Bug Summary

File:build/source/clang/lib/Sema/SemaTemplateVariadic.cpp
Warning:line 705, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplateVariadic.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16 -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1671487667 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-12-20-010714-16201-1 -x c++ /build/source/clang/lib/Sema/SemaTemplateVariadic.cpp

/build/source/clang/lib/Sema/SemaTemplateVariadic.cpp

1//===------- SemaTemplateVariadic.cpp - C++ Variadic Templates ------------===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements semantic analysis for C++0x variadic templates.
9//===----------------------------------------------------------------------===/
10
11#include "clang/Sema/Sema.h"
12#include "TypeLocBuilder.h"
13#include "clang/AST/Expr.h"
14#include "clang/AST/RecursiveASTVisitor.h"
15#include "clang/AST/TypeLoc.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Sema/Template.h"
21
22using namespace clang;
23
24//----------------------------------------------------------------------------
25// Visitor that collects unexpanded parameter packs
26//----------------------------------------------------------------------------
27
28namespace {
29 /// A class that collects unexpanded parameter packs.
30 class CollectUnexpandedParameterPacksVisitor :
31 public RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
32 {
33 typedef RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
34 inherited;
35
36 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded;
37
38 bool InLambda = false;
39 unsigned DepthLimit = (unsigned)-1;
40
41 void addUnexpanded(NamedDecl *ND, SourceLocation Loc = SourceLocation()) {
42 if (auto *VD = dyn_cast<VarDecl>(ND)) {
43 // For now, the only problematic case is a generic lambda's templated
44 // call operator, so we don't need to look for all the other ways we
45 // could have reached a dependent parameter pack.
46 auto *FD = dyn_cast<FunctionDecl>(VD->getDeclContext());
47 auto *FTD = FD ? FD->getDescribedFunctionTemplate() : nullptr;
48 if (FTD && FTD->getTemplateParameters()->getDepth() >= DepthLimit)
49 return;
50 } else if (getDepthAndIndex(ND).first >= DepthLimit)
51 return;
52
53 Unexpanded.push_back({ND, Loc});
54 }
55 void addUnexpanded(const TemplateTypeParmType *T,
56 SourceLocation Loc = SourceLocation()) {
57 if (T->getDepth() < DepthLimit)
58 Unexpanded.push_back({T, Loc});
59 }
60
61 public:
62 explicit CollectUnexpandedParameterPacksVisitor(
63 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded)
64 : Unexpanded(Unexpanded) {}
65
66 bool shouldWalkTypesOfTypeLocs() const { return false; }
67
68 //------------------------------------------------------------------------
69 // Recording occurrences of (unexpanded) parameter packs.
70 //------------------------------------------------------------------------
71
72 /// Record occurrences of template type parameter packs.
73 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
74 if (TL.getTypePtr()->isParameterPack())
75 addUnexpanded(TL.getTypePtr(), TL.getNameLoc());
76 return true;
77 }
78
79 /// Record occurrences of template type parameter packs
80 /// when we don't have proper source-location information for
81 /// them.
82 ///
83 /// Ideally, this routine would never be used.
84 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
85 if (T->isParameterPack())
86 addUnexpanded(T);
87
88 return true;
89 }
90
91 bool
92 VisitSubstTemplateTypeParmPackTypeLoc(SubstTemplateTypeParmPackTypeLoc TL) {
93 Unexpanded.push_back({TL.getTypePtr(), TL.getNameLoc()});
94 return true;
95 }
96
97 bool VisitSubstTemplateTypeParmPackType(SubstTemplateTypeParmPackType *T) {
98 Unexpanded.push_back({T, SourceLocation()});
99 return true;
100 }
101
102 bool
103 VisitSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr *E) {
104 Unexpanded.push_back({E, E->getParameterPackLocation()});
105 return true;
106 }
107
108 /// Record occurrences of function and non-type template
109 /// parameter packs in an expression.
110 bool VisitDeclRefExpr(DeclRefExpr *E) {
111 if (E->getDecl()->isParameterPack())
112 addUnexpanded(E->getDecl(), E->getLocation());
113
114 return true;
115 }
116
117 /// Record occurrences of template template parameter packs.
118 bool TraverseTemplateName(TemplateName Template) {
119 if (auto *TTP = dyn_cast_or_null<TemplateTemplateParmDecl>(
120 Template.getAsTemplateDecl())) {
121 if (TTP->isParameterPack())
122 addUnexpanded(TTP);
123 }
124
125 return inherited::TraverseTemplateName(Template);
126 }
127
128 /// Suppress traversal into Objective-C container literal
129 /// elements that are pack expansions.
130 bool TraverseObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
131 if (!E->containsUnexpandedParameterPack())
132 return true;
133
134 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
135 ObjCDictionaryElement Element = E->getKeyValueElement(I);
136 if (Element.isPackExpansion())
137 continue;
138
139 TraverseStmt(Element.Key);
140 TraverseStmt(Element.Value);
141 }
142 return true;
143 }
144 //------------------------------------------------------------------------
145 // Pruning the search for unexpanded parameter packs.
146 //------------------------------------------------------------------------
147
148 /// Suppress traversal into statements and expressions that
149 /// do not contain unexpanded parameter packs.
150 bool TraverseStmt(Stmt *S) {
151 Expr *E = dyn_cast_or_null<Expr>(S);
152 if ((E && E->containsUnexpandedParameterPack()) || InLambda)
153 return inherited::TraverseStmt(S);
154
155 return true;
156 }
157
158 /// Suppress traversal into types that do not contain
159 /// unexpanded parameter packs.
160 bool TraverseType(QualType T) {
161 if ((!T.isNull() && T->containsUnexpandedParameterPack()) || InLambda)
162 return inherited::TraverseType(T);
163
164 return true;
165 }
166
167 /// Suppress traversal into types with location information
168 /// that do not contain unexpanded parameter packs.
169 bool TraverseTypeLoc(TypeLoc TL) {
170 if ((!TL.getType().isNull() &&
171 TL.getType()->containsUnexpandedParameterPack()) ||
172 InLambda)
173 return inherited::TraverseTypeLoc(TL);
174
175 return true;
176 }
177
178 /// Suppress traversal of parameter packs.
179 bool TraverseDecl(Decl *D) {
180 // A function parameter pack is a pack expansion, so cannot contain
181 // an unexpanded parameter pack. Likewise for a template parameter
182 // pack that contains any references to other packs.
183 if (D && D->isParameterPack())
184 return true;
185
186 return inherited::TraverseDecl(D);
187 }
188
189 /// Suppress traversal of pack-expanded attributes.
190 bool TraverseAttr(Attr *A) {
191 if (A->isPackExpansion())
192 return true;
193
194 return inherited::TraverseAttr(A);
195 }
196
197 /// Suppress traversal of pack expansion expressions and types.
198 ///@{
199 bool TraversePackExpansionType(PackExpansionType *T) { return true; }
200 bool TraversePackExpansionTypeLoc(PackExpansionTypeLoc TL) { return true; }
201 bool TraversePackExpansionExpr(PackExpansionExpr *E) { return true; }
202 bool TraverseCXXFoldExpr(CXXFoldExpr *E) { return true; }
203
204 ///@}
205
206 /// Suppress traversal of using-declaration pack expansion.
207 bool TraverseUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
208 if (D->isPackExpansion())
209 return true;
210
211 return inherited::TraverseUnresolvedUsingValueDecl(D);
212 }
213
214 /// Suppress traversal of using-declaration pack expansion.
215 bool TraverseUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
216 if (D->isPackExpansion())
217 return true;
218
219 return inherited::TraverseUnresolvedUsingTypenameDecl(D);
220 }
221
222 /// Suppress traversal of template argument pack expansions.
223 bool TraverseTemplateArgument(const TemplateArgument &Arg) {
224 if (Arg.isPackExpansion())
225 return true;
226
227 return inherited::TraverseTemplateArgument(Arg);
228 }
229
230 /// Suppress traversal of template argument pack expansions.
231 bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
232 if (ArgLoc.getArgument().isPackExpansion())
233 return true;
234
235 return inherited::TraverseTemplateArgumentLoc(ArgLoc);
236 }
237
238 /// Suppress traversal of base specifier pack expansions.
239 bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base) {
240 if (Base.isPackExpansion())
241 return true;
242
243 return inherited::TraverseCXXBaseSpecifier(Base);
244 }
245
246 /// Suppress traversal of mem-initializer pack expansions.
247 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
248 if (Init->isPackExpansion())
249 return true;
250
251 return inherited::TraverseConstructorInitializer(Init);
252 }
253
254 /// Note whether we're traversing a lambda containing an unexpanded
255 /// parameter pack. In this case, the unexpanded pack can occur anywhere,
256 /// including all the places where we normally wouldn't look. Within a
257 /// lambda, we don't propagate the 'contains unexpanded parameter pack' bit
258 /// outside an expression.
259 bool TraverseLambdaExpr(LambdaExpr *Lambda) {
260 // The ContainsUnexpandedParameterPack bit on a lambda is always correct,
261 // even if it's contained within another lambda.
262 if (!Lambda->containsUnexpandedParameterPack())
263 return true;
264
265 bool WasInLambda = InLambda;
266 unsigned OldDepthLimit = DepthLimit;
267
268 InLambda = true;
269 if (auto *TPL = Lambda->getTemplateParameterList())
270 DepthLimit = TPL->getDepth();
271
272 inherited::TraverseLambdaExpr(Lambda);
273
274 InLambda = WasInLambda;
275 DepthLimit = OldDepthLimit;
276 return true;
277 }
278
279 /// Suppress traversal within pack expansions in lambda captures.
280 bool TraverseLambdaCapture(LambdaExpr *Lambda, const LambdaCapture *C,
281 Expr *Init) {
282 if (C->isPackExpansion())
283 return true;
284
285 return inherited::TraverseLambdaCapture(Lambda, C, Init);
286 }
287 };
288}
289
290/// Determine whether it's possible for an unexpanded parameter pack to
291/// be valid in this location. This only happens when we're in a declaration
292/// that is nested within an expression that could be expanded, such as a
293/// lambda-expression within a function call.
294///
295/// This is conservatively correct, but may claim that some unexpanded packs are
296/// permitted when they are not.
297bool Sema::isUnexpandedParameterPackPermitted() {
298 for (auto *SI : FunctionScopes)
299 if (isa<sema::LambdaScopeInfo>(SI))
300 return true;
301 return false;
302}
303
304/// Diagnose all of the unexpanded parameter packs in the given
305/// vector.
306bool
307Sema::DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
308 UnexpandedParameterPackContext UPPC,
309 ArrayRef<UnexpandedParameterPack> Unexpanded) {
310 if (Unexpanded.empty())
311 return false;
312
313 // If we are within a lambda expression and referencing a pack that is not
314 // declared within the lambda itself, that lambda contains an unexpanded
315 // parameter pack, and we are done.
316 // FIXME: Store 'Unexpanded' on the lambda so we don't need to recompute it
317 // later.
318 SmallVector<UnexpandedParameterPack, 4> LambdaParamPackReferences;
319 if (auto *LSI = getEnclosingLambda()) {
320 for (auto &Pack : Unexpanded) {
321 auto DeclaresThisPack = [&](NamedDecl *LocalPack) {
322 if (auto *TTPT = Pack.first.dyn_cast<const TemplateTypeParmType *>()) {
323 auto *TTPD = dyn_cast<TemplateTypeParmDecl>(LocalPack);
324 return TTPD && TTPD->getTypeForDecl() == TTPT;
325 }
326 return declaresSameEntity(Pack.first.get<const NamedDecl *>(),
327 LocalPack);
328 };
329 if (llvm::any_of(LSI->LocalPacks, DeclaresThisPack))
330 LambdaParamPackReferences.push_back(Pack);
331 }
332
333 if (LambdaParamPackReferences.empty()) {
334 // Construct in lambda only references packs declared outside the lambda.
335 // That's OK for now, but the lambda itself is considered to contain an
336 // unexpanded pack in this case, which will require expansion outside the
337 // lambda.
338
339 // We do not permit pack expansion that would duplicate a statement
340 // expression, not even within a lambda.
341 // FIXME: We could probably support this for statement expressions that
342 // do not contain labels.
343 // FIXME: This is insufficient to detect this problem; consider
344 // f( ({ bad: 0; }) + pack ... );
345 bool EnclosingStmtExpr = false;
346 for (unsigned N = FunctionScopes.size(); N; --N) {
347 sema::FunctionScopeInfo *Func = FunctionScopes[N-1];
348 if (llvm::any_of(
349 Func->CompoundScopes,
350 [](sema::CompoundScopeInfo &CSI) { return CSI.IsStmtExpr; })) {
351 EnclosingStmtExpr = true;
352 break;
353 }
354 // Coumpound-statements outside the lambda are OK for now; we'll check
355 // for those when we finish handling the lambda.
356 if (Func == LSI)
357 break;
358 }
359
360 if (!EnclosingStmtExpr) {
361 LSI->ContainsUnexpandedParameterPack = true;
362 return false;
363 }
364 } else {
365 Unexpanded = LambdaParamPackReferences;
366 }
367 }
368
369 SmallVector<SourceLocation, 4> Locations;
370 SmallVector<IdentifierInfo *, 4> Names;
371 llvm::SmallPtrSet<IdentifierInfo *, 4> NamesKnown;
372
373 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
374 IdentifierInfo *Name = nullptr;
375 if (const TemplateTypeParmType *TTP
376 = Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>())
377 Name = TTP->getIdentifier();
378 else
379 Name = Unexpanded[I].first.get<const NamedDecl *>()->getIdentifier();
380
381 if (Name && NamesKnown.insert(Name).second)
382 Names.push_back(Name);
383
384 if (Unexpanded[I].second.isValid())
385 Locations.push_back(Unexpanded[I].second);
386 }
387
388 auto DB = Diag(Loc, diag::err_unexpanded_parameter_pack)
389 << (int)UPPC << (int)Names.size();
390 for (size_t I = 0, E = std::min(Names.size(), (size_t)2); I != E; ++I)
391 DB << Names[I];
392
393 for (unsigned I = 0, N = Locations.size(); I != N; ++I)
394 DB << SourceRange(Locations[I]);
395 return true;
396}
397
398bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
399 TypeSourceInfo *T,
400 UnexpandedParameterPackContext UPPC) {
401 // C++0x [temp.variadic]p5:
402 // An appearance of a name of a parameter pack that is not expanded is
403 // ill-formed.
404 if (!T->getType()->containsUnexpandedParameterPack())
405 return false;
406
407 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
408 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(
409 T->getTypeLoc());
410 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 410, __extension__
__PRETTY_FUNCTION__))
;
411 return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
412}
413
414bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
415 UnexpandedParameterPackContext UPPC) {
416 // C++0x [temp.variadic]p5:
417 // An appearance of a name of a parameter pack that is not expanded is
418 // ill-formed.
419 if (!E->containsUnexpandedParameterPack())
420 return false;
421
422 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
423 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(E);
424 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 424, __extension__
__PRETTY_FUNCTION__))
;
425 return DiagnoseUnexpandedParameterPacks(E->getBeginLoc(), UPPC, Unexpanded);
426}
427
428bool Sema::DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE) {
429 if (!RE->containsUnexpandedParameterPack())
430 return false;
431
432 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
433 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(RE);
434 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 434, __extension__
__PRETTY_FUNCTION__))
;
435
436 // We only care about unexpanded references to the RequiresExpr's own
437 // parameter packs.
438 auto Parms = RE->getLocalParameters();
439 llvm::SmallPtrSet<NamedDecl*, 8> ParmSet(Parms.begin(), Parms.end());
440 SmallVector<UnexpandedParameterPack, 2> UnexpandedParms;
441 for (auto Parm : Unexpanded)
442 if (ParmSet.contains(Parm.first.dyn_cast<const NamedDecl *>()))
443 UnexpandedParms.push_back(Parm);
444 if (UnexpandedParms.empty())
445 return false;
446
447 return DiagnoseUnexpandedParameterPacks(RE->getBeginLoc(), UPPC_Requirement,
448 UnexpandedParms);
449}
450
451bool Sema::DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
452 UnexpandedParameterPackContext UPPC) {
453 // C++0x [temp.variadic]p5:
454 // An appearance of a name of a parameter pack that is not expanded is
455 // ill-formed.
456 if (!SS.getScopeRep() ||
457 !SS.getScopeRep()->containsUnexpandedParameterPack())
458 return false;
459
460 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
461 CollectUnexpandedParameterPacksVisitor(Unexpanded)
462 .TraverseNestedNameSpecifier(SS.getScopeRep());
463 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 463, __extension__
__PRETTY_FUNCTION__))
;
464 return DiagnoseUnexpandedParameterPacks(SS.getRange().getBegin(),
465 UPPC, Unexpanded);
466}
467
468bool Sema::DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
469 UnexpandedParameterPackContext UPPC) {
470 // C++0x [temp.variadic]p5:
471 // An appearance of a name of a parameter pack that is not expanded is
472 // ill-formed.
473 switch (NameInfo.getName().getNameKind()) {
474 case DeclarationName::Identifier:
475 case DeclarationName::ObjCZeroArgSelector:
476 case DeclarationName::ObjCOneArgSelector:
477 case DeclarationName::ObjCMultiArgSelector:
478 case DeclarationName::CXXOperatorName:
479 case DeclarationName::CXXLiteralOperatorName:
480 case DeclarationName::CXXUsingDirective:
481 case DeclarationName::CXXDeductionGuideName:
482 return false;
483
484 case DeclarationName::CXXConstructorName:
485 case DeclarationName::CXXDestructorName:
486 case DeclarationName::CXXConversionFunctionName:
487 // FIXME: We shouldn't need this null check!
488 if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
489 return DiagnoseUnexpandedParameterPack(NameInfo.getLoc(), TSInfo, UPPC);
490
491 if (!NameInfo.getName().getCXXNameType()->containsUnexpandedParameterPack())
492 return false;
493
494 break;
495 }
496
497 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
498 CollectUnexpandedParameterPacksVisitor(Unexpanded)
499 .TraverseType(NameInfo.getName().getCXXNameType());
500 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 500, __extension__
__PRETTY_FUNCTION__))
;
501 return DiagnoseUnexpandedParameterPacks(NameInfo.getLoc(), UPPC, Unexpanded);
502}
503
504bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
505 TemplateName Template,
506 UnexpandedParameterPackContext UPPC) {
507
508 if (Template.isNull() || !Template.containsUnexpandedParameterPack())
509 return false;
510
511 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
512 CollectUnexpandedParameterPacksVisitor(Unexpanded)
513 .TraverseTemplateName(Template);
514 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 514, __extension__
__PRETTY_FUNCTION__))
;
515 return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
516}
517
518bool Sema::DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
519 UnexpandedParameterPackContext UPPC) {
520 if (Arg.getArgument().isNull() ||
521 !Arg.getArgument().containsUnexpandedParameterPack())
522 return false;
523
524 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
525 CollectUnexpandedParameterPacksVisitor(Unexpanded)
526 .TraverseTemplateArgumentLoc(Arg);
527 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 527, __extension__
__PRETTY_FUNCTION__))
;
528 return DiagnoseUnexpandedParameterPacks(Arg.getLocation(), UPPC, Unexpanded);
529}
530
531void Sema::collectUnexpandedParameterPacks(TemplateArgument Arg,
532 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
533 CollectUnexpandedParameterPacksVisitor(Unexpanded)
534 .TraverseTemplateArgument(Arg);
535}
536
537void Sema::collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
538 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
539 CollectUnexpandedParameterPacksVisitor(Unexpanded)
540 .TraverseTemplateArgumentLoc(Arg);
541}
542
543void Sema::collectUnexpandedParameterPacks(QualType T,
544 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
545 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(T);
546}
547
548void Sema::collectUnexpandedParameterPacks(TypeLoc TL,
549 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
550 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(TL);
551}
552
553void Sema::collectUnexpandedParameterPacks(
554 NestedNameSpecifierLoc NNS,
555 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
556 CollectUnexpandedParameterPacksVisitor(Unexpanded)
557 .TraverseNestedNameSpecifierLoc(NNS);
558}
559
560void Sema::collectUnexpandedParameterPacks(
561 const DeclarationNameInfo &NameInfo,
562 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
563 CollectUnexpandedParameterPacksVisitor(Unexpanded)
564 .TraverseDeclarationNameInfo(NameInfo);
565}
566
567
568ParsedTemplateArgument
569Sema::ActOnPackExpansion(const ParsedTemplateArgument &Arg,
570 SourceLocation EllipsisLoc) {
571 if (Arg.isInvalid())
572 return Arg;
573
574 switch (Arg.getKind()) {
575 case ParsedTemplateArgument::Type: {
576 TypeResult Result = ActOnPackExpansion(Arg.getAsType(), EllipsisLoc);
577 if (Result.isInvalid())
578 return ParsedTemplateArgument();
579
580 return ParsedTemplateArgument(Arg.getKind(), Result.get().getAsOpaquePtr(),
581 Arg.getLocation());
582 }
583
584 case ParsedTemplateArgument::NonType: {
585 ExprResult Result = ActOnPackExpansion(Arg.getAsExpr(), EllipsisLoc);
586 if (Result.isInvalid())
587 return ParsedTemplateArgument();
588
589 return ParsedTemplateArgument(Arg.getKind(), Result.get(),
590 Arg.getLocation());
591 }
592
593 case ParsedTemplateArgument::Template:
594 if (!Arg.getAsTemplate().get().containsUnexpandedParameterPack()) {
595 SourceRange R(Arg.getLocation());
596 if (Arg.getScopeSpec().isValid())
597 R.setBegin(Arg.getScopeSpec().getBeginLoc());
598 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
599 << R;
600 return ParsedTemplateArgument();
601 }
602
603 return Arg.getTemplatePackExpansion(EllipsisLoc);
604 }
605 llvm_unreachable("Unhandled template argument kind?")::llvm::llvm_unreachable_internal("Unhandled template argument kind?"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 605)
;
606}
607
608TypeResult Sema::ActOnPackExpansion(ParsedType Type,
609 SourceLocation EllipsisLoc) {
610 TypeSourceInfo *TSInfo;
611 GetTypeFromParser(Type, &TSInfo);
612 if (!TSInfo)
613 return true;
614
615 TypeSourceInfo *TSResult =
616 CheckPackExpansion(TSInfo, EllipsisLoc, std::nullopt);
617 if (!TSResult)
618 return true;
619
620 return CreateParsedType(TSResult->getType(), TSResult);
621}
622
623TypeSourceInfo *
624Sema::CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc,
625 Optional<unsigned> NumExpansions) {
626 // Create the pack expansion type and source-location information.
627 QualType Result = CheckPackExpansion(Pattern->getType(),
628 Pattern->getTypeLoc().getSourceRange(),
629 EllipsisLoc, NumExpansions);
630 if (Result.isNull())
631 return nullptr;
632
633 TypeLocBuilder TLB;
634 TLB.pushFullCopy(Pattern->getTypeLoc());
635 PackExpansionTypeLoc TL = TLB.push<PackExpansionTypeLoc>(Result);
636 TL.setEllipsisLoc(EllipsisLoc);
637
638 return TLB.getTypeSourceInfo(Context, Result);
639}
640
641QualType Sema::CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
642 SourceLocation EllipsisLoc,
643 Optional<unsigned> NumExpansions) {
644 // C++11 [temp.variadic]p5:
645 // The pattern of a pack expansion shall name one or more
646 // parameter packs that are not expanded by a nested pack
647 // expansion.
648 //
649 // A pattern containing a deduced type can't occur "naturally" but arises in
650 // the desugaring of an init-capture pack.
651 if (!Pattern->containsUnexpandedParameterPack() &&
652 !Pattern->getContainedDeducedType()) {
653 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
654 << PatternRange;
655 return QualType();
656 }
657
658 return Context.getPackExpansionType(Pattern, NumExpansions,
659 /*ExpectPackInType=*/false);
660}
661
662ExprResult Sema::ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc) {
663 return CheckPackExpansion(Pattern, EllipsisLoc, std::nullopt);
664}
665
666ExprResult Sema::CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
667 Optional<unsigned> NumExpansions) {
668 if (!Pattern)
669 return ExprError();
670
671 // C++0x [temp.variadic]p5:
672 // The pattern of a pack expansion shall name one or more
673 // parameter packs that are not expanded by a nested pack
674 // expansion.
675 if (!Pattern->containsUnexpandedParameterPack()) {
676 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
677 << Pattern->getSourceRange();
678 CorrectDelayedTyposInExpr(Pattern);
679 return ExprError();
680 }
681
682 // Create the pack expansion expression and source-location information.
683 return new (Context)
684 PackExpansionExpr(Context.DependentTy, Pattern, EllipsisLoc, NumExpansions);
685}
686
687bool Sema::CheckParameterPacksForExpansion(
688 SourceLocation EllipsisLoc, SourceRange PatternRange,
689 ArrayRef<UnexpandedParameterPack> Unexpanded,
690 const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
691 bool &RetainExpansion, Optional<unsigned> &NumExpansions) {
692 ShouldExpand = true;
693 RetainExpansion = false;
694 std::pair<const IdentifierInfo *, SourceLocation> FirstPack;
695 Optional<std::pair<unsigned, SourceLocation>> PartialExpansion;
696 Optional<unsigned> CurNumExpansions;
697
698 for (auto [P, Loc] : Unexpanded) {
1
Assuming '__begin1' is not equal to '__end1'
699 // Compute the depth and index for this parameter pack.
700 Optional<std::pair<unsigned, unsigned>> Pos;
701 unsigned NewPackSize;
702 const auto *ND = P.dyn_cast<const NamedDecl *>();
2
Calling 'PointerUnion::dyn_cast'
15
Returning from 'PointerUnion::dyn_cast'
52
Calling 'PointerUnion::dyn_cast'
73
Returning from 'PointerUnion::dyn_cast'
703 if (ND
15.1
'ND' is null
15.1
'ND' is null
15.1
'ND' is null
15.1
'ND' is null
&& isa<VarDecl>(ND)) {
74
Assuming 'ND' is non-null
75
Assuming 'ND' is a 'class clang::VarDecl &'
76
Taking true branch
704 const auto *DAP =
705 CurrentInstantiationScope->findInstantiationOf(ND)
77
Called C++ object pointer is null
706 ->dyn_cast<LocalInstantiationScope::DeclArgumentPack *>();
707 if (!DAP) {
708 // We can't expand this function parameter pack, so we can't expand
709 // the pack expansion.
710 ShouldExpand = false;
711 continue;
712 }
713 NewPackSize = DAP->size();
714 } else if (ND
15.2
'ND' is null
15.2
'ND' is null
15.2
'ND' is null
15.2
'ND' is null
) {
16
Taking false branch
715 Pos = getDepthAndIndex(ND);
716 } else if (const auto *TTP = P.dyn_cast<const TemplateTypeParmType *>()) {
17
Calling 'PointerUnion::dyn_cast'
38
Returning from 'PointerUnion::dyn_cast'
39
Assuming 'TTP' is non-null
40
Taking true branch
717 Pos = {TTP->getDepth(), TTP->getIndex()};
718 ND = TTP->getDecl();
41
Calling 'TemplateTypeParmType::getDecl'
44
Returning from 'TemplateTypeParmType::getDecl'
719 // FIXME: We either should have some fallback for canonical TTP, or
720 // never have canonical TTP here.
721 } else if (const auto *STP =
722 P.dyn_cast<const SubstTemplateTypeParmPackType *>()) {
723 NewPackSize = STP->getNumArgs();
724 ND = STP->getReplacedParameter();
725 } else {
726 const auto *SEP = P.get<const SubstNonTypeTemplateParmPackExpr *>();
727 NewPackSize = SEP->getArgumentPack().pack_size();
728 ND = SEP->getParameterPack();
729 }
730
731 if (Pos) {
732 // If we don't have a template argument at this depth/index, then we
733 // cannot expand the pack expansion. Make a note of this, but we still
734 // want to check any parameter packs we *do* have arguments for.
735 if (Pos->first >= TemplateArgs.getNumLevels() ||
45
Assuming the condition is false
47
Taking false branch
736 !TemplateArgs.hasTemplateArgument(Pos->first, Pos->second)) {
46
Assuming the condition is false
737 ShouldExpand = false;
738 continue;
739 }
740 // Determine the size of the argument pack.
741 NewPackSize = TemplateArgs(Pos->first, Pos->second).pack_size();
742 // C++0x [temp.arg.explicit]p9:
743 // Template argument deduction can extend the sequence of template
744 // arguments corresponding to a template parameter pack, even when the
745 // sequence contains explicitly specified template arguments.
746 if (CurrentInstantiationScope)
48
Assuming field 'CurrentInstantiationScope' is null
747 if (const NamedDecl *PartialPack =
748 CurrentInstantiationScope->getPartiallySubstitutedPack();
749 PartialPack && getDepthAndIndex(PartialPack) == *Pos) {
750 RetainExpansion = true;
751 // We don't actually know the new pack size yet.
752 PartialExpansion = {NewPackSize, Loc};
753 continue;
754 }
755 }
756
757 // FIXME: Workaround for Canonical TTP.
758 const IdentifierInfo *Name = ND
49.1
'ND' is null
49.1
'ND' is null
49.1
'ND' is null
49.1
'ND' is null
? ND->getIdentifier() : nullptr;
49
Taking false branch
50
'?' condition is false
759 if (!CurNumExpansions) {
51
Taking true branch
760 // The is the first pack we've seen for which we have an argument.
761 // Record it.
762 CurNumExpansions = NewPackSize;
763 FirstPack = {Name, Loc};
764 } else if (NewPackSize != *CurNumExpansions) {
765 // C++0x [temp.variadic]p5:
766 // All of the parameter packs expanded by a pack expansion shall have
767 // the same number of arguments specified.
768 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict)
769 << FirstPack.first << Name << *CurNumExpansions << NewPackSize
770 << SourceRange(FirstPack.second) << SourceRange(Loc);
771 return true;
772 }
773 }
774
775 if (NumExpansions && CurNumExpansions &&
776 *NumExpansions != *CurNumExpansions) {
777 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_multilevel)
778 << FirstPack.first << *CurNumExpansions << *NumExpansions
779 << SourceRange(FirstPack.second);
780 return true;
781 }
782
783 // If we're performing a partial expansion but we also have a full expansion,
784 // expand to the number of common arguments. For example, given:
785 //
786 // template<typename ...T> struct A {
787 // template<typename ...U> void f(pair<T, U>...);
788 // };
789 //
790 // ... a call to 'A<int, int>().f<int>' should expand the pack once and
791 // retain an expansion.
792 if (PartialExpansion) {
793 if (CurNumExpansions && *CurNumExpansions < PartialExpansion->first) {
794 NamedDecl *PartialPack =
795 CurrentInstantiationScope->getPartiallySubstitutedPack();
796 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_partial)
797 << PartialPack << PartialExpansion->first << *CurNumExpansions
798 << SourceRange(PartialExpansion->second);
799 return true;
800 }
801 NumExpansions = PartialExpansion->first;
802 } else {
803 NumExpansions = CurNumExpansions;
804 }
805
806 return false;
807}
808
809Optional<unsigned> Sema::getNumArgumentsInExpansion(QualType T,
810 const MultiLevelTemplateArgumentList &TemplateArgs) {
811 QualType Pattern = cast<PackExpansionType>(T)->getPattern();
812 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
813 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(Pattern);
814
815 Optional<unsigned> Result;
816 auto setResultSz = [&Result](unsigned Size) {
817 assert((!Result || *Result == Size) && "inconsistent pack sizes")(static_cast <bool> ((!Result || *Result == Size) &&
"inconsistent pack sizes") ? void (0) : __assert_fail ("(!Result || *Result == Size) && \"inconsistent pack sizes\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 817, __extension__
__PRETTY_FUNCTION__))
;
818 Result = Size;
819 };
820 auto setResultPos = [&](const std::pair<unsigned, unsigned> &Pos) -> bool {
821 unsigned Depth = Pos.first, Index = Pos.second;
822 if (Depth >= TemplateArgs.getNumLevels() ||
823 !TemplateArgs.hasTemplateArgument(Depth, Index))
824 // The pattern refers to an unknown template argument. We're not ready to
825 // expand this pack yet.
826 return true;
827 // Determine the size of the argument pack.
828 setResultSz(TemplateArgs(Depth, Index).pack_size());
829 return false;
830 };
831
832 for (auto [I, _] : Unexpanded) {
833 if (const auto *TTP = I.dyn_cast<const TemplateTypeParmType *>()) {
834 if (setResultPos({TTP->getDepth(), TTP->getIndex()}))
835 return std::nullopt;
836 } else if (const auto *STP =
837 I.dyn_cast<const SubstTemplateTypeParmPackType *>()) {
838 setResultSz(STP->getNumArgs());
839 } else if (const auto *SEP =
840 I.dyn_cast<const SubstNonTypeTemplateParmPackExpr *>()) {
841 setResultSz(SEP->getArgumentPack().pack_size());
842 } else {
843 const auto *ND = I.get<const NamedDecl *>();
844 // Function parameter pack or init-capture pack.
845 if (isa<VarDecl>(ND)) {
846 const auto *DAP =
847 CurrentInstantiationScope->findInstantiationOf(ND)
848 ->dyn_cast<LocalInstantiationScope::DeclArgumentPack *>();
849 if (!DAP)
850 // The pattern refers to an unexpanded pack. We're not ready to expand
851 // this pack yet.
852 return std::nullopt;
853 setResultSz(DAP->size());
854 } else if (setResultPos(getDepthAndIndex(ND))) {
855 return std::nullopt;
856 }
857 }
858 }
859
860 return Result;
861}
862
863bool Sema::containsUnexpandedParameterPacks(Declarator &D) {
864 const DeclSpec &DS = D.getDeclSpec();
865 switch (DS.getTypeSpecType()) {
866 case TST_typename:
867 case TST_typeof_unqualType:
868 case TST_typeofType:
869#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case TST_##Trait:
870#include "clang/Basic/TransformTypeTraits.def"
871 case TST_atomic: {
872 QualType T = DS.getRepAsType().get();
873 if (!T.isNull() && T->containsUnexpandedParameterPack())
874 return true;
875 break;
876 }
877
878 case TST_typeof_unqualExpr:
879 case TST_typeofExpr:
880 case TST_decltype:
881 case TST_bitint:
882 if (DS.getRepAsExpr() &&
883 DS.getRepAsExpr()->containsUnexpandedParameterPack())
884 return true;
885 break;
886
887 case TST_unspecified:
888 case TST_void:
889 case TST_char:
890 case TST_wchar:
891 case TST_char8:
892 case TST_char16:
893 case TST_char32:
894 case TST_int:
895 case TST_int128:
896 case TST_half:
897 case TST_float:
898 case TST_double:
899 case TST_Accum:
900 case TST_Fract:
901 case TST_Float16:
902 case TST_float128:
903 case TST_ibm128:
904 case TST_bool:
905 case TST_decimal32:
906 case TST_decimal64:
907 case TST_decimal128:
908 case TST_enum:
909 case TST_union:
910 case TST_struct:
911 case TST_interface:
912 case TST_class:
913 case TST_auto:
914 case TST_auto_type:
915 case TST_decltype_auto:
916 case TST_BFloat16:
917#define GENERIC_IMAGE_TYPE(ImgType, Id) case TST_##ImgType##_t:
918#include "clang/Basic/OpenCLImageTypes.def"
919 case TST_unknown_anytype:
920 case TST_error:
921 break;
922 }
923
924 for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
925 const DeclaratorChunk &Chunk = D.getTypeObject(I);
926 switch (Chunk.Kind) {
927 case DeclaratorChunk::Pointer:
928 case DeclaratorChunk::Reference:
929 case DeclaratorChunk::Paren:
930 case DeclaratorChunk::Pipe:
931 case DeclaratorChunk::BlockPointer:
932 // These declarator chunks cannot contain any parameter packs.
933 break;
934
935 case DeclaratorChunk::Array:
936 if (Chunk.Arr.NumElts &&
937 Chunk.Arr.NumElts->containsUnexpandedParameterPack())
938 return true;
939 break;
940 case DeclaratorChunk::Function:
941 for (unsigned i = 0, e = Chunk.Fun.NumParams; i != e; ++i) {
942 ParmVarDecl *Param = cast<ParmVarDecl>(Chunk.Fun.Params[i].Param);
943 QualType ParamTy = Param->getType();
944 assert(!ParamTy.isNull() && "Couldn't parse type?")(static_cast <bool> (!ParamTy.isNull() && "Couldn't parse type?"
) ? void (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 944, __extension__
__PRETTY_FUNCTION__))
;
945 if (ParamTy->containsUnexpandedParameterPack()) return true;
946 }
947
948 if (Chunk.Fun.getExceptionSpecType() == EST_Dynamic) {
949 for (unsigned i = 0; i != Chunk.Fun.getNumExceptions(); ++i) {
950 if (Chunk.Fun.Exceptions[i]
951 .Ty.get()
952 ->containsUnexpandedParameterPack())
953 return true;
954 }
955 } else if (isComputedNoexcept(Chunk.Fun.getExceptionSpecType()) &&
956 Chunk.Fun.NoexceptExpr->containsUnexpandedParameterPack())
957 return true;
958
959 if (Chunk.Fun.hasTrailingReturnType()) {
960 QualType T = Chunk.Fun.getTrailingReturnType().get();
961 if (!T.isNull() && T->containsUnexpandedParameterPack())
962 return true;
963 }
964 break;
965
966 case DeclaratorChunk::MemberPointer:
967 if (Chunk.Mem.Scope().getScopeRep() &&
968 Chunk.Mem.Scope().getScopeRep()->containsUnexpandedParameterPack())
969 return true;
970 break;
971 }
972 }
973
974 if (Expr *TRC = D.getTrailingRequiresClause())
975 if (TRC->containsUnexpandedParameterPack())
976 return true;
977
978 return false;
979}
980
981namespace {
982
983// Callback to only accept typo corrections that refer to parameter packs.
984class ParameterPackValidatorCCC final : public CorrectionCandidateCallback {
985 public:
986 bool ValidateCandidate(const TypoCorrection &candidate) override {
987 NamedDecl *ND = candidate.getCorrectionDecl();
988 return ND && ND->isParameterPack();
989 }
990
991 std::unique_ptr<CorrectionCandidateCallback> clone() override {
992 return std::make_unique<ParameterPackValidatorCCC>(*this);
993 }
994};
995
996}
997
998/// Called when an expression computing the size of a parameter pack
999/// is parsed.
1000///
1001/// \code
1002/// template<typename ...Types> struct count {
1003/// static const unsigned value = sizeof...(Types);
1004/// };
1005/// \endcode
1006///
1007//
1008/// \param OpLoc The location of the "sizeof" keyword.
1009/// \param Name The name of the parameter pack whose size will be determined.
1010/// \param NameLoc The source location of the name of the parameter pack.
1011/// \param RParenLoc The location of the closing parentheses.
1012ExprResult Sema::ActOnSizeofParameterPackExpr(Scope *S,
1013 SourceLocation OpLoc,
1014 IdentifierInfo &Name,
1015 SourceLocation NameLoc,
1016 SourceLocation RParenLoc) {
1017 // C++0x [expr.sizeof]p5:
1018 // The identifier in a sizeof... expression shall name a parameter pack.
1019 LookupResult R(*this, &Name, NameLoc, LookupOrdinaryName);
1020 LookupName(R, S);
1021
1022 NamedDecl *ParameterPack = nullptr;
1023 switch (R.getResultKind()) {
1024 case LookupResult::Found:
1025 ParameterPack = R.getFoundDecl();
1026 break;
1027
1028 case LookupResult::NotFound:
1029 case LookupResult::NotFoundInCurrentInstantiation: {
1030 ParameterPackValidatorCCC CCC{};
1031 if (TypoCorrection Corrected =
1032 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
1033 CCC, CTK_ErrorRecovery)) {
1034 diagnoseTypo(Corrected,
1035 PDiag(diag::err_sizeof_pack_no_pack_name_suggest) << &Name,
1036 PDiag(diag::note_parameter_pack_here));
1037 ParameterPack = Corrected.getCorrectionDecl();
1038 }
1039 break;
1040 }
1041 case LookupResult::FoundOverloaded:
1042 case LookupResult::FoundUnresolvedValue:
1043 break;
1044
1045 case LookupResult::Ambiguous:
1046 DiagnoseAmbiguousLookup(R);
1047 return ExprError();
1048 }
1049
1050 if (!ParameterPack || !ParameterPack->isParameterPack()) {
1051 Diag(NameLoc, diag::err_sizeof_pack_no_pack_name)
1052 << &Name;
1053 return ExprError();
1054 }
1055
1056 MarkAnyDeclReferenced(OpLoc, ParameterPack, true);
1057
1058 return SizeOfPackExpr::Create(Context, OpLoc, ParameterPack, NameLoc,
1059 RParenLoc);
1060}
1061
1062TemplateArgumentLoc
1063Sema::getTemplateArgumentPackExpansionPattern(
1064 TemplateArgumentLoc OrigLoc,
1065 SourceLocation &Ellipsis, Optional<unsigned> &NumExpansions) const {
1066 const TemplateArgument &Argument = OrigLoc.getArgument();
1067 assert(Argument.isPackExpansion())(static_cast <bool> (Argument.isPackExpansion()) ? void
(0) : __assert_fail ("Argument.isPackExpansion()", "clang/lib/Sema/SemaTemplateVariadic.cpp"
, 1067, __extension__ __PRETTY_FUNCTION__))
;
1068 switch (Argument.getKind()) {
1069 case TemplateArgument::Type: {
1070 // FIXME: We shouldn't ever have to worry about missing
1071 // type-source info!
1072 TypeSourceInfo *ExpansionTSInfo = OrigLoc.getTypeSourceInfo();
1073 if (!ExpansionTSInfo)
1074 ExpansionTSInfo = Context.getTrivialTypeSourceInfo(Argument.getAsType(),
1075 Ellipsis);
1076 PackExpansionTypeLoc Expansion =
1077 ExpansionTSInfo->getTypeLoc().castAs<PackExpansionTypeLoc>();
1078 Ellipsis = Expansion.getEllipsisLoc();
1079
1080 TypeLoc Pattern = Expansion.getPatternLoc();
1081 NumExpansions = Expansion.getTypePtr()->getNumExpansions();
1082
1083 // We need to copy the TypeLoc because TemplateArgumentLocs store a
1084 // TypeSourceInfo.
1085 // FIXME: Find some way to avoid the copy?
