Bug Summary

File:build/source/clang/lib/Sema/SemaTemplateVariadic.cpp
Warning:line 705, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplateVariadic.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16 -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1671487667 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-12-20-010714-16201-1 -x c++ /build/source/clang/lib/Sema/SemaTemplateVariadic.cpp

/build/source/clang/lib/Sema/SemaTemplateVariadic.cpp

1//===------- SemaTemplateVariadic.cpp - C++ Variadic Templates ------------===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements semantic analysis for C++0x variadic templates.
9//===----------------------------------------------------------------------===/
10
11#include "clang/Sema/Sema.h"
12#include "TypeLocBuilder.h"
13#include "clang/AST/Expr.h"
14#include "clang/AST/RecursiveASTVisitor.h"
15#include "clang/AST/TypeLoc.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Sema/Template.h"
21
22using namespace clang;
23
24//----------------------------------------------------------------------------
25// Visitor that collects unexpanded parameter packs
26//----------------------------------------------------------------------------
27
28namespace {
29 /// A class that collects unexpanded parameter packs.
30 class CollectUnexpandedParameterPacksVisitor :
31 public RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
32 {
33 typedef RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
34 inherited;
35
36 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded;
37
38 bool InLambda = false;
39 unsigned DepthLimit = (unsigned)-1;
40
41 void addUnexpanded(NamedDecl *ND, SourceLocation Loc = SourceLocation()) {
42 if (auto *VD = dyn_cast<VarDecl>(ND)) {
43 // For now, the only problematic case is a generic lambda's templated
44 // call operator, so we don't need to look for all the other ways we
45 // could have reached a dependent parameter pack.
46 auto *FD = dyn_cast<FunctionDecl>(VD->getDeclContext());
47 auto *FTD = FD ? FD->getDescribedFunctionTemplate() : nullptr;
48 if (FTD && FTD->getTemplateParameters()->getDepth() >= DepthLimit)
49 return;
50 } else if (getDepthAndIndex(ND).first >= DepthLimit)
51 return;
52
53 Unexpanded.push_back({ND, Loc});
54 }
55 void addUnexpanded(const TemplateTypeParmType *T,
56 SourceLocation Loc = SourceLocation()) {
57 if (T->getDepth() < DepthLimit)
58 Unexpanded.push_back({T, Loc});
59 }
60
61 public:
62 explicit CollectUnexpandedParameterPacksVisitor(
63 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded)
64 : Unexpanded(Unexpanded) {}
65
66 bool shouldWalkTypesOfTypeLocs() const { return false; }
67
68 //------------------------------------------------------------------------
69 // Recording occurrences of (unexpanded) parameter packs.
70 //------------------------------------------------------------------------
71
72 /// Record occurrences of template type parameter packs.
73 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
74 if (TL.getTypePtr()->isParameterPack())
75 addUnexpanded(TL.getTypePtr(), TL.getNameLoc());
76 return true;
77 }
78
79 /// Record occurrences of template type parameter packs
80 /// when we don't have proper source-location information for
81 /// them.
82 ///
83 /// Ideally, this routine would never be used.
84 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
85 if (T->isParameterPack())
86 addUnexpanded(T);
87
88 return true;
89 }
90
91 bool
92 VisitSubstTemplateTypeParmPackTypeLoc(SubstTemplateTypeParmPackTypeLoc TL) {
93 Unexpanded.push_back({TL.getTypePtr(), TL.getNameLoc()});
94 return true;
95 }
96
97 bool VisitSubstTemplateTypeParmPackType(SubstTemplateTypeParmPackType *T) {
98 Unexpanded.push_back({T, SourceLocation()});
99 return true;
100 }
101
102 bool
103 VisitSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr *E) {
104 Unexpanded.push_back({E, E->getParameterPackLocation()});
105 return true;
106 }
107
108 /// Record occurrences of function and non-type template
109 /// parameter packs in an expression.
110 bool VisitDeclRefExpr(DeclRefExpr *E) {
111 if (E->getDecl()->isParameterPack())
112 addUnexpanded(E->getDecl(), E->getLocation());
113
114 return true;
115 }
116
117 /// Record occurrences of template template parameter packs.
118 bool TraverseTemplateName(TemplateName Template) {
119 if (auto *TTP = dyn_cast_or_null<TemplateTemplateParmDecl>(
120 Template.getAsTemplateDecl())) {
121 if (TTP->isParameterPack())
122 addUnexpanded(TTP);
123 }
124
125 return inherited::TraverseTemplateName(Template);
126 }
127
128 /// Suppress traversal into Objective-C container literal
129 /// elements that are pack expansions.
130 bool TraverseObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
131 if (!E->containsUnexpandedParameterPack())
132 return true;
133
134 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
135 ObjCDictionaryElement Element = E->getKeyValueElement(I);
136 if (Element.isPackExpansion())
137 continue;
138
139 TraverseStmt(Element.Key);
140 TraverseStmt(Element.Value);
141 }
142 return true;
143 }
144 //------------------------------------------------------------------------
145 // Pruning the search for unexpanded parameter packs.
146 //------------------------------------------------------------------------
147
148 /// Suppress traversal into statements and expressions that
149 /// do not contain unexpanded parameter packs.
150 bool TraverseStmt(Stmt *S) {
151 Expr *E = dyn_cast_or_null<Expr>(S);
152 if ((E && E->containsUnexpandedParameterPack()) || InLambda)
153 return inherited::TraverseStmt(S);
154
155 return true;
156 }
157
158 /// Suppress traversal into types that do not contain
159 /// unexpanded parameter packs.
160 bool TraverseType(QualType T) {
161 if ((!T.isNull() && T->containsUnexpandedParameterPack()) || InLambda)
162 return inherited::TraverseType(T);
163
164 return true;
165 }
166
167 /// Suppress traversal into types with location information
168 /// that do not contain unexpanded parameter packs.
169 bool TraverseTypeLoc(TypeLoc TL) {
170 if ((!TL.getType().isNull() &&
171 TL.getType()->containsUnexpandedParameterPack()) ||
172 InLambda)
173 return inherited::TraverseTypeLoc(TL);
174
175 return true;
176 }
177
178 /// Suppress traversal of parameter packs.
179 bool TraverseDecl(Decl *D) {
180 // A function parameter pack is a pack expansion, so cannot contain
181 // an unexpanded parameter pack. Likewise for a template parameter
182 // pack that contains any references to other packs.
183 if (D && D->isParameterPack())
184 return true;
185
186 return inherited::TraverseDecl(D);
187 }
188
189 /// Suppress traversal of pack-expanded attributes.
190 bool TraverseAttr(Attr *A) {
191 if (A->isPackExpansion())
192 return true;
193
194 return inherited::TraverseAttr(A);
195 }
196
197 /// Suppress traversal of pack expansion expressions and types.
198 ///@{
199 bool TraversePackExpansionType(PackExpansionType *T) { return true; }
200 bool TraversePackExpansionTypeLoc(PackExpansionTypeLoc TL) { return true; }
201 bool TraversePackExpansionExpr(PackExpansionExpr *E) { return true; }
202 bool TraverseCXXFoldExpr(CXXFoldExpr *E) { return true; }
203
204 ///@}
205
206 /// Suppress traversal of using-declaration pack expansion.
207 bool TraverseUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
208 if (D->isPackExpansion())
209 return true;
210
211 return inherited::TraverseUnresolvedUsingValueDecl(D);
212 }
213
214 /// Suppress traversal of using-declaration pack expansion.
215 bool TraverseUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
216 if (D->isPackExpansion())
217 return true;
218
219 return inherited::TraverseUnresolvedUsingTypenameDecl(D);
220 }
221
222 /// Suppress traversal of template argument pack expansions.
223 bool TraverseTemplateArgument(const TemplateArgument &Arg) {
224 if (Arg.isPackExpansion())
225 return true;
226
227 return inherited::TraverseTemplateArgument(Arg);
228 }
229
230 /// Suppress traversal of template argument pack expansions.
231 bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
232 if (ArgLoc.getArgument().isPackExpansion())
233 return true;
234
235 return inherited::TraverseTemplateArgumentLoc(ArgLoc);
236 }
237
238 /// Suppress traversal of base specifier pack expansions.
239 bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base) {
240 if (Base.isPackExpansion())
241 return true;
242
243 return inherited::TraverseCXXBaseSpecifier(Base);
244 }
245
246 /// Suppress traversal of mem-initializer pack expansions.
247 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
248 if (Init->isPackExpansion())
249 return true;
250
251 return inherited::TraverseConstructorInitializer(Init);
252 }
253
254 /// Note whether we're traversing a lambda containing an unexpanded
255 /// parameter pack. In this case, the unexpanded pack can occur anywhere,
256 /// including all the places where we normally wouldn't look. Within a
257 /// lambda, we don't propagate the 'contains unexpanded parameter pack' bit
258 /// outside an expression.
259 bool TraverseLambdaExpr(LambdaExpr *Lambda) {
260 // The ContainsUnexpandedParameterPack bit on a lambda is always correct,
261 // even if it's contained within another lambda.
262 if (!Lambda->containsUnexpandedParameterPack())
263 return true;
264
265 bool WasInLambda = InLambda;
266 unsigned OldDepthLimit = DepthLimit;
267
268 InLambda = true;
269 if (auto *TPL = Lambda->getTemplateParameterList())
270 DepthLimit = TPL->getDepth();
271
272 inherited::TraverseLambdaExpr(Lambda);
273
274 InLambda = WasInLambda;
275 DepthLimit = OldDepthLimit;
276 return true;
277 }
278
279 /// Suppress traversal within pack expansions in lambda captures.
280 bool TraverseLambdaCapture(LambdaExpr *Lambda, const LambdaCapture *C,
281 Expr *Init) {
282 if (C->isPackExpansion())
283 return true;
284
285 return inherited::TraverseLambdaCapture(Lambda, C, Init);
286 }
287 };
288}
289
290/// Determine whether it's possible for an unexpanded parameter pack to
291/// be valid in this location. This only happens when we're in a declaration
292/// that is nested within an expression that could be expanded, such as a
293/// lambda-expression within a function call.
294///
295/// This is conservatively correct, but may claim that some unexpanded packs are
296/// permitted when they are not.
297bool Sema::isUnexpandedParameterPackPermitted() {
298 for (auto *SI : FunctionScopes)
299 if (isa<sema::LambdaScopeInfo>(SI))
300 return true;
301 return false;
302}
303
304/// Diagnose all of the unexpanded parameter packs in the given
305/// vector.
306bool
307Sema::DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
308 UnexpandedParameterPackContext UPPC,
309 ArrayRef<UnexpandedParameterPack> Unexpanded) {
310 if (Unexpanded.empty())
311 return false;
312
313 // If we are within a lambda expression and referencing a pack that is not
314 // declared within the lambda itself, that lambda contains an unexpanded
315 // parameter pack, and we are done.
316 // FIXME: Store 'Unexpanded' on the lambda so we don't need to recompute it
317 // later.
318 SmallVector<UnexpandedParameterPack, 4> LambdaParamPackReferences;
319 if (auto *LSI = getEnclosingLambda()) {
320 for (auto &Pack : Unexpanded) {
321 auto DeclaresThisPack = [&](NamedDecl *LocalPack) {
322 if (auto *TTPT = Pack.first.dyn_cast<const TemplateTypeParmType *>()) {
323 auto *TTPD = dyn_cast<TemplateTypeParmDecl>(LocalPack);
324 return TTPD && TTPD->getTypeForDecl() == TTPT;
325 }
326 return declaresSameEntity(Pack.first.get<const NamedDecl *>(),
327 LocalPack);
328 };
329 if (llvm::any_of(LSI->LocalPacks, DeclaresThisPack))
330 LambdaParamPackReferences.push_back(Pack);
331 }
332
333 if (LambdaParamPackReferences.empty()) {
334 // Construct in lambda only references packs declared outside the lambda.
335 // That's OK for now, but the lambda itself is considered to contain an
336 // unexpanded pack in this case, which will require expansion outside the
337 // lambda.
338
339 // We do not permit pack expansion that would duplicate a statement
340 // expression, not even within a lambda.
341 // FIXME: We could probably support this for statement expressions that
342 // do not contain labels.
343 // FIXME: This is insufficient to detect this problem; consider
344 // f( ({ bad: 0; }) + pack ... );
345 bool EnclosingStmtExpr = false;
346 for (unsigned N = FunctionScopes.size(); N; --N) {
347 sema::FunctionScopeInfo *Func = FunctionScopes[N-1];
348 if (llvm::any_of(
349 Func->CompoundScopes,
350 [](sema::CompoundScopeInfo &CSI) { return CSI.IsStmtExpr; })) {
351 EnclosingStmtExpr = true;
352 break;
353 }
354 // Coumpound-statements outside the lambda are OK for now; we'll check
355 // for those when we finish handling the lambda.
356 if (Func == LSI)
357 break;
358 }
359
360 if (!EnclosingStmtExpr) {
361 LSI->ContainsUnexpandedParameterPack = true;
362 return false;
363 }
364 } else {
365 Unexpanded = LambdaParamPackReferences;
366 }
367 }
368
369 SmallVector<SourceLocation, 4> Locations;
370 SmallVector<IdentifierInfo *, 4> Names;
371 llvm::SmallPtrSet<IdentifierInfo *, 4> NamesKnown;
372
373 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
374 IdentifierInfo *Name = nullptr;
375 if (const TemplateTypeParmType *TTP
376 = Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>())
377 Name = TTP->getIdentifier();
378 else
379 Name = Unexpanded[I].first.get<const NamedDecl *>()->getIdentifier();
380
381 if (Name && NamesKnown.insert(Name).second)
382 Names.push_back(Name);
383
384 if (Unexpanded[I].second.isValid())
385 Locations.push_back(Unexpanded[I].second);
386 }
387
388 auto DB = Diag(Loc, diag::err_unexpanded_parameter_pack)
389 << (int)UPPC << (int)Names.size();
390 for (size_t I = 0, E = std::min(Names.size(), (size_t)2); I != E; ++I)
391 DB << Names[I];
392
393 for (unsigned I = 0, N = Locations.size(); I != N; ++I)
394 DB << SourceRange(Locations[I]);
395 return true;
396}
397
398bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
399 TypeSourceInfo *T,
400 UnexpandedParameterPackContext UPPC) {
401 // C++0x [temp.variadic]p5:
402 // An appearance of a name of a parameter pack that is not expanded is
403 // ill-formed.
404 if (!T->getType()->containsUnexpandedParameterPack())
405 return false;
406
407 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
408 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(
409 T->getTypeLoc());
410 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 410, __extension__
__PRETTY_FUNCTION__))
;
411 return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
412}
413
414bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
415 UnexpandedParameterPackContext UPPC) {
416 // C++0x [temp.variadic]p5:
417 // An appearance of a name of a parameter pack that is not expanded is
418 // ill-formed.
419 if (!E->containsUnexpandedParameterPack())
420 return false;
421
422 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
423 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(E);
424 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 424, __extension__
__PRETTY_FUNCTION__))
;
425 return DiagnoseUnexpandedParameterPacks(E->getBeginLoc(), UPPC, Unexpanded);
426}
427
428bool Sema::DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE) {
429 if (!RE->containsUnexpandedParameterPack())
430 return false;
431
432 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
433 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(RE);
434 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 434, __extension__
__PRETTY_FUNCTION__))
;
435
436 // We only care about unexpanded references to the RequiresExpr's own
437 // parameter packs.
438 auto Parms = RE->getLocalParameters();
439 llvm::SmallPtrSet<NamedDecl*, 8> ParmSet(Parms.begin(), Parms.end());
440 SmallVector<UnexpandedParameterPack, 2> UnexpandedParms;
441 for (auto Parm : Unexpanded)
442 if (ParmSet.contains(Parm.first.dyn_cast<const NamedDecl *>()))
443 UnexpandedParms.push_back(Parm);
444 if (UnexpandedParms.empty())
445 return false;
446
447 return DiagnoseUnexpandedParameterPacks(RE->getBeginLoc(), UPPC_Requirement,
448 UnexpandedParms);
449}
450
451bool Sema::DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
452 UnexpandedParameterPackContext UPPC) {
453 // C++0x [temp.variadic]p5:
454 // An appearance of a name of a parameter pack that is not expanded is
455 // ill-formed.
456 if (!SS.getScopeRep() ||
457 !SS.getScopeRep()->containsUnexpandedParameterPack())
458 return false;
459
460 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
461 CollectUnexpandedParameterPacksVisitor(Unexpanded)
462 .TraverseNestedNameSpecifier(SS.getScopeRep());
463 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 463, __extension__
__PRETTY_FUNCTION__))
;
464 return DiagnoseUnexpandedParameterPacks(SS.getRange().getBegin(),
465 UPPC, Unexpanded);
466}
467
468bool Sema::DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
469 UnexpandedParameterPackContext UPPC) {
470 // C++0x [temp.variadic]p5:
471 // An appearance of a name of a parameter pack that is not expanded is
472 // ill-formed.
473 switch (NameInfo.getName().getNameKind()) {
474 case DeclarationName::Identifier:
475 case DeclarationName::ObjCZeroArgSelector:
476 case DeclarationName::ObjCOneArgSelector:
477 case DeclarationName::ObjCMultiArgSelector:
478 case DeclarationName::CXXOperatorName:
479 case DeclarationName::CXXLiteralOperatorName:
480 case DeclarationName::CXXUsingDirective:
481 case DeclarationName::CXXDeductionGuideName:
482 return false;
483
484 case DeclarationName::CXXConstructorName:
485 case DeclarationName::CXXDestructorName:
486 case DeclarationName::CXXConversionFunctionName:
487 // FIXME: We shouldn't need this null check!
488 if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
489 return DiagnoseUnexpandedParameterPack(NameInfo.getLoc(), TSInfo, UPPC);
490
491 if (!NameInfo.getName().getCXXNameType()->containsUnexpandedParameterPack())
492 return false;
493
494 break;
495 }
496
497 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
498 CollectUnexpandedParameterPacksVisitor(Unexpanded)
499 .TraverseType(NameInfo.getName().getCXXNameType());
500 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 500, __extension__
__PRETTY_FUNCTION__))
;
501 return DiagnoseUnexpandedParameterPacks(NameInfo.getLoc(), UPPC, Unexpanded);
502}
503
504bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
505 TemplateName Template,
506 UnexpandedParameterPackContext UPPC) {
507
508 if (Template.isNull() || !Template.containsUnexpandedParameterPack())
509 return false;
510
511 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
512 CollectUnexpandedParameterPacksVisitor(Unexpanded)
513 .TraverseTemplateName(Template);
514 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 514, __extension__
__PRETTY_FUNCTION__))
;
515 return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
516}
517
518bool Sema::DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
519 UnexpandedParameterPackContext UPPC) {
520 if (Arg.getArgument().isNull() ||
521 !Arg.getArgument().containsUnexpandedParameterPack())
522 return false;
523
524 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
525 CollectUnexpandedParameterPacksVisitor(Unexpanded)
526 .TraverseTemplateArgumentLoc(Arg);
527 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 527, __extension__
__PRETTY_FUNCTION__))
;
528 return DiagnoseUnexpandedParameterPacks(Arg.getLocation(), UPPC, Unexpanded);
529}
530
531void Sema::collectUnexpandedParameterPacks(TemplateArgument Arg,
532 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
533 CollectUnexpandedParameterPacksVisitor(Unexpanded)
534 .TraverseTemplateArgument(Arg);
535}
536
537void Sema::collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
538 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
539 CollectUnexpandedParameterPacksVisitor(Unexpanded)
540 .TraverseTemplateArgumentLoc(Arg);
541}
542
543void Sema::collectUnexpandedParameterPacks(QualType T,
544 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
545 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(T);
546}
547
548void Sema::collectUnexpandedParameterPacks(TypeLoc TL,
549 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
550 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(TL);
551}
552
553void Sema::collectUnexpandedParameterPacks(
554 NestedNameSpecifierLoc NNS,
555 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
556 CollectUnexpandedParameterPacksVisitor(Unexpanded)
557 .TraverseNestedNameSpecifierLoc(NNS);
558}
559
560void Sema::collectUnexpandedParameterPacks(
561 const DeclarationNameInfo &NameInfo,
562 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
563 CollectUnexpandedParameterPacksVisitor(Unexpanded)
564 .TraverseDeclarationNameInfo(NameInfo);
565}
566
567
568ParsedTemplateArgument
569Sema::ActOnPackExpansion(const ParsedTemplateArgument &Arg,
570 SourceLocation EllipsisLoc) {
571 if (Arg.isInvalid())
572 return Arg;
573
574 switch (Arg.getKind()) {
575 case ParsedTemplateArgument::Type: {
576 TypeResult Result = ActOnPackExpansion(Arg.getAsType(), EllipsisLoc);
577 if (Result.isInvalid())
578 return ParsedTemplateArgument();
579
580 return ParsedTemplateArgument(Arg.getKind(), Result.get().getAsOpaquePtr(),
581 Arg.getLocation());
582 }
583
584 case ParsedTemplateArgument::NonType: {
585 ExprResult Result = ActOnPackExpansion(Arg.getAsExpr(), EllipsisLoc);
586 if (Result.isInvalid())
587 return ParsedTemplateArgument();
588
589 return ParsedTemplateArgument(Arg.getKind(), Result.get(),
590 Arg.getLocation());
591 }
592
593 case ParsedTemplateArgument::Template:
594 if (!Arg.getAsTemplate().get().containsUnexpandedParameterPack()) {
595 SourceRange R(Arg.getLocation());
596 if (Arg.getScopeSpec().isValid())
597 R.setBegin(Arg.getScopeSpec().getBeginLoc());
598 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
599 << R;
600 return ParsedTemplateArgument();
601 }
602
603 return Arg.getTemplatePackExpansion(EllipsisLoc);
604 }
605 llvm_unreachable("Unhandled template argument kind?")::llvm::llvm_unreachable_internal("Unhandled template argument kind?"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 605)
;
606}
607
608TypeResult Sema::ActOnPackExpansion(ParsedType Type,
609 SourceLocation EllipsisLoc) {
610 TypeSourceInfo *TSInfo;
611 GetTypeFromParser(Type, &TSInfo);
612 if (!TSInfo)
613 return true;
614
615 TypeSourceInfo *TSResult =
616 CheckPackExpansion(TSInfo, EllipsisLoc, std::nullopt);
617 if (!TSResult)
618 return true;
619
620 return CreateParsedType(TSResult->getType(), TSResult);
621}
622
623TypeSourceInfo *
624Sema::CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc,
625 Optional<unsigned> NumExpansions) {
626 // Create the pack expansion type and source-location information.
627 QualType Result = CheckPackExpansion(Pattern->getType(),
628 Pattern->getTypeLoc().getSourceRange(),
629 EllipsisLoc, NumExpansions);
630 if (Result.isNull())
631 return nullptr;
632
633 TypeLocBuilder TLB;
634 TLB.pushFullCopy(Pattern->getTypeLoc());
635 PackExpansionTypeLoc TL = TLB.push<PackExpansionTypeLoc>(Result);
636 TL.setEllipsisLoc(EllipsisLoc);
637
638 return TLB.getTypeSourceInfo(Context, Result);
639}
640
641QualType Sema::CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
642 SourceLocation EllipsisLoc,
643 Optional<unsigned> NumExpansions) {
644 // C++11 [temp.variadic]p5:
645 // The pattern of a pack expansion shall name one or more
646 // parameter packs that are not expanded by a nested pack
647 // expansion.
648 //
649 // A pattern containing a deduced type can't occur "naturally" but arises in
650 // the desugaring of an init-capture pack.
