration to an expression.
2406 NC_NonType,
2407 /// The name was classified as an ADL-only function name.
2408 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2409 /// result to an expression.
2410 NC_UndeclaredNonType,
2411 /// The name denotes a member of a dependent type that could not be
2412 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2413 /// convert the result to an expression.
2414 NC_DependentNonType,
2415 /// The name was classified as an overload set, and an expression
2416 /// representing that overload set has been formed.
2417 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2418 /// expression referencing the overload set.
2419 NC_OverloadSet,
2420 /// The name was classified as a template whose specializations are types.
2421 NC_TypeTemplate,
2422 /// The name was classified as a variable template name.
2423 NC_VarTemplate,
2424 /// The name was classified as a function template name.
2425 NC_FunctionTemplate,
2426 /// The name was classified as an ADL-only function template name.
2427 NC_UndeclaredTemplate,
2428 /// The name was classified as a concept name.
2429 NC_Concept,
2430 };
2431
2432 class NameClassification {
2433 NameClassificationKind Kind;
2434 union {
2435 ExprResult Expr;
2436 NamedDecl *NonTypeDecl;
2437 TemplateName Template;
2438 ParsedType Type;
2439 };
2440
2441 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2442
2443 public:
2444 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2445
2446 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2447
2448 static NameClassification Error() {
2449 return NameClassification(NC_Error);
2450 }
2451
2452 static NameClassification Unknown() {
2453 return NameClassification(NC_Unknown);
2454 }
2455
2456 static NameClassification OverloadSet(ExprResult E) {
2457 NameClassification Result(NC_OverloadSet);
2458 Result.Expr = E;
2459 return Result;
2460 }
2461
2462 static NameClassification NonType(NamedDecl *D) {
2463 NameClassification Result(NC_NonType);
2464 Result.NonTypeDecl = D;
2465 return Result;
2466 }
2467
2468 static NameClassification UndeclaredNonType() {
2469 return NameClassification(NC_UndeclaredNonType);
2470 }
2471
2472 static NameClassification DependentNonType() {
2473 return NameClassification(NC_DependentNonType);
2474 }
2475
2476 static NameClassification TypeTemplate(TemplateName Name) {
2477 NameClassification Result(NC_TypeTemplate);
2478 Result.Template = Name;
2479 return Result;
2480 }
2481
2482 static NameClassification VarTemplate(TemplateName Name) {
2483 NameClassification Result(NC_VarTemplate);
2484 Result.Template = Name;
2485 return Result;
2486 }
2487
2488 static NameClassification FunctionTemplate(TemplateName Name) {
2489 NameClassification Result(NC_FunctionTemplate);
2490 Result.Template = Name;
2491 return Result;
2492 }
2493
2494 static NameClassification Concept(TemplateName Name) {
2495 NameClassification Result(NC_Concept);
2496 Result.Template = Name;
2497 return Result;
2498 }
2499
2500 static NameClassification UndeclaredTemplate(TemplateName Name) {
2501 NameClassification Result(NC_UndeclaredTemplate);
2502 Result.Template = Name;
2503 return Result;
2504 }
2505
2506 NameClassificationKind getKind() const { return Kind; }
2507
2508 ExprResult getExpression() const {
2509 assert(Kind == NC_OverloadSet)(static_cast<void> (0));
2510 return Expr;
2511 }
2512
2513 ParsedType getType() const {
2514 assert(Kind == NC_Type)(static_cast<void> (0));
2515 return Type;
2516 }
2517
2518 NamedDecl *getNonTypeDecl() const {
2519 assert(Kind == NC_NonType)(static_cast<void> (0));
2520 return NonTypeDecl;
2521 }
2522
2523 TemplateName getTemplateName() const {
2524 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||(static_cast<void> (0))
2525 Kind == NC_VarTemplate || Kind == NC_Concept ||(static_cast<void> (0))
2526 Kind == NC_UndeclaredTemplate)(static_cast<void> (0));
2527 return Template;
2528 }
2529
2530 TemplateNameKind getTemplateNameKind() const {
2531 switch (Kind) {
2532 case NC_TypeTemplate:
2533 return TNK_Type_template;
2534 case NC_FunctionTemplate:
2535 return TNK_Function_template;
2536 case NC_VarTemplate:
2537 return TNK_Var_template;
2538 case NC_Concept:
2539 return TNK_Concept_template;
2540 case NC_UndeclaredTemplate:
2541 return TNK_Undeclared_template;
2542 default:
2543 llvm_unreachable("unsupported name classification.")__builtin_unreachable();
2544 }
2545 }
2546 };
2547
2548 /// Perform name lookup on the given name, classifying it based on
2549 /// the results of name lookup and the following token.
2550 ///
2551 /// This routine is used by the parser to resolve identifiers and help direct
2552 /// parsing. When the identifier cannot be found, this routine will attempt
2553 /// to correct the typo and classify based on the resulting name.
2554 ///
2555 /// \param S The scope in which we're performing name lookup.
2556 ///
2557 /// \param SS The nested-name-specifier that precedes the name.
2558 ///
2559 /// \param Name The identifier. If typo correction finds an alternative name,
2560 /// this pointer parameter will be updated accordingly.
2561 ///
2562 /// \param NameLoc The location of the identifier.
2563 ///
2564 /// \param NextToken The token following the identifier. Used to help
2565 /// disambiguate the name.
2566 ///
2567 /// \param CCC The correction callback, if typo correction is desired.
2568 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2569 IdentifierInfo *&Name, SourceLocation NameLoc,
2570 const Token &NextToken,
2571 CorrectionCandidateCallback *CCC = nullptr);
2572
2573 /// Act on the result of classifying a name as an undeclared (ADL-only)
2574 /// non-type declaration.
2575 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2576 SourceLocation NameLoc);
2577 /// Act on the result of classifying a name as an undeclared member of a
2578 /// dependent base class.
2579 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2580 IdentifierInfo *Name,
2581 SourceLocation NameLoc,
2582 bool IsAddressOfOperand);
2583 /// Act on the result of classifying a name as a specific non-type
2584 /// declaration.
2585 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2586 NamedDecl *Found,
2587 SourceLocation NameLoc,
2588 const Token &NextToken);
2589 /// Act on the result of classifying a name as an overload set.
2590 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2591
2592 /// Describes the detailed kind of a template name. Used in diagnostics.
2593 enum class TemplateNameKindForDiagnostics {
2594 ClassTemplate,
2595 FunctionTemplate,
2596 VarTemplate,
2597 AliasTemplate,
2598 TemplateTemplateParam,
2599 Concept,
2600 DependentTemplate
2601 };
2602 TemplateNameKindForDiagnostics
2603 getTemplateNameKindForDiagnostics(TemplateName Name);
2604
2605 /// Determine whether it's plausible that E was intended to be a
2606 /// template-name.
2607 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2608 if (!getLangOpts().CPlusPlus || E.isInvalid())
2609 return false;
2610 Dependent = false;
2611 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2612 return !DRE->hasExplicitTemplateArgs();
2613 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2614 return !ME->hasExplicitTemplateArgs();
2615 Dependent = true;
2616 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2617 return !DSDRE->hasExplicitTemplateArgs();
2618 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2619 return !DSME->hasExplicitTemplateArgs();
2620 // Any additional cases recognized here should also be handled by
2621 // diagnoseExprIntendedAsTemplateName.
2622 return false;
2623 }
2624 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2625 SourceLocation Less,
2626 SourceLocation Greater);
2627
2628 void warnOnReservedIdentifier(const NamedDecl *D);
2629
2630 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2631
2632 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2633 MultiTemplateParamsArg TemplateParameterLists);
2634 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2635 QualType &T, SourceLocation Loc,
2636 unsigned FailedFoldDiagID);
2637 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2638 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2639 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2640 DeclarationName Name, SourceLocation Loc,
2641 bool IsTemplateId);
2642 void
2643 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2644 SourceLocation FallbackLoc,
2645 SourceLocation ConstQualLoc = SourceLocation(),
2646 SourceLocation VolatileQualLoc = SourceLocation(),
2647 SourceLocation RestrictQualLoc = SourceLocation(),
2648 SourceLocation AtomicQualLoc = SourceLocation(),
2649 SourceLocation UnalignedQualLoc = SourceLocation());
2650
2651 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2652 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2653 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2654 const LookupResult &R);
2655 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2656 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2657 const LookupResult &R);
2658 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2659 const LookupResult &R);
2660 void CheckShadow(Scope *S, VarDecl *D);
2661
2662 /// Warn if 'E', which is an expression that is about to be modified, refers
2663 /// to a shadowing declaration.
2664 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2665
2666 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2667
2668private:
2669 /// Map of current shadowing declarations to shadowed declarations. Warn if
2670 /// it looks like the user is trying to modify the shadowing declaration.
2671 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2672
2673public:
2674 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2675 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2676 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2677 TypedefNameDecl *NewTD);
2678 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2679 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2680 TypeSourceInfo *TInfo,
2681 LookupResult &Previous);
2682 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2683 LookupResult &Previous, bool &Redeclaration);
2684 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2685 TypeSourceInfo *TInfo,
2686 LookupResult &Previous,
2687 MultiTemplateParamsArg TemplateParamLists,
2688 bool &AddToScope,
2689 ArrayRef<BindingDecl *> Bindings = None);
2690 NamedDecl *
2691 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2692 MultiTemplateParamsArg TemplateParamLists);
2693 // Returns true if the variable declaration is a redeclaration
2694 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2695 void CheckVariableDeclarationType(VarDecl *NewVD);
2696 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2697 Expr *Init);
2698 void CheckCompleteVariableDeclaration(VarDecl *VD);
2699 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2700 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2701
2702 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2703 TypeSourceInfo *TInfo,
2704 LookupResult &Previous,
2705 MultiTemplateParamsArg TemplateParamLists,
2706 bool &AddToScope);
2707 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2708
2709 enum class CheckConstexprKind {
2710 /// Diagnose issues that are non-constant or that are extensions.
2711 Diagnose,
2712 /// Identify whether this function satisfies the formal rules for constexpr
2713 /// functions in the current lanugage mode (with no extensions).
2714 CheckValid
2715 };
2716
2717 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2718 CheckConstexprKind Kind);
2719
2720 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2721 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2722 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2723 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2724 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2725 // Returns true if the function declaration is a redeclaration
2726 bool CheckFunctionDeclaration(Scope *S,
2727 FunctionDecl *NewFD, LookupResult &Previous,
2728 bool IsMemberSpecialization);
2729 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2730 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2731 QualType NewT, QualType OldT);
2732 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2733 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2734 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2735 bool IsDefinition);
2736 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2737 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2738 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2739 SourceLocation Loc,
2740 QualType T);
2741 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2742 SourceLocation NameLoc, IdentifierInfo *Name,
2743 QualType T, TypeSourceInfo *TSInfo,
2744 StorageClass SC);
2745 void ActOnParamDefaultArgument(Decl *param,
2746 SourceLocation EqualLoc,
2747 Expr *defarg);
2748 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2749 SourceLocation ArgLoc);
2750 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2751 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2752 SourceLocation EqualLoc);
2753 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2754 SourceLocation EqualLoc);
2755
2756 // Contexts where using non-trivial C union types can be disallowed. This is
2757 // passed to err_non_trivial_c_union_in_invalid_context.
2758 enum NonTrivialCUnionContext {
2759 // Function parameter.
2760 NTCUC_FunctionParam,
2761 // Function return.
2762 NTCUC_FunctionReturn,
2763 // Default-initialized object.
2764 NTCUC_DefaultInitializedObject,
2765 // Variable with automatic storage duration.
2766 NTCUC_AutoVar,
2767 // Initializer expression that might copy from another object.
2768 NTCUC_CopyInit,
2769 // Assignment.
2770 NTCUC_Assignment,
2771 // Compound literal.
2772 NTCUC_CompoundLiteral,
2773 // Block capture.
2774 NTCUC_BlockCapture,
2775 // lvalue-to-rvalue conversion of volatile type.
2776 NTCUC_LValueToRValueVolatile,
2777 };
2778
2779 /// Emit diagnostics if the initializer or any of its explicit or
2780 /// implicitly-generated subexpressions require copying or
2781 /// default-initializing a type that is or contains a C union type that is
2782 /// non-trivial to copy or default-initialize.
2783 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2784
2785 // These flags are passed to checkNonTrivialCUnion.
2786 enum NonTrivialCUnionKind {
2787 NTCUK_Init = 0x1,
2788 NTCUK_Destruct = 0x2,
2789 NTCUK_Copy = 0x4,
2790 };
2791
2792 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2793 /// a non-trivial C union is used in an invalid context.
2794 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2795 NonTrivialCUnionContext UseContext,
2796 unsigned NonTrivialKind);
2797
2798 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2799 void ActOnUninitializedDecl(Decl *dcl);
2800 void ActOnInitializerError(Decl *Dcl);
2801
2802 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2803 void ActOnCXXForRangeDecl(Decl *D);
2804 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2805 IdentifierInfo *Ident,
2806 ParsedAttributes &Attrs,
2807 SourceLocation AttrEnd);
2808 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2809 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2810 void CheckStaticLocalForDllExport(VarDecl *VD);
2811 void FinalizeDeclaration(Decl *D);
2812 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2813 ArrayRef<Decl *> Group);
2814 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2815
2816 /// Should be called on all declarations that might have attached
2817 /// documentation comments.
2818 void ActOnDocumentableDecl(Decl *D);
2819 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2820
2821 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2822 SourceLocation LocAfterDecls);
2823 void CheckForFunctionRedefinition(
2824 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2825 SkipBodyInfo *SkipBody = nullptr);
2826 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2827 MultiTemplateParamsArg TemplateParamLists,
2828 SkipBodyInfo *SkipBody = nullptr);
2829 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2830 SkipBodyInfo *SkipBody = nullptr);
2831 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2832 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2833 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2834 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2835 bool isObjCMethodDecl(Decl *D) {
2836 return D && isa<ObjCMethodDecl>(D);
2837 }
2838
2839 /// Determine whether we can delay parsing the body of a function or
2840 /// function template until it is used, assuming we don't care about emitting
2841 /// code for that function.
2842 ///
2843 /// This will be \c false if we may need the body of the function in the
2844 /// middle of parsing an expression (where it's impractical to switch to
2845 /// parsing a different function), for instance, if it's constexpr in C++11
2846 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2847 bool canDelayFunctionBody(const Declarator &D);
2848
2849 /// Determine whether we can skip parsing the body of a function
2850 /// definition, assuming we don't care about analyzing its body or emitting
2851 /// code for that function.
2852 ///
2853 /// This will be \c false only if we may need the body of the function in
2854 /// order to parse the rest of the program (for instance, if it is
2855 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2856 bool canSkipFunctionBody(Decl *D);
2857
2858 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2859 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2860 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2861 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2862 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2863
2864 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2865 /// attribute for which parsing is delayed.
2866 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2867
2868 /// Diagnose any unused parameters in the given sequence of
2869 /// ParmVarDecl pointers.
2870 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2871
2872 /// Diagnose whether the size of parameters or return value of a
2873 /// function or obj-c method definition is pass-by-value and larger than a
2874 /// specified threshold.
2875 void
2876 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2877 QualType ReturnTy, NamedDecl *D);
2878
2879 void DiagnoseInvalidJumps(Stmt *Body);
2880 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2881 SourceLocation AsmLoc,
2882 SourceLocation RParenLoc);
2883
2884 /// Handle a C++11 empty-declaration and attribute-declaration.
2885 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2886 SourceLocation SemiLoc);
2887
2888 enum class ModuleDeclKind {
2889 Interface, ///< 'export module X;'
2890 Implementation, ///< 'module X;'
2891 };
2892
2893 /// The parser has processed a module-declaration that begins the definition
2894 /// of a module interface or implementation.
2895 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2896 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2897 ModuleIdPath Path, bool IsFirstDecl);
2898
2899 /// The parser has processed a global-module-fragment declaration that begins
2900 /// the definition of the global module fragment of the current module unit.
2901 /// \param ModuleLoc The location of the 'module' keyword.
2902 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2903
2904 /// The parser has processed a private-module-fragment declaration that begins
2905 /// the definition of the private module fragment of the current module unit.
2906 /// \param ModuleLoc The location of the 'module' keyword.
2907 /// \param PrivateLoc The location of the 'private' keyword.
2908 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2909 SourceLocation PrivateLoc);
2910
2911 /// The parser has processed a module import declaration.
2912 ///
2913 /// \param StartLoc The location of the first token in the declaration. This
2914 /// could be the location of an '@', 'export', or 'import'.
2915 /// \param ExportLoc The location of the 'export' keyword, if any.
2916 /// \param ImportLoc The location of the 'import' keyword.
2917 /// \param Path The module access path.
2918 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2919 SourceLocation ExportLoc,
2920 SourceLocation ImportLoc, ModuleIdPath Path);
2921 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2922 SourceLocation ExportLoc,
2923 SourceLocation ImportLoc, Module *M,
2924 ModuleIdPath Path = {});
2925
2926 /// The parser has processed a module import translated from a
2927 /// #include or similar preprocessing directive.
2928 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2929 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2930
2931 /// The parsed has entered a submodule.
2932 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2933 /// The parser has left a submodule.
2934 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2935
2936 /// Create an implicit import of the given module at the given
2937 /// source location, for error recovery, if possible.
2938 ///
2939 /// This routine is typically used when an entity found by name lookup
2940 /// is actually hidden within a module that we know about but the user
2941 /// has forgotten to import.
2942 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2943 Module *Mod);
2944
2945 /// Kinds of missing import. Note, the values of these enumerators correspond
2946 /// to %select values in diagnostics.
2947 enum class MissingImportKind {
2948 Declaration,
2949 Definition,
2950 DefaultArgument,
2951 ExplicitSpecialization,
2952 PartialSpecialization
2953 };
2954
2955 /// Diagnose that the specified declaration needs to be visible but
2956 /// isn't, and suggest a module import that would resolve the problem.
2957 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2958 MissingImportKind MIK, bool Recover = true);
2959 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2960 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2961 MissingImportKind MIK, bool Recover);
2962
2963 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2964 SourceLocation LBraceLoc);
2965 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2966 SourceLocation RBraceLoc);
2967
2968 /// We've found a use of a templated declaration that would trigger an
2969 /// implicit instantiation. Check that any relevant explicit specializations
2970 /// and partial specializations are visible, and diagnose if not.
2971 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2972
2973 /// Retrieve a suitable printing policy for diagnostics.
2974 PrintingPolicy getPrintingPolicy() const {
2975 return getPrintingPolicy(Context, PP);
2976 }
2977
2978 /// Retrieve a suitable printing policy for diagnostics.
2979 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2980 const Preprocessor &PP);
2981
2982 /// Scope actions.
2983 void ActOnPopScope(SourceLocation Loc, Scope *S);
2984 void ActOnTranslationUnitScope(Scope *S);
2985
2986 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2987 RecordDecl *&AnonRecord);
2988 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2989 MultiTemplateParamsArg TemplateParams,
2990 bool IsExplicitInstantiation,
2991 RecordDecl *&AnonRecord);
2992
2993 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2994 AccessSpecifier AS,
2995 RecordDecl *Record,
2996 const PrintingPolicy &Policy);
2997
2998 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2999 RecordDecl *Record);
3000
3001 /// Common ways to introduce type names without a tag for use in diagnostics.
3002 /// Keep in sync with err_tag_reference_non_tag.
3003 enum NonTagKind {
3004 NTK_NonStruct,
3005 NTK_NonClass,
3006 NTK_NonUnion,
3007 NTK_NonEnum,
3008 NTK_Typedef,
3009 NTK_TypeAlias,
3010 NTK_Template,
3011 NTK_TypeAliasTemplate,
3012 NTK_TemplateTemplateArgument,
3013 };
3014
3015 /// Given a non-tag type declaration, returns an enum useful for indicating
3016 /// what kind of non-tag type this is.
3017 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3018
3019 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3020 TagTypeKind NewTag, bool isDefinition,
3021 SourceLocation NewTagLoc,
3022 const IdentifierInfo *Name);
3023
3024 enum TagUseKind {
3025 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3026 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3027 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3028 TUK_Friend // Friend declaration: 'friend struct foo;'
3029 };
3030
3031 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3032 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3033 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3034 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3035 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3036 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3037 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3038 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3039 SkipBodyInfo *SkipBody = nullptr);
3040
3041 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3042 unsigned TagSpec, SourceLocation TagLoc,
3043 CXXScopeSpec &SS, IdentifierInfo *Name,
3044 SourceLocation NameLoc,
3045 const ParsedAttributesView &Attr,
3046 MultiTemplateParamsArg TempParamLists);
3047
3048 TypeResult ActOnDependentTag(Scope *S,
3049 unsigned TagSpec,
3050 TagUseKind TUK,
3051 const CXXScopeSpec &SS,
3052 IdentifierInfo *Name,
3053 SourceLocation TagLoc,
3054 SourceLocation NameLoc);
3055
3056 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3057 IdentifierInfo *ClassName,
3058 SmallVectorImpl<Decl *> &Decls);
3059 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3060 Declarator &D, Expr *BitfieldWidth);
3061
3062 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3063 Declarator &D, Expr *BitfieldWidth,
3064 InClassInitStyle InitStyle,
3065 AccessSpecifier AS);
3066 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3067 SourceLocation DeclStart, Declarator &D,
3068 Expr *BitfieldWidth,
3069 InClassInitStyle InitStyle,
3070 AccessSpecifier AS,
3071 const ParsedAttr &MSPropertyAttr);
3072
3073 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3074 TypeSourceInfo *TInfo,
3075 RecordDecl *Record, SourceLocation Loc,
3076 bool Mutable, Expr *BitfieldWidth,
3077 InClassInitStyle InitStyle,
3078 SourceLocation TSSL,
3079 AccessSpecifier AS, NamedDecl *PrevDecl,
3080 Declarator *D = nullptr);
3081
3082 bool CheckNontrivialField(FieldDecl *FD);
3083 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3084
3085 enum TrivialABIHandling {
3086 /// The triviality of a method unaffected by "trivial_abi".
3087 TAH_IgnoreTrivialABI,
3088
3089 /// The triviality of a method affected by "trivial_abi".
3090 TAH_ConsiderTrivialABI
3091 };
3092
3093 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3094 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3095 bool Diagnose = false);
3096
3097 /// For a defaulted function, the kind of defaulted function that it is.
3098 class DefaultedFunctionKind {
3099 CXXSpecialMember SpecialMember : 8;
3100 DefaultedComparisonKind Comparison : 8;
3101
3102 public:
3103 DefaultedFunctionKind()
3104 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3105 }
3106 DefaultedFunctionKind(CXXSpecialMember CSM)
3107 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3108 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3109 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3110
3111 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3112 bool isComparison() const {
3113 return Comparison != DefaultedComparisonKind::None;
3114 }
3115
3116 explicit operator bool() const {
3117 return isSpecialMember() || isComparison();
3118 }
3119
3120 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3121 DefaultedComparisonKind asComparison() const { return Comparison; }
3122
3123 /// Get the index of this function kind for use in diagnostics.
3124 unsigned getDiagnosticIndex() const {
3125 static_assert(CXXInvalid > CXXDestructor,
3126 "invalid should have highest index");
3127 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3128 "none should be equal to zero");
3129 return SpecialMember + (unsigned)Comparison;
3130 }
3131 };
3132
3133 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3134
3135 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3136 return getDefaultedFunctionKind(MD).asSpecialMember();
3137 }
3138 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3139 return getDefaultedFunctionKind(FD).asComparison();
3140 }
3141
3142 void ActOnLastBitfield(SourceLocation DeclStart,
3143 SmallVectorImpl<Decl *> &AllIvarDecls);
3144 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3145 Declarator &D, Expr *BitfieldWidth,
3146 tok::ObjCKeywordKind visibility);
3147
3148 // This is used for both record definitions and ObjC interface declarations.
3149 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3150 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3151 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3152
3153 /// ActOnTagStartDefinition - Invoked when we have entered the
3154 /// scope of a tag's definition (e.g., for an enumeration, class,
3155 /// struct, or union).
3156 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3157
3158 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3159 /// Differently from C++, actually parse the body and reject / error out
3160 /// in case of a structural mismatch.
3161 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3162 SkipBodyInfo &SkipBody);
3163
3164 typedef void *SkippedDefinitionContext;
3165
3166 /// Invoked when we enter a tag definition that we're skipping.
3167 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3168
3169 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3170
3171 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3172 /// C++ record definition's base-specifiers clause and are starting its
3173 /// member declarations.
3174 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3175 SourceLocation FinalLoc,
3176 bool IsFinalSpelledSealed,
3177 bool IsAbstract,
3178 SourceLocation LBraceLoc);
3179
3180 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3181 /// the definition of a tag (enumeration, class, struct, or union).
3182 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3183 SourceRange BraceRange);
3184
3185 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3186
3187 void ActOnObjCContainerFinishDefinition();
3188
3189 /// Invoked when we must temporarily exit the objective-c container
3190 /// scope for parsing/looking-up C constructs.
3191 ///
3192 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3193 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3194 void ActOnObjCReenterContainerContext(DeclContext *DC);
3195
3196 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3197 /// error parsing the definition of a tag.
3198 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3199
3200 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3201 EnumConstantDecl *LastEnumConst,
3202 SourceLocation IdLoc,
3203 IdentifierInfo *Id,
3204 Expr *val);
3205 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3206 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3207 QualType EnumUnderlyingTy, bool IsFixed,
3208 const EnumDecl *Prev);
3209
3210 /// Determine whether the body of an anonymous enumeration should be skipped.
3211 /// \param II The name of the first enumerator.
3212 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3213 SourceLocation IILoc);
3214
3215 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3216 SourceLocation IdLoc, IdentifierInfo *Id,
3217 const ParsedAttributesView &Attrs,
3218 SourceLocation EqualLoc, Expr *Val);
3219 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3220 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3221 const ParsedAttributesView &Attr);
3222
3223 /// Set the current declaration context until it gets popped.
3224 void PushDeclContext(Scope *S, DeclContext *DC);
3225 void PopDeclContext();
3226
3227 /// EnterDeclaratorContext - Used when we must lookup names in the context
3228 /// of a declarator's nested name specifier.
3229 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3230 void ExitDeclaratorContext(Scope *S);
3231
3232 /// Enter a template parameter scope, after it's been associated with a particular
3233 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3234 /// in the correct order.
3235 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3236
3237 /// Push the parameters of D, which must be a function, into scope.
3238 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3239 void ActOnExitFunctionContext();
3240
3241 DeclContext *getFunctionLevelDeclContext();
3242
3243 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3244 /// to the function decl for the function being parsed. If we're currently
3245 /// in a 'block', this returns the containing context.
3246 FunctionDecl *getCurFunctionDecl();
3247
3248 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3249 /// the method decl for the method being parsed. If we're currently
3250 /// in a 'block', this returns the containing context.
3251 ObjCMethodDecl *getCurMethodDecl();
3252
3253 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3254 /// or C function we're in, otherwise return null. If we're currently
3255 /// in a 'block', this returns the containing context.
3256 NamedDecl *getCurFunctionOrMethodDecl();
3257
3258 /// Add this decl to the scope shadowed decl chains.
3259 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3260
3261 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3262 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3263 /// true if 'D' belongs to the given declaration context.
3264 ///
3265 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3266 /// enclosing namespace set of the context, rather than contained
3267 /// directly within it.
3268 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3269 bool AllowInlineNamespace = false);
3270
3271 /// Finds the scope corresponding to the given decl context, if it
3272 /// happens to be an enclosing scope. Otherwise return NULL.
3273 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3274
3275 /// Subroutines of ActOnDeclarator().
3276 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3277 TypeSourceInfo *TInfo);
3278 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3279
3280 /// Describes the kind of merge to perform for availability
3281 /// attributes (including "deprecated", "unavailable", and "availability").
3282 enum AvailabilityMergeKind {
3283 /// Don't merge availability attributes at all.
3284 AMK_None,
3285 /// Merge availability attributes for a redeclaration, which requires
3286 /// an exact match.
3287 AMK_Redeclaration,
3288 /// Merge availability attributes for an override, which requires
3289 /// an exact match or a weakening of constraints.
3290 AMK_Override,
3291 /// Merge availability attributes for an implementation of
3292 /// a protocol requirement.
3293 AMK_ProtocolImplementation,
3294 /// Merge availability attributes for an implementation of
3295 /// an optional protocol requirement.
3296 AMK_OptionalProtocolImplementation
3297 };
3298
3299 /// Describes the kind of priority given to an availability attribute.
3300 ///
3301 /// The sum of priorities deteremines the final priority of the attribute.
3302 /// The final priority determines how the attribute will be merged.
3303 /// An attribute with a lower priority will always remove higher priority
3304 /// attributes for the specified platform when it is being applied. An
3305 /// attribute with a higher priority will not be applied if the declaration
3306 /// already has an availability attribute with a lower priority for the
3307 /// specified platform. The final prirority values are not expected to match
3308 /// the values in this enumeration, but instead should be treated as a plain
3309 /// integer value. This enumeration just names the priority weights that are
3310 /// used to calculate that final vaue.
3311 enum AvailabilityPriority : int {
3312 /// The availability attribute was specified explicitly next to the
3313 /// declaration.
3314 AP_Explicit = 0,
3315
3316 /// The availability attribute was applied using '#pragma clang attribute'.
3317 AP_PragmaClangAttribute = 1,
3318
3319 /// The availability attribute for a specific platform was inferred from
3320 /// an availability attribute for another platform.
3321 AP_InferredFromOtherPlatform = 2
3322 };
3323
3324 /// Attribute merging methods. Return true if a new attribute was added.
3325 AvailabilityAttr *
3326 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3327 IdentifierInfo *Platform, bool Implicit,
3328 VersionTuple Introduced, VersionTuple Deprecated,
3329 VersionTuple Obsoleted, bool IsUnavailable,
3330 StringRef Message, bool IsStrict, StringRef Replacement,
3331 AvailabilityMergeKind AMK, int Priority);
3332 TypeVisibilityAttr *
3333 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3334 TypeVisibilityAttr::VisibilityType Vis);
3335 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3336 VisibilityAttr::VisibilityType Vis);
3337 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3338 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3339 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3340 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3341 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3342 const AttributeCommonInfo &CI,
3343 bool BestCase,
3344 MSInheritanceModel Model);
3345 ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3346 StringRef NewUserDiagnostic);
3347 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3348 IdentifierInfo *Format, int FormatIdx,
3349 int FirstArg);
3350 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3351 StringRef Name);
3352 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3353 StringRef Name);
3354 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3355 const AttributeCommonInfo &CI,
3356 const IdentifierInfo *Ident);
3357 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3358 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3359 StringRef Name);
3360 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3361 const AttributeCommonInfo &CI);
3362 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3363 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3364 const InternalLinkageAttr &AL);
3365 WebAssemblyImportNameAttr *mergeImportNameAttr(
3366 Decl *D, const WebAssemblyImportNameAttr &AL);
3367 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3368 Decl *D, const WebAssemblyImportModuleAttr &AL);
3369 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3370 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3371 const EnforceTCBLeafAttr &AL);
3372 BTFTagAttr *mergeBTFTagAttr(Decl *D, const BTFTagAttr &AL);
3373
3374 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3375 AvailabilityMergeKind AMK = AMK_Redeclaration);
3376 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3377 LookupResult &OldDecls);
3378 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3379 bool MergeTypeWithOld);
3380 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3381 Scope *S, bool MergeTypeWithOld);
3382 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3383 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3384 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3385 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3386 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3387 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3388 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3389
3390 // AssignmentAction - This is used by all the assignment diagnostic functions
3391 // to represent what is actually causing the operation
3392 enum AssignmentAction {
3393 AA_Assigning,
3394 AA_Passing,
3395 AA_Returning,
3396 AA_Converting,
3397 AA_Initializing,
3398 AA_Sending,
3399 AA_Casting,
3400 AA_Passing_CFAudited
3401 };
3402
3403 /// C++ Overloading.
3404 enum OverloadKind {
3405 /// This is a legitimate overload: the existing declarations are
3406 /// functions or function templates with different signatures.
3407 Ovl_Overload,
3408
3409 /// This is not an overload because the signature exactly matches
3410 /// an existing declaration.
3411 Ovl_Match,
3412
3413 /// This is not an overload because the lookup results contain a
3414 /// non-function.
3415 Ovl_NonFunction
3416 };
3417 OverloadKind CheckOverload(Scope *S,
3418 FunctionDecl *New,
3419 const LookupResult &OldDecls,
3420 NamedDecl *&OldDecl,
3421 bool IsForUsingDecl);
3422 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3423 bool ConsiderCudaAttrs = true,
3424 bool ConsiderRequiresClauses = true);
3425
3426 enum class AllowedExplicit {
3427 /// Allow no explicit functions to be used.
3428 None,
3429 /// Allow explicit conversion functions but not explicit constructors.
3430 Conversions,
3431 /// Allow both explicit conversion functions and explicit constructors.
3432 All
3433 };
3434
3435 ImplicitConversionSequence
3436 TryImplicitConversion(Expr *From, QualType ToType,
3437 bool SuppressUserConversions,
3438 AllowedExplicit AllowExplicit,
3439 bool InOverloadResolution,
3440 bool CStyle,
3441 bool AllowObjCWritebackConversion);
3442
3443 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3444 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3445 bool IsComplexPromotion(QualType FromType, QualType ToType);
3446 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3447 bool InOverloadResolution,
3448 QualType& ConvertedType, bool &IncompatibleObjC);
3449 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3450 QualType& ConvertedType, bool &IncompatibleObjC);
3451 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3452 QualType &ConvertedType);
3453 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3454 QualType& ConvertedType);
3455 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3456 const FunctionProtoType *NewType,
3457 unsigned *ArgPos = nullptr);
3458 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3459 QualType FromType, QualType ToType);
3460
3461 void maybeExtendBlockObject(ExprResult &E);
3462 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3463 bool CheckPointerConversion(Expr *From, QualType ToType,
3464 CastKind &Kind,
3465 CXXCastPath& BasePath,
3466 bool IgnoreBaseAccess,
3467 bool Diagnose = true);
3468 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3469 bool InOverloadResolution,
3470 QualType &ConvertedType);
3471 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3472 CastKind &Kind,
3473 CXXCastPath &BasePath,
3474 bool IgnoreBaseAccess);
3475 bool IsQualificationConversion(QualType FromType, QualType ToType,
3476 bool CStyle, bool &ObjCLifetimeConversion);
3477 bool IsFunctionConversion(QualType FromType, QualType ToType,
3478 QualType &ResultTy);
3479 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3480 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3481
3482 bool CanPerformAggregateInitializationForOverloadResolution(
3483 const InitializedEntity &Entity, InitListExpr *From);
3484
3485 bool IsStringInit(Expr *Init, const ArrayType *AT);
3486
3487 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3488 ExprResult Init);
3489 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3490 SourceLocation EqualLoc,
3491 ExprResult Init,
3492 bool TopLevelOfInitList = false,
3493 bool AllowExplicit = false);
3494 ExprResult PerformObjectArgumentInitialization(Expr *From,
3495 NestedNameSpecifier *Qualifier,
3496 NamedDecl *FoundDecl,
3497 CXXMethodDecl *Method);
3498
3499 /// Check that the lifetime of the initializer (and its subobjects) is
3500 /// sufficient for initializing the entity, and perform lifetime extension
3501 /// (when permitted) if not.
3502 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3503
3504 ExprResult PerformContextuallyConvertToBool(Expr *From);
3505 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3506
3507 /// Contexts in which a converted constant expression is required.
3508 enum CCEKind {
3509 CCEK_CaseValue, ///< Expression in a case label.
3510 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3511 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3512 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3513 CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
3514 CCEK_Noexcept ///< Condition in a noexcept(bool) specifier.
3515 };
3516 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3517 llvm::APSInt &Value, CCEKind CCE);
3518 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3519 APValue &Value, CCEKind CCE,
3520 NamedDecl *Dest = nullptr);
3521
3522 /// Abstract base class used to perform a contextual implicit
3523 /// conversion from an expression to any type passing a filter.
3524 class ContextualImplicitConverter {
3525 public:
3526 bool Suppress;
3527 bool SuppressConversion;
3528
3529 ContextualImplicitConverter(bool Suppress = false,
3530 bool SuppressConversion = false)
3531 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3532
3533 /// Determine whether the specified type is a valid destination type
3534 /// for this conversion.
3535 virtual bool match(QualType T) = 0;
3536
3537 /// Emits a diagnostic complaining that the expression does not have
3538 /// integral or enumeration type.
3539 virtual SemaDiagnosticBuilder
3540 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3541
3542 /// Emits a diagnostic when the expression has incomplete class type.
3543 virtual SemaDiagnosticBuilder
3544 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3545
3546 /// Emits a diagnostic when the only matching conversion function
3547 /// is explicit.
3548 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3549 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3550
3551 /// Emits a note for the explicit conversion function.
3552 virtual SemaDiagnosticBuilder
3553 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3554
3555 /// Emits a diagnostic when there are multiple possible conversion
3556 /// functions.
3557 virtual SemaDiagnosticBuilder
3558 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3559
3560 /// Emits a note for one of the candidate conversions.
3561 virtual SemaDiagnosticBuilder
3562 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3563
3564 /// Emits a diagnostic when we picked a conversion function
3565 /// (for cases when we are not allowed to pick a conversion function).
3566 virtual SemaDiagnosticBuilder diagnoseConversion(
3567 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3568
3569 virtual ~ContextualImplicitConverter() {}
3570 };
3571
3572 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3573 bool AllowScopedEnumerations;
3574
3575 public:
3576 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3577 bool Suppress, bool SuppressConversion)
3578 : ContextualImplicitConverter(Suppress, SuppressConversion),
3579 AllowScopedEnumerations(AllowScopedEnumerations) {}
3580
3581 /// Match an integral or (possibly scoped) enumeration type.
3582 bool match(QualType T) override;
3583
3584 SemaDiagnosticBuilder
3585 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3586 return diagnoseNotInt(S, Loc, T);
3587 }
3588
3589 /// Emits a diagnostic complaining that the expression does not have
3590 /// integral or enumeration type.
3591 virtual SemaDiagnosticBuilder
3592 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3593 };
3594
3595 /// Perform a contextual implicit conversion.
3596 ExprResult PerformContextualImplicitConversion(
3597 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3598
3599
3600 enum ObjCSubscriptKind {
3601 OS_Array,
3602 OS_Dictionary,
3603 OS_Error
3604 };
3605 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3606
3607 // Note that LK_String is intentionally after the other literals, as
3608 // this is used for diagnostics logic.
3609 enum ObjCLiteralKind {
3610 LK_Array,
3611 LK_Dictionary,
3612 LK_Numeric,
3613 LK_Boxed,
3614 LK_String,
3615 LK_Block,
3616 LK_None
3617 };
3618 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3619
3620 ExprResult PerformObjectMemberConversion(Expr *From,
3621 NestedNameSpecifier *Qualifier,
3622 NamedDecl *FoundDecl,
3623 NamedDecl *Member);
3624
3625 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3626 // TODO: make this is a typesafe union.
3627 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3628 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3629
3630 using ADLCallKind = CallExpr::ADLCallKind;
3631
3632 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3633 ArrayRef<Expr *> Args,
3634 OverloadCandidateSet &CandidateSet,
3635 bool SuppressUserConversions = false,
3636 bool PartialOverloading = false,
3637 bool AllowExplicit = true,
3638 bool AllowExplicitConversion = false,
3639 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3640 ConversionSequenceList EarlyConversions = None,
3641 OverloadCandidateParamOrder PO = {});
3642 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3643 ArrayRef<Expr *> Args,
3644 OverloadCandidateSet &CandidateSet,
3645 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3646 bool SuppressUserConversions = false,
3647 bool PartialOverloading = false,
3648 bool FirstArgumentIsBase = false);
3649 void AddMethodCandidate(DeclAccessPair FoundDecl,
3650 QualType ObjectType,
3651 Expr::Classification ObjectClassification,
3652 ArrayRef<Expr *> Args,
3653 OverloadCandidateSet& CandidateSet,
3654 bool SuppressUserConversion = false,
3655 OverloadCandidateParamOrder PO = {});
3656 void AddMethodCandidate(CXXMethodDecl *Method,
3657 DeclAccessPair FoundDecl,
3658 CXXRecordDecl *ActingContext, QualType ObjectType,
3659 Expr::Classification ObjectClassification,
3660 ArrayRef<Expr *> Args,
3661 OverloadCandidateSet& CandidateSet,
3662 bool SuppressUserConversions = false,
3663 bool PartialOverloading = false,
3664 ConversionSequenceList EarlyConversions = None,
3665 OverloadCandidateParamOrder PO = {});
3666 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3667 DeclAccessPair FoundDecl,
3668 CXXRecordDecl *ActingContext,
3669 TemplateArgumentListInfo *ExplicitTemplateArgs,
3670 QualType ObjectType,
3671 Expr::Classification ObjectClassification,
3672 ArrayRef<Expr *> Args,
3673 OverloadCandidateSet& CandidateSet,
3674 bool SuppressUserConversions = false,
3675 bool PartialOverloading = false,
3676 OverloadCandidateParamOrder PO = {});
3677 void AddTemplateOverloadCandidate(
3678 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3679 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3680 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3681 bool PartialOverloading = false, bool AllowExplicit = true,
3682 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3683 OverloadCandidateParamOrder PO = {});
3684 bool CheckNonDependentConversions(
3685 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3686 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3687 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3688 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3689 Expr::Classification ObjectClassification = {},
3690 OverloadCandidateParamOrder PO = {});
3691 void AddConversionCandidate(
3692 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3693 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3694 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3695 bool AllowExplicit, bool AllowResultConversion = true);
3696 void AddTemplateConversionCandidate(
3697 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3698 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3699 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3700 bool AllowExplicit, bool AllowResultConversion = true);
3701 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3702 DeclAccessPair FoundDecl,
3703 CXXRecordDecl *ActingContext,
3704 const FunctionProtoType *Proto,
3705 Expr *Object, ArrayRef<Expr *> Args,
3706 OverloadCandidateSet& CandidateSet);
3707 void AddNonMemberOperatorCandidates(
3708 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3709 OverloadCandidateSet &CandidateSet,
3710 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3711 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3712 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3713 OverloadCandidateSet &CandidateSet,
3714 OverloadCandidateParamOrder PO = {});
3715 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3716 OverloadCandidateSet& CandidateSet,
3717 bool IsAssignmentOperator = false,
3718 unsigned NumContextualBoolArguments = 0);
3719 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3720 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3721 OverloadCandidateSet& CandidateSet);
3722 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3723 SourceLocation Loc,
3724 ArrayRef<Expr *> Args,
3725 TemplateArgumentListInfo *ExplicitTemplateArgs,
3726 OverloadCandidateSet& CandidateSet,
3727 bool PartialOverloading = false);
3728
3729 // Emit as a 'note' the specific overload candidate
3730 void NoteOverloadCandidate(
3731 NamedDecl *Found, FunctionDecl *Fn,
3732 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3733 QualType DestType = QualType(), bool TakingAddress = false);
3734
3735 // Emit as a series of 'note's all template and non-templates identified by
3736 // the expression Expr
3737 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3738 bool TakingAddress = false);
3739
3740 /// Check the enable_if expressions on the given function. Returns the first
3741 /// failing attribute, or NULL if they were all successful.
3742 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3743 ArrayRef<Expr *> Args,
3744 bool MissingImplicitThis = false);
3745
3746 /// Find the failed Boolean condition within a given Boolean
3747 /// constant expression, and describe it with a string.
3748 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3749
3750 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3751 /// non-ArgDependent DiagnoseIfAttrs.
3752 ///
3753 /// Argument-dependent diagnose_if attributes should be checked each time a
3754 /// function is used as a direct callee of a function call.
3755 ///
3756 /// Returns true if any errors were emitted.
3757 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3758 const Expr *ThisArg,
3759 ArrayRef<const Expr *> Args,
3760 SourceLocation Loc);
3761
3762 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3763 /// ArgDependent DiagnoseIfAttrs.
