File: | clang/lib/Sema/SemaType.cpp |
Warning: | line 2654, column 37 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements type-related semantic analysis. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "TypeLocBuilder.h" | |||
14 | #include "clang/AST/ASTConsumer.h" | |||
15 | #include "clang/AST/ASTContext.h" | |||
16 | #include "clang/AST/ASTMutationListener.h" | |||
17 | #include "clang/AST/ASTStructuralEquivalence.h" | |||
18 | #include "clang/AST/CXXInheritance.h" | |||
19 | #include "clang/AST/DeclObjC.h" | |||
20 | #include "clang/AST/DeclTemplate.h" | |||
21 | #include "clang/AST/Expr.h" | |||
22 | #include "clang/AST/TypeLoc.h" | |||
23 | #include "clang/AST/TypeLocVisitor.h" | |||
24 | #include "clang/Basic/PartialDiagnostic.h" | |||
25 | #include "clang/Basic/TargetInfo.h" | |||
26 | #include "clang/Lex/Preprocessor.h" | |||
27 | #include "clang/Sema/DeclSpec.h" | |||
28 | #include "clang/Sema/DelayedDiagnostic.h" | |||
29 | #include "clang/Sema/Lookup.h" | |||
30 | #include "clang/Sema/ParsedTemplate.h" | |||
31 | #include "clang/Sema/ScopeInfo.h" | |||
32 | #include "clang/Sema/SemaInternal.h" | |||
33 | #include "clang/Sema/Template.h" | |||
34 | #include "clang/Sema/TemplateInstCallback.h" | |||
35 | #include "llvm/ADT/SmallPtrSet.h" | |||
36 | #include "llvm/ADT/SmallString.h" | |||
37 | #include "llvm/ADT/StringSwitch.h" | |||
38 | #include "llvm/IR/DerivedTypes.h" | |||
39 | #include "llvm/Support/ErrorHandling.h" | |||
40 | #include <bitset> | |||
41 | ||||
42 | using namespace clang; | |||
43 | ||||
44 | enum TypeDiagSelector { | |||
45 | TDS_Function, | |||
46 | TDS_Pointer, | |||
47 | TDS_ObjCObjOrBlock | |||
48 | }; | |||
49 | ||||
50 | /// isOmittedBlockReturnType - Return true if this declarator is missing a | |||
51 | /// return type because this is a omitted return type on a block literal. | |||
52 | static bool isOmittedBlockReturnType(const Declarator &D) { | |||
53 | if (D.getContext() != DeclaratorContext::BlockLiteral || | |||
54 | D.getDeclSpec().hasTypeSpecifier()) | |||
55 | return false; | |||
56 | ||||
57 | if (D.getNumTypeObjects() == 0) | |||
58 | return true; // ^{ ... } | |||
59 | ||||
60 | if (D.getNumTypeObjects() == 1 && | |||
61 | D.getTypeObject(0).Kind == DeclaratorChunk::Function) | |||
62 | return true; // ^(int X, float Y) { ... } | |||
63 | ||||
64 | return false; | |||
65 | } | |||
66 | ||||
67 | /// diagnoseBadTypeAttribute - Diagnoses a type attribute which | |||
68 | /// doesn't apply to the given type. | |||
69 | static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, | |||
70 | QualType type) { | |||
71 | TypeDiagSelector WhichType; | |||
72 | bool useExpansionLoc = true; | |||
73 | switch (attr.getKind()) { | |||
74 | case ParsedAttr::AT_ObjCGC: | |||
75 | WhichType = TDS_Pointer; | |||
76 | break; | |||
77 | case ParsedAttr::AT_ObjCOwnership: | |||
78 | WhichType = TDS_ObjCObjOrBlock; | |||
79 | break; | |||
80 | default: | |||
81 | // Assume everything else was a function attribute. | |||
82 | WhichType = TDS_Function; | |||
83 | useExpansionLoc = false; | |||
84 | break; | |||
85 | } | |||
86 | ||||
87 | SourceLocation loc = attr.getLoc(); | |||
88 | StringRef name = attr.getAttrName()->getName(); | |||
89 | ||||
90 | // The GC attributes are usually written with macros; special-case them. | |||
91 | IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident | |||
92 | : nullptr; | |||
93 | if (useExpansionLoc && loc.isMacroID() && II) { | |||
94 | if (II->isStr("strong")) { | |||
95 | if (S.findMacroSpelling(loc, "__strong")) name = "__strong"; | |||
96 | } else if (II->isStr("weak")) { | |||
97 | if (S.findMacroSpelling(loc, "__weak")) name = "__weak"; | |||
98 | } | |||
99 | } | |||
100 | ||||
101 | S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType | |||
102 | << type; | |||
103 | } | |||
104 | ||||
105 | // objc_gc applies to Objective-C pointers or, otherwise, to the | |||
106 | // smallest available pointer type (i.e. 'void*' in 'void**'). | |||
107 | #define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \ | |||
108 | case ParsedAttr::AT_ObjCGC: \ | |||
109 | case ParsedAttr::AT_ObjCOwnership | |||
110 | ||||
111 | // Calling convention attributes. | |||
112 | #define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll \ | |||
113 | case ParsedAttr::AT_CDecl: \ | |||
114 | case ParsedAttr::AT_FastCall: \ | |||
115 | case ParsedAttr::AT_StdCall: \ | |||
116 | case ParsedAttr::AT_ThisCall: \ | |||
117 | case ParsedAttr::AT_RegCall: \ | |||
118 | case ParsedAttr::AT_Pascal: \ | |||
119 | case ParsedAttr::AT_SwiftCall: \ | |||
120 | case ParsedAttr::AT_VectorCall: \ | |||
121 | case ParsedAttr::AT_AArch64VectorPcs: \ | |||
122 | case ParsedAttr::AT_MSABI: \ | |||
123 | case ParsedAttr::AT_SysVABI: \ | |||
124 | case ParsedAttr::AT_Pcs: \ | |||
125 | case ParsedAttr::AT_IntelOclBicc: \ | |||
126 | case ParsedAttr::AT_PreserveMost: \ | |||
127 | case ParsedAttr::AT_PreserveAll | |||
128 | ||||
129 | // Function type attributes. | |||
130 | #define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll \ | |||
131 | case ParsedAttr::AT_NSReturnsRetained: \ | |||
132 | case ParsedAttr::AT_NoReturn: \ | |||
133 | case ParsedAttr::AT_Regparm: \ | |||
134 | case ParsedAttr::AT_CmseNSCall: \ | |||
135 | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \ | |||
136 | case ParsedAttr::AT_AnyX86NoCfCheck: \ | |||
137 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll | |||
138 | ||||
139 | // Microsoft-specific type qualifiers. | |||
140 | #define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr \ | |||
141 | case ParsedAttr::AT_Ptr32: \ | |||
142 | case ParsedAttr::AT_Ptr64: \ | |||
143 | case ParsedAttr::AT_SPtr: \ | |||
144 | case ParsedAttr::AT_UPtr | |||
145 | ||||
146 | // Nullability qualifiers. | |||
147 | #define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified \ | |||
148 | case ParsedAttr::AT_TypeNonNull: \ | |||
149 | case ParsedAttr::AT_TypeNullable: \ | |||
150 | case ParsedAttr::AT_TypeNullableResult: \ | |||
151 | case ParsedAttr::AT_TypeNullUnspecified | |||
152 | ||||
153 | namespace { | |||
154 | /// An object which stores processing state for the entire | |||
155 | /// GetTypeForDeclarator process. | |||
156 | class TypeProcessingState { | |||
157 | Sema &sema; | |||
158 | ||||
159 | /// The declarator being processed. | |||
160 | Declarator &declarator; | |||
161 | ||||
162 | /// The index of the declarator chunk we're currently processing. | |||
163 | /// May be the total number of valid chunks, indicating the | |||
164 | /// DeclSpec. | |||
165 | unsigned chunkIndex; | |||
166 | ||||
167 | /// Whether there are non-trivial modifications to the decl spec. | |||
168 | bool trivial; | |||
169 | ||||
170 | /// Whether we saved the attributes in the decl spec. | |||
171 | bool hasSavedAttrs; | |||
172 | ||||
173 | /// The original set of attributes on the DeclSpec. | |||
174 | SmallVector<ParsedAttr *, 2> savedAttrs; | |||
175 | ||||
176 | /// A list of attributes to diagnose the uselessness of when the | |||
177 | /// processing is complete. | |||
178 | SmallVector<ParsedAttr *, 2> ignoredTypeAttrs; | |||
179 | ||||
180 | /// Attributes corresponding to AttributedTypeLocs that we have not yet | |||
181 | /// populated. | |||
182 | // FIXME: The two-phase mechanism by which we construct Types and fill | |||
183 | // their TypeLocs makes it hard to correctly assign these. We keep the | |||
184 | // attributes in creation order as an attempt to make them line up | |||
185 | // properly. | |||
186 | using TypeAttrPair = std::pair<const AttributedType*, const Attr*>; | |||
187 | SmallVector<TypeAttrPair, 8> AttrsForTypes; | |||
188 | bool AttrsForTypesSorted = true; | |||
189 | ||||
190 | /// MacroQualifiedTypes mapping to macro expansion locations that will be | |||
191 | /// stored in a MacroQualifiedTypeLoc. | |||
192 | llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros; | |||
193 | ||||
194 | /// Flag to indicate we parsed a noderef attribute. This is used for | |||
195 | /// validating that noderef was used on a pointer or array. | |||
196 | bool parsedNoDeref; | |||
197 | ||||
198 | public: | |||
199 | TypeProcessingState(Sema &sema, Declarator &declarator) | |||
200 | : sema(sema), declarator(declarator), | |||
201 | chunkIndex(declarator.getNumTypeObjects()), trivial(true), | |||
202 | hasSavedAttrs(false), parsedNoDeref(false) {} | |||
203 | ||||
204 | Sema &getSema() const { | |||
205 | return sema; | |||
206 | } | |||
207 | ||||
208 | Declarator &getDeclarator() const { | |||
209 | return declarator; | |||
210 | } | |||
211 | ||||
212 | bool isProcessingDeclSpec() const { | |||
213 | return chunkIndex == declarator.getNumTypeObjects(); | |||
214 | } | |||
215 | ||||
216 | unsigned getCurrentChunkIndex() const { | |||
217 | return chunkIndex; | |||
218 | } | |||
219 | ||||
220 | void setCurrentChunkIndex(unsigned idx) { | |||
221 | assert(idx <= declarator.getNumTypeObjects())((idx <= declarator.getNumTypeObjects()) ? static_cast< void> (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 221, __PRETTY_FUNCTION__)); | |||
222 | chunkIndex = idx; | |||
223 | } | |||
224 | ||||
225 | ParsedAttributesView &getCurrentAttributes() const { | |||
226 | if (isProcessingDeclSpec()) | |||
227 | return getMutableDeclSpec().getAttributes(); | |||
228 | return declarator.getTypeObject(chunkIndex).getAttrs(); | |||
229 | } | |||
230 | ||||
231 | /// Save the current set of attributes on the DeclSpec. | |||
232 | void saveDeclSpecAttrs() { | |||
233 | // Don't try to save them multiple times. | |||
234 | if (hasSavedAttrs) return; | |||
235 | ||||
236 | DeclSpec &spec = getMutableDeclSpec(); | |||
237 | for (ParsedAttr &AL : spec.getAttributes()) | |||
238 | savedAttrs.push_back(&AL); | |||
239 | trivial &= savedAttrs.empty(); | |||
240 | hasSavedAttrs = true; | |||
241 | } | |||
242 | ||||
243 | /// Record that we had nowhere to put the given type attribute. | |||
244 | /// We will diagnose such attributes later. | |||
245 | void addIgnoredTypeAttr(ParsedAttr &attr) { | |||
246 | ignoredTypeAttrs.push_back(&attr); | |||
247 | } | |||
248 | ||||
249 | /// Diagnose all the ignored type attributes, given that the | |||
250 | /// declarator worked out to the given type. | |||
251 | void diagnoseIgnoredTypeAttrs(QualType type) const { | |||
252 | for (auto *Attr : ignoredTypeAttrs) | |||
253 | diagnoseBadTypeAttribute(getSema(), *Attr, type); | |||
254 | } | |||
255 | ||||
256 | /// Get an attributed type for the given attribute, and remember the Attr | |||
257 | /// object so that we can attach it to the AttributedTypeLoc. | |||
258 | QualType getAttributedType(Attr *A, QualType ModifiedType, | |||
259 | QualType EquivType) { | |||
260 | QualType T = | |||
261 | sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType); | |||
262 | AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A}); | |||
263 | AttrsForTypesSorted = false; | |||
264 | return T; | |||
265 | } | |||
266 | ||||
267 | /// Completely replace the \c auto in \p TypeWithAuto by | |||
268 | /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if | |||
269 | /// necessary. | |||
270 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) { | |||
271 | QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement); | |||
272 | if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) { | |||
273 | // Attributed type still should be an attributed type after replacement. | |||
274 | auto *NewAttrTy = cast<AttributedType>(T.getTypePtr()); | |||
275 | for (TypeAttrPair &A : AttrsForTypes) { | |||
276 | if (A.first == AttrTy) | |||
277 | A.first = NewAttrTy; | |||
278 | } | |||
279 | AttrsForTypesSorted = false; | |||
280 | } | |||
281 | return T; | |||
282 | } | |||
283 | ||||
284 | /// Extract and remove the Attr* for a given attributed type. | |||
285 | const Attr *takeAttrForAttributedType(const AttributedType *AT) { | |||
286 | if (!AttrsForTypesSorted) { | |||
287 | llvm::stable_sort(AttrsForTypes, llvm::less_first()); | |||
288 | AttrsForTypesSorted = true; | |||
289 | } | |||
290 | ||||
291 | // FIXME: This is quadratic if we have lots of reuses of the same | |||
292 | // attributed type. | |||
293 | for (auto It = std::partition_point( | |||
294 | AttrsForTypes.begin(), AttrsForTypes.end(), | |||
295 | [=](const TypeAttrPair &A) { return A.first < AT; }); | |||
296 | It != AttrsForTypes.end() && It->first == AT; ++It) { | |||
297 | if (It->second) { | |||
298 | const Attr *Result = It->second; | |||
299 | It->second = nullptr; | |||
300 | return Result; | |||
301 | } | |||
302 | } | |||
303 | ||||
304 | llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 304); | |||
305 | } | |||
306 | ||||
307 | SourceLocation | |||
308 | getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const { | |||
309 | auto FoundLoc = LocsForMacros.find(MQT); | |||
310 | assert(FoundLoc != LocsForMacros.end() &&((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType" ) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 311, __PRETTY_FUNCTION__)) | |||
311 | "Unable to find macro expansion location for MacroQualifedType")((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType" ) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 311, __PRETTY_FUNCTION__)); | |||
312 | return FoundLoc->second; | |||
313 | } | |||
314 | ||||
315 | void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT, | |||
316 | SourceLocation Loc) { | |||
317 | LocsForMacros[MQT] = Loc; | |||
318 | } | |||
319 | ||||
320 | void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; } | |||
321 | ||||
322 | bool didParseNoDeref() const { return parsedNoDeref; } | |||
323 | ||||
324 | ~TypeProcessingState() { | |||
325 | if (trivial) return; | |||
326 | ||||
327 | restoreDeclSpecAttrs(); | |||
328 | } | |||
329 | ||||
330 | private: | |||
331 | DeclSpec &getMutableDeclSpec() const { | |||
332 | return const_cast<DeclSpec&>(declarator.getDeclSpec()); | |||
333 | } | |||
334 | ||||
335 | void restoreDeclSpecAttrs() { | |||
336 | assert(hasSavedAttrs)((hasSavedAttrs) ? static_cast<void> (0) : __assert_fail ("hasSavedAttrs", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 336, __PRETTY_FUNCTION__)); | |||
337 | ||||
338 | getMutableDeclSpec().getAttributes().clearListOnly(); | |||
339 | for (ParsedAttr *AL : savedAttrs) | |||
340 | getMutableDeclSpec().getAttributes().addAtEnd(AL); | |||
341 | } | |||
342 | }; | |||
343 | } // end anonymous namespace | |||
344 | ||||
345 | static void moveAttrFromListToList(ParsedAttr &attr, | |||
346 | ParsedAttributesView &fromList, | |||
347 | ParsedAttributesView &toList) { | |||
348 | fromList.remove(&attr); | |||
349 | toList.addAtEnd(&attr); | |||
350 | } | |||
351 | ||||
352 | /// The location of a type attribute. | |||
353 | enum TypeAttrLocation { | |||
354 | /// The attribute is in the decl-specifier-seq. | |||
355 | TAL_DeclSpec, | |||
356 | /// The attribute is part of a DeclaratorChunk. | |||
357 | TAL_DeclChunk, | |||
358 | /// The attribute is immediately after the declaration's name. | |||
359 | TAL_DeclName | |||
360 | }; | |||
361 | ||||
362 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | |||
363 | TypeAttrLocation TAL, ParsedAttributesView &attrs); | |||
364 | ||||
365 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | |||
366 | QualType &type); | |||
367 | ||||
368 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, | |||
369 | ParsedAttr &attr, QualType &type); | |||
370 | ||||
371 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | |||
372 | QualType &type); | |||
373 | ||||
374 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | |||
375 | ParsedAttr &attr, QualType &type); | |||
376 | ||||
377 | static bool handleObjCPointerTypeAttr(TypeProcessingState &state, | |||
378 | ParsedAttr &attr, QualType &type) { | |||
379 | if (attr.getKind() == ParsedAttr::AT_ObjCGC) | |||
380 | return handleObjCGCTypeAttr(state, attr, type); | |||
381 | assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((attr.getKind() == ParsedAttr::AT_ObjCOwnership) ? static_cast <void> (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 381, __PRETTY_FUNCTION__)); | |||
382 | return handleObjCOwnershipTypeAttr(state, attr, type); | |||
383 | } | |||
384 | ||||
385 | /// Given the index of a declarator chunk, check whether that chunk | |||
386 | /// directly specifies the return type of a function and, if so, find | |||
387 | /// an appropriate place for it. | |||
388 | /// | |||
389 | /// \param i - a notional index which the search will start | |||
390 | /// immediately inside | |||
391 | /// | |||
392 | /// \param onlyBlockPointers Whether we should only look into block | |||
393 | /// pointer types (vs. all pointer types). | |||
394 | static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator, | |||
395 | unsigned i, | |||
396 | bool onlyBlockPointers) { | |||
397 | assert(i <= declarator.getNumTypeObjects())((i <= declarator.getNumTypeObjects()) ? static_cast<void > (0) : __assert_fail ("i <= declarator.getNumTypeObjects()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 397, __PRETTY_FUNCTION__)); | |||
398 | ||||
399 | DeclaratorChunk *result = nullptr; | |||
400 | ||||
401 | // First, look inwards past parens for a function declarator. | |||
402 | for (; i != 0; --i) { | |||
403 | DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1); | |||
404 | switch (fnChunk.Kind) { | |||
405 | case DeclaratorChunk::Paren: | |||
406 | continue; | |||
407 | ||||
408 | // If we find anything except a function, bail out. | |||
409 | case DeclaratorChunk::Pointer: | |||
410 | case DeclaratorChunk::BlockPointer: | |||
411 | case DeclaratorChunk::Array: | |||
412 | case DeclaratorChunk::Reference: | |||
413 | case DeclaratorChunk::MemberPointer: | |||
414 | case DeclaratorChunk::Pipe: | |||
415 | return result; | |||
416 | ||||
417 | // If we do find a function declarator, scan inwards from that, | |||
418 | // looking for a (block-)pointer declarator. | |||
419 | case DeclaratorChunk::Function: | |||
420 | for (--i; i != 0; --i) { | |||
421 | DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1); | |||
422 | switch (ptrChunk.Kind) { | |||
423 | case DeclaratorChunk::Paren: | |||
424 | case DeclaratorChunk::Array: | |||
425 | case DeclaratorChunk::Function: | |||
426 | case DeclaratorChunk::Reference: | |||
427 | case DeclaratorChunk::Pipe: | |||
428 | continue; | |||
429 | ||||
430 | case DeclaratorChunk::MemberPointer: | |||
431 | case DeclaratorChunk::Pointer: | |||
432 | if (onlyBlockPointers) | |||
433 | continue; | |||
434 | ||||
435 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
436 | ||||
437 | case DeclaratorChunk::BlockPointer: | |||
438 | result = &ptrChunk; | |||
439 | goto continue_outer; | |||
440 | } | |||
441 | llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 441); | |||
442 | } | |||
443 | ||||
444 | // If we run out of declarators doing that, we're done. | |||
445 | return result; | |||
446 | } | |||
447 | llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 447); | |||
448 | ||||
449 | // Okay, reconsider from our new point. | |||
450 | continue_outer: ; | |||
451 | } | |||
452 | ||||
453 | // Ran out of chunks, bail out. | |||
454 | return result; | |||
455 | } | |||
456 | ||||
457 | /// Given that an objc_gc attribute was written somewhere on a | |||
458 | /// declaration *other* than on the declarator itself (for which, use | |||
459 | /// distributeObjCPointerTypeAttrFromDeclarator), and given that it | |||
460 | /// didn't apply in whatever position it was written in, try to move | |||
461 | /// it to a more appropriate position. | |||
462 | static void distributeObjCPointerTypeAttr(TypeProcessingState &state, | |||
463 | ParsedAttr &attr, QualType type) { | |||
464 | Declarator &declarator = state.getDeclarator(); | |||
465 | ||||
466 | // Move it to the outermost normal or block pointer declarator. | |||
467 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | |||
468 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | |||
469 | switch (chunk.Kind) { | |||
470 | case DeclaratorChunk::Pointer: | |||
471 | case DeclaratorChunk::BlockPointer: { | |||
472 | // But don't move an ARC ownership attribute to the return type | |||
473 | // of a block. | |||
474 | DeclaratorChunk *destChunk = nullptr; | |||
475 | if (state.isProcessingDeclSpec() && | |||
476 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) | |||
477 | destChunk = maybeMovePastReturnType(declarator, i - 1, | |||
478 | /*onlyBlockPointers=*/true); | |||
479 | if (!destChunk) destChunk = &chunk; | |||
480 | ||||
481 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | |||
482 | destChunk->getAttrs()); | |||
483 | return; | |||
484 | } | |||
485 | ||||
486 | case DeclaratorChunk::Paren: | |||
487 | case DeclaratorChunk::Array: | |||
488 | continue; | |||
489 | ||||
490 | // We may be starting at the return type of a block. | |||
491 | case DeclaratorChunk::Function: | |||
492 | if (state.isProcessingDeclSpec() && | |||
493 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) { | |||
494 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | |||
495 | declarator, i, | |||
496 | /*onlyBlockPointers=*/true)) { | |||
497 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | |||
498 | dest->getAttrs()); | |||
499 | return; | |||
500 | } | |||
501 | } | |||
502 | goto error; | |||
503 | ||||
504 | // Don't walk through these. | |||
505 | case DeclaratorChunk::Reference: | |||
506 | case DeclaratorChunk::MemberPointer: | |||
507 | case DeclaratorChunk::Pipe: | |||
508 | goto error; | |||
509 | } | |||
510 | } | |||
511 | error: | |||
512 | ||||
513 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | |||
514 | } | |||
515 | ||||
516 | /// Distribute an objc_gc type attribute that was written on the | |||
517 | /// declarator. | |||
518 | static void distributeObjCPointerTypeAttrFromDeclarator( | |||
519 | TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) { | |||
520 | Declarator &declarator = state.getDeclarator(); | |||
521 | ||||
522 | // objc_gc goes on the innermost pointer to something that's not a | |||
523 | // pointer. | |||
524 | unsigned innermost = -1U; | |||
525 | bool considerDeclSpec = true; | |||
526 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | |||
527 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | |||
528 | switch (chunk.Kind) { | |||
529 | case DeclaratorChunk::Pointer: | |||
530 | case DeclaratorChunk::BlockPointer: | |||
531 | innermost = i; | |||
532 | continue; | |||
533 | ||||
534 | case DeclaratorChunk::Reference: | |||
535 | case DeclaratorChunk::MemberPointer: | |||
536 | case DeclaratorChunk::Paren: | |||
537 | case DeclaratorChunk::Array: | |||
538 | case DeclaratorChunk::Pipe: | |||
539 | continue; | |||
540 | ||||
541 | case DeclaratorChunk::Function: | |||
542 | considerDeclSpec = false; | |||
543 | goto done; | |||
544 | } | |||
545 | } | |||
546 | done: | |||
547 | ||||
548 | // That might actually be the decl spec if we weren't blocked by | |||
549 | // anything in the declarator. | |||
550 | if (considerDeclSpec) { | |||
551 | if (handleObjCPointerTypeAttr(state, attr, declSpecType)) { | |||
552 | // Splice the attribute into the decl spec. Prevents the | |||
553 | // attribute from being applied multiple times and gives | |||
554 | // the source-location-filler something to work with. | |||
555 | state.saveDeclSpecAttrs(); | |||
556 | declarator.getMutableDeclSpec().getAttributes().takeOneFrom( | |||
557 | declarator.getAttributes(), &attr); | |||
558 | return; | |||
559 | } | |||
560 | } | |||
561 | ||||
562 | // Otherwise, if we found an appropriate chunk, splice the attribute | |||
563 | // into it. | |||
564 | if (innermost != -1U) { | |||
565 | moveAttrFromListToList(attr, declarator.getAttributes(), | |||
566 | declarator.getTypeObject(innermost).getAttrs()); | |||
567 | return; | |||
568 | } | |||
569 | ||||
570 | // Otherwise, diagnose when we're done building the type. | |||
571 | declarator.getAttributes().remove(&attr); | |||
572 | state.addIgnoredTypeAttr(attr); | |||
573 | } | |||
574 | ||||
575 | /// A function type attribute was written somewhere in a declaration | |||
576 | /// *other* than on the declarator itself or in the decl spec. Given | |||
577 | /// that it didn't apply in whatever position it was written in, try | |||
578 | /// to move it to a more appropriate position. | |||
579 | static void distributeFunctionTypeAttr(TypeProcessingState &state, | |||
580 | ParsedAttr &attr, QualType type) { | |||
581 | Declarator &declarator = state.getDeclarator(); | |||
582 | ||||
583 | // Try to push the attribute from the return type of a function to | |||
584 | // the function itself. | |||
585 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | |||
586 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | |||
587 | switch (chunk.Kind) { | |||
588 | case DeclaratorChunk::Function: | |||
589 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | |||
590 | chunk.getAttrs()); | |||
591 | return; | |||
592 | ||||
593 | case DeclaratorChunk::Paren: | |||
594 | case DeclaratorChunk::Pointer: | |||
595 | case DeclaratorChunk::BlockPointer: | |||
596 | case DeclaratorChunk::Array: | |||
597 | case DeclaratorChunk::Reference: | |||
598 | case DeclaratorChunk::MemberPointer: | |||
599 | case DeclaratorChunk::Pipe: | |||
600 | continue; | |||
601 | } | |||
602 | } | |||
603 | ||||
604 | diagnoseBadTypeAttribute(state.getSema(), attr, type); | |||
605 | } | |||
606 | ||||
607 | /// Try to distribute a function type attribute to the innermost | |||
608 | /// function chunk or type. Returns true if the attribute was | |||
609 | /// distributed, false if no location was found. | |||
610 | static bool distributeFunctionTypeAttrToInnermost( | |||
611 | TypeProcessingState &state, ParsedAttr &attr, | |||
612 | ParsedAttributesView &attrList, QualType &declSpecType) { | |||
613 | Declarator &declarator = state.getDeclarator(); | |||
614 | ||||
615 | // Put it on the innermost function chunk, if there is one. | |||
616 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | |||
617 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | |||
618 | if (chunk.Kind != DeclaratorChunk::Function) continue; | |||
619 | ||||
620 | moveAttrFromListToList(attr, attrList, chunk.getAttrs()); | |||
621 | return true; | |||
622 | } | |||
623 | ||||
624 | return handleFunctionTypeAttr(state, attr, declSpecType); | |||
625 | } | |||
626 | ||||
627 | /// A function type attribute was written in the decl spec. Try to | |||
628 | /// apply it somewhere. | |||
629 | static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, | |||
630 | ParsedAttr &attr, | |||
631 | QualType &declSpecType) { | |||
632 | state.saveDeclSpecAttrs(); | |||
633 | ||||
634 | // C++11 attributes before the decl specifiers actually appertain to | |||
635 | // the declarators. Move them straight there. We don't support the | |||
636 | // 'put them wherever you like' semantics we allow for GNU attributes. | |||
637 | if (attr.isCXX11Attribute()) { | |||
638 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | |||
639 | state.getDeclarator().getAttributes()); | |||
640 | return; | |||
641 | } | |||
642 | ||||
643 | // Try to distribute to the innermost. | |||
644 | if (distributeFunctionTypeAttrToInnermost( | |||
645 | state, attr, state.getCurrentAttributes(), declSpecType)) | |||
646 | return; | |||
647 | ||||
648 | // If that failed, diagnose the bad attribute when the declarator is | |||
649 | // fully built. | |||
650 | state.addIgnoredTypeAttr(attr); | |||
651 | } | |||
652 | ||||
653 | /// A function type attribute was written on the declarator. Try to | |||
654 | /// apply it somewhere. | |||
655 | static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, | |||
656 | ParsedAttr &attr, | |||
657 | QualType &declSpecType) { | |||
658 | Declarator &declarator = state.getDeclarator(); | |||
659 | ||||
660 | // Try to distribute to the innermost. | |||
661 | if (distributeFunctionTypeAttrToInnermost( | |||
662 | state, attr, declarator.getAttributes(), declSpecType)) | |||
663 | return; | |||
664 | ||||
665 | // If that failed, diagnose the bad attribute when the declarator is | |||
666 | // fully built. | |||
667 | declarator.getAttributes().remove(&attr); | |||
668 | state.addIgnoredTypeAttr(attr); | |||
669 | } | |||
670 | ||||
671 | /// Given that there are attributes written on the declarator | |||
672 | /// itself, try to distribute any type attributes to the appropriate | |||
673 | /// declarator chunk. | |||
674 | /// | |||
675 | /// These are attributes like the following: | |||
676 | /// int f ATTR; | |||
677 | /// int (f ATTR)(); | |||
678 | /// but not necessarily this: | |||
679 | /// int f() ATTR; | |||
680 | static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, | |||
681 | QualType &declSpecType) { | |||
682 | // Collect all the type attributes from the declarator itself. | |||
683 | assert(!state.getDeclarator().getAttributes().empty() &&((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!" ) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 684, __PRETTY_FUNCTION__)) | |||
684 | "declarator has no attrs!")((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!" ) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 684, __PRETTY_FUNCTION__)); | |||
685 | // The called functions in this loop actually remove things from the current | |||
686 | // list, so iterating over the existing list isn't possible. Instead, make a | |||
687 | // non-owning copy and iterate over that. | |||
688 | ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()}; | |||
689 | for (ParsedAttr &attr : AttrsCopy) { | |||
690 | // Do not distribute C++11 attributes. They have strict rules for what | |||
691 | // they appertain to. | |||
692 | if (attr.isCXX11Attribute()) | |||
693 | continue; | |||
694 | ||||
695 | switch (attr.getKind()) { | |||
696 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | |||
697 | distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType); | |||
698 | break; | |||
699 | ||||
700 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll: | |||
701 | distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType); | |||
702 | break; | |||
703 | ||||
704 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | |||
705 | // Microsoft type attributes cannot go after the declarator-id. | |||
706 | continue; | |||
707 | ||||
708 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | |||
709 | // Nullability specifiers cannot go after the declarator-id. | |||
710 | ||||
711 | // Objective-C __kindof does not get distributed. | |||
712 | case ParsedAttr::AT_ObjCKindOf: | |||
713 | continue; | |||
714 | ||||
715 | default: | |||
716 | break; | |||
717 | } | |||
718 | } | |||
719 | } | |||
720 | ||||
721 | /// Add a synthetic '()' to a block-literal declarator if it is | |||
722 | /// required, given the return type. | |||
723 | static void maybeSynthesizeBlockSignature(TypeProcessingState &state, | |||
724 | QualType declSpecType) { | |||
725 | Declarator &declarator = state.getDeclarator(); | |||
726 | ||||
727 | // First, check whether the declarator would produce a function, | |||
728 | // i.e. whether the innermost semantic chunk is a function. | |||
729 | if (declarator.isFunctionDeclarator()) { | |||
730 | // If so, make that declarator a prototyped declarator. | |||
731 | declarator.getFunctionTypeInfo().hasPrototype = true; | |||
732 | return; | |||
733 | } | |||
734 | ||||
735 | // If there are any type objects, the type as written won't name a | |||
736 | // function, regardless of the decl spec type. This is because a | |||
737 | // block signature declarator is always an abstract-declarator, and | |||
738 | // abstract-declarators can't just be parentheses chunks. Therefore | |||
739 | // we need to build a function chunk unless there are no type | |||
740 | // objects and the decl spec type is a function. | |||
741 | if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType()) | |||
742 | return; | |||
743 | ||||
744 | // Note that there *are* cases with invalid declarators where | |||
745 | // declarators consist solely of parentheses. In general, these | |||
746 | // occur only in failed efforts to make function declarators, so | |||
747 | // faking up the function chunk is still the right thing to do. | |||
748 | ||||
749 | // Otherwise, we need to fake up a function declarator. | |||
750 | SourceLocation loc = declarator.getBeginLoc(); | |||
751 | ||||
752 | // ...and *prepend* it to the declarator. | |||
753 | SourceLocation NoLoc; | |||
754 | declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction( | |||
755 | /*HasProto=*/true, | |||
756 | /*IsAmbiguous=*/false, | |||
757 | /*LParenLoc=*/NoLoc, | |||
758 | /*ArgInfo=*/nullptr, | |||
759 | /*NumParams=*/0, | |||
760 | /*EllipsisLoc=*/NoLoc, | |||
761 | /*RParenLoc=*/NoLoc, | |||
762 | /*RefQualifierIsLvalueRef=*/true, | |||
763 | /*RefQualifierLoc=*/NoLoc, | |||
764 | /*MutableLoc=*/NoLoc, EST_None, | |||
765 | /*ESpecRange=*/SourceRange(), | |||
766 | /*Exceptions=*/nullptr, | |||
767 | /*ExceptionRanges=*/nullptr, | |||
768 | /*NumExceptions=*/0, | |||
769 | /*NoexceptExpr=*/nullptr, | |||
770 | /*ExceptionSpecTokens=*/nullptr, | |||
771 | /*DeclsInPrototype=*/None, loc, loc, declarator)); | |||
772 | ||||
773 | // For consistency, make sure the state still has us as processing | |||
774 | // the decl spec. | |||
775 | assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((state.getCurrentChunkIndex() == declarator.getNumTypeObjects () - 1) ? static_cast<void> (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 775, __PRETTY_FUNCTION__)); | |||
776 | state.setCurrentChunkIndex(declarator.getNumTypeObjects()); | |||
777 | } | |||
778 | ||||
779 | static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, | |||
780 | unsigned &TypeQuals, | |||
781 | QualType TypeSoFar, | |||
782 | unsigned RemoveTQs, | |||
783 | unsigned DiagID) { | |||
784 | // If this occurs outside a template instantiation, warn the user about | |||
785 | // it; they probably didn't mean to specify a redundant qualifier. | |||
786 | typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc; | |||
787 | for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()), | |||
788 | QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()), | |||
789 | QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()), | |||
790 | QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) { | |||
791 | if (!(RemoveTQs & Qual.first)) | |||
792 | continue; | |||
793 | ||||
794 | if (!S.inTemplateInstantiation()) { | |||
795 | if (TypeQuals & Qual.first) | |||
796 | S.Diag(Qual.second, DiagID) | |||
797 | << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar | |||
798 | << FixItHint::CreateRemoval(Qual.second); | |||
799 | } | |||
800 | ||||
801 | TypeQuals &= ~Qual.first; | |||
802 | } | |||
803 | } | |||
804 | ||||
805 | /// Return true if this is omitted block return type. Also check type | |||
806 | /// attributes and type qualifiers when returning true. | |||
807 | static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, | |||
808 | QualType Result) { | |||
809 | if (!isOmittedBlockReturnType(declarator)) | |||
810 | return false; | |||
811 | ||||
812 | // Warn if we see type attributes for omitted return type on a block literal. | |||
813 | SmallVector<ParsedAttr *, 2> ToBeRemoved; | |||
814 | for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) { | |||
815 | if (AL.isInvalid() || !AL.isTypeAttr()) | |||
816 | continue; | |||
817 | S.Diag(AL.getLoc(), | |||
818 | diag::warn_block_literal_attributes_on_omitted_return_type) | |||
819 | << AL; | |||
820 | ToBeRemoved.push_back(&AL); | |||
821 | } | |||
822 | // Remove bad attributes from the list. | |||
823 | for (ParsedAttr *AL : ToBeRemoved) | |||
824 | declarator.getMutableDeclSpec().getAttributes().remove(AL); | |||
825 | ||||
826 | // Warn if we see type qualifiers for omitted return type on a block literal. | |||
827 | const DeclSpec &DS = declarator.getDeclSpec(); | |||
828 | unsigned TypeQuals = DS.getTypeQualifiers(); | |||
829 | diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1, | |||
830 | diag::warn_block_literal_qualifiers_on_omitted_return_type); | |||
831 | declarator.getMutableDeclSpec().ClearTypeQualifiers(); | |||
832 | ||||
833 | return true; | |||
834 | } | |||
835 | ||||
836 | /// Apply Objective-C type arguments to the given type. | |||
837 | static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type, | |||
838 | ArrayRef<TypeSourceInfo *> typeArgs, | |||
839 | SourceRange typeArgsRange, | |||
840 | bool failOnError = false) { | |||
841 | // We can only apply type arguments to an Objective-C class type. | |||
842 | const auto *objcObjectType = type->getAs<ObjCObjectType>(); | |||
843 | if (!objcObjectType || !objcObjectType->getInterface()) { | |||
844 | S.Diag(loc, diag::err_objc_type_args_non_class) | |||
845 | << type | |||
846 | << typeArgsRange; | |||
847 | ||||
848 | if (failOnError) | |||
849 | return QualType(); | |||