651 if (!Pattern->containsUnexpandedParameterPack() &&
652 !Pattern->getContainedDeducedType()) {
653 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
654 << PatternRange;
655 return QualType();
656 }
657
658 return Context.getPackExpansionType(Pattern, NumExpansions,
659 /*ExpectPackInType=*/false);
660}
661
662ExprResult Sema::ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc) {
663 return CheckPackExpansion(Pattern, EllipsisLoc, std::nullopt);
664}
665
666ExprResult Sema::CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
667 Optional<unsigned> NumExpansions) {
668 if (!Pattern)
669 return ExprError();
670
671 // C++0x [temp.variadic]p5:
672 // The pattern of a pack expansion shall name one or more
673 // parameter packs that are not expanded by a nested pack
674 // expansion.
675 if (!Pattern->containsUnexpandedParameterPack()) {
676 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
677 << Pattern->getSourceRange();
678 CorrectDelayedTyposInExpr(Pattern);
679 return ExprError();
680 }
681
682 // Create the pack expansion expression and source-location information.
683 return new (Context)
684 PackExpansionExpr(Context.DependentTy, Pattern, EllipsisLoc, NumExpansions);
685}
686
687bool Sema::CheckParameterPacksForExpansion(
688 SourceLocation EllipsisLoc, SourceRange PatternRange,
689 ArrayRef<UnexpandedParameterPack> Unexpanded,
690 const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
691 bool &RetainExpansion, Optional<unsigned> &NumExpansions) {
692 ShouldExpand = true;
693 RetainExpansion = false;
694 std::pair<const IdentifierInfo *, SourceLocation> FirstPack;
695 Optional<std::pair<unsigned, SourceLocation>> PartialExpansion;
696 Optional<unsigned> CurNumExpansions;
697
698 for (auto [P, Loc] : Unexpanded) {
1
Assuming '__begin1' is not equal to '__end1'
699 // Compute the depth and index for this parameter pack.
700 Optional<std::pair<unsigned, unsigned>> Pos;
701 unsigned NewPackSize;
702 const auto *ND = P.dyn_cast<const NamedDecl *>();
2
Calling 'PointerUnion::dyn_cast'
15
Returning from 'PointerUnion::dyn_cast'
52
Calling 'PointerUnion::dyn_cast'
73
Returning from 'PointerUnion::dyn_cast'
703 if (ND
15.1
'ND' is null
15.1
'ND' is null
15.1
'ND' is null
15.1
'ND' is null
&& isa<VarDecl>(ND)) {
74
Assuming 'ND' is non-null
75
Assuming 'ND' is a 'class clang::VarDecl &'
76
Taking true branch
704 const auto *DAP =
705 CurrentInstantiationScope->findInstantiationOf(ND)
77
Called C++ object pointer is null
706 ->dyn_cast<LocalInstantiationScope::DeclArgumentPack *>();
707 if (!DAP) {
708 // We can't expand this function parameter pack, so we can't expand
709 // the pack expansion.
710 ShouldExpand = false;
711 continue;
712 }
713 NewPackSize = DAP->size();
714 } else if (ND
15.2
'ND' is null
15.2
'ND' is null
15.2
'ND' is null
15.2
'ND' is null
) {
16
Taking false branch
715 Pos = getDepthAndIndex(ND);
716 } else if (const auto *TTP = P.dyn_cast<const TemplateTypeParmType *>()) {
17
Calling 'PointerUnion::dyn_cast'
38
Returning from 'PointerUnion::dyn_cast'
39
Assuming 'TTP' is non-null
40
Taking true branch
717 Pos = {TTP->getDepth(), TTP->getIndex()};
718 ND = TTP->getDecl();
41
Calling 'TemplateTypeParmType::getDecl'
44
Returning from 'TemplateTypeParmType::getDecl'
719 // FIXME: We either should have some fallback for canonical TTP, or
720 // never have canonical TTP here.
721 } else if (const auto *STP =
722 P.dyn_cast<const SubstTemplateTypeParmPackType *>()) {
723 NewPackSize = STP->getNumArgs();
724 ND = STP->getReplacedParameter();
725 } else {
726 const auto *SEP = P.get<const SubstNonTypeTemplateParmPackExpr *>();
727 NewPackSize = SEP->getArgumentPack().pack_size();
728 ND = SEP->getParameterPack();
729 }
730
731 if (Pos) {
732 // If we don't have a template argument at this depth/index, then we
733 // cannot expand the pack expansion. Make a note of this, but we still
734 // want to check any parameter packs we *do* have arguments for.
735 if (Pos->first >= TemplateArgs.getNumLevels() ||
45
Assuming the condition is false
47
Taking false branch
736 !TemplateArgs.hasTemplateArgument(Pos->first, Pos->second)) {
46
Assuming the condition is false
737 ShouldExpand = false;
738 continue;
739 }
740 // Determine the size of the argument pack.
741 NewPackSize = TemplateArgs(Pos->first, Pos->second).pack_size();
742 // C++0x [temp.arg.explicit]p9:
743 // Template argument deduction can extend the sequence of template
744 // arguments corresponding to a template parameter pack, even when the
745 // sequence contains explicitly specified template arguments.
746 if (CurrentInstantiationScope)
48
Assuming field 'CurrentInstantiationScope' is null
747 if (const NamedDecl *PartialPack =
748 CurrentInstantiationScope->getPartiallySubstitutedPack();
749 PartialPack && getDepthAndIndex(PartialPack) == *Pos) {
750 RetainExpansion = true;
751 // We don't actually know the new pack size yet.
752 PartialExpansion = {NewPackSize, Loc};
753 continue;
754 }
755 }
756
757 // FIXME: Workaround for Canonical TTP.
758 const IdentifierInfo *Name = ND
49.1
'ND' is null
49.1
'ND' is null
49.1
'ND' is null
49.1
'ND' is null
? ND->getIdentifier() : nullptr;
49
Taking false branch
50
'?' condition is false
759 if (!CurNumExpansions) {
51
Taking true branch
760 // The is the first pack we've seen for which we have an argument.
761 // Record it.
762 CurNumExpansions = NewPackSize;
763 FirstPack = {Name, Loc};
764 } else if (NewPackSize != *CurNumExpansions) {
765 // C++0x [temp.variadic]p5:
766 // All of the parameter packs expanded by a pack expansion shall have
767 // the same number of arguments specified.
768 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict)
769 << FirstPack.first << Name << *CurNumExpansions << NewPackSize
770 << SourceRange(FirstPack.second) << SourceRange(Loc);
771 return true;
772 }
773 }
774
775 if (NumExpansions && CurNumExpansions &&
776 *NumExpansions != *CurNumExpansions) {
777 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_multilevel)
778 << FirstPack.first << *CurNumExpansions << *NumExpansions
779 << SourceRange(FirstPack.second);
780 return true;
781 }
782
783 // If we're performing a partial expansion but we also have a full expansion,
784 // expand to the number of common arguments. For example, given:
785 //
786 // template<typename ...T> struct A {
787 // template<typename ...U> void f(pair<T, U>...);
788 // };
789 //
790 // ... a call to 'A<int, int>().f<int>' should expand the pack once and
791 // retain an expansion.
792 if (PartialExpansion) {
793 if (CurNumExpansions && *CurNumExpansions < PartialExpansion->first) {
794 NamedDecl *PartialPack =
795 CurrentInstantiationScope->getPartiallySubstitutedPack();
796 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_partial)
797 << PartialPack << PartialExpansion->first << *CurNumExpansions
798 << SourceRange(PartialExpansion->second);
799 return true;
800 }
801 NumExpansions = PartialExpansion->first;
802 } else {
803 NumExpansions = CurNumExpansions;
804 }
805
806 return false;
807}
808
809Optional<unsigned> Sema::getNumArgumentsInExpansion(QualType T,
810 const MultiLevelTemplateArgumentList &TemplateArgs) {
811 QualType Pattern = cast<PackExpansionType>(T)->getPattern();
812 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
813 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(Pattern);
814
815 Optional<unsigned> Result;
816 auto setResultSz = [&Result](unsigned Size) {
817 assert((!Result || *Result == Size) && "inconsistent pack sizes")(static_cast <bool> ((!Result || *Result == Size) &&
"inconsistent pack sizes") ? void (0) : __assert_fail ("(!Result || *Result == Size) && \"inconsistent pack sizes\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 817, __extension__
__PRETTY_FUNCTION__))
;
818 Result = Size;
819 };
820 auto setResultPos = [&](const std::pair<unsigned, unsigned> &Pos) -> bool {
821 unsigned Depth = Pos.first, Index = Pos.second;
822 if (Depth >= TemplateArgs.getNumLevels() ||
823 !TemplateArgs.hasTemplateArgument(Depth, Index))
824 // The pattern refers to an unknown template argument. We're not ready to
825 // expand this pack yet.
826 return true;
827 // Determine the size of the argument pack.
828 setResultSz(TemplateArgs(Depth, Index).pack_size());
829 return false;
830 };
831
832 for (auto [I, _] : Unexpanded) {
833 if (const auto *TTP = I.dyn_cast<const TemplateTypeParmType *>()) {
834 if (setResultPos({TTP->getDepth(), TTP->getIndex()}))
835 return std::nullopt;
836 } else if (const auto *STP =
837 I.dyn_cast<const SubstTemplateTypeParmPackType *>()) {
838 setResultSz(STP->getNumArgs());
839 } else if (const auto *SEP =
840 I.dyn_cast<const SubstNonTypeTemplateParmPackExpr *>()) {
841 setResultSz(SEP->getArgumentPack().pack_size());
842 } else {
843 const auto *ND = I.get<const NamedDecl *>();
844 // Function parameter pack or init-capture pack.
845 if (isa<VarDecl>(ND)) {
846 const auto *DAP =
847 CurrentInstantiationScope->findInstantiationOf(ND)
848 ->dyn_cast<LocalInstantiationScope::DeclArgumentPack *>();
849 if (!DAP)
850 // The pattern refers to an unexpanded pack. We're not ready to expand
851 // this pack yet.
852 return std::nullopt;
853 setResultSz(DAP->size());
854 } else if (setResultPos(getDepthAndIndex(ND))) {
855 return std::nullopt;
856 }
857 }
858 }
859
860 return Result;
861}
862
863bool Sema::containsUnexpandedParameterPacks(Declarator &D) {
864 const DeclSpec &DS = D.getDeclSpec();
865 switch (DS.getTypeSpecType()) {
866 case TST_typename:
867 case TST_typeof_unqualType:
868 case TST_typeofType:
869#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case TST_##Trait:
870#include "clang/Basic/TransformTypeTraits.def"
871 case TST_atomic: {
872 QualType T = DS.getRepAsType().get();
873 if (!T.isNull() && T->containsUnexpandedParameterPack())
874 return true;
875 break;
876 }
877
878 case TST_typeof_unqualExpr:
879 case TST_typeofExpr:
880 case TST_decltype:
881 case TST_bitint:
882 if (DS.getRepAsExpr() &&
883 DS.getRepAsExpr()->containsUnexpandedParameterPack())
884 return true;
885 break;
886
887 case TST_unspecified:
888 case TST_void:
889 case TST_char:
890 case TST_wchar:
891 case TST_char8:
892 case TST_char16:
893 case TST_char32:
894 case TST_int:
895 case TST_int128:
896 case TST_half:
897 case TST_float:
898 case TST_double:
899 case TST_Accum:
900 case TST_Fract:
901 case TST_Float16:
902 case TST_float128:
903 case TST_ibm128:
904 case TST_bool:
905 case TST_decimal32:
906 case TST_decimal64:
907 case TST_decimal128:
908 case TST_enum:
909 case TST_union:
910 case TST_struct:
911 case TST_interface:
912 case TST_class:
913 case TST_auto:
914 case TST_auto_type:
915 case TST_decltype_auto:
916 case TST_BFloat16:
917#define GENERIC_IMAGE_TYPE(ImgType, Id) case TST_##ImgType##_t:
918#include "clang/Basic/OpenCLImageTypes.def"
919 case TST_unknown_anytype:
920 case TST_error:
921 break;
922 }
923
924 for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
925 const DeclaratorChunk &Chunk = D.getTypeObject(I);
926 switch (Chunk.Kind) {
927 case DeclaratorChunk::Pointer:
928 case DeclaratorChunk::Reference:
929 case DeclaratorChunk::Paren:
930 case DeclaratorChunk::Pipe:
931 case DeclaratorChunk::BlockPointer:
932 // These declarator chunks cannot contain any parameter packs.
933 break;
934
935 case DeclaratorChunk::Array:
936 if (Chunk.Arr.NumElts &&
937 Chunk.Arr.NumElts->containsUnexpandedParameterPack())
938 return true;
939 break;
940 case DeclaratorChunk::Function:
941 for (unsigned i = 0, e = Chunk.Fun.NumParams; i != e; ++i) {
942 ParmVarDecl *Param = cast<ParmVarDecl>(Chunk.Fun.Params[i].Param);
943 QualType ParamTy = Param->getType();
944 assert(!ParamTy.isNull() && "Couldn't parse type?")(static_cast <bool> (!ParamTy.isNull() && "Couldn't parse type?"
) ? void (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 944, __extension__
__PRETTY_FUNCTION__))
;
945 if (ParamTy->containsUnexpandedParameterPack()) return true;
946 }
947
948 if (Chunk.Fun.getExceptionSpecType() == EST_Dynamic) {
949 for (unsigned i = 0; i != Chunk.Fun.getNumExceptions(); ++i) {
950 if (Chunk.Fun.Exceptions[i]
951 .Ty.get()
952 ->containsUnexpandedParameterPack())
953 return true;
954 }
955 } else if (isComputedNoexcept(Chunk.Fun.getExceptionSpecType()) &&
956 Chunk.Fun.NoexceptExpr->containsUnexpandedParameterPack())
957 return true;
958
959 if (Chunk.Fun.hasTrailingReturnType()) {
960 QualType T = Chunk.Fun.getTrailingReturnType().get();
961 if (!T.isNull() && T->containsUnexpandedParameterPack())
962 return true;
963 }
964 break;
965
966 case DeclaratorChunk::MemberPointer:
967 if (Chunk.Mem.Scope().getScopeRep() &&
968 Chunk.Mem.Scope().getScopeRep()->containsUnexpandedParameterPack())
969 return true;
970 break;
971 }
972 }
973
974 if (Expr *TRC = D.getTrailingRequiresClause())
975 if (TRC->containsUnexpandedParameterPack())
976 return true;
977
978 return false;
979}
980
981namespace {
982
983// Callback to only accept typo corrections that refer to parameter packs.
984class ParameterPackValidatorCCC final : public CorrectionCandidateCallback {
985 public:
986 bool ValidateCandidate(const TypoCorrection &candidate) override {
987 NamedDecl *ND = candidate.getCorrectionDecl();
988 return ND && ND->isParameterPack();
989 }
990
991 std::unique_ptr<CorrectionCandidateCallback> clone() override {
992 return std::make_unique<ParameterPackValidatorCCC>(*this);
993 }
994};
995
996}
997
998/// Called when an expression computing the size of a parameter pack
999/// is parsed.
1000///
1001/// \code
1002/// template<typename ...Types> struct count {
1003/// static const unsigned value = sizeof...(Types);
1004/// };
1005/// \endcode
1006///
1007//
1008/// \param OpLoc The location of the "sizeof" keyword.
1009/// \param Name The name of the parameter pack whose size will be determined.
1010/// \param NameLoc The source location of the name of the parameter pack.
1011/// \param RParenLoc The location of the closing parentheses.
1012ExprResult Sema::ActOnSizeofParameterPackExpr(Scope *S,
1013 SourceLocation OpLoc,
1014 IdentifierInfo &Name,
1015 SourceLocation NameLoc,
1016 SourceLocation RParenLoc) {
1017 // C++0x [expr.sizeof]p5:
1018 // The identifier in a sizeof... expression shall name a parameter pack.
1019 LookupResult R(*this, &Name, NameLoc, LookupOrdinaryName);
1020 LookupName(R, S);
1021
1022 NamedDecl *ParameterPack = nullptr;
1023 switch (R.getResultKind()) {
1024 case LookupResult::Found:
1025 ParameterPack = R.getFoundDecl();
1026 break;
1027
1028 case LookupResult::NotFound:
1029 case LookupResult::NotFoundInCurrentInstantiation: {
1030 ParameterPackValidatorCCC CCC{};
1031 if (TypoCorrection Corrected =
1032 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
1033 CCC, CTK_ErrorRecovery)) {
1034 diagnoseTypo(Corrected,
1035 PDiag(diag::err_sizeof_pack_no_pack_name_suggest) << &Name,
1036 PDiag(diag::note_parameter_pack_here));
1037 ParameterPack = Corrected.getCorrectionDecl();
1038 }
1039 break;
1040 }
1041 case LookupResult::FoundOverloaded:
1042 case LookupResult::FoundUnresolvedValue:
1043 break;
1044
1045 case LookupResult::Ambiguous:
1046 DiagnoseAmbiguousLookup(R);
1047 return ExprError();
1048 }
1049
1050 if (!ParameterPack || !ParameterPack->isParameterPack()) {
1051 Diag(NameLoc, diag::err_sizeof_pack_no_pack_name)
1052 << &Name;
1053 return ExprError();
1054 }
1055
1056 MarkAnyDeclReferenced(OpLoc, ParameterPack, true);
1057
1058 return SizeOfPackExpr::Create(Context, OpLoc, ParameterPack, NameLoc,
1059 RParenLoc);
1060}
1061
1062TemplateArgumentLoc
1063Sema::getTemplateArgumentPackExpansionPattern(
1064 TemplateArgumentLoc OrigLoc,
1065 SourceLocation &Ellipsis, Optional<unsigned> &NumExpansions) const {
1066 const TemplateArgument &Argument = OrigLoc.getArgument();
1067 assert(Argument.isPackExpansion())(static_cast <bool> (Argument.isPackExpansion()) ? void
(0) : __assert_fail ("Argument.isPackExpansion()", "clang/lib/Sema/SemaTemplateVariadic.cpp"
, 1067, __extension__ __PRETTY_FUNCTION__))
;
1068 switch (Argument.getKind()) {
1069 case TemplateArgument::Type: {
1070 // FIXME: We shouldn't ever have to worry about missing
1071 // type-source info!
1072 TypeSourceInfo *ExpansionTSInfo = OrigLoc.getTypeSourceInfo();
1073 if (!ExpansionTSInfo)
1074 ExpansionTSInfo = Context.getTrivialTypeSourceInfo(Argument.getAsType(),
1075 Ellipsis);
1076 PackExpansionTypeLoc Expansion =
1077 ExpansionTSInfo->getTypeLoc().castAs<PackExpansionTypeLoc>();
1078 Ellipsis = Expansion.getEllipsisLoc();
1079
1080 TypeLoc Pattern = Expansion.getPatternLoc();
1081 NumExpansions = Expansion.getTypePtr()->getNumExpansions();
1082
1083 // We need to copy the TypeLoc because TemplateArgumentLocs store a
1084 // TypeSourceInfo.
1085 // FIXME: Find some way to avoid the copy?
1086 TypeLocBuilder TLB;
1087 TLB.pushFullCopy(Pattern);
1088 TypeSourceInfo *PatternTSInfo =
1089 TLB.getTypeSourceInfo(Context, Pattern.getType());
1090 return TemplateArgumentLoc(TemplateArgument(Pattern.getType()),
1091 PatternTSInfo);
1092 }
1093
1094 case TemplateArgument::Expression: {
1095 PackExpansionExpr *Expansion
1096 = cast<PackExpansionExpr>(Argument.getAsExpr());
1097 Expr *Pattern = Expansion->getPattern();
1098 Ellipsis = Expansion->getEllipsisLoc();
1099 NumExpansions = Expansion->getNumExpansions();
1100 return TemplateArgumentLoc(Pattern, Pattern);
1101 }
1102
1103 case TemplateArgument::TemplateExpansion:
1104 Ellipsis = OrigLoc.getTemplateEllipsisLoc();
1105 NumExpansions = Argument.getNumTemplateExpansions();
1106 return TemplateArgumentLoc(Context, Argument.getPackExpansionPattern(),
1107 OrigLoc.getTemplateQualifierLoc(),
1108 OrigLoc.getTemplateNameLoc());
1109
1110 case TemplateArgument::Declaration:
1111 case TemplateArgument::NullPtr:
1112 case TemplateArgument::Template:
1113 case TemplateArgument::Integral:
1114 case TemplateArgument::Pack:
1115 case TemplateArgument::Null:
1116 return TemplateArgumentLoc();
1117 }
1118
1119 llvm_unreachable("Invalid TemplateArgument Kind!")::llvm::llvm_unreachable_internal("Invalid TemplateArgument Kind!"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1119)
;
1120}
1121
1122Optional<unsigned> Sema::getFullyPackExpandedSize(TemplateArgument Arg) {
1123 assert(Arg.containsUnexpandedParameterPack())(static_cast <bool> (Arg.containsUnexpandedParameterPack
()) ? void (0) : __assert_fail ("Arg.containsUnexpandedParameterPack()"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1123, __extension__
__PRETTY_FUNCTION__))
;
1124
1125 // If this is a substituted pack, grab that pack. If not, we don't know
1126 // the size yet.
1127 // FIXME: We could find a size in more cases by looking for a substituted
1128 // pack anywhere within this argument, but that's not necessary in the common
1129 // case for 'sizeof...(A)' handling.
1130 TemplateArgument Pack;
1131 switch (Arg.getKind()) {
1132 case TemplateArgument::Type:
1133 if (auto *Subst = Arg.getAsType()->getAs<SubstTemplateTypeParmPackType>())
1134 Pack = Subst->getArgumentPack();
1135 else
1136 return std::nullopt;
1137 break;
1138
1139 case TemplateArgument::Expression:
1140 if (auto *Subst =
1141 dyn_cast<SubstNonTypeTemplateParmPackExpr>(Arg.getAsExpr()))
1142 Pack = Subst->getArgumentPack();
1143 else if (auto *Subst = dyn_cast<FunctionParmPackExpr>(Arg.getAsExpr())) {
1144 for (VarDecl *PD : *Subst)
1145 if (PD->isParameterPack())
1146 return std::nullopt;
1147 return Subst->getNumExpansions();
1148 } else
1149 return std::nullopt;
1150 break;
1151
1152 case TemplateArgument::Template:
1153 if (SubstTemplateTemplateParmPackStorage *Subst =
1154 Arg.getAsTemplate().getAsSubstTemplateTemplateParmPack())
1155 Pack = Subst->getArgumentPack();
1156 else
1157 return std::nullopt;
1158 break;
1159
1160 case TemplateArgument::Declaration:
1161 case TemplateArgument::NullPtr:
1162 case TemplateArgument::TemplateExpansion:
1163 case TemplateArgument::Integral:
1164 case TemplateArgument::Pack:
1165 case TemplateArgument::Null:
1166 return std::nullopt;
1167 }
1168
1169 // Check that no argument in the pack is itself a pack expansion.
1170 for (TemplateArgument Elem : Pack.pack_elements()) {
1171 // There's no point recursing in this case; we would have already
1172 // expanded this pack expansion into the enclosing pack if we could.
1173 if (Elem.isPackExpansion())
1174 return std::nullopt;
1175 }
1176 return Pack.pack_size();
1177}
1178
1179static void CheckFoldOperand(Sema &S, Expr *E) {
1180 if (!E)
1181 return;
1182
1183 E = E->IgnoreImpCasts();
1184 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
1185 if ((OCE && OCE->isInfixBinaryOp()) || isa<BinaryOperator>(E) ||
1186 isa<AbstractConditionalOperator>(E)) {
1187 S.Diag(E->getExprLoc(), diag::err_fold_expression_bad_operand)
1188 << E->getSourceRange()
1189 << FixItHint::CreateInsertion(E->getBeginLoc(), "(")
1190 << FixItHint::CreateInsertion(E->getEndLoc(), ")");
1191 }
1192}
1193
1194ExprResult Sema::ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
1195 tok::TokenKind Operator,
1196 SourceLocation EllipsisLoc, Expr *RHS,
1197 SourceLocation RParenLoc) {
1198 // LHS and RHS must be cast-expressions. We allow an arbitrary expression
1199 // in the parser and reduce down to just cast-expressions here.