3764 ///
3765 /// Argument-independent diagnose_if attributes should be checked on every use
3766 /// of a function.
3767 ///
3768 /// Returns true if any errors were emitted.
3769 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3770 SourceLocation Loc);
3771
3772 /// Returns whether the given function's address can be taken or not,
3773 /// optionally emitting a diagnostic if the address can't be taken.
3774 ///
3775 /// Returns false if taking the address of the function is illegal.
3776 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3777 bool Complain = false,
3778 SourceLocation Loc = SourceLocation());
3779
3780 // [PossiblyAFunctionType] --> [Return]
3781 // NonFunctionType --> NonFunctionType
3782 // R (A) --> R(A)
3783 // R (*)(A) --> R (A)
3784 // R (&)(A) --> R (A)
3785 // R (S::*)(A) --> R (A)
3786 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3787
3788 FunctionDecl *
3789 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3790 QualType TargetType,
3791 bool Complain,
3792 DeclAccessPair &Found,
3793 bool *pHadMultipleCandidates = nullptr);
3794
3795 FunctionDecl *
3796 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3797
3798 bool resolveAndFixAddressOfSingleOverloadCandidate(
3799 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3800
3801 FunctionDecl *
3802 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3803 bool Complain = false,
3804 DeclAccessPair *Found = nullptr);
3805
3806 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3807 ExprResult &SrcExpr,
3808 bool DoFunctionPointerConverion = false,
3809 bool Complain = false,
3810 SourceRange OpRangeForComplaining = SourceRange(),
3811 QualType DestTypeForComplaining = QualType(),
3812 unsigned DiagIDForComplaining = 0);
3813
3814
3815 Expr *FixOverloadedFunctionReference(Expr *E,
3816 DeclAccessPair FoundDecl,
3817 FunctionDecl *Fn);
3818 ExprResult FixOverloadedFunctionReference(ExprResult,
3819 DeclAccessPair FoundDecl,
3820 FunctionDecl *Fn);
3821
3822 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3823 ArrayRef<Expr *> Args,
3824 OverloadCandidateSet &CandidateSet,
3825 bool PartialOverloading = false);
3826 void AddOverloadedCallCandidates(
3827 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3828 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3829
3830 // An enum used to represent the different possible results of building a
3831 // range-based for loop.
3832 enum ForRangeStatus {
3833 FRS_Success,
3834 FRS_NoViableFunction,
3835 FRS_DiagnosticIssued
3836 };
3837
3838 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3839 SourceLocation RangeLoc,
3840 const DeclarationNameInfo &NameInfo,
3841 LookupResult &MemberLookup,
3842 OverloadCandidateSet *CandidateSet,
3843 Expr *Range, ExprResult *CallExpr);
3844
3845 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3846 UnresolvedLookupExpr *ULE,
3847 SourceLocation LParenLoc,
3848 MultiExprArg Args,
3849 SourceLocation RParenLoc,
3850 Expr *ExecConfig,
3851 bool AllowTypoCorrection=true,
3852 bool CalleesAddressIsTaken=false);
3853
3854 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3855 MultiExprArg Args, SourceLocation RParenLoc,
3856 OverloadCandidateSet *CandidateSet,
3857 ExprResult *Result);
3858
3859 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3860 NestedNameSpecifierLoc NNSLoc,
3861 DeclarationNameInfo DNI,
3862 const UnresolvedSetImpl &Fns,
3863 bool PerformADL = true);
3864
3865 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3866 UnaryOperatorKind Opc,
3867 const UnresolvedSetImpl &Fns,
3868 Expr *input, bool RequiresADL = true);
3869
3870 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3871 OverloadedOperatorKind Op,
3872 const UnresolvedSetImpl &Fns,
3873 ArrayRef<Expr *> Args, bool RequiresADL = true);
3874 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3875 BinaryOperatorKind Opc,
3876 const UnresolvedSetImpl &Fns,
3877 Expr *LHS, Expr *RHS,
3878 bool RequiresADL = true,
3879 bool AllowRewrittenCandidates = true,
3880 FunctionDecl *DefaultedFn = nullptr);
3881 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3882 const UnresolvedSetImpl &Fns,
3883 Expr *LHS, Expr *RHS,
3884 FunctionDecl *DefaultedFn);
3885
3886 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3887 SourceLocation RLoc,
3888 Expr *Base,Expr *Idx);
3889
3890 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3891 SourceLocation LParenLoc,
3892 MultiExprArg Args,
3893 SourceLocation RParenLoc,
3894 bool AllowRecovery = false);
3895 ExprResult
3896 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3897 MultiExprArg Args,
3898 SourceLocation RParenLoc);
3899
3900 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3901 SourceLocation OpLoc,
3902 bool *NoArrowOperatorFound = nullptr);
3903
3904 /// CheckCallReturnType - Checks that a call expression's return type is
3905 /// complete. Returns true on failure. The location passed in is the location
3906 /// that best represents the call.
3907 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3908 CallExpr *CE, FunctionDecl *FD);
3909
3910 /// Helpers for dealing with blocks and functions.
3911 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3912 bool CheckParameterNames);
3913 void CheckCXXDefaultArguments(FunctionDecl *FD);
3914 void CheckExtraCXXDefaultArguments(Declarator &D);
3915 Scope *getNonFieldDeclScope(Scope *S);
3916
3917 /// \name Name lookup
3918 ///
3919 /// These routines provide name lookup that is used during semantic
3920 /// analysis to resolve the various kinds of names (identifiers,
3921 /// overloaded operator names, constructor names, etc.) into zero or
3922 /// more declarations within a particular scope. The major entry
3923 /// points are LookupName, which performs unqualified name lookup,
3924 /// and LookupQualifiedName, which performs qualified name lookup.
3925 ///
3926 /// All name lookup is performed based on some specific criteria,
3927 /// which specify what names will be visible to name lookup and how
3928 /// far name lookup should work. These criteria are important both
3929 /// for capturing language semantics (certain lookups will ignore
3930 /// certain names, for example) and for performance, since name
3931 /// lookup is often a bottleneck in the compilation of C++. Name
3932 /// lookup criteria is specified via the LookupCriteria enumeration.
3933 ///
3934 /// The results of name lookup can vary based on the kind of name
3935 /// lookup performed, the current language, and the translation
3936 /// unit. In C, for example, name lookup will either return nothing
3937 /// (no entity found) or a single declaration. In C++, name lookup
3938 /// can additionally refer to a set of overloaded functions or
3939 /// result in an ambiguity. All of the possible results of name
3940 /// lookup are captured by the LookupResult class, which provides
3941 /// the ability to distinguish among them.
3942 //@{
3943
3944 /// Describes the kind of name lookup to perform.
3945 enum LookupNameKind {
3946 /// Ordinary name lookup, which finds ordinary names (functions,
3947 /// variables, typedefs, etc.) in C and most kinds of names
3948 /// (functions, variables, members, types, etc.) in C++.
3949 LookupOrdinaryName = 0,
3950 /// Tag name lookup, which finds the names of enums, classes,
3951 /// structs, and unions.
3952 LookupTagName,
3953 /// Label name lookup.
3954 LookupLabel,
3955 /// Member name lookup, which finds the names of
3956 /// class/struct/union members.
3957 LookupMemberName,
3958 /// Look up of an operator name (e.g., operator+) for use with
3959 /// operator overloading. This lookup is similar to ordinary name
3960 /// lookup, but will ignore any declarations that are class members.
3961 LookupOperatorName,
3962 /// Look up a name following ~ in a destructor name. This is an ordinary
3963 /// lookup, but prefers tags to typedefs.
3964 LookupDestructorName,
3965 /// Look up of a name that precedes the '::' scope resolution
3966 /// operator in C++. This lookup completely ignores operator, object,
3967 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3968 LookupNestedNameSpecifierName,
3969 /// Look up a namespace name within a C++ using directive or
3970 /// namespace alias definition, ignoring non-namespace names (C++
3971 /// [basic.lookup.udir]p1).
3972 LookupNamespaceName,
3973 /// Look up all declarations in a scope with the given name,
3974 /// including resolved using declarations. This is appropriate
3975 /// for checking redeclarations for a using declaration.
3976 LookupUsingDeclName,
3977 /// Look up an ordinary name that is going to be redeclared as a
3978 /// name with linkage. This lookup ignores any declarations that
3979 /// are outside of the current scope unless they have linkage. See
3980 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3981 LookupRedeclarationWithLinkage,
3982 /// Look up a friend of a local class. This lookup does not look
3983 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3984 LookupLocalFriendName,
3985 /// Look up the name of an Objective-C protocol.
3986 LookupObjCProtocolName,
3987 /// Look up implicit 'self' parameter of an objective-c method.
3988 LookupObjCImplicitSelfParam,
3989 /// Look up the name of an OpenMP user-defined reduction operation.
3990 LookupOMPReductionName,
3991 /// Look up the name of an OpenMP user-defined mapper.
3992 LookupOMPMapperName,
3993 /// Look up any declaration with any name.
3994 LookupAnyName
3995 };
3996
3997 /// Specifies whether (or how) name lookup is being performed for a
3998 /// redeclaration (vs. a reference).
3999 enum RedeclarationKind {
4000 /// The lookup is a reference to this name that is not for the
4001 /// purpose of redeclaring the name.
4002 NotForRedeclaration = 0,
4003 /// The lookup results will be used for redeclaration of a name,
4004 /// if an entity by that name already exists and is visible.
4005 ForVisibleRedeclaration,
4006 /// The lookup results will be used for redeclaration of a name
4007 /// with external linkage; non-visible lookup results with external linkage
4008 /// may also be found.
4009 ForExternalRedeclaration
4010 };
4011
4012 RedeclarationKind forRedeclarationInCurContext() {
4013 // A declaration with an owning module for linkage can never link against
4014 // anything that is not visible. We don't need to check linkage here; if
4015 // the context has internal linkage, redeclaration lookup won't find things
4016 // from other TUs, and we can't safely compute linkage yet in general.
4017 if (cast<Decl>(CurContext)
4018 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4019 return ForVisibleRedeclaration;
4020 return ForExternalRedeclaration;
4021 }
4022
4023 /// The possible outcomes of name lookup for a literal operator.
4024 enum LiteralOperatorLookupResult {
4025 /// The lookup resulted in an error.
4026 LOLR_Error,
4027 /// The lookup found no match but no diagnostic was issued.
4028 LOLR_ErrorNoDiagnostic,
4029 /// The lookup found a single 'cooked' literal operator, which
4030 /// expects a normal literal to be built and passed to it.
4031 LOLR_Cooked,
4032 /// The lookup found a single 'raw' literal operator, which expects
4033 /// a string literal containing the spelling of the literal token.
4034 LOLR_Raw,
4035 /// The lookup found an overload set of literal operator templates,
4036 /// which expect the characters of the spelling of the literal token to be
4037 /// passed as a non-type template argument pack.
4038 LOLR_Template,
4039 /// The lookup found an overload set of literal operator templates,
4040 /// which expect the character type and characters of the spelling of the
4041 /// string literal token to be passed as template arguments.
4042 LOLR_StringTemplatePack,
4043 };
4044
4045 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4046 CXXSpecialMember SM,
4047 bool ConstArg,
4048 bool VolatileArg,
4049 bool RValueThis,
4050 bool ConstThis,
4051 bool VolatileThis);
4052
4053 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4054 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4055 TypoRecoveryCallback;
4056
4057private:
4058 bool CppLookupName(LookupResult &R, Scope *S);
4059
4060 struct TypoExprState {
4061 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4062 TypoDiagnosticGenerator DiagHandler;
4063 TypoRecoveryCallback RecoveryHandler;
4064 TypoExprState();
4065 TypoExprState(TypoExprState &&other) noexcept;
4066 TypoExprState &operator=(TypoExprState &&other) noexcept;
4067 };
4068
4069 /// The set of unhandled TypoExprs and their associated state.
4070 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4071
4072 /// Creates a new TypoExpr AST node.
4073 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4074 TypoDiagnosticGenerator TDG,
4075 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4076
4077 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4078 //
4079 // The boolean value will be true to indicate that the namespace was loaded
4080 // from an AST/PCH file, or false otherwise.
4081 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4082
4083 /// Whether we have already loaded known namespaces from an extenal
4084 /// source.
4085 bool LoadedExternalKnownNamespaces;
4086
4087 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4088 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4089 /// should be skipped entirely.
4090 std::unique_ptr<TypoCorrectionConsumer>
4091 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4092 Sema::LookupNameKind LookupKind, Scope *S,
4093 CXXScopeSpec *SS,
4094 CorrectionCandidateCallback &CCC,
4095 DeclContext *MemberContext, bool EnteringContext,
4096 const ObjCObjectPointerType *OPT,
4097 bool ErrorRecovery);
4098
4099public:
4100 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4101
4102 /// Clears the state of the given TypoExpr.
4103 void clearDelayedTypo(TypoExpr *TE);
4104
4105 /// Look up a name, looking for a single declaration. Return
4106 /// null if the results were absent, ambiguous, or overloaded.
4107 ///
4108 /// It is preferable to use the elaborated form and explicitly handle
4109 /// ambiguity and overloaded.
4110 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4111 SourceLocation Loc,
4112 LookupNameKind NameKind,
4113 RedeclarationKind Redecl
4114 = NotForRedeclaration);
4115 bool LookupBuiltin(LookupResult &R);
4116 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4117 bool LookupName(LookupResult &R, Scope *S,
4118 bool AllowBuiltinCreation = false);
4119 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4120 bool InUnqualifiedLookup = false);
4121 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4122 CXXScopeSpec &SS);
4123 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4124 bool AllowBuiltinCreation = false,
4125 bool EnteringContext = false);
4126 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4127 RedeclarationKind Redecl
4128 = NotForRedeclaration);
4129 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4130
4131 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4132 UnresolvedSetImpl &Functions);
4133
4134 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4135 SourceLocation GnuLabelLoc = SourceLocation());
4136
4137 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4138 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4139 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4140 unsigned Quals);
4141 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4142 bool RValueThis, unsigned ThisQuals);
4143 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4144 unsigned Quals);
4145 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4146 bool RValueThis, unsigned ThisQuals);
4147 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4148
4149 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4150 bool IsUDSuffix);
4151 LiteralOperatorLookupResult
4152 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4153 bool AllowRaw, bool AllowTemplate,
4154 bool AllowStringTemplate, bool DiagnoseMissing,
4155 StringLiteral *StringLit = nullptr);
4156 bool isKnownName(StringRef name);
4157
4158 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4159 enum class FunctionEmissionStatus {
4160 Emitted,
4161 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4162 OMPDiscarded, // Discarded due to OpenMP hostness
4163 TemplateDiscarded, // Discarded due to uninstantiated templates
4164 Unknown,
4165 };
4166 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4167 bool Final = false);
4168
4169 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4170 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4171
4172 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4173 ArrayRef<Expr *> Args, ADLResult &Functions);
4174
4175 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4176 VisibleDeclConsumer &Consumer,
4177 bool IncludeGlobalScope = true,
4178 bool LoadExternal = true);
4179 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4180 VisibleDeclConsumer &Consumer,
4181 bool IncludeGlobalScope = true,
4182 bool IncludeDependentBases = false,
4183 bool LoadExternal = true);
4184
4185 enum CorrectTypoKind {
4186 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4187 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4188 };
4189
4190 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4191 Sema::LookupNameKind LookupKind,
4192 Scope *S, CXXScopeSpec *SS,
4193 CorrectionCandidateCallback &CCC,
4194 CorrectTypoKind Mode,
4195 DeclContext *MemberContext = nullptr,
4196 bool EnteringContext = false,
4197 const ObjCObjectPointerType *OPT = nullptr,
4198 bool RecordFailure = true);
4199
4200 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4201 Sema::LookupNameKind LookupKind, Scope *S,
4202 CXXScopeSpec *SS,
4203 CorrectionCandidateCallback &CCC,
4204 TypoDiagnosticGenerator TDG,
4205 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4206 DeclContext *MemberContext = nullptr,
4207 bool EnteringContext = false,
4208 const ObjCObjectPointerType *OPT = nullptr);
4209
4210 /// Process any TypoExprs in the given Expr and its children,
4211 /// generating diagnostics as appropriate and returning a new Expr if there
4212 /// were typos that were all successfully corrected and ExprError if one or
4213 /// more typos could not be corrected.
4214 ///
4215 /// \param E The Expr to check for TypoExprs.
4216 ///
4217 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4218 /// initializer.
4219 ///
4220 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4221 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4222 ///
4223 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4224 /// it is an acceptable/usable result from a single combination of typo
4225 /// corrections. As long as the filter returns ExprError, different
4226 /// combinations of corrections will be tried until all are exhausted.
4227 ExprResult CorrectDelayedTyposInExpr(
4228 Expr *E, VarDecl *InitDecl = nullptr,
4229 bool RecoverUncorrectedTypos = false,
4230 llvm::function_ref<ExprResult(Expr *)> Filter =
4231 [](Expr *E) -> ExprResult { return E; });
4232
4233 ExprResult CorrectDelayedTyposInExpr(
4234 ExprResult ER, VarDecl *InitDecl = nullptr,
4235 bool RecoverUncorrectedTypos = false,
4236 llvm::function_ref<ExprResult(Expr *)> Filter =
4237 [](Expr *E) -> ExprResult { return E; }) {
4238 return ER.isInvalid()
4239 ? ER
4240 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4241 RecoverUncorrectedTypos, Filter);
4242 }
4243
4244 void diagnoseTypo(const TypoCorrection &Correction,
4245 const PartialDiagnostic &TypoDiag,
4246 bool ErrorRecovery = true);
4247
4248 void diagnoseTypo(const TypoCorrection &Correction,
4249 const PartialDiagnostic &TypoDiag,
4250 const PartialDiagnostic &PrevNote,
4251 bool ErrorRecovery = true);
4252
4253 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4254
4255 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4256 ArrayRef<Expr *> Args,
4257 AssociatedNamespaceSet &AssociatedNamespaces,
4258 AssociatedClassSet &AssociatedClasses);
4259
4260 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4261 bool ConsiderLinkage, bool AllowInlineNamespace);
4262
4263 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4264
4265 void DiagnoseAmbiguousLookup(LookupResult &Result);
4266 //@}
4267
4268 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4269 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4270 ArrayRef<Expr *> SubExprs,
4271 QualType T = QualType());
4272
4273 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4274 SourceLocation IdLoc,
4275 bool TypoCorrection = false);
4276 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4277 SourceLocation Loc);
4278 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4279 Scope *S, bool ForRedeclaration,
4280 SourceLocation Loc);
4281 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4282 Scope *S);
4283 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4284 FunctionDecl *FD);
4285 void AddKnownFunctionAttributes(FunctionDecl *FD);
4286
4287 // More parsing and symbol table subroutines.
4288
4289 void ProcessPragmaWeak(Scope *S, Decl *D);
4290 // Decl attributes - this routine is the top level dispatcher.
4291 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4292 // Helper for delayed processing of attributes.
4293 void ProcessDeclAttributeDelayed(Decl *D,
4294 const ParsedAttributesView &AttrList);
4295 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4296 bool IncludeCXX11Attributes = true);
4297 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4298 const ParsedAttributesView &AttrList);
4299
4300 void checkUnusedDeclAttributes(Declarator &D);
4301
4302 /// Handles semantic checking for features that are common to all attributes,
4303 /// such as checking whether a parameter was properly specified, or the
4304 /// correct number of arguments were passed, etc. Returns true if the
4305 /// attribute has been diagnosed.
4306 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4307 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4308
4309 /// Determine if type T is a valid subject for a nonnull and similar
4310 /// attributes. By default, we look through references (the behavior used by
4311 /// nonnull), but if the second parameter is true, then we treat a reference
4312 /// type as valid.
4313 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4314
4315 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4316 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4317 const FunctionDecl *FD = nullptr);
4318 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4319 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4320 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4321 StringRef &Str,
4322 SourceLocation *ArgLocation = nullptr);
4323 llvm::Error isValidSectionSpecifier(StringRef Str);
4324 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4325 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4326 bool checkMSInheritanceAttrOnDefinition(
4327 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4328 MSInheritanceModel SemanticSpelling);
4329
4330 void CheckAlignasUnderalignment(Decl *D);
4331
4332 /// Adjust the calling convention of a method to be the ABI default if it
4333 /// wasn't specified explicitly. This handles method types formed from
4334 /// function type typedefs and typename template arguments.
4335 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4336 SourceLocation Loc);
4337
4338 // Check if there is an explicit attribute, but only look through parens.
4339 // The intent is to look for an attribute on the current declarator, but not
4340 // one that came from a typedef.
4341 bool hasExplicitCallingConv(QualType T);
4342
4343 /// Get the outermost AttributedType node that sets a calling convention.
4344 /// Valid types should not have multiple attributes with different CCs.
4345 const AttributedType *getCallingConvAttributedType(QualType T) const;
4346
4347 /// Process the attributes before creating an attributed statement. Returns
4348 /// the semantic attributes that have been processed.
4349 void ProcessStmtAttributes(Stmt *Stmt,
4350 const ParsedAttributesWithRange &InAttrs,
4351 SmallVectorImpl<const Attr *> &OutAttrs);
4352
4353 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4354 ObjCMethodDecl *MethodDecl,
4355 bool IsProtocolMethodDecl);
4356
4357 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4358 ObjCMethodDecl *Overridden,
4359 bool IsProtocolMethodDecl);
4360
4361 /// WarnExactTypedMethods - This routine issues a warning if method
4362 /// implementation declaration matches exactly that of its declaration.
4363 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4364 ObjCMethodDecl *MethodDecl,
4365 bool IsProtocolMethodDecl);
4366
4367 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4368
4369 /// CheckImplementationIvars - This routine checks if the instance variables
4370 /// listed in the implelementation match those listed in the interface.
4371 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4372 ObjCIvarDecl **Fields, unsigned nIvars,
4373 SourceLocation Loc);
4374
4375 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4376 /// remains unimplemented in the class or category \@implementation.
4377 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4378 ObjCContainerDecl* IDecl,
4379 bool IncompleteImpl = false);
4380
4381 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4382 /// which must be implemented by this implementation.
4383 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4384 ObjCContainerDecl *CDecl,
4385 bool SynthesizeProperties);
4386
4387 /// Diagnose any null-resettable synthesized setters.
4388 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4389
4390 /// DefaultSynthesizeProperties - This routine default synthesizes all
4391 /// properties which must be synthesized in the class's \@implementation.
4392 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4393 ObjCInterfaceDecl *IDecl,
4394 SourceLocation AtEnd);
4395 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4396
4397 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4398 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4399 /// declared in class 'IFace'.
4400 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4401 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4402
4403 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4404 /// backs the property is not used in the property's accessor.
4405 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4406 const ObjCImplementationDecl *ImplD);
4407
4408 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4409 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4410 /// It also returns ivar's property on success.
4411 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4412 const ObjCPropertyDecl *&PDecl) const;
4413
4414 /// Called by ActOnProperty to handle \@property declarations in
4415 /// class extensions.
4416 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4417 SourceLocation AtLoc,
4418 SourceLocation LParenLoc,
4419 FieldDeclarator &FD,
4420 Selector GetterSel,
4421 SourceLocation GetterNameLoc,
4422 Selector SetterSel,
4423 SourceLocation SetterNameLoc,
4424 const bool isReadWrite,
4425 unsigned &Attributes,
4426 const unsigned AttributesAsWritten,
4427 QualType T,
4428 TypeSourceInfo *TSI,
4429 tok::ObjCKeywordKind MethodImplKind);
4430
4431 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4432 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4433 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4434 ObjCContainerDecl *CDecl,
4435 SourceLocation AtLoc,
4436 SourceLocation LParenLoc,
4437 FieldDeclarator &FD,
4438 Selector GetterSel,
4439 SourceLocation GetterNameLoc,
4440 Selector SetterSel,
4441 SourceLocation SetterNameLoc,
4442 const bool isReadWrite,
4443 const unsigned Attributes,
4444 const unsigned AttributesAsWritten,
4445 QualType T,
4446 TypeSourceInfo *TSI,
4447 tok::ObjCKeywordKind MethodImplKind,
4448 DeclContext *lexicalDC = nullptr);
4449
4450 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4451 /// warning) when atomic property has one but not the other user-declared
4452 /// setter or getter.
4453 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4454 ObjCInterfaceDecl* IDecl);
4455
4456 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4457
4458 void DiagnoseMissingDesignatedInitOverrides(
4459 const ObjCImplementationDecl *ImplD,
4460 const ObjCInterfaceDecl *IFD);
4461
4462 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4463
4464 enum MethodMatchStrategy {
4465 MMS_loose,
4466 MMS_strict
4467 };
4468
4469 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4470 /// true, or false, accordingly.
4471 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4472 const ObjCMethodDecl *PrevMethod,
4473 MethodMatchStrategy strategy = MMS_strict);
4474
4475 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4476 /// or protocol against those declared in their implementations.
4477 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4478 const SelectorSet &ClsMap,
4479 SelectorSet &InsMapSeen,
4480 SelectorSet &ClsMapSeen,
4481 ObjCImplDecl* IMPDecl,
4482 ObjCContainerDecl* IDecl,
4483 bool &IncompleteImpl,
4484 bool ImmediateClass,
4485 bool WarnCategoryMethodImpl=false);
4486
4487 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4488 /// category matches with those implemented in its primary class and
4489 /// warns each time an exact match is found.
4490 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4491
4492 /// Add the given method to the list of globally-known methods.
4493 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4494
4495 /// Returns default addr space for method qualifiers.
4496 LangAS getDefaultCXXMethodAddrSpace() const;
4497
4498private:
4499 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4500 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4501 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4502
4503 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4504 /// optionally warns if there are multiple signatures.
4505 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4506 bool receiverIdOrClass,
4507 bool instance);
4508
4509public:
4510 /// - Returns instance or factory methods in global method pool for
4511 /// given selector. It checks the desired kind first, if none is found, and
4512 /// parameter checkTheOther is set, it then checks the other kind. If no such
4513 /// method or only one method is found, function returns false; otherwise, it
4514 /// returns true.
4515 bool
4516 CollectMultipleMethodsInGlobalPool(Selector Sel,
4517 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4518 bool InstanceFirst, bool CheckTheOther,
4519 const ObjCObjectType *TypeBound = nullptr);
4520
4521 bool
4522 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4523 SourceRange R, bool receiverIdOrClass,
4524 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4525
4526 void
4527 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4528 Selector Sel, SourceRange R,
4529 bool receiverIdOrClass);
4530
4531private:
4532 /// - Returns a selector which best matches given argument list or
4533 /// nullptr if none could be found
4534 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4535 bool IsInstance,
4536 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4537
4538
4539 /// Record the typo correction failure and return an empty correction.
4540 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4541 bool RecordFailure = true) {
4542 if (RecordFailure)
4543 TypoCorrectionFailures[Typo].insert(TypoLoc);
4544 return TypoCorrection();
4545 }
4546
4547public:
4548 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4549 /// unit are added to a global pool. This allows us to efficiently associate
4550 /// a selector with a method declaraation for purposes of typechecking
4551 /// messages sent to "id" (where the class of the object is unknown).
4552 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4553 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4554 }
4555
4556 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4557 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4558 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4559 }
4560
4561 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4562 /// pool.
4563 void AddAnyMethodToGlobalPool(Decl *D);
4564
4565 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4566 /// there are multiple signatures.
4567 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4568 bool receiverIdOrClass=false) {
4569 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4570 /*instance*/true);
4571 }
4572
4573 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4574 /// there are multiple signatures.
4575 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4576 bool receiverIdOrClass=false) {
4577 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4578 /*instance*/false);
4579 }
4580
4581 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4582 QualType ObjectType=QualType());
4583 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4584 /// implementation.
4585 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4586
4587 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4588 /// initialization.
4589 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4590 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4591
4592 //===--------------------------------------------------------------------===//
4593 // Statement Parsing Callbacks: SemaStmt.cpp.
4594public:
4595 class FullExprArg {
4596 public:
4597 FullExprArg() : E(nullptr) { }
4598 FullExprArg(Sema &actions) : E(nullptr) { }
4599
4600 ExprResult release() {
4601 return E;
4602 }
4603
4604 Expr *get() const { return E; }
4605
4606 Expr *operator->() {
4607 return E;
4608 }
4609
4610 private:
4611 // FIXME: No need to make the entire Sema class a friend when it's just
4612 // Sema::MakeFullExpr that needs access to the constructor below.
4613 friend class Sema;
4614
4615 explicit FullExprArg(Expr *expr) : E(expr) {}
4616
4617 Expr *E;
4618 };
4619
4620 FullExprArg MakeFullExpr(Expr *Arg) {
4621 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4622 }
4623 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4624 return FullExprArg(
4625 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4626 }
4627 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4628 ExprResult FE =
4629 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4630 /*DiscardedValue*/ true);
4631 return FullExprArg(FE.get());
4632 }
4633
4634 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4635 StmtResult ActOnExprStmtError();
4636
4637 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4638 bool HasLeadingEmptyMacro = false);
4639
4640 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4641 void ActOnAfterCompoundStatementLeadingPragmas();
4642 void ActOnFinishOfCompoundStmt();
4643 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4644 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4645
4646 /// A RAII object to enter scope of a compound statement.
4647 class CompoundScopeRAII {
4648 public:
4649 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4650 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4651 }
4652
4653 ~CompoundScopeRAII() {
4654 S.ActOnFinishOfCompoundStmt();
4655 }
4656
4657 private:
4658 Sema &S;
4659 };
4660
4661 /// An RAII helper that pops function a function scope on exit.
4662 struct FunctionScopeRAII {
4663 Sema &S;
4664 bool Active;
4665 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4666 ~FunctionScopeRAII() {
4667 if (Active)
4668 S.PopFunctionScopeInfo();
4669 }
4670 void disable() { Active = false; }
4671 };
4672
4673 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4674 SourceLocation StartLoc,
4675 SourceLocation EndLoc);
4676 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4677 StmtResult ActOnForEachLValueExpr(Expr *E);
4678 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4679 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4680 SourceLocation DotDotDotLoc, ExprResult RHS,
4681 SourceLocation ColonLoc);
4682 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4683
4684 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4685 SourceLocation ColonLoc,
4686 Stmt *SubStmt, Scope *CurScope);
4687 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4688 SourceLocation ColonLoc, Stmt *SubStmt);
4689
4690 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4691 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4692 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4693 Stmt *SubStmt);
4694
4695 class ConditionResult;
4696 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4697 SourceLocation LParenLoc, Stmt *InitStmt,
4698 ConditionResult Cond, SourceLocation RParenLoc,
4699 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4700 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4701 SourceLocation LParenLoc, Stmt *InitStmt,
4702 ConditionResult Cond, SourceLocation RParenLoc,
4703 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4704 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4705 SourceLocation LParenLoc, Stmt *InitStmt,
4706 ConditionResult Cond,
4707 SourceLocation RParenLoc);
4708 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4709 Stmt *Switch, Stmt *Body);
4710 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4711 ConditionResult Cond, SourceLocation RParenLoc,
4712 Stmt *Body);
4713 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4714 SourceLocation WhileLoc, SourceLocation CondLParen,
4715 Expr *Cond, SourceLocation CondRParen);
4716
4717 StmtResult ActOnForStmt(SourceLocation ForLoc,
4718 SourceLocation LParenLoc,
4719 Stmt *First,
4720 ConditionResult Second,
4721 FullExprArg Third,
4722 SourceLocation RParenLoc,
4723 Stmt *Body);
4724 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4725 Expr *collection);
4726 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4727 Stmt *First, Expr *collection,
4728 SourceLocation RParenLoc);
4729 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4730
4731 enum BuildForRangeKind {
4732 /// Initial building of a for-range statement.
4733 BFRK_Build,
4734 /// Instantiation or recovery rebuild of a for-range statement. Don't
4735 /// attempt any typo-correction.
4736 BFRK_Rebuild,
4737 /// Determining whether a for-range statement could be built. Avoid any
4738 /// unnecessary or irreversible actions.
4739 BFRK_Check
4740 };
4741
4742 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4743 SourceLocation CoawaitLoc,
4744 Stmt *InitStmt,
4745 Stmt *LoopVar,
4746 SourceLocation ColonLoc, Expr *Collection,
4747 SourceLocation RParenLoc,
4748 BuildForRangeKind Kind);
4749 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4750 SourceLocation CoawaitLoc,
4751 Stmt *InitStmt,
4752 SourceLocation ColonLoc,
4753 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4754 Expr *Cond, Expr *Inc,
4755 Stmt *LoopVarDecl,
4756 SourceLocation RParenLoc,
4757 BuildForRangeKind Kind);
4758 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4759
4760 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4761 SourceLocation LabelLoc,
4762 LabelDecl *TheDecl);
4763 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4764 SourceLocation StarLoc,
4765 Expr *DestExp);
4766 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4767 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4768
4769 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4770 CapturedRegionKind Kind, unsigned NumParams);
4771 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4772 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4773 CapturedRegionKind Kind,
4774 ArrayRef<CapturedParamNameType> Params,
4775 unsigned OpenMPCaptureLevel = 0);
4776 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4777 void ActOnCapturedRegionError();
4778 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4779 SourceLocation Loc,
4780 unsigned NumParams);
4781
4782 struct NamedReturnInfo {
4783 const VarDecl *Candidate;
4784
4785 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4786 Status S;
4787
4788 bool isMoveEligible() const { return S != None; };
4789 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4790 };
4791 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4792 NamedReturnInfo getNamedReturnInfo(
4793 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4794 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4795 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4796 QualType ReturnType);
4797
4798 ExprResult
4799 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4800 const NamedReturnInfo &NRInfo, Expr *Value,
4801 bool SupressSimplerImplicitMoves = false);
4802
4803 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4804 Scope *CurScope);
4805 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4806 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4807 NamedReturnInfo &NRInfo,
4808 bool SupressSimplerImplicitMoves);
4809
4810 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4811 bool IsVolatile, unsigned NumOutputs,
4812 unsigned NumInputs, IdentifierInfo **Names,
4813 MultiExprArg Constraints, MultiExprArg Exprs,
4814 Expr *AsmString, MultiExprArg Clobbers,
4815 unsigned NumLabels,
4816 SourceLocation RParenLoc);
4817
4818 void FillInlineAsmIdentifierInfo(Expr *Res,
4819 llvm::InlineAsmIdentifierInfo &Info);
4820 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4821 SourceLocation TemplateKWLoc,
4822 UnqualifiedId &Id,
4823 bool IsUnevaluatedContext);
4824 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4825 unsigned &Offset, SourceLocation AsmLoc);
4826 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4827 SourceLocation AsmLoc);
4828 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4829 ArrayRef<Token> AsmToks,
4830 StringRef AsmString,
4831 unsigned NumOutputs, unsigned NumInputs,
4832 ArrayRef<StringRef> Constraints,
4833 ArrayRef<StringRef> Clobbers,
4834 ArrayRef<Expr*> Exprs,
4835 SourceLocation EndLoc);
4836 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4837 SourceLocation Location,
4838 bool AlwaysCreate);
4839
4840 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4841 SourceLocation StartLoc,
4842 SourceLocation IdLoc, IdentifierInfo *Id,
4843 bool Invalid = false);
4844
4845 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4846
4847 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4848 Decl *Parm, Stmt *Body);
4849
4850 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4851
4852 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4853 MultiStmtArg Catch, Stmt *Finally);
4854
4855 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4856 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4857 Scope *CurScope);
4858 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4859 Expr *operand);
4860 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4861 Expr *SynchExpr,
4862 Stmt *SynchBody);
4863
4864 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4865
4866 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4867 SourceLocation StartLoc,
4868 SourceLocation IdLoc,
4869 IdentifierInfo *Id);
4870
4871 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4872
4873 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4874 Decl *ExDecl, Stmt *HandlerBlock);
4875 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4876 ArrayRef<Stmt *> Handlers);
4877
4878 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4879 SourceLocation TryLoc, Stmt *TryBlock,
4880 Stmt *Handler);
4881 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4882 Expr *FilterExpr,
4883 Stmt *Block);
4884 void ActOnStartSEHFinallyBlock();
4885 void ActOnAbortSEHFinallyBlock();
4886 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4887 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4888
4889 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4890
4891 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4892
4893 /// If it's a file scoped decl that must warn if not used, keep track
4894 /// of it.
4895 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4896
4897 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4898 /// whose result is unused, warn.
4899 void DiagnoseUnusedExprResult(const Stmt *S);
4900 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4901 void DiagnoseUnusedDecl(const NamedDecl *ND);
4902
4903 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4904 /// variable.
4905 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4906
4907 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4908 /// statement as a \p Body, and it is located on the same line.
4909 ///
4910 /// This helps prevent bugs due to typos, such as:
4911 /// if (condition);
4912 /// do_stuff();
4913 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4914 const Stmt *Body,
4915 unsigned DiagID);
4916
4917 /// Warn if a for/while loop statement \p S, which is followed by
4918 /// \p PossibleBody, has a suspicious null statement as a body.
4919 void DiagnoseEmptyLoopBody(const Stmt *S,
4920 const Stmt *PossibleBody);
4921
4922 /// Warn if a value is moved to itself.
4923 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4924 SourceLocation OpLoc);
4925
4926 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4927 /// _Nonnull one.
4928 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4929 SourceLocation Loc);
4930
4931 /// Warn when implicitly casting 0 to nullptr.
4932 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4933
4934 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4935 return DelayedDiagnostics.push(pool);
4936 }
4937 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4938
4939 typedef ProcessingContextState ParsingClassState;
4940 ParsingClassState PushParsingClass() {
4941 ParsingClassDepth++;
4942 return DelayedDiagnostics.pushUndelayed();
4943 }
4944 void PopParsingClass(ParsingClassState state) {
4945 ParsingClassDepth--;
4946 DelayedDiagnostics.popUndelayed(state);
4947 }
4948
4949 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4950
4951 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4952 const ObjCInterfaceDecl *UnknownObjCClass,
4953 bool ObjCPropertyAccess,
4954 bool AvoidPartialAvailabilityChecks = false,
4955 ObjCInterfaceDecl *ClassReceiver = nullptr);
4956
4957 bool makeUnavailableInSystemHeader(SourceLocation loc,
4958 UnavailableAttr::ImplicitReason reason);
4959
4960 /// Issue any -Wunguarded-availability warnings in \c FD
4961 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4962
4963 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4964
4965 //===--------------------------------------------------------------------===//
4966 // Expression Parsing Callbacks: SemaExpr.cpp.
4967
4968 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4969 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4970 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4971 bool ObjCPropertyAccess = false,
4972 bool AvoidPartialAvailabilityChecks = false,
4973 ObjCInterfaceDecl *ClassReciever = nullptr);
4974 void NoteDeletedFunction(FunctionDecl *FD);
4975 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4976 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4977 ObjCMethodDecl *Getter,
4978 SourceLocation Loc);
4979 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4980 ArrayRef<Expr *> Args);
4981
4982 void PushExpressionEvaluationContext(
4983 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4984 ExpressionEvaluationContextRecord::ExpressionKind Type =
4985 ExpressionEvaluationContextRecord::EK_Other);
4986 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4987 void PushExpressionEvaluationContext(
4988 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4989 ExpressionEvaluationContextRecord::ExpressionKind Type =
4990 ExpressionEvaluationContextRecord::EK_Other);
4991 void PopExpressionEvaluationContext();
4992
4993 void DiscardCleanupsInEvaluationContext();
4994
4995 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4996 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4997
4998 ExprResult CheckUnevaluatedOperand(Expr *E);
4999 void CheckUnusedVolatileAssignment(Expr *E);
5000
5001 ExprResult ActOnConstantExpression(ExprResult Res);
5002
5003 // Functions for marking a declaration referenced. These functions also
5004 // contain the relevant logic for marking if a reference to a function or
5005 // variable is an odr-use (in the C++11 sense). There are separate variants
5006 // for expressions referring to a decl; these exist because odr-use marking
5007 // needs to be delayed for some constant variables when we build one of the
5008 // named expressions.
5009 //
5010 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5011 // should usually be true. This only needs to be set to false if the lack of
5012 // odr-use cannot be determined from the current context (for instance,
5013 // because the name denotes a virtual function and was written without an
5014 // explicit nested-name-specifier).
5015 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5016 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5017 bool MightBeOdrUse = true);
5018 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5019 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5020 void MarkMemberReferenced(MemberExpr *E);
5021 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5022 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5023 unsigned CapturingScopeIndex);
5024
5025 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5026 void CleanupVarDeclMarking();
5027
5028 enum TryCaptureKind {
5029 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5030 };
5031
5032 /// Try to capture the given variable.
5033 ///
5034 /// \param Var The variable to capture.
5035 ///
5036 /// \param Loc The location at which the capture occurs.
5037 ///
5038 /// \param Kind The kind of capture, which may be implicit (for either a
5039 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5040 ///
5041 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5042 /// an explicit lambda capture.
5043 ///
5044 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5045 /// captures or diagnose errors. If false, this routine merely check whether
5046 /// the capture can occur without performing the capture itself or complaining
5047 /// if the variable cannot be captured.
5048 ///
5049 /// \param CaptureType Will be set to the type of the field used to capture
5050 /// this variable in the innermost block or lambda. Only valid when the
5051 /// variable can be captured.
5052 ///
5053 /// \param DeclRefType Will be set to the type of a reference to the capture
5054 /// from within the current scope. Only valid when the variable can be
5055 /// captured.
5056 ///
5057 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5058 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5059 /// This is useful when enclosing lambdas must speculatively capture
5060 /// variables that may or may not be used in certain specializations of
5061 /// a nested generic lambda.
5062 ///
5063 /// \returns true if an error occurred (i.e., the variable cannot be
5064 /// captured) and false if the capture succeeded.
5065 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5066 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5067 QualType &CaptureType,
5068 QualType &DeclRefType,
5069 const unsigned *const FunctionScopeIndexToStopAt);
5070
5071 /// Try to capture the given variable.
5072 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5073 TryCaptureKind Kind = TryCapture_Implicit,
5074 SourceLocation EllipsisLoc = SourceLocation());
5075
5076 /// Checks if the variable must be captured.
5077 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5078
5079 /// Given a variable, determine the type that a reference to that
5080 /// variable will have in the given scope.
5081 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5082
5083 /// Mark all of the declarations referenced within a particular AST node as
5084 /// referenced. Used when template instantiation instantiates a non-dependent
5085 /// type -- entities referenced by the type are now referenced.
5086 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5087 void MarkDeclarationsReferencedInExpr(Expr *E,
5088 bool SkipLocalVariables = false);
5089
5090 /// Try to recover by turning the given expression into a
5091 /// call. Returns true if recovery was attempted or an error was
5092 /// emitted; this may also leave the ExprResult invalid.
5093 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5094 bool ForceComplain = false,
5095 bool (*IsPlausibleResult)(QualType) = nullptr);
5096
5097 /// Figure out if an expression could be turned into a call.
5098 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5099 UnresolvedSetImpl &NonTemplateOverloads);
5100
5101 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5102 /// conversion.
5103 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5104
5105 /// Conditionally issue a diagnostic based on the current
5106 /// evaluation context.
5107 ///
5108 /// \param Statement If Statement is non-null, delay reporting the
5109 /// diagnostic until the function body is parsed, and then do a basic
5110 /// reachability analysis to determine if the statement is reachable.
5111 /// If it is unreachable, the diagnostic will not be emitted.
5112 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5113 const PartialDiagnostic &PD);
5114 /// Similar, but diagnostic is only produced if all the specified statements
5115 /// are reachable.
5116 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5117 const PartialDiagnostic &PD);
5118
5119 // Primary Expressions.
