Bug Summary

File:build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/clang/lib/Sema/SemaTemplateVariadic.cpp
Warning:line 708, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplateVariadic.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-29-020613-35344-1 -x c++ /build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/clang/lib/Sema/SemaTemplateVariadic.cpp

/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/clang/lib/Sema/SemaTemplateVariadic.cpp

1//===------- SemaTemplateVariadic.cpp - C++ Variadic Templates ------------===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements semantic analysis for C++0x variadic templates.
9//===----------------------------------------------------------------------===/
10
11#include "clang/Sema/Sema.h"
12#include "TypeLocBuilder.h"
13#include "clang/AST/Expr.h"
14#include "clang/AST/RecursiveASTVisitor.h"
15#include "clang/AST/TypeLoc.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Sema/Template.h"
21
22using namespace clang;
23
24//----------------------------------------------------------------------------
25// Visitor that collects unexpanded parameter packs
26//----------------------------------------------------------------------------
27
28namespace {
29 /// A class that collects unexpanded parameter packs.
30 class CollectUnexpandedParameterPacksVisitor :
31 public RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
32 {
33 typedef RecursiveASTVisitor<CollectUnexpandedParameterPacksVisitor>
34 inherited;
35
36 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded;
37
38 bool InLambda = false;
39 unsigned DepthLimit = (unsigned)-1;
40
41 void addUnexpanded(NamedDecl *ND, SourceLocation Loc = SourceLocation()) {
42 if (auto *VD = dyn_cast<VarDecl>(ND)) {
43 // For now, the only problematic case is a generic lambda's templated
44 // call operator, so we don't need to look for all the other ways we
45 // could have reached a dependent parameter pack.
46 auto *FD = dyn_cast<FunctionDecl>(VD->getDeclContext());
47 auto *FTD = FD ? FD->getDescribedFunctionTemplate() : nullptr;
48 if (FTD && FTD->getTemplateParameters()->getDepth() >= DepthLimit)
49 return;
50 } else if (getDepthAndIndex(ND).first >= DepthLimit)
51 return;
52
53 Unexpanded.push_back({ND, Loc});
54 }
55 void addUnexpanded(const TemplateTypeParmType *T,
56 SourceLocation Loc = SourceLocation()) {
57 if (T->getDepth() < DepthLimit)
58 Unexpanded.push_back({T, Loc});
59 }
60
61 public:
62 explicit CollectUnexpandedParameterPacksVisitor(
63 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded)
64 : Unexpanded(Unexpanded) {}
65
66 bool shouldWalkTypesOfTypeLocs() const { return false; }
67
68 //------------------------------------------------------------------------
69 // Recording occurrences of (unexpanded) parameter packs.
70 //------------------------------------------------------------------------
71
72 /// Record occurrences of template type parameter packs.
73 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
74 if (TL.getTypePtr()->isParameterPack())
75 addUnexpanded(TL.getTypePtr(), TL.getNameLoc());
76 return true;
77 }
78
79 /// Record occurrences of template type parameter packs
80 /// when we don't have proper source-location information for
81 /// them.
82 ///
83 /// Ideally, this routine would never be used.
84 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
85 if (T->isParameterPack())
86 addUnexpanded(T);
87
88 return true;
89 }
90
91 /// Record occurrences of function and non-type template
92 /// parameter packs in an expression.
93 bool VisitDeclRefExpr(DeclRefExpr *E) {
94 if (E->getDecl()->isParameterPack())
95 addUnexpanded(E->getDecl(), E->getLocation());
96
97 return true;
98 }
99
100 /// Record occurrences of template template parameter packs.
101 bool TraverseTemplateName(TemplateName Template) {
102 if (auto *TTP = dyn_cast_or_null<TemplateTemplateParmDecl>(
103 Template.getAsTemplateDecl())) {
104 if (TTP->isParameterPack())
105 addUnexpanded(TTP);
106 }
107
108 return inherited::TraverseTemplateName(Template);
109 }
110
111 /// Suppress traversal into Objective-C container literal
112 /// elements that are pack expansions.
113 bool TraverseObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
114 if (!E->containsUnexpandedParameterPack())
115 return true;
116
117 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
118 ObjCDictionaryElement Element = E->getKeyValueElement(I);
119 if (Element.isPackExpansion())
120 continue;
121
122 TraverseStmt(Element.Key);
123 TraverseStmt(Element.Value);
124 }
125 return true;
126 }
127 //------------------------------------------------------------------------
128 // Pruning the search for unexpanded parameter packs.
129 //------------------------------------------------------------------------
130
131 /// Suppress traversal into statements and expressions that
132 /// do not contain unexpanded parameter packs.
133 bool TraverseStmt(Stmt *S) {
134 Expr *E = dyn_cast_or_null<Expr>(S);
135 if ((E && E->containsUnexpandedParameterPack()) || InLambda)
136 return inherited::TraverseStmt(S);
137
138 return true;
139 }
140
141 /// Suppress traversal into types that do not contain
142 /// unexpanded parameter packs.
143 bool TraverseType(QualType T) {
144 if ((!T.isNull() && T->containsUnexpandedParameterPack()) || InLambda)
145 return inherited::TraverseType(T);
146
147 return true;
148 }
149
150 /// Suppress traversal into types with location information
151 /// that do not contain unexpanded parameter packs.
152 bool TraverseTypeLoc(TypeLoc TL) {
153 if ((!TL.getType().isNull() &&
154 TL.getType()->containsUnexpandedParameterPack()) ||
155 InLambda)
156 return inherited::TraverseTypeLoc(TL);
157
158 return true;
159 }
160
161 /// Suppress traversal of parameter packs.
162 bool TraverseDecl(Decl *D) {
163 // A function parameter pack is a pack expansion, so cannot contain
164 // an unexpanded parameter pack. Likewise for a template parameter
165 // pack that contains any references to other packs.
166 if (D && D->isParameterPack())
167 return true;
168
169 return inherited::TraverseDecl(D);
170 }
171
172 /// Suppress traversal of pack-expanded attributes.
173 bool TraverseAttr(Attr *A) {
174 if (A->isPackExpansion())
175 return true;
176
177 return inherited::TraverseAttr(A);
178 }
179
180 /// Suppress traversal of pack expansion expressions and types.
181 ///@{
182 bool TraversePackExpansionType(PackExpansionType *T) { return true; }
183 bool TraversePackExpansionTypeLoc(PackExpansionTypeLoc TL) { return true; }
184 bool TraversePackExpansionExpr(PackExpansionExpr *E) { return true; }
185 bool TraverseCXXFoldExpr(CXXFoldExpr *E) { return true; }
186
187 ///@}
188
189 /// Suppress traversal of using-declaration pack expansion.
190 bool TraverseUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
191 if (D->isPackExpansion())
192 return true;
193
194 return inherited::TraverseUnresolvedUsingValueDecl(D);
195 }
196
197 /// Suppress traversal of using-declaration pack expansion.
198 bool TraverseUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) {
199 if (D->isPackExpansion())
200 return true;
201
202 return inherited::TraverseUnresolvedUsingTypenameDecl(D);
203 }
204
205 /// Suppress traversal of template argument pack expansions.
206 bool TraverseTemplateArgument(const TemplateArgument &Arg) {
207 if (Arg.isPackExpansion())
208 return true;
209
210 return inherited::TraverseTemplateArgument(Arg);
211 }
212
213 /// Suppress traversal of template argument pack expansions.
214 bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
215 if (ArgLoc.getArgument().isPackExpansion())
216 return true;
217
218 return inherited::TraverseTemplateArgumentLoc(ArgLoc);
219 }
220
221 /// Suppress traversal of base specifier pack expansions.
222 bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base) {
223 if (Base.isPackExpansion())
224 return true;
225
226 return inherited::TraverseCXXBaseSpecifier(Base);
227 }
228
229 /// Suppress traversal of mem-initializer pack expansions.
230 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
231 if (Init->isPackExpansion())
232 return true;
233
234 return inherited::TraverseConstructorInitializer(Init);
235 }
236
237 /// Note whether we're traversing a lambda containing an unexpanded
238 /// parameter pack. In this case, the unexpanded pack can occur anywhere,
239 /// including all the places where we normally wouldn't look. Within a
240 /// lambda, we don't propagate the 'contains unexpanded parameter pack' bit
241 /// outside an expression.
242 bool TraverseLambdaExpr(LambdaExpr *Lambda) {
243 // The ContainsUnexpandedParameterPack bit on a lambda is always correct,
244 // even if it's contained within another lambda.
245 if (!Lambda->containsUnexpandedParameterPack())
246 return true;
247
248 bool WasInLambda = InLambda;
249 unsigned OldDepthLimit = DepthLimit;
250
251 InLambda = true;
252 if (auto *TPL = Lambda->getTemplateParameterList())
253 DepthLimit = TPL->getDepth();
254
255 inherited::TraverseLambdaExpr(Lambda);
256
257 InLambda = WasInLambda;
258 DepthLimit = OldDepthLimit;
259 return true;
260 }
261
262 /// Suppress traversal within pack expansions in lambda captures.
263 bool TraverseLambdaCapture(LambdaExpr *Lambda, const LambdaCapture *C,
264 Expr *Init) {
265 if (C->isPackExpansion())
266 return true;
267
268 return inherited::TraverseLambdaCapture(Lambda, C, Init);
269 }
270 };
271}
272
273/// Determine whether it's possible for an unexpanded parameter pack to
274/// be valid in this location. This only happens when we're in a declaration
275/// that is nested within an expression that could be expanded, such as a
276/// lambda-expression within a function call.
277///
278/// This is conservatively correct, but may claim that some unexpanded packs are
279/// permitted when they are not.
280bool Sema::isUnexpandedParameterPackPermitted() {
281 for (auto *SI : FunctionScopes)
282 if (isa<sema::LambdaScopeInfo>(SI))
283 return true;
284 return false;
285}
286
287/// Diagnose all of the unexpanded parameter packs in the given
288/// vector.
289bool
290Sema::DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
291 UnexpandedParameterPackContext UPPC,
292 ArrayRef<UnexpandedParameterPack> Unexpanded) {
293 if (Unexpanded.empty())
294 return false;
295
296 // If we are within a lambda expression and referencing a pack that is not
297 // declared within the lambda itself, that lambda contains an unexpanded
298 // parameter pack, and we are done.
299 // FIXME: Store 'Unexpanded' on the lambda so we don't need to recompute it
300 // later.
301 SmallVector<UnexpandedParameterPack, 4> LambdaParamPackReferences;
302 if (auto *LSI = getEnclosingLambda()) {
303 for (auto &Pack : Unexpanded) {
304 auto DeclaresThisPack = [&](NamedDecl *LocalPack) {
305 if (auto *TTPT = Pack.first.dyn_cast<const TemplateTypeParmType *>()) {
306 auto *TTPD = dyn_cast<TemplateTypeParmDecl>(LocalPack);
307 return TTPD && TTPD->getTypeForDecl() == TTPT;
308 }
309 return declaresSameEntity(Pack.first.get<NamedDecl *>(), LocalPack);
310 };
311 if (llvm::any_of(LSI->LocalPacks, DeclaresThisPack))
312 LambdaParamPackReferences.push_back(Pack);
313 }
314
315 if (LambdaParamPackReferences.empty()) {
316 // Construct in lambda only references packs declared outside the lambda.