1200 CheckFoldOperand(*this, LHS);
1201 CheckFoldOperand(*this, RHS);
1202
1203 auto DiscardOperands = [&] {
1204 CorrectDelayedTyposInExpr(LHS);
1205 CorrectDelayedTyposInExpr(RHS);
1206 };
1207
1208 // [expr.prim.fold]p3:
1209 // In a binary fold, op1 and op2 shall be the same fold-operator, and
1210 // either e1 shall contain an unexpanded parameter pack or e2 shall contain
1211 // an unexpanded parameter pack, but not both.
1212 if (LHS && RHS &&
1213 LHS->containsUnexpandedParameterPack() ==
1214 RHS->containsUnexpandedParameterPack()) {
1215 DiscardOperands();
1216 return Diag(EllipsisLoc,
1217 LHS->containsUnexpandedParameterPack()
1218 ? diag::err_fold_expression_packs_both_sides
1219 : diag::err_pack_expansion_without_parameter_packs)
1220 << LHS->getSourceRange() << RHS->getSourceRange();
1221 }
1222
1223 // [expr.prim.fold]p2:
1224 // In a unary fold, the cast-expression shall contain an unexpanded
1225 // parameter pack.
1226 if (!LHS || !RHS) {
1227 Expr *Pack = LHS ? LHS : RHS;
1228 assert(Pack && "fold expression with neither LHS nor RHS")(static_cast <bool> (Pack && "fold expression with neither LHS nor RHS"
) ? void (0) : __assert_fail ("Pack && \"fold expression with neither LHS nor RHS\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1228, __extension__
__PRETTY_FUNCTION__))
;
1229 DiscardOperands();
1230 if (!Pack->containsUnexpandedParameterPack())
1231 return Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1232 << Pack->getSourceRange();
1233 }
1234
1235 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Operator);
1236
1237 // Perform first-phase name lookup now.
1238 UnresolvedLookupExpr *ULE = nullptr;
1239 {
1240 UnresolvedSet<16> Functions;
1241 LookupBinOp(S, EllipsisLoc, Opc, Functions);
1242 if (!Functions.empty()) {
1243 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(
1244 BinaryOperator::getOverloadedOperator(Opc));
1245 ExprResult Callee = CreateUnresolvedLookupExpr(
1246 /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
1247 DeclarationNameInfo(OpName, EllipsisLoc), Functions);
1248 if (Callee.isInvalid())
1249 return ExprError();
1250 ULE = cast<UnresolvedLookupExpr>(Callee.get());
1251 }
1252 }
1253
1254 return BuildCXXFoldExpr(ULE, LParenLoc, LHS, Opc, EllipsisLoc, RHS, RParenLoc,
1255 std::nullopt);
1256}
1257
1258ExprResult Sema::BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
1259 SourceLocation LParenLoc, Expr *LHS,
1260 BinaryOperatorKind Operator,
1261 SourceLocation EllipsisLoc, Expr *RHS,
1262 SourceLocation RParenLoc,
1263 Optional<unsigned> NumExpansions) {
1264 return new (Context)
1265 CXXFoldExpr(Context.DependentTy, Callee, LParenLoc, LHS, Operator,
1266 EllipsisLoc, RHS, RParenLoc, NumExpansions);
1267}
1268
1269ExprResult Sema::BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
1270 BinaryOperatorKind Operator) {
1271 // [temp.variadic]p9:
1272 // If N is zero for a unary fold-expression, the value of the expression is
1273 // && -> true
1274 // || -> false
1275 // , -> void()
1276 // if the operator is not listed [above], the instantiation is ill-formed.
1277 //
1278 // Note that we need to use something like int() here, not merely 0, to
1279 // prevent the result from being a null pointer constant.
1280 QualType ScalarType;
1281 switch (Operator) {
1282 case BO_LOr:
1283 return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_false);
1284 case BO_LAnd:
1285 return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_true);
1286 case BO_Comma:
1287 ScalarType = Context.VoidTy;
1288 break;
1289
1290 default:
1291 return Diag(EllipsisLoc, diag::err_fold_expression_empty)
1292 << BinaryOperator::getOpcodeStr(Operator);
1293 }
1294
1295 return new (Context) CXXScalarValueInitExpr(
1296 ScalarType, Context.getTrivialTypeSourceInfo(ScalarType, EllipsisLoc),
1297 EllipsisLoc);
1298}

/build/source/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the PointerUnion class, which is a discriminated union of
11/// pointer types.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_POINTERUNION_H
16#define LLVM_ADT_POINTERUNION_H
17
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/PointerLikeTypeTraits.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdint>
27
28namespace llvm {
29
30namespace pointer_union_detail {
31 /// Determine the number of bits required to store integers with values < n.
32 /// This is ceil(log2(n)).
33 constexpr int bitsRequired(unsigned n) {
34 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
35 }
36
37 template <typename... Ts> constexpr int lowBitsAvailable() {
38 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
39 }
40
41 /// Find the first type in a list of types.
42 template <typename T, typename...> struct GetFirstType {
43 using type = T;
44 };
45
46 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
47 /// for the template arguments.
48 template <typename ...PTs> class PointerUnionUIntTraits {
49 public:
50 static inline void *getAsVoidPointer(void *P) { return P; }
51 static inline void *getFromVoidPointer(void *P) { return P; }
52 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
53 };
54
55 template <typename Derived, typename ValTy, int I, typename ...Types>
56 class PointerUnionMembers;
57
58 template <typename Derived, typename ValTy, int I>
59 class PointerUnionMembers<Derived, ValTy, I> {
60 protected:
61 ValTy Val;
62 PointerUnionMembers() = default;
63 PointerUnionMembers(ValTy Val) : Val(Val) {}
64
65 friend struct PointerLikeTypeTraits<Derived>;
66 };
67
68 template <typename Derived, typename ValTy, int I, typename Type,
69 typename ...Types>
70 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
71 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
72 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
73 public:
74 using Base::Base;
75 PointerUnionMembers() = default;
76 PointerUnionMembers(Type V)
77 : Base(ValTy(const_cast<void *>(
78 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
79 I)) {}
80
81 using Base::operator=;
82 Derived &operator=(Type V) {
83 this->Val = ValTy(
84 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
85 I);
86 return static_cast<Derived &>(*this);
87 };
88 };
89}
90
91// This is a forward declaration of CastInfoPointerUnionImpl
92// Refer to its definition below for further details
93template <typename... PTs> struct CastInfoPointerUnionImpl;
94/// A discriminated union of two or more pointer types, with the discriminator
95/// in the low bit of the pointer.
96///
97/// This implementation is extremely efficient in space due to leveraging the
98/// low bits of the pointer, while exposing a natural and type-safe API.
99///
100/// Common use patterns would be something like this:
101/// PointerUnion<int*, float*> P;
102/// P = (int*)0;
103/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
104/// X = P.get<int*>(); // ok.
105/// Y = P.get<float*>(); // runtime assertion failure.
106/// Z = P.get<double*>(); // compile time failure.
107/// P = (float*)0;
108/// Y = P.get<float*>(); // ok.
109/// X = P.get<int*>(); // runtime assertion failure.
110/// PointerUnion<int*, int*> Q; // compile time failure.
111template <typename... PTs>
112class PointerUnion
113 : public pointer_union_detail::PointerUnionMembers<
114 PointerUnion<PTs...>,
115 PointerIntPair<
116 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
117 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
118 0, PTs...> {
119 static_assert(TypesAreDistinct<PTs...>::value,
120 "PointerUnion alternative types cannot be repeated");
121 // The first type is special because we want to directly cast a pointer to a
122 // default-initialized union to a pointer to the first type. But we don't
123 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
124 // because it's much more convenient to have a name for the whole pack. So
125 // split off the first type here.
126 using First = TypeAtIndex<0, PTs...>;
127 using Base = typename PointerUnion::PointerUnionMembers;
128
129 /// This is needed to give the CastInfo implementation below access
130 /// to protected members.
131 /// Refer to its definition for further details.
132 friend struct CastInfoPointerUnionImpl<PTs...>;
133
134public:
135 PointerUnion() = default;
136
137 PointerUnion(std::nullptr_t) : PointerUnion() {}
138 using Base::Base;
139
140 /// Test if the pointer held in the union is null, regardless of
141 /// which type it is.
142 bool isNull() const { return !this->Val.getPointer(); }
143
144 explicit operator bool() const { return !isNull(); }
145
146 // FIXME: Replace the uses of is(), get() and dyn_cast() with
147 // isa<T>, cast<T> and the llvm::dyn_cast<T>
148
149 /// Test if the Union currently holds the type matching T.
150 template <typename T> inline bool is() const { return isa<T>(*this); }
151
152 /// Returns the value of the specified pointer type.
153 ///
154 /// If the specified pointer type is incorrect, assert.
155 template <typename T> inline T get() const {
156 assert(isa<T>(*this) && "Invalid accessor called")(static_cast <bool> (isa<T>(*this) && "Invalid accessor called"
) ? void (0) : __assert_fail ("isa<T>(*this) && \"Invalid accessor called\""
, "llvm/include/llvm/ADT/PointerUnion.h", 156, __extension__ __PRETTY_FUNCTION__
))
;
157 return cast<T>(*this);
158 }
159
160 /// Returns the current pointer if it is of the specified pointer type,
161 /// otherwise returns null.
162 template <typename T> inline T dyn_cast() const {
163 return llvm::dyn_cast_if_present<T>(*this);
3
Calling 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
13
Returning from 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
14
Returning null pointer, which participates in a condition later
18
Calling 'dyn_cast_if_present<const clang::TemplateTypeParmType *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
36
Returning from 'dyn_cast_if_present<const clang::TemplateTypeParmType *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
37
Returning pointer, which participates in a condition later
53
Calling 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
71
Returning from 'dyn_cast_if_present<const clang::NamedDecl *, llvm::PointerUnion<const clang::TemplateTypeParmType *, const clang::SubstTemplateTypeParmPackType *, const clang::SubstNonTypeTemplateParmPackExpr *, const clang::NamedDecl *>>'
72
Returning pointer, which participates in a condition later
164 }
165
166 /// If the union is set to the first pointer type get an address pointing to
167 /// it.
168 First const *getAddrOfPtr1() const {
169 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
170 }
171
172 /// If the union is set to the first pointer type get an address pointing to
173 /// it.
174 First *getAddrOfPtr1() {
175 assert(is<First>() && "Val is not the first pointer")(static_cast <bool> (is<First>() && "Val is not the first pointer"
) ? void (0) : __assert_fail ("is<First>() && \"Val is not the first pointer\""
, "llvm/include/llvm/ADT/PointerUnion.h", 175, __extension__ __PRETTY_FUNCTION__
))
;
176 assert((static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
177 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
178 this->Val.getPointer() &&(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
179 "Can't get the address because PointerLikeTypeTraits changes the ptr")(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
;
180 return const_cast<First *>(
181 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
182 }
183
184 /// Assignment from nullptr which just clears the union.
185 const PointerUnion &operator=(std::nullptr_t) {
186 this->Val.initWithPointer(nullptr);
187 return *this;
188 }
189
190 /// Assignment from elements of the union.
191 using Base::operator=;
192
193 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
194 static inline PointerUnion getFromOpaqueValue(void *VP) {
195 PointerUnion V;
196 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
197 return V;
198 }
199};
200
201template <typename ...PTs>
202bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
203 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
204}
205
206template <typename ...PTs>
207bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
208 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
209}
210
211template <typename ...PTs>
212bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
213 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
214}
215
216/// We can't (at least, at this moment with C++14) declare CastInfo
217/// as a friend of PointerUnion like this:
218/// ```
219/// template<typename To>
220/// friend struct CastInfo<To, PointerUnion<PTs...>>;
221/// ```
222/// The compiler complains 'Partial specialization cannot be declared as a
223/// friend'.
224/// So we define this struct to be a bridge between CastInfo and
225/// PointerUnion.
226template <typename... PTs> struct CastInfoPointerUnionImpl {
227 using From = PointerUnion<PTs...>;
228
229 template <typename To> static inline bool isPossible(From &F) {
230 return F.Val.getInt() == FirstIndexOfType<To, PTs...>::value;
231 }
232
233 template <typename To> static To doCast(From &F) {
234 assert(isPossible<To>(F) && "cast to an incompatible type !")(static_cast <bool> (isPossible<To>(F) &&
"cast to an incompatible type !") ? void (0) : __assert_fail
("isPossible<To>(F) && \"cast to an incompatible type !\""
, "llvm/include/llvm/ADT/PointerUnion.h", 234, __extension__ __PRETTY_FUNCTION__
))
;
26
'?' condition is true
61
'?' condition is true
235 return PointerLikeTypeTraits<To>::getFromVoidPointer(F.Val.getPointer());
27
Returning pointer, which participates in a condition later
62
Returning pointer, which participates in a condition later
236 }
237};
238
239// Specialization of CastInfo for PointerUnion
240template <typename To, typename... PTs>
241struct CastInfo<To, PointerUnion<PTs...>>
242 : public DefaultDoCastIfPossible<To, PointerUnion<PTs...>,
243 CastInfo<To, PointerUnion<PTs...>>> {
244 using From = PointerUnion<PTs...>;
245 using Impl = CastInfoPointerUnionImpl<PTs...>;
246
247 static inline bool isPossible(From &f) {
248 return Impl::template isPossible<To>(f);
249 }
250
251 static To doCast(From &f) { return Impl::template doCast<To>(f); }
25
Calling 'CastInfoPointerUnionImpl::doCast'
28
Returning from 'CastInfoPointerUnionImpl::doCast'
29
Returning pointer, which participates in a condition later
60
Calling 'CastInfoPointerUnionImpl::doCast'
63
Returning from 'CastInfoPointerUnionImpl::doCast'
64
Returning pointer, which participates in a condition later
252
253 static inline To castFailed() { return To(); }
8
Returning null pointer, which participates in a condition later
254};
255
256template <typename To, typename... PTs>
257struct CastInfo<To, const PointerUnion<PTs...>>
258 : public ConstStrippingForwardingCast<To, const PointerUnion<PTs...>,
259 CastInfo<To, PointerUnion<PTs...>>> {
260};
261
262// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
263// # low bits available = min(PT1bits,PT2bits)-1.
264template <typename ...PTs>
265struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
266 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
267 return P.getOpaqueValue();
268 }
269
270 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
271 return PointerUnion<PTs...>::getFromOpaqueValue(P);
272 }
273
274 // The number of bits available are the min of the pointer types minus the
275 // bits needed for the discriminator.
276 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
277 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
278};
279
280// Teach DenseMap how to use PointerUnions as keys.
281template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
282 using Union = PointerUnion<PTs...>;
283 using FirstInfo =
284 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
285
286 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
287
288 static inline Union getTombstoneKey() {
289 return Union(FirstInfo::getTombstoneKey());
290 }
291
292 static unsigned getHashValue(const Union &UnionVal) {
293 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
294 return DenseMapInfo<intptr_t>::getHashValue(key);
295 }
296
297 static bool isEqual(const Union &LHS, const Union &RHS) {
298 return LHS == RHS;
299 }
300};
301
302} // end namespace llvm
303
304#endif // LLVM_ADT_POINTERUNION_H

/build/source/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10// cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <optional>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// simplify_type
28//===----------------------------------------------------------------------===//
29
30/// Define a template that can be specialized by smart pointers to reflect the
31/// fact that they are automatically dereferenced, and are not involved with the
32/// template selection process... the default implementation is a noop.
33// TODO: rename this and/or replace it with other cast traits.
34template <typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template <typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From &Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49 }
50};
51
52// TODO: add this namespace once everyone is switched to using the new
53// interface.
54// namespace detail {
55
56//===----------------------------------------------------------------------===//
57// isa_impl
58//===----------------------------------------------------------------------===//
59
60// The core of the implementation of isa<X> is here; To and From should be
61// the names of classes. This template can be specialized to customize the
62// implementation of isa<> without rewriting it from scratch.
63template <typename To, typename From, typename Enabler = void> struct isa_impl {
64 static inline bool doit(const From &Val) { return To::classof(&Val); }
65};
66
67// Always allow upcasts, and perform no dynamic check for them.
68template <typename To, typename From>
69struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
70 static inline bool doit(const From &) { return true; }
71};
72
73template <typename To, typename From> struct isa_impl_cl {
74 static inline bool doit(const From &Val) {
75 return isa_impl<To, From>::doit(Val);
76 }
77};
78
79template <typename To, typename From> struct isa_impl_cl<To, const From> {
80 static inline bool doit(const From &Val) {
81 return isa_impl<To, From>::doit(Val);
82 }
83};
84
85template <typename To, typename From>
86struct isa_impl_cl<To, const std::unique_ptr<From>> {
87 static inline bool doit(const std::unique_ptr<From> &Val) {
88 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 88, __extension__ __PRETTY_FUNCTION__
))
;
89 return isa_impl_cl<To, From>::doit(*Val);
90 }
91};
92
93template <typename To, typename From> struct isa_impl_cl<To, From *> {
94 static inline bool doit(const From *Val) {
95 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 95, __extension__ __PRETTY_FUNCTION__
))
;
96 return isa_impl<To, From>::doit(*Val);
97 }
98};
99
100template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101 static inline bool doit(const From *Val) {
102 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 102, __extension__ __PRETTY_FUNCTION__
))
;
103 return isa_impl<To, From>::doit(*Val);
104 }
105};
106
107template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108 static inline bool doit(const From *Val) {
109 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 109, __extension__ __PRETTY_FUNCTION__
))
;
110 return isa_impl<To, From>::doit(*Val);
111 }
112};
113
114template <typename To, typename From>
115struct isa_impl_cl<To, const From *const> {
116 static inline bool doit(const From *Val) {
117 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 return isa_impl<To, From>::doit(*Val);
119 }
120};
121
122template <typename To, typename From, typename SimpleFrom>
123struct isa_impl_wrap {
124 // When From != SimplifiedType, we can simplify the type some more by using
125 // the simplify_type template.
126 static bool doit(const From &Val) {
127 return isa_impl_wrap<To, SimpleFrom,
128 typename simplify_type<SimpleFrom>::SimpleType>::
129 doit(simplify_type<const From>::getSimplifiedValue(Val));
130 }
131};
132
133template <typename To, typename FromTy>
134struct isa_impl_wrap<To, FromTy, FromTy> {
135 // When From == SimpleType, we are as simple as we are going to get.
136 static bool doit(const FromTy &Val) {
137 return isa_impl_cl<To, FromTy>::doit(Val);
138 }
139};
140
141//===----------------------------------------------------------------------===//
142// cast_retty + cast_retty_impl
143//===----------------------------------------------------------------------===//
144
145template <class To, class From> struct cast_retty;
146
147// Calculate what type the 'cast' function should return, based on a requested
148// type of To and a source type of From.
149template <class To, class From> struct cast_retty_impl {
150 using ret_type = To &; // Normal case, return Ty&
151};
152template <class To, class From> struct cast_retty_impl<To, const From> {
153 using ret_type = const To &; // Normal case, return Ty&
154};
155
156template <class To, class From> struct cast_retty_impl<To, From *> {
157 using ret_type = To *; // Pointer arg case, return Ty*
158};
159
160template <class To, class From> struct cast_retty_impl<To, const From *> {
161 using ret_type = const To *; // Constant pointer arg case, return const Ty*
162};
163
164template <class To, class From> struct cast_retty_impl<To, const From *const> {
165 using ret_type = const To *; // Constant pointer arg case, return const Ty*
166};
167
168template <class To, class From>
169struct cast_retty_impl<To, std::unique_ptr<From>> {
170private:
171 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172 using ResultType = std::remove_pointer_t<PointerType>;
173
174public:
175 using ret_type = std::unique_ptr<ResultType>;
176};
177
178template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179 // When the simplified type and the from type are not the same, use the type
180 // simplifier to reduce the type, then reuse cast_retty_impl to get the
181 // resultant type.
182 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183};
184
185template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186 // When the simplified type is equal to the from type, use it directly.
187 using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188};
189
190template <class To, class From> struct cast_retty {
191 using ret_type = typename cast_retty_wrap<
192 To, From, typename simplify_type<From>::SimpleType>::ret_type;
193};
194
195//===----------------------------------------------------------------------===//
196// cast_convert_val
197//===----------------------------------------------------------------------===//
198
199// Ensure the non-simple values are converted using the simplify_type template
200// that may be specialized by smart pointers...
201//
202template <class To, class From, class SimpleFrom> struct cast_convert_val {
203 // This is not a simple type, use the template to simplify it...
204 static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205 return cast_convert_val<To, SimpleFrom,
206 typename simplify_type<SimpleFrom>::SimpleType>::
207 doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208 }
209};
210
211template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212 // If it's a reference, switch to a pointer to do the cast and then deref it.
213 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214 return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215 *)&const_cast<FromTy &>(Val);
216 }
217};
218
219template <class To, class FromTy>
220struct cast_convert_val<To, FromTy *, FromTy *> {
221 // If it's a pointer, we can use c-style casting directly.
222 static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223 return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224 Val);
225 }
226};
227
228//===----------------------------------------------------------------------===//
229// is_simple_type
230//===----------------------------------------------------------------------===//
231
232template <class X> struct is_simple_type {
233 static const bool value =
234 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
235};
236
237// } // namespace detail
238
239//===----------------------------------------------------------------------===//
240// CastIsPossible
241//===----------------------------------------------------------------------===//
242
243/// This struct provides a way to check if a given cast is possible. It provides
244/// a static function called isPossible that is used to check if a cast can be
245/// performed. It should be overridden like this:
246///
247/// template<> struct CastIsPossible<foo, bar> {
248/// static inline bool isPossible(const bar &b) {
249/// return bar.isFoo();
250/// }
251/// };
252template <typename To, typename From, typename Enable = void>
253struct CastIsPossible {
254 static inline bool isPossible(const From &f) {
255 return isa_impl_wrap<
256 To, const From,
257 typename simplify_type<const From>::SimpleType>::doit(f);
258 }
259};
260
261// Needed for optional unwrapping. This could be implemented with isa_impl, but
262// we want to implement things in the new method and move old implementations
263// over. In fact, some of the isa_impl templates should be moved over to
264// CastIsPossible.
265template <typename To, typename From>
266struct CastIsPossible<To, std::optional<From>> {
267 static inline bool isPossible(const std::optional<From> &f) {
268 assert(f && "CastIsPossible::isPossible called on a nullopt!")(static_cast <bool> (f && "CastIsPossible::isPossible called on a nullopt!"
) ? void (0) : __assert_fail ("f && \"CastIsPossible::isPossible called on a nullopt!\""
, "llvm/include/llvm/Support/Casting.h", 268, __extension__ __PRETTY_FUNCTION__
))
;
269 return isa_impl_wrap<
270 To, const From,
271 typename simplify_type<const From>::SimpleType>::doit(*f);
272 }
273};
274
275/// Upcasting (from derived to base) and casting from a type to itself should
276/// always be possible.
277template <typename To, typename From>
278struct CastIsPossible<To, From,
279 std::enable_if_t<std::is_base_of<To, From>::value>> {
280 static inline bool isPossible(const From &f) { return true; }
281};
282
283//===----------------------------------------------------------------------===//
284// Cast traits
285//===----------------------------------------------------------------------===//
286
287/// All of these cast traits are meant to be implementations for useful casts
288/// that users may want to use that are outside the standard behavior. An
289/// example of how to use a special cast called `CastTrait` is:
290///
291/// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
292///
293/// Essentially, if your use case falls directly into one of the use cases
294/// supported by a given cast trait, simply inherit your special CastInfo
295/// directly from one of these to avoid having to reimplement the boilerplate
296/// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
297/// provide a subset of those functions.