1086 TypeLocBuilder TLB;
1087 TLB.pushFullCopy(Pattern);
1088 TypeSourceInfo *PatternTSInfo =
1089 TLB.getTypeSourceInfo(Context, Pattern.getType());
1090 return TemplateArgumentLoc(TemplateArgument(Pattern.getType()),
1091 PatternTSInfo);
1092 }
1093
1094 case TemplateArgument::Expression: {
1095 PackExpansionExpr *Expansion
1096 = cast<PackExpansionExpr>(Argument.getAsExpr());
1097 Expr *Pattern = Expansion->getPattern();
1098 Ellipsis = Expansion->getEllipsisLoc();
1099 NumExpansions = Expansion->getNumExpansions();
1100 return TemplateArgumentLoc(Pattern, Pattern);
1101 }
1102
1103 case TemplateArgument::TemplateExpansion:
1104 Ellipsis = OrigLoc.getTemplateEllipsisLoc();
1105 NumExpansions = Argument.getNumTemplateExpansions();
1106 return TemplateArgumentLoc(Context, Argument.getPackExpansionPattern(),
1107 OrigLoc.getTemplateQualifierLoc(),
1108 OrigLoc.getTemplateNameLoc());
1109
1110 case TemplateArgument::Declaration:
1111 case TemplateArgument::NullPtr:
1112 case TemplateArgument::Template:
1113 case TemplateArgument::Integral:
1114 case TemplateArgument::Pack:
1115 case TemplateArgument::Null:
1116 return TemplateArgumentLoc();
1117 }
1118
1119 llvm_unreachable("Invalid TemplateArgument Kind!")::llvm::llvm_unreachable_internal("Invalid TemplateArgument Kind!"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1119)
;
1120}
1121
1122Optional<unsigned> Sema::getFullyPackExpandedSize(TemplateArgument Arg) {
1123 assert(Arg.containsUnexpandedParameterPack())(static_cast <bool> (Arg.containsUnexpandedParameterPack
()) ? void (0) : __assert_fail ("Arg.containsUnexpandedParameterPack()"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1123, __extension__
__PRETTY_FUNCTION__))
;
1124
1125 // If this is a substituted pack, grab that pack. If not, we don't know
1126 // the size yet.
1127 // FIXME: We could find a size in more cases by looking for a substituted
1128 // pack anywhere within this argument, but that's not necessary in the common
1129 // case for 'sizeof...(A)' handling.
1130 TemplateArgument Pack;
1131 switch (Arg.getKind()) {
1132 case TemplateArgument::Type:
1133 if (auto *Subst = Arg.getAsType()->getAs<SubstTemplateTypeParmPackType>())
1134 Pack = Subst->getArgumentPack();
1135 else
1136 return std::nullopt;
1137 break;
1138
1139 case TemplateArgument::Expression:
1140 if (auto *Subst =
1141 dyn_cast<SubstNonTypeTemplateParmPackExpr>(Arg.getAsExpr()))
1142 Pack = Subst->getArgumentPack();
1143 else if (auto *Subst = dyn_cast<FunctionParmPackExpr>(Arg.getAsExpr())) {
1144 for (VarDecl *PD : *Subst)
1145 if (PD->isParameterPack())
1146 return std::nullopt;
1147 return Subst->getNumExpansions();
1148 } else
1149 return std::nullopt;
1150 break;
1151
1152 case TemplateArgument::Template:
1153 if (SubstTemplateTemplateParmPackStorage *Subst =
1154 Arg.getAsTemplate().getAsSubstTemplateTemplateParmPack())
1155 Pack = Subst->getArgumentPack();
1156 else
1157 return std::nullopt;
1158 break;
1159
1160 case TemplateArgument::Declaration:
1161 case TemplateArgument::NullPtr:
1162 case TemplateArgument::TemplateExpansion:
1163 case TemplateArgument::Integral:
1164 case TemplateArgument::Pack:
1165 case TemplateArgument::Null:
1166 return std::nullopt;
1167 }
1168
1169 // Check that no argument in the pack is itself a pack expansion.
1170 for (TemplateArgument Elem : Pack.pack_elements()) {
1171 // There's no point recursing in this case; we would have already
1172 // expanded this pack expansion into the enclosing pack if we could.
1173 if (Elem.isPackExpansion())
1174 return std::nullopt;
1175 }
1176 return Pack.pack_size();
1177}
1178
1179static void CheckFoldOperand(Sema &S, Expr *E) {
1180 if (!E)
1181 return;
1182
1183 E = E->IgnoreImpCasts();
1184 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
1185 if ((OCE && OCE->isInfixBinaryOp()) || isa<BinaryOperator>(E) ||
1186 isa<AbstractConditionalOperator>(E)) {
1187 S.Diag(E->getExprLoc(), diag::err_fold_expression_bad_operand)
1188 << E->getSourceRange()
1189 << FixItHint::CreateInsertion(E->getBeginLoc(), "(")
1190 << FixItHint::CreateInsertion(E->getEndLoc(), ")");
1191 }
1192}
1193
1194ExprResult Sema::ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
1195 tok::TokenKind Operator,
1196 SourceLocation EllipsisLoc, Expr *RHS,
1197 SourceLocation RParenLoc) {
1198 // LHS and RHS must be cast-expressions. We allow an arbitrary expression
1199 // in the parser and reduce down to just cast-expressions here.
1200 CheckFoldOperand(*this, LHS);
1201 CheckFoldOperand(*this, RHS);
1202
1203 auto DiscardOperands = [&] {
1204 CorrectDelayedTyposInExpr(LHS);
1205 CorrectDelayedTyposInExpr(RHS);
1206 };
1207
1208 // [expr.prim.fold]p3:
1209 // In a binary fold, op1 and op2 shall be the same fold-operator, and
1210 // either e1 shall contain an unexpanded parameter pack or e2 shall contain
1211 // an unexpanded parameter pack, but not both.
1212 if (LHS && RHS &&
1213 LHS->containsUnexpandedParameterPack() ==
1214 RHS->containsUnexpandedParameterPack()) {
1215 DiscardOperands();
1216 return Diag(EllipsisLoc,
1217 LHS->containsUnexpandedParameterPack()
1218 ? diag::err_fold_expression_packs_both_sides
1219 : diag::err_pack_expansion_without_parameter_packs)
1220 << LHS->getSourceRange() << RHS->getSourceRange();
1221 }
1222
1223 // [expr.prim.fold]p2:
1224 // In a unary fold, the cast-expression shall contain an unexpanded
1225 // parameter pack.
1226 if (!LHS || !RHS) {
1227 Expr *Pack = LHS ? LHS : RHS;
1228 assert(Pack && "fold expression with neither LHS nor RHS")(static_cast <bool> (Pack && "fold expression with neither LHS nor RHS"
) ? void (0) : __assert_fail ("Pack && \"fold expression with neither LHS nor RHS\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1228, __extension__
__PRETTY_FUNCTION__))
;
1229 DiscardOperands();
1230 if (!Pack->containsUnexpandedParameterPack())
1231 return Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1232 << Pack->getSourceRange();
1233 }
1234
1235 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Operator);
1236
1237 // Perform first-phase name lookup now.
1238 UnresolvedLookupExpr *ULE = nullptr;
1239 {
1240 UnresolvedSet<16> Functions;
1241 LookupBinOp(S, EllipsisLoc, Opc, Functions);
1242 if (!Functions.empty()) {
1243 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(
1244 BinaryOperator::getOverloadedOperator(Opc));
1245 ExprResult Callee = CreateUnresolvedLookupExpr(
1246 /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
1247 DeclarationNameInfo(OpName, EllipsisLoc), Functions);
1248 if (Callee.isInvalid())
1249 return ExprError();
1250 ULE = cast<UnresolvedLookupExpr>(Callee.get());
1251 }
1252 }
1253
1254 return BuildCXXFoldExpr(ULE, LParenLoc, LHS, Opc, EllipsisLoc, RHS, RParenLoc,
1255 std::nullopt);
1256}
1257
1258ExprResult Sema::BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
1259 SourceLocation LParenLoc, Expr *LHS,
1260 BinaryOperatorKind Operator,
1261 SourceLocation EllipsisLoc, Expr *RHS,
1262 SourceLocation RParenLoc,
1263 Optional<unsigned> NumExpansions) {
1264 return new (Context)
1265 CXXFoldExpr(Context.DependentTy, Callee, LParenLoc, LHS, Operator,
1266 EllipsisLoc, RHS, RParenLoc, NumExpansions);
1267}
1268
1269ExprResult Sema::BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
1270 BinaryOperatorKind Operator) {
1271 // [temp.variadic]p9:
1272 // If N is zero for a unary fold-expression, the value of the expression is
1273 // && -> true
1274 // || -> false
1275 // , -> void()
1276 // if the operator is not listed [above], the instantiation is ill-formed.
1277 //
1278 // Note that we need to use something like int() here, not merely 0, to
1279 // prevent the result from being a null pointer constant.
1280 QualType ScalarType;
1281 switch (Operator) {
1282 case BO_LOr:
1283 return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_false);
1284 case BO_LAnd:
1285 return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_true);
1286 case BO_Comma:
1287 ScalarType = Context.VoidTy;
1288 break;
1289
1290 default:
1291 return Diag(EllipsisLoc, diag::err_fold_expression_empty)
1292 << BinaryOperator::getOpcodeStr(Operator);
1293 }
1294
1295 return new (Context) CXXScalarValueInitExpr(
1296 ScalarType, Context.getTrivialTypeSourceInfo(ScalarType, EllipsisLoc),
1297 EllipsisLoc);
1298}

/build/source/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the PointerUnion class, which is a discriminated union of
11/// pointer types.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_POINTERUNION_H
16#define LLVM_ADT_POINTERUNION_H
17
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/PointerLikeTypeTraits.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdint>
27
28namespace llvm {
29
30namespace pointer_union_detail {
31 /// Determine the number of bits required to store integers with values < n.
32 /// This is ceil(log2(n)).
33 constexpr int bitsRequired(unsigned n) {
34 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
35 }
36
37 template <typename... Ts> constexpr int lowBitsAvailable() {
38 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
39 }
40
41 /// Find the first type in a list of types.
42 template <typename T, typename...> struct GetFirstType {
43 using type = T;
44 };
45
46 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
47 /// for the template arguments.
48 template <typename ...PTs> class PointerUnionUIntTraits {
49 public:
50 static inline void *getAsVoidPointer(void *P) { return P; }
51 static inline void *getFromVoidPointer(void *P) { return P; }
52 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
53 };
54
55 template <typename Derived, typename ValTy, int I, typename ...Types>
56 class PointerUnionMembers;
57
58 template <typename Derived, typename ValTy, int I>
59 class PointerUnionMembers<Derived, ValTy, I> {
60 protected:
61 ValTy Val;
62 PointerUnionMembers() = default;
63 PointerUnionMembers(ValTy Val) : Val(Val) {}
64
65 friend struct PointerLikeTypeTraits<Derived>;
66 };
67
68 template <typename Derived, typename ValTy, int I, typename Type,
69 typename ...Types>
70 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
71 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
72 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
73 public:
74 using Base::Base;
75 PointerUnionMembers() = default;
76 PointerUnionMembers(Type V)
77 : Base(ValTy(const_cast<void *>(
78 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
79 I)) {}
80
81 using Base::operator=;
82 Derived &operator=(Type V) {
83 this->Val = ValTy(
84 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
85 I);
86 return static_cast<Derived &>(*this);
87 };
88 };
89}
90
91// This is a forward declaration of CastInfoPointerUnionImpl
92// Refer to its definition below for further details
93template <typename... PTs> struct CastInfoPointerUnionImpl;
94/// A discriminated union of two or more pointer types, with the discriminator
95/// in the low bit of the pointer.
96///
97/// This implementation is extremely efficient in space due to leveraging the
98/// low bits of the pointer, while exposing a natural and type-safe API.
99///
100/// Common use patterns would be something like this:
101/// PointerUnion<int*, float*> P;
102/// P = (int*)0;
103/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
104/// X = P.get<int*>(); // ok.
105/// Y = P.get<float*>(); // runtime assertion failure.
106/// Z = P.get<double*>(); // compile time failure.
107/// P = (float*)0;
108/// Y = P.get<float*>(); // ok.
109/// X = P.get<int*>(); // runtime assertion failure.
110/// PointerUnion<int*, int*> Q; // compile time failure.
111template <typename... PTs>
112class PointerUnion
113 : public pointer_union_detail::PointerUnionMembers<
114 PointerUnion<PTs...>,
115 PointerIntPair<
116 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
117 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
118 0, PTs...> {
119 static_assert(TypesAreDistinct<PTs...>::value,
120 "PointerUnion alternative types cannot be repeated");
121 // The first type is special because we want to directly cast a pointer to a
122 // default-initialized union to a pointer to the first type. But we don't
123 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
124 // because it's much more convenient to have a name for the whole pack. So
125 // split off the first type here.
126 using First = TypeAtIndex<0, PTs...>;
127 using Base = typename PointerUnion::PointerUnionMembers;
128
129 /// This is needed to give the CastInfo implementation below access
130 /// to protected members.
131 /// Refer to its definition for further details.
132 friend struct CastInfoPointerUnionImpl<PTs...>;
133
134public:
135 PointerUnion() = default;
136
137 PointerUnion(std::nullptr_t) : PointerUnion() {}
138 using Base::Base;
139
140 /// Test if the pointer held in the union is null, regardless of
141 /// which type it is.
142 bool isNull() const { return !this->Val.getPointer(); }
143
144 explicit operator bool() const { return !isNull(); }
145
146 // FIXME: Replace the uses of is(), get() and dyn_cast() with
147 // isa<T>, cast<T> and the llvm::dyn_cast<T>
148
149 /// Test if the Union currently holds the type matching T.
150 template <typename T> inline bool is() const { return isa<T>(*this); }
151
152 /// Returns the value of the specified pointer type.
153 ///
154 /// If the specified pointer type is incorrect, assert.
155 template <typename T> inline T get() const {
156 assert(isa<T>(*this) && "Invalid accessor called")(static_cast <bool> (isa<T>(*this) && "Invalid accessor called"
) ? void (0) : __assert_fail ("isa<T>(*this) && \"Invalid accessor called\""
, "llvm/include/llvm/ADT/PointerUnion.h", 156, __extension__ __PRETTY_FUNCTION__
))
;
157 return cast<T>(*this);
158 }
159
160 /// Returns the current pointer if it is of the specified pointer type,
161 /// otherwise returns null.
162 template <typename T> inline T dyn_cast() const {
163 return llvm::dyn_cast_if_present<T>(*this);
3
Calling 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
13
Returning from 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
14
Returning null pointer, which participates in a condition later
18
Calling 'dyn_cast_if_present<const clang::TemplateTypeParmType *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
36
Returning from 'dyn_cast_if_present<const clang::TemplateTypeParmType *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
37
Returning pointer, which participates in a condition later
53
Calling 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
71
Returning from 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
72
Returning pointer, which participates in a condition later
164 }
165
166 /// If the union is set to the first pointer type get an address pointing to
167 /// it.
168 First const *getAddrOfPtr1() const {
169 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
170 }
171
172 /// If the union is set to the first pointer type get an address pointing to
173 /// it.
174 First *getAddrOfPtr1() {
175 assert(is<First>() && "Val is not the first pointer")(static_cast <bool> (is<First>() && "Val is not the first pointer"
) ? void (0) : __assert_fail ("is<First>() && \"Val is not the first pointer\""
, "llvm/include/llvm/ADT/PointerUnion.h", 175, __extension__ __PRETTY_FUNCTION__
))
;
176 assert((static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
177 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
178 this->Val.getPointer() &&(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
179 "Can't get the address because PointerLikeTypeTraits changes the ptr")(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
;
180 return const_cast<First *>(
181 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
182 }
183
184 /// Assignment from nullptr which just clears the union.
185 const PointerUnion &operator=(std::nullptr_t) {
186 this->Val.initWithPointer(nullptr);
187 return *this;
188 }
189
190 /// Assignment from elements of the union.
191 using Base::operator=;
192
193 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
194 static inline PointerUnion getFromOpaqueValue(void *VP) {
195 PointerUnion V;
196 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
197 return V;
198 }
199};
200
201template <typename ...PTs>
202bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
203 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
204}
205
206template <typename ...PTs>
207bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
208 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
209}
210
211template <typename ...PTs>
212bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
213 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
214}
215
216/// We can't (at least, at this moment with C++14) declare CastInfo
217/// as a friend of PointerUnion like this:
218/// ```
219/// template<typename To>
220/// friend struct CastInfo<To, PointerUnion<PTs...>>;
221/// ```
222/// The compiler complains 'Partial specialization cannot be declared as a
223/// friend'.
224/// So we define this struct to be a bridge between CastInfo and
225/// PointerUnion.
226template <typename... PTs> struct CastInfoPointerUnionImpl {
227 using From = PointerUnion<PTs...>;
228
229 template <typename To> static inline bool isPossible(From &F) {
230 return F.Val.getInt() == FirstIndexOfType<To, PTs...>::value;
231 }
232
233 template <typename To> static To doCast(From &F) {
234 assert(isPossible<To>(F) && "cast to an incompatible type !")(static_cast <bool> (isPossible<To>(F) &&
"cast to an incompatible type !") ? void (0) : __assert_fail
("isPossible<To>(F) && \"cast to an incompatible type !\""
, "llvm/include/llvm/ADT/PointerUnion.h", 234, __extension__ __PRETTY_FUNCTION__
))
;
26
'?' condition is true
61
'?' condition is true
235 return PointerLikeTypeTraits<To>::getFromVoidPointer(F.Val.getPointer());
27
Returning pointer, which participates in a condition later
62
Returning pointer, which participates in a condition later
236 }
237};
238
239// Specialization of CastInfo for PointerUnion
240template <typename To, typename... PTs>
241struct CastInfo<To, PointerUnion<PTs...>>
242 : public DefaultDoCastIfPossible<To, PointerUnion<PTs...>,
243 CastInfo<To, PointerUnion<PTs...>>> {
244 using From = PointerUnion<PTs...>;
245 using Impl = CastInfoPointerUnionImpl<PTs...>;
246
247 static inline bool isPossible(From &f) {
248 return Impl::template isPossible<To>(f);
249 }
250
251 static To doCast(From &f) { return Impl::template doCast<To>(f); }
25
Calling 'CastInfoPointerUnionImpl::doCast'
28
Returning from 'CastInfoPointerUnionImpl::doCast'
29
Returning pointer, which participates in a condition later
60
Calling 'CastInfoPointerUnionImpl::doCast'
63
Returning from 'CastInfoPointerUnionImpl::doCast'
64
Returning pointer, which participates in a condition later
252
253 static inline To castFailed() { return To(); }
8
Returning null pointer, which participates in a condition later
254};
255
256template <typename To, typename... PTs>
257struct CastInfo<To, const PointerUnion<PTs...>>
258 : public ConstStrippingForwardingCast<To, const PointerUnion<PTs...>,
259 CastInfo<To, PointerUnion<PTs...>>> {
260};
261
262// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
263// # low bits available = min(PT1bits,PT2bits)-1.
264template <typename ...PTs>
265struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
266 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
267 return P.getOpaqueValue();
268 }
269
270 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
271 return PointerUnion<PTs...>::getFromOpaqueValue(P);
272 }
273
274 // The number of bits available are the min of the pointer types minus the
275 // bits needed for the discriminator.
276 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
277 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
278};
279
280// Teach DenseMap how to use PointerUnions as keys.
281template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
282 using Union = PointerUnion<PTs...>;
283 using FirstInfo =
284 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
285
286 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
287
288 static inline Union getTombstoneKey() {
289 return Union(FirstInfo::getTombstoneKey());
290 }
291
292 static unsigned getHashValue(const Union &UnionVal) {
293 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
294 return DenseMapInfo<intptr_t>::getHashValue(key);
295 }
296
297 static bool isEqual(const Union &LHS, const Union &RHS) {
298 return LHS == RHS;
299 }
300};
301
302} // end namespace llvm
303
304#endif // LLVM_ADT_POINTERUNION_H

/build/source/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10// cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <optional>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// simplify_type
28//===----------------------------------------------------------------------===//
29
30/// Define a template that can be specialized by smart pointers to reflect the
31/// fact that they are automatically dereferenced, and are not involved with the
32/// template selection process... the default implementation is a noop.
33// TODO: rename this and/or replace it with other cast traits.
34template <typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template <typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From &Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49 }
50};
51
52// TODO: add this namespace once everyone is switched to using the new
53// interface.
54// namespace detail {
55
56//===----------------------------------------------------------------------===//
57// isa_impl
58//===----------------------------------------------------------------------===//
59
60// The core of the implementation of isa<X> is here; To and From should be
61// the names of classes. This template can be specialized to customize the
62// implementation of isa<> without rewriting it from scratch.
63template <typename To, typename From, typename Enabler = void> struct isa_impl {
64 static inline bool doit(const From &Val) { return To::classof(&Val); }
65};
66
67// Always allow upcasts, and perform no dynamic check for them.
68template <typename To, typename From>
69struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
70 static inline bool doit(const From &) { return true; }
71};
72
73template <typename To, typename From> struct isa_impl_cl {
74 static inline bool doit(const From &Val) {
75 return isa_impl<To, From>::doit(Val);
76 }
77};
78
79template <typename To, typename From> struct isa_impl_cl<To, const From> {
80 static inline bool doit(const From &Val) {
81 return isa_impl<To, From>::doit(Val);
82 }
83};
84
85template <typename To, typename From>
86struct isa_impl_cl<To, const std::unique_ptr<From>> {
87 static inline bool doit(const std::unique_ptr<From> &Val) {
88 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 88, __extension__ __PRETTY_FUNCTION__
))
;
89 return isa_impl_cl<To, From>::doit(*Val);
90 }
91};
92
93template <typename To, typename From> struct isa_impl_cl<To, From *> {
94 static inline bool doit(const From *Val) {
95 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 95, __extension__ __PRETTY_FUNCTION__
))
;
96 return isa_impl<To, From>::doit(*Val);
97 }
98};
99
100template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101 static inline bool doit(const From *Val) {
102 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 102, __extension__ __PRETTY_FUNCTION__
))
;
103 return isa_impl<To, From>::doit(*Val);
104 }
105};
106
107template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108 static inline bool doit(const From *Val) {
109 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 109, __extension__ __PRETTY_FUNCTION__
))
;
110 return isa_impl<To, From>::doit(*Val);
111 }
112};
113
114template <typename To, typename From>
115struct isa_impl_cl<To, const From *const> {
116 static inline bool doit(const From *Val) {
117 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 return isa_impl<To, From>::doit(*Val);
119 }
120};
121
122template <typename To, typename From, typename SimpleFrom>
123struct isa_impl_wrap {
124 // When From != SimplifiedType, we can simplify the type some more by using
125 // the simplify_type template.
126 static bool doit(const From &Val) {
127 return isa_impl_wrap<To, SimpleFrom,
128 typename simplify_type<SimpleFrom>::SimpleType>::
129 doit(simplify_type<const From>::getSimplifiedValue(Val));
130 }
131};
132
133template <typename To, typename FromTy>
134struct isa_impl_wrap<To, FromTy, FromTy> {
135 // When From == SimpleType, we are as simple as we are going to get.
136 static bool doit(const FromTy &Val) {
137 return isa_impl_cl<To, FromTy>::doit(Val);
138 }
139};
140
141//===----------------------------------------------------------------------===//
142// cast_retty + cast_retty_impl
143//===----------------------------------------------------------------------===//
144
145template <class To, class From> struct cast_retty;
146
147// Calculate what type the 'cast' function should return, based on a requested
148// type of To and a source type of From.
149template <class To, class From> struct cast_retty_impl {
150 using ret_type = To &; // Normal case, return Ty&
151};
152template <class To, class From> struct cast_retty_impl<To, const From> {
153 using ret_type = const To &; // Normal case, return Ty&
154};
155
156template <class To, class From> struct cast_retty_impl<To, From *> {
157 using ret_type = To *; // Pointer arg case, return Ty*
158};
159
160template <class To, class From> struct cast_retty_impl<To, const From *> {
161 using ret_type = const To *; // Constant pointer arg case, return const Ty*
162};
163
164template <class To, class From> struct cast_retty_impl<To, const From *const> {
165 using ret_type = const To *; // Constant pointer arg case, return const Ty*
166};
167
168template <class To, class From>
169struct cast_retty_impl<To, std::unique_ptr<From>> {
170private:
171 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172 using ResultType = std::remove_pointer_t<PointerType>;
173
174public:
175 using ret_type = std::unique_ptr<ResultType>;
176};
177
178template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179 // When the simplified type and the from type are not the same, use the type
180 // simplifier to reduce the type, then reuse cast_retty_impl to get the
181 // resultant type.
182 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183};
184
185template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186 // When the simplified type is equal to the from type, use it directly.
187 using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188};
189
190template <class To, class From> struct cast_retty {
191 using ret_type = typename cast_retty_wrap<
192 To, From, typename simplify_type<From>::SimpleType>::ret_type;
193};
194
195//===----------------------------------------------------------------------===//
196// cast_convert_val
197//===----------------------------------------------------------------------===//
198
199// Ensure the non-simple values are converted using the simplify_type template
200// that may be specialized by smart pointers...
201//
202template <class To, class From, class SimpleFrom> struct cast_convert_val {
203 // This is not a simple type, use the template to simplify it...
204 static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205 return cast_convert_val<To, SimpleFrom,
206 typename simplify_type<SimpleFrom>::SimpleType>::
207 doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208 }
209};
210
211template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212 // If it's a reference, switch to a pointer to do the cast and then deref it.
213 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214 return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215 *)&const_cast<FromTy &>(Val);
216 }
217};
218
219template <class To, class FromTy>
220struct cast_convert_val<To, FromTy *, FromTy *> {
221 // If it's a pointer, we can use c-style casting directly.
222 static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223 return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224 Val);
225 }
226};
227
228//===----------------------------------------------------------------------===//
229// is_simple_type
230//===----------------------------------------------------------------------===//
231
232template <class X> struct is_simple_type {
233 static const bool value =
234 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
235};
236
237// } // namespace detail
238
239//===----------------------------------------------------------------------===//
240// CastIsPossible
241//===----------------------------------------------------------------------===//
242
243/// This struct provides a way to check if a given cast is possible. It provides
244/// a static function called isPossible that is used to check if a cast can be
245/// performed. It should be overridden like this:
246///
247/// template<> struct CastIsPossible<foo, bar> {
248/// static inline bool isPossible(const bar &b) {
249/// return bar.isFoo();
250/// }
251/// };
252template <typename To, typename From, typename Enable = void>
253struct CastIsPossible {
254 static inline bool isPossible(const From &f) {
255 return isa_impl_wrap<
256 To, const From,
257 typename simplify_type<const From>::SimpleType>::doit(f);
258 }
259};
260
261// Needed for optional unwrapping. This could be implemented with isa_impl, but
262// we want to implement things in the new method and move old implementations
263// over. In fact, some of the isa_impl templates should be moved over to
264// CastIsPossible.
265template <typename To, typename From>
266struct CastIsPossible<To, std::optional<From>> {
267 static inline bool isPossible(const std::optional<From> &f) {
268 assert(f && "CastIsPossible::isPossible called on a nullopt!")(static_cast <bool> (f && "CastIsPossible::isPossible called on a nullopt!"
) ? void (0) : __assert_fail ("f && \"CastIsPossible::isPossible called on a nullopt!\""
, "llvm/include/llvm/Support/Casting.h", 268, __extension__ __PRETTY_FUNCTION__
))
;
269 return isa_impl_wrap<
270 To, const From,
271 typename simplify_type<const From>::SimpleType>::doit(*f);
272 }
273};
274
275/// Upcasting (from derived to base) and casting from a type to itself should
276/// always be possible.
277template <typename To, typename From>
278struct CastIsPossible<To, From,
279 std::enable_if_t<std::is_base_of<To, From>::value>> {
280 static inline bool isPossible(const From &f) { return true; }
281};
282
283//===----------------------------------------------------------------------===//
284// Cast traits
285//===----------------------------------------------------------------------===//
286
287/// All of these cast traits are meant to be implementations for useful casts
288/// that users may want to use that are outside the standard behavior. An
289/// example of how to use a special cast called `CastTrait` is:
290///
291/// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
292///
293/// Essentially, if your use case falls directly into one of the use cases
294/// supported by a given cast trait, simply inherit your special CastInfo
295/// directly from one of these to avoid having to reimplement the boilerplate
296/// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
297/// provide a subset of those functions.
298
299/// This cast trait just provides castFailed for the specified `To` type to make
300/// CastInfo specializations more declarative. In order to use this, the target
301/// result type must be `To` and `To` must be constructible from `nullptr`.
302template <typename To> struct NullableValueCastFailed {
303 static To castFailed() { return To(nullptr); }
304};
305
306/// This cast trait just provides the default implementation of doCastIfPossible
307/// to make CastInfo specializations more declarative. The `Derived` template
308/// parameter *must* be provided for forwarding castFailed and doCast.
309template <typename To, typename From, typename Derived>
310struct DefaultDoCastIfPossible {
311 static To doCastIfPossible(From f) {
312 if (!Derived::isPossible(f))
23
Taking false branch
58
Taking false branch
313 return Derived::castFailed();
314 return Derived::doCast(f);
24
Calling 'CastInfo::doCast'
30
Returning from 'CastInfo::doCast'
31
Returning pointer, which participates in a condition later
59
Calling 'CastInfo::doCast'
65
Returning from 'CastInfo::doCast'
66
Returning pointer, which participates in a condition later
315 }
316};
317
318namespace detail {
319/// A helper to derive the type to use with `Self` for cast traits, when the
320/// provided CRTP derived type is allowed to be void.
321template <typename OptionalDerived, typename Default>
322using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value,
323 Default, OptionalDerived>;
324} // namespace detail
325
326/// This cast trait provides casting for the specific case of casting to a
327/// value-typed object from a pointer-typed object. Note that `To` must be
328/// nullable/constructible from a pointer to `From` to use this cast.
329template <typename To, typename From, typename Derived = void>
330struct ValueFromPointerCast
331 : public CastIsPossible<To, From *>,
332 public NullableValueCastFailed<To>,
333 public DefaultDoCastIfPossible<
334 To, From *,
335 detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
336 static inline To doCast(From *f) { return To(f); }
337};
338
339/// This cast trait provides std::unique_ptr casting. It has the semantics of
340/// moving the contents of the input unique_ptr into the output unique_ptr
341/// during the cast. It's also a good example of how to implement a move-only
342/// cast.
343template <typename To, typename From, typename Derived = void>
344struct UniquePtrCast : public CastIsPossible<To, From *> {
345 using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
346 using CastResultType = std::unique_ptr<
347 std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
348
349 static inline CastResultType doCast(std::unique_ptr<From> &&f) {
350 return CastResultType((typename CastResultType::element_type *)f.release());
351 }
352
353 static inline CastResultType castFailed() { return CastResultType(nullptr); }
354
355 static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) {
356 if (!Self::isPossible(f))
357 return castFailed();
358 return doCast(f);
359 }
360};
361
362/// This cast trait provides std::optional<T> casting. This means that if you
363/// have a value type, you can cast it to another value type and have dyn_cast
364/// return an std::optional<T>.
365template <typename To, typename From, typename Derived = void>
366struct OptionalValueCast
367 : public CastIsPossible<To, From>,
368 public DefaultDoCastIfPossible<
369 std::optional<To>, From,
370 detail::SelfType<Derived, OptionalValueCast<To, From>>> {
371 static inline std::optional<To> castFailed() { return std::optional<To>{}; }
372
373 static inline std::optional<To> doCast(const From &f) { return To(f); }
374};
375
376/// Provides a cast trait that strips `const` from types to make it easier to
377/// implement a const-version of a non-const cast. It just removes boilerplate
378/// and reduces the amount of code you as the user need to implement. You can
379/// use it like this:
380///
381/// template<> struct CastInfo<foo, bar> {
382/// ...verbose implementation...
383/// };
384///
385/// template<> struct CastInfo<foo, const bar> : public
386/// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
387///
388template <typename To, typename From, typename ForwardTo>
389struct ConstStrippingForwardingCast {
390 // Remove the pointer if it exists, then we can get rid of consts/volatiles.
391 using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
392 // Now if it's a pointer, add it back. Otherwise, we want a ref.
393 using NonConstFrom = std::conditional_t<std::is_pointer<From>::value,
394 DecayedFrom *, DecayedFrom &>;
395
396 static inline bool isPossible(const From &f) {
397 return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
398 }
399
400 static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
7
Calling 'CastInfo::castFailed'
9
Returning from 'CastInfo::castFailed'
10
Returning null pointer, which participates in a condition later
401
402 static inline decltype(auto) doCast(const From &f) {
403 return ForwardTo::doCast(const_cast<NonConstFrom>(f));
404 }
405
406 static inline decltype(auto) doCastIfPossible(const From &f) {
407 return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
22
Calling 'DefaultDoCastIfPossible::doCastIfPossible'
32
Returning from 'DefaultDoCastIfPossible::doCastIfPossible'
33
Returning pointer, which participates in a condition later
57
Calling 'DefaultDoCastIfPossible::doCastIfPossible'
67
Returning from 'DefaultDoCastIfPossible::doCastIfPossible'
68
Returning pointer, which participates in a condition later
408 }
409};
410
411/// Provides a cast trait that uses a defined pointer to pointer cast as a base
412/// for reference-to-reference casts. Note that it does not provide castFailed
413/// and doCastIfPossible because a pointer-to-pointer cast would likely just
414/// return `nullptr` which could cause nullptr dereference. You can use it like
415/// this:
416///
417/// template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
418///
419/// template <>
420/// struct CastInfo<foo, bar>
421/// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
422///
423template <typename To, typename From, typename ForwardTo>
424struct ForwardToPointerCast {
425 static inline bool isPossible(const From &f) {
426 return ForwardTo::isPossible(&f);
427 }
428
429 static inline decltype(auto) doCast(const From &f) {
430 return *ForwardTo::doCast(&f);
431 }
432};
433
434//===----------------------------------------------------------------------===//
435// CastInfo
436//===----------------------------------------------------------------------===//
437
438/// This struct provides a method for customizing the way a cast is performed.
439/// It inherits from CastIsPossible, to support the case of declaring many
440/// CastIsPossible specializations without having to specialize the full
441/// CastInfo.
442///
443/// In order to specialize different behaviors, specify different functions in
444/// your CastInfo specialization.
445/// For isa<> customization, provide:
446///
447/// `static bool isPossible(const From &f)`
448///
449/// For cast<> customization, provide:
450///
451/// `static To doCast(const From &f)`
452///
453/// For dyn_cast<> and the *_if_present<> variants' customization, provide:
454///
455/// `static To castFailed()` and `static To doCastIfPossible(const From &f)`
456///
457/// Your specialization might look something like this:
458///
459/// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
460/// static inline foo doCast(const bar &b) {
461/// return foo(const_cast<bar &>(b));
462/// }
463/// static inline foo castFailed() { return foo(); }
464/// static inline foo doCastIfPossible(const bar &b) {
465/// if (!CastInfo<foo, bar>::isPossible(b))
466/// return castFailed();
467/// return doCast(b);
468/// }
469/// };
470
471// The default implementations of CastInfo don't use cast traits for now because
472// we need to specify types all over the place due to the current expected
473// casting behavior and the way cast_retty works. New use cases can and should
474// take advantage of the cast traits whenever possible!
475
476template <typename To, typename From, typename Enable = void>
477struct CastInfo : public CastIsPossible<To, From> {
478 using Self = CastInfo<To, From, Enable>;
479
480 using CastReturnType = typename cast_retty<To, From>::ret_type;
481
482 static inline CastReturnType doCast(const From &f) {
483 return cast_convert_val<
484 To, From,
485 typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
486 }
487
488 // This assumes that you can construct the cast return type from `nullptr`.
489 // This is largely to support legacy use cases - if you don't want this
490 // behavior you should specialize CastInfo for your use case.
491 static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
492
493 static inline CastReturnType doCastIfPossible(const From &f) {
494 if (!Self::isPossible(f))
495 return castFailed();
496 return doCast(f);
497 }
498};
499
500/// This struct provides an overload for CastInfo where From has simplify_type
501/// defined. This simply forwards to the appropriate CastInfo with the
502/// simplified type/value, so you don't have to implement both.
503template <typename To, typename From>
504struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
505 using Self = CastInfo<To, From>;
506 using SimpleFrom = typename simplify_type<From>::SimpleType;
507 using SimplifiedSelf = CastInfo<To, SimpleFrom>;
508
509 static inline bool isPossible(From &f) {
510 return SimplifiedSelf::isPossible(
511 simplify_type<From>::getSimplifiedValue(f));
512 }
513
514 static inline decltype(auto) doCast(From &f) {
515 return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
516 }
517
518 static inline decltype(auto) castFailed() {
519 return SimplifiedSelf::castFailed();
520 }
521
522 static inline decltype(auto) doCastIfPossible(From &f) {
523 return SimplifiedSelf::doCastIfPossible(
524 simplify_type<From>::getSimplifiedValue(f));
525 }
526};
527
528//===----------------------------------------------------------------------===//
529// Pre-specialized CastInfo
530//===----------------------------------------------------------------------===//
531
532/// Provide a CastInfo specialized for std::unique_ptr.
533template <typename To, typename From>
534struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
535
536/// Provide a CastInfo specialized for std::optional<From>. It's assumed that if
537/// the input is std::optional<From> that the output can be std::optional<To>.
538/// If that's not the case, specialize CastInfo for your use case.
539template <typename To, typename From>
540struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> {
541};
542
543/// isa<X> - Return true if the parameter to the template is an instance of one
544/// of the template type arguments. Used like this:
545///
546/// if (isa<Type>(myVal)) { ... }
547/// if (isa<Type0, Type1, Type2>(myVal)) { ... }
548template <typename To, typename From>
549[[nodiscard]] inline bool isa(const From &Val) {
550 return CastInfo<To, const From>::isPossible(Val);
551}
552
553template <typename First, typename Second, typename... Rest, typename From>
554[[nodiscard]] inline bool isa(const From &Val) {
555 return isa<First>(Val) || isa<Second, Rest...>(Val);
556}
557
558/// cast<X> - Return the argument parameter cast to the specified type. This
559/// casting operator asserts that the type is correct, so it does not return
560/// null on failure. It does not allow a null argument (use cast_if_present for
561/// that). It is typically used like this:
562///
563/// cast<Instruction>(myVal)->getParent()
564
565template <typename To, typename From>
566[[nodiscard]] inline decltype(auto) cast(const From &Val) {
567 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 567, __extension__ __PRETTY_FUNCTION__
))
;
568 return CastInfo<To, const From>::doCast(Val);
569}
570
571template <typename To, typename From>
572[[nodiscard]] inline decltype(auto) cast(From &Val) {
573 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 573, __extension__ __PRETTY_FUNCTION__
))
;
574 return CastInfo<To, From>::doCast(Val);
575}
576
577template <typename To, typename From>
578[[nodiscard]] inline decltype(auto) cast(From *Val) {
579 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 579, __extension__ __PRETTY_FUNCTION__
))
;
580 return CastInfo<To, From *>::doCast(Val);
581}
582
583template <typename To, typename From>
584[[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
585 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 585, __extension__ __PRETTY_FUNCTION__
))
;
586 return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
587}
588
589//===----------------------------------------------------------------------===//
590// ValueIsPresent
591//===----------------------------------------------------------------------===//
592
593template <typename T>
594constexpr bool IsNullable =
595 std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
596
597/// ValueIsPresent provides a way to check if a value is, well, present. For
598/// pointers, this is the equivalent of checking against nullptr, for Optionals
599/// this is the equivalent of checking hasValue(). It also provides a method for
600/// unwrapping a value (think calling .value() on an optional).
601
602// Generic values can't *not* be present.
603template <typename T, typename Enable = void> struct ValueIsPresent {
604 using UnwrappedType = T;
605 static inline bool isPresent(const T &t) { return true; }
606 static inline decltype(auto) unwrapValue(T &t) { return t; }
607};
608
609// Optional provides its own way to check if something is present.
610template <typename T> struct ValueIsPresent<std::optional<T>> {
611 using UnwrappedType = T;
612 static inline bool isPresent(const std::optional<T> &t) {
613 return t.has_value();
614 }
615 static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; }
616};
617
618// If something is "nullable" then we just compare it to nullptr to see if it
619// exists.
620template <typename T>
621struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
622 using UnwrappedType = T;
623 static inline bool isPresent(const T &t) { return t != T(nullptr); }
624 static inline decltype(auto) unwrapValue(T &t) { return t; }
625};
626
627namespace detail {
628// Convenience function we can use to check if a value is present. Because of
629// simplify_type, we have to call it on the simplified type for now.
630template <typename T> inline bool isPresent(const T &t) {
631 return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
632 simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
633}
634
635// Convenience function we can use to unwrap a value.
636template <typename T> inline decltype(auto) unwrapValue(T &t) {
637 return ValueIsPresent<T>::unwrapValue(t);
638}
639} // namespace detail
640
641/// dyn_cast<X> - Return the argument parameter cast to the specified type. This
642/// casting operator returns null if the argument is of the wrong type, so it
643/// can be used to test for a type as well as cast if successful. The value
644/// passed in must be present, if not, use dyn_cast_if_present. This should be
645/// used in the context of an if statement like this:
646///
647/// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
648
649template <typename To, typename From>
650[[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
651 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 651, __extension__ __PRETTY_FUNCTION__
))
;
652 return CastInfo<To, const From>::doCastIfPossible(Val);
653}
654
655template <typename To, typename From>
656[[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
657 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 657, __extension__ __PRETTY_FUNCTION__
))
;
658 return CastInfo<To, From>::doCastIfPossible(Val);
659}
660
661template <typename To, typename From>
662[[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
663 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 663, __extension__ __PRETTY_FUNCTION__
))
;
664 return CastInfo<To, From *>::doCastIfPossible(Val);
665}
666
667template <typename To, typename From>
668[[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) {
669 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 669, __extension__ __PRETTY_FUNCTION__
))
;
670 return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(
671 std::forward<std::unique_ptr<From> &&>(Val));
672}
673
674/// isa_and_present<X> - Functionally identical to isa, except that a null value
675/// is accepted.
676template <typename... X, class Y>
677[[nodiscard]] inline bool isa_and_present(const Y &Val) {
678 if (!detail::isPresent(Val))
679 return false;
680 return isa<X...>(Val);
681}
682
683template <typename... X, class Y>
684[[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
685 return isa_and_present<X...>(Val);
686}
687
688/// cast_if_present<X> - Functionally identical to cast, except that a null
689/// value is accepted.