850 | return type; | |||
851 | } | |||
852 | ||||
853 | // The class type must be parameterized. | |||
854 | ObjCInterfaceDecl *objcClass = objcObjectType->getInterface(); | |||
855 | ObjCTypeParamList *typeParams = objcClass->getTypeParamList(); | |||
856 | if (!typeParams) { | |||
857 | S.Diag(loc, diag::err_objc_type_args_non_parameterized_class) | |||
858 | << objcClass->getDeclName() | |||
859 | << FixItHint::CreateRemoval(typeArgsRange); | |||
860 | ||||
861 | if (failOnError) | |||
862 | return QualType(); | |||
863 | ||||
864 | return type; | |||
865 | } | |||
866 | ||||
867 | // The type must not already be specialized. | |||
868 | if (objcObjectType->isSpecialized()) { | |||
869 | S.Diag(loc, diag::err_objc_type_args_specialized_class) | |||
870 | << type | |||
871 | << FixItHint::CreateRemoval(typeArgsRange); | |||
872 | ||||
873 | if (failOnError) | |||
874 | return QualType(); | |||
875 | ||||
876 | return type; | |||
877 | } | |||
878 | ||||
879 | // Check the type arguments. | |||
880 | SmallVector<QualType, 4> finalTypeArgs; | |||
881 | unsigned numTypeParams = typeParams->size(); | |||
882 | bool anyPackExpansions = false; | |||
883 | for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) { | |||
884 | TypeSourceInfo *typeArgInfo = typeArgs[i]; | |||
885 | QualType typeArg = typeArgInfo->getType(); | |||
886 | ||||
887 | // Type arguments cannot have explicit qualifiers or nullability. | |||
888 | // We ignore indirect sources of these, e.g. behind typedefs or | |||
889 | // template arguments. | |||
890 | if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) { | |||
891 | bool diagnosed = false; | |||
892 | SourceRange rangeToRemove; | |||
893 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { | |||
894 | rangeToRemove = attr.getLocalSourceRange(); | |||
895 | if (attr.getTypePtr()->getImmediateNullability()) { | |||
896 | typeArg = attr.getTypePtr()->getModifiedType(); | |||
897 | S.Diag(attr.getBeginLoc(), | |||
898 | diag::err_objc_type_arg_explicit_nullability) | |||
899 | << typeArg << FixItHint::CreateRemoval(rangeToRemove); | |||
900 | diagnosed = true; | |||
901 | } | |||
902 | } | |||
903 | ||||
904 | if (!diagnosed) { | |||
905 | S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified) | |||
906 | << typeArg << typeArg.getQualifiers().getAsString() | |||
907 | << FixItHint::CreateRemoval(rangeToRemove); | |||
908 | } | |||
909 | } | |||
910 | ||||
911 | // Remove qualifiers even if they're non-local. | |||
912 | typeArg = typeArg.getUnqualifiedType(); | |||
913 | ||||
914 | finalTypeArgs.push_back(typeArg); | |||
915 | ||||
916 | if (typeArg->getAs<PackExpansionType>()) | |||
917 | anyPackExpansions = true; | |||
918 | ||||
919 | // Find the corresponding type parameter, if there is one. | |||
920 | ObjCTypeParamDecl *typeParam = nullptr; | |||
921 | if (!anyPackExpansions) { | |||
922 | if (i < numTypeParams) { | |||
923 | typeParam = typeParams->begin()[i]; | |||
924 | } else { | |||
925 | // Too many arguments. | |||
926 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | |||
927 | << false | |||
928 | << objcClass->getDeclName() | |||
929 | << (unsigned)typeArgs.size() | |||
930 | << numTypeParams; | |||
931 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | |||
932 | << objcClass; | |||
933 | ||||
934 | if (failOnError) | |||
935 | return QualType(); | |||
936 | ||||
937 | return type; | |||
938 | } | |||
939 | } | |||
940 | ||||
941 | // Objective-C object pointer types must be substitutable for the bounds. | |||
942 | if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) { | |||
943 | // If we don't have a type parameter to match against, assume | |||
944 | // everything is fine. There was a prior pack expansion that | |||
945 | // means we won't be able to match anything. | |||
946 | if (!typeParam) { | |||
947 | assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast <void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 947, __PRETTY_FUNCTION__)); | |||
948 | continue; | |||
949 | } | |||
950 | ||||
951 | // Retrieve the bound. | |||
952 | QualType bound = typeParam->getUnderlyingType(); | |||
953 | const auto *boundObjC = bound->getAs<ObjCObjectPointerType>(); | |||
954 | ||||
955 | // Determine whether the type argument is substitutable for the bound. | |||
956 | if (typeArgObjC->isObjCIdType()) { | |||
957 | // When the type argument is 'id', the only acceptable type | |||
958 | // parameter bound is 'id'. | |||
959 | if (boundObjC->isObjCIdType()) | |||
960 | continue; | |||
961 | } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) { | |||
962 | // Otherwise, we follow the assignability rules. | |||
963 | continue; | |||
964 | } | |||
965 | ||||
966 | // Diagnose the mismatch. | |||
967 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | |||
968 | diag::err_objc_type_arg_does_not_match_bound) | |||
969 | << typeArg << bound << typeParam->getDeclName(); | |||
970 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | |||
971 | << typeParam->getDeclName(); | |||
972 | ||||
973 | if (failOnError) | |||
974 | return QualType(); | |||
975 | ||||
976 | return type; | |||
977 | } | |||
978 | ||||
979 | // Block pointer types are permitted for unqualified 'id' bounds. | |||
980 | if (typeArg->isBlockPointerType()) { | |||
981 | // If we don't have a type parameter to match against, assume | |||
982 | // everything is fine. There was a prior pack expansion that | |||
983 | // means we won't be able to match anything. | |||
984 | if (!typeParam) { | |||
985 | assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast <void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 985, __PRETTY_FUNCTION__)); | |||
986 | continue; | |||
987 | } | |||
988 | ||||
989 | // Retrieve the bound. | |||
990 | QualType bound = typeParam->getUnderlyingType(); | |||
991 | if (bound->isBlockCompatibleObjCPointerType(S.Context)) | |||
992 | continue; | |||
993 | ||||
994 | // Diagnose the mismatch. | |||
995 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | |||
996 | diag::err_objc_type_arg_does_not_match_bound) | |||
997 | << typeArg << bound << typeParam->getDeclName(); | |||
998 | S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here) | |||
999 | << typeParam->getDeclName(); | |||
1000 | ||||
1001 | if (failOnError) | |||
1002 | return QualType(); | |||
1003 | ||||
1004 | return type; | |||
1005 | } | |||
1006 | ||||
1007 | // Dependent types will be checked at instantiation time. | |||
1008 | if (typeArg->isDependentType()) { | |||
1009 | continue; | |||
1010 | } | |||
1011 | ||||
1012 | // Diagnose non-id-compatible type arguments. | |||
1013 | S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(), | |||
1014 | diag::err_objc_type_arg_not_id_compatible) | |||
1015 | << typeArg << typeArgInfo->getTypeLoc().getSourceRange(); | |||
1016 | ||||
1017 | if (failOnError) | |||
1018 | return QualType(); | |||
1019 | ||||
1020 | return type; | |||
1021 | } | |||
1022 | ||||
1023 | // Make sure we didn't have the wrong number of arguments. | |||
1024 | if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) { | |||
1025 | S.Diag(loc, diag::err_objc_type_args_wrong_arity) | |||
1026 | << (typeArgs.size() < typeParams->size()) | |||
1027 | << objcClass->getDeclName() | |||
1028 | << (unsigned)finalTypeArgs.size() | |||
1029 | << (unsigned)numTypeParams; | |||
1030 | S.Diag(objcClass->getLocation(), diag::note_previous_decl) | |||
1031 | << objcClass; | |||
1032 | ||||
1033 | if (failOnError) | |||
1034 | return QualType(); | |||
1035 | ||||
1036 | return type; | |||
1037 | } | |||
1038 | ||||
1039 | // Success. Form the specialized type. | |||
1040 | return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false); | |||
1041 | } | |||
1042 | ||||
1043 | QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, | |||
1044 | SourceLocation ProtocolLAngleLoc, | |||
1045 | ArrayRef<ObjCProtocolDecl *> Protocols, | |||
1046 | ArrayRef<SourceLocation> ProtocolLocs, | |||
1047 | SourceLocation ProtocolRAngleLoc, | |||
1048 | bool FailOnError) { | |||
1049 | QualType Result = QualType(Decl->getTypeForDecl(), 0); | |||
1050 | if (!Protocols.empty()) { | |||
1051 | bool HasError; | |||
1052 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | |||
1053 | HasError); | |||
1054 | if (HasError) { | |||
1055 | Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers) | |||
1056 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | |||
1057 | if (FailOnError) Result = QualType(); | |||
1058 | } | |||
1059 | if (FailOnError && Result.isNull()) | |||
1060 | return QualType(); | |||
1061 | } | |||
1062 | ||||
1063 | return Result; | |||
1064 | } | |||
1065 | ||||
1066 | QualType Sema::BuildObjCObjectType(QualType BaseType, | |||
1067 | SourceLocation Loc, | |||
1068 | SourceLocation TypeArgsLAngleLoc, | |||
1069 | ArrayRef<TypeSourceInfo *> TypeArgs, | |||
1070 | SourceLocation TypeArgsRAngleLoc, | |||
1071 | SourceLocation ProtocolLAngleLoc, | |||
1072 | ArrayRef<ObjCProtocolDecl *> Protocols, | |||
1073 | ArrayRef<SourceLocation> ProtocolLocs, | |||
1074 | SourceLocation ProtocolRAngleLoc, | |||
1075 | bool FailOnError) { | |||
1076 | QualType Result = BaseType; | |||
1077 | if (!TypeArgs.empty()) { | |||
1078 | Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs, | |||
1079 | SourceRange(TypeArgsLAngleLoc, | |||
1080 | TypeArgsRAngleLoc), | |||
1081 | FailOnError); | |||
1082 | if (FailOnError && Result.isNull()) | |||
1083 | return QualType(); | |||
1084 | } | |||
1085 | ||||
1086 | if (!Protocols.empty()) { | |||
1087 | bool HasError; | |||
1088 | Result = Context.applyObjCProtocolQualifiers(Result, Protocols, | |||
1089 | HasError); | |||
1090 | if (HasError) { | |||
1091 | Diag(Loc, diag::err_invalid_protocol_qualifiers) | |||
1092 | << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc); | |||
1093 | if (FailOnError) Result = QualType(); | |||
1094 | } | |||
1095 | if (FailOnError && Result.isNull()) | |||
1096 | return QualType(); | |||
1097 | } | |||
1098 | ||||
1099 | return Result; | |||
1100 | } | |||
1101 | ||||
1102 | TypeResult Sema::actOnObjCProtocolQualifierType( | |||
1103 | SourceLocation lAngleLoc, | |||
1104 | ArrayRef<Decl *> protocols, | |||
1105 | ArrayRef<SourceLocation> protocolLocs, | |||
1106 | SourceLocation rAngleLoc) { | |||
1107 | // Form id<protocol-list>. | |||
1108 | QualType Result = Context.getObjCObjectType( | |||
1109 | Context.ObjCBuiltinIdTy, { }, | |||
1110 | llvm::makeArrayRef( | |||
1111 | (ObjCProtocolDecl * const *)protocols.data(), | |||
1112 | protocols.size()), | |||
1113 | false); | |||
1114 | Result = Context.getObjCObjectPointerType(Result); | |||
1115 | ||||
1116 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | |||
1117 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | |||
1118 | ||||
1119 | auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>(); | |||
1120 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit | |||
1121 | ||||
1122 | auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc() | |||
1123 | .castAs<ObjCObjectTypeLoc>(); | |||
1124 | ObjCObjectTL.setHasBaseTypeAsWritten(false); | |||
1125 | ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation()); | |||
1126 | ||||
1127 | // No type arguments. | |||
1128 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | |||
1129 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | |||
1130 | ||||
1131 | // Fill in protocol qualifiers. | |||
1132 | ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc); | |||
1133 | ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc); | |||
1134 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) | |||
1135 | ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]); | |||
1136 | ||||
1137 | // We're done. Return the completed type to the parser. | |||
1138 | return CreateParsedType(Result, ResultTInfo); | |||
1139 | } | |||
1140 | ||||
1141 | TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers( | |||
1142 | Scope *S, | |||
1143 | SourceLocation Loc, | |||
1144 | ParsedType BaseType, | |||
1145 | SourceLocation TypeArgsLAngleLoc, | |||
1146 | ArrayRef<ParsedType> TypeArgs, | |||
1147 | SourceLocation TypeArgsRAngleLoc, | |||
1148 | SourceLocation ProtocolLAngleLoc, | |||
1149 | ArrayRef<Decl *> Protocols, | |||
1150 | ArrayRef<SourceLocation> ProtocolLocs, | |||
1151 | SourceLocation ProtocolRAngleLoc) { | |||
1152 | TypeSourceInfo *BaseTypeInfo = nullptr; | |||
1153 | QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo); | |||
1154 | if (T.isNull()) | |||
1155 | return true; | |||
1156 | ||||
1157 | // Handle missing type-source info. | |||
1158 | if (!BaseTypeInfo) | |||
1159 | BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc); | |||
1160 | ||||
1161 | // Extract type arguments. | |||
1162 | SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos; | |||
1163 | for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) { | |||
1164 | TypeSourceInfo *TypeArgInfo = nullptr; | |||
1165 | QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo); | |||
1166 | if (TypeArg.isNull()) { | |||
1167 | ActualTypeArgInfos.clear(); | |||
1168 | break; | |||
1169 | } | |||
1170 | ||||
1171 | assert(TypeArgInfo && "No type source info?")((TypeArgInfo && "No type source info?") ? static_cast <void> (0) : __assert_fail ("TypeArgInfo && \"No type source info?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1171, __PRETTY_FUNCTION__)); | |||
1172 | ActualTypeArgInfos.push_back(TypeArgInfo); | |||
1173 | } | |||
1174 | ||||
1175 | // Build the object type. | |||
1176 | QualType Result = BuildObjCObjectType( | |||
1177 | T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(), | |||
1178 | TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc, | |||
1179 | ProtocolLAngleLoc, | |||
1180 | llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(), | |||
1181 | Protocols.size()), | |||
1182 | ProtocolLocs, ProtocolRAngleLoc, | |||
1183 | /*FailOnError=*/false); | |||
1184 | ||||
1185 | if (Result == T) | |||
1186 | return BaseType; | |||
1187 | ||||
1188 | // Create source information for this type. | |||
1189 | TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result); | |||
1190 | TypeLoc ResultTL = ResultTInfo->getTypeLoc(); | |||
1191 | ||||
1192 | // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an | |||
1193 | // object pointer type. Fill in source information for it. | |||
1194 | if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) { | |||
1195 | // The '*' is implicit. | |||
1196 | ObjCObjectPointerTL.setStarLoc(SourceLocation()); | |||
1197 | ResultTL = ObjCObjectPointerTL.getPointeeLoc(); | |||
1198 | } | |||
1199 | ||||
1200 | if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) { | |||
1201 | // Protocol qualifier information. | |||
1202 | if (OTPTL.getNumProtocols() > 0) { | |||
1203 | assert(OTPTL.getNumProtocols() == Protocols.size())((OTPTL.getNumProtocols() == Protocols.size()) ? static_cast< void> (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1203, __PRETTY_FUNCTION__)); | |||
1204 | OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | |||
1205 | OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | |||
1206 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | |||
1207 | OTPTL.setProtocolLoc(i, ProtocolLocs[i]); | |||
1208 | } | |||
1209 | ||||
1210 | // We're done. Return the completed type to the parser. | |||
1211 | return CreateParsedType(Result, ResultTInfo); | |||
1212 | } | |||
1213 | ||||
1214 | auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>(); | |||
1215 | ||||
1216 | // Type argument information. | |||
1217 | if (ObjCObjectTL.getNumTypeArgs() > 0) { | |||
1218 | assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()) ? static_cast<void> (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1218, __PRETTY_FUNCTION__)); | |||
1219 | ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc); | |||
1220 | ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc); | |||
1221 | for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i) | |||
1222 | ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]); | |||
1223 | } else { | |||
1224 | ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation()); | |||
1225 | ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation()); | |||
1226 | } | |||
1227 | ||||
1228 | // Protocol qualifier information. | |||
1229 | if (ObjCObjectTL.getNumProtocols() > 0) { | |||
1230 | assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((ObjCObjectTL.getNumProtocols() == Protocols.size()) ? static_cast <void> (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1230, __PRETTY_FUNCTION__)); | |||
1231 | ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc); | |||
1232 | ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc); | |||
1233 | for (unsigned i = 0, n = Protocols.size(); i != n; ++i) | |||
1234 | ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]); | |||
1235 | } else { | |||
1236 | ObjCObjectTL.setProtocolLAngleLoc(SourceLocation()); | |||
1237 | ObjCObjectTL.setProtocolRAngleLoc(SourceLocation()); | |||
1238 | } | |||
1239 | ||||
1240 | // Base type. | |||
1241 | ObjCObjectTL.setHasBaseTypeAsWritten(true); | |||
1242 | if (ObjCObjectTL.getType() == T) | |||
1243 | ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc()); | |||
1244 | else | |||
1245 | ObjCObjectTL.getBaseLoc().initialize(Context, Loc); | |||
1246 | ||||
1247 | // We're done. Return the completed type to the parser. | |||
1248 | return CreateParsedType(Result, ResultTInfo); | |||
1249 | } | |||
1250 | ||||
1251 | static OpenCLAccessAttr::Spelling | |||
1252 | getImageAccess(const ParsedAttributesView &Attrs) { | |||
1253 | for (const ParsedAttr &AL : Attrs) | |||
1254 | if (AL.getKind() == ParsedAttr::AT_OpenCLAccess) | |||
1255 | return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling()); | |||
1256 | return OpenCLAccessAttr::Keyword_read_only; | |||
1257 | } | |||
1258 | ||||
1259 | static QualType ConvertConstrainedAutoDeclSpecToType(Sema &S, DeclSpec &DS, | |||
1260 | AutoTypeKeyword AutoKW) { | |||
1261 | assert(DS.isConstrainedAuto())((DS.isConstrainedAuto()) ? static_cast<void> (0) : __assert_fail ("DS.isConstrainedAuto()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1261, __PRETTY_FUNCTION__)); | |||
1262 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); | |||
1263 | TemplateArgumentListInfo TemplateArgsInfo; | |||
1264 | TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc); | |||
1265 | TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc); | |||
1266 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |||
1267 | TemplateId->NumArgs); | |||
1268 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | |||
1269 | llvm::SmallVector<TemplateArgument, 8> TemplateArgs; | |||
1270 | for (auto &ArgLoc : TemplateArgsInfo.arguments()) | |||
1271 | TemplateArgs.push_back(ArgLoc.getArgument()); | |||
1272 | return S.Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false, | |||
1273 | /*IsPack=*/false, | |||
1274 | cast<ConceptDecl>(TemplateId->Template.get() | |||
1275 | .getAsTemplateDecl()), | |||
1276 | TemplateArgs); | |||
1277 | } | |||
1278 | ||||
1279 | /// Convert the specified declspec to the appropriate type | |||
1280 | /// object. | |||
1281 | /// \param state Specifies the declarator containing the declaration specifier | |||
1282 | /// to be converted, along with other associated processing state. | |||
1283 | /// \returns The type described by the declaration specifiers. This function | |||
1284 | /// never returns null. | |||
1285 | static QualType ConvertDeclSpecToType(TypeProcessingState &state) { | |||
1286 | // FIXME: Should move the logic from DeclSpec::Finish to here for validity | |||
1287 | // checking. | |||
1288 | ||||
1289 | Sema &S = state.getSema(); | |||
1290 | Declarator &declarator = state.getDeclarator(); | |||
1291 | DeclSpec &DS = declarator.getMutableDeclSpec(); | |||
1292 | SourceLocation DeclLoc = declarator.getIdentifierLoc(); | |||
1293 | if (DeclLoc.isInvalid()) | |||
1294 | DeclLoc = DS.getBeginLoc(); | |||
1295 | ||||
1296 | ASTContext &Context = S.Context; | |||
1297 | ||||
1298 | QualType Result; | |||
1299 | switch (DS.getTypeSpecType()) { | |||
1300 | case DeclSpec::TST_void: | |||
1301 | Result = Context.VoidTy; | |||
1302 | break; | |||
1303 | case DeclSpec::TST_char: | |||
1304 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | |||
1305 | Result = Context.CharTy; | |||
1306 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) | |||
1307 | Result = Context.SignedCharTy; | |||
1308 | else { | |||
1309 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1310, __PRETTY_FUNCTION__)) | |||
1310 | "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1310, __PRETTY_FUNCTION__)); | |||
1311 | Result = Context.UnsignedCharTy; | |||
1312 | } | |||
1313 | break; | |||
1314 | case DeclSpec::TST_wchar: | |||
1315 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) | |||
1316 | Result = Context.WCharTy; | |||
1317 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) { | |||
1318 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | |||
1319 | << DS.getSpecifierName(DS.getTypeSpecType(), | |||
1320 | Context.getPrintingPolicy()); | |||
1321 | Result = Context.getSignedWCharType(); | |||
1322 | } else { | |||
1323 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1324, __PRETTY_FUNCTION__)) | |||
1324 | "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1324, __PRETTY_FUNCTION__)); | |||
1325 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) | |||
1326 | << DS.getSpecifierName(DS.getTypeSpecType(), | |||
1327 | Context.getPrintingPolicy()); | |||
1328 | Result = Context.getUnsignedWCharType(); | |||
1329 | } | |||
1330 | break; | |||
1331 | case DeclSpec::TST_char8: | |||
1332 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1333, __PRETTY_FUNCTION__)) | |||
1333 | "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1333, __PRETTY_FUNCTION__)); | |||
1334 | Result = Context.Char8Ty; | |||
1335 | break; | |||
1336 | case DeclSpec::TST_char16: | |||
1337 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1338, __PRETTY_FUNCTION__)) | |||
1338 | "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1338, __PRETTY_FUNCTION__)); | |||
1339 | Result = Context.Char16Ty; | |||
1340 | break; | |||
1341 | case DeclSpec::TST_char32: | |||
1342 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1343, __PRETTY_FUNCTION__)) | |||
1343 | "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Unknown TSS value") ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1343, __PRETTY_FUNCTION__)); | |||
1344 | Result = Context.Char32Ty; | |||
1345 | break; | |||
1346 | case DeclSpec::TST_unspecified: | |||
1347 | // If this is a missing declspec in a block literal return context, then it | |||
1348 | // is inferred from the return statements inside the block. | |||
1349 | // The declspec is always missing in a lambda expr context; it is either | |||
1350 | // specified with a trailing return type or inferred. | |||
1351 | if (S.getLangOpts().CPlusPlus14 && | |||
1352 | declarator.getContext() == DeclaratorContext::LambdaExpr) { | |||
1353 | // In C++1y, a lambda's implicit return type is 'auto'. | |||
1354 | Result = Context.getAutoDeductType(); | |||
1355 | break; | |||
1356 | } else if (declarator.getContext() == DeclaratorContext::LambdaExpr || | |||
1357 | checkOmittedBlockReturnType(S, declarator, | |||
1358 | Context.DependentTy)) { | |||
1359 | Result = Context.DependentTy; | |||
1360 | break; | |||
1361 | } | |||
1362 | ||||
1363 | // Unspecified typespec defaults to int in C90. However, the C90 grammar | |||
1364 | // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, | |||
1365 | // type-qualifier, or storage-class-specifier. If not, emit an extwarn. | |||
1366 | // Note that the one exception to this is function definitions, which are | |||
1367 | // allowed to be completely missing a declspec. This is handled in the | |||
1368 | // parser already though by it pretending to have seen an 'int' in this | |||
1369 | // case. | |||
1370 | if (S.getLangOpts().ImplicitInt) { | |||
1371 | // In C89 mode, we only warn if there is a completely missing declspec | |||
1372 | // when one is not allowed. | |||
1373 | if (DS.isEmpty()) { | |||
1374 | S.Diag(DeclLoc, diag::ext_missing_declspec) | |||
1375 | << DS.getSourceRange() | |||
1376 | << FixItHint::CreateInsertion(DS.getBeginLoc(), "int"); | |||
1377 | } | |||
1378 | } else if (!DS.hasTypeSpecifier()) { | |||
1379 | // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: | |||
1380 | // "At least one type specifier shall be given in the declaration | |||
1381 | // specifiers in each declaration, and in the specifier-qualifier list in | |||
1382 | // each struct declaration and type name." | |||
1383 | if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) { | |||
1384 | S.Diag(DeclLoc, diag::err_missing_type_specifier) | |||
1385 | << DS.getSourceRange(); | |||
1386 | ||||
1387 | // When this occurs in C++ code, often something is very broken with the | |||
1388 | // value being declared, poison it as invalid so we don't get chains of | |||
1389 | // errors. | |||
1390 | declarator.setInvalidType(true); | |||
1391 | } else if ((S.getLangOpts().OpenCLVersion >= 200 || | |||
1392 | S.getLangOpts().OpenCLCPlusPlus) && | |||
1393 | DS.isTypeSpecPipe()) { | |||
1394 | S.Diag(DeclLoc, diag::err_missing_actual_pipe_type) | |||
1395 | << DS.getSourceRange(); | |||
1396 | declarator.setInvalidType(true); | |||
1397 | } else { | |||
1398 | S.Diag(DeclLoc, diag::ext_missing_type_specifier) | |||
1399 | << DS.getSourceRange(); | |||
1400 | } | |||
1401 | } | |||
1402 | ||||
1403 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
1404 | case DeclSpec::TST_int: { | |||
1405 | if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) { | |||
1406 | switch (DS.getTypeSpecWidth()) { | |||
1407 | case TypeSpecifierWidth::Unspecified: | |||
1408 | Result = Context.IntTy; | |||
1409 | break; | |||
1410 | case TypeSpecifierWidth::Short: | |||
1411 | Result = Context.ShortTy; | |||
1412 | break; | |||
1413 | case TypeSpecifierWidth::Long: | |||
1414 | Result = Context.LongTy; | |||
1415 | break; | |||
1416 | case TypeSpecifierWidth::LongLong: | |||
1417 | Result = Context.LongLongTy; | |||
1418 | ||||
1419 | // 'long long' is a C99 or C++11 feature. | |||
1420 | if (!S.getLangOpts().C99) { | |||
1421 | if (S.getLangOpts().CPlusPlus) | |||
1422 | S.Diag(DS.getTypeSpecWidthLoc(), | |||
1423 | S.getLangOpts().CPlusPlus11 ? | |||
1424 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | |||
1425 | else | |||
1426 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | |||
1427 | } | |||
1428 | break; | |||
1429 | } | |||
1430 | } else { | |||
1431 | switch (DS.getTypeSpecWidth()) { | |||
1432 | case TypeSpecifierWidth::Unspecified: | |||
1433 | Result = Context.UnsignedIntTy; | |||
1434 | break; | |||
1435 | case TypeSpecifierWidth::Short: | |||
1436 | Result = Context.UnsignedShortTy; | |||
1437 | break; | |||
1438 | case TypeSpecifierWidth::Long: | |||
1439 | Result = Context.UnsignedLongTy; | |||
1440 | break; | |||
1441 | case TypeSpecifierWidth::LongLong: | |||
1442 | Result = Context.UnsignedLongLongTy; | |||
1443 | ||||
1444 | // 'long long' is a C99 or C++11 feature. | |||
1445 | if (!S.getLangOpts().C99) { | |||
1446 | if (S.getLangOpts().CPlusPlus) | |||
1447 | S.Diag(DS.getTypeSpecWidthLoc(), | |||
1448 | S.getLangOpts().CPlusPlus11 ? | |||
1449 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | |||
1450 | else | |||
1451 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); | |||
1452 | } | |||
1453 | break; | |||
1454 | } | |||
1455 | } | |||
1456 | break; | |||
1457 | } | |||
1458 | case DeclSpec::TST_extint: { | |||
1459 | if (!S.Context.getTargetInfo().hasExtIntType()) | |||
1460 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | |||
1461 | << "_ExtInt"; | |||
1462 | Result = | |||
1463 | S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned, | |||
1464 | DS.getRepAsExpr(), DS.getBeginLoc()); | |||
1465 | if (Result.isNull()) { | |||
1466 | Result = Context.IntTy; | |||
1467 | declarator.setInvalidType(true); | |||
1468 | } | |||
1469 | break; | |||
1470 | } | |||
1471 | case DeclSpec::TST_accum: { | |||
1472 | switch (DS.getTypeSpecWidth()) { | |||
1473 | case TypeSpecifierWidth::Short: | |||
1474 | Result = Context.ShortAccumTy; | |||
1475 | break; | |||
1476 | case TypeSpecifierWidth::Unspecified: | |||
1477 | Result = Context.AccumTy; | |||
1478 | break; | |||
1479 | case TypeSpecifierWidth::Long: | |||
1480 | Result = Context.LongAccumTy; | |||
1481 | break; | |||
1482 | case TypeSpecifierWidth::LongLong: | |||
1483 | llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1483); | |||
1484 | } | |||
1485 | ||||
1486 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | |||
1487 | Result = Context.getCorrespondingUnsignedType(Result); | |||
1488 | ||||
1489 | if (DS.isTypeSpecSat()) | |||
1490 | Result = Context.getCorrespondingSaturatedType(Result); | |||
1491 | ||||
1492 | break; | |||
1493 | } | |||
1494 | case DeclSpec::TST_fract: { | |||
1495 | switch (DS.getTypeSpecWidth()) { | |||
1496 | case TypeSpecifierWidth::Short: | |||
1497 | Result = Context.ShortFractTy; | |||
1498 | break; | |||
1499 | case TypeSpecifierWidth::Unspecified: | |||
1500 | Result = Context.FractTy; | |||
1501 | break; | |||
1502 | case TypeSpecifierWidth::Long: | |||
1503 | Result = Context.LongFractTy; | |||
1504 | break; | |||
1505 | case TypeSpecifierWidth::LongLong: | |||
1506 | llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1506); | |||
1507 | } | |||
1508 | ||||
1509 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | |||
1510 | Result = Context.getCorrespondingUnsignedType(Result); | |||
1511 | ||||
1512 | if (DS.isTypeSpecSat()) | |||
1513 | Result = Context.getCorrespondingSaturatedType(Result); | |||
1514 | ||||
1515 | break; | |||
1516 | } | |||
1517 | case DeclSpec::TST_int128: | |||
1518 | if (!S.Context.getTargetInfo().hasInt128Type() && | |||
1519 | !S.getLangOpts().SYCLIsDevice && | |||
1520 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | |||
1521 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | |||
1522 | << "__int128"; | |||
1523 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) | |||
1524 | Result = Context.UnsignedInt128Ty; | |||
1525 | else | |||
1526 | Result = Context.Int128Ty; | |||
1527 | break; | |||
1528 | case DeclSpec::TST_float16: | |||
1529 | // CUDA host and device may have different _Float16 support, therefore | |||
1530 | // do not diagnose _Float16 usage to avoid false alarm. | |||
1531 | // ToDo: more precise diagnostics for CUDA. | |||
1532 | if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA && | |||
1533 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | |||
1534 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | |||
1535 | << "_Float16"; | |||
1536 | Result = Context.Float16Ty; | |||
1537 | break; | |||
1538 | case DeclSpec::TST_half: Result = Context.HalfTy; break; | |||
1539 | case DeclSpec::TST_BFloat16: | |||
1540 | if (!S.Context.getTargetInfo().hasBFloat16Type()) | |||
1541 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | |||
1542 | << "__bf16"; | |||
1543 | Result = Context.BFloat16Ty; | |||
1544 | break; | |||
1545 | case DeclSpec::TST_float: Result = Context.FloatTy; break; | |||
1546 | case DeclSpec::TST_double: | |||
1547 | if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long) | |||
1548 | Result = Context.LongDoubleTy; | |||
1549 | else | |||
1550 | Result = Context.DoubleTy; | |||
1551 | break; | |||
1552 | case DeclSpec::TST_float128: | |||
1553 | if (!S.Context.getTargetInfo().hasFloat128Type() && | |||
1554 | !S.getLangOpts().SYCLIsDevice && | |||
1555 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)) | |||
1556 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) | |||
1557 | << "__float128"; | |||
1558 | Result = Context.Float128Ty; | |||
1559 | break; | |||
1560 | case DeclSpec::TST_bool: | |||
1561 | Result = Context.BoolTy; // _Bool or bool | |||
1562 | break; | |||
1563 | case DeclSpec::TST_decimal32: // _Decimal32 | |||
1564 | case DeclSpec::TST_decimal64: // _Decimal64 | |||
1565 | case DeclSpec::TST_decimal128: // _Decimal128 | |||
1566 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported); | |||
1567 | Result = Context.IntTy; | |||
1568 | declarator.setInvalidType(true); | |||
1569 | break; | |||
1570 | case DeclSpec::TST_class: | |||
1571 | case DeclSpec::TST_enum: | |||
1572 | case DeclSpec::TST_union: | |||
1573 | case DeclSpec::TST_struct: | |||
1574 | case DeclSpec::TST_interface: { | |||
1575 | TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()); | |||
1576 | if (!D) { | |||
1577 | // This can happen in C++ with ambiguous lookups. | |||
1578 | Result = Context.IntTy; | |||
1579 | declarator.setInvalidType(true); | |||
1580 | break; | |||
1581 | } | |||
1582 | ||||
1583 | // If the type is deprecated or unavailable, diagnose it. | |||
1584 | S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc()); | |||
1585 | ||||
1586 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "No qualifiers on tag names!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1589, __PRETTY_FUNCTION__)) | |||
1587 | DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "No qualifiers on tag names!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1589, __PRETTY_FUNCTION__)) | |||
1588 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "No qualifiers on tag names!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1589, __PRETTY_FUNCTION__)) | |||
1589 | "No qualifiers on tag names!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "No qualifiers on tag names!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1589, __PRETTY_FUNCTION__)); | |||
1590 | ||||
1591 | // TypeQuals handled by caller. | |||
1592 | Result = Context.getTypeDeclType(D); | |||
1593 | ||||
1594 | // In both C and C++, make an ElaboratedType. | |||
1595 | ElaboratedTypeKeyword Keyword | |||
1596 | = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType()); | |||
1597 | Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result, | |||
1598 | DS.isTypeSpecOwned() ? D : nullptr); | |||
1599 | break; | |||
1600 | } | |||
1601 | case DeclSpec::TST_typename: { | |||
1602 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1605, __PRETTY_FUNCTION__)) | |||
1603 | DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1605, __PRETTY_FUNCTION__)) | |||
1604 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1605, __PRETTY_FUNCTION__)) | |||
1605 | "Can't handle qualifiers on typedef names yet!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!" ) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1605, __PRETTY_FUNCTION__)); | |||
1606 | Result = S.GetTypeFromParser(DS.getRepAsType()); | |||
1607 | if (Result.isNull()) { | |||
1608 | declarator.setInvalidType(true); | |||
1609 | } | |||
1610 | ||||
1611 | // TypeQuals handled by caller. | |||
1612 | break; | |||
1613 | } | |||
1614 | case DeclSpec::TST_typeofType: | |||
1615 | // FIXME: Preserve type source info. | |||
1616 | Result = S.GetTypeFromParser(DS.getRepAsType()); | |||
1617 | assert(!Result.isNull() && "Didn't get a type for typeof?")((!Result.isNull() && "Didn't get a type for typeof?" ) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1617, __PRETTY_FUNCTION__)); | |||
1618 | if (!Result->isDependentType()) | |||
1619 | if (const TagType *TT = Result->getAs<TagType>()) | |||
1620 | S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc()); | |||
1621 | // TypeQuals handled by caller. | |||
1622 | Result = Context.getTypeOfType(Result); | |||
1623 | break; | |||
1624 | case DeclSpec::TST_typeofExpr: { | |||
1625 | Expr *E = DS.getRepAsExpr(); | |||
1626 | assert(E && "Didn't get an expression for typeof?")((E && "Didn't get an expression for typeof?") ? static_cast <void> (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1626, __PRETTY_FUNCTION__)); | |||
1627 | // TypeQuals handled by caller. | |||
1628 | Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc()); | |||
1629 | if (Result.isNull()) { | |||
1630 | Result = Context.IntTy; | |||
1631 | declarator.setInvalidType(true); | |||
1632 | } | |||
1633 | break; | |||
1634 | } | |||
1635 | case DeclSpec::TST_decltype: { | |||
1636 | Expr *E = DS.getRepAsExpr(); | |||
1637 | assert(E && "Didn't get an expression for decltype?")((E && "Didn't get an expression for decltype?") ? static_cast <void> (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1637, __PRETTY_FUNCTION__)); | |||
1638 | // TypeQuals handled by caller. | |||
1639 | Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc()); | |||
1640 | if (Result.isNull()) { | |||
1641 | Result = Context.IntTy; | |||
1642 | declarator.setInvalidType(true); | |||
1643 | } | |||
1644 | break; | |||
1645 | } | |||
1646 | case DeclSpec::TST_underlyingType: | |||
1647 | Result = S.GetTypeFromParser(DS.getRepAsType()); | |||