298
299/// This cast trait just provides castFailed for the specified `To` type to make
300/// CastInfo specializations more declarative. In order to use this, the target
301/// result type must be `To` and `To` must be constructible from `nullptr`.
302template <typename To> struct NullableValueCastFailed {
303 static To castFailed() { return To(nullptr); }
304};
305
306/// This cast trait just provides the default implementation of doCastIfPossible
307/// to make CastInfo specializations more declarative. The `Derived` template
308/// parameter *must* be provided for forwarding castFailed and doCast.
309template <typename To, typename From, typename Derived>
310struct DefaultDoCastIfPossible {
311 static To doCastIfPossible(From f) {
312 if (!Derived::isPossible(f))
23
Taking false branch
58
Taking false branch
313 return Derived::castFailed();
314 return Derived::doCast(f);
24
Calling 'CastInfo::doCast'
30
Returning from 'CastInfo::doCast'
31
Returning pointer, which participates in a condition later
59
Calling 'CastInfo::doCast'
65
Returning from 'CastInfo::doCast'
66
Returning pointer, which participates in a condition later
315 }
316};
317
318namespace detail {
319/// A helper to derive the type to use with `Self` for cast traits, when the
320/// provided CRTP derived type is allowed to be void.
321template <typename OptionalDerived, typename Default>
322using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value,
323 Default, OptionalDerived>;
324} // namespace detail
325
326/// This cast trait provides casting for the specific case of casting to a
327/// value-typed object from a pointer-typed object. Note that `To` must be
328/// nullable/constructible from a pointer to `From` to use this cast.
329template <typename To, typename From, typename Derived = void>
330struct ValueFromPointerCast
331 : public CastIsPossible<To, From *>,
332 public NullableValueCastFailed<To>,
333 public DefaultDoCastIfPossible<
334 To, From *,
335 detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
336 static inline To doCast(From *f) { return To(f); }
337};
338
339/// This cast trait provides std::unique_ptr casting. It has the semantics of
340/// moving the contents of the input unique_ptr into the output unique_ptr
341/// during the cast. It's also a good example of how to implement a move-only
342/// cast.
343template <typename To, typename From, typename Derived = void>
344struct UniquePtrCast : public CastIsPossible<To, From *> {
345 using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
346 using CastResultType = std::unique_ptr<
347 std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
348
349 static inline CastResultType doCast(std::unique_ptr<From> &&f) {
350 return CastResultType((typename CastResultType::element_type *)f.release());
351 }
352
353 static inline CastResultType castFailed() { return CastResultType(nullptr); }
354
355 static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) {
356 if (!Self::isPossible(f))
357 return castFailed();
358 return doCast(f);
359 }
360};
361
362/// This cast trait provides std::optional<T> casting. This means that if you
363/// have a value type, you can cast it to another value type and have dyn_cast
364/// return an std::optional<T>.
365template <typename To, typename From, typename Derived = void>
366struct OptionalValueCast
367 : public CastIsPossible<To, From>,
368 public DefaultDoCastIfPossible<
369 std::optional<To>, From,
370 detail::SelfType<Derived, OptionalValueCast<To, From>>> {
371 static inline std::optional<To> castFailed() { return std::optional<To>{}; }
372
373 static inline std::optional<To> doCast(const From &f) { return To(f); }
374};
375
376/// Provides a cast trait that strips `const` from types to make it easier to
377/// implement a const-version of a non-const cast. It just removes boilerplate
378/// and reduces the amount of code you as the user need to implement. You can
379/// use it like this:
380///
381/// template<> struct CastInfo<foo, bar> {
382/// ...verbose implementation...
383/// };
384///
385/// template<> struct CastInfo<foo, const bar> : public
386/// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
387///
388template <typename To, typename From, typename ForwardTo>
389struct ConstStrippingForwardingCast {
390 // Remove the pointer if it exists, then we can get rid of consts/volatiles.
391 using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
392 // Now if it's a pointer, add it back. Otherwise, we want a ref.
393 using NonConstFrom = std::conditional_t<std::is_pointer<From>::value,
394 DecayedFrom *, DecayedFrom &>;
395
396 static inline bool isPossible(const From &f) {
397 return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
398 }
399
400 static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
7
Calling 'CastInfo::castFailed'
9
Returning from 'CastInfo::castFailed'
10
Returning null pointer, which participates in a condition later
401
402 static inline decltype(auto) doCast(const From &f) {
403 return ForwardTo::doCast(const_cast<NonConstFrom>(f));
404 }
405
406 static inline decltype(auto) doCastIfPossible(const From &f) {
407 return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
22
Calling 'DefaultDoCastIfPossible::doCastIfPossible'
32
Returning from 'DefaultDoCastIfPossible::doCastIfPossible'
33
Returning pointer, which participates in a condition later
57
Calling 'DefaultDoCastIfPossible::doCastIfPossible'
67
Returning from 'DefaultDoCastIfPossible::doCastIfPossible'
68
Returning pointer, which participates in a condition later
408 }
409};
410
411/// Provides a cast trait that uses a defined pointer to pointer cast as a base
412/// for reference-to-reference casts. Note that it does not provide castFailed
413/// and doCastIfPossible because a pointer-to-pointer cast would likely just
414/// return `nullptr` which could cause nullptr dereference. You can use it like
415/// this:
416///
417/// template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
418///
419/// template <>
420/// struct CastInfo<foo, bar>
421/// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
422///
423template <typename To, typename From, typename ForwardTo>
424struct ForwardToPointerCast {
425 static inline bool isPossible(const From &f) {
426 return ForwardTo::isPossible(&f);
427 }
428
429 static inline decltype(auto) doCast(const From &f) {
430 return *ForwardTo::doCast(&f);
431 }
432};
433
434//===----------------------------------------------------------------------===//
435// CastInfo
436//===----------------------------------------------------------------------===//
437
438/// This struct provides a method for customizing the way a cast is performed.
439/// It inherits from CastIsPossible, to support the case of declaring many
440/// CastIsPossible specializations without having to specialize the full
441/// CastInfo.
442///
443/// In order to specialize different behaviors, specify different functions in
444/// your CastInfo specialization.
445/// For isa<> customization, provide:
446///
447/// `static bool isPossible(const From &f)`
448///
449/// For cast<> customization, provide:
450///
451/// `static To doCast(const From &f)`
452///
453/// For dyn_cast<> and the *_if_present<> variants' customization, provide:
454///
455/// `static To castFailed()` and `static To doCastIfPossible(const From &f)`
456///
457/// Your specialization might look something like this:
458///
459/// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
460/// static inline foo doCast(const bar &b) {
461/// return foo(const_cast<bar &>(b));
462/// }
463/// static inline foo castFailed() { return foo(); }
464/// static inline foo doCastIfPossible(const bar &b) {
465/// if (!CastInfo<foo, bar>::isPossible(b))
466/// return castFailed();
467/// return doCast(b);
468/// }
469/// };
470
471// The default implementations of CastInfo don't use cast traits for now because
472// we need to specify types all over the place due to the current expected
473// casting behavior and the way cast_retty works. New use cases can and should
474// take advantage of the cast traits whenever possible!
475
476template <typename To, typename From, typename Enable = void>
477struct CastInfo : public CastIsPossible<To, From> {
478 using Self = CastInfo<To, From, Enable>;
479
480 using CastReturnType = typename cast_retty<To, From>::ret_type;
481
482 static inline CastReturnType doCast(const From &f) {
483 return cast_convert_val<
484 To, From,
485 typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
486 }
487
488 // This assumes that you can construct the cast return type from `nullptr`.
489 // This is largely to support legacy use cases - if you don't want this
490 // behavior you should specialize CastInfo for your use case.
491 static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
492
493 static inline CastReturnType doCastIfPossible(const From &f) {
494 if (!Self::isPossible(f))
495 return castFailed();
496 return doCast(f);
497 }
498};
499
500/// This struct provides an overload for CastInfo where From has simplify_type
501/// defined. This simply forwards to the appropriate CastInfo with the
502/// simplified type/value, so you don't have to implement both.
503template <typename To, typename From>
504struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
505 using Self = CastInfo<To, From>;
506 using SimpleFrom = typename simplify_type<From>::SimpleType;
507 using SimplifiedSelf = CastInfo<To, SimpleFrom>;
508
509 static inline bool isPossible(From &f) {
510 return SimplifiedSelf::isPossible(
511 simplify_type<From>::getSimplifiedValue(f));
512 }
513
514 static inline decltype(auto) doCast(From &f) {
515 return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
516 }
517
518 static inline decltype(auto) castFailed() {
519 return SimplifiedSelf::castFailed();
520 }
521
522 static inline decltype(auto) doCastIfPossible(From &f) {
523 return SimplifiedSelf::doCastIfPossible(
524 simplify_type<From>::getSimplifiedValue(f));
525 }
526};
527
528//===----------------------------------------------------------------------===//
529// Pre-specialized CastInfo
530//===----------------------------------------------------------------------===//
531
532/// Provide a CastInfo specialized for std::unique_ptr.
533template <typename To, typename From>
534struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
535
536/// Provide a CastInfo specialized for std::optional<From>. It's assumed that if
537/// the input is std::optional<From> that the output can be std::optional<To>.
538/// If that's not the case, specialize CastInfo for your use case.
539template <typename To, typename From>
540struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> {
541};
542
543/// isa<X> - Return true if the parameter to the template is an instance of one
544/// of the template type arguments. Used like this:
545///
546/// if (isa<Type>(myVal)) { ... }
547/// if (isa<Type0, Type1, Type2>(myVal)) { ... }
548template <typename To, typename From>
549[[nodiscard]] inline bool isa(const From &Val) {
550 return CastInfo<To, const From>::isPossible(Val);
551}
552
553template <typename First, typename Second, typename... Rest, typename From>
554[[nodiscard]] inline bool isa(const From &Val) {
555 return isa<First>(Val) || isa<Second, Rest...>(Val);
556}
557
558/// cast<X> - Return the argument parameter cast to the specified type. This
559/// casting operator asserts that the type is correct, so it does not return
560/// null on failure. It does not allow a null argument (use cast_if_present for
561/// that). It is typically used like this:
562///
563/// cast<Instruction>(myVal)->getParent()
564
565template <typename To, typename From>
566[[nodiscard]] inline decltype(auto) cast(const From &Val) {
567 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 567, __extension__ __PRETTY_FUNCTION__
))
;
568 return CastInfo<To, const From>::doCast(Val);
569}
570
571template <typename To, typename From>
572[[nodiscard]] inline decltype(auto) cast(From &Val) {
573 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 573, __extension__ __PRETTY_FUNCTION__
))
;
574 return CastInfo<To, From>::doCast(Val);
575}
576
577template <typename To, typename From>
578[[nodiscard]] inline decltype(auto) cast(From *Val) {
579 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 579, __extension__ __PRETTY_FUNCTION__
))
;
580 return CastInfo<To, From *>::doCast(Val);
581}
582
583template <typename To, typename From>
584[[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
585 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 585, __extension__ __PRETTY_FUNCTION__
))
;
586 return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
587}
588
589//===----------------------------------------------------------------------===//
590// ValueIsPresent
591//===----------------------------------------------------------------------===//
592
593template <typename T>
594constexpr bool IsNullable =
595 std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
596
597/// ValueIsPresent provides a way to check if a value is, well, present. For
598/// pointers, this is the equivalent of checking against nullptr, for Optionals
599/// this is the equivalent of checking hasValue(). It also provides a method for
600/// unwrapping a value (think calling .value() on an optional).
601
602// Generic values can't *not* be present.
603template <typename T, typename Enable = void> struct ValueIsPresent {
604 using UnwrappedType = T;
605 static inline bool isPresent(const T &t) { return true; }
606 static inline decltype(auto) unwrapValue(T &t) { return t; }
607};
608
609// Optional provides its own way to check if something is present.
610template <typename T> struct ValueIsPresent<std::optional<T>> {
611 using UnwrappedType = T;
612 static inline bool isPresent(const std::optional<T> &t) {
613 return t.has_value();
614 }
615 static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; }
616};
617
618// If something is "nullable" then we just compare it to nullptr to see if it
619// exists.
620template <typename T>
621struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
622 using UnwrappedType = T;
623 static inline bool isPresent(const T &t) { return t != T(nullptr); }
624 static inline decltype(auto) unwrapValue(T &t) { return t; }
625};
626
627namespace detail {
628// Convenience function we can use to check if a value is present. Because of
629// simplify_type, we have to call it on the simplified type for now.
630template <typename T> inline bool isPresent(const T &t) {
631 return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
632 simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
633}
634
635// Convenience function we can use to unwrap a value.
636template <typename T> inline decltype(auto) unwrapValue(T &t) {
637 return ValueIsPresent<T>::unwrapValue(t);
638}
639} // namespace detail
640
641/// dyn_cast<X> - Return the argument parameter cast to the specified type. This
642/// casting operator returns null if the argument is of the wrong type, so it
643/// can be used to test for a type as well as cast if successful. The value
644/// passed in must be present, if not, use dyn_cast_if_present. This should be
645/// used in the context of an if statement like this:
646///
647/// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
648
649template <typename To, typename From>
650[[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
651 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 651, __extension__ __PRETTY_FUNCTION__
))
;
652 return CastInfo<To, const From>::doCastIfPossible(Val);
653}
654
655template <typename To, typename From>
656[[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
657 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 657, __extension__ __PRETTY_FUNCTION__
))
;
658 return CastInfo<To, From>::doCastIfPossible(Val);
659}
660
661template <typename To, typename From>
662[[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
663 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 663, __extension__ __PRETTY_FUNCTION__
))
;
664 return CastInfo<To, From *>::doCastIfPossible(Val);
665}
666
667template <typename To, typename From>
668[[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) {
669 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 669, __extension__ __PRETTY_FUNCTION__
))
;
670 return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(
671 std::forward<std::unique_ptr<From> &&>(Val));
672}
673
674/// isa_and_present<X> - Functionally identical to isa, except that a null value
675/// is accepted.
676template <typename... X, class Y>
677[[nodiscard]] inline bool isa_and_present(const Y &Val) {
678 if (!detail::isPresent(Val))
679 return false;
680 return isa<X...>(Val);
681}
682
683template <typename... X, class Y>
684[[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
685 return isa_and_present<X...>(Val);
686}
687
688/// cast_if_present<X> - Functionally identical to cast, except that a null
689/// value is accepted.
690template <class X, class Y>
691[[nodiscard]] inline auto cast_if_present(const Y &Val) {
692 if (!detail::isPresent(Val))
693 return CastInfo<X, const Y>::castFailed();
694 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 694, __extension__ __PRETTY_FUNCTION__
))
;
695 return cast<X>(detail::unwrapValue(Val));
696}
697
698template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
699 if (!detail::isPresent(Val))
700 return CastInfo<X, Y>::castFailed();
701 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 701, __extension__ __PRETTY_FUNCTION__
))
;
702 return cast<X>(detail::unwrapValue(Val));
703}
704
705template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
706 if (!detail::isPresent(Val))
707 return CastInfo<X, Y *>::castFailed();
708 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 708, __extension__ __PRETTY_FUNCTION__
))
;
709 return cast<X>(detail::unwrapValue(Val));
710}
711
712template <class X, class Y>
713[[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
714 if (!detail::isPresent(Val))
715 return UniquePtrCast<X, Y>::castFailed();
716 return UniquePtrCast<X, Y>::doCast(std::move(Val));
717}
718
719// Provide a forwarding from cast_or_null to cast_if_present for current
720// users. This is deprecated and will be removed in a future patch, use
721// cast_if_present instead.
722template <class X, class Y> auto cast_or_null(const Y &Val) {
723 return cast_if_present<X>(Val);
724}
725
726template <class X, class Y> auto cast_or_null(Y &Val) {
727 return cast_if_present<X>(Val);
728}
729
730template <class X, class Y> auto cast_or_null(Y *Val) {
731 return cast_if_present<X>(Val);
732}
733
734template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
735 return cast_if_present<X>(std::move(Val));
736}
737
738/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
739/// null (or none in the case of optionals) value is accepted.
740template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
741 if (!detail::isPresent(Val))
4
Assuming the condition is true
5
Taking true branch
19
Assuming the condition is false
20
Taking false branch
54
Assuming the condition is false
55
Taking false branch
742 return CastInfo<X, const Y>::castFailed();
6
Calling 'ConstStrippingForwardingCast::castFailed'
11
Returning from 'ConstStrippingForwardingCast::castFailed'
12
Returning null pointer, which participates in a condition later
743 return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
21
Calling 'ConstStrippingForwardingCast::doCastIfPossible'
34
Returning from 'ConstStrippingForwardingCast::doCastIfPossible'
35
Returning pointer, which participates in a condition later
56
Calling 'ConstStrippingForwardingCast::doCastIfPossible'
69
Returning from 'ConstStrippingForwardingCast::doCastIfPossible'
70
Returning pointer, which participates in a condition later
744}
745
746template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
747 if (!detail::isPresent(Val))
748 return CastInfo<X, Y>::castFailed();
749 return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
750}
751
752template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
753 if (!detail::isPresent(Val))
754 return CastInfo<X, Y *>::castFailed();
755 return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
756}
757
758// Forwards to dyn_cast_if_present to avoid breaking current users. This is
759// deprecated and will be removed in a future patch, use
760// cast_if_present instead.
761template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
762 return dyn_cast_if_present<X>(Val);
763}
764
765template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
766 return dyn_cast_if_present<X>(Val);
767}
768
769template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
770 return dyn_cast_if_present<X>(Val);
771}
772
773/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
774/// taking ownership of the input pointer iff isa<X>(Val) is true. If the
775/// cast is successful, From refers to nullptr on exit and the casted value
776/// is returned. If the cast is unsuccessful, the function returns nullptr
777/// and From is unchanged.
778template <class X, class Y>
779[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
780unique_dyn_cast(std::unique_ptr<Y> &Val) {
781 if (!isa<X>(Val))
782 return nullptr;
783 return cast<X>(std::move(Val));
784}
785
786template <class X, class Y>
787[[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
788 return unique_dyn_cast<X, Y>(Val);
789}
790
791// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
792// except that a null value is accepted.
793template <class X, class Y>
794[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
795unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
796 if (!Val)
797 return nullptr;
798 return unique_dyn_cast<X, Y>(Val);
799}
800
801template <class X, class Y>
802[[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
803 return unique_dyn_cast_or_null<X, Y>(Val);
804}
805
806} // end namespace llvm
807
808#endif // LLVM_SUPPORT_CASTING_H

/build/source/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/TrailingObjects.h"
48#include "llvm/Support/type_traits.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class BTFTypeTagAttr;
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132class UsingShadowDecl;
133
134using CanQualType = CanQual<Type>;
135
136// Provide forward declarations for all of the *Type classes.
137#define TYPE(Class, Base) class Class##Type;
138#include "clang/AST/TypeNodes.inc"
139
140/// The collection of all-type qualifiers we support.
141/// Clang supports five independent qualifiers:
142/// * C99: const, volatile, and restrict
143/// * MS: __unaligned
144/// * Embedded C (TR18037): address spaces
145/// * Objective C: the GC attributes (none, weak, or strong)
146class Qualifiers {
147public:
148 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
149 Const = 0x1,
150 Restrict = 0x2,
151 Volatile = 0x4,
152 CVRMask = Const | Volatile | Restrict
153 };
154
155 enum GC {
156 GCNone = 0,
157 Weak,
158 Strong
159 };
160
161 enum ObjCLifetime {
162 /// There is no lifetime qualification on this type.
163 OCL_None,
164
165 /// This object can be modified without requiring retains or
166 /// releases.
167 OCL_ExplicitNone,
168
169 /// Assigning into this object requires the old value to be
170 /// released and the new value to be retained. The timing of the
171 /// release of the old value is inexact: it may be moved to
172 /// immediately after the last known point where the value is
173 /// live.
174 OCL_Strong,
175
176 /// Reading or writing from this object requires a barrier call.
177 OCL_Weak,
178
179 /// Assigning into this object requires a lifetime extension.
180 OCL_Autoreleasing
181 };
182
183 enum {
184 /// The maximum supported address space number.
185 /// 23 bits should be enough for anyone.
186 MaxAddressSpace = 0x7fffffu,
187
188 /// The width of the "fast" qualifier mask.
189 FastWidth = 3,
190
191 /// The fast qualifier mask.
192 FastMask = (1 << FastWidth) - 1
193 };
194
195 /// Returns the common set of qualifiers while removing them from
196 /// the given sets.
197 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
198 // If both are only CVR-qualified, bit operations are sufficient.
199 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
200 Qualifiers Q;
201 Q.Mask = L.Mask & R.Mask;
202 L.Mask &= ~Q.Mask;
203 R.Mask &= ~Q.Mask;
204 return Q;
205 }
206
207 Qualifiers Q;
208 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
209 Q.addCVRQualifiers(CommonCRV);
210 L.removeCVRQualifiers(CommonCRV);
211 R.removeCVRQualifiers(CommonCRV);
212
213 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
214 Q.setObjCGCAttr(L.getObjCGCAttr());
215 L.removeObjCGCAttr();
216 R.removeObjCGCAttr();
217 }
218
219 if (L.getObjCLifetime() == R.getObjCLifetime()) {
220 Q.setObjCLifetime(L.getObjCLifetime());
221 L.removeObjCLifetime();
222 R.removeObjCLifetime();
223 }
224
225 if (L.getAddressSpace() == R.getAddressSpace()) {
226 Q.setAddressSpace(L.getAddressSpace());
227 L.removeAddressSpace();
228 R.removeAddressSpace();
229 }
230 return Q;
231 }
232
233 static Qualifiers fromFastMask(unsigned Mask) {
234 Qualifiers Qs;
235 Qs.addFastQualifiers(Mask);
236 return Qs;
237 }
238
239 static Qualifiers fromCVRMask(unsigned CVR) {
240 Qualifiers Qs;
241 Qs.addCVRQualifiers(CVR);
242 return Qs;
243 }
244
245 static Qualifiers fromCVRUMask(unsigned CVRU) {
246 Qualifiers Qs;
247 Qs.addCVRUQualifiers(CVRU);
248 return Qs;
249 }
250
251 // Deserialize qualifiers from an opaque representation.
252 static Qualifiers fromOpaqueValue(unsigned opaque) {
253 Qualifiers Qs;
254 Qs.Mask = opaque;
255 return Qs;
256 }
257
258 // Serialize these qualifiers into an opaque representation.