317 // That's OK for now, but the lambda itself is considered to contain an
318 // unexpanded pack in this case, which will require expansion outside the
319 // lambda.
320
321 // We do not permit pack expansion that would duplicate a statement
322 // expression, not even within a lambda.
323 // FIXME: We could probably support this for statement expressions that
324 // do not contain labels.
325 // FIXME: This is insufficient to detect this problem; consider
326 // f( ({ bad: 0; }) + pack ... );
327 bool EnclosingStmtExpr = false;
328 for (unsigned N = FunctionScopes.size(); N; --N) {
329 sema::FunctionScopeInfo *Func = FunctionScopes[N-1];
330 if (llvm::any_of(
331 Func->CompoundScopes,
332 [](sema::CompoundScopeInfo &CSI) { return CSI.IsStmtExpr; })) {
333 EnclosingStmtExpr = true;
334 break;
335 }
336 // Coumpound-statements outside the lambda are OK for now; we'll check
337 // for those when we finish handling the lambda.
338 if (Func == LSI)
339 break;
340 }
341
342 if (!EnclosingStmtExpr) {
343 LSI->ContainsUnexpandedParameterPack = true;
344 return false;
345 }
346 } else {
347 Unexpanded = LambdaParamPackReferences;
348 }
349 }
350
351 SmallVector<SourceLocation, 4> Locations;
352 SmallVector<IdentifierInfo *, 4> Names;
353 llvm::SmallPtrSet<IdentifierInfo *, 4> NamesKnown;
354
355 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
356 IdentifierInfo *Name = nullptr;
357 if (const TemplateTypeParmType *TTP
358 = Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>())
359 Name = TTP->getIdentifier();
360 else
361 Name = Unexpanded[I].first.get<NamedDecl *>()->getIdentifier();
362
363 if (Name && NamesKnown.insert(Name).second)
364 Names.push_back(Name);
365
366 if (Unexpanded[I].second.isValid())
367 Locations.push_back(Unexpanded[I].second);
368 }
369
370 auto DB = Diag(Loc, diag::err_unexpanded_parameter_pack)
371 << (int)UPPC << (int)Names.size();
372 for (size_t I = 0, E = std::min(Names.size(), (size_t)2); I != E; ++I)
373 DB << Names[I];
374
375 for (unsigned I = 0, N = Locations.size(); I != N; ++I)
376 DB << SourceRange(Locations[I]);
377 return true;
378}
379
380bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
381 TypeSourceInfo *T,
382 UnexpandedParameterPackContext UPPC) {
383 // C++0x [temp.variadic]p5:
384 // An appearance of a name of a parameter pack that is not expanded is
385 // ill-formed.
386 if (!T->getType()->containsUnexpandedParameterPack())
387 return false;
388
389 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
390 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(
391 T->getTypeLoc());
392 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 392, __extension__
__PRETTY_FUNCTION__))
;
393 return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
394}
395
396bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
397 UnexpandedParameterPackContext UPPC) {
398 // C++0x [temp.variadic]p5:
399 // An appearance of a name of a parameter pack that is not expanded is
400 // ill-formed.
401 if (!E->containsUnexpandedParameterPack())
402 return false;
403
404 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
405 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(E);
406 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 406, __extension__
__PRETTY_FUNCTION__))
;
407 return DiagnoseUnexpandedParameterPacks(E->getBeginLoc(), UPPC, Unexpanded);
408}
409
410bool Sema::DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE) {
411 if (!RE->containsUnexpandedParameterPack())
412 return false;
413
414 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
415 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(RE);
416 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 416, __extension__
__PRETTY_FUNCTION__))
;
417
418 // We only care about unexpanded references to the RequiresExpr's own
419 // parameter packs.
420 auto Parms = RE->getLocalParameters();
421 llvm::SmallPtrSet<NamedDecl*, 8> ParmSet(Parms.begin(), Parms.end());
422 SmallVector<UnexpandedParameterPack, 2> UnexpandedParms;
423 for (auto Parm : Unexpanded)
424 if (ParmSet.contains(Parm.first.dyn_cast<NamedDecl*>()))
425 UnexpandedParms.push_back(Parm);
426 if (UnexpandedParms.empty())
427 return false;
428
429 return DiagnoseUnexpandedParameterPacks(RE->getBeginLoc(), UPPC_Requirement,
430 UnexpandedParms);
431}
432
433bool Sema::DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
434 UnexpandedParameterPackContext UPPC) {
435 // C++0x [temp.variadic]p5:
436 // An appearance of a name of a parameter pack that is not expanded is
437 // ill-formed.
438 if (!SS.getScopeRep() ||
439 !SS.getScopeRep()->containsUnexpandedParameterPack())
440 return false;
441
442 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
443 CollectUnexpandedParameterPacksVisitor(Unexpanded)
444 .TraverseNestedNameSpecifier(SS.getScopeRep());
445 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 445, __extension__
__PRETTY_FUNCTION__))
;
446 return DiagnoseUnexpandedParameterPacks(SS.getRange().getBegin(),
447 UPPC, Unexpanded);
448}
449
450bool Sema::DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
451 UnexpandedParameterPackContext UPPC) {
452 // C++0x [temp.variadic]p5:
453 // An appearance of a name of a parameter pack that is not expanded is
454 // ill-formed.
455 switch (NameInfo.getName().getNameKind()) {
456 case DeclarationName::Identifier:
457 case DeclarationName::ObjCZeroArgSelector:
458 case DeclarationName::ObjCOneArgSelector:
459 case DeclarationName::ObjCMultiArgSelector:
460 case DeclarationName::CXXOperatorName:
461 case DeclarationName::CXXLiteralOperatorName:
462 case DeclarationName::CXXUsingDirective:
463 case DeclarationName::CXXDeductionGuideName:
464 return false;
465
466 case DeclarationName::CXXConstructorName:
467 case DeclarationName::CXXDestructorName:
468 case DeclarationName::CXXConversionFunctionName:
469 // FIXME: We shouldn't need this null check!
470 if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
471 return DiagnoseUnexpandedParameterPack(NameInfo.getLoc(), TSInfo, UPPC);
472
473 if (!NameInfo.getName().getCXXNameType()->containsUnexpandedParameterPack())
474 return false;
475
476 break;
477 }
478
479 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
480 CollectUnexpandedParameterPacksVisitor(Unexpanded)
481 .TraverseType(NameInfo.getName().getCXXNameType());
482 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 482, __extension__
__PRETTY_FUNCTION__))
;
483 return DiagnoseUnexpandedParameterPacks(NameInfo.getLoc(), UPPC, Unexpanded);
484}
485
486bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
487 TemplateName Template,
488 UnexpandedParameterPackContext UPPC) {
489
490 if (Template.isNull() || !Template.containsUnexpandedParameterPack())
491 return false;
492
493 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
494 CollectUnexpandedParameterPacksVisitor(Unexpanded)
495 .TraverseTemplateName(Template);
496 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 496, __extension__
__PRETTY_FUNCTION__))
;
497 return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
498}
499
500bool Sema::DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
501 UnexpandedParameterPackContext UPPC) {
502 if (Arg.getArgument().isNull() ||
503 !Arg.getArgument().containsUnexpandedParameterPack())
504 return false;
505
506 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
507 CollectUnexpandedParameterPacksVisitor(Unexpanded)
508 .TraverseTemplateArgumentLoc(Arg);
509 assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs")(static_cast <bool> (!Unexpanded.empty() && "Unable to find unexpanded parameter packs"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Unable to find unexpanded parameter packs\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 509, __extension__
__PRETTY_FUNCTION__))
;
510 return DiagnoseUnexpandedParameterPacks(Arg.getLocation(), UPPC, Unexpanded);
511}
512
513void Sema::collectUnexpandedParameterPacks(TemplateArgument Arg,
514 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
515 CollectUnexpandedParameterPacksVisitor(Unexpanded)
516 .TraverseTemplateArgument(Arg);
517}
518
519void Sema::collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
520 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
521 CollectUnexpandedParameterPacksVisitor(Unexpanded)
522 .TraverseTemplateArgumentLoc(Arg);
523}
524
525void Sema::collectUnexpandedParameterPacks(QualType T,
526 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
527 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(T);
528}
529
530void Sema::collectUnexpandedParameterPacks(TypeLoc TL,
531 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
532 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(TL);
533}
534
535void Sema::collectUnexpandedParameterPacks(
536 NestedNameSpecifierLoc NNS,
537 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
538 CollectUnexpandedParameterPacksVisitor(Unexpanded)
539 .TraverseNestedNameSpecifierLoc(NNS);
540}
541
542void Sema::collectUnexpandedParameterPacks(
543 const DeclarationNameInfo &NameInfo,
544 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
545 CollectUnexpandedParameterPacksVisitor(Unexpanded)
546 .TraverseDeclarationNameInfo(NameInfo);
547}
548
549
550ParsedTemplateArgument
551Sema::ActOnPackExpansion(const ParsedTemplateArgument &Arg,
552 SourceLocation EllipsisLoc) {
553 if (Arg.isInvalid())
554 return Arg;
555
556 switch (Arg.getKind()) {
557 case ParsedTemplateArgument::Type: {
558 TypeResult Result = ActOnPackExpansion(Arg.getAsType(), EllipsisLoc);
559 if (Result.isInvalid())
560 return ParsedTemplateArgument();
561
562 return ParsedTemplateArgument(Arg.getKind(), Result.get().getAsOpaquePtr(),
563 Arg.getLocation());
564 }
565
566 case ParsedTemplateArgument::NonType: {
567 ExprResult Result = ActOnPackExpansion(Arg.getAsExpr(), EllipsisLoc);
568 if (Result.isInvalid())
569 return ParsedTemplateArgument();
570
571 return ParsedTemplateArgument(Arg.getKind(), Result.get(),
572 Arg.getLocation());
573 }
574
575 case ParsedTemplateArgument::Template:
576 if (!Arg.getAsTemplate().get().containsUnexpandedParameterPack()) {
577 SourceRange R(Arg.getLocation());
578 if (Arg.getScopeSpec().isValid())
579 R.setBegin(Arg.getScopeSpec().getBeginLoc());
580 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
581 << R;
582 return ParsedTemplateArgument();
583 }
584
585 return Arg.getTemplatePackExpansion(EllipsisLoc);
586 }
587 llvm_unreachable("Unhandled template argument kind?")::llvm::llvm_unreachable_internal("Unhandled template argument kind?"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 587)
;
588}
589
590TypeResult Sema::ActOnPackExpansion(ParsedType Type,
591 SourceLocation EllipsisLoc) {
592 TypeSourceInfo *TSInfo;
593 GetTypeFromParser(Type, &TSInfo);
594 if (!TSInfo)
595 return true;
596
597 TypeSourceInfo *TSResult = CheckPackExpansion(TSInfo, EllipsisLoc, None);
598 if (!TSResult)
599 return true;
600
601 return CreateParsedType(TSResult->getType(), TSResult);
602}
603
604TypeSourceInfo *
605Sema::CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc,
606 Optional<unsigned> NumExpansions) {
607 // Create the pack expansion type and source-location information.