1648 | assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((!Result.isNull() && "Didn't get a type for __underlying_type?" ) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1648, __PRETTY_FUNCTION__)); | |||
1649 | Result = S.BuildUnaryTransformType(Result, | |||
1650 | UnaryTransformType::EnumUnderlyingType, | |||
1651 | DS.getTypeSpecTypeLoc()); | |||
1652 | if (Result.isNull()) { | |||
1653 | Result = Context.IntTy; | |||
1654 | declarator.setInvalidType(true); | |||
1655 | } | |||
1656 | break; | |||
1657 | ||||
1658 | case DeclSpec::TST_auto: | |||
1659 | if (DS.isConstrainedAuto()) { | |||
1660 | Result = ConvertConstrainedAutoDeclSpecToType(S, DS, | |||
1661 | AutoTypeKeyword::Auto); | |||
1662 | break; | |||
1663 | } | |||
1664 | Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false); | |||
1665 | break; | |||
1666 | ||||
1667 | case DeclSpec::TST_auto_type: | |||
1668 | Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false); | |||
1669 | break; | |||
1670 | ||||
1671 | case DeclSpec::TST_decltype_auto: | |||
1672 | if (DS.isConstrainedAuto()) { | |||
1673 | Result = | |||
1674 | ConvertConstrainedAutoDeclSpecToType(S, DS, | |||
1675 | AutoTypeKeyword::DecltypeAuto); | |||
1676 | break; | |||
1677 | } | |||
1678 | Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto, | |||
1679 | /*IsDependent*/ false); | |||
1680 | break; | |||
1681 | ||||
1682 | case DeclSpec::TST_unknown_anytype: | |||
1683 | Result = Context.UnknownAnyTy; | |||
1684 | break; | |||
1685 | ||||
1686 | case DeclSpec::TST_atomic: | |||
1687 | Result = S.GetTypeFromParser(DS.getRepAsType()); | |||
1688 | assert(!Result.isNull() && "Didn't get a type for _Atomic?")((!Result.isNull() && "Didn't get a type for _Atomic?" ) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1688, __PRETTY_FUNCTION__)); | |||
1689 | Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc()); | |||
1690 | if (Result.isNull()) { | |||
1691 | Result = Context.IntTy; | |||
1692 | declarator.setInvalidType(true); | |||
1693 | } | |||
1694 | break; | |||
1695 | ||||
1696 | #define GENERIC_IMAGE_TYPE(ImgType, Id) \ | |||
1697 | case DeclSpec::TST_##ImgType##_t: \ | |||
1698 | switch (getImageAccess(DS.getAttributes())) { \ | |||
1699 | case OpenCLAccessAttr::Keyword_write_only: \ | |||
1700 | Result = Context.Id##WOTy; \ | |||
1701 | break; \ | |||
1702 | case OpenCLAccessAttr::Keyword_read_write: \ | |||
1703 | Result = Context.Id##RWTy; \ | |||
1704 | break; \ | |||
1705 | case OpenCLAccessAttr::Keyword_read_only: \ | |||
1706 | Result = Context.Id##ROTy; \ | |||
1707 | break; \ | |||
1708 | case OpenCLAccessAttr::SpellingNotCalculated: \ | |||
1709 | llvm_unreachable("Spelling not yet calculated")::llvm::llvm_unreachable_internal("Spelling not yet calculated" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1709); \ | |||
1710 | } \ | |||
1711 | break; | |||
1712 | #include "clang/Basic/OpenCLImageTypes.def" | |||
1713 | ||||
1714 | case DeclSpec::TST_error: | |||
1715 | Result = Context.IntTy; | |||
1716 | declarator.setInvalidType(true); | |||
1717 | break; | |||
1718 | } | |||
1719 | ||||
1720 | // FIXME: we want resulting declarations to be marked invalid, but claiming | |||
1721 | // the type is invalid is too strong - e.g. it causes ActOnTypeName to return | |||
1722 | // a null type. | |||
1723 | if (Result->containsErrors()) | |||
1724 | declarator.setInvalidType(); | |||
1725 | ||||
1726 | if (S.getLangOpts().OpenCL && | |||
1727 | S.checkOpenCLDisabledTypeDeclSpec(DS, Result)) | |||
1728 | declarator.setInvalidType(true); | |||
1729 | ||||
1730 | bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum || | |||
1731 | DS.getTypeSpecType() == DeclSpec::TST_fract; | |||
1732 | ||||
1733 | // Only fixed point types can be saturated | |||
1734 | if (DS.isTypeSpecSat() && !IsFixedPointType) | |||
1735 | S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec) | |||
1736 | << DS.getSpecifierName(DS.getTypeSpecType(), | |||
1737 | Context.getPrintingPolicy()); | |||
1738 | ||||
1739 | // Handle complex types. | |||
1740 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { | |||
1741 | if (S.getLangOpts().Freestanding) | |||
1742 | S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); | |||
1743 | Result = Context.getComplexType(Result); | |||
1744 | } else if (DS.isTypeAltiVecVector()) { | |||
1745 | unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result)); | |||
1746 | assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((typeSize > 0 && "type size for vector must be greater than 0 bits" ) ? static_cast<void> (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1746, __PRETTY_FUNCTION__)); | |||
1747 | VectorType::VectorKind VecKind = VectorType::AltiVecVector; | |||
1748 | if (DS.isTypeAltiVecPixel()) | |||
1749 | VecKind = VectorType::AltiVecPixel; | |||
1750 | else if (DS.isTypeAltiVecBool()) | |||
1751 | VecKind = VectorType::AltiVecBool; | |||
1752 | Result = Context.getVectorType(Result, 128/typeSize, VecKind); | |||
1753 | } | |||
1754 | ||||
1755 | // FIXME: Imaginary. | |||
1756 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary) | |||
1757 | S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported); | |||
1758 | ||||
1759 | // Before we process any type attributes, synthesize a block literal | |||
1760 | // function declarator if necessary. | |||
1761 | if (declarator.getContext() == DeclaratorContext::BlockLiteral) | |||
1762 | maybeSynthesizeBlockSignature(state, Result); | |||
1763 | ||||
1764 | // Apply any type attributes from the decl spec. This may cause the | |||
1765 | // list of type attributes to be temporarily saved while the type | |||
1766 | // attributes are pushed around. | |||
1767 | // pipe attributes will be handled later ( at GetFullTypeForDeclarator ) | |||
1768 | if (!DS.isTypeSpecPipe()) | |||
1769 | processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes()); | |||
1770 | ||||
1771 | // Apply const/volatile/restrict qualifiers to T. | |||
1772 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | |||
1773 | // Warn about CV qualifiers on function types. | |||
1774 | // C99 6.7.3p8: | |||
1775 | // If the specification of a function type includes any type qualifiers, | |||
1776 | // the behavior is undefined. | |||
1777 | // C++11 [dcl.fct]p7: | |||
1778 | // The effect of a cv-qualifier-seq in a function declarator is not the | |||
1779 | // same as adding cv-qualification on top of the function type. In the | |||
1780 | // latter case, the cv-qualifiers are ignored. | |||
1781 | if (Result->isFunctionType()) { | |||
1782 | diagnoseAndRemoveTypeQualifiers( | |||
1783 | S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile, | |||
1784 | S.getLangOpts().CPlusPlus | |||
1785 | ? diag::warn_typecheck_function_qualifiers_ignored | |||
1786 | : diag::warn_typecheck_function_qualifiers_unspecified); | |||
1787 | // No diagnostic for 'restrict' or '_Atomic' applied to a | |||
1788 | // function type; we'll diagnose those later, in BuildQualifiedType. | |||
1789 | } | |||
1790 | ||||
1791 | // C++11 [dcl.ref]p1: | |||
1792 | // Cv-qualified references are ill-formed except when the | |||
1793 | // cv-qualifiers are introduced through the use of a typedef-name | |||
1794 | // or decltype-specifier, in which case the cv-qualifiers are ignored. | |||
1795 | // | |||
1796 | // There don't appear to be any other contexts in which a cv-qualified | |||
1797 | // reference type could be formed, so the 'ill-formed' clause here appears | |||
1798 | // to never happen. | |||
1799 | if (TypeQuals && Result->isReferenceType()) { | |||
1800 | diagnoseAndRemoveTypeQualifiers( | |||
1801 | S, DS, TypeQuals, Result, | |||
1802 | DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic, | |||
1803 | diag::warn_typecheck_reference_qualifiers); | |||
1804 | } | |||
1805 | ||||
1806 | // C90 6.5.3 constraints: "The same type qualifier shall not appear more | |||
1807 | // than once in the same specifier-list or qualifier-list, either directly | |||
1808 | // or via one or more typedefs." | |||
1809 | if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus | |||
1810 | && TypeQuals & Result.getCVRQualifiers()) { | |||
1811 | if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) { | |||
1812 | S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec) | |||
1813 | << "const"; | |||
1814 | } | |||
1815 | ||||
1816 | if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) { | |||
1817 | S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec) | |||
1818 | << "volatile"; | |||
1819 | } | |||
1820 | ||||
1821 | // C90 doesn't have restrict nor _Atomic, so it doesn't force us to | |||
1822 | // produce a warning in this case. | |||
1823 | } | |||
1824 | ||||
1825 | QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS); | |||
1826 | ||||
1827 | // If adding qualifiers fails, just use the unqualified type. | |||
1828 | if (Qualified.isNull()) | |||
1829 | declarator.setInvalidType(true); | |||
1830 | else | |||
1831 | Result = Qualified; | |||
1832 | } | |||
1833 | ||||
1834 | assert(!Result.isNull() && "This function should not return a null type")((!Result.isNull() && "This function should not return a null type" ) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1834, __PRETTY_FUNCTION__)); | |||
1835 | return Result; | |||
1836 | } | |||
1837 | ||||
1838 | static std::string getPrintableNameForEntity(DeclarationName Entity) { | |||
1839 | if (Entity) | |||
1840 | return Entity.getAsString(); | |||
1841 | ||||
1842 | return "type name"; | |||
1843 | } | |||
1844 | ||||
1845 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | |||
1846 | Qualifiers Qs, const DeclSpec *DS) { | |||
1847 | if (T.isNull()) | |||
1848 | return QualType(); | |||
1849 | ||||
1850 | // Ignore any attempt to form a cv-qualified reference. | |||
1851 | if (T->isReferenceType()) { | |||
1852 | Qs.removeConst(); | |||
1853 | Qs.removeVolatile(); | |||
1854 | } | |||
1855 | ||||
1856 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from | |||
1857 | // object or incomplete types shall not be restrict-qualified." | |||
1858 | if (Qs.hasRestrict()) { | |||
1859 | unsigned DiagID = 0; | |||
1860 | QualType ProblemTy; | |||
1861 | ||||
1862 | if (T->isAnyPointerType() || T->isReferenceType() || | |||
1863 | T->isMemberPointerType()) { | |||
1864 | QualType EltTy; | |||
1865 | if (T->isObjCObjectPointerType()) | |||
1866 | EltTy = T; | |||
1867 | else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>()) | |||
1868 | EltTy = PTy->getPointeeType(); | |||
1869 | else | |||
1870 | EltTy = T->getPointeeType(); | |||
1871 | ||||
1872 | // If we have a pointer or reference, the pointee must have an object | |||
1873 | // incomplete type. | |||
1874 | if (!EltTy->isIncompleteOrObjectType()) { | |||
1875 | DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee; | |||
1876 | ProblemTy = EltTy; | |||
1877 | } | |||
1878 | } else if (!T->isDependentType()) { | |||
1879 | DiagID = diag::err_typecheck_invalid_restrict_not_pointer; | |||
1880 | ProblemTy = T; | |||
1881 | } | |||
1882 | ||||
1883 | if (DiagID) { | |||
1884 | Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy; | |||
1885 | Qs.removeRestrict(); | |||
1886 | } | |||
1887 | } | |||
1888 | ||||
1889 | return Context.getQualifiedType(T, Qs); | |||
1890 | } | |||
1891 | ||||
1892 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, | |||
1893 | unsigned CVRAU, const DeclSpec *DS) { | |||
1894 | if (T.isNull()) | |||
1895 | return QualType(); | |||
1896 | ||||
1897 | // Ignore any attempt to form a cv-qualified reference. | |||
1898 | if (T->isReferenceType()) | |||
1899 | CVRAU &= | |||
1900 | ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic); | |||
1901 | ||||
1902 | // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and | |||
1903 | // TQ_unaligned; | |||
1904 | unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned); | |||
1905 | ||||
1906 | // C11 6.7.3/5: | |||
1907 | // If the same qualifier appears more than once in the same | |||
1908 | // specifier-qualifier-list, either directly or via one or more typedefs, | |||
1909 | // the behavior is the same as if it appeared only once. | |||
1910 | // | |||
1911 | // It's not specified what happens when the _Atomic qualifier is applied to | |||
1912 | // a type specified with the _Atomic specifier, but we assume that this | |||
1913 | // should be treated as if the _Atomic qualifier appeared multiple times. | |||
1914 | if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) { | |||
1915 | // C11 6.7.3/5: | |||
1916 | // If other qualifiers appear along with the _Atomic qualifier in a | |||
1917 | // specifier-qualifier-list, the resulting type is the so-qualified | |||
1918 | // atomic type. | |||
1919 | // | |||
1920 | // Don't need to worry about array types here, since _Atomic can't be | |||
1921 | // applied to such types. | |||
1922 | SplitQualType Split = T.getSplitUnqualifiedType(); | |||
1923 | T = BuildAtomicType(QualType(Split.Ty, 0), | |||
1924 | DS ? DS->getAtomicSpecLoc() : Loc); | |||
1925 | if (T.isNull()) | |||
1926 | return T; | |||
1927 | Split.Quals.addCVRQualifiers(CVR); | |||
1928 | return BuildQualifiedType(T, Loc, Split.Quals); | |||
1929 | } | |||
1930 | ||||
1931 | Qualifiers Q = Qualifiers::fromCVRMask(CVR); | |||
1932 | Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned); | |||
1933 | return BuildQualifiedType(T, Loc, Q, DS); | |||
1934 | } | |||
1935 | ||||
1936 | /// Build a paren type including \p T. | |||
1937 | QualType Sema::BuildParenType(QualType T) { | |||
1938 | return Context.getParenType(T); | |||
1939 | } | |||
1940 | ||||
1941 | /// Given that we're building a pointer or reference to the given | |||
1942 | static QualType inferARCLifetimeForPointee(Sema &S, QualType type, | |||
1943 | SourceLocation loc, | |||
1944 | bool isReference) { | |||
1945 | // Bail out if retention is unrequired or already specified. | |||
1946 | if (!type->isObjCLifetimeType() || | |||
1947 | type.getObjCLifetime() != Qualifiers::OCL_None) | |||
1948 | return type; | |||
1949 | ||||
1950 | Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None; | |||
1951 | ||||
1952 | // If the object type is const-qualified, we can safely use | |||
1953 | // __unsafe_unretained. This is safe (because there are no read | |||
1954 | // barriers), and it'll be safe to coerce anything but __weak* to | |||
1955 | // the resulting type. | |||
1956 | if (type.isConstQualified()) { | |||
1957 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | |||
1958 | ||||
1959 | // Otherwise, check whether the static type does not require | |||
1960 | // retaining. This currently only triggers for Class (possibly | |||
1961 | // protocol-qualifed, and arrays thereof). | |||
1962 | } else if (type->isObjCARCImplicitlyUnretainedType()) { | |||
1963 | implicitLifetime = Qualifiers::OCL_ExplicitNone; | |||
1964 | ||||
1965 | // If we are in an unevaluated context, like sizeof, skip adding a | |||
1966 | // qualification. | |||
1967 | } else if (S.isUnevaluatedContext()) { | |||
1968 | return type; | |||
1969 | ||||
1970 | // If that failed, give an error and recover using __strong. __strong | |||
1971 | // is the option most likely to prevent spurious second-order diagnostics, | |||
1972 | // like when binding a reference to a field. | |||
1973 | } else { | |||
1974 | // These types can show up in private ivars in system headers, so | |||
1975 | // we need this to not be an error in those cases. Instead we | |||
1976 | // want to delay. | |||
1977 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | |||
1978 | S.DelayedDiagnostics.add( | |||
1979 | sema::DelayedDiagnostic::makeForbiddenType(loc, | |||
1980 | diag::err_arc_indirect_no_ownership, type, isReference)); | |||
1981 | } else { | |||
1982 | S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference; | |||
1983 | } | |||
1984 | implicitLifetime = Qualifiers::OCL_Strong; | |||
1985 | } | |||
1986 | assert(implicitLifetime && "didn't infer any lifetime!")((implicitLifetime && "didn't infer any lifetime!") ? static_cast<void> (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 1986, __PRETTY_FUNCTION__)); | |||
1987 | ||||
1988 | Qualifiers qs; | |||
1989 | qs.addObjCLifetime(implicitLifetime); | |||
1990 | return S.Context.getQualifiedType(type, qs); | |||
1991 | } | |||
1992 | ||||
1993 | static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){ | |||
1994 | std::string Quals = FnTy->getMethodQuals().getAsString(); | |||
1995 | ||||
1996 | switch (FnTy->getRefQualifier()) { | |||
1997 | case RQ_None: | |||
1998 | break; | |||
1999 | ||||
2000 | case RQ_LValue: | |||
2001 | if (!Quals.empty()) | |||
2002 | Quals += ' '; | |||
2003 | Quals += '&'; | |||
2004 | break; | |||
2005 | ||||
2006 | case RQ_RValue: | |||
2007 | if (!Quals.empty()) | |||
2008 | Quals += ' '; | |||
2009 | Quals += "&&"; | |||
2010 | break; | |||
2011 | } | |||
2012 | ||||
2013 | return Quals; | |||
2014 | } | |||
2015 | ||||
2016 | namespace { | |||
2017 | /// Kinds of declarator that cannot contain a qualified function type. | |||
2018 | /// | |||
2019 | /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: | |||
2020 | /// a function type with a cv-qualifier or a ref-qualifier can only appear | |||
2021 | /// at the topmost level of a type. | |||
2022 | /// | |||
2023 | /// Parens and member pointers are permitted. We don't diagnose array and | |||
2024 | /// function declarators, because they don't allow function types at all. | |||
2025 | /// | |||
2026 | /// The values of this enum are used in diagnostics. | |||
2027 | enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference }; | |||
2028 | } // end anonymous namespace | |||
2029 | ||||
2030 | /// Check whether the type T is a qualified function type, and if it is, | |||
2031 | /// diagnose that it cannot be contained within the given kind of declarator. | |||
2032 | static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, | |||
2033 | QualifiedFunctionKind QFK) { | |||
2034 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | |||
2035 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | |||
2036 | if (!FPT || | |||
2037 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | |||
2038 | return false; | |||
2039 | ||||
2040 | S.Diag(Loc, diag::err_compound_qualified_function_type) | |||
2041 | << QFK << isa<FunctionType>(T.IgnoreParens()) << T | |||
2042 | << getFunctionQualifiersAsString(FPT); | |||
2043 | return true; | |||
2044 | } | |||
2045 | ||||
2046 | bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) { | |||
2047 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); | |||
2048 | if (!FPT || | |||
2049 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) | |||
2050 | return false; | |||
2051 | ||||
2052 | Diag(Loc, diag::err_qualified_function_typeid) | |||
2053 | << T << getFunctionQualifiersAsString(FPT); | |||
2054 | return true; | |||
2055 | } | |||
2056 | ||||
2057 | // Helper to deduce addr space of a pointee type in OpenCL mode. | |||
2058 | static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) { | |||
2059 | if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() && | |||
2060 | !PointeeType->isSamplerT() && | |||
2061 | !PointeeType.hasAddressSpace()) | |||
2062 | PointeeType = S.getASTContext().getAddrSpaceQualType( | |||
2063 | PointeeType, | |||
2064 | S.getLangOpts().OpenCLCPlusPlus || S.getLangOpts().OpenCLVersion == 200 | |||
2065 | ? LangAS::opencl_generic | |||
2066 | : LangAS::opencl_private); | |||
2067 | return PointeeType; | |||
2068 | } | |||
2069 | ||||
2070 | /// Build a pointer type. | |||
2071 | /// | |||
2072 | /// \param T The type to which we'll be building a pointer. | |||
2073 | /// | |||
2074 | /// \param Loc The location of the entity whose type involves this | |||
2075 | /// pointer type or, if there is no such entity, the location of the | |||
2076 | /// type that will have pointer type. | |||
2077 | /// | |||
2078 | /// \param Entity The name of the entity that involves the pointer | |||
2079 | /// type, if known. | |||
2080 | /// | |||
2081 | /// \returns A suitable pointer type, if there are no | |||
2082 | /// errors. Otherwise, returns a NULL type. | |||
2083 | QualType Sema::BuildPointerType(QualType T, | |||
2084 | SourceLocation Loc, DeclarationName Entity) { | |||
2085 | if (T->isReferenceType()) { | |||
2086 | // C++ 8.3.2p4: There shall be no ... pointers to references ... | |||
2087 | Diag(Loc, diag::err_illegal_decl_pointer_to_reference) | |||
2088 | << getPrintableNameForEntity(Entity) << T; | |||
2089 | return QualType(); | |||
2090 | } | |||
2091 | ||||
2092 | if (T->isFunctionType() && getLangOpts().OpenCL) { | |||
2093 | Diag(Loc, diag::err_opencl_function_pointer); | |||
2094 | return QualType(); | |||
2095 | } | |||
2096 | ||||
2097 | if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer)) | |||
2098 | return QualType(); | |||
2099 | ||||
2100 | assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((!T->isObjCObjectType() && "Should build ObjCObjectPointerType" ) ? static_cast<void> (0) : __assert_fail ("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2100, __PRETTY_FUNCTION__)); | |||
2101 | ||||
2102 | // In ARC, it is forbidden to build pointers to unqualified pointers. | |||
2103 | if (getLangOpts().ObjCAutoRefCount) | |||
2104 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false); | |||
2105 | ||||
2106 | if (getLangOpts().OpenCL) | |||
2107 | T = deduceOpenCLPointeeAddrSpace(*this, T); | |||
2108 | ||||
2109 | // Build the pointer type. | |||
2110 | return Context.getPointerType(T); | |||
2111 | } | |||
2112 | ||||
2113 | /// Build a reference type. | |||
2114 | /// | |||
2115 | /// \param T The type to which we'll be building a reference. | |||
2116 | /// | |||
2117 | /// \param Loc The location of the entity whose type involves this | |||
2118 | /// reference type or, if there is no such entity, the location of the | |||
2119 | /// type that will have reference type. | |||
2120 | /// | |||
2121 | /// \param Entity The name of the entity that involves the reference | |||
2122 | /// type, if known. | |||
2123 | /// | |||
2124 | /// \returns A suitable reference type, if there are no | |||
2125 | /// errors. Otherwise, returns a NULL type. | |||
2126 | QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, | |||
2127 | SourceLocation Loc, | |||
2128 | DeclarationName Entity) { | |||
2129 | assert(Context.getCanonicalType(T) != Context.OverloadTy &&((Context.getCanonicalType(T) != Context.OverloadTy && "Unresolved overloaded function type") ? static_cast<void > (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2130, __PRETTY_FUNCTION__)) | |||
2130 | "Unresolved overloaded function type")((Context.getCanonicalType(T) != Context.OverloadTy && "Unresolved overloaded function type") ? static_cast<void > (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2130, __PRETTY_FUNCTION__)); | |||
2131 | ||||
2132 | // C++0x [dcl.ref]p6: | |||
2133 | // If a typedef (7.1.3), a type template-parameter (14.3.1), or a | |||
2134 | // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a | |||
2135 | // type T, an attempt to create the type "lvalue reference to cv TR" creates | |||
2136 | // the type "lvalue reference to T", while an attempt to create the type | |||
2137 | // "rvalue reference to cv TR" creates the type TR. | |||
2138 | bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>(); | |||
2139 | ||||
2140 | // C++ [dcl.ref]p4: There shall be no references to references. | |||
2141 | // | |||
2142 | // According to C++ DR 106, references to references are only | |||
2143 | // diagnosed when they are written directly (e.g., "int & &"), | |||
2144 | // but not when they happen via a typedef: | |||
2145 | // | |||
2146 | // typedef int& intref; | |||
2147 | // typedef intref& intref2; | |||
2148 | // | |||
2149 | // Parser::ParseDeclaratorInternal diagnoses the case where | |||
2150 | // references are written directly; here, we handle the | |||
2151 | // collapsing of references-to-references as described in C++0x. | |||
2152 | // DR 106 and 540 introduce reference-collapsing into C++98/03. | |||
2153 | ||||
2154 | // C++ [dcl.ref]p1: | |||
2155 | // A declarator that specifies the type "reference to cv void" | |||
2156 | // is ill-formed. | |||
2157 | if (T->isVoidType()) { | |||
2158 | Diag(Loc, diag::err_reference_to_void); | |||
2159 | return QualType(); | |||
2160 | } | |||
2161 | ||||
2162 | if (checkQualifiedFunction(*this, T, Loc, QFK_Reference)) | |||
2163 | return QualType(); | |||
2164 | ||||
2165 | // In ARC, it is forbidden to build references to unqualified pointers. | |||
2166 | if (getLangOpts().ObjCAutoRefCount) | |||
2167 | T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true); | |||
2168 | ||||
2169 | if (getLangOpts().OpenCL) | |||
2170 | T = deduceOpenCLPointeeAddrSpace(*this, T); | |||
2171 | ||||
2172 | // Handle restrict on references. | |||
2173 | if (LValueRef) | |||
2174 | return Context.getLValueReferenceType(T, SpelledAsLValue); | |||
2175 | return Context.getRValueReferenceType(T); | |||
2176 | } | |||
2177 | ||||
2178 | /// Build a Read-only Pipe type. | |||
2179 | /// | |||
2180 | /// \param T The type to which we'll be building a Pipe. | |||
2181 | /// | |||
2182 | /// \param Loc We do not use it for now. | |||
2183 | /// | |||
2184 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | |||
2185 | /// NULL type. | |||
2186 | QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) { | |||
2187 | return Context.getReadPipeType(T); | |||
2188 | } | |||
2189 | ||||
2190 | /// Build a Write-only Pipe type. | |||
2191 | /// | |||
2192 | /// \param T The type to which we'll be building a Pipe. | |||
2193 | /// | |||
2194 | /// \param Loc We do not use it for now. | |||
2195 | /// | |||
2196 | /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a | |||
2197 | /// NULL type. | |||
2198 | QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) { | |||
2199 | return Context.getWritePipeType(T); | |||
2200 | } | |||
2201 | ||||
2202 | /// Build a extended int type. | |||
2203 | /// | |||
2204 | /// \param IsUnsigned Boolean representing the signedness of the type. | |||
2205 | /// | |||
2206 | /// \param BitWidth Size of this int type in bits, or an expression representing | |||
2207 | /// that. | |||
2208 | /// | |||
2209 | /// \param Loc Location of the keyword. | |||
2210 | QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth, | |||
2211 | SourceLocation Loc) { | |||
2212 | if (BitWidth->isInstantiationDependent()) | |||
2213 | return Context.getDependentExtIntType(IsUnsigned, BitWidth); | |||
2214 | ||||
2215 | llvm::APSInt Bits(32); | |||
2216 | ExprResult ICE = | |||
2217 | VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold); | |||
2218 | ||||
2219 | if (ICE.isInvalid()) | |||
2220 | return QualType(); | |||
2221 | ||||
2222 | int64_t NumBits = Bits.getSExtValue(); | |||
2223 | if (!IsUnsigned && NumBits < 2) { | |||
2224 | Diag(Loc, diag::err_ext_int_bad_size) << 0; | |||
2225 | return QualType(); | |||
2226 | } | |||
2227 | ||||
2228 | if (IsUnsigned && NumBits < 1) { | |||
2229 | Diag(Loc, diag::err_ext_int_bad_size) << 1; | |||
2230 | return QualType(); | |||
2231 | } | |||
2232 | ||||
2233 | if (NumBits > llvm::IntegerType::MAX_INT_BITS) { | |||
2234 | Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned | |||
2235 | << llvm::IntegerType::MAX_INT_BITS; | |||
2236 | return QualType(); | |||
2237 | } | |||
2238 | ||||
2239 | return Context.getExtIntType(IsUnsigned, NumBits); | |||
2240 | } | |||
2241 | ||||
2242 | /// Check whether the specified array bound can be evaluated using the relevant | |||
2243 | /// language rules. If so, returns the possibly-converted expression and sets | |||
2244 | /// SizeVal to the size. If not, but the expression might be a VLA bound, | |||
2245 | /// returns ExprResult(). Otherwise, produces a diagnostic and returns | |||
2246 | /// ExprError(). | |||
2247 | static ExprResult checkArraySize(Sema &S, Expr *&ArraySize, | |||
2248 | llvm::APSInt &SizeVal, unsigned VLADiag, | |||
2249 | bool VLAIsError) { | |||
2250 | if (S.getLangOpts().CPlusPlus14 && | |||
2251 | (VLAIsError || | |||
2252 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) { | |||
2253 | // C++14 [dcl.array]p1: | |||
2254 | // The constant-expression shall be a converted constant expression of | |||
2255 | // type std::size_t. | |||
2256 | // | |||
2257 | // Don't apply this rule if we might be forming a VLA: in that case, we | |||
2258 | // allow non-constant expressions and constant-folding. We only need to use | |||
2259 | // the converted constant expression rules (to properly convert the source) | |||
2260 | // when the source expression is of class type. | |||
2261 | return S.CheckConvertedConstantExpression( | |||
2262 | ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound); | |||
2263 | } | |||
2264 | ||||
2265 | // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode | |||
2266 | // (like gnu99, but not c99) accept any evaluatable value as an extension. | |||
2267 | class VLADiagnoser : public Sema::VerifyICEDiagnoser { | |||
2268 | public: | |||
2269 | unsigned VLADiag; | |||
2270 | bool VLAIsError; | |||
2271 | bool IsVLA = false; | |||
2272 | ||||
2273 | VLADiagnoser(unsigned VLADiag, bool VLAIsError) | |||
2274 | : VLADiag(VLADiag), VLAIsError(VLAIsError) {} | |||
2275 | ||||
2276 | Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, | |||
2277 | QualType T) override { | |||
2278 | return S.Diag(Loc, diag::err_array_size_non_int) << T; | |||
2279 | } | |||
2280 | ||||
2281 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | |||
2282 | SourceLocation Loc) override { | |||
2283 | IsVLA = !VLAIsError; | |||
2284 | return S.Diag(Loc, VLADiag); | |||
2285 | } | |||
2286 | ||||
2287 | Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S, | |||
2288 | SourceLocation Loc) override { | |||
2289 | return S.Diag(Loc, diag::ext_vla_folded_to_constant); | |||
2290 | } | |||
2291 | } Diagnoser(VLADiag, VLAIsError); | |||
2292 | ||||
2293 | ExprResult R = | |||
2294 | S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser); | |||
2295 | if (Diagnoser.IsVLA) | |||
2296 | return ExprResult(); | |||
2297 | return R; | |||
2298 | } | |||
2299 | ||||
2300 | /// Build an array type. | |||
2301 | /// | |||
2302 | /// \param T The type of each element in the array. | |||
2303 | /// | |||
2304 | /// \param ASM C99 array size modifier (e.g., '*', 'static'). | |||
2305 | /// | |||
2306 | /// \param ArraySize Expression describing the size of the array. | |||
2307 | /// | |||
2308 | /// \param Brackets The range from the opening '[' to the closing ']'. | |||
2309 | /// | |||
2310 | /// \param Entity The name of the entity that involves the array | |||
2311 | /// type, if known. | |||
2312 | /// | |||
2313 | /// \returns A suitable array type, if there are no errors. Otherwise, | |||
2314 | /// returns a NULL type. | |||
2315 | QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, | |||
2316 | Expr *ArraySize, unsigned Quals, | |||
2317 | SourceRange Brackets, DeclarationName Entity) { | |||
2318 | ||||
2319 | SourceLocation Loc = Brackets.getBegin(); | |||
2320 | if (getLangOpts().CPlusPlus) { | |||
2321 | // C++ [dcl.array]p1: | |||
2322 | // T is called the array element type; this type shall not be a reference | |||
2323 | // type, the (possibly cv-qualified) type void, a function type or an | |||
2324 | // abstract class type. | |||
2325 | // | |||
2326 | // C++ [dcl.array]p3: | |||
2327 | // When several "array of" specifications are adjacent, [...] only the | |||
2328 | // first of the constant expressions that specify the bounds of the arrays | |||
2329 | // may be omitted. | |||
2330 | // | |||
2331 | // Note: function types are handled in the common path with C. | |||
2332 | if (T->isReferenceType()) { | |||
2333 | Diag(Loc, diag::err_illegal_decl_array_of_references) | |||
2334 | << getPrintableNameForEntity(Entity) << T; | |||
2335 | return QualType(); | |||
2336 | } | |||
2337 | ||||
2338 | if (T->isVoidType() || T->isIncompleteArrayType()) { | |||
2339 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T; | |||
2340 | return QualType(); | |||
2341 | } | |||
2342 | ||||
2343 | if (RequireNonAbstractType(Brackets.getBegin(), T, | |||
2344 | diag::err_array_of_abstract_type)) | |||
2345 | return QualType(); | |||
2346 | ||||
2347 | // Mentioning a member pointer type for an array type causes us to lock in | |||
2348 | // an inheritance model, even if it's inside an unused typedef. | |||
2349 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
2350 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) | |||
2351 | if (!MPTy->getClass()->isDependentType()) | |||
2352 | (void)isCompleteType(Loc, T); | |||
2353 | ||||
2354 | } else { | |||
2355 | // C99 6.7.5.2p1: If the element type is an incomplete or function type, | |||
2356 | // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) | |||
2357 | if (RequireCompleteSizedType(Loc, T, | |||
2358 | diag::err_array_incomplete_or_sizeless_type)) | |||
2359 | return QualType(); | |||
2360 | } | |||
2361 | ||||
2362 | if (T->isSizelessType()) { | |||
2363 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T; | |||
2364 | return QualType(); | |||
2365 | } | |||
2366 | ||||
2367 | if (T->isFunctionType()) { | |||
2368 | Diag(Loc, diag::err_illegal_decl_array_of_functions) | |||
2369 | << getPrintableNameForEntity(Entity) << T; | |||
2370 | return QualType(); | |||
2371 | } | |||
2372 | ||||
2373 | if (const RecordType *EltTy = T->getAs<RecordType>()) { | |||
2374 | // If the element type is a struct or union that contains a variadic | |||
2375 | // array, accept it as a GNU extension: C99 6.7.2.1p2. | |||
2376 | if (EltTy->getDecl()->hasFlexibleArrayMember()) | |||
2377 | Diag(Loc, diag::ext_flexible_array_in_array) << T; | |||
2378 | } else if (T->isObjCObjectType()) { | |||
2379 | Diag(Loc, diag::err_objc_array_of_interfaces) << T; | |||
2380 | return QualType(); | |||
2381 | } | |||
2382 | ||||
2383 | // Do placeholder conversions on the array size expression. | |||
2384 | if (ArraySize && ArraySize->hasPlaceholderType()) { | |||
2385 | ExprResult Result = CheckPlaceholderExpr(ArraySize); | |||
2386 | if (Result.isInvalid()) return QualType(); | |||
2387 | ArraySize = Result.get(); | |||
2388 | } | |||
2389 | ||||
2390 | // Do lvalue-to-rvalue conversions on the array size expression. | |||
2391 | if (ArraySize && !ArraySize->isRValue()) { | |||
2392 | ExprResult Result = DefaultLvalueConversion(ArraySize); | |||
2393 | if (Result.isInvalid()) | |||
2394 | return QualType(); | |||
2395 | ||||
2396 | ArraySize = Result.get(); | |||
2397 | } | |||
2398 | ||||
2399 | // C99 6.7.5.2p1: The size expression shall have integer type. | |||
2400 | // C++11 allows contextual conversions to such types. | |||
2401 | if (!getLangOpts().CPlusPlus11 && | |||
2402 | ArraySize && !ArraySize->isTypeDependent() && | |||
2403 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) { | |||
2404 | Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int) | |||
2405 | << ArraySize->getType() << ArraySize->getSourceRange(); | |||
2406 | return QualType(); | |||
2407 | } | |||
2408 | ||||
2409 | // VLAs always produce at least a -Wvla diagnostic, sometimes an error. | |||
2410 | unsigned VLADiag; | |||
2411 | bool VLAIsError; | |||
2412 | if (getLangOpts().OpenCL) { | |||
2413 | // OpenCL v1.2 s6.9.d: variable length arrays are not supported. | |||
2414 | VLADiag = diag::err_opencl_vla; | |||
2415 | VLAIsError = true; | |||
2416 | } else if (getLangOpts().C99) { | |||
2417 | VLADiag = diag::warn_vla_used; | |||
2418 | VLAIsError = false; | |||
2419 | } else if (isSFINAEContext()) { | |||
2420 | VLADiag = diag::err_vla_in_sfinae; | |||
2421 | VLAIsError = true; | |||
2422 | } else { | |||
2423 | VLADiag = diag::ext_vla; | |||
2424 | VLAIsError = false; | |||
2425 | } | |||
2426 | ||||
2427 | llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType())); | |||
2428 | if (!ArraySize) { | |||
2429 | if (ASM == ArrayType::Star) { | |||
2430 | Diag(Loc, VLADiag); | |||
2431 | if (VLAIsError) | |||
2432 | return QualType(); | |||
2433 | ||||
2434 | T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets); | |||
2435 | } else { | |||
2436 | T = Context.getIncompleteArrayType(T, ASM, Quals); | |||
2437 | } | |||
2438 | } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { | |||
2439 | T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets); | |||
2440 | } else { | |||
2441 | ExprResult R = | |||
2442 | checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError); | |||
2443 | if (R.isInvalid()) | |||
2444 | return QualType(); | |||
2445 | ||||
2446 | if (!R.isUsable()) { | |||
2447 | // C99: an array with a non-ICE size is a VLA. We accept any expression | |||
2448 | // that we can fold to a non-zero positive value as a non-VLA as an | |||
2449 | // extension. | |||
2450 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | |||
2451 | } else if (!T->isDependentType() && !T->isIncompleteType() && | |||
2452 | !T->isConstantSizeType()) { | |||