259 unsigned getAsOpaqueValue() const {
260 return Mask;
261 }
262
263 bool hasConst() const { return Mask & Const; }
264 bool hasOnlyConst() const { return Mask == Const; }
265 void removeConst() { Mask &= ~Const; }
266 void addConst() { Mask |= Const; }
267 Qualifiers withConst() const {
268 Qualifiers Qs = *this;
269 Qs.addConst();
270 return Qs;
271 }
272
273 bool hasVolatile() const { return Mask & Volatile; }
274 bool hasOnlyVolatile() const { return Mask == Volatile; }
275 void removeVolatile() { Mask &= ~Volatile; }
276 void addVolatile() { Mask |= Volatile; }
277 Qualifiers withVolatile() const {
278 Qualifiers Qs = *this;
279 Qs.addVolatile();
280 return Qs;
281 }
282
283 bool hasRestrict() const { return Mask & Restrict; }
284 bool hasOnlyRestrict() const { return Mask == Restrict; }
285 void removeRestrict() { Mask &= ~Restrict; }
286 void addRestrict() { Mask |= Restrict; }
287 Qualifiers withRestrict() const {
288 Qualifiers Qs = *this;
289 Qs.addRestrict();
290 return Qs;
291 }
292
293 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
294 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
295 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
296
297 void setCVRQualifiers(unsigned mask) {
298 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 298, __extension__ __PRETTY_FUNCTION__
))
;
299 Mask = (Mask & ~CVRMask) | mask;
300 }
301 void removeCVRQualifiers(unsigned mask) {
302 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 302, __extension__ __PRETTY_FUNCTION__
))
;
303 Mask &= ~mask;
304 }
305 void removeCVRQualifiers() {
306 removeCVRQualifiers(CVRMask);
307 }
308 void addCVRQualifiers(unsigned mask) {
309 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 309, __extension__ __PRETTY_FUNCTION__
))
;
310 Mask |= mask;
311 }
312 void addCVRUQualifiers(unsigned mask) {
313 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "clang/include/clang/AST/Type.h", 313, __extension__ __PRETTY_FUNCTION__
))
;
314 Mask |= mask;
315 }
316
317 bool hasUnaligned() const { return Mask & UMask; }
318 void setUnaligned(bool flag) {
319 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
320 }
321 void removeUnaligned() { Mask &= ~UMask; }
322 void addUnaligned() { Mask |= UMask; }
323
324 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
325 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
326 void setObjCGCAttr(GC type) {
327 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
328 }
329 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
330 void addObjCGCAttr(GC type) {
331 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 331, __extension__ __PRETTY_FUNCTION__
))
;
332 setObjCGCAttr(type);
333 }
334 Qualifiers withoutObjCGCAttr() const {
335 Qualifiers qs = *this;
336 qs.removeObjCGCAttr();
337 return qs;
338 }
339 Qualifiers withoutObjCLifetime() const {
340 Qualifiers qs = *this;
341 qs.removeObjCLifetime();
342 return qs;
343 }
344 Qualifiers withoutAddressSpace() const {
345 Qualifiers qs = *this;
346 qs.removeAddressSpace();
347 return qs;
348 }
349
350 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
351 ObjCLifetime getObjCLifetime() const {
352 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
353 }
354 void setObjCLifetime(ObjCLifetime type) {
355 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
356 }
357 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
358 void addObjCLifetime(ObjCLifetime type) {
359 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 359, __extension__ __PRETTY_FUNCTION__
))
;
360 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "clang/include/clang/AST/Type.h", 360
, __extension__ __PRETTY_FUNCTION__))
;
361 Mask |= (type << LifetimeShift);
362 }
363
364 /// True if the lifetime is neither None or ExplicitNone.
365 bool hasNonTrivialObjCLifetime() const {
366 ObjCLifetime lifetime = getObjCLifetime();
367 return (lifetime > OCL_ExplicitNone);
368 }
369
370 /// True if the lifetime is either strong or weak.
371 bool hasStrongOrWeakObjCLifetime() const {
372 ObjCLifetime lifetime = getObjCLifetime();
373 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
374 }
375
376 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
377 LangAS getAddressSpace() const {
378 return static_cast<LangAS>(Mask >> AddressSpaceShift);
379 }
380 bool hasTargetSpecificAddressSpace() const {
381 return isTargetAddressSpace(getAddressSpace());
382 }
383 /// Get the address space attribute value to be printed by diagnostics.
384 unsigned getAddressSpaceAttributePrintValue() const {
385 auto Addr = getAddressSpace();
386 // This function is not supposed to be used with language specific
387 // address spaces. If that happens, the diagnostic message should consider
388 // printing the QualType instead of the address space value.
389 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "clang/include/clang/AST/Type.h", 389, __extension__ __PRETTY_FUNCTION__
))
;
390 if (Addr != LangAS::Default)
391 return toTargetAddressSpace(Addr);
392 // TODO: The diagnostic messages where Addr may be 0 should be fixed
393 // since it cannot differentiate the situation where 0 denotes the default
394 // address space or user specified __attribute__((address_space(0))).
395 return 0;
396 }
397 void setAddressSpace(LangAS space) {
398 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "clang/include/clang/AST/Type.h", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 Mask = (Mask & ~AddressSpaceMask)
400 | (((uint32_t) space) << AddressSpaceShift);
401 }
402 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
403 void addAddressSpace(LangAS space) {
404 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "clang/include/clang/AST/Type.h"
, 404, __extension__ __PRETTY_FUNCTION__))
;
405 setAddressSpace(space);
406 }
407
408 // Fast qualifiers are those that can be allocated directly
409 // on a QualType object.
410 bool hasFastQualifiers() const { return getFastQualifiers(); }
411 unsigned getFastQualifiers() const { return Mask & FastMask; }
412 void setFastQualifiers(unsigned mask) {
413 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 413, __extension__ __PRETTY_FUNCTION__
))
;
414 Mask = (Mask & ~FastMask) | mask;
415 }
416 void removeFastQualifiers(unsigned mask) {
417 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 417, __extension__ __PRETTY_FUNCTION__
))
;
418 Mask &= ~mask;
419 }
420 void removeFastQualifiers() {
421 removeFastQualifiers(FastMask);
422 }
423 void addFastQualifiers(unsigned mask) {
424 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 424, __extension__ __PRETTY_FUNCTION__
))
;
425 Mask |= mask;
426 }
427
428 /// Return true if the set contains any qualifiers which require an ExtQuals
429 /// node to be allocated.
430 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
431 Qualifiers getNonFastQualifiers() const {
432 Qualifiers Quals = *this;
433 Quals.setFastQualifiers(0);
434 return Quals;
435 }
436
437 /// Return true if the set contains any qualifiers.
438 bool hasQualifiers() const { return Mask; }
439 bool empty() const { return !Mask; }
440
441 /// Add the qualifiers from the given set to this set.
442 void addQualifiers(Qualifiers Q) {
443 // If the other set doesn't have any non-boolean qualifiers, just
444 // bit-or it in.
445 if (!(Q.Mask & ~CVRMask))
446 Mask |= Q.Mask;
447 else {
448 Mask |= (Q.Mask & CVRMask);
449 if (Q.hasAddressSpace())
450 addAddressSpace(Q.getAddressSpace());
451 if (Q.hasObjCGCAttr())
452 addObjCGCAttr(Q.getObjCGCAttr());
453 if (Q.hasObjCLifetime())
454 addObjCLifetime(Q.getObjCLifetime());
455 }
456 }
457
458 /// Remove the qualifiers from the given set from this set.
459 void removeQualifiers(Qualifiers Q) {
460 // If the other set doesn't have any non-boolean qualifiers, just
461 // bit-and the inverse in.
462 if (!(Q.Mask & ~CVRMask))
463 Mask &= ~Q.Mask;
464 else {
465 Mask &= ~(Q.Mask & CVRMask);
466 if (getObjCGCAttr() == Q.getObjCGCAttr())
467 removeObjCGCAttr();
468 if (getObjCLifetime() == Q.getObjCLifetime())
469 removeObjCLifetime();
470 if (getAddressSpace() == Q.getAddressSpace())
471 removeAddressSpace();
472 }
473 }
474
475 /// Add the qualifiers from the given set to this set, given that
476 /// they don't conflict.
477 void addConsistentQualifiers(Qualifiers qs) {
478 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 479, __extension__ __PRETTY_FUNCTION__
))
479 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 479, __extension__ __PRETTY_FUNCTION__
))
;
480 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 481, __extension__ __PRETTY_FUNCTION__
))
481 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 481, __extension__ __PRETTY_FUNCTION__
))
;
482 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 483, __extension__ __PRETTY_FUNCTION__
))
483 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 483, __extension__ __PRETTY_FUNCTION__
))
;
484 Mask |= qs.Mask;
485 }
486
487 /// Returns true if address space A is equal to or a superset of B.
488 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
489 /// overlapping address spaces.
490 /// CL1.1 or CL1.2:
491 /// every address space is a superset of itself.
492 /// CL2.0 adds:
493 /// __generic is a superset of any address space except for __constant.
494 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
495 // Address spaces must match exactly.
496 return A == B ||
497 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
498 // for __constant can be used as __generic.
499 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
500 // We also define global_device and global_host address spaces,
501 // to distinguish global pointers allocated on host from pointers
502 // allocated on device, which are a subset of __global.
503 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
504 B == LangAS::opencl_global_host)) ||
505 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
506 B == LangAS::sycl_global_host)) ||
507 // Consider pointer size address spaces to be equivalent to default.
508 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
509 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
510 // Default is a superset of SYCL address spaces.
511 (A == LangAS::Default &&
512 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
513 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
514 B == LangAS::sycl_global_host)) ||
515 // In HIP device compilation, any cuda address space is allowed
516 // to implicitly cast into the default address space.
517 (A == LangAS::Default &&
518 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
519 B == LangAS::cuda_shared));
520 }
521
522 /// Returns true if the address space in these qualifiers is equal to or
523 /// a superset of the address space in the argument qualifiers.
524 bool isAddressSpaceSupersetOf(Qualifiers other) const {
525 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
526 }
527
528 /// Determines if these qualifiers compatibly include another set.
529 /// Generally this answers the question of whether an object with the other
530 /// qualifiers can be safely used as an object with these qualifiers.
531 bool compatiblyIncludes(Qualifiers other) const {
532 return isAddressSpaceSupersetOf(other) &&
533 // ObjC GC qualifiers can match, be added, or be removed, but can't
534 // be changed.
535 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
536 !other.hasObjCGCAttr()) &&
537 // ObjC lifetime qualifiers must match exactly.
538 getObjCLifetime() == other.getObjCLifetime() &&
539 // CVR qualifiers may subset.
540 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
541 // U qualifier may superset.
542 (!other.hasUnaligned() || hasUnaligned());
543 }
544
545 /// Determines if these qualifiers compatibly include another set of
546 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
547 ///
548 /// One set of Objective-C lifetime qualifiers compatibly includes the other
549 /// if the lifetime qualifiers match, or if both are non-__weak and the
550 /// including set also contains the 'const' qualifier, or both are non-__weak
551 /// and one is None (which can only happen in non-ARC modes).
552 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
553 if (getObjCLifetime() == other.getObjCLifetime())
554 return true;
555
556 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
557 return false;
558
559 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
560 return true;
561
562 return hasConst();
563 }
564
565 /// Determine whether this set of qualifiers is a strict superset of
566 /// another set of qualifiers, not considering qualifier compatibility.
567 bool isStrictSupersetOf(Qualifiers Other) const;
568
569 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
570 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
571
572 explicit operator bool() const { return hasQualifiers(); }
573
574 Qualifiers &operator+=(Qualifiers R) {
575 addQualifiers(R);
576 return *this;
577 }
578
579 // Union two qualifier sets. If an enumerated qualifier appears
580 // in both sets, use the one from the right.
581 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
582 L += R;
583 return L;
584 }
585
586 Qualifiers &operator-=(Qualifiers R) {
587 removeQualifiers(R);
588 return *this;
589 }
590
591 /// Compute the difference between two qualifier sets.
592 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
593 L -= R;
594 return L;
595 }
596
597 std::string getAsString() const;
598 std::string getAsString(const PrintingPolicy &Policy) const;
599
600 static std::string getAddrSpaceAsString(LangAS AS);
601
602 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
603 void print(raw_ostream &OS, const PrintingPolicy &Policy,
604 bool appendSpaceIfNonEmpty = false) const;
605
606 void Profile(llvm::FoldingSetNodeID &ID) const {
607 ID.AddInteger(Mask);
608 }
609
610private:
611 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
612 // |C R V|U|GCAttr|Lifetime|AddressSpace|
613 uint32_t Mask = 0;
614
615 static const uint32_t UMask = 0x8;
616 static const uint32_t UShift = 3;
617 static const uint32_t GCAttrMask = 0x30;
618 static const uint32_t GCAttrShift = 4;
619 static const uint32_t LifetimeMask = 0x1C0;
620 static const uint32_t LifetimeShift = 6;
621 static const uint32_t AddressSpaceMask =
622 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
623 static const uint32_t AddressSpaceShift = 9;
624};
625
626class QualifiersAndAtomic {
627 Qualifiers Quals;
628 bool HasAtomic;
629
630public:
631 QualifiersAndAtomic() : HasAtomic(false) {}
632 QualifiersAndAtomic(Qualifiers Quals, bool HasAtomic)
633 : Quals(Quals), HasAtomic(HasAtomic) {}
634
635 operator Qualifiers() const { return Quals; }
636
637 bool hasVolatile() const { return Quals.hasVolatile(); }
638 bool hasConst() const { return Quals.hasConst(); }
639 bool hasRestrict() const { return Quals.hasRestrict(); }
640 bool hasAtomic() const { return HasAtomic; }
641
642 void addVolatile() { Quals.addVolatile(); }
643 void addConst() { Quals.addConst(); }
644 void addRestrict() { Quals.addRestrict(); }
645 void addAtomic() { HasAtomic = true; }
646
647 void removeVolatile() { Quals.removeVolatile(); }
648 void removeConst() { Quals.removeConst(); }
649 void removeRestrict() { Quals.removeRestrict(); }
650 void removeAtomic() { HasAtomic = false; }
651
652 QualifiersAndAtomic withVolatile() {
653 return {Quals.withVolatile(), HasAtomic};
654 }
655 QualifiersAndAtomic withConst() { return {Quals.withConst(), HasAtomic}; }
656 QualifiersAndAtomic withRestrict() {
657 return {Quals.withRestrict(), HasAtomic};
658 }
659 QualifiersAndAtomic withAtomic() { return {Quals, true}; }
660
661 QualifiersAndAtomic &operator+=(Qualifiers RHS) {
662 Quals += RHS;
663 return *this;
664 }
665};
666
667/// A std::pair-like structure for storing a qualified type split
668/// into its local qualifiers and its locally-unqualified type.
669struct SplitQualType {
670 /// The locally-unqualified type.
671 const Type *Ty = nullptr;
672
673 /// The local qualifiers.
674 Qualifiers Quals;
675
676 SplitQualType() = default;
677 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
678
679 SplitQualType getSingleStepDesugaredType() const; // end of this file
680
681 // Make std::tie work.
682 std::pair<const Type *,Qualifiers> asPair() const {
683 return std::pair<const Type *, Qualifiers>(Ty, Quals);
684 }
685
686 friend bool operator==(SplitQualType a, SplitQualType b) {
687 return a.Ty == b.Ty && a.Quals == b.Quals;
688 }
689 friend bool operator!=(SplitQualType a, SplitQualType b) {
690 return a.Ty != b.Ty || a.Quals != b.Quals;
691 }
692};
693
694/// The kind of type we are substituting Objective-C type arguments into.
695///
696/// The kind of substitution affects the replacement of type parameters when
697/// no concrete type information is provided, e.g., when dealing with an
698/// unspecialized type.
699enum class ObjCSubstitutionContext {
700 /// An ordinary type.
701 Ordinary,
702
703 /// The result type of a method or function.
704 Result,
705
706 /// The parameter type of a method or function.
707 Parameter,
708
709 /// The type of a property.
710 Property,
711
712 /// The superclass of a type.
713 Superclass,
714};
715
716/// The kind of 'typeof' expression we're after.
717enum class TypeOfKind : uint8_t {
718 Qualified,
719 Unqualified,
720};
721
722/// A (possibly-)qualified type.
723///
724/// For efficiency, we don't store CV-qualified types as nodes on their
725/// own: instead each reference to a type stores the qualifiers. This
726/// greatly reduces the number of nodes we need to allocate for types (for
727/// example we only need one for 'int', 'const int', 'volatile int',
728/// 'const volatile int', etc).
729///
730/// As an added efficiency bonus, instead of making this a pair, we
731/// just store the two bits we care about in the low bits of the
732/// pointer. To handle the packing/unpacking, we make QualType be a
733/// simple wrapper class that acts like a smart pointer. A third bit
734/// indicates whether there are extended qualifiers present, in which
735/// case the pointer points to a special structure.
736class QualType {
737 friend class QualifierCollector;
738
739 // Thankfully, these are efficiently composable.
740 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
741 Qualifiers::FastWidth> Value;
742
743 const ExtQuals *getExtQualsUnsafe() const {
744 return Value.getPointer().get<const ExtQuals*>();
745 }
746
747 const Type *getTypePtrUnsafe() const {
748 return Value.getPointer().get<const Type*>();
749 }
750
751 const ExtQualsTypeCommonBase *getCommonPtr() const {
752 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "clang/include/clang/AST/Type.h", 752, __extension__ __PRETTY_FUNCTION__
))
;
753 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
754 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
755 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
756 }
757
758public:
759 QualType() = default;
760 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
761 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
762
763 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
764 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
765
766 /// Retrieves a pointer to the underlying (unqualified) type.
767 ///
768 /// This function requires that the type not be NULL. If the type might be
769 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
770 const Type *getTypePtr() const;
771
772 const Type *getTypePtrOrNull() const;
773
774 /// Retrieves a pointer to the name of the base type.
775 const IdentifierInfo *getBaseTypeIdentifier() const;
776
777 /// Divides a QualType into its unqualified type and a set of local
778 /// qualifiers.
779 SplitQualType split() const;
780
781 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
782
783 static QualType getFromOpaquePtr(const void *Ptr) {
784 QualType T;
785 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
786 return T;
787 }
788
789 const Type &operator*() const {
790 return *getTypePtr();
791 }
792
793 const Type *operator->() const {
794 return getTypePtr();
795 }
796
797 bool isCanonical() const;
798 bool isCanonicalAsParam() const;
799
800 /// Return true if this QualType doesn't point to a type yet.
801 bool isNull() const {
802 return Value.getPointer().isNull();
803 }
804
805 // Determines if a type can form `T&`.
806 bool isReferenceable() const;
807
808 /// Determine whether this particular QualType instance has the
809 /// "const" qualifier set, without looking through typedefs that may have
810 /// added "const" at a different level.
811 bool isLocalConstQualified() const {
812 return (getLocalFastQualifiers() & Qualifiers::Const);
813 }
814
815 /// Determine whether this type is const-qualified.
816 bool isConstQualified() const;
817
818 /// Determine whether this particular QualType instance has the
819 /// "restrict" qualifier set, without looking through typedefs that may have
820 /// added "restrict" at a different level.
821 bool isLocalRestrictQualified() const {
822 return (getLocalFastQualifiers() & Qualifiers::Restrict);
823 }
824
825 /// Determine whether this type is restrict-qualified.
826 bool isRestrictQualified() const;
827
828 /// Determine whether this particular QualType instance has the
829 /// "volatile" qualifier set, without looking through typedefs that may have
830 /// added "volatile" at a different level.
831 bool isLocalVolatileQualified() const {
832 return (getLocalFastQualifiers() & Qualifiers::Volatile);
833 }
834
835 /// Determine whether this type is volatile-qualified.
836 bool isVolatileQualified() const;
837
838 /// Determine whether this particular QualType instance has any
839 /// qualifiers, without looking through any typedefs that might add
840 /// qualifiers at a different level.
841 bool hasLocalQualifiers() const {
842 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
843 }
844
845 /// Determine whether this type has any qualifiers.
846 bool hasQualifiers() const;
847
848 /// Determine whether this particular QualType instance has any
849 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
850 /// instance.
851 bool hasLocalNonFastQualifiers() const {
852 return Value.getPointer().is<const ExtQuals*>();
853 }
854
855 /// Retrieve the set of qualifiers local to this particular QualType
856 /// instance, not including any qualifiers acquired through typedefs or
857 /// other sugar.
858 Qualifiers getLocalQualifiers() const;
859
860 /// Retrieve the set of qualifiers applied to this type.
861 Qualifiers getQualifiers() const;
862
863 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
864 /// local to this particular QualType instance, not including any qualifiers
865 /// acquired through typedefs or other sugar.
866 unsigned getLocalCVRQualifiers() const {
867 return getLocalFastQualifiers();
868 }
869
870 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
871 /// applied to this type.
872 unsigned getCVRQualifiers() const;
873
874 bool isConstant(const ASTContext& Ctx) const {
875 return QualType::isConstant(*this, Ctx);
876 }
877
878 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
879 bool isPODType(const ASTContext &Context) const;
880
881 /// Return true if this is a POD type according to the rules of the C++98
882 /// standard, regardless of the current compilation's language.
883 bool isCXX98PODType(const ASTContext &Context) const;
884
885 /// Return true if this is a POD type according to the more relaxed rules
886 /// of the C++11 standard, regardless of the current compilation's language.
887 /// (C++0x [basic.types]p9). Note that, unlike
888 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
889 bool isCXX11PODType(const ASTContext &Context) const;
890
891 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
892 bool isTrivialType(const ASTContext &Context) const;
893
894 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
895 bool isTriviallyCopyableType(const ASTContext &Context) const;
896
897 /// Return true if this is a trivially relocatable type.
898 bool isTriviallyRelocatableType(const ASTContext &Context) const;
899
900 /// Returns true if it is a class and it might be dynamic.
901 bool mayBeDynamicClass() const;
902
903 /// Returns true if it is not a class or if the class might not be dynamic.
904 bool mayBeNotDynamicClass() const;
905
906 // Don't promise in the API that anything besides 'const' can be
907 // easily added.
908
909 /// Add the `const` type qualifier to this QualType.
910 void addConst() {
911 addFastQualifiers(Qualifiers::Const);
912 }
913 QualType withConst() const {
914 return withFastQualifiers(Qualifiers::Const);
915 }
916
917 /// Add the `volatile` type qualifier to this QualType.
918 void addVolatile() {
919 addFastQualifiers(Qualifiers::Volatile);
920 }
921 QualType withVolatile() const {
922 return withFastQualifiers(Qualifiers::Volatile);
923 }
924
925 /// Add the `restrict` qualifier to this QualType.
926 void addRestrict() {
927 addFastQualifiers(Qualifiers::Restrict);
928 }
929 QualType withRestrict() const {
930 return withFastQualifiers(Qualifiers::Restrict);
931 }
932
933 QualType withCVRQualifiers(unsigned CVR) const {
934 return withFastQualifiers(CVR);
935 }
936
937 void addFastQualifiers(unsigned TQs) {
938 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 939, __extension__ __PRETTY_FUNCTION__
))
939 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 939, __extension__ __PRETTY_FUNCTION__
))
;
940 Value.setInt(Value.getInt() | TQs);
941 }
942
943 void removeLocalConst();
944 void removeLocalVolatile();
945 void removeLocalRestrict();
946 void removeLocalCVRQualifiers(unsigned Mask);
947
948 void removeLocalFastQualifiers() { Value.setInt(0); }
949 void removeLocalFastQualifiers(unsigned Mask) {
950 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "clang/include/clang/AST/Type.h", 950, __extension__ __PRETTY_FUNCTION__
))
;
951 Value.setInt(Value.getInt() & ~Mask);
952 }
953
954 // Creates a type with the given qualifiers in addition to any
955 // qualifiers already on this type.
956 QualType withFastQualifiers(unsigned TQs) const {
957 QualType T = *this;
958 T.addFastQualifiers(TQs);
959 return T;
960 }
961
962 // Creates a type with exactly the given fast qualifiers, removing
963 // any existing fast qualifiers.
964 QualType withExactLocalFastQualifiers(unsigned TQs) const {
965 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
966 }
967
968 // Removes fast qualifiers, but leaves any extended qualifiers in place.
969 QualType withoutLocalFastQualifiers() const {
970 QualType T = *this;
971 T.removeLocalFastQualifiers();
972 return T;
973 }
974
975 QualType getCanonicalType() const;
976
977 /// Return this type with all of the instance-specific qualifiers
978 /// removed, but without removing any qualifiers that may have been applied
979 /// through typedefs.
980 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
981
982 /// Retrieve the unqualified variant of the given type,
983 /// removing as little sugar as possible.
984 ///
985 /// This routine looks through various kinds of sugar to find the
986 /// least-desugared type that is unqualified. For example, given:
987 ///
988 /// \code
989 /// typedef int Integer;
990 /// typedef const Integer CInteger;
991 /// typedef CInteger DifferenceType;
992 /// \endcode
993 ///
994 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
995 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
996 ///
997 /// The resulting type might still be qualified if it's sugar for an array
998 /// type. To strip qualifiers even from within a sugared array type, use
999 /// ASTContext::getUnqualifiedArrayType.