690template <class X, class Y>
691[[nodiscard]] inline auto cast_if_present(const Y &Val) {
692 if (!detail::isPresent(Val))
693 return CastInfo<X, const Y>::castFailed();
694 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 694, __extension__ __PRETTY_FUNCTION__
))
;
695 return cast<X>(detail::unwrapValue(Val));
696}
697
698template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
699 if (!detail::isPresent(Val))
700 return CastInfo<X, Y>::castFailed();
701 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 701, __extension__ __PRETTY_FUNCTION__
))
;
702 return cast<X>(detail::unwrapValue(Val));
703}
704
705template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
706 if (!detail::isPresent(Val))
707 return CastInfo<X, Y *>::castFailed();
708 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 708, __extension__ __PRETTY_FUNCTION__
))
;
709 return cast<X>(detail::unwrapValue(Val));
710}
711
712template <class X, class Y>
713[[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
714 if (!detail::isPresent(Val))
715 return UniquePtrCast<X, Y>::castFailed();
716 return UniquePtrCast<X, Y>::doCast(std::move(Val));
717}
718
719// Provide a forwarding from cast_or_null to cast_if_present for current
720// users. This is deprecated and will be removed in a future patch, use
721// cast_if_present instead.
722template <class X, class Y> auto cast_or_null(const Y &Val) {
723 return cast_if_present<X>(Val);
724}
725
726template <class X, class Y> auto cast_or_null(Y &Val) {
727 return cast_if_present<X>(Val);
728}
729
730template <class X, class Y> auto cast_or_null(Y *Val) {
731 return cast_if_present<X>(Val);
732}
733
734template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
735 return cast_if_present<X>(std::move(Val));
736}
737
738/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
739/// null (or none in the case of optionals) value is accepted.
740template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
741 if (!detail::isPresent(Val))
4
Assuming the condition is true
5
Taking true branch
19
Assuming the condition is false
20
Taking false branch
54
Assuming the condition is false
55
Taking false branch
742 return CastInfo<X, const Y>::castFailed();
6
Calling 'ConstStrippingForwardingCast::castFailed'
11
Returning from 'ConstStrippingForwardingCast::castFailed'
12
Returning null pointer, which participates in a condition later
743 return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
21
Calling 'ConstStrippingForwardingCast::doCastIfPossible'
34
Returning from 'ConstStrippingForwardingCast::doCastIfPossible'
35
Returning pointer, which participates in a condition later
56
Calling 'ConstStrippingForwardingCast::doCastIfPossible'
69
Returning from 'ConstStrippingForwardingCast::doCastIfPossible'
70
Returning pointer, which participates in a condition later
744}
745
746template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
747 if (!detail::isPresent(Val))
748 return CastInfo<X, Y>::castFailed();
749 return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
750}
751
752template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
753 if (!detail::isPresent(Val))
754 return CastInfo<X, Y *>::castFailed();
755 return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
756}
757
758// Forwards to dyn_cast_if_present to avoid breaking current users. This is
759// deprecated and will be removed in a future patch, use
760// cast_if_present instead.
761template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
762 return dyn_cast_if_present<X>(Val);
763}
764
765template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
766 return dyn_cast_if_present<X>(Val);
767}
768
769template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
770 return dyn_cast_if_present<X>(Val);
771}
772
773/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
774/// taking ownership of the input pointer iff isa<X>(Val) is true. If the
775/// cast is successful, From refers to nullptr on exit and the casted value
776/// is returned. If the cast is unsuccessful, the function returns nullptr
777/// and From is unchanged.
778template <class X, class Y>
779[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
780unique_dyn_cast(std::unique_ptr<Y> &Val) {
781 if (!isa<X>(Val))
782 return nullptr;
783 return cast<X>(std::move(Val));
784}
785
786template <class X, class Y>
787[[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
788 return unique_dyn_cast<X, Y>(Val);
789}
790
791// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
792// except that a null value is accepted.
793template <class X, class Y>
794[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
795unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
796 if (!Val)
797 return nullptr;
798 return unique_dyn_cast<X, Y>(Val);
799}
800
801template <class X, class Y>
802[[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
803 return unique_dyn_cast_or_null<X, Y>(Val);
804}
805
806} // end namespace llvm
807
808#endif // LLVM_SUPPORT_CASTING_H

/build/source/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/TrailingObjects.h"
48#include "llvm/Support/type_traits.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class BTFTypeTagAttr;
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132class UsingShadowDecl;
133
134using CanQualType = CanQual<Type>;
135
136// Provide forward declarations for all of the *Type classes.
137#define TYPE(Class, Base) class Class##Type;
138#include "clang/AST/TypeNodes.inc"
139
140/// The collection of all-type qualifiers we support.
141/// Clang supports five independent qualifiers:
142/// * C99: const, volatile, and restrict
143/// * MS: __unaligned
144/// * Embedded C (TR18037): address spaces
145/// * Objective C: the GC attributes (none, weak, or strong)
146class Qualifiers {
147public:
148 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
149 Const = 0x1,
150 Restrict = 0x2,
151 Volatile = 0x4,
152 CVRMask = Const | Volatile | Restrict
153 };
154
155 enum GC {
156 GCNone = 0,
157 Weak,
158 Strong
159 };
160
161 enum ObjCLifetime {
162 /// There is no lifetime qualification on this type.
163 OCL_None,
164
165 /// This object can be modified without requiring retains or
166 /// releases.
167 OCL_ExplicitNone,
168
169 /// Assigning into this object requires the old value to be
170 /// released and the new value to be retained. The timing of the
171 /// release of the old value is inexact: it may be moved to
172 /// immediately after the last known point where the value is
173 /// live.
174 OCL_Strong,
175
176 /// Reading or writing from this object requires a barrier call.
177 OCL_Weak,
178
179 /// Assigning into this object requires a lifetime extension.
180 OCL_Autoreleasing
181 };
182
183 enum {
184 /// The maximum supported address space number.
185 /// 23 bits should be enough for anyone.
186 MaxAddressSpace = 0x7fffffu,
187
188 /// The width of the "fast" qualifier mask.
189 FastWidth = 3,
190
191 /// The fast qualifier mask.
192 FastMask = (1 << FastWidth) - 1
193 };
194
195 /// Returns the common set of qualifiers while removing them from
196 /// the given sets.
197 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
198 // If both are only CVR-qualified, bit operations are sufficient.
199 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
200 Qualifiers Q;
201 Q.Mask = L.Mask & R.Mask;
202 L.Mask &= ~Q.Mask;
203 R.Mask &= ~Q.Mask;
204 return Q;
205 }
206
207 Qualifiers Q;
208 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
209 Q.addCVRQualifiers(CommonCRV);
210 L.removeCVRQualifiers(CommonCRV);
211 R.removeCVRQualifiers(CommonCRV);
212
213 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
214 Q.setObjCGCAttr(L.getObjCGCAttr());
215 L.removeObjCGCAttr();
216 R.removeObjCGCAttr();
217 }
218
219 if (L.getObjCLifetime() == R.getObjCLifetime()) {
220 Q.setObjCLifetime(L.getObjCLifetime());
221 L.removeObjCLifetime();
222 R.removeObjCLifetime();
223 }
224
225 if (L.getAddressSpace() == R.getAddressSpace()) {
226 Q.setAddressSpace(L.getAddressSpace());
227 L.removeAddressSpace();
228 R.removeAddressSpace();
229 }
230 return Q;
231 }
232
233 static Qualifiers fromFastMask(unsigned Mask) {
234 Qualifiers Qs;
235 Qs.addFastQualifiers(Mask);
236 return Qs;
237 }
238
239 static Qualifiers fromCVRMask(unsigned CVR) {
240 Qualifiers Qs;
241 Qs.addCVRQualifiers(CVR);
242 return Qs;
243 }
244
245 static Qualifiers fromCVRUMask(unsigned CVRU) {
246 Qualifiers Qs;
247 Qs.addCVRUQualifiers(CVRU);
248 return Qs;
249 }
250
251 // Deserialize qualifiers from an opaque representation.
252 static Qualifiers fromOpaqueValue(unsigned opaque) {
253 Qualifiers Qs;
254 Qs.Mask = opaque;
255 return Qs;
256 }
257
258 // Serialize these qualifiers into an opaque representation.
259 unsigned getAsOpaqueValue() const {
260 return Mask;
261 }
262
263 bool hasConst() const { return Mask & Const; }
264 bool hasOnlyConst() const { return Mask == Const; }
265 void removeConst() { Mask &= ~Const; }
266 void addConst() { Mask |= Const; }
267 Qualifiers withConst() const {
268 Qualifiers Qs = *this;
269 Qs.addConst();
270 return Qs;
271 }
272
273 bool hasVolatile() const { return Mask & Volatile; }
274 bool hasOnlyVolatile() const { return Mask == Volatile; }
275 void removeVolatile() { Mask &= ~Volatile; }
276 void addVolatile() { Mask |= Volatile; }
277 Qualifiers withVolatile() const {
278 Qualifiers Qs = *this;
279 Qs.addVolatile();
280 return Qs;
281 }
282
283 bool hasRestrict() const { return Mask & Restrict; }
284 bool hasOnlyRestrict() const { return Mask == Restrict; }
285 void removeRestrict() { Mask &= ~Restrict; }
286 void addRestrict() { Mask |= Restrict; }
287 Qualifiers withRestrict() const {
288 Qualifiers Qs = *this;
289 Qs.addRestrict();
290 return Qs;
291 }
292
293 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
294 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
295 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
296
297 void setCVRQualifiers(unsigned mask) {
298 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 298, __extension__ __PRETTY_FUNCTION__
))
;
299 Mask = (Mask & ~CVRMask) | mask;
300 }
301 void removeCVRQualifiers(unsigned mask) {
302 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 302, __extension__ __PRETTY_FUNCTION__
))
;
303 Mask &= ~mask;
304 }
305 void removeCVRQualifiers() {
306 removeCVRQualifiers(CVRMask);
307 }
308 void addCVRQualifiers(unsigned mask) {
309 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 309, __extension__ __PRETTY_FUNCTION__
))
;
310 Mask |= mask;
311 }
312 void addCVRUQualifiers(unsigned mask) {
313 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "clang/include/clang/AST/Type.h", 313, __extension__ __PRETTY_FUNCTION__
))
;
314 Mask |= mask;
315 }
316
317 bool hasUnaligned() const { return Mask & UMask; }
318 void setUnaligned(bool flag) {
319 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
320 }
321 void removeUnaligned() { Mask &= ~UMask; }
322 void addUnaligned() { Mask |= UMask; }
323
324 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
325 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
326 void setObjCGCAttr(GC type) {
327 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
328 }
329 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
330 void addObjCGCAttr(GC type) {
331 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 331, __extension__ __PRETTY_FUNCTION__
))
;
332 setObjCGCAttr(type);
333 }
334 Qualifiers withoutObjCGCAttr() const {
335 Qualifiers qs = *this;
336 qs.removeObjCGCAttr();
337 return qs;
338 }
339 Qualifiers withoutObjCLifetime() const {
340 Qualifiers qs = *this;
341 qs.removeObjCLifetime();
342 return qs;
343 }
344 Qualifiers withoutAddressSpace() const {
345 Qualifiers qs = *this;
346 qs.removeAddressSpace();
347 return qs;
348 }
349
350 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
351 ObjCLifetime getObjCLifetime() const {
352 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
353 }
354 void setObjCLifetime(ObjCLifetime type) {
355 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
356 }
357 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
358 void addObjCLifetime(ObjCLifetime type) {
359 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 359, __extension__ __PRETTY_FUNCTION__
))
;
360 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "clang/include/clang/AST/Type.h", 360
, __extension__ __PRETTY_FUNCTION__))
;
361 Mask |= (type << LifetimeShift);
362 }
363
364 /// True if the lifetime is neither None or ExplicitNone.
365 bool hasNonTrivialObjCLifetime() const {
366 ObjCLifetime lifetime = getObjCLifetime();
367 return (lifetime > OCL_ExplicitNone);
368 }
369
370 /// True if the lifetime is either strong or weak.
371 bool hasStrongOrWeakObjCLifetime() const {
372 ObjCLifetime lifetime = getObjCLifetime();
373 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
374 }
375
376 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
377 LangAS getAddressSpace() const {
378 return static_cast<LangAS>(Mask >> AddressSpaceShift);
379 }
380 bool hasTargetSpecificAddressSpace() const {
381 return isTargetAddressSpace(getAddressSpace());
382 }
383 /// Get the address space attribute value to be printed by diagnostics.
384 unsigned getAddressSpaceAttributePrintValue() const {
385 auto Addr = getAddressSpace();
386 // This function is not supposed to be used with language specific
387 // address spaces. If that happens, the diagnostic message should consider
388 // printing the QualType instead of the address space value.
389 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "clang/include/clang/AST/Type.h", 389, __extension__ __PRETTY_FUNCTION__
))
;
390 if (Addr != LangAS::Default)
391 return toTargetAddressSpace(Addr);
392 // TODO: The diagnostic messages where Addr may be 0 should be fixed
393 // since it cannot differentiate the situation where 0 denotes the default
394 // address space or user specified __attribute__((address_space(0))).
395 return 0;
396 }
397 void setAddressSpace(LangAS space) {
398 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "clang/include/clang/AST/Type.h", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 Mask = (Mask & ~AddressSpaceMask)
400 | (((uint32_t) space) << AddressSpaceShift);
401 }
402 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
403 void addAddressSpace(LangAS space) {
404 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "clang/include/clang/AST/Type.h"
, 404, __extension__ __PRETTY_FUNCTION__))
;
405 setAddressSpace(space);
406 }
407
408 // Fast qualifiers are those that can be allocated directly
409 // on a QualType object.
410 bool hasFastQualifiers() const { return getFastQualifiers(); }
411 unsigned getFastQualifiers() const { return Mask & FastMask; }
412 void setFastQualifiers(unsigned mask) {
413 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 413, __extension__ __PRETTY_FUNCTION__
))
;
414 Mask = (Mask & ~FastMask) | mask;
415 }
416 void removeFastQualifiers(unsigned mask) {
417 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 417, __extension__ __PRETTY_FUNCTION__
))
;
418 Mask &= ~mask;
419 }
420 void removeFastQualifiers() {
421 removeFastQualifiers(FastMask);
422 }
423 void addFastQualifiers(unsigned mask) {
424 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 424, __extension__ __PRETTY_FUNCTION__
))
;
425 Mask |= mask;
426 }
427
428 /// Return true if the set contains any qualifiers which require an ExtQuals
429 /// node to be allocated.
430 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
431 Qualifiers getNonFastQualifiers() const {
432 Qualifiers Quals = *this;
433 Quals.setFastQualifiers(0);
434 return Quals;
435 }
436
437 /// Return true if the set contains any qualifiers.
438 bool hasQualifiers() const { return Mask; }
439 bool empty() const { return !Mask; }
440
441 /// Add the qualifiers from the given set to this set.
442 void addQualifiers(Qualifiers Q) {
443 // If the other set doesn't have any non-boolean qualifiers, just
444 // bit-or it in.
445 if (!(Q.Mask & ~CVRMask))
446 Mask |= Q.Mask;
447 else {
448 Mask |= (Q.Mask & CVRMask);
449 if (Q.hasAddressSpace())
450 addAddressSpace(Q.getAddressSpace());
451 if (Q.hasObjCGCAttr())
452 addObjCGCAttr(Q.getObjCGCAttr());
453 if (Q.hasObjCLifetime())
454 addObjCLifetime(Q.getObjCLifetime());
455 }
456 }
457
458 /// Remove the qualifiers from the given set from this set.
459 void removeQualifiers(Qualifiers Q) {
460 // If the other set doesn't have any non-boolean qualifiers, just
461 // bit-and the inverse in.
462 if (!(Q.Mask & ~CVRMask))
463 Mask &= ~Q.Mask;
464 else {
465 Mask &= ~(Q.Mask & CVRMask);
466 if (getObjCGCAttr() == Q.getObjCGCAttr())
467 removeObjCGCAttr();
468 if (getObjCLifetime() == Q.getObjCLifetime())
469 removeObjCLifetime();
470 if (getAddressSpace() == Q.getAddressSpace())
471 removeAddressSpace();
472 }
473 }
474
475 /// Add the qualifiers from the given set to this set, given that
476 /// they don't conflict.
477 void addConsistentQualifiers(Qualifiers qs) {
478 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 479, __extension__ __PRETTY_FUNCTION__
))
479 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 479, __extension__ __PRETTY_FUNCTION__
))
;
480 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 481, __extension__ __PRETTY_FUNCTION__
))
481 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 481, __extension__ __PRETTY_FUNCTION__
))
;
482 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 483, __extension__ __PRETTY_FUNCTION__
))
483 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 483, __extension__ __PRETTY_FUNCTION__
))
;
484 Mask |= qs.Mask;
485 }
486
487 /// Returns true if address space A is equal to or a superset of B.
488 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
489 /// overlapping address spaces.
490 /// CL1.1 or CL1.2:
491 /// every address space is a superset of itself.
492 /// CL2.0 adds:
493 /// __generic is a superset of any address space except for __constant.
494 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
495 // Address spaces must match exactly.
496 return A == B ||
497 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
498 // for __constant can be used as __generic.
499 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
500 // We also define global_device and global_host address spaces,
501 // to distinguish global pointers allocated on host from pointers
502 // allocated on device, which are a subset of __global.
503 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
504 B == LangAS::opencl_global_host)) ||
505 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
506 B == LangAS::sycl_global_host)) ||
507 // Consider pointer size address spaces to be equivalent to default.
508 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
509 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
510 // Default is a superset of SYCL address spaces.
511 (A == LangAS::Default &&
512 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
513 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
514 B == LangAS::sycl_global_host)) ||
515 // In HIP device compilation, any cuda address space is allowed
516 // to implicitly cast into the default address space.
517 (A == LangAS::Default &&
518 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
519 B == LangAS::cuda_shared));
520 }
521
522 /// Returns true if the address space in these qualifiers is equal to or
523 /// a superset of the address space in the argument qualifiers.
524 bool isAddressSpaceSupersetOf(Qualifiers other) const {
525 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
526 }
527
528 /// Determines if these qualifiers compatibly include another set.
529 /// Generally this answers the question of whether an object with the other
530 /// qualifiers can be safely used as an object with these qualifiers.
531 bool compatiblyIncludes(Qualifiers other) const {
532 return isAddressSpaceSupersetOf(other) &&
533 // ObjC GC qualifiers can match, be added, or be removed, but can't
534 // be changed.
535 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
536 !other.hasObjCGCAttr()) &&
537 // ObjC lifetime qualifiers must match exactly.
538 getObjCLifetime() == other.getObjCLifetime() &&
539 // CVR qualifiers may subset.
540 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
541 // U qualifier may superset.
542 (!other.hasUnaligned() || hasUnaligned());
543 }
544
545 /// Determines if these qualifiers compatibly include another set of
546 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
547 ///
548 /// One set of Objective-C lifetime qualifiers compatibly includes the other
549 /// if the lifetime qualifiers match, or if both are non-__weak and the
550 /// including set also contains the 'const' qualifier, or both are non-__weak
551 /// and one is None (which can only happen in non-ARC modes).
552 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
553 if (getObjCLifetime() == other.getObjCLifetime())
554 return true;
555
556 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
557 return false;
558
559 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
560 return true;
561
562 return hasConst();
563 }
564
565 /// Determine whether this set of qualifiers is a strict superset of
566 /// another set of qualifiers, not considering qualifier compatibility.
567 bool isStrictSupersetOf(Qualifiers Other) const;
568
569 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
570 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
571
572 explicit operator bool() const { return hasQualifiers(); }
573
574 Qualifiers &operator+=(Qualifiers R) {
575 addQualifiers(R);
576 return *this;
577 }
578
579 // Union two qualifier sets. If an enumerated qualifier appears
580 // in both sets, use the one from the right.
581 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
582 L += R;
583 return L;
584 }
585
586 Qualifiers &operator-=(Qualifiers R) {
587 removeQualifiers(R);
588 return *this;
589 }
590
591 /// Compute the difference between two qualifier sets.
592 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
593 L -= R;
594 return L;
595 }
596
597 std::string getAsString() const;
598 std::string getAsString(const PrintingPolicy &Policy) const;
599
600 static std::string getAddrSpaceAsString(LangAS AS);
601
602 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
603 void print(raw_ostream &OS, const PrintingPolicy &Policy,
604 bool appendSpaceIfNonEmpty = false) const;
605
606 void Profile(llvm::FoldingSetNodeID &ID) const {
607 ID.AddInteger(Mask);
608 }
609
610private:
611 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
612 // |C R V|U|GCAttr|Lifetime|AddressSpace|
613 uint32_t Mask = 0;
614
615 static const uint32_t UMask = 0x8;
616 static const uint32_t UShift = 3;
617 static const uint32_t GCAttrMask = 0x30;
618 static const uint32_t GCAttrShift = 4;
619 static const uint32_t LifetimeMask = 0x1C0;
620 static const uint32_t LifetimeShift = 6;
621 static const uint32_t AddressSpaceMask =
622 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
623 static const uint32_t AddressSpaceShift = 9;
624};
625
626class QualifiersAndAtomic {
627 Qualifiers Quals;
628 bool HasAtomic;
629
630public:
631 QualifiersAndAtomic() : HasAtomic(false) {}
632 QualifiersAndAtomic(Qualifiers Quals, bool HasAtomic)
633 : Quals(Quals), HasAtomic(HasAtomic) {}
634
635 operator Qualifiers() const { return Quals; }
636
637 bool hasVolatile() const { return Quals.hasVolatile(); }
638 bool hasConst() const { return Quals.hasConst(); }
639 bool hasRestrict() const { return Quals.hasRestrict(); }
640 bool hasAtomic() const { return HasAtomic; }
641
642 void addVolatile() { Quals.addVolatile(); }
643 void addConst() { Quals.addConst(); }
644 void addRestrict() { Quals.addRestrict(); }
645 void addAtomic() { HasAtomic = true; }
646
647 void removeVolatile() { Quals.removeVolatile(); }
648 void removeConst() { Quals.removeConst(); }
649 void removeRestrict() { Quals.removeRestrict(); }
650 void removeAtomic() { HasAtomic = false; }
651
652 QualifiersAndAtomic withVolatile() {
653 return {Quals.withVolatile(), HasAtomic};
654 }
655 QualifiersAndAtomic withConst() { return {Quals.withConst(), HasAtomic}; }
656 QualifiersAndAtomic withRestrict() {
657 return {Quals.withRestrict(), HasAtomic};
658 }
659 QualifiersAndAtomic withAtomic() { return {Quals, true}; }
660
661 QualifiersAndAtomic &operator+=(Qualifiers RHS) {
662 Quals += RHS;
663 return *this;
664 }
665};
666
667/// A std::pair-like structure for storing a qualified type split
668/// into its local qualifiers and its locally-unqualified type.
669struct SplitQualType {
670 /// The locally-unqualified type.
671 const Type *Ty = nullptr;
672
673 /// The local qualifiers.
674 Qualifiers Quals;
675
676 SplitQualType() = default;
677 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
678
679 SplitQualType getSingleStepDesugaredType() const; // end of this file
680
681 // Make std::tie work.
682 std::pair<const Type *,Qualifiers> asPair() const {
683 return std::pair<const Type *, Qualifiers>(Ty, Quals);
684 }
685
686 friend bool operator==(SplitQualType a, SplitQualType b) {
687 return a.Ty == b.Ty && a.Quals == b.Quals;
688 }
689 friend bool operator!=(SplitQualType a, SplitQualType b) {
690 return a.Ty != b.Ty || a.Quals != b.Quals;
691 }
692};
693
694/// The kind of type we are substituting Objective-C type arguments into.
695///
696/// The kind of substitution affects the replacement of type parameters when
697/// no concrete type information is provided, e.g., when dealing with an
698/// unspecialized type.
699enum class ObjCSubstitutionContext {
700 /// An ordinary type.
701 Ordinary,
702
703 /// The result type of a method or function.
704 Result,
705
706 /// The parameter type of a method or function.
707 Parameter,
708
709 /// The type of a property.
710 Property,
711
712 /// The superclass of a type.
713 Superclass,
714};
715
716/// The kind of 'typeof' expression we're after.
717enum class TypeOfKind : uint8_t {
718 Qualified,
719 Unqualified,
720};
721
722/// A (possibly-)qualified type.
723///
724/// For efficiency, we don't store CV-qualified types as nodes on their
725/// own: instead each reference to a type stores the qualifiers. This
726/// greatly reduces the number of nodes we need to allocate for types (for
727/// example we only need one for 'int', 'const int', 'volatile int',
728/// 'const volatile int', etc).
729///
730/// As an added efficiency bonus, instead of making this a pair, we
731/// just store the two bits we care about in the low bits of the
732/// pointer. To handle the packing/unpacking, we make QualType be a
733/// simple wrapper class that acts like a smart pointer. A third bit
734/// indicates whether there are extended qualifiers present, in which
735/// case the pointer points to a special structure.
736class QualType {
737 friend class QualifierCollector;
738
739 // Thankfully, these are efficiently composable.
740 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
741 Qualifiers::FastWidth> Value;
742
743 const ExtQuals *getExtQualsUnsafe() const {
744 return Value.getPointer().get<const ExtQuals*>();
745 }
746
747 const Type *getTypePtrUnsafe() const {
748 return Value.getPointer().get<const Type*>();
749 }
750
751 const ExtQualsTypeCommonBase *getCommonPtr() const {
752 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "clang/include/clang/AST/Type.h", 752, __extension__ __PRETTY_FUNCTION__
))
;
753 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
754 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
755 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
756 }
757
758public:
759 QualType() = default;
760 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
761 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
762
763 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
764 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
765
766 /// Retrieves a pointer to the underlying (unqualified) type.
767 ///
768 /// This function requires that the type not be NULL. If the type might be
769 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
770 const Type *getTypePtr() const;
771
772 const Type *getTypePtrOrNull() const;
773
774 /// Retrieves a pointer to the name of the base type.
775 const IdentifierInfo *getBaseTypeIdentifier() const;
776
777 /// Divides a QualType into its unqualified type and a set of local
778 /// qualifiers.
779 SplitQualType split() const;
780
781 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
782
783 static QualType getFromOpaquePtr(const void *Ptr) {
784 QualType T;
785 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
786 return T;
787 }
788
789 const Type &operator*() const {
790 return *getTypePtr();
791 }
792
793 const Type *operator->() const {
794 return getTypePtr();
795 }
796
797 bool isCanonical() const;
798 bool isCanonicalAsParam() const;
799
800 /// Return true if this QualType doesn't point to a type yet.
801 bool isNull() const {
802 return Value.getPointer().isNull();
803 }
804
805 // Determines if a type can form `T&`.
806 bool isReferenceable() const;
807
808 /// Determine whether this particular QualType instance has the
809 /// "const" qualifier set, without looking through typedefs that may have
810 /// added "const" at a different level.
811 bool isLocalConstQualified() const {
812 return (getLocalFastQualifiers() & Qualifiers::Const);
813 }
814
815 /// Determine whether this type is const-qualified.
816 bool isConstQualified() const;
817
818 /// Determine whether this particular QualType instance has the
819 /// "restrict" qualifier set, without looking through typedefs that may have
820 /// added "restrict" at a different level.
821 bool isLocalRestrictQualified() const {
822 return (getLocalFastQualifiers() & Qualifiers::Restrict);
823 }
824
825 /// Determine whether this type is restrict-qualified.
826 bool isRestrictQualified() const;
827
828 /// Determine whether this particular QualType instance has the
829 /// "volatile" qualifier set, without looking through typedefs that may have
830 /// added "volatile" at a different level.
831 bool isLocalVolatileQualified() const {
832 return (getLocalFastQualifiers() & Qualifiers::Volatile);
833 }
834
835 /// Determine whether this type is volatile-qualified.
836 bool isVolatileQualified() const;
837
838 /// Determine whether this particular QualType instance has any
839 /// qualifiers, without looking through any typedefs that might add
840 /// qualifiers at a different level.
841 bool hasLocalQualifiers() const {
842 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
843 }
844
845 /// Determine whether this type has any qualifiers.
846 bool hasQualifiers() const;
847
848 /// Determine whether this particular QualType instance has any
849 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
850 /// instance.
851 bool hasLocalNonFastQualifiers() const {
852 return Value.getPointer().is<const ExtQuals*>();
853 }
854
855 /// Retrieve the set of qualifiers local to this particular QualType
856 /// instance, not including any qualifiers acquired through typedefs or
857 /// other sugar.
858 Qualifiers getLocalQualifiers() const;
859
860 /// Retrieve the set of qualifiers applied to this type.
861 Qualifiers getQualifiers() const;
862
863 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
864 /// local to this particular QualType instance, not including any qualifiers
865 /// acquired through typedefs or other sugar.
866 unsigned getLocalCVRQualifiers() const {
867 return getLocalFastQualifiers();
868 }
869
870 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
871 /// applied to this type.
872 unsigned getCVRQualifiers() const;
873
874 bool isConstant(const ASTContext& Ctx) const {
875 return QualType::isConstant(*this, Ctx);
876 }
877
878 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
879 bool isPODType(const ASTContext &Context) const;
880
881 /// Return true if this is a POD type according to the rules of the C++98
882 /// standard, regardless of the current compilation's language.
883 bool isCXX98PODType(const ASTContext &Context) const;
884
885 /// Return true if this is a POD type according to the more relaxed rules
886 /// of the C++11 standard, regardless of the current compilation's language.
887 /// (C++0x [basic.types]p9). Note that, unlike
888 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
889 bool isCXX11PODType(const ASTContext &Context) const;
890
891 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
892 bool isTrivialType(const ASTContext &Context) const;
893
894 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
895 bool isTriviallyCopyableType(const ASTContext &Context) const;
896
897 /// Return true if this is a trivially relocatable type.
898 bool isTriviallyRelocatableType(const ASTContext &Context) const;
899
900 /// Returns true if it is a class and it might be dynamic.
901 bool mayBeDynamicClass() const;
902
903 /// Returns true if it is not a class or if the class might not be dynamic.
904 bool mayBeNotDynamicClass() const;
905
906 // Don't promise in the API that anything besides 'const' can be
907 // easily added.
908
909 /// Add the `const` type qualifier to this QualType.
910 void addConst() {
911 addFastQualifiers(Qualifiers::Const);
912 }
913 QualType withConst() const {
914 return withFastQualifiers(Qualifiers::Const);
915 }
916
917 /// Add the `volatile` type qualifier to this QualType.
918 void addVolatile() {
919 addFastQualifiers(Qualifiers::Volatile);
920 }
921 QualType withVolatile() const {
922 return withFastQualifiers(Qualifiers::Volatile);
923 }
924
925 /// Add the `restrict` qualifier to this QualType.
926 void addRestrict() {
927 addFastQualifiers(Qualifiers::Restrict);
928 }
929 QualType withRestrict() const {
930 return withFastQualifiers(Qualifiers::Restrict);
931 }
932
933 QualType withCVRQualifiers(unsigned CVR) const {
934 return withFastQualifiers(CVR);
935 }
936
937 void addFastQualifiers(unsigned TQs) {
938 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 939, __extension__ __PRETTY_FUNCTION__
))
939 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 939, __extension__ __PRETTY_FUNCTION__
))
;
940 Value.setInt(Value.getInt() | TQs);
941 }
942
943 void removeLocalConst();
944 void removeLocalVolatile();
945 void removeLocalRestrict();
946 void removeLocalCVRQualifiers(unsigned Mask);
947
948 void removeLocalFastQualifiers() { Value.setInt(0); }
949 void removeLocalFastQualifiers(unsigned Mask) {
950 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "clang/include/clang/AST/Type.h", 950, __extension__ __PRETTY_FUNCTION__
))
;
951 Value.setInt(Value.getInt() & ~Mask);
952 }
953
954 // Creates a type with the given qualifiers in addition to any
955 // qualifiers already on this type.
956 QualType withFastQualifiers(unsigned TQs) const {
957 QualType T = *this;
958 T.addFastQualifiers(TQs);
959 return T;
960 }
961
962 // Creates a type with exactly the given fast qualifiers, removing
963 // any existing fast qualifiers.
964 QualType withExactLocalFastQualifiers(unsigned TQs) const {
965 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
966 }
967
968 // Removes fast qualifiers, but leaves any extended qualifiers in place.
969 QualType withoutLocalFastQualifiers() const {
970 QualType T = *this;
971 T.removeLocalFastQualifiers();
972 return T;
973 }
974
975 QualType getCanonicalType() const;
976
977 /// Return this type with all of the instance-specific qualifiers
978 /// removed, but without removing any qualifiers that may have been applied
979 /// through typedefs.
980 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
981
982 /// Retrieve the unqualified variant of the given type,
983 /// removing as little sugar as possible.
984 ///
985 /// This routine looks through various kinds of sugar to find the
986 /// least-desugared type that is unqualified. For example, given:
987 ///
988 /// \code
989 /// typedef int Integer;
990 /// typedef const Integer CInteger;
991 /// typedef CInteger DifferenceType;
992 /// \endcode
993 ///
994 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
995 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
996 ///
997 /// The resulting type might still be qualified if it's sugar for an array
998 /// type. To strip qualifiers even from within a sugared array type, use
999 /// ASTContext::getUnqualifiedArrayType.
1000 ///
1001 /// Note: In C, the _Atomic qualifier is special (see C2x 6.2.5p29 for
1002 /// details), and it is not stripped by this function. Use
1003 /// getAtomicUnqualifiedType() to strip qualifiers including _Atomic.
1004 inline QualType getUnqualifiedType() const;
1005
1006 /// Retrieve the unqualified variant of the given type, removing as little
1007 /// sugar as possible.
1008 ///
1009 /// Like getUnqualifiedType(), but also returns the set of
1010 /// qualifiers that were built up.
1011 ///
1012 /// The resulting type might still be qualified if it's sugar for an array
1013 /// type. To strip qualifiers even from within a sugared array type, use
1014 /// ASTContext::getUnqualifiedArrayType.
1015 inline SplitQualType getSplitUnqualifiedType() const;
1016
1017 /// Determine whether this type is more qualified than the other
1018 /// given type, requiring exact equality for non-CVR qualifiers.
1019 bool isMoreQualifiedThan(QualType Other) const;
1020
1021 /// Determine whether this type is at least as qualified as the other
1022 /// given type, requiring exact equality for non-CVR qualifiers.
1023 bool isAtLeastAsQualifiedAs(QualType Other) const;
1024
1025 QualType getNonReferenceType() const;
1026
1027 /// Determine the type of a (typically non-lvalue) expression with the
1028 /// specified result type.
1029 ///
1030 /// This routine should be used for expressions for which the return type is
1031 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
1032 /// an lvalue. It removes a top-level reference (since there are no
1033 /// expressions of reference type) and deletes top-level cvr-qualifiers
1034 /// from non-class types (in C++) or all types (in C).
1035 QualType getNonLValueExprType(const ASTContext &Context) const;
1036
1037 /// Remove an outer pack expansion type (if any) from this type. Used as part
1038 /// of converting the type of a declaration to the type of an expression that
1039 /// references that expression. It's meaningless for an expression to have a
1040 /// pack expansion type.
1041 QualType getNonPackExpansionType() const;
1042
1043 /// Return the specified type with any "sugar" removed from
1044 /// the type. This takes off typedefs, typeof's etc. If the outer level of
1045 /// the type is already concrete, it returns it unmodified. This is similar
1046 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
1047 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
1048 /// concrete.
1049 ///
1050 /// Qualifiers are left in place.
1051 QualType getDesugaredType(const ASTContext &Context) const {
1052 return getDesugaredType(*this, Context);
1053 }
1054
1055 SplitQualType getSplitDesugaredType() const {
1056 return getSplitDesugaredType(*this);
1057 }
1058
1059 /// Return the specified type with one level of "sugar" removed from
1060 /// the type.
1061 ///
1062 /// This routine takes off the first typedef, typeof, etc. If the outer level
1063 /// of the type is already concrete, it returns it unmodified.
1064 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
1065 return getSingleStepDesugaredTypeImpl(*this, Context);
1066 }
1067
1068 /// Returns the specified type after dropping any
1069 /// outer-level parentheses.
1070 QualType IgnoreParens() const {
1071 if (isa<ParenType>(*this))
1072 return QualType::IgnoreParens(*this);
1073 return *this;
1074 }
1075
1076 /// Indicate whether the specified types and qualifiers are identical.
1077 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1078 return LHS.Value == RHS.Value;
1079 }
1080 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1081 return LHS.Value != RHS.Value;
1082 }
1083 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1084 return LHS.Value < RHS.Value;
1085 }
1086
1087 static std::string getAsString(SplitQualType split,
1088 const PrintingPolicy &Policy) {
1089 return getAsString(split.Ty, split.Quals, Policy);
1090 }
1091 static std::string getAsString(const Type *ty, Qualifiers qs,
1092 const PrintingPolicy &Policy);
1093
1094 std::string getAsString() const;
1095 std::string getAsString(const PrintingPolicy &Policy) const;
1096
1097 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1098 const Twine &PlaceHolder = Twine(),
1099 unsigned Indentation = 0) const;
1100
1101 static void print(SplitQualType split, raw_ostream &OS,
1102 const PrintingPolicy &policy, const Twine &PlaceHolder,
1103 unsigned Indentation = 0) {
1104 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1105 }
1106
1107 static void print(const Type *ty, Qualifiers qs,
1108 raw_ostream &OS, const PrintingPolicy &policy,
1109 const Twine &PlaceHolder,
1110 unsigned Indentation = 0);
1111
1112 void getAsStringInternal(std::string &Str,
1113 const PrintingPolicy &Policy) const;
1114
1115 static void getAsStringInternal(SplitQualType split, std::string &out,
1116 const PrintingPolicy &policy) {
1117 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1118 }
1119
1120 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1121 std::string &out,
1122 const PrintingPolicy &policy);
1123
1124 class StreamedQualTypeHelper {
1125 const QualType &T;
1126 const PrintingPolicy &Policy;
1127 const Twine &PlaceHolder;
1128 unsigned Indentation;
1129
1130 public:
1131 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1132 const Twine &PlaceHolder, unsigned Indentation)
1133 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1134 Indentation(Indentation) {}
1135
1136 friend raw_ostream &operator<<(raw_ostream &OS,
1137 const StreamedQualTypeHelper &SQT) {
1138 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1139 return OS;
1140 }
1141 };
1142
1143 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1144 const Twine &PlaceHolder = Twine(),
1145 unsigned Indentation = 0) const {
1146 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1147 }
1148
1149 void dump(const char *s) const;
1150 void dump() const;
1151 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1152
1153 void Profile(llvm::FoldingSetNodeID &ID) const {
1154 ID.AddPointer(getAsOpaquePtr());
1155 }
1156
1157 /// Check if this type has any address space qualifier.
1158 inline bool hasAddressSpace() const;
1159
1160 /// Return the address space of this type.
1161 inline LangAS getAddressSpace() const;
1162
1163 /// Returns true if address space qualifiers overlap with T address space
1164 /// qualifiers.
1165 /// OpenCL C defines conversion rules for pointers to different address spaces
1166 /// and notion of overlapping address spaces.
1167 /// CL1.1 or CL1.2:
1168 /// address spaces overlap iff they are they same.
1169 /// OpenCL C v2.0 s6.5.5 adds:
1170 /// __generic overlaps with any address space except for __constant.
1171 bool isAddressSpaceOverlapping(QualType T) const {
1172 Qualifiers Q = getQualifiers();
1173 Qualifiers TQ = T.getQualifiers();
1174 // Address spaces overlap if at least one of them is a superset of another
1175 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1176 }
1177
1178 /// Returns gc attribute of this type.
1179 inline Qualifiers::GC getObjCGCAttr() const;
1180
1181 /// true when Type is objc's weak.
1182 bool isObjCGCWeak() const {
1183 return getObjCGCAttr() == Qualifiers::Weak;
1184 }
1185
1186 /// true when Type is objc's strong.
1187 bool isObjCGCStrong() const {
1188 return getObjCGCAttr() == Qualifiers::Strong;
1189 }
1190
1191 /// Returns lifetime attribute of this type.
1192 Qualifiers::ObjCLifetime getObjCLifetime() const {
1193 return getQualifiers().getObjCLifetime();
1194 }
1195
1196 bool hasNonTrivialObjCLifetime() const {
1197 return getQualifiers().hasNonTrivialObjCLifetime();
1198 }
1199
1200 bool hasStrongOrWeakObjCLifetime() const {
1201 return getQualifiers().hasStrongOrWeakObjCLifetime();
1202 }
1203
1204 // true when Type is objc's weak and weak is enabled but ARC isn't.
1205 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1206
1207 enum PrimitiveDefaultInitializeKind {
1208 /// The type does not fall into any of the following categories. Note that
1209 /// this case is zero-valued so that values of this enum can be used as a
1210 /// boolean condition for non-triviality.
1211 PDIK_Trivial,
1212
1213 /// The type is an Objective-C retainable pointer type that is qualified
1214 /// with the ARC __strong qualifier.
1215 PDIK_ARCStrong,
1216
1217 /// The type is an Objective-C retainable pointer type that is qualified
1218 /// with the ARC __weak qualifier.
1219 PDIK_ARCWeak,
1220
1221 /// The type is a struct containing a field whose type is not PCK_Trivial.
1222 PDIK_Struct
1223 };
1224
1225 /// Functions to query basic properties of non-trivial C struct types.
1226
1227 /// Check if this is a non-trivial type that would cause a C struct
1228 /// transitively containing this type to be non-trivial to default initialize
1229 /// and return the kind.
1230 PrimitiveDefaultInitializeKind
1231 isNonTrivialToPrimitiveDefaultInitialize() const;
1232
1233 enum PrimitiveCopyKind {
1234 /// The type does not fall into any of the following categories. Note that
1235 /// this case is zero-valued so that values of this enum can be used as a
1236 /// boolean condition for non-triviality.
1237 PCK_Trivial,
1238
1239 /// The type would be trivial except that it is volatile-qualified. Types
1240 /// that fall into one of the other non-trivial cases may additionally be
1241 /// volatile-qualified.
1242 PCK_VolatileTrivial,
1243
1244 /// The type is an Objective-C retainable pointer type that is qualified
1245 /// with the ARC __strong qualifier.
1246 PCK_ARCStrong,
1247
1248 /// The type is an Objective-C retainable pointer type that is qualified
1249 /// with the ARC __weak qualifier.
1250 PCK_ARCWeak,
1251
1252 /// The type is a struct containing a field whose type is neither
1253 /// PCK_Trivial nor PCK_VolatileTrivial.
1254 /// Note that a C++ struct type does not necessarily match this; C++ copying
1255 /// semantics are too complex to express here, in part because they depend
1256 /// on the exact constructor or assignment operator that is chosen by
1257 /// overload resolution to do the copy.
1258 PCK_Struct
1259 };
1260
1261 /// Check if this is a non-trivial type that would cause a C struct
1262 /// transitively containing this type to be non-trivial to copy and return the
1263 /// kind.