5120 SourceRange getExprRange(Expr *E) const;
5121
5122 ExprResult ActOnIdExpression(
5123 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5124 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5125 CorrectionCandidateCallback *CCC = nullptr,
5126 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5127
5128 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5129 TemplateArgumentListInfo &Buffer,
5130 DeclarationNameInfo &NameInfo,
5131 const TemplateArgumentListInfo *&TemplateArgs);
5132
5133 bool DiagnoseDependentMemberLookup(LookupResult &R);
5134
5135 bool
5136 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5137 CorrectionCandidateCallback &CCC,
5138 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5139 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5140
5141 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5142 IdentifierInfo *II);
5143 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5144
5145 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5146 IdentifierInfo *II,
5147 bool AllowBuiltinCreation=false);
5148
5149 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5150 SourceLocation TemplateKWLoc,
5151 const DeclarationNameInfo &NameInfo,
5152 bool isAddressOfOperand,
5153 const TemplateArgumentListInfo *TemplateArgs);
5154
5155 /// If \p D cannot be odr-used in the current expression evaluation context,
5156 /// return a reason explaining why. Otherwise, return NOUR_None.
5157 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5158
5159 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5160 SourceLocation Loc,
5161 const CXXScopeSpec *SS = nullptr);
5162 DeclRefExpr *
5163 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5164 const DeclarationNameInfo &NameInfo,
5165 const CXXScopeSpec *SS = nullptr,
5166 NamedDecl *FoundD = nullptr,
5167 SourceLocation TemplateKWLoc = SourceLocation(),
5168 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5169 DeclRefExpr *
5170 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5171 const DeclarationNameInfo &NameInfo,
5172 NestedNameSpecifierLoc NNS,
5173 NamedDecl *FoundD = nullptr,
5174 SourceLocation TemplateKWLoc = SourceLocation(),
5175 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5176
5177 ExprResult
5178 BuildAnonymousStructUnionMemberReference(
5179 const CXXScopeSpec &SS,
5180 SourceLocation nameLoc,
5181 IndirectFieldDecl *indirectField,
5182 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5183 Expr *baseObjectExpr = nullptr,
5184 SourceLocation opLoc = SourceLocation());
5185
5186 ExprResult BuildPossibleImplicitMemberExpr(
5187 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5188 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5189 UnresolvedLookupExpr *AsULE = nullptr);
5190 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5191 SourceLocation TemplateKWLoc,
5192 LookupResult &R,
5193 const TemplateArgumentListInfo *TemplateArgs,
5194 bool IsDefiniteInstance,
5195 const Scope *S);
5196 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5197 const LookupResult &R,
5198 bool HasTrailingLParen);
5199
5200 ExprResult
5201 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5202 const DeclarationNameInfo &NameInfo,
5203 bool IsAddressOfOperand, const Scope *S,
5204 TypeSourceInfo **RecoveryTSI = nullptr);
5205
5206 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5207 SourceLocation TemplateKWLoc,
5208 const DeclarationNameInfo &NameInfo,
5209 const TemplateArgumentListInfo *TemplateArgs);
5210
5211 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5212 LookupResult &R,
5213 bool NeedsADL,
5214 bool AcceptInvalidDecl = false);
5215 ExprResult BuildDeclarationNameExpr(
5216 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5217 NamedDecl *FoundD = nullptr,
5218 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5219 bool AcceptInvalidDecl = false);
5220
5221 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5222 DeclarationNameInfo &SuffixInfo,
5223 ArrayRef<Expr *> Args,
5224 SourceLocation LitEndLoc,
5225 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5226
5227 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5228 PredefinedExpr::IdentKind IK);
5229 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5230 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5231
5232 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5233 SourceLocation LParen,
5234 SourceLocation RParen,
5235 TypeSourceInfo *TSI);
5236 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5237 SourceLocation LParen,
5238 SourceLocation RParen,
5239 ParsedType ParsedTy);
5240
5241 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5242
5243 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5244 ExprResult ActOnCharacterConstant(const Token &Tok,
5245 Scope *UDLScope = nullptr);
5246 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5247 ExprResult ActOnParenListExpr(SourceLocation L,
5248 SourceLocation R,
5249 MultiExprArg Val);
5250
5251 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5252 /// fragments (e.g. "foo" "bar" L"baz").
5253 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5254 Scope *UDLScope = nullptr);
5255
5256 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5257 SourceLocation DefaultLoc,
5258 SourceLocation RParenLoc,
5259 Expr *ControllingExpr,
5260 ArrayRef<ParsedType> ArgTypes,
5261 ArrayRef<Expr *> ArgExprs);
5262 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5263 SourceLocation DefaultLoc,
5264 SourceLocation RParenLoc,
5265 Expr *ControllingExpr,
5266 ArrayRef<TypeSourceInfo *> Types,
5267 ArrayRef<Expr *> Exprs);
5268
5269 // Binary/Unary Operators. 'Tok' is the token for the operator.
5270 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5271 Expr *InputExpr);
5272 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5273 UnaryOperatorKind Opc, Expr *Input);
5274 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5275 tok::TokenKind Op, Expr *Input);
5276
5277 bool isQualifiedMemberAccess(Expr *E);
5278 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5279
5280 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5281 SourceLocation OpLoc,
5282 UnaryExprOrTypeTrait ExprKind,
5283 SourceRange R);
5284 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5285 UnaryExprOrTypeTrait ExprKind);
5286 ExprResult
5287 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5288 UnaryExprOrTypeTrait ExprKind,
5289 bool IsType, void *TyOrEx,
5290 SourceRange ArgRange);
5291
5292 ExprResult CheckPlaceholderExpr(Expr *E);
5293 bool CheckVecStepExpr(Expr *E);
5294
5295 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5296 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5297 SourceRange ExprRange,
5298 UnaryExprOrTypeTrait ExprKind);
5299 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5300 SourceLocation OpLoc,
5301 IdentifierInfo &Name,
5302 SourceLocation NameLoc,
5303 SourceLocation RParenLoc);
5304 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5305 tok::TokenKind Kind, Expr *Input);
5306
5307 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5308 Expr *Idx, SourceLocation RLoc);
5309 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5310 Expr *Idx, SourceLocation RLoc);
5311
5312 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5313 Expr *ColumnIdx,
5314 SourceLocation RBLoc);
5315
5316 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5317 Expr *LowerBound,
5318 SourceLocation ColonLocFirst,
5319 SourceLocation ColonLocSecond,
5320 Expr *Length, Expr *Stride,
5321 SourceLocation RBLoc);
5322 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5323 SourceLocation RParenLoc,
5324 ArrayRef<Expr *> Dims,
5325 ArrayRef<SourceRange> Brackets);
5326
5327 /// Data structure for iterator expression.
5328 struct OMPIteratorData {
5329 IdentifierInfo *DeclIdent = nullptr;
5330 SourceLocation DeclIdentLoc;
5331 ParsedType Type;
5332 OMPIteratorExpr::IteratorRange Range;
5333 SourceLocation AssignLoc;
5334 SourceLocation ColonLoc;
5335 SourceLocation SecColonLoc;
5336 };
5337
5338 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5339 SourceLocation LLoc, SourceLocation RLoc,
5340 ArrayRef<OMPIteratorData> Data);
5341
5342 // This struct is for use by ActOnMemberAccess to allow
5343 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5344 // changing the access operator from a '.' to a '->' (to see if that is the
5345 // change needed to fix an error about an unknown member, e.g. when the class
5346 // defines a custom operator->).
5347 struct ActOnMemberAccessExtraArgs {
5348 Scope *S;
5349 UnqualifiedId &Id;
5350 Decl *ObjCImpDecl;
5351 };
5352
5353 ExprResult BuildMemberReferenceExpr(
5354 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5355 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5356 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5357 const TemplateArgumentListInfo *TemplateArgs,
5358 const Scope *S,
5359 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5360
5361 ExprResult
5362 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5363 bool IsArrow, const CXXScopeSpec &SS,
5364 SourceLocation TemplateKWLoc,
5365 NamedDecl *FirstQualifierInScope, LookupResult &R,
5366 const TemplateArgumentListInfo *TemplateArgs,
5367 const Scope *S,
5368 bool SuppressQualifierCheck = false,
5369 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5370
5371 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5372 SourceLocation OpLoc,
5373 const CXXScopeSpec &SS, FieldDecl *Field,
5374 DeclAccessPair FoundDecl,
5375 const DeclarationNameInfo &MemberNameInfo);
5376
5377 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5378
5379 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5380 const CXXScopeSpec &SS,
5381 const LookupResult &R);
5382
5383 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5384 bool IsArrow, SourceLocation OpLoc,
5385 const CXXScopeSpec &SS,
5386 SourceLocation TemplateKWLoc,
5387 NamedDecl *FirstQualifierInScope,
5388 const DeclarationNameInfo &NameInfo,
5389 const TemplateArgumentListInfo *TemplateArgs);
5390
5391 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5392 SourceLocation OpLoc,
5393 tok::TokenKind OpKind,
5394 CXXScopeSpec &SS,
5395 SourceLocation TemplateKWLoc,
5396 UnqualifiedId &Member,
5397 Decl *ObjCImpDecl);
5398
5399 MemberExpr *
5400 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5401 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5402 ValueDecl *Member, DeclAccessPair FoundDecl,
5403 bool HadMultipleCandidates,
5404 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5405 ExprValueKind VK, ExprObjectKind OK,
5406 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5407 MemberExpr *
5408 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5409 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5410 ValueDecl *Member, DeclAccessPair FoundDecl,
5411 bool HadMultipleCandidates,
5412 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5413 ExprValueKind VK, ExprObjectKind OK,
5414 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5415
5416 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5417 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5418 FunctionDecl *FDecl,
5419 const FunctionProtoType *Proto,
5420 ArrayRef<Expr *> Args,
5421 SourceLocation RParenLoc,
5422 bool ExecConfig = false);
5423 void CheckStaticArrayArgument(SourceLocation CallLoc,
5424 ParmVarDecl *Param,
5425 const Expr *ArgExpr);
5426
5427 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5428 /// This provides the location of the left/right parens and a list of comma
5429 /// locations.
5430 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5431 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5432 Expr *ExecConfig = nullptr);
5433 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5434 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5435 Expr *ExecConfig = nullptr,
5436 bool IsExecConfig = false,
5437 bool AllowRecovery = false);
5438 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5439 MultiExprArg CallArgs);
5440 enum class AtomicArgumentOrder { API, AST };
5441 ExprResult
5442 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5443 SourceLocation RParenLoc, MultiExprArg Args,
5444 AtomicExpr::AtomicOp Op,
5445 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5446 ExprResult
5447 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5448 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5449 Expr *Config = nullptr, bool IsExecConfig = false,
5450 ADLCallKind UsesADL = ADLCallKind::NotADL);
5451
5452 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5453 MultiExprArg ExecConfig,
5454 SourceLocation GGGLoc);
5455
5456 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5457 Declarator &D, ParsedType &Ty,
5458 SourceLocation RParenLoc, Expr *CastExpr);
5459 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5460 TypeSourceInfo *Ty,
5461 SourceLocation RParenLoc,
5462 Expr *Op);
5463 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5464
5465 /// Build an altivec or OpenCL literal.
5466 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5467 SourceLocation RParenLoc, Expr *E,
5468 TypeSourceInfo *TInfo);
5469
5470 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5471
5472 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5473 ParsedType Ty,
5474 SourceLocation RParenLoc,
5475 Expr *InitExpr);
5476
5477 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5478 TypeSourceInfo *TInfo,
5479 SourceLocation RParenLoc,
5480 Expr *LiteralExpr);
5481
5482 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5483 MultiExprArg InitArgList,
5484 SourceLocation RBraceLoc);
5485
5486 ExprResult BuildInitList(SourceLocation LBraceLoc,
5487 MultiExprArg InitArgList,
5488 SourceLocation RBraceLoc);
5489
5490 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5491 SourceLocation EqualOrColonLoc,
5492 bool GNUSyntax,
5493 ExprResult Init);
5494
5495private:
5496 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5497
5498public:
5499 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5500 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5501 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5502 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5503 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5504 Expr *LHSExpr, Expr *RHSExpr);
5505 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5506 UnresolvedSetImpl &Functions);
5507
5508 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5509
5510 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5511 /// in the case of a the GNU conditional expr extension.
5512 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5513 SourceLocation ColonLoc,
5514 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5515
5516 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5517 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5518 LabelDecl *TheDecl);
5519
5520 void ActOnStartStmtExpr();
5521 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5522 SourceLocation RPLoc);
5523 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5524 SourceLocation RPLoc, unsigned TemplateDepth);
5525 // Handle the final expression in a statement expression.
5526 ExprResult ActOnStmtExprResult(ExprResult E);
5527 void ActOnStmtExprError();
5528
5529 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5530 struct OffsetOfComponent {
5531 SourceLocation LocStart, LocEnd;
5532 bool isBrackets; // true if [expr], false if .ident
5533 union {
5534 IdentifierInfo *IdentInfo;
5535 Expr *E;
5536 } U;
5537 };
5538
5539 /// __builtin_offsetof(type, a.b[123][456].c)
5540 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5541 TypeSourceInfo *TInfo,
5542 ArrayRef<OffsetOfComponent> Components,
5543 SourceLocation RParenLoc);
5544 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5545 SourceLocation BuiltinLoc,
5546 SourceLocation TypeLoc,
5547 ParsedType ParsedArgTy,
5548 ArrayRef<OffsetOfComponent> Components,
5549 SourceLocation RParenLoc);
5550
5551 // __builtin_choose_expr(constExpr, expr1, expr2)
5552 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5553 Expr *CondExpr, Expr *LHSExpr,
5554 Expr *RHSExpr, SourceLocation RPLoc);
5555
5556 // __builtin_va_arg(expr, type)
5557 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5558 SourceLocation RPLoc);
5559 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5560 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5561
5562 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5563 // __builtin_COLUMN()
5564 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5565 SourceLocation BuiltinLoc,
5566 SourceLocation RPLoc);
5567
5568 // Build a potentially resolved SourceLocExpr.
5569 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5570 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5571 DeclContext *ParentContext);
5572
5573 // __null
5574 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5575
5576 bool CheckCaseExpression(Expr *E);
5577
5578 /// Describes the result of an "if-exists" condition check.
5579 enum IfExistsResult {
5580 /// The symbol exists.
5581 IER_Exists,
5582
5583 /// The symbol does not exist.
5584 IER_DoesNotExist,
5585
5586 /// The name is a dependent name, so the results will differ
5587 /// from one instantiation to the next.
5588 IER_Dependent,
5589
5590 /// An error occurred.
5591 IER_Error
5592 };
5593
5594 IfExistsResult
5595 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5596 const DeclarationNameInfo &TargetNameInfo);
5597
5598 IfExistsResult
5599 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5600 bool IsIfExists, CXXScopeSpec &SS,
5601 UnqualifiedId &Name);
5602
5603 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5604 bool IsIfExists,
5605 NestedNameSpecifierLoc QualifierLoc,
5606 DeclarationNameInfo NameInfo,
5607 Stmt *Nested);
5608 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5609 bool IsIfExists,
5610 CXXScopeSpec &SS, UnqualifiedId &Name,
5611 Stmt *Nested);
5612
5613 //===------------------------- "Block" Extension ------------------------===//
5614
5615 /// ActOnBlockStart - This callback is invoked when a block literal is
5616 /// started.
5617 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5618
5619 /// ActOnBlockArguments - This callback allows processing of block arguments.
5620 /// If there are no arguments, this is still invoked.
5621 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5622 Scope *CurScope);
5623
5624 /// ActOnBlockError - If there is an error parsing a block, this callback
5625 /// is invoked to pop the information about the block from the action impl.
5626 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5627
5628 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5629 /// literal was successfully completed. ^(int x){...}
5630 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5631 Scope *CurScope);
5632
5633 //===---------------------------- Clang Extensions ----------------------===//
5634
5635 /// __builtin_convertvector(...)
5636 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5637 SourceLocation BuiltinLoc,
5638 SourceLocation RParenLoc);
5639
5640 //===---------------------------- OpenCL Features -----------------------===//
5641
5642 /// __builtin_astype(...)
5643 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5644 SourceLocation BuiltinLoc,
5645 SourceLocation RParenLoc);
5646 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5647 SourceLocation BuiltinLoc,
5648 SourceLocation RParenLoc);
5649
5650 //===---------------------------- C++ Features --------------------------===//
5651
5652 // Act on C++ namespaces
5653 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5654 SourceLocation NamespaceLoc,
5655 SourceLocation IdentLoc, IdentifierInfo *Ident,
5656 SourceLocation LBrace,
5657 const ParsedAttributesView &AttrList,
5658 UsingDirectiveDecl *&UsingDecl);
5659 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5660
5661 NamespaceDecl *getStdNamespace() const;
5662 NamespaceDecl *getOrCreateStdNamespace();
5663
5664 NamespaceDecl *lookupStdExperimentalNamespace();
5665
5666 CXXRecordDecl *getStdBadAlloc() const;
5667 EnumDecl *getStdAlignValT() const;
5668
5669private:
5670 // A cache representing if we've fully checked the various comparison category
5671 // types stored in ASTContext. The bit-index corresponds to the integer value
5672 // of a ComparisonCategoryType enumerator.
5673 llvm::SmallBitVector FullyCheckedComparisonCategories;
5674
5675 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5676 CXXScopeSpec &SS,
5677 ParsedType TemplateTypeTy,
5678 IdentifierInfo *MemberOrBase);
5679
5680public:
5681 enum class ComparisonCategoryUsage {
5682 /// The '<=>' operator was used in an expression and a builtin operator
5683 /// was selected.
5684 OperatorInExpression,
5685 /// A defaulted 'operator<=>' needed the comparison category. This
5686 /// typically only applies to 'std::strong_ordering', due to the implicit
5687 /// fallback return value.
5688 DefaultedOperator,
5689 };
5690
5691 /// Lookup the specified comparison category types in the standard
5692 /// library, an check the VarDecls possibly returned by the operator<=>
5693 /// builtins for that type.
5694 ///
5695 /// \return The type of the comparison category type corresponding to the
5696 /// specified Kind, or a null type if an error occurs
5697 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5698 SourceLocation Loc,
5699 ComparisonCategoryUsage Usage);
5700
5701 /// Tests whether Ty is an instance of std::initializer_list and, if
5702 /// it is and Element is not NULL, assigns the element type to Element.
5703 bool isStdInitializerList(QualType Ty, QualType *Element);
5704
5705 /// Looks for the std::initializer_list template and instantiates it
5706 /// with Element, or emits an error if it's not found.
5707 ///
5708 /// \returns The instantiated template, or null on error.
5709 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5710
5711 /// Determine whether Ctor is an initializer-list constructor, as
5712 /// defined in [dcl.init.list]p2.
5713 bool isInitListConstructor(const FunctionDecl *Ctor);
5714
5715 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5716 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5717 SourceLocation IdentLoc,
5718 IdentifierInfo *NamespcName,
5719 const ParsedAttributesView &AttrList);
5720
5721 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5722
5723 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5724 SourceLocation NamespaceLoc,
5725 SourceLocation AliasLoc,
5726 IdentifierInfo *Alias,
5727 CXXScopeSpec &SS,
5728 SourceLocation IdentLoc,
5729 IdentifierInfo *Ident);
5730
5731 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5732 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5733 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5734 const LookupResult &PreviousDecls,
5735 UsingShadowDecl *&PrevShadow);
5736 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5737 NamedDecl *Target,
5738 UsingShadowDecl *PrevDecl);
5739
5740 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5741 bool HasTypenameKeyword,
5742 const CXXScopeSpec &SS,
5743 SourceLocation NameLoc,
5744 const LookupResult &Previous);
5745 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5746 const CXXScopeSpec &SS,
5747 const DeclarationNameInfo &NameInfo,
5748 SourceLocation NameLoc,
5749 const LookupResult *R = nullptr,
5750 const UsingDecl *UD = nullptr);
5751
5752 NamedDecl *BuildUsingDeclaration(
5753 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5754 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5755 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5756 const ParsedAttributesView &AttrList, bool IsInstantiation,
5757 bool IsUsingIfExists);
5758 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5759 SourceLocation UsingLoc,
5760 SourceLocation EnumLoc,
5761 SourceLocation NameLoc, EnumDecl *ED);
5762 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5763 ArrayRef<NamedDecl *> Expansions);
5764
5765 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5766
5767 /// Given a derived-class using shadow declaration for a constructor and the
5768 /// correspnding base class constructor, find or create the implicit
5769 /// synthesized derived class constructor to use for this initialization.
5770 CXXConstructorDecl *
5771 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5772 ConstructorUsingShadowDecl *DerivedShadow);
5773
5774 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5775 SourceLocation UsingLoc,
5776 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5777 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5778 const ParsedAttributesView &AttrList);
5779 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5780 SourceLocation UsingLoc,
5781 SourceLocation EnumLoc, const DeclSpec &);
5782 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5783 MultiTemplateParamsArg TemplateParams,
5784 SourceLocation UsingLoc, UnqualifiedId &Name,
5785 const ParsedAttributesView &AttrList,
5786 TypeResult Type, Decl *DeclFromDeclSpec);
5787
5788 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5789 /// including handling of its default argument expressions.
5790 ///
5791 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5792 ExprResult
5793 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5794 NamedDecl *FoundDecl,
5795 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5796 bool HadMultipleCandidates, bool IsListInitialization,
5797 bool IsStdInitListInitialization,
5798 bool RequiresZeroInit, unsigned ConstructKind,
5799 SourceRange ParenRange);
5800
5801 /// Build a CXXConstructExpr whose constructor has already been resolved if
5802 /// it denotes an inherited constructor.
5803 ExprResult
5804 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5805 CXXConstructorDecl *Constructor, bool Elidable,
5806 MultiExprArg Exprs,
5807 bool HadMultipleCandidates, bool IsListInitialization,
5808 bool IsStdInitListInitialization,
5809 bool RequiresZeroInit, unsigned ConstructKind,
5810 SourceRange ParenRange);
5811
5812 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5813 // the constructor can be elidable?
5814 ExprResult
5815 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5816 NamedDecl *FoundDecl,
5817 CXXConstructorDecl *Constructor, bool Elidable,
5818 MultiExprArg Exprs, bool HadMultipleCandidates,
5819 bool IsListInitialization,
5820 bool IsStdInitListInitialization, bool RequiresZeroInit,
5821 unsigned ConstructKind, SourceRange ParenRange);
5822
5823 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5824
5825
5826 /// Instantiate or parse a C++ default argument expression as necessary.
5827 /// Return true on error.
5828 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5829 ParmVarDecl *Param);
5830
5831 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5832 /// the default expr if needed.
5833 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5834 FunctionDecl *FD,
5835 ParmVarDecl *Param);
5836
5837 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5838 /// constructed variable.
5839 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5840
5841 /// Helper class that collects exception specifications for
5842 /// implicitly-declared special member functions.
5843 class ImplicitExceptionSpecification {
5844 // Pointer to allow copying
5845 Sema *Self;
5846 // We order exception specifications thus:
5847 // noexcept is the most restrictive, but is only used in C++11.
5848 // throw() comes next.
5849 // Then a throw(collected exceptions)
5850 // Finally no specification, which is expressed as noexcept(false).
5851 // throw(...) is used instead if any called function uses it.
5852 ExceptionSpecificationType ComputedEST;
5853 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5854 SmallVector<QualType, 4> Exceptions;
5855
5856 void ClearExceptions() {
5857 ExceptionsSeen.clear();
5858 Exceptions.clear();
5859 }
5860
5861 public:
5862 explicit ImplicitExceptionSpecification(Sema &Self)
5863 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5864 if (!Self.getLangOpts().CPlusPlus11)
5865 ComputedEST = EST_DynamicNone;
5866 }
5867
5868 /// Get the computed exception specification type.
5869 ExceptionSpecificationType getExceptionSpecType() const {
5870 assert(!isComputedNoexcept(ComputedEST) &&(static_cast<void> (0))
5871 "noexcept(expr) should not be a possible result")(static_cast<void> (0));
5872 return ComputedEST;
5873 }
5874
5875 /// The number of exceptions in the exception specification.
5876 unsigned size() const { return Exceptions.size(); }
5877
5878 /// The set of exceptions in the exception specification.
5879 const QualType *data() const { return Exceptions.data(); }
5880
5881 /// Integrate another called method into the collected data.
5882 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5883
5884 /// Integrate an invoked expression into the collected data.
5885 void CalledExpr(Expr *E) { CalledStmt(E); }
5886
5887 /// Integrate an invoked statement into the collected data.
5888 void CalledStmt(Stmt *S);
5889
5890 /// Overwrite an EPI's exception specification with this
5891 /// computed exception specification.
5892 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5893 FunctionProtoType::ExceptionSpecInfo ESI;
5894 ESI.Type = getExceptionSpecType();
5895 if (ESI.Type == EST_Dynamic) {
5896 ESI.Exceptions = Exceptions;
5897 } else if (ESI.Type == EST_None) {
5898 /// C++11 [except.spec]p14:
5899 /// The exception-specification is noexcept(false) if the set of
5900 /// potential exceptions of the special member function contains "any"
5901 ESI.Type = EST_NoexceptFalse;
5902 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5903 tok::kw_false).get();
5904 }
5905 return ESI;
5906 }
5907 };
5908
5909 /// Evaluate the implicit exception specification for a defaulted
5910 /// special member function.
5911 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5912
5913 /// Check the given noexcept-specifier, convert its expression, and compute
5914 /// the appropriate ExceptionSpecificationType.
5915 ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
5916 ExceptionSpecificationType &EST);
5917
5918 /// Check the given exception-specification and update the
5919 /// exception specification information with the results.
5920 void checkExceptionSpecification(bool IsTopLevel,
5921 ExceptionSpecificationType EST,
5922 ArrayRef<ParsedType> DynamicExceptions,
5923 ArrayRef<SourceRange> DynamicExceptionRanges,
5924 Expr *NoexceptExpr,
5925 SmallVectorImpl<QualType> &Exceptions,
5926 FunctionProtoType::ExceptionSpecInfo &ESI);
5927
5928 /// Determine if we're in a case where we need to (incorrectly) eagerly
5929 /// parse an exception specification to work around a libstdc++ bug.
5930 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5931
5932 /// Add an exception-specification to the given member function
5933 /// (or member function template). The exception-specification was parsed
5934 /// after the method itself was declared.
5935 void actOnDelayedExceptionSpecification(Decl *Method,
5936 ExceptionSpecificationType EST,
5937 SourceRange SpecificationRange,
5938 ArrayRef<ParsedType> DynamicExceptions,
5939 ArrayRef<SourceRange> DynamicExceptionRanges,
5940 Expr *NoexceptExpr);
5941
5942 class InheritedConstructorInfo;
5943
5944 /// Determine if a special member function should have a deleted
5945 /// definition when it is defaulted.
5946 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5947 InheritedConstructorInfo *ICI = nullptr,
5948 bool Diagnose = false);
5949
5950 /// Produce notes explaining why a defaulted function was defined as deleted.
5951 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5952
5953 /// Declare the implicit default constructor for the given class.
5954 ///
5955 /// \param ClassDecl The class declaration into which the implicit
5956 /// default constructor will be added.
5957 ///
5958 /// \returns The implicitly-declared default constructor.
5959 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5960 CXXRecordDecl *ClassDecl);
5961
5962 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5963 /// defining this constructor as the default constructor.
5964 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5965 CXXConstructorDecl *Constructor);
5966
5967 /// Declare the implicit destructor for the given class.
5968 ///
5969 /// \param ClassDecl The class declaration into which the implicit
5970 /// destructor will be added.
5971 ///
5972 /// \returns The implicitly-declared destructor.
5973 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5974
5975 /// DefineImplicitDestructor - Checks for feasibility of
5976 /// defining this destructor as the default destructor.
5977 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5978 CXXDestructorDecl *Destructor);
5979
5980 /// Build an exception spec for destructors that don't have one.
5981 ///
5982 /// C++11 says that user-defined destructors with no exception spec get one
5983 /// that looks as if the destructor was implicitly declared.
5984 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5985
5986 /// Define the specified inheriting constructor.
5987 void DefineInheritingConstructor(SourceLocation UseLoc,
5988 CXXConstructorDecl *Constructor);
5989
5990 /// Declare the implicit copy constructor for the given class.
5991 ///
5992 /// \param ClassDecl The class declaration into which the implicit
5993 /// copy constructor will be added.
5994 ///
5995 /// \returns The implicitly-declared copy constructor.
5996 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5997
5998 /// DefineImplicitCopyConstructor - Checks for feasibility of
5999 /// defining this constructor as the copy constructor.
6000 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
6001 CXXConstructorDecl *Constructor);
6002
6003 /// Declare the implicit move constructor for the given class.
6004 ///
6005 /// \param ClassDecl The Class declaration into which the implicit
6006 /// move constructor will be added.
6007 ///
6008 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6009 /// declared.
6010 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6011
6012 /// DefineImplicitMoveConstructor - Checks for feasibility of
6013 /// defining this constructor as the move constructor.
6014 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6015 CXXConstructorDecl *Constructor);
6016
6017 /// Declare the implicit copy assignment operator for the given class.
6018 ///
6019 /// \param ClassDecl The class declaration into which the implicit
6020 /// copy assignment operator will be added.
6021 ///
6022 /// \returns The implicitly-declared copy assignment operator.
6023 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6024
6025 /// Defines an implicitly-declared copy assignment operator.
6026 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6027 CXXMethodDecl *MethodDecl);
6028
6029 /// Declare the implicit move assignment operator for the given class.
6030 ///
6031 /// \param ClassDecl The Class declaration into which the implicit
6032 /// move assignment operator will be added.
6033 ///
6034 /// \returns The implicitly-declared move assignment operator, or NULL if it
6035 /// wasn't declared.
6036 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6037
6038 /// Defines an implicitly-declared move assignment operator.
6039 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6040 CXXMethodDecl *MethodDecl);
6041
6042 /// Force the declaration of any implicitly-declared members of this
6043 /// class.
6044 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6045
6046 /// Check a completed declaration of an implicit special member.
6047 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6048
6049 /// Determine whether the given function is an implicitly-deleted
6050 /// special member function.
6051 bool isImplicitlyDeleted(FunctionDecl *FD);
6052
6053 /// Check whether 'this' shows up in the type of a static member
6054 /// function after the (naturally empty) cv-qualifier-seq would be.
6055 ///
6056 /// \returns true if an error occurred.
6057 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6058
6059 /// Whether this' shows up in the exception specification of a static
6060 /// member function.
6061 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6062
6063 /// Check whether 'this' shows up in the attributes of the given
6064 /// static member function.
6065 ///
6066 /// \returns true if an error occurred.
6067 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6068
6069 /// MaybeBindToTemporary - If the passed in expression has a record type with
6070 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6071 /// it simply returns the passed in expression.
6072 ExprResult MaybeBindToTemporary(Expr *E);
6073
6074 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6075 /// invocation.
6076 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6077
6078 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6079 QualType DeclInitType, MultiExprArg ArgsPtr,
6080 SourceLocation Loc,
6081 SmallVectorImpl<Expr *> &ConvertedArgs,
6082 bool AllowExplicit = false,
6083 bool IsListInitialization = false);
6084
6085 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6086 SourceLocation NameLoc,
6087 IdentifierInfo &Name);
6088
6089 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6090 Scope *S, CXXScopeSpec &SS,
6091 bool EnteringContext);
6092 ParsedType getDestructorName(SourceLocation TildeLoc,
6093 IdentifierInfo &II, SourceLocation NameLoc,
6094 Scope *S, CXXScopeSpec &SS,
6095 ParsedType ObjectType,
6096 bool EnteringContext);
6097
6098 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6099 ParsedType ObjectType);
6100
6101 // Checks that reinterpret casts don't have undefined behavior.
6102 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6103 bool IsDereference, SourceRange Range);
6104
6105 // Checks that the vector type should be initialized from a scalar
6106 // by splatting the value rather than populating a single element.
6107 // This is the case for AltiVecVector types as well as with
6108 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6109 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6110
6111 // Checks if the -faltivec-src-compat=gcc option is specified.
6112 // If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
6113 // treated the same way as they are when trying to initialize
6114 // these vectors on gcc (an error is emitted).
6115 bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
6116 QualType SrcTy);
6117
6118 /// ActOnCXXNamedCast - Parse
6119 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6120 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6121 tok::TokenKind Kind,
6122 SourceLocation LAngleBracketLoc,
6123 Declarator &D,
6124 SourceLocation RAngleBracketLoc,
6125 SourceLocation LParenLoc,
6126 Expr *E,
6127 SourceLocation RParenLoc);
6128
6129 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6130 tok::TokenKind Kind,
6131 TypeSourceInfo *Ty,
6132 Expr *E,
6133 SourceRange AngleBrackets,
6134 SourceRange Parens);
6135
6136 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6137 ExprResult Operand,
6138 SourceLocation RParenLoc);
6139
6140 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6141 Expr *Operand, SourceLocation RParenLoc);
6142
6143 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6144 SourceLocation TypeidLoc,
6145 TypeSourceInfo *Operand,
6146 SourceLocation RParenLoc);
6147 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6148 SourceLocation TypeidLoc,
6149 Expr *Operand,
6150 SourceLocation RParenLoc);
6151
6152 /// ActOnCXXTypeid - Parse typeid( something ).
6153 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6154 SourceLocation LParenLoc, bool isType,
6155 void *TyOrExpr,
6156 SourceLocation RParenLoc);
6157
6158 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6159 SourceLocation TypeidLoc,
6160 TypeSourceInfo *Operand,
6161 SourceLocation RParenLoc);
6162 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6163 SourceLocation TypeidLoc,
6164 Expr *Operand,
6165 SourceLocation RParenLoc);
6166
6167 /// ActOnCXXUuidof - Parse __uuidof( something ).
6168 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6169 SourceLocation LParenLoc, bool isType,
6170 void *TyOrExpr,
6171 SourceLocation RParenLoc);
6172
6173 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6174 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6175 tok::TokenKind Operator,
6176 SourceLocation EllipsisLoc, Expr *RHS,
6177 SourceLocation RParenLoc);
6178 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6179 SourceLocation LParenLoc, Expr *LHS,
6180 BinaryOperatorKind Operator,
6181 SourceLocation EllipsisLoc, Expr *RHS,
6182 SourceLocation RParenLoc,
6183 Optional<unsigned> NumExpansions);
6184 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6185 BinaryOperatorKind Operator);
6186
6187 //// ActOnCXXThis - Parse 'this' pointer.
6188 ExprResult ActOnCXXThis(SourceLocation loc);
6189
6190 /// Build a CXXThisExpr and mark it referenced in the current context.
6191 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6192 void MarkThisReferenced(CXXThisExpr *This);
6193
6194 /// Try to retrieve the type of the 'this' pointer.
6195 ///
6196 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6197 QualType getCurrentThisType();
6198
6199 /// When non-NULL, the C++ 'this' expression is allowed despite the
6200 /// current context not being a non-static member function. In such cases,
6201 /// this provides the type used for 'this'.
6202 QualType CXXThisTypeOverride;
6203
6204 /// RAII object used to temporarily allow the C++ 'this' expression
6205 /// to be used, with the given qualifiers on the current class type.
6206 class CXXThisScopeRAII {
6207 Sema &S;
6208 QualType OldCXXThisTypeOverride;
6209 bool Enabled;
6210
6211 public:
6212 /// Introduce a new scope where 'this' may be allowed (when enabled),
6213 /// using the given declaration (which is either a class template or a
6214 /// class) along with the given qualifiers.
6215 /// along with the qualifiers placed on '*this'.
6216 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6217 bool Enabled = true);
6218
6219 ~CXXThisScopeRAII();
6220 };
6221
6222 /// Make sure the value of 'this' is actually available in the current
6223 /// context, if it is a potentially evaluated context.
6224 ///
6225 /// \param Loc The location at which the capture of 'this' occurs.
6226 ///
6227 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6228 /// capture list.
6229 ///
6230 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6231 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6232 /// This is useful when enclosing lambdas must speculatively capture
6233 /// 'this' that may or may not be used in certain specializations of
6234 /// a nested generic lambda (depending on whether the name resolves to
6235 /// a non-static member function or a static function).
6236 /// \return returns 'true' if failed, 'false' if success.
6237 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6238 bool BuildAndDiagnose = true,
6239 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6240 bool ByCopy = false);
6241
6242 /// Determine whether the given type is the type of *this that is used
6243 /// outside of the body of a member function for a type that is currently
6244 /// being defined.
6245 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6246
6247 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6248 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6249
6250
6251 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6252 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6253
6254 ExprResult
6255 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6256 SourceLocation AtLoc, SourceLocation RParen);
6257
6258 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6259 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6260
6261 //// ActOnCXXThrow - Parse throw expressions.
6262 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6263 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6264 bool IsThrownVarInScope);
6265 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6266
6267 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6268 /// Can be interpreted either as function-style casting ("int(x)")
6269 /// or class type construction ("ClassType(x,y,z)")
6270 /// or creation of a value-initialized type ("int()").
6271 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6272 SourceLocation LParenOrBraceLoc,
6273 MultiExprArg Exprs,
6274 SourceLocation RParenOrBraceLoc,
6275 bool ListInitialization);
6276
6277 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6278 SourceLocation LParenLoc,
6279 MultiExprArg Exprs,
6280 SourceLocation RParenLoc,
6281 bool ListInitialization);
6282
6283 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6284 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6285 SourceLocation PlacementLParen,
6286 MultiExprArg PlacementArgs,
6287 SourceLocation PlacementRParen,
6288 SourceRange TypeIdParens, Declarator &D,
6289 Expr *Initializer);
6290 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6291 SourceLocation PlacementLParen,
6292 MultiExprArg PlacementArgs,
6293 SourceLocation PlacementRParen,
6294 SourceRange TypeIdParens,
6295 QualType AllocType,
6296 TypeSourceInfo *AllocTypeInfo,
6297 Optional<Expr *> ArraySize,
6298 SourceRange DirectInitRange,
6299 Expr *Initializer);
6300
6301 /// Determine whether \p FD is an aligned allocation or deallocation
6302 /// function that is unavailable.
6303 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6304
6305 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6306 /// function that is unavailable.
6307 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6308 SourceLocation Loc);
6309
6310 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6311 SourceRange R);
6312
6313 /// The scope in which to find allocation functions.
6314 enum AllocationFunctionScope {
6315 /// Only look for allocation functions in the global scope.
6316 AFS_Global,
6317 /// Only look for allocation functions in the scope of the
6318 /// allocated class.
6319 AFS_Class,
6320 /// Look for allocation functions in both the global scope
6321 /// and in the scope of the allocated class.
6322 AFS_Both
6323 };
6324
6325 /// Finds the overloads of operator new and delete that are appropriate
6326 /// for the allocation.
6327 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6328 AllocationFunctionScope NewScope,
6329 AllocationFunctionScope DeleteScope,
6330 QualType AllocType, bool IsArray,
6331 bool &PassAlignment, MultiExprArg PlaceArgs,
6332 FunctionDecl *&OperatorNew,
6333 FunctionDecl *&OperatorDelete,
6334 bool Diagnose = true);
6335 void DeclareGlobalNewDelete();
6336 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6337 ArrayRef<QualType> Params);
6338
6339 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6340 DeclarationName Name, FunctionDecl* &Operator,
6341 bool Diagnose = true);
6342 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6343 bool CanProvideSize,
6344 bool Overaligned,
6345 DeclarationName Name);
6346 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6347 CXXRecordDecl *RD);
6348
6349 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6350 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6351 bool UseGlobal, bool ArrayForm,
6352 Expr *Operand);
6353 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6354 bool IsDelete, bool CallCanBeVirtual,
6355 bool WarnOnNonAbstractTypes,
6356 SourceLocation DtorLoc);
6357
6358 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6359 Expr *Operand, SourceLocation RParen);
6360 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6361 SourceLocation RParen);
6362
6363 /// Parsed one of the type trait support pseudo-functions.
6364 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6365 ArrayRef<ParsedType> Args,
6366 SourceLocation RParenLoc);
6367 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6368 ArrayRef<TypeSourceInfo *> Args,
6369 SourceLocation RParenLoc);
6370
6371 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6372 /// pseudo-functions.
6373 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6374 SourceLocation KWLoc,
6375 ParsedType LhsTy,
6376 Expr *DimExpr,
6377 SourceLocation RParen);
6378
6379 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6380 SourceLocation KWLoc,
6381 TypeSourceInfo *TSInfo,
6382 Expr *DimExpr,
6383 SourceLocation RParen);
6384
6385 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6386 /// pseudo-functions.
6387 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6388 SourceLocation KWLoc,
6389 Expr *Queried,
6390 SourceLocation RParen);
6391
6392 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6393 SourceLocation KWLoc,
6394 Expr *Queried,
6395 SourceLocation RParen);
6396
6397 ExprResult ActOnStartCXXMemberReference(Scope *S,
6398 Expr *Base,
6399 SourceLocation OpLoc,
6400 tok::TokenKind OpKind,
6401 ParsedType &ObjectType,
6402 bool &MayBePseudoDestructor);
6403
6404 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6405 SourceLocation OpLoc,
6406 tok::TokenKind OpKind,
6407 const CXXScopeSpec &SS,
6408 TypeSourceInfo *ScopeType,
6409 SourceLocation CCLoc,
6410 SourceLocation TildeLoc,
6411 PseudoDestructorTypeStorage DestroyedType);
6412
6413 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6414 SourceLocation OpLoc,
6415 tok::TokenKind OpKind,
6416 CXXScopeSpec &SS,
6417 UnqualifiedId &FirstTypeName,
6418 SourceLocation CCLoc,
6419 SourceLocation TildeLoc,
6420 UnqualifiedId &SecondTypeName);
6421
6422 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6423 SourceLocation OpLoc,
6424 tok::TokenKind OpKind,
6425 SourceLocation TildeLoc,
6426 const DeclSpec& DS);
6427
6428 /// MaybeCreateExprWithCleanups - If the current full-expression
6429 /// requires any cleanups, surround it with a ExprWithCleanups node.
6430 /// Otherwise, just returns the passed-in expression.
6431 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6432 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6433 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6434
6435 MaterializeTemporaryExpr *
6436 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6437 bool BoundToLvalueReference);
6438
6439 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6440 return ActOnFinishFullExpr(
6441 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6442 }
6443 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6444 bool DiscardedValue, bool IsConstexpr = false);
6445 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6446
6447 // Marks SS invalid if it represents an incomplete type.
6448 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6449 // Complete an enum decl, maybe without a scope spec.
6450 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6451 CXXScopeSpec *SS = nullptr);
6452
6453 DeclContext *computeDeclContext(QualType T);
6454 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6455 bool EnteringContext = false);
6456 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6457 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6458
6459 /// The parser has parsed a global nested-name-specifier '::'.
6460 ///
6461 /// \param CCLoc The location of the '::'.
6462 ///
6463 /// \param SS The nested-name-specifier, which will be updated in-place
6464 /// to reflect the parsed nested-name-specifier.
6465 ///
6466 /// \returns true if an error occurred, false otherwise.
6467 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6468
6469 /// The parser has parsed a '__super' nested-name-specifier.
6470 ///
6471 /// \param SuperLoc The location of the '__super' keyword.
6472 ///
6473 /// \param ColonColonLoc The location of the '::'.
6474 ///
6475 /// \param SS The nested-name-specifier, which will be updated in-place
6476 /// to reflect the parsed nested-name-specifier.
6477 ///
6478 /// \returns true if an error occurred, false otherwise.
6479 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6480 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6481
6482 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6483 bool *CanCorrect = nullptr);
6484 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6485
6486 /// Keeps information about an identifier in a nested-name-spec.
6487 ///
6488 struct NestedNameSpecInfo {
6489 /// The type of the object, if we're parsing nested-name-specifier in
6490 /// a member access expression.
6491 ParsedType ObjectType;
6492
6493 /// The identifier preceding the '::'.
6494 IdentifierInfo *Identifier;
6495
6496 /// The location of the identifier.
6497 SourceLocation IdentifierLoc;
6498
6499 /// The location of the '::'.
6500 SourceLocation CCLoc;
6501
6502 /// Creates info object for the most typical case.