608 QualType Result = CheckPackExpansion(Pattern->getType(),
609 Pattern->getTypeLoc().getSourceRange(),
610 EllipsisLoc, NumExpansions);
611 if (Result.isNull())
612 return nullptr;
613
614 TypeLocBuilder TLB;
615 TLB.pushFullCopy(Pattern->getTypeLoc());
616 PackExpansionTypeLoc TL = TLB.push<PackExpansionTypeLoc>(Result);
617 TL.setEllipsisLoc(EllipsisLoc);
618
619 return TLB.getTypeSourceInfo(Context, Result);
620}
621
622QualType Sema::CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
623 SourceLocation EllipsisLoc,
624 Optional<unsigned> NumExpansions) {
625 // C++11 [temp.variadic]p5:
626 // The pattern of a pack expansion shall name one or more
627 // parameter packs that are not expanded by a nested pack
628 // expansion.
629 //
630 // A pattern containing a deduced type can't occur "naturally" but arises in
631 // the desugaring of an init-capture pack.
632 if (!Pattern->containsUnexpandedParameterPack() &&
633 !Pattern->getContainedDeducedType()) {
634 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
635 << PatternRange;
636 return QualType();
637 }
638
639 return Context.getPackExpansionType(Pattern, NumExpansions,
640 /*ExpectPackInType=*/false);
641}
642
643ExprResult Sema::ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc) {
644 return CheckPackExpansion(Pattern, EllipsisLoc, None);
645}
646
647ExprResult Sema::CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
648 Optional<unsigned> NumExpansions) {
649 if (!Pattern)
650 return ExprError();
651
652 // C++0x [temp.variadic]p5:
653 // The pattern of a pack expansion shall name one or more
654 // parameter packs that are not expanded by a nested pack
655 // expansion.
656 if (!Pattern->containsUnexpandedParameterPack()) {
657 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
658 << Pattern->getSourceRange();
659 CorrectDelayedTyposInExpr(Pattern);
660 return ExprError();
661 }
662
663 // Create the pack expansion expression and source-location information.
664 return new (Context)
665 PackExpansionExpr(Context.DependentTy, Pattern, EllipsisLoc, NumExpansions);
666}
667
668bool Sema::CheckParameterPacksForExpansion(
669 SourceLocation EllipsisLoc, SourceRange PatternRange,
670 ArrayRef<UnexpandedParameterPack> Unexpanded,
671 const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
672 bool &RetainExpansion, Optional<unsigned> &NumExpansions) {
673 ShouldExpand = true;
674 RetainExpansion = false;
675 std::pair<IdentifierInfo *, SourceLocation> FirstPack;
676 bool HaveFirstPack = false;
677 Optional<unsigned> NumPartialExpansions;
678 SourceLocation PartiallySubstitutedPackLoc;
679
680 for (UnexpandedParameterPack ParmPack : Unexpanded) {
1
Assuming '__begin1' is not equal to '__end1'
681 // Compute the depth and index for this parameter pack.
682 unsigned Depth = 0, Index = 0;
683 IdentifierInfo *Name;
684 bool IsVarDeclPack = false;
685
686 if (const TemplateTypeParmType *TTP
29.1
'TTP' is null
29.1
'TTP' is null
29.1
'TTP' is null
=
2
Assuming 'TTP' is non-null
3
Taking true branch
30
Taking false branch
687 ParmPack.first.dyn_cast<const TemplateTypeParmType *>()) {
14
Calling 'PointerUnion::dyn_cast'
29
Returning from 'PointerUnion::dyn_cast'
688 Depth = TTP->getDepth();
689 Index = TTP->getIndex();
690 Name = TTP->getIdentifier();
691 } else {
692 NamedDecl *ND = ParmPack.first.get<NamedDecl *>();
693 if (isa<VarDecl>(ND))
31
Assuming 'ND' is a 'class clang::VarDecl &'
32
Taking true branch
694 IsVarDeclPack = true;
695 else
696 std::tie(Depth, Index) = getDepthAndIndex(ND);
697
698 Name = ND->getIdentifier();
699 }
700
701 // Determine the size of this argument pack.
702 unsigned NewPackSize;
703 if (IsVarDeclPack
3.1
'IsVarDeclPack' is false
32.1
'IsVarDeclPack' is true
3.1
'IsVarDeclPack' is false
32.1
'IsVarDeclPack' is true
3.1
'IsVarDeclPack' is false
32.1
'IsVarDeclPack' is true
) {
33
Taking true branch
704 // Figure out whether we're instantiating to an argument pack or not.
705 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
706
707 llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation =
708 CurrentInstantiationScope->findInstantiationOf(
34
Called C++ object pointer is null
709 ParmPack.first.get<NamedDecl *>());
710 if (Instantiation->is<DeclArgumentPack *>()) {
711 // We could expand this function parameter pack.
712 NewPackSize = Instantiation->get<DeclArgumentPack *>()->size();
713 } else {
714 // We can't expand this function parameter pack, so we can't expand
715 // the pack expansion.
716 ShouldExpand = false;
717 continue;
718 }
719 } else {
720 // If we don't have a template argument at this depth/index, then we
721 // cannot expand the pack expansion. Make a note of this, but we still
722 // want to check any parameter packs we *do* have arguments for.
723 if (Depth >= TemplateArgs.getNumLevels() ||
4
Assuming the condition is false
6
Taking false branch
724 !TemplateArgs.hasTemplateArgument(Depth, Index)) {
5
Assuming the condition is false
725 ShouldExpand = false;
726 continue;
727 }
728
729 // Determine the size of the argument pack.
730 NewPackSize = TemplateArgs(Depth, Index).pack_size();
731 }
732
733 // C++0x [temp.arg.explicit]p9:
734 // Template argument deduction can extend the sequence of template
735 // arguments corresponding to a template parameter pack, even when the
736 // sequence contains explicitly specified template arguments.
737 if (!IsVarDeclPack
6.1
'IsVarDeclPack' is false
6.1
'IsVarDeclPack' is false
6.1
'IsVarDeclPack' is false
&& CurrentInstantiationScope
) {
7
Assuming field 'CurrentInstantiationScope' is null
8
Assuming pointer value is null
9
Taking false branch
738 if (NamedDecl *PartialPack
739 = CurrentInstantiationScope->getPartiallySubstitutedPack()){
740 unsigned PartialDepth, PartialIndex;
741 std::tie(PartialDepth, PartialIndex) = getDepthAndIndex(PartialPack);
742 if (PartialDepth == Depth && PartialIndex == Index) {
743 RetainExpansion = true;
744 // We don't actually know the new pack size yet.
745 NumPartialExpansions = NewPackSize;
746 PartiallySubstitutedPackLoc = ParmPack.second;
747 continue;
748 }
749 }
750 }
751
752 if (!NumExpansions) {
10
Assuming the condition is false
11
Taking false branch
753 // The is the first pack we've seen for which we have an argument.
754 // Record it.
755 NumExpansions = NewPackSize;
756 FirstPack.first = Name;
757 FirstPack.second = ParmPack.second;
758 HaveFirstPack = true;
759 continue;
760 }
761
762 if (NewPackSize != *NumExpansions) {
12
Assuming the condition is false
13
Taking false branch
763 // C++0x [temp.variadic]p5:
764 // All of the parameter packs expanded by a pack expansion shall have
765 // the same number of arguments specified.
766 if (HaveFirstPack)
767 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict)
768 << FirstPack.first << Name << *NumExpansions << NewPackSize
769 << SourceRange(FirstPack.second) << SourceRange(ParmPack.second);
770 else
771 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_multilevel)
772 << Name << *NumExpansions << NewPackSize
773 << SourceRange(ParmPack.second);
774 return true;
775 }
776 }
777
778 // If we're performing a partial expansion but we also have a full expansion,
779 // expand to the number of common arguments. For example, given:
780 //
781 // template<typename ...T> struct A {
782 // template<typename ...U> void f(pair<T, U>...);
783 // };
784 //
785 // ... a call to 'A<int, int>().f<int>' should expand the pack once and
786 // retain an expansion.
787 if (NumPartialExpansions) {
788 if (NumExpansions && *NumExpansions < *NumPartialExpansions) {
789 NamedDecl *PartialPack =
790 CurrentInstantiationScope->getPartiallySubstitutedPack();
791 Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_partial)
792 << PartialPack << *NumPartialExpansions << *NumExpansions
793 << SourceRange(PartiallySubstitutedPackLoc);
794 return true;
795 }
796
797 NumExpansions = NumPartialExpansions;
798 }
799
800 return false;
801}
802
803Optional<unsigned> Sema::getNumArgumentsInExpansion(QualType T,
804 const MultiLevelTemplateArgumentList &TemplateArgs) {
805 QualType Pattern = cast<PackExpansionType>(T)->getPattern();
806 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
807 CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(Pattern);
808
809 Optional<unsigned> Result;
810 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
811 // Compute the depth and index for this parameter pack.
812 unsigned Depth;
813 unsigned Index;
814
815 if (const TemplateTypeParmType *TTP
816 = Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>()) {
817 Depth = TTP->getDepth();
818 Index = TTP->getIndex();
819 } else {
820 NamedDecl *ND = Unexpanded[I].first.get<NamedDecl *>();
821 if (isa<VarDecl>(ND)) {
822 // Function parameter pack or init-capture pack.
823 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
824
825 llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation
826 = CurrentInstantiationScope->findInstantiationOf(
827 Unexpanded[I].first.get<NamedDecl *>());
828 if (Instantiation->is<Decl*>())
829 // The pattern refers to an unexpanded pack. We're not ready to expand
830 // this pack yet.
831 return None;
832
833 unsigned Size = Instantiation->get<DeclArgumentPack *>()->size();
834 assert((!Result || *Result == Size) && "inconsistent pack sizes")(static_cast <bool> ((!Result || *Result == Size) &&
"inconsistent pack sizes") ? void (0) : __assert_fail ("(!Result || *Result == Size) && \"inconsistent pack sizes\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 834, __extension__
__PRETTY_FUNCTION__))
;
835 Result = Size;
836 continue;
837 }
838
839 std::tie(Depth, Index) = getDepthAndIndex(ND);
840 }
841 if (Depth >= TemplateArgs.getNumLevels() ||
842 !TemplateArgs.hasTemplateArgument(Depth, Index))
843 // The pattern refers to an unknown template argument. We're not ready to
844 // expand this pack yet.
845 return None;
846
847 // Determine the size of the argument pack.