1000 ///
1001 /// Note: In C, the _Atomic qualifier is special (see C2x 6.2.5p29 for
1002 /// details), and it is not stripped by this function. Use
1003 /// getAtomicUnqualifiedType() to strip qualifiers including _Atomic.
1004 inline QualType getUnqualifiedType() const;
1005
1006 /// Retrieve the unqualified variant of the given type, removing as little
1007 /// sugar as possible.
1008 ///
1009 /// Like getUnqualifiedType(), but also returns the set of
1010 /// qualifiers that were built up.
1011 ///
1012 /// The resulting type might still be qualified if it's sugar for an array
1013 /// type. To strip qualifiers even from within a sugared array type, use
1014 /// ASTContext::getUnqualifiedArrayType.
1015 inline SplitQualType getSplitUnqualifiedType() const;
1016
1017 /// Determine whether this type is more qualified than the other
1018 /// given type, requiring exact equality for non-CVR qualifiers.
1019 bool isMoreQualifiedThan(QualType Other) const;
1020
1021 /// Determine whether this type is at least as qualified as the other
1022 /// given type, requiring exact equality for non-CVR qualifiers.
1023 bool isAtLeastAsQualifiedAs(QualType Other) const;
1024
1025 QualType getNonReferenceType() const;
1026
1027 /// Determine the type of a (typically non-lvalue) expression with the
1028 /// specified result type.
1029 ///
1030 /// This routine should be used for expressions for which the return type is
1031 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
1032 /// an lvalue. It removes a top-level reference (since there are no
1033 /// expressions of reference type) and deletes top-level cvr-qualifiers
1034 /// from non-class types (in C++) or all types (in C).
1035 QualType getNonLValueExprType(const ASTContext &Context) const;
1036
1037 /// Remove an outer pack expansion type (if any) from this type. Used as part
1038 /// of converting the type of a declaration to the type of an expression that
1039 /// references that expression. It's meaningless for an expression to have a
1040 /// pack expansion type.
1041 QualType getNonPackExpansionType() const;
1042
1043 /// Return the specified type with any "sugar" removed from
1044 /// the type. This takes off typedefs, typeof's etc. If the outer level of
1045 /// the type is already concrete, it returns it unmodified. This is similar
1046 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
1047 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
1048 /// concrete.
1049 ///
1050 /// Qualifiers are left in place.
1051 QualType getDesugaredType(const ASTContext &Context) const {
1052 return getDesugaredType(*this, Context);
1053 }
1054
1055 SplitQualType getSplitDesugaredType() const {
1056 return getSplitDesugaredType(*this);
1057 }
1058
1059 /// Return the specified type with one level of "sugar" removed from
1060 /// the type.
1061 ///
1062 /// This routine takes off the first typedef, typeof, etc. If the outer level
1063 /// of the type is already concrete, it returns it unmodified.
1064 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
1065 return getSingleStepDesugaredTypeImpl(*this, Context);
1066 }
1067
1068 /// Returns the specified type after dropping any
1069 /// outer-level parentheses.
1070 QualType IgnoreParens() const {
1071 if (isa<ParenType>(*this))
1072 return QualType::IgnoreParens(*this);
1073 return *this;
1074 }
1075
1076 /// Indicate whether the specified types and qualifiers are identical.
1077 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1078 return LHS.Value == RHS.Value;
1079 }
1080 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1081 return LHS.Value != RHS.Value;
1082 }
1083 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1084 return LHS.Value < RHS.Value;
1085 }
1086
1087 static std::string getAsString(SplitQualType split,
1088 const PrintingPolicy &Policy) {
1089 return getAsString(split.Ty, split.Quals, Policy);
1090 }
1091 static std::string getAsString(const Type *ty, Qualifiers qs,
1092 const PrintingPolicy &Policy);
1093
1094 std::string getAsString() const;
1095 std::string getAsString(const PrintingPolicy &Policy) const;
1096
1097 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1098 const Twine &PlaceHolder = Twine(),
1099 unsigned Indentation = 0) const;
1100
1101 static void print(SplitQualType split, raw_ostream &OS,
1102 const PrintingPolicy &policy, const Twine &PlaceHolder,
1103 unsigned Indentation = 0) {
1104 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1105 }
1106
1107 static void print(const Type *ty, Qualifiers qs,
1108 raw_ostream &OS, const PrintingPolicy &policy,
1109 const Twine &PlaceHolder,
1110 unsigned Indentation = 0);
1111
1112 void getAsStringInternal(std::string &Str,
1113 const PrintingPolicy &Policy) const;
1114
1115 static void getAsStringInternal(SplitQualType split, std::string &out,
1116 const PrintingPolicy &policy) {
1117 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1118 }
1119
1120 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1121 std::string &out,
1122 const PrintingPolicy &policy);
1123
1124 class StreamedQualTypeHelper {
1125 const QualType &T;
1126 const PrintingPolicy &Policy;
1127 const Twine &PlaceHolder;
1128 unsigned Indentation;
1129
1130 public:
1131 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1132 const Twine &PlaceHolder, unsigned Indentation)
1133 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1134 Indentation(Indentation) {}
1135
1136 friend raw_ostream &operator<<(raw_ostream &OS,
1137 const StreamedQualTypeHelper &SQT) {
1138 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1139 return OS;
1140 }
1141 };
1142
1143 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1144 const Twine &PlaceHolder = Twine(),
1145 unsigned Indentation = 0) const {
1146 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1147 }
1148
1149 void dump(const char *s) const;
1150 void dump() const;
1151 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1152
1153 void Profile(llvm::FoldingSetNodeID &ID) const {
1154 ID.AddPointer(getAsOpaquePtr());
1155 }
1156
1157 /// Check if this type has any address space qualifier.
1158 inline bool hasAddressSpace() const;
1159
1160 /// Return the address space of this type.
1161 inline LangAS getAddressSpace() const;
1162
1163 /// Returns true if address space qualifiers overlap with T address space
1164 /// qualifiers.
1165 /// OpenCL C defines conversion rules for pointers to different address spaces
1166 /// and notion of overlapping address spaces.
1167 /// CL1.1 or CL1.2:
1168 /// address spaces overlap iff they are they same.
1169 /// OpenCL C v2.0 s6.5.5 adds:
1170 /// __generic overlaps with any address space except for __constant.
1171 bool isAddressSpaceOverlapping(QualType T) const {
1172 Qualifiers Q = getQualifiers();
1173 Qualifiers TQ = T.getQualifiers();
1174 // Address spaces overlap if at least one of them is a superset of another
1175 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1176 }
1177
1178 /// Returns gc attribute of this type.
1179 inline Qualifiers::GC getObjCGCAttr() const;
1180
1181 /// true when Type is objc's weak.
1182 bool isObjCGCWeak() const {
1183 return getObjCGCAttr() == Qualifiers::Weak;
1184 }
1185
1186 /// true when Type is objc's strong.
1187 bool isObjCGCStrong() const {
1188 return getObjCGCAttr() == Qualifiers::Strong;
1189 }
1190
1191 /// Returns lifetime attribute of this type.
1192 Qualifiers::ObjCLifetime getObjCLifetime() const {
1193 return getQualifiers().getObjCLifetime();
1194 }
1195
1196 bool hasNonTrivialObjCLifetime() const {
1197 return getQualifiers().hasNonTrivialObjCLifetime();
1198 }
1199
1200 bool hasStrongOrWeakObjCLifetime() const {
1201 return getQualifiers().hasStrongOrWeakObjCLifetime();
1202 }
1203
1204 // true when Type is objc's weak and weak is enabled but ARC isn't.
1205 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1206
1207 enum PrimitiveDefaultInitializeKind {
1208 /// The type does not fall into any of the following categories. Note that
1209 /// this case is zero-valued so that values of this enum can be used as a
1210 /// boolean condition for non-triviality.
1211 PDIK_Trivial,
1212
1213 /// The type is an Objective-C retainable pointer type that is qualified
1214 /// with the ARC __strong qualifier.
1215 PDIK_ARCStrong,
1216
1217 /// The type is an Objective-C retainable pointer type that is qualified
1218 /// with the ARC __weak qualifier.
1219 PDIK_ARCWeak,
1220
1221 /// The type is a struct containing a field whose type is not PCK_Trivial.
1222 PDIK_Struct
1223 };
1224
1225 /// Functions to query basic properties of non-trivial C struct types.
1226
1227 /// Check if this is a non-trivial type that would cause a C struct
1228 /// transitively containing this type to be non-trivial to default initialize
1229 /// and return the kind.
1230 PrimitiveDefaultInitializeKind
1231 isNonTrivialToPrimitiveDefaultInitialize() const;
1232
1233 enum PrimitiveCopyKind {
1234 /// The type does not fall into any of the following categories. Note that
1235 /// this case is zero-valued so that values of this enum can be used as a
1236 /// boolean condition for non-triviality.
1237 PCK_Trivial,
1238
1239 /// The type would be trivial except that it is volatile-qualified. Types
1240 /// that fall into one of the other non-trivial cases may additionally be
1241 /// volatile-qualified.
1242 PCK_VolatileTrivial,
1243
1244 /// The type is an Objective-C retainable pointer type that is qualified
1245 /// with the ARC __strong qualifier.
1246 PCK_ARCStrong,
1247
1248 /// The type is an Objective-C retainable pointer type that is qualified
1249 /// with the ARC __weak qualifier.
1250 PCK_ARCWeak,
1251
1252 /// The type is a struct containing a field whose type is neither
1253 /// PCK_Trivial nor PCK_VolatileTrivial.
1254 /// Note that a C++ struct type does not necessarily match this; C++ copying
1255 /// semantics are too complex to express here, in part because they depend
1256 /// on the exact constructor or assignment operator that is chosen by
1257 /// overload resolution to do the copy.
1258 PCK_Struct
1259 };
1260
1261 /// Check if this is a non-trivial type that would cause a C struct
1262 /// transitively containing this type to be non-trivial to copy and return the
1263 /// kind.
1264 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1265
1266 /// Check if this is a non-trivial type that would cause a C struct
1267 /// transitively containing this type to be non-trivial to destructively
1268 /// move and return the kind. Destructive move in this context is a C++-style
1269 /// move in which the source object is placed in a valid but unspecified state
1270 /// after it is moved, as opposed to a truly destructive move in which the
1271 /// source object is placed in an uninitialized state.
1272 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1273
1274 enum DestructionKind {
1275 DK_none,
1276 DK_cxx_destructor,
1277 DK_objc_strong_lifetime,
1278 DK_objc_weak_lifetime,
1279 DK_nontrivial_c_struct
1280 };
1281
1282 /// Returns a nonzero value if objects of this type require
1283 /// non-trivial work to clean up after. Non-zero because it's
1284 /// conceivable that qualifiers (objc_gc(weak)?) could make
1285 /// something require destruction.
1286 DestructionKind isDestructedType() const {
1287 return isDestructedTypeImpl(*this);
1288 }
1289
1290 /// Check if this is or contains a C union that is non-trivial to
1291 /// default-initialize, which is a union that has a member that is non-trivial
1292 /// to default-initialize. If this returns true,
1293 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1294 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1295
1296 /// Check if this is or contains a C union that is non-trivial to destruct,
1297 /// which is a union that has a member that is non-trivial to destruct. If
1298 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1299 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1300
1301 /// Check if this is or contains a C union that is non-trivial to copy, which
1302 /// is a union that has a member that is non-trivial to copy. If this returns
1303 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1304 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1305
1306 /// Determine whether expressions of the given type are forbidden
1307 /// from being lvalues in C.
1308 ///
1309 /// The expression types that are forbidden to be lvalues are:
1310 /// - 'void', but not qualified void
1311 /// - function types
1312 ///
1313 /// The exact rule here is C99 6.3.2.1:
1314 /// An lvalue is an expression with an object type or an incomplete
1315 /// type other than void.
1316 bool isCForbiddenLValueType() const;
1317
1318 /// Substitute type arguments for the Objective-C type parameters used in the
1319 /// subject type.
1320 ///
1321 /// \param ctx ASTContext in which the type exists.
1322 ///
1323 /// \param typeArgs The type arguments that will be substituted for the
1324 /// Objective-C type parameters in the subject type, which are generally
1325 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1326 /// parameters will be replaced with their bounds or id/Class, as appropriate
1327 /// for the context.
1328 ///
1329 /// \param context The context in which the subject type was written.
1330 ///
1331 /// \returns the resulting type.
1332 QualType substObjCTypeArgs(ASTContext &ctx,
1333 ArrayRef<QualType> typeArgs,
1334 ObjCSubstitutionContext context) const;
1335
1336 /// Substitute type arguments from an object type for the Objective-C type
1337 /// parameters used in the subject type.
1338 ///
1339 /// This operation combines the computation of type arguments for
1340 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1341 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1342 /// callers that need to perform a single substitution in isolation.
1343 ///
1344 /// \param objectType The type of the object whose member type we're
1345 /// substituting into. For example, this might be the receiver of a message
1346 /// or the base of a property access.
1347 ///
1348 /// \param dc The declaration context from which the subject type was
1349 /// retrieved, which indicates (for example) which type parameters should
1350 /// be substituted.
1351 ///
1352 /// \param context The context in which the subject type was written.
1353 ///
1354 /// \returns the subject type after replacing all of the Objective-C type
1355 /// parameters with their corresponding arguments.
1356 QualType substObjCMemberType(QualType objectType,
1357 const DeclContext *dc,
1358 ObjCSubstitutionContext context) const;
1359
1360 /// Strip Objective-C "__kindof" types from the given type.
1361 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1362
1363 /// Remove all qualifiers including _Atomic.
1364 QualType getAtomicUnqualifiedType() const;
1365
1366private:
1367 // These methods are implemented in a separate translation unit;
1368 // "static"-ize them to avoid creating temporary QualTypes in the
1369 // caller.
1370 static bool isConstant(QualType T, const ASTContext& Ctx);
1371 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1372 static SplitQualType getSplitDesugaredType(QualType T);
1373 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1374 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1375 const ASTContext &C);
1376 static QualType IgnoreParens(QualType T);
1377 static DestructionKind isDestructedTypeImpl(QualType type);
1378
1379 /// Check if \param RD is or contains a non-trivial C union.
1380 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1381 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1382 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1383};
1384
1385raw_ostream &operator<<(raw_ostream &OS, QualType QT);
1386
1387} // namespace clang
1388
1389namespace llvm {
1390
1391/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1392/// to a specific Type class.
1393template<> struct simplify_type< ::clang::QualType> {
1394 using SimpleType = const ::clang::Type *;
1395
1396 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1397 return Val.getTypePtr();
1398 }
1399};
1400
1401// Teach SmallPtrSet that QualType is "basically a pointer".
1402template<>
1403struct PointerLikeTypeTraits<clang::QualType> {
1404 static inline void *getAsVoidPointer(clang::QualType P) {
1405 return P.getAsOpaquePtr();
1406 }
1407
1408 static inline clang::QualType getFromVoidPointer(void *P) {
1409 return clang::QualType::getFromOpaquePtr(P);
1410 }
1411
1412 // Various qualifiers go in low bits.
1413 static constexpr int NumLowBitsAvailable = 0;
1414};
1415
1416} // namespace llvm
1417
1418namespace clang {
1419
1420/// Base class that is common to both the \c ExtQuals and \c Type
1421/// classes, which allows \c QualType to access the common fields between the
1422/// two.
1423class ExtQualsTypeCommonBase {
1424 friend class ExtQuals;
1425 friend class QualType;
1426 friend class Type;
1427
1428 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1429 /// a self-referential pointer (for \c Type).
1430 ///
1431 /// This pointer allows an efficient mapping from a QualType to its
1432 /// underlying type pointer.
1433 const Type *const BaseType;
1434
1435 /// The canonical type of this type. A QualType.
1436 QualType CanonicalType;
1437
1438 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1439 : BaseType(baseType), CanonicalType(canon) {}
1440};
1441
1442/// We can encode up to four bits in the low bits of a
1443/// type pointer, but there are many more type qualifiers that we want
1444/// to be able to apply to an arbitrary type. Therefore we have this
1445/// struct, intended to be heap-allocated and used by QualType to
1446/// store qualifiers.
1447///
1448/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1449/// in three low bits on the QualType pointer; a fourth bit records whether
1450/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1451/// Objective-C GC attributes) are much more rare.
1452class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1453 // NOTE: changing the fast qualifiers should be straightforward as
1454 // long as you don't make 'const' non-fast.
1455 // 1. Qualifiers:
1456 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1457 // Fast qualifiers must occupy the low-order bits.
1458 // b) Update Qualifiers::FastWidth and FastMask.
1459 // 2. QualType:
1460 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1461 // b) Update remove{Volatile,Restrict}, defined near the end of
1462 // this header.
1463 // 3. ASTContext:
1464 // a) Update get{Volatile,Restrict}Type.
1465
1466 /// The immutable set of qualifiers applied by this node. Always contains
1467 /// extended qualifiers.
1468 Qualifiers Quals;
1469
1470 ExtQuals *this_() { return this; }
1471
1472public:
1473 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1474 : ExtQualsTypeCommonBase(baseType,
1475 canon.isNull() ? QualType(this_(), 0) : canon),
1476 Quals(quals) {
1477 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1478, __extension__ __PRETTY_FUNCTION__
))
1478 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1478, __extension__ __PRETTY_FUNCTION__
))
;
1479 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1480, __extension__ __PRETTY_FUNCTION__
))
1480 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1480, __extension__ __PRETTY_FUNCTION__
))
;
1481 }
1482
1483 Qualifiers getQualifiers() const { return Quals; }
1484
1485 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1486 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1487
1488 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1489 Qualifiers::ObjCLifetime getObjCLifetime() const {
1490 return Quals.getObjCLifetime();
1491 }
1492
1493 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1494 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1495
1496 const Type *getBaseType() const { return BaseType; }
1497
1498public:
1499 void Profile(llvm::FoldingSetNodeID &ID) const {
1500 Profile(ID, getBaseType(), Quals);
1501 }
1502
1503 static void Profile(llvm::FoldingSetNodeID &ID,
1504 const Type *BaseType,
1505 Qualifiers Quals) {
1506 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "clang/include/clang/AST/Type.h", 1506, __extension__ __PRETTY_FUNCTION__
))
;
1507 ID.AddPointer(BaseType);
1508 Quals.Profile(ID);
1509 }
1510};
1511
1512/// The kind of C++11 ref-qualifier associated with a function type.
1513/// This determines whether a member function's "this" object can be an
1514/// lvalue, rvalue, or neither.
1515enum RefQualifierKind {
1516 /// No ref-qualifier was provided.
1517 RQ_None = 0,
1518
1519 /// An lvalue ref-qualifier was provided (\c &).
1520 RQ_LValue,
1521
1522 /// An rvalue ref-qualifier was provided (\c &&).
1523 RQ_RValue
1524};
1525
1526/// Which keyword(s) were used to create an AutoType.
1527enum class AutoTypeKeyword {
1528 /// auto
1529 Auto,
1530
1531 /// decltype(auto)
1532 DecltypeAuto,
1533
1534 /// __auto_type (GNU extension)
1535 GNUAutoType
1536};
1537
1538/// The base class of the type hierarchy.
1539///
1540/// A central concept with types is that each type always has a canonical
1541/// type. A canonical type is the type with any typedef names stripped out
1542/// of it or the types it references. For example, consider:
1543///
1544/// typedef int foo;
1545/// typedef foo* bar;
1546/// 'int *' 'foo *' 'bar'
1547///
1548/// There will be a Type object created for 'int'. Since int is canonical, its
1549/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1550/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1551/// there is a PointerType that represents 'int*', which, like 'int', is
1552/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1553/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1554/// is also 'int*'.
1555///
1556/// Non-canonical types are useful for emitting diagnostics, without losing
1557/// information about typedefs being used. Canonical types are useful for type
1558/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1559/// about whether something has a particular form (e.g. is a function type),
1560/// because they implicitly, recursively, strip all typedefs out of a type.
1561///
1562/// Types, once created, are immutable.
1563///
1564class alignas(8) Type : public ExtQualsTypeCommonBase {
1565public:
1566 enum TypeClass {
1567#define TYPE(Class, Base) Class,
1568#define LAST_TYPE(Class) TypeLast = Class
1569#define ABSTRACT_TYPE(Class, Base)
1570#include "clang/AST/TypeNodes.inc"
1571 };
1572
1573private:
1574 /// Bitfields required by the Type class.
1575 class TypeBitfields {
1576 friend class Type;
1577 template <class T> friend class TypePropertyCache;
1578
1579 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1580 unsigned TC : 8;
1581
1582 /// Store information on the type dependency.
1583 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1584
1585 /// True if the cache (i.e. the bitfields here starting with
1586 /// 'Cache') is valid.
1587 mutable unsigned CacheValid : 1;
1588
1589 /// Linkage of this type.
1590 mutable unsigned CachedLinkage : 3;
1591
1592 /// Whether this type involves and local or unnamed types.
1593 mutable unsigned CachedLocalOrUnnamed : 1;
1594
1595 /// Whether this type comes from an AST file.
1596 mutable unsigned FromAST : 1;
1597
1598 bool isCacheValid() const {
1599 return CacheValid;
1600 }
1601
1602 Linkage getLinkage() const {
1603 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1603, __extension__ __PRETTY_FUNCTION__
))
;
1604 return static_cast<Linkage>(CachedLinkage);
1605 }
1606
1607 bool hasLocalOrUnnamedType() const {
1608 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1608, __extension__ __PRETTY_FUNCTION__
))
;
1609 return CachedLocalOrUnnamed;
1610 }
1611 };
1612 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1613
1614protected:
1615 // These classes allow subclasses to somewhat cleanly pack bitfields
1616 // into Type.
1617
1618 class ArrayTypeBitfields {
1619 friend class ArrayType;
1620
1621 unsigned : NumTypeBits;
1622
1623 /// CVR qualifiers from declarations like
1624 /// 'int X[static restrict 4]'. For function parameters only.
1625 unsigned IndexTypeQuals : 3;
1626
1627 /// Storage class qualifiers from declarations like
1628 /// 'int X[static restrict 4]'. For function parameters only.
1629 /// Actually an ArrayType::ArraySizeModifier.
1630 unsigned SizeModifier : 3;
1631 };
1632
1633 class ConstantArrayTypeBitfields {
1634 friend class ConstantArrayType;
1635
1636 unsigned : NumTypeBits + 3 + 3;
1637
1638 /// Whether we have a stored size expression.
1639 unsigned HasStoredSizeExpr : 1;
1640 };
1641
1642 class BuiltinTypeBitfields {
1643 friend class BuiltinType;
1644
1645 unsigned : NumTypeBits;
1646
1647 /// The kind (BuiltinType::Kind) of builtin type this is.
1648 unsigned Kind : 8;
1649 };
1650
1651 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1652 /// Only common bits are stored here. Additional uncommon bits are stored
1653 /// in a trailing object after FunctionProtoType.
1654 class FunctionTypeBitfields {
1655 friend class FunctionProtoType;
1656 friend class FunctionType;
1657
1658 unsigned : NumTypeBits;
1659
1660 /// Extra information which affects how the function is called, like
1661 /// regparm and the calling convention.
1662 unsigned ExtInfo : 13;
1663
1664 /// The ref-qualifier associated with a \c FunctionProtoType.
1665 ///
1666 /// This is a value of type \c RefQualifierKind.
1667 unsigned RefQualifier : 2;
1668
1669 /// Used only by FunctionProtoType, put here to pack with the
1670 /// other bitfields.
1671 /// The qualifiers are part of FunctionProtoType because...
1672 ///
1673 /// C++ 8.3.5p4: The return type, the parameter type list and the
1674 /// cv-qualifier-seq, [...], are part of the function type.