1264 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1265
1266 /// Check if this is a non-trivial type that would cause a C struct
1267 /// transitively containing this type to be non-trivial to destructively
1268 /// move and return the kind. Destructive move in this context is a C++-style
1269 /// move in which the source object is placed in a valid but unspecified state
1270 /// after it is moved, as opposed to a truly destructive move in which the
1271 /// source object is placed in an uninitialized state.
1272 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1273
1274 enum DestructionKind {
1275 DK_none,
1276 DK_cxx_destructor,
1277 DK_objc_strong_lifetime,
1278 DK_objc_weak_lifetime,
1279 DK_nontrivial_c_struct
1280 };
1281
1282 /// Returns a nonzero value if objects of this type require
1283 /// non-trivial work to clean up after. Non-zero because it's
1284 /// conceivable that qualifiers (objc_gc(weak)?) could make
1285 /// something require destruction.
1286 DestructionKind isDestructedType() const {
1287 return isDestructedTypeImpl(*this);
1288 }
1289
1290 /// Check if this is or contains a C union that is non-trivial to
1291 /// default-initialize, which is a union that has a member that is non-trivial
1292 /// to default-initialize. If this returns true,
1293 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1294 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1295
1296 /// Check if this is or contains a C union that is non-trivial to destruct,
1297 /// which is a union that has a member that is non-trivial to destruct. If
1298 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1299 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1300
1301 /// Check if this is or contains a C union that is non-trivial to copy, which
1302 /// is a union that has a member that is non-trivial to copy. If this returns
1303 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1304 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1305
1306 /// Determine whether expressions of the given type are forbidden
1307 /// from being lvalues in C.
1308 ///
1309 /// The expression types that are forbidden to be lvalues are:
1310 /// - 'void', but not qualified void
1311 /// - function types
1312 ///
1313 /// The exact rule here is C99 6.3.2.1:
1314 /// An lvalue is an expression with an object type or an incomplete
1315 /// type other than void.
1316 bool isCForbiddenLValueType() const;
1317
1318 /// Substitute type arguments for the Objective-C type parameters used in the
1319 /// subject type.
1320 ///
1321 /// \param ctx ASTContext in which the type exists.
1322 ///
1323 /// \param typeArgs The type arguments that will be substituted for the
1324 /// Objective-C type parameters in the subject type, which are generally
1325 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1326 /// parameters will be replaced with their bounds or id/Class, as appropriate
1327 /// for the context.
1328 ///
1329 /// \param context The context in which the subject type was written.
1330 ///
1331 /// \returns the resulting type.
1332 QualType substObjCTypeArgs(ASTContext &ctx,
1333 ArrayRef<QualType> typeArgs,
1334 ObjCSubstitutionContext context) const;
1335
1336 /// Substitute type arguments from an object type for the Objective-C type
1337 /// parameters used in the subject type.
1338 ///
1339 /// This operation combines the computation of type arguments for
1340 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1341 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1342 /// callers that need to perform a single substitution in isolation.
1343 ///
1344 /// \param objectType The type of the object whose member type we're
1345 /// substituting into. For example, this might be the receiver of a message
1346 /// or the base of a property access.
1347 ///
1348 /// \param dc The declaration context from which the subject type was
1349 /// retrieved, which indicates (for example) which type parameters should
1350 /// be substituted.
1351 ///
1352 /// \param context The context in which the subject type was written.
1353 ///
1354 /// \returns the subject type after replacing all of the Objective-C type
1355 /// parameters with their corresponding arguments.
1356 QualType substObjCMemberType(QualType objectType,
1357 const DeclContext *dc,
1358 ObjCSubstitutionContext context) const;
1359
1360 /// Strip Objective-C "__kindof" types from the given type.
1361 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1362
1363 /// Remove all qualifiers including _Atomic.
1364 QualType getAtomicUnqualifiedType() const;
1365
1366private:
1367 // These methods are implemented in a separate translation unit;
1368 // "static"-ize them to avoid creating temporary QualTypes in the
1369 // caller.
1370 static bool isConstant(QualType T, const ASTContext& Ctx);
1371 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1372 static SplitQualType getSplitDesugaredType(QualType T);
1373 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1374 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1375 const ASTContext &C);
1376 static QualType IgnoreParens(QualType T);
1377 static DestructionKind isDestructedTypeImpl(QualType type);
1378
1379 /// Check if \param RD is or contains a non-trivial C union.
1380 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1381 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1382 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1383};
1384
1385raw_ostream &operator<<(raw_ostream &OS, QualType QT);
1386
1387} // namespace clang
1388
1389namespace llvm {
1390
1391/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1392/// to a specific Type class.
1393template<> struct simplify_type< ::clang::QualType> {
1394 using SimpleType = const ::clang::Type *;
1395
1396 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1397 return Val.getTypePtr();
1398 }
1399};
1400
1401// Teach SmallPtrSet that QualType is "basically a pointer".
1402template<>
1403struct PointerLikeTypeTraits<clang::QualType> {
1404 static inline void *getAsVoidPointer(clang::QualType P) {
1405 return P.getAsOpaquePtr();
1406 }
1407
1408 static inline clang::QualType getFromVoidPointer(void *P) {
1409 return clang::QualType::getFromOpaquePtr(P);
1410 }
1411
1412 // Various qualifiers go in low bits.
1413 static constexpr int NumLowBitsAvailable = 0;
1414};
1415
1416} // namespace llvm
1417
1418namespace clang {
1419
1420/// Base class that is common to both the \c ExtQuals and \c Type
1421/// classes, which allows \c QualType to access the common fields between the
1422/// two.
1423class ExtQualsTypeCommonBase {
1424 friend class ExtQuals;
1425 friend class QualType;
1426 friend class Type;
1427
1428 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1429 /// a self-referential pointer (for \c Type).
1430 ///
1431 /// This pointer allows an efficient mapping from a QualType to its
1432 /// underlying type pointer.
1433 const Type *const BaseType;
1434
1435 /// The canonical type of this type. A QualType.
1436 QualType CanonicalType;
1437
1438 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1439 : BaseType(baseType), CanonicalType(canon) {}
1440};
1441
1442/// We can encode up to four bits in the low bits of a
1443/// type pointer, but there are many more type qualifiers that we want
1444/// to be able to apply to an arbitrary type. Therefore we have this
1445/// struct, intended to be heap-allocated and used by QualType to
1446/// store qualifiers.
1447///
1448/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1449/// in three low bits on the QualType pointer; a fourth bit records whether
1450/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1451/// Objective-C GC attributes) are much more rare.
1452class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1453 // NOTE: changing the fast qualifiers should be straightforward as
1454 // long as you don't make 'const' non-fast.
1455 // 1. Qualifiers:
1456 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1457 // Fast qualifiers must occupy the low-order bits.
1458 // b) Update Qualifiers::FastWidth and FastMask.
1459 // 2. QualType:
1460 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1461 // b) Update remove{Volatile,Restrict}, defined near the end of
1462 // this header.
1463 // 3. ASTContext:
1464 // a) Update get{Volatile,Restrict}Type.
1465
1466 /// The immutable set of qualifiers applied by this node. Always contains
1467 /// extended qualifiers.
1468 Qualifiers Quals;
1469
1470 ExtQuals *this_() { return this; }
1471
1472public:
1473 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1474 : ExtQualsTypeCommonBase(baseType,
1475 canon.isNull() ? QualType(this_(), 0) : canon),
1476 Quals(quals) {
1477 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1478, __extension__ __PRETTY_FUNCTION__
))
1478 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1478, __extension__ __PRETTY_FUNCTION__
))
;
1479 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1480, __extension__ __PRETTY_FUNCTION__
))
1480 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1480, __extension__ __PRETTY_FUNCTION__
))
;
1481 }
1482
1483 Qualifiers getQualifiers() const { return Quals; }
1484
1485 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1486 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1487
1488 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1489 Qualifiers::ObjCLifetime getObjCLifetime() const {
1490 return Quals.getObjCLifetime();
1491 }
1492
1493 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1494 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1495
1496 const Type *getBaseType() const { return BaseType; }
1497
1498public:
1499 void Profile(llvm::FoldingSetNodeID &ID) const {
1500 Profile(ID, getBaseType(), Quals);
1501 }
1502
1503 static void Profile(llvm::FoldingSetNodeID &ID,
1504 const Type *BaseType,
1505 Qualifiers Quals) {
1506 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "clang/include/clang/AST/Type.h", 1506, __extension__ __PRETTY_FUNCTION__
))
;
1507 ID.AddPointer(BaseType);
1508 Quals.Profile(ID);
1509 }
1510};
1511
1512/// The kind of C++11 ref-qualifier associated with a function type.
1513/// This determines whether a member function's "this" object can be an
1514/// lvalue, rvalue, or neither.
1515enum RefQualifierKind {
1516 /// No ref-qualifier was provided.
1517 RQ_None = 0,
1518
1519 /// An lvalue ref-qualifier was provided (\c &).
1520 RQ_LValue,
1521
1522 /// An rvalue ref-qualifier was provided (\c &&).
1523 RQ_RValue
1524};
1525
1526/// Which keyword(s) were used to create an AutoType.
1527enum class AutoTypeKeyword {
1528 /// auto
1529 Auto,
1530
1531 /// decltype(auto)
1532 DecltypeAuto,
1533
1534 /// __auto_type (GNU extension)
1535 GNUAutoType
1536};
1537
1538/// The base class of the type hierarchy.
1539///
1540/// A central concept with types is that each type always has a canonical
1541/// type. A canonical type is the type with any typedef names stripped out
1542/// of it or the types it references. For example, consider:
1543///
1544/// typedef int foo;
1545/// typedef foo* bar;
1546/// 'int *' 'foo *' 'bar'
1547///
1548/// There will be a Type object created for 'int'. Since int is canonical, its
1549/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1550/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1551/// there is a PointerType that represents 'int*', which, like 'int', is
1552/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1553/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1554/// is also 'int*'.
1555///
1556/// Non-canonical types are useful for emitting diagnostics, without losing
1557/// information about typedefs being used. Canonical types are useful for type
1558/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1559/// about whether something has a particular form (e.g. is a function type),
1560/// because they implicitly, recursively, strip all typedefs out of a type.
1561///
1562/// Types, once created, are immutable.
1563///
1564class alignas(8) Type : public ExtQualsTypeCommonBase {
1565public:
1566 enum TypeClass {
1567#define TYPE(Class, Base) Class,
1568#define LAST_TYPE(Class) TypeLast = Class
1569#define ABSTRACT_TYPE(Class, Base)
1570#include "clang/AST/TypeNodes.inc"
1571 };
1572
1573private:
1574 /// Bitfields required by the Type class.
1575 class TypeBitfields {
1576 friend class Type;
1577 template <class T> friend class TypePropertyCache;
1578
1579 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1580 unsigned TC : 8;
1581
1582 /// Store information on the type dependency.
1583 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1584
1585 /// True if the cache (i.e. the bitfields here starting with
1586 /// 'Cache') is valid.
1587 mutable unsigned CacheValid : 1;
1588
1589 /// Linkage of this type.
1590 mutable unsigned CachedLinkage : 3;
1591
1592 /// Whether this type involves and local or unnamed types.
1593 mutable unsigned CachedLocalOrUnnamed : 1;
1594
1595 /// Whether this type comes from an AST file.
1596 mutable unsigned FromAST : 1;
1597
1598 bool isCacheValid() const {
1599 return CacheValid;
1600 }
1601
1602 Linkage getLinkage() const {
1603 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1603, __extension__ __PRETTY_FUNCTION__
))
;
1604 return static_cast<Linkage>(CachedLinkage);
1605 }
1606
1607 bool hasLocalOrUnnamedType() const {
1608 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1608, __extension__ __PRETTY_FUNCTION__
))
;
1609 return CachedLocalOrUnnamed;
1610 }
1611 };
1612 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1613
1614protected:
1615 // These classes allow subclasses to somewhat cleanly pack bitfields
1616 // into Type.
1617
1618 class ArrayTypeBitfields {
1619 friend class ArrayType;
1620
1621 unsigned : NumTypeBits;
1622
1623 /// CVR qualifiers from declarations like
1624 /// 'int X[static restrict 4]'. For function parameters only.
1625 unsigned IndexTypeQuals : 3;
1626
1627 /// Storage class qualifiers from declarations like
1628 /// 'int X[static restrict 4]'. For function parameters only.
1629 /// Actually an ArrayType::ArraySizeModifier.
1630 unsigned SizeModifier : 3;
1631 };
1632
1633 class ConstantArrayTypeBitfields {
1634 friend class ConstantArrayType;
1635
1636 unsigned : NumTypeBits + 3 + 3;
1637
1638 /// Whether we have a stored size expression.
1639 unsigned HasStoredSizeExpr : 1;
1640 };
1641
1642 class BuiltinTypeBitfields {
1643 friend class BuiltinType;
1644
1645 unsigned : NumTypeBits;
1646
1647 /// The kind (BuiltinType::Kind) of builtin type this is.
1648 unsigned Kind : 8;
1649 };
1650
1651 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1652 /// Only common bits are stored here. Additional uncommon bits are stored
1653 /// in a trailing object after FunctionProtoType.
1654 class FunctionTypeBitfields {
1655 friend class FunctionProtoType;
1656 friend class FunctionType;
1657
1658 unsigned : NumTypeBits;
1659
1660 /// Extra information which affects how the function is called, like
1661 /// regparm and the calling convention.
1662 unsigned ExtInfo : 13;
1663
1664 /// The ref-qualifier associated with a \c FunctionProtoType.
1665 ///
1666 /// This is a value of type \c RefQualifierKind.
1667 unsigned RefQualifier : 2;
1668
1669 /// Used only by FunctionProtoType, put here to pack with the
1670 /// other bitfields.
1671 /// The qualifiers are part of FunctionProtoType because...
1672 ///
1673 /// C++ 8.3.5p4: The return type, the parameter type list and the
1674 /// cv-qualifier-seq, [...], are part of the function type.
1675 unsigned FastTypeQuals : Qualifiers::FastWidth;
1676 /// Whether this function has extended Qualifiers.
1677 unsigned HasExtQuals : 1;
1678
1679 /// The number of parameters this function has, not counting '...'.
1680 /// According to [implimits] 8 bits should be enough here but this is
1681 /// somewhat easy to exceed with metaprogramming and so we would like to
1682 /// keep NumParams as wide as reasonably possible.
1683 unsigned NumParams : 16;
1684
1685 /// The type of exception specification this function has.
1686 unsigned ExceptionSpecType : 4;
1687
1688 /// Whether this function has extended parameter information.
1689 unsigned HasExtParameterInfos : 1;
1690
1691 /// Whether this function has extra bitfields for the prototype.
1692 unsigned HasExtraBitfields : 1;
1693
1694 /// Whether the function is variadic.
1695 unsigned Variadic : 1;
1696
1697 /// Whether this function has a trailing return type.
1698 unsigned HasTrailingReturn : 1;
1699 };
1700
1701 class ObjCObjectTypeBitfields {
1702 friend class ObjCObjectType;
1703
1704 unsigned : NumTypeBits;
1705
1706 /// The number of type arguments stored directly on this object type.
1707 unsigned NumTypeArgs : 7;
1708
1709 /// The number of protocols stored directly on this object type.
1710 unsigned NumProtocols : 6;
1711
1712 /// Whether this is a "kindof" type.
1713 unsigned IsKindOf : 1;
1714 };
1715
1716 class ReferenceTypeBitfields {
1717 friend class ReferenceType;
1718
1719 unsigned : NumTypeBits;
1720
1721 /// True if the type was originally spelled with an lvalue sigil.
1722 /// This is never true of rvalue references but can also be false
1723 /// on lvalue references because of C++0x [dcl.typedef]p9,
1724 /// as follows:
1725 ///
1726 /// typedef int &ref; // lvalue, spelled lvalue
1727 /// typedef int &&rvref; // rvalue
1728 /// ref &a; // lvalue, inner ref, spelled lvalue
1729 /// ref &&a; // lvalue, inner ref
1730 /// rvref &a; // lvalue, inner ref, spelled lvalue
1731 /// rvref &&a; // rvalue, inner ref
1732 unsigned SpelledAsLValue : 1;
1733
1734 /// True if the inner type is a reference type. This only happens
1735 /// in non-canonical forms.
1736 unsigned InnerRef : 1;
1737 };
1738
1739 class TypeWithKeywordBitfields {
1740 friend class TypeWithKeyword;
1741
1742 unsigned : NumTypeBits;
1743
1744 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1745 unsigned Keyword : 8;
1746 };
1747
1748 enum { NumTypeWithKeywordBits = 8 };
1749
1750 class ElaboratedTypeBitfields {
1751 friend class ElaboratedType;
1752
1753 unsigned : NumTypeBits;
1754 unsigned : NumTypeWithKeywordBits;
1755
1756 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1757 unsigned HasOwnedTagDecl : 1;
1758 };
1759
1760 class VectorTypeBitfields {
1761 friend class VectorType;
1762 friend class DependentVectorType;
1763
1764 unsigned : NumTypeBits;
1765
1766 /// The kind of vector, either a generic vector type or some
1767 /// target-specific vector type such as for AltiVec or Neon.
1768 unsigned VecKind : 3;
1769 /// The number of elements in the vector.
1770 uint32_t NumElements;
1771 };
1772
1773 class AttributedTypeBitfields {
1774 friend class AttributedType;
1775
1776 unsigned : NumTypeBits;
1777
1778 /// An AttributedType::Kind
1779 unsigned AttrKind : 32 - NumTypeBits;
1780 };
1781
1782 class AutoTypeBitfields {
1783 friend class AutoType;
1784
1785 unsigned : NumTypeBits;
1786
1787 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1788 /// or '__auto_type'? AutoTypeKeyword value.
1789 unsigned Keyword : 2;
1790
1791 /// The number of template arguments in the type-constraints, which is
1792 /// expected to be able to hold at least 1024 according to [implimits].
1793 /// However as this limit is somewhat easy to hit with template
1794 /// metaprogramming we'd prefer to keep it as large as possible.
1795 /// At the moment it has been left as a non-bitfield since this type
1796 /// safely fits in 64 bits as an unsigned, so there is no reason to
1797 /// introduce the performance impact of a bitfield.
1798 unsigned NumArgs;
1799 };
1800
1801 class TypeOfBitfields {
1802 friend class TypeOfType;
1803 friend class TypeOfExprType;
1804
1805 unsigned : NumTypeBits;
1806 unsigned IsUnqual : 1; // If true: typeof_unqual, else: typeof
1807 };
1808
1809 class UsingBitfields {
1810 friend class UsingType;
1811
1812 unsigned : NumTypeBits;
1813
1814 /// True if the underlying type is different from the declared one.
1815 unsigned hasTypeDifferentFromDecl : 1;
1816 };
1817
1818 class TypedefBitfields {
1819 friend class TypedefType;
1820
1821 unsigned : NumTypeBits;
1822
1823 /// True if the underlying type is different from the declared one.
1824 unsigned hasTypeDifferentFromDecl : 1;
1825 };
1826
1827 class SubstTemplateTypeParmTypeBitfields {
1828 friend class SubstTemplateTypeParmType;
1829
1830 unsigned : NumTypeBits;
1831
1832 unsigned HasNonCanonicalUnderlyingType : 1;
1833
1834 // The index of the template parameter this substitution represents.
1835 unsigned Index : 15;
1836
1837 /// Represents the index within a pack if this represents a substitution
1838 /// from a pack expansion. This index starts at the end of the pack and
1839 /// increments towards the beginning.
1840 /// Positive non-zero number represents the index + 1.
1841 /// Zero means this is not substituted from an expansion.
1842 unsigned PackIndex : 16;
1843 };
1844
1845 class SubstTemplateTypeParmPackTypeBitfields {
1846 friend class SubstTemplateTypeParmPackType;
1847
1848 unsigned : NumTypeBits;
1849
1850 // The index of the template parameter this substitution represents.
1851 unsigned Index : 16;
1852
1853 /// The number of template arguments in \c Arguments, which is
1854 /// expected to be able to hold at least 1024 according to [implimits].
1855 /// However as this limit is somewhat easy to hit with template
1856 /// metaprogramming we'd prefer to keep it as large as possible.
1857 unsigned NumArgs : 16;
1858 };
1859
1860 class TemplateSpecializationTypeBitfields {
1861 friend class TemplateSpecializationType;
1862
1863 unsigned : NumTypeBits;
1864
1865 /// Whether this template specialization type is a substituted type alias.
1866 unsigned TypeAlias : 1;
1867
1868 /// The number of template arguments named in this class template
1869 /// specialization, which is expected to be able to hold at least 1024
1870 /// according to [implimits]. However, as this limit is somewhat easy to
1871 /// hit with template metaprogramming we'd prefer to keep it as large
1872 /// as possible. At the moment it has been left as a non-bitfield since
1873 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1874 /// to introduce the performance impact of a bitfield.
1875 unsigned NumArgs;
1876 };
1877
1878 class DependentTemplateSpecializationTypeBitfields {
1879 friend class DependentTemplateSpecializationType;
1880
1881 unsigned : NumTypeBits;
1882 unsigned : NumTypeWithKeywordBits;
1883
1884 /// The number of template arguments named in this class template
1885 /// specialization, which is expected to be able to hold at least 1024
1886 /// according to [implimits]. However, as this limit is somewhat easy to
1887 /// hit with template metaprogramming we'd prefer to keep it as large
1888 /// as possible. At the moment it has been left as a non-bitfield since
1889 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1890 /// to introduce the performance impact of a bitfield.
1891 unsigned NumArgs;
1892 };
1893
1894 class PackExpansionTypeBitfields {
1895 friend class PackExpansionType;
1896
1897 unsigned : NumTypeBits;
1898
1899 /// The number of expansions that this pack expansion will
1900 /// generate when substituted (+1), which is expected to be able to
1901 /// hold at least 1024 according to [implimits]. However, as this limit
1902 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1903 /// keep it as large as possible. At the moment it has been left as a
1904 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1905 /// there is no reason to introduce the performance impact of a bitfield.
1906 ///
1907 /// This field will only have a non-zero value when some of the parameter
1908 /// packs that occur within the pattern have been substituted but others
1909 /// have not.
1910 unsigned NumExpansions;
1911 };
1912
1913 union {
1914 TypeBitfields TypeBits;
1915 ArrayTypeBitfields ArrayTypeBits;
1916 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1917 AttributedTypeBitfields AttributedTypeBits;
1918 AutoTypeBitfields AutoTypeBits;
1919 TypeOfBitfields TypeOfBits;
1920 TypedefBitfields TypedefBits;
1921 UsingBitfields UsingBits;
1922 BuiltinTypeBitfields BuiltinTypeBits;
1923 FunctionTypeBitfields FunctionTypeBits;
1924 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1925 ReferenceTypeBitfields ReferenceTypeBits;
1926 TypeWithKeywordBitfields TypeWithKeywordBits;
1927 ElaboratedTypeBitfields ElaboratedTypeBits;
1928 VectorTypeBitfields VectorTypeBits;
1929 SubstTemplateTypeParmTypeBitfields SubstTemplateTypeParmTypeBits;
1930 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1931 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1932 DependentTemplateSpecializationTypeBitfields
1933 DependentTemplateSpecializationTypeBits;
1934 PackExpansionTypeBitfields PackExpansionTypeBits;
1935 };
1936
1937private:
1938 template <class T> friend class TypePropertyCache;
1939
1940 /// Set whether this type comes from an AST file.
1941 void setFromAST(bool V = true) const {
1942 TypeBits.FromAST = V;
1943 }
1944
1945protected:
1946 friend class ASTContext;
1947
1948 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1949 : ExtQualsTypeCommonBase(this,
1950 canon.isNull() ? QualType(this_(), 0) : canon) {
1951 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1952 "changing bitfields changed sizeof(Type)!");
1953 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1954 "Insufficient alignment!");
1955 TypeBits.TC = tc;
1956 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1957 TypeBits.CacheValid = false;
1958 TypeBits.CachedLocalOrUnnamed = false;
1959 TypeBits.CachedLinkage = NoLinkage;
1960 TypeBits.FromAST = false;
1961 }
1962
1963 // silence VC++ warning C4355: 'this' : used in base member initializer list
1964 Type *this_() { return this; }
1965
1966 void setDependence(TypeDependence D) {
1967 TypeBits.Dependence = static_cast<unsigned>(D);
1968 }
1969
1970 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1971
1972public:
1973 friend class ASTReader;
1974 friend class ASTWriter;
1975 template <class T> friend class serialization::AbstractTypeReader;
1976 template <class T> friend class serialization::AbstractTypeWriter;
1977
1978 Type(const Type &) = delete;
1979 Type(Type &&) = delete;
1980 Type &operator=(const Type &) = delete;
1981 Type &operator=(Type &&) = delete;
1982
1983 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1984
1985 /// Whether this type comes from an AST file.
1986 bool isFromAST() const { return TypeBits.FromAST; }
1987
1988 /// Whether this type is or contains an unexpanded parameter
1989 /// pack, used to support C++0x variadic templates.
1990 ///
1991 /// A type that contains a parameter pack shall be expanded by the
1992 /// ellipsis operator at some point. For example, the typedef in the
1993 /// following example contains an unexpanded parameter pack 'T':
1994 ///
1995 /// \code
1996 /// template<typename ...T>
1997 /// struct X {
1998 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1999 /// };
2000 /// \endcode
2001 ///
2002 /// Note that this routine does not specify which
2003 bool containsUnexpandedParameterPack() const {
2004 return getDependence() & TypeDependence::UnexpandedPack;
2005 }
2006
2007 /// Determines if this type would be canonical if it had no further
2008 /// qualification.
2009 bool isCanonicalUnqualified() const {
2010 return CanonicalType == QualType(this, 0);
2011 }
2012
2013 /// Pull a single level of sugar off of this locally-unqualified type.
2014 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
2015 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
2016 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
2017
2018 /// As an extension, we classify types as one of "sized" or "sizeless";
2019 /// every type is one or the other. Standard types are all sized;
2020 /// sizeless types are purely an extension.
2021 ///
2022 /// Sizeless types contain data with no specified size, alignment,
2023 /// or layout.
2024 bool isSizelessType() const;
2025 bool isSizelessBuiltinType() const;
2026
2027 /// Determines if this is a sizeless type supported by the
2028 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
2029 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
2030 bool isVLSTBuiltinType() const;
2031
2032 /// Returns the representative type for the element of an SVE builtin type.
2033 /// This is used to represent fixed-length SVE vectors created with the
2034 /// 'arm_sve_vector_bits' type attribute as VectorType.
2035 QualType getSveEltType(const ASTContext &Ctx) const;
2036
2037 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
2038 /// object types, function types, and incomplete types.
2039
2040 /// Return true if this is an incomplete type.
2041 /// A type that can describe objects, but which lacks information needed to
2042 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
2043 /// routine will need to determine if the size is actually required.
2044 ///
2045 /// Def If non-null, and the type refers to some kind of declaration
2046 /// that can be completed (such as a C struct, C++ class, or Objective-C
2047 /// class), will be set to the declaration.
2048 bool isIncompleteType(NamedDecl **Def = nullptr) const;
2049
2050 /// Return true if this is an incomplete or object
2051 /// type, in other words, not a function type.
2052 bool isIncompleteOrObjectType() const {
2053 return !isFunctionType();
2054 }
2055
2056 /// Determine whether this type is an object type.
2057 bool isObjectType() const {
2058 // C++ [basic.types]p8:
2059 // An object type is a (possibly cv-qualified) type that is not a
2060 // function type, not a reference type, and not a void type.
2061 return !isReferenceType() && !isFunctionType() && !isVoidType();
2062 }
2063
2064 /// Return true if this is a literal type
2065 /// (C++11 [basic.types]p10)
2066 bool isLiteralType(const ASTContext &Ctx) const;
2067
2068 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
2069 bool isStructuralType() const;
2070
2071 /// Test if this type is a standard-layout type.
2072 /// (C++0x [basic.type]p9)
2073 bool isStandardLayoutType() const;
2074
2075 /// Helper methods to distinguish type categories. All type predicates
2076 /// operate on the canonical type, ignoring typedefs and qualifiers.
2077
2078 /// Returns true if the type is a builtin type.
2079 bool isBuiltinType() const;
2080
2081 /// Test for a particular builtin type.
2082 bool isSpecificBuiltinType(unsigned K) const;
2083
2084 /// Test for a type which does not represent an actual type-system type but
2085 /// is instead used as a placeholder for various convenient purposes within
2086 /// Clang. All such types are BuiltinTypes.
2087 bool isPlaceholderType() const;
2088 const BuiltinType *getAsPlaceholderType() const;
2089
2090 /// Test for a specific placeholder type.
2091 bool isSpecificPlaceholderType(unsigned K) const;
2092
2093 /// Test for a placeholder type other than Overload; see
2094 /// BuiltinType::isNonOverloadPlaceholderType.
2095 bool isNonOverloadPlaceholderType() const;
2096
2097 /// isIntegerType() does *not* include complex integers (a GCC extension).
2098 /// isComplexIntegerType() can be used to test for complex integers.
2099 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
2100 bool isEnumeralType() const;
2101
2102 /// Determine whether this type is a scoped enumeration type.
2103 bool isScopedEnumeralType() const;
2104 bool isBooleanType() const;
2105 bool isCharType() const;
2106 bool isWideCharType() const;
2107 bool isChar8Type() const;
2108 bool isChar16Type() const;
2109 bool isChar32Type() const;
2110 bool isAnyCharacterType() const;
2111 bool isIntegralType(const ASTContext &Ctx) const;
2112
2113 /// Determine whether this type is an integral or enumeration type.
2114 bool isIntegralOrEnumerationType() const;
2115
2116 /// Determine whether this type is an integral or unscoped enumeration type.
2117 bool isIntegralOrUnscopedEnumerationType() const;
2118 bool isUnscopedEnumerationType() const;
2119
2120 /// Floating point categories.
2121 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
2122 /// isComplexType() does *not* include complex integers (a GCC extension).
2123 /// isComplexIntegerType() can be used to test for complex integers.
2124 bool isComplexType() const; // C99 6.2.5p11 (complex)
2125 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2126 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2127 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2128 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2129 bool isBFloat16Type() const;
2130 bool isFloat128Type() const;
2131 bool isIbm128Type() const;
2132 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2133 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2134 bool isVoidType() const; // C99 6.2.5p19
2135 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2136 bool isAggregateType() const;
2137 bool isFundamentalType() const;
2138 bool isCompoundType() const;
2139
2140 // Type Predicates: Check to see if this type is structurally the specified
2141 // type, ignoring typedefs and qualifiers.
2142 bool isFunctionType() const;
2143 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2144 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2145 bool isPointerType() const;
2146 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2147 bool isBlockPointerType() const;
2148 bool isVoidPointerType() const;
2149 bool isReferenceType() const;
2150 bool isLValueReferenceType() const;
2151 bool isRValueReferenceType() const;
2152 bool isObjectPointerType() const;
2153 bool isFunctionPointerType() const;
2154 bool isFunctionReferenceType() const;
2155 bool isMemberPointerType() const;
2156 bool isMemberFunctionPointerType() const;
2157 bool isMemberDataPointerType() const;
2158 bool isArrayType() const;
2159 bool isConstantArrayType() const;
2160 bool isIncompleteArrayType() const;
2161 bool isVariableArrayType() const;
2162 bool isDependentSizedArrayType() const;
2163 bool isRecordType() const;
2164 bool isClassType() const;
2165 bool isStructureType() const;
2166 bool isObjCBoxableRecordType() const;
2167 bool isInterfaceType() const;
2168 bool isStructureOrClassType() const;
2169 bool isUnionType() const;
2170 bool isComplexIntegerType() const; // GCC _Complex integer type.
2171 bool isVectorType() const; // GCC vector type.
2172 bool isExtVectorType() const; // Extended vector type.
2173 bool isExtVectorBoolType() const; // Extended vector type with bool element.
2174 bool isMatrixType() const; // Matrix type.
2175 bool isConstantMatrixType() const; // Constant matrix type.
2176 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2177 bool isObjCObjectPointerType() const; // pointer to ObjC object
2178 bool isObjCRetainableType() const; // ObjC object or block pointer
2179 bool isObjCLifetimeType() const; // (array of)* retainable type
2180 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2181 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2182 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2183 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2184 // for the common case.
2185 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2186 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2187 bool isObjCQualifiedIdType() const; // id<foo>
2188 bool isObjCQualifiedClassType() const; // Class<foo>
2189 bool isObjCObjectOrInterfaceType() const;
2190 bool isObjCIdType() const; // id
2191 bool isDecltypeType() const;
2192 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2193 /// qualifier?
2194 ///
2195 /// This approximates the answer to the following question: if this
2196 /// translation unit were compiled in ARC, would this type be qualified
2197 /// with __unsafe_unretained?
2198 bool isObjCInertUnsafeUnretainedType() const {
2199 return hasAttr(attr::ObjCInertUnsafeUnretained);
2200 }
2201
2202 /// Whether the type is Objective-C 'id' or a __kindof type of an
2203 /// object type, e.g., __kindof NSView * or __kindof id
2204 /// <NSCopying>.
2205 ///
2206 /// \param bound Will be set to the bound on non-id subtype types,
2207 /// which will be (possibly specialized) Objective-C class type, or
2208 /// null for 'id.
2209 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2210 const ObjCObjectType *&bound) const;
2211
2212 bool isObjCClassType() const; // Class
2213
2214 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2215 /// Class type, e.g., __kindof Class <NSCopying>.
2216 ///
2217 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2218 /// here because Objective-C's type system cannot express "a class
2219 /// object for a subclass of NSFoo".
2220 bool isObjCClassOrClassKindOfType() const;
2221
2222 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2223 bool isObjCSelType() const; // Class
2224 bool isObjCBuiltinType() const; // 'id' or 'Class'
2225 bool isObjCARCBridgableType() const;
2226 bool isCARCBridgableType() const;
2227 bool isTemplateTypeParmType() const; // C++ template type parameter
2228 bool isNullPtrType() const; // C++11 std::nullptr_t or
2229 // C2x nullptr_t
2230 bool isNothrowT() const; // C++ std::nothrow_t
2231 bool isAlignValT() const; // C++17 std::align_val_t
2232 bool isStdByteType() const; // C++17 std::byte
2233 bool isAtomicType() const; // C11 _Atomic()
2234 bool isUndeducedAutoType() const; // C++11 auto or
2235 // C++14 decltype(auto)
2236 bool isTypedefNameType() const; // typedef or alias template
2237
2238#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2239 bool is##Id##Type() const;
2240#include "clang/Basic/OpenCLImageTypes.def"
2241
2242 bool isImageType() const; // Any OpenCL image type
2243
2244 bool isSamplerT() const; // OpenCL sampler_t
2245 bool isEventT() const; // OpenCL event_t
2246 bool isClkEventT() const; // OpenCL clk_event_t
2247 bool isQueueT() const; // OpenCL queue_t
2248 bool isReserveIDT() const; // OpenCL reserve_id_t
2249
2250#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2251 bool is##Id##Type() const;
2252#include "clang/Basic/OpenCLExtensionTypes.def"
2253 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2254 bool isOCLIntelSubgroupAVCType() const;
2255 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2256
2257 bool isPipeType() const; // OpenCL pipe type
2258 bool isBitIntType() const; // Bit-precise integer type
2259 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2260
2261 /// Determines if this type, which must satisfy
2262 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2263 /// than implicitly __strong.
2264 bool isObjCARCImplicitlyUnretainedType() const;
2265
2266 /// Check if the type is the CUDA device builtin surface type.
2267 bool isCUDADeviceBuiltinSurfaceType() const;
2268 /// Check if the type is the CUDA device builtin texture type.
2269 bool isCUDADeviceBuiltinTextureType() const;
2270
2271 bool isRVVType() const;
2272
2273 /// Return the implicit lifetime for this type, which must not be dependent.
2274 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2275
2276 enum ScalarTypeKind {
2277 STK_CPointer,
2278 STK_BlockPointer,
2279 STK_ObjCObjectPointer,
2280 STK_MemberPointer,
2281 STK_Bool,
2282 STK_Integral,
2283 STK_Floating,
2284 STK_IntegralComplex,
2285 STK_FloatingComplex,
2286 STK_FixedPoint
2287 };
2288
2289 /// Given that this is a scalar type, classify it.
2290 ScalarTypeKind getScalarTypeKind() const;
2291
2292 TypeDependence getDependence() const {
2293 return static_cast<TypeDependence>(TypeBits.Dependence);
2294 }
2295
2296 /// Whether this type is an error type.
2297 bool containsErrors() const {
2298 return getDependence() & TypeDependence::Error;
2299 }
2300
2301 /// Whether this type is a dependent type, meaning that its definition
2302 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2303 bool isDependentType() const {
2304 return getDependence() & TypeDependence::Dependent;
2305 }
2306
2307 /// Determine whether this type is an instantiation-dependent type,
2308 /// meaning that the type involves a template parameter (even if the
2309 /// definition does not actually depend on the type substituted for that
2310 /// template parameter).
2311 bool isInstantiationDependentType() const {
2312 return getDependence() & TypeDependence::Instantiation;
2313 }
2314
2315 /// Determine whether this type is an undeduced type, meaning that
2316 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2317 /// deduced.
2318 bool isUndeducedType() const;
2319
2320 /// Whether this type is a variably-modified type (C99 6.7.5).
2321 bool isVariablyModifiedType() const {
2322 return getDependence() & TypeDependence::VariablyModified;
2323 }
2324
2325 /// Whether this type involves a variable-length array type
2326 /// with a definite size.
2327 bool hasSizedVLAType() const;
2328
2329 /// Whether this type is or contains a local or unnamed type.
2330 bool hasUnnamedOrLocalType() const;
2331
2332 bool isOverloadableType() const;
2333
2334 /// Determine wither this type is a C++ elaborated-type-specifier.
2335 bool isElaboratedTypeSpecifier() const;
2336
2337 bool canDecayToPointerType() const;
2338
2339 /// Whether this type is represented natively as a pointer. This includes
2340 /// pointers, references, block pointers, and Objective-C interface,
2341 /// qualified id, and qualified interface types, as well as nullptr_t.
2342 bool hasPointerRepresentation() const;
2343
2344 /// Whether this type can represent an objective pointer type for the
2345 /// purpose of GC'ability
2346 bool hasObjCPointerRepresentation() const;
2347
2348 /// Determine whether this type has an integer representation
2349 /// of some sort, e.g., it is an integer type or a vector.
2350 bool hasIntegerRepresentation() const;
2351
2352 /// Determine whether this type has an signed integer representation
2353 /// of some sort, e.g., it is an signed integer type or a vector.
2354 bool hasSignedIntegerRepresentation() const;
2355
2356 /// Determine whether this type has an unsigned integer representation
2357 /// of some sort, e.g., it is an unsigned integer type or a vector.
2358 bool hasUnsignedIntegerRepresentation() const;
2359
2360 /// Determine whether this type has a floating-point representation
2361 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2362 bool hasFloatingRepresentation() const;
2363
2364 // Type Checking Functions: Check to see if this type is structurally the
2365 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2366 // the best type we can.
2367 const RecordType *getAsStructureType() const;
2368 /// NOTE: getAs*ArrayType are methods on ASTContext.
2369 const RecordType *getAsUnionType() const;
2370 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2371 const ObjCObjectType *getAsObjCInterfaceType() const;
2372
2373 // The following is a convenience method that returns an ObjCObjectPointerType
2374 // for object declared using an interface.
2375 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2376 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2377 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2378 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2379
2380 /// Retrieves the CXXRecordDecl that this type refers to, either
2381 /// because the type is a RecordType or because it is the injected-class-name
2382 /// type of a class template or class template partial specialization.
2383 CXXRecordDecl *getAsCXXRecordDecl() const;
2384
2385 /// Retrieves the RecordDecl this type refers to.
2386 RecordDecl *getAsRecordDecl() const;
2387
2388 /// Retrieves the TagDecl that this type refers to, either
2389 /// because the type is a TagType or because it is the injected-class-name
2390 /// type of a class template or class template partial specialization.
2391 TagDecl *getAsTagDecl() const;
2392
2393 /// If this is a pointer or reference to a RecordType, return the
2394 /// CXXRecordDecl that the type refers to.
2395 ///
2396 /// If this is not a pointer or reference, or the type being pointed to does
2397 /// not refer to a CXXRecordDecl, returns NULL.
2398 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2399
2400 /// Get the DeducedType whose type will be deduced for a variable with
2401 /// an initializer of this type. This looks through declarators like pointer
2402 /// types, but not through decltype or typedefs.
2403 DeducedType *getContainedDeducedType() const;
2404
2405 /// Get the AutoType whose type will be deduced for a variable with
2406 /// an initializer of this type. This looks through declarators like pointer
2407 /// types, but not through decltype or typedefs.
2408 AutoType *getContainedAutoType() const {
2409 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2410 }
2411
2412 /// Determine whether this type was written with a leading 'auto'
2413 /// corresponding to a trailing return type (possibly for a nested
2414 /// function type within a pointer to function type or similar).
2415 bool hasAutoForTrailingReturnType() const;
2416
2417 /// Member-template getAs<specific type>'. Look through sugar for
2418 /// an instance of \<specific type>. This scheme will eventually
2419 /// replace the specific getAsXXXX methods above.
2420 ///
2421 /// There are some specializations of this member template listed
2422 /// immediately following this class.
2423 template <typename T> const T *getAs() const;
2424
2425 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2426 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2427 /// This is used when you need to walk over sugar nodes that represent some
2428 /// kind of type adjustment from a type that was written as a \<specific type>
2429 /// to another type that is still canonically a \<specific type>.
2430 template <typename T> const T *getAsAdjusted() const;
2431
2432 /// A variant of getAs<> for array types which silently discards
2433 /// qualifiers from the outermost type.
2434 const ArrayType *getAsArrayTypeUnsafe() const;
2435
2436 /// Member-template castAs<specific type>. Look through sugar for
2437 /// the underlying instance of \<specific type>.
2438 ///
2439 /// This method has the same relationship to getAs<T> as cast<T> has
2440 /// to dyn_cast<T>; which is to say, the underlying type *must*
2441 /// have the intended type, and this method will never return null.
2442 template <typename T> const T *castAs() const;
2443
2444 /// A variant of castAs<> for array type which silently discards
2445 /// qualifiers from the outermost type.
2446 const ArrayType *castAsArrayTypeUnsafe() const;
2447
2448 /// Determine whether this type had the specified attribute applied to it
2449 /// (looking through top-level type sugar).
2450 bool hasAttr(attr::Kind AK) const;
2451
2452 /// Get the base element type of this type, potentially discarding type
2453 /// qualifiers. This should never be used when type qualifiers
2454 /// are meaningful.