6503 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6504 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6505 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6506 CCLoc(ColonColonLoc) {
6507 }
6508
6509 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6510 SourceLocation ColonColonLoc, QualType ObjectType)
6511 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6512 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6513 }
6514 };
6515
6516 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6517 NestedNameSpecInfo &IdInfo);
6518
6519 bool BuildCXXNestedNameSpecifier(Scope *S,
6520 NestedNameSpecInfo &IdInfo,
6521 bool EnteringContext,
6522 CXXScopeSpec &SS,
6523 NamedDecl *ScopeLookupResult,
6524 bool ErrorRecoveryLookup,
6525 bool *IsCorrectedToColon = nullptr,
6526 bool OnlyNamespace = false);
6527
6528 /// The parser has parsed a nested-name-specifier 'identifier::'.
6529 ///
6530 /// \param S The scope in which this nested-name-specifier occurs.
6531 ///
6532 /// \param IdInfo Parser information about an identifier in the
6533 /// nested-name-spec.
6534 ///
6535 /// \param EnteringContext Whether we're entering the context nominated by
6536 /// this nested-name-specifier.
6537 ///
6538 /// \param SS The nested-name-specifier, which is both an input
6539 /// parameter (the nested-name-specifier before this type) and an
6540 /// output parameter (containing the full nested-name-specifier,
6541 /// including this new type).
6542 ///
6543 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6544 /// error recovery. In this case do not emit error message.
6545 ///
6546 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6547 /// are allowed. The bool value pointed by this parameter is set to 'true'
6548 /// if the identifier is treated as if it was followed by ':', not '::'.
6549 ///
6550 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6551 ///
6552 /// \returns true if an error occurred, false otherwise.
6553 bool ActOnCXXNestedNameSpecifier(Scope *S,
6554 NestedNameSpecInfo &IdInfo,
6555 bool EnteringContext,
6556 CXXScopeSpec &SS,
6557 bool ErrorRecoveryLookup = false,
6558 bool *IsCorrectedToColon = nullptr,
6559 bool OnlyNamespace = false);
6560
6561 ExprResult ActOnDecltypeExpression(Expr *E);
6562
6563 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6564 const DeclSpec &DS,
6565 SourceLocation ColonColonLoc);
6566
6567 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6568 NestedNameSpecInfo &IdInfo,
6569 bool EnteringContext);
6570
6571 /// The parser has parsed a nested-name-specifier
6572 /// 'template[opt] template-name < template-args >::'.
6573 ///
6574 /// \param S The scope in which this nested-name-specifier occurs.
6575 ///
6576 /// \param SS The nested-name-specifier, which is both an input
6577 /// parameter (the nested-name-specifier before this type) and an
6578 /// output parameter (containing the full nested-name-specifier,
6579 /// including this new type).
6580 ///
6581 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6582 /// \param TemplateName the template name.
6583 /// \param TemplateNameLoc The location of the template name.
6584 /// \param LAngleLoc The location of the opening angle bracket ('<').
6585 /// \param TemplateArgs The template arguments.
6586 /// \param RAngleLoc The location of the closing angle bracket ('>').
6587 /// \param CCLoc The location of the '::'.
6588 ///
6589 /// \param EnteringContext Whether we're entering the context of the
6590 /// nested-name-specifier.
6591 ///
6592 ///
6593 /// \returns true if an error occurred, false otherwise.
6594 bool ActOnCXXNestedNameSpecifier(Scope *S,
6595 CXXScopeSpec &SS,
6596 SourceLocation TemplateKWLoc,
6597 TemplateTy TemplateName,
6598 SourceLocation TemplateNameLoc,
6599 SourceLocation LAngleLoc,
6600 ASTTemplateArgsPtr TemplateArgs,
6601 SourceLocation RAngleLoc,
6602 SourceLocation CCLoc,
6603 bool EnteringContext);
6604
6605 /// Given a C++ nested-name-specifier, produce an annotation value
6606 /// that the parser can use later to reconstruct the given
6607 /// nested-name-specifier.
6608 ///
6609 /// \param SS A nested-name-specifier.
6610 ///
6611 /// \returns A pointer containing all of the information in the
6612 /// nested-name-specifier \p SS.
6613 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6614
6615 /// Given an annotation pointer for a nested-name-specifier, restore
6616 /// the nested-name-specifier structure.
6617 ///
6618 /// \param Annotation The annotation pointer, produced by
6619 /// \c SaveNestedNameSpecifierAnnotation().
6620 ///
6621 /// \param AnnotationRange The source range corresponding to the annotation.
6622 ///
6623 /// \param SS The nested-name-specifier that will be updated with the contents
6624 /// of the annotation pointer.
6625 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6626 SourceRange AnnotationRange,
6627 CXXScopeSpec &SS);
6628
6629 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6630
6631 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6632 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6633 /// After this method is called, according to [C++ 3.4.3p3], names should be
6634 /// looked up in the declarator-id's scope, until the declarator is parsed and
6635 /// ActOnCXXExitDeclaratorScope is called.
6636 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6637 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6638
6639 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6640 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6641 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6642 /// Used to indicate that names should revert to being looked up in the
6643 /// defining scope.
6644 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6645
6646 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6647 /// initializer for the declaration 'Dcl'.
6648 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6649 /// static data member of class X, names should be looked up in the scope of
6650 /// class X.
6651 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6652
6653 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6654 /// initializer for the declaration 'Dcl'.
6655 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6656
6657 /// Create a new lambda closure type.
6658 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6659 TypeSourceInfo *Info,
6660 bool KnownDependent,
6661 LambdaCaptureDefault CaptureDefault);
6662
6663 /// Start the definition of a lambda expression.
6664 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6665 SourceRange IntroducerRange,
6666 TypeSourceInfo *MethodType,
6667 SourceLocation EndLoc,
6668 ArrayRef<ParmVarDecl *> Params,
6669 ConstexprSpecKind ConstexprKind,
6670 Expr *TrailingRequiresClause);
6671
6672 /// Number lambda for linkage purposes if necessary.
6673 void handleLambdaNumbering(
6674 CXXRecordDecl *Class, CXXMethodDecl *Method,
6675 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6676
6677 /// Endow the lambda scope info with the relevant properties.
6678 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6679 CXXMethodDecl *CallOperator,
6680 SourceRange IntroducerRange,
6681 LambdaCaptureDefault CaptureDefault,
6682 SourceLocation CaptureDefaultLoc,
6683 bool ExplicitParams,
6684 bool ExplicitResultType,
6685 bool Mutable);
6686
6687 /// Perform initialization analysis of the init-capture and perform
6688 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6689 /// not being used to initialize a reference.
6690 ParsedType actOnLambdaInitCaptureInitialization(
6691 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6692 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6693 return ParsedType::make(buildLambdaInitCaptureInitialization(
6694 Loc, ByRef, EllipsisLoc, None, Id,
6695 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6696 }
6697 QualType buildLambdaInitCaptureInitialization(
6698 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6699 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6700 Expr *&Init);
6701
6702 /// Create a dummy variable within the declcontext of the lambda's
6703 /// call operator, for name lookup purposes for a lambda init capture.
6704 ///
6705 /// CodeGen handles emission of lambda captures, ignoring these dummy
6706 /// variables appropriately.
6707 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6708 QualType InitCaptureType,
6709 SourceLocation EllipsisLoc,
6710 IdentifierInfo *Id,
6711 unsigned InitStyle, Expr *Init);
6712
6713 /// Add an init-capture to a lambda scope.
6714 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6715
6716 /// Note that we have finished the explicit captures for the
6717 /// given lambda.
6718 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6719
6720 /// \brief This is called after parsing the explicit template parameter list
6721 /// on a lambda (if it exists) in C++2a.
6722 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6723 ArrayRef<NamedDecl *> TParams,
6724 SourceLocation RAngleLoc,
6725 ExprResult RequiresClause);
6726
6727 /// Introduce the lambda parameters into scope.
6728 void addLambdaParameters(
6729 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6730 CXXMethodDecl *CallOperator, Scope *CurScope);
6731
6732 /// Deduce a block or lambda's return type based on the return
6733 /// statements present in the body.
6734 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6735
6736 /// ActOnStartOfLambdaDefinition - This is called just before we start
6737 /// parsing the body of a lambda; it analyzes the explicit captures and
6738 /// arguments, and sets up various data-structures for the body of the
6739 /// lambda.
6740 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6741 Declarator &ParamInfo, Scope *CurScope);
6742
6743 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6744 /// is invoked to pop the information about the lambda.
6745 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6746 bool IsInstantiation = false);
6747
6748 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6749 /// was successfully completed.
6750 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6751 Scope *CurScope);
6752
6753 /// Does copying/destroying the captured variable have side effects?
6754 bool CaptureHasSideEffects(const sema::Capture &From);
6755
6756 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6757 /// diagnostic is emitted.
6758 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6759 const sema::Capture &From);
6760
6761 /// Build a FieldDecl suitable to hold the given capture.
6762 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6763
6764 /// Initialize the given capture with a suitable expression.
6765 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6766 SourceLocation ImplicitCaptureLoc,
6767 bool IsOpenMPMapping = false);
6768
6769 /// Complete a lambda-expression having processed and attached the
6770 /// lambda body.
6771 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6772 sema::LambdaScopeInfo *LSI);
6773
6774 /// Get the return type to use for a lambda's conversion function(s) to
6775 /// function pointer type, given the type of the call operator.
6776 QualType
6777 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6778 CallingConv CC);
6779
6780 /// Define the "body" of the conversion from a lambda object to a
6781 /// function pointer.
6782 ///
6783 /// This routine doesn't actually define a sensible body; rather, it fills
6784 /// in the initialization expression needed to copy the lambda object into
6785 /// the block, and IR generation actually generates the real body of the
6786 /// block pointer conversion.
6787 void DefineImplicitLambdaToFunctionPointerConversion(
6788 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6789
6790 /// Define the "body" of the conversion from a lambda object to a
6791 /// block pointer.
6792 ///
6793 /// This routine doesn't actually define a sensible body; rather, it fills
6794 /// in the initialization expression needed to copy the lambda object into
6795 /// the block, and IR generation actually generates the real body of the
6796 /// block pointer conversion.
6797 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6798 CXXConversionDecl *Conv);
6799
6800 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6801 SourceLocation ConvLocation,
6802 CXXConversionDecl *Conv,
6803 Expr *Src);
6804
6805 /// Check whether the given expression is a valid constraint expression.
6806 /// A diagnostic is emitted if it is not, false is returned, and
6807 /// PossibleNonPrimary will be set to true if the failure might be due to a
6808 /// non-primary expression being used as an atomic constraint.
6809 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6810 bool *PossibleNonPrimary = nullptr,
6811 bool IsTrailingRequiresClause = false);
6812
6813private:
6814 /// Caches pairs of template-like decls whose associated constraints were
6815 /// checked for subsumption and whether or not the first's constraints did in
6816 /// fact subsume the second's.
6817 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6818 /// Caches the normalized associated constraints of declarations (concepts or
6819 /// constrained declarations). If an error occurred while normalizing the
6820 /// associated constraints of the template or concept, nullptr will be cached
6821 /// here.
6822 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6823 NormalizationCache;
6824
6825 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6826 SatisfactionCache;
6827
6828public:
6829 const NormalizedConstraint *
6830 getNormalizedAssociatedConstraints(
6831 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6832
6833 /// \brief Check whether the given declaration's associated constraints are
6834 /// at least as constrained than another declaration's according to the
6835 /// partial ordering of constraints.
6836 ///
6837 /// \param Result If no error occurred, receives the result of true if D1 is
6838 /// at least constrained than D2, and false otherwise.
6839 ///
6840 /// \returns true if an error occurred, false otherwise.
6841 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6842 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6843 bool &Result);
6844
6845 /// If D1 was not at least as constrained as D2, but would've been if a pair
6846 /// of atomic constraints involved had been declared in a concept and not
6847 /// repeated in two separate places in code.
6848 /// \returns true if such a diagnostic was emitted, false otherwise.
6849 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6850 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6851
6852 /// \brief Check whether the given list of constraint expressions are
6853 /// satisfied (as if in a 'conjunction') given template arguments.
6854 /// \param Template the template-like entity that triggered the constraints
6855 /// check (either a concept or a constrained entity).
6856 /// \param ConstraintExprs a list of constraint expressions, treated as if
6857 /// they were 'AND'ed together.
6858 /// \param TemplateArgs the list of template arguments to substitute into the
6859 /// constraint expression.
6860 /// \param TemplateIDRange The source range of the template id that
6861 /// caused the constraints check.
6862 /// \param Satisfaction if true is returned, will contain details of the
6863 /// satisfaction, with enough information to diagnose an unsatisfied
6864 /// expression.
6865 /// \returns true if an error occurred and satisfaction could not be checked,
6866 /// false otherwise.
6867 bool CheckConstraintSatisfaction(
6868 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6869 ArrayRef<TemplateArgument> TemplateArgs,
6870 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6871
6872 /// \brief Check whether the given non-dependent constraint expression is
6873 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6874 /// verdict if successful, emits a diagnostic and returns true if an error
6875 /// occured and satisfaction could not be determined.
6876 ///
6877 /// \returns true if an error occurred, false otherwise.
6878 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6879 ConstraintSatisfaction &Satisfaction);
6880
6881 /// Check whether the given function decl's trailing requires clause is
6882 /// satisfied, if any. Returns false and updates Satisfaction with the
6883 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6884 /// an error occured and satisfaction could not be determined.
6885 ///
6886 /// \returns true if an error occurred, false otherwise.
6887 bool CheckFunctionConstraints(const FunctionDecl *FD,
6888 ConstraintSatisfaction &Satisfaction,
6889 SourceLocation UsageLoc = SourceLocation());
6890
6891
6892 /// \brief Ensure that the given template arguments satisfy the constraints
6893 /// associated with the given template, emitting a diagnostic if they do not.
6894 ///
6895 /// \param Template The template to which the template arguments are being
6896 /// provided.
6897 ///
6898 /// \param TemplateArgs The converted, canonicalized template arguments.
6899 ///
6900 /// \param TemplateIDRange The source range of the template id that
6901 /// caused the constraints check.
6902 ///
6903 /// \returns true if the constrains are not satisfied or could not be checked
6904 /// for satisfaction, false if the constraints are satisfied.
6905 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6906 ArrayRef<TemplateArgument> TemplateArgs,
6907 SourceRange TemplateIDRange);
6908
6909 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6910 /// unsatisfied.
6911 /// \param First whether this is the first time an unsatisfied constraint is
6912 /// diagnosed for this error.
6913 void
6914 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6915 bool First = true);
6916
6917 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6918 /// unsatisfied.
6919 void
6920 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6921 bool First = true);
6922
6923 // ParseObjCStringLiteral - Parse Objective-C string literals.
6924 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6925 ArrayRef<Expr *> Strings);
6926
6927 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6928
6929 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6930 /// numeric literal expression. Type of the expression will be "NSNumber *"
6931 /// or "id" if NSNumber is unavailable.
6932 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6933 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6934 bool Value);
6935 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6936
6937 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6938 /// '@' prefixed parenthesized expression. The type of the expression will
6939 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6940 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6941 /// "const char *" or C structure with attribute 'objc_boxable'.
6942 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6943
6944 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6945 Expr *IndexExpr,
6946 ObjCMethodDecl *getterMethod,
6947 ObjCMethodDecl *setterMethod);
6948
6949 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6950 MutableArrayRef<ObjCDictionaryElement> Elements);
6951
6952 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6953 TypeSourceInfo *EncodedTypeInfo,
6954 SourceLocation RParenLoc);
6955 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6956 CXXConversionDecl *Method,
6957 bool HadMultipleCandidates);
6958
6959 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6960 SourceLocation EncodeLoc,
6961 SourceLocation LParenLoc,
6962 ParsedType Ty,
6963 SourceLocation RParenLoc);
6964
6965 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6966 ExprResult ParseObjCSelectorExpression(Selector Sel,
6967 SourceLocation AtLoc,
6968 SourceLocation SelLoc,
6969 SourceLocation LParenLoc,
6970 SourceLocation RParenLoc,
6971 bool WarnMultipleSelectors);
6972
6973 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6974 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6975 SourceLocation AtLoc,
6976 SourceLocation ProtoLoc,
6977 SourceLocation LParenLoc,
6978 SourceLocation ProtoIdLoc,
6979 SourceLocation RParenLoc);
6980
6981 //===--------------------------------------------------------------------===//
6982 // C++ Declarations
6983 //
6984 Decl *ActOnStartLinkageSpecification(Scope *S,
6985 SourceLocation ExternLoc,
6986 Expr *LangStr,
6987 SourceLocation LBraceLoc);
6988 Decl *ActOnFinishLinkageSpecification(Scope *S,
6989 Decl *LinkageSpec,
6990 SourceLocation RBraceLoc);
6991
6992
6993 //===--------------------------------------------------------------------===//
6994 // C++ Classes
6995 //
6996 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6997 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6998 const CXXScopeSpec *SS = nullptr);
6999 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
7000
7001 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
7002 SourceLocation ColonLoc,
7003 const ParsedAttributesView &Attrs);
7004
7005 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
7006 Declarator &D,
7007 MultiTemplateParamsArg TemplateParameterLists,
7008 Expr *BitfieldWidth, const VirtSpecifiers &VS,
7009 InClassInitStyle InitStyle);
7010
7011 void ActOnStartCXXInClassMemberInitializer();
7012 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7013 SourceLocation EqualLoc,
7014 Expr *Init);
7015
7016 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7017 Scope *S,
7018 CXXScopeSpec &SS,
7019 IdentifierInfo *MemberOrBase,
7020 ParsedType TemplateTypeTy,
7021 const DeclSpec &DS,
7022 SourceLocation IdLoc,
7023 SourceLocation LParenLoc,
7024 ArrayRef<Expr *> Args,
7025 SourceLocation RParenLoc,
7026 SourceLocation EllipsisLoc);
7027
7028 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7029 Scope *S,
7030 CXXScopeSpec &SS,
7031 IdentifierInfo *MemberOrBase,
7032 ParsedType TemplateTypeTy,
7033 const DeclSpec &DS,
7034 SourceLocation IdLoc,
7035 Expr *InitList,
7036 SourceLocation EllipsisLoc);
7037
7038 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7039 Scope *S,
7040 CXXScopeSpec &SS,
7041 IdentifierInfo *MemberOrBase,
7042 ParsedType TemplateTypeTy,
7043 const DeclSpec &DS,
7044 SourceLocation IdLoc,
7045 Expr *Init,
7046 SourceLocation EllipsisLoc);
7047
7048 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7049 Expr *Init,
7050 SourceLocation IdLoc);
7051
7052 MemInitResult BuildBaseInitializer(QualType BaseType,
7053 TypeSourceInfo *BaseTInfo,
7054 Expr *Init,
7055 CXXRecordDecl *ClassDecl,
7056 SourceLocation EllipsisLoc);
7057
7058 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7059 Expr *Init,
7060 CXXRecordDecl *ClassDecl);
7061
7062 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7063 CXXCtorInitializer *Initializer);
7064
7065 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7066 ArrayRef<CXXCtorInitializer *> Initializers = None);
7067
7068 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7069
7070
7071 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7072 /// mark all the non-trivial destructors of its members and bases as
7073 /// referenced.
7074 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7075 CXXRecordDecl *Record);
7076
7077 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7078 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7079 /// class. In the Microsoft C++ ABI, this is done any time a class's
7080 /// destructor is referenced.
7081 void MarkVirtualBaseDestructorsReferenced(
7082 SourceLocation Location, CXXRecordDecl *ClassDecl,
7083 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7084
7085 /// Do semantic checks to allow the complete destructor variant to be emitted
7086 /// when the destructor is defined in another translation unit. In the Itanium
7087 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7088 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7089 /// of the checks performed when emitting a regular destructor.
7090 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7091 CXXDestructorDecl *Dtor);
7092
7093 /// The list of classes whose vtables have been used within
7094 /// this translation unit, and the source locations at which the
7095 /// first use occurred.
7096 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7097
7098 /// The list of vtables that are required but have not yet been
7099 /// materialized.
7100 SmallVector<VTableUse, 16> VTableUses;
7101
7102 /// The set of classes whose vtables have been used within
7103 /// this translation unit, and a bit that will be true if the vtable is
7104 /// required to be emitted (otherwise, it should be emitted only if needed
7105 /// by code generation).
7106 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7107
7108 /// Load any externally-stored vtable uses.
7109 void LoadExternalVTableUses();
7110
7111 /// Note that the vtable for the given class was used at the
7112 /// given location.
7113 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7114 bool DefinitionRequired = false);
7115
7116 /// Mark the exception specifications of all virtual member functions
7117 /// in the given class as needed.
7118 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7119 const CXXRecordDecl *RD);
7120
7121 /// MarkVirtualMembersReferenced - Will mark all members of the given
7122 /// CXXRecordDecl referenced.
7123 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7124 bool ConstexprOnly = false);
7125
7126 /// Define all of the vtables that have been used in this
7127 /// translation unit and reference any virtual members used by those
7128 /// vtables.
7129 ///
7130 /// \returns true if any work was done, false otherwise.
7131 bool DefineUsedVTables();
7132
7133 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7134
7135 void ActOnMemInitializers(Decl *ConstructorDecl,
7136 SourceLocation ColonLoc,
7137 ArrayRef<CXXCtorInitializer*> MemInits,
7138 bool AnyErrors);
7139
7140 /// Check class-level dllimport/dllexport attribute. The caller must
7141 /// ensure that referenceDLLExportedClassMethods is called some point later
7142 /// when all outer classes of Class are complete.
7143 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7144 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7145
7146 void referenceDLLExportedClassMethods();
7147
7148 void propagateDLLAttrToBaseClassTemplate(
7149 CXXRecordDecl *Class, Attr *ClassAttr,
7150 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7151 SourceLocation BaseLoc);
7152
7153 /// Add gsl::Pointer attribute to std::container::iterator
7154 /// \param ND The declaration that introduces the name
7155 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7156 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7157
7158 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7159 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7160
7161 /// Add [[gsl::Pointer]] attributes for std:: types.
7162 void inferGslPointerAttribute(TypedefNameDecl *TD);
7163
7164 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7165
7166 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7167 /// conditions that are needed for the attribute to have an effect.
7168 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7169
7170 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7171 Decl *TagDecl, SourceLocation LBrac,
7172 SourceLocation RBrac,
7173 const ParsedAttributesView &AttrList);
7174 void ActOnFinishCXXMemberDecls();
7175 void ActOnFinishCXXNonNestedClass();
7176
7177 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7178 unsigned ActOnReenterTemplateScope(Decl *Template,
7179 llvm::function_ref<Scope *()> EnterScope);
7180 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7181 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7182 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7183 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7184 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7185 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7186 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7187 CachedTokens &Toks);
7188 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7189 bool IsInsideALocalClassWithinATemplateFunction();
7190
7191 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7192 Expr *AssertExpr,
7193 Expr *AssertMessageExpr,
7194 SourceLocation RParenLoc);
7195 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7196 Expr *AssertExpr,
7197 StringLiteral *AssertMessageExpr,
7198 SourceLocation RParenLoc,
7199 bool Failed);
7200
7201 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7202 SourceLocation FriendLoc,
7203 TypeSourceInfo *TSInfo);
7204 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7205 MultiTemplateParamsArg TemplateParams);
7206 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7207 MultiTemplateParamsArg TemplateParams);
7208
7209 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7210 StorageClass& SC);
7211 void CheckConstructor(CXXConstructorDecl *Constructor);
7212 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7213 StorageClass& SC);
7214 bool CheckDestructor(CXXDestructorDecl *Destructor);
7215 void CheckConversionDeclarator(Declarator &D, QualType &R,
7216 StorageClass& SC);
7217 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7218 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7219 StorageClass &SC);
7220 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7221
7222 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7223
7224 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7225 CXXSpecialMember CSM);
7226 void CheckDelayedMemberExceptionSpecs();
7227
7228 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7229 DefaultedComparisonKind DCK);
7230 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7231 FunctionDecl *Spaceship);
7232 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7233 DefaultedComparisonKind DCK);
7234
7235 //===--------------------------------------------------------------------===//
7236 // C++ Derived Classes
7237 //
7238
7239 /// ActOnBaseSpecifier - Parsed a base specifier
7240 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7241 SourceRange SpecifierRange,
7242 bool Virtual, AccessSpecifier Access,
7243 TypeSourceInfo *TInfo,
7244 SourceLocation EllipsisLoc);
7245
7246 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7247 SourceRange SpecifierRange,
7248 ParsedAttributes &Attrs,
7249 bool Virtual, AccessSpecifier Access,
7250 ParsedType basetype,
7251 SourceLocation BaseLoc,
7252 SourceLocation EllipsisLoc);
7253
7254 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7255 MutableArrayRef<CXXBaseSpecifier *> Bases);
7256 void ActOnBaseSpecifiers(Decl *ClassDecl,
7257 MutableArrayRef<CXXBaseSpecifier *> Bases);
7258
7259 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7260 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7261 CXXBasePaths &Paths);
7262
7263 // FIXME: I don't like this name.
7264 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7265
7266 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7267 SourceLocation Loc, SourceRange Range,
7268 CXXCastPath *BasePath = nullptr,
7269 bool IgnoreAccess = false);
7270 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7271 unsigned InaccessibleBaseID,
7272 unsigned AmbiguousBaseConvID,
7273 SourceLocation Loc, SourceRange Range,
7274 DeclarationName Name,
7275 CXXCastPath *BasePath,
7276 bool IgnoreAccess = false);
7277
7278 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7279
7280 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7281 const CXXMethodDecl *Old);
7282
7283 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7284 /// covariant, according to C++ [class.virtual]p5.
7285 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7286 const CXXMethodDecl *Old);
7287
7288 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7289 /// spec is a subset of base spec.
7290 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7291 const CXXMethodDecl *Old);
7292
7293 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7294
7295 /// CheckOverrideControl - Check C++11 override control semantics.
7296 void CheckOverrideControl(NamedDecl *D);
7297
7298 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7299 /// not used in the declaration of an overriding method.
7300 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7301
7302 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7303 /// overrides a virtual member function marked 'final', according to
7304 /// C++11 [class.virtual]p4.
7305 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7306 const CXXMethodDecl *Old);
7307
7308
7309 //===--------------------------------------------------------------------===//
7310 // C++ Access Control
7311 //
7312
7313 enum AccessResult {
7314 AR_accessible,
7315 AR_inaccessible,
7316 AR_dependent,
7317 AR_delayed
7318 };
7319
7320 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7321 NamedDecl *PrevMemberDecl,
7322 AccessSpecifier LexicalAS);
7323
7324 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7325 DeclAccessPair FoundDecl);
7326 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7327 DeclAccessPair FoundDecl);
7328 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7329 SourceRange PlacementRange,
7330 CXXRecordDecl *NamingClass,
7331 DeclAccessPair FoundDecl,
7332 bool Diagnose = true);
7333 AccessResult CheckConstructorAccess(SourceLocation Loc,
7334 CXXConstructorDecl *D,
7335 DeclAccessPair FoundDecl,
7336 const InitializedEntity &Entity,
7337 bool IsCopyBindingRefToTemp = false);
7338 AccessResult CheckConstructorAccess(SourceLocation Loc,
7339 CXXConstructorDecl *D,
7340 DeclAccessPair FoundDecl,
7341 const InitializedEntity &Entity,
7342 const PartialDiagnostic &PDiag);
7343 AccessResult CheckDestructorAccess(SourceLocation Loc,
7344 CXXDestructorDecl *Dtor,
7345 const PartialDiagnostic &PDiag,
7346 QualType objectType = QualType());
7347 AccessResult CheckFriendAccess(NamedDecl *D);
7348 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7349 CXXRecordDecl *NamingClass,
7350 DeclAccessPair Found);
7351 AccessResult
7352 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7353 CXXRecordDecl *DecomposedClass,
7354 DeclAccessPair Field);
7355 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7356 Expr *ObjectExpr,
7357 Expr *ArgExpr,
7358 DeclAccessPair FoundDecl);
7359 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7360 DeclAccessPair FoundDecl);
7361 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7362 QualType Base, QualType Derived,
7363 const CXXBasePath &Path,
7364 unsigned DiagID,
7365 bool ForceCheck = false,
7366 bool ForceUnprivileged = false);
7367 void CheckLookupAccess(const LookupResult &R);
7368 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7369 QualType BaseType);
7370 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7371 DeclAccessPair Found, QualType ObjectType,
7372 SourceLocation Loc,
7373 const PartialDiagnostic &Diag);
7374 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7375 DeclAccessPair Found,
7376 QualType ObjectType) {
7377 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7378 SourceLocation(), PDiag());
7379 }
7380
7381 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7382 const MultiLevelTemplateArgumentList &TemplateArgs);
7383 void PerformDependentDiagnostics(const DeclContext *Pattern,
7384 const MultiLevelTemplateArgumentList &TemplateArgs);
7385
7386 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7387
7388 /// When true, access checking violations are treated as SFINAE
7389 /// failures rather than hard errors.
7390 bool AccessCheckingSFINAE;
7391
7392 enum AbstractDiagSelID {
7393 AbstractNone = -1,
7394 AbstractReturnType,
7395 AbstractParamType,
7396 AbstractVariableType,
7397 AbstractFieldType,
7398 AbstractIvarType,
7399 AbstractSynthesizedIvarType,
7400 AbstractArrayType
7401 };
7402
7403 bool isAbstractType(SourceLocation Loc, QualType T);
7404 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7405 TypeDiagnoser &Diagnoser);
7406 template <typename... Ts>
7407 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7408 const Ts &...Args) {
7409 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7410 return RequireNonAbstractType(Loc, T, Diagnoser);
7411 }
7412
7413 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7414
7415 //===--------------------------------------------------------------------===//
7416 // C++ Overloaded Operators [C++ 13.5]
7417 //
7418
7419 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7420
7421 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7422
7423 //===--------------------------------------------------------------------===//
7424 // C++ Templates [C++ 14]
7425 //
7426 void FilterAcceptableTemplateNames(LookupResult &R,
7427 bool AllowFunctionTemplates = true,
7428 bool AllowDependent = true);
7429 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7430 bool AllowFunctionTemplates = true,
7431 bool AllowDependent = true,
7432 bool AllowNonTemplateFunctions = false);
7433 /// Try to interpret the lookup result D as a template-name.
7434 ///
7435 /// \param D A declaration found by name lookup.
7436 /// \param AllowFunctionTemplates Whether function templates should be
7437 /// considered valid results.
7438 /// \param AllowDependent Whether unresolved using declarations (that might
7439 /// name templates) should be considered valid results.
7440 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7441 bool AllowFunctionTemplates = true,
7442 bool AllowDependent = true);
7443
7444 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7445 /// Whether and why a template name is required in this lookup.
7446 class RequiredTemplateKind {
7447 public:
7448 /// Template name is required if TemplateKWLoc is valid.
7449 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7450 : TemplateKW(TemplateKWLoc) {}
7451 /// Template name is unconditionally required.
7452 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7453
7454 SourceLocation getTemplateKeywordLoc() const {
7455 return TemplateKW.getValueOr(SourceLocation());
7456 }
7457 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7458 bool isRequired() const { return TemplateKW != SourceLocation(); }
7459 explicit operator bool() const { return isRequired(); }
7460
7461 private:
7462 llvm::Optional<SourceLocation> TemplateKW;
7463 };
7464
7465 enum class AssumedTemplateKind {
7466 /// This is not assumed to be a template name.
7467 None,
7468 /// This is assumed to be a template name because lookup found nothing.
7469 FoundNothing,
7470 /// This is assumed to be a template name because lookup found one or more
7471 /// functions (but no function templates).
7472 FoundFunctions,
7473 };
7474 bool LookupTemplateName(
7475 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7476 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7477 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7478 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7479
7480 TemplateNameKind isTemplateName(Scope *S,
7481 CXXScopeSpec &SS,
7482 bool hasTemplateKeyword,
7483 const UnqualifiedId &Name,
7484 ParsedType ObjectType,
7485 bool EnteringContext,
7486 TemplateTy &Template,
7487 bool &MemberOfUnknownSpecialization,
7488 bool Disambiguation = false);
7489
7490 /// Try to resolve an undeclared template name as a type template.
7491 ///
7492 /// Sets II to the identifier corresponding to the template name, and updates
7493 /// Name to a corresponding (typo-corrected) type template name and TNK to
7494 /// the corresponding kind, if possible.
7495 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7496 TemplateNameKind &TNK,
7497 SourceLocation NameLoc,
7498 IdentifierInfo *&II);
7499
7500 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7501 SourceLocation NameLoc,
7502 bool Diagnose = true);
7503
7504 /// Determine whether a particular identifier might be the name in a C++1z
7505 /// deduction-guide declaration.
7506 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7507 SourceLocation NameLoc,
7508 ParsedTemplateTy *Template = nullptr);
7509
7510 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7511 SourceLocation IILoc,
7512 Scope *S,
7513 const CXXScopeSpec *SS,
7514 TemplateTy &SuggestedTemplate,
7515 TemplateNameKind &SuggestedKind);
7516
7517 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7518 NamedDecl *Instantiation,
7519 bool InstantiatedFromMember,
7520 const NamedDecl *Pattern,
7521 const NamedDecl *PatternDef,
7522 TemplateSpecializationKind TSK,
7523 bool Complain = true);
7524
7525 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7526 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7527
7528 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7529 SourceLocation EllipsisLoc,
7530 SourceLocation KeyLoc,
7531 IdentifierInfo *ParamName,
7532 SourceLocation ParamNameLoc,
7533 unsigned Depth, unsigned Position,
7534 SourceLocation EqualLoc,
7535 ParsedType DefaultArg, bool HasTypeConstraint);
7536
7537 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7538 TemplateIdAnnotation *TypeConstraint,
7539 TemplateTypeParmDecl *ConstrainedParameter,
7540 SourceLocation EllipsisLoc);
7541 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7542 TemplateIdAnnotation *TypeConstraint,
7543 TemplateTypeParmDecl *ConstrainedParameter,
7544 SourceLocation EllipsisLoc,
7545 bool AllowUnexpandedPack);
7546
7547 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7548 DeclarationNameInfo NameInfo,
7549 ConceptDecl *NamedConcept,
7550 const TemplateArgumentListInfo *TemplateArgs,
7551 TemplateTypeParmDecl *ConstrainedParameter,
7552 SourceLocation EllipsisLoc);
7553
7554 bool AttachTypeConstraint(AutoTypeLoc TL,
7555 NonTypeTemplateParmDecl *ConstrainedParameter,
7556 SourceLocation EllipsisLoc);
7557
7558 bool RequireStructuralType(QualType T, SourceLocation Loc);
7559
7560 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7561 SourceLocation Loc);
7562 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7563
7564 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7565 unsigned Depth,
7566 unsigned Position,
7567 SourceLocation EqualLoc,
7568 Expr *DefaultArg);
7569 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7570 SourceLocation TmpLoc,
7571 TemplateParameterList *Params,
7572 SourceLocation EllipsisLoc,
7573 IdentifierInfo *ParamName,
7574 SourceLocation ParamNameLoc,
7575 unsigned Depth,
7576 unsigned Position,
7577 SourceLocation EqualLoc,
7578 ParsedTemplateArgument DefaultArg);
7579
7580 TemplateParameterList *
7581 ActOnTemplateParameterList(unsigned Depth,
7582 SourceLocation ExportLoc,
7583 SourceLocation TemplateLoc,
7584 SourceLocation LAngleLoc,
7585 ArrayRef<NamedDecl *> Params,
7586 SourceLocation RAngleLoc,
7587 Expr *RequiresClause);
7588
7589 /// The context in which we are checking a template parameter list.
7590 enum TemplateParamListContext {
7591 TPC_ClassTemplate,
7592 TPC_VarTemplate,
7593 TPC_FunctionTemplate,
7594 TPC_ClassTemplateMember,
7595 TPC_FriendClassTemplate,
7596 TPC_FriendFunctionTemplate,
7597 TPC_FriendFunctionTemplateDefinition,
7598 TPC_TypeAliasTemplate
7599 };
7600
7601 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7602 TemplateParameterList *OldParams,
7603 TemplateParamListContext TPC,
7604 SkipBodyInfo *SkipBody = nullptr);
7605 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7606 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7607 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7608 ArrayRef<TemplateParameterList *> ParamLists,
7609 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7610 bool SuppressDiagnostic = false);
7611
7612 DeclResult CheckClassTemplate(
7613 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7614 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7615 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7616 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7617 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7618 TemplateParameterList **OuterTemplateParamLists,
7619 SkipBodyInfo *SkipBody = nullptr);
7620
7621 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7622 QualType NTTPType,
7623 SourceLocation Loc);
7624
7625 /// Get a template argument mapping the given template parameter to itself,
7626 /// e.g. for X in \c template<int X>, this would return an expression template
7627 /// argument referencing X.
7628 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7629 SourceLocation Location);
7630
7631 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7632 TemplateArgumentListInfo &Out);
7633
7634 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7635
7636 void NoteAllFoundTemplates(TemplateName Name);
7637
7638 QualType CheckTemplateIdType(TemplateName Template,
7639 SourceLocation TemplateLoc,
7640 TemplateArgumentListInfo &TemplateArgs);
7641
7642 TypeResult
7643 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7644 TemplateTy Template, IdentifierInfo *TemplateII,
7645 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7646 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7647 bool IsCtorOrDtorName = false, bool IsClassName = false);
7648
7649 /// Parsed an elaborated-type-specifier that refers to a template-id,
7650 /// such as \c class T::template apply<U>.
7651 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7652 TypeSpecifierType TagSpec,
7653 SourceLocation TagLoc,
7654 CXXScopeSpec &SS,
7655 SourceLocation TemplateKWLoc,
7656 TemplateTy TemplateD,
7657 SourceLocation TemplateLoc,
7658 SourceLocation LAngleLoc,
7659 ASTTemplateArgsPtr TemplateArgsIn,
7660 SourceLocation RAngleLoc);
7661
7662 DeclResult ActOnVarTemplateSpecialization(
7663 Scope *S, Declarator &D, TypeSourceInfo *DI,
7664 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7665 StorageClass SC, bool IsPartialSpecialization);
7666
7667 /// Get the specialization of the given variable template corresponding to
7668 /// the specified argument list, or a null-but-valid result if the arguments
7669 /// are dependent.
7670 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7671 SourceLocation TemplateLoc,
7672 SourceLocation TemplateNameLoc,
7673 const TemplateArgumentListInfo &TemplateArgs);
7674
7675 /// Form a reference to the specialization of the given variable template
7676 /// corresponding to the specified argument list, or a null-but-valid result
7677 /// if the arguments are dependent.
7678 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7679 const DeclarationNameInfo &NameInfo,
7680 VarTemplateDecl *Template,
7681 SourceLocation TemplateLoc,
7682 const TemplateArgumentListInfo *TemplateArgs);
7683
7684 ExprResult
7685 CheckConceptTemplateId(const CXXScopeSpec &SS,
7686 SourceLocation TemplateKWLoc,
7687 const DeclarationNameInfo &ConceptNameInfo,
7688 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7689 const TemplateArgumentListInfo *TemplateArgs);
7690
7691 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7692
7693 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7694 SourceLocation TemplateKWLoc,
7695 LookupResult &R,
7696 bool RequiresADL,
7697 const TemplateArgumentListInfo *TemplateArgs);
7698
7699 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7700 SourceLocation TemplateKWLoc,
7701 const DeclarationNameInfo &NameInfo,
7702 const TemplateArgumentListInfo *TemplateArgs);
7703
7704 TemplateNameKind ActOnTemplateName(
7705 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7706 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7707 TemplateTy &Template, bool AllowInjectedClassName = false);
7708
7709 DeclResult ActOnClassTemplateSpecialization(
7710 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7711 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7712 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7713 MultiTemplateParamsArg TemplateParameterLists,
7714 SkipBodyInfo *SkipBody = nullptr);
7715
7716 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7717 TemplateDecl *PrimaryTemplate,
7718 unsigned NumExplicitArgs,
7719 ArrayRef<TemplateArgument> Args);
7720 void CheckTemplatePartialSpecialization(
7721 ClassTemplatePartialSpecializationDecl *Partial);
7722 void CheckTemplatePartialSpecialization(
7723 VarTemplatePartialSpecializationDecl *Partial);
7724
7725 Decl *ActOnTemplateDeclarator(Scope *S,
7726 MultiTemplateParamsArg TemplateParameterLists,
7727 Declarator &D);
7728
7729 bool
7730 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7731 TemplateSpecializationKind NewTSK,
7732 NamedDecl *PrevDecl,
7733 TemplateSpecializationKind PrevTSK,
7734 SourceLocation PrevPtOfInstantiation,
7735 bool &SuppressNew);
7736
7737 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7738 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7739 LookupResult &Previous);
7740
7741 bool CheckFunctionTemplateSpecialization(
7742 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7743 LookupResult &Previous, bool QualifiedFriend = false);
7744 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7745 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7746
7747 DeclResult ActOnExplicitInstantiation(
7748 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7749 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7750 TemplateTy Template, SourceLocation TemplateNameLoc,
7751 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7752 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7753
7754 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7755 SourceLocation TemplateLoc,
7756 unsigned TagSpec, SourceLocation KWLoc,
7757 CXXScopeSpec &SS, IdentifierInfo *Name,
7758 SourceLocation NameLoc,
7759 const ParsedAttributesView &Attr);
7760
7761 DeclResult ActOnExplicitInstantiation(Scope *S,
7762 SourceLocation ExternLoc,
7763 SourceLocation TemplateLoc,
7764 Declarator &D);
7765
7766 TemplateArgumentLoc
7767 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7768 SourceLocation TemplateLoc,
7769 SourceLocation RAngleLoc,
7770 Decl *Param,
7771 SmallVectorImpl<TemplateArgument>
7772 &Converted,
7773 bool &HasDefaultArg);
7774
7775 /// Specifies the context in which a particular template
7776 /// argument is being checked.
7777 enum CheckTemplateArgumentKind {
7778 /// The template argument was specified in the code or was
7779 /// instantiated with some deduced template arguments.
7780 CTAK_Specified,
7781
7782 /// The template argument was deduced via template argument
7783 /// deduction.
7784 CTAK_Deduced,
7785
7786 /// The template argument was deduced from an array bound
7787 /// via template argument deduction.
7788 CTAK_DeducedFromArrayBound
7789 };
7790
7791 bool CheckTemplateArgument(NamedDecl *Param,
7792 TemplateArgumentLoc &Arg,
7793 NamedDecl *Template,
7794 SourceLocation TemplateLoc,
7795 SourceLocation RAngleLoc,
7796 unsigned ArgumentPackIndex,
7797 SmallVectorImpl<TemplateArgument> &Converted,
7798 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7799
7800 /// Check that the given template arguments can be be provided to
7801 /// the given template, converting the arguments along the way.
7802 ///
7803 /// \param Template The template to which the template arguments are being
7804 /// provided.
7805 ///
7806 /// \param TemplateLoc The location of the template name in the source.
7807 ///
7808 /// \param TemplateArgs The list of template arguments. If the template is
7809 /// a template template parameter, this function may extend the set of
7810 /// template arguments to also include substituted, defaulted template
7811 /// arguments.
7812 ///
7813 /// \param PartialTemplateArgs True if the list of template arguments is
7814 /// intentionally partial, e.g., because we're checking just the initial
7815 /// set of template arguments.
7816 ///
7817 /// \param Converted Will receive the converted, canonicalized template
7818 /// arguments.
7819 ///
7820 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7821 /// contain the converted forms of the template arguments as written.
7822 /// Otherwise, \p TemplateArgs will not be modified.
7823 ///
7824 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7825 /// receive true if the cause for the error is the associated constraints of
7826 /// the template not being satisfied by the template arguments.
7827 ///
7828 /// \returns true if an error occurred, false otherwise.