1675 unsigned FastTypeQuals : Qualifiers::FastWidth;
1676 /// Whether this function has extended Qualifiers.
1677 unsigned HasExtQuals : 1;
1678
1679 /// The number of parameters this function has, not counting '...'.
1680 /// According to [implimits] 8 bits should be enough here but this is
1681 /// somewhat easy to exceed with metaprogramming and so we would like to
1682 /// keep NumParams as wide as reasonably possible.
1683 unsigned NumParams : 16;
1684
1685 /// The type of exception specification this function has.
1686 unsigned ExceptionSpecType : 4;
1687
1688 /// Whether this function has extended parameter information.
1689 unsigned HasExtParameterInfos : 1;
1690
1691 /// Whether this function has extra bitfields for the prototype.
1692 unsigned HasExtraBitfields : 1;
1693
1694 /// Whether the function is variadic.
1695 unsigned Variadic : 1;
1696
1697 /// Whether this function has a trailing return type.
1698 unsigned HasTrailingReturn : 1;
1699 };
1700
1701 class ObjCObjectTypeBitfields {
1702 friend class ObjCObjectType;
1703
1704 unsigned : NumTypeBits;
1705
1706 /// The number of type arguments stored directly on this object type.
1707 unsigned NumTypeArgs : 7;
1708
1709 /// The number of protocols stored directly on this object type.
1710 unsigned NumProtocols : 6;
1711
1712 /// Whether this is a "kindof" type.
1713 unsigned IsKindOf : 1;
1714 };
1715
1716 class ReferenceTypeBitfields {
1717 friend class ReferenceType;
1718
1719 unsigned : NumTypeBits;
1720
1721 /// True if the type was originally spelled with an lvalue sigil.
1722 /// This is never true of rvalue references but can also be false
1723 /// on lvalue references because of C++0x [dcl.typedef]p9,
1724 /// as follows:
1725 ///
1726 /// typedef int &ref; // lvalue, spelled lvalue
1727 /// typedef int &&rvref; // rvalue
1728 /// ref &a; // lvalue, inner ref, spelled lvalue
1729 /// ref &&a; // lvalue, inner ref
1730 /// rvref &a; // lvalue, inner ref, spelled lvalue
1731 /// rvref &&a; // rvalue, inner ref
1732 unsigned SpelledAsLValue : 1;
1733
1734 /// True if the inner type is a reference type. This only happens
1735 /// in non-canonical forms.
1736 unsigned InnerRef : 1;
1737 };
1738
1739 class TypeWithKeywordBitfields {
1740 friend class TypeWithKeyword;
1741
1742 unsigned : NumTypeBits;
1743
1744 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1745 unsigned Keyword : 8;
1746 };
1747
1748 enum { NumTypeWithKeywordBits = 8 };
1749
1750 class ElaboratedTypeBitfields {
1751 friend class ElaboratedType;
1752
1753 unsigned : NumTypeBits;
1754 unsigned : NumTypeWithKeywordBits;
1755
1756 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1757 unsigned HasOwnedTagDecl : 1;
1758 };
1759
1760 class VectorTypeBitfields {
1761 friend class VectorType;
1762 friend class DependentVectorType;
1763
1764 unsigned : NumTypeBits;
1765
1766 /// The kind of vector, either a generic vector type or some
1767 /// target-specific vector type such as for AltiVec or Neon.
1768 unsigned VecKind : 3;
1769 /// The number of elements in the vector.
1770 uint32_t NumElements;
1771 };
1772
1773 class AttributedTypeBitfields {
1774 friend class AttributedType;
1775
1776 unsigned : NumTypeBits;
1777
1778 /// An AttributedType::Kind
1779 unsigned AttrKind : 32 - NumTypeBits;
1780 };
1781
1782 class AutoTypeBitfields {
1783 friend class AutoType;
1784
1785 unsigned : NumTypeBits;
1786
1787 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1788 /// or '__auto_type'? AutoTypeKeyword value.
1789 unsigned Keyword : 2;
1790
1791 /// The number of template arguments in the type-constraints, which is
1792 /// expected to be able to hold at least 1024 according to [implimits].
1793 /// However as this limit is somewhat easy to hit with template
1794 /// metaprogramming we'd prefer to keep it as large as possible.
1795 /// At the moment it has been left as a non-bitfield since this type
1796 /// safely fits in 64 bits as an unsigned, so there is no reason to
1797 /// introduce the performance impact of a bitfield.
1798 unsigned NumArgs;
1799 };
1800
1801 class TypeOfBitfields {
1802 friend class TypeOfType;
1803 friend class TypeOfExprType;
1804
1805 unsigned : NumTypeBits;
1806 unsigned IsUnqual : 1; // If true: typeof_unqual, else: typeof
1807 };
1808
1809 class UsingBitfields {
1810 friend class UsingType;
1811
1812 unsigned : NumTypeBits;
1813
1814 /// True if the underlying type is different from the declared one.
1815 unsigned hasTypeDifferentFromDecl : 1;
1816 };
1817
1818 class TypedefBitfields {
1819 friend class TypedefType;
1820
1821 unsigned : NumTypeBits;
1822
1823 /// True if the underlying type is different from the declared one.
1824 unsigned hasTypeDifferentFromDecl : 1;
1825 };
1826
1827 class SubstTemplateTypeParmTypeBitfields {
1828 friend class SubstTemplateTypeParmType;
1829
1830 unsigned : NumTypeBits;
1831
1832 unsigned HasNonCanonicalUnderlyingType : 1;
1833
1834 // The index of the template parameter this substitution represents.
1835 unsigned Index : 15;
1836
1837 /// Represents the index within a pack if this represents a substitution
1838 /// from a pack expansion. This index starts at the end of the pack and
1839 /// increments towards the beginning.
1840 /// Positive non-zero number represents the index + 1.
1841 /// Zero means this is not substituted from an expansion.
1842 unsigned PackIndex : 16;
1843 };
1844
1845 class SubstTemplateTypeParmPackTypeBitfields {
1846 friend class SubstTemplateTypeParmPackType;
1847
1848 unsigned : NumTypeBits;
1849
1850 // The index of the template parameter this substitution represents.
1851 unsigned Index : 16;
1852
1853 /// The number of template arguments in \c Arguments, which is
1854 /// expected to be able to hold at least 1024 according to [implimits].
1855 /// However as this limit is somewhat easy to hit with template
1856 /// metaprogramming we'd prefer to keep it as large as possible.
1857 unsigned NumArgs : 16;
1858 };
1859
1860 class TemplateSpecializationTypeBitfields {
1861 friend class TemplateSpecializationType;
1862
1863 unsigned : NumTypeBits;
1864
1865 /// Whether this template specialization type is a substituted type alias.
1866 unsigned TypeAlias : 1;
1867
1868 /// The number of template arguments named in this class template
1869 /// specialization, which is expected to be able to hold at least 1024
1870 /// according to [implimits]. However, as this limit is somewhat easy to
1871 /// hit with template metaprogramming we'd prefer to keep it as large
1872 /// as possible. At the moment it has been left as a non-bitfield since
1873 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1874 /// to introduce the performance impact of a bitfield.
1875 unsigned NumArgs;
1876 };
1877
1878 class DependentTemplateSpecializationTypeBitfields {
1879 friend class DependentTemplateSpecializationType;
1880
1881 unsigned : NumTypeBits;
1882 unsigned : NumTypeWithKeywordBits;
1883
1884 /// The number of template arguments named in this class template
1885 /// specialization, which is expected to be able to hold at least 1024
1886 /// according to [implimits]. However, as this limit is somewhat easy to
1887 /// hit with template metaprogramming we'd prefer to keep it as large
1888 /// as possible. At the moment it has been left as a non-bitfield since
1889 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1890 /// to introduce the performance impact of a bitfield.
1891 unsigned NumArgs;
1892 };
1893
1894 class PackExpansionTypeBitfields {
1895 friend class PackExpansionType;
1896
1897 unsigned : NumTypeBits;
1898
1899 /// The number of expansions that this pack expansion will
1900 /// generate when substituted (+1), which is expected to be able to
1901 /// hold at least 1024 according to [implimits]. However, as this limit
1902 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1903 /// keep it as large as possible. At the moment it has been left as a
1904 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1905 /// there is no reason to introduce the performance impact of a bitfield.
1906 ///
1907 /// This field will only have a non-zero value when some of the parameter
1908 /// packs that occur within the pattern have been substituted but others
1909 /// have not.
1910 unsigned NumExpansions;
1911 };
1912
1913 union {
1914 TypeBitfields TypeBits;
1915 ArrayTypeBitfields ArrayTypeBits;
1916 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1917 AttributedTypeBitfields AttributedTypeBits;
1918 AutoTypeBitfields AutoTypeBits;
1919 TypeOfBitfields TypeOfBits;
1920 TypedefBitfields TypedefBits;
1921 UsingBitfields UsingBits;
1922 BuiltinTypeBitfields BuiltinTypeBits;
1923 FunctionTypeBitfields FunctionTypeBits;
1924 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1925 ReferenceTypeBitfields ReferenceTypeBits;
1926 TypeWithKeywordBitfields TypeWithKeywordBits;
1927 ElaboratedTypeBitfields ElaboratedTypeBits;
1928 VectorTypeBitfields VectorTypeBits;
1929 SubstTemplateTypeParmTypeBitfields SubstTemplateTypeParmTypeBits;
1930 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1931 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1932 DependentTemplateSpecializationTypeBitfields
1933 DependentTemplateSpecializationTypeBits;
1934 PackExpansionTypeBitfields PackExpansionTypeBits;
1935 };
1936
1937private:
1938 template <class T> friend class TypePropertyCache;
1939
1940 /// Set whether this type comes from an AST file.
1941 void setFromAST(bool V = true) const {
1942 TypeBits.FromAST = V;
1943 }
1944
1945protected:
1946 friend class ASTContext;
1947
1948 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1949 : ExtQualsTypeCommonBase(this,
1950 canon.isNull() ? QualType(this_(), 0) : canon) {
1951 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1952 "changing bitfields changed sizeof(Type)!");
1953 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1954 "Insufficient alignment!");
1955 TypeBits.TC = tc;
1956 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1957 TypeBits.CacheValid = false;
1958 TypeBits.CachedLocalOrUnnamed = false;
1959 TypeBits.CachedLinkage = NoLinkage;
1960 TypeBits.FromAST = false;
1961 }
1962
1963 // silence VC++ warning C4355: 'this' : used in base member initializer list
1964 Type *this_() { return this; }
1965
1966 void setDependence(TypeDependence D) {
1967 TypeBits.Dependence = static_cast<unsigned>(D);
1968 }
1969
1970 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1971
1972public:
1973 friend class ASTReader;
1974 friend class ASTWriter;
1975 template <class T> friend class serialization::AbstractTypeReader;
1976 template <class T> friend class serialization::AbstractTypeWriter;
1977
1978 Type(const Type &) = delete;
1979 Type(Type &&) = delete;
1980 Type &operator=(const Type &) = delete;
1981 Type &operator=(Type &&) = delete;
1982
1983 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1984
1985 /// Whether this type comes from an AST file.
1986 bool isFromAST() const { return TypeBits.FromAST; }
1987
1988 /// Whether this type is or contains an unexpanded parameter
1989 /// pack, used to support C++0x variadic templates.
1990 ///
1991 /// A type that contains a parameter pack shall be expanded by the
1992 /// ellipsis operator at some point. For example, the typedef in the
1993 /// following example contains an unexpanded parameter pack 'T':
1994 ///
1995 /// \code
1996 /// template<typename ...T>
1997 /// struct X {
1998 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1999 /// };
2000 /// \endcode
2001 ///
2002 /// Note that this routine does not specify which
2003 bool containsUnexpandedParameterPack() const {
2004 return getDependence() & TypeDependence::UnexpandedPack;
2005 }
2006
2007 /// Determines if this type would be canonical if it had no further
2008 /// qualification.
2009 bool isCanonicalUnqualified() const {
2010 return CanonicalType == QualType(this, 0);
2011 }
2012
2013 /// Pull a single level of sugar off of this locally-unqualified type.
2014 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
2015 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
2016 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
2017
2018 /// As an extension, we classify types as one of "sized" or "sizeless";
2019 /// every type is one or the other. Standard types are all sized;
2020 /// sizeless types are purely an extension.
2021 ///
2022 /// Sizeless types contain data with no specified size, alignment,
2023 /// or layout.
2024 bool isSizelessType() const;
2025 bool isSizelessBuiltinType() const;
2026
2027 /// Determines if this is a sizeless type supported by the
2028 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
2029 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
2030 bool isVLSTBuiltinType() const;
2031
2032 /// Returns the representative type for the element of an SVE builtin type.
2033 /// This is used to represent fixed-length SVE vectors created with the
2034 /// 'arm_sve_vector_bits' type attribute as VectorType.
2035 QualType getSveEltType(const ASTContext &Ctx) const;
2036
2037 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
2038 /// object types, function types, and incomplete types.
2039
2040 /// Return true if this is an incomplete type.
2041 /// A type that can describe objects, but which lacks information needed to
2042 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
2043 /// routine will need to determine if the size is actually required.
2044 ///
2045 /// Def If non-null, and the type refers to some kind of declaration
2046 /// that can be completed (such as a C struct, C++ class, or Objective-C
2047 /// class), will be set to the declaration.
2048 bool isIncompleteType(NamedDecl **Def = nullptr) const;
2049
2050 /// Return true if this is an incomplete or object
2051 /// type, in other words, not a function type.
2052 bool isIncompleteOrObjectType() const {
2053 return !isFunctionType();
2054 }
2055
2056 /// Determine whether this type is an object type.
2057 bool isObjectType() const {
2058 // C++ [basic.types]p8:
2059 // An object type is a (possibly cv-qualified) type that is not a
2060 // function type, not a reference type, and not a void type.
2061 return !isReferenceType() && !isFunctionType() && !isVoidType();
2062 }
2063
2064 /// Return true if this is a literal type
2065 /// (C++11 [basic.types]p10)
2066 bool isLiteralType(const ASTContext &Ctx) const;
2067
2068 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
2069 bool isStructuralType() const;
2070
2071 /// Test if this type is a standard-layout type.
2072 /// (C++0x [basic.type]p9)
2073 bool isStandardLayoutType() const;
2074
2075 /// Helper methods to distinguish type categories. All type predicates
2076 /// operate on the canonical type, ignoring typedefs and qualifiers.
2077
2078 /// Returns true if the type is a builtin type.
2079 bool isBuiltinType() const;
2080
2081 /// Test for a particular builtin type.
2082 bool isSpecificBuiltinType(unsigned K) const;
2083
2084 /// Test for a type which does not represent an actual type-system type but
2085 /// is instead used as a placeholder for various convenient purposes within
2086 /// Clang. All such types are BuiltinTypes.
2087 bool isPlaceholderType() const;
2088 const BuiltinType *getAsPlaceholderType() const;
2089
2090 /// Test for a specific placeholder type.
2091 bool isSpecificPlaceholderType(unsigned K) const;
2092
2093 /// Test for a placeholder type other than Overload; see
2094 /// BuiltinType::isNonOverloadPlaceholderType.
2095 bool isNonOverloadPlaceholderType() const;
2096
2097 /// isIntegerType() does *not* include complex integers (a GCC extension).
2098 /// isComplexIntegerType() can be used to test for complex integers.
2099 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
2100 bool isEnumeralType() const;
2101
2102 /// Determine whether this type is a scoped enumeration type.
2103 bool isScopedEnumeralType() const;
2104 bool isBooleanType() const;
2105 bool isCharType() const;
2106 bool isWideCharType() const;
2107 bool isChar8Type() const;
2108 bool isChar16Type() const;
2109 bool isChar32Type() const;
2110 bool isAnyCharacterType() const;
2111 bool isIntegralType(const ASTContext &Ctx) const;
2112
2113 /// Determine whether this type is an integral or enumeration type.
2114 bool isIntegralOrEnumerationType() const;
2115
2116 /// Determine whether this type is an integral or unscoped enumeration type.
2117 bool isIntegralOrUnscopedEnumerationType() const;
2118 bool isUnscopedEnumerationType() const;
2119
2120 /// Floating point categories.
2121 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
2122 /// isComplexType() does *not* include complex integers (a GCC extension).
2123 /// isComplexIntegerType() can be used to test for complex integers.
2124 bool isComplexType() const; // C99 6.2.5p11 (complex)
2125 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2126 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2127 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2128 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2129 bool isBFloat16Type() const;
2130 bool isFloat128Type() const;
2131 bool isIbm128Type() const;
2132 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2133 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2134 bool isVoidType() const; // C99 6.2.5p19
2135 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2136 bool isAggregateType() const;
2137 bool isFundamentalType() const;
2138 bool isCompoundType() const;
2139
2140 // Type Predicates: Check to see if this type is structurally the specified
2141 // type, ignoring typedefs and qualifiers.
2142 bool isFunctionType() const;
2143 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2144 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2145 bool isPointerType() const;
2146 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2147 bool isBlockPointerType() const;
2148 bool isVoidPointerType() const;
2149 bool isReferenceType() const;
2150 bool isLValueReferenceType() const;
2151 bool isRValueReferenceType() const;
2152 bool isObjectPointerType() const;
2153 bool isFunctionPointerType() const;
2154 bool isFunctionReferenceType() const;
2155 bool isMemberPointerType() const;
2156 bool isMemberFunctionPointerType() const;
2157 bool isMemberDataPointerType() const;
2158 bool isArrayType() const;
2159 bool isConstantArrayType() const;
2160 bool isIncompleteArrayType() const;
2161 bool isVariableArrayType() const;
2162 bool isDependentSizedArrayType() const;
2163 bool isRecordType() const;
2164 bool isClassType() const;
2165 bool isStructureType() const;
2166 bool isObjCBoxableRecordType() const;
2167 bool isInterfaceType() const;
2168 bool isStructureOrClassType() const;
2169 bool isUnionType() const;
2170 bool isComplexIntegerType() const; // GCC _Complex integer type.
2171 bool isVectorType() const; // GCC vector type.
2172 bool isExtVectorType() const; // Extended vector type.
2173 bool isExtVectorBoolType() const; // Extended vector type with bool element.
2174 bool isMatrixType() const; // Matrix type.
2175 bool isConstantMatrixType() const; // Constant matrix type.
2176 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2177 bool isObjCObjectPointerType() const; // pointer to ObjC object
2178 bool isObjCRetainableType() const; // ObjC object or block pointer
2179 bool isObjCLifetimeType() const; // (array of)* retainable type
2180 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2181 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2182 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2183 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2184 // for the common case.
2185 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2186 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2187 bool isObjCQualifiedIdType() const; // id<foo>
2188 bool isObjCQualifiedClassType() const; // Class<foo>
2189 bool isObjCObjectOrInterfaceType() const;
2190 bool isObjCIdType() const; // id
2191 bool isDecltypeType() const;
2192 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2193 /// qualifier?
2194 ///
2195 /// This approximates the answer to the following question: if this
2196 /// translation unit were compiled in ARC, would this type be qualified
2197 /// with __unsafe_unretained?
2198 bool isObjCInertUnsafeUnretainedType() const {
2199 return hasAttr(attr::ObjCInertUnsafeUnretained);
2200 }
2201
2202 /// Whether the type is Objective-C 'id' or a __kindof type of an
2203 /// object type, e.g., __kindof NSView * or __kindof id
2204 /// <NSCopying>.
2205 ///
2206 /// \param bound Will be set to the bound on non-id subtype types,
2207 /// which will be (possibly specialized) Objective-C class type, or
2208 /// null for 'id.
2209 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2210 const ObjCObjectType *&bound) const;
2211
2212 bool isObjCClassType() const; // Class
2213
2214 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2215 /// Class type, e.g., __kindof Class <NSCopying>.
2216 ///
2217 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2218 /// here because Objective-C's type system cannot express "a class
2219 /// object for a subclass of NSFoo".
2220 bool isObjCClassOrClassKindOfType() const;
2221
2222 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2223 bool isObjCSelType() const; // Class
2224 bool isObjCBuiltinType() const; // 'id' or 'Class'
2225 bool isObjCARCBridgableType() const;
2226 bool isCARCBridgableType() const;
2227 bool isTemplateTypeParmType() const; // C++ template type parameter
2228 bool isNullPtrType() const; // C++11 std::nullptr_t or
2229 // C2x nullptr_t
2230 bool isNothrowT() const; // C++ std::nothrow_t
2231 bool isAlignValT() const; // C++17 std::align_val_t
2232 bool isStdByteType() const; // C++17 std::byte
2233 bool isAtomicType() const; // C11 _Atomic()
2234 bool isUndeducedAutoType() const; // C++11 auto or
2235 // C++14 decltype(auto)
2236 bool isTypedefNameType() const; // typedef or alias template
2237
2238#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2239 bool is##Id##Type() const;
2240#include "clang/Basic/OpenCLImageTypes.def"
2241
2242 bool isImageType() const; // Any OpenCL image type
2243
2244 bool isSamplerT() const; // OpenCL sampler_t
2245 bool isEventT() const; // OpenCL event_t
2246 bool isClkEventT() const; // OpenCL clk_event_t
2247 bool isQueueT() const; // OpenCL queue_t
2248 bool isReserveIDT() const; // OpenCL reserve_id_t
2249
2250#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2251 bool is##Id##Type() const;
2252#include "clang/Basic/OpenCLExtensionTypes.def"
2253 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2254 bool isOCLIntelSubgroupAVCType() const;
2255 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2256
2257 bool isPipeType() const; // OpenCL pipe type
2258 bool isBitIntType() const; // Bit-precise integer type
2259 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2260
2261 /// Determines if this type, which must satisfy
2262 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2263 /// than implicitly __strong.
2264 bool isObjCARCImplicitlyUnretainedType() const;
2265
2266 /// Check if the type is the CUDA device builtin surface type.
2267 bool isCUDADeviceBuiltinSurfaceType() const;
2268 /// Check if the type is the CUDA device builtin texture type.
2269 bool isCUDADeviceBuiltinTextureType() const;
2270
2271 bool isRVVType() const;
2272
2273 /// Return the implicit lifetime for this type, which must not be dependent.
2274 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2275
2276 enum ScalarTypeKind {
2277 STK_CPointer,
2278 STK_BlockPointer,
2279 STK_ObjCObjectPointer,
2280 STK_MemberPointer,
2281 STK_Bool,
2282 STK_Integral,
2283 STK_Floating,
2284 STK_IntegralComplex,
2285 STK_FloatingComplex,
2286 STK_FixedPoint
2287 };
2288
2289 /// Given that this is a scalar type, classify it.
2290 ScalarTypeKind getScalarTypeKind() const;
2291
2292 TypeDependence getDependence() const {
2293 return static_cast<TypeDependence>(TypeBits.Dependence);
2294 }
2295
2296 /// Whether this type is an error type.
2297 bool containsErrors() const {
2298 return getDependence() & TypeDependence::Error;
2299 }
2300
2301 /// Whether this type is a dependent type, meaning that its definition
2302 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2303 bool isDependentType() const {
2304 return getDependence() & TypeDependence::Dependent;
2305 }
2306
2307 /// Determine whether this type is an instantiation-dependent type,
2308 /// meaning that the type involves a template parameter (even if the
2309 /// definition does not actually depend on the type substituted for that
2310 /// template parameter).
2311 bool isInstantiationDependentType() const {
2312 return getDependence() & TypeDependence::Instantiation;
2313 }
2314
2315 /// Determine whether this type is an undeduced type, meaning that
2316 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2317 /// deduced.
2318 bool isUndeducedType() const;
2319
2320 /// Whether this type is a variably-modified type (C99 6.7.5).
2321 bool isVariablyModifiedType() const {
2322 return getDependence() & TypeDependence::VariablyModified;
2323 }
2324
2325 /// Whether this type involves a variable-length array type
2326 /// with a definite size.