2453 | // C99: an array with an element type that has a non-constant-size is a | |||
2454 | // VLA. | |||
2455 | // FIXME: Add a note to explain why this isn't a VLA. | |||
2456 | Diag(Loc, VLADiag); | |||
2457 | if (VLAIsError) | |||
2458 | return QualType(); | |||
2459 | T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets); | |||
2460 | } else { | |||
2461 | // C99 6.7.5.2p1: If the expression is a constant expression, it shall | |||
2462 | // have a value greater than zero. | |||
2463 | // In C++, this follows from narrowing conversions being disallowed. | |||
2464 | if (ConstVal.isSigned() && ConstVal.isNegative()) { | |||
2465 | if (Entity) | |||
2466 | Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size) | |||
2467 | << getPrintableNameForEntity(Entity) | |||
2468 | << ArraySize->getSourceRange(); | |||
2469 | else | |||
2470 | Diag(ArraySize->getBeginLoc(), | |||
2471 | diag::err_typecheck_negative_array_size) | |||
2472 | << ArraySize->getSourceRange(); | |||
2473 | return QualType(); | |||
2474 | } | |||
2475 | if (ConstVal == 0) { | |||
2476 | // GCC accepts zero sized static arrays. We allow them when | |||
2477 | // we're not in a SFINAE context. | |||
2478 | Diag(ArraySize->getBeginLoc(), | |||
2479 | isSFINAEContext() ? diag::err_typecheck_zero_array_size | |||
2480 | : diag::ext_typecheck_zero_array_size) | |||
2481 | << ArraySize->getSourceRange(); | |||
2482 | } | |||
2483 | ||||
2484 | // Is the array too large? | |||
2485 | unsigned ActiveSizeBits = | |||
2486 | (!T->isDependentType() && !T->isVariablyModifiedType() && | |||
2487 | !T->isIncompleteType() && !T->isUndeducedType()) | |||
2488 | ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal) | |||
2489 | : ConstVal.getActiveBits(); | |||
2490 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | |||
2491 | Diag(ArraySize->getBeginLoc(), diag::err_array_too_large) | |||
2492 | << ConstVal.toString(10) << ArraySize->getSourceRange(); | |||
2493 | return QualType(); | |||
2494 | } | |||
2495 | ||||
2496 | T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals); | |||
2497 | } | |||
2498 | } | |||
2499 | ||||
2500 | if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) { | |||
2501 | // CUDA device code and some other targets don't support VLAs. | |||
2502 | targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | |||
2503 | ? diag::err_cuda_vla | |||
2504 | : diag::err_vla_unsupported) | |||
2505 | << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) | |||
2506 | ? CurrentCUDATarget() | |||
2507 | : CFT_InvalidTarget); | |||
2508 | } | |||
2509 | ||||
2510 | // If this is not C99, diagnose array size modifiers on non-VLAs. | |||
2511 | if (!getLangOpts().C99 && !T->isVariableArrayType() && | |||
2512 | (ASM != ArrayType::Normal || Quals != 0)) { | |||
2513 | Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx | |||
2514 | : diag::ext_c99_array_usage) | |||
2515 | << ASM; | |||
2516 | } | |||
2517 | ||||
2518 | // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported. | |||
2519 | // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported. | |||
2520 | // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported. | |||
2521 | if (getLangOpts().OpenCL) { | |||
2522 | const QualType ArrType = Context.getBaseElementType(T); | |||
2523 | if (ArrType->isBlockPointerType() || ArrType->isPipeType() || | |||
2524 | ArrType->isSamplerT() || ArrType->isImageType()) { | |||
2525 | Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType; | |||
2526 | return QualType(); | |||
2527 | } | |||
2528 | } | |||
2529 | ||||
2530 | return T; | |||
2531 | } | |||
2532 | ||||
2533 | QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr, | |||
2534 | SourceLocation AttrLoc) { | |||
2535 | // The base type must be integer (not Boolean or enumeration) or float, and | |||
2536 | // can't already be a vector. | |||
2537 | if ((!CurType->isDependentType() && | |||
2538 | (!CurType->isBuiltinType() || CurType->isBooleanType() || | |||
2539 | (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) || | |||
2540 | CurType->isArrayType()) { | |||
2541 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType; | |||
2542 | return QualType(); | |||
2543 | } | |||
2544 | ||||
2545 | if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent()) | |||
2546 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | |||
2547 | VectorType::GenericVector); | |||
2548 | ||||
2549 | Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context); | |||
2550 | if (!VecSize) { | |||
2551 | Diag(AttrLoc, diag::err_attribute_argument_type) | |||
2552 | << "vector_size" << AANT_ArgumentIntegerConstant | |||
2553 | << SizeExpr->getSourceRange(); | |||
2554 | return QualType(); | |||
2555 | } | |||
2556 | ||||
2557 | if (CurType->isDependentType()) | |||
2558 | return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc, | |||
2559 | VectorType::GenericVector); | |||
2560 | ||||
2561 | // vecSize is specified in bytes - convert to bits. | |||
2562 | if (!VecSize->isIntN(61)) { | |||
2563 | // Bit size will overflow uint64. | |||
2564 | Diag(AttrLoc, diag::err_attribute_size_too_large) | |||
2565 | << SizeExpr->getSourceRange() << "vector"; | |||
2566 | return QualType(); | |||
2567 | } | |||
2568 | uint64_t VectorSizeBits = VecSize->getZExtValue() * 8; | |||
2569 | unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType)); | |||
2570 | ||||
2571 | if (VectorSizeBits == 0) { | |||
2572 | Diag(AttrLoc, diag::err_attribute_zero_size) | |||
2573 | << SizeExpr->getSourceRange() << "vector"; | |||
2574 | return QualType(); | |||
2575 | } | |||
2576 | ||||
2577 | if (VectorSizeBits % TypeSize) { | |||
2578 | Diag(AttrLoc, diag::err_attribute_invalid_size) | |||
2579 | << SizeExpr->getSourceRange(); | |||
2580 | return QualType(); | |||
2581 | } | |||
2582 | ||||
2583 | if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) { | |||
2584 | Diag(AttrLoc, diag::err_attribute_size_too_large) | |||
2585 | << SizeExpr->getSourceRange() << "vector"; | |||
2586 | return QualType(); | |||
2587 | } | |||
2588 | ||||
2589 | return Context.getVectorType(CurType, VectorSizeBits / TypeSize, | |||
2590 | VectorType::GenericVector); | |||
2591 | } | |||
2592 | ||||
2593 | /// Build an ext-vector type. | |||
2594 | /// | |||
2595 | /// Run the required checks for the extended vector type. | |||
2596 | QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize, | |||
2597 | SourceLocation AttrLoc) { | |||
2598 | // Unlike gcc's vector_size attribute, we do not allow vectors to be defined | |||
2599 | // in conjunction with complex types (pointers, arrays, functions, etc.). | |||
2600 | // | |||
2601 | // Additionally, OpenCL prohibits vectors of booleans (they're considered a | |||
2602 | // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects | |||
2603 | // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors | |||
2604 | // of bool aren't allowed. | |||
2605 | if ((!T->isDependentType() && !T->isIntegerType() && | |||
2606 | !T->isRealFloatingType()) || | |||
2607 | T->isBooleanType()) { | |||
2608 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T; | |||
2609 | return QualType(); | |||
2610 | } | |||
2611 | ||||
2612 | if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) { | |||
2613 | Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context); | |||
2614 | if (!vecSize) { | |||
2615 | Diag(AttrLoc, diag::err_attribute_argument_type) | |||
2616 | << "ext_vector_type" << AANT_ArgumentIntegerConstant | |||
2617 | << ArraySize->getSourceRange(); | |||
2618 | return QualType(); | |||
2619 | } | |||
2620 | ||||
2621 | if (!vecSize->isIntN(32)) { | |||
2622 | Diag(AttrLoc, diag::err_attribute_size_too_large) | |||
2623 | << ArraySize->getSourceRange() << "vector"; | |||
2624 | return QualType(); | |||
2625 | } | |||
2626 | // Unlike gcc's vector_size attribute, the size is specified as the | |||
2627 | // number of elements, not the number of bytes. | |||
2628 | unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue()); | |||
2629 | ||||
2630 | if (vectorSize == 0) { | |||
2631 | Diag(AttrLoc, diag::err_attribute_zero_size) | |||
2632 | << ArraySize->getSourceRange() << "vector"; | |||
2633 | return QualType(); | |||
2634 | } | |||
2635 | ||||
2636 | return Context.getExtVectorType(T, vectorSize); | |||
2637 | } | |||
2638 | ||||
2639 | return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc); | |||
2640 | } | |||
2641 | ||||
2642 | QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols, | |||
2643 | SourceLocation AttrLoc) { | |||
2644 | assert(Context.getLangOpts().MatrixTypes &&((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled" ) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2645, __PRETTY_FUNCTION__)) | |||
2645 | "Should never build a matrix type when it is disabled")((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled" ) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2645, __PRETTY_FUNCTION__)); | |||
2646 | ||||
2647 | // Check element type, if it is not dependent. | |||
2648 | if (!ElementTy->isDependentType() && | |||
2649 | !MatrixType::isValidElementType(ElementTy)) { | |||
2650 | Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy; | |||
2651 | return QualType(); | |||
2652 | } | |||
2653 | ||||
2654 | if (NumRows->isTypeDependent() || NumCols->isTypeDependent() || | |||
| ||||
2655 | NumRows->isValueDependent() || NumCols->isValueDependent()) | |||
2656 | return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols, | |||
2657 | AttrLoc); | |||
2658 | ||||
2659 | Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context); | |||
2660 | Optional<llvm::APSInt> ValueColumns = | |||
2661 | NumCols->getIntegerConstantExpr(Context); | |||
2662 | ||||
2663 | auto const RowRange = NumRows->getSourceRange(); | |||
2664 | auto const ColRange = NumCols->getSourceRange(); | |||
2665 | ||||
2666 | // Both are row and column expressions are invalid. | |||
2667 | if (!ValueRows && !ValueColumns) { | |||
2668 | Diag(AttrLoc, diag::err_attribute_argument_type) | |||
2669 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange | |||
2670 | << ColRange; | |||
2671 | return QualType(); | |||
2672 | } | |||
2673 | ||||
2674 | // Only the row expression is invalid. | |||
2675 | if (!ValueRows) { | |||
2676 | Diag(AttrLoc, diag::err_attribute_argument_type) | |||
2677 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange; | |||
2678 | return QualType(); | |||
2679 | } | |||
2680 | ||||
2681 | // Only the column expression is invalid. | |||
2682 | if (!ValueColumns) { | |||
2683 | Diag(AttrLoc, diag::err_attribute_argument_type) | |||
2684 | << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange; | |||
2685 | return QualType(); | |||
2686 | } | |||
2687 | ||||
2688 | // Check the matrix dimensions. | |||
2689 | unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue()); | |||
2690 | unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue()); | |||
2691 | if (MatrixRows == 0 && MatrixColumns == 0) { | |||
2692 | Diag(AttrLoc, diag::err_attribute_zero_size) | |||
2693 | << "matrix" << RowRange << ColRange; | |||
2694 | return QualType(); | |||
2695 | } | |||
2696 | if (MatrixRows == 0) { | |||
2697 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange; | |||
2698 | return QualType(); | |||
2699 | } | |||
2700 | if (MatrixColumns == 0) { | |||
2701 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange; | |||
2702 | return QualType(); | |||
2703 | } | |||
2704 | if (!ConstantMatrixType::isDimensionValid(MatrixRows)) { | |||
2705 | Diag(AttrLoc, diag::err_attribute_size_too_large) | |||
2706 | << RowRange << "matrix row"; | |||
2707 | return QualType(); | |||
2708 | } | |||
2709 | if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) { | |||
2710 | Diag(AttrLoc, diag::err_attribute_size_too_large) | |||
2711 | << ColRange << "matrix column"; | |||
2712 | return QualType(); | |||
2713 | } | |||
2714 | return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns); | |||
2715 | } | |||
2716 | ||||
2717 | bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) { | |||
2718 | if (T->isArrayType() || T->isFunctionType()) { | |||
2719 | Diag(Loc, diag::err_func_returning_array_function) | |||
2720 | << T->isFunctionType() << T; | |||
2721 | return true; | |||
2722 | } | |||
2723 | ||||
2724 | // Functions cannot return half FP. | |||
2725 | if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | |||
2726 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 << | |||
2727 | FixItHint::CreateInsertion(Loc, "*"); | |||
2728 | return true; | |||
2729 | } | |||
2730 | ||||
2731 | // Methods cannot return interface types. All ObjC objects are | |||
2732 | // passed by reference. | |||
2733 | if (T->isObjCObjectType()) { | |||
2734 | Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) | |||
2735 | << 0 << T << FixItHint::CreateInsertion(Loc, "*"); | |||
2736 | return true; | |||
2737 | } | |||
2738 | ||||
2739 | if (T.hasNonTrivialToPrimitiveDestructCUnion() || | |||
2740 | T.hasNonTrivialToPrimitiveCopyCUnion()) | |||
2741 | checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn, | |||
2742 | NTCUK_Destruct|NTCUK_Copy); | |||
2743 | ||||
2744 | // C++2a [dcl.fct]p12: | |||
2745 | // A volatile-qualified return type is deprecated | |||
2746 | if (T.isVolatileQualified() && getLangOpts().CPlusPlus20) | |||
2747 | Diag(Loc, diag::warn_deprecated_volatile_return) << T; | |||
2748 | ||||
2749 | return false; | |||
2750 | } | |||
2751 | ||||
2752 | /// Check the extended parameter information. Most of the necessary | |||
2753 | /// checking should occur when applying the parameter attribute; the | |||
2754 | /// only other checks required are positional restrictions. | |||
2755 | static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes, | |||
2756 | const FunctionProtoType::ExtProtoInfo &EPI, | |||
2757 | llvm::function_ref<SourceLocation(unsigned)> getParamLoc) { | |||
2758 | assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((EPI.ExtParameterInfos && "shouldn't get here without param infos" ) ? static_cast<void> (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2758, __PRETTY_FUNCTION__)); | |||
2759 | ||||
2760 | bool hasCheckedSwiftCall = false; | |||
2761 | auto checkForSwiftCC = [&](unsigned paramIndex) { | |||
2762 | // Only do this once. | |||
2763 | if (hasCheckedSwiftCall) return; | |||
2764 | hasCheckedSwiftCall = true; | |||
2765 | if (EPI.ExtInfo.getCC() == CC_Swift) return; | |||
2766 | S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall) | |||
2767 | << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI()); | |||
2768 | }; | |||
2769 | ||||
2770 | for (size_t paramIndex = 0, numParams = paramTypes.size(); | |||
2771 | paramIndex != numParams; ++paramIndex) { | |||
2772 | switch (EPI.ExtParameterInfos[paramIndex].getABI()) { | |||
2773 | // Nothing interesting to check for orindary-ABI parameters. | |||
2774 | case ParameterABI::Ordinary: | |||
2775 | continue; | |||
2776 | ||||
2777 | // swift_indirect_result parameters must be a prefix of the function | |||
2778 | // arguments. | |||
2779 | case ParameterABI::SwiftIndirectResult: | |||
2780 | checkForSwiftCC(paramIndex); | |||
2781 | if (paramIndex != 0 && | |||
2782 | EPI.ExtParameterInfos[paramIndex - 1].getABI() | |||
2783 | != ParameterABI::SwiftIndirectResult) { | |||
2784 | S.Diag(getParamLoc(paramIndex), | |||
2785 | diag::err_swift_indirect_result_not_first); | |||
2786 | } | |||
2787 | continue; | |||
2788 | ||||
2789 | case ParameterABI::SwiftContext: | |||
2790 | checkForSwiftCC(paramIndex); | |||
2791 | continue; | |||
2792 | ||||
2793 | // swift_error parameters must be preceded by a swift_context parameter. | |||
2794 | case ParameterABI::SwiftErrorResult: | |||
2795 | checkForSwiftCC(paramIndex); | |||
2796 | if (paramIndex == 0 || | |||
2797 | EPI.ExtParameterInfos[paramIndex - 1].getABI() != | |||
2798 | ParameterABI::SwiftContext) { | |||
2799 | S.Diag(getParamLoc(paramIndex), | |||
2800 | diag::err_swift_error_result_not_after_swift_context); | |||
2801 | } | |||
2802 | continue; | |||
2803 | } | |||
2804 | llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 2804); | |||
2805 | } | |||
2806 | } | |||
2807 | ||||
2808 | QualType Sema::BuildFunctionType(QualType T, | |||
2809 | MutableArrayRef<QualType> ParamTypes, | |||
2810 | SourceLocation Loc, DeclarationName Entity, | |||
2811 | const FunctionProtoType::ExtProtoInfo &EPI) { | |||
2812 | bool Invalid = false; | |||
2813 | ||||
2814 | Invalid |= CheckFunctionReturnType(T, Loc); | |||
2815 | ||||
2816 | for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) { | |||
2817 | // FIXME: Loc is too inprecise here, should use proper locations for args. | |||
2818 | QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]); | |||
2819 | if (ParamType->isVoidType()) { | |||
2820 | Diag(Loc, diag::err_param_with_void_type); | |||
2821 | Invalid = true; | |||
2822 | } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) { | |||
2823 | // Disallow half FP arguments. | |||
2824 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 << | |||
2825 | FixItHint::CreateInsertion(Loc, "*"); | |||
2826 | Invalid = true; | |||
2827 | } | |||
2828 | ||||
2829 | // C++2a [dcl.fct]p4: | |||
2830 | // A parameter with volatile-qualified type is deprecated | |||
2831 | if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20) | |||
2832 | Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType; | |||
2833 | ||||
2834 | ParamTypes[Idx] = ParamType; | |||
2835 | } | |||
2836 | ||||
2837 | if (EPI.ExtParameterInfos) { | |||
2838 | checkExtParameterInfos(*this, ParamTypes, EPI, | |||
2839 | [=](unsigned i) { return Loc; }); | |||
2840 | } | |||
2841 | ||||
2842 | if (EPI.ExtInfo.getProducesResult()) { | |||
2843 | // This is just a warning, so we can't fail to build if we see it. | |||
2844 | checkNSReturnsRetainedReturnType(Loc, T); | |||
2845 | } | |||
2846 | ||||
2847 | if (Invalid) | |||
2848 | return QualType(); | |||
2849 | ||||
2850 | return Context.getFunctionType(T, ParamTypes, EPI); | |||
2851 | } | |||
2852 | ||||
2853 | /// Build a member pointer type \c T Class::*. | |||
2854 | /// | |||
2855 | /// \param T the type to which the member pointer refers. | |||
2856 | /// \param Class the class type into which the member pointer points. | |||
2857 | /// \param Loc the location where this type begins | |||
2858 | /// \param Entity the name of the entity that will have this member pointer type | |||
2859 | /// | |||
2860 | /// \returns a member pointer type, if successful, or a NULL type if there was | |||
2861 | /// an error. | |||
2862 | QualType Sema::BuildMemberPointerType(QualType T, QualType Class, | |||
2863 | SourceLocation Loc, | |||
2864 | DeclarationName Entity) { | |||
2865 | // Verify that we're not building a pointer to pointer to function with | |||
2866 | // exception specification. | |||
2867 | if (CheckDistantExceptionSpec(T)) { | |||
2868 | Diag(Loc, diag::err_distant_exception_spec); | |||
2869 | return QualType(); | |||
2870 | } | |||
2871 | ||||
2872 | // C++ 8.3.3p3: A pointer to member shall not point to ... a member | |||
2873 | // with reference type, or "cv void." | |||
2874 | if (T->isReferenceType()) { | |||
2875 | Diag(Loc, diag::err_illegal_decl_mempointer_to_reference) | |||
2876 | << getPrintableNameForEntity(Entity) << T; | |||
2877 | return QualType(); | |||
2878 | } | |||
2879 | ||||
2880 | if (T->isVoidType()) { | |||
2881 | Diag(Loc, diag::err_illegal_decl_mempointer_to_void) | |||
2882 | << getPrintableNameForEntity(Entity); | |||
2883 | return QualType(); | |||
2884 | } | |||
2885 | ||||
2886 | if (!Class->isDependentType() && !Class->isRecordType()) { | |||
2887 | Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class; | |||
2888 | return QualType(); | |||
2889 | } | |||
2890 | ||||
2891 | // Adjust the default free function calling convention to the default method | |||
2892 | // calling convention. | |||
2893 | bool IsCtorOrDtor = | |||
2894 | (Entity.getNameKind() == DeclarationName::CXXConstructorName) || | |||
2895 | (Entity.getNameKind() == DeclarationName::CXXDestructorName); | |||
2896 | if (T->isFunctionType()) | |||
2897 | adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc); | |||
2898 | ||||
2899 | return Context.getMemberPointerType(T, Class.getTypePtr()); | |||
2900 | } | |||
2901 | ||||
2902 | /// Build a block pointer type. | |||
2903 | /// | |||
2904 | /// \param T The type to which we'll be building a block pointer. | |||
2905 | /// | |||
2906 | /// \param Loc The source location, used for diagnostics. | |||
2907 | /// | |||
2908 | /// \param Entity The name of the entity that involves the block pointer | |||
2909 | /// type, if known. | |||
2910 | /// | |||
2911 | /// \returns A suitable block pointer type, if there are no | |||
2912 | /// errors. Otherwise, returns a NULL type. | |||
2913 | QualType Sema::BuildBlockPointerType(QualType T, | |||
2914 | SourceLocation Loc, | |||
2915 | DeclarationName Entity) { | |||
2916 | if (!T->isFunctionType()) { | |||
2917 | Diag(Loc, diag::err_nonfunction_block_type); | |||
2918 | return QualType(); | |||
2919 | } | |||
2920 | ||||
2921 | if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer)) | |||
2922 | return QualType(); | |||
2923 | ||||
2924 | if (getLangOpts().OpenCL) | |||
2925 | T = deduceOpenCLPointeeAddrSpace(*this, T); | |||
2926 | ||||
2927 | return Context.getBlockPointerType(T); | |||
2928 | } | |||
2929 | ||||
2930 | QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) { | |||
2931 | QualType QT = Ty.get(); | |||
2932 | if (QT.isNull()) { | |||
2933 | if (TInfo) *TInfo = nullptr; | |||
2934 | return QualType(); | |||
2935 | } | |||
2936 | ||||
2937 | TypeSourceInfo *DI = nullptr; | |||
2938 | if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) { | |||
2939 | QT = LIT->getType(); | |||
2940 | DI = LIT->getTypeSourceInfo(); | |||
2941 | } | |||
2942 | ||||
2943 | if (TInfo) *TInfo = DI; | |||
2944 | return QT; | |||
2945 | } | |||
2946 | ||||
2947 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | |||
2948 | Qualifiers::ObjCLifetime ownership, | |||
2949 | unsigned chunkIndex); | |||
2950 | ||||
2951 | /// Given that this is the declaration of a parameter under ARC, | |||
2952 | /// attempt to infer attributes and such for pointer-to-whatever | |||
2953 | /// types. | |||
2954 | static void inferARCWriteback(TypeProcessingState &state, | |||
2955 | QualType &declSpecType) { | |||
2956 | Sema &S = state.getSema(); | |||
2957 | Declarator &declarator = state.getDeclarator(); | |||
2958 | ||||
2959 | // TODO: should we care about decl qualifiers? | |||
2960 | ||||
2961 | // Check whether the declarator has the expected form. We walk | |||
2962 | // from the inside out in order to make the block logic work. | |||
2963 | unsigned outermostPointerIndex = 0; | |||
2964 | bool isBlockPointer = false; | |||
2965 | unsigned numPointers = 0; | |||
2966 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { | |||
2967 | unsigned chunkIndex = i; | |||
2968 | DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex); | |||
2969 | switch (chunk.Kind) { | |||
2970 | case DeclaratorChunk::Paren: | |||
2971 | // Ignore parens. | |||
2972 | break; | |||
2973 | ||||
2974 | case DeclaratorChunk::Reference: | |||
2975 | case DeclaratorChunk::Pointer: | |||
2976 | // Count the number of pointers. Treat references | |||
2977 | // interchangeably as pointers; if they're mis-ordered, normal | |||
2978 | // type building will discover that. | |||
2979 | outermostPointerIndex = chunkIndex; | |||
2980 | numPointers++; | |||
2981 | break; | |||
2982 | ||||
2983 | case DeclaratorChunk::BlockPointer: | |||
2984 | // If we have a pointer to block pointer, that's an acceptable | |||
2985 | // indirect reference; anything else is not an application of | |||
2986 | // the rules. | |||
2987 | if (numPointers != 1) return; | |||
2988 | numPointers++; | |||
2989 | outermostPointerIndex = chunkIndex; | |||
2990 | isBlockPointer = true; | |||
2991 | ||||
2992 | // We don't care about pointer structure in return values here. | |||
2993 | goto done; | |||
2994 | ||||
2995 | case DeclaratorChunk::Array: // suppress if written (id[])? | |||
2996 | case DeclaratorChunk::Function: | |||
2997 | case DeclaratorChunk::MemberPointer: | |||
2998 | case DeclaratorChunk::Pipe: | |||
2999 | return; | |||
3000 | } | |||
3001 | } | |||
3002 | done: | |||
3003 | ||||
3004 | // If we have *one* pointer, then we want to throw the qualifier on | |||
3005 | // the declaration-specifiers, which means that it needs to be a | |||
3006 | // retainable object type. | |||
3007 | if (numPointers == 1) { | |||
3008 | // If it's not a retainable object type, the rule doesn't apply. | |||
3009 | if (!declSpecType->isObjCRetainableType()) return; | |||
3010 | ||||
3011 | // If it already has lifetime, don't do anything. | |||
3012 | if (declSpecType.getObjCLifetime()) return; | |||
3013 | ||||
3014 | // Otherwise, modify the type in-place. | |||
3015 | Qualifiers qs; | |||
3016 | ||||
3017 | if (declSpecType->isObjCARCImplicitlyUnretainedType()) | |||
3018 | qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone); | |||
3019 | else | |||
3020 | qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing); | |||
3021 | declSpecType = S.Context.getQualifiedType(declSpecType, qs); | |||
3022 | ||||
3023 | // If we have *two* pointers, then we want to throw the qualifier on | |||
3024 | // the outermost pointer. | |||
3025 | } else if (numPointers == 2) { | |||
3026 | // If we don't have a block pointer, we need to check whether the | |||
3027 | // declaration-specifiers gave us something that will turn into a | |||
3028 | // retainable object pointer after we slap the first pointer on it. | |||
3029 | if (!isBlockPointer && !declSpecType->isObjCObjectType()) | |||
3030 | return; | |||
3031 | ||||
3032 | // Look for an explicit lifetime attribute there. | |||
3033 | DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex); | |||
3034 | if (chunk.Kind != DeclaratorChunk::Pointer && | |||
3035 | chunk.Kind != DeclaratorChunk::BlockPointer) | |||
3036 | return; | |||
3037 | for (const ParsedAttr &AL : chunk.getAttrs()) | |||
3038 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) | |||
3039 | return; | |||
3040 | ||||
3041 | transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing, | |||
3042 | outermostPointerIndex); | |||
3043 | ||||
3044 | // Any other number of pointers/references does not trigger the rule. | |||
3045 | } else return; | |||
3046 | ||||
3047 | // TODO: mark whether we did this inference? | |||
3048 | } | |||
3049 | ||||
3050 | void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, | |||
3051 | SourceLocation FallbackLoc, | |||
3052 | SourceLocation ConstQualLoc, | |||
3053 | SourceLocation VolatileQualLoc, | |||
3054 | SourceLocation RestrictQualLoc, | |||
3055 | SourceLocation AtomicQualLoc, | |||
3056 | SourceLocation UnalignedQualLoc) { | |||
3057 | if (!Quals) | |||
3058 | return; | |||
3059 | ||||
3060 | struct Qual { | |||
3061 | const char *Name; | |||
3062 | unsigned Mask; | |||
3063 | SourceLocation Loc; | |||
3064 | } const QualKinds[5] = { | |||
3065 | { "const", DeclSpec::TQ_const, ConstQualLoc }, | |||
3066 | { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc }, | |||
3067 | { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc }, | |||
3068 | { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc }, | |||
3069 | { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc } | |||
3070 | }; | |||
3071 | ||||
3072 | SmallString<32> QualStr; | |||
3073 | unsigned NumQuals = 0; | |||
3074 | SourceLocation Loc; | |||
3075 | FixItHint FixIts[5]; | |||
3076 | ||||
3077 | // Build a string naming the redundant qualifiers. | |||
3078 | for (auto &E : QualKinds) { | |||
3079 | if (Quals & E.Mask) { | |||
3080 | if (!QualStr.empty()) QualStr += ' '; | |||
3081 | QualStr += E.Name; | |||
3082 | ||||
3083 | // If we have a location for the qualifier, offer a fixit. | |||
3084 | SourceLocation QualLoc = E.Loc; | |||
3085 | if (QualLoc.isValid()) { | |||
3086 | FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc); | |||
3087 | if (Loc.isInvalid() || | |||
3088 | getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc)) | |||
3089 | Loc = QualLoc; | |||
3090 | } | |||
3091 | ||||
3092 | ++NumQuals; | |||
3093 | } | |||
3094 | } | |||
3095 | ||||
3096 | Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID) | |||
3097 | << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3]; | |||
3098 | } | |||
3099 | ||||
3100 | // Diagnose pointless type qualifiers on the return type of a function. | |||
3101 | static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, | |||
3102 | Declarator &D, | |||
3103 | unsigned FunctionChunkIndex) { | |||
3104 | const DeclaratorChunk::FunctionTypeInfo &FTI = | |||
3105 | D.getTypeObject(FunctionChunkIndex).Fun; | |||
3106 | if (FTI.hasTrailingReturnType()) { | |||
3107 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | |||
3108 | RetTy.getLocalCVRQualifiers(), | |||
3109 | FTI.getTrailingReturnTypeLoc()); | |||
3110 | return; | |||
3111 | } | |||
3112 | ||||
3113 | for (unsigned OuterChunkIndex = FunctionChunkIndex + 1, | |||
3114 | End = D.getNumTypeObjects(); | |||
3115 | OuterChunkIndex != End; ++OuterChunkIndex) { | |||
3116 | DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex); | |||
3117 | switch (OuterChunk.Kind) { | |||
3118 | case DeclaratorChunk::Paren: | |||
3119 | continue; | |||
3120 | ||||
3121 | case DeclaratorChunk::Pointer: { | |||
3122 | DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr; | |||
3123 | S.diagnoseIgnoredQualifiers( | |||
3124 | diag::warn_qual_return_type, | |||
3125 | PTI.TypeQuals, | |||
3126 | SourceLocation(), | |||
3127 | SourceLocation::getFromRawEncoding(PTI.ConstQualLoc), | |||
3128 | SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc), | |||
3129 | SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc), | |||
3130 | SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc), | |||
3131 | SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc)); | |||
3132 | return; | |||
3133 | } | |||
3134 | ||||
3135 | case DeclaratorChunk::Function: | |||
3136 | case DeclaratorChunk::BlockPointer: | |||
3137 | case DeclaratorChunk::Reference: | |||
3138 | case DeclaratorChunk::Array: | |||
3139 | case DeclaratorChunk::MemberPointer: | |||
3140 | case DeclaratorChunk::Pipe: | |||
3141 | // FIXME: We can't currently provide an accurate source location and a | |||
3142 | // fix-it hint for these. | |||
3143 | unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0; | |||
3144 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | |||
3145 | RetTy.getCVRQualifiers() | AtomicQual, | |||
3146 | D.getIdentifierLoc()); | |||
3147 | return; | |||
3148 | } | |||
3149 | ||||
3150 | llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3150); | |||
3151 | } | |||
3152 | ||||
3153 | // If the qualifiers come from a conversion function type, don't diagnose | |||
3154 | // them -- they're not necessarily redundant, since such a conversion | |||
3155 | // operator can be explicitly called as "x.operator const int()". | |||
3156 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | |||
3157 | return; | |||
3158 | ||||
3159 | // Just parens all the way out to the decl specifiers. Diagnose any qualifiers | |||
3160 | // which are present there. | |||
3161 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, | |||
3162 | D.getDeclSpec().getTypeQualifiers(), | |||
3163 | D.getIdentifierLoc(), | |||
3164 | D.getDeclSpec().getConstSpecLoc(), | |||
3165 | D.getDeclSpec().getVolatileSpecLoc(), | |||
3166 | D.getDeclSpec().getRestrictSpecLoc(), | |||
3167 | D.getDeclSpec().getAtomicSpecLoc(), | |||
3168 | D.getDeclSpec().getUnalignedSpecLoc()); | |||
3169 | } | |||
3170 | ||||
3171 | static std::pair<QualType, TypeSourceInfo *> | |||
3172 | InventTemplateParameter(TypeProcessingState &state, QualType T, | |||
3173 | TypeSourceInfo *TrailingTSI, AutoType *Auto, | |||
3174 | InventedTemplateParameterInfo &Info) { | |||
3175 | Sema &S = state.getSema(); | |||
3176 | Declarator &D = state.getDeclarator(); | |||
3177 | ||||
3178 | const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth; | |||
3179 | const unsigned AutoParameterPosition = Info.TemplateParams.size(); | |||
3180 | const bool IsParameterPack = D.hasEllipsis(); | |||
3181 | ||||
3182 | // If auto is mentioned in a lambda parameter or abbreviated function | |||
3183 | // template context, convert it to a template parameter type. | |||
3184 | ||||
3185 | // Create the TemplateTypeParmDecl here to retrieve the corresponding | |||
3186 | // template parameter type. Template parameters are temporarily added | |||
3187 | // to the TU until the associated TemplateDecl is created. | |||
3188 | TemplateTypeParmDecl *InventedTemplateParam = | |||
3189 | TemplateTypeParmDecl::Create( | |||
3190 | S.Context, S.Context.getTranslationUnitDecl(), | |||
3191 | /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(), | |||
3192 | /*NameLoc=*/D.getIdentifierLoc(), | |||
3193 | TemplateParameterDepth, AutoParameterPosition, | |||
3194 | S.InventAbbreviatedTemplateParameterTypeName( | |||
3195 | D.getIdentifier(), AutoParameterPosition), false, | |||
3196 | IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained()); | |||
3197 | InventedTemplateParam->setImplicit(); | |||
3198 | Info.TemplateParams.push_back(InventedTemplateParam); | |||
3199 | ||||
3200 | // Attach type constraints to the new parameter. | |||
3201 | if (Auto->isConstrained()) { | |||
3202 | if (TrailingTSI) { | |||
3203 | // The 'auto' appears in a trailing return type we've already built; | |||
3204 | // extract its type constraints to attach to the template parameter. | |||
3205 | AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc(); | |||
3206 | TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc()); | |||
3207 | for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) | |||
3208 | TAL.addArgument(AutoLoc.getArgLoc(Idx)); | |||
3209 | ||||
3210 | S.AttachTypeConstraint(AutoLoc.getNestedNameSpecifierLoc(), | |||
3211 | AutoLoc.getConceptNameInfo(), | |||
3212 | AutoLoc.getNamedConcept(), | |||
3213 | AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, | |||
3214 | InventedTemplateParam, D.getEllipsisLoc()); | |||
3215 | } else { | |||
3216 | // The 'auto' appears in the decl-specifiers; we've not finished forming | |||
3217 | // TypeSourceInfo for it yet. | |||
3218 | TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId(); | |||
3219 | TemplateArgumentListInfo TemplateArgsInfo; | |||
3220 | if (TemplateId->LAngleLoc.isValid()) { | |||
3221 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |||
3222 | TemplateId->NumArgs); | |||
3223 | S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | |||
3224 | } | |||
3225 | S.AttachTypeConstraint( | |||
3226 | D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context), | |||
3227 | DeclarationNameInfo(DeclarationName(TemplateId->Name), | |||
3228 | TemplateId->TemplateNameLoc), | |||
3229 | cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()), | |||
3230 | TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr, | |||
3231 | InventedTemplateParam, D.getEllipsisLoc()); | |||
3232 | } | |||
3233 | } | |||
3234 | ||||
3235 | // Replace the 'auto' in the function parameter with this invented | |||
3236 | // template type parameter. | |||
3237 | // FIXME: Retain some type sugar to indicate that this was written | |||
3238 | // as 'auto'? | |||
3239 | QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0); | |||
3240 | QualType NewT = state.ReplaceAutoType(T, Replacement); | |||
3241 | TypeSourceInfo *NewTSI = | |||
3242 | TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement) | |||
3243 | : nullptr; | |||
3244 | return {NewT, NewTSI}; | |||
3245 | } | |||
3246 | ||||
3247 | static TypeSourceInfo * | |||
3248 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | |||
3249 | QualType T, TypeSourceInfo *ReturnTypeInfo); | |||
3250 | ||||
3251 | static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, | |||
3252 | TypeSourceInfo *&ReturnTypeInfo) { | |||
3253 | Sema &SemaRef = state.getSema(); | |||
3254 | Declarator &D = state.getDeclarator(); | |||
3255 | QualType T; | |||
3256 | ReturnTypeInfo = nullptr; | |||
3257 | ||||
3258 | // The TagDecl owned by the DeclSpec. | |||
3259 | TagDecl *OwnedTagDecl = nullptr; | |||
3260 | ||||
3261 | switch (D.getName().getKind()) { | |||
3262 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | |||
3263 | case UnqualifiedIdKind::IK_OperatorFunctionId: | |||
3264 | case UnqualifiedIdKind::IK_Identifier: | |||
3265 | case UnqualifiedIdKind::IK_LiteralOperatorId: | |||
3266 | case UnqualifiedIdKind::IK_TemplateId: | |||
3267 | T = ConvertDeclSpecToType(state); | |||
3268 | ||||
3269 | if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { | |||
3270 | OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | |||
3271 | // Owned declaration is embedded in declarator. | |||
3272 | OwnedTagDecl->setEmbeddedInDeclarator(true); | |||