848 unsigned Size = TemplateArgs(Depth, Index).pack_size();
849 assert((!Result || *Result == Size) && "inconsistent pack sizes")(static_cast <bool> ((!Result || *Result == Size) &&
"inconsistent pack sizes") ? void (0) : __assert_fail ("(!Result || *Result == Size) && \"inconsistent pack sizes\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 849, __extension__
__PRETTY_FUNCTION__))
;
850 Result = Size;
851 }
852
853 return Result;
854}
855
856bool Sema::containsUnexpandedParameterPacks(Declarator &D) {
857 const DeclSpec &DS = D.getDeclSpec();
858 switch (DS.getTypeSpecType()) {
859 case TST_typename:
860 case TST_typeofType:
861#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case TST_##Trait:
862#include "clang/Basic/TransformTypeTraits.def"
863 case TST_atomic: {
864 QualType T = DS.getRepAsType().get();
865 if (!T.isNull() && T->containsUnexpandedParameterPack())
866 return true;
867 break;
868 }
869
870 case TST_typeofExpr:
871 case TST_decltype:
872 case TST_bitint:
873 if (DS.getRepAsExpr() &&
874 DS.getRepAsExpr()->containsUnexpandedParameterPack())
875 return true;
876 break;
877
878 case TST_unspecified:
879 case TST_void:
880 case TST_char:
881 case TST_wchar:
882 case TST_char8:
883 case TST_char16:
884 case TST_char32:
885 case TST_int:
886 case TST_int128:
887 case TST_half:
888 case TST_float:
889 case TST_double:
890 case TST_Accum:
891 case TST_Fract:
892 case TST_Float16:
893 case TST_float128:
894 case TST_ibm128:
895 case TST_bool:
896 case TST_decimal32:
897 case TST_decimal64:
898 case TST_decimal128:
899 case TST_enum:
900 case TST_union:
901 case TST_struct:
902 case TST_interface:
903 case TST_class:
904 case TST_auto:
905 case TST_auto_type:
906 case TST_decltype_auto:
907 case TST_BFloat16:
908#define GENERIC_IMAGE_TYPE(ImgType, Id) case TST_##ImgType##_t:
909#include "clang/Basic/OpenCLImageTypes.def"
910 case TST_unknown_anytype:
911 case TST_error:
912 break;
913 }
914
915 for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
916 const DeclaratorChunk &Chunk = D.getTypeObject(I);
917 switch (Chunk.Kind) {
918 case DeclaratorChunk::Pointer:
919 case DeclaratorChunk::Reference:
920 case DeclaratorChunk::Paren:
921 case DeclaratorChunk::Pipe:
922 case DeclaratorChunk::BlockPointer:
923 // These declarator chunks cannot contain any parameter packs.
924 break;
925
926 case DeclaratorChunk::Array:
927 if (Chunk.Arr.NumElts &&
928 Chunk.Arr.NumElts->containsUnexpandedParameterPack())
929 return true;
930 break;
931 case DeclaratorChunk::Function:
932 for (unsigned i = 0, e = Chunk.Fun.NumParams; i != e; ++i) {
933 ParmVarDecl *Param = cast<ParmVarDecl>(Chunk.Fun.Params[i].Param);
934 QualType ParamTy = Param->getType();
935 assert(!ParamTy.isNull() && "Couldn't parse type?")(static_cast <bool> (!ParamTy.isNull() && "Couldn't parse type?"
) ? void (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 935, __extension__
__PRETTY_FUNCTION__))
;
936 if (ParamTy->containsUnexpandedParameterPack()) return true;
937 }
938
939 if (Chunk.Fun.getExceptionSpecType() == EST_Dynamic) {
940 for (unsigned i = 0; i != Chunk.Fun.getNumExceptions(); ++i) {
941 if (Chunk.Fun.Exceptions[i]
942 .Ty.get()
943 ->containsUnexpandedParameterPack())
944 return true;
945 }
946 } else if (isComputedNoexcept(Chunk.Fun.getExceptionSpecType()) &&
947 Chunk.Fun.NoexceptExpr->containsUnexpandedParameterPack())
948 return true;
949
950 if (Chunk.Fun.hasTrailingReturnType()) {
951 QualType T = Chunk.Fun.getTrailingReturnType().get();
952 if (!T.isNull() && T->containsUnexpandedParameterPack())
953 return true;
954 }
955 break;
956
957 case DeclaratorChunk::MemberPointer:
958 if (Chunk.Mem.Scope().getScopeRep() &&
959 Chunk.Mem.Scope().getScopeRep()->containsUnexpandedParameterPack())
960 return true;
961 break;
962 }
963 }
964
965 if (Expr *TRC = D.getTrailingRequiresClause())
966 if (TRC->containsUnexpandedParameterPack())
967 return true;
968
969 return false;
970}
971
972namespace {
973
974// Callback to only accept typo corrections that refer to parameter packs.
975class ParameterPackValidatorCCC final : public CorrectionCandidateCallback {
976 public:
977 bool ValidateCandidate(const TypoCorrection &candidate) override {
978 NamedDecl *ND = candidate.getCorrectionDecl();
979 return ND && ND->isParameterPack();
980 }
981
982 std::unique_ptr<CorrectionCandidateCallback> clone() override {
983 return std::make_unique<ParameterPackValidatorCCC>(*this);
984 }
985};
986
987}
988
989/// Called when an expression computing the size of a parameter pack
990/// is parsed.
991///
992/// \code
993/// template<typename ...Types> struct count {
994/// static const unsigned value = sizeof...(Types);
995/// };
996/// \endcode
997///
998//
999/// \param OpLoc The location of the "sizeof" keyword.
1000/// \param Name The name of the parameter pack whose size will be determined.
1001/// \param NameLoc The source location of the name of the parameter pack.
1002/// \param RParenLoc The location of the closing parentheses.
1003ExprResult Sema::ActOnSizeofParameterPackExpr(Scope *S,
1004 SourceLocation OpLoc,
1005 IdentifierInfo &Name,
1006 SourceLocation NameLoc,
1007 SourceLocation RParenLoc) {
1008 // C++0x [expr.sizeof]p5:
1009 // The identifier in a sizeof... expression shall name a parameter pack.
1010 LookupResult R(*this, &Name, NameLoc, LookupOrdinaryName);
1011 LookupName(R, S);
1012
1013 NamedDecl *ParameterPack = nullptr;
1014 switch (R.getResultKind()) {
1015 case LookupResult::Found:
1016 ParameterPack = R.getFoundDecl();
1017 break;
1018
1019 case LookupResult::NotFound:
1020 case LookupResult::NotFoundInCurrentInstantiation: {
1021 ParameterPackValidatorCCC CCC{};
1022 if (TypoCorrection Corrected =
1023 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
1024 CCC, CTK_ErrorRecovery)) {
1025 diagnoseTypo(Corrected,
1026 PDiag(diag::err_sizeof_pack_no_pack_name_suggest) << &Name,
1027 PDiag(diag::note_parameter_pack_here));
1028 ParameterPack = Corrected.getCorrectionDecl();
1029 }
1030 break;
1031 }
1032 case LookupResult::FoundOverloaded:
1033 case LookupResult::FoundUnresolvedValue:
1034 break;
1035
1036 case LookupResult::Ambiguous:
1037 DiagnoseAmbiguousLookup(R);
1038 return ExprError();
1039 }
1040
1041 if (!ParameterPack || !ParameterPack->isParameterPack()) {
1042 Diag(NameLoc, diag::err_sizeof_pack_no_pack_name)
1043 << &Name;
1044 return ExprError();
1045 }
1046
1047 MarkAnyDeclReferenced(OpLoc, ParameterPack, true);
1048
1049 return SizeOfPackExpr::Create(Context, OpLoc, ParameterPack, NameLoc,
1050 RParenLoc);
1051}
1052
1053TemplateArgumentLoc
1054Sema::getTemplateArgumentPackExpansionPattern(
1055 TemplateArgumentLoc OrigLoc,
1056 SourceLocation &Ellipsis, Optional<unsigned> &NumExpansions) const {
1057 const TemplateArgument &Argument = OrigLoc.getArgument();
1058 assert(Argument.isPackExpansion())(static_cast <bool> (Argument.isPackExpansion()) ? void
(0) : __assert_fail ("Argument.isPackExpansion()", "clang/lib/Sema/SemaTemplateVariadic.cpp"
, 1058, __extension__ __PRETTY_FUNCTION__))
;
1059 switch (Argument.getKind()) {
1060 case TemplateArgument::Type: {
1061 // FIXME: We shouldn't ever have to worry about missing
1062 // type-source info!
1063 TypeSourceInfo *ExpansionTSInfo = OrigLoc.getTypeSourceInfo();
1064 if (!ExpansionTSInfo)
1065 ExpansionTSInfo = Context.getTrivialTypeSourceInfo(Argument.getAsType(),
1066 Ellipsis);
1067 PackExpansionTypeLoc Expansion =
1068 ExpansionTSInfo->getTypeLoc().castAs<PackExpansionTypeLoc>();
1069 Ellipsis = Expansion.getEllipsisLoc();
1070
1071 TypeLoc Pattern = Expansion.getPatternLoc();
1072 NumExpansions = Expansion.getTypePtr()->getNumExpansions();
1073
1074 // We need to copy the TypeLoc because TemplateArgumentLocs store a
1075 // TypeSourceInfo.
1076 // FIXME: Find some way to avoid the copy?
1077 TypeLocBuilder TLB;
1078 TLB.pushFullCopy(Pattern);
1079 TypeSourceInfo *PatternTSInfo =
1080 TLB.getTypeSourceInfo(Context, Pattern.getType());
1081 return TemplateArgumentLoc(TemplateArgument(Pattern.getType()),
1082 PatternTSInfo);
1083 }
1084
1085 case TemplateArgument::Expression: {
1086 PackExpansionExpr *Expansion
1087 = cast<PackExpansionExpr>(Argument.getAsExpr());
1088 Expr *Pattern = Expansion->getPattern();
1089 Ellipsis = Expansion->getEllipsisLoc();
1090 NumExpansions = Expansion->getNumExpansions();
1091 return TemplateArgumentLoc(Pattern, Pattern);
1092 }
1093
1094 case TemplateArgument::TemplateExpansion:
1095 Ellipsis = OrigLoc.getTemplateEllipsisLoc();
1096 NumExpansions = Argument.getNumTemplateExpansions();
1097 return TemplateArgumentLoc(Context, Argument.getPackExpansionPattern(),
1098 OrigLoc.getTemplateQualifierLoc(),
1099 OrigLoc.getTemplateNameLoc());
1100
1101 case TemplateArgument::Declaration:
1102 case TemplateArgument::NullPtr:
1103 case TemplateArgument::Template:
1104 case TemplateArgument::Integral:
1105 case TemplateArgument::Pack:
1106 case TemplateArgument::Null:
1107 return TemplateArgumentLoc();
1108 }
1109
1110 llvm_unreachable("Invalid TemplateArgument Kind!")::llvm::llvm_unreachable_internal("Invalid TemplateArgument Kind!"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1110)
;
1111}
1112
1113Optional<unsigned> Sema::getFullyPackExpandedSize(TemplateArgument Arg) {
1114 assert(Arg.containsUnexpandedParameterPack())(static_cast <bool> (Arg.containsUnexpandedParameterPack
()) ? void (0) : __assert_fail ("Arg.containsUnexpandedParameterPack()"
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1114, __extension__
__PRETTY_FUNCTION__))
;
1115
1116 // If this is a substituted pack, grab that pack. If not, we don't know
1117 // the size yet.