2455 const Type *getBaseElementTypeUnsafe() const;
2456
2457 /// If this is an array type, return the element type of the array,
2458 /// potentially with type qualifiers missing.
2459 /// This should never be used when type qualifiers are meaningful.
2460 const Type *getArrayElementTypeNoTypeQual() const;
2461
2462 /// If this is a pointer type, return the pointee type.
2463 /// If this is an array type, return the array element type.
2464 /// This should never be used when type qualifiers are meaningful.
2465 const Type *getPointeeOrArrayElementType() const;
2466
2467 /// If this is a pointer, ObjC object pointer, or block
2468 /// pointer, this returns the respective pointee.
2469 QualType getPointeeType() const;
2470
2471 /// Return the specified type with any "sugar" removed from the type,
2472 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2473 const Type *getUnqualifiedDesugaredType() const;
2474
2475 /// Return true if this is an integer type that is
2476 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2477 /// or an enum decl which has a signed representation.
2478 bool isSignedIntegerType() const;
2479
2480 /// Return true if this is an integer type that is
2481 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2482 /// or an enum decl which has an unsigned representation.
2483 bool isUnsignedIntegerType() const;
2484
2485 /// Determines whether this is an integer type that is signed or an
2486 /// enumeration types whose underlying type is a signed integer type.
2487 bool isSignedIntegerOrEnumerationType() const;
2488
2489 /// Determines whether this is an integer type that is unsigned or an
2490 /// enumeration types whose underlying type is a unsigned integer type.
2491 bool isUnsignedIntegerOrEnumerationType() const;
2492
2493 /// Return true if this is a fixed point type according to
2494 /// ISO/IEC JTC1 SC22 WG14 N1169.
2495 bool isFixedPointType() const;
2496
2497 /// Return true if this is a fixed point or integer type.
2498 bool isFixedPointOrIntegerType() const;
2499
2500 /// Return true if this is a saturated fixed point type according to
2501 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2502 bool isSaturatedFixedPointType() const;
2503
2504 /// Return true if this is a saturated fixed point type according to
2505 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2506 bool isUnsaturatedFixedPointType() const;
2507
2508 /// Return true if this is a fixed point type that is signed according
2509 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2510 bool isSignedFixedPointType() const;
2511
2512 /// Return true if this is a fixed point type that is unsigned according
2513 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2514 bool isUnsignedFixedPointType() const;
2515
2516 /// Return true if this is not a variable sized type,
2517 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2518 /// incomplete types.
2519 bool isConstantSizeType() const;
2520
2521 /// Returns true if this type can be represented by some
2522 /// set of type specifiers.
2523 bool isSpecifierType() const;
2524
2525 /// Determine the linkage of this type.
2526 Linkage getLinkage() const;
2527
2528 /// Determine the visibility of this type.
2529 Visibility getVisibility() const {
2530 return getLinkageAndVisibility().getVisibility();
2531 }
2532
2533 /// Return true if the visibility was explicitly set is the code.
2534 bool isVisibilityExplicit() const {
2535 return getLinkageAndVisibility().isVisibilityExplicit();
2536 }
2537
2538 /// Determine the linkage and visibility of this type.
2539 LinkageInfo getLinkageAndVisibility() const;
2540
2541 /// True if the computed linkage is valid. Used for consistency
2542 /// checking. Should always return true.
2543 bool isLinkageValid() const;
2544
2545 /// Determine the nullability of the given type.
2546 ///
2547 /// Note that nullability is only captured as sugar within the type
2548 /// system, not as part of the canonical type, so nullability will
2549 /// be lost by canonicalization and desugaring.
2550 Optional<NullabilityKind> getNullability() const;
2551 // TODO: Remove overload.
2552 Optional<NullabilityKind> getNullability(const ASTContext &) const;
2553
2554 /// Determine whether the given type can have a nullability
2555 /// specifier applied to it, i.e., if it is any kind of pointer type.
2556 ///
2557 /// \param ResultIfUnknown The value to return if we don't yet know whether
2558 /// this type can have nullability because it is dependent.
2559 bool canHaveNullability(bool ResultIfUnknown = true) const;
2560
2561 /// Retrieve the set of substitutions required when accessing a member
2562 /// of the Objective-C receiver type that is declared in the given context.
2563 ///
2564 /// \c *this is the type of the object we're operating on, e.g., the
2565 /// receiver for a message send or the base of a property access, and is
2566 /// expected to be of some object or object pointer type.
2567 ///
2568 /// \param dc The declaration context for which we are building up a
2569 /// substitution mapping, which should be an Objective-C class, extension,
2570 /// category, or method within.
2571 ///
2572 /// \returns an array of type arguments that can be substituted for
2573 /// the type parameters of the given declaration context in any type described
2574 /// within that context, or an empty optional to indicate that no
2575 /// substitution is required.
2576 Optional<ArrayRef<QualType>>
2577 getObjCSubstitutions(const DeclContext *dc) const;
2578
2579 /// Determines if this is an ObjC interface type that may accept type
2580 /// parameters.
2581 bool acceptsObjCTypeParams() const;
2582
2583 const char *getTypeClassName() const;
2584
2585 QualType getCanonicalTypeInternal() const {
2586 return CanonicalType;
2587 }
2588
2589 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2590 void dump() const;
2591 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2592};
2593
2594/// This will check for a TypedefType by removing any existing sugar
2595/// until it reaches a TypedefType or a non-sugared type.
2596template <> const TypedefType *Type::getAs() const;
2597template <> const UsingType *Type::getAs() const;
2598
2599/// This will check for a TemplateSpecializationType by removing any
2600/// existing sugar until it reaches a TemplateSpecializationType or a
2601/// non-sugared type.
2602template <> const TemplateSpecializationType *Type::getAs() const;
2603
2604/// This will check for an AttributedType by removing any existing sugar
2605/// until it reaches an AttributedType or a non-sugared type.
2606template <> const AttributedType *Type::getAs() const;
2607
2608// We can do canonical leaf types faster, because we don't have to
2609// worry about preserving child type decoration.
2610#define TYPE(Class, Base)
2611#define LEAF_TYPE(Class) \
2612template <> inline const Class##Type *Type::getAs() const { \
2613 return dyn_cast<Class##Type>(CanonicalType); \
2614} \
2615template <> inline const Class##Type *Type::castAs() const { \
2616 return cast<Class##Type>(CanonicalType); \
2617}
2618#include "clang/AST/TypeNodes.inc"
2619
2620/// This class is used for builtin types like 'int'. Builtin
2621/// types are always canonical and have a literal name field.
2622class BuiltinType : public Type {
2623public:
2624 enum Kind {
2625// OpenCL image types
2626#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2627#include "clang/Basic/OpenCLImageTypes.def"
2628// OpenCL extension types
2629#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2630#include "clang/Basic/OpenCLExtensionTypes.def"
2631// SVE Types
2632#define SVE_TYPE(Name, Id, SingletonId) Id,
2633#include "clang/Basic/AArch64SVEACLETypes.def"
2634// PPC MMA Types
2635#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2636#include "clang/Basic/PPCTypes.def"
2637// RVV Types
2638#define RVV_TYPE(Name, Id, SingletonId) Id,
2639#include "clang/Basic/RISCVVTypes.def"
2640// All other builtin types
2641#define BUILTIN_TYPE(Id, SingletonId) Id,
2642#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2643#include "clang/AST/BuiltinTypes.def"
2644 };
2645
2646private:
2647 friend class ASTContext; // ASTContext creates these.
2648
2649 BuiltinType(Kind K)
2650 : Type(Builtin, QualType(),
2651 K == Dependent ? TypeDependence::DependentInstantiation
2652 : TypeDependence::None) {
2653 BuiltinTypeBits.Kind = K;
2654 }
2655
2656public:
2657 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2658 StringRef getName(const PrintingPolicy &Policy) const;
2659
2660 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2661 // The StringRef is null-terminated.
2662 StringRef str = getName(Policy);
2663 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "clang/include/clang/AST/Type.h", 2663, __extension__ __PRETTY_FUNCTION__
))
;
2664 return str.data();
2665 }
2666
2667 bool isSugared() const { return false; }
2668 QualType desugar() const { return QualType(this, 0); }
2669
2670 bool isInteger() const {
2671 return getKind() >= Bool && getKind() <= Int128;
2672 }
2673
2674 bool isSignedInteger() const {
2675 return getKind() >= Char_S && getKind() <= Int128;
2676 }
2677
2678 bool isUnsignedInteger() const {
2679 return getKind() >= Bool && getKind() <= UInt128;
2680 }
2681
2682 bool isFloatingPoint() const {
2683 return getKind() >= Half && getKind() <= Ibm128;
2684 }
2685
2686 bool isSVEBool() const { return getKind() == Kind::SveBool; }
2687
2688 /// Determines whether the given kind corresponds to a placeholder type.
2689 static bool isPlaceholderTypeKind(Kind K) {
2690 return K >= Overload;
2691 }
2692
2693 /// Determines whether this type is a placeholder type, i.e. a type
2694 /// which cannot appear in arbitrary positions in a fully-formed
2695 /// expression.
2696 bool isPlaceholderType() const {
2697 return isPlaceholderTypeKind(getKind());
2698 }
2699
2700 /// Determines whether this type is a placeholder type other than
2701 /// Overload. Most placeholder types require only syntactic
2702 /// information about their context in order to be resolved (e.g.
2703 /// whether it is a call expression), which means they can (and
2704 /// should) be resolved in an earlier "phase" of analysis.
2705 /// Overload expressions sometimes pick up further information
2706 /// from their context, like whether the context expects a
2707 /// specific function-pointer type, and so frequently need
2708 /// special treatment.
2709 bool isNonOverloadPlaceholderType() const {
2710 return getKind() > Overload;
2711 }
2712
2713 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2714};
2715
2716/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2717/// types (_Complex float etc) as well as the GCC integer complex extensions.
2718class ComplexType : public Type, public llvm::FoldingSetNode {
2719 friend class ASTContext; // ASTContext creates these.
2720
2721 QualType ElementType;
2722
2723 ComplexType(QualType Element, QualType CanonicalPtr)
2724 : Type(Complex, CanonicalPtr, Element->getDependence()),
2725 ElementType(Element) {}
2726
2727public:
2728 QualType getElementType() const { return ElementType; }
2729
2730 bool isSugared() const { return false; }
2731 QualType desugar() const { return QualType(this, 0); }
2732
2733 void Profile(llvm::FoldingSetNodeID &ID) {
2734 Profile(ID, getElementType());
2735 }
2736
2737 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2738 ID.AddPointer(Element.getAsOpaquePtr());
2739 }
2740
2741 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2742};
2743
2744/// Sugar for parentheses used when specifying types.
2745class ParenType : public Type, public llvm::FoldingSetNode {
2746 friend class ASTContext; // ASTContext creates these.
2747
2748 QualType Inner;
2749
2750 ParenType(QualType InnerType, QualType CanonType)
2751 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2752
2753public:
2754 QualType getInnerType() const { return Inner; }
2755
2756 bool isSugared() const { return true; }
2757 QualType desugar() const { return getInnerType(); }
2758
2759 void Profile(llvm::FoldingSetNodeID &ID) {
2760 Profile(ID, getInnerType());
2761 }
2762
2763 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2764 Inner.Profile(ID);
2765 }
2766
2767 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2768};
2769
2770/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2771class PointerType : public Type, public llvm::FoldingSetNode {
2772 friend class ASTContext; // ASTContext creates these.
2773
2774 QualType PointeeType;
2775
2776 PointerType(QualType Pointee, QualType CanonicalPtr)
2777 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2778 PointeeType(Pointee) {}
2779
2780public:
2781 QualType getPointeeType() const { return PointeeType; }
2782
2783 bool isSugared() const { return false; }
2784 QualType desugar() const { return QualType(this, 0); }
2785
2786 void Profile(llvm::FoldingSetNodeID &ID) {
2787 Profile(ID, getPointeeType());
2788 }
2789
2790 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2791 ID.AddPointer(Pointee.getAsOpaquePtr());
2792 }
2793
2794 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2795};
2796
2797/// Represents a type which was implicitly adjusted by the semantic
2798/// engine for arbitrary reasons. For example, array and function types can
2799/// decay, and function types can have their calling conventions adjusted.
2800class AdjustedType : public Type, public llvm::FoldingSetNode {
2801 QualType OriginalTy;
2802 QualType AdjustedTy;
2803
2804protected:
2805 friend class ASTContext; // ASTContext creates these.
2806
2807 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2808 QualType CanonicalPtr)
2809 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2810 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2811
2812public:
2813 QualType getOriginalType() const { return OriginalTy; }
2814 QualType getAdjustedType() const { return AdjustedTy; }
2815
2816 bool isSugared() const { return true; }
2817 QualType desugar() const { return AdjustedTy; }
2818
2819 void Profile(llvm::FoldingSetNodeID &ID) {
2820 Profile(ID, OriginalTy, AdjustedTy);
2821 }
2822
2823 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2824 ID.AddPointer(Orig.getAsOpaquePtr());
2825 ID.AddPointer(New.getAsOpaquePtr());
2826 }
2827
2828 static bool classof(const Type *T) {
2829 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2830 }
2831};
2832
2833/// Represents a pointer type decayed from an array or function type.
2834class DecayedType : public AdjustedType {
2835 friend class ASTContext; // ASTContext creates these.
2836
2837 inline
2838 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2839
2840public:
2841 QualType getDecayedType() const { return getAdjustedType(); }
2842
2843 inline QualType getPointeeType() const;
2844
2845 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2846};
2847
2848/// Pointer to a block type.
2849/// This type is to represent types syntactically represented as
2850/// "void (^)(int)", etc. Pointee is required to always be a function type.
2851class BlockPointerType : public Type, public llvm::FoldingSetNode {
2852 friend class ASTContext; // ASTContext creates these.
2853
2854 // Block is some kind of pointer type
2855 QualType PointeeType;
2856
2857 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2858 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2859 PointeeType(Pointee) {}
2860
2861public:
2862 // Get the pointee type. Pointee is required to always be a function type.
2863 QualType getPointeeType() const { return PointeeType; }
2864
2865 bool isSugared() const { return false; }
2866 QualType desugar() const { return QualType(this, 0); }
2867
2868 void Profile(llvm::FoldingSetNodeID &ID) {
2869 Profile(ID, getPointeeType());
2870 }
2871
2872 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2873 ID.AddPointer(Pointee.getAsOpaquePtr());
2874 }
2875
2876 static bool classof(const Type *T) {
2877 return T->getTypeClass() == BlockPointer;
2878 }
2879};
2880
2881/// Base for LValueReferenceType and RValueReferenceType
2882class ReferenceType : public Type, public llvm::FoldingSetNode {
2883 QualType PointeeType;
2884
2885protected:
2886 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2887 bool SpelledAsLValue)
2888 : Type(tc, CanonicalRef, Referencee->getDependence()),
2889 PointeeType(Referencee) {
2890 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2891 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2892 }
2893
2894public:
2895 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2896 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2897
2898 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2899
2900 QualType getPointeeType() const {
2901 // FIXME: this might strip inner qualifiers; okay?
2902 const ReferenceType *T = this;
2903 while (T->isInnerRef())
2904 T = T->PointeeType->castAs<ReferenceType>();
2905 return T->PointeeType;
2906 }
2907
2908 void Profile(llvm::FoldingSetNodeID &ID) {
2909 Profile(ID, PointeeType, isSpelledAsLValue());
2910 }
2911
2912 static void Profile(llvm::FoldingSetNodeID &ID,
2913 QualType Referencee,
2914 bool SpelledAsLValue) {
2915 ID.AddPointer(Referencee.getAsOpaquePtr());
2916 ID.AddBoolean(SpelledAsLValue);
2917 }
2918
2919 static bool classof(const Type *T) {
2920 return T->getTypeClass() == LValueReference ||
2921 T->getTypeClass() == RValueReference;
2922 }
2923};
2924
2925/// An lvalue reference type, per C++11 [dcl.ref].
2926class LValueReferenceType : public ReferenceType {
2927 friend class ASTContext; // ASTContext creates these
2928
2929 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2930 bool SpelledAsLValue)
2931 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2932 SpelledAsLValue) {}
2933
2934public:
2935 bool isSugared() const { return false; }
2936 QualType desugar() const { return QualType(this, 0); }
2937
2938 static bool classof(const Type *T) {
2939 return T->getTypeClass() == LValueReference;
2940 }
2941};
2942
2943/// An rvalue reference type, per C++11 [dcl.ref].
2944class RValueReferenceType : public ReferenceType {
2945 friend class ASTContext; // ASTContext creates these
2946
2947 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2948 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2949
2950public:
2951 bool isSugared() const { return false; }
2952 QualType desugar() const { return QualType(this, 0); }
2953
2954 static bool classof(const Type *T) {
2955 return T->getTypeClass() == RValueReference;
2956 }
2957};
2958
2959/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2960///
2961/// This includes both pointers to data members and pointer to member functions.
2962class MemberPointerType : public Type, public llvm::FoldingSetNode {
2963 friend class ASTContext; // ASTContext creates these.
2964
2965 QualType PointeeType;
2966
2967 /// The class of which the pointee is a member. Must ultimately be a
2968 /// RecordType, but could be a typedef or a template parameter too.
2969 const Type *Class;
2970
2971 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2972 : Type(MemberPointer, CanonicalPtr,
2973 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2974 Pointee->getDependence()),
2975 PointeeType(Pointee), Class(Cls) {}
2976
2977public:
2978 QualType getPointeeType() const { return PointeeType; }
2979
2980 /// Returns true if the member type (i.e. the pointee type) is a
2981 /// function type rather than a data-member type.
2982 bool isMemberFunctionPointer() const {
2983 return PointeeType->isFunctionProtoType();
2984 }
2985
2986 /// Returns true if the member type (i.e. the pointee type) is a
2987 /// data type rather than a function type.
2988 bool isMemberDataPointer() const {
2989 return !PointeeType->isFunctionProtoType();
2990 }
2991
2992 const Type *getClass() const { return Class; }
2993 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2994
2995 bool isSugared() const { return false; }
2996 QualType desugar() const { return QualType(this, 0); }
2997
2998 void Profile(llvm::FoldingSetNodeID &ID) {
2999 Profile(ID, getPointeeType(), getClass());
3000 }
3001
3002 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
3003 const Type *Class) {
3004 ID.AddPointer(Pointee.getAsOpaquePtr());
3005 ID.AddPointer(Class);
3006 }
3007
3008 static bool classof(const Type *T) {
3009 return T->getTypeClass() == MemberPointer;
3010 }
3011};
3012
3013/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
3014class ArrayType : public Type, public llvm::FoldingSetNode {
3015public:
3016 /// Capture whether this is a normal array (e.g. int X[4])
3017 /// an array with a static size (e.g. int X[static 4]), or an array
3018 /// with a star size (e.g. int X[*]).
3019 /// 'static' is only allowed on function parameters.
3020 enum ArraySizeModifier {
3021 Normal, Static, Star
3022 };
3023
3024private:
3025 /// The element type of the array.
3026 QualType ElementType;
3027
3028protected:
3029 friend class ASTContext; // ASTContext creates these.
3030
3031 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
3032 unsigned tq, const Expr *sz = nullptr);
3033
3034public:
3035 QualType getElementType() const { return ElementType; }
3036
3037 ArraySizeModifier getSizeModifier() const {
3038 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
3039 }
3040
3041 Qualifiers getIndexTypeQualifiers() const {
3042 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
3043 }
3044
3045 unsigned getIndexTypeCVRQualifiers() const {
3046 return ArrayTypeBits.IndexTypeQuals;
3047 }
3048
3049 static bool classof(const Type *T) {
3050 return T->getTypeClass() == ConstantArray ||
3051 T->getTypeClass() == VariableArray ||
3052 T->getTypeClass() == IncompleteArray ||
3053 T->getTypeClass() == DependentSizedArray;
3054 }
3055};
3056
3057/// Represents the canonical version of C arrays with a specified constant size.
3058/// For example, the canonical type for 'int A[4 + 4*100]' is a
3059/// ConstantArrayType where the element type is 'int' and the size is 404.
3060class ConstantArrayType final
3061 : public ArrayType,
3062 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
3063 friend class ASTContext; // ASTContext creates these.
3064 friend TrailingObjects;
3065
3066 llvm::APInt Size; // Allows us to unique the type.
3067
3068 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
3069 const Expr *sz, ArraySizeModifier sm, unsigned tq)
3070 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
3071 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
3072 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
3073 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "clang/include/clang/AST/Type.h", 3073, __extension__ __PRETTY_FUNCTION__
))
;
3074 *getTrailingObjects<const Expr*>() = sz;
3075 }
3076 }
3077
3078 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
3079 return ConstantArrayTypeBits.HasStoredSizeExpr;
3080 }
3081
3082public:
3083 const llvm::APInt &getSize() const { return Size; }
3084 const Expr *getSizeExpr() const {
3085 return ConstantArrayTypeBits.HasStoredSizeExpr
3086 ? *getTrailingObjects<const Expr *>()
3087 : nullptr;
3088 }
3089 bool isSugared() const { return false; }
3090 QualType desugar() const { return QualType(this, 0); }
3091
3092 /// Determine the number of bits required to address a member of
3093 // an array with the given element type and number of elements.
3094 static unsigned getNumAddressingBits(const ASTContext &Context,
3095 QualType ElementType,
3096 const llvm::APInt &NumElements);
3097
3098 /// Determine the maximum number of active bits that an array's size
3099 /// can require, which limits the maximum size of the array.
3100 static unsigned getMaxSizeBits(const ASTContext &Context);
3101
3102 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
3103 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
3104 getSizeModifier(), getIndexTypeCVRQualifiers());
3105 }
3106
3107 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
3108 QualType ET, const llvm::APInt &ArraySize,
3109 const Expr *SizeExpr, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals);
3111
3112 static bool classof(const Type *T) {
3113 return T->getTypeClass() == ConstantArray;
3114 }
3115};
3116
3117/// Represents a C array with an unspecified size. For example 'int A[]' has
3118/// an IncompleteArrayType where the element type is 'int' and the size is
3119/// unspecified.
3120class IncompleteArrayType : public ArrayType {
3121 friend class ASTContext; // ASTContext creates these.
3122
3123 IncompleteArrayType(QualType et, QualType can,
3124 ArraySizeModifier sm, unsigned tq)
3125 : ArrayType(IncompleteArray, et, can, sm, tq) {}
3126
3127public:
3128 friend class StmtIteratorBase;
3129
3130 bool isSugared() const { return false; }
3131 QualType desugar() const { return QualType(this, 0); }
3132
3133 static bool classof(const Type *T) {
3134 return T->getTypeClass() == IncompleteArray;
3135 }
3136
3137 void Profile(llvm::FoldingSetNodeID &ID) {
3138 Profile(ID, getElementType(), getSizeModifier(),
3139 getIndexTypeCVRQualifiers());
3140 }
3141
3142 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3143 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3144 ID.AddPointer(ET.getAsOpaquePtr());
3145 ID.AddInteger(SizeMod);
3146 ID.AddInteger(TypeQuals);
3147 }
3148};
3149
3150/// Represents a C array with a specified size that is not an
3151/// integer-constant-expression. For example, 'int s[x+foo()]'.
3152/// Since the size expression is an arbitrary expression, we store it as such.
3153///
3154/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3155/// should not be: two lexically equivalent variable array types could mean
3156/// different things, for example, these variables do not have the same type
3157/// dynamically:
3158///
3159/// void foo(int x) {
3160/// int Y[x];
3161/// ++x;
3162/// int Z[x];
3163/// }
3164class VariableArrayType : public ArrayType {
3165 friend class ASTContext; // ASTContext creates these.
3166
3167 /// An assignment-expression. VLA's are only permitted within
3168 /// a function block.
3169 Stmt *SizeExpr;
3170
3171 /// The range spanned by the left and right array brackets.
3172 SourceRange Brackets;
3173
3174 VariableArrayType(QualType et, QualType can, Expr *e,
3175 ArraySizeModifier sm, unsigned tq,
3176 SourceRange brackets)
3177 : ArrayType(VariableArray, et, can, sm, tq, e),
3178 SizeExpr((Stmt*) e), Brackets(brackets) {}
3179
3180public:
3181 friend class StmtIteratorBase;
3182
3183 Expr *getSizeExpr() const {
3184 // We use C-style casts instead of cast<> here because we do not wish
3185 // to have a dependency of Type.h on Stmt.h/Expr.h.
3186 return (Expr*) SizeExpr;
3187 }
3188
3189 SourceRange getBracketsRange() const { return Brackets; }
3190 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3191 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3192
3193 bool isSugared() const { return false; }
3194 QualType desugar() const { return QualType(this, 0); }
3195
3196 static bool classof(const Type *T) {
3197 return T->getTypeClass() == VariableArray;
3198 }
3199
3200 void Profile(llvm::FoldingSetNodeID &ID) {
3201 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "clang/include/clang/AST/Type.h", 3201)
;
3202 }
3203};
3204
3205/// Represents an array type in C++ whose size is a value-dependent expression.
3206///
3207/// For example:
3208/// \code
3209/// template<typename T, int Size>
3210/// class array {
3211/// T data[Size];
3212/// };
3213/// \endcode
3214///
3215/// For these types, we won't actually know what the array bound is
3216/// until template instantiation occurs, at which point this will
3217/// become either a ConstantArrayType or a VariableArrayType.
3218class DependentSizedArrayType : public ArrayType {
3219 friend class ASTContext; // ASTContext creates these.
3220
3221 const ASTContext &Context;
3222
3223 /// An assignment expression that will instantiate to the
3224 /// size of the array.
3225 ///
3226 /// The expression itself might be null, in which case the array
3227 /// type will have its size deduced from an initializer.
3228 Stmt *SizeExpr;
3229
3230 /// The range spanned by the left and right array brackets.
3231 SourceRange Brackets;
3232
3233 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3234 Expr *e, ArraySizeModifier sm, unsigned tq,
3235 SourceRange brackets);
3236
3237public:
3238 friend class StmtIteratorBase;
3239
3240 Expr *getSizeExpr() const {
3241 // We use C-style casts instead of cast<> here because we do not wish
3242 // to have a dependency of Type.h on Stmt.h/Expr.h.
3243 return (Expr*) SizeExpr;
3244 }
3245
3246 SourceRange getBracketsRange() const { return Brackets; }
3247 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3248 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3249
3250 bool isSugared() const { return false; }
3251 QualType desugar() const { return QualType(this, 0); }
3252
3253 static bool classof(const Type *T) {
3254 return T->getTypeClass() == DependentSizedArray;
3255 }
3256
3257 void Profile(llvm::FoldingSetNodeID &ID) {
3258 Profile(ID, Context, getElementType(),
3259 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3260 }
3261
3262 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3263 QualType ET, ArraySizeModifier SizeMod,
3264 unsigned TypeQuals, Expr *E);
3265};
3266
3267/// Represents an extended address space qualifier where the input address space
3268/// value is dependent. Non-dependent address spaces are not represented with a
3269/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3270///
3271/// For example:
3272/// \code
3273/// template<typename T, int AddrSpace>
3274/// class AddressSpace {
3275/// typedef T __attribute__((address_space(AddrSpace))) type;
3276/// }
3277/// \endcode
3278class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3279 friend class ASTContext;
3280
3281 const ASTContext &Context;
3282 Expr *AddrSpaceExpr;
3283 QualType PointeeType;
3284 SourceLocation loc;
3285
3286 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3287 QualType can, Expr *AddrSpaceExpr,
3288 SourceLocation loc);
3289
3290public:
3291 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3292 QualType getPointeeType() const { return PointeeType; }
3293 SourceLocation getAttributeLoc() const { return loc; }
3294
3295 bool isSugared() const { return false; }
3296 QualType desugar() const { return QualType(this, 0); }
3297
3298 static bool classof(const Type *T) {
3299 return T->getTypeClass() == DependentAddressSpace;
3300 }
3301
3302 void Profile(llvm::FoldingSetNodeID &ID) {
3303 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3304 }
3305
3306 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3307 QualType PointeeType, Expr *AddrSpaceExpr);
3308};
3309
3310/// Represents an extended vector type where either the type or size is
3311/// dependent.
3312///
3313/// For example:
3314/// \code
3315/// template<typename T, int Size>
3316/// class vector {
3317/// typedef T __attribute__((ext_vector_type(Size))) type;
3318/// }
3319/// \endcode
3320class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3321 friend class ASTContext;
3322
3323 const ASTContext &Context;
3324 Expr *SizeExpr;
3325
3326 /// The element type of the array.
3327 QualType ElementType;
3328
3329 SourceLocation loc;
3330
3331 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3332 QualType can, Expr *SizeExpr, SourceLocation loc);
3333
3334public:
3335 Expr *getSizeExpr() const { return SizeExpr; }
3336 QualType getElementType() const { return ElementType; }
3337 SourceLocation getAttributeLoc() const { return loc; }
3338
3339 bool isSugared() const { return false; }
3340 QualType desugar() const { return QualType(this, 0); }
3341
3342 static bool classof(const Type *T) {
3343 return T->getTypeClass() == DependentSizedExtVector;
3344 }
3345
3346 void Profile(llvm::FoldingSetNodeID &ID) {
3347 Profile(ID, Context, getElementType(), getSizeExpr());
3348 }
3349
3350 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3351 QualType ElementType, Expr *SizeExpr);
3352};
3353
3354
3355/// Represents a GCC generic vector type. This type is created using
3356/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3357/// bytes; or from an Altivec __vector or vector declaration.
3358/// Since the constructor takes the number of vector elements, the
3359/// client is responsible for converting the size into the number of elements.
3360class VectorType : public Type, public llvm::FoldingSetNode {
3361public:
3362 enum VectorKind {
3363 /// not a target-specific vector type
3364 GenericVector,
3365
3366 /// is AltiVec vector
3367 AltiVecVector,
3368
3369 /// is AltiVec 'vector Pixel'
3370 AltiVecPixel,
3371
3372 /// is AltiVec 'vector bool ...'
3373 AltiVecBool,
3374
3375 /// is ARM Neon vector
3376 NeonVector,
3377
3378 /// is ARM Neon polynomial vector
3379 NeonPolyVector,
3380
3381 /// is AArch64 SVE fixed-length data vector
3382 SveFixedLengthDataVector,
3383
3384 /// is AArch64 SVE fixed-length predicate vector
3385 SveFixedLengthPredicateVector
3386 };
3387
3388protected:
3389 friend class ASTContext; // ASTContext creates these.
3390
3391 /// The element type of the vector.
3392 QualType ElementType;
3393
3394 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3395 VectorKind vecKind);
3396
3397 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3398 QualType canonType, VectorKind vecKind);
3399
3400public:
3401 QualType getElementType() const { return ElementType; }
3402 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3403
3404 bool isSugared() const { return false; }
3405 QualType desugar() const { return QualType(this, 0); }
3406
3407 VectorKind getVectorKind() const {
3408 return VectorKind(VectorTypeBits.VecKind);
3409 }
3410
3411 void Profile(llvm::FoldingSetNodeID &ID) {
3412 Profile(ID, getElementType(), getNumElements(),
3413 getTypeClass(), getVectorKind());
3414 }
3415
3416 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3417 unsigned NumElements, TypeClass TypeClass,
3418 VectorKind VecKind) {
3419 ID.AddPointer(ElementType.getAsOpaquePtr());
3420 ID.AddInteger(NumElements);
3421 ID.AddInteger(TypeClass);
3422 ID.AddInteger(VecKind);
3423 }
3424
3425 static bool classof(const Type *T) {
3426 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3427 }
3428};
3429
3430/// Represents a vector type where either the type or size is dependent.
3431////
3432/// For example:
3433/// \code
3434/// template<typename T, int Size>
3435/// class vector {
3436/// typedef T __attribute__((vector_size(Size))) type;
3437/// }
3438/// \endcode
3439class DependentVectorType : public Type, public llvm::FoldingSetNode {
3440 friend class ASTContext;
3441
3442 const ASTContext &Context;
3443 QualType ElementType;
3444 Expr *SizeExpr;
3445 SourceLocation Loc;
3446
3447 DependentVectorType(const ASTContext &Context, QualType ElementType,
3448 QualType CanonType, Expr *SizeExpr,
3449 SourceLocation Loc, VectorType::VectorKind vecKind);
3450
3451public:
3452 Expr *getSizeExpr() const { return SizeExpr; }
3453 QualType getElementType() const { return ElementType; }
3454 SourceLocation getAttributeLoc() const { return Loc; }
3455 VectorType::VectorKind getVectorKind() const {
3456 return VectorType::VectorKind(VectorTypeBits.VecKind);
3457 }
3458
3459 bool isSugared() const { return false; }
3460 QualType desugar() const { return QualType(this, 0); }
3461
3462 static bool classof(const Type *T) {
3463 return T->getTypeClass() == DependentVector;
3464 }
3465
3466 void Profile(llvm::FoldingSetNodeID &ID) {
3467 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3468 }
3469
3470 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3471 QualType ElementType, const Expr *SizeExpr,
3472 VectorType::VectorKind VecKind);
3473};
3474
3475/// ExtVectorType - Extended vector type. This type is created using
3476/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3477/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3478/// class enables syntactic extensions, like Vector Components for accessing
3479/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3480/// Shading Language).
3481class ExtVectorType : public VectorType {
3482 friend class ASTContext; // ASTContext creates these.
3483
3484 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3485 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3486
3487public:
3488 static int getPointAccessorIdx(char c) {
3489 switch (c) {
3490 default: return -1;
3491 case 'x': case 'r': return 0;
3492 case 'y': case 'g': return 1;
3493 case 'z': case 'b': return 2;
3494 case 'w': case 'a': return 3;
3495 }
3496 }
3497
3498 static int getNumericAccessorIdx(char c) {
3499 switch (c) {
3500 default: return -1;
3501 case '0': return 0;
3502 case '1': return 1;
3503 case '2': return 2;
3504 case '3': return 3;
3505 case '4': return 4;
3506 case '5': return 5;
3507 case '6': return 6;
3508 case '7': return 7;
3509 case '8': return 8;
3510 case '9': return 9;
3511 case 'A':
3512 case 'a': return 10;
3513 case 'B':
3514 case 'b': return 11;
3515 case 'C':
3516 case 'c': return 12;
3517 case 'D':
3518 case 'd': return 13;
3519 case 'E':
3520 case 'e': return 14;
3521 case 'F':
3522 case 'f': return 15;
3523 }
3524 }
3525
3526 static int getAccessorIdx(char c, bool isNumericAccessor) {
3527 if (isNumericAccessor)
3528 return getNumericAccessorIdx(c);
3529 else
3530 return getPointAccessorIdx(c);
3531 }
3532
3533 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3534 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3535 return unsigned(idx-1) < getNumElements();
3536 return false;
3537 }
3538
3539 bool isSugared() const { return false; }
3540 QualType desugar() const { return QualType(this, 0); }
3541
3542 static bool classof(const Type *T) {
3543 return T->getTypeClass() == ExtVector;
3544 }
3545};
3546
3547/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3548/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3549/// number of rows and "columns" specifies the number of columns.
3550class MatrixType : public Type, public llvm::FoldingSetNode {
3551protected:
3552 friend class ASTContext;
3553
3554 /// The element type of the matrix.
3555 QualType ElementType;
3556
3557 MatrixType(QualType ElementTy, QualType CanonElementTy);
3558
3559 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3560 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3561
3562public:
3563 /// Returns type of the elements being stored in the matrix
3564 QualType getElementType() const { return ElementType; }
3565
3566 /// Valid elements types are the following:
3567 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3568 /// and _Bool
3569 /// * the standard floating types float or double
3570 /// * a half-precision floating point type, if one is supported on the target
3571 static bool isValidElementType(QualType T) {
3572 return T->isDependentType() ||
3573 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3574 }
3575
3576 bool isSugared() const { return false; }
3577 QualType desugar() const { return QualType(this, 0); }
3578
3579 static bool classof(const Type *T) {
3580 return T->getTypeClass() == ConstantMatrix ||
3581 T->getTypeClass() == DependentSizedMatrix;
3582 }
3583};
3584
3585/// Represents a concrete matrix type with constant number of rows and columns
3586class ConstantMatrixType final : public MatrixType {
3587protected:
3588 friend class ASTContext;
3589
3590 /// Number of rows and columns.
3591 unsigned NumRows;
3592 unsigned NumColumns;
3593
3594 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3595
3596 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3597 unsigned NColumns, QualType CanonElementType);
3598
3599 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3600 unsigned NColumns, QualType CanonElementType);
3601
3602public:
3603 /// Returns the number of rows in the matrix.
3604 unsigned getNumRows() const { return NumRows; }
3605
3606 /// Returns the number of columns in the matrix.
3607 unsigned getNumColumns() const { return NumColumns; }
3608
3609 /// Returns the number of elements required to embed the matrix into a vector.
3610 unsigned getNumElementsFlattened() const {
3611 return getNumRows() * getNumColumns();
3612 }
3613
3614 /// Returns true if \p NumElements is a valid matrix dimension.
3615 static constexpr bool isDimensionValid(size_t NumElements) {
3616 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3617 }
3618
3619 /// Returns the maximum number of elements per dimension.
3620 static constexpr unsigned getMaxElementsPerDimension() {
3621 return MaxElementsPerDimension;
3622 }
3623
3624 void Profile(llvm::FoldingSetNodeID &ID) {
3625 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3626 getTypeClass());
3627 }
3628
3629 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3630 unsigned NumRows, unsigned NumColumns,
3631 TypeClass TypeClass) {
3632 ID.AddPointer(ElementType.getAsOpaquePtr());
3633 ID.AddInteger(NumRows);
3634 ID.AddInteger(NumColumns);
3635 ID.AddInteger(TypeClass);
3636 }
3637
3638 static bool classof(const Type *T) {
3639 return T->getTypeClass() == ConstantMatrix;
3640 }
3641};
3642
3643/// Represents a matrix type where the type and the number of rows and columns
3644/// is dependent on a template.
3645class DependentSizedMatrixType final : public MatrixType {
3646 friend class ASTContext;
3647
3648 const ASTContext &Context;
3649 Expr *RowExpr;
3650 Expr *ColumnExpr;
3651
3652 SourceLocation loc;
3653
3654 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3655 QualType CanonicalType, Expr *RowExpr,
3656 Expr *ColumnExpr, SourceLocation loc);
3657
3658public:
3659 Expr *getRowExpr() const { return RowExpr; }
3660 Expr *getColumnExpr() const { return ColumnExpr; }
3661 SourceLocation getAttributeLoc() const { return loc; }
3662
3663 static bool classof(const Type *T) {
3664 return T->getTypeClass() == DependentSizedMatrix;
3665 }
3666
3667 void Profile(llvm::FoldingSetNodeID &ID) {
3668 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3669 }
3670
3671 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3672 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3673};
3674
3675/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3676/// class of FunctionNoProtoType and FunctionProtoType.
3677class FunctionType : public Type {
3678 // The type returned by the function.
3679 QualType ResultType;
3680
3681public:
3682 /// Interesting information about a specific parameter that can't simply
3683 /// be reflected in parameter's type. This is only used by FunctionProtoType
3684 /// but is in FunctionType to make this class available during the
3685 /// specification of the bases of FunctionProtoType.
3686 ///
3687 /// It makes sense to model language features this way when there's some
3688 /// sort of parameter-specific override (such as an attribute) that
3689 /// affects how the function is called. For example, the ARC ns_consumed
3690 /// attribute changes whether a parameter is passed at +0 (the default)
3691 /// or +1 (ns_consumed). This must be reflected in the function type,
3692 /// but isn't really a change to the parameter type.
3693 ///
3694 /// One serious disadvantage of modelling language features this way is
3695 /// that they generally do not work with language features that attempt
3696 /// to destructure types. For example, template argument deduction will
3697 /// not be able to match a parameter declared as
3698 /// T (*)(U)
3699 /// against an argument of type
3700 /// void (*)(__attribute__((ns_consumed)) id)
3701 /// because the substitution of T=void, U=id into the former will
3702 /// not produce the latter.
3703 class ExtParameterInfo {
3704 enum {
3705 ABIMask = 0x0F,
3706 IsConsumed = 0x10,
3707 HasPassObjSize = 0x20,
3708 IsNoEscape = 0x40,
3709 };
3710 unsigned char Data = 0;
3711
3712 public:
3713 ExtParameterInfo() = default;
3714
3715 /// Return the ABI treatment of this parameter.
3716 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3717 ExtParameterInfo withABI(ParameterABI kind) const {
3718 ExtParameterInfo copy = *this;
3719 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3720 return copy;
3721 }
3722
3723 /// Is this parameter considered "consumed" by Objective-C ARC?
3724 /// Consumed parameters must have retainable object type.
3725 bool isConsumed() const { return (Data & IsConsumed); }
3726 ExtParameterInfo withIsConsumed(bool consumed) const {
3727 ExtParameterInfo copy = *this;
3728 if (consumed)
3729 copy.Data |= IsConsumed;
3730 else
3731 copy.Data &= ~IsConsumed;
3732 return copy;
3733 }
3734
3735 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3736 ExtParameterInfo withHasPassObjectSize() const {
3737 ExtParameterInfo Copy = *this;
3738 Copy.Data |= HasPassObjSize;
3739 return Copy;
3740 }
3741
3742 bool isNoEscape() const { return Data & IsNoEscape; }
3743 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3744 ExtParameterInfo Copy = *this;
3745 if (NoEscape)
3746 Copy.Data |= IsNoEscape;
3747 else
3748 Copy.Data &= ~IsNoEscape;
3749 return Copy;
3750 }
3751
3752 unsigned char getOpaqueValue() const { return Data; }
3753 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3754 ExtParameterInfo result;
3755 result.Data = data;
3756 return result;
3757 }
3758
3759 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3760 return lhs.Data == rhs.Data;
3761 }
3762
3763 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3764 return lhs.Data != rhs.Data;
3765 }
3766 };
3767
3768 /// A class which abstracts out some details necessary for
3769 /// making a call.
3770 ///
3771 /// It is not actually used directly for storing this information in
3772 /// a FunctionType, although FunctionType does currently use the
3773 /// same bit-pattern.
3774 ///
3775 // If you add a field (say Foo), other than the obvious places (both,
3776 // constructors, compile failures), what you need to update is
3777 // * Operator==
3778 // * getFoo
3779 // * withFoo
3780 // * functionType. Add Foo, getFoo.
3781 // * ASTContext::getFooType
3782 // * ASTContext::mergeFunctionTypes
3783 // * FunctionNoProtoType::Profile
3784 // * FunctionProtoType::Profile
3785 // * TypePrinter::PrintFunctionProto
3786 // * AST read and write
3787 // * Codegen
3788 class ExtInfo {
3789 friend class FunctionType;
3790
3791 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3792 // adjust the Bits field below, and if you add bits, you'll need to adjust
3793 // Type::FunctionTypeBitfields::ExtInfo as well.