3273 | } | |||
3274 | break; | |||
3275 | ||||
3276 | case UnqualifiedIdKind::IK_ConstructorName: | |||
3277 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | |||
3278 | case UnqualifiedIdKind::IK_DestructorName: | |||
3279 | // Constructors and destructors don't have return types. Use | |||
3280 | // "void" instead. | |||
3281 | T = SemaRef.Context.VoidTy; | |||
3282 | processTypeAttrs(state, T, TAL_DeclSpec, | |||
3283 | D.getMutableDeclSpec().getAttributes()); | |||
3284 | break; | |||
3285 | ||||
3286 | case UnqualifiedIdKind::IK_DeductionGuideName: | |||
3287 | // Deduction guides have a trailing return type and no type in their | |||
3288 | // decl-specifier sequence. Use a placeholder return type for now. | |||
3289 | T = SemaRef.Context.DependentTy; | |||
3290 | break; | |||
3291 | ||||
3292 | case UnqualifiedIdKind::IK_ConversionFunctionId: | |||
3293 | // The result type of a conversion function is the type that it | |||
3294 | // converts to. | |||
3295 | T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId, | |||
3296 | &ReturnTypeInfo); | |||
3297 | break; | |||
3298 | } | |||
3299 | ||||
3300 | if (!D.getAttributes().empty()) | |||
3301 | distributeTypeAttrsFromDeclarator(state, T); | |||
3302 | ||||
3303 | // Find the deduced type in this type. Look in the trailing return type if we | |||
3304 | // have one, otherwise in the DeclSpec type. | |||
3305 | // FIXME: The standard wording doesn't currently describe this. | |||
3306 | DeducedType *Deduced = T->getContainedDeducedType(); | |||
3307 | bool DeducedIsTrailingReturnType = false; | |||
3308 | if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) { | |||
3309 | QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType()); | |||
3310 | Deduced = T.isNull() ? nullptr : T->getContainedDeducedType(); | |||
3311 | DeducedIsTrailingReturnType = true; | |||
3312 | } | |||
3313 | ||||
3314 | // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context. | |||
3315 | if (Deduced) { | |||
3316 | AutoType *Auto = dyn_cast<AutoType>(Deduced); | |||
3317 | int Error = -1; | |||
3318 | ||||
3319 | // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or | |||
3320 | // class template argument deduction)? | |||
3321 | bool IsCXXAutoType = | |||
3322 | (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType); | |||
3323 | bool IsDeducedReturnType = false; | |||
3324 | ||||
3325 | switch (D.getContext()) { | |||
3326 | case DeclaratorContext::LambdaExpr: | |||
3327 | // Declared return type of a lambda-declarator is implicit and is always | |||
3328 | // 'auto'. | |||
3329 | break; | |||
3330 | case DeclaratorContext::ObjCParameter: | |||
3331 | case DeclaratorContext::ObjCResult: | |||
3332 | Error = 0; | |||
3333 | break; | |||
3334 | case DeclaratorContext::RequiresExpr: | |||
3335 | Error = 22; | |||
3336 | break; | |||
3337 | case DeclaratorContext::Prototype: | |||
3338 | case DeclaratorContext::LambdaExprParameter: { | |||
3339 | InventedTemplateParameterInfo *Info = nullptr; | |||
3340 | if (D.getContext() == DeclaratorContext::Prototype) { | |||
3341 | // With concepts we allow 'auto' in function parameters. | |||
3342 | if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto || | |||
3343 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | |||
3344 | Error = 0; | |||
3345 | break; | |||
3346 | } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) { | |||
3347 | Error = 21; | |||
3348 | break; | |||
3349 | } | |||
3350 | ||||
3351 | Info = &SemaRef.InventedParameterInfos.back(); | |||
3352 | } else { | |||
3353 | // In C++14, generic lambdas allow 'auto' in their parameters. | |||
3354 | if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto || | |||
3355 | Auto->getKeyword() != AutoTypeKeyword::Auto) { | |||
3356 | Error = 16; | |||
3357 | break; | |||
3358 | } | |||
3359 | Info = SemaRef.getCurLambda(); | |||
3360 | assert(Info && "No LambdaScopeInfo on the stack!")((Info && "No LambdaScopeInfo on the stack!") ? static_cast <void> (0) : __assert_fail ("Info && \"No LambdaScopeInfo on the stack!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3360, __PRETTY_FUNCTION__)); | |||
3361 | } | |||
3362 | ||||
3363 | // We'll deal with inventing template parameters for 'auto' in trailing | |||
3364 | // return types when we pick up the trailing return type when processing | |||
3365 | // the function chunk. | |||
3366 | if (!DeducedIsTrailingReturnType) | |||
3367 | T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first; | |||
3368 | break; | |||
3369 | } | |||
3370 | case DeclaratorContext::Member: { | |||
3371 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || | |||
3372 | D.isFunctionDeclarator()) | |||
3373 | break; | |||
3374 | bool Cxx = SemaRef.getLangOpts().CPlusPlus; | |||
3375 | if (isa<ObjCContainerDecl>(SemaRef.CurContext)) { | |||
3376 | Error = 6; // Interface member. | |||
3377 | } else { | |||
3378 | switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) { | |||
3379 | case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3379); | |||
3380 | case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break; | |||
3381 | case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break; | |||
3382 | case TTK_Class: Error = 5; /* Class member */ break; | |||
3383 | case TTK_Interface: Error = 6; /* Interface member */ break; | |||
3384 | } | |||
3385 | } | |||
3386 | if (D.getDeclSpec().isFriendSpecified()) | |||
3387 | Error = 20; // Friend type | |||
3388 | break; | |||
3389 | } | |||
3390 | case DeclaratorContext::CXXCatch: | |||
3391 | case DeclaratorContext::ObjCCatch: | |||
3392 | Error = 7; // Exception declaration | |||
3393 | break; | |||
3394 | case DeclaratorContext::TemplateParam: | |||
3395 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | |||
3396 | !SemaRef.getLangOpts().CPlusPlus20) | |||
3397 | Error = 19; // Template parameter (until C++20) | |||
3398 | else if (!SemaRef.getLangOpts().CPlusPlus17) | |||
3399 | Error = 8; // Template parameter (until C++17) | |||
3400 | break; | |||
3401 | case DeclaratorContext::BlockLiteral: | |||
3402 | Error = 9; // Block literal | |||
3403 | break; | |||
3404 | case DeclaratorContext::TemplateArg: | |||
3405 | // Within a template argument list, a deduced template specialization | |||
3406 | // type will be reinterpreted as a template template argument. | |||
3407 | if (isa<DeducedTemplateSpecializationType>(Deduced) && | |||
3408 | !D.getNumTypeObjects() && | |||
3409 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier) | |||
3410 | break; | |||
3411 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
3412 | case DeclaratorContext::TemplateTypeArg: | |||
3413 | Error = 10; // Template type argument | |||
3414 | break; | |||
3415 | case DeclaratorContext::AliasDecl: | |||
3416 | case DeclaratorContext::AliasTemplate: | |||
3417 | Error = 12; // Type alias | |||
3418 | break; | |||
3419 | case DeclaratorContext::TrailingReturn: | |||
3420 | case DeclaratorContext::TrailingReturnVar: | |||
3421 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | |||
3422 | Error = 13; // Function return type | |||
3423 | IsDeducedReturnType = true; | |||
3424 | break; | |||
3425 | case DeclaratorContext::ConversionId: | |||
3426 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) | |||
3427 | Error = 14; // conversion-type-id | |||
3428 | IsDeducedReturnType = true; | |||
3429 | break; | |||
3430 | case DeclaratorContext::FunctionalCast: | |||
3431 | if (isa<DeducedTemplateSpecializationType>(Deduced)) | |||
3432 | break; | |||
3433 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
3434 | case DeclaratorContext::TypeName: | |||
3435 | Error = 15; // Generic | |||
3436 | break; | |||
3437 | case DeclaratorContext::File: | |||
3438 | case DeclaratorContext::Block: | |||
3439 | case DeclaratorContext::ForInit: | |||
3440 | case DeclaratorContext::SelectionInit: | |||
3441 | case DeclaratorContext::Condition: | |||
3442 | // FIXME: P0091R3 (erroneously) does not permit class template argument | |||
3443 | // deduction in conditions, for-init-statements, and other declarations | |||
3444 | // that are not simple-declarations. | |||
3445 | break; | |||
3446 | case DeclaratorContext::CXXNew: | |||
3447 | // FIXME: P0091R3 does not permit class template argument deduction here, | |||
3448 | // but we follow GCC and allow it anyway. | |||
3449 | if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced)) | |||
3450 | Error = 17; // 'new' type | |||
3451 | break; | |||
3452 | case DeclaratorContext::KNRTypeList: | |||
3453 | Error = 18; // K&R function parameter | |||
3454 | break; | |||
3455 | } | |||
3456 | ||||
3457 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | |||
3458 | Error = 11; | |||
3459 | ||||
3460 | // In Objective-C it is an error to use 'auto' on a function declarator | |||
3461 | // (and everywhere for '__auto_type'). | |||
3462 | if (D.isFunctionDeclarator() && | |||
3463 | (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType)) | |||
3464 | Error = 13; | |||
3465 | ||||
3466 | SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc(); | |||
3467 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) | |||
3468 | AutoRange = D.getName().getSourceRange(); | |||
3469 | ||||
3470 | if (Error != -1) { | |||
3471 | unsigned Kind; | |||
3472 | if (Auto) { | |||
3473 | switch (Auto->getKeyword()) { | |||
3474 | case AutoTypeKeyword::Auto: Kind = 0; break; | |||
3475 | case AutoTypeKeyword::DecltypeAuto: Kind = 1; break; | |||
3476 | case AutoTypeKeyword::GNUAutoType: Kind = 2; break; | |||
3477 | } | |||
3478 | } else { | |||
3479 | assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((isa<DeducedTemplateSpecializationType>(Deduced) && "unknown auto type") ? static_cast<void> (0) : __assert_fail ("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3480, __PRETTY_FUNCTION__)) | |||
3480 | "unknown auto type")((isa<DeducedTemplateSpecializationType>(Deduced) && "unknown auto type") ? static_cast<void> (0) : __assert_fail ("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3480, __PRETTY_FUNCTION__)); | |||
3481 | Kind = 3; | |||
3482 | } | |||
3483 | ||||
3484 | auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced); | |||
3485 | TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName(); | |||
3486 | ||||
3487 | SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed) | |||
3488 | << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN) | |||
3489 | << QualType(Deduced, 0) << AutoRange; | |||
3490 | if (auto *TD = TN.getAsTemplateDecl()) | |||
3491 | SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here); | |||
3492 | ||||
3493 | T = SemaRef.Context.IntTy; | |||
3494 | D.setInvalidType(true); | |||
3495 | } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) { | |||
3496 | // If there was a trailing return type, we already got | |||
3497 | // warn_cxx98_compat_trailing_return_type in the parser. | |||
3498 | SemaRef.Diag(AutoRange.getBegin(), | |||
3499 | D.getContext() == DeclaratorContext::LambdaExprParameter | |||
3500 | ? diag::warn_cxx11_compat_generic_lambda | |||
3501 | : IsDeducedReturnType | |||
3502 | ? diag::warn_cxx11_compat_deduced_return_type | |||
3503 | : diag::warn_cxx98_compat_auto_type_specifier) | |||
3504 | << AutoRange; | |||
3505 | } | |||
3506 | } | |||
3507 | ||||
3508 | if (SemaRef.getLangOpts().CPlusPlus && | |||
3509 | OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) { | |||
3510 | // Check the contexts where C++ forbids the declaration of a new class | |||
3511 | // or enumeration in a type-specifier-seq. | |||
3512 | unsigned DiagID = 0; | |||
3513 | switch (D.getContext()) { | |||
3514 | case DeclaratorContext::TrailingReturn: | |||
3515 | case DeclaratorContext::TrailingReturnVar: | |||
3516 | // Class and enumeration definitions are syntactically not allowed in | |||
3517 | // trailing return types. | |||
3518 | llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3518); | |||
3519 | break; | |||
3520 | case DeclaratorContext::File: | |||
3521 | case DeclaratorContext::Member: | |||
3522 | case DeclaratorContext::Block: | |||
3523 | case DeclaratorContext::ForInit: | |||
3524 | case DeclaratorContext::SelectionInit: | |||
3525 | case DeclaratorContext::BlockLiteral: | |||
3526 | case DeclaratorContext::LambdaExpr: | |||
3527 | // C++11 [dcl.type]p3: | |||
3528 | // A type-specifier-seq shall not define a class or enumeration unless | |||
3529 | // it appears in the type-id of an alias-declaration (7.1.3) that is not | |||
3530 | // the declaration of a template-declaration. | |||
3531 | case DeclaratorContext::AliasDecl: | |||
3532 | break; | |||
3533 | case DeclaratorContext::AliasTemplate: | |||
3534 | DiagID = diag::err_type_defined_in_alias_template; | |||
3535 | break; | |||
3536 | case DeclaratorContext::TypeName: | |||
3537 | case DeclaratorContext::FunctionalCast: | |||
3538 | case DeclaratorContext::ConversionId: | |||
3539 | case DeclaratorContext::TemplateParam: | |||
3540 | case DeclaratorContext::CXXNew: | |||
3541 | case DeclaratorContext::CXXCatch: | |||
3542 | case DeclaratorContext::ObjCCatch: | |||
3543 | case DeclaratorContext::TemplateArg: | |||
3544 | case DeclaratorContext::TemplateTypeArg: | |||
3545 | DiagID = diag::err_type_defined_in_type_specifier; | |||
3546 | break; | |||
3547 | case DeclaratorContext::Prototype: | |||
3548 | case DeclaratorContext::LambdaExprParameter: | |||
3549 | case DeclaratorContext::ObjCParameter: | |||
3550 | case DeclaratorContext::ObjCResult: | |||
3551 | case DeclaratorContext::KNRTypeList: | |||
3552 | case DeclaratorContext::RequiresExpr: | |||
3553 | // C++ [dcl.fct]p6: | |||
3554 | // Types shall not be defined in return or parameter types. | |||
3555 | DiagID = diag::err_type_defined_in_param_type; | |||
3556 | break; | |||
3557 | case DeclaratorContext::Condition: | |||
3558 | // C++ 6.4p2: | |||
3559 | // The type-specifier-seq shall not contain typedef and shall not declare | |||
3560 | // a new class or enumeration. | |||
3561 | DiagID = diag::err_type_defined_in_condition; | |||
3562 | break; | |||
3563 | } | |||
3564 | ||||
3565 | if (DiagID != 0) { | |||
3566 | SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID) | |||
3567 | << SemaRef.Context.getTypeDeclType(OwnedTagDecl); | |||
3568 | D.setInvalidType(true); | |||
3569 | } | |||
3570 | } | |||
3571 | ||||
3572 | assert(!T.isNull() && "This function should not return a null type")((!T.isNull() && "This function should not return a null type" ) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3572, __PRETTY_FUNCTION__)); | |||
3573 | return T; | |||
3574 | } | |||
3575 | ||||
3576 | /// Produce an appropriate diagnostic for an ambiguity between a function | |||
3577 | /// declarator and a C++ direct-initializer. | |||
3578 | static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, | |||
3579 | DeclaratorChunk &DeclType, QualType RT) { | |||
3580 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | |||
3581 | assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((FTI.isAmbiguous && "no direct-initializer / function ambiguity" ) ? static_cast<void> (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3581, __PRETTY_FUNCTION__)); | |||
3582 | ||||
3583 | // If the return type is void there is no ambiguity. | |||
3584 | if (RT->isVoidType()) | |||
3585 | return; | |||
3586 | ||||
3587 | // An initializer for a non-class type can have at most one argument. | |||
3588 | if (!RT->isRecordType() && FTI.NumParams > 1) | |||
3589 | return; | |||
3590 | ||||
3591 | // An initializer for a reference must have exactly one argument. | |||
3592 | if (RT->isReferenceType() && FTI.NumParams != 1) | |||
3593 | return; | |||
3594 | ||||
3595 | // Only warn if this declarator is declaring a function at block scope, and | |||
3596 | // doesn't have a storage class (such as 'extern') specified. | |||
3597 | if (!D.isFunctionDeclarator() || | |||
3598 | D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration || | |||
3599 | !S.CurContext->isFunctionOrMethod() || | |||
3600 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified) | |||
3601 | return; | |||
3602 | ||||
3603 | // Inside a condition, a direct initializer is not permitted. We allow one to | |||
3604 | // be parsed in order to give better diagnostics in condition parsing. | |||
3605 | if (D.getContext() == DeclaratorContext::Condition) | |||
3606 | return; | |||
3607 | ||||
3608 | SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc); | |||
3609 | ||||
3610 | S.Diag(DeclType.Loc, | |||
3611 | FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration | |||
3612 | : diag::warn_empty_parens_are_function_decl) | |||
3613 | << ParenRange; | |||
3614 | ||||
3615 | // If the declaration looks like: | |||
3616 | // T var1, | |||
3617 | // f(); | |||
3618 | // and name lookup finds a function named 'f', then the ',' was | |||
3619 | // probably intended to be a ';'. | |||
3620 | if (!D.isFirstDeclarator() && D.getIdentifier()) { | |||
3621 | FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr); | |||
3622 | FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr); | |||
3623 | if (Comma.getFileID() != Name.getFileID() || | |||
3624 | Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) { | |||
3625 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | |||
3626 | Sema::LookupOrdinaryName); | |||
3627 | if (S.LookupName(Result, S.getCurScope())) | |||
3628 | S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call) | |||
3629 | << FixItHint::CreateReplacement(D.getCommaLoc(), ";") | |||
3630 | << D.getIdentifier(); | |||
3631 | Result.suppressDiagnostics(); | |||
3632 | } | |||
3633 | } | |||
3634 | ||||
3635 | if (FTI.NumParams > 0) { | |||
3636 | // For a declaration with parameters, eg. "T var(T());", suggest adding | |||
3637 | // parens around the first parameter to turn the declaration into a | |||
3638 | // variable declaration. | |||
3639 | SourceRange Range = FTI.Params[0].Param->getSourceRange(); | |||
3640 | SourceLocation B = Range.getBegin(); | |||
3641 | SourceLocation E = S.getLocForEndOfToken(Range.getEnd()); | |||
3642 | // FIXME: Maybe we should suggest adding braces instead of parens | |||
3643 | // in C++11 for classes that don't have an initializer_list constructor. | |||
3644 | S.Diag(B, diag::note_additional_parens_for_variable_declaration) | |||
3645 | << FixItHint::CreateInsertion(B, "(") | |||
3646 | << FixItHint::CreateInsertion(E, ")"); | |||
3647 | } else { | |||
3648 | // For a declaration without parameters, eg. "T var();", suggest replacing | |||
3649 | // the parens with an initializer to turn the declaration into a variable | |||
3650 | // declaration. | |||
3651 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | |||
3652 | ||||
3653 | // Empty parens mean value-initialization, and no parens mean | |||
3654 | // default initialization. These are equivalent if the default | |||
3655 | // constructor is user-provided or if zero-initialization is a | |||
3656 | // no-op. | |||
3657 | if (RD && RD->hasDefinition() && | |||
3658 | (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor())) | |||
3659 | S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor) | |||
3660 | << FixItHint::CreateRemoval(ParenRange); | |||
3661 | else { | |||
3662 | std::string Init = | |||
3663 | S.getFixItZeroInitializerForType(RT, ParenRange.getBegin()); | |||
3664 | if (Init.empty() && S.LangOpts.CPlusPlus11) | |||
3665 | Init = "{}"; | |||
3666 | if (!Init.empty()) | |||
3667 | S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize) | |||
3668 | << FixItHint::CreateReplacement(ParenRange, Init); | |||
3669 | } | |||
3670 | } | |||
3671 | } | |||
3672 | ||||
3673 | /// Produce an appropriate diagnostic for a declarator with top-level | |||
3674 | /// parentheses. | |||
3675 | static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) { | |||
3676 | DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1); | |||
3677 | assert(Paren.Kind == DeclaratorChunk::Paren &&((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses" ) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3678, __PRETTY_FUNCTION__)) | |||
3678 | "do not have redundant top-level parentheses")((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses" ) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3678, __PRETTY_FUNCTION__)); | |||
3679 | ||||
3680 | // This is a syntactic check; we're not interested in cases that arise | |||
3681 | // during template instantiation. | |||
3682 | if (S.inTemplateInstantiation()) | |||
3683 | return; | |||
3684 | ||||
3685 | // Check whether this could be intended to be a construction of a temporary | |||
3686 | // object in C++ via a function-style cast. | |||
3687 | bool CouldBeTemporaryObject = | |||
3688 | S.getLangOpts().CPlusPlus && D.isExpressionContext() && | |||
3689 | !D.isInvalidType() && D.getIdentifier() && | |||
3690 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && | |||
3691 | (T->isRecordType() || T->isDependentType()) && | |||
3692 | D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator(); | |||
3693 | ||||
3694 | bool StartsWithDeclaratorId = true; | |||
3695 | for (auto &C : D.type_objects()) { | |||
3696 | switch (C.Kind) { | |||
3697 | case DeclaratorChunk::Paren: | |||
3698 | if (&C == &Paren) | |||
3699 | continue; | |||
3700 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
3701 | case DeclaratorChunk::Pointer: | |||
3702 | StartsWithDeclaratorId = false; | |||
3703 | continue; | |||
3704 | ||||
3705 | case DeclaratorChunk::Array: | |||
3706 | if (!C.Arr.NumElts) | |||
3707 | CouldBeTemporaryObject = false; | |||
3708 | continue; | |||
3709 | ||||
3710 | case DeclaratorChunk::Reference: | |||
3711 | // FIXME: Suppress the warning here if there is no initializer; we're | |||
3712 | // going to give an error anyway. | |||
3713 | // We assume that something like 'T (&x) = y;' is highly likely to not | |||
3714 | // be intended to be a temporary object. | |||
3715 | CouldBeTemporaryObject = false; | |||
3716 | StartsWithDeclaratorId = false; | |||
3717 | continue; | |||
3718 | ||||
3719 | case DeclaratorChunk::Function: | |||
3720 | // In a new-type-id, function chunks require parentheses. | |||
3721 | if (D.getContext() == DeclaratorContext::CXXNew) | |||
3722 | return; | |||
3723 | // FIXME: "A(f())" deserves a vexing-parse warning, not just a | |||
3724 | // redundant-parens warning, but we don't know whether the function | |||
3725 | // chunk was syntactically valid as an expression here. | |||
3726 | CouldBeTemporaryObject = false; | |||
3727 | continue; | |||
3728 | ||||
3729 | case DeclaratorChunk::BlockPointer: | |||
3730 | case DeclaratorChunk::MemberPointer: | |||
3731 | case DeclaratorChunk::Pipe: | |||
3732 | // These cannot appear in expressions. | |||
3733 | CouldBeTemporaryObject = false; | |||
3734 | StartsWithDeclaratorId = false; | |||
3735 | continue; | |||
3736 | } | |||
3737 | } | |||
3738 | ||||
3739 | // FIXME: If there is an initializer, assume that this is not intended to be | |||
3740 | // a construction of a temporary object. | |||
3741 | ||||
3742 | // Check whether the name has already been declared; if not, this is not a | |||
3743 | // function-style cast. | |||
3744 | if (CouldBeTemporaryObject) { | |||
3745 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), | |||
3746 | Sema::LookupOrdinaryName); | |||
3747 | if (!S.LookupName(Result, S.getCurScope())) | |||
3748 | CouldBeTemporaryObject = false; | |||
3749 | Result.suppressDiagnostics(); | |||
3750 | } | |||
3751 | ||||
3752 | SourceRange ParenRange(Paren.Loc, Paren.EndLoc); | |||
3753 | ||||
3754 | if (!CouldBeTemporaryObject) { | |||
3755 | // If we have A (::B), the parentheses affect the meaning of the program. | |||
3756 | // Suppress the warning in that case. Don't bother looking at the DeclSpec | |||
3757 | // here: even (e.g.) "int ::x" is visually ambiguous even though it's | |||
3758 | // formally unambiguous. | |||
3759 | if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) { | |||
3760 | for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS; | |||
3761 | NNS = NNS->getPrefix()) { | |||
3762 | if (NNS->getKind() == NestedNameSpecifier::Global) | |||
3763 | return; | |||
3764 | } | |||
3765 | } | |||
3766 | ||||
3767 | S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator) | |||
3768 | << ParenRange << FixItHint::CreateRemoval(Paren.Loc) | |||
3769 | << FixItHint::CreateRemoval(Paren.EndLoc); | |||
3770 | return; | |||
3771 | } | |||
3772 | ||||
3773 | S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration) | |||
3774 | << ParenRange << D.getIdentifier(); | |||
3775 | auto *RD = T->getAsCXXRecordDecl(); | |||
3776 | if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor()) | |||
3777 | S.Diag(Paren.Loc, diag::note_raii_guard_add_name) | |||
3778 | << FixItHint::CreateInsertion(Paren.Loc, " varname") << T | |||
3779 | << D.getIdentifier(); | |||
3780 | // FIXME: A cast to void is probably a better suggestion in cases where it's | |||
3781 | // valid (when there is no initializer and we're not in a condition). | |||
3782 | S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses) | |||
3783 | << FixItHint::CreateInsertion(D.getBeginLoc(), "(") | |||
3784 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")"); | |||
3785 | S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration) | |||
3786 | << FixItHint::CreateRemoval(Paren.Loc) | |||
3787 | << FixItHint::CreateRemoval(Paren.EndLoc); | |||
3788 | } | |||
3789 | ||||
3790 | /// Helper for figuring out the default CC for a function declarator type. If | |||
3791 | /// this is the outermost chunk, then we can determine the CC from the | |||
3792 | /// declarator context. If not, then this could be either a member function | |||
3793 | /// type or normal function type. | |||
3794 | static CallingConv getCCForDeclaratorChunk( | |||
3795 | Sema &S, Declarator &D, const ParsedAttributesView &AttrList, | |||
3796 | const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) { | |||
3797 | assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function ) ? static_cast<void> (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3797, __PRETTY_FUNCTION__)); | |||
3798 | ||||
3799 | // Check for an explicit CC attribute. | |||
3800 | for (const ParsedAttr &AL : AttrList) { | |||
3801 | switch (AL.getKind()) { | |||
3802 | CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr ::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall : case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs : case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr ::AT_PreserveMost: case ParsedAttr::AT_PreserveAll : { | |||
3803 | // Ignore attributes that don't validate or can't apply to the | |||
3804 | // function type. We'll diagnose the failure to apply them in | |||
3805 | // handleFunctionTypeAttr. | |||
3806 | CallingConv CC; | |||
3807 | if (!S.CheckCallingConvAttr(AL, CC) && | |||
3808 | (!FTI.isVariadic || supportsVariadicCall(CC))) { | |||
3809 | return CC; | |||
3810 | } | |||
3811 | break; | |||
3812 | } | |||
3813 | ||||
3814 | default: | |||
3815 | break; | |||
3816 | } | |||
3817 | } | |||
3818 | ||||
3819 | bool IsCXXInstanceMethod = false; | |||
3820 | ||||
3821 | if (S.getLangOpts().CPlusPlus) { | |||
3822 | // Look inwards through parentheses to see if this chunk will form a | |||
3823 | // member pointer type or if we're the declarator. Any type attributes | |||
3824 | // between here and there will override the CC we choose here. | |||
3825 | unsigned I = ChunkIndex; | |||
3826 | bool FoundNonParen = false; | |||
3827 | while (I && !FoundNonParen) { | |||
3828 | --I; | |||
3829 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren) | |||
3830 | FoundNonParen = true; | |||
3831 | } | |||
3832 | ||||
3833 | if (FoundNonParen) { | |||
3834 | // If we're not the declarator, we're a regular function type unless we're | |||
3835 | // in a member pointer. | |||
3836 | IsCXXInstanceMethod = | |||
3837 | D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer; | |||
3838 | } else if (D.getContext() == DeclaratorContext::LambdaExpr) { | |||
3839 | // This can only be a call operator for a lambda, which is an instance | |||
3840 | // method. | |||
3841 | IsCXXInstanceMethod = true; | |||
3842 | } else { | |||
3843 | // We're the innermost decl chunk, so must be a function declarator. | |||
3844 | assert(D.isFunctionDeclarator())((D.isFunctionDeclarator()) ? static_cast<void> (0) : __assert_fail ("D.isFunctionDeclarator()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3844, __PRETTY_FUNCTION__)); | |||
3845 | ||||
3846 | // If we're inside a record, we're declaring a method, but it could be | |||
3847 | // explicitly or implicitly static. | |||
3848 | IsCXXInstanceMethod = | |||
3849 | D.isFirstDeclarationOfMember() && | |||
3850 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | |||
3851 | !D.isStaticMember(); | |||
3852 | } | |||
3853 | } | |||
3854 | ||||
3855 | CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic, | |||
3856 | IsCXXInstanceMethod); | |||
3857 | ||||
3858 | // Attribute AT_OpenCLKernel affects the calling convention for SPIR | |||
3859 | // and AMDGPU targets, hence it cannot be treated as a calling | |||
3860 | // convention attribute. This is the simplest place to infer | |||
3861 | // calling convention for OpenCL kernels. | |||
3862 | if (S.getLangOpts().OpenCL) { | |||
3863 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | |||
3864 | if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) { | |||
3865 | CC = CC_OpenCLKernel; | |||
3866 | break; | |||
3867 | } | |||
3868 | } | |||
3869 | } | |||
3870 | ||||
3871 | return CC; | |||
3872 | } | |||
3873 | ||||
3874 | namespace { | |||
3875 | /// A simple notion of pointer kinds, which matches up with the various | |||
3876 | /// pointer declarators. | |||
3877 | enum class SimplePointerKind { | |||
3878 | Pointer, | |||
3879 | BlockPointer, | |||
3880 | MemberPointer, | |||
3881 | Array, | |||
3882 | }; | |||
3883 | } // end anonymous namespace | |||
3884 | ||||
3885 | IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) { | |||
3886 | switch (nullability) { | |||
3887 | case NullabilityKind::NonNull: | |||
3888 | if (!Ident__Nonnull) | |||
3889 | Ident__Nonnull = PP.getIdentifierInfo("_Nonnull"); | |||
3890 | return Ident__Nonnull; | |||
3891 | ||||
3892 | case NullabilityKind::Nullable: | |||
3893 | if (!Ident__Nullable) | |||
3894 | Ident__Nullable = PP.getIdentifierInfo("_Nullable"); | |||
3895 | return Ident__Nullable; | |||
3896 | ||||
3897 | case NullabilityKind::NullableResult: | |||
3898 | if (!Ident__Nullable_result) | |||
3899 | Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result"); | |||
3900 | return Ident__Nullable_result; | |||
3901 | ||||
3902 | case NullabilityKind::Unspecified: | |||
3903 | if (!Ident__Null_unspecified) | |||
3904 | Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified"); | |||
3905 | return Ident__Null_unspecified; | |||
3906 | } | |||
3907 | llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind." , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 3907); | |||
3908 | } | |||
3909 | ||||
3910 | /// Retrieve the identifier "NSError". | |||
3911 | IdentifierInfo *Sema::getNSErrorIdent() { | |||
3912 | if (!Ident_NSError) | |||
3913 | Ident_NSError = PP.getIdentifierInfo("NSError"); | |||
3914 | ||||
3915 | return Ident_NSError; | |||
3916 | } | |||
3917 | ||||
3918 | /// Check whether there is a nullability attribute of any kind in the given | |||
3919 | /// attribute list. | |||
3920 | static bool hasNullabilityAttr(const ParsedAttributesView &attrs) { | |||
3921 | for (const ParsedAttr &AL : attrs) { | |||
3922 | if (AL.getKind() == ParsedAttr::AT_TypeNonNull || | |||
3923 | AL.getKind() == ParsedAttr::AT_TypeNullable || | |||
3924 | AL.getKind() == ParsedAttr::AT_TypeNullableResult || | |||
3925 | AL.getKind() == ParsedAttr::AT_TypeNullUnspecified) | |||
3926 | return true; | |||
3927 | } | |||
3928 | ||||
3929 | return false; | |||
3930 | } | |||
3931 | ||||
3932 | namespace { | |||
3933 | /// Describes the kind of a pointer a declarator describes. | |||
3934 | enum class PointerDeclaratorKind { | |||
3935 | // Not a pointer. | |||
3936 | NonPointer, | |||
3937 | // Single-level pointer. | |||
3938 | SingleLevelPointer, | |||
3939 | // Multi-level pointer (of any pointer kind). | |||
3940 | MultiLevelPointer, | |||
3941 | // CFFooRef* | |||
3942 | MaybePointerToCFRef, | |||
3943 | // CFErrorRef* | |||
3944 | CFErrorRefPointer, | |||
3945 | // NSError** | |||
3946 | NSErrorPointerPointer, | |||
3947 | }; | |||
3948 | ||||
3949 | /// Describes a declarator chunk wrapping a pointer that marks inference as | |||
3950 | /// unexpected. | |||
3951 | // These values must be kept in sync with diagnostics. | |||
3952 | enum class PointerWrappingDeclaratorKind { | |||
3953 | /// Pointer is top-level. | |||
3954 | None = -1, | |||
3955 | /// Pointer is an array element. | |||
3956 | Array = 0, | |||
3957 | /// Pointer is the referent type of a C++ reference. | |||
3958 | Reference = 1 | |||
3959 | }; | |||
3960 | } // end anonymous namespace | |||
3961 | ||||
3962 | /// Classify the given declarator, whose type-specified is \c type, based on | |||
3963 | /// what kind of pointer it refers to. | |||
3964 | /// | |||
3965 | /// This is used to determine the default nullability. | |||
3966 | static PointerDeclaratorKind | |||
3967 | classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, | |||
3968 | PointerWrappingDeclaratorKind &wrappingKind) { | |||
3969 | unsigned numNormalPointers = 0; | |||
3970 | ||||
3971 | // For any dependent type, we consider it a non-pointer. | |||
3972 | if (type->isDependentType()) | |||
3973 | return PointerDeclaratorKind::NonPointer; | |||
3974 | ||||
3975 | // Look through the declarator chunks to identify pointers. | |||
3976 | for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) { | |||
3977 | DeclaratorChunk &chunk = declarator.getTypeObject(i); | |||
3978 | switch (chunk.Kind) { | |||
3979 | case DeclaratorChunk::Array: | |||
3980 | if (numNormalPointers == 0) | |||
3981 | wrappingKind = PointerWrappingDeclaratorKind::Array; | |||
3982 | break; | |||
3983 | ||||
3984 | case DeclaratorChunk::Function: | |||
3985 | case DeclaratorChunk::Pipe: | |||
3986 | break; | |||
3987 | ||||
3988 | case DeclaratorChunk::BlockPointer: | |||
3989 | case DeclaratorChunk::MemberPointer: | |||
3990 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | |||
3991 | : PointerDeclaratorKind::SingleLevelPointer; | |||
3992 | ||||
3993 | case DeclaratorChunk::Paren: | |||
3994 | break; | |||
3995 | ||||
3996 | case DeclaratorChunk::Reference: | |||
3997 | if (numNormalPointers == 0) | |||
3998 | wrappingKind = PointerWrappingDeclaratorKind::Reference; | |||
3999 | break; | |||
4000 | ||||
4001 | case DeclaratorChunk::Pointer: | |||
4002 | ++numNormalPointers; | |||
4003 | if (numNormalPointers > 2) | |||
4004 | return PointerDeclaratorKind::MultiLevelPointer; | |||
4005 | break; | |||
4006 | } | |||
4007 | } | |||
4008 | ||||
4009 | // Then, dig into the type specifier itself. | |||
4010 | unsigned numTypeSpecifierPointers = 0; | |||
4011 | do { | |||
4012 | // Decompose normal pointers. | |||
4013 | if (auto ptrType = type->getAs<PointerType>()) { | |||
4014 | ++numNormalPointers; | |||
4015 | ||||
4016 | if (numNormalPointers > 2) | |||
4017 | return PointerDeclaratorKind::MultiLevelPointer; | |||
4018 | ||||
4019 | type = ptrType->getPointeeType(); | |||
4020 | ++numTypeSpecifierPointers; | |||
4021 | continue; | |||
4022 | } | |||
4023 | ||||
4024 | // Decompose block pointers. | |||
4025 | if (type->getAs<BlockPointerType>()) { | |||
4026 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | |||
4027 | : PointerDeclaratorKind::SingleLevelPointer; | |||
4028 | } | |||
4029 | ||||
4030 | // Decompose member pointers. | |||
4031 | if (type->getAs<MemberPointerType>()) { | |||
4032 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer | |||
4033 | : PointerDeclaratorKind::SingleLevelPointer; | |||
4034 | } | |||
4035 | ||||
4036 | // Look at Objective-C object pointers. | |||
4037 | if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) { | |||
4038 | ++numNormalPointers; | |||
4039 | ++numTypeSpecifierPointers; | |||
4040 | ||||
4041 | // If this is NSError**, report that. | |||
4042 | if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) { | |||
4043 | if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() && | |||
4044 | numNormalPointers == 2 && numTypeSpecifierPointers < 2) { | |||
4045 | return PointerDeclaratorKind::NSErrorPointerPointer; | |||
4046 | } | |||
4047 | } | |||
4048 | ||||
4049 | break; | |||
4050 | } | |||
4051 | ||||
4052 | // Look at Objective-C class types. | |||
4053 | if (auto objcClass = type->getAs<ObjCInterfaceType>()) { | |||
4054 | if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) { | |||
4055 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2) | |||
4056 | return PointerDeclaratorKind::NSErrorPointerPointer; | |||