1118 // FIXME: We could find a size in more cases by looking for a substituted
1119 // pack anywhere within this argument, but that's not necessary in the common
1120 // case for 'sizeof...(A)' handling.
1121 TemplateArgument Pack;
1122 switch (Arg.getKind()) {
1123 case TemplateArgument::Type:
1124 if (auto *Subst = Arg.getAsType()->getAs<SubstTemplateTypeParmPackType>())
1125 Pack = Subst->getArgumentPack();
1126 else
1127 return None;
1128 break;
1129
1130 case TemplateArgument::Expression:
1131 if (auto *Subst =
1132 dyn_cast<SubstNonTypeTemplateParmPackExpr>(Arg.getAsExpr()))
1133 Pack = Subst->getArgumentPack();
1134 else if (auto *Subst = dyn_cast<FunctionParmPackExpr>(Arg.getAsExpr())) {
1135 for (VarDecl *PD : *Subst)
1136 if (PD->isParameterPack())
1137 return None;
1138 return Subst->getNumExpansions();
1139 } else
1140 return None;
1141 break;
1142
1143 case TemplateArgument::Template:
1144 if (SubstTemplateTemplateParmPackStorage *Subst =
1145 Arg.getAsTemplate().getAsSubstTemplateTemplateParmPack())
1146 Pack = Subst->getArgumentPack();
1147 else
1148 return None;
1149 break;
1150
1151 case TemplateArgument::Declaration:
1152 case TemplateArgument::NullPtr:
1153 case TemplateArgument::TemplateExpansion:
1154 case TemplateArgument::Integral:
1155 case TemplateArgument::Pack:
1156 case TemplateArgument::Null:
1157 return None;
1158 }
1159
1160 // Check that no argument in the pack is itself a pack expansion.
1161 for (TemplateArgument Elem : Pack.pack_elements()) {
1162 // There's no point recursing in this case; we would have already
1163 // expanded this pack expansion into the enclosing pack if we could.
1164 if (Elem.isPackExpansion())
1165 return None;
1166 }
1167 return Pack.pack_size();
1168}
1169
1170static void CheckFoldOperand(Sema &S, Expr *E) {
1171 if (!E)
1172 return;
1173
1174 E = E->IgnoreImpCasts();
1175 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
1176 if ((OCE && OCE->isInfixBinaryOp()) || isa<BinaryOperator>(E) ||
1177 isa<AbstractConditionalOperator>(E)) {
1178 S.Diag(E->getExprLoc(), diag::err_fold_expression_bad_operand)
1179 << E->getSourceRange()
1180 << FixItHint::CreateInsertion(E->getBeginLoc(), "(")
1181 << FixItHint::CreateInsertion(E->getEndLoc(), ")");
1182 }
1183}
1184
1185ExprResult Sema::ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
1186 tok::TokenKind Operator,
1187 SourceLocation EllipsisLoc, Expr *RHS,
1188 SourceLocation RParenLoc) {
1189 // LHS and RHS must be cast-expressions. We allow an arbitrary expression
1190 // in the parser and reduce down to just cast-expressions here.
1191 CheckFoldOperand(*this, LHS);
1192 CheckFoldOperand(*this, RHS);
1193
1194 auto DiscardOperands = [&] {
1195 CorrectDelayedTyposInExpr(LHS);
1196 CorrectDelayedTyposInExpr(RHS);
1197 };
1198
1199 // [expr.prim.fold]p3:
1200 // In a binary fold, op1 and op2 shall be the same fold-operator, and
1201 // either e1 shall contain an unexpanded parameter pack or e2 shall contain
1202 // an unexpanded parameter pack, but not both.
1203 if (LHS && RHS &&
1204 LHS->containsUnexpandedParameterPack() ==
1205 RHS->containsUnexpandedParameterPack()) {
1206 DiscardOperands();
1207 return Diag(EllipsisLoc,
1208 LHS->containsUnexpandedParameterPack()
1209 ? diag::err_fold_expression_packs_both_sides
1210 : diag::err_pack_expansion_without_parameter_packs)
1211 << LHS->getSourceRange() << RHS->getSourceRange();
1212 }
1213
1214 // [expr.prim.fold]p2:
1215 // In a unary fold, the cast-expression shall contain an unexpanded
1216 // parameter pack.
1217 if (!LHS || !RHS) {
1218 Expr *Pack = LHS ? LHS : RHS;
1219 assert(Pack && "fold expression with neither LHS nor RHS")(static_cast <bool> (Pack && "fold expression with neither LHS nor RHS"
) ? void (0) : __assert_fail ("Pack && \"fold expression with neither LHS nor RHS\""
, "clang/lib/Sema/SemaTemplateVariadic.cpp", 1219, __extension__
__PRETTY_FUNCTION__))
;
1220 DiscardOperands();
1221 if (!Pack->containsUnexpandedParameterPack())
1222 return Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1223 << Pack->getSourceRange();
1224 }
1225
1226 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Operator);
1227
1228 // Perform first-phase name lookup now.
1229 UnresolvedLookupExpr *ULE = nullptr;
1230 {
1231 UnresolvedSet<16> Functions;
1232 LookupBinOp(S, EllipsisLoc, Opc, Functions);
1233 if (!Functions.empty()) {
1234 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(
1235 BinaryOperator::getOverloadedOperator(Opc));
1236 ExprResult Callee = CreateUnresolvedLookupExpr(
1237 /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
1238 DeclarationNameInfo(OpName, EllipsisLoc), Functions);
1239 if (Callee.isInvalid())
1240 return ExprError();
1241 ULE = cast<UnresolvedLookupExpr>(Callee.get());
1242 }
1243 }
1244
1245 return BuildCXXFoldExpr(ULE, LParenLoc, LHS, Opc, EllipsisLoc, RHS, RParenLoc,
1246 None);
1247}
1248
1249ExprResult Sema::BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
1250 SourceLocation LParenLoc, Expr *LHS,
1251 BinaryOperatorKind Operator,
1252 SourceLocation EllipsisLoc, Expr *RHS,
1253 SourceLocation RParenLoc,
1254 Optional<unsigned> NumExpansions) {
1255 return new (Context)
1256 CXXFoldExpr(Context.DependentTy, Callee, LParenLoc, LHS, Operator,
1257 EllipsisLoc, RHS, RParenLoc, NumExpansions);
1258}
1259
1260ExprResult Sema::BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
1261 BinaryOperatorKind Operator) {
1262 // [temp.variadic]p9:
1263 // If N is zero for a unary fold-expression, the value of the expression is
1264 // && -> true
1265 // || -> false
1266 // , -> void()
1267 // if the operator is not listed [above], the instantiation is ill-formed.
1268 //
1269 // Note that we need to use something like int() here, not merely 0, to
1270 // prevent the result from being a null pointer constant.
1271 QualType ScalarType;
1272 switch (Operator) {
1273 case BO_LOr:
1274 return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_false);
1275 case BO_LAnd:
1276 return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_true);
1277 case BO_Comma:
1278 ScalarType = Context.VoidTy;
1279 break;
1280
1281 default:
1282 return Diag(EllipsisLoc, diag::err_fold_expression_empty)
1283 << BinaryOperator::getOpcodeStr(Operator);
1284 }
1285
1286 return new (Context) CXXScalarValueInitExpr(
1287 ScalarType, Context.getTrivialTypeSourceInfo(ScalarType, EllipsisLoc),
1288 EllipsisLoc);
1289}

/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the PointerUnion class, which is a discriminated union of
11/// pointer types.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_POINTERUNION_H
16#define LLVM_ADT_POINTERUNION_H
17
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/PointerLikeTypeTraits.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdint>
27
28namespace llvm {
29
30namespace pointer_union_detail {
31 /// Determine the number of bits required to store integers with values < n.
32 /// This is ceil(log2(n)).
33 constexpr int bitsRequired(unsigned n) {
34 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
35 }
36
37 template <typename... Ts> constexpr int lowBitsAvailable() {
38 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
39 }
40
41 /// Find the first type in a list of types.
42 template <typename T, typename...> struct GetFirstType {
43 using type = T;
44 };
45
46 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
47 /// for the template arguments.
48 template <typename ...PTs> class PointerUnionUIntTraits {
49 public:
50 static inline void *getAsVoidPointer(void *P) { return P; }
51 static inline void *getFromVoidPointer(void *P) { return P; }
52 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
53 };
54
55 template <typename Derived, typename ValTy, int I, typename ...Types>
56 class PointerUnionMembers;
57
58 template <typename Derived, typename ValTy, int I>
59 class PointerUnionMembers<Derived, ValTy, I> {
60 protected:
61 ValTy Val;
62 PointerUnionMembers() = default;
63 PointerUnionMembers(ValTy Val) : Val(Val) {}
64
65 friend struct PointerLikeTypeTraits<Derived>;
66 };
67
68 template <typename Derived, typename ValTy, int I, typename Type,
69 typename ...Types>
70 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
71 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
72 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
73 public:
74 using Base::Base;
75 PointerUnionMembers() = default;
76 PointerUnionMembers(Type V)
77 : Base(ValTy(const_cast<void *>(
78 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
79 I)) {}
80
81 using Base::operator=;
82 Derived &operator=(Type V) {
83 this->Val = ValTy(
84 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
85 I);
86 return static_cast<Derived &>(*this);
87 };
88 };
89}
90
91// This is a forward declaration of CastInfoPointerUnionImpl
92// Refer to its definition below for further details
93template <typename... PTs> struct CastInfoPointerUnionImpl;
94/// A discriminated union of two or more pointer types, with the discriminator
95/// in the low bit of the pointer.
96///
97/// This implementation is extremely efficient in space due to leveraging the
98/// low bits of the pointer, while exposing a natural and type-safe API.
99///
100/// Common use patterns would be something like this:
101/// PointerUnion<int*, float*> P;
102/// P = (int*)0;
103/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
104/// X = P.get<int*>(); // ok.
105/// Y = P.get<float*>(); // runtime assertion failure.
106/// Z = P.get<double*>(); // compile time failure.
107/// P = (float*)0;
108/// Y = P.get<float*>(); // ok.
109/// X = P.get<int*>(); // runtime assertion failure.
110/// PointerUnion<int*, int*> Q; // compile time failure.
111template <typename... PTs>
112class PointerUnion
113 : public pointer_union_detail::PointerUnionMembers<
114 PointerUnion<PTs...>,
115 PointerIntPair<
116 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
117 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
118 0, PTs...> {
119 static_assert(TypesAreDistinct<PTs...>::value,
120 "PointerUnion alternative types cannot be repeated");
121 // The first type is special because we want to directly cast a pointer to a
122 // default-initialized union to a pointer to the first type. But we don't
123 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
124 // because it's much more convenient to have a name for the whole pack. So
125 // split off the first type here.
126 using First = TypeAtIndex<0, PTs...>;
127 using Base = typename PointerUnion::PointerUnionMembers;
128
129 /// This is needed to give the CastInfo implementation below access
130 /// to protected members.