7829 bool CheckTemplateArgumentList(TemplateDecl *Template,
7830 SourceLocation TemplateLoc,
7831 TemplateArgumentListInfo &TemplateArgs,
7832 bool PartialTemplateArgs,
7833 SmallVectorImpl<TemplateArgument> &Converted,
7834 bool UpdateArgsWithConversions = true,
7835 bool *ConstraintsNotSatisfied = nullptr);
7836
7837 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7838 TemplateArgumentLoc &Arg,
7839 SmallVectorImpl<TemplateArgument> &Converted);
7840
7841 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7842 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7843 QualType InstantiatedParamType, Expr *Arg,
7844 TemplateArgument &Converted,
7845 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7846 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7847 TemplateParameterList *Params,
7848 TemplateArgumentLoc &Arg);
7849
7850 ExprResult
7851 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7852 QualType ParamType,
7853 SourceLocation Loc);
7854 ExprResult
7855 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7856 SourceLocation Loc);
7857
7858 /// Enumeration describing how template parameter lists are compared
7859 /// for equality.
7860 enum TemplateParameterListEqualKind {
7861 /// We are matching the template parameter lists of two templates
7862 /// that might be redeclarations.
7863 ///
7864 /// \code
7865 /// template<typename T> struct X;
7866 /// template<typename T> struct X;
7867 /// \endcode
7868 TPL_TemplateMatch,
7869
7870 /// We are matching the template parameter lists of two template
7871 /// template parameters as part of matching the template parameter lists
7872 /// of two templates that might be redeclarations.
7873 ///
7874 /// \code
7875 /// template<template<int I> class TT> struct X;
7876 /// template<template<int Value> class Other> struct X;
7877 /// \endcode
7878 TPL_TemplateTemplateParmMatch,
7879
7880 /// We are matching the template parameter lists of a template
7881 /// template argument against the template parameter lists of a template
7882 /// template parameter.
7883 ///
7884 /// \code
7885 /// template<template<int Value> class Metafun> struct X;
7886 /// template<int Value> struct integer_c;
7887 /// X<integer_c> xic;
7888 /// \endcode
7889 TPL_TemplateTemplateArgumentMatch
7890 };
7891
7892 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7893 TemplateParameterList *Old,
7894 bool Complain,
7895 TemplateParameterListEqualKind Kind,
7896 SourceLocation TemplateArgLoc
7897 = SourceLocation());
7898
7899 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7900
7901 /// Called when the parser has parsed a C++ typename
7902 /// specifier, e.g., "typename T::type".
7903 ///
7904 /// \param S The scope in which this typename type occurs.
7905 /// \param TypenameLoc the location of the 'typename' keyword
7906 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7907 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7908 /// \param IdLoc the location of the identifier.
7909 TypeResult
7910 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7911 const CXXScopeSpec &SS, const IdentifierInfo &II,
7912 SourceLocation IdLoc);
7913
7914 /// Called when the parser has parsed a C++ typename
7915 /// specifier that ends in a template-id, e.g.,
7916 /// "typename MetaFun::template apply<T1, T2>".
7917 ///
7918 /// \param S The scope in which this typename type occurs.
7919 /// \param TypenameLoc the location of the 'typename' keyword
7920 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7921 /// \param TemplateLoc the location of the 'template' keyword, if any.
7922 /// \param TemplateName The template name.
7923 /// \param TemplateII The identifier used to name the template.
7924 /// \param TemplateIILoc The location of the template name.
7925 /// \param LAngleLoc The location of the opening angle bracket ('<').
7926 /// \param TemplateArgs The template arguments.
7927 /// \param RAngleLoc The location of the closing angle bracket ('>').
7928 TypeResult
7929 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7930 const CXXScopeSpec &SS,
7931 SourceLocation TemplateLoc,
7932 TemplateTy TemplateName,
7933 IdentifierInfo *TemplateII,
7934 SourceLocation TemplateIILoc,
7935 SourceLocation LAngleLoc,
7936 ASTTemplateArgsPtr TemplateArgs,
7937 SourceLocation RAngleLoc);
7938
7939 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7940 SourceLocation KeywordLoc,
7941 NestedNameSpecifierLoc QualifierLoc,
7942 const IdentifierInfo &II,
7943 SourceLocation IILoc,
7944 TypeSourceInfo **TSI,
7945 bool DeducedTSTContext);
7946
7947 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7948 SourceLocation KeywordLoc,
7949 NestedNameSpecifierLoc QualifierLoc,
7950 const IdentifierInfo &II,
7951 SourceLocation IILoc,
7952 bool DeducedTSTContext = true);
7953
7954
7955 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7956 SourceLocation Loc,
7957 DeclarationName Name);
7958 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7959
7960 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7961 bool RebuildTemplateParamsInCurrentInstantiation(
7962 TemplateParameterList *Params);
7963
7964 std::string
7965 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7966 const TemplateArgumentList &Args);
7967
7968 std::string
7969 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7970 const TemplateArgument *Args,
7971 unsigned NumArgs);
7972
7973 //===--------------------------------------------------------------------===//
7974 // C++ Concepts
7975 //===--------------------------------------------------------------------===//
7976 Decl *ActOnConceptDefinition(
7977 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7978 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7979
7980 RequiresExprBodyDecl *
7981 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7982 ArrayRef<ParmVarDecl *> LocalParameters,
7983 Scope *BodyScope);
7984 void ActOnFinishRequiresExpr();
7985 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7986 concepts::Requirement *ActOnTypeRequirement(
7987 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7988 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7989 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7990 SourceLocation NoexceptLoc);
7991 concepts::Requirement *
7992 ActOnCompoundRequirement(
7993 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7994 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7995 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7996 concepts::ExprRequirement *
7997 BuildExprRequirement(
7998 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7999 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
8000 concepts::ExprRequirement *
8001 BuildExprRequirement(
8002 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
8003 bool IsSatisfied, SourceLocation NoexceptLoc,
8004 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
8005 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
8006 concepts::TypeRequirement *
8007 BuildTypeRequirement(
8008 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8009 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8010 concepts::NestedRequirement *
8011 BuildNestedRequirement(
8012 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8013 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8014 RequiresExprBodyDecl *Body,
8015 ArrayRef<ParmVarDecl *> LocalParameters,
8016 ArrayRef<concepts::Requirement *> Requirements,
8017 SourceLocation ClosingBraceLoc);
8018
8019 //===--------------------------------------------------------------------===//
8020 // C++ Variadic Templates (C++0x [temp.variadic])
8021 //===--------------------------------------------------------------------===//
8022
8023 /// Determine whether an unexpanded parameter pack might be permitted in this
8024 /// location. Useful for error recovery.
8025 bool isUnexpandedParameterPackPermitted();
8026
8027 /// The context in which an unexpanded parameter pack is
8028 /// being diagnosed.
8029 ///
8030 /// Note that the values of this enumeration line up with the first
8031 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8032 enum UnexpandedParameterPackContext {
8033 /// An arbitrary expression.
8034 UPPC_Expression = 0,
8035
8036 /// The base type of a class type.
8037 UPPC_BaseType,
8038
8039 /// The type of an arbitrary declaration.
8040 UPPC_DeclarationType,
8041
8042 /// The type of a data member.
8043 UPPC_DataMemberType,
8044
8045 /// The size of a bit-field.
8046 UPPC_BitFieldWidth,
8047
8048 /// The expression in a static assertion.
8049 UPPC_StaticAssertExpression,
8050
8051 /// The fixed underlying type of an enumeration.
8052 UPPC_FixedUnderlyingType,
8053
8054 /// The enumerator value.
8055 UPPC_EnumeratorValue,
8056
8057 /// A using declaration.
8058 UPPC_UsingDeclaration,
8059
8060 /// A friend declaration.
8061 UPPC_FriendDeclaration,
8062
8063 /// A declaration qualifier.
8064 UPPC_DeclarationQualifier,
8065
8066 /// An initializer.
8067 UPPC_Initializer,
8068
8069 /// A default argument.
8070 UPPC_DefaultArgument,
8071
8072 /// The type of a non-type template parameter.
8073 UPPC_NonTypeTemplateParameterType,
8074
8075 /// The type of an exception.
8076 UPPC_ExceptionType,
8077
8078 /// Partial specialization.
8079 UPPC_PartialSpecialization,
8080
8081 /// Microsoft __if_exists.
8082 UPPC_IfExists,
8083
8084 /// Microsoft __if_not_exists.
8085 UPPC_IfNotExists,
8086
8087 /// Lambda expression.
8088 UPPC_Lambda,
8089
8090 /// Block expression.
8091 UPPC_Block,
8092
8093 /// A type constraint.
8094 UPPC_TypeConstraint,
8095
8096 // A requirement in a requires-expression.
8097 UPPC_Requirement,
8098
8099 // A requires-clause.
8100 UPPC_RequiresClause,
8101 };
8102
8103 /// Diagnose unexpanded parameter packs.
8104 ///
8105 /// \param Loc The location at which we should emit the diagnostic.
8106 ///
8107 /// \param UPPC The context in which we are diagnosing unexpanded
8108 /// parameter packs.
8109 ///
8110 /// \param Unexpanded the set of unexpanded parameter packs.
8111 ///
8112 /// \returns true if an error occurred, false otherwise.
8113 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8114 UnexpandedParameterPackContext UPPC,
8115 ArrayRef<UnexpandedParameterPack> Unexpanded);
8116
8117 /// If the given type contains an unexpanded parameter pack,
8118 /// diagnose the error.
8119 ///
8120 /// \param Loc The source location where a diagnostc should be emitted.
8121 ///
8122 /// \param T The type that is being checked for unexpanded parameter
8123 /// packs.
8124 ///
8125 /// \returns true if an error occurred, false otherwise.
8126 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8127 UnexpandedParameterPackContext UPPC);
8128
8129 /// If the given expression contains an unexpanded parameter
8130 /// pack, diagnose the error.
8131 ///
8132 /// \param E The expression that is being checked for unexpanded
8133 /// parameter packs.
8134 ///
8135 /// \returns true if an error occurred, false otherwise.
8136 bool DiagnoseUnexpandedParameterPack(Expr *E,
8137 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8138
8139 /// If the given requirees-expression contains an unexpanded reference to one
8140 /// of its own parameter packs, diagnose the error.
8141 ///
8142 /// \param RE The requiress-expression that is being checked for unexpanded
8143 /// parameter packs.
8144 ///
8145 /// \returns true if an error occurred, false otherwise.
8146 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8147
8148 /// If the given nested-name-specifier contains an unexpanded
8149 /// parameter pack, diagnose the error.
8150 ///
8151 /// \param SS The nested-name-specifier that is being checked for
8152 /// unexpanded parameter packs.
8153 ///
8154 /// \returns true if an error occurred, false otherwise.
8155 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8156 UnexpandedParameterPackContext UPPC);
8157
8158 /// If the given name contains an unexpanded parameter pack,
8159 /// diagnose the error.
8160 ///
8161 /// \param NameInfo The name (with source location information) that
8162 /// is being checked for unexpanded parameter packs.
8163 ///
8164 /// \returns true if an error occurred, false otherwise.
8165 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8166 UnexpandedParameterPackContext UPPC);
8167
8168 /// If the given template name contains an unexpanded parameter pack,
8169 /// diagnose the error.
8170 ///
8171 /// \param Loc The location of the template name.
8172 ///
8173 /// \param Template The template name that is being checked for unexpanded
8174 /// parameter packs.
8175 ///
8176 /// \returns true if an error occurred, false otherwise.
8177 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8178 TemplateName Template,
8179 UnexpandedParameterPackContext UPPC);
8180
8181 /// If the given template argument contains an unexpanded parameter
8182 /// pack, diagnose the error.
8183 ///
8184 /// \param Arg The template argument that is being checked for unexpanded
8185 /// parameter packs.
8186 ///
8187 /// \returns true if an error occurred, false otherwise.
8188 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8189 UnexpandedParameterPackContext UPPC);
8190
8191 /// Collect the set of unexpanded parameter packs within the given
8192 /// template argument.
8193 ///
8194 /// \param Arg The template argument that will be traversed to find
8195 /// unexpanded parameter packs.
8196 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8197 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8198
8199 /// Collect the set of unexpanded parameter packs within the given
8200 /// template argument.
8201 ///
8202 /// \param Arg The template argument that will be traversed to find
8203 /// unexpanded parameter packs.
8204 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8205 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8206
8207 /// Collect the set of unexpanded parameter packs within the given
8208 /// type.
8209 ///
8210 /// \param T The type that will be traversed to find
8211 /// unexpanded parameter packs.
8212 void collectUnexpandedParameterPacks(QualType T,
8213 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8214
8215 /// Collect the set of unexpanded parameter packs within the given
8216 /// type.
8217 ///
8218 /// \param TL The type that will be traversed to find
8219 /// unexpanded parameter packs.
8220 void collectUnexpandedParameterPacks(TypeLoc TL,
8221 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8222
8223 /// Collect the set of unexpanded parameter packs within the given
8224 /// nested-name-specifier.
8225 ///
8226 /// \param NNS The nested-name-specifier that will be traversed to find
8227 /// unexpanded parameter packs.
8228 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8229 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8230
8231 /// Collect the set of unexpanded parameter packs within the given
8232 /// name.
8233 ///
8234 /// \param NameInfo The name that will be traversed to find
8235 /// unexpanded parameter packs.
8236 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8237 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8238
8239 /// Invoked when parsing a template argument followed by an
8240 /// ellipsis, which creates a pack expansion.
8241 ///
8242 /// \param Arg The template argument preceding the ellipsis, which
8243 /// may already be invalid.
8244 ///
8245 /// \param EllipsisLoc The location of the ellipsis.
8246 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8247 SourceLocation EllipsisLoc);
8248
8249 /// Invoked when parsing a type followed by an ellipsis, which
8250 /// creates a pack expansion.
8251 ///
8252 /// \param Type The type preceding the ellipsis, which will become
8253 /// the pattern of the pack expansion.
8254 ///
8255 /// \param EllipsisLoc The location of the ellipsis.
8256 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8257
8258 /// Construct a pack expansion type from the pattern of the pack
8259 /// expansion.
8260 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8261 SourceLocation EllipsisLoc,
8262 Optional<unsigned> NumExpansions);
8263
8264 /// Construct a pack expansion type from the pattern of the pack
8265 /// expansion.
8266 QualType CheckPackExpansion(QualType Pattern,
8267 SourceRange PatternRange,
8268 SourceLocation EllipsisLoc,
8269 Optional<unsigned> NumExpansions);
8270
8271 /// Invoked when parsing an expression followed by an ellipsis, which
8272 /// creates a pack expansion.
8273 ///
8274 /// \param Pattern The expression preceding the ellipsis, which will become
8275 /// the pattern of the pack expansion.
8276 ///
8277 /// \param EllipsisLoc The location of the ellipsis.
8278 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8279
8280 /// Invoked when parsing an expression followed by an ellipsis, which
8281 /// creates a pack expansion.
8282 ///
8283 /// \param Pattern The expression preceding the ellipsis, which will become
8284 /// the pattern of the pack expansion.
8285 ///
8286 /// \param EllipsisLoc The location of the ellipsis.
8287 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8288 Optional<unsigned> NumExpansions);
8289
8290 /// Determine whether we could expand a pack expansion with the
8291 /// given set of parameter packs into separate arguments by repeatedly
8292 /// transforming the pattern.
8293 ///
8294 /// \param EllipsisLoc The location of the ellipsis that identifies the
8295 /// pack expansion.
8296 ///
8297 /// \param PatternRange The source range that covers the entire pattern of
8298 /// the pack expansion.
8299 ///
8300 /// \param Unexpanded The set of unexpanded parameter packs within the
8301 /// pattern.
8302 ///
8303 /// \param ShouldExpand Will be set to \c true if the transformer should
8304 /// expand the corresponding pack expansions into separate arguments. When
8305 /// set, \c NumExpansions must also be set.
8306 ///
8307 /// \param RetainExpansion Whether the caller should add an unexpanded
8308 /// pack expansion after all of the expanded arguments. This is used
8309 /// when extending explicitly-specified template argument packs per
8310 /// C++0x [temp.arg.explicit]p9.
8311 ///
8312 /// \param NumExpansions The number of separate arguments that will be in
8313 /// the expanded form of the corresponding pack expansion. This is both an
8314 /// input and an output parameter, which can be set by the caller if the
8315 /// number of expansions is known a priori (e.g., due to a prior substitution)
8316 /// and will be set by the callee when the number of expansions is known.
8317 /// The callee must set this value when \c ShouldExpand is \c true; it may
8318 /// set this value in other cases.
8319 ///
8320 /// \returns true if an error occurred (e.g., because the parameter packs
8321 /// are to be instantiated with arguments of different lengths), false
8322 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8323 /// must be set.
8324 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8325 SourceRange PatternRange,
8326 ArrayRef<UnexpandedParameterPack> Unexpanded,
8327 const MultiLevelTemplateArgumentList &TemplateArgs,
8328 bool &ShouldExpand,
8329 bool &RetainExpansion,
8330 Optional<unsigned> &NumExpansions);
8331
8332 /// Determine the number of arguments in the given pack expansion
8333 /// type.
8334 ///
8335 /// This routine assumes that the number of arguments in the expansion is
8336 /// consistent across all of the unexpanded parameter packs in its pattern.
8337 ///
8338 /// Returns an empty Optional if the type can't be expanded.
8339 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8340 const MultiLevelTemplateArgumentList &TemplateArgs);
8341
8342 /// Determine whether the given declarator contains any unexpanded
8343 /// parameter packs.
8344 ///
8345 /// This routine is used by the parser to disambiguate function declarators
8346 /// with an ellipsis prior to the ')', e.g.,
8347 ///
8348 /// \code
8349 /// void f(T...);
8350 /// \endcode
8351 ///
8352 /// To determine whether we have an (unnamed) function parameter pack or
8353 /// a variadic function.
8354 ///
8355 /// \returns true if the declarator contains any unexpanded parameter packs,
8356 /// false otherwise.
8357 bool containsUnexpandedParameterPacks(Declarator &D);
8358
8359 /// Returns the pattern of the pack expansion for a template argument.
8360 ///
8361 /// \param OrigLoc The template argument to expand.
8362 ///
8363 /// \param Ellipsis Will be set to the location of the ellipsis.
8364 ///
8365 /// \param NumExpansions Will be set to the number of expansions that will
8366 /// be generated from this pack expansion, if known a priori.
8367 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8368 TemplateArgumentLoc OrigLoc,
8369 SourceLocation &Ellipsis,
8370 Optional<unsigned> &NumExpansions) const;
8371
8372 /// Given a template argument that contains an unexpanded parameter pack, but
8373 /// which has already been substituted, attempt to determine the number of
8374 /// elements that will be produced once this argument is fully-expanded.
8375 ///
8376 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8377 /// avoid actually expanding the pack where possible.
8378 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8379
8380 //===--------------------------------------------------------------------===//
8381 // C++ Template Argument Deduction (C++ [temp.deduct])
8382 //===--------------------------------------------------------------------===//
8383
8384 /// Adjust the type \p ArgFunctionType to match the calling convention,
8385 /// noreturn, and optionally the exception specification of \p FunctionType.
8386 /// Deduction often wants to ignore these properties when matching function
8387 /// types.
8388 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8389 bool AdjustExceptionSpec = false);
8390
8391 /// Describes the result of template argument deduction.
8392 ///
8393 /// The TemplateDeductionResult enumeration describes the result of
8394 /// template argument deduction, as returned from
8395 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8396 /// structure provides additional information about the results of
8397 /// template argument deduction, e.g., the deduced template argument
8398 /// list (if successful) or the specific template parameters or
8399 /// deduced arguments that were involved in the failure.
8400 enum TemplateDeductionResult {
8401 /// Template argument deduction was successful.
8402 TDK_Success = 0,
8403 /// The declaration was invalid; do nothing.
8404 TDK_Invalid,
8405 /// Template argument deduction exceeded the maximum template
8406 /// instantiation depth (which has already been diagnosed).
8407 TDK_InstantiationDepth,
8408 /// Template argument deduction did not deduce a value
8409 /// for every template parameter.
8410 TDK_Incomplete,
8411 /// Template argument deduction did not deduce a value for every
8412 /// expansion of an expanded template parameter pack.
8413 TDK_IncompletePack,
8414 /// Template argument deduction produced inconsistent
8415 /// deduced values for the given template parameter.
8416 TDK_Inconsistent,
8417 /// Template argument deduction failed due to inconsistent
8418 /// cv-qualifiers on a template parameter type that would
8419 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8420 /// but were given a non-const "X".
8421 TDK_Underqualified,
8422 /// Substitution of the deduced template argument values
8423 /// resulted in an error.
8424 TDK_SubstitutionFailure,
8425 /// After substituting deduced template arguments, a dependent
8426 /// parameter type did not match the corresponding argument.
8427 TDK_DeducedMismatch,
8428 /// After substituting deduced template arguments, an element of
8429 /// a dependent parameter type did not match the corresponding element
8430 /// of the corresponding argument (when deducing from an initializer list).
8431 TDK_DeducedMismatchNested,
8432 /// A non-depnedent component of the parameter did not match the
8433 /// corresponding component of the argument.
8434 TDK_NonDeducedMismatch,
8435 /// When performing template argument deduction for a function
8436 /// template, there were too many call arguments.
8437 TDK_TooManyArguments,
8438 /// When performing template argument deduction for a function
8439 /// template, there were too few call arguments.
8440 TDK_TooFewArguments,
8441 /// The explicitly-specified template arguments were not valid
8442 /// template arguments for the given template.
8443 TDK_InvalidExplicitArguments,
8444 /// Checking non-dependent argument conversions failed.
8445 TDK_NonDependentConversionFailure,
8446 /// The deduced arguments did not satisfy the constraints associated
8447 /// with the template.
8448 TDK_ConstraintsNotSatisfied,
8449 /// Deduction failed; that's all we know.
8450 TDK_MiscellaneousDeductionFailure,
8451 /// CUDA Target attributes do not match.
8452 TDK_CUDATargetMismatch
8453 };
8454
8455 TemplateDeductionResult
8456 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8457 const TemplateArgumentList &TemplateArgs,
8458 sema::TemplateDeductionInfo &Info);
8459
8460 TemplateDeductionResult
8461 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8462 const TemplateArgumentList &TemplateArgs,
8463 sema::TemplateDeductionInfo &Info);
8464
8465 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8466 FunctionTemplateDecl *FunctionTemplate,
8467 TemplateArgumentListInfo &ExplicitTemplateArgs,
8468 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8469 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8470 sema::TemplateDeductionInfo &Info);
8471
8472 /// brief A function argument from which we performed template argument
8473 // deduction for a call.
8474 struct OriginalCallArg {
8475 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8476 unsigned ArgIdx, QualType OriginalArgType)
8477 : OriginalParamType(OriginalParamType),
8478 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8479 OriginalArgType(OriginalArgType) {}
8480
8481 QualType OriginalParamType;
8482 bool DecomposedParam;
8483 unsigned ArgIdx;
8484 QualType OriginalArgType;
8485 };
8486
8487 TemplateDeductionResult FinishTemplateArgumentDeduction(
8488 FunctionTemplateDecl *FunctionTemplate,
8489 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8490 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8491 sema::TemplateDeductionInfo &Info,
8492 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8493 bool PartialOverloading = false,
8494 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8495
8496 TemplateDeductionResult DeduceTemplateArguments(
8497 FunctionTemplateDecl *FunctionTemplate,
8498 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8499 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8500 bool PartialOverloading,
8501 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8502
8503 TemplateDeductionResult
8504 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8505 TemplateArgumentListInfo *ExplicitTemplateArgs,
8506 QualType ArgFunctionType,
8507 FunctionDecl *&Specialization,
8508 sema::TemplateDeductionInfo &Info,
8509 bool IsAddressOfFunction = false);
8510
8511 TemplateDeductionResult
8512 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8513 QualType ToType,
8514 CXXConversionDecl *&Specialization,
8515 sema::TemplateDeductionInfo &Info);
8516
8517 TemplateDeductionResult
8518 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8519 TemplateArgumentListInfo *ExplicitTemplateArgs,
8520 FunctionDecl *&Specialization,
8521 sema::TemplateDeductionInfo &Info,
8522 bool IsAddressOfFunction = false);
8523
8524 /// Substitute Replacement for \p auto in \p TypeWithAuto
8525 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8526 /// Substitute Replacement for auto in TypeWithAuto
8527 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8528 QualType Replacement);
8529 /// Completely replace the \c auto in \p TypeWithAuto by
8530 /// \p Replacement. This does not retain any \c auto type sugar.
8531 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8532 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8533 QualType Replacement);
8534
8535 /// Result type of DeduceAutoType.
8536 enum DeduceAutoResult {
8537 DAR_Succeeded,
8538 DAR_Failed,
8539 DAR_FailedAlreadyDiagnosed
8540 };
8541
8542 DeduceAutoResult
8543 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8544 Optional<unsigned> DependentDeductionDepth = None,
8545 bool IgnoreConstraints = false);
8546 DeduceAutoResult
8547 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8548 Optional<unsigned> DependentDeductionDepth = None,
8549 bool IgnoreConstraints = false);
8550 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8551 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8552 bool Diagnose = true);
8553
8554 /// Declare implicit deduction guides for a class template if we've
8555 /// not already done so.
8556 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8557 SourceLocation Loc);
8558
8559 QualType DeduceTemplateSpecializationFromInitializer(
8560 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8561 const InitializationKind &Kind, MultiExprArg Init);
8562
8563 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8564 QualType Type, TypeSourceInfo *TSI,
8565 SourceRange Range, bool DirectInit,
8566 Expr *Init);
8567
8568 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8569
8570 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8571 SourceLocation ReturnLoc,
8572 Expr *&RetExpr, AutoType *AT);
8573
8574 FunctionTemplateDecl *getMoreSpecializedTemplate(
8575 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8576 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8577 unsigned NumCallArguments2, bool Reversed = false);
8578 UnresolvedSetIterator
8579 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8580 TemplateSpecCandidateSet &FailedCandidates,
8581 SourceLocation Loc,
8582 const PartialDiagnostic &NoneDiag,
8583 const PartialDiagnostic &AmbigDiag,
8584 const PartialDiagnostic &CandidateDiag,
8585 bool Complain = true, QualType TargetType = QualType());
8586
8587 ClassTemplatePartialSpecializationDecl *
8588 getMoreSpecializedPartialSpecialization(
8589 ClassTemplatePartialSpecializationDecl *PS1,
8590 ClassTemplatePartialSpecializationDecl *PS2,
8591 SourceLocation Loc);
8592
8593 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8594 sema::TemplateDeductionInfo &Info);
8595
8596 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8597 VarTemplatePartialSpecializationDecl *PS1,
8598 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8599
8600 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8601 sema::TemplateDeductionInfo &Info);
8602
8603 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8604 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8605
8606 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8607 unsigned Depth, llvm::SmallBitVector &Used);
8608
8609 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8610 bool OnlyDeduced,
8611 unsigned Depth,
8612 llvm::SmallBitVector &Used);
8613 void MarkDeducedTemplateParameters(
8614 const FunctionTemplateDecl *FunctionTemplate,
8615 llvm::SmallBitVector &Deduced) {
8616 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8617 }
8618 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8619 const FunctionTemplateDecl *FunctionTemplate,
8620 llvm::SmallBitVector &Deduced);
8621
8622 //===--------------------------------------------------------------------===//
8623 // C++ Template Instantiation
8624 //
8625
8626 MultiLevelTemplateArgumentList
8627 getTemplateInstantiationArgs(NamedDecl *D,
8628 const TemplateArgumentList *Innermost = nullptr,
8629 bool RelativeToPrimary = false,
8630 const FunctionDecl *Pattern = nullptr);
8631
8632 /// A context in which code is being synthesized (where a source location
8633 /// alone is not sufficient to identify the context). This covers template
8634 /// instantiation and various forms of implicitly-generated functions.
8635 struct CodeSynthesisContext {
8636 /// The kind of template instantiation we are performing
8637 enum SynthesisKind {
8638 /// We are instantiating a template declaration. The entity is
8639 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8640 TemplateInstantiation,
8641
8642 /// We are instantiating a default argument for a template
8643 /// parameter. The Entity is the template parameter whose argument is
8644 /// being instantiated, the Template is the template, and the
8645 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8646 /// specified.
8647 DefaultTemplateArgumentInstantiation,
8648
8649 /// We are instantiating a default argument for a function.
8650 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8651 /// provides the template arguments as specified.
8652 DefaultFunctionArgumentInstantiation,
8653
8654 /// We are substituting explicit template arguments provided for
8655 /// a function template. The entity is a FunctionTemplateDecl.
8656 ExplicitTemplateArgumentSubstitution,
8657
8658 /// We are substituting template argument determined as part of
8659 /// template argument deduction for either a class template
8660 /// partial specialization or a function template. The
8661 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8662 /// a TemplateDecl.
8663 DeducedTemplateArgumentSubstitution,
8664
8665 /// We are substituting prior template arguments into a new
8666 /// template parameter. The template parameter itself is either a
8667 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8668 PriorTemplateArgumentSubstitution,
8669
8670 /// We are checking the validity of a default template argument that
8671 /// has been used when naming a template-id.
8672 DefaultTemplateArgumentChecking,
8673
8674 /// We are computing the exception specification for a defaulted special
8675 /// member function.
8676 ExceptionSpecEvaluation,
8677
8678 /// We are instantiating the exception specification for a function
8679 /// template which was deferred until it was needed.
8680 ExceptionSpecInstantiation,
8681
8682 /// We are instantiating a requirement of a requires expression.
8683 RequirementInstantiation,
8684
8685 /// We are checking the satisfaction of a nested requirement of a requires
8686 /// expression.
8687 NestedRequirementConstraintsCheck,
8688
8689 /// We are declaring an implicit special member function.
8690 DeclaringSpecialMember,
8691
8692 /// We are declaring an implicit 'operator==' for a defaulted
8693 /// 'operator<=>'.
8694 DeclaringImplicitEqualityComparison,
8695
8696 /// We are defining a synthesized function (such as a defaulted special
8697 /// member).
8698 DefiningSynthesizedFunction,
8699
8700 // We are checking the constraints associated with a constrained entity or
8701 // the constraint expression of a concept. This includes the checks that
8702 // atomic constraints have the type 'bool' and that they can be constant
8703 // evaluated.
8704 ConstraintsCheck,
8705
8706 // We are substituting template arguments into a constraint expression.
8707 ConstraintSubstitution,
8708
8709 // We are normalizing a constraint expression.
8710 ConstraintNormalization,
8711
8712 // We are substituting into the parameter mapping of an atomic constraint
8713 // during normalization.
8714 ParameterMappingSubstitution,
8715
8716 /// We are rewriting a comparison operator in terms of an operator<=>.
8717 RewritingOperatorAsSpaceship,
8718
8719 /// We are initializing a structured binding.
8720 InitializingStructuredBinding,
8721
8722 /// We are marking a class as __dllexport.
8723 MarkingClassDllexported,
8724
8725 /// Added for Template instantiation observation.
8726 /// Memoization means we are _not_ instantiating a template because
8727 /// it is already instantiated (but we entered a context where we
8728 /// would have had to if it was not already instantiated).
8729 Memoization
8730 } Kind;
8731
8732 /// Was the enclosing context a non-instantiation SFINAE context?
8733 bool SavedInNonInstantiationSFINAEContext;
8734
8735 /// The point of instantiation or synthesis within the source code.
8736 SourceLocation PointOfInstantiation;
8737
8738 /// The entity that is being synthesized.
8739 Decl *Entity;
8740
8741 /// The template (or partial specialization) in which we are
8742 /// performing the instantiation, for substitutions of prior template
8743 /// arguments.
8744 NamedDecl *Template;
8745
8746 /// The list of template arguments we are substituting, if they
8747 /// are not part of the entity.
8748 const TemplateArgument *TemplateArgs;
8749
8750 // FIXME: Wrap this union around more members, or perhaps store the
8751 // kind-specific members in the RAII object owning the context.
8752 union {
8753 /// The number of template arguments in TemplateArgs.
8754 unsigned NumTemplateArgs;
8755
8756 /// The special member being declared or defined.
8757 CXXSpecialMember SpecialMember;
8758 };
8759
8760 ArrayRef<TemplateArgument> template_arguments() const {
8761 assert(Kind != DeclaringSpecialMember)(static_cast<void> (0));
8762 return {TemplateArgs, NumTemplateArgs};
8763 }
8764
8765 /// The template deduction info object associated with the
8766 /// substitution or checking of explicit or deduced template arguments.
8767 sema::TemplateDeductionInfo *DeductionInfo;
8768
8769 /// The source range that covers the construct that cause
8770 /// the instantiation, e.g., the template-id that causes a class
8771 /// template instantiation.
8772 SourceRange InstantiationRange;
8773
8774 CodeSynthesisContext()
8775 : Kind(TemplateInstantiation),
8776 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8777 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8778 DeductionInfo(nullptr) {}
8779
8780 /// Determines whether this template is an actual instantiation
8781 /// that should be counted toward the maximum instantiation depth.
8782 bool isInstantiationRecord() const;
8783 };
8784
8785 /// List of active code synthesis contexts.
8786 ///
8787 /// This vector is treated as a stack. As synthesis of one entity requires
8788 /// synthesis of another, additional contexts are pushed onto the stack.
8789 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8790
8791 /// Specializations whose definitions are currently being instantiated.
8792 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8793
8794 /// Non-dependent types used in templates that have already been instantiated
8795 /// by some template instantiation.
8796 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8797
8798 /// Extra modules inspected when performing a lookup during a template
8799 /// instantiation. Computed lazily.
8800 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8801
8802 /// Cache of additional modules that should be used for name lookup
8803 /// within the current template instantiation. Computed lazily; use
8804 /// getLookupModules() to get a complete set.
8805 llvm::DenseSet<Module*> LookupModulesCache;
8806
8807 /// Get the set of additional modules that should be checked during
8808 /// name lookup. A module and its imports become visible when instanting a
8809 /// template defined within it.
8810 llvm::DenseSet<Module*> &getLookupModules();
8811
8812 /// Map from the most recent declaration of a namespace to the most
8813 /// recent visible declaration of that namespace.
8814 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8815
8816 /// Whether we are in a SFINAE context that is not associated with
8817 /// template instantiation.
8818 ///
8819 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8820 /// of a template instantiation or template argument deduction.
8821 bool InNonInstantiationSFINAEContext;
8822
8823 /// The number of \p CodeSynthesisContexts that are not template
8824 /// instantiations and, therefore, should not be counted as part of the
8825 /// instantiation depth.
8826 ///
8827 /// When the instantiation depth reaches the user-configurable limit
8828 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8829 // FIXME: Should we have a similar limit for other forms of synthesis?
8830 unsigned NonInstantiationEntries;
8831
8832 /// The depth of the context stack at the point when the most recent
8833 /// error or warning was produced.
8834 ///
8835 /// This value is used to suppress printing of redundant context stacks
8836 /// when there are multiple errors or warnings in the same instantiation.
8837 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8838 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8839
8840 /// The template instantiation callbacks to trace or track
8841 /// instantiations (objects can be chained).
8842 ///
8843 /// This callbacks is used to print, trace or track template
8844 /// instantiations as they are being constructed.
8845 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8846 TemplateInstCallbacks;
8847
8848 /// The current index into pack expansion arguments that will be
8849 /// used for substitution of parameter packs.
8850 ///
8851 /// The pack expansion index will be -1 to indicate that parameter packs
8852 /// should be instantiated as themselves. Otherwise, the index specifies
8853 /// which argument within the parameter pack will be used for substitution.
8854 int ArgumentPackSubstitutionIndex;
8855
8856 /// RAII object used to change the argument pack substitution index
8857 /// within a \c Sema object.
8858 ///
8859 /// See \c ArgumentPackSubstitutionIndex for more information.
8860 class ArgumentPackSubstitutionIndexRAII {
8861 Sema &Self;
8862 int OldSubstitutionIndex;
8863
8864 public:
8865 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8866 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8867 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8868 }
8869
8870 ~ArgumentPackSubstitutionIndexRAII() {
8871 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8872 }
8873 };
8874
8875 friend class ArgumentPackSubstitutionRAII;
8876
8877 /// For each declaration that involved template argument deduction, the
8878 /// set of diagnostics that were suppressed during that template argument
8879 /// deduction.
8880 ///
8881 /// FIXME: Serialize this structure to the AST file.
8882 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8883 SuppressedDiagnosticsMap;
8884 SuppressedDiagnosticsMap SuppressedDiagnostics;
8885
8886 /// A stack object to be created when performing template
8887 /// instantiation.
8888 ///
8889 /// Construction of an object of type \c InstantiatingTemplate
8890 /// pushes the current instantiation onto the stack of active
8891 /// instantiations. If the size of this stack exceeds the maximum
8892 /// number of recursive template instantiations, construction
8893 /// produces an error and evaluates true.
8894 ///
8895 /// Destruction of this object will pop the named instantiation off
8896 /// the stack.
8897 struct InstantiatingTemplate {
8898 /// Note that we are instantiating a class template,
8899 /// function template, variable template, alias template,
8900 /// or a member thereof.
8901 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8902 Decl *Entity,
8903 SourceRange InstantiationRange = SourceRange());
8904
8905 struct ExceptionSpecification {};
8906 /// Note that we are instantiating an exception specification
8907 /// of a function template.
8908 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8909 FunctionDecl *Entity, ExceptionSpecification,
8910 SourceRange InstantiationRange = SourceRange());
8911
8912 /// Note that we are instantiating a default argument in a
8913 /// template-id.
8914 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8915 TemplateParameter Param, TemplateDecl *Template,
8916 ArrayRef<TemplateArgument> TemplateArgs,
8917 SourceRange InstantiationRange = SourceRange());
8918
8919 /// Note that we are substituting either explicitly-specified or
8920 /// deduced template arguments during function template argument deduction.
8921 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8922 FunctionTemplateDecl *FunctionTemplate,
8923 ArrayRef<TemplateArgument> TemplateArgs,
8924 CodeSynthesisContext::SynthesisKind Kind,
8925 sema::TemplateDeductionInfo &DeductionInfo,
8926 SourceRange InstantiationRange = SourceRange());
8927
8928 /// Note that we are instantiating as part of template
8929 /// argument deduction for a class template declaration.
8930 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8931 TemplateDecl *Template,
8932 ArrayRef<TemplateArgument> TemplateArgs,
8933 sema::TemplateDeductionInfo &DeductionInfo,
8934 SourceRange InstantiationRange = SourceRange());
8935
8936 /// Note that we are instantiating as part of template
8937 /// argument deduction for a class template partial
8938 /// specialization.
8939 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8940 ClassTemplatePartialSpecializationDecl *PartialSpec,
8941 ArrayRef<TemplateArgument> TemplateArgs,
8942 sema::TemplateDeductionInfo &DeductionInfo,
8943 SourceRange InstantiationRange = SourceRange());
8944
8945 /// Note that we are instantiating as part of template
8946 /// argument deduction for a variable template partial
8947 /// specialization.
8948 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8949 VarTemplatePartialSpecializationDecl *PartialSpec,
8950 ArrayRef<TemplateArgument> TemplateArgs,
8951 sema::TemplateDeductionInfo &DeductionInfo,
8952 SourceRange InstantiationRange = SourceRange());
8953
8954 /// Note that we are instantiating a default argument for a function
8955 /// parameter.
8956 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8957 ParmVarDecl *Param,
8958 ArrayRef<TemplateArgument> TemplateArgs,
8959 SourceRange InstantiationRange = SourceRange());
8960
8961 /// Note that we are substituting prior template arguments into a
8962 /// non-type parameter.
8963 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8964 NamedDecl *Template,
8965 NonTypeTemplateParmDecl *Param,
8966 ArrayRef<TemplateArgument> TemplateArgs,
8967 SourceRange InstantiationRange);
8968
8969 /// Note that we are substituting prior template arguments into a
8970 /// template template parameter.
8971 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8972 NamedDecl *Template,
8973 TemplateTemplateParmDecl *Param,
8974 ArrayRef<TemplateArgument> TemplateArgs,
8975 SourceRange InstantiationRange);
8976
8977 /// Note that we are checking the default template argument
8978 /// against the template parameter for a given template-id.
8979 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8980 TemplateDecl *Template,
8981 NamedDecl *Param,
8982 ArrayRef<TemplateArgument> TemplateArgs,
8983 SourceRange InstantiationRange);
8984
8985 struct ConstraintsCheck {};
8986 /// \brief Note that we are checking the constraints associated with some
8987 /// constrained entity (a concept declaration or a template with associated
8988 /// constraints).
8989 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8990 ConstraintsCheck, NamedDecl *Template,
8991 ArrayRef<TemplateArgument> TemplateArgs,
8992 SourceRange InstantiationRange);
8993
8994 struct ConstraintSubstitution {};
8995 /// \brief Note that we are checking a constraint expression associated
8996 /// with a template declaration or as part of the satisfaction check of a
8997 /// concept.
8998 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8999 ConstraintSubstitution, NamedDecl *Template,
9000 sema::TemplateDeductionInfo &DeductionInfo,
9001 SourceRange InstantiationRange);
9002
9003 struct ConstraintNormalization {};
9004 /// \brief Note that we are normalizing a constraint expression.
9005 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9006 ConstraintNormalization, NamedDecl *Template,
9007 SourceRange InstantiationRange);
9008
9009 struct ParameterMappingSubstitution {};
9010 /// \brief Note that we are subtituting into the parameter mapping of an
9011 /// atomic constraint during constraint normalization.
9012 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9013 ParameterMappingSubstitution, NamedDecl *Template,
9014 SourceRange InstantiationRange);
9015
9016 /// \brief Note that we are substituting template arguments into a part of
9017 /// a requirement of a requires expression.
9018 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9019 concepts::Requirement *Req,
9020 sema::TemplateDeductionInfo &DeductionInfo,
9021 SourceRange InstantiationRange = SourceRange());
9022
9023 /// \brief Note that we are checking the satisfaction of the constraint
9024 /// expression inside of a nested requirement.
9025 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9026 concepts::NestedRequirement *Req, ConstraintsCheck,
9027 SourceRange InstantiationRange = SourceRange());
9028
9029 /// Note that we have finished instantiating this template.
9030 void Clear();
9031
9032 ~InstantiatingTemplate() { Clear(); }
9033
9034 /// Determines whether we have exceeded the maximum
9035 /// recursive template instantiations.
9036 bool isInvalid() const { return Invalid; }
30
Returning zero, which participates in a condition later
9037
9038 /// Determine whether we are already instantiating this
9039 /// specialization in some surrounding active instantiation.
9040 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9041
9042 private:
9043 Sema &SemaRef;
9044 bool Invalid;
9045 bool AlreadyInstantiating;
9046 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9047 SourceRange InstantiationRange);
9048
9049 InstantiatingTemplate(
9050 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9051 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9052 Decl *Entity, NamedDecl *Template = nullptr,
9053 ArrayRef<TemplateArgument> TemplateArgs = None,
9054 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9055
9056 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9057
9058 InstantiatingTemplate&
9059 operator=(const InstantiatingTemplate&) = delete;
9060 };
9061
9062 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9063 void popCodeSynthesisContext();
9064
9065 /// Determine whether we are currently performing template instantiation.
9066 bool inTemplateInstantiation() const {
9067 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9068 }
9069
9070 void PrintContextStack() {
9071 if (!CodeSynthesisContexts.empty() &&
9072 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9073 PrintInstantiationStack();
9074 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9075 }
9076 if (PragmaAttributeCurrentTargetDecl)
9077 PrintPragmaAttributeInstantiationPoint();
9078 }
9079 void PrintInstantiationStack();
9080
9081 void PrintPragmaAttributeInstantiationPoint();
9082
9083 /// Determines whether we are currently in a context where
9084 /// template argument substitution failures are not considered
9085 /// errors.
9086 ///
9087 /// \returns An empty \c Optional if we're not in a SFINAE context.
9088 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9089 /// template-deduction context object, which can be used to capture
9090 /// diagnostics that will be suppressed.
9091 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9092
9093 /// Determines whether we are currently in a context that
9094 /// is not evaluated as per C++ [expr] p5.
9095 bool isUnevaluatedContext() const {
9096 assert(!ExprEvalContexts.empty() &&(static_cast<void> (0))
9097 "Must be in an expression evaluation context")(static_cast<void> (0));
9098 return ExprEvalContexts.back().isUnevaluated();
9099 }
9100
9101 /// RAII class used to determine whether SFINAE has
9102 /// trapped any errors that occur during template argument
9103 /// deduction.