3794
3795 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3796 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3797 //
3798 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3799 enum { CallConvMask = 0x1F };
3800 enum { NoReturnMask = 0x20 };
3801 enum { ProducesResultMask = 0x40 };
3802 enum { NoCallerSavedRegsMask = 0x80 };
3803 enum {
3804 RegParmMask = 0x700,
3805 RegParmOffset = 8
3806 };
3807 enum { NoCfCheckMask = 0x800 };
3808 enum { CmseNSCallMask = 0x1000 };
3809 uint16_t Bits = CC_C;
3810
3811 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3812
3813 public:
3814 // Constructor with no defaults. Use this when you know that you
3815 // have all the elements (when reading an AST file for example).
3816 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3817 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3818 bool cmseNSCall) {
3819 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3819, __extension__ __PRETTY_FUNCTION__
))
;
3820 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3821 (producesResult ? ProducesResultMask : 0) |
3822 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3823 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3824 (NoCfCheck ? NoCfCheckMask : 0) |
3825 (cmseNSCall ? CmseNSCallMask : 0);
3826 }
3827
3828 // Constructor with all defaults. Use when for example creating a
3829 // function known to use defaults.
3830 ExtInfo() = default;
3831
3832 // Constructor with just the calling convention, which is an important part
3833 // of the canonical type.
3834 ExtInfo(CallingConv CC) : Bits(CC) {}
3835
3836 bool getNoReturn() const { return Bits & NoReturnMask; }
3837 bool getProducesResult() const { return Bits & ProducesResultMask; }
3838 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3839 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3840 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3841 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3842
3843 unsigned getRegParm() const {
3844 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3845 if (RegParm > 0)
3846 --RegParm;
3847 return RegParm;
3848 }
3849
3850 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3851
3852 bool operator==(ExtInfo Other) const {
3853 return Bits == Other.Bits;
3854 }
3855 bool operator!=(ExtInfo Other) const {
3856 return Bits != Other.Bits;
3857 }
3858
3859 // Note that we don't have setters. That is by design, use
3860 // the following with methods instead of mutating these objects.
3861
3862 ExtInfo withNoReturn(bool noReturn) const {
3863 if (noReturn)
3864 return ExtInfo(Bits | NoReturnMask);
3865 else
3866 return ExtInfo(Bits & ~NoReturnMask);
3867 }
3868
3869 ExtInfo withProducesResult(bool producesResult) const {
3870 if (producesResult)
3871 return ExtInfo(Bits | ProducesResultMask);
3872 else
3873 return ExtInfo(Bits & ~ProducesResultMask);
3874 }
3875
3876 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3877 if (cmseNSCall)
3878 return ExtInfo(Bits | CmseNSCallMask);
3879 else
3880 return ExtInfo(Bits & ~CmseNSCallMask);
3881 }
3882
3883 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3884 if (noCallerSavedRegs)
3885 return ExtInfo(Bits | NoCallerSavedRegsMask);
3886 else
3887 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3888 }
3889
3890 ExtInfo withNoCfCheck(bool noCfCheck) const {
3891 if (noCfCheck)
3892 return ExtInfo(Bits | NoCfCheckMask);
3893 else
3894 return ExtInfo(Bits & ~NoCfCheckMask);
3895 }
3896
3897 ExtInfo withRegParm(unsigned RegParm) const {
3898 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3898, __extension__ __PRETTY_FUNCTION__
))
;
3899 return ExtInfo((Bits & ~RegParmMask) |
3900 ((RegParm + 1) << RegParmOffset));
3901 }
3902
3903 ExtInfo withCallingConv(CallingConv cc) const {
3904 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3905 }
3906
3907 void Profile(llvm::FoldingSetNodeID &ID) const {
3908 ID.AddInteger(Bits);
3909 }
3910 };
3911
3912 /// A simple holder for a QualType representing a type in an
3913 /// exception specification. Unfortunately needed by FunctionProtoType
3914 /// because TrailingObjects cannot handle repeated types.
3915 struct ExceptionType { QualType Type; };
3916
3917 /// A simple holder for various uncommon bits which do not fit in
3918 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3919 /// alignment of subsequent objects in TrailingObjects.
3920 struct alignas(void *) FunctionTypeExtraBitfields {
3921 /// The number of types in the exception specification.
3922 /// A whole unsigned is not needed here and according to
3923 /// [implimits] 8 bits would be enough here.
3924 unsigned NumExceptionType = 0;
3925 };
3926
3927protected:
3928 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3929 TypeDependence Dependence, ExtInfo Info)
3930 : Type(tc, Canonical, Dependence), ResultType(res) {
3931 FunctionTypeBits.ExtInfo = Info.Bits;
3932 }
3933
3934 Qualifiers getFastTypeQuals() const {
3935 if (isFunctionProtoType())
3936 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3937
3938 return Qualifiers();
3939 }
3940
3941public:
3942 QualType getReturnType() const { return ResultType; }
3943
3944 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3945 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3946
3947 /// Determine whether this function type includes the GNU noreturn
3948 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3949 /// type.
3950 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3951
3952 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3953 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3954 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3955
3956 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3957 "Const, volatile and restrict are assumed to be a subset of "
3958 "the fast qualifiers.");
3959
3960 bool isConst() const { return getFastTypeQuals().hasConst(); }
3961 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3962 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3963
3964 /// Determine the type of an expression that calls a function of
3965 /// this type.
3966 QualType getCallResultType(const ASTContext &Context) const {
3967 return getReturnType().getNonLValueExprType(Context);
3968 }
3969
3970 static StringRef getNameForCallConv(CallingConv CC);
3971
3972 static bool classof(const Type *T) {
3973 return T->getTypeClass() == FunctionNoProto ||
3974 T->getTypeClass() == FunctionProto;
3975 }
3976};
3977
3978/// Represents a K&R-style 'int foo()' function, which has
3979/// no information available about its arguments.
3980class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3981 friend class ASTContext; // ASTContext creates these.
3982
3983 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3984 : FunctionType(FunctionNoProto, Result, Canonical,
3985 Result->getDependence() &
3986 ~(TypeDependence::DependentInstantiation |
3987 TypeDependence::UnexpandedPack),
3988 Info) {}
3989
3990public:
3991 // No additional state past what FunctionType provides.
3992
3993 bool isSugared() const { return false; }
3994 QualType desugar() const { return QualType(this, 0); }
3995
3996 void Profile(llvm::FoldingSetNodeID &ID) {
3997 Profile(ID, getReturnType(), getExtInfo());
3998 }
3999
4000 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
4001 ExtInfo Info) {
4002 Info.Profile(ID);
4003 ID.AddPointer(ResultType.getAsOpaquePtr());
4004 }
4005
4006 static bool classof(const Type *T) {
4007 return T->getTypeClass() == FunctionNoProto;
4008 }
4009};
4010
4011/// Represents a prototype with parameter type info, e.g.
4012/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
4013/// parameters, not as having a single void parameter. Such a type can have
4014/// an exception specification, but this specification is not part of the
4015/// canonical type. FunctionProtoType has several trailing objects, some of
4016/// which optional. For more information about the trailing objects see
4017/// the first comment inside FunctionProtoType.
4018class FunctionProtoType final
4019 : public FunctionType,
4020 public llvm::FoldingSetNode,
4021 private llvm::TrailingObjects<
4022 FunctionProtoType, QualType, SourceLocation,
4023 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
4024 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
4025 friend class ASTContext; // ASTContext creates these.
4026 friend TrailingObjects;
4027
4028 // FunctionProtoType is followed by several trailing objects, some of
4029 // which optional. They are in order:
4030 //
4031 // * An array of getNumParams() QualType holding the parameter types.
4032 // Always present. Note that for the vast majority of FunctionProtoType,
4033 // these will be the only trailing objects.
4034 //
4035 // * Optionally if the function is variadic, the SourceLocation of the
4036 // ellipsis.
4037 //
4038 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
4039 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
4040 // a single FunctionTypeExtraBitfields. Present if and only if
4041 // hasExtraBitfields() is true.
4042 //
4043 // * Optionally exactly one of:
4044 // * an array of getNumExceptions() ExceptionType,
4045 // * a single Expr *,
4046 // * a pair of FunctionDecl *,
4047 // * a single FunctionDecl *
4048 // used to store information about the various types of exception
4049 // specification. See getExceptionSpecSize for the details.
4050 //
4051 // * Optionally an array of getNumParams() ExtParameterInfo holding
4052 // an ExtParameterInfo for each of the parameters. Present if and
4053 // only if hasExtParameterInfos() is true.
4054 //
4055 // * Optionally a Qualifiers object to represent extra qualifiers that can't
4056 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
4057 // if hasExtQualifiers() is true.
4058 //
4059 // The optional FunctionTypeExtraBitfields has to be before the data
4060 // related to the exception specification since it contains the number
4061 // of exception types.
4062 //
4063 // We put the ExtParameterInfos last. If all were equal, it would make
4064 // more sense to put these before the exception specification, because
4065 // it's much easier to skip past them compared to the elaborate switch
4066 // required to skip the exception specification. However, all is not
4067 // equal; ExtParameterInfos are used to model very uncommon features,
4068 // and it's better not to burden the more common paths.
4069
4070public:
4071 /// Holds information about the various types of exception specification.
4072 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
4073 /// used to group together the various bits of information about the
4074 /// exception specification.
4075 struct ExceptionSpecInfo {
4076 /// The kind of exception specification this is.
4077 ExceptionSpecificationType Type = EST_None;
4078
4079 /// Explicitly-specified list of exception types.
4080 ArrayRef<QualType> Exceptions;
4081
4082 /// Noexcept expression, if this is a computed noexcept specification.
4083 Expr *NoexceptExpr = nullptr;
4084
4085 /// The function whose exception specification this is, for
4086 /// EST_Unevaluated and EST_Uninstantiated.
4087 FunctionDecl *SourceDecl = nullptr;
4088
4089 /// The function template whose exception specification this is instantiated
4090 /// from, for EST_Uninstantiated.
4091 FunctionDecl *SourceTemplate = nullptr;
4092
4093 ExceptionSpecInfo() = default;
4094
4095 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
4096 };
4097
4098 /// Extra information about a function prototype. ExtProtoInfo is not
4099 /// stored as such in FunctionProtoType but is used to group together
4100 /// the various bits of extra information about a function prototype.
4101 struct ExtProtoInfo {
4102 FunctionType::ExtInfo ExtInfo;
4103 bool Variadic : 1;
4104 bool HasTrailingReturn : 1;
4105 Qualifiers TypeQuals;
4106 RefQualifierKind RefQualifier = RQ_None;
4107 ExceptionSpecInfo ExceptionSpec;
4108 const ExtParameterInfo *ExtParameterInfos = nullptr;
4109 SourceLocation EllipsisLoc;
4110
4111 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
4112
4113 ExtProtoInfo(CallingConv CC)
4114 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
4115
4116 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
4117 ExtProtoInfo Result(*this);
4118 Result.ExceptionSpec = ESI;
4119 return Result;
4120 }
4121
4122 bool requiresFunctionProtoTypeExtraBitfields() const {
4123 return ExceptionSpec.Type == EST_Dynamic;
4124 }
4125 };
4126
4127private:
4128 unsigned numTrailingObjects(OverloadToken<QualType>) const {
4129 return getNumParams();
4130 }
4131
4132 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
4133 return isVariadic();
4134 }
4135
4136 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4137 return hasExtraBitfields();
4138 }
4139
4140 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4141 return getExceptionSpecSize().NumExceptionType;
4142 }
4143
4144 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4145 return getExceptionSpecSize().NumExprPtr;
4146 }
4147
4148 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4149 return getExceptionSpecSize().NumFunctionDeclPtr;
4150 }
4151
4152 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4153 return hasExtParameterInfos() ? getNumParams() : 0;
4154 }
4155
4156 /// Determine whether there are any argument types that
4157 /// contain an unexpanded parameter pack.
4158 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4159 unsigned numArgs) {
4160 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4161 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4162 return true;
4163
4164 return false;
4165 }
4166
4167 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4168 QualType canonical, const ExtProtoInfo &epi);
4169
4170 /// This struct is returned by getExceptionSpecSize and is used to
4171 /// translate an ExceptionSpecificationType to the number and kind
4172 /// of trailing objects related to the exception specification.
4173 struct ExceptionSpecSizeHolder {
4174 unsigned NumExceptionType;
4175 unsigned NumExprPtr;
4176 unsigned NumFunctionDeclPtr;
4177 };
4178
4179 /// Return the number and kind of trailing objects
4180 /// related to the exception specification.
4181 static ExceptionSpecSizeHolder
4182 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4183 switch (EST) {
4184 case EST_None:
4185 case EST_DynamicNone:
4186 case EST_MSAny:
4187 case EST_BasicNoexcept:
4188 case EST_Unparsed:
4189 case EST_NoThrow:
4190 return {0, 0, 0};
4191
4192 case EST_Dynamic:
4193 return {NumExceptions, 0, 0};
4194
4195 case EST_DependentNoexcept:
4196 case EST_NoexceptFalse:
4197 case EST_NoexceptTrue:
4198 return {0, 1, 0};
4199
4200 case EST_Uninstantiated:
4201 return {0, 0, 2};
4202
4203 case EST_Unevaluated:
4204 return {0, 0, 1};
4205 }
4206 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "clang/include/clang/AST/Type.h", 4206)
;
4207 }
4208
4209 /// Return the number and kind of trailing objects
4210 /// related to the exception specification.
4211 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4212 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4213 }
4214
4215 /// Whether the trailing FunctionTypeExtraBitfields is present.
4216 bool hasExtraBitfields() const {
4217 assert((getExceptionSpecType() != EST_Dynamic ||(static_cast <bool> ((getExceptionSpecType() != EST_Dynamic
|| FunctionTypeBits.HasExtraBitfields) && "ExtraBitfields are required for given ExceptionSpecType"
) ? void (0) : __assert_fail ("(getExceptionSpecType() != EST_Dynamic || FunctionTypeBits.HasExtraBitfields) && \"ExtraBitfields are required for given ExceptionSpecType\""
, "clang/include/clang/AST/Type.h", 4219, __extension__ __PRETTY_FUNCTION__
))
4218 FunctionTypeBits.HasExtraBitfields) &&(static_cast <bool> ((getExceptionSpecType() != EST_Dynamic
|| FunctionTypeBits.HasExtraBitfields) && "ExtraBitfields are required for given ExceptionSpecType"
) ? void (0) : __assert_fail ("(getExceptionSpecType() != EST_Dynamic || FunctionTypeBits.HasExtraBitfields) && \"ExtraBitfields are required for given ExceptionSpecType\""
, "clang/include/clang/AST/Type.h", 4219, __extension__ __PRETTY_FUNCTION__
))
4219 "ExtraBitfields are required for given ExceptionSpecType")(static_cast <bool> ((getExceptionSpecType() != EST_Dynamic
|| FunctionTypeBits.HasExtraBitfields) && "ExtraBitfields are required for given ExceptionSpecType"
) ? void (0) : __assert_fail ("(getExceptionSpecType() != EST_Dynamic || FunctionTypeBits.HasExtraBitfields) && \"ExtraBitfields are required for given ExceptionSpecType\""
, "clang/include/clang/AST/Type.h", 4219, __extension__ __PRETTY_FUNCTION__
))
;
4220 return FunctionTypeBits.HasExtraBitfields;
4221
4222 }
4223
4224 bool hasExtQualifiers() const {
4225 return FunctionTypeBits.HasExtQuals;
4226 }
4227
4228public:
4229 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4230
4231 QualType getParamType(unsigned i) const {
4232 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "clang/include/clang/AST/Type.h", 4232, __extension__ __PRETTY_FUNCTION__
))
;
4233 return param_type_begin()[i];
4234 }
4235
4236 ArrayRef<QualType> getParamTypes() const {
4237 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4238 }
4239
4240 ExtProtoInfo getExtProtoInfo() const {
4241 ExtProtoInfo EPI;
4242 EPI.ExtInfo = getExtInfo();
4243 EPI.Variadic = isVariadic();
4244 EPI.EllipsisLoc = getEllipsisLoc();
4245 EPI.HasTrailingReturn = hasTrailingReturn();
4246 EPI.ExceptionSpec = getExceptionSpecInfo();
4247 EPI.TypeQuals = getMethodQuals();
4248 EPI.RefQualifier = getRefQualifier();
4249 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4250 return EPI;
4251 }
4252
4253 /// Get the kind of exception specification on this function.
4254 ExceptionSpecificationType getExceptionSpecType() const {
4255 return static_cast<ExceptionSpecificationType>(
4256 FunctionTypeBits.ExceptionSpecType);
4257 }
4258
4259 /// Return whether this function has any kind of exception spec.
4260 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4261
4262 /// Return whether this function has a dynamic (throw) exception spec.
4263 bool hasDynamicExceptionSpec() const {
4264 return isDynamicExceptionSpec(getExceptionSpecType());
4265 }
4266
4267 /// Return whether this function has a noexcept exception spec.
4268 bool hasNoexceptExceptionSpec() const {
4269 return isNoexceptExceptionSpec(getExceptionSpecType());
4270 }
4271
4272 /// Return whether this function has a dependent exception spec.
4273 bool hasDependentExceptionSpec() const;
4274
4275 /// Return whether this function has an instantiation-dependent exception
4276 /// spec.
4277 bool hasInstantiationDependentExceptionSpec() const;
4278
4279 /// Return all the available information about this type's exception spec.
4280 ExceptionSpecInfo getExceptionSpecInfo() const {
4281 ExceptionSpecInfo Result;
4282 Result.Type = getExceptionSpecType();
4283 if (Result.Type == EST_Dynamic) {
4284 Result.Exceptions = exceptions();
4285 } else if (isComputedNoexcept(Result.Type)) {
4286 Result.NoexceptExpr = getNoexceptExpr();
4287 } else if (Result.Type == EST_Uninstantiated) {
4288 Result.SourceDecl = getExceptionSpecDecl();
4289 Result.SourceTemplate = getExceptionSpecTemplate();
4290 } else if (Result.Type == EST_Unevaluated) {
4291 Result.SourceDecl = getExceptionSpecDecl();
4292 }
4293 return Result;
4294 }
4295
4296 /// Return the number of types in the exception specification.
4297 unsigned getNumExceptions() const {
4298 return getExceptionSpecType() == EST_Dynamic
4299 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4300 ->NumExceptionType
4301 : 0;
4302 }
4303
4304 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4305 QualType getExceptionType(unsigned i) const {
4306 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "clang/include/clang/AST/Type.h", 4306, __extension__ __PRETTY_FUNCTION__
))
;
4307 return exception_begin()[i];
4308 }
4309
4310 /// Return the expression inside noexcept(expression), or a null pointer
4311 /// if there is none (because the exception spec is not of this form).
4312 Expr *getNoexceptExpr() const {
4313 if (!isComputedNoexcept(getExceptionSpecType()))
4314 return nullptr;
4315 return *getTrailingObjects<Expr *>();
4316 }
4317
4318 /// If this function type has an exception specification which hasn't
4319 /// been determined yet (either because it has not been evaluated or because
4320 /// it has not been instantiated), this is the function whose exception
4321 /// specification is represented by this type.
4322 FunctionDecl *getExceptionSpecDecl() const {
4323 if (getExceptionSpecType() != EST_Uninstantiated &&
4324 getExceptionSpecType() != EST_Unevaluated)
4325 return nullptr;
4326 return getTrailingObjects<FunctionDecl *>()[0];
4327 }
4328
4329 /// If this function type has an uninstantiated exception
4330 /// specification, this is the function whose exception specification
4331 /// should be instantiated to find the exception specification for
4332 /// this type.
4333 FunctionDecl *getExceptionSpecTemplate() const {
4334 if (getExceptionSpecType() != EST_Uninstantiated)
4335 return nullptr;
4336 return getTrailingObjects<FunctionDecl *>()[1];
4337 }
4338
4339 /// Determine whether this function type has a non-throwing exception
4340 /// specification.
4341 CanThrowResult canThrow() const;
4342
4343 /// Determine whether this function type has a non-throwing exception
4344 /// specification. If this depends on template arguments, returns
4345 /// \c ResultIfDependent.
4346 bool isNothrow(bool ResultIfDependent = false) const {
4347 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4348 }
4349
4350 /// Whether this function prototype is variadic.
4351 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4352
4353 SourceLocation getEllipsisLoc() const {
4354 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4355 : SourceLocation();
4356 }
4357
4358 /// Determines whether this function prototype contains a
4359 /// parameter pack at the end.
4360 ///
4361 /// A function template whose last parameter is a parameter pack can be
4362 /// called with an arbitrary number of arguments, much like a variadic
4363 /// function.
4364 bool isTemplateVariadic() const;
4365
4366 /// Whether this function prototype has a trailing return type.
4367 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4368
4369 Qualifiers getMethodQuals() const {
4370 if (hasExtQualifiers())
4371 return *getTrailingObjects<Qualifiers>();
4372 else
4373 return getFastTypeQuals();
4374 }
4375
4376 /// Retrieve the ref-qualifier associated with this function type.
4377 RefQualifierKind getRefQualifier() const {
4378 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4379 }
4380
4381 using param_type_iterator = const QualType *;
4382
4383 ArrayRef<QualType> param_types() const {
4384 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4385 }
4386
4387 param_type_iterator param_type_begin() const {
4388 return getTrailingObjects<QualType>();
4389 }
4390
4391 param_type_iterator param_type_end() const {
4392 return param_type_begin() + getNumParams();
4393 }
4394
4395 using exception_iterator = const QualType *;
4396
4397 ArrayRef<QualType> exceptions() const {
4398 return llvm::makeArrayRef(exception_begin(), exception_end());
4399 }
4400
4401 exception_iterator exception_begin() const {
4402 return reinterpret_cast<exception_iterator>(
4403 getTrailingObjects<ExceptionType>());
4404 }
4405
4406 exception_iterator exception_end() const {
4407 return exception_begin() + getNumExceptions();
4408 }
4409
4410 /// Is there any interesting extra information for any of the parameters
4411 /// of this function type?
4412 bool hasExtParameterInfos() const {
4413 return FunctionTypeBits.HasExtParameterInfos;
4414 }
4415
4416 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4417 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "clang/include/clang/AST/Type.h"
, 4417, __extension__ __PRETTY_FUNCTION__))
;
4418 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4419 getNumParams());
4420 }
4421
4422 /// Return a pointer to the beginning of the array of extra parameter
4423 /// information, if present, or else null if none of the parameters
4424 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4425 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4426 if (!hasExtParameterInfos())
4427 return nullptr;
4428 return getTrailingObjects<ExtParameterInfo>();
4429 }
4430
4431 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4432 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4432, __extension__ __PRETTY_FUNCTION__
))
;
4433 if (hasExtParameterInfos())
4434 return getTrailingObjects<ExtParameterInfo>()[I];
4435 return ExtParameterInfo();
4436 }
4437
4438 ParameterABI getParameterABI(unsigned I) const {
4439 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4439, __extension__ __PRETTY_FUNCTION__
))
;
4440 if (hasExtParameterInfos())
4441 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4442 return ParameterABI::Ordinary;
4443 }
4444
4445 bool isParamConsumed(unsigned I) const {
4446 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4446, __extension__ __PRETTY_FUNCTION__
))
;
4447 if (hasExtParameterInfos())
4448 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4449 return false;
4450 }
4451
4452 bool isSugared() const { return false; }
4453 QualType desugar() const { return QualType(this, 0); }
4454
4455 void printExceptionSpecification(raw_ostream &OS,
4456 const PrintingPolicy &Policy) const;
4457
4458 static bool classof(const Type *T) {
4459 return T->getTypeClass() == FunctionProto;
4460 }
4461
4462 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4463 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4464 param_type_iterator ArgTys, unsigned NumArgs,
4465 const ExtProtoInfo &EPI, const ASTContext &Context,
4466 bool Canonical);
4467};
4468
4469/// Represents the dependent type named by a dependently-scoped
4470/// typename using declaration, e.g.
4471/// using typename Base<T>::foo;
4472///
4473/// Template instantiation turns these into the underlying type.
4474class UnresolvedUsingType : public Type {
4475 friend class ASTContext; // ASTContext creates these.
4476
4477 UnresolvedUsingTypenameDecl *Decl;
4478
4479 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4480 : Type(UnresolvedUsing, QualType(),
4481 TypeDependence::DependentInstantiation),
4482 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4483
4484public:
4485 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4486
4487 bool isSugared() const { return false; }
4488 QualType desugar() const { return QualType(this, 0); }
4489
4490 static bool classof(const Type *T) {
4491 return T->getTypeClass() == UnresolvedUsing;
4492 }
4493
4494 void Profile(llvm::FoldingSetNodeID &ID) {
4495 return Profile(ID, Decl);
4496 }
4497
4498 static void Profile(llvm::FoldingSetNodeID &ID,
4499 UnresolvedUsingTypenameDecl *D) {
4500 ID.AddPointer(D);
4501 }
4502};
4503
4504class UsingType final : public Type,
4505 public llvm::FoldingSetNode,
4506 private llvm::TrailingObjects<UsingType, QualType> {
4507 UsingShadowDecl *Found;
4508 friend class ASTContext; // ASTContext creates these.
4509 friend TrailingObjects;
4510
4511 UsingType(const UsingShadowDecl *Found, QualType Underlying, QualType Canon);
4512
4513public:
4514 UsingShadowDecl *getFoundDecl() const { return Found; }
4515 QualType getUnderlyingType() const;
4516
4517 bool isSugared() const { return true; }
4518
4519 // This always has the 'same' type as declared, but not necessarily identical.
4520 QualType desugar() const { return getUnderlyingType(); }
4521
4522 // Internal helper, for debugging purposes.
4523 bool typeMatchesDecl() const { return !UsingBits.hasTypeDifferentFromDecl; }
4524
4525 void Profile(llvm::FoldingSetNodeID &ID) {
4526 Profile(ID, Found, typeMatchesDecl() ? QualType() : getUnderlyingType());
4527 }
4528 static void Profile(llvm::FoldingSetNodeID &ID, const UsingShadowDecl *Found,
4529 QualType Underlying) {
4530 ID.AddPointer(Found);
4531 if (!Underlying.isNull())
4532 Underlying.Profile(ID);
4533 }
4534 static bool classof(const Type *T) { return T->getTypeClass() == Using; }
4535};
4536
4537class TypedefType final : public Type,
4538 public llvm::FoldingSetNode,
4539 private llvm::TrailingObjects<TypedefType, QualType> {
4540 TypedefNameDecl *Decl;
4541 friend class ASTContext; // ASTContext creates these.
4542 friend TrailingObjects;
4543
4544 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4545 QualType can);
4546
4547public:
4548 TypedefNameDecl *getDecl() const { return Decl; }
4549
4550 bool isSugared() const { return true; }
4551
4552 // This always has the 'same' type as declared, but not necessarily identical.
4553 QualType desugar() const;
4554
4555 // Internal helper, for debugging purposes.
4556 bool typeMatchesDecl() const { return !TypedefBits.hasTypeDifferentFromDecl; }
4557
4558 void Profile(llvm::FoldingSetNodeID &ID) {
4559 Profile(ID, Decl, typeMatchesDecl() ? QualType() : desugar());
4560 }
4561 static void Profile(llvm::FoldingSetNodeID &ID, const TypedefNameDecl *Decl,
4562 QualType Underlying) {
4563 ID.AddPointer(Decl);
4564 if (!Underlying.isNull())
4565 Underlying.Profile(ID);
4566 }
4567
4568 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4569};
4570
4571/// Sugar type that represents a type that was qualified by a qualifier written
4572/// as a macro invocation.
4573class MacroQualifiedType : public Type {
4574 friend class ASTContext; // ASTContext creates these.
4575
4576 QualType UnderlyingTy;
4577 const IdentifierInfo *MacroII;
4578
4579 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4580 const IdentifierInfo *MacroII)
4581 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4582 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4583 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4584, __extension__ __PRETTY_FUNCTION__
))
4584 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4584, __extension__ __PRETTY_FUNCTION__
))
;
4585 }
4586
4587public:
4588 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4589 QualType getUnderlyingType() const { return UnderlyingTy; }
4590
4591 /// Return this attributed type's modified type with no qualifiers attached to
4592 /// it.
4593 QualType getModifiedType() const;
4594
4595 bool isSugared() const { return true; }
4596 QualType desugar() const;
4597
4598 static bool classof(const Type *T) {
4599 return T->getTypeClass() == MacroQualified;
4600 }
4601};
4602
4603/// Represents a `typeof` (or __typeof__) expression (a C2x feature and GCC
4604/// extension) or a `typeof_unqual` expression (a C2x feature).
4605class TypeOfExprType : public Type {
4606 Expr *TOExpr;
4607
4608protected:
4609 friend class ASTContext; // ASTContext creates these.
4610
4611 TypeOfExprType(Expr *E, TypeOfKind Kind, QualType Can = QualType());
4612
4613public:
4614 Expr *getUnderlyingExpr() const { return TOExpr; }
4615
4616 /// Returns the kind of 'typeof' type this is.
4617 TypeOfKind getKind() const {
4618 return TypeOfBits.IsUnqual ? TypeOfKind::Unqualified
4619 : TypeOfKind::Qualified;
4620 }
4621
4622 /// Remove a single level of sugar.
4623 QualType desugar() const;
4624
4625 /// Returns whether this type directly provides sugar.
4626 bool isSugared() const;
4627
4628 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4629};
4630
4631/// Internal representation of canonical, dependent
4632/// `typeof(expr)` types.
4633///
4634/// This class is used internally by the ASTContext to manage
4635/// canonical, dependent types, only. Clients will only see instances
4636/// of this class via TypeOfExprType nodes.
4637class DependentTypeOfExprType
4638 : public TypeOfExprType, public llvm::FoldingSetNode {
4639 const ASTContext &Context;
4640
4641public:
4642 DependentTypeOfExprType(const ASTContext &Context, Expr *E, TypeOfKind Kind)
4643 : TypeOfExprType(E, Kind), Context(Context) {}
4644
4645 void Profile(llvm::FoldingSetNodeID &ID) {
4646 Profile(ID, Context, getUnderlyingExpr(),
4647 getKind() == TypeOfKind::Unqualified);
4648 }
4649
4650 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4651 Expr *E, bool IsUnqual);
4652};
4653
4654/// Represents `typeof(type)`, a C2x feature and GCC extension, or
4655/// `typeof_unqual(type), a C2x feature.
4656class TypeOfType : public Type {
4657 friend class ASTContext; // ASTContext creates these.
4658
4659 QualType TOType;
4660
4661 TypeOfType(QualType T, QualType Can, TypeOfKind Kind)
4662 : Type(TypeOf,
4663 Kind == TypeOfKind::Unqualified ? Can.getAtomicUnqualifiedType()
4664 : Can,
4665 T->getDependence()),
4666 TOType(T) {
4667 TypeOfBits.IsUnqual = Kind == TypeOfKind::Unqualified;
4668 }
4669
4670public:
4671 QualType getUnmodifiedType() const { return TOType; }
4672
4673 /// Remove a single level of sugar.
4674 QualType desugar() const {
4675 QualType QT = getUnmodifiedType();
4676 return TypeOfBits.IsUnqual ? QT.getAtomicUnqualifiedType() : QT;
4677 }
4678
4679 /// Returns whether this type directly provides sugar.
4680 bool isSugared() const { return true; }
4681
4682 /// Returns the kind of 'typeof' type this is.
4683 TypeOfKind getKind() const {
4684 return TypeOfBits.IsUnqual ? TypeOfKind::Unqualified
4685 : TypeOfKind::Qualified;
4686 }
4687
4688 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4689};
4690
4691/// Represents the type `decltype(expr)` (C++11).
4692class DecltypeType : public Type {
4693 Expr *E;
4694 QualType UnderlyingType;
4695
4696protected:
4697 friend class ASTContext; // ASTContext creates these.
4698
4699 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4700
4701public:
4702 Expr *getUnderlyingExpr() const { return E; }
4703 QualType getUnderlyingType() const { return UnderlyingType; }
4704
4705 /// Remove a single level of sugar.
4706 QualType desugar() const;
4707
4708 /// Returns whether this type directly provides sugar.
4709 bool isSugared() const;
4710
4711 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4712};
4713
4714/// Internal representation of canonical, dependent
4715/// decltype(expr) types.
4716///
4717/// This class is used internally by the ASTContext to manage
4718/// canonical, dependent types, only. Clients will only see instances
4719/// of this class via DecltypeType nodes.
4720class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4721 const ASTContext &Context;
4722
4723public:
4724 DependentDecltypeType(const ASTContext &Context, Expr *E);
4725
4726 void Profile(llvm::FoldingSetNodeID &ID) {
4727 Profile(ID, Context, getUnderlyingExpr());
4728 }
4729
4730 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4731 Expr *E);
4732};
4733
4734/// A unary type transform, which is a type constructed from another.
4735class UnaryTransformType : public Type {
4736public:
4737 enum UTTKind {
4738#define TRANSFORM_TYPE_TRAIT_DEF(Enum, _) Enum,
4739#include "clang/Basic/TransformTypeTraits.def"
4740 };
4741
4742private:
4743 /// The untransformed type.
4744 QualType BaseType;
4745
4746 /// The transformed type if not dependent, otherwise the same as BaseType.
4747 QualType UnderlyingType;
4748
4749 UTTKind UKind;
4750
4751protected:
4752 friend class ASTContext;
4753
4754 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4755 QualType CanonicalTy);
4756
4757public:
4758 bool isSugared() const { return !isDependentType(); }
4759 QualType desugar() const { return UnderlyingType; }
4760
4761 QualType getUnderlyingType() const { return UnderlyingType; }
4762 QualType getBaseType() const { return BaseType; }
4763
4764 UTTKind getUTTKind() const { return UKind; }
4765
4766 static bool classof(const Type *T) {
4767 return T->getTypeClass() == UnaryTransform;
4768 }
4769};
4770
4771/// Internal representation of canonical, dependent
4772/// __underlying_type(type) types.
4773///
4774/// This class is used internally by the ASTContext to manage
4775/// canonical, dependent types, only. Clients will only see instances
4776/// of this class via UnaryTransformType nodes.
4777class DependentUnaryTransformType : public UnaryTransformType,
4778 public llvm::FoldingSetNode {
4779public:
4780 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4781 UTTKind UKind);
4782
4783 void Profile(llvm::FoldingSetNodeID &ID) {
4784 Profile(ID, getBaseType(), getUTTKind());
4785 }
4786
4787 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4788 UTTKind UKind) {
4789 ID.AddPointer(BaseType.getAsOpaquePtr());
4790 ID.AddInteger((unsigned)UKind);
4791 }
4792};
4793
4794class TagType : public Type {
4795 friend class ASTReader;
4796 template <class T> friend class serialization::AbstractTypeReader;
4797
4798 /// Stores the TagDecl associated with this type. The decl may point to any
4799 /// TagDecl that declares the entity.
4800 TagDecl *decl;
4801
4802protected:
4803 TagType(TypeClass TC, const TagDecl *D, QualType can);
4804
4805public:
4806 TagDecl *getDecl() const;
4807
4808 /// Determines whether this type is in the process of being defined.
4809 bool isBeingDefined() const;
4810
4811 static bool classof(const Type *T) {
4812 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4813 }
4814};
4815
4816/// A helper class that allows the use of isa/cast/dyncast
4817/// to detect TagType objects of structs/unions/classes.
4818class RecordType : public TagType {
4819protected:
4820 friend class ASTContext; // ASTContext creates these.
4821
4822 explicit RecordType(const RecordDecl *D)
4823 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4824 explicit RecordType(TypeClass TC, RecordDecl *D)
4825 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4826
4827public:
4828 RecordDecl *getDecl() const {
4829 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4830 }
4831
4832 /// Recursively check all fields in the record for const-ness. If any field
4833 /// is declared const, return true. Otherwise, return false.
4834 bool hasConstFields() const;
4835
4836 bool isSugared() const { return false; }
4837 QualType desugar() const { return QualType(this, 0); }
4838
4839 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4840};
4841
4842/// A helper class that allows the use of isa/cast/dyncast
4843/// to detect TagType objects of enums.
4844class EnumType : public TagType {
4845 friend class ASTContext; // ASTContext creates these.
4846
4847 explicit EnumType(const EnumDecl *D)
4848 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4849
4850public:
4851 EnumDecl *getDecl() const {
4852 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4853 }
4854
4855 bool isSugared() const { return false; }
4856 QualType desugar() const { return QualType(this, 0); }
4857
4858 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4859};
4860
4861/// An attributed type is a type to which a type attribute has been applied.
4862///
4863/// The "modified type" is the fully-sugared type to which the attributed
4864/// type was applied; generally it is not canonically equivalent to the
4865/// attributed type. The "equivalent type" is the minimally-desugared type
4866/// which the type is canonically equivalent to.
4867///
4868/// For example, in the following attributed type:
4869/// int32_t __attribute__((vector_size(16)))
4870/// - the modified type is the TypedefType for int32_t
4871/// - the equivalent type is VectorType(16, int32_t)
4872/// - the canonical type is VectorType(16, int)
4873class AttributedType : public Type, public llvm::FoldingSetNode {
4874public:
4875 using Kind = attr::Kind;
4876
4877private:
4878 friend class ASTContext; // ASTContext creates these
4879
4880 QualType ModifiedType;
4881 QualType EquivalentType;
4882
4883 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4884 QualType equivalent)
4885 : Type(Attributed, canon, equivalent->getDependence()),
4886 ModifiedType(modified), EquivalentType(equivalent) {
4887 AttributedTypeBits.AttrKind = attrKind;
4888 }
4889
4890public:
4891 Kind getAttrKind() const {
4892 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4893 }
4894
4895 QualType getModifiedType() const { return ModifiedType; }
4896 QualType getEquivalentType() const { return EquivalentType; }
4897
4898 bool isSugared() const { return true; }
4899 QualType desugar() const { return getEquivalentType(); }
4900
4901 /// Does this attribute behave like a type qualifier?
4902 ///
4903 /// A type qualifier adjusts a type to provide specialized rules for
4904 /// a specific object, like the standard const and volatile qualifiers.
4905 /// This includes attributes controlling things like nullability,
4906 /// address spaces, and ARC ownership. The value of the object is still
4907 /// largely described by the modified type.
4908 ///
4909 /// In contrast, many type attributes "rewrite" their modified type to
4910 /// produce a fundamentally different type, not necessarily related in any
4911 /// formalizable way to the original type. For example, calling convention
4912 /// and vector attributes are not simple type qualifiers.
4913 ///
4914 /// Type qualifiers are often, but not always, reflected in the canonical
4915 /// type.
4916 bool isQualifier() const;
4917
4918 bool isMSTypeSpec() const;
4919
4920 bool isCallingConv() const;
4921
4922 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4923
4924 /// Retrieve the attribute kind corresponding to the given
4925 /// nullability kind.
4926 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4927 switch (kind) {
4928 case NullabilityKind::NonNull:
4929 return attr::TypeNonNull;
4930
4931 case NullabilityKind::Nullable:
4932 return attr::TypeNullable;
4933
4934 case NullabilityKind::NullableResult:
4935 return attr::TypeNullableResult;
4936
4937 case NullabilityKind::Unspecified:
4938 return attr::TypeNullUnspecified;
4939 }
4940 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/include/clang/AST/Type.h", 4940)
;
4941 }
4942
4943 /// Strip off the top-level nullability annotation on the given
4944 /// type, if it's there.
4945 ///
4946 /// \param T The type to strip. If the type is exactly an
4947 /// AttributedType specifying nullability (without looking through
4948 /// type sugar), the nullability is returned and this type changed
4949 /// to the underlying modified type.
4950 ///
4951 /// \returns the top-level nullability, if present.
4952 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4953
4954 void Profile(llvm::FoldingSetNodeID &ID) {
4955 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4956 }
4957
4958 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4959 QualType modified, QualType equivalent) {
4960 ID.AddInteger(attrKind);
4961 ID.AddPointer(modified.getAsOpaquePtr());
4962 ID.AddPointer(equivalent.getAsOpaquePtr());
4963 }
4964
4965 static bool classof(const Type *T) {
4966 return T->getTypeClass() == Attributed;
4967 }
4968};
4969
4970class BTFTagAttributedType : public Type, public llvm::FoldingSetNode {
4971private:
4972 friend class ASTContext; // ASTContext creates these
4973
4974 QualType WrappedType;
4975 const BTFTypeTagAttr *BTFAttr;
4976
4977 BTFTagAttributedType(QualType Canon, QualType Wrapped,
4978 const BTFTypeTagAttr *BTFAttr)
4979 : Type(BTFTagAttributed, Canon, Wrapped->getDependence()),
4980 WrappedType(Wrapped), BTFAttr(BTFAttr) {}
4981
4982public:
4983 QualType getWrappedType() const { return WrappedType; }
4984 const BTFTypeTagAttr *getAttr() const { return BTFAttr; }
4985
4986 bool isSugared() const { return true; }
4987 QualType desugar() const { return getWrappedType(); }
4988
4989 void Profile(llvm::FoldingSetNodeID &ID) {
4990 Profile(ID, WrappedType, BTFAttr);
4991 }
4992
4993 static void Profile(llvm::FoldingSetNodeID &ID, QualType Wrapped,
4994 const BTFTypeTagAttr *BTFAttr) {
4995 ID.AddPointer(Wrapped.getAsOpaquePtr());
4996 ID.AddPointer(BTFAttr);
4997 }
4998
4999 static bool classof(const Type *T) {
5000 return T->getTypeClass() == BTFTagAttributed;
5001 }
5002};
5003
5004class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
5005 friend class ASTContext; // ASTContext creates these
5006
5007 // Helper data collector for canonical types.
5008 struct CanonicalTTPTInfo {
5009 unsigned Depth : 15;
5010 unsigned ParameterPack : 1;
5011 unsigned Index : 16;
5012 };
5013
5014 union {
5015 // Info for the canonical type.
5016 CanonicalTTPTInfo CanTTPTInfo;
5017
5018 // Info for the non-canonical type.
5019 TemplateTypeParmDecl *TTPDecl;
5020 };
5021
5022 /// Build a non-canonical type.
5023 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
5024 : Type(TemplateTypeParm, Canon,
5025 TypeDependence::DependentInstantiation |
5026 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
5027 TTPDecl(TTPDecl) {}
5028
5029 /// Build the canonical type.