4057 | } | |||
4058 | ||||
4059 | break; | |||
4060 | } | |||
4061 | ||||
4062 | // If at this point we haven't seen a pointer, we won't see one. | |||
4063 | if (numNormalPointers == 0) | |||
4064 | return PointerDeclaratorKind::NonPointer; | |||
4065 | ||||
4066 | if (auto recordType = type->getAs<RecordType>()) { | |||
4067 | RecordDecl *recordDecl = recordType->getDecl(); | |||
4068 | ||||
4069 | // If this is CFErrorRef*, report it as such. | |||
4070 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 && | |||
4071 | S.isCFError(recordDecl)) { | |||
4072 | return PointerDeclaratorKind::CFErrorRefPointer; | |||
4073 | } | |||
4074 | break; | |||
4075 | } | |||
4076 | ||||
4077 | break; | |||
4078 | } while (true); | |||
4079 | ||||
4080 | switch (numNormalPointers) { | |||
4081 | case 0: | |||
4082 | return PointerDeclaratorKind::NonPointer; | |||
4083 | ||||
4084 | case 1: | |||
4085 | return PointerDeclaratorKind::SingleLevelPointer; | |||
4086 | ||||
4087 | case 2: | |||
4088 | return PointerDeclaratorKind::MaybePointerToCFRef; | |||
4089 | ||||
4090 | default: | |||
4091 | return PointerDeclaratorKind::MultiLevelPointer; | |||
4092 | } | |||
4093 | } | |||
4094 | ||||
4095 | bool Sema::isCFError(RecordDecl *RD) { | |||
4096 | // If we already know about CFError, test it directly. | |||
4097 | if (CFError) | |||
4098 | return CFError == RD; | |||
4099 | ||||
4100 | // Check whether this is CFError, which we identify based on its bridge to | |||
4101 | // NSError. CFErrorRef used to be declared with "objc_bridge" but is now | |||
4102 | // declared with "objc_bridge_mutable", so look for either one of the two | |||
4103 | // attributes. | |||
4104 | if (RD->getTagKind() == TTK_Struct) { | |||
4105 | IdentifierInfo *bridgedType = nullptr; | |||
4106 | if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>()) | |||
4107 | bridgedType = bridgeAttr->getBridgedType(); | |||
4108 | else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>()) | |||
4109 | bridgedType = bridgeAttr->getBridgedType(); | |||
4110 | ||||
4111 | if (bridgedType == getNSErrorIdent()) { | |||
4112 | CFError = RD; | |||
4113 | return true; | |||
4114 | } | |||
4115 | } | |||
4116 | ||||
4117 | return false; | |||
4118 | } | |||
4119 | ||||
4120 | static FileID getNullabilityCompletenessCheckFileID(Sema &S, | |||
4121 | SourceLocation loc) { | |||
4122 | // If we're anywhere in a function, method, or closure context, don't perform | |||
4123 | // completeness checks. | |||
4124 | for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) { | |||
4125 | if (ctx->isFunctionOrMethod()) | |||
4126 | return FileID(); | |||
4127 | ||||
4128 | if (ctx->isFileContext()) | |||
4129 | break; | |||
4130 | } | |||
4131 | ||||
4132 | // We only care about the expansion location. | |||
4133 | loc = S.SourceMgr.getExpansionLoc(loc); | |||
4134 | FileID file = S.SourceMgr.getFileID(loc); | |||
4135 | if (file.isInvalid()) | |||
4136 | return FileID(); | |||
4137 | ||||
4138 | // Retrieve file information. | |||
4139 | bool invalid = false; | |||
4140 | const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid); | |||
4141 | if (invalid || !sloc.isFile()) | |||
4142 | return FileID(); | |||
4143 | ||||
4144 | // We don't want to perform completeness checks on the main file or in | |||
4145 | // system headers. | |||
4146 | const SrcMgr::FileInfo &fileInfo = sloc.getFile(); | |||
4147 | if (fileInfo.getIncludeLoc().isInvalid()) | |||
4148 | return FileID(); | |||
4149 | if (fileInfo.getFileCharacteristic() != SrcMgr::C_User && | |||
4150 | S.Diags.getSuppressSystemWarnings()) { | |||
4151 | return FileID(); | |||
4152 | } | |||
4153 | ||||
4154 | return file; | |||
4155 | } | |||
4156 | ||||
4157 | /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc, | |||
4158 | /// taking into account whitespace before and after. | |||
4159 | template <typename DiagBuilderT> | |||
4160 | static void fixItNullability(Sema &S, DiagBuilderT &Diag, | |||
4161 | SourceLocation PointerLoc, | |||
4162 | NullabilityKind Nullability) { | |||
4163 | assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail ("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 4163, __PRETTY_FUNCTION__)); | |||
4164 | if (PointerLoc.isMacroID()) | |||
4165 | return; | |||
4166 | ||||
4167 | SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc); | |||
4168 | if (!FixItLoc.isValid() || FixItLoc == PointerLoc) | |||
4169 | return; | |||
4170 | ||||
4171 | const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc); | |||
4172 | if (!NextChar) | |||
4173 | return; | |||
4174 | ||||
4175 | SmallString<32> InsertionTextBuf{" "}; | |||
4176 | InsertionTextBuf += getNullabilitySpelling(Nullability); | |||
4177 | InsertionTextBuf += " "; | |||
4178 | StringRef InsertionText = InsertionTextBuf.str(); | |||
4179 | ||||
4180 | if (isWhitespace(*NextChar)) { | |||
4181 | InsertionText = InsertionText.drop_back(); | |||
4182 | } else if (NextChar[-1] == '[') { | |||
4183 | if (NextChar[0] == ']') | |||
4184 | InsertionText = InsertionText.drop_back().drop_front(); | |||
4185 | else | |||
4186 | InsertionText = InsertionText.drop_front(); | |||
4187 | } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) && | |||
4188 | !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) { | |||
4189 | InsertionText = InsertionText.drop_back().drop_front(); | |||
4190 | } | |||
4191 | ||||
4192 | Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText); | |||
4193 | } | |||
4194 | ||||
4195 | static void emitNullabilityConsistencyWarning(Sema &S, | |||
4196 | SimplePointerKind PointerKind, | |||
4197 | SourceLocation PointerLoc, | |||
4198 | SourceLocation PointerEndLoc) { | |||
4199 | assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail ("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 4199, __PRETTY_FUNCTION__)); | |||
4200 | ||||
4201 | if (PointerKind == SimplePointerKind::Array) { | |||
4202 | S.Diag(PointerLoc, diag::warn_nullability_missing_array); | |||
4203 | } else { | |||
4204 | S.Diag(PointerLoc, diag::warn_nullability_missing) | |||
4205 | << static_cast<unsigned>(PointerKind); | |||
4206 | } | |||
4207 | ||||
4208 | auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc; | |||
4209 | if (FixItLoc.isMacroID()) | |||
4210 | return; | |||
4211 | ||||
4212 | auto addFixIt = [&](NullabilityKind Nullability) { | |||
4213 | auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it); | |||
4214 | Diag << static_cast<unsigned>(Nullability); | |||
4215 | Diag << static_cast<unsigned>(PointerKind); | |||
4216 | fixItNullability(S, Diag, FixItLoc, Nullability); | |||
4217 | }; | |||
4218 | addFixIt(NullabilityKind::Nullable); | |||
4219 | addFixIt(NullabilityKind::NonNull); | |||
4220 | } | |||
4221 | ||||
4222 | /// Complains about missing nullability if the file containing \p pointerLoc | |||
4223 | /// has other uses of nullability (either the keywords or the \c assume_nonnull | |||
4224 | /// pragma). | |||
4225 | /// | |||
4226 | /// If the file has \e not seen other uses of nullability, this particular | |||
4227 | /// pointer is saved for possible later diagnosis. See recordNullabilitySeen(). | |||
4228 | static void | |||
4229 | checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, | |||
4230 | SourceLocation pointerLoc, | |||
4231 | SourceLocation pointerEndLoc = SourceLocation()) { | |||
4232 | // Determine which file we're performing consistency checking for. | |||
4233 | FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc); | |||
4234 | if (file.isInvalid()) | |||
4235 | return; | |||
4236 | ||||
4237 | // If we haven't seen any type nullability in this file, we won't warn now | |||
4238 | // about anything. | |||
4239 | FileNullability &fileNullability = S.NullabilityMap[file]; | |||
4240 | if (!fileNullability.SawTypeNullability) { | |||
4241 | // If this is the first pointer declarator in the file, and the appropriate | |||
4242 | // warning is on, record it in case we need to diagnose it retroactively. | |||
4243 | diag::kind diagKind; | |||
4244 | if (pointerKind == SimplePointerKind::Array) | |||
4245 | diagKind = diag::warn_nullability_missing_array; | |||
4246 | else | |||
4247 | diagKind = diag::warn_nullability_missing; | |||
4248 | ||||
4249 | if (fileNullability.PointerLoc.isInvalid() && | |||
4250 | !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) { | |||
4251 | fileNullability.PointerLoc = pointerLoc; | |||
4252 | fileNullability.PointerEndLoc = pointerEndLoc; | |||
4253 | fileNullability.PointerKind = static_cast<unsigned>(pointerKind); | |||
4254 | } | |||
4255 | ||||
4256 | return; | |||
4257 | } | |||
4258 | ||||
4259 | // Complain about missing nullability. | |||
4260 | emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc); | |||
4261 | } | |||
4262 | ||||
4263 | /// Marks that a nullability feature has been used in the file containing | |||
4264 | /// \p loc. | |||
4265 | /// | |||
4266 | /// If this file already had pointer types in it that were missing nullability, | |||
4267 | /// the first such instance is retroactively diagnosed. | |||
4268 | /// | |||
4269 | /// \sa checkNullabilityConsistency | |||
4270 | static void recordNullabilitySeen(Sema &S, SourceLocation loc) { | |||
4271 | FileID file = getNullabilityCompletenessCheckFileID(S, loc); | |||
4272 | if (file.isInvalid()) | |||
4273 | return; | |||
4274 | ||||
4275 | FileNullability &fileNullability = S.NullabilityMap[file]; | |||
4276 | if (fileNullability.SawTypeNullability) | |||
4277 | return; | |||
4278 | fileNullability.SawTypeNullability = true; | |||
4279 | ||||
4280 | // If we haven't seen any type nullability before, now we have. Retroactively | |||
4281 | // diagnose the first unannotated pointer, if there was one. | |||
4282 | if (fileNullability.PointerLoc.isInvalid()) | |||
4283 | return; | |||
4284 | ||||
4285 | auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind); | |||
4286 | emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc, | |||
4287 | fileNullability.PointerEndLoc); | |||
4288 | } | |||
4289 | ||||
4290 | /// Returns true if any of the declarator chunks before \p endIndex include a | |||
4291 | /// level of indirection: array, pointer, reference, or pointer-to-member. | |||
4292 | /// | |||
4293 | /// Because declarator chunks are stored in outer-to-inner order, testing | |||
4294 | /// every chunk before \p endIndex is testing all chunks that embed the current | |||
4295 | /// chunk as part of their type. | |||
4296 | /// | |||
4297 | /// It is legal to pass the result of Declarator::getNumTypeObjects() as the | |||
4298 | /// end index, in which case all chunks are tested. | |||
4299 | static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) { | |||
4300 | unsigned i = endIndex; | |||
4301 | while (i != 0) { | |||
4302 | // Walk outwards along the declarator chunks. | |||
4303 | --i; | |||
4304 | const DeclaratorChunk &DC = D.getTypeObject(i); | |||
4305 | switch (DC.Kind) { | |||
4306 | case DeclaratorChunk::Paren: | |||
4307 | break; | |||
4308 | case DeclaratorChunk::Array: | |||
4309 | case DeclaratorChunk::Pointer: | |||
4310 | case DeclaratorChunk::Reference: | |||
4311 | case DeclaratorChunk::MemberPointer: | |||
4312 | return true; | |||
4313 | case DeclaratorChunk::Function: | |||
4314 | case DeclaratorChunk::BlockPointer: | |||
4315 | case DeclaratorChunk::Pipe: | |||
4316 | // These are invalid anyway, so just ignore. | |||
4317 | break; | |||
4318 | } | |||
4319 | } | |||
4320 | return false; | |||
4321 | } | |||
4322 | ||||
4323 | static bool IsNoDerefableChunk(DeclaratorChunk Chunk) { | |||
4324 | return (Chunk.Kind == DeclaratorChunk::Pointer || | |||
4325 | Chunk.Kind == DeclaratorChunk::Array); | |||
4326 | } | |||
4327 | ||||
4328 | template<typename AttrT> | |||
4329 | static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) { | |||
4330 | AL.setUsedAsTypeAttr(); | |||
4331 | return ::new (Ctx) AttrT(Ctx, AL); | |||
4332 | } | |||
4333 | ||||
4334 | static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, | |||
4335 | NullabilityKind NK) { | |||
4336 | switch (NK) { | |||
4337 | case NullabilityKind::NonNull: | |||
4338 | return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr); | |||
4339 | ||||
4340 | case NullabilityKind::Nullable: | |||
4341 | return createSimpleAttr<TypeNullableAttr>(Ctx, Attr); | |||
4342 | ||||
4343 | case NullabilityKind::NullableResult: | |||
4344 | return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr); | |||
4345 | ||||
4346 | case NullabilityKind::Unspecified: | |||
4347 | return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr); | |||
4348 | } | |||
4349 | llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 4349); | |||
4350 | } | |||
4351 | ||||
4352 | // Diagnose whether this is a case with the multiple addr spaces. | |||
4353 | // Returns true if this is an invalid case. | |||
4354 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified | |||
4355 | // by qualifiers for two or more different address spaces." | |||
4356 | static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, | |||
4357 | LangAS ASNew, | |||
4358 | SourceLocation AttrLoc) { | |||
4359 | if (ASOld != LangAS::Default) { | |||
4360 | if (ASOld != ASNew) { | |||
4361 | S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | |||
4362 | return true; | |||
4363 | } | |||
4364 | // Emit a warning if they are identical; it's likely unintended. | |||
4365 | S.Diag(AttrLoc, | |||
4366 | diag::warn_attribute_address_multiple_identical_qualifiers); | |||
4367 | } | |||
4368 | return false; | |||
4369 | } | |||
4370 | ||||
4371 | static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state, | |||
4372 | QualType declSpecType, | |||
4373 | TypeSourceInfo *TInfo) { | |||
4374 | // The TypeSourceInfo that this function returns will not be a null type. | |||
4375 | // If there is an error, this function will fill in a dummy type as fallback. | |||
4376 | QualType T = declSpecType; | |||
4377 | Declarator &D = state.getDeclarator(); | |||
4378 | Sema &S = state.getSema(); | |||
4379 | ASTContext &Context = S.Context; | |||
4380 | const LangOptions &LangOpts = S.getLangOpts(); | |||
4381 | ||||
4382 | // The name we're declaring, if any. | |||
4383 | DeclarationName Name; | |||
4384 | if (D.getIdentifier()) | |||
4385 | Name = D.getIdentifier(); | |||
4386 | ||||
4387 | // Does this declaration declare a typedef-name? | |||
4388 | bool IsTypedefName = | |||
4389 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef || | |||
4390 | D.getContext() == DeclaratorContext::AliasDecl || | |||
4391 | D.getContext() == DeclaratorContext::AliasTemplate; | |||
4392 | ||||
4393 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? | |||
4394 | bool IsQualifiedFunction = T->isFunctionProtoType() && | |||
4395 | (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() || | |||
4396 | T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None); | |||
4397 | ||||
4398 | // If T is 'decltype(auto)', the only declarators we can have are parens | |||
4399 | // and at most one function declarator if this is a function declaration. | |||
4400 | // If T is a deduced class template specialization type, we can have no | |||
4401 | // declarator chunks at all. | |||
4402 | if (auto *DT = T->getAs<DeducedType>()) { | |||
4403 | const AutoType *AT = T->getAs<AutoType>(); | |||
4404 | bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT); | |||
4405 | if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) { | |||
4406 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | |||
4407 | unsigned Index = E - I - 1; | |||
4408 | DeclaratorChunk &DeclChunk = D.getTypeObject(Index); | |||
4409 | unsigned DiagId = IsClassTemplateDeduction | |||
4410 | ? diag::err_deduced_class_template_compound_type | |||
4411 | : diag::err_decltype_auto_compound_type; | |||
4412 | unsigned DiagKind = 0; | |||
4413 | switch (DeclChunk.Kind) { | |||
4414 | case DeclaratorChunk::Paren: | |||
4415 | // FIXME: Rejecting this is a little silly. | |||
4416 | if (IsClassTemplateDeduction) { | |||
4417 | DiagKind = 4; | |||
4418 | break; | |||
4419 | } | |||
4420 | continue; | |||
4421 | case DeclaratorChunk::Function: { | |||
4422 | if (IsClassTemplateDeduction) { | |||
4423 | DiagKind = 3; | |||
4424 | break; | |||
4425 | } | |||
4426 | unsigned FnIndex; | |||
4427 | if (D.isFunctionDeclarationContext() && | |||
4428 | D.isFunctionDeclarator(FnIndex) && FnIndex == Index) | |||
4429 | continue; | |||
4430 | DiagId = diag::err_decltype_auto_function_declarator_not_declaration; | |||
4431 | break; | |||
4432 | } | |||
4433 | case DeclaratorChunk::Pointer: | |||
4434 | case DeclaratorChunk::BlockPointer: | |||
4435 | case DeclaratorChunk::MemberPointer: | |||
4436 | DiagKind = 0; | |||
4437 | break; | |||
4438 | case DeclaratorChunk::Reference: | |||
4439 | DiagKind = 1; | |||
4440 | break; | |||
4441 | case DeclaratorChunk::Array: | |||
4442 | DiagKind = 2; | |||
4443 | break; | |||
4444 | case DeclaratorChunk::Pipe: | |||
4445 | break; | |||
4446 | } | |||
4447 | ||||
4448 | S.Diag(DeclChunk.Loc, DiagId) << DiagKind; | |||
4449 | D.setInvalidType(true); | |||
4450 | break; | |||
4451 | } | |||
4452 | } | |||
4453 | } | |||
4454 | ||||
4455 | // Determine whether we should infer _Nonnull on pointer types. | |||
4456 | Optional<NullabilityKind> inferNullability; | |||
4457 | bool inferNullabilityCS = false; | |||
4458 | bool inferNullabilityInnerOnly = false; | |||
4459 | bool inferNullabilityInnerOnlyComplete = false; | |||
4460 | ||||
4461 | // Are we in an assume-nonnull region? | |||
4462 | bool inAssumeNonNullRegion = false; | |||
4463 | SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc(); | |||
4464 | if (assumeNonNullLoc.isValid()) { | |||
4465 | inAssumeNonNullRegion = true; | |||
4466 | recordNullabilitySeen(S, assumeNonNullLoc); | |||
4467 | } | |||
4468 | ||||
4469 | // Whether to complain about missing nullability specifiers or not. | |||
4470 | enum { | |||
4471 | /// Never complain. | |||
4472 | CAMN_No, | |||
4473 | /// Complain on the inner pointers (but not the outermost | |||
4474 | /// pointer). | |||
4475 | CAMN_InnerPointers, | |||
4476 | /// Complain about any pointers that don't have nullability | |||
4477 | /// specified or inferred. | |||
4478 | CAMN_Yes | |||
4479 | } complainAboutMissingNullability = CAMN_No; | |||
4480 | unsigned NumPointersRemaining = 0; | |||
4481 | auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None; | |||
4482 | ||||
4483 | if (IsTypedefName) { | |||
4484 | // For typedefs, we do not infer any nullability (the default), | |||
4485 | // and we only complain about missing nullability specifiers on | |||
4486 | // inner pointers. | |||
4487 | complainAboutMissingNullability = CAMN_InnerPointers; | |||
4488 | ||||
4489 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | |||
4490 | !T->getNullability(S.Context)) { | |||
4491 | // Note that we allow but don't require nullability on dependent types. | |||
4492 | ++NumPointersRemaining; | |||
4493 | } | |||
4494 | ||||
4495 | for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) { | |||
4496 | DeclaratorChunk &chunk = D.getTypeObject(i); | |||
4497 | switch (chunk.Kind) { | |||
4498 | case DeclaratorChunk::Array: | |||
4499 | case DeclaratorChunk::Function: | |||
4500 | case DeclaratorChunk::Pipe: | |||
4501 | break; | |||
4502 | ||||
4503 | case DeclaratorChunk::BlockPointer: | |||
4504 | case DeclaratorChunk::MemberPointer: | |||
4505 | ++NumPointersRemaining; | |||
4506 | break; | |||
4507 | ||||
4508 | case DeclaratorChunk::Paren: | |||
4509 | case DeclaratorChunk::Reference: | |||
4510 | continue; | |||
4511 | ||||
4512 | case DeclaratorChunk::Pointer: | |||
4513 | ++NumPointersRemaining; | |||
4514 | continue; | |||
4515 | } | |||
4516 | } | |||
4517 | } else { | |||
4518 | bool isFunctionOrMethod = false; | |||
4519 | switch (auto context = state.getDeclarator().getContext()) { | |||
4520 | case DeclaratorContext::ObjCParameter: | |||
4521 | case DeclaratorContext::ObjCResult: | |||
4522 | case DeclaratorContext::Prototype: | |||
4523 | case DeclaratorContext::TrailingReturn: | |||
4524 | case DeclaratorContext::TrailingReturnVar: | |||
4525 | isFunctionOrMethod = true; | |||
4526 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
4527 | ||||
4528 | case DeclaratorContext::Member: | |||
4529 | if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) { | |||
4530 | complainAboutMissingNullability = CAMN_No; | |||
4531 | break; | |||
4532 | } | |||
4533 | ||||
4534 | // Weak properties are inferred to be nullable. | |||
4535 | if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) { | |||
4536 | inferNullability = NullabilityKind::Nullable; | |||
4537 | break; | |||
4538 | } | |||
4539 | ||||
4540 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
4541 | ||||
4542 | case DeclaratorContext::File: | |||
4543 | case DeclaratorContext::KNRTypeList: { | |||
4544 | complainAboutMissingNullability = CAMN_Yes; | |||
4545 | ||||
4546 | // Nullability inference depends on the type and declarator. | |||
4547 | auto wrappingKind = PointerWrappingDeclaratorKind::None; | |||
4548 | switch (classifyPointerDeclarator(S, T, D, wrappingKind)) { | |||
4549 | case PointerDeclaratorKind::NonPointer: | |||
4550 | case PointerDeclaratorKind::MultiLevelPointer: | |||
4551 | // Cannot infer nullability. | |||
4552 | break; | |||
4553 | ||||
4554 | case PointerDeclaratorKind::SingleLevelPointer: | |||
4555 | // Infer _Nonnull if we are in an assumes-nonnull region. | |||
4556 | if (inAssumeNonNullRegion) { | |||
4557 | complainAboutInferringWithinChunk = wrappingKind; | |||
4558 | inferNullability = NullabilityKind::NonNull; | |||
4559 | inferNullabilityCS = (context == DeclaratorContext::ObjCParameter || | |||
4560 | context == DeclaratorContext::ObjCResult); | |||
4561 | } | |||
4562 | break; | |||
4563 | ||||
4564 | case PointerDeclaratorKind::CFErrorRefPointer: | |||
4565 | case PointerDeclaratorKind::NSErrorPointerPointer: | |||
4566 | // Within a function or method signature, infer _Nullable at both | |||
4567 | // levels. | |||
4568 | if (isFunctionOrMethod && inAssumeNonNullRegion) | |||
4569 | inferNullability = NullabilityKind::Nullable; | |||
4570 | break; | |||
4571 | ||||
4572 | case PointerDeclaratorKind::MaybePointerToCFRef: | |||
4573 | if (isFunctionOrMethod) { | |||
4574 | // On pointer-to-pointer parameters marked cf_returns_retained or | |||
4575 | // cf_returns_not_retained, if the outer pointer is explicit then | |||
4576 | // infer the inner pointer as _Nullable. | |||
4577 | auto hasCFReturnsAttr = | |||
4578 | [](const ParsedAttributesView &AttrList) -> bool { | |||
4579 | return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) || | |||
4580 | AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained); | |||
4581 | }; | |||
4582 | if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) { | |||
4583 | if (hasCFReturnsAttr(D.getAttributes()) || | |||
4584 | hasCFReturnsAttr(InnermostChunk->getAttrs()) || | |||
4585 | hasCFReturnsAttr(D.getDeclSpec().getAttributes())) { | |||
4586 | inferNullability = NullabilityKind::Nullable; | |||
4587 | inferNullabilityInnerOnly = true; | |||
4588 | } | |||
4589 | } | |||
4590 | } | |||
4591 | break; | |||
4592 | } | |||
4593 | break; | |||
4594 | } | |||
4595 | ||||
4596 | case DeclaratorContext::ConversionId: | |||
4597 | complainAboutMissingNullability = CAMN_Yes; | |||
4598 | break; | |||
4599 | ||||
4600 | case DeclaratorContext::AliasDecl: | |||
4601 | case DeclaratorContext::AliasTemplate: | |||
4602 | case DeclaratorContext::Block: | |||
4603 | case DeclaratorContext::BlockLiteral: | |||
4604 | case DeclaratorContext::Condition: | |||
4605 | case DeclaratorContext::CXXCatch: | |||
4606 | case DeclaratorContext::CXXNew: | |||
4607 | case DeclaratorContext::ForInit: | |||
4608 | case DeclaratorContext::SelectionInit: | |||
4609 | case DeclaratorContext::LambdaExpr: | |||
4610 | case DeclaratorContext::LambdaExprParameter: | |||
4611 | case DeclaratorContext::ObjCCatch: | |||
4612 | case DeclaratorContext::TemplateParam: | |||
4613 | case DeclaratorContext::TemplateArg: | |||
4614 | case DeclaratorContext::TemplateTypeArg: | |||
4615 | case DeclaratorContext::TypeName: | |||
4616 | case DeclaratorContext::FunctionalCast: | |||
4617 | case DeclaratorContext::RequiresExpr: | |||
4618 | // Don't infer in these contexts. | |||
4619 | break; | |||
4620 | } | |||
4621 | } | |||
4622 | ||||
4623 | // Local function that returns true if its argument looks like a va_list. | |||
4624 | auto isVaList = [&S](QualType T) -> bool { | |||
4625 | auto *typedefTy = T->getAs<TypedefType>(); | |||
4626 | if (!typedefTy) | |||
4627 | return false; | |||
4628 | TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl(); | |||
4629 | do { | |||
4630 | if (typedefTy->getDecl() == vaListTypedef) | |||
4631 | return true; | |||
4632 | if (auto *name = typedefTy->getDecl()->getIdentifier()) | |||
4633 | if (name->isStr("va_list")) | |||
4634 | return true; | |||
4635 | typedefTy = typedefTy->desugar()->getAs<TypedefType>(); | |||
4636 | } while (typedefTy); | |||
4637 | return false; | |||
4638 | }; | |||
4639 | ||||
4640 | // Local function that checks the nullability for a given pointer declarator. | |||
4641 | // Returns true if _Nonnull was inferred. | |||
4642 | auto inferPointerNullability = | |||
4643 | [&](SimplePointerKind pointerKind, SourceLocation pointerLoc, | |||
4644 | SourceLocation pointerEndLoc, | |||
4645 | ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * { | |||
4646 | // We've seen a pointer. | |||
4647 | if (NumPointersRemaining > 0) | |||
4648 | --NumPointersRemaining; | |||
4649 | ||||
4650 | // If a nullability attribute is present, there's nothing to do. | |||
4651 | if (hasNullabilityAttr(attrs)) | |||
4652 | return nullptr; | |||
4653 | ||||
4654 | // If we're supposed to infer nullability, do so now. | |||
4655 | if (inferNullability && !inferNullabilityInnerOnlyComplete) { | |||
4656 | ParsedAttr::Syntax syntax = inferNullabilityCS | |||
4657 | ? ParsedAttr::AS_ContextSensitiveKeyword | |||
4658 | : ParsedAttr::AS_Keyword; | |||
4659 | ParsedAttr *nullabilityAttr = Pool.create( | |||
4660 | S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc), | |||
4661 | nullptr, SourceLocation(), nullptr, 0, syntax); | |||
4662 | ||||
4663 | attrs.addAtEnd(nullabilityAttr); | |||
4664 | ||||
4665 | if (inferNullabilityCS) { | |||
4666 | state.getDeclarator().getMutableDeclSpec().getObjCQualifiers() | |||
4667 | ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability); | |||
4668 | } | |||
4669 | ||||
4670 | if (pointerLoc.isValid() && | |||
4671 | complainAboutInferringWithinChunk != | |||
4672 | PointerWrappingDeclaratorKind::None) { | |||
4673 | auto Diag = | |||
4674 | S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type); | |||
4675 | Diag << static_cast<int>(complainAboutInferringWithinChunk); | |||
4676 | fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull); | |||
4677 | } | |||
4678 | ||||
4679 | if (inferNullabilityInnerOnly) | |||
4680 | inferNullabilityInnerOnlyComplete = true; | |||
4681 | return nullabilityAttr; | |||
4682 | } | |||
4683 | ||||
4684 | // If we're supposed to complain about missing nullability, do so | |||
4685 | // now if it's truly missing. | |||
4686 | switch (complainAboutMissingNullability) { | |||
4687 | case CAMN_No: | |||
4688 | break; | |||
4689 | ||||
4690 | case CAMN_InnerPointers: | |||
4691 | if (NumPointersRemaining == 0) | |||
4692 | break; | |||
4693 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
4694 | ||||
4695 | case CAMN_Yes: | |||
4696 | checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc); | |||
4697 | } | |||
4698 | return nullptr; | |||
4699 | }; | |||
4700 | ||||
4701 | // If the type itself could have nullability but does not, infer pointer | |||
4702 | // nullability and perform consistency checking. | |||
4703 | if (S.CodeSynthesisContexts.empty()) { | |||
4704 | if (T->canHaveNullability(/*ResultIfUnknown*/false) && | |||
4705 | !T->getNullability(S.Context)) { | |||
4706 | if (isVaList(T)) { | |||
4707 | // Record that we've seen a pointer, but do nothing else. | |||
4708 | if (NumPointersRemaining > 0) | |||
4709 | --NumPointersRemaining; | |||
4710 | } else { | |||
4711 | SimplePointerKind pointerKind = SimplePointerKind::Pointer; | |||
4712 | if (T->isBlockPointerType()) | |||
4713 | pointerKind = SimplePointerKind::BlockPointer; | |||
4714 | else if (T->isMemberPointerType()) | |||
4715 | pointerKind = SimplePointerKind::MemberPointer; | |||
4716 | ||||
4717 | if (auto *attr = inferPointerNullability( | |||
4718 | pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(), | |||
4719 | D.getDeclSpec().getEndLoc(), | |||
4720 | D.getMutableDeclSpec().getAttributes(), | |||
4721 | D.getMutableDeclSpec().getAttributePool())) { | |||
4722 | T = state.getAttributedType( | |||
4723 | createNullabilityAttr(Context, *attr, *inferNullability), T, T); | |||
4724 | } | |||
4725 | } | |||
4726 | } | |||
4727 | ||||
4728 | if (complainAboutMissingNullability == CAMN_Yes && | |||
4729 | T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) && | |||
4730 | D.isPrototypeContext() && | |||
4731 | !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) { | |||
4732 | checkNullabilityConsistency(S, SimplePointerKind::Array, | |||
4733 | D.getDeclSpec().getTypeSpecTypeLoc()); | |||
4734 | } | |||
4735 | } | |||
4736 | ||||
4737 | bool ExpectNoDerefChunk = | |||
4738 | state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref); | |||
4739 | ||||
4740 | // Walk the DeclTypeInfo, building the recursive type as we go. | |||
4741 | // DeclTypeInfos are ordered from the identifier out, which is | |||
4742 | // opposite of what we want :). | |||
4743 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | |||
4744 | unsigned chunkIndex = e - i - 1; | |||
4745 | state.setCurrentChunkIndex(chunkIndex); | |||
4746 | DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex); | |||
4747 | IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren; | |||
4748 | switch (DeclType.Kind) { | |||
4749 | case DeclaratorChunk::Paren: | |||
4750 | if (i == 0) | |||
4751 | warnAboutRedundantParens(S, D, T); | |||
4752 | T = S.BuildParenType(T); | |||
4753 | break; | |||
4754 | case DeclaratorChunk::BlockPointer: | |||
4755 | // If blocks are disabled, emit an error. | |||
4756 | if (!LangOpts.Blocks) | |||
4757 | S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL; | |||
4758 | ||||
4759 | // Handle pointer nullability. | |||
4760 | inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc, | |||
4761 | DeclType.EndLoc, DeclType.getAttrs(), | |||
4762 | state.getDeclarator().getAttributePool()); | |||
4763 | ||||
4764 | T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name); | |||
4765 | if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) { | |||
4766 | // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly | |||
4767 | // qualified with const. | |||
4768 | if (LangOpts.OpenCL) | |||
4769 | DeclType.Cls.TypeQuals |= DeclSpec::TQ_const; | |||
4770 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals); | |||
4771 | } | |||
4772 | break; | |||
4773 | case DeclaratorChunk::Pointer: | |||
4774 | // Verify that we're not building a pointer to pointer to function with | |||
4775 | // exception specification. | |||
4776 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | |||
4777 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | |||
4778 | D.setInvalidType(true); | |||
4779 | // Build the type anyway. | |||
4780 | } | |||
4781 | ||||
4782 | // Handle pointer nullability | |||
4783 | inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc, | |||
4784 | DeclType.EndLoc, DeclType.getAttrs(), | |||
4785 | state.getDeclarator().getAttributePool()); | |||
4786 | ||||
4787 | if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) { | |||
4788 | T = Context.getObjCObjectPointerType(T); | |||
4789 | if (DeclType.Ptr.TypeQuals) | |||
4790 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | |||
4791 | break; | |||
4792 | } | |||
4793 | ||||
4794 | // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used. | |||
4795 | // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used. | |||
4796 | // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed. | |||
4797 | if (LangOpts.OpenCL) { | |||
4798 | if (T->isImageType() || T->isSamplerT() || T->isPipeType() || | |||
4799 | T->isBlockPointerType()) { | |||
4800 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T; | |||
4801 | D.setInvalidType(true); | |||
4802 | } | |||
4803 | } | |||
4804 | ||||
4805 | T = S.BuildPointerType(T, DeclType.Loc, Name); | |||
4806 | if (DeclType.Ptr.TypeQuals) | |||
4807 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals); | |||
4808 | break; | |||
4809 | case DeclaratorChunk::Reference: { | |||
4810 | // Verify that we're not building a reference to pointer to function with | |||
4811 | // exception specification. | |||
4812 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | |||
4813 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | |||
4814 | D.setInvalidType(true); | |||
4815 | // Build the type anyway. | |||
4816 | } | |||
4817 | T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name); | |||
4818 | ||||
4819 | if (DeclType.Ref.HasRestrict) | |||
4820 | T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict); | |||
4821 | break; | |||
4822 | } | |||
4823 | case DeclaratorChunk::Array: { | |||
4824 | // Verify that we're not building an array of pointers to function with | |||
4825 | // exception specification. | |||
4826 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { | |||
4827 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); | |||
4828 | D.setInvalidType(true); | |||
4829 | // Build the type anyway. | |||
4830 | } | |||
4831 | DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; | |||
4832 | Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); | |||
4833 | ArrayType::ArraySizeModifier ASM; | |||
4834 | if (ATI.isStar) | |||
4835 | ASM = ArrayType::Star; | |||
4836 | else if (ATI.hasStatic) | |||
4837 | ASM = ArrayType::Static; | |||
4838 | else | |||
4839 | ASM = ArrayType::Normal; | |||
4840 | if (ASM == ArrayType::Star && !D.isPrototypeContext()) { | |||
4841 | // FIXME: This check isn't quite right: it allows star in prototypes | |||
4842 | // for function definitions, and disallows some edge cases detailed | |||
4843 | // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html | |||
4844 | S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype); | |||
4845 | ASM = ArrayType::Normal; | |||
4846 | D.setInvalidType(true); | |||
4847 | } | |||
4848 | ||||
4849 | // C99 6.7.5.2p1: The optional type qualifiers and the keyword static | |||
4850 | // shall appear only in a declaration of a function parameter with an | |||
4851 | // array type, ... | |||
4852 | if (ASM == ArrayType::Static || ATI.TypeQuals) { | |||
4853 | if (!(D.isPrototypeContext() || | |||
4854 | D.getContext() == DeclaratorContext::KNRTypeList)) { | |||
4855 | S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) << | |||
4856 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | |||
4857 | // Remove the 'static' and the type qualifiers. | |||
4858 | if (ASM == ArrayType::Static) | |||
4859 | ASM = ArrayType::Normal; | |||
4860 | ATI.TypeQuals = 0; | |||
4861 | D.setInvalidType(true); | |||
4862 | } | |||
4863 | ||||
4864 | // C99 6.7.5.2p1: ... and then only in the outermost array type | |||
4865 | // derivation. | |||
4866 | if (hasOuterPointerLikeChunk(D, chunkIndex)) { | |||
4867 | S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) << | |||
4868 | (ASM == ArrayType::Static ? "'static'" : "type qualifier"); | |||
4869 | if (ASM == ArrayType::Static) | |||
4870 | ASM = ArrayType::Normal; | |||
4871 | ATI.TypeQuals = 0; | |||
4872 | D.setInvalidType(true); | |||
4873 | } | |||
4874 | } | |||
4875 | const AutoType *AT = T->getContainedAutoType(); | |||
4876 | // Allow arrays of auto if we are a generic lambda parameter. | |||
4877 | // i.e. [](auto (&array)[5]) { return array[0]; }; OK | |||
4878 | if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) { | |||
4879 | // We've already diagnosed this for decltype(auto). | |||
4880 | if (!AT->isDecltypeAuto()) | |||
4881 | S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto) | |||
4882 | << getPrintableNameForEntity(Name) << T; | |||
4883 | T = QualType(); | |||
4884 | break; | |||
4885 | } | |||
4886 | ||||
4887 | // Array parameters can be marked nullable as well, although it's not | |||
4888 | // necessary if they're marked 'static'. | |||
4889 | if (complainAboutMissingNullability == CAMN_Yes && | |||
4890 | !hasNullabilityAttr(DeclType.getAttrs()) && | |||
4891 | ASM != ArrayType::Static && | |||
4892 | D.isPrototypeContext() && | |||
4893 | !hasOuterPointerLikeChunk(D, chunkIndex)) { | |||
4894 | checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc); | |||
4895 | } | |||
4896 | ||||
4897 | T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, | |||