9104 class SFINAETrap {
9105 Sema &SemaRef;
9106 unsigned PrevSFINAEErrors;
9107 bool PrevInNonInstantiationSFINAEContext;
9108 bool PrevAccessCheckingSFINAE;
9109 bool PrevLastDiagnosticIgnored;
9110
9111 public:
9112 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9113 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9114 PrevInNonInstantiationSFINAEContext(
9115 SemaRef.InNonInstantiationSFINAEContext),
9116 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9117 PrevLastDiagnosticIgnored(
9118 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9119 {
9120 if (!SemaRef.isSFINAEContext())
9121 SemaRef.InNonInstantiationSFINAEContext = true;
9122 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9123 }
9124
9125 ~SFINAETrap() {
9126 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9127 SemaRef.InNonInstantiationSFINAEContext
9128 = PrevInNonInstantiationSFINAEContext;
9129 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9130 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9131 PrevLastDiagnosticIgnored);
9132 }
9133
9134 /// Determine whether any SFINAE errors have been trapped.
9135 bool hasErrorOccurred() const {
9136 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9137 }
9138 };
9139
9140 /// RAII class used to indicate that we are performing provisional
9141 /// semantic analysis to determine the validity of a construct, so
9142 /// typo-correction and diagnostics in the immediate context (not within
9143 /// implicitly-instantiated templates) should be suppressed.
9144 class TentativeAnalysisScope {
9145 Sema &SemaRef;
9146 // FIXME: Using a SFINAETrap for this is a hack.
9147 SFINAETrap Trap;
9148 bool PrevDisableTypoCorrection;
9149 public:
9150 explicit TentativeAnalysisScope(Sema &SemaRef)
9151 : SemaRef(SemaRef), Trap(SemaRef, true),
9152 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9153 SemaRef.DisableTypoCorrection = true;
9154 }
9155 ~TentativeAnalysisScope() {
9156 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9157 }
9158 };
9159
9160 /// The current instantiation scope used to store local
9161 /// variables.
9162 LocalInstantiationScope *CurrentInstantiationScope;
9163
9164 /// Tracks whether we are in a context where typo correction is
9165 /// disabled.
9166 bool DisableTypoCorrection;
9167
9168 /// The number of typos corrected by CorrectTypo.
9169 unsigned TyposCorrected;
9170
9171 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9172 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9173
9174 /// A cache containing identifiers for which typo correction failed and
9175 /// their locations, so that repeated attempts to correct an identifier in a
9176 /// given location are ignored if typo correction already failed for it.
9177 IdentifierSourceLocations TypoCorrectionFailures;
9178
9179 /// Worker object for performing CFG-based warnings.
9180 sema::AnalysisBasedWarnings AnalysisWarnings;
9181 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9182
9183 /// An entity for which implicit template instantiation is required.
9184 ///
9185 /// The source location associated with the declaration is the first place in
9186 /// the source code where the declaration was "used". It is not necessarily
9187 /// the point of instantiation (which will be either before or after the
9188 /// namespace-scope declaration that triggered this implicit instantiation),
9189 /// However, it is the location that diagnostics should generally refer to,
9190 /// because users will need to know what code triggered the instantiation.
9191 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9192
9193 /// The queue of implicit template instantiations that are required
9194 /// but have not yet been performed.
9195 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9196
9197 /// Queue of implicit template instantiations that cannot be performed
9198 /// eagerly.
9199 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9200
9201 class GlobalEagerInstantiationScope {
9202 public:
9203 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9204 : S(S), Enabled(Enabled) {
9205 if (!Enabled) return;
9206
9207 SavedPendingInstantiations.swap(S.PendingInstantiations);
9208 SavedVTableUses.swap(S.VTableUses);
9209 }
9210
9211 void perform() {
9212 if (Enabled) {
9213 S.DefineUsedVTables();
9214 S.PerformPendingInstantiations();
9215 }
9216 }
9217
9218 ~GlobalEagerInstantiationScope() {
9219 if (!Enabled) return;
9220
9221 // Restore the set of pending vtables.
9222 assert(S.VTableUses.empty() &&(static_cast<void> (0))
9223 "VTableUses should be empty before it is discarded.")(static_cast<void> (0));
9224 S.VTableUses.swap(SavedVTableUses);
9225
9226 // Restore the set of pending implicit instantiations.
9227 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9228 assert(S.PendingInstantiations.empty() &&(static_cast<void> (0))
9229 "PendingInstantiations should be empty before it is discarded.")(static_cast<void> (0));
9230 S.PendingInstantiations.swap(SavedPendingInstantiations);
9231 } else {
9232 // Template instantiations in the PCH may be delayed until the TU.
9233 S.PendingInstantiations.swap(SavedPendingInstantiations);
9234 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9235 SavedPendingInstantiations.begin(),
9236 SavedPendingInstantiations.end());
9237 }
9238 }
9239
9240 private:
9241 Sema &S;
9242 SmallVector<VTableUse, 16> SavedVTableUses;
9243 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9244 bool Enabled;
9245 };
9246
9247 /// The queue of implicit template instantiations that are required
9248 /// and must be performed within the current local scope.
9249 ///
9250 /// This queue is only used for member functions of local classes in
9251 /// templates, which must be instantiated in the same scope as their
9252 /// enclosing function, so that they can reference function-local
9253 /// types, static variables, enumerators, etc.
9254 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9255
9256 class LocalEagerInstantiationScope {
9257 public:
9258 LocalEagerInstantiationScope(Sema &S) : S(S) {
9259 SavedPendingLocalImplicitInstantiations.swap(
9260 S.PendingLocalImplicitInstantiations);
9261 }
9262
9263 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9264
9265 ~LocalEagerInstantiationScope() {
9266 assert(S.PendingLocalImplicitInstantiations.empty() &&(static_cast<void> (0))
9267 "there shouldn't be any pending local implicit instantiations")(static_cast<void> (0));
9268 SavedPendingLocalImplicitInstantiations.swap(
9269 S.PendingLocalImplicitInstantiations);
9270 }
9271
9272 private:
9273 Sema &S;
9274 std::deque<PendingImplicitInstantiation>
9275 SavedPendingLocalImplicitInstantiations;
9276 };
9277
9278 /// A helper class for building up ExtParameterInfos.
9279 class ExtParameterInfoBuilder {
9280 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9281 bool HasInteresting = false;
9282
9283 public:
9284 /// Set the ExtParameterInfo for the parameter at the given index,
9285 ///
9286 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9287 assert(Infos.size() <= index)(static_cast<void> (0));
9288 Infos.resize(index);
9289 Infos.push_back(info);
9290
9291 if (!HasInteresting)
9292 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9293 }
9294
9295 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9296 /// ExtParameterInfo array we've built up.
9297 const FunctionProtoType::ExtParameterInfo *
9298 getPointerOrNull(unsigned numParams) {
9299 if (!HasInteresting) return nullptr;
9300 Infos.resize(numParams);
9301 return Infos.data();
9302 }
9303 };
9304
9305 void PerformPendingInstantiations(bool LocalOnly = false);
9306
9307 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9308 const MultiLevelTemplateArgumentList &TemplateArgs,
9309 SourceLocation Loc, DeclarationName Entity,
9310 bool AllowDeducedTST = false);
9311
9312 QualType SubstType(QualType T,
9313 const MultiLevelTemplateArgumentList &TemplateArgs,
9314 SourceLocation Loc, DeclarationName Entity);
9315
9316 TypeSourceInfo *SubstType(TypeLoc TL,
9317 const MultiLevelTemplateArgumentList &TemplateArgs,
9318 SourceLocation Loc, DeclarationName Entity);
9319
9320 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9321 const MultiLevelTemplateArgumentList &TemplateArgs,
9322 SourceLocation Loc,
9323 DeclarationName Entity,
9324 CXXRecordDecl *ThisContext,
9325 Qualifiers ThisTypeQuals);
9326 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9327 const MultiLevelTemplateArgumentList &Args);
9328 bool SubstExceptionSpec(SourceLocation Loc,
9329 FunctionProtoType::ExceptionSpecInfo &ESI,
9330 SmallVectorImpl<QualType> &ExceptionStorage,
9331 const MultiLevelTemplateArgumentList &Args);
9332 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9333 const MultiLevelTemplateArgumentList &TemplateArgs,
9334 int indexAdjustment,
9335 Optional<unsigned> NumExpansions,
9336 bool ExpectParameterPack);
9337 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9338 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9339 const MultiLevelTemplateArgumentList &TemplateArgs,
9340 SmallVectorImpl<QualType> &ParamTypes,
9341 SmallVectorImpl<ParmVarDecl *> *OutParams,
9342 ExtParameterInfoBuilder &ParamInfos);
9343 ExprResult SubstExpr(Expr *E,
9344 const MultiLevelTemplateArgumentList &TemplateArgs);
9345
9346 /// Substitute the given template arguments into a list of
9347 /// expressions, expanding pack expansions if required.
9348 ///
9349 /// \param Exprs The list of expressions to substitute into.
9350 ///
9351 /// \param IsCall Whether this is some form of call, in which case
9352 /// default arguments will be dropped.
9353 ///
9354 /// \param TemplateArgs The set of template arguments to substitute.
9355 ///
9356 /// \param Outputs Will receive all of the substituted arguments.
9357 ///
9358 /// \returns true if an error occurred, false otherwise.
9359 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9360 const MultiLevelTemplateArgumentList &TemplateArgs,
9361 SmallVectorImpl<Expr *> &Outputs);
9362
9363 StmtResult SubstStmt(Stmt *S,
9364 const MultiLevelTemplateArgumentList &TemplateArgs);
9365
9366 TemplateParameterList *
9367 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9368 const MultiLevelTemplateArgumentList &TemplateArgs);
9369
9370 bool
9371 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9372 const MultiLevelTemplateArgumentList &TemplateArgs,
9373 TemplateArgumentListInfo &Outputs);
9374
9375
9376 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9377 const MultiLevelTemplateArgumentList &TemplateArgs);
9378
9379 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9380 /// an implicit 'operator=='.
9381 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9382 FunctionDecl *Spaceship);
9383
9384 ExprResult SubstInitializer(Expr *E,
9385 const MultiLevelTemplateArgumentList &TemplateArgs,
9386 bool CXXDirectInit);
9387
9388 bool
9389 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9390 CXXRecordDecl *Pattern,
9391 const MultiLevelTemplateArgumentList &TemplateArgs);
9392
9393 bool
9394 InstantiateClass(SourceLocation PointOfInstantiation,
9395 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9396 const MultiLevelTemplateArgumentList &TemplateArgs,
9397 TemplateSpecializationKind TSK,
9398 bool Complain = true);
9399
9400 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9401 EnumDecl *Instantiation, EnumDecl *Pattern,
9402 const MultiLevelTemplateArgumentList &TemplateArgs,
9403 TemplateSpecializationKind TSK);
9404
9405 bool InstantiateInClassInitializer(
9406 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9407 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9408
9409 struct LateInstantiatedAttribute {
9410 const Attr *TmplAttr;
9411 LocalInstantiationScope *Scope;
9412 Decl *NewDecl;
9413
9414 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9415 Decl *D)
9416 : TmplAttr(A), Scope(S), NewDecl(D)
9417 { }
9418 };
9419 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9420
9421 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9422 const Decl *Pattern, Decl *Inst,
9423 LateInstantiatedAttrVec *LateAttrs = nullptr,
9424 LocalInstantiationScope *OuterMostScope = nullptr);
9425
9426 void
9427 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9428 const Decl *Pattern, Decl *Inst,
9429 LateInstantiatedAttrVec *LateAttrs = nullptr,
9430 LocalInstantiationScope *OuterMostScope = nullptr);
9431
9432 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9433
9434 bool usesPartialOrExplicitSpecialization(
9435 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9436
9437 bool
9438 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9439 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9440 TemplateSpecializationKind TSK,
9441 bool Complain = true);
9442
9443 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9444 CXXRecordDecl *Instantiation,
9445 const MultiLevelTemplateArgumentList &TemplateArgs,
9446 TemplateSpecializationKind TSK);
9447
9448 void InstantiateClassTemplateSpecializationMembers(
9449 SourceLocation PointOfInstantiation,
9450 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9451 TemplateSpecializationKind TSK);
9452
9453 NestedNameSpecifierLoc
9454 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9455 const MultiLevelTemplateArgumentList &TemplateArgs);
9456
9457 DeclarationNameInfo
9458 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9459 const MultiLevelTemplateArgumentList &TemplateArgs);
9460 TemplateName
9461 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9462 SourceLocation Loc,
9463 const MultiLevelTemplateArgumentList &TemplateArgs);
9464 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9465 TemplateArgumentListInfo &Result,
9466 const MultiLevelTemplateArgumentList &TemplateArgs);
9467
9468 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9469 ParmVarDecl *Param);
9470 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9471 FunctionDecl *Function);
9472 bool CheckInstantiatedFunctionTemplateConstraints(
9473 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9474 ArrayRef<TemplateArgument> TemplateArgs,
9475 ConstraintSatisfaction &Satisfaction);
9476 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9477 const TemplateArgumentList *Args,
9478 SourceLocation Loc);
9479 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9480 FunctionDecl *Function,
9481 bool Recursive = false,
9482 bool DefinitionRequired = false,
9483 bool AtEndOfTU = false);
9484 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9485 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9486 const TemplateArgumentList &TemplateArgList,
9487 const TemplateArgumentListInfo &TemplateArgsInfo,
9488 SmallVectorImpl<TemplateArgument> &Converted,
9489 SourceLocation PointOfInstantiation,
9490 LateInstantiatedAttrVec *LateAttrs = nullptr,
9491 LocalInstantiationScope *StartingScope = nullptr);
9492 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9493 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9494 const MultiLevelTemplateArgumentList &TemplateArgs);
9495 void
9496 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9497 const MultiLevelTemplateArgumentList &TemplateArgs,
9498 LateInstantiatedAttrVec *LateAttrs,
9499 DeclContext *Owner,
9500 LocalInstantiationScope *StartingScope,
9501 bool InstantiatingVarTemplate = false,
9502 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9503
9504 void InstantiateVariableInitializer(
9505 VarDecl *Var, VarDecl *OldVar,
9506 const MultiLevelTemplateArgumentList &TemplateArgs);
9507 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9508 VarDecl *Var, bool Recursive = false,
9509 bool DefinitionRequired = false,
9510 bool AtEndOfTU = false);
9511
9512 void InstantiateMemInitializers(CXXConstructorDecl *New,
9513 const CXXConstructorDecl *Tmpl,
9514 const MultiLevelTemplateArgumentList &TemplateArgs);
9515
9516 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9517 const MultiLevelTemplateArgumentList &TemplateArgs,
9518 bool FindingInstantiatedContext = false);
9519 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9520 const MultiLevelTemplateArgumentList &TemplateArgs);
9521
9522 // Objective-C declarations.
9523 enum ObjCContainerKind {
9524 OCK_None = -1,
9525 OCK_Interface = 0,
9526 OCK_Protocol,
9527 OCK_Category,
9528 OCK_ClassExtension,
9529 OCK_Implementation,
9530 OCK_CategoryImplementation
9531 };
9532 ObjCContainerKind getObjCContainerKind() const;
9533
9534 DeclResult actOnObjCTypeParam(Scope *S,
9535 ObjCTypeParamVariance variance,
9536 SourceLocation varianceLoc,
9537 unsigned index,
9538 IdentifierInfo *paramName,
9539 SourceLocation paramLoc,
9540 SourceLocation colonLoc,
9541 ParsedType typeBound);
9542
9543 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9544 ArrayRef<Decl *> typeParams,
9545 SourceLocation rAngleLoc);
9546 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9547
9548 Decl *ActOnStartClassInterface(
9549 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9550 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9551 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9552 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9553 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9554 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9555 const ParsedAttributesView &AttrList);
9556
9557 void ActOnSuperClassOfClassInterface(Scope *S,
9558 SourceLocation AtInterfaceLoc,
9559 ObjCInterfaceDecl *IDecl,
9560 IdentifierInfo *ClassName,
9561 SourceLocation ClassLoc,
9562 IdentifierInfo *SuperName,
9563 SourceLocation SuperLoc,
9564 ArrayRef<ParsedType> SuperTypeArgs,
9565 SourceRange SuperTypeArgsRange);
9566
9567 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9568 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9569 IdentifierInfo *SuperName,
9570 SourceLocation SuperLoc);
9571
9572 Decl *ActOnCompatibilityAlias(
9573 SourceLocation AtCompatibilityAliasLoc,
9574 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9575 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9576
9577 bool CheckForwardProtocolDeclarationForCircularDependency(
9578 IdentifierInfo *PName,
9579 SourceLocation &PLoc, SourceLocation PrevLoc,
9580 const ObjCList<ObjCProtocolDecl> &PList);
9581
9582 Decl *ActOnStartProtocolInterface(
9583 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9584 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9585 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9586 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9587
9588 Decl *ActOnStartCategoryInterface(
9589 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9590 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9591 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9592 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9593 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9594 const ParsedAttributesView &AttrList);
9595
9596 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9597 IdentifierInfo *ClassName,
9598 SourceLocation ClassLoc,
9599 IdentifierInfo *SuperClassname,
9600 SourceLocation SuperClassLoc,
9601 const ParsedAttributesView &AttrList);
9602
9603 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9604 IdentifierInfo *ClassName,
9605 SourceLocation ClassLoc,
9606 IdentifierInfo *CatName,
9607 SourceLocation CatLoc,
9608 const ParsedAttributesView &AttrList);
9609
9610 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9611 ArrayRef<Decl *> Decls);
9612
9613 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9614 IdentifierInfo **IdentList,
9615 SourceLocation *IdentLocs,
9616 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9617 unsigned NumElts);
9618
9619 DeclGroupPtrTy
9620 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9621 ArrayRef<IdentifierLocPair> IdentList,
9622 const ParsedAttributesView &attrList);
9623
9624 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9625 ArrayRef<IdentifierLocPair> ProtocolId,
9626 SmallVectorImpl<Decl *> &Protocols);
9627
9628 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9629 SourceLocation ProtocolLoc,
9630 IdentifierInfo *TypeArgId,
9631 SourceLocation TypeArgLoc,
9632 bool SelectProtocolFirst = false);
9633
9634 /// Given a list of identifiers (and their locations), resolve the
9635 /// names to either Objective-C protocol qualifiers or type
9636 /// arguments, as appropriate.
9637 void actOnObjCTypeArgsOrProtocolQualifiers(
9638 Scope *S,
9639 ParsedType baseType,
9640 SourceLocation lAngleLoc,
9641 ArrayRef<IdentifierInfo *> identifiers,
9642 ArrayRef<SourceLocation> identifierLocs,
9643 SourceLocation rAngleLoc,
9644 SourceLocation &typeArgsLAngleLoc,
9645 SmallVectorImpl<ParsedType> &typeArgs,
9646 SourceLocation &typeArgsRAngleLoc,
9647 SourceLocation &protocolLAngleLoc,
9648 SmallVectorImpl<Decl *> &protocols,
9649 SourceLocation &protocolRAngleLoc,
9650 bool warnOnIncompleteProtocols);
9651
9652 /// Build a an Objective-C protocol-qualified 'id' type where no
9653 /// base type was specified.
9654 TypeResult actOnObjCProtocolQualifierType(
9655 SourceLocation lAngleLoc,
9656 ArrayRef<Decl *> protocols,
9657 ArrayRef<SourceLocation> protocolLocs,
9658 SourceLocation rAngleLoc);
9659
9660 /// Build a specialized and/or protocol-qualified Objective-C type.
9661 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9662 Scope *S,
9663 SourceLocation Loc,
9664 ParsedType BaseType,
9665 SourceLocation TypeArgsLAngleLoc,
9666 ArrayRef<ParsedType> TypeArgs,
9667 SourceLocation TypeArgsRAngleLoc,
9668 SourceLocation ProtocolLAngleLoc,
9669 ArrayRef<Decl *> Protocols,
9670 ArrayRef<SourceLocation> ProtocolLocs,
9671 SourceLocation ProtocolRAngleLoc);
9672
9673 /// Build an Objective-C type parameter type.
9674 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9675 SourceLocation ProtocolLAngleLoc,
9676 ArrayRef<ObjCProtocolDecl *> Protocols,
9677 ArrayRef<SourceLocation> ProtocolLocs,
9678 SourceLocation ProtocolRAngleLoc,
9679 bool FailOnError = false);
9680
9681 /// Build an Objective-C object pointer type.
9682 QualType BuildObjCObjectType(QualType BaseType,
9683 SourceLocation Loc,
9684 SourceLocation TypeArgsLAngleLoc,
9685 ArrayRef<TypeSourceInfo *> TypeArgs,
9686 SourceLocation TypeArgsRAngleLoc,
9687 SourceLocation ProtocolLAngleLoc,
9688 ArrayRef<ObjCProtocolDecl *> Protocols,
9689 ArrayRef<SourceLocation> ProtocolLocs,
9690 SourceLocation ProtocolRAngleLoc,
9691 bool FailOnError = false);
9692
9693 /// Ensure attributes are consistent with type.
9694 /// \param [in, out] Attributes The attributes to check; they will
9695 /// be modified to be consistent with \p PropertyTy.
9696 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9697 SourceLocation Loc,
9698 unsigned &Attributes,
9699 bool propertyInPrimaryClass);
9700
9701 /// Process the specified property declaration and create decls for the
9702 /// setters and getters as needed.
9703 /// \param property The property declaration being processed
9704 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9705
9706
9707 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9708 ObjCPropertyDecl *SuperProperty,
9709 const IdentifierInfo *Name,
9710 bool OverridingProtocolProperty);
9711
9712 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9713 ObjCInterfaceDecl *ID);
9714
9715 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9716 ArrayRef<Decl *> allMethods = None,
9717 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9718
9719 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9720 SourceLocation LParenLoc,
9721 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9722 Selector GetterSel, Selector SetterSel,
9723 tok::ObjCKeywordKind MethodImplKind,
9724 DeclContext *lexicalDC = nullptr);
9725
9726 Decl *ActOnPropertyImplDecl(Scope *S,
9727 SourceLocation AtLoc,
9728 SourceLocation PropertyLoc,
9729 bool ImplKind,
9730 IdentifierInfo *PropertyId,
9731 IdentifierInfo *PropertyIvar,
9732 SourceLocation PropertyIvarLoc,
9733 ObjCPropertyQueryKind QueryKind);
9734
9735 enum ObjCSpecialMethodKind {
9736 OSMK_None,
9737 OSMK_Alloc,
9738 OSMK_New,
9739 OSMK_Copy,
9740 OSMK_RetainingInit,
9741 OSMK_NonRetainingInit
9742 };
9743
9744 struct ObjCArgInfo {
9745 IdentifierInfo *Name;
9746 SourceLocation NameLoc;
9747 // The Type is null if no type was specified, and the DeclSpec is invalid
9748 // in this case.
9749 ParsedType Type;
9750 ObjCDeclSpec DeclSpec;
9751
9752 /// ArgAttrs - Attribute list for this argument.
9753 ParsedAttributesView ArgAttrs;
9754 };
9755
9756 Decl *ActOnMethodDeclaration(
9757 Scope *S,
9758 SourceLocation BeginLoc, // location of the + or -.
9759 SourceLocation EndLoc, // location of the ; or {.
9760 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9761 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9762 // optional arguments. The number of types/arguments is obtained
9763 // from the Sel.getNumArgs().
9764 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9765 unsigned CNumArgs, // c-style args
9766 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9767 bool isVariadic, bool MethodDefinition);
9768
9769 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9770 const ObjCObjectPointerType *OPT,
9771 bool IsInstance);
9772 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9773 bool IsInstance);
9774
9775 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9776 bool inferObjCARCLifetime(ValueDecl *decl);
9777
9778 void deduceOpenCLAddressSpace(ValueDecl *decl);
9779
9780 ExprResult
9781 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9782 Expr *BaseExpr,
9783 SourceLocation OpLoc,
9784 DeclarationName MemberName,
9785 SourceLocation MemberLoc,
9786 SourceLocation SuperLoc, QualType SuperType,
9787 bool Super);
9788
9789 ExprResult
9790 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9791 IdentifierInfo &propertyName,
9792 SourceLocation receiverNameLoc,
9793 SourceLocation propertyNameLoc);
9794
9795 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9796
9797 /// Describes the kind of message expression indicated by a message
9798 /// send that starts with an identifier.
9799 enum ObjCMessageKind {
9800 /// The message is sent to 'super'.
9801 ObjCSuperMessage,
9802 /// The message is an instance message.
9803 ObjCInstanceMessage,
9804 /// The message is a class message, and the identifier is a type
9805 /// name.
9806 ObjCClassMessage
9807 };
9808
9809 ObjCMessageKind getObjCMessageKind(Scope *S,
9810 IdentifierInfo *Name,
9811 SourceLocation NameLoc,
9812 bool IsSuper,
9813 bool HasTrailingDot,
9814 ParsedType &ReceiverType);
9815
9816 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9817 Selector Sel,
9818 SourceLocation LBracLoc,
9819 ArrayRef<SourceLocation> SelectorLocs,
9820 SourceLocation RBracLoc,
9821 MultiExprArg Args);
9822
9823 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9824 QualType ReceiverType,
9825 SourceLocation SuperLoc,
9826 Selector Sel,
9827 ObjCMethodDecl *Method,
9828 SourceLocation LBracLoc,
9829 ArrayRef<SourceLocation> SelectorLocs,
9830 SourceLocation RBracLoc,
9831 MultiExprArg Args,
9832 bool isImplicit = false);
9833
9834 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9835 bool isSuperReceiver,
9836 SourceLocation Loc,
9837 Selector Sel,
9838 ObjCMethodDecl *Method,
9839 MultiExprArg Args);
9840
9841 ExprResult ActOnClassMessage(Scope *S,
9842 ParsedType Receiver,
9843 Selector Sel,
9844 SourceLocation LBracLoc,
9845 ArrayRef<SourceLocation> SelectorLocs,
9846 SourceLocation RBracLoc,
9847 MultiExprArg Args);
9848
9849 ExprResult BuildInstanceMessage(Expr *Receiver,
9850 QualType ReceiverType,
9851 SourceLocation SuperLoc,
9852 Selector Sel,
9853 ObjCMethodDecl *Method,
9854 SourceLocation LBracLoc,
9855 ArrayRef<SourceLocation> SelectorLocs,
9856 SourceLocation RBracLoc,
9857 MultiExprArg Args,
9858 bool isImplicit = false);
9859
9860 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9861 QualType ReceiverType,
9862 SourceLocation Loc,
9863 Selector Sel,
9864 ObjCMethodDecl *Method,
9865 MultiExprArg Args);
9866
9867 ExprResult ActOnInstanceMessage(Scope *S,
9868 Expr *Receiver,
9869 Selector Sel,
9870 SourceLocation LBracLoc,
9871 ArrayRef<SourceLocation> SelectorLocs,
9872 SourceLocation RBracLoc,
9873 MultiExprArg Args);
9874
9875 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9876 ObjCBridgeCastKind Kind,
9877 SourceLocation BridgeKeywordLoc,
9878 TypeSourceInfo *TSInfo,
9879 Expr *SubExpr);
9880
9881 ExprResult ActOnObjCBridgedCast(Scope *S,
9882 SourceLocation LParenLoc,
9883 ObjCBridgeCastKind Kind,
9884 SourceLocation BridgeKeywordLoc,
9885 ParsedType Type,
9886 SourceLocation RParenLoc,
9887 Expr *SubExpr);
9888
9889 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9890
9891 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9892
9893 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9894 CastKind &Kind);
9895
9896 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9897 QualType DestType, QualType SrcType,
9898 ObjCInterfaceDecl *&RelatedClass,
9899 ObjCMethodDecl *&ClassMethod,
9900 ObjCMethodDecl *&InstanceMethod,
9901 TypedefNameDecl *&TDNDecl,
9902 bool CfToNs, bool Diagnose = true);
9903
9904 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9905 QualType DestType, QualType SrcType,
9906 Expr *&SrcExpr, bool Diagnose = true);
9907
9908 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9909 bool Diagnose = true);
9910
9911 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9912
9913 /// Check whether the given new method is a valid override of the
9914 /// given overridden method, and set any properties that should be inherited.
9915 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9916 const ObjCMethodDecl *Overridden);
9917
9918 /// Describes the compatibility of a result type with its method.
9919 enum ResultTypeCompatibilityKind {
9920 RTC_Compatible,
9921 RTC_Incompatible,
9922 RTC_Unknown
9923 };
9924
9925 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9926 ObjCMethodDecl *overridden);
9927
9928 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9929 ObjCInterfaceDecl *CurrentClass,
9930 ResultTypeCompatibilityKind RTC);
9931
9932 enum PragmaOptionsAlignKind {
9933 POAK_Native, // #pragma options align=native
9934 POAK_Natural, // #pragma options align=natural
9935 POAK_Packed, // #pragma options align=packed
9936 POAK_Power, // #pragma options align=power
9937 POAK_Mac68k, // #pragma options align=mac68k
9938 POAK_Reset // #pragma options align=reset
9939 };
9940
9941 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9942 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9943 PragmaClangSectionAction Action,
9944 PragmaClangSectionKind SecKind, StringRef SecName);
9945
9946 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9947 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9948 SourceLocation PragmaLoc);
9949
9950 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9951 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9952 StringRef SlotLabel, Expr *Alignment);
9953
9954 enum class PragmaAlignPackDiagnoseKind {
9955 NonDefaultStateAtInclude,
9956 ChangedStateAtExit
9957 };
9958
9959 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9960 SourceLocation IncludeLoc);
9961 void DiagnoseUnterminatedPragmaAlignPack();
9962
9963 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9964 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9965
9966 /// ActOnPragmaMSComment - Called on well formed
9967 /// \#pragma comment(kind, "arg").
9968 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9969 StringRef Arg);
9970
9971 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9972 /// pointers_to_members(representation method[, general purpose
9973 /// representation]).
9974 void ActOnPragmaMSPointersToMembers(
9975 LangOptions::PragmaMSPointersToMembersKind Kind,
9976 SourceLocation PragmaLoc);
9977
9978 /// Called on well formed \#pragma vtordisp().
9979 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9980 SourceLocation PragmaLoc,
9981 MSVtorDispMode Value);
9982
9983 enum PragmaSectionKind {
9984 PSK_DataSeg,
9985 PSK_BSSSeg,
9986 PSK_ConstSeg,
9987 PSK_CodeSeg,
9988 };
9989
9990 bool UnifySection(StringRef SectionName, int SectionFlags,
9991 NamedDecl *TheDecl);
9992 bool UnifySection(StringRef SectionName,
9993 int SectionFlags,
9994 SourceLocation PragmaSectionLocation);
9995
9996 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9997 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9998 PragmaMsStackAction Action,
9999 llvm::StringRef StackSlotLabel,
10000 StringLiteral *SegmentName,
10001 llvm::StringRef PragmaName);
10002
10003 /// Called on well formed \#pragma section().
10004 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
10005 int SectionFlags, StringLiteral *SegmentName);
10006
10007 /// Called on well-formed \#pragma init_seg().
10008 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
10009 StringLiteral *SegmentName);
10010
10011 /// Called on #pragma clang __debug dump II
10012 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10013
10014 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10015 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10016 StringRef Value);
10017
10018 /// Are precise floating point semantics currently enabled?
10019 bool isPreciseFPEnabled() {
10020 return !CurFPFeatures.getAllowFPReassociate() &&
10021 !CurFPFeatures.getNoSignedZero() &&
10022 !CurFPFeatures.getAllowReciprocal() &&
10023 !CurFPFeatures.getAllowApproxFunc();
10024 }
10025
10026 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10027 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10028 PragmaFloatControlKind Value);
10029
10030 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10031 void ActOnPragmaUnused(const Token &Identifier,
10032 Scope *curScope,
10033 SourceLocation PragmaLoc);
10034
10035 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10036 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10037 SourceLocation PragmaLoc);
10038
10039 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10040 SourceLocation Loc);
10041 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10042
10043 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10044 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10045 SourceLocation PragmaLoc,
10046 SourceLocation WeakNameLoc);
10047
10048 /// ActOnPragmaRedefineExtname - Called on well formed
10049 /// \#pragma redefine_extname oldname newname.
10050 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10051 IdentifierInfo* AliasName,
10052 SourceLocation PragmaLoc,
10053 SourceLocation WeakNameLoc,
10054 SourceLocation AliasNameLoc);
10055
10056 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10057 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10058 IdentifierInfo* AliasName,
10059 SourceLocation PragmaLoc,
10060 SourceLocation WeakNameLoc,
10061 SourceLocation AliasNameLoc);
10062
10063 /// ActOnPragmaFPContract - Called on well formed
10064 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10065 /// \#pragma clang fp contract
10066 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10067
10068 /// Called on well formed
10069 /// \#pragma clang fp reassociate
10070 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10071
10072 /// ActOnPragmaFenvAccess - Called on well formed
10073 /// \#pragma STDC FENV_ACCESS
10074 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10075
10076 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10077 void ActOnPragmaFPExceptions(SourceLocation Loc,
10078 LangOptions::FPExceptionModeKind);
10079
10080 /// Called to set constant rounding mode for floating point operations.
10081 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10082
10083 /// Called to set exception behavior for floating point operations.
10084 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10085
10086 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10087 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10088 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10089
10090 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10091 void AddMsStructLayoutForRecord(RecordDecl *RD);
10092
10093 /// PushNamespaceVisibilityAttr - Note that we've entered a
10094 /// namespace with a visibility attribute.
10095 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10096 SourceLocation Loc);
10097
10098 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10099 /// add an appropriate visibility attribute.
10100 void AddPushedVisibilityAttribute(Decl *RD);
10101
10102 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10103 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10104 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10105
10106 /// FreeVisContext - Deallocate and null out VisContext.
10107 void FreeVisContext();
10108
10109 /// AddCFAuditedAttribute - Check whether we're currently within
10110 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10111 /// the appropriate attribute.
10112 void AddCFAuditedAttribute(Decl *D);
10113
10114 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10115 SourceLocation PragmaLoc,
10116 attr::ParsedSubjectMatchRuleSet Rules);
10117 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10118 const IdentifierInfo *Namespace);
10119
10120 /// Called on well-formed '\#pragma clang attribute pop'.
10121 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10122 const IdentifierInfo *Namespace);
10123
10124 /// Adds the attributes that have been specified using the
10125 /// '\#pragma clang attribute push' directives to the given declaration.
10126 void AddPragmaAttributes(Scope *S, Decl *D);
10127
10128 void DiagnoseUnterminatedPragmaAttribute();
10129
10130 /// Called on well formed \#pragma clang optimize.
10131 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10132
10133 /// Get the location for the currently active "\#pragma clang optimize
10134 /// off". If this location is invalid, then the state of the pragma is "on".
10135 SourceLocation getOptimizeOffPragmaLocation() const {
10136 return OptimizeOffPragmaLocation;
10137 }
10138
10139 /// Only called on function definitions; if there is a pragma in scope
10140 /// with the effect of a range-based optnone, consider marking the function
10141 /// with attribute optnone.
10142 void AddRangeBasedOptnone(FunctionDecl *FD);
10143
10144 /// Adds the 'optnone' attribute to the function declaration if there
10145 /// are no conflicts; Loc represents the location causing the 'optnone'
10146 /// attribute to be added (usually because of a pragma).
10147 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10148
10149 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10150 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10151 bool IsPackExpansion);
10152 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10153 bool IsPackExpansion);
10154
10155 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10156 /// declaration.
10157 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10158 Expr *OE);
10159
10160 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10161 /// declaration.
10162 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10163 Expr *ParamExpr);
10164
10165 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10166 /// declaration.
10167 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10168
10169 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10170 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10171 StringRef Annot, MutableArrayRef<Expr *> Args);
10172
10173 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10174 /// declaration.
10175 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10176 Expr *MaxThreads, Expr *MinBlocks);
10177
10178 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10179 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10180 bool InInstantiation = false);
10181
10182 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10183 ParameterABI ABI);
10184
10185 enum class RetainOwnershipKind {NS, CF, OS};
10186 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10187 RetainOwnershipKind K, bool IsTemplateInstantiation);
10188
10189 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10190 /// attribute to a particular declaration.
10191 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10192 Expr *Min, Expr *Max);
10193
10194 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10195 /// particular declaration.
10196 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10197 Expr *Min, Expr *Max);
10198
10199 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10200
10201 //===--------------------------------------------------------------------===//
10202 // C++ Coroutines TS
10203 //
10204 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10205 StringRef Keyword);
10206 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10207 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10208 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10209
10210 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10211 bool IsImplicit = false);
10212 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10213 UnresolvedLookupExpr* Lookup);
10214 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10215 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10216 bool IsImplicit = false);
10217 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10218 bool buildCoroutineParameterMoves(SourceLocation Loc);
10219 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10220 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10221 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10222 SourceLocation FuncLoc);
10223 /// Check that the expression co_await promise.final_suspend() shall not be
10224 /// potentially-throwing.
10225 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10226
10227 //===--------------------------------------------------------------------===//
10228 // OpenMP directives and clauses.
10229 //
10230private:
10231 void *VarDataSharingAttributesStack;
10232
10233 struct DeclareTargetContextInfo {
10234 struct MapInfo {
10235 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10236 SourceLocation Loc;
10237 };
10238 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10239 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10240
10241 /// The 'device_type' as parsed from the clause.
10242 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10243
10244 /// The directive kind, `begin declare target` or `declare target`.
10245 OpenMPDirectiveKind Kind;
10246
10247 /// The directive location.
10248 SourceLocation Loc;
10249
10250 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10251 : Kind(Kind), Loc(Loc) {}
10252 };
10253
10254 /// Number of nested '#pragma omp declare target' directives.
10255 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10256
10257 /// Initialization of data-sharing attributes stack.
10258 void InitDataSharingAttributesStack();
10259 void DestroyDataSharingAttributesStack();
10260 ExprResult
10261 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10262 bool StrictlyPositive = true,
10263 bool SuppressExprDiags = false);
10264 /// Returns OpenMP nesting level for current directive.
10265 unsigned getOpenMPNestingLevel() const;
10266
10267 /// Adjusts the function scopes index for the target-based regions.
10268 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10269 unsigned Level) const;
10270
10271 /// Returns the number of scopes associated with the construct on the given
10272 /// OpenMP level.
10273 int getNumberOfConstructScopes(unsigned Level) const;
10274
10275 /// Push new OpenMP function region for non-capturing function.
10276 void pushOpenMPFunctionRegion();
10277
10278 /// Pop OpenMP function region for non-capturing function.
10279 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10280
10281 /// Analyzes and checks a loop nest for use by a loop transformation.
10282 ///
10283 /// \param Kind The loop transformation directive kind.
10284 /// \param NumLoops How many nested loops the directive is expecting.
10285 /// \param AStmt Associated statement of the transformation directive.
10286 /// \param LoopHelpers [out] The loop analysis result.
10287 /// \param Body [out] The body code nested in \p NumLoops loop.
10288 /// \param OriginalInits [out] Collection of statements and declarations that
10289 /// must have been executed/declared before entering the
10290 /// loop.
10291 ///
10292 /// \return Whether there was any error.
10293 bool checkTransformableLoopNest(
10294 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10295 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10296 Stmt *&Body,
10297 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10298 &OriginalInits);
10299
10300 /// Helper to keep information about the current `omp begin/end declare
10301 /// variant` nesting.
10302 struct OMPDeclareVariantScope {
10303 /// The associated OpenMP context selector.
10304 OMPTraitInfo *TI;
10305
10306 /// The associated OpenMP context selector mangling.
10307 std::string NameSuffix;
10308
10309 OMPDeclareVariantScope(OMPTraitInfo &TI);
10310 };
10311
10312 /// Return the OMPTraitInfo for the surrounding scope, if any.
10313 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10314 return OMPDeclareVariantScopes.empty() ? nullptr
10315 : OMPDeclareVariantScopes.back().TI;
10316 }
10317
10318 /// The current `omp begin/end declare variant` scopes.
10319 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10320
10321 /// The current `omp begin/end assumes` scopes.
10322 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10323
10324 /// All `omp assumes` we encountered so far.
10325 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10326
10327public:
10328 /// The declarator \p D defines a function in the scope \p S which is nested
10329 /// in an `omp begin/end declare variant` scope. In this method we create a
10330 /// declaration for \p D and rename \p D according to the OpenMP context
10331 /// selector of the surrounding scope. Return all base functions in \p Bases.
10332 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10333 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10334 SmallVectorImpl<FunctionDecl *> &Bases);
10335
10336 /// Register \p D as specialization of all base functions in \p Bases in the
10337 /// current `omp begin/end declare variant` scope.
10338 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10339 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10340
10341 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10342 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10343
10344 /// Can we exit an OpenMP declare variant scope at the moment.
10345 bool isInOpenMPDeclareVariantScope() const {
10346 return !OMPDeclareVariantScopes.empty();
10347 }
10348
10349 /// Given the potential call expression \p Call, determine if there is a
10350 /// specialization via the OpenMP declare variant mechanism available. If
10351 /// there is, return the specialized call expression, otherwise return the
10352 /// original \p Call.
10353 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10354 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10355 SourceLocation RParenLoc, Expr *ExecConfig);
10356
10357 /// Handle a `omp begin declare variant`.
10358 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10359
10360 /// Handle a `omp end declare variant`.
10361 void ActOnOpenMPEndDeclareVariant();
10362
10363 /// Checks if the variant/multiversion functions are compatible.
10364 bool areMultiversionVariantFunctionsCompatible(
10365 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10366 const PartialDiagnostic &NoProtoDiagID,
10367 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10368 const PartialDiagnosticAt &NoSupportDiagIDAt,
10369 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10370 bool ConstexprSupported, bool CLinkageMayDiffer);
10371
10372 /// Function tries to capture lambda's captured variables in the OpenMP region
10373 /// before the original lambda is captured.
10374 void tryCaptureOpenMPLambdas(ValueDecl *V);
10375
10376 /// Return true if the provided declaration \a VD should be captured by
10377 /// reference.
10378 /// \param Level Relative level of nested OpenMP construct for that the check
10379 /// is performed.
10380 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10381 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10382 unsigned OpenMPCaptureLevel) const;
10383
10384 /// Check if the specified variable is used in one of the private
10385 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10386 /// constructs.
10387 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10388 unsigned StopAt = 0);
10389 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10390 ExprObjectKind OK, SourceLocation Loc);
10391
10392 /// If the current region is a loop-based region, mark the start of the loop
10393 /// construct.
10394 void startOpenMPLoop();
10395
10396 /// If the current region is a range loop-based region, mark the start of the
10397 /// loop construct.
10398 void startOpenMPCXXRangeFor();
10399
10400 /// Check if the specified variable is used in 'private' clause.
10401 /// \param Level Relative level of nested OpenMP construct for that the check
10402 /// is performed.
10403 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10404 unsigned CapLevel) const;
10405
10406 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10407 /// for \p FD based on DSA for the provided corresponding captured declaration
10408 /// \p D.
10409 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10410
10411 /// Check if the specified variable is captured by 'target' directive.
10412 /// \param Level Relative level of nested OpenMP construct for that the check
10413 /// is performed.
10414 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10415 unsigned CaptureLevel) const;
10416
10417 /// Check if the specified global variable must be captured by outer capture
10418 /// regions.
10419 /// \param Level Relative level of nested OpenMP construct for that
10420 /// the check is performed.
10421 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10422 unsigned CaptureLevel) const;
10423
10424 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10425 Expr *Op);
10426 /// Called on start of new data sharing attribute block.
10427 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10428 const DeclarationNameInfo &DirName, Scope *CurScope,
10429 SourceLocation Loc);
10430 /// Start analysis of clauses.
10431 void StartOpenMPClause(OpenMPClauseKind K);
10432 /// End analysis of clauses.