131 /// Refer to its definition for further details.
132 friend struct CastInfoPointerUnionImpl<PTs...>;
133
134public:
135 PointerUnion() = default;
136
137 PointerUnion(std::nullptr_t) : PointerUnion() {}
138 using Base::Base;
139
140 /// Test if the pointer held in the union is null, regardless of
141 /// which type it is.
142 bool isNull() const { return !this->Val.getPointer(); }
143
144 explicit operator bool() const { return !isNull(); }
145
146 // FIXME: Replace the uses of is(), get() and dyn_cast() with
147 // isa<T>, cast<T> and the llvm::dyn_cast<T>
148
149 /// Test if the Union currently holds the type matching T.
150 template <typename T> inline bool is() const { return isa<T>(*this); }
151
152 /// Returns the value of the specified pointer type.
153 ///
154 /// If the specified pointer type is incorrect, assert.
155 template <typename T> inline T get() const {
156 assert(isa<T>(*this) && "Invalid accessor called")(static_cast <bool> (isa<T>(*this) && "Invalid accessor called"
) ? void (0) : __assert_fail ("isa<T>(*this) && \"Invalid accessor called\""
, "llvm/include/llvm/ADT/PointerUnion.h", 156, __extension__ __PRETTY_FUNCTION__
))
;
157 return cast<T>(*this);
158 }
159
160 /// Returns the current pointer if it is of the specified pointer type,
161 /// otherwise returns null.
162 template <typename T> inline T dyn_cast() const {
163 return llvm::dyn_cast<T>(*this);
15
Calling 'dyn_cast<const clang::TemplateTypeParmType *, llvm::PointerUnion<const clang::TemplateTypeParmType *, clang::NamedDecl *>>'
27
Returning from 'dyn_cast<const clang::TemplateTypeParmType *, llvm::PointerUnion<const clang::TemplateTypeParmType *, clang::NamedDecl *>>'
28
Returning null pointer, which participates in a condition later
164 }
165
166 /// If the union is set to the first pointer type get an address pointing to
167 /// it.
168 First const *getAddrOfPtr1() const {
169 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
170 }
171
172 /// If the union is set to the first pointer type get an address pointing to
173 /// it.
174 First *getAddrOfPtr1() {
175 assert(is<First>() && "Val is not the first pointer")(static_cast <bool> (is<First>() && "Val is not the first pointer"
) ? void (0) : __assert_fail ("is<First>() && \"Val is not the first pointer\""
, "llvm/include/llvm/ADT/PointerUnion.h", 175, __extension__ __PRETTY_FUNCTION__
))
;
176 assert((static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
177 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
178 this->Val.getPointer() &&(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
179 "Can't get the address because PointerLikeTypeTraits changes the ptr")(static_cast <bool> (PointerLikeTypeTraits<First>
::getAsVoidPointer(get<First>()) == this->Val.getPointer
() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? void (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "llvm/include/llvm/ADT/PointerUnion.h", 179, __extension__ __PRETTY_FUNCTION__
))
;
180 return const_cast<First *>(
181 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
182 }
183
184 /// Assignment from nullptr which just clears the union.
185 const PointerUnion &operator=(std::nullptr_t) {
186 this->Val.initWithPointer(nullptr);
187 return *this;
188 }
189
190 /// Assignment from elements of the union.
191 using Base::operator=;
192
193 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
194 static inline PointerUnion getFromOpaqueValue(void *VP) {
195 PointerUnion V;
196 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
197 return V;
198 }
199};
200
201template <typename ...PTs>
202bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
203 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
204}
205
206template <typename ...PTs>
207bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
208 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
209}
210
211template <typename ...PTs>
212bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
213 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
214}
215
216/// We can't (at least, at this moment with C++14) declare CastInfo
217/// as a friend of PointerUnion like this:
218/// ```
219/// template<typename To>
220/// friend struct CastInfo<To, PointerUnion<PTs...>>;
221/// ```
222/// The compiler complains 'Partial specialization cannot be declared as a
223/// friend'.
224/// So we define this struct to be a bridge between CastInfo and
225/// PointerUnion.
226template <typename... PTs> struct CastInfoPointerUnionImpl {
227 using From = PointerUnion<PTs...>;
228
229 template <typename To> static inline bool isPossible(From &F) {
230 return F.Val.getInt() == FirstIndexOfType<To, PTs...>::value;
231 }
232
233 template <typename To> static To doCast(From &F) {
234 assert(isPossible<To>(F) && "cast to an incompatible type !")(static_cast <bool> (isPossible<To>(F) &&
"cast to an incompatible type !") ? void (0) : __assert_fail
("isPossible<To>(F) && \"cast to an incompatible type !\""
, "llvm/include/llvm/ADT/PointerUnion.h", 234, __extension__ __PRETTY_FUNCTION__
))
;
235 return PointerLikeTypeTraits<To>::getFromVoidPointer(F.Val.getPointer());
236 }
237};
238
239// Specialization of CastInfo for PointerUnion
240template <typename To, typename... PTs>
241struct CastInfo<To, PointerUnion<PTs...>>
242 : public DefaultDoCastIfPossible<To, PointerUnion<PTs...>,
243 CastInfo<To, PointerUnion<PTs...>>> {
244 using From = PointerUnion<PTs...>;
245 using Impl = CastInfoPointerUnionImpl<PTs...>;
246
247 static inline bool isPossible(From &f) {
248 return Impl::template isPossible<To>(f);
249 }
250
251 static To doCast(From &f) { return Impl::template doCast<To>(f); }
252
253 static inline To castFailed() { return To(); }
20
Returning null pointer, which participates in a condition later
254};
255
256template <typename To, typename... PTs>
257struct CastInfo<To, const PointerUnion<PTs...>>
258 : public ConstStrippingForwardingCast<To, const PointerUnion<PTs...>,
259 CastInfo<To, PointerUnion<PTs...>>> {
260};
261
262// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
263// # low bits available = min(PT1bits,PT2bits)-1.
264template <typename ...PTs>
265struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
266 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
267 return P.getOpaqueValue();
268 }
269
270 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
271 return PointerUnion<PTs...>::getFromOpaqueValue(P);
272 }
273
274 // The number of bits available are the min of the pointer types minus the
275 // bits needed for the discriminator.
276 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
277 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
278};
279
280// Teach DenseMap how to use PointerUnions as keys.
281template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
282 using Union = PointerUnion<PTs...>;
283 using FirstInfo =
284 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
285
286 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
287
288 static inline Union getTombstoneKey() {
289 return Union(FirstInfo::getTombstoneKey());
290 }
291
292 static unsigned getHashValue(const Union &UnionVal) {
293 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
294 return DenseMapInfo<intptr_t>::getHashValue(key);
295 }
296
297 static bool isEqual(const Union &LHS, const Union &RHS) {
298 return LHS == RHS;
299 }
300};
301
302} // end namespace llvm
303
304#endif // LLVM_ADT_POINTERUNION_H

/build/llvm-toolchain-snapshot-16~++20220828101037+f00f2b3e8d40/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10// cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/ADT/Optional.h"
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// simplify_type
28//===----------------------------------------------------------------------===//
29
30/// Define a template that can be specialized by smart pointers to reflect the
31/// fact that they are automatically dereferenced, and are not involved with the
32/// template selection process... the default implementation is a noop.
33// TODO: rename this and/or replace it with other cast traits.
34template <typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template <typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From &Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49 }
50};
51
52// TODO: add this namespace once everyone is switched to using the new
53// interface.
54// namespace detail {
55
56//===----------------------------------------------------------------------===//
57// isa_impl
58//===----------------------------------------------------------------------===//
59
60// The core of the implementation of isa<X> is here; To and From should be
61// the names of classes. This template can be specialized to customize the
62// implementation of isa<> without rewriting it from scratch.
63template <typename To, typename From, typename Enabler = void> struct isa_impl {
64 static inline bool doit(const From &Val) { return To::classof(&Val); }
65};
66
67// Always allow upcasts, and perform no dynamic check for them.
68template <typename To, typename From>
69struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
70 static inline bool doit(const From &) { return true; }
71};
72
73template <typename To, typename From> struct isa_impl_cl {
74 static inline bool doit(const From &Val) {
75 return isa_impl<To, From>::doit(Val);
76 }
77};
78
79template <typename To, typename From> struct isa_impl_cl<To, const From> {
80 static inline bool doit(const From &Val) {
81 return isa_impl<To, From>::doit(Val);
82 }
83};
84
85template <typename To, typename From>
86struct isa_impl_cl<To, const std::unique_ptr<From>> {
87 static inline bool doit(const std::unique_ptr<From> &Val) {
88 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 88, __extension__ __PRETTY_FUNCTION__
))
;
89 return isa_impl_cl<To, From>::doit(*Val);
90 }
91};
92
93template <typename To, typename From> struct isa_impl_cl<To, From *> {
94 static inline bool doit(const From *Val) {
95 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 95, __extension__ __PRETTY_FUNCTION__
))
;
96 return isa_impl<To, From>::doit(*Val);
97 }
98};
99
100template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101 static inline bool doit(const From *Val) {
102 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 102, __extension__ __PRETTY_FUNCTION__
))
;
103 return isa_impl<To, From>::doit(*Val);
104 }
105};
106
107template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108 static inline bool doit(const From *Val) {
109 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 109, __extension__ __PRETTY_FUNCTION__
))
;
110 return isa_impl<To, From>::doit(*Val);
111 }
112};
113
114template <typename To, typename From>
115struct isa_impl_cl<To, const From *const> {
116 static inline bool doit(const From *Val) {
117 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 return isa_impl<To, From>::doit(*Val);
119 }
120};
121
122template <typename To, typename From, typename SimpleFrom>
123struct isa_impl_wrap {
124 // When From != SimplifiedType, we can simplify the type some more by using
125 // the simplify_type template.
126 static bool doit(const From &Val) {
127 return isa_impl_wrap<To, SimpleFrom,
128 typename simplify_type<SimpleFrom>::SimpleType>::
129 doit(simplify_type<const From>::getSimplifiedValue(Val));
130 }
131};
132
133template <typename To, typename FromTy>
134struct isa_impl_wrap<To, FromTy, FromTy> {
135 // When From == SimpleType, we are as simple as we are going to get.
136 static bool doit(const FromTy &Val) {
137 return isa_impl_cl<To, FromTy>::doit(Val);
138 }
139};
140
141//===----------------------------------------------------------------------===//
142// cast_retty + cast_retty_impl
143//===----------------------------------------------------------------------===//
144
145template <class To, class From> struct cast_retty;
146
147// Calculate what type the 'cast' function should return, based on a requested
148// type of To and a source type of From.