5030 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
5031 : Type(TemplateTypeParm, QualType(this, 0),
5032 TypeDependence::DependentInstantiation |
5033 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
5034 CanTTPTInfo.Depth = D;
5035 CanTTPTInfo.Index = I;
5036 CanTTPTInfo.ParameterPack = PP;
5037 }
5038
5039 const CanonicalTTPTInfo& getCanTTPTInfo() const {
5040 QualType Can = getCanonicalTypeInternal();
5041 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
5042 }
5043
5044public:
5045 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
5046 unsigned getIndex() const { return getCanTTPTInfo().Index; }
5047 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
5048
5049 TemplateTypeParmDecl *getDecl() const {
5050 return isCanonicalUnqualified() ? nullptr : TTPDecl;
42
'?' condition is true
43
Returning null pointer, which participates in a condition later
5051 }
5052
5053 IdentifierInfo *getIdentifier() const;
5054
5055 bool isSugared() const { return false; }
5056 QualType desugar() const { return QualType(this, 0); }
5057
5058 void Profile(llvm::FoldingSetNodeID &ID) {
5059 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
5060 }
5061
5062 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
5063 unsigned Index, bool ParameterPack,
5064 TemplateTypeParmDecl *TTPDecl) {
5065 ID.AddInteger(Depth);
5066 ID.AddInteger(Index);
5067 ID.AddBoolean(ParameterPack);
5068 ID.AddPointer(TTPDecl);
5069 }
5070
5071 static bool classof(const Type *T) {
5072 return T->getTypeClass() == TemplateTypeParm;
5073 }
5074};
5075
5076/// Represents the result of substituting a type for a template
5077/// type parameter.
5078///
5079/// Within an instantiated template, all template type parameters have
5080/// been replaced with these. They are used solely to record that a
5081/// type was originally written as a template type parameter;
5082/// therefore they are never canonical.
5083class SubstTemplateTypeParmType final
5084 : public Type,
5085 public llvm::FoldingSetNode,
5086 private llvm::TrailingObjects<SubstTemplateTypeParmType, QualType> {
5087 friend class ASTContext;
5088 friend class llvm::TrailingObjects<SubstTemplateTypeParmType, QualType>;
5089
5090 Decl *AssociatedDecl;
5091
5092 SubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
5093 unsigned Index, Optional<unsigned> PackIndex);
5094
5095public:
5096 /// Gets the type that was substituted for the template
5097 /// parameter.
5098 QualType getReplacementType() const {
5099 return SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType
5100 ? *getTrailingObjects<QualType>()
5101 : getCanonicalTypeInternal();
5102 }
5103
5104 /// A template-like entity which owns the whole pattern being substituted.
5105 /// This will usually own a set of template parameters, or in some
5106 /// cases might even be a template parameter itself.
5107 Decl *getAssociatedDecl() const { return AssociatedDecl; }
5108
5109 /// Gets the template parameter declaration that was substituted for.
5110 const TemplateTypeParmDecl *getReplacedParameter() const;
5111
5112 /// Returns the index of the replaced parameter in the associated declaration.
5113 /// This should match the result of `getReplacedParameter()->getIndex()`.
5114 unsigned getIndex() const { return SubstTemplateTypeParmTypeBits.Index; }
5115
5116 Optional<unsigned> getPackIndex() const {
5117 if (SubstTemplateTypeParmTypeBits.PackIndex == 0)
5118 return std::nullopt;
5119 return SubstTemplateTypeParmTypeBits.PackIndex - 1;
5120 }
5121
5122 bool isSugared() const { return true; }
5123 QualType desugar() const { return getReplacementType(); }
5124
5125 void Profile(llvm::FoldingSetNodeID &ID) {
5126 Profile(ID, getReplacementType(), getAssociatedDecl(), getIndex(),
5127 getPackIndex());
5128 }
5129
5130 static void Profile(llvm::FoldingSetNodeID &ID, QualType Replacement,
5131 const Decl *AssociatedDecl, unsigned Index,
5132 Optional<unsigned> PackIndex) {
5133 Replacement.Profile(ID);
5134 ID.AddPointer(AssociatedDecl);
5135 ID.AddInteger(Index);
5136 ID.AddInteger(PackIndex ? *PackIndex - 1 : 0);
5137 }
5138
5139 static bool classof(const Type *T) {
5140 return T->getTypeClass() == SubstTemplateTypeParm;
5141 }
5142};
5143
5144/// Represents the result of substituting a set of types for a template
5145/// type parameter pack.
5146///
5147/// When a pack expansion in the source code contains multiple parameter packs
5148/// and those parameter packs correspond to different levels of template
5149/// parameter lists, this type node is used to represent a template type
5150/// parameter pack from an outer level, which has already had its argument pack
5151/// substituted but that still lives within a pack expansion that itself
5152/// could not be instantiated. When actually performing a substitution into
5153/// that pack expansion (e.g., when all template parameters have corresponding
5154/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
5155/// at the current pack substitution index.
5156class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
5157 friend class ASTContext;
5158
5159 /// A pointer to the set of template arguments that this
5160 /// parameter pack is instantiated with.
5161 const TemplateArgument *Arguments;
5162
5163 llvm::PointerIntPair<Decl *, 1, bool> AssociatedDeclAndFinal;
5164
5165 SubstTemplateTypeParmPackType(QualType Canon, Decl *AssociatedDecl,
5166 unsigned Index, bool Final,
5167 const TemplateArgument &ArgPack);
5168
5169public:
5170 IdentifierInfo *getIdentifier() const;
5171
5172 /// A template-like entity which owns the whole pattern being substituted.
5173 /// This will usually own a set of template parameters, or in some
5174 /// cases might even be a template parameter itself.
5175 Decl *getAssociatedDecl() const;
5176
5177 /// Gets the template parameter declaration that was substituted for.
5178 const TemplateTypeParmDecl *getReplacedParameter() const;
5179
5180 /// Returns the index of the replaced parameter in the associated declaration.
5181 /// This should match the result of `getReplacedParameter()->getIndex()`.
5182 unsigned getIndex() const { return SubstTemplateTypeParmPackTypeBits.Index; }
5183
5184 // When true the substitution will be 'Final' (subst node won't be placed).
5185 bool getFinal() const;
5186
5187 unsigned getNumArgs() const {
5188 return SubstTemplateTypeParmPackTypeBits.NumArgs;
5189 }
5190
5191 bool isSugared() const { return false; }
5192 QualType desugar() const { return QualType(this, 0); }
5193
5194 TemplateArgument getArgumentPack() const;
5195
5196 void Profile(llvm::FoldingSetNodeID &ID);
5197 static void Profile(llvm::FoldingSetNodeID &ID, const Decl *AssociatedDecl,
5198 unsigned Index, bool Final,
5199 const TemplateArgument &ArgPack);
5200
5201 static bool classof(const Type *T) {
5202 return T->getTypeClass() == SubstTemplateTypeParmPack;
5203 }
5204};
5205
5206/// Common base class for placeholders for types that get replaced by
5207/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
5208/// class template types, and constrained type names.
5209///
5210/// These types are usually a placeholder for a deduced type. However, before
5211/// the initializer is attached, or (usually) if the initializer is
5212/// type-dependent, there is no deduced type and the type is canonical. In
5213/// the latter case, it is also a dependent type.
5214class DeducedType : public Type {
5215 QualType DeducedAsType;
5216
5217protected:
5218 DeducedType(TypeClass TC, QualType DeducedAsType,
5219 TypeDependence ExtraDependence, QualType Canon)
5220 : Type(TC, Canon,
5221 ExtraDependence | (DeducedAsType.isNull()
5222 ? TypeDependence::None
5223 : DeducedAsType->getDependence() &
5224 ~TypeDependence::VariablyModified)),
5225 DeducedAsType(DeducedAsType) {}
5226
5227public:
5228 bool isSugared() const { return !DeducedAsType.isNull(); }
5229 QualType desugar() const {
5230 return isSugared() ? DeducedAsType : QualType(this, 0);
5231 }
5232
5233 /// Get the type deduced for this placeholder type, or null if it
5234 /// has not been deduced.
5235 QualType getDeducedType() const { return DeducedAsType; }
5236 bool isDeduced() const {
5237 return !DeducedAsType.isNull() || isDependentType();
5238 }
5239
5240 static bool classof(const Type *T) {
5241 return T->getTypeClass() == Auto ||
5242 T->getTypeClass() == DeducedTemplateSpecialization;
5243 }
5244};
5245
5246/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
5247/// by a type-constraint.
5248class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
5249 friend class ASTContext; // ASTContext creates these
5250
5251 ConceptDecl *TypeConstraintConcept;
5252
5253 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
5254 TypeDependence ExtraDependence, QualType Canon, ConceptDecl *CD,
5255 ArrayRef<TemplateArgument> TypeConstraintArgs);
5256
5257public:
5258 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5259 return {reinterpret_cast<const TemplateArgument *>(this + 1),
5260 AutoTypeBits.NumArgs};
5261 }
5262
5263 ConceptDecl *getTypeConstraintConcept() const {
5264 return TypeConstraintConcept;
5265 }
5266
5267 bool isConstrained() const {
5268 return TypeConstraintConcept != nullptr;
5269 }
5270
5271 bool isDecltypeAuto() const {
5272 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5273 }
5274
5275 bool isGNUAutoType() const {
5276 return getKeyword() == AutoTypeKeyword::GNUAutoType;
5277 }
5278
5279 AutoTypeKeyword getKeyword() const {
5280 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5281 }
5282
5283 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context);
5284 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5285 QualType Deduced, AutoTypeKeyword Keyword,
5286 bool IsDependent, ConceptDecl *CD,
5287 ArrayRef<TemplateArgument> Arguments);
5288
5289 static bool classof(const Type *T) {
5290 return T->getTypeClass() == Auto;
5291 }
5292};
5293
5294/// Represents a C++17 deduced template specialization type.
5295class DeducedTemplateSpecializationType : public DeducedType,
5296 public llvm::FoldingSetNode {
5297 friend class ASTContext; // ASTContext creates these
5298
5299 /// The name of the template whose arguments will be deduced.
5300 TemplateName Template;
5301
5302 DeducedTemplateSpecializationType(TemplateName Template,
5303 QualType DeducedAsType,
5304 bool IsDeducedAsDependent)
5305 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5306 toTypeDependence(Template.getDependence()) |
5307 (IsDeducedAsDependent
5308 ? TypeDependence::DependentInstantiation
5309 : TypeDependence::None),
5310 DeducedAsType.isNull() ? QualType(this, 0)
5311 : DeducedAsType.getCanonicalType()),
5312 Template(Template) {}
5313
5314public:
5315 /// Retrieve the name of the template that we are deducing.
5316 TemplateName getTemplateName() const { return Template;}
5317
5318 void Profile(llvm::FoldingSetNodeID &ID) {
5319 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5320 }
5321
5322 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5323 QualType Deduced, bool IsDependent) {
5324 Template.Profile(ID);
5325 QualType CanonicalType =
5326 Deduced.isNull() ? Deduced : Deduced.getCanonicalType();
5327 ID.AddPointer(CanonicalType.getAsOpaquePtr());
5328 ID.AddBoolean(IsDependent || Template.isDependent());
5329 }
5330
5331 static bool classof(const Type *T) {
5332 return T->getTypeClass() == DeducedTemplateSpecialization;
5333 }
5334};
5335
5336/// Represents a type template specialization; the template
5337/// must be a class template, a type alias template, or a template
5338/// template parameter. A template which cannot be resolved to one of
5339/// these, e.g. because it is written with a dependent scope
5340/// specifier, is instead represented as a
5341/// @c DependentTemplateSpecializationType.
5342///
5343/// A non-dependent template specialization type is always "sugar",
5344/// typically for a \c RecordType. For example, a class template
5345/// specialization type of \c vector<int> will refer to a tag type for
5346/// the instantiation \c std::vector<int, std::allocator<int>>
5347///
5348/// Template specializations are dependent if either the template or
5349/// any of the template arguments are dependent, in which case the
5350/// type may also be canonical.
5351///
5352/// Instances of this type are allocated with a trailing array of
5353/// TemplateArguments, followed by a QualType representing the
5354/// non-canonical aliased type when the template is a type alias
5355/// template.
5356class alignas(8) TemplateSpecializationType
5357 : public Type,
5358 public llvm::FoldingSetNode {
5359 friend class ASTContext; // ASTContext creates these
5360
5361 /// The name of the template being specialized. This is
5362 /// either a TemplateName::Template (in which case it is a
5363 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5364 /// TypeAliasTemplateDecl*), a
5365 /// TemplateName::SubstTemplateTemplateParmPack, or a
5366 /// TemplateName::SubstTemplateTemplateParm (in which case the
5367 /// replacement must, recursively, be one of these).
5368 TemplateName Template;
5369
5370 TemplateSpecializationType(TemplateName T,
5371 ArrayRef<TemplateArgument> Args,
5372 QualType Canon,
5373 QualType Aliased);
5374
5375public:
5376 /// Determine whether any of the given template arguments are dependent.
5377 ///
5378 /// The converted arguments should be supplied when known; whether an
5379 /// argument is dependent can depend on the conversions performed on it
5380 /// (for example, a 'const int' passed as a template argument might be
5381 /// dependent if the parameter is a reference but non-dependent if the
5382 /// parameter is an int).
5383 ///
5384 /// Note that the \p Args parameter is unused: this is intentional, to remind
5385 /// the caller that they need to pass in the converted arguments, not the
5386 /// specified arguments.
5387 static bool
5388 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5389 ArrayRef<TemplateArgument> Converted);
5390 static bool
5391 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5392 ArrayRef<TemplateArgument> Converted);
5393 static bool anyInstantiationDependentTemplateArguments(
5394 ArrayRef<TemplateArgumentLoc> Args);
5395
5396 /// True if this template specialization type matches a current
5397 /// instantiation in the context in which it is found.
5398 bool isCurrentInstantiation() const {
5399 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5400 }
5401
5402 /// Determine if this template specialization type is for a type alias
5403 /// template that has been substituted.
5404 ///
5405 /// Nearly every template specialization type whose template is an alias
5406 /// template will be substituted. However, this is not the case when
5407 /// the specialization contains a pack expansion but the template alias
5408 /// does not have a corresponding parameter pack, e.g.,
5409 ///
5410 /// \code
5411 /// template<typename T, typename U, typename V> struct S;
5412 /// template<typename T, typename U> using A = S<T, int, U>;
5413 /// template<typename... Ts> struct X {
5414 /// typedef A<Ts...> type; // not a type alias
5415 /// };
5416 /// \endcode
5417 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5418
5419 /// Get the aliased type, if this is a specialization of a type alias
5420 /// template.
5421 QualType getAliasedType() const;
5422
5423 /// Retrieve the name of the template that we are specializing.
5424 TemplateName getTemplateName() const { return Template; }
5425
5426 ArrayRef<TemplateArgument> template_arguments() const {
5427 return {reinterpret_cast<const TemplateArgument *>(this + 1),
5428 TemplateSpecializationTypeBits.NumArgs};
5429 }
5430
5431 bool isSugared() const {
5432 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5433 }
5434
5435 QualType desugar() const {
5436 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5437 }
5438
5439 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
5440 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5441 ArrayRef<TemplateArgument> Args,
5442 const ASTContext &Context);
5443
5444 static bool classof(const Type *T) {
5445 return T->getTypeClass() == TemplateSpecialization;
5446 }
5447};
5448
5449/// Print a template argument list, including the '<' and '>'
5450/// enclosing the template arguments.
5451void printTemplateArgumentList(raw_ostream &OS,
5452 ArrayRef<TemplateArgument> Args,
5453 const PrintingPolicy &Policy,
5454 const TemplateParameterList *TPL = nullptr);
5455
5456void printTemplateArgumentList(raw_ostream &OS,
5457 ArrayRef<TemplateArgumentLoc> Args,
5458 const PrintingPolicy &Policy,
5459 const TemplateParameterList *TPL = nullptr);
5460
5461void printTemplateArgumentList(raw_ostream &OS,
5462 const TemplateArgumentListInfo &Args,
5463 const PrintingPolicy &Policy,
5464 const TemplateParameterList *TPL = nullptr);
5465
5466/// Make a best-effort determination of whether the type T can be produced by
5467/// substituting Args into the default argument of Param.
5468bool isSubstitutedDefaultArgument(ASTContext &Ctx, TemplateArgument Arg,
5469 const NamedDecl *Param,
5470 ArrayRef<TemplateArgument> Args,
5471 unsigned Depth);
5472
5473/// The injected class name of a C++ class template or class
5474/// template partial specialization. Used to record that a type was
5475/// spelled with a bare identifier rather than as a template-id; the
5476/// equivalent for non-templated classes is just RecordType.
5477///
5478/// Injected class name types are always dependent. Template
5479/// instantiation turns these into RecordTypes.
5480///
5481/// Injected class name types are always canonical. This works
5482/// because it is impossible to compare an injected class name type
5483/// with the corresponding non-injected template type, for the same
5484/// reason that it is impossible to directly compare template
5485/// parameters from different dependent contexts: injected class name
5486/// types can only occur within the scope of a particular templated
5487/// declaration, and within that scope every template specialization
5488/// will canonicalize to the injected class name (when appropriate
5489/// according to the rules of the language).
5490class InjectedClassNameType : public Type {
5491 friend class ASTContext; // ASTContext creates these.
5492 friend class ASTNodeImporter;
5493 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5494 // currently suitable for AST reading, too much
5495 // interdependencies.
5496 template <class T> friend class serialization::AbstractTypeReader;
5497
5498 CXXRecordDecl *Decl;
5499
5500 /// The template specialization which this type represents.
5501 /// For example, in
5502 /// template <class T> class A { ... };
5503 /// this is A<T>, whereas in
5504 /// template <class X, class Y> class A<B<X,Y> > { ... };
5505 /// this is A<B<X,Y> >.
5506 ///
5507 /// It is always unqualified, always a template specialization type,
5508 /// and always dependent.
5509 QualType InjectedType;
5510
5511 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5512 : Type(InjectedClassName, QualType(),
5513 TypeDependence::DependentInstantiation),
5514 Decl(D), InjectedType(TST) {
5515 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "clang/include/clang/AST/Type.h", 5515, __extension__ __PRETTY_FUNCTION__
))
;
5516 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "clang/include/clang/AST/Type.h"
, 5516, __extension__ __PRETTY_FUNCTION__))
;
5517 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "clang/include/clang/AST/Type.h"
, 5517, __extension__ __PRETTY_FUNCTION__))
;
5518 }
5519
5520public:
5521 QualType getInjectedSpecializationType() const { return InjectedType; }
5522
5523 const TemplateSpecializationType *getInjectedTST() const {
5524 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5525 }
5526
5527 TemplateName getTemplateName() const {
5528 return getInjectedTST()->getTemplateName();
5529 }
5530
5531 CXXRecordDecl *getDecl() const;
5532
5533 bool isSugared() const { return false; }
5534 QualType desugar() const { return QualType(this, 0); }
5535
5536 static bool classof(const Type *T) {
5537 return T->getTypeClass() == InjectedClassName;
5538 }
5539};
5540
5541/// The kind of a tag type.
5542enum TagTypeKind {
5543 /// The "struct" keyword.
5544 TTK_Struct,
5545
5546 /// The "__interface" keyword.
5547 TTK_Interface,
5548
5549 /// The "union" keyword.
5550 TTK_Union,
5551
5552 /// The "class" keyword.
5553 TTK_Class,
5554
5555 /// The "enum" keyword.
5556 TTK_Enum
5557};
5558
5559/// The elaboration keyword that precedes a qualified type name or
5560/// introduces an elaborated-type-specifier.
5561enum ElaboratedTypeKeyword {
5562 /// The "struct" keyword introduces the elaborated-type-specifier.
5563 ETK_Struct,
5564
5565 /// The "__interface" keyword introduces the elaborated-type-specifier.
5566 ETK_Interface,
5567
5568 /// The "union" keyword introduces the elaborated-type-specifier.
5569 ETK_Union,
5570
5571 /// The "class" keyword introduces the elaborated-type-specifier.
5572 ETK_Class,
5573
5574 /// The "enum" keyword introduces the elaborated-type-specifier.
5575 ETK_Enum,
5576
5577 /// The "typename" keyword precedes the qualified type name, e.g.,
5578 /// \c typename T::type.
5579 ETK_Typename,
5580
5581 /// No keyword precedes the qualified type name.
5582 ETK_None
5583};
5584
5585/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5586/// The keyword in stored in the free bits of the base class.
5587/// Also provides a few static helpers for converting and printing
5588/// elaborated type keyword and tag type kind enumerations.
5589class TypeWithKeyword : public Type {
5590protected:
5591 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5592 QualType Canonical, TypeDependence Dependence)
5593 : Type(tc, Canonical, Dependence) {
5594 TypeWithKeywordBits.Keyword = Keyword;
5595 }
5596
5597public:
5598 ElaboratedTypeKeyword getKeyword() const {
5599 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5600 }
5601
5602 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5603 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5604
5605 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5606 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5607 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5608
5609 /// Converts a TagTypeKind into an elaborated type keyword.
5610 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5611
5612 /// Converts an elaborated type keyword into a TagTypeKind.
5613 /// It is an error to provide an elaborated type keyword
5614 /// which *isn't* a tag kind here.
5615 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5616
5617 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5618
5619 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5620
5621 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5622 return getKeywordName(getKeywordForTagTypeKind(Kind));
5623 }
5624
5625 class CannotCastToThisType {};
5626 static CannotCastToThisType classof(const Type *);
5627};
5628
5629/// Represents a type that was referred to using an elaborated type
5630/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5631/// or both.
5632///
5633/// This type is used to keep track of a type name as written in the
5634/// source code, including tag keywords and any nested-name-specifiers.
5635/// The type itself is always "sugar", used to express what was written
5636/// in the source code but containing no additional semantic information.
5637class ElaboratedType final
5638 : public TypeWithKeyword,
5639 public llvm::FoldingSetNode,
5640 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5641 friend class ASTContext; // ASTContext creates these
5642 friend TrailingObjects;
5643
5644 /// The nested name specifier containing the qualifier.
5645 NestedNameSpecifier *NNS;
5646
5647 /// The type that this qualified name refers to.
5648 QualType NamedType;
5649
5650 /// The (re)declaration of this tag type owned by this occurrence is stored
5651 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5652 /// it, or obtain a null pointer if there is none.
5653
5654 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5655 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5656 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5657 // Any semantic dependence on the qualifier will have
5658 // been incorporated into NamedType. We still need to
5659 // track syntactic (instantiation / error / pack)
5660 // dependence on the qualifier.
5661 NamedType->getDependence() |
5662 (NNS ? toSyntacticDependence(
5663 toTypeDependence(NNS->getDependence()))
5664 : TypeDependence::None)),
5665 NNS(NNS), NamedType(NamedType) {
5666 ElaboratedTypeBits.HasOwnedTagDecl = false;
5667 if (OwnedTagDecl) {
5668 ElaboratedTypeBits.HasOwnedTagDecl = true;
5669 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5670 }
5671 }
5672
5673public:
5674 /// Retrieve the qualification on this type.
5675 NestedNameSpecifier *getQualifier() const { return NNS; }
5676
5677 /// Retrieve the type named by the qualified-id.
5678 QualType getNamedType() const { return NamedType; }
5679
5680 /// Remove a single level of sugar.
5681 QualType desugar() const { return getNamedType(); }
5682
5683 /// Returns whether this type directly provides sugar.
5684 bool isSugared() const { return true; }
5685
5686 /// Return the (re)declaration of this type owned by this occurrence of this
5687 /// type, or nullptr if there is none.
5688 TagDecl *getOwnedTagDecl() const {
5689 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5690 : nullptr;
5691 }
5692
5693 void Profile(llvm::FoldingSetNodeID &ID) {
5694 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5695 }
5696
5697 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5698 NestedNameSpecifier *NNS, QualType NamedType,
5699 TagDecl *OwnedTagDecl) {
5700 ID.AddInteger(Keyword);
5701 ID.AddPointer(NNS);
5702 NamedType.Profile(ID);
5703 ID.AddPointer(OwnedTagDecl);
5704 }
5705
5706 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5707};
5708
5709/// Represents a qualified type name for which the type name is
5710/// dependent.
5711///
5712/// DependentNameType represents a class of dependent types that involve a
5713/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5714/// name of a type. The DependentNameType may start with a "typename" (for a
5715/// typename-specifier), "class", "struct", "union", or "enum" (for a
5716/// dependent elaborated-type-specifier), or nothing (in contexts where we
5717/// know that we must be referring to a type, e.g., in a base class specifier).
5718/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5719/// mode, this type is used with non-dependent names to delay name lookup until
5720/// instantiation.
5721class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5722 friend class ASTContext; // ASTContext creates these
5723
5724 /// The nested name specifier containing the qualifier.
5725 NestedNameSpecifier *NNS;
5726
5727 /// The type that this typename specifier refers to.
5728 const IdentifierInfo *Name;
5729
5730 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5731 const IdentifierInfo *Name, QualType CanonType)
5732 : TypeWithKeyword(Keyword, DependentName, CanonType,
5733 TypeDependence::DependentInstantiation |
5734 toTypeDependence(NNS->getDependence())),
5735 NNS(NNS), Name(Name) {}
5736
5737public:
5738 /// Retrieve the qualification on this type.
5739 NestedNameSpecifier *getQualifier() const { return NNS; }
5740
5741 /// Retrieve the type named by the typename specifier as an identifier.
5742 ///
5743 /// This routine will return a non-NULL identifier pointer when the
5744 /// form of the original typename was terminated by an identifier,
5745 /// e.g., "typename T::type".
5746 const IdentifierInfo *getIdentifier() const {
5747 return Name;
5748 }
5749
5750 bool isSugared() const { return false; }
5751 QualType desugar() const { return QualType(this, 0); }
5752
5753 void Profile(llvm::FoldingSetNodeID &ID) {
5754 Profile(ID, getKeyword(), NNS, Name);
5755 }
5756
5757 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5758 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5759 ID.AddInteger(Keyword);
5760 ID.AddPointer(NNS);
5761 ID.AddPointer(Name);
5762 }
5763
5764 static bool classof(const Type *T) {
5765 return T->getTypeClass() == DependentName;
5766 }
5767};
5768
5769/// Represents a template specialization type whose template cannot be
5770/// resolved, e.g.
5771/// A<T>::template B<T>
5772class alignas(8) DependentTemplateSpecializationType
5773 : public TypeWithKeyword,
5774 public llvm::FoldingSetNode {
5775 friend class ASTContext; // ASTContext creates these
5776
5777 /// The nested name specifier containing the qualifier.
5778 NestedNameSpecifier *NNS;
5779
5780 /// The identifier of the template.
5781 const IdentifierInfo *Name;
5782
5783 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5784 NestedNameSpecifier *NNS,
5785 const IdentifierInfo *Name,
5786 ArrayRef<TemplateArgument> Args,
5787 QualType Canon);
5788
5789public:
5790 NestedNameSpecifier *getQualifier() const { return NNS; }
5791 const IdentifierInfo *getIdentifier() const { return Name; }
5792
5793 ArrayRef<TemplateArgument> template_arguments() const {
5794 return {reinterpret_cast<const TemplateArgument *>(this + 1),
5795 DependentTemplateSpecializationTypeBits.NumArgs};
5796 }
5797
5798 bool isSugared() const { return false; }
5799 QualType desugar() const { return QualType(this, 0); }
5800
5801 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5802 Profile(ID, Context, getKeyword(), NNS, Name, template_arguments());
5803 }
5804
5805 static void Profile(llvm::FoldingSetNodeID &ID,
5806 const ASTContext &Context,
5807 ElaboratedTypeKeyword Keyword,
5808 NestedNameSpecifier *Qualifier,
5809 const IdentifierInfo *Name,
5810 ArrayRef<TemplateArgument> Args);
5811
5812 static bool classof(const Type *T) {
5813 return T->getTypeClass() == DependentTemplateSpecialization;
5814 }
5815};
5816
5817/// Represents a pack expansion of types.
5818///
5819/// Pack expansions are part of C++11 variadic templates. A pack
5820/// expansion contains a pattern, which itself contains one or more
5821/// "unexpanded" parameter packs. When instantiated, a pack expansion
5822/// produces a series of types, each instantiated from the pattern of
5823/// the expansion, where the Ith instantiation of the pattern uses the
5824/// Ith arguments bound to each of the unexpanded parameter packs. The
5825/// pack expansion is considered to "expand" these unexpanded
5826/// parameter packs.
5827///
5828/// \code
5829/// template<typename ...Types> struct tuple;
5830///
5831/// template<typename ...Types>
5832/// struct tuple_of_references {
5833/// typedef tuple<Types&...> type;
5834/// };
5835/// \endcode
5836///
5837/// Here, the pack expansion \c Types&... is represented via a
5838/// PackExpansionType whose pattern is Types&.
5839class PackExpansionType : public Type, public llvm::FoldingSetNode {
5840 friend class ASTContext; // ASTContext creates these
5841
5842 /// The pattern of the pack expansion.
5843 QualType Pattern;
5844
5845 PackExpansionType(QualType Pattern, QualType Canon,
5846 Optional<unsigned> NumExpansions)
5847 : Type(PackExpansion, Canon,
5848 (Pattern->getDependence() | TypeDependence::Dependent |
5849 TypeDependence::Instantiation) &
5850 ~TypeDependence::UnexpandedPack),
5851 Pattern(Pattern) {
5852 PackExpansionTypeBits.NumExpansions =
5853 NumExpansions ? *NumExpansions + 1 : 0;
5854 }
5855
5856public:
5857 /// Retrieve the pattern of this pack expansion, which is the
5858 /// type that will be repeatedly instantiated when instantiating the
5859 /// pack expansion itself.
5860 QualType getPattern() const { return Pattern; }
5861
5862 /// Retrieve the number of expansions that this pack expansion will
5863 /// generate, if known.
5864 Optional<unsigned> getNumExpansions() const {
5865 if (PackExpansionTypeBits.NumExpansions)
5866 return PackExpansionTypeBits.NumExpansions - 1;
5867 return std::nullopt;
5868 }
5869
5870 bool isSugared() const { return false; }
5871 QualType desugar() const { return QualType(this, 0); }
5872
5873 void Profile(llvm::FoldingSetNodeID &ID) {
5874 Profile(ID, getPattern(), getNumExpansions());
5875 }
5876
5877 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5878 Optional<unsigned> NumExpansions) {
5879 ID.AddPointer(Pattern.getAsOpaquePtr());
5880 ID.AddBoolean(NumExpansions.has_value());
5881 if (NumExpansions)
5882 ID.AddInteger(*NumExpansions);
5883 }
5884
5885 static bool classof(const Type *T) {
5886 return T->getTypeClass() == PackExpansion;
5887 }
5888};
5889
5890/// This class wraps the list of protocol qualifiers. For types that can
5891/// take ObjC protocol qualifers, they can subclass this class.
5892template <class T>
5893class ObjCProtocolQualifiers {
5894protected:
5895 ObjCProtocolQualifiers() = default;
5896
5897 ObjCProtocolDecl * const *getProtocolStorage() const {
5898 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5899 }
5900
5901 ObjCProtocolDecl **getProtocolStorage() {
5902 return static_cast<T*>(this)->getProtocolStorageImpl();
5903 }
5904
5905 void setNumProtocols(unsigned N) {
5906 static_cast<T*>(this)->setNumProtocolsImpl(N);
5907 }
5908
5909 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5910 setNumProtocols(protocols.size());
5911 assert(getNumProtocols() == protocols.size() &&(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5912, __extension__ __PRETTY_FUNCTION__
))
5912 "bitfield overflow in protocol count")(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5912, __extension__ __PRETTY_FUNCTION__
))
;
5913 if (!protocols.empty())
5914 memcpy(getProtocolStorage(), protocols.data(),
5915 protocols.size() * sizeof(ObjCProtocolDecl*));
5916 }
5917
5918public:
5919 using qual_iterator = ObjCProtocolDecl * const *;
5920 using qual_range = llvm::iterator_range<qual_iterator>;
5921
5922 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5923 qual_iterator qual_begin() const { return getProtocolStorage(); }
5924 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5925
5926 bool qual_empty() const { return getNumProtocols() == 0; }
5927
5928 /// Return the number of qualifying protocols in this type, or 0 if
5929 /// there are none.
5930 unsigned getNumProtocols() const {
5931 return static_cast<const T*>(this)->getNumProtocolsImpl();
5932 }
5933
5934 /// Fetch a protocol by index.
5935 ObjCProtocolDecl *getProtocol(unsigned I) const {
5936 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast <bool> (I < getNumProtocols() &&
"Out-of-range protocol access") ? void (0) : __assert_fail (
"I < getNumProtocols() && \"Out-of-range protocol access\""
, "clang/include/clang/AST/Type.h", 5936, __extension__ __PRETTY_FUNCTION__
))
;
5937 return qual_begin()[I];
5938 }
5939
5940 /// Retrieve all of the protocol qualifiers.
5941 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5942 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5943 }
5944};
5945
5946/// Represents a type parameter type in Objective C. It can take
5947/// a list of protocols.
5948class ObjCTypeParamType : public Type,
5949 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5950 public llvm::FoldingSetNode {
5951 friend class ASTContext;
5952 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5953
5954 /// The number of protocols stored on this type.
5955 unsigned NumProtocols : 6;
5956
5957 ObjCTypeParamDecl *OTPDecl;
5958
5959 /// The protocols are stored after the ObjCTypeParamType node. In the
5960 /// canonical type, the list of protocols are sorted alphabetically
5961 /// and uniqued.
5962 ObjCProtocolDecl **getProtocolStorageImpl();
5963
5964 /// Return the number of qualifying protocols in this interface type,
5965 /// or 0 if there are none.
5966 unsigned getNumProtocolsImpl() const {
5967 return NumProtocols;
5968 }
5969
5970 void setNumProtocolsImpl(unsigned N) {
5971 NumProtocols = N;
5972 }
5973
5974 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5975 QualType can,
5976 ArrayRef<ObjCProtocolDecl *> protocols);
5977
5978public:
5979 bool isSugared() const { return true; }
5980 QualType desugar() const { return getCanonicalTypeInternal(); }
5981
5982 static bool classof(const Type *T) {
5983 return T->getTypeClass() == ObjCTypeParam;
5984 }
5985
5986 void Profile(llvm::FoldingSetNodeID &ID);
5987 static void Profile(llvm::FoldingSetNodeID &ID,
5988 const ObjCTypeParamDecl *OTPDecl,
5989 QualType CanonicalType,
5990 ArrayRef<ObjCProtocolDecl *> protocols);
5991
5992 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5993};
5994
5995/// Represents a class type in Objective C.
5996///
5997/// Every Objective C type is a combination of a base type, a set of
5998/// type arguments (optional, for parameterized classes) and a list of
5999/// protocols.
6000///
6001/// Given the following declarations:
6002/// \code
6003/// \@class C<T>;
6004/// \@protocol P;
6005/// \endcode
6006///
6007/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
6008/// with base C and no protocols.
6009///
6010/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
6011/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
6012/// protocol list.
6013/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
6014/// and protocol list [P].
6015///
6016/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
6017/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
6018/// and no protocols.
6019///
6020/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
6021/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
6022/// this should get its own sugar class to better represent the source.
6023class ObjCObjectType : public Type,
6024 public ObjCProtocolQualifiers<ObjCObjectType> {
6025 friend class ObjCProtocolQualifiers<ObjCObjectType>;
6026
6027 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
6028 // after the ObjCObjectPointerType node.
6029 // ObjCObjectType.NumProtocols - the number of protocols stored
6030 // after the type arguments of ObjCObjectPointerType node.
6031 //
6032 // These protocols are those written directly on the type. If
6033 // protocol qualifiers ever become additive, the iterators will need
6034 // to get kindof complicated.
6035 //
6036 // In the canonical object type, these are sorted alphabetically
6037 // and uniqued.
6038
6039 /// Either a BuiltinType or an InterfaceType or sugar for either.
6040 QualType BaseType;
6041
6042 /// Cached superclass type.
6043 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
6044 CachedSuperClassType;
6045
6046 QualType *getTypeArgStorage();
6047 const QualType *getTypeArgStorage() const {
6048 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
6049 }
6050
6051 ObjCProtocolDecl **getProtocolStorageImpl();
6052 /// Return the number of qualifying protocols in this interface type,
6053 /// or 0 if there are none.
6054 unsigned getNumProtocolsImpl() const {
6055 return ObjCObjectTypeBits.NumProtocols;
6056 }
6057 void setNumProtocolsImpl(unsigned N) {
6058 ObjCObjectTypeBits.NumProtocols = N;
6059 }
6060
6061protected:
6062 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
6063
6064 ObjCObjectType(QualType Canonical, QualType Base,
6065 ArrayRef<QualType> typeArgs,
6066 ArrayRef<ObjCProtocolDecl *> protocols,
6067 bool isKindOf);
6068
6069 ObjCObjectType(enum Nonce_ObjCInterface)
6070 : Type(ObjCInterface, QualType(), TypeDependence::None),
6071 BaseType(QualType(this_(), 0)) {
6072 ObjCObjectTypeBits.NumProtocols = 0;
6073 ObjCObjectTypeBits.NumTypeArgs = 0;
6074 ObjCObjectTypeBits.IsKindOf = 0;
6075 }
6076
6077 void computeSuperClassTypeSlow() const;
6078
6079public:
6080 /// Gets the base type of this object type. This is always (possibly
6081 /// sugar for) one of:
6082 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
6083 /// user, which is a typedef for an ObjCObjectPointerType)
6084 /// - the 'Class' builtin type (same caveat)
6085 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
6086 QualType getBaseType() const { return BaseType; }
6087
6088 bool isObjCId() const {
6089 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
6090 }
6091
6092 bool isObjCClass() const {
6093 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
6094 }
6095
6096 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
6097 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
6098 bool isObjCUnqualifiedIdOrClass() const {
6099 if (!qual_empty()) return false;
6100 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
6101 return T->getKind() == BuiltinType::ObjCId ||
6102 T->getKind() == BuiltinType::ObjCClass;
6103 return false;
6104 }
6105 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
6106 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
6107
6108 /// Gets the interface declaration for this object type, if the base type
6109 /// really is an interface.
6110 ObjCInterfaceDecl *getInterface() const;
6111
6112 /// Determine whether this object type is "specialized", meaning
6113 /// that it has type arguments.
6114 bool isSpecialized() const;
6115
6116 /// Determine whether this object type was written with type arguments.
6117 bool isSpecializedAsWritten() const {
6118 return ObjCObjectTypeBits.NumTypeArgs > 0;
6119 }
6120
6121 /// Determine whether this object type is "unspecialized", meaning
6122 /// that it has no type arguments.
6123 bool isUnspecialized() const { return !isSpecialized(); }
6124
6125 /// Determine whether this object type is "unspecialized" as
6126 /// written, meaning that it has no type arguments.
6127 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6128
6129 /// Retrieve the type arguments of this object type (semantically).
6130 ArrayRef<QualType> getTypeArgs() const;
6131
6132 /// Retrieve the type arguments of this object type as they were
6133 /// written.
6134 ArrayRef<QualType> getTypeArgsAsWritten() const {
6135 return llvm::makeArrayRef(getTypeArgStorage(),
6136 ObjCObjectTypeBits.NumTypeArgs);
6137 }
6138
6139 /// Whether this is a "__kindof" type as written.
6140 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
6141
6142 /// Whether this ia a "__kindof" type (semantically).
6143 bool isKindOfType() const;
6144
6145 /// Retrieve the type of the superclass of this object type.
6146 ///
6147 /// This operation substitutes any type arguments into the
6148 /// superclass of the current class type, potentially producing a
6149 /// specialization of the superclass type. Produces a null type if
6150 /// there is no superclass.
6151 QualType getSuperClassType() const {
6152 if (!CachedSuperClassType.getInt())
6153 computeSuperClassTypeSlow();
6154
6155 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast <bool> (CachedSuperClassType.getInt() &&
"Superclass not set?") ? void (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "clang/include/clang/AST/Type.h", 6155, __extension__ __PRETTY_FUNCTION__
))
;
6156 return QualType(CachedSuperClassType.getPointer(), 0);
6157 }
6158
6159 /// Strip off the Objective-C "kindof" type and (with it) any
6160 /// protocol qualifiers.
6161 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
6162
6163 bool isSugared() const { return false; }
6164 QualType desugar() const { return QualType(this, 0); }
6165
6166 static bool classof(const Type *T) {
6167 return T->getTypeClass() == ObjCObject ||
6168 T->getTypeClass() == ObjCInterface;
6169 }
6170};
6171
6172/// A class providing a concrete implementation
6173/// of ObjCObjectType, so as to not increase the footprint of
6174/// ObjCInterfaceType. Code outside of ASTContext and the core type
6175/// system should not reference this type.
6176class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
6177 friend class ASTContext;
6178
6179 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
6180 // will need to be modified.
6181
6182 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
6183 ArrayRef<QualType> typeArgs,
6184 ArrayRef<ObjCProtocolDecl *> protocols,
6185 bool isKindOf)
6186 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
6187
6188public:
6189 void Profile(llvm::FoldingSetNodeID &ID);
6190 static void Profile(llvm::FoldingSetNodeID &ID,
6191 QualType Base,
6192 ArrayRef<QualType> typeArgs,
6193 ArrayRef<ObjCProtocolDecl *> protocols,
6194 bool isKindOf);
6195};
6196
6197inline QualType *ObjCObjectType::getTypeArgStorage() {
6198 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
6199}
6200
6201inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
6202 return reinterpret_cast<ObjCProtocolDecl**>(
6203 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
6204}
6205
6206inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6207 return reinterpret_cast<ObjCProtocolDecl**>(
6208 static_cast<ObjCTypeParamType*>(this)+1);
6209}
6210
6211/// Interfaces are the core concept in Objective-C for object oriented design.
6212/// They basically correspond to C++ classes. There are two kinds of interface
6213/// types: normal interfaces like `NSString`, and qualified interfaces, which
6214/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6215///
6216/// ObjCInterfaceType guarantees the following properties when considered
6217/// as a subtype of its superclass, ObjCObjectType:
6218/// - There are no protocol qualifiers. To reinforce this, code which
6219/// tries to invoke the protocol methods via an ObjCInterfaceType will
6220/// fail to compile.
6221/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6222/// T->getBaseType() == QualType(T, 0).
6223class ObjCInterfaceType : public ObjCObjectType {
6224 friend class ASTContext; // ASTContext creates these.
6225 friend class ASTReader;
6226 template <class T> friend class serialization::AbstractTypeReader;
6227
6228 ObjCInterfaceDecl *Decl;
6229
6230 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6231 : ObjCObjectType(Nonce_ObjCInterface),
6232 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6233
6234public:
6235 /// Get the declaration of this interface.