10433 void EndOpenMPClause();
10434 /// Called on end of data sharing attribute block.
10435 void EndOpenMPDSABlock(Stmt *CurDirective);
10436
10437 /// Check if the current region is an OpenMP loop region and if it is,
10438 /// mark loop control variable, used in \p Init for loop initialization, as
10439 /// private by default.
10440 /// \param Init First part of the for loop.
10441 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10442
10443 // OpenMP directives and clauses.
10444 /// Called on correct id-expression from the '#pragma omp
10445 /// threadprivate'.
10446 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10447 const DeclarationNameInfo &Id,
10448 OpenMPDirectiveKind Kind);
10449 /// Called on well-formed '#pragma omp threadprivate'.
10450 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10451 SourceLocation Loc,
10452 ArrayRef<Expr *> VarList);
10453 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10454 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10455 ArrayRef<Expr *> VarList);
10456 /// Called on well-formed '#pragma omp allocate'.
10457 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10458 ArrayRef<Expr *> VarList,
10459 ArrayRef<OMPClause *> Clauses,
10460 DeclContext *Owner = nullptr);
10461
10462 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10463 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10464 OpenMPDirectiveKind DKind,
10465 ArrayRef<StringRef> Assumptions,
10466 bool SkippedClauses);
10467
10468 /// Check if there is an active global `omp begin assumes` directive.
10469 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10470
10471 /// Check if there is an active global `omp assumes` directive.
10472 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10473
10474 /// Called on well-formed '#pragma omp end assumes'.
10475 void ActOnOpenMPEndAssumesDirective();
10476
10477 /// Called on well-formed '#pragma omp requires'.
10478 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10479 ArrayRef<OMPClause *> ClauseList);
10480 /// Check restrictions on Requires directive
10481 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10482 ArrayRef<OMPClause *> Clauses);
10483 /// Check if the specified type is allowed to be used in 'omp declare
10484 /// reduction' construct.
10485 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10486 TypeResult ParsedType);
10487 /// Called on start of '#pragma omp declare reduction'.
10488 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10489 Scope *S, DeclContext *DC, DeclarationName Name,
10490 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10491 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10492 /// Initialize declare reduction construct initializer.
10493 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10494 /// Finish current declare reduction construct initializer.
10495 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10496 /// Initialize declare reduction construct initializer.
10497 /// \return omp_priv variable.
10498 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10499 /// Finish current declare reduction construct initializer.
10500 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10501 VarDecl *OmpPrivParm);
10502 /// Called at the end of '#pragma omp declare reduction'.
10503 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10504 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10505
10506 /// Check variable declaration in 'omp declare mapper' construct.
10507 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10508 /// Check if the specified type is allowed to be used in 'omp declare
10509 /// mapper' construct.
10510 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10511 TypeResult ParsedType);
10512 /// Called on start of '#pragma omp declare mapper'.
10513 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10514 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10515 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10516 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10517 Decl *PrevDeclInScope = nullptr);
10518 /// Build the mapper variable of '#pragma omp declare mapper'.
10519 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10520 QualType MapperType,
10521 SourceLocation StartLoc,
10522 DeclarationName VN);
10523 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10524 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10525
10526 /// Called on the start of target region i.e. '#pragma omp declare target'.
10527 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10528
10529 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10530 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10531
10532 /// Called once a target context is completed, that can be when a
10533 /// '#pragma omp end declare target' was encountered or when a
10534 /// '#pragma omp declare target' without declaration-definition-seq was
10535 /// encountered.
10536 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10537
10538 /// Searches for the provided declaration name for OpenMP declare target
10539 /// directive.
10540 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10541 CXXScopeSpec &ScopeSpec,
10542 const DeclarationNameInfo &Id);
10543
10544 /// Called on correct id-expression from the '#pragma omp declare target'.
10545 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10546 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10547 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10548
10549 /// Check declaration inside target region.
10550 void
10551 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10552 SourceLocation IdLoc = SourceLocation());
10553 /// Finishes analysis of the deferred functions calls that may be declared as
10554 /// host/nohost during device/host compilation.
10555 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10556 const FunctionDecl *Callee,
10557 SourceLocation Loc);
10558 /// Return true inside OpenMP declare target region.
10559 bool isInOpenMPDeclareTargetContext() const {
10560 return !DeclareTargetNesting.empty();
10561 }
10562 /// Return true inside OpenMP target region.
10563 bool isInOpenMPTargetExecutionDirective() const;
10564
10565 /// Return the number of captured regions created for an OpenMP directive.
10566 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10567
10568 /// Initialization of captured region for OpenMP region.
10569 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10570
10571 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10572 /// an OpenMP loop directive.
10573 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10574
10575 /// End of OpenMP region.
10576 ///
10577 /// \param S Statement associated with the current OpenMP region.
10578 /// \param Clauses List of clauses for the current OpenMP region.
10579 ///
10580 /// \returns Statement for finished OpenMP region.
10581 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10582 StmtResult ActOnOpenMPExecutableDirective(
10583 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10584 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10585 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10586 /// Called on well-formed '\#pragma omp parallel' after parsing
10587 /// of the associated statement.
10588 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10589 Stmt *AStmt,
10590 SourceLocation StartLoc,
10591 SourceLocation EndLoc);
10592 using VarsWithInheritedDSAType =
10593 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10594 /// Called on well-formed '\#pragma omp simd' after parsing
10595 /// of the associated statement.
10596 StmtResult
10597 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10598 SourceLocation StartLoc, SourceLocation EndLoc,
10599 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10600 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10601 /// the associated statement.
10602 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10603 Stmt *AStmt, SourceLocation StartLoc,
10604 SourceLocation EndLoc);
10605 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10606 /// and the associated statement.
10607 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10608 Stmt *AStmt, SourceLocation StartLoc,
10609 SourceLocation EndLoc);
10610 /// Called on well-formed '\#pragma omp for' after parsing
10611 /// of the associated statement.
10612 StmtResult
10613 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10614 SourceLocation StartLoc, SourceLocation EndLoc,
10615 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10616 /// Called on well-formed '\#pragma omp for simd' after parsing
10617 /// of the associated statement.
10618 StmtResult
10619 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10620 SourceLocation StartLoc, SourceLocation EndLoc,
10621 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10622 /// Called on well-formed '\#pragma omp sections' after parsing
10623 /// of the associated statement.
10624 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10625 Stmt *AStmt, SourceLocation StartLoc,
10626 SourceLocation EndLoc);
10627 /// Called on well-formed '\#pragma omp section' after parsing of the
10628 /// associated statement.
10629 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10630 SourceLocation EndLoc);
10631 /// Called on well-formed '\#pragma omp single' after parsing of the
10632 /// associated statement.
10633 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10634 Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp master' after parsing of the
10637 /// associated statement.
10638 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10639 SourceLocation EndLoc);
10640 /// Called on well-formed '\#pragma omp critical' after parsing of the
10641 /// associated statement.
10642 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10643 ArrayRef<OMPClause *> Clauses,
10644 Stmt *AStmt, SourceLocation StartLoc,
10645 SourceLocation EndLoc);
10646 /// Called on well-formed '\#pragma omp parallel for' after parsing
10647 /// of the associated statement.
10648 StmtResult ActOnOpenMPParallelForDirective(
10649 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10650 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10651 /// Called on well-formed '\#pragma omp parallel for simd' after
10652 /// parsing of the associated statement.
10653 StmtResult ActOnOpenMPParallelForSimdDirective(
10654 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10655 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10656 /// Called on well-formed '\#pragma omp parallel master' after
10657 /// parsing of the associated statement.
10658 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10659 Stmt *AStmt,
10660 SourceLocation StartLoc,
10661 SourceLocation EndLoc);
10662 /// Called on well-formed '\#pragma omp parallel sections' after
10663 /// parsing of the associated statement.
10664 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10665 Stmt *AStmt,
10666 SourceLocation StartLoc,
10667 SourceLocation EndLoc);
10668 /// Called on well-formed '\#pragma omp task' after parsing of the
10669 /// associated statement.
10670 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10671 Stmt *AStmt, SourceLocation StartLoc,
10672 SourceLocation EndLoc);
10673 /// Called on well-formed '\#pragma omp taskyield'.
10674 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10675 SourceLocation EndLoc);
10676 /// Called on well-formed '\#pragma omp barrier'.
10677 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10678 SourceLocation EndLoc);
10679 /// Called on well-formed '\#pragma omp taskwait'.
10680 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10681 SourceLocation EndLoc);
10682 /// Called on well-formed '\#pragma omp taskgroup'.
10683 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10684 Stmt *AStmt, SourceLocation StartLoc,
10685 SourceLocation EndLoc);
10686 /// Called on well-formed '\#pragma omp flush'.
10687 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10688 SourceLocation StartLoc,
10689 SourceLocation EndLoc);
10690 /// Called on well-formed '\#pragma omp depobj'.
10691 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10692 SourceLocation StartLoc,
10693 SourceLocation EndLoc);
10694 /// Called on well-formed '\#pragma omp scan'.
10695 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10696 SourceLocation StartLoc,
10697 SourceLocation EndLoc);
10698 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10699 /// associated statement.
10700 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10701 Stmt *AStmt, SourceLocation StartLoc,
10702 SourceLocation EndLoc);
10703 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10704 /// associated statement.
10705 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10706 Stmt *AStmt, SourceLocation StartLoc,
10707 SourceLocation EndLoc);
10708 /// Called on well-formed '\#pragma omp target' after parsing of the
10709 /// associated statement.
10710 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10711 Stmt *AStmt, SourceLocation StartLoc,
10712 SourceLocation EndLoc);
10713 /// Called on well-formed '\#pragma omp target data' after parsing of
10714 /// the associated statement.
10715 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10716 Stmt *AStmt, SourceLocation StartLoc,
10717 SourceLocation EndLoc);
10718 /// Called on well-formed '\#pragma omp target enter data' after
10719 /// parsing of the associated statement.
10720 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10721 SourceLocation StartLoc,
10722 SourceLocation EndLoc,
10723 Stmt *AStmt);
10724 /// Called on well-formed '\#pragma omp target exit data' after
10725 /// parsing of the associated statement.
10726 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10727 SourceLocation StartLoc,
10728 SourceLocation EndLoc,
10729 Stmt *AStmt);
10730 /// Called on well-formed '\#pragma omp target parallel' after
10731 /// parsing of the associated statement.
10732 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10733 Stmt *AStmt,
10734 SourceLocation StartLoc,
10735 SourceLocation EndLoc);
10736 /// Called on well-formed '\#pragma omp target parallel for' after
10737 /// parsing of the associated statement.
10738 StmtResult ActOnOpenMPTargetParallelForDirective(
10739 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10740 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10741 /// Called on well-formed '\#pragma omp teams' after parsing of the
10742 /// associated statement.
10743 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10744 Stmt *AStmt, SourceLocation StartLoc,
10745 SourceLocation EndLoc);
10746 /// Called on well-formed '\#pragma omp cancellation point'.
10747 StmtResult
10748 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10749 SourceLocation EndLoc,
10750 OpenMPDirectiveKind CancelRegion);
10751 /// Called on well-formed '\#pragma omp cancel'.
10752 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10753 SourceLocation StartLoc,
10754 SourceLocation EndLoc,
10755 OpenMPDirectiveKind CancelRegion);
10756 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10757 /// associated statement.
10758 StmtResult
10759 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10760 SourceLocation StartLoc, SourceLocation EndLoc,
10761 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10762 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10763 /// the associated statement.
10764 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10765 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10766 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10767 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10768 /// associated statement.
10769 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10770 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10771 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10772 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10773 /// the associated statement.
10774 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10775 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10776 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10777 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10778 /// parsing of the associated statement.
10779 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10780 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10781 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10782 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10783 /// parsing of the associated statement.
10784 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10785 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10786 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10787 /// Called on well-formed '\#pragma omp distribute' after parsing
10788 /// of the associated statement.
10789 StmtResult
10790 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10791 SourceLocation StartLoc, SourceLocation EndLoc,
10792 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10793 /// Called on well-formed '\#pragma omp target update'.
10794 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10795 SourceLocation StartLoc,
10796 SourceLocation EndLoc,
10797 Stmt *AStmt);
10798 /// Called on well-formed '\#pragma omp distribute parallel for' after
10799 /// parsing of the associated statement.
10800 StmtResult ActOnOpenMPDistributeParallelForDirective(
10801 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10802 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10803 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10804 /// after parsing of the associated statement.
10805 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10806 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10807 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10808 /// Called on well-formed '\#pragma omp distribute simd' after
10809 /// parsing of the associated statement.
10810 StmtResult ActOnOpenMPDistributeSimdDirective(
10811 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10812 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10813 /// Called on well-formed '\#pragma omp target parallel for simd' after
10814 /// parsing of the associated statement.
10815 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10816 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10817 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10818 /// Called on well-formed '\#pragma omp target simd' after parsing of
10819 /// the associated statement.
10820 StmtResult
10821 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10822 SourceLocation StartLoc, SourceLocation EndLoc,
10823 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10824 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10825 /// the associated statement.
10826 StmtResult ActOnOpenMPTeamsDistributeDirective(
10827 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10828 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10829 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10830 /// of the associated statement.
10831 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10832 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10833 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10834 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10835 /// after parsing of the associated statement.
10836 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10837 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10838 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10839 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10840 /// after parsing of the associated statement.
10841 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10842 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10843 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10844 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10845 /// associated statement.
10846 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10847 Stmt *AStmt,
10848 SourceLocation StartLoc,
10849 SourceLocation EndLoc);
10850 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10851 /// of the associated statement.
10852 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10853 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10854 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10855 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10856 /// after parsing of the associated statement.
10857 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10858 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10859 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10860 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10861 /// simd' after parsing of the associated statement.
10862 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10863 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10864 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10865 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10866 /// parsing of the associated statement.
10867 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10868 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10869 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10870 /// Called on well-formed '\#pragma omp interop'.
10871 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10872 SourceLocation StartLoc,
10873 SourceLocation EndLoc);
10874 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10875 // /associated statement.
10876 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10877 Stmt *AStmt, SourceLocation StartLoc,
10878 SourceLocation EndLoc);
10879 /// Called on well-formed '\#pragma omp masked' after parsing of the
10880 // /associated statement.
10881 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10882 Stmt *AStmt, SourceLocation StartLoc,
10883 SourceLocation EndLoc);
10884
10885 /// Checks correctness of linear modifiers.
10886 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10887 SourceLocation LinLoc);
10888 /// Checks that the specified declaration matches requirements for the linear
10889 /// decls.
10890 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10891 OpenMPLinearClauseKind LinKind, QualType Type,
10892 bool IsDeclareSimd = false);
10893
10894 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10895 /// the associated method/function.
10896 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10897 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10898 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10899 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10900 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10901
10902 /// Checks '\#pragma omp declare variant' variant function and original
10903 /// functions after parsing of the associated method/function.
10904 /// \param DG Function declaration to which declare variant directive is
10905 /// applied to.
10906 /// \param VariantRef Expression that references the variant function, which
10907 /// must be used instead of the original one, specified in \p DG.
10908 /// \param TI The trait info object representing the match clause.
10909 /// \returns None, if the function/variant function are not compatible with
10910 /// the pragma, pair of original function/variant ref expression otherwise.
10911 Optional<std::pair<FunctionDecl *, Expr *>>
10912 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10913 OMPTraitInfo &TI, SourceRange SR);
10914
10915 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10916 /// the associated method/function.
10917 /// \param FD Function declaration to which declare variant directive is
10918 /// applied to.
10919 /// \param VariantRef Expression that references the variant function, which
10920 /// must be used instead of the original one, specified in \p DG.
10921 /// \param TI The context traits associated with the function variant.
10922 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10923 OMPTraitInfo &TI, SourceRange SR);
10924
10925 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10926 Expr *Expr,
10927 SourceLocation StartLoc,
10928 SourceLocation LParenLoc,
10929 SourceLocation EndLoc);
10930 /// Called on well-formed 'allocator' clause.
10931 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10932 SourceLocation StartLoc,
10933 SourceLocation LParenLoc,
10934 SourceLocation EndLoc);
10935 /// Called on well-formed 'if' clause.
10936 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10937 Expr *Condition, SourceLocation StartLoc,
10938 SourceLocation LParenLoc,
10939 SourceLocation NameModifierLoc,
10940 SourceLocation ColonLoc,
10941 SourceLocation EndLoc);
10942 /// Called on well-formed 'final' clause.
10943 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10944 SourceLocation LParenLoc,
10945 SourceLocation EndLoc);
10946 /// Called on well-formed 'num_threads' clause.
10947 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10948 SourceLocation StartLoc,
10949 SourceLocation LParenLoc,
10950 SourceLocation EndLoc);
10951 /// Called on well-formed 'safelen' clause.
10952 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10953 SourceLocation StartLoc,
10954 SourceLocation LParenLoc,
10955 SourceLocation EndLoc);
10956 /// Called on well-formed 'simdlen' clause.
10957 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10958 SourceLocation LParenLoc,
10959 SourceLocation EndLoc);
10960 /// Called on well-form 'sizes' clause.
10961 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10962 SourceLocation StartLoc,
10963 SourceLocation LParenLoc,
10964 SourceLocation EndLoc);
10965 /// Called on well-form 'full' clauses.
10966 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10967 SourceLocation EndLoc);
10968 /// Called on well-form 'partial' clauses.
10969 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10970 SourceLocation LParenLoc,
10971 SourceLocation EndLoc);
10972 /// Called on well-formed 'collapse' clause.
10973 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10974 SourceLocation StartLoc,
10975 SourceLocation LParenLoc,
10976 SourceLocation EndLoc);
10977 /// Called on well-formed 'ordered' clause.
10978 OMPClause *
10979 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10980 SourceLocation LParenLoc = SourceLocation(),
10981 Expr *NumForLoops = nullptr);
10982 /// Called on well-formed 'grainsize' clause.
10983 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10984 SourceLocation LParenLoc,
10985 SourceLocation EndLoc);
10986 /// Called on well-formed 'num_tasks' clause.
10987 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10988 SourceLocation LParenLoc,
10989 SourceLocation EndLoc);
10990 /// Called on well-formed 'hint' clause.
10991 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10992 SourceLocation LParenLoc,
10993 SourceLocation EndLoc);
10994 /// Called on well-formed 'detach' clause.
10995 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10996 SourceLocation LParenLoc,
10997 SourceLocation EndLoc);
10998
10999 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
11000 unsigned Argument,
11001 SourceLocation ArgumentLoc,
11002 SourceLocation StartLoc,
11003 SourceLocation LParenLoc,
11004 SourceLocation EndLoc);
11005 /// Called on well-formed 'default' clause.
11006 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
11007 SourceLocation KindLoc,
11008 SourceLocation StartLoc,
11009 SourceLocation LParenLoc,
11010 SourceLocation EndLoc);
11011 /// Called on well-formed 'proc_bind' clause.
11012 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11013 SourceLocation KindLoc,
11014 SourceLocation StartLoc,
11015 SourceLocation LParenLoc,
11016 SourceLocation EndLoc);
11017 /// Called on well-formed 'order' clause.
11018 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11019 SourceLocation KindLoc,
11020 SourceLocation StartLoc,
11021 SourceLocation LParenLoc,
11022 SourceLocation EndLoc);
11023 /// Called on well-formed 'update' clause.
11024 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11025 SourceLocation KindLoc,
11026 SourceLocation StartLoc,
11027 SourceLocation LParenLoc,
11028 SourceLocation EndLoc);
11029
11030 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11031 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11032 SourceLocation StartLoc, SourceLocation LParenLoc,
11033 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11034 SourceLocation EndLoc);
11035 /// Called on well-formed 'schedule' clause.
11036 OMPClause *ActOnOpenMPScheduleClause(
11037 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11038 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11039 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11040 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11041
11042 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11043 SourceLocation EndLoc);
11044 /// Called on well-formed 'nowait' clause.
11045 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11046 SourceLocation EndLoc);
11047 /// Called on well-formed 'untied' clause.
11048 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11049 SourceLocation EndLoc);
11050 /// Called on well-formed 'mergeable' clause.
11051 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11052 SourceLocation EndLoc);
11053 /// Called on well-formed 'read' clause.
11054 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11055 SourceLocation EndLoc);
11056 /// Called on well-formed 'write' clause.
11057 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11058 SourceLocation EndLoc);
11059 /// Called on well-formed 'update' clause.
11060 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11061 SourceLocation EndLoc);
11062 /// Called on well-formed 'capture' clause.
11063 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11064 SourceLocation EndLoc);
11065 /// Called on well-formed 'seq_cst' clause.
11066 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11067 SourceLocation EndLoc);
11068 /// Called on well-formed 'acq_rel' clause.
11069 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11070 SourceLocation EndLoc);
11071 /// Called on well-formed 'acquire' clause.
11072 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11073 SourceLocation EndLoc);
11074 /// Called on well-formed 'release' clause.
11075 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11076 SourceLocation EndLoc);
11077 /// Called on well-formed 'relaxed' clause.
11078 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11079 SourceLocation EndLoc);
11080
11081 /// Called on well-formed 'init' clause.
11082 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11083 bool IsTarget, bool IsTargetSync,
11084 SourceLocation StartLoc,
11085 SourceLocation LParenLoc,
11086 SourceLocation VarLoc,
11087 SourceLocation EndLoc);
11088
11089 /// Called on well-formed 'use' clause.
11090 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11091 SourceLocation LParenLoc,
11092 SourceLocation VarLoc, SourceLocation EndLoc);
11093
11094 /// Called on well-formed 'destroy' clause.
11095 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11096 SourceLocation LParenLoc,
11097 SourceLocation VarLoc,
11098 SourceLocation EndLoc);
11099 /// Called on well-formed 'novariants' clause.
11100 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11101 SourceLocation StartLoc,
11102 SourceLocation LParenLoc,
11103 SourceLocation EndLoc);
11104 /// Called on well-formed 'nocontext' clause.
11105 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11106 SourceLocation StartLoc,
11107 SourceLocation LParenLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'filter' clause.
11110 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11111 SourceLocation LParenLoc,
11112 SourceLocation EndLoc);
11113 /// Called on well-formed 'threads' clause.
11114 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11115 SourceLocation EndLoc);
11116 /// Called on well-formed 'simd' clause.
11117 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11118 SourceLocation EndLoc);
11119 /// Called on well-formed 'nogroup' clause.
11120 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11121 SourceLocation EndLoc);
11122 /// Called on well-formed 'unified_address' clause.
11123 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11124 SourceLocation EndLoc);
11125
11126 /// Called on well-formed 'unified_address' clause.
11127 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11128 SourceLocation EndLoc);
11129
11130 /// Called on well-formed 'reverse_offload' clause.
11131 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11132 SourceLocation EndLoc);
11133
11134 /// Called on well-formed 'dynamic_allocators' clause.
11135 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11136 SourceLocation EndLoc);
11137
11138 /// Called on well-formed 'atomic_default_mem_order' clause.
11139 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11140 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11141 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11142
11143 OMPClause *ActOnOpenMPVarListClause(
11144 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11145 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11146 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11147 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11148 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11149 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11150 SourceLocation ExtraModifierLoc,
11151 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11152 ArrayRef<SourceLocation> MotionModifiersLoc);
11153 /// Called on well-formed 'inclusive' clause.
11154 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11155 SourceLocation StartLoc,
11156 SourceLocation LParenLoc,
11157 SourceLocation EndLoc);
11158 /// Called on well-formed 'exclusive' clause.
11159 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11160 SourceLocation StartLoc,
11161 SourceLocation LParenLoc,
11162 SourceLocation EndLoc);
11163 /// Called on well-formed 'allocate' clause.
11164 OMPClause *
11165 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11166 SourceLocation StartLoc, SourceLocation ColonLoc,
11167 SourceLocation LParenLoc, SourceLocation EndLoc);
11168 /// Called on well-formed 'private' clause.
11169 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11170 SourceLocation StartLoc,
11171 SourceLocation LParenLoc,
11172 SourceLocation EndLoc);
11173 /// Called on well-formed 'firstprivate' clause.
11174 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11175 SourceLocation StartLoc,
11176 SourceLocation LParenLoc,
11177 SourceLocation EndLoc);
11178 /// Called on well-formed 'lastprivate' clause.
11179 OMPClause *ActOnOpenMPLastprivateClause(
11180 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11181 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11182 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11183 /// Called on well-formed 'shared' clause.
11184 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11185 SourceLocation StartLoc,
11186 SourceLocation LParenLoc,
11187 SourceLocation EndLoc);
11188 /// Called on well-formed 'reduction' clause.
11189 OMPClause *ActOnOpenMPReductionClause(
11190 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11191 SourceLocation StartLoc, SourceLocation LParenLoc,
11192 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11193 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11194 const DeclarationNameInfo &ReductionId,
11195 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11196 /// Called on well-formed 'task_reduction' clause.
11197 OMPClause *ActOnOpenMPTaskReductionClause(
11198 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11199 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11200 CXXScopeSpec &ReductionIdScopeSpec,
11201 const DeclarationNameInfo &ReductionId,
11202 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11203 /// Called on well-formed 'in_reduction' clause.
11204 OMPClause *ActOnOpenMPInReductionClause(
11205 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11206 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11207 CXXScopeSpec &ReductionIdScopeSpec,
11208 const DeclarationNameInfo &ReductionId,
11209 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11210 /// Called on well-formed 'linear' clause.
11211 OMPClause *
11212 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11213 SourceLocation StartLoc, SourceLocation LParenLoc,
11214 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11215 SourceLocation ColonLoc, SourceLocation EndLoc);
11216 /// Called on well-formed 'aligned' clause.
11217 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11218 Expr *Alignment,
11219 SourceLocation StartLoc,
11220 SourceLocation LParenLoc,
11221 SourceLocation ColonLoc,
11222 SourceLocation EndLoc);
11223 /// Called on well-formed 'copyin' clause.
11224 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11225 SourceLocation StartLoc,
11226 SourceLocation LParenLoc,
11227 SourceLocation EndLoc);
11228 /// Called on well-formed 'copyprivate' clause.
11229 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11230 SourceLocation StartLoc,
11231 SourceLocation LParenLoc,
11232 SourceLocation EndLoc);
11233 /// Called on well-formed 'flush' pseudo clause.
11234 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11235 SourceLocation StartLoc,
11236 SourceLocation LParenLoc,
11237 SourceLocation EndLoc);
11238 /// Called on well-formed 'depobj' pseudo clause.
11239 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11240 SourceLocation LParenLoc,
11241 SourceLocation EndLoc);
11242 /// Called on well-formed 'depend' clause.
11243 OMPClause *
11244 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11245 SourceLocation DepLoc, SourceLocation ColonLoc,
11246 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11247 SourceLocation LParenLoc, SourceLocation EndLoc);
11248 /// Called on well-formed 'device' clause.
11249 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11250 Expr *Device, SourceLocation StartLoc,
11251 SourceLocation LParenLoc,
11252 SourceLocation ModifierLoc,
11253 SourceLocation EndLoc);
11254 /// Called on well-formed 'map' clause.
11255 OMPClause *ActOnOpenMPMapClause(
11256 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11257 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11258 CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
11259 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11260 SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
11261 const OMPVarListLocTy &Locs, bool NoDiagnose = false,
11262 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11263 /// Called on well-formed 'num_teams' clause.
11264 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11265 SourceLocation LParenLoc,
11266 SourceLocation EndLoc);
11267 /// Called on well-formed 'thread_limit' clause.
11268 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11269 SourceLocation StartLoc,
11270 SourceLocation LParenLoc,
11271 SourceLocation EndLoc);
11272 /// Called on well-formed 'priority' clause.
11273 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11274 SourceLocation LParenLoc,
11275 SourceLocation EndLoc);
11276 /// Called on well-formed 'dist_schedule' clause.
11277 OMPClause *ActOnOpenMPDistScheduleClause(
11278 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11279 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11280 SourceLocation CommaLoc, SourceLocation EndLoc);
11281 /// Called on well-formed 'defaultmap' clause.
11282 OMPClause *ActOnOpenMPDefaultmapClause(
11283 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11284 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11285 SourceLocation KindLoc, SourceLocation EndLoc);
11286 /// Called on well-formed 'to' clause.
11287 OMPClause *
11288 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11289 ArrayRef<SourceLocation> MotionModifiersLoc,
11290 CXXScopeSpec &MapperIdScopeSpec,
11291 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11292 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11293 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11294 /// Called on well-formed 'from' clause.
11295 OMPClause *
11296 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11297 ArrayRef<SourceLocation> MotionModifiersLoc,
11298 CXXScopeSpec &MapperIdScopeSpec,
11299 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11300 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11301 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11302 /// Called on well-formed 'use_device_ptr' clause.
11303 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11304 const OMPVarListLocTy &Locs);
11305 /// Called on well-formed 'use_device_addr' clause.
11306 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11307 const OMPVarListLocTy &Locs);
11308 /// Called on well-formed 'is_device_ptr' clause.
11309 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11310 const OMPVarListLocTy &Locs);
11311 /// Called on well-formed 'nontemporal' clause.
11312 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11313 SourceLocation StartLoc,
11314 SourceLocation LParenLoc,
11315 SourceLocation EndLoc);
11316
11317 /// Data for list of allocators.
11318 struct UsesAllocatorsData {
11319 /// Allocator.
11320 Expr *Allocator = nullptr;
11321 /// Allocator traits.
11322 Expr *AllocatorTraits = nullptr;
11323 /// Locations of '(' and ')' symbols.
11324 SourceLocation LParenLoc, RParenLoc;
11325 };
11326 /// Called on well-formed 'uses_allocators' clause.
11327 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11328 SourceLocation LParenLoc,
11329 SourceLocation EndLoc,
11330 ArrayRef<UsesAllocatorsData> Data);
11331 /// Called on well-formed 'affinity' clause.
11332 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11333 SourceLocation LParenLoc,
11334 SourceLocation ColonLoc,
11335 SourceLocation EndLoc, Expr *Modifier,
11336 ArrayRef<Expr *> Locators);
11337
11338 /// The kind of conversion being performed.
11339 enum CheckedConversionKind {
11340 /// An implicit conversion.
11341 CCK_ImplicitConversion,
11342 /// A C-style cast.
11343 CCK_CStyleCast,
11344 /// A functional-style cast.
11345 CCK_FunctionalCast,
11346 /// A cast other than a C-style cast.
11347 CCK_OtherCast,
11348 /// A conversion for an operand of a builtin overloaded operator.
11349 CCK_ForBuiltinOverloadedOp
11350 };
11351
11352 static bool isCast(CheckedConversionKind CCK) {
11353 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11354 CCK == CCK_OtherCast;
11355 }
11356
11357 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11358 /// cast. If there is already an implicit cast, merge into the existing one.
11359 /// If isLvalue, the result of the cast is an lvalue.
11360 ExprResult
11361 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11362 ExprValueKind VK = VK_PRValue,
11363 const CXXCastPath *BasePath = nullptr,
11364 CheckedConversionKind CCK = CCK_ImplicitConversion);
11365
11366 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11367 /// to the conversion from scalar type ScalarTy to the Boolean type.
11368 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11369
11370 /// IgnoredValueConversions - Given that an expression's result is
11371 /// syntactically ignored, perform any conversions that are
11372 /// required.
11373 ExprResult IgnoredValueConversions(Expr *E);
11374
11375 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11376 // functions and arrays to their respective pointers (C99 6.3.2.1).
11377 ExprResult UsualUnaryConversions(Expr *E);
11378
11379 /// CallExprUnaryConversions - a special case of an unary conversion
11380 /// performed on a function designator of a call expression.
11381 ExprResult CallExprUnaryConversions(Expr *E);
11382
11383 // DefaultFunctionArrayConversion - converts functions and arrays
11384 // to their respective pointers (C99 6.3.2.1).
11385 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11386
11387 // DefaultFunctionArrayLvalueConversion - converts functions and
11388 // arrays to their respective pointers and performs the
11389 // lvalue-to-rvalue conversion.
11390 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11391 bool Diagnose = true);
11392
11393 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11394 // the operand. This function is a no-op if the operand has a function type
11395 // or an array type.
11396 ExprResult DefaultLvalueConversion(Expr *E);
11397
11398 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11399 // do not have a prototype. Integer promotions are performed on each
11400 // argument, and arguments that have type float are promoted to double.
11401 ExprResult DefaultArgumentPromotion(Expr *E);
11402
11403 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11404 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11405 /// we don't have xvalues there.
11406 ExprResult TemporaryMaterializationConversion(Expr *E);
11407
11408 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11409 enum VariadicCallType {
11410 VariadicFunction,
11411 VariadicBlock,
11412 VariadicMethod,
11413 VariadicConstructor,
11414 VariadicDoesNotApply
11415 };
11416
11417 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11418 const FunctionProtoType *Proto,
11419 Expr *Fn);
11420
11421 // Used for determining in which context a type is allowed to be passed to a
11422 // vararg function.
11423 enum VarArgKind {
11424 VAK_Valid,
11425 VAK_ValidInCXX11,
11426 VAK_Undefined,
11427 VAK_MSVCUndefined,
11428 VAK_Invalid
11429 };
11430
11431 // Determines which VarArgKind fits an expression.
11432 VarArgKind isValidVarArgType(const QualType &Ty);
11433
11434 /// Check to see if the given expression is a valid argument to a variadic
11435 /// function, issuing a diagnostic if not.
11436 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11437
11438 /// Check whether the given statement can have musttail applied to it,
11439 /// issuing a diagnostic and returning false if not. In the success case,
11440 /// the statement is rewritten to remove implicit nodes from the return
11441 /// value.
11442 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11443
11444private:
11445 /// Check whether the given statement can have musttail applied to it,
11446 /// issuing a diagnostic and returning false if not.
11447 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11448
11449public:
11450 /// Check to see if a given expression could have '.c_str()' called on it.
11451 bool hasCStrMethod(const Expr *E);
11452
11453 /// GatherArgumentsForCall - Collector argument expressions for various
11454 /// form of call prototypes.
11455 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11456 const FunctionProtoType *Proto,
11457 unsigned FirstParam, ArrayRef<Expr *> Args,
11458 SmallVectorImpl<Expr *> &AllArgs,
11459 VariadicCallType CallType = VariadicDoesNotApply,
11460 bool AllowExplicit = false,
11461 bool IsListInitialization = false);
11462
11463 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11464 // will create a runtime trap if the resulting type is not a POD type.
11465 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11466 FunctionDecl *FDecl);
11467
11468 /// Context in which we're performing a usual arithmetic conversion.
11469 enum ArithConvKind {
11470 /// An arithmetic operation.
11471 ACK_Arithmetic,
11472 /// A bitwise operation.
11473 ACK_BitwiseOp,
11474 /// A comparison.
11475 ACK_Comparison,
11476 /// A conditional (?:) operator.
11477 ACK_Conditional,
11478 /// A compound assignment expression.
11479 ACK_CompAssign,
11480 };
11481
11482 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11483 // operands and then handles various conversions that are common to binary
11484 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11485 // routine returns the first non-arithmetic type found. The client is
11486 // responsible for emitting appropriate error diagnostics.
11487 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11488 SourceLocation Loc, ArithConvKind ACK);
11489
11490 /// AssignConvertType - All of the 'assignment' semantic checks return this
11491 /// enum to indicate whether the assignment was allowed. These checks are
11492 /// done for simple assignments, as well as initialization, return from
11493 /// function, argument passing, etc. The query is phrased in terms of a
11494 /// source and destination type.
11495 enum AssignConvertType {
11496 /// Compatible - the types are compatible according to the standard.
11497 Compatible,
11498
11499 /// PointerToInt - The assignment converts a pointer to an int, which we
11500 /// accept as an extension.
11501 PointerToInt,
11502
11503 /// IntToPointer - The assignment converts an int to a pointer, which we
11504 /// accept as an extension.
11505 IntToPointer,
11506
11507 /// FunctionVoidPointer - The assignment is between a function pointer and
11508 /// void*, which the standard doesn't allow, but we accept as an extension.
11509 FunctionVoidPointer,
11510
11511 /// IncompatiblePointer - The assignment is between two pointers types that
11512 /// are not compatible, but we accept them as an extension.
11513 IncompatiblePointer,
11514
11515 /// IncompatibleFunctionPointer - The assignment is between two function
11516 /// pointers types that are not compatible, but we accept them as an
11517 /// extension.
11518 IncompatibleFunctionPointer,
11519
11520 /// IncompatiblePointerSign - The assignment is between two pointers types
11521 /// which point to integers which have a different sign, but are otherwise
11522 /// identical. This is a subset of the above, but broken out because it's by
11523 /// far the most common case of incompatible pointers.
11524 IncompatiblePointerSign,
11525
11526 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11527 /// c/v/r qualifiers, which we accept as an extension.
11528 CompatiblePointerDiscardsQualifiers,
11529
11530 /// IncompatiblePointerDiscardsQualifiers - The assignment
11531 /// discards qualifiers that we don't permit to be discarded,
11532 /// like address spaces.
11533 IncompatiblePointerDiscardsQualifiers,
11534
11535 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11536 /// changes address spaces in nested pointer types which is not allowed.
11537 /// For instance, converting __private int ** to __generic int ** is
11538 /// illegal even though __private could be converted to __generic.
11539 IncompatibleNestedPointerAddressSpaceMismatch,
11540
11541 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11542 /// nested pointer types, and the qualifiers other than the first two
11543 /// levels differ e.g. char ** -> const char **, but we accept them as an
11544 /// extension.
11545 IncompatibleNestedPointerQualifiers,
11546
11547 /// IncompatibleVectors - The assignment is between two vector types that
11548 /// have the same size, which we accept as an extension.
11549 IncompatibleVectors,
11550
11551 /// IntToBlockPointer - The assignment converts an int to a block
11552 /// pointer. We disallow this.
11553 IntToBlockPointer,
11554
11555 /// IncompatibleBlockPointer - The assignment is between two block
11556 /// pointers types that are not compatible.
11557 IncompatibleBlockPointer,
11558
11559 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11560 /// id type and something else (that is incompatible with it). For example,
11561 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11562 IncompatibleObjCQualifiedId,
11563
11564 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11565 /// object with __weak qualifier.
11566 IncompatibleObjCWeakRef,
11567
11568 /// Incompatible - We reject this conversion outright, it is invalid to
11569 /// represent it in the AST.
11570 Incompatible
11571 };
11572
11573 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11574 /// assignment conversion type specified by ConvTy. This returns true if the
11575 /// conversion was invalid or false if the conversion was accepted.
11576 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11577 SourceLocation Loc,
11578 QualType DstType, QualType SrcType,
11579 Expr *SrcExpr, AssignmentAction Action,
11580 bool *Complained = nullptr);
11581
11582 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11583 /// enum. If AllowMask is true, then we also allow the complement of a valid
11584 /// value, to be used as a mask.
11585 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11586 bool AllowMask) const;
11587
11588 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11589 /// integer not in the range of enum values.
11590 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11591 Expr *SrcExpr);
11592
11593 /// CheckAssignmentConstraints - Perform type checking for assignment,
11594 /// argument passing, variable initialization, and function return values.
11595 /// C99 6.5.16.
11596 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11597 QualType LHSType,
11598 QualType RHSType);
11599
11600 /// Check assignment constraints and optionally prepare for a conversion of
11601 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11602 /// is true.
11603 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11604 ExprResult &RHS,
11605 CastKind &Kind,
11606 bool ConvertRHS = true);
11607
11608 /// Check assignment constraints for an assignment of RHS to LHSType.
11609 ///
11610 /// \param LHSType The destination type for the assignment.
11611 /// \param RHS The source expression for the assignment.
11612 /// \param Diagnose If \c true, diagnostics may be produced when checking
11613 /// for assignability. If a diagnostic is produced, \p RHS will be
11614 /// set to ExprError(). Note that this function may still return
11615 /// without producing a diagnostic, even for an invalid assignment.
11616 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11617 /// in an audited Core Foundation API and does not need to be checked
11618 /// for ARC retain issues.
11619 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11620 /// conversions necessary to perform the assignment. If \c false,
11621 /// \p Diagnose must also be \c false.
11622 AssignConvertType CheckSingleAssignmentConstraints(
11623 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11624 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11625
11626 // If the lhs type is a transparent union, check whether we
11627 // can initialize the transparent union with the given expression.
11628 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11629 ExprResult &RHS);
11630
11631 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11632
11633 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11634
11635 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11636 AssignmentAction Action,
11637 bool AllowExplicit = false);
11638 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11639 const ImplicitConversionSequence& ICS,
11640 AssignmentAction Action,
11641 CheckedConversionKind CCK
11642 = CCK_ImplicitConversion);
11643 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11644 const StandardConversionSequence& SCS,
11645 AssignmentAction Action,
11646 CheckedConversionKind CCK);
11647
11648 ExprResult PerformQualificationConversion(
11649 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11650 CheckedConversionKind CCK = CCK_ImplicitConversion);
11651
11652 /// the following "Check" methods will return a valid/converted QualType
11653 /// or a null QualType (indicating an error diagnostic was issued).
11654
11655 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11656 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11657 ExprResult &RHS);
11658 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11659 ExprResult &RHS);
11660 QualType CheckPointerToMemberOperands( // C++ 5.5
11661 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11662 SourceLocation OpLoc, bool isIndirect);
11663 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11664 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11665 bool IsDivide);
11666 QualType CheckRemainderOperands( // C99 6.5.5
11667 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11668 bool IsCompAssign = false);
11669 QualType CheckAdditionOperands( // C99 6.5.6
11670 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11671 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11672 QualType CheckSubtractionOperands( // C99 6.5.6
11673 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11674 QualType* CompLHSTy = nullptr);
11675 QualType CheckShiftOperands( // C99 6.5.7
11676 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11677 BinaryOperatorKind Opc, bool IsCompAssign = false);
11678 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11679 QualType CheckCompareOperands( // C99 6.5.8/9
11680 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11681 BinaryOperatorKind Opc);
11682 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11683 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11684 BinaryOperatorKind Opc);
11685 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11686 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11687 BinaryOperatorKind Opc);
11688 // CheckAssignmentOperands is used for both simple and compound assignment.
11689 // For simple assignment, pass both expressions and a null converted type.
11690 // For compound assignment, pass both expressions and the converted type.
11691 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11692 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11693
11694 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11695 UnaryOperatorKind Opcode, Expr *Op);
11696 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11697 BinaryOperatorKind Opcode,
11698 Expr *LHS, Expr *RHS);
11699 ExprResult checkPseudoObjectRValue(Expr *E);
11700 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11701
11702 QualType CheckConditionalOperands( // C99 6.5.15
11703 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11704 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11705 QualType CXXCheckConditionalOperands( // C++ 5.16
11706 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11707 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11708 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11709 ExprResult &RHS,
11710 SourceLocation QuestionLoc);
11711 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11712 bool ConvertArgs = true);
11713 QualType FindCompositePointerType(SourceLocation Loc,
11714 ExprResult &E1, ExprResult &E2,
11715 bool ConvertArgs = true) {
11716 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11717 QualType Composite =
11718 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11719 E1 = E1Tmp;
11720 E2 = E2Tmp;
11721 return Composite;
11722 }
11723
11724 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11725 SourceLocation QuestionLoc);
11726
11727 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11728 SourceLocation QuestionLoc);
11729
11730 void DiagnoseAlwaysNonNullPointer(Expr *E,
11731 Expr::NullPointerConstantKind NullType,
11732 bool IsEqual, SourceRange Range);
11733
11734 /// type checking for vector binary operators.
11735 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11736 SourceLocation Loc, bool IsCompAssign,
11737 bool AllowBothBool, bool AllowBoolConversion);
11738 QualType GetSignedVectorType(QualType V);
11739 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11740 SourceLocation Loc,
11741 BinaryOperatorKind Opc);
11742 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11743 SourceLocation Loc);
11744
11745 /// Type checking for matrix binary operators.