149template <class To, class From> struct cast_retty_impl {
150 using ret_type = To &; // Normal case, return Ty&
151};
152template <class To, class From> struct cast_retty_impl<To, const From> {
153 using ret_type = const To &; // Normal case, return Ty&
154};
155
156template <class To, class From> struct cast_retty_impl<To, From *> {
157 using ret_type = To *; // Pointer arg case, return Ty*
158};
159
160template <class To, class From> struct cast_retty_impl<To, const From *> {
161 using ret_type = const To *; // Constant pointer arg case, return const Ty*
162};
163
164template <class To, class From> struct cast_retty_impl<To, const From *const> {
165 using ret_type = const To *; // Constant pointer arg case, return const Ty*
166};
167
168template <class To, class From>
169struct cast_retty_impl<To, std::unique_ptr<From>> {
170private:
171 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172 using ResultType = std::remove_pointer_t<PointerType>;
173
174public:
175 using ret_type = std::unique_ptr<ResultType>;
176};
177
178template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179 // When the simplified type and the from type are not the same, use the type
180 // simplifier to reduce the type, then reuse cast_retty_impl to get the
181 // resultant type.
182 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183};
184
185template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186 // When the simplified type is equal to the from type, use it directly.
187 using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188};
189
190template <class To, class From> struct cast_retty {
191 using ret_type = typename cast_retty_wrap<
192 To, From, typename simplify_type<From>::SimpleType>::ret_type;
193};
194
195//===----------------------------------------------------------------------===//
196// cast_convert_val
197//===----------------------------------------------------------------------===//
198
199// Ensure the non-simple values are converted using the simplify_type template
200// that may be specialized by smart pointers...
201//
202template <class To, class From, class SimpleFrom> struct cast_convert_val {
203 // This is not a simple type, use the template to simplify it...
204 static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205 return cast_convert_val<To, SimpleFrom,
206 typename simplify_type<SimpleFrom>::SimpleType>::
207 doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208 }
209};
210
211template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212 // If it's a reference, switch to a pointer to do the cast and then deref it.
213 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214 return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215 *)&const_cast<FromTy &>(Val);
216 }
217};
218
219template <class To, class FromTy>
220struct cast_convert_val<To, FromTy *, FromTy *> {
221 // If it's a pointer, we can use c-style casting directly.
222 static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223 return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224 Val);
225 }
226};
227
228//===----------------------------------------------------------------------===//
229// is_simple_type
230//===----------------------------------------------------------------------===//
231
232template <class X> struct is_simple_type {
233 static const bool value =
234 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
235};
236
237// } // namespace detail
238
239//===----------------------------------------------------------------------===//
240// CastIsPossible
241//===----------------------------------------------------------------------===//
242
243/// This struct provides a way to check if a given cast is possible. It provides
244/// a static function called isPossible that is used to check if a cast can be
245/// performed. It should be overridden like this:
246///
247/// template<> struct CastIsPossible<foo, bar> {
248/// static inline bool isPossible(const bar &b) {
249/// return bar.isFoo();
250/// }
251/// };
252template <typename To, typename From, typename Enable = void>
253struct CastIsPossible {
254 static inline bool isPossible(const From &f) {
255 return isa_impl_wrap<
256 To, const From,
257 typename simplify_type<const From>::SimpleType>::doit(f);
258 }
259};
260
261// Needed for optional unwrapping. This could be implemented with isa_impl, but
262// we want to implement things in the new method and move old implementations
263// over. In fact, some of the isa_impl templates should be moved over to
264// CastIsPossible.
265template <typename To, typename From>
266struct CastIsPossible<To, Optional<From>> {
267 static inline bool isPossible(const Optional<From> &f) {
268 assert(f && "CastIsPossible::isPossible called on a nullopt!")(static_cast <bool> (f && "CastIsPossible::isPossible called on a nullopt!"
) ? void (0) : __assert_fail ("f && \"CastIsPossible::isPossible called on a nullopt!\""
, "llvm/include/llvm/Support/Casting.h", 268, __extension__ __PRETTY_FUNCTION__
))
;
269 return isa_impl_wrap<
270 To, const From,
271 typename simplify_type<const From>::SimpleType>::doit(*f);
272 }
273};
274
275/// Upcasting (from derived to base) and casting from a type to itself should
276/// always be possible.
277template <typename To, typename From>
278struct CastIsPossible<To, From,
279 std::enable_if_t<std::is_base_of<To, From>::value>> {
280 static inline bool isPossible(const From &f) { return true; }
281};
282
283//===----------------------------------------------------------------------===//
284// Cast traits
285//===----------------------------------------------------------------------===//
286
287/// All of these cast traits are meant to be implementations for useful casts
288/// that users may want to use that are outside the standard behavior. An
289/// example of how to use a special cast called `CastTrait` is:
290///
291/// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
292///
293/// Essentially, if your use case falls directly into one of the use cases
294/// supported by a given cast trait, simply inherit your special CastInfo
295/// directly from one of these to avoid having to reimplement the boilerplate
296/// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
297/// provide a subset of those functions.
298
299/// This cast trait just provides castFailed for the specified `To` type to make
300/// CastInfo specializations more declarative. In order to use this, the target
301/// result type must be `To` and `To` must be constructible from `nullptr`.
302template <typename To> struct NullableValueCastFailed {
303 static To castFailed() { return To(nullptr); }
304};
305
306/// This cast trait just provides the default implementation of doCastIfPossible
307/// to make CastInfo specializations more declarative. The `Derived` template
308/// parameter *must* be provided for forwarding castFailed and doCast.
309template <typename To, typename From, typename Derived>
310struct DefaultDoCastIfPossible {
311 static To doCastIfPossible(From f) {
312 if (!Derived::isPossible(f))
18
Taking true branch
313 return Derived::castFailed();
19
Calling 'CastInfo::castFailed'
21
Returning from 'CastInfo::castFailed'
22
Returning null pointer, which participates in a condition later
314 return Derived::doCast(f);
315 }
316};
317
318namespace detail {
319/// A helper to derive the type to use with `Self` for cast traits, when the
320/// provided CRTP derived type is allowed to be void.
321template <typename OptionalDerived, typename Default>
322using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value,
323 Default, OptionalDerived>;
324} // namespace detail
325
326/// This cast trait provides casting for the specific case of casting to a
327/// value-typed object from a pointer-typed object. Note that `To` must be
328/// nullable/constructible from a pointer to `From` to use this cast.
329template <typename To, typename From, typename Derived = void>
330struct ValueFromPointerCast
331 : public CastIsPossible<To, From *>,
332 public NullableValueCastFailed<To>,
333 public DefaultDoCastIfPossible<
334 To, From *,
335 detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
336 static inline To doCast(From *f) { return To(f); }
337};
338
339/// This cast trait provides std::unique_ptr casting. It has the semantics of
340/// moving the contents of the input unique_ptr into the output unique_ptr
341/// during the cast. It's also a good example of how to implement a move-only
342/// cast.
343template <typename To, typename From, typename Derived = void>
344struct UniquePtrCast : public CastIsPossible<To, From *> {
345 using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
346 using CastResultType = std::unique_ptr<
347 std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
348
349 static inline CastResultType doCast(std::unique_ptr<From> &&f) {
350 return CastResultType((typename CastResultType::element_type *)f.release());
351 }
352
353 static inline CastResultType castFailed() { return CastResultType(nullptr); }
354
355 static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) {
356 if (!Self::isPossible(f))
357 return castFailed();
358 return doCast(f);
359 }
360};
361
362/// This cast trait provides Optional<T> casting. This means that if you have a
363/// value type, you can cast it to another value type and have dyn_cast return
364/// an Optional<T>.
365template <typename To, typename From, typename Derived = void>
366struct OptionalValueCast
367 : public CastIsPossible<To, From>,
368 public DefaultDoCastIfPossible<
369 Optional<To>, From,
370 detail::SelfType<Derived, OptionalValueCast<To, From>>> {
371 static inline Optional<To> castFailed() { return Optional<To>{}; }
372
373 static inline Optional<To> doCast(const From &f) { return To(f); }
374};
375
376/// Provides a cast trait that strips `const` from types to make it easier to
377/// implement a const-version of a non-const cast. It just removes boilerplate
378/// and reduces the amount of code you as the user need to implement. You can
379/// use it like this:
380///
381/// template<> struct CastInfo<foo, bar> {
382/// ...verbose implementation...
383/// };
384///
385/// template<> struct CastInfo<foo, const bar> : public
386/// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
387///
388template <typename To, typename From, typename ForwardTo>
389struct ConstStrippingForwardingCast {
390 // Remove the pointer if it exists, then we can get rid of consts/volatiles.
391 using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
392 // Now if it's a pointer, add it back. Otherwise, we want a ref.
393 using NonConstFrom = std::conditional_t<std::is_pointer<From>::value,
394 DecayedFrom *, DecayedFrom &>;
395
396 static inline bool isPossible(const From &f) {
397 return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
398 }
399
400 static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
401
402 static inline decltype(auto) doCast(const From &f) {
403 return ForwardTo::doCast(const_cast<NonConstFrom>(f));
404 }
405
406 static inline decltype(auto) doCastIfPossible(const From &f) {
407 return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
17
Calling 'DefaultDoCastIfPossible::doCastIfPossible'
23
Returning from 'DefaultDoCastIfPossible::doCastIfPossible'
24
Returning null pointer, which participates in a condition later
408 }
409};
410
411/// Provides a cast trait that uses a defined pointer to pointer cast as a base
412/// for reference-to-reference casts. Note that it does not provide castFailed
413/// and doCastIfPossible because a pointer-to-pointer cast would likely just
414/// return `nullptr` which could cause nullptr dereference. You can use it like
415/// this:
416///
417/// template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
418///
419/// template <>
420/// struct CastInfo<foo, bar>
421/// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
422///
423template <typename To, typename From, typename ForwardTo>
424struct ForwardToPointerCast {
425 static inline bool isPossible(const From &f) {
426 return ForwardTo::isPossible(&f);
427 }
428
429 static inline decltype(auto) doCast(const From &f) {
430 return *ForwardTo::doCast(&f);
431 }
432};
433
434//===----------------------------------------------------------------------===//
435// CastInfo
436//===----------------------------------------------------------------------===//
437
438/// This struct provides a method for customizing the way a cast is performed.
439/// It inherits from CastIsPossible, to support the case of declaring many
440/// CastIsPossible specializations without having to specialize the full
441/// CastInfo.
442///
443/// In order to specialize different behaviors, specify different functions in
444/// your CastInfo specialization.
445/// For isa<> customization, provide:
446///
447/// `static bool isPossible(const From &f)`
448///
449/// For cast<> customization, provide:
450///
451/// `static To doCast(const From &f)`
452///
453/// For dyn_cast<> and the *_if_present<> variants' customization, provide:
454///
455/// `static To castFailed()` and `static To doCastIfPossible(const From &f)`
456///
457/// Your specialization might look something like this:
458///
459/// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
460/// static inline foo doCast(const bar &b) {
461/// return foo(const_cast<bar &>(b));
462/// }
463/// static inline foo castFailed() { return foo(); }
464/// static inline foo doCastIfPossible(const bar &b) {
465/// if (!CastInfo<foo, bar>::isPossible(b))
466/// return castFailed();
467/// return doCast(b);
468/// }
469/// };
470
471// The default implementations of CastInfo don't use cast traits for now because
472// we need to specify types all over the place due to the current expected
473// casting behavior and the way cast_retty works. New use cases can and should
474// take advantage of the cast traits whenever possible!