4898 | SourceRange(DeclType.Loc, DeclType.EndLoc), Name); | |||
4899 | break; | |||
4900 | } | |||
4901 | case DeclaratorChunk::Function: { | |||
4902 | // If the function declarator has a prototype (i.e. it is not () and | |||
4903 | // does not have a K&R-style identifier list), then the arguments are part | |||
4904 | // of the type, otherwise the argument list is (). | |||
4905 | DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | |||
4906 | IsQualifiedFunction = | |||
4907 | FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier(); | |||
4908 | ||||
4909 | // Check for auto functions and trailing return type and adjust the | |||
4910 | // return type accordingly. | |||
4911 | if (!D.isInvalidType()) { | |||
4912 | // trailing-return-type is only required if we're declaring a function, | |||
4913 | // and not, for instance, a pointer to a function. | |||
4914 | if (D.getDeclSpec().hasAutoTypeSpec() && | |||
4915 | !FTI.hasTrailingReturnType() && chunkIndex == 0) { | |||
4916 | if (!S.getLangOpts().CPlusPlus14) { | |||
4917 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | |||
4918 | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto | |||
4919 | ? diag::err_auto_missing_trailing_return | |||
4920 | : diag::err_deduced_return_type); | |||
4921 | T = Context.IntTy; | |||
4922 | D.setInvalidType(true); | |||
4923 | } else { | |||
4924 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | |||
4925 | diag::warn_cxx11_compat_deduced_return_type); | |||
4926 | } | |||
4927 | } else if (FTI.hasTrailingReturnType()) { | |||
4928 | // T must be exactly 'auto' at this point. See CWG issue 681. | |||
4929 | if (isa<ParenType>(T)) { | |||
4930 | S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens) | |||
4931 | << T << D.getSourceRange(); | |||
4932 | D.setInvalidType(true); | |||
4933 | } else if (D.getName().getKind() == | |||
4934 | UnqualifiedIdKind::IK_DeductionGuideName) { | |||
4935 | if (T != Context.DependentTy) { | |||
4936 | S.Diag(D.getDeclSpec().getBeginLoc(), | |||
4937 | diag::err_deduction_guide_with_complex_decl) | |||
4938 | << D.getSourceRange(); | |||
4939 | D.setInvalidType(true); | |||
4940 | } | |||
4941 | } else if (D.getContext() != DeclaratorContext::LambdaExpr && | |||
4942 | (T.hasQualifiers() || !isa<AutoType>(T) || | |||
4943 | cast<AutoType>(T)->getKeyword() != | |||
4944 | AutoTypeKeyword::Auto || | |||
4945 | cast<AutoType>(T)->isConstrained())) { | |||
4946 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), | |||
4947 | diag::err_trailing_return_without_auto) | |||
4948 | << T << D.getDeclSpec().getSourceRange(); | |||
4949 | D.setInvalidType(true); | |||
4950 | } | |||
4951 | T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo); | |||
4952 | if (T.isNull()) { | |||
4953 | // An error occurred parsing the trailing return type. | |||
4954 | T = Context.IntTy; | |||
4955 | D.setInvalidType(true); | |||
4956 | } else if (AutoType *Auto = T->getContainedAutoType()) { | |||
4957 | // If the trailing return type contains an `auto`, we may need to | |||
4958 | // invent a template parameter for it, for cases like | |||
4959 | // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`. | |||
4960 | InventedTemplateParameterInfo *InventedParamInfo = nullptr; | |||
4961 | if (D.getContext() == DeclaratorContext::Prototype) | |||
4962 | InventedParamInfo = &S.InventedParameterInfos.back(); | |||
4963 | else if (D.getContext() == DeclaratorContext::LambdaExprParameter) | |||
4964 | InventedParamInfo = S.getCurLambda(); | |||
4965 | if (InventedParamInfo) { | |||
4966 | std::tie(T, TInfo) = InventTemplateParameter( | |||
4967 | state, T, TInfo, Auto, *InventedParamInfo); | |||
4968 | } | |||
4969 | } | |||
4970 | } else { | |||
4971 | // This function type is not the type of the entity being declared, | |||
4972 | // so checking the 'auto' is not the responsibility of this chunk. | |||
4973 | } | |||
4974 | } | |||
4975 | ||||
4976 | // C99 6.7.5.3p1: The return type may not be a function or array type. | |||
4977 | // For conversion functions, we'll diagnose this particular error later. | |||
4978 | if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) && | |||
4979 | (D.getName().getKind() != | |||
4980 | UnqualifiedIdKind::IK_ConversionFunctionId)) { | |||
4981 | unsigned diagID = diag::err_func_returning_array_function; | |||
4982 | // Last processing chunk in block context means this function chunk | |||
4983 | // represents the block. | |||
4984 | if (chunkIndex == 0 && | |||
4985 | D.getContext() == DeclaratorContext::BlockLiteral) | |||
4986 | diagID = diag::err_block_returning_array_function; | |||
4987 | S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T; | |||
4988 | T = Context.IntTy; | |||
4989 | D.setInvalidType(true); | |||
4990 | } | |||
4991 | ||||
4992 | // Do not allow returning half FP value. | |||
4993 | // FIXME: This really should be in BuildFunctionType. | |||
4994 | if (T->isHalfType()) { | |||
4995 | if (S.getLangOpts().OpenCL) { | |||
4996 | if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) { | |||
4997 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | |||
4998 | << T << 0 /*pointer hint*/; | |||
4999 | D.setInvalidType(true); | |||
5000 | } | |||
5001 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | |||
5002 | S.Diag(D.getIdentifierLoc(), | |||
5003 | diag::err_parameters_retval_cannot_have_fp16_type) << 1; | |||
5004 | D.setInvalidType(true); | |||
5005 | } | |||
5006 | } | |||
5007 | ||||
5008 | if (LangOpts.OpenCL) { | |||
5009 | // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a | |||
5010 | // function. | |||
5011 | if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() || | |||
5012 | T->isPipeType()) { | |||
5013 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) | |||
5014 | << T << 1 /*hint off*/; | |||
5015 | D.setInvalidType(true); | |||
5016 | } | |||
5017 | // OpenCL doesn't support variadic functions and blocks | |||
5018 | // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf. | |||
5019 | // We also allow here any toolchain reserved identifiers. | |||
5020 | if (FTI.isVariadic && | |||
5021 | !(D.getIdentifier() && | |||
5022 | ((D.getIdentifier()->getName() == "printf" && | |||
5023 | (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) || | |||
5024 | D.getIdentifier()->getName().startswith("__")))) { | |||
5025 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function); | |||
5026 | D.setInvalidType(true); | |||
5027 | } | |||
5028 | } | |||
5029 | ||||
5030 | // Methods cannot return interface types. All ObjC objects are | |||
5031 | // passed by reference. | |||
5032 | if (T->isObjCObjectType()) { | |||
5033 | SourceLocation DiagLoc, FixitLoc; | |||
5034 | if (TInfo) { | |||
5035 | DiagLoc = TInfo->getTypeLoc().getBeginLoc(); | |||
5036 | FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc()); | |||
5037 | } else { | |||
5038 | DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); | |||
5039 | FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc()); | |||
5040 | } | |||
5041 | S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value) | |||
5042 | << 0 << T | |||
5043 | << FixItHint::CreateInsertion(FixitLoc, "*"); | |||
5044 | ||||
5045 | T = Context.getObjCObjectPointerType(T); | |||
5046 | if (TInfo) { | |||
5047 | TypeLocBuilder TLB; | |||
5048 | TLB.pushFullCopy(TInfo->getTypeLoc()); | |||
5049 | ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T); | |||
5050 | TLoc.setStarLoc(FixitLoc); | |||
5051 | TInfo = TLB.getTypeSourceInfo(Context, T); | |||
5052 | } | |||
5053 | ||||
5054 | D.setInvalidType(true); | |||
5055 | } | |||
5056 | ||||
5057 | // cv-qualifiers on return types are pointless except when the type is a | |||
5058 | // class type in C++. | |||
5059 | if ((T.getCVRQualifiers() || T->isAtomicType()) && | |||
5060 | !(S.getLangOpts().CPlusPlus && | |||
5061 | (T->isDependentType() || T->isRecordType()))) { | |||
5062 | if (T->isVoidType() && !S.getLangOpts().CPlusPlus && | |||
5063 | D.getFunctionDefinitionKind() == | |||
5064 | FunctionDefinitionKind::Definition) { | |||
5065 | // [6.9.1/3] qualified void return is invalid on a C | |||
5066 | // function definition. Apparently ok on declarations and | |||
5067 | // in C++ though (!) | |||
5068 | S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T; | |||
5069 | } else | |||
5070 | diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex); | |||
5071 | ||||
5072 | // C++2a [dcl.fct]p12: | |||
5073 | // A volatile-qualified return type is deprecated | |||
5074 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20) | |||
5075 | S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T; | |||
5076 | } | |||
5077 | ||||
5078 | // Objective-C ARC ownership qualifiers are ignored on the function | |||
5079 | // return type (by type canonicalization). Complain if this attribute | |||
5080 | // was written here. | |||
5081 | if (T.getQualifiers().hasObjCLifetime()) { | |||
5082 | SourceLocation AttrLoc; | |||
5083 | if (chunkIndex + 1 < D.getNumTypeObjects()) { | |||
5084 | DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1); | |||
5085 | for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) { | |||
5086 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | |||
5087 | AttrLoc = AL.getLoc(); | |||
5088 | break; | |||
5089 | } | |||
5090 | } | |||
5091 | } | |||
5092 | if (AttrLoc.isInvalid()) { | |||
5093 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { | |||
5094 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { | |||
5095 | AttrLoc = AL.getLoc(); | |||
5096 | break; | |||
5097 | } | |||
5098 | } | |||
5099 | } | |||
5100 | ||||
5101 | if (AttrLoc.isValid()) { | |||
5102 | // The ownership attributes are almost always written via | |||
5103 | // the predefined | |||
5104 | // __strong/__weak/__autoreleasing/__unsafe_unretained. | |||
5105 | if (AttrLoc.isMacroID()) | |||
5106 | AttrLoc = | |||
5107 | S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin(); | |||
5108 | ||||
5109 | S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type) | |||
5110 | << T.getQualifiers().getObjCLifetime(); | |||
5111 | } | |||
5112 | } | |||
5113 | ||||
5114 | if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) { | |||
5115 | // C++ [dcl.fct]p6: | |||
5116 | // Types shall not be defined in return or parameter types. | |||
5117 | TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | |||
5118 | S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type) | |||
5119 | << Context.getTypeDeclType(Tag); | |||
5120 | } | |||
5121 | ||||
5122 | // Exception specs are not allowed in typedefs. Complain, but add it | |||
5123 | // anyway. | |||
5124 | if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17) | |||
5125 | S.Diag(FTI.getExceptionSpecLocBeg(), | |||
5126 | diag::err_exception_spec_in_typedef) | |||
5127 | << (D.getContext() == DeclaratorContext::AliasDecl || | |||
5128 | D.getContext() == DeclaratorContext::AliasTemplate); | |||
5129 | ||||
5130 | // If we see "T var();" or "T var(T());" at block scope, it is probably | |||
5131 | // an attempt to initialize a variable, not a function declaration. | |||
5132 | if (FTI.isAmbiguous) | |||
5133 | warnAboutAmbiguousFunction(S, D, DeclType, T); | |||
5134 | ||||
5135 | FunctionType::ExtInfo EI( | |||
5136 | getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex)); | |||
5137 | ||||
5138 | if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus | |||
5139 | && !LangOpts.OpenCL) { | |||
5140 | // Simple void foo(), where the incoming T is the result type. | |||
5141 | T = Context.getFunctionNoProtoType(T, EI); | |||
5142 | } else { | |||
5143 | // We allow a zero-parameter variadic function in C if the | |||
5144 | // function is marked with the "overloadable" attribute. Scan | |||
5145 | // for this attribute now. | |||
5146 | if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) | |||
5147 | if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable)) | |||
5148 | S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param); | |||
5149 | ||||
5150 | if (FTI.NumParams && FTI.Params[0].Param == nullptr) { | |||
5151 | // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function | |||
5152 | // definition. | |||
5153 | S.Diag(FTI.Params[0].IdentLoc, | |||
5154 | diag::err_ident_list_in_fn_declaration); | |||
5155 | D.setInvalidType(true); | |||
5156 | // Recover by creating a K&R-style function type. | |||
5157 | T = Context.getFunctionNoProtoType(T, EI); | |||
5158 | break; | |||
5159 | } | |||
5160 | ||||
5161 | FunctionProtoType::ExtProtoInfo EPI; | |||
5162 | EPI.ExtInfo = EI; | |||
5163 | EPI.Variadic = FTI.isVariadic; | |||
5164 | EPI.EllipsisLoc = FTI.getEllipsisLoc(); | |||
5165 | EPI.HasTrailingReturn = FTI.hasTrailingReturnType(); | |||
5166 | EPI.TypeQuals.addCVRUQualifiers( | |||
5167 | FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers() | |||
5168 | : 0); | |||
5169 | EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None | |||
5170 | : FTI.RefQualifierIsLValueRef? RQ_LValue | |||
5171 | : RQ_RValue; | |||
5172 | ||||
5173 | // Otherwise, we have a function with a parameter list that is | |||
5174 | // potentially variadic. | |||
5175 | SmallVector<QualType, 16> ParamTys; | |||
5176 | ParamTys.reserve(FTI.NumParams); | |||
5177 | ||||
5178 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> | |||
5179 | ExtParameterInfos(FTI.NumParams); | |||
5180 | bool HasAnyInterestingExtParameterInfos = false; | |||
5181 | ||||
5182 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | |||
5183 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | |||
5184 | QualType ParamTy = Param->getType(); | |||
5185 | assert(!ParamTy.isNull() && "Couldn't parse type?")((!ParamTy.isNull() && "Couldn't parse type?") ? static_cast <void> (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5185, __PRETTY_FUNCTION__)); | |||
5186 | ||||
5187 | // Look for 'void'. void is allowed only as a single parameter to a | |||
5188 | // function with no other parameters (C99 6.7.5.3p10). We record | |||
5189 | // int(void) as a FunctionProtoType with an empty parameter list. | |||
5190 | if (ParamTy->isVoidType()) { | |||
5191 | // If this is something like 'float(int, void)', reject it. 'void' | |||
5192 | // is an incomplete type (C99 6.2.5p19) and function decls cannot | |||
5193 | // have parameters of incomplete type. | |||
5194 | if (FTI.NumParams != 1 || FTI.isVariadic) { | |||
5195 | S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param); | |||
5196 | ParamTy = Context.IntTy; | |||
5197 | Param->setType(ParamTy); | |||
5198 | } else if (FTI.Params[i].Ident) { | |||
5199 | // Reject, but continue to parse 'int(void abc)'. | |||
5200 | S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type); | |||
5201 | ParamTy = Context.IntTy; | |||
5202 | Param->setType(ParamTy); | |||
5203 | } else { | |||
5204 | // Reject, but continue to parse 'float(const void)'. | |||
5205 | if (ParamTy.hasQualifiers()) | |||
5206 | S.Diag(DeclType.Loc, diag::err_void_param_qualified); | |||
5207 | ||||
5208 | // Do not add 'void' to the list. | |||
5209 | break; | |||
5210 | } | |||
5211 | } else if (ParamTy->isHalfType()) { | |||
5212 | // Disallow half FP parameters. | |||
5213 | // FIXME: This really should be in BuildFunctionType. | |||
5214 | if (S.getLangOpts().OpenCL) { | |||
5215 | if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) { | |||
5216 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | |||
5217 | << ParamTy << 0; | |||
5218 | D.setInvalidType(); | |||
5219 | Param->setInvalidDecl(); | |||
5220 | } | |||
5221 | } else if (!S.getLangOpts().HalfArgsAndReturns) { | |||
5222 | S.Diag(Param->getLocation(), | |||
5223 | diag::err_parameters_retval_cannot_have_fp16_type) << 0; | |||
5224 | D.setInvalidType(); | |||
5225 | } | |||
5226 | } else if (!FTI.hasPrototype) { | |||
5227 | if (ParamTy->isPromotableIntegerType()) { | |||
5228 | ParamTy = Context.getPromotedIntegerType(ParamTy); | |||
5229 | Param->setKNRPromoted(true); | |||
5230 | } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) { | |||
5231 | if (BTy->getKind() == BuiltinType::Float) { | |||
5232 | ParamTy = Context.DoubleTy; | |||
5233 | Param->setKNRPromoted(true); | |||
5234 | } | |||
5235 | } | |||
5236 | } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) { | |||
5237 | // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function. | |||
5238 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) | |||
5239 | << ParamTy << 1 /*hint off*/; | |||
5240 | D.setInvalidType(); | |||
5241 | } | |||
5242 | ||||
5243 | if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) { | |||
5244 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true); | |||
5245 | HasAnyInterestingExtParameterInfos = true; | |||
5246 | } | |||
5247 | ||||
5248 | if (auto attr = Param->getAttr<ParameterABIAttr>()) { | |||
5249 | ExtParameterInfos[i] = | |||
5250 | ExtParameterInfos[i].withABI(attr->getABI()); | |||
5251 | HasAnyInterestingExtParameterInfos = true; | |||
5252 | } | |||
5253 | ||||
5254 | if (Param->hasAttr<PassObjectSizeAttr>()) { | |||
5255 | ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize(); | |||
5256 | HasAnyInterestingExtParameterInfos = true; | |||
5257 | } | |||
5258 | ||||
5259 | if (Param->hasAttr<NoEscapeAttr>()) { | |||
5260 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true); | |||
5261 | HasAnyInterestingExtParameterInfos = true; | |||
5262 | } | |||
5263 | ||||
5264 | ParamTys.push_back(ParamTy); | |||
5265 | } | |||
5266 | ||||
5267 | if (HasAnyInterestingExtParameterInfos) { | |||
5268 | EPI.ExtParameterInfos = ExtParameterInfos.data(); | |||
5269 | checkExtParameterInfos(S, ParamTys, EPI, | |||
5270 | [&](unsigned i) { return FTI.Params[i].Param->getLocation(); }); | |||
5271 | } | |||
5272 | ||||
5273 | SmallVector<QualType, 4> Exceptions; | |||
5274 | SmallVector<ParsedType, 2> DynamicExceptions; | |||
5275 | SmallVector<SourceRange, 2> DynamicExceptionRanges; | |||
5276 | Expr *NoexceptExpr = nullptr; | |||
5277 | ||||
5278 | if (FTI.getExceptionSpecType() == EST_Dynamic) { | |||
5279 | // FIXME: It's rather inefficient to have to split into two vectors | |||
5280 | // here. | |||
5281 | unsigned N = FTI.getNumExceptions(); | |||
5282 | DynamicExceptions.reserve(N); | |||
5283 | DynamicExceptionRanges.reserve(N); | |||
5284 | for (unsigned I = 0; I != N; ++I) { | |||
5285 | DynamicExceptions.push_back(FTI.Exceptions[I].Ty); | |||
5286 | DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range); | |||
5287 | } | |||
5288 | } else if (isComputedNoexcept(FTI.getExceptionSpecType())) { | |||
5289 | NoexceptExpr = FTI.NoexceptExpr; | |||
5290 | } | |||
5291 | ||||
5292 | S.checkExceptionSpecification(D.isFunctionDeclarationContext(), | |||
5293 | FTI.getExceptionSpecType(), | |||
5294 | DynamicExceptions, | |||
5295 | DynamicExceptionRanges, | |||
5296 | NoexceptExpr, | |||
5297 | Exceptions, | |||
5298 | EPI.ExceptionSpec); | |||
5299 | ||||
5300 | // FIXME: Set address space from attrs for C++ mode here. | |||
5301 | // OpenCLCPlusPlus: A class member function has an address space. | |||
5302 | auto IsClassMember = [&]() { | |||
5303 | return (!state.getDeclarator().getCXXScopeSpec().isEmpty() && | |||
5304 | state.getDeclarator() | |||
5305 | .getCXXScopeSpec() | |||
5306 | .getScopeRep() | |||
5307 | ->getKind() == NestedNameSpecifier::TypeSpec) || | |||
5308 | state.getDeclarator().getContext() == | |||
5309 | DeclaratorContext::Member || | |||
5310 | state.getDeclarator().getContext() == | |||
5311 | DeclaratorContext::LambdaExpr; | |||
5312 | }; | |||
5313 | ||||
5314 | if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) { | |||
5315 | LangAS ASIdx = LangAS::Default; | |||
5316 | // Take address space attr if any and mark as invalid to avoid adding | |||
5317 | // them later while creating QualType. | |||
5318 | if (FTI.MethodQualifiers) | |||
5319 | for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) { | |||
5320 | LangAS ASIdxNew = attr.asOpenCLLangAS(); | |||
5321 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew, | |||
5322 | attr.getLoc())) | |||
5323 | D.setInvalidType(true); | |||
5324 | else | |||
5325 | ASIdx = ASIdxNew; | |||
5326 | } | |||
5327 | // If a class member function's address space is not set, set it to | |||
5328 | // __generic. | |||
5329 | LangAS AS = | |||
5330 | (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace() | |||
5331 | : ASIdx); | |||
5332 | EPI.TypeQuals.addAddressSpace(AS); | |||
5333 | } | |||
5334 | T = Context.getFunctionType(T, ParamTys, EPI); | |||
5335 | } | |||
5336 | break; | |||
5337 | } | |||
5338 | case DeclaratorChunk::MemberPointer: { | |||
5339 | // The scope spec must refer to a class, or be dependent. | |||
5340 | CXXScopeSpec &SS = DeclType.Mem.Scope(); | |||
5341 | QualType ClsType; | |||
5342 | ||||
5343 | // Handle pointer nullability. | |||
5344 | inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc, | |||
5345 | DeclType.EndLoc, DeclType.getAttrs(), | |||
5346 | state.getDeclarator().getAttributePool()); | |||
5347 | ||||
5348 | if (SS.isInvalid()) { | |||
5349 | // Avoid emitting extra errors if we already errored on the scope. | |||
5350 | D.setInvalidType(true); | |||
5351 | } else if (S.isDependentScopeSpecifier(SS) || | |||
5352 | dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) { | |||
5353 | NestedNameSpecifier *NNS = SS.getScopeRep(); | |||
5354 | NestedNameSpecifier *NNSPrefix = NNS->getPrefix(); | |||
5355 | switch (NNS->getKind()) { | |||
5356 | case NestedNameSpecifier::Identifier: | |||
5357 | ClsType = Context.getDependentNameType(ETK_None, NNSPrefix, | |||
5358 | NNS->getAsIdentifier()); | |||
5359 | break; | |||
5360 | ||||
5361 | case NestedNameSpecifier::Namespace: | |||
5362 | case NestedNameSpecifier::NamespaceAlias: | |||
5363 | case NestedNameSpecifier::Global: | |||
5364 | case NestedNameSpecifier::Super: | |||
5365 | llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5365); | |||
5366 | ||||
5367 | case NestedNameSpecifier::TypeSpec: | |||
5368 | case NestedNameSpecifier::TypeSpecWithTemplate: | |||
5369 | ClsType = QualType(NNS->getAsType(), 0); | |||
5370 | // Note: if the NNS has a prefix and ClsType is a nondependent | |||
5371 | // TemplateSpecializationType, then the NNS prefix is NOT included | |||
5372 | // in ClsType; hence we wrap ClsType into an ElaboratedType. | |||
5373 | // NOTE: in particular, no wrap occurs if ClsType already is an | |||
5374 | // Elaborated, DependentName, or DependentTemplateSpecialization. | |||
5375 | if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType())) | |||
5376 | ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType); | |||
5377 | break; | |||
5378 | } | |||
5379 | } else { | |||
5380 | S.Diag(DeclType.Mem.Scope().getBeginLoc(), | |||
5381 | diag::err_illegal_decl_mempointer_in_nonclass) | |||
5382 | << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name") | |||
5383 | << DeclType.Mem.Scope().getRange(); | |||
5384 | D.setInvalidType(true); | |||
5385 | } | |||
5386 | ||||
5387 | if (!ClsType.isNull()) | |||
5388 | T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, | |||
5389 | D.getIdentifier()); | |||
5390 | if (T.isNull()) { | |||
5391 | T = Context.IntTy; | |||
5392 | D.setInvalidType(true); | |||
5393 | } else if (DeclType.Mem.TypeQuals) { | |||
5394 | T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals); | |||
5395 | } | |||
5396 | break; | |||
5397 | } | |||
5398 | ||||
5399 | case DeclaratorChunk::Pipe: { | |||
5400 | T = S.BuildReadPipeType(T, DeclType.Loc); | |||
5401 | processTypeAttrs(state, T, TAL_DeclSpec, | |||
5402 | D.getMutableDeclSpec().getAttributes()); | |||
5403 | break; | |||
5404 | } | |||
5405 | } | |||
5406 | ||||
5407 | if (T.isNull()) { | |||
5408 | D.setInvalidType(true); | |||
5409 | T = Context.IntTy; | |||
5410 | } | |||
5411 | ||||
5412 | // See if there are any attributes on this declarator chunk. | |||
5413 | processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs()); | |||
5414 | ||||
5415 | if (DeclType.Kind != DeclaratorChunk::Paren) { | |||
5416 | if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType)) | |||
5417 | S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array); | |||
5418 | ||||
5419 | ExpectNoDerefChunk = state.didParseNoDeref(); | |||
5420 | } | |||
5421 | } | |||
5422 | ||||
5423 | if (ExpectNoDerefChunk) | |||
5424 | S.Diag(state.getDeclarator().getBeginLoc(), | |||
5425 | diag::warn_noderef_on_non_pointer_or_array); | |||
5426 | ||||
5427 | // GNU warning -Wstrict-prototypes | |||
5428 | // Warn if a function declaration is without a prototype. | |||
5429 | // This warning is issued for all kinds of unprototyped function | |||
5430 | // declarations (i.e. function type typedef, function pointer etc.) | |||
5431 | // C99 6.7.5.3p14: | |||
5432 | // The empty list in a function declarator that is not part of a definition | |||
5433 | // of that function specifies that no information about the number or types | |||
5434 | // of the parameters is supplied. | |||
5435 | if (!LangOpts.CPlusPlus && | |||
5436 | D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) { | |||
5437 | bool IsBlock = false; | |||
5438 | for (const DeclaratorChunk &DeclType : D.type_objects()) { | |||
5439 | switch (DeclType.Kind) { | |||
5440 | case DeclaratorChunk::BlockPointer: | |||
5441 | IsBlock = true; | |||
5442 | break; | |||
5443 | case DeclaratorChunk::Function: { | |||
5444 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; | |||
5445 | // We supress the warning when there's no LParen location, as this | |||
5446 | // indicates the declaration was an implicit declaration, which gets | |||
5447 | // warned about separately via -Wimplicit-function-declaration. | |||
5448 | if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid()) | |||
5449 | S.Diag(DeclType.Loc, diag::warn_strict_prototypes) | |||
5450 | << IsBlock | |||
5451 | << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void"); | |||
5452 | IsBlock = false; | |||
5453 | break; | |||
5454 | } | |||
5455 | default: | |||
5456 | break; | |||
5457 | } | |||
5458 | } | |||
5459 | } | |||
5460 | ||||
5461 | assert(!T.isNull() && "T must not be null after this point")((!T.isNull() && "T must not be null after this point" ) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5461, __PRETTY_FUNCTION__)); | |||
5462 | ||||
5463 | if (LangOpts.CPlusPlus && T->isFunctionType()) { | |||
5464 | const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>(); | |||
5465 | assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((FnTy && "Why oh why is there not a FunctionProtoType here?" ) ? static_cast<void> (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5465, __PRETTY_FUNCTION__)); | |||
5466 | ||||
5467 | // C++ 8.3.5p4: | |||
5468 | // A cv-qualifier-seq shall only be part of the function type | |||
5469 | // for a nonstatic member function, the function type to which a pointer | |||
5470 | // to member refers, or the top-level function type of a function typedef | |||
5471 | // declaration. | |||
5472 | // | |||
5473 | // Core issue 547 also allows cv-qualifiers on function types that are | |||
5474 | // top-level template type arguments. | |||
5475 | enum { NonMember, Member, DeductionGuide } Kind = NonMember; | |||
5476 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) | |||
5477 | Kind = DeductionGuide; | |||
5478 | else if (!D.getCXXScopeSpec().isSet()) { | |||
5479 | if ((D.getContext() == DeclaratorContext::Member || | |||
5480 | D.getContext() == DeclaratorContext::LambdaExpr) && | |||
5481 | !D.getDeclSpec().isFriendSpecified()) | |||
5482 | Kind = Member; | |||
5483 | } else { | |||
5484 | DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec()); | |||
5485 | if (!DC || DC->isRecord()) | |||
5486 | Kind = Member; | |||
5487 | } | |||
5488 | ||||
5489 | // C++11 [dcl.fct]p6 (w/DR1417): | |||
5490 | // An attempt to specify a function type with a cv-qualifier-seq or a | |||
5491 | // ref-qualifier (including by typedef-name) is ill-formed unless it is: | |||
5492 | // - the function type for a non-static member function, | |||
5493 | // - the function type to which a pointer to member refers, | |||
5494 | // - the top-level function type of a function typedef declaration or | |||
5495 | // alias-declaration, | |||
5496 | // - the type-id in the default argument of a type-parameter, or | |||
5497 | // - the type-id of a template-argument for a type-parameter | |||
5498 | // | |||
5499 | // FIXME: Checking this here is insufficient. We accept-invalid on: | |||
5500 | // | |||
5501 | // template<typename T> struct S { void f(T); }; | |||
5502 | // S<int() const> s; | |||
5503 | // | |||
5504 | // ... for instance. | |||
5505 | if (IsQualifiedFunction && | |||
5506 | !(Kind == Member && | |||
5507 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) && | |||
5508 | !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg && | |||
5509 | D.getContext() != DeclaratorContext::TemplateTypeArg) { | |||
5510 | SourceLocation Loc = D.getBeginLoc(); | |||
5511 | SourceRange RemovalRange; | |||
5512 | unsigned I; | |||
5513 | if (D.isFunctionDeclarator(I)) { | |||
5514 | SmallVector<SourceLocation, 4> RemovalLocs; | |||
5515 | const DeclaratorChunk &Chunk = D.getTypeObject(I); | |||
5516 | assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void > (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5516, __PRETTY_FUNCTION__)); | |||
5517 | ||||
5518 | if (Chunk.Fun.hasRefQualifier()) | |||
5519 | RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc()); | |||
5520 | ||||
5521 | if (Chunk.Fun.hasMethodTypeQualifiers()) | |||
5522 | Chunk.Fun.MethodQualifiers->forEachQualifier( | |||
5523 | [&](DeclSpec::TQ TypeQual, StringRef QualName, | |||
5524 | SourceLocation SL) { RemovalLocs.push_back(SL); }); | |||
5525 | ||||
5526 | if (!RemovalLocs.empty()) { | |||
5527 | llvm::sort(RemovalLocs, | |||
5528 | BeforeThanCompare<SourceLocation>(S.getSourceManager())); | |||
5529 | RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back()); | |||
5530 | Loc = RemovalLocs.front(); | |||
5531 | } | |||
5532 | } | |||
5533 | ||||
5534 | S.Diag(Loc, diag::err_invalid_qualified_function_type) | |||
5535 | << Kind << D.isFunctionDeclarator() << T | |||
5536 | << getFunctionQualifiersAsString(FnTy) | |||
5537 | << FixItHint::CreateRemoval(RemovalRange); | |||
5538 | ||||
5539 | // Strip the cv-qualifiers and ref-qualifiers from the type. | |||
5540 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); | |||
5541 | EPI.TypeQuals.removeCVRQualifiers(); | |||
5542 | EPI.RefQualifier = RQ_None; | |||
5543 | ||||
5544 | T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(), | |||
5545 | EPI); | |||
5546 | // Rebuild any parens around the identifier in the function type. | |||
5547 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | |||
5548 | if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren) | |||
5549 | break; | |||
5550 | T = S.BuildParenType(T); | |||
5551 | } | |||
5552 | } | |||
5553 | } | |||
5554 | ||||
5555 | // Apply any undistributed attributes from the declarator. | |||
5556 | processTypeAttrs(state, T, TAL_DeclName, D.getAttributes()); | |||
5557 | ||||
5558 | // Diagnose any ignored type attributes. | |||
5559 | state.diagnoseIgnoredTypeAttrs(T); | |||
5560 | ||||
5561 | // C++0x [dcl.constexpr]p9: | |||
5562 | // A constexpr specifier used in an object declaration declares the object | |||
5563 | // as const. | |||
5564 | if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr && | |||
5565 | T->isObjectType()) | |||
5566 | T.addConst(); | |||
5567 | ||||
5568 | // C++2a [dcl.fct]p4: | |||
5569 | // A parameter with volatile-qualified type is deprecated | |||
5570 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 && | |||
5571 | (D.getContext() == DeclaratorContext::Prototype || | |||
5572 | D.getContext() == DeclaratorContext::LambdaExprParameter)) | |||
5573 | S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T; | |||
5574 | ||||
5575 | // If there was an ellipsis in the declarator, the declaration declares a | |||
5576 | // parameter pack whose type may be a pack expansion type. | |||
5577 | if (D.hasEllipsis()) { | |||
5578 | // C++0x [dcl.fct]p13: | |||
5579 | // A declarator-id or abstract-declarator containing an ellipsis shall | |||
5580 | // only be used in a parameter-declaration. Such a parameter-declaration | |||
5581 | // is a parameter pack (14.5.3). [...] | |||
5582 | switch (D.getContext()) { | |||
5583 | case DeclaratorContext::Prototype: | |||
5584 | case DeclaratorContext::LambdaExprParameter: | |||
5585 | case DeclaratorContext::RequiresExpr: | |||
5586 | // C++0x [dcl.fct]p13: | |||
5587 | // [...] When it is part of a parameter-declaration-clause, the | |||
5588 | // parameter pack is a function parameter pack (14.5.3). The type T | |||
5589 | // of the declarator-id of the function parameter pack shall contain | |||
5590 | // a template parameter pack; each template parameter pack in T is | |||
5591 | // expanded by the function parameter pack. | |||
5592 | // | |||
5593 | // We represent function parameter packs as function parameters whose | |||
5594 | // type is a pack expansion. | |||
5595 | if (!T->containsUnexpandedParameterPack() && | |||
5596 | (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) { | |||
5597 | S.Diag(D.getEllipsisLoc(), | |||
5598 | diag::err_function_parameter_pack_without_parameter_packs) | |||
5599 | << T << D.getSourceRange(); | |||
5600 | D.setEllipsisLoc(SourceLocation()); | |||
5601 | } else { | |||
5602 | T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false); | |||
5603 | } | |||
5604 | break; | |||
5605 | case DeclaratorContext::TemplateParam: | |||
5606 | // C++0x [temp.param]p15: | |||
5607 | // If a template-parameter is a [...] is a parameter-declaration that | |||
5608 | // declares a parameter pack (8.3.5), then the template-parameter is a | |||
5609 | // template parameter pack (14.5.3). | |||
5610 | // | |||
5611 | // Note: core issue 778 clarifies that, if there are any unexpanded | |||
5612 | // parameter packs in the type of the non-type template parameter, then | |||
5613 | // it expands those parameter packs. | |||
5614 | if (T->containsUnexpandedParameterPack()) | |||
5615 | T = Context.getPackExpansionType(T, None); | |||
5616 | else | |||
5617 | S.Diag(D.getEllipsisLoc(), | |||
5618 | LangOpts.CPlusPlus11 | |||
5619 | ? diag::warn_cxx98_compat_variadic_templates | |||
5620 | : diag::ext_variadic_templates); | |||
5621 | break; | |||
5622 | ||||
5623 | case DeclaratorContext::File: | |||
5624 | case DeclaratorContext::KNRTypeList: | |||
5625 | case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here? | |||
5626 | case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here? | |||
5627 | case DeclaratorContext::TypeName: | |||
5628 | case DeclaratorContext::FunctionalCast: | |||
5629 | case DeclaratorContext::CXXNew: | |||
5630 | case DeclaratorContext::AliasDecl: | |||
5631 | case DeclaratorContext::AliasTemplate: | |||
5632 | case DeclaratorContext::Member: | |||
5633 | case DeclaratorContext::Block: | |||
5634 | case DeclaratorContext::ForInit: | |||
5635 | case DeclaratorContext::SelectionInit: | |||
5636 | case DeclaratorContext::Condition: | |||
5637 | case DeclaratorContext::CXXCatch: | |||
5638 | case DeclaratorContext::ObjCCatch: | |||
5639 | case DeclaratorContext::BlockLiteral: | |||
5640 | case DeclaratorContext::LambdaExpr: | |||
5641 | case DeclaratorContext::ConversionId: | |||
5642 | case DeclaratorContext::TrailingReturn: | |||
5643 | case DeclaratorContext::TrailingReturnVar: | |||
5644 | case DeclaratorContext::TemplateArg: | |||
5645 | case DeclaratorContext::TemplateTypeArg: | |||
5646 | // FIXME: We may want to allow parameter packs in block-literal contexts | |||
5647 | // in the future. | |||
5648 | S.Diag(D.getEllipsisLoc(), | |||
5649 | diag::err_ellipsis_in_declarator_not_parameter); | |||
5650 | D.setEllipsisLoc(SourceLocation()); | |||
5651 | break; | |||
5652 | } | |||
5653 | } | |||
5654 | ||||
5655 | assert(!T.isNull() && "T must not be null at the end of this function")((!T.isNull() && "T must not be null at the end of this function" ) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5655, __PRETTY_FUNCTION__)); | |||
5656 | if (D.isInvalidType()) | |||
5657 | return Context.getTrivialTypeSourceInfo(T); | |||
5658 | ||||
5659 | return GetTypeSourceInfoForDeclarator(state, T, TInfo); | |||
5660 | } | |||
5661 | ||||
5662 | /// GetTypeForDeclarator - Convert the type for the specified | |||
5663 | /// declarator to Type instances. | |||
5664 | /// | |||
5665 | /// The result of this call will never be null, but the associated | |||
5666 | /// type may be a null type if there's an unrecoverable error. | |||
5667 | TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) { | |||
5668 | // Determine the type of the declarator. Not all forms of declarator | |||
5669 | // have a type. | |||
5670 | ||||
5671 | TypeProcessingState state(*this, D); | |||