11746 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11747 SourceLocation Loc,
11748 bool IsCompAssign);
11749 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11750 SourceLocation Loc, bool IsCompAssign);
11751
11752 bool isValidSveBitcast(QualType srcType, QualType destType);
11753
11754 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11755
11756 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11757 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11758 bool isLaxVectorConversion(QualType srcType, QualType destType);
11759
11760 /// type checking declaration initializers (C99 6.7.8)
11761 bool CheckForConstantInitializer(Expr *e, QualType t);
11762
11763 // type checking C++ declaration initializers (C++ [dcl.init]).
11764
11765 /// ReferenceCompareResult - Expresses the result of comparing two
11766 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11767 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11768 enum ReferenceCompareResult {
11769 /// Ref_Incompatible - The two types are incompatible, so direct
11770 /// reference binding is not possible.
11771 Ref_Incompatible = 0,
11772 /// Ref_Related - The two types are reference-related, which means
11773 /// that their unqualified forms (T1 and T2) are either the same
11774 /// or T1 is a base class of T2.
11775 Ref_Related,
11776 /// Ref_Compatible - The two types are reference-compatible.
11777 Ref_Compatible
11778 };
11779
11780 // Fake up a scoped enumeration that still contextually converts to bool.
11781 struct ReferenceConversionsScope {
11782 /// The conversions that would be performed on an lvalue of type T2 when
11783 /// binding a reference of type T1 to it, as determined when evaluating
11784 /// whether T1 is reference-compatible with T2.
11785 enum ReferenceConversions {
11786 Qualification = 0x1,
11787 NestedQualification = 0x2,
11788 Function = 0x4,
11789 DerivedToBase = 0x8,
11790 ObjC = 0x10,
11791 ObjCLifetime = 0x20,
11792
11793 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11794 };
11795 };
11796 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11797
11798 ReferenceCompareResult
11799 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11800 ReferenceConversions *Conv = nullptr);
11801
11802 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11803 Expr *CastExpr, CastKind &CastKind,
11804 ExprValueKind &VK, CXXCastPath &Path);
11805
11806 /// Force an expression with unknown-type to an expression of the
11807 /// given type.
11808 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11809
11810 /// Type-check an expression that's being passed to an
11811 /// __unknown_anytype parameter.
11812 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11813 Expr *result, QualType &paramType);
11814
11815 // CheckMatrixCast - Check type constraints for matrix casts.
11816 // We allow casting between matrixes of the same dimensions i.e. when they
11817 // have the same number of rows and column. Returns true if the cast is
11818 // invalid.
11819 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11820 CastKind &Kind);
11821
11822 // CheckVectorCast - check type constraints for vectors.
11823 // Since vectors are an extension, there are no C standard reference for this.
11824 // We allow casting between vectors and integer datatypes of the same size.
11825 // returns true if the cast is invalid
11826 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11827 CastKind &Kind);
11828
11829 /// Prepare `SplattedExpr` for a vector splat operation, adding
11830 /// implicit casts if necessary.
11831 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11832
11833 // CheckExtVectorCast - check type constraints for extended vectors.
11834 // Since vectors are an extension, there are no C standard reference for this.
11835 // We allow casting between vectors and integer datatypes of the same size,
11836 // or vectors and the element type of that vector.
11837 // returns the cast expr
11838 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11839 CastKind &Kind);
11840
11841 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11842 SourceLocation LParenLoc,
11843 Expr *CastExpr,
11844 SourceLocation RParenLoc);
11845
11846 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11847
11848 /// Checks for invalid conversions and casts between
11849 /// retainable pointers and other pointer kinds for ARC and Weak.
11850 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11851 QualType castType, Expr *&op,
11852 CheckedConversionKind CCK,
11853 bool Diagnose = true,
11854 bool DiagnoseCFAudited = false,
11855 BinaryOperatorKind Opc = BO_PtrMemD
11856 );
11857
11858 Expr *stripARCUnbridgedCast(Expr *e);
11859 void diagnoseARCUnbridgedCast(Expr *e);
11860
11861 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11862 QualType ExprType);
11863
11864 /// checkRetainCycles - Check whether an Objective-C message send
11865 /// might create an obvious retain cycle.
11866 void checkRetainCycles(ObjCMessageExpr *msg);
11867 void checkRetainCycles(Expr *receiver, Expr *argument);
11868 void checkRetainCycles(VarDecl *Var, Expr *Init);
11869
11870 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11871 /// to weak/__unsafe_unretained type.
11872 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11873
11874 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11875 /// to weak/__unsafe_unretained expression.
11876 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11877
11878 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11879 /// \param Method - May be null.
11880 /// \param [out] ReturnType - The return type of the send.
11881 /// \return true iff there were any incompatible types.
11882 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11883 MultiExprArg Args, Selector Sel,
11884 ArrayRef<SourceLocation> SelectorLocs,
11885 ObjCMethodDecl *Method, bool isClassMessage,
11886 bool isSuperMessage, SourceLocation lbrac,
11887 SourceLocation rbrac, SourceRange RecRange,
11888 QualType &ReturnType, ExprValueKind &VK);
11889
11890 /// Determine the result of a message send expression based on
11891 /// the type of the receiver, the method expected to receive the message,
11892 /// and the form of the message send.
11893 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11894 ObjCMethodDecl *Method, bool isClassMessage,
11895 bool isSuperMessage);
11896
11897 /// If the given expression involves a message send to a method
11898 /// with a related result type, emit a note describing what happened.
11899 void EmitRelatedResultTypeNote(const Expr *E);
11900
11901 /// Given that we had incompatible pointer types in a return
11902 /// statement, check whether we're in a method with a related result
11903 /// type, and if so, emit a note describing what happened.
11904 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11905
11906 class ConditionResult {
11907 Decl *ConditionVar;
11908 FullExprArg Condition;
11909 bool Invalid;
11910 bool HasKnownValue;
11911 bool KnownValue;
11912
11913 friend class Sema;
11914 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11915 bool IsConstexpr)
11916 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11917 HasKnownValue(IsConstexpr && Condition.get() &&
11918 !Condition.get()->isValueDependent()),
11919 KnownValue(HasKnownValue &&
11920 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11921 explicit ConditionResult(bool Invalid)
11922 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11923 HasKnownValue(false), KnownValue(false) {}
11924
11925 public:
11926 ConditionResult() : ConditionResult(false) {}
11927 bool isInvalid() const { return Invalid; }
11928 std::pair<VarDecl *, Expr *> get() const {
11929 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11930 Condition.get());
11931 }
11932 llvm::Optional<bool> getKnownValue() const {
11933 if (!HasKnownValue)
11934 return None;
11935 return KnownValue;
11936 }
11937 };
11938 static ConditionResult ConditionError() { return ConditionResult(true); }
11939
11940 enum class ConditionKind {
11941 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11942 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11943 Switch ///< An integral condition for a 'switch' statement.
11944 };
11945
11946 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11947 Expr *SubExpr, ConditionKind CK);
11948
11949 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11950 SourceLocation StmtLoc,
11951 ConditionKind CK);
11952
11953 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11954
11955 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11956 SourceLocation StmtLoc,
11957 ConditionKind CK);
11958 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11959
11960 /// CheckBooleanCondition - Diagnose problems involving the use of
11961 /// the given expression as a boolean condition (e.g. in an if
11962 /// statement). Also performs the standard function and array
11963 /// decays, possibly changing the input variable.
11964 ///
11965 /// \param Loc - A location associated with the condition, e.g. the
11966 /// 'if' keyword.
11967 /// \return true iff there were any errors
11968 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11969 bool IsConstexpr = false);
11970
11971 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11972 /// found in an explicit(bool) specifier.
11973 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11974
11975 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11976 /// Returns true if the explicit specifier is now resolved.
11977 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11978
11979 /// DiagnoseAssignmentAsCondition - Given that an expression is
11980 /// being used as a boolean condition, warn if it's an assignment.
11981 void DiagnoseAssignmentAsCondition(Expr *E);
11982
11983 /// Redundant parentheses over an equality comparison can indicate
11984 /// that the user intended an assignment used as condition.
11985 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11986
11987 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11988 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11989
11990 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11991 /// the specified width and sign. If an overflow occurs, detect it and emit
11992 /// the specified diagnostic.
11993 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11994 unsigned NewWidth, bool NewSign,
11995 SourceLocation Loc, unsigned DiagID);
11996
11997 /// Checks that the Objective-C declaration is declared in the global scope.
11998 /// Emits an error and marks the declaration as invalid if it's not declared
11999 /// in the global scope.
12000 bool CheckObjCDeclScope(Decl *D);
12001
12002 /// Abstract base class used for diagnosing integer constant
12003 /// expression violations.
12004 class VerifyICEDiagnoser {
12005 public:
12006 bool Suppress;
12007
12008 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12009
12010 virtual SemaDiagnosticBuilder
12011 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12012 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12013 SourceLocation Loc) = 0;
12014 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12015 virtual ~VerifyICEDiagnoser() {}
12016 };
12017
12018 enum AllowFoldKind {
12019 NoFold,
12020 AllowFold,
12021 };
12022
12023 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12024 /// and reports the appropriate diagnostics. Returns false on success.
12025 /// Can optionally return the value of the expression.
12026 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12027 VerifyICEDiagnoser &Diagnoser,
12028 AllowFoldKind CanFold = NoFold);
12029 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12030 unsigned DiagID,
12031 AllowFoldKind CanFold = NoFold);
12032 ExprResult VerifyIntegerConstantExpression(Expr *E,
12033 llvm::APSInt *Result = nullptr,
12034 AllowFoldKind CanFold = NoFold);
12035 ExprResult VerifyIntegerConstantExpression(Expr *E,
12036 AllowFoldKind CanFold = NoFold) {
12037 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12038 }
12039
12040 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12041 /// the correct width, and that the field type is valid.
12042 /// Returns false on success.
12043 /// Can optionally return whether the bit-field is of width 0
12044 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12045 QualType FieldTy, bool IsMsStruct,
12046 Expr *BitWidth, bool *ZeroWidth = nullptr);
12047
12048private:
12049 unsigned ForceCUDAHostDeviceDepth = 0;
12050
12051public:
12052 /// Increments our count of the number of times we've seen a pragma forcing
12053 /// functions to be __host__ __device__. So long as this count is greater
12054 /// than zero, all functions encountered will be __host__ __device__.
12055 void PushForceCUDAHostDevice();
12056
12057 /// Decrements our count of the number of times we've seen a pragma forcing
12058 /// functions to be __host__ __device__. Returns false if the count is 0
12059 /// before incrementing, so you can emit an error.
12060 bool PopForceCUDAHostDevice();
12061
12062 /// Diagnostics that are emitted only if we discover that the given function
12063 /// must be codegen'ed. Because handling these correctly adds overhead to
12064 /// compilation, this is currently only enabled for CUDA compilations.
12065 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12066 std::vector<PartialDiagnosticAt>>
12067 DeviceDeferredDiags;
12068
12069 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12070 /// key in a hashtable, both the FD and location are hashed.
12071 struct FunctionDeclAndLoc {
12072 CanonicalDeclPtr<FunctionDecl> FD;
12073 SourceLocation Loc;
12074 };
12075
12076 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12077 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12078 /// same deferred diag twice.
12079 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12080
12081 /// An inverse call graph, mapping known-emitted functions to one of their
12082 /// known-emitted callers (plus the location of the call).
12083 ///
12084 /// Functions that we can tell a priori must be emitted aren't added to this
12085 /// map.
12086 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12087 /* Caller = */ FunctionDeclAndLoc>
12088 DeviceKnownEmittedFns;
12089
12090 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12091 /// context is "used as device code".
12092 ///
12093 /// - If CurContext is a __host__ function, does not emit any diagnostics
12094 /// unless \p EmitOnBothSides is true.
12095 /// - If CurContext is a __device__ or __global__ function, emits the
12096 /// diagnostics immediately.
12097 /// - If CurContext is a __host__ __device__ function and we are compiling for
12098 /// the device, creates a diagnostic which is emitted if and when we realize
12099 /// that the function will be codegen'ed.
12100 ///
12101 /// Example usage:
12102 ///
12103 /// // Variable-length arrays are not allowed in CUDA device code.
12104 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12105 /// return ExprError();
12106 /// // Otherwise, continue parsing as normal.
12107 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12108 unsigned DiagID);
12109
12110 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12111 /// context is "used as host code".
12112 ///
12113 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12114 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12115
12116 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12117 /// context is "used as device code".
12118 ///
12119 /// - If CurContext is a `declare target` function or it is known that the
12120 /// function is emitted for the device, emits the diagnostics immediately.
12121 /// - If CurContext is a non-`declare target` function and we are compiling
12122 /// for the device, creates a diagnostic which is emitted if and when we
12123 /// realize that the function will be codegen'ed.
12124 ///
12125 /// Example usage:
12126 ///
12127 /// // Variable-length arrays are not allowed in NVPTX device code.
12128 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12129 /// return ExprError();
12130 /// // Otherwise, continue parsing as normal.
12131 SemaDiagnosticBuilder
12132 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12133
12134 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12135 /// context is "used as host code".
12136 ///
12137 /// - If CurContext is a `declare target` function or it is known that the
12138 /// function is emitted for the host, emits the diagnostics immediately.
12139 /// - If CurContext is a non-host function, just ignore it.
12140 ///
12141 /// Example usage:
12142 ///
12143 /// // Variable-length arrays are not allowed in NVPTX device code.
12144 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12145 /// return ExprError();
12146 /// // Otherwise, continue parsing as normal.
12147 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12148 unsigned DiagID, FunctionDecl *FD);
12149
12150 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12151 FunctionDecl *FD = nullptr);
12152 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12153 const PartialDiagnostic &PD,
12154 FunctionDecl *FD = nullptr) {
12155 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12156 }
12157
12158 /// Check if the expression is allowed to be used in expressions for the
12159 /// offloading devices.
12160 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12161
12162 enum CUDAFunctionTarget {
12163 CFT_Device,
12164 CFT_Global,
12165 CFT_Host,
12166 CFT_HostDevice,
12167 CFT_InvalidTarget
12168 };
12169
12170 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12171 /// function.
12172 ///
12173 /// Use this rather than examining the function's attributes yourself -- you
12174 /// will get it wrong. Returns CFT_Host if D is null.
12175 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12176 bool IgnoreImplicitHDAttr = false);
12177 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12178
12179 enum CUDAVariableTarget {
12180 CVT_Device, /// Emitted on device side with a shadow variable on host side
12181 CVT_Host, /// Emitted on host side only
12182 CVT_Both, /// Emitted on both sides with different addresses
12183 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12184 };
12185 /// Determines whether the given variable is emitted on host or device side.
12186 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12187
12188 /// Gets the CUDA target for the current context.
12189 CUDAFunctionTarget CurrentCUDATarget() {
12190 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12191 }
12192
12193 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12194
12195 // CUDA function call preference. Must be ordered numerically from
12196 // worst to best.
12197 enum CUDAFunctionPreference {
12198 CFP_Never, // Invalid caller/callee combination.
12199 CFP_WrongSide, // Calls from host-device to host or device
12200 // function that do not match current compilation
12201 // mode.
12202 CFP_HostDevice, // Any calls to host/device functions.
12203 CFP_SameSide, // Calls from host-device to host or device
12204 // function matching current compilation mode.
12205 CFP_Native, // host-to-host or device-to-device calls.
12206 };
12207
12208 /// Identifies relative preference of a given Caller/Callee
12209 /// combination, based on their host/device attributes.
12210 /// \param Caller function which needs address of \p Callee.
12211 /// nullptr in case of global context.
12212 /// \param Callee target function
12213 ///
12214 /// \returns preference value for particular Caller/Callee combination.
12215 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12216 const FunctionDecl *Callee);
12217
12218 /// Determines whether Caller may invoke Callee, based on their CUDA
12219 /// host/device attributes. Returns false if the call is not allowed.
12220 ///
12221 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12222 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12223 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12224 const FunctionDecl *Callee) {
12225 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12226 }
12227
12228 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12229 /// depending on FD and the current compilation settings.
12230 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12231 const LookupResult &Previous);
12232
12233 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12234 /// and current compilation settings.
12235 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12236
12237public:
12238 /// Check whether we're allowed to call Callee from the current context.
12239 ///
12240 /// - If the call is never allowed in a semantically-correct program
12241 /// (CFP_Never), emits an error and returns false.
12242 ///
12243 /// - If the call is allowed in semantically-correct programs, but only if
12244 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12245 /// be emitted if and when the caller is codegen'ed, and returns true.
12246 ///
12247 /// Will only create deferred diagnostics for a given SourceLocation once,
12248 /// so you can safely call this multiple times without generating duplicate
12249 /// deferred errors.
12250 ///
12251 /// - Otherwise, returns true without emitting any diagnostics.
12252 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12253
12254 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12255
12256 /// Set __device__ or __host__ __device__ attributes on the given lambda
12257 /// operator() method.
12258 ///
12259 /// CUDA lambdas by default is host device function unless it has explicit
12260 /// host or device attribute.
12261 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12262
12263 /// Finds a function in \p Matches with highest calling priority
12264 /// from \p Caller context and erases all functions with lower
12265 /// calling priority.
12266 void EraseUnwantedCUDAMatches(
12267 const FunctionDecl *Caller,
12268 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12269
12270 /// Given a implicit special member, infer its CUDA target from the
12271 /// calls it needs to make to underlying base/field special members.
12272 /// \param ClassDecl the class for which the member is being created.
12273 /// \param CSM the kind of special member.
12274 /// \param MemberDecl the special member itself.
12275 /// \param ConstRHS true if this is a copy operation with a const object on
12276 /// its RHS.
12277 /// \param Diagnose true if this call should emit diagnostics.
12278 /// \return true if there was an error inferring.
12279 /// The result of this call is implicit CUDA target attribute(s) attached to
12280 /// the member declaration.
12281 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12282 CXXSpecialMember CSM,
12283 CXXMethodDecl *MemberDecl,
12284 bool ConstRHS,
12285 bool Diagnose);
12286
12287 /// \return true if \p CD can be considered empty according to CUDA
12288 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12289 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12290 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12291
12292 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12293 // case of error emits appropriate diagnostic and invalidates \p Var.
12294 //
12295 // \details CUDA allows only empty constructors as initializers for global
12296 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12297 // __shared__ variables whether they are local or not (they all are implicitly
12298 // static in CUDA). One exception is that CUDA allows constant initializers
12299 // for __constant__ and __device__ variables.
12300 void checkAllowedCUDAInitializer(VarDecl *VD);
12301
12302 /// Check whether NewFD is a valid overload for CUDA. Emits
12303 /// diagnostics and invalidates NewFD if not.
12304 void checkCUDATargetOverload(FunctionDecl *NewFD,
12305 const LookupResult &Previous);
12306 /// Copies target attributes from the template TD to the function FD.
12307 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12308
12309 /// Returns the name of the launch configuration function. This is the name
12310 /// of the function that will be called to configure kernel call, with the
12311 /// parameters specified via <<<>>>.
12312 std::string getCudaConfigureFuncName() const;
12313
12314 /// \name Code completion
12315 //@{
12316 /// Describes the context in which code completion occurs.
12317 enum ParserCompletionContext {
12318 /// Code completion occurs at top-level or namespace context.
12319 PCC_Namespace,
12320 /// Code completion occurs within a class, struct, or union.
12321 PCC_Class,
12322 /// Code completion occurs within an Objective-C interface, protocol,
12323 /// or category.
12324 PCC_ObjCInterface,
12325 /// Code completion occurs within an Objective-C implementation or
12326 /// category implementation
12327 PCC_ObjCImplementation,
12328 /// Code completion occurs within the list of instance variables
12329 /// in an Objective-C interface, protocol, category, or implementation.
12330 PCC_ObjCInstanceVariableList,
12331 /// Code completion occurs following one or more template
12332 /// headers.
12333 PCC_Template,
12334 /// Code completion occurs following one or more template
12335 /// headers within a class.
12336 PCC_MemberTemplate,
12337 /// Code completion occurs within an expression.
12338 PCC_Expression,
12339 /// Code completion occurs within a statement, which may
12340 /// also be an expression or a declaration.
12341 PCC_Statement,
12342 /// Code completion occurs at the beginning of the
12343 /// initialization statement (or expression) in a for loop.
12344 PCC_ForInit,
12345 /// Code completion occurs within the condition of an if,
12346 /// while, switch, or for statement.
12347 PCC_Condition,
12348 /// Code completion occurs within the body of a function on a
12349 /// recovery path, where we do not have a specific handle on our position
12350 /// in the grammar.
12351 PCC_RecoveryInFunction,
12352 /// Code completion occurs where only a type is permitted.
12353 PCC_Type,
12354 /// Code completion occurs in a parenthesized expression, which
12355 /// might also be a type cast.
12356 PCC_ParenthesizedExpression,
12357 /// Code completion occurs within a sequence of declaration
12358 /// specifiers within a function, method, or block.
12359 PCC_LocalDeclarationSpecifiers
12360 };
12361
12362 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12363 void CodeCompleteOrdinaryName(Scope *S,
12364 ParserCompletionContext CompletionContext);
12365 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12366 bool AllowNonIdentifiers,
12367 bool AllowNestedNameSpecifiers);
12368
12369 struct CodeCompleteExpressionData;
12370 void CodeCompleteExpression(Scope *S,
12371 const CodeCompleteExpressionData &Data);
12372 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12373 bool IsParenthesized = false);
12374 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12375 SourceLocation OpLoc, bool IsArrow,
12376 bool IsBaseExprStatement,
12377 QualType PreferredType);
12378 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12379 QualType PreferredType);
12380 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12381 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12382 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12383 const VirtSpecifiers *VS = nullptr);
12384 void CodeCompleteBracketDeclarator(Scope *S);
12385 void CodeCompleteCase(Scope *S);
12386 enum class AttributeCompletion {
12387 Attribute,
12388 Scope,
12389 None,
12390 };
12391 void CodeCompleteAttribute(
12392 AttributeCommonInfo::Syntax Syntax,
12393 AttributeCompletion Completion = AttributeCompletion::Attribute,
12394 const IdentifierInfo *Scope = nullptr);
12395 /// Determines the preferred type of the current function argument, by
12396 /// examining the signatures of all possible overloads.
12397 /// Returns null if unknown or ambiguous, or if code completion is off.
12398 ///
12399 /// If the code completion point has been reached, also reports the function
12400 /// signatures that were considered.
12401 ///
12402 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12403 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12404 SourceLocation OpenParLoc);
12405 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12406 SourceLocation Loc,
12407 ArrayRef<Expr *> Args,
12408 SourceLocation OpenParLoc);
12409 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12410 CXXScopeSpec SS,
12411 ParsedType TemplateTypeTy,
12412 ArrayRef<Expr *> ArgExprs,
12413 IdentifierInfo *II,
12414 SourceLocation OpenParLoc);
12415 void CodeCompleteInitializer(Scope *S, Decl *D);
12416 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12417 /// expressions in the initializer list seen so far and \p D is the current
12418 /// Designation being parsed.
12419 void CodeCompleteDesignator(const QualType BaseType,
12420 llvm::ArrayRef<Expr *> InitExprs,
12421 const Designation &D);
12422 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12423
12424 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12425 bool IsUsingDeclaration, QualType BaseType,
12426 QualType PreferredType);
12427 void CodeCompleteUsing(Scope *S);
12428 void CodeCompleteUsingDirective(Scope *S);
12429 void CodeCompleteNamespaceDecl(Scope *S);
12430 void CodeCompleteNamespaceAliasDecl(Scope *S);
12431 void CodeCompleteOperatorName(Scope *S);
12432 void CodeCompleteConstructorInitializer(
12433 Decl *Constructor,
12434 ArrayRef<CXXCtorInitializer *> Initializers);
12435
12436 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12437 bool AfterAmpersand);
12438 void CodeCompleteAfterFunctionEquals(Declarator &D);
12439
12440 void CodeCompleteObjCAtDirective(Scope *S);
12441 void CodeCompleteObjCAtVisibility(Scope *S);
12442 void CodeCompleteObjCAtStatement(Scope *S);
12443 void CodeCompleteObjCAtExpression(Scope *S);
12444 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12445 void CodeCompleteObjCPropertyGetter(Scope *S);
12446 void CodeCompleteObjCPropertySetter(Scope *S);
12447 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12448 bool IsParameter);
12449 void CodeCompleteObjCMessageReceiver(Scope *S);
12450 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12451 ArrayRef<IdentifierInfo *> SelIdents,
12452 bool AtArgumentExpression);
12453 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12454 ArrayRef<IdentifierInfo *> SelIdents,
12455 bool AtArgumentExpression,
12456 bool IsSuper = false);
12457 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12458 ArrayRef<IdentifierInfo *> SelIdents,
12459 bool AtArgumentExpression,
12460 ObjCInterfaceDecl *Super = nullptr);
12461 void CodeCompleteObjCForCollection(Scope *S,
12462 DeclGroupPtrTy IterationVar);
12463 void CodeCompleteObjCSelector(Scope *S,
12464 ArrayRef<IdentifierInfo *> SelIdents);
12465 void CodeCompleteObjCProtocolReferences(
12466 ArrayRef<IdentifierLocPair> Protocols);
12467 void CodeCompleteObjCProtocolDecl(Scope *S);
12468 void CodeCompleteObjCInterfaceDecl(Scope *S);
12469 void CodeCompleteObjCSuperclass(Scope *S,
12470 IdentifierInfo *ClassName,
12471 SourceLocation ClassNameLoc);
12472 void CodeCompleteObjCImplementationDecl(Scope *S);
12473 void CodeCompleteObjCInterfaceCategory(Scope *S,
12474 IdentifierInfo *ClassName,
12475 SourceLocation ClassNameLoc);
12476 void CodeCompleteObjCImplementationCategory(Scope *S,
12477 IdentifierInfo *ClassName,
12478 SourceLocation ClassNameLoc);
12479 void CodeCompleteObjCPropertyDefinition(Scope *S);
12480 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12481 IdentifierInfo *PropertyName);
12482 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12483 ParsedType ReturnType);
12484 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12485 bool IsInstanceMethod,
12486 bool AtParameterName,
12487 ParsedType ReturnType,
12488 ArrayRef<IdentifierInfo *> SelIdents);
12489 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12490 SourceLocation ClassNameLoc,
12491 bool IsBaseExprStatement);
12492 void CodeCompletePreprocessorDirective(bool InConditional);
12493 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12494 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12495 void CodeCompletePreprocessorExpression();
12496 void CodeCompletePreprocessorMacroArgument(Scope *S,
12497 IdentifierInfo *Macro,
12498 MacroInfo *MacroInfo,
12499 unsigned Argument);
12500 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12501 void CodeCompleteNaturalLanguage();
12502 void CodeCompleteAvailabilityPlatformName();
12503 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12504 CodeCompletionTUInfo &CCTUInfo,
12505 SmallVectorImpl<CodeCompletionResult> &Results);
12506 //@}
12507
12508 //===--------------------------------------------------------------------===//
12509 // Extra semantic analysis beyond the C type system
12510
12511public:
12512 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12513 unsigned ByteNo) const;
12514
12515private:
12516 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12517 const ArraySubscriptExpr *ASE=nullptr,
12518 bool AllowOnePastEnd=true, bool IndexNegated=false);
12519 void CheckArrayAccess(const Expr *E);
12520 // Used to grab the relevant information from a FormatAttr and a
12521 // FunctionDeclaration.
12522 struct FormatStringInfo {
12523 unsigned FormatIdx;
12524 unsigned FirstDataArg;
12525 bool HasVAListArg;
12526 };
12527
12528 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12529 FormatStringInfo *FSI);
12530 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12531 const FunctionProtoType *Proto);
12532 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12533 ArrayRef<const Expr *> Args);
12534 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12535 const FunctionProtoType *Proto);
12536 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12537 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12538 ArrayRef<const Expr *> Args,
12539 const FunctionProtoType *Proto, SourceLocation Loc);
12540
12541 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12542 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12543
12544 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12545 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12546 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12547 VariadicCallType CallType);
12548
12549 bool CheckObjCString(Expr *Arg);
12550 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12551
12552 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12553 unsigned BuiltinID, CallExpr *TheCall);
12554
12555 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12556 CallExpr *TheCall);
12557
12558 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12559
12560 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12561 unsigned MaxWidth);
12562 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12565 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12566 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12567 CallExpr *TheCall);
12568 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12569 bool WantCDE);
12570 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12571 CallExpr *TheCall);
12572
12573 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12574 CallExpr *TheCall);
12575 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12576 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12577 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12578 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12579 CallExpr *TheCall);
12580 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12581 CallExpr *TheCall);
12582 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12583 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12584 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12585 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12586 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12587 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12588 ArrayRef<int> ArgNums);
12589 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12590 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12591 ArrayRef<int> ArgNums);
12592 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12593 CallExpr *TheCall);
12594 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12595 CallExpr *TheCall);
12596 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12597 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12598 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12599 CallExpr *TheCall);
12600
12601 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12602 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12603 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12604 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12605 bool SemaBuiltinComplex(CallExpr *TheCall);
12606 bool SemaBuiltinVSX(CallExpr *TheCall);
12607 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12608 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12609
12610public:
12611 // Used by C++ template instantiation.
12612 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12613 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12614 SourceLocation BuiltinLoc,
12615 SourceLocation RParenLoc);
12616
12617private:
12618 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12619 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12620 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12621 bool SemaBuiltinAssume(CallExpr *TheCall);
12622 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12623 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12624 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12625 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12626 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12627 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12628 AtomicExpr::AtomicOp Op);
12629 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12630 bool IsDelete);
12631 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12632 llvm::APSInt &Result);
12633 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12634 int High, bool RangeIsError = true);
12635 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12636 unsigned Multiple);
12637 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12638 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12639 unsigned ArgBits);
12640 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12641 unsigned ArgBits);
12642 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12643 int ArgNum, unsigned ExpectedFieldNum,
12644 bool AllowName);
12645 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12646 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12647
12648 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12649
12650 // Matrix builtin handling.
12651 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12652 ExprResult CallResult);
12653 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12654 ExprResult CallResult);
12655 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12656 ExprResult CallResult);
12657
12658public:
12659 enum FormatStringType {
12660 FST_Scanf,
12661 FST_Printf,
12662 FST_NSString,
12663 FST_Strftime,
12664 FST_Strfmon,
12665 FST_Kprintf,
12666 FST_FreeBSDKPrintf,
12667 FST_OSTrace,
12668 FST_OSLog,
12669 FST_Unknown
12670 };
12671 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12672
12673 bool FormatStringHasSArg(const StringLiteral *FExpr);
12674
12675 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12676
12677private:
12678 bool CheckFormatArguments(const FormatAttr *Format,
12679 ArrayRef<const Expr *> Args,
12680 bool IsCXXMember,
12681 VariadicCallType CallType,
12682 SourceLocation Loc, SourceRange Range,
12683 llvm::SmallBitVector &CheckedVarArgs);
12684 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12685 bool HasVAListArg, unsigned format_idx,
12686 unsigned firstDataArg, FormatStringType Type,
12687 VariadicCallType CallType,
12688 SourceLocation Loc, SourceRange range,
12689 llvm::SmallBitVector &CheckedVarArgs);
12690
12691 void CheckAbsoluteValueFunction(const CallExpr *Call,
12692 const FunctionDecl *FDecl);
12693
12694 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12695
12696 void CheckMemaccessArguments(const CallExpr *Call,
12697 unsigned BId,
12698 IdentifierInfo *FnName);
12699
12700 void CheckStrlcpycatArguments(const CallExpr *Call,
12701 IdentifierInfo *FnName);
12702
12703 void CheckStrncatArguments(const CallExpr *Call,
12704 IdentifierInfo *FnName);
12705
12706 void CheckFreeArguments(const CallExpr *E);
12707
12708 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12709 SourceLocation ReturnLoc,
12710 bool isObjCMethod = false,
12711 const AttrVec *Attrs = nullptr,
12712 const FunctionDecl *FD = nullptr);
12713
12714public:
12715 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12716
12717private:
12718 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12719 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12720 void CheckForIntOverflow(Expr *E);
12721 void CheckUnsequencedOperations(const Expr *E);
12722
12723 /// Perform semantic checks on a completed expression. This will either
12724 /// be a full-expression or a default argument expression.
12725 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12726 bool IsConstexpr = false);
12727
12728 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12729 Expr *Init);
12730
12731 /// Check if there is a field shadowing.
12732 void CheckShadowInheritedFields(const SourceLocation &Loc,
12733 DeclarationName FieldName,
12734 const CXXRecordDecl *RD,
12735 bool DeclIsField = true);
12736
12737 /// Check if the given expression contains 'break' or 'continue'
12738 /// statement that produces control flow different from GCC.
12739 void CheckBreakContinueBinding(Expr *E);
12740
12741 /// Check whether receiver is mutable ObjC container which
12742 /// attempts to add itself into the container
12743 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12744
12745 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12746
12747 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12748 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12749 bool DeleteWasArrayForm);
12750public:
12751 /// Register a magic integral constant to be used as a type tag.
12752 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12753 uint64_t MagicValue, QualType Type,
12754 bool LayoutCompatible, bool MustBeNull);
12755
12756 struct TypeTagData {
12757 TypeTagData() {}
12758
12759 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12760 Type(Type), LayoutCompatible(LayoutCompatible),
12761 MustBeNull(MustBeNull)
12762 {}
12763
12764 QualType Type;
12765
12766 /// If true, \c Type should be compared with other expression's types for
12767 /// layout-compatibility.
12768 unsigned LayoutCompatible : 1;
12769 unsigned MustBeNull : 1;
12770 };
12771
12772 /// A pair of ArgumentKind identifier and magic value. This uniquely
12773 /// identifies the magic value.
12774 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12775
12776private:
12777 /// A map from magic value to type information.
12778 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12779 TypeTagForDatatypeMagicValues;
12780
12781 /// Peform checks on a call of a function with argument_with_type_tag
12782 /// or pointer_with_type_tag attributes.
12783 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12784 const ArrayRef<const Expr *> ExprArgs,
12785 SourceLocation CallSiteLoc);
12786
12787 /// Check if we are taking the address of a packed field
12788 /// as this may be a problem if the pointer value is dereferenced.
12789 void CheckAddressOfPackedMember(Expr *rhs);
12790
12791 /// The parser's current scope.
12792 ///
12793 /// The parser maintains this state here.
12794 Scope *CurScope;
12795
12796 mutable IdentifierInfo *Ident_super;
12797 mutable IdentifierInfo *Ident___float128;
12798
12799 /// Nullability type specifiers.
12800 IdentifierInfo *Ident__Nonnull = nullptr;
12801 IdentifierInfo *Ident__Nullable = nullptr;
12802 IdentifierInfo *Ident__Nullable_result = nullptr;
12803 IdentifierInfo *Ident__Null_unspecified = nullptr;
12804
12805 IdentifierInfo *Ident_NSError = nullptr;
12806
12807 /// The handler for the FileChanged preprocessor events.
12808 ///
12809 /// Used for diagnostics that implement custom semantic analysis for #include
12810 /// directives, like -Wpragma-pack.
12811 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12812
12813protected:
12814 friend class Parser;
12815 friend class InitializationSequence;
12816 friend class ASTReader;
12817 friend class ASTDeclReader;
12818 friend class ASTWriter;
12819
12820public:
12821 /// Retrieve the keyword associated
12822 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12823
12824 /// The struct behind the CFErrorRef pointer.
12825 RecordDecl *CFError = nullptr;
12826 bool isCFError(RecordDecl *D);
12827
12828 /// Retrieve the identifier "NSError".
12829 IdentifierInfo *getNSErrorIdent();
12830
12831 /// Retrieve the parser's current scope.
12832 ///
12833 /// This routine must only be used when it is certain that semantic analysis
12834 /// and the parser are in precisely the same context, which is not the case
12835 /// when, e.g., we are performing any kind of template instantiation.
12836 /// Therefore, the only safe places to use this scope are in the parser
12837 /// itself and in routines directly invoked from the parser and *never* from
12838 /// template substitution or instantiation.
12839 Scope *getCurScope() const { return CurScope; }
12840
12841 void incrementMSManglingNumber() const {
12842 return CurScope->incrementMSManglingNumber();
12843 }
12844
12845 IdentifierInfo *getSuperIdentifier() const;
12846 IdentifierInfo *getFloat128Identifier() const;
12847
12848 Decl *getObjCDeclContext() const;
12849
12850 DeclContext *getCurLexicalContext() const {
12851 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12852 }
12853
12854 const DeclContext *getCurObjCLexicalContext() const {
12855 const DeclContext *DC = getCurLexicalContext();
12856 // A category implicitly has the attribute of the interface.
12857 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12858 DC = CatD->getClassInterface();
12859 return DC;
12860 }
12861
12862 /// Determine the number of levels of enclosing template parameters. This is
12863 /// only usable while parsing. Note that this does not include dependent
12864 /// contexts in which no template parameters have yet been declared, such as
12865 /// in a terse function template or generic lambda before the first 'auto' is
12866 /// encountered.
12867 unsigned getTemplateDepth(Scope *S) const;
12868
12869 /// To be used for checking whether the arguments being passed to
12870 /// function exceeds the number of parameters expected for it.
12871 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12872 bool PartialOverloading = false) {
12873 // We check whether we're just after a comma in code-completion.
12874 if (NumArgs > 0 && PartialOverloading)
12875 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12876 return NumArgs > NumParams;
12877 }
12878
12879 // Emitting members of dllexported classes is delayed until the class
12880 // (including field initializers) is fully parsed.
12881 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12882 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12883
12884private:
12885 int ParsingClassDepth = 0;
12886
12887 class SavePendingParsedClassStateRAII {
12888 public:
12889 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12890
12891 ~SavePendingParsedClassStateRAII() {
12892 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&(static_cast<void> (0))
12893 "there shouldn't be any pending delayed exception spec checks")(static_cast<void> (0));
12894 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&(static_cast<void> (0))
12895 "there shouldn't be any pending delayed exception spec checks")(static_cast<void> (0));
12896 swapSavedState();
12897 }
12898
12899 private:
12900 Sema &S;
12901 decltype(DelayedOverridingExceptionSpecChecks)
12902 SavedOverridingExceptionSpecChecks;
12903 decltype(DelayedEquivalentExceptionSpecChecks)
12904 SavedEquivalentExceptionSpecChecks;
12905
12906 void swapSavedState() {
12907 SavedOverridingExceptionSpecChecks.swap(
12908 S.DelayedOverridingExceptionSpecChecks);
12909 SavedEquivalentExceptionSpecChecks.swap(
12910 S.DelayedEquivalentExceptionSpecChecks);
12911 }
12912 };
12913
12914 /// Helper class that collects misaligned member designations and
12915 /// their location info for delayed diagnostics.
12916 struct MisalignedMember {
12917 Expr *E;
12918 RecordDecl *RD;
12919 ValueDecl *MD;
12920 CharUnits Alignment;
12921
12922 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12923 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12924 CharUnits Alignment)
12925 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12926 explicit MisalignedMember(Expr *E)
12927 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12928
12929 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12930 };
12931 /// Small set of gathered accesses to potentially misaligned members
12932 /// due to the packed attribute.
12933 SmallVector<MisalignedMember, 4> MisalignedMembers;
12934
12935 /// Adds an expression to the set of gathered misaligned members.
12936 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12937 CharUnits Alignment);
12938
12939public:
12940 /// Diagnoses the current set of gathered accesses. This typically
12941 /// happens at full expression level. The set is cleared after emitting the
12942 /// diagnostics.
12943 void DiagnoseMisalignedMembers();
12944
12945 /// This function checks if the expression is in the sef of potentially
12946 /// misaligned members and it is converted to some pointer type T with lower
12947 /// or equal alignment requirements. If so it removes it. This is used when
12948 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12949 /// void*).
12950 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12951
12952 /// This function calls Action when it determines that E designates a
12953 /// misaligned member due to the packed attribute. This is used to emit
12954 /// local diagnostics like in reference binding.
12955 void RefersToMemberWithReducedAlignment(
12956 Expr *E,
12957 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12958 Action);
12959
12960 /// Describes the reason a calling convention specification was ignored, used
12961 /// for diagnostics.
12962 enum class CallingConventionIgnoredReason {
12963 ForThisTarget = 0,
12964 VariadicFunction,
12965 ConstructorDestructor,
12966 BuiltinFunction
12967 };
12968 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12969 /// context is "used as device code".
12970 ///
12971 /// - If CurLexicalContext is a kernel function or it is known that the
12972 /// function will be emitted for the device, emits the diagnostics
12973 /// immediately.
12974 /// - If CurLexicalContext is a function and we are compiling
12975 /// for the device, but we don't know that this function will be codegen'ed
12976 /// for devive yet, creates a diagnostic which is emitted if and when we
12977 /// realize that the function will be codegen'ed.
12978 ///
12979 /// Example usage:
12980 ///
12981 /// Diagnose __float128 type usage only from SYCL device code if the current
12982 /// target doesn't support it
12983 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12984 /// S.getLangOpts().SYCLIsDevice)
12985 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12986 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12987 unsigned DiagID);
12988
12989 /// Check whether we're allowed to call Callee from the current context.
12990 ///
12991 /// - If the call is never allowed in a semantically-correct program
12992 /// emits an error and returns false.
12993 ///
12994 /// - If the call is allowed in semantically-correct programs, but only if
12995 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12996 /// and when the caller is codegen'ed, and returns true.
12997 ///
12998 /// - Otherwise, returns true without emitting any diagnostics.
12999 ///
13000 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
13001 /// codegen'ed yet.
13002 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
13003};
13004
13005/// RAII object that enters a new expression evaluation context.
13006class EnterExpressionEvaluationContext {
13007 Sema &Actions;
13008 bool Entered = true;
13009
13010public:
13011 EnterExpressionEvaluationContext(
13012 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13013 Decl *LambdaContextDecl = nullptr,
13014 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13015 Sema::ExpressionEvaluationContextRecord::EK_Other,
13016 bool ShouldEnter = true)
13017 : Actions(Actions), Entered(ShouldEnter) {
13018 if (Entered)
13019 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13020 ExprContext);
13021 }
13022 EnterExpressionEvaluationContext(
13023 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13024 Sema::ReuseLambdaContextDecl_t,
13025 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13026 Sema::ExpressionEvaluationContextRecord::EK_Other)
13027 : Actions(Actions) {
13028 Actions.PushExpressionEvaluationContext(
13029 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13030 }
13031
13032 enum InitListTag { InitList };
13033 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13034 bool ShouldEnter = true)
13035 : Actions(Actions), Entered(false) {
13036 // In C++11 onwards, narrowing checks are performed on the contents of
13037 // braced-init-lists, even when they occur within unevaluated operands.
13038 // Therefore we still need to instantiate constexpr functions used in such
13039 // a context.
13040 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13041 Actions.getLangOpts().CPlusPlus11) {
13042 Actions.PushExpressionEvaluationContext(
13043 Sema::ExpressionEvaluationContext::UnevaluatedList);
13044 Entered = true;
13045 }
13046 }
13047
13048 ~EnterExpressionEvaluationContext() {
13049 if (Entered)
13050 Actions.PopExpressionEvaluationContext();
13051 }
13052};
13053
13054DeductionFailureInfo
13055MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13056 sema::TemplateDeductionInfo &Info);
13057
13058/// Contains a late templated function.
13059/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13060struct LateParsedTemplate {
13061 CachedTokens Toks;
13062 /// The template function declaration to be late parsed.
13063 Decl *D;
13064};
13065
13066template <>
13067void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13068 PragmaMsStackAction Action,
13069 llvm::StringRef StackSlotLabel,
13070 AlignPackInfo Value);
13071
13072} // end namespace clang
13073
13074namespace llvm {
13075// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13076// SourceLocation.
13077template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13078 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13079 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13080
13081 static FunctionDeclAndLoc getEmptyKey() {
13082 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13083 }
13084
13085 static FunctionDeclAndLoc getTombstoneKey() {
13086 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13087 }
13088
13089 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13090 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13091 FDL.Loc.getHashValue());
13092 }
13093
13094 static bool isEqual(const FunctionDeclAndLoc &LHS,
13095 const FunctionDeclAndLoc &RHS) {
13096 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13097 }
13098};
13099} // namespace llvm
13100
13101#endif