475
476template <typename To, typename From, typename Enable = void>
477struct CastInfo : public CastIsPossible<To, From> {
478 using Self = CastInfo<To, From, Enable>;
479
480 using CastReturnType = typename cast_retty<To, From>::ret_type;
481
482 static inline CastReturnType doCast(const From &f) {
483 return cast_convert_val<
484 To, From,
485 typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
486 }
487
488 // This assumes that you can construct the cast return type from `nullptr`.
489 // This is largely to support legacy use cases - if you don't want this
490 // behavior you should specialize CastInfo for your use case.
491 static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
492
493 static inline CastReturnType doCastIfPossible(const From &f) {
494 if (!Self::isPossible(f))
495 return castFailed();
496 return doCast(f);
497 }
498};
499
500/// This struct provides an overload for CastInfo where From has simplify_type
501/// defined. This simply forwards to the appropriate CastInfo with the
502/// simplified type/value, so you don't have to implement both.
503template <typename To, typename From>
504struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
505 using Self = CastInfo<To, From>;
506 using SimpleFrom = typename simplify_type<From>::SimpleType;
507 using SimplifiedSelf = CastInfo<To, SimpleFrom>;
508
509 static inline bool isPossible(From &f) {
510 return SimplifiedSelf::isPossible(
511 simplify_type<From>::getSimplifiedValue(f));
512 }
513
514 static inline decltype(auto) doCast(From &f) {
515 return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
516 }
517
518 static inline decltype(auto) castFailed() {
519 return SimplifiedSelf::castFailed();
520 }
521
522 static inline decltype(auto) doCastIfPossible(From &f) {
523 return SimplifiedSelf::doCastIfPossible(
524 simplify_type<From>::getSimplifiedValue(f));
525 }
526};
527
528//===----------------------------------------------------------------------===//
529// Pre-specialized CastInfo
530//===----------------------------------------------------------------------===//
531
532/// Provide a CastInfo specialized for std::unique_ptr.
533template <typename To, typename From>
534struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
535
536/// Provide a CastInfo specialized for Optional<From>. It's assumed that if the
537/// input is Optional<From> that the output can be Optional<To>. If that's not
538/// the case, specialize CastInfo for your use case.
539template <typename To, typename From>
540struct CastInfo<To, Optional<From>> : public OptionalValueCast<To, From> {};
541
542/// isa<X> - Return true if the parameter to the template is an instance of one
543/// of the template type arguments. Used like this:
544///
545/// if (isa<Type>(myVal)) { ... }
546/// if (isa<Type0, Type1, Type2>(myVal)) { ... }
547template <typename To, typename From>
548[[nodiscard]] inline bool isa(const From &Val) {
549 return CastInfo<To, const From>::isPossible(Val);
550}
551
552template <typename First, typename Second, typename... Rest, typename From>
553[[nodiscard]] inline bool isa(const From &Val) {
554 return isa<First>(Val) || isa<Second, Rest...>(Val);
555}
556
557/// cast<X> - Return the argument parameter cast to the specified type. This
558/// casting operator asserts that the type is correct, so it does not return
559/// null on failure. It does not allow a null argument (use cast_if_present for
560/// that). It is typically used like this:
561///
562/// cast<Instruction>(myVal)->getParent()
563
564template <typename To, typename From>
565[[nodiscard]] inline decltype(auto) cast(const From &Val) {
566 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 566, __extension__ __PRETTY_FUNCTION__
))
;
567 return CastInfo<To, const From>::doCast(Val);
568}
569
570template <typename To, typename From>
571[[nodiscard]] inline decltype(auto) cast(From &Val) {
572 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 572, __extension__ __PRETTY_FUNCTION__
))
;
573 return CastInfo<To, From>::doCast(Val);
574}
575
576template <typename To, typename From>
577[[nodiscard]] inline decltype(auto) cast(From *Val) {
578 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 578, __extension__ __PRETTY_FUNCTION__
))
;
579 return CastInfo<To, From *>::doCast(Val);
580}
581
582template <typename To, typename From>
583[[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
584 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 584, __extension__ __PRETTY_FUNCTION__
))
;
585 return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
586}
587
588/// dyn_cast<X> - Return the argument parameter cast to the specified type. This
589/// casting operator returns null if the argument is of the wrong type, so it
590/// can be used to test for a type as well as cast if successful. The value
591/// passed in must be present, if not, use dyn_cast_if_present. This should be
592/// used in the context of an if statement like this:
593///
594/// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
595
596template <typename To, typename From>
597[[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
598 return CastInfo<To, const From>::doCastIfPossible(Val);
16
Calling 'ConstStrippingForwardingCast::doCastIfPossible'
25
Returning from 'ConstStrippingForwardingCast::doCastIfPossible'
26
Returning null pointer, which participates in a condition later
599}
600
601template <typename To, typename From>
602[[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
603 return CastInfo<To, From>::doCastIfPossible(Val);
604}
605
606template <typename To, typename From>
607[[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
608 return CastInfo<To, From *>::doCastIfPossible(Val);
609}
610
611template <typename To, typename From>
612[[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) {
613 return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(std::move(Val));
614}
615
616//===----------------------------------------------------------------------===//
617// ValueIsPresent
618//===----------------------------------------------------------------------===//
619
620template <typename T>
621constexpr bool IsNullable = std::is_pointer<T>::value ||
622 std::is_constructible<T, std::nullptr_t>::value;
623
624/// ValueIsPresent provides a way to check if a value is, well, present. For
625/// pointers, this is the equivalent of checking against nullptr, for
626/// Optionals this is the equivalent of checking hasValue(). It also
627/// provides a method for unwrapping a value (think dereferencing a
628/// pointer).
629
630// Generic values can't *not* be present.
631template <typename T, typename Enable = void> struct ValueIsPresent {
632 using UnwrappedType = T;
633 static inline bool isPresent(const T &t) { return true; }
634 static inline decltype(auto) unwrapValue(T &t) { return t; }
635};
636
637// Optional provides its own way to check if something is present.
638template <typename T> struct ValueIsPresent<Optional<T>> {
639 using UnwrappedType = T;
640 static inline bool isPresent(const Optional<T> &t) { return t.has_value(); }
641 static inline decltype(auto) unwrapValue(Optional<T> &t) { return t.value(); }
642};
643
644// If something is "nullable" then we just compare it to nullptr to see if it
645// exists.
646template <typename T>
647struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
648 using UnwrappedType = T;
649 static inline bool isPresent(const T &t) { return t != nullptr; }
650 static inline decltype(auto) unwrapValue(T &t) { return t; }
651};
652
653namespace detail {
654// Convenience function we can use to check if a value is present. Because of
655// simplify_type, we have to call it on the simplified type for now.
656template <typename T> inline bool isPresent(const T &t) {
657 return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
658 simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
659}
660
661// Convenience function we can use to unwrap a value.
662template <typename T> inline decltype(auto) unwrapValue(T &t) {
663 return ValueIsPresent<T>::unwrapValue(t);
664}
665} // namespace detail
666
667/// isa_and_present<X> - Functionally identical to isa, except that a null value
668/// is accepted.
669template <typename... X, class Y>
670[[nodiscard]] inline bool isa_and_present(const Y &Val) {
671 if (!detail::isPresent(Val))
672 return false;
673 return isa<X...>(Val);
674}
675
676template <typename... X, class Y>
677[[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
678 return isa_and_present<X...>(Val);
679}
680
681/// cast_if_present<X> - Functionally identical to cast, except that a null
682/// value is accepted.
683template <class X, class Y>
684[[nodiscard]] inline auto cast_if_present(const Y &Val) {
685 if (!detail::isPresent(Val))
686 return CastInfo<X, const Y>::castFailed();
687 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 687, __extension__ __PRETTY_FUNCTION__
))
;
688 return cast<X>(detail::unwrapValue(Val));
689}
690
691template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
692 if (!detail::isPresent(Val))
693 return CastInfo<X, Y>::castFailed();
694 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 694, __extension__ __PRETTY_FUNCTION__
))
;
695 return cast<X>(detail::unwrapValue(Val));
696}
697
698template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
699 if (!detail::isPresent(Val))
700 return CastInfo<X, Y *>::castFailed();
701 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 701, __extension__ __PRETTY_FUNCTION__
))
;
702 return cast<X>(detail::unwrapValue(Val));
703}
704
705template <class X, class Y>
706[[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
707 if (!detail::isPresent(Val))
708 return UniquePtrCast<X, Y>::castFailed();
709 return UniquePtrCast<X, Y>::doCast(std::move(Val));
710}
711
712// Provide a forwarding from cast_or_null to cast_if_present for current
713// users. This is deprecated and will be removed in a future patch, use
714// cast_if_present instead.
715template <class X, class Y> auto cast_or_null(const Y &Val) {
716 return cast_if_present<X>(Val);
717}
718
719template <class X, class Y> auto cast_or_null(Y &Val) {
720 return cast_if_present<X>(Val);
721}
722
723template <class X, class Y> auto cast_or_null(Y *Val) {
724 return cast_if_present<X>(Val);
725}
726
727template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
728 return cast_if_present<X>(std::move(Val));
729}
730
731/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
732/// null (or none in the case of optionals) value is accepted.
733template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
734 if (!detail::isPresent(Val))
735 return CastInfo<X, const Y>::castFailed();
736 return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
737}
738
739template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
740 if (!detail::isPresent(Val))
741 return CastInfo<X, Y>::castFailed();
742 return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
743}
744
745template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
746 if (!detail::isPresent(Val))
747 return CastInfo<X, Y *>::castFailed();
748 return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
749}
750
751// Forwards to dyn_cast_if_present to avoid breaking current users. This is
752// deprecated and will be removed in a future patch, use
753// cast_if_present instead.
754template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
755 return dyn_cast_if_present<X>(Val);
756}
757
758template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
759 return dyn_cast_if_present<X>(Val);
760}
761
762template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
763 return dyn_cast_if_present<X>(Val);
764}
765
766/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
767/// taking ownership of the input pointer iff isa<X>(Val) is true. If the
768/// cast is successful, From refers to nullptr on exit and the casted value
769/// is returned. If the cast is unsuccessful, the function returns nullptr
770/// and From is unchanged.
771template <class X, class Y>
772[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
773unique_dyn_cast(std::unique_ptr<Y> &Val) {
774 if (!isa<X>(Val))
775 return nullptr;
776 return cast<X>(std::move(Val));
777}
778
779template <class X, class Y>
780[[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
781 return unique_dyn_cast<X, Y>(Val);
782}
783
784// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
785// except that a null value is accepted.
786template <class X, class Y>
787[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
788unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
789 if (!Val)
790 return nullptr;
791 return unique_dyn_cast<X, Y>(Val);
792}
793
794template <class X, class Y>
795[[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
796 return unique_dyn_cast_or_null<X, Y>(Val);
797}
798
799} // end namespace llvm
800
801#endif // LLVM_SUPPORT_CASTING_H