6236 ObjCInterfaceDecl *getDecl() const;
6237
6238 bool isSugared() const { return false; }
6239 QualType desugar() const { return QualType(this, 0); }
6240
6241 static bool classof(const Type *T) {
6242 return T->getTypeClass() == ObjCInterface;
6243 }
6244
6245 // Nonsense to "hide" certain members of ObjCObjectType within this
6246 // class. People asking for protocols on an ObjCInterfaceType are
6247 // not going to get what they want: ObjCInterfaceTypes are
6248 // guaranteed to have no protocols.
6249 enum {
6250 qual_iterator,
6251 qual_begin,
6252 qual_end,
6253 getNumProtocols,
6254 getProtocol
6255 };
6256};
6257
6258inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6259 QualType baseType = getBaseType();
6260 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6261 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6262 return T->getDecl();
6263
6264 baseType = ObjT->getBaseType();
6265 }
6266
6267 return nullptr;
6268}
6269
6270/// Represents a pointer to an Objective C object.
6271///
6272/// These are constructed from pointer declarators when the pointee type is
6273/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6274/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6275/// and 'Class<P>' are translated into these.
6276///
6277/// Pointers to pointers to Objective C objects are still PointerTypes;
6278/// only the first level of pointer gets it own type implementation.
6279class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6280 friend class ASTContext; // ASTContext creates these.
6281
6282 QualType PointeeType;
6283
6284 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6285 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6286 PointeeType(Pointee) {}
6287
6288public:
6289 /// Gets the type pointed to by this ObjC pointer.
6290 /// The result will always be an ObjCObjectType or sugar thereof.
6291 QualType getPointeeType() const { return PointeeType; }
6292
6293 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6294 ///
6295 /// This method is equivalent to getPointeeType() except that
6296 /// it discards any typedefs (or other sugar) between this
6297 /// type and the "outermost" object type. So for:
6298 /// \code
6299 /// \@class A; \@protocol P; \@protocol Q;
6300 /// typedef A<P> AP;
6301 /// typedef A A1;
6302 /// typedef A1<P> A1P;
6303 /// typedef A1P<Q> A1PQ;
6304 /// \endcode
6305 /// For 'A*', getObjectType() will return 'A'.
6306 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6307 /// For 'AP*', getObjectType() will return 'A<P>'.
6308 /// For 'A1*', getObjectType() will return 'A'.
6309 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6310 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6311 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6312 /// adding protocols to a protocol-qualified base discards the
6313 /// old qualifiers (for now). But if it didn't, getObjectType()
6314 /// would return 'A1P<Q>' (and we'd have to make iterating over
6315 /// qualifiers more complicated).
6316 const ObjCObjectType *getObjectType() const {
6317 return PointeeType->castAs<ObjCObjectType>();
6318 }
6319
6320 /// If this pointer points to an Objective C
6321 /// \@interface type, gets the type for that interface. Any protocol
6322 /// qualifiers on the interface are ignored.
6323 ///
6324 /// \return null if the base type for this pointer is 'id' or 'Class'
6325 const ObjCInterfaceType *getInterfaceType() const;
6326
6327 /// If this pointer points to an Objective \@interface
6328 /// type, gets the declaration for that interface.
6329 ///
6330 /// \return null if the base type for this pointer is 'id' or 'Class'
6331 ObjCInterfaceDecl *getInterfaceDecl() const {
6332 return getObjectType()->getInterface();
6333 }
6334
6335 /// True if this is equivalent to the 'id' type, i.e. if
6336 /// its object type is the primitive 'id' type with no protocols.
6337 bool isObjCIdType() const {
6338 return getObjectType()->isObjCUnqualifiedId();
6339 }
6340
6341 /// True if this is equivalent to the 'Class' type,
6342 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6343 bool isObjCClassType() const {
6344 return getObjectType()->isObjCUnqualifiedClass();
6345 }
6346
6347 /// True if this is equivalent to the 'id' or 'Class' type,
6348 bool isObjCIdOrClassType() const {
6349 return getObjectType()->isObjCUnqualifiedIdOrClass();
6350 }
6351
6352 /// True if this is equivalent to 'id<P>' for some non-empty set of
6353 /// protocols.
6354 bool isObjCQualifiedIdType() const {
6355 return getObjectType()->isObjCQualifiedId();
6356 }
6357
6358 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6359 /// protocols.
6360 bool isObjCQualifiedClassType() const {
6361 return getObjectType()->isObjCQualifiedClass();
6362 }
6363
6364 /// Whether this is a "__kindof" type.
6365 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6366
6367 /// Whether this type is specialized, meaning that it has type arguments.
6368 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6369
6370 /// Whether this type is specialized, meaning that it has type arguments.
6371 bool isSpecializedAsWritten() const {
6372 return getObjectType()->isSpecializedAsWritten();
6373 }
6374
6375 /// Whether this type is unspecialized, meaning that is has no type arguments.
6376 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6377
6378 /// Determine whether this object type is "unspecialized" as
6379 /// written, meaning that it has no type arguments.
6380 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6381
6382 /// Retrieve the type arguments for this type.
6383 ArrayRef<QualType> getTypeArgs() const {
6384 return getObjectType()->getTypeArgs();
6385 }
6386
6387 /// Retrieve the type arguments for this type.
6388 ArrayRef<QualType> getTypeArgsAsWritten() const {
6389 return getObjectType()->getTypeArgsAsWritten();
6390 }
6391
6392 /// An iterator over the qualifiers on the object type. Provided
6393 /// for convenience. This will always iterate over the full set of
6394 /// protocols on a type, not just those provided directly.
6395 using qual_iterator = ObjCObjectType::qual_iterator;
6396 using qual_range = llvm::iterator_range<qual_iterator>;
6397
6398 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6399
6400 qual_iterator qual_begin() const {
6401 return getObjectType()->qual_begin();
6402 }
6403
6404 qual_iterator qual_end() const {
6405 return getObjectType()->qual_end();
6406 }
6407
6408 bool qual_empty() const { return getObjectType()->qual_empty(); }
6409
6410 /// Return the number of qualifying protocols on the object type.
6411 unsigned getNumProtocols() const {
6412 return getObjectType()->getNumProtocols();
6413 }
6414
6415 /// Retrieve a qualifying protocol by index on the object type.
6416 ObjCProtocolDecl *getProtocol(unsigned I) const {
6417 return getObjectType()->getProtocol(I);
6418 }
6419
6420 bool isSugared() const { return false; }
6421 QualType desugar() const { return QualType(this, 0); }
6422
6423 /// Retrieve the type of the superclass of this object pointer type.
6424 ///
6425 /// This operation substitutes any type arguments into the
6426 /// superclass of the current class type, potentially producing a
6427 /// pointer to a specialization of the superclass type. Produces a
6428 /// null type if there is no superclass.
6429 QualType getSuperClassType() const;
6430
6431 /// Strip off the Objective-C "kindof" type and (with it) any
6432 /// protocol qualifiers.
6433 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6434 const ASTContext &ctx) const;
6435
6436 void Profile(llvm::FoldingSetNodeID &ID) {
6437 Profile(ID, getPointeeType());
6438 }
6439
6440 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6441 ID.AddPointer(T.getAsOpaquePtr());
6442 }
6443
6444 static bool classof(const Type *T) {
6445 return T->getTypeClass() == ObjCObjectPointer;
6446 }
6447};
6448
6449class AtomicType : public Type, public llvm::FoldingSetNode {
6450 friend class ASTContext; // ASTContext creates these.
6451
6452 QualType ValueType;
6453
6454 AtomicType(QualType ValTy, QualType Canonical)
6455 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6456
6457public:
6458 /// Gets the type contained by this atomic type, i.e.
6459 /// the type returned by performing an atomic load of this atomic type.
6460 QualType getValueType() const { return ValueType; }
6461
6462 bool isSugared() const { return false; }
6463 QualType desugar() const { return QualType(this, 0); }
6464
6465 void Profile(llvm::FoldingSetNodeID &ID) {
6466 Profile(ID, getValueType());
6467 }
6468
6469 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6470 ID.AddPointer(T.getAsOpaquePtr());
6471 }
6472
6473 static bool classof(const Type *T) {
6474 return T->getTypeClass() == Atomic;
6475 }
6476};
6477
6478/// PipeType - OpenCL20.
6479class PipeType : public Type, public llvm::FoldingSetNode {
6480 friend class ASTContext; // ASTContext creates these.
6481
6482 QualType ElementType;
6483 bool isRead;
6484
6485 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6486 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6487 ElementType(elemType), isRead(isRead) {}
6488
6489public:
6490 QualType getElementType() const { return ElementType; }
6491
6492 bool isSugared() const { return false; }
6493
6494 QualType desugar() const { return QualType(this, 0); }
6495
6496 void Profile(llvm::FoldingSetNodeID &ID) {
6497 Profile(ID, getElementType(), isReadOnly());
6498 }
6499
6500 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6501 ID.AddPointer(T.getAsOpaquePtr());
6502 ID.AddBoolean(isRead);
6503 }
6504
6505 static bool classof(const Type *T) {
6506 return T->getTypeClass() == Pipe;
6507 }
6508
6509 bool isReadOnly() const { return isRead; }
6510};
6511
6512/// A fixed int type of a specified bitwidth.
6513class BitIntType final : public Type, public llvm::FoldingSetNode {
6514 friend class ASTContext;
6515 unsigned IsUnsigned : 1;
6516 unsigned NumBits : 24;
6517
6518protected:
6519 BitIntType(bool isUnsigned, unsigned NumBits);
6520
6521public:
6522 bool isUnsigned() const { return IsUnsigned; }
6523 bool isSigned() const { return !IsUnsigned; }
6524 unsigned getNumBits() const { return NumBits; }
6525
6526 bool isSugared() const { return false; }
6527 QualType desugar() const { return QualType(this, 0); }
6528
6529 void Profile(llvm::FoldingSetNodeID &ID) {
6530 Profile(ID, isUnsigned(), getNumBits());
6531 }
6532
6533 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6534 unsigned NumBits) {
6535 ID.AddBoolean(IsUnsigned);
6536 ID.AddInteger(NumBits);
6537 }
6538
6539 static bool classof(const Type *T) { return T->getTypeClass() == BitInt; }
6540};
6541
6542class DependentBitIntType final : public Type, public llvm::FoldingSetNode {
6543 friend class ASTContext;
6544 const ASTContext &Context;
6545 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6546
6547protected:
6548 DependentBitIntType(const ASTContext &Context, bool IsUnsigned,
6549 Expr *NumBits);
6550
6551public:
6552 bool isUnsigned() const;
6553 bool isSigned() const { return !isUnsigned(); }
6554 Expr *getNumBitsExpr() const;
6555
6556 bool isSugared() const { return false; }
6557 QualType desugar() const { return QualType(this, 0); }
6558
6559 void Profile(llvm::FoldingSetNodeID &ID) {
6560 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6561 }
6562 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6563 bool IsUnsigned, Expr *NumBitsExpr);
6564
6565 static bool classof(const Type *T) {
6566 return T->getTypeClass() == DependentBitInt;
6567 }
6568};
6569
6570/// A qualifier set is used to build a set of qualifiers.
6571class QualifierCollector : public Qualifiers {
6572public:
6573 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6574
6575 /// Collect any qualifiers on the given type and return an
6576 /// unqualified type. The qualifiers are assumed to be consistent
6577 /// with those already in the type.
6578 const Type *strip(QualType type) {
6579 addFastQualifiers(type.getLocalFastQualifiers());
6580 if (!type.hasLocalNonFastQualifiers())
6581 return type.getTypePtrUnsafe();
6582
6583 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6584 addConsistentQualifiers(extQuals->getQualifiers());
6585 return extQuals->getBaseType();
6586 }
6587
6588 /// Apply the collected qualifiers to the given type.
6589 QualType apply(const ASTContext &Context, QualType QT) const;
6590
6591 /// Apply the collected qualifiers to the given type.
6592 QualType apply(const ASTContext &Context, const Type* T) const;
6593};
6594
6595/// A container of type source information.
6596///
6597/// A client can read the relevant info using TypeLoc wrappers, e.g:
6598/// @code
6599/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6600/// TL.getBeginLoc().print(OS, SrcMgr);
6601/// @endcode
6602class alignas(8) TypeSourceInfo {
6603 // Contains a memory block after the class, used for type source information,
6604 // allocated by ASTContext.
6605 friend class ASTContext;
6606
6607 QualType Ty;
6608
6609 TypeSourceInfo(QualType ty) : Ty(ty) {}
6610
6611public:
6612 /// Return the type wrapped by this type source info.
6613 QualType getType() const { return Ty; }
6614
6615 /// Return the TypeLoc wrapper for the type source info.
6616 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6617
6618 /// Override the type stored in this TypeSourceInfo. Use with caution!
6619 void overrideType(QualType T) { Ty = T; }
6620};
6621
6622// Inline function definitions.
6623
6624inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6625 SplitQualType desugar =
6626 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6627 desugar.Quals.addConsistentQualifiers(Quals);
6628 return desugar;
6629}
6630
6631inline const Type *QualType::getTypePtr() const {
6632 return getCommonPtr()->BaseType;
6633}
6634
6635inline const Type *QualType::getTypePtrOrNull() const {
6636 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6637}
6638
6639inline bool QualType::isReferenceable() const {
6640 // C++ [defns.referenceable]
6641 // type that is either an object type, a function type that does not have
6642 // cv-qualifiers or a ref-qualifier, or a reference type.
6643 const Type &Self = **this;
6644 if (Self.isObjectType() || Self.isReferenceType())
6645 return true;
6646 if (const auto *F = Self.getAs<FunctionProtoType>())
6647 return F->getMethodQuals().empty() && F->getRefQualifier() == RQ_None;
6648
6649 return false;
6650}
6651
6652inline SplitQualType QualType::split() const {
6653 if (!hasLocalNonFastQualifiers())
6654 return SplitQualType(getTypePtrUnsafe(),
6655 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6656
6657 const ExtQuals *eq = getExtQualsUnsafe();
6658 Qualifiers qs = eq->getQualifiers();
6659 qs.addFastQualifiers(getLocalFastQualifiers());
6660 return SplitQualType(eq->getBaseType(), qs);
6661}
6662
6663inline Qualifiers QualType::getLocalQualifiers() const {
6664 Qualifiers Quals;
6665 if (hasLocalNonFastQualifiers())
6666 Quals = getExtQualsUnsafe()->getQualifiers();
6667 Quals.addFastQualifiers(getLocalFastQualifiers());
6668 return Quals;
6669}
6670
6671inline Qualifiers QualType::getQualifiers() const {
6672 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6673 quals.addFastQualifiers(getLocalFastQualifiers());
6674 return quals;
6675}
6676
6677inline unsigned QualType::getCVRQualifiers() const {
6678 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6679 cvr |= getLocalCVRQualifiers();
6680 return cvr;
6681}
6682
6683inline QualType QualType::getCanonicalType() const {
6684 QualType canon = getCommonPtr()->CanonicalType;
6685 return canon.withFastQualifiers(getLocalFastQualifiers());
6686}
6687
6688inline bool QualType::isCanonical() const {
6689 return getTypePtr()->isCanonicalUnqualified();
6690}
6691
6692inline bool QualType::isCanonicalAsParam() const {
6693 if (!isCanonical()) return false;
6694 if (hasLocalQualifiers()) return false;
6695
6696 const Type *T = getTypePtr();
6697 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6698 return false;
6699
6700 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6701}
6702
6703inline bool QualType::isConstQualified() const {
6704 return isLocalConstQualified() ||
6705 getCommonPtr()->CanonicalType.isLocalConstQualified();
6706}
6707
6708inline bool QualType::isRestrictQualified() const {
6709 return isLocalRestrictQualified() ||
6710 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6711}
6712
6713
6714inline bool QualType::isVolatileQualified() const {
6715 return isLocalVolatileQualified() ||
6716 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6717}
6718
6719inline bool QualType::hasQualifiers() const {
6720 return hasLocalQualifiers() ||
6721 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6722}
6723
6724inline QualType QualType::getUnqualifiedType() const {
6725 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6726 return QualType(getTypePtr(), 0);
6727
6728 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6729}
6730
6731inline SplitQualType QualType::getSplitUnqualifiedType() const {
6732 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6733 return split();
6734
6735 return getSplitUnqualifiedTypeImpl(*this);
6736}
6737
6738inline void QualType::removeLocalConst() {
6739 removeLocalFastQualifiers(Qualifiers::Const);
6740}
6741
6742inline void QualType::removeLocalRestrict() {
6743 removeLocalFastQualifiers(Qualifiers::Restrict);
6744}
6745
6746inline void QualType::removeLocalVolatile() {
6747 removeLocalFastQualifiers(Qualifiers::Volatile);
6748}
6749
6750inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6751 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast <bool> (!(Mask & ~Qualifiers::CVRMask)
&& "mask has non-CVR bits") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "clang/include/clang/AST/Type.h", 6751, __extension__ __PRETTY_FUNCTION__
))
;
6752 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6753 "Fast bits differ from CVR bits!");
6754
6755 // Fast path: we don't need to touch the slow qualifiers.
6756 removeLocalFastQualifiers(Mask);
6757}
6758
6759/// Check if this type has any address space qualifier.
6760inline bool QualType::hasAddressSpace() const {
6761 return getQualifiers().hasAddressSpace();
6762}
6763
6764/// Return the address space of this type.
6765inline LangAS QualType::getAddressSpace() const {
6766 return getQualifiers().getAddressSpace();
6767}
6768
6769/// Return the gc attribute of this type.
6770inline Qualifiers::GC QualType::getObjCGCAttr() const {
6771 return getQualifiers().getObjCGCAttr();
6772}
6773
6774inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6775 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6776 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6777 return false;
6778}
6779
6780inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6781 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6782 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6783 return false;
6784}
6785
6786inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6787 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6788 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6789 return false;
6790}
6791
6792inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6793 if (const auto *PT = t.getAs<PointerType>()) {
6794 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6795 return FT->getExtInfo();
6796 } else if (const auto *FT = t.getAs<FunctionType>())
6797 return FT->getExtInfo();
6798
6799 return FunctionType::ExtInfo();
6800}
6801
6802inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6803 return getFunctionExtInfo(*t);
6804}
6805
6806/// Determine whether this type is more
6807/// qualified than the Other type. For example, "const volatile int"
6808/// is more qualified than "const int", "volatile int", and
6809/// "int". However, it is not more qualified than "const volatile
6810/// int".
6811inline bool QualType::isMoreQualifiedThan(QualType other) const {
6812 Qualifiers MyQuals = getQualifiers();
6813 Qualifiers OtherQuals = other.getQualifiers();
6814 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6815}
6816
6817/// Determine whether this type is at last
6818/// as qualified as the Other type. For example, "const volatile
6819/// int" is at least as qualified as "const int", "volatile int",
6820/// "int", and "const volatile int".
6821inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6822 Qualifiers OtherQuals = other.getQualifiers();
6823
6824 // Ignore __unaligned qualifier if this type is a void.
6825 if (getUnqualifiedType()->isVoidType())
6826 OtherQuals.removeUnaligned();
6827
6828 return getQualifiers().compatiblyIncludes(OtherQuals);
6829}
6830
6831/// If Type is a reference type (e.g., const
6832/// int&), returns the type that the reference refers to ("const
6833/// int"). Otherwise, returns the type itself. This routine is used
6834/// throughout Sema to implement C++ 5p6:
6835///
6836/// If an expression initially has the type "reference to T" (8.3.2,
6837/// 8.5.3), the type is adjusted to "T" prior to any further
6838/// analysis, the expression designates the object or function
6839/// denoted by the reference, and the expression is an lvalue.
6840inline QualType QualType::getNonReferenceType() const {
6841 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6842 return RefType->getPointeeType();
6843 else
6844 return *this;
6845}
6846
6847inline bool QualType::isCForbiddenLValueType() const {
6848 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6849 getTypePtr()->isFunctionType());
6850}
6851
6852/// Tests whether the type is categorized as a fundamental type.
6853///
6854/// \returns True for types specified in C++0x [basic.fundamental].
6855inline bool Type::isFundamentalType() const {
6856 return isVoidType() ||
6857 isNullPtrType() ||
6858 // FIXME: It's really annoying that we don't have an
6859 // 'isArithmeticType()' which agrees with the standard definition.
6860 (isArithmeticType() && !isEnumeralType());
6861}
6862
6863/// Tests whether the type is categorized as a compound type.
6864///
6865/// \returns True for types specified in C++0x [basic.compound].
6866inline bool Type::isCompoundType() const {
6867 // C++0x [basic.compound]p1:
6868 // Compound types can be constructed in the following ways:
6869 // -- arrays of objects of a given type [...];
6870 return isArrayType() ||
6871 // -- functions, which have parameters of given types [...];
6872 isFunctionType() ||
6873 // -- pointers to void or objects or functions [...];
6874 isPointerType() ||
6875 // -- references to objects or functions of a given type. [...]
6876 isReferenceType() ||
6877 // -- classes containing a sequence of objects of various types, [...];
6878 isRecordType() ||
6879 // -- unions, which are classes capable of containing objects of different
6880 // types at different times;
6881 isUnionType() ||
6882 // -- enumerations, which comprise a set of named constant values. [...];
6883 isEnumeralType() ||
6884 // -- pointers to non-static class members, [...].
6885 isMemberPointerType();
6886}
6887
6888inline bool Type::isFunctionType() const {
6889 return isa<FunctionType>(CanonicalType);
6890}
6891
6892inline bool Type::isPointerType() const {
6893 return isa<PointerType>(CanonicalType);
6894}
6895
6896inline bool Type::isAnyPointerType() const {
6897 return isPointerType() || isObjCObjectPointerType();
6898}
6899
6900inline bool Type::isBlockPointerType() const {
6901 return isa<BlockPointerType>(CanonicalType);
6902}
6903
6904inline bool Type::isReferenceType() const {
6905 return isa<ReferenceType>(CanonicalType);
6906}
6907
6908inline bool Type::isLValueReferenceType() const {
6909 return isa<LValueReferenceType>(CanonicalType);
6910}
6911
6912inline bool Type::isRValueReferenceType() const {
6913 return isa<RValueReferenceType>(CanonicalType);
6914}
6915
6916inline bool Type::isObjectPointerType() const {
6917 // Note: an "object pointer type" is not the same thing as a pointer to an
6918 // object type; rather, it is a pointer to an object type or a pointer to cv
6919 // void.
6920 if (const auto *T = getAs<PointerType>())
6921 return !T->getPointeeType()->isFunctionType();
6922 else
6923 return false;
6924}
6925
6926inline bool Type::isFunctionPointerType() const {
6927 if (const auto *T = getAs<PointerType>())
6928 return T->getPointeeType()->isFunctionType();
6929 else
6930 return false;
6931}
6932
6933inline bool Type::isFunctionReferenceType() const {
6934 if (const auto *T = getAs<ReferenceType>())
6935 return T->getPointeeType()->isFunctionType();
6936 else
6937 return false;
6938}
6939
6940inline bool Type::isMemberPointerType() const {
6941 return isa<MemberPointerType>(CanonicalType);
6942}
6943
6944inline bool Type::isMemberFunctionPointerType() const {
6945 if (const auto *T = getAs<MemberPointerType>())
6946 return T->isMemberFunctionPointer();
6947 else
6948 return false;
6949}
6950
6951inline bool Type::isMemberDataPointerType() const {
6952 if (const auto *T = getAs<MemberPointerType>())
6953 return T->isMemberDataPointer();
6954 else
6955 return false;
6956}
6957
6958inline bool Type::isArrayType() const {
6959 return isa<ArrayType>(CanonicalType);
6960}
6961
6962inline bool Type::isConstantArrayType() const {
6963 return isa<ConstantArrayType>(CanonicalType);
6964}
6965
6966inline bool Type::isIncompleteArrayType() const {
6967 return isa<IncompleteArrayType>(CanonicalType);
6968}
6969
6970inline bool Type::isVariableArrayType() const {
6971 return isa<VariableArrayType>(CanonicalType);
6972}
6973
6974inline bool Type::isDependentSizedArrayType() const {
6975 return isa<DependentSizedArrayType>(CanonicalType);
6976}
6977
6978inline bool Type::isBuiltinType() const {
6979 return isa<BuiltinType>(CanonicalType);
6980}
6981
6982inline bool Type::isRecordType() const {
6983 return isa<RecordType>(CanonicalType);
6984}
6985
6986inline bool Type::isEnumeralType() const {
6987 return isa<EnumType>(CanonicalType);
6988}
6989
6990inline bool Type::isAnyComplexType() const {
6991 return isa<ComplexType>(CanonicalType);
6992}
6993
6994inline bool Type::isVectorType() const {
6995 return isa<VectorType>(CanonicalType);
6996}
6997
6998inline bool Type::isExtVectorType() const {
6999 return isa<ExtVectorType>(CanonicalType);
7000}
7001
7002inline bool Type::isExtVectorBoolType() const {
7003 if (!isExtVectorType())
7004 return false;
7005 return cast<ExtVectorType>(CanonicalType)->getElementType()->isBooleanType();
7006}
7007
7008inline bool Type::isMatrixType() const {
7009 return isa<MatrixType>(CanonicalType);
7010}
7011
7012inline bool Type::isConstantMatrixType() const {
7013 return isa<ConstantMatrixType>(CanonicalType);
7014}
7015
7016inline bool Type::isDependentAddressSpaceType() const {
7017 return isa<DependentAddressSpaceType>(CanonicalType);
7018}
7019
7020inline bool Type::isObjCObjectPointerType() const {
7021 return isa<ObjCObjectPointerType>(CanonicalType);
7022}
7023
7024inline bool Type::isObjCObjectType() const {
7025 return isa<ObjCObjectType>(CanonicalType);
7026}
7027
7028inline bool Type::isObjCObjectOrInterfaceType() const {
7029 return isa<ObjCInterfaceType>(CanonicalType) ||
7030 isa<ObjCObjectType>(CanonicalType);
7031}
7032
7033inline bool Type::isAtomicType() const {
7034 return isa<AtomicType>(CanonicalType);
7035}
7036
7037inline bool Type::isUndeducedAutoType() const {
7038 return isa<AutoType>(CanonicalType);
7039}
7040
7041inline bool Type::isObjCQualifiedIdType() const {
7042 if (const auto *OPT = getAs<ObjCObjectPointerType>())
7043 return OPT->isObjCQualifiedIdType();
7044 return false;
7045}
7046
7047inline bool Type::isObjCQualifiedClassType() const {
7048 if (const auto *OPT = getAs<ObjCObjectPointerType>())
7049 return OPT->isObjCQualifiedClassType();
7050 return false;
7051}
7052
7053inline bool Type::isObjCIdType() const {
7054 if (const auto *OPT = getAs<ObjCObjectPointerType>())
7055 return OPT->isObjCIdType();
7056 return false;
7057}
7058
7059inline bool Type::isObjCClassType() const {
7060 if (const auto *OPT = getAs<ObjCObjectPointerType>())
7061 return OPT->isObjCClassType();
7062 return false;
7063}
7064
7065inline bool Type::isObjCSelType() const {
7066 if (const auto *OPT = getAs<PointerType>())
7067 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
7068 return false;
7069}
7070
7071inline bool Type::isObjCBuiltinType() const {
7072 return isObjCIdType() || isObjCClassType() || isObjCSelType();
7073}
7074
7075inline bool Type::isDecltypeType() const {
7076 return isa<DecltypeType>(this);
7077}
7078
7079#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7080 inline bool Type::is##Id##Type() const { \
7081 return isSpecificBuiltinType(BuiltinType::Id); \
7082 }
7083#include "clang/Basic/OpenCLImageTypes.def"
7084
7085inline bool Type::isSamplerT() const {
7086 return isSpecificBuiltinType(BuiltinType::OCLSampler);
7087}
7088
7089inline bool Type::isEventT() const {
7090 return isSpecificBuiltinType(BuiltinType::OCLEvent);
7091}
7092
7093inline bool Type::isClkEventT() const {
7094 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
7095}
7096
7097inline bool Type::isQueueT() const {
7098 return isSpecificBuiltinType(BuiltinType::OCLQueue);
7099}
7100
7101inline bool Type::isReserveIDT() const {
7102 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
7103}
7104
7105inline bool Type::isImageType() const {
7106#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
7107 return
7108#include "clang/Basic/OpenCLImageTypes.def"
7109 false; // end boolean or operation
7110}
7111
7112inline bool Type::isPipeType() const {
7113 return isa<PipeType>(CanonicalType);
7114}
7115
7116inline bool Type::isBitIntType() const {
7117 return isa<BitIntType>(CanonicalType);
7118}
7119
7120#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7121 inline bool Type::is##Id##Type() const { \
7122 return isSpecificBuiltinType(BuiltinType::Id); \
7123 }
7124#include "clang/Basic/OpenCLExtensionTypes.def"
7125
7126inline bool Type::isOCLIntelSubgroupAVCType() const {
7127#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
7128 isOCLIntelSubgroupAVC##Id##Type() ||
7129 return
7130#include "clang/Basic/OpenCLExtensionTypes.def"
7131 false; // end of boolean or operation
7132}
7133
7134inline bool Type::isOCLExtOpaqueType() const {
7135#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
7136 return
7137#include "clang/Basic/OpenCLExtensionTypes.def"
7138 false; // end of boolean or operation
7139}
7140
7141inline bool Type::isOpenCLSpecificType() const {
7142 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
7143 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
7144}
7145
7146inline bool Type::isRVVType() const {
7147#define RVV_TYPE(Name, Id, SingletonId) \
7148 isSpecificBuiltinType(BuiltinType::Id) ||
7149 return
7150#include "clang/Basic/RISCVVTypes.def"
7151 false; // end of boolean or operation.
7152}
7153
7154inline bool Type::isTemplateTypeParmType() const {
7155 return isa<TemplateTypeParmType>(CanonicalType);
7156}
7157
7158inline bool Type::isSpecificBuiltinType(unsigned K) const {
7159 if (const BuiltinType *BT = getAs<BuiltinType>()) {
7160 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
7161 }
7162 return false;
7163}
7164
7165inline bool Type::isPlaceholderType() const {
7166 if (const auto *BT = dyn_cast<BuiltinType>(this))
7167 return BT->isPlaceholderType();
7168 return false;
7169}
7170
7171inline const BuiltinType *Type::getAsPlaceholderType() const {
7172 if (const auto *BT = dyn_cast<BuiltinType>(this))
7173 if (BT->isPlaceholderType())
7174 return BT;
7175 return nullptr;
7176}
7177
7178inline bool Type::isSpecificPlaceholderType(unsigned K) const {
7179 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast <bool> (BuiltinType::isPlaceholderTypeKind
((BuiltinType::Kind) K)) ? void (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "clang/include/clang/AST/Type.h", 7179, __extension__ __PRETTY_FUNCTION__
))
;
7180 return isSpecificBuiltinType(K);
7181}
7182
7183inline bool Type::isNonOverloadPlaceholderType() const {
7184 if (const auto *BT = dyn_cast<BuiltinType>(this))
7185 return BT->isNonOverloadPlaceholderType();
7186 return false;
7187}
7188
7189inline bool Type::isVoidType() const {
7190 return isSpecificBuiltinType(BuiltinType::Void);
7191}
7192
7193inline bool Type::isHalfType() const {
7194 // FIXME: Should we allow complex __fp16? Probably not.
7195 return isSpecificBuiltinType(BuiltinType::Half);
7196}
7197
7198inline bool Type::isFloat16Type() const {
7199 return isSpecificBuiltinType(BuiltinType::Float16);
7200}
7201
7202inline bool Type::isBFloat16Type() const {
7203 return isSpecificBuiltinType(BuiltinType::BFloat16);
7204}
7205
7206inline bool Type::isFloat128Type() const {
7207 return isSpecificBuiltinType(BuiltinType::Float128);
7208}
7209
7210inline bool Type::isIbm128Type() const {
7211 return isSpecificBuiltinType(BuiltinType::Ibm128);
7212}
7213
7214inline bool Type::isNullPtrType() const {
7215 return isSpecificBuiltinType(BuiltinType::NullPtr);
7216}
7217
7218bool IsEnumDeclComplete(EnumDecl *);
7219bool IsEnumDeclScoped(EnumDecl *);
7220
7221inline bool Type::isIntegerType() const {
7222 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7223 return BT->getKind() >= BuiltinType::Bool &&
7224 BT->getKind() <= BuiltinType::Int128;
7225 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
7226 // Incomplete enum types are not treated as integer types.
7227 // FIXME: In C++, enum types are never integer types.
7228 return IsEnumDeclComplete(ET->getDecl()) &&
7229 !IsEnumDeclScoped(ET->getDecl());
7230 }
7231 return isBitIntType();
7232}
7233
7234inline bool Type::isFixedPointType() const {
7235 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7236 return BT->getKind() >= BuiltinType::ShortAccum &&
7237 BT->getKind() <= BuiltinType::SatULongFract;
7238 }
7239 return false;
7240}
7241
7242inline bool Type::isFixedPointOrIntegerType() const {
7243 return isFixedPointType() || isIntegerType();
7244}
7245
7246inline bool Type::isSaturatedFixedPointType() const {
7247 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7248 return BT->getKind() >= BuiltinType::SatShortAccum &&
7249 BT->getKind() <= BuiltinType::SatULongFract;
7250 }
7251 return false;
7252}
7253
7254inline bool Type::isUnsaturatedFixedPointType() const {
7255 return isFixedPointType() && !isSaturatedFixedPointType();
7256}
7257
7258inline bool Type::isSignedFixedPointType() const {
7259 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7260 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7261 BT->getKind() <= BuiltinType::LongAccum) ||
7262 (BT->getKind() >= BuiltinType::ShortFract &&
7263 BT->getKind() <= BuiltinType::LongFract) ||
7264 (BT->getKind() >= BuiltinType::SatShortAccum &&
7265 BT->getKind() <= BuiltinType::SatLongAccum) ||
7266 (BT->getKind() >= BuiltinType::SatShortFract &&
7267 BT->getKind() <= BuiltinType::SatLongFract));
7268 }
7269 return false;
7270}
7271
7272inline bool Type::isUnsignedFixedPointType() const {
7273 return isFixedPointType() && !isSignedFixedPointType();
7274}
7275
7276inline bool Type::isScalarType() const {
7277 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7278 return BT->getKind() > BuiltinType::Void &&
7279 BT->getKind() <= BuiltinType::NullPtr;
7280 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7281 // Enums are scalar types, but only if they are defined. Incomplete enums
7282 // are not treated as scalar types.
7283 return IsEnumDeclComplete(ET->getDecl());
7284 return isa<PointerType>(CanonicalType) ||
7285 isa<BlockPointerType>(CanonicalType) ||
7286 isa<MemberPointerType>(CanonicalType) ||
7287 isa<ComplexType>(CanonicalType) ||
7288 isa<ObjCObjectPointerType>(CanonicalType) ||
7289 isBitIntType();
7290}
7291
7292inline bool Type::isIntegralOrEnumerationType() const {
7293 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7294 return BT->getKind() >= BuiltinType::Bool &&
7295 BT->getKind() <= BuiltinType::Int128;
7296
7297 // Check for a complete enum type; incomplete enum types are not properly an
7298 // enumeration type in the sense required here.
7299 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7300 return IsEnumDeclComplete(ET->getDecl());
7301
7302 return isBitIntType();
7303}
7304
7305inline bool Type::isBooleanType() const {
7306 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7307 return BT->getKind() == BuiltinType::Bool;
7308 return false;
7309}
7310
7311inline bool Type::isUndeducedType() const {
7312 auto *DT = getContainedDeducedType();
7313 return DT && !DT->isDeduced();
7314}
7315
7316/// Determines whether this is a type for which one can define
7317/// an overloaded operator.
7318inline bool Type::isOverloadableType() const {
7319 return isDependentType() || isRecordType() || isEnumeralType();
7320}
7321
7322/// Determines whether this type is written as a typedef-name.
7323inline bool Type::isTypedefNameType() const {
7324 if (getAs<TypedefType>())
7325 return true;
7326 if (auto *TST = getAs<TemplateSpecializationType>())
7327 return TST->isTypeAlias();
7328 return false;
7329}
7330
7331/// Determines whether this type can decay to a pointer type.
7332inline bool Type::canDecayToPointerType() const {
7333 return isFunctionType() || isArrayType();
7334}
7335
7336inline bool Type::hasPointerRepresentation() const {
7337 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7338 isObjCObjectPointerType() || isNullPtrType());
7339}
7340
7341inline bool Type::hasObjCPointerRepresentation() const {
7342 return isObjCObjectPointerType();
7343}
7344
7345inline const Type *Type::getBaseElementTypeUnsafe() const {
7346 const Type *type = this;
7347 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7348 type = arrayType->getElementType().getTypePtr();
7349 return type;
7350}
7351
7352inline const Type *Type::getPointeeOrArrayElementType() const {
7353 const Type *type = this;
7354 if (type->isAnyPointerType())
7355 return type->getPointeeType().getTypePtr();
7356 else if (type->isArrayType())
7357 return type->getBaseElementTypeUnsafe();
7358 return type;
7359}
7360/// Insertion operator for partial diagnostics. This allows sending adress
7361/// spaces into a diagnostic with <<.
7362inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7363 LangAS AS) {
7364 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7365 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7366 return PD;
7367}
7368
7369/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7370/// into a diagnostic with <<.
7371inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7372 Qualifiers Q) {
7373 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7374 DiagnosticsEngine::ArgumentKind::ak_qual);
7375 return PD;
7376}
7377
7378/// Insertion operator for partial diagnostics. This allows sending QualType's
7379/// into a diagnostic with <<.
7380inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7381 QualType T) {
7382 PD.AddTaggedVal(reinterpret_cast<uint64_t>(T.getAsOpaquePtr()),
7383 DiagnosticsEngine::ak_qualtype);
7384 return PD;
7385}
7386
7387// Helper class template that is used by Type::getAs to ensure that one does
7388// not try to look through a qualified type to get to an array type.
7389template <typename T>
7390using TypeIsArrayType =
7391 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7392 std::is_base_of<ArrayType, T>::value>;
7393
7394// Member-template getAs<specific type>'.
7395template <typename T> const T *Type::getAs() const {
7396 static_assert(!TypeIsArrayType<T>::value,
7397 "ArrayType cannot be used with getAs!");
7398
7399 // If this is directly a T type, return it.
7400 if (const auto *Ty = dyn_cast<T>(this))
7401 return Ty;
7402
7403 // If the canonical form of this type isn't the right kind, reject it.
7404 if (!isa<T>(CanonicalType))
7405 return nullptr;
7406
7407 // If this is a typedef for the type, strip the typedef off without
7408 // losing all typedef information.
7409 return cast<T>(getUnqualifiedDesugaredType());
7410}
7411
7412template <typename T> const T *Type::getAsAdjusted() const {
7413 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7414
7415 // If this is directly a T type, return it.
7416 if (const auto *Ty = dyn_cast<T>(this))
7417 return Ty;
7418
7419 // If the canonical form of this type isn't the right kind, reject it.
7420 if (!isa<T>(CanonicalType))
7421 return nullptr;
7422
7423 // Strip off type adjustments that do not modify the underlying nature of the
7424 // type.
7425 const Type *Ty = this;
7426 while (Ty) {
7427 if (const auto *A = dyn_cast<AttributedType>(Ty))
7428 Ty = A->getModifiedType().getTypePtr();
7429 else if (const auto *A = dyn_cast<BTFTagAttributedType>(Ty))
7430 Ty = A->getWrappedType().getTypePtr();
7431 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7432 Ty = E->desugar().getTypePtr();
7433 else if (const auto *P = dyn_cast<ParenType>(Ty))
7434 Ty = P->desugar().getTypePtr();
7435 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7436 Ty = A->desugar().getTypePtr();
7437 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7438 Ty = M->desugar().getTypePtr();
7439 else
7440 break;
7441 }
7442
7443 // Just because the canonical type is correct does not mean we can use cast<>,
7444 // since we may not have stripped off all the sugar down to the base type.
7445 return dyn_cast<T>(Ty);
7446}
7447
7448inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7449 // If this is directly an array type, return it.
7450 if (const auto *arr = dyn_cast<ArrayType>(this))
7451 return arr;
7452
7453 // If the canonical form of this type isn't the right kind, reject it.
7454 if (!isa<ArrayType>(CanonicalType))
7455 return nullptr;
7456
7457 // If this is a typedef for the type, strip the typedef off without
7458 // losing all typedef information.
7459 return cast<ArrayType>(getUnqualifiedDesugaredType());
7460}
7461
7462template <typename T> const T *Type::castAs() const {
7463 static_assert(!TypeIsArrayType<T>::value,
7464 "ArrayType cannot be used with castAs!");
7465
7466 if (const auto *ty = dyn_cast<T>(this)) return ty;
7467 assert(isa<T>(CanonicalType))(static_cast <bool> (isa<T>(CanonicalType)) ? void
(0) : __assert_fail ("isa<T>(CanonicalType)", "clang/include/clang/AST/Type.h"
, 7467, __extension__ __PRETTY_FUNCTION__))
;
7468 return cast<T>(getUnqualifiedDesugaredType());
7469}
7470
7471inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7472 assert(isa<ArrayType>(CanonicalType))(static_cast <bool> (isa<ArrayType>(CanonicalType
)) ? void (0) : __assert_fail ("isa<ArrayType>(CanonicalType)"
, "clang/include/clang/AST/Type.h", 7472, __extension__ __PRETTY_FUNCTION__
))
;
7473 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7474 return cast<ArrayType>(getUnqualifiedDesugaredType());
7475}
7476
7477DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7478 QualType CanonicalPtr)
7479 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7480#ifndef NDEBUG
7481 QualType Adjusted = getAdjustedType();
7482 (void)AttributedType::stripOuterNullability(Adjusted);
7483 assert(isa<PointerType>(Adjusted))(static_cast <bool> (isa<PointerType>(Adjusted)) ?
void (0) : __assert_fail ("isa<PointerType>(Adjusted)"
, "clang/include/clang/AST/Type.h", 7483, __extension__ __PRETTY_FUNCTION__
))
;
7484#endif
7485}
7486
7487QualType DecayedType::getPointeeType() const {
7488 QualType Decayed = getDecayedType();
7489 (void)AttributedType::stripOuterNullability(Decayed);
7490 return cast<PointerType>(Decayed)->getPointeeType();
7491}
7492
7493// Get the decimal string representation of a fixed point type, represented
7494// as a scaled integer.
7495// TODO: At some point, we should change the arguments to instead just accept an
7496// APFixedPoint instead of APSInt and scale.
7497void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7498 unsigned Scale);
7499
7500} // namespace clang
7501
7502#endif // LLVM_CLANG_AST_TYPE_H