2327 bool hasSizedVLAType() const;
2328
2329 /// Whether this type is or contains a local or unnamed type.
2330 bool hasUnnamedOrLocalType() const;
2331
2332 bool isOverloadableType() const;
2333
2334 /// Determine wither this type is a C++ elaborated-type-specifier.
2335 bool isElaboratedTypeSpecifier() const;
2336
2337 bool canDecayToPointerType() const;
2338
2339 /// Whether this type is represented natively as a pointer. This includes
2340 /// pointers, references, block pointers, and Objective-C interface,
2341 /// qualified id, and qualified interface types, as well as nullptr_t.
2342 bool hasPointerRepresentation() const;
2343
2344 /// Whether this type can represent an objective pointer type for the
2345 /// purpose of GC'ability
2346 bool hasObjCPointerRepresentation() const;
2347
2348 /// Determine whether this type has an integer representation
2349 /// of some sort, e.g., it is an integer type or a vector.
2350 bool hasIntegerRepresentation() const;
2351
2352 /// Determine whether this type has an signed integer representation
2353 /// of some sort, e.g., it is an signed integer type or a vector.
2354 bool hasSignedIntegerRepresentation() const;
2355
2356 /// Determine whether this type has an unsigned integer representation
2357 /// of some sort, e.g., it is an unsigned integer type or a vector.
2358 bool hasUnsignedIntegerRepresentation() const;
2359
2360 /// Determine whether this type has a floating-point representation
2361 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2362 bool hasFloatingRepresentation() const;
2363
2364 // Type Checking Functions: Check to see if this type is structurally the
2365 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2366 // the best type we can.
2367 const RecordType *getAsStructureType() const;
2368 /// NOTE: getAs*ArrayType are methods on ASTContext.
2369 const RecordType *getAsUnionType() const;
2370 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2371 const ObjCObjectType *getAsObjCInterfaceType() const;
2372
2373 // The following is a convenience method that returns an ObjCObjectPointerType
2374 // for object declared using an interface.
2375 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2376 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2377 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2378 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2379
2380 /// Retrieves the CXXRecordDecl that this type refers to, either
2381 /// because the type is a RecordType or because it is the injected-class-name
2382 /// type of a class template or class template partial specialization.
2383 CXXRecordDecl *getAsCXXRecordDecl() const;
2384
2385 /// Retrieves the RecordDecl this type refers to.
2386 RecordDecl *getAsRecordDecl() const;
2387
2388 /// Retrieves the TagDecl that this type refers to, either
2389 /// because the type is a TagType or because it is the injected-class-name
2390 /// type of a class template or class template partial specialization.
2391 TagDecl *getAsTagDecl() const;
2392
2393 /// If this is a pointer or reference to a RecordType, return the
2394 /// CXXRecordDecl that the type refers to.
2395 ///
2396 /// If this is not a pointer or reference, or the type being pointed to does
2397 /// not refer to a CXXRecordDecl, returns NULL.
2398 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2399
2400 /// Get the DeducedType whose type will be deduced for a variable with
2401 /// an initializer of this type. This looks through declarators like pointer
2402 /// types, but not through decltype or typedefs.
2403 DeducedType *getContainedDeducedType() const;
2404
2405 /// Get the AutoType whose type will be deduced for a variable with
2406 /// an initializer of this type. This looks through declarators like pointer
2407 /// types, but not through decltype or typedefs.
2408 AutoType *getContainedAutoType() const {
2409 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2410 }
2411
2412 /// Determine whether this type was written with a leading 'auto'
2413 /// corresponding to a trailing return type (possibly for a nested
2414 /// function type within a pointer to function type or similar).
2415 bool hasAutoForTrailingReturnType() const;
2416
2417 /// Member-template getAs<specific type>'. Look through sugar for
2418 /// an instance of \<specific type>. This scheme will eventually
2419 /// replace the specific getAsXXXX methods above.
2420 ///
2421 /// There are some specializations of this member template listed
2422 /// immediately following this class.
2423 template <typename T> const T *getAs() const;
2424
2425 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2426 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2427 /// This is used when you need to walk over sugar nodes that represent some
2428 /// kind of type adjustment from a type that was written as a \<specific type>
2429 /// to another type that is still canonically a \<specific type>.
2430 template <typename T> const T *getAsAdjusted() const;
2431
2432 /// A variant of getAs<> for array types which silently discards
2433 /// qualifiers from the outermost type.
2434 const ArrayType *getAsArrayTypeUnsafe() const;
2435
2436 /// Member-template castAs<specific type>. Look through sugar for
2437 /// the underlying instance of \<specific type>.
2438 ///
2439 /// This method has the same relationship to getAs<T> as cast<T> has
2440 /// to dyn_cast<T>; which is to say, the underlying type *must*
2441 /// have the intended type, and this method will never return null.
2442 template <typename T> const T *castAs() const;
2443
2444 /// A variant of castAs<> for array type which silently discards
2445 /// qualifiers from the outermost type.
2446 const ArrayType *castAsArrayTypeUnsafe() const;
2447
2448 /// Determine whether this type had the specified attribute applied to it
2449 /// (looking through top-level type sugar).
2450 bool hasAttr(attr::Kind AK) const;
2451
2452 /// Get the base element type of this type, potentially discarding type
2453 /// qualifiers. This should never be used when type qualifiers
2454 /// are meaningful.
2455 const Type *getBaseElementTypeUnsafe() const;
2456
2457 /// If this is an array type, return the element type of the array,
2458 /// potentially with type qualifiers missing.
2459 /// This should never be used when type qualifiers are meaningful.
2460 const Type *getArrayElementTypeNoTypeQual() const;
2461
2462 /// If this is a pointer type, return the pointee type.
2463 /// If this is an array type, return the array element type.
2464 /// This should never be used when type qualifiers are meaningful.
2465 const Type *getPointeeOrArrayElementType() const;
2466
2467 /// If this is a pointer, ObjC object pointer, or block
2468 /// pointer, this returns the respective pointee.
2469 QualType getPointeeType() const;
2470
2471 /// Return the specified type with any "sugar" removed from the type,
2472 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2473 const Type *getUnqualifiedDesugaredType() const;
2474
2475 /// Return true if this is an integer type that is
2476 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2477 /// or an enum decl which has a signed representation.
2478 bool isSignedIntegerType() const;
2479
2480 /// Return true if this is an integer type that is
2481 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2482 /// or an enum decl which has an unsigned representation.
2483 bool isUnsignedIntegerType() const;
2484
2485 /// Determines whether this is an integer type that is signed or an
2486 /// enumeration types whose underlying type is a signed integer type.
2487 bool isSignedIntegerOrEnumerationType() const;
2488
2489 /// Determines whether this is an integer type that is unsigned or an
2490 /// enumeration types whose underlying type is a unsigned integer type.
2491 bool isUnsignedIntegerOrEnumerationType() const;
2492
2493 /// Return true if this is a fixed point type according to
2494 /// ISO/IEC JTC1 SC22 WG14 N1169.
2495 bool isFixedPointType() const;
2496
2497 /// Return true if this is a fixed point or integer type.
2498 bool isFixedPointOrIntegerType() const;
2499
2500 /// Return true if this is a saturated fixed point type according to
2501 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2502 bool isSaturatedFixedPointType() const;
2503
2504 /// Return true if this is a saturated fixed point type according to
2505 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2506 bool isUnsaturatedFixedPointType() const;
2507
2508 /// Return true if this is a fixed point type that is signed according
2509 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2510 bool isSignedFixedPointType() const;
2511
2512 /// Return true if this is a fixed point type that is unsigned according
2513 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2514 bool isUnsignedFixedPointType() const;
2515
2516 /// Return true if this is not a variable sized type,
2517 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2518 /// incomplete types.
2519 bool isConstantSizeType() const;
2520
2521 /// Returns true if this type can be represented by some
2522 /// set of type specifiers.
2523 bool isSpecifierType() const;
2524
2525 /// Determine the linkage of this type.
2526 Linkage getLinkage() const;
2527
2528 /// Determine the visibility of this type.
2529 Visibility getVisibility() const {
2530 return getLinkageAndVisibility().getVisibility();
2531 }
2532
2533 /// Return true if the visibility was explicitly set is the code.
2534 bool isVisibilityExplicit() const {
2535 return getLinkageAndVisibility().isVisibilityExplicit();
2536 }
2537
2538 /// Determine the linkage and visibility of this type.
2539 LinkageInfo getLinkageAndVisibility() const;
2540
2541 /// True if the computed linkage is valid. Used for consistency
2542 /// checking. Should always return true.
2543 bool isLinkageValid() const;
2544
2545 /// Determine the nullability of the given type.
2546 ///
2547 /// Note that nullability is only captured as sugar within the type
2548 /// system, not as part of the canonical type, so nullability will
2549 /// be lost by canonicalization and desugaring.
2550 Optional<NullabilityKind> getNullability() const;
2551 // TODO: Remove overload.
2552 Optional<NullabilityKind> getNullability(const ASTContext &) const;
2553
2554 /// Determine whether the given type can have a nullability
2555 /// specifier applied to it, i.e., if it is any kind of pointer type.
2556 ///
2557 /// \param ResultIfUnknown The value to return if we don't yet know whether
2558 /// this type can have nullability because it is dependent.
2559 bool canHaveNullability(bool ResultIfUnknown = true) const;
2560
2561 /// Retrieve the set of substitutions required when accessing a member
2562 /// of the Objective-C receiver type that is declared in the given context.
2563 ///
2564 /// \c *this is the type of the object we're operating on, e.g., the
2565 /// receiver for a message send or the base of a property access, and is
2566 /// expected to be of some object or object pointer type.
2567 ///
2568 /// \param dc The declaration context for which we are building up a
2569 /// substitution mapping, which should be an Objective-C class, extension,
2570 /// category, or method within.
2571 ///
2572 /// \returns an array of type arguments that can be substituted for
2573 /// the type parameters of the given declaration context in any type described
2574 /// within that context, or an empty optional to indicate that no
2575 /// substitution is required.
2576 Optional<ArrayRef<QualType>>
2577 getObjCSubstitutions(const DeclContext *dc) const;
2578
2579 /// Determines if this is an ObjC interface type that may accept type
2580 /// parameters.
2581 bool acceptsObjCTypeParams() const;
2582
2583 const char *getTypeClassName() const;
2584
2585 QualType getCanonicalTypeInternal() const {
2586 return CanonicalType;
2587 }
2588
2589 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2590 void dump() const;
2591 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2592};
2593
2594/// This will check for a TypedefType by removing any existing sugar
2595/// until it reaches a TypedefType or a non-sugared type.
2596template <> const TypedefType *Type::getAs() const;
2597template <> const UsingType *Type::getAs() const;
2598
2599/// This will check for a TemplateSpecializationType by removing any
2600/// existing sugar until it reaches a TemplateSpecializationType or a
2601/// non-sugared type.
2602template <> const TemplateSpecializationType *Type::getAs() const;
2603
2604/// This will check for an AttributedType by removing any existing sugar
2605/// until it reaches an AttributedType or a non-sugared type.
2606template <> const AttributedType *Type::getAs() const;
2607
2608// We can do canonical leaf types faster, because we don't have to
2609// worry about preserving child type decoration.
2610#define TYPE(Class, Base)
2611#define LEAF_TYPE(Class) \
2612template <> inline const Class##Type *Type::getAs() const { \
2613 return dyn_cast<Class##Type>(CanonicalType); \
2614} \
2615template <> inline const Class##Type *Type::castAs() const { \
2616 return cast<Class##Type>(CanonicalType); \
2617}
2618#include "clang/AST/TypeNodes.inc"
2619
2620/// This class is used for builtin types like 'int'. Builtin
2621/// types are always canonical and have a literal name field.
2622class BuiltinType : public Type {
2623public:
2624 enum Kind {
2625// OpenCL image types
2626#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2627#include "clang/Basic/OpenCLImageTypes.def"
2628// OpenCL extension types
2629#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2630#include "clang/Basic/OpenCLExtensionTypes.def"
2631// SVE Types
2632#define SVE_TYPE(Name, Id, SingletonId) Id,
2633#include "clang/Basic/AArch64SVEACLETypes.def"
2634// PPC MMA Types
2635#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2636#include "clang/Basic/PPCTypes.def"
2637// RVV Types
2638#define RVV_TYPE(Name, Id, SingletonId) Id,
2639#include "clang/Basic/RISCVVTypes.def"
2640// All other builtin types
2641#define BUILTIN_TYPE(Id, SingletonId) Id,
2642#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2643#include "clang/AST/BuiltinTypes.def"
2644 };
2645
2646private:
2647 friend class ASTContext; // ASTContext creates these.
2648
2649 BuiltinType(Kind K)
2650 : Type(Builtin, QualType(),
2651 K == Dependent ? TypeDependence::DependentInstantiation
2652 : TypeDependence::None) {
2653 BuiltinTypeBits.Kind = K;
2654 }
2655
2656public:
2657 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2658 StringRef getName(const PrintingPolicy &Policy) const;
2659
2660 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2661 // The StringRef is null-terminated.
2662 StringRef str = getName(Policy);
2663 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "clang/include/clang/AST/Type.h", 2663, __extension__ __PRETTY_FUNCTION__
))
;
2664 return str.data();
2665 }
2666
2667 bool isSugared() const { return false; }
2668 QualType desugar() const { return QualType(this, 0); }
2669
2670 bool isInteger() const {
2671 return getKind() >= Bool && getKind() <= Int128;
2672 }
2673
2674 bool isSignedInteger() const {
2675 return getKind() >= Char_S && getKind() <= Int128;
2676 }
2677
2678 bool isUnsignedInteger() const {
2679 return getKind() >= Bool && getKind() <= UInt128;
2680 }
2681
2682 bool isFloatingPoint() const {
2683 return getKind() >= Half && getKind() <= Ibm128;
2684 }
2685
2686 bool isSVEBool() const { return getKind() == Kind::SveBool; }
2687
2688 /// Determines whether the given kind corresponds to a placeholder type.
2689 static bool isPlaceholderTypeKind(Kind K) {
2690 return K >= Overload;
2691 }
2692
2693 /// Determines whether this type is a placeholder type, i.e. a type
2694 /// which cannot appear in arbitrary positions in a fully-formed
2695 /// expression.
2696 bool isPlaceholderType() const {
2697 return isPlaceholderTypeKind(getKind());
2698 }
2699
2700 /// Determines whether this type is a placeholder type other than
2701 /// Overload. Most placeholder types require only syntactic
2702 /// information about their context in order to be resolved (e.g.
2703 /// whether it is a call expression), which means they can (and
2704 /// should) be resolved in an earlier "phase" of analysis.
2705 /// Overload expressions sometimes pick up further information
2706 /// from their context, like whether the context expects a
2707 /// specific function-pointer type, and so frequently need
2708 /// special treatment.
2709 bool isNonOverloadPlaceholderType() const {
2710 return getKind() > Overload;
2711 }
2712
2713 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2714};
2715
2716/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2717/// types (_Complex float etc) as well as the GCC integer complex extensions.
2718class ComplexType : public Type, public llvm::FoldingSetNode {
2719 friend class ASTContext; // ASTContext creates these.
2720
2721 QualType ElementType;
2722
2723 ComplexType(QualType Element, QualType CanonicalPtr)
2724 : Type(Complex, CanonicalPtr, Element->getDependence()),
2725 ElementType(Element) {}
2726
2727public:
2728 QualType getElementType() const { return ElementType; }
2729
2730 bool isSugared() const { return false; }
2731 QualType desugar() const { return QualType(this, 0); }
2732
2733 void Profile(llvm::FoldingSetNodeID &ID) {
2734 Profile(ID, getElementType());
2735 }
2736
2737 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2738 ID.AddPointer(Element.getAsOpaquePtr());
2739 }
2740
2741 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2742};
2743
2744/// Sugar for parentheses used when specifying types.
2745class ParenType : public Type, public llvm::FoldingSetNode {
2746 friend class ASTContext; // ASTContext creates these.
2747
2748 QualType Inner;
2749
2750 ParenType(QualType InnerType, QualType CanonType)
2751 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2752
2753public:
2754 QualType getInnerType() const { return Inner; }
2755
2756 bool isSugared() const { return true; }
2757 QualType desugar() const { return getInnerType(); }
2758
2759 void Profile(llvm::FoldingSetNodeID &ID) {
2760 Profile(ID, getInnerType());
2761 }
2762
2763 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2764 Inner.Profile(ID);
2765 }
2766
2767 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2768};
2769
2770/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2771class PointerType : public Type, public llvm::FoldingSetNode {
2772 friend class ASTContext; // ASTContext creates these.
2773
2774 QualType PointeeType;
2775
2776 PointerType(QualType Pointee, QualType CanonicalPtr)
2777 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2778 PointeeType(Pointee) {}
2779
2780public:
2781 QualType getPointeeType() const { return PointeeType; }
2782
2783 bool isSugared() const { return false; }
2784 QualType desugar() const { return QualType(this, 0); }
2785
2786 void Profile(llvm::FoldingSetNodeID &ID) {
2787 Profile(ID, getPointeeType());
2788 }
2789
2790 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2791 ID.AddPointer(Pointee.getAsOpaquePtr());
2792 }
2793
2794 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2795};
2796
2797/// Represents a type which was implicitly adjusted by the semantic
2798/// engine for arbitrary reasons. For example, array and function types can
2799/// decay, and function types can have their calling conventions adjusted.
2800class AdjustedType : public Type, public llvm::FoldingSetNode {
2801 QualType OriginalTy;
2802 QualType AdjustedTy;
2803
2804protected:
2805 friend class ASTContext; // ASTContext creates these.
2806
2807 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2808 QualType CanonicalPtr)
2809 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2810 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2811
2812public:
2813 QualType getOriginalType() const { return OriginalTy; }
2814 QualType getAdjustedType() const { return AdjustedTy; }
2815
2816 bool isSugared() const { return true; }
2817 QualType desugar() const { return AdjustedTy; }
2818
2819 void Profile(llvm::FoldingSetNodeID &ID) {
2820 Profile(ID, OriginalTy, AdjustedTy);
2821 }
2822
2823 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2824 ID.AddPointer(Orig.getAsOpaquePtr());
2825 ID.AddPointer(New.getAsOpaquePtr());
2826 }
2827
2828 static bool classof(const Type *T) {
2829 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2830 }
2831};
2832
2833/// Represents a pointer type decayed from an array or function type.
2834class DecayedType : public AdjustedType {
2835 friend class ASTContext; // ASTContext creates these.
2836
2837 inline
2838 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2839
2840public:
2841 QualType getDecayedType() const { return getAdjustedType(); }
2842
2843 inline QualType getPointeeType() const;
2844
2845 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2846};
2847
2848/// Pointer to a block type.
2849/// This type is to represent types syntactically represented as
2850/// "void (^)(int)", etc. Pointee is required to always be a function type.
2851class BlockPointerType : public Type, public llvm::FoldingSetNode {
2852 friend class ASTContext; // ASTContext creates these.
2853
2854 // Block is some kind of pointer type
2855 QualType PointeeType;
2856
2857 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2858 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2859 PointeeType(Pointee) {}
2860
2861public:
2862 // Get the pointee type. Pointee is required to always be a function type.
2863 QualType getPointeeType() const { return PointeeType; }
2864
2865 bool isSugared() const { return false; }
2866 QualType desugar() const { return QualType(this, 0); }
2867
2868 void Profile(llvm::FoldingSetNodeID &ID) {
2869 Profile(ID, getPointeeType());
2870 }
2871
2872 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2873 ID.AddPointer(Pointee.getAsOpaquePtr());
2874 }
2875
2876 static bool classof(const Type *T) {
2877 return T->getTypeClass() == BlockPointer;
2878 }
2879};
2880
2881/// Base for LValueReferenceType and RValueReferenceType
2882class ReferenceType : public Type, public llvm::FoldingSetNode {
2883 QualType PointeeType;
2884
2885protected:
2886 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2887 bool SpelledAsLValue)
2888 : Type(tc, CanonicalRef, Referencee->getDependence()),
2889 PointeeType(Referencee) {
2890 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2891 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2892 }
2893
2894public:
2895 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2896 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2897
2898 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2899
2900 QualType getPointeeType() const {
2901 // FIXME: this might strip inner qualifiers; okay?
2902 const ReferenceType *T = this;
2903 while (T->isInnerRef())
2904 T = T->PointeeType->castAs<ReferenceType>();
2905 return T->PointeeType;
2906 }
2907
2908 void Profile(llvm::FoldingSetNodeID &ID) {
2909 Profile(ID, PointeeType, isSpelledAsLValue());
2910 }
2911
2912 static void Profile(llvm::FoldingSetNodeID &ID,
2913 QualType Referencee,
2914 bool SpelledAsLValue) {
2915 ID.AddPointer(Referencee.getAsOpaquePtr());
2916 ID.AddBoolean(SpelledAsLValue);
2917 }
2918
2919 static bool classof(const Type *T) {
2920 return T->getTypeClass() == LValueReference ||
2921 T->getTypeClass() == RValueReference;
2922 }
2923};
2924
2925/// An lvalue reference type, per C++11 [dcl.ref].
2926class LValueReferenceType : public ReferenceType {
2927 friend class ASTContext; // ASTContext creates these
2928
2929 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2930 bool SpelledAsLValue)
2931 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2932 SpelledAsLValue) {}
2933
2934public:
2935 bool isSugared() const { return false; }
2936 QualType desugar() const { return QualType(this, 0); }
2937
2938 static bool classof(const Type *T) {
2939 return T->getTypeClass() == LValueReference;
2940 }
2941};
2942
2943/// An rvalue reference type, per C++11 [dcl.ref].
2944class RValueReferenceType : public ReferenceType {
2945 friend class ASTContext; // ASTContext creates these
2946
2947 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2948 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2949
2950public:
2951 bool isSugared() const { return false; }
2952 QualType desugar() const { return QualType(this, 0); }
2953
2954 static bool classof(const Type *T) {
2955 return T->getTypeClass() == RValueReference;
2956 }
2957};
2958
2959/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2960///
2961/// This includes both pointers to data members and pointer to member functions.
2962class MemberPointerType : public Type, public llvm::FoldingSetNode {
2963 friend class ASTContext; // ASTContext creates these.
2964
2965 QualType PointeeType;
2966
2967 /// The class of which the pointee is a member. Must ultimately be a
2968 /// RecordType, but could be a typedef or a template parameter too.
2969 const Type *Class;
2970
2971 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2972 : Type(MemberPointer, CanonicalPtr,
2973 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2974 Pointee->getDependence()),
2975 PointeeType(Pointee), Class(Cls) {}
2976
2977public:
2978 QualType getPointeeType() const { return PointeeType; }
2979
2980 /// Returns true if the member type (i.e. the pointee type) is a
2981 /// function type rather than a data-member type.
2982 bool isMemberFunctionPointer() const {
2983 return PointeeType->isFunctionProtoType();
2984 }
2985
2986 /// Returns true if the member type (i.e. the pointee type) is a
2987 /// data type rather than a function type.
2988 bool isMemberDataPointer() const {
2989 return !PointeeType->isFunctionProtoType();
2990 }
2991
2992 const Type *getClass() const { return Class; }
2993 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2994
2995 bool isSugared() const { return false; }
2996 QualType desugar() const { return QualType(this, 0); }
2997
2998 void Profile(llvm::FoldingSetNodeID &ID) {
2999 Profile(ID, getPointeeType(), getClass());
3000 }
3001
3002 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
3003 const Type *Class) {
3004 ID.AddPointer(Pointee.getAsOpaquePtr());
3005 ID.AddPointer(Class);
3006 }
3007
3008 static bool classof(const Type *T) {
3009 return T->getTypeClass() == MemberPointer;
3010 }
3011};
3012
3013/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
3014