5672 | ||||
5673 | TypeSourceInfo *ReturnTypeInfo = nullptr; | |||
5674 | QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | |||
5675 | if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount) | |||
5676 | inferARCWriteback(state, T); | |||
5677 | ||||
5678 | return GetFullTypeForDeclarator(state, T, ReturnTypeInfo); | |||
5679 | } | |||
5680 | ||||
5681 | static void transferARCOwnershipToDeclSpec(Sema &S, | |||
5682 | QualType &declSpecTy, | |||
5683 | Qualifiers::ObjCLifetime ownership) { | |||
5684 | if (declSpecTy->isObjCRetainableType() && | |||
5685 | declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) { | |||
5686 | Qualifiers qs; | |||
5687 | qs.addObjCLifetime(ownership); | |||
5688 | declSpecTy = S.Context.getQualifiedType(declSpecTy, qs); | |||
5689 | } | |||
5690 | } | |||
5691 | ||||
5692 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, | |||
5693 | Qualifiers::ObjCLifetime ownership, | |||
5694 | unsigned chunkIndex) { | |||
5695 | Sema &S = state.getSema(); | |||
5696 | Declarator &D = state.getDeclarator(); | |||
5697 | ||||
5698 | // Look for an explicit lifetime attribute. | |||
5699 | DeclaratorChunk &chunk = D.getTypeObject(chunkIndex); | |||
5700 | if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership)) | |||
5701 | return; | |||
5702 | ||||
5703 | const char *attrStr = nullptr; | |||
5704 | switch (ownership) { | |||
5705 | case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5705); | |||
5706 | case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break; | |||
5707 | case Qualifiers::OCL_Strong: attrStr = "strong"; break; | |||
5708 | case Qualifiers::OCL_Weak: attrStr = "weak"; break; | |||
5709 | case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break; | |||
5710 | } | |||
5711 | ||||
5712 | IdentifierLoc *Arg = new (S.Context) IdentifierLoc; | |||
5713 | Arg->Ident = &S.Context.Idents.get(attrStr); | |||
5714 | Arg->Loc = SourceLocation(); | |||
5715 | ||||
5716 | ArgsUnion Args(Arg); | |||
5717 | ||||
5718 | // If there wasn't one, add one (with an invalid source location | |||
5719 | // so that we don't make an AttributedType for it). | |||
5720 | ParsedAttr *attr = D.getAttributePool().create( | |||
5721 | &S.Context.Idents.get("objc_ownership"), SourceLocation(), | |||
5722 | /*scope*/ nullptr, SourceLocation(), | |||
5723 | /*args*/ &Args, 1, ParsedAttr::AS_GNU); | |||
5724 | chunk.getAttrs().addAtEnd(attr); | |||
5725 | // TODO: mark whether we did this inference? | |||
5726 | } | |||
5727 | ||||
5728 | /// Used for transferring ownership in casts resulting in l-values. | |||
5729 | static void transferARCOwnership(TypeProcessingState &state, | |||
5730 | QualType &declSpecTy, | |||
5731 | Qualifiers::ObjCLifetime ownership) { | |||
5732 | Sema &S = state.getSema(); | |||
5733 | Declarator &D = state.getDeclarator(); | |||
5734 | ||||
5735 | int inner = -1; | |||
5736 | bool hasIndirection = false; | |||
5737 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | |||
5738 | DeclaratorChunk &chunk = D.getTypeObject(i); | |||
5739 | switch (chunk.Kind) { | |||
5740 | case DeclaratorChunk::Paren: | |||
5741 | // Ignore parens. | |||
5742 | break; | |||
5743 | ||||
5744 | case DeclaratorChunk::Array: | |||
5745 | case DeclaratorChunk::Reference: | |||
5746 | case DeclaratorChunk::Pointer: | |||
5747 | if (inner != -1) | |||
5748 | hasIndirection = true; | |||
5749 | inner = i; | |||
5750 | break; | |||
5751 | ||||
5752 | case DeclaratorChunk::BlockPointer: | |||
5753 | if (inner != -1) | |||
5754 | transferARCOwnershipToDeclaratorChunk(state, ownership, i); | |||
5755 | return; | |||
5756 | ||||
5757 | case DeclaratorChunk::Function: | |||
5758 | case DeclaratorChunk::MemberPointer: | |||
5759 | case DeclaratorChunk::Pipe: | |||
5760 | return; | |||
5761 | } | |||
5762 | } | |||
5763 | ||||
5764 | if (inner == -1) | |||
5765 | return; | |||
5766 | ||||
5767 | DeclaratorChunk &chunk = D.getTypeObject(inner); | |||
5768 | if (chunk.Kind == DeclaratorChunk::Pointer) { | |||
5769 | if (declSpecTy->isObjCRetainableType()) | |||
5770 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | |||
5771 | if (declSpecTy->isObjCObjectType() && hasIndirection) | |||
5772 | return transferARCOwnershipToDeclaratorChunk(state, ownership, inner); | |||
5773 | } else { | |||
5774 | assert(chunk.Kind == DeclaratorChunk::Array ||((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk ::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5775, __PRETTY_FUNCTION__)) | |||
5775 | chunk.Kind == DeclaratorChunk::Reference)((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk ::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5775, __PRETTY_FUNCTION__)); | |||
5776 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); | |||
5777 | } | |||
5778 | } | |||
5779 | ||||
5780 | TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) { | |||
5781 | TypeProcessingState state(*this, D); | |||
5782 | ||||
5783 | TypeSourceInfo *ReturnTypeInfo = nullptr; | |||
5784 | QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); | |||
5785 | ||||
5786 | if (getLangOpts().ObjC) { | |||
5787 | Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy); | |||
5788 | if (ownership != Qualifiers::OCL_None) | |||
5789 | transferARCOwnership(state, declSpecTy, ownership); | |||
5790 | } | |||
5791 | ||||
5792 | return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo); | |||
5793 | } | |||
5794 | ||||
5795 | static void fillAttributedTypeLoc(AttributedTypeLoc TL, | |||
5796 | TypeProcessingState &State) { | |||
5797 | TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr())); | |||
5798 | } | |||
5799 | ||||
5800 | namespace { | |||
5801 | class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> { | |||
5802 | Sema &SemaRef; | |||
5803 | ASTContext &Context; | |||
5804 | TypeProcessingState &State; | |||
5805 | const DeclSpec &DS; | |||
5806 | ||||
5807 | public: | |||
5808 | TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State, | |||
5809 | const DeclSpec &DS) | |||
5810 | : SemaRef(S), Context(Context), State(State), DS(DS) {} | |||
5811 | ||||
5812 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | |||
5813 | Visit(TL.getModifiedLoc()); | |||
5814 | fillAttributedTypeLoc(TL, State); | |||
5815 | } | |||
5816 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | |||
5817 | Visit(TL.getInnerLoc()); | |||
5818 | TL.setExpansionLoc( | |||
5819 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | |||
5820 | } | |||
5821 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | |||
5822 | Visit(TL.getUnqualifiedLoc()); | |||
5823 | } | |||
5824 | void VisitTypedefTypeLoc(TypedefTypeLoc TL) { | |||
5825 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | |||
5826 | } | |||
5827 | void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { | |||
5828 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | |||
5829 | // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires | |||
5830 | // addition field. What we have is good enough for dispay of location | |||
5831 | // of 'fixit' on interface name. | |||
5832 | TL.setNameEndLoc(DS.getEndLoc()); | |||
5833 | } | |||
5834 | void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { | |||
5835 | TypeSourceInfo *RepTInfo = nullptr; | |||
5836 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | |||
5837 | TL.copy(RepTInfo->getTypeLoc()); | |||
5838 | } | |||
5839 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | |||
5840 | TypeSourceInfo *RepTInfo = nullptr; | |||
5841 | Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo); | |||
5842 | TL.copy(RepTInfo->getTypeLoc()); | |||
5843 | } | |||
5844 | void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { | |||
5845 | TypeSourceInfo *TInfo = nullptr; | |||
5846 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5847 | ||||
5848 | // If we got no declarator info from previous Sema routines, | |||
5849 | // just fill with the typespec loc. | |||
5850 | if (!TInfo) { | |||
5851 | TL.initialize(Context, DS.getTypeSpecTypeNameLoc()); | |||
5852 | return; | |||
5853 | } | |||
5854 | ||||
5855 | TypeLoc OldTL = TInfo->getTypeLoc(); | |||
5856 | if (TInfo->getType()->getAs<ElaboratedType>()) { | |||
5857 | ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>(); | |||
5858 | TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc() | |||
5859 | .castAs<TemplateSpecializationTypeLoc>(); | |||
5860 | TL.copy(NamedTL); | |||
5861 | } else { | |||
5862 | TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>()); | |||
5863 | assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc >().getRAngleLoc()) ? static_cast<void> (0) : __assert_fail ("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5863, __PRETTY_FUNCTION__)); | |||
5864 | } | |||
5865 | ||||
5866 | } | |||
5867 | void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { | |||
5868 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) ? static_cast <void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5868, __PRETTY_FUNCTION__)); | |||
5869 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | |||
5870 | TL.setParensRange(DS.getTypeofParensRange()); | |||
5871 | } | |||
5872 | void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { | |||
5873 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((DS.getTypeSpecType() == DeclSpec::TST_typeofType) ? static_cast <void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5873, __PRETTY_FUNCTION__)); | |||
5874 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); | |||
5875 | TL.setParensRange(DS.getTypeofParensRange()); | |||
5876 | assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail ("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5876, __PRETTY_FUNCTION__)); | |||
5877 | TypeSourceInfo *TInfo = nullptr; | |||
5878 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5879 | TL.setUnderlyingTInfo(TInfo); | |||
5880 | } | |||
5881 | void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { | |||
5882 | // FIXME: This holds only because we only have one unary transform. | |||
5883 | assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((DS.getTypeSpecType() == DeclSpec::TST_underlyingType) ? static_cast <void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5883, __PRETTY_FUNCTION__)); | |||
5884 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | |||
5885 | TL.setParensRange(DS.getTypeofParensRange()); | |||
5886 | assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail ("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5886, __PRETTY_FUNCTION__)); | |||
5887 | TypeSourceInfo *TInfo = nullptr; | |||
5888 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5889 | TL.setUnderlyingTInfo(TInfo); | |||
5890 | } | |||
5891 | void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { | |||
5892 | // By default, use the source location of the type specifier. | |||
5893 | TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); | |||
5894 | if (TL.needsExtraLocalData()) { | |||
5895 | // Set info for the written builtin specifiers. | |||
5896 | TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); | |||
5897 | // Try to have a meaningful source location. | |||
5898 | if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified) | |||
5899 | TL.expandBuiltinRange(DS.getTypeSpecSignLoc()); | |||
5900 | if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified) | |||
5901 | TL.expandBuiltinRange(DS.getTypeSpecWidthRange()); | |||
5902 | } | |||
5903 | } | |||
5904 | void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { | |||
5905 | ElaboratedTypeKeyword Keyword | |||
5906 | = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType()); | |||
5907 | if (DS.getTypeSpecType() == TST_typename) { | |||
5908 | TypeSourceInfo *TInfo = nullptr; | |||
5909 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5910 | if (TInfo) { | |||
5911 | TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>()); | |||
5912 | return; | |||
5913 | } | |||
5914 | } | |||
5915 | TL.setElaboratedKeywordLoc(Keyword != ETK_None | |||
5916 | ? DS.getTypeSpecTypeLoc() | |||
5917 | : SourceLocation()); | |||
5918 | const CXXScopeSpec& SS = DS.getTypeSpecScope(); | |||
5919 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
5920 | Visit(TL.getNextTypeLoc().getUnqualifiedLoc()); | |||
5921 | } | |||
5922 | void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { | |||
5923 | assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void > (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5923, __PRETTY_FUNCTION__)); | |||
5924 | TypeSourceInfo *TInfo = nullptr; | |||
5925 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5926 | assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5926, __PRETTY_FUNCTION__)); | |||
5927 | TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>()); | |||
5928 | } | |||
5929 | void VisitDependentTemplateSpecializationTypeLoc( | |||
5930 | DependentTemplateSpecializationTypeLoc TL) { | |||
5931 | assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void > (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5931, __PRETTY_FUNCTION__)); | |||
5932 | TypeSourceInfo *TInfo = nullptr; | |||
5933 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5934 | assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5934, __PRETTY_FUNCTION__)); | |||
5935 | TL.copy( | |||
5936 | TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>()); | |||
5937 | } | |||
5938 | void VisitAutoTypeLoc(AutoTypeLoc TL) { | |||
5939 | assert(DS.getTypeSpecType() == TST_auto ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified) ? static_cast<void > (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5942, __PRETTY_FUNCTION__)) | |||
5940 | DS.getTypeSpecType() == TST_decltype_auto ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified) ? static_cast<void > (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5942, __PRETTY_FUNCTION__)) | |||
5941 | DS.getTypeSpecType() == TST_auto_type ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified) ? static_cast<void > (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5942, __PRETTY_FUNCTION__)) | |||
5942 | DS.getTypeSpecType() == TST_unspecified)((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified) ? static_cast<void > (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5942, __PRETTY_FUNCTION__)); | |||
5943 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | |||
5944 | if (!DS.isConstrainedAuto()) | |||
5945 | return; | |||
5946 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); | |||
5947 | if (DS.getTypeSpecScope().isNotEmpty()) | |||
5948 | TL.setNestedNameSpecifierLoc( | |||
5949 | DS.getTypeSpecScope().getWithLocInContext(Context)); | |||
5950 | else | |||
5951 | TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc()); | |||
5952 | TL.setTemplateKWLoc(TemplateId->TemplateKWLoc); | |||
5953 | TL.setConceptNameLoc(TemplateId->TemplateNameLoc); | |||
5954 | TL.setFoundDecl(nullptr); | |||
5955 | TL.setLAngleLoc(TemplateId->LAngleLoc); | |||
5956 | TL.setRAngleLoc(TemplateId->RAngleLoc); | |||
5957 | if (TemplateId->NumArgs == 0) | |||
5958 | return; | |||
5959 | TemplateArgumentListInfo TemplateArgsInfo; | |||
5960 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |||
5961 | TemplateId->NumArgs); | |||
5962 | SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo); | |||
5963 | for (unsigned I = 0; I < TemplateId->NumArgs; ++I) | |||
5964 | TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo()); | |||
5965 | } | |||
5966 | void VisitTagTypeLoc(TagTypeLoc TL) { | |||
5967 | TL.setNameLoc(DS.getTypeSpecTypeNameLoc()); | |||
5968 | } | |||
5969 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { | |||
5970 | // An AtomicTypeLoc can come from either an _Atomic(...) type specifier | |||
5971 | // or an _Atomic qualifier. | |||
5972 | if (DS.getTypeSpecType() == DeclSpec::TST_atomic) { | |||
5973 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | |||
5974 | TL.setParensRange(DS.getTypeofParensRange()); | |||
5975 | ||||
5976 | TypeSourceInfo *TInfo = nullptr; | |||
5977 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5978 | assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 5978, __PRETTY_FUNCTION__)); | |||
5979 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | |||
5980 | } else { | |||
5981 | TL.setKWLoc(DS.getAtomicSpecLoc()); | |||
5982 | // No parens, to indicate this was spelled as an _Atomic qualifier. | |||
5983 | TL.setParensRange(SourceRange()); | |||
5984 | Visit(TL.getValueLoc()); | |||
5985 | } | |||
5986 | } | |||
5987 | ||||
5988 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | |||
5989 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); | |||
5990 | ||||
5991 | TypeSourceInfo *TInfo = nullptr; | |||
5992 | Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo); | |||
5993 | TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc()); | |||
5994 | } | |||
5995 | ||||
5996 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | |||
5997 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | |||
5998 | } | |||
5999 | ||||
6000 | void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) { | |||
6001 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); | |||
6002 | } | |||
6003 | ||||
6004 | void VisitTypeLoc(TypeLoc TL) { | |||
6005 | // FIXME: add other typespec types and change this to an assert. | |||
6006 | TL.initialize(Context, DS.getTypeSpecTypeLoc()); | |||
6007 | } | |||
6008 | }; | |||
6009 | ||||
6010 | class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> { | |||
6011 | ASTContext &Context; | |||
6012 | TypeProcessingState &State; | |||
6013 | const DeclaratorChunk &Chunk; | |||
6014 | ||||
6015 | public: | |||
6016 | DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State, | |||
6017 | const DeclaratorChunk &Chunk) | |||
6018 | : Context(Context), State(State), Chunk(Chunk) {} | |||
6019 | ||||
6020 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { | |||
6021 | llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6021); | |||
6022 | } | |||
6023 | void VisitDecayedTypeLoc(DecayedTypeLoc TL) { | |||
6024 | llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6024); | |||
6025 | } | |||
6026 | ||||
6027 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { | |||
6028 | fillAttributedTypeLoc(TL, State); | |||
6029 | } | |||
6030 | void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { | |||
6031 | // nothing | |||
6032 | } | |||
6033 | void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { | |||
6034 | assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((Chunk.Kind == DeclaratorChunk::BlockPointer) ? static_cast< void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6034, __PRETTY_FUNCTION__)); | |||
6035 | TL.setCaretLoc(Chunk.Loc); | |||
6036 | } | |||
6037 | void VisitPointerTypeLoc(PointerTypeLoc TL) { | |||
6038 | assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void > (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6038, __PRETTY_FUNCTION__)); | |||
6039 | TL.setStarLoc(Chunk.Loc); | |||
6040 | } | |||
6041 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { | |||
6042 | assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void > (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6042, __PRETTY_FUNCTION__)); | |||
6043 | TL.setStarLoc(Chunk.Loc); | |||
6044 | } | |||
6045 | void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { | |||
6046 | assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((Chunk.Kind == DeclaratorChunk::MemberPointer) ? static_cast <void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6046, __PRETTY_FUNCTION__)); | |||
6047 | const CXXScopeSpec& SS = Chunk.Mem.Scope(); | |||
6048 | NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context); | |||
6049 | ||||
6050 | const Type* ClsTy = TL.getClass(); | |||
6051 | QualType ClsQT = QualType(ClsTy, 0); | |||
6052 | TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0); | |||
6053 | // Now copy source location info into the type loc component. | |||
6054 | TypeLoc ClsTL = ClsTInfo->getTypeLoc(); | |||
6055 | switch (NNSLoc.getNestedNameSpecifier()->getKind()) { | |||
6056 | case NestedNameSpecifier::Identifier: | |||
6057 | assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc" ) ? static_cast<void> (0) : __assert_fail ("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6057, __PRETTY_FUNCTION__)); | |||
6058 | { | |||
6059 | DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>(); | |||
6060 | DNTLoc.setElaboratedKeywordLoc(SourceLocation()); | |||
6061 | DNTLoc.setQualifierLoc(NNSLoc.getPrefix()); | |||
6062 | DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc()); | |||
6063 | } | |||
6064 | break; | |||
6065 | ||||
6066 | case NestedNameSpecifier::TypeSpec: | |||
6067 | case NestedNameSpecifier::TypeSpecWithTemplate: | |||
6068 | if (isa<ElaboratedType>(ClsTy)) { | |||
6069 | ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>(); | |||
6070 | ETLoc.setElaboratedKeywordLoc(SourceLocation()); | |||
6071 | ETLoc.setQualifierLoc(NNSLoc.getPrefix()); | |||
6072 | TypeLoc NamedTL = ETLoc.getNamedTypeLoc(); | |||
6073 | NamedTL.initializeFullCopy(NNSLoc.getTypeLoc()); | |||
6074 | } else { | |||
6075 | ClsTL.initializeFullCopy(NNSLoc.getTypeLoc()); | |||
6076 | } | |||
6077 | break; | |||
6078 | ||||
6079 | case NestedNameSpecifier::Namespace: | |||
6080 | case NestedNameSpecifier::NamespaceAlias: | |||
6081 | case NestedNameSpecifier::Global: | |||
6082 | case NestedNameSpecifier::Super: | |||
6083 | llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6083); | |||
6084 | } | |||
6085 | ||||
6086 | // Finally fill in MemberPointerLocInfo fields. | |||
6087 | TL.setStarLoc(SourceLocation::getFromRawEncoding(Chunk.Mem.StarLoc)); | |||
6088 | TL.setClassTInfo(ClsTInfo); | |||
6089 | } | |||
6090 | void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { | |||
6091 | assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast< void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6091, __PRETTY_FUNCTION__)); | |||
6092 | // 'Amp' is misleading: this might have been originally | |||
6093 | /// spelled with AmpAmp. | |||
6094 | TL.setAmpLoc(Chunk.Loc); | |||
6095 | } | |||
6096 | void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { | |||
6097 | assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast< void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6097, __PRETTY_FUNCTION__)); | |||
6098 | assert(!Chunk.Ref.LValueRef)((!Chunk.Ref.LValueRef) ? static_cast<void> (0) : __assert_fail ("!Chunk.Ref.LValueRef", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6098, __PRETTY_FUNCTION__)); | |||
6099 | TL.setAmpAmpLoc(Chunk.Loc); | |||
6100 | } | |||
6101 | void VisitArrayTypeLoc(ArrayTypeLoc TL) { | |||
6102 | assert(Chunk.Kind == DeclaratorChunk::Array)((Chunk.Kind == DeclaratorChunk::Array) ? static_cast<void > (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6102, __PRETTY_FUNCTION__)); | |||
6103 | TL.setLBracketLoc(Chunk.Loc); | |||
6104 | TL.setRBracketLoc(Chunk.EndLoc); | |||
6105 | TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts)); | |||
6106 | } | |||
6107 | void VisitFunctionTypeLoc(FunctionTypeLoc TL) { | |||
6108 | assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void > (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6108, __PRETTY_FUNCTION__)); | |||
6109 | TL.setLocalRangeBegin(Chunk.Loc); | |||
6110 | TL.setLocalRangeEnd(Chunk.EndLoc); | |||
6111 | ||||
6112 | const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun; | |||
6113 | TL.setLParenLoc(FTI.getLParenLoc()); | |||
6114 | TL.setRParenLoc(FTI.getRParenLoc()); | |||
6115 | for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) { | |||
6116 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | |||
6117 | TL.setParam(tpi++, Param); | |||
6118 | } | |||
6119 | TL.setExceptionSpecRange(FTI.getExceptionSpecRange()); | |||
6120 | } | |||
6121 | void VisitParenTypeLoc(ParenTypeLoc TL) { | |||
6122 | assert(Chunk.Kind == DeclaratorChunk::Paren)((Chunk.Kind == DeclaratorChunk::Paren) ? static_cast<void > (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6122, __PRETTY_FUNCTION__)); | |||
6123 | TL.setLParenLoc(Chunk.Loc); | |||
6124 | TL.setRParenLoc(Chunk.EndLoc); | |||
6125 | } | |||
6126 | void VisitPipeTypeLoc(PipeTypeLoc TL) { | |||
6127 | assert(Chunk.Kind == DeclaratorChunk::Pipe)((Chunk.Kind == DeclaratorChunk::Pipe) ? static_cast<void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6127, __PRETTY_FUNCTION__)); | |||
6128 | TL.setKWLoc(Chunk.Loc); | |||
6129 | } | |||
6130 | void VisitExtIntTypeLoc(ExtIntTypeLoc TL) { | |||
6131 | TL.setNameLoc(Chunk.Loc); | |||
6132 | } | |||
6133 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { | |||
6134 | TL.setExpansionLoc(Chunk.Loc); | |||
6135 | } | |||
6136 | ||||
6137 | void VisitTypeLoc(TypeLoc TL) { | |||
6138 | llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6138); | |||
6139 | } | |||
6140 | }; | |||
6141 | } // end anonymous namespace | |||
6142 | ||||
6143 | static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) { | |||
6144 | SourceLocation Loc; | |||
6145 | switch (Chunk.Kind) { | |||
6146 | case DeclaratorChunk::Function: | |||
6147 | case DeclaratorChunk::Array: | |||
6148 | case DeclaratorChunk::Paren: | |||
6149 | case DeclaratorChunk::Pipe: | |||
6150 | llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6150); | |||
6151 | ||||
6152 | case DeclaratorChunk::Pointer: | |||
6153 | Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc); | |||
6154 | break; | |||
6155 | ||||
6156 | case DeclaratorChunk::BlockPointer: | |||
6157 | case DeclaratorChunk::Reference: | |||
6158 | case DeclaratorChunk::MemberPointer: | |||
6159 | // FIXME: Provide a source location for the _Atomic keyword. | |||
6160 | break; | |||
6161 | } | |||
6162 | ||||
6163 | ATL.setKWLoc(Loc); | |||
6164 | ATL.setParensRange(SourceRange()); | |||
6165 | } | |||
6166 | ||||
6167 | static void | |||
6168 | fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, | |||
6169 | const ParsedAttributesView &Attrs) { | |||
6170 | for (const ParsedAttr &AL : Attrs) { | |||
6171 | if (AL.getKind() == ParsedAttr::AT_AddressSpace) { | |||
6172 | DASTL.setAttrNameLoc(AL.getLoc()); | |||
6173 | DASTL.setAttrExprOperand(AL.getArgAsExpr(0)); | |||
6174 | DASTL.setAttrOperandParensRange(SourceRange()); | |||
6175 | return; | |||
6176 | } | |||
6177 | } | |||
6178 | ||||
6179 | llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6180) | |||
6180 | "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6180); | |||
6181 | } | |||
6182 | ||||
6183 | static void fillMatrixTypeLoc(MatrixTypeLoc MTL, | |||
6184 | const ParsedAttributesView &Attrs) { | |||
6185 | for (const ParsedAttr &AL : Attrs) { | |||
6186 | if (AL.getKind() == ParsedAttr::AT_MatrixType) { | |||
6187 | MTL.setAttrNameLoc(AL.getLoc()); | |||
6188 | MTL.setAttrRowOperand(AL.getArgAsExpr(0)); | |||
6189 | MTL.setAttrColumnOperand(AL.getArgAsExpr(1)); | |||
6190 | MTL.setAttrOperandParensRange(SourceRange()); | |||
6191 | return; | |||
6192 | } | |||
6193 | } | |||
6194 | ||||
6195 | llvm_unreachable("no matrix_type attribute found at the expected location!")::llvm::llvm_unreachable_internal("no matrix_type attribute found at the expected location!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6195); | |||
6196 | } | |||
6197 | ||||
6198 | /// Create and instantiate a TypeSourceInfo with type source information. | |||
6199 | /// | |||
6200 | /// \param T QualType referring to the type as written in source code. | |||
6201 | /// | |||
6202 | /// \param ReturnTypeInfo For declarators whose return type does not show | |||
6203 | /// up in the normal place in the declaration specifiers (such as a C++ | |||
6204 | /// conversion function), this pointer will refer to a type source information | |||
6205 | /// for that return type. | |||
6206 | static TypeSourceInfo * | |||
6207 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, | |||
6208 | QualType T, TypeSourceInfo *ReturnTypeInfo) { | |||
6209 | Sema &S = State.getSema(); | |||
6210 | Declarator &D = State.getDeclarator(); | |||
6211 | ||||
6212 | TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T); | |||
6213 | UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc(); | |||
6214 | ||||
6215 | // Handle parameter packs whose type is a pack expansion. | |||
6216 | if (isa<PackExpansionType>(T)) { | |||
6217 | CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc()); | |||
6218 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); | |||
6219 | } | |||
6220 | ||||
6221 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | |||
6222 | // An AtomicTypeLoc might be produced by an atomic qualifier in this | |||
6223 | // declarator chunk. | |||
6224 | if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) { | |||
6225 | fillAtomicQualLoc(ATL, D.getTypeObject(i)); | |||
6226 | CurrTL = ATL.getValueLoc().getUnqualifiedLoc(); | |||
6227 | } | |||
6228 | ||||
6229 | while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) { | |||
6230 | TL.setExpansionLoc( | |||
6231 | State.getExpansionLocForMacroQualifiedType(TL.getTypePtr())); | |||
6232 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | |||
6233 | } | |||
6234 | ||||
6235 | while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) { | |||
6236 | fillAttributedTypeLoc(TL, State); | |||
6237 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | |||
6238 | } | |||
6239 | ||||
6240 | while (DependentAddressSpaceTypeLoc TL = | |||
6241 | CurrTL.getAs<DependentAddressSpaceTypeLoc>()) { | |||
6242 | fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs()); | |||
6243 | CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc(); | |||
6244 | } | |||
6245 | ||||
6246 | if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>()) | |||
6247 | fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs()); | |||
6248 | ||||
6249 | // FIXME: Ordering here? | |||
6250 | while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>()) | |||
6251 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); | |||
6252 | ||||
6253 | DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL); | |||
6254 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); | |||
6255 | } | |||
6256 | ||||
6257 | // If we have different source information for the return type, use | |||
6258 | // that. This really only applies to C++ conversion functions. | |||
6259 | if (ReturnTypeInfo) { | |||
6260 | TypeLoc TL = ReturnTypeInfo->getTypeLoc(); | |||
6261 | assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((TL.getFullDataSize() == CurrTL.getFullDataSize()) ? static_cast <void> (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6261, __PRETTY_FUNCTION__)); | |||
6262 | memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize()); | |||
6263 | } else { | |||
6264 | TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL); | |||
6265 | } | |||
6266 | ||||
6267 | return TInfo; | |||
6268 | } | |||
6269 | ||||
6270 | /// Create a LocInfoType to hold the given QualType and TypeSourceInfo. | |||
6271 | ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) { | |||
6272 | // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser | |||
6273 | // and Sema during declaration parsing. Try deallocating/caching them when | |||
6274 | // it's appropriate, instead of allocating them and keeping them around. | |||
6275 | LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), | |||
6276 | TypeAlignment); | |||
6277 | new (LocT) LocInfoType(T, TInfo); | |||
6278 | assert(LocT->getTypeClass() != T->getTypeClass() &&((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class" ) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6279, __PRETTY_FUNCTION__)) | |||
6279 | "LocInfoType's TypeClass conflicts with an existing Type class")((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class" ) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6279, __PRETTY_FUNCTION__)); | |||
6280 | return ParsedType::make(QualType(LocT, 0)); | |||
6281 | } | |||
6282 | ||||
6283 | void LocInfoType::getAsStringInternal(std::string &Str, | |||
6284 | const PrintingPolicy &Policy) const { | |||
6285 | llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*" " was used directly instead of getting the QualType through" " GetTypeFromParser", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6287) | |||
6286 | " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*" " was used directly instead of getting the QualType through" " GetTypeFromParser", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6287) | |||
6287 | " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*" " was used directly instead of getting the QualType through" " GetTypeFromParser", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6287); | |||
6288 | } | |||
6289 | ||||
6290 | TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) { | |||
6291 | // C99 6.7.6: Type names have no identifier. This is already validated by | |||
6292 | // the parser. | |||
6293 | assert(D.getIdentifier() == nullptr &&((D.getIdentifier() == nullptr && "Type name should have no identifier!" ) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6294, __PRETTY_FUNCTION__)) | |||
6294 | "Type name should have no identifier!")((D.getIdentifier() == nullptr && "Type name should have no identifier!" ) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6294, __PRETTY_FUNCTION__)); | |||
6295 | ||||
6296 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
6297 | QualType T = TInfo->getType(); | |||
6298 | if (D.isInvalidType()) | |||
6299 | return true; | |||
6300 | ||||
6301 | // Make sure there are no unused decl attributes on the declarator. | |||
6302 | // We don't want to do this for ObjC parameters because we're going | |||
6303 | // to apply them to the actual parameter declaration. | |||
6304 | // Likewise, we don't want to do this for alias declarations, because | |||
6305 | // we are actually going to build a declaration from this eventually. | |||
6306 | if (D.getContext() != DeclaratorContext::ObjCParameter && | |||
6307 | D.getContext() != DeclaratorContext::AliasDecl && | |||
6308 | D.getContext() != DeclaratorContext::AliasTemplate) | |||
6309 | checkUnusedDeclAttributes(D); | |||
6310 | ||||
6311 | if (getLangOpts().CPlusPlus) { | |||
6312 | // Check that there are no default arguments (C++ only). | |||
6313 | CheckExtraCXXDefaultArguments(D); | |||
6314 | } | |||
6315 | ||||
6316 | return CreateParsedType(T, TInfo); | |||
6317 | } | |||
6318 | ||||
6319 | ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) { | |||
6320 | QualType T = Context.getObjCInstanceType(); | |||
6321 | TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | |||
6322 | return CreateParsedType(T, TInfo); | |||
6323 | } | |||
6324 | ||||
6325 | //===----------------------------------------------------------------------===// | |||
6326 | // Type Attribute Processing | |||
6327 | //===----------------------------------------------------------------------===// | |||
6328 | ||||
6329 | /// Build an AddressSpace index from a constant expression and diagnose any | |||
6330 | /// errors related to invalid address_spaces. Returns true on successfully | |||
6331 | /// building an AddressSpace index. | |||
6332 | static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx, | |||
6333 | const Expr *AddrSpace, | |||
6334 | SourceLocation AttrLoc) { | |||
6335 | if (!AddrSpace->isValueDependent()) { | |||
6336 | Optional<llvm::APSInt> OptAddrSpace = | |||
6337 | AddrSpace->getIntegerConstantExpr(S.Context); | |||
6338 | if (!OptAddrSpace) { | |||
6339 | S.Diag(AttrLoc, diag::err_attribute_argument_type) | |||
6340 | << "'address_space'" << AANT_ArgumentIntegerConstant | |||
6341 | << AddrSpace->getSourceRange(); | |||
6342 | return false; | |||
6343 | } | |||
6344 | llvm::APSInt &addrSpace = *OptAddrSpace; | |||
6345 | ||||
6346 | // Bounds checking. | |||
6347 | if (addrSpace.isSigned()) { | |||
6348 | if (addrSpace.isNegative()) { | |||
6349 | S.Diag(AttrLoc, diag::err_attribute_address_space_negative) | |||
6350 | << AddrSpace->getSourceRange(); | |||
6351 | return false; | |||
6352 | } | |||
6353 | addrSpace.setIsSigned(false); | |||
6354 | } | |||
6355 | ||||
6356 | llvm::APSInt max(addrSpace.getBitWidth()); | |||
6357 | max = | |||
6358 | Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace; | |||
6359 | if (addrSpace > max) { | |||
6360 | S.Diag(AttrLoc, diag::err_attribute_address_space_too_high) | |||
6361 | << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange(); | |||
6362 | return false; | |||
6363 | } | |||
6364 | ||||
6365 | ASIdx = | |||
6366 | getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue())); | |||
6367 | return true; | |||
6368 | } | |||
6369 | ||||
6370 | // Default value for DependentAddressSpaceTypes | |||
6371 | ASIdx = LangAS::Default; | |||
6372 | return true; | |||
6373 | } | |||
6374 | ||||
6375 | /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression | |||
6376 | /// is uninstantiated. If instantiated it will apply the appropriate address | |||
6377 | /// space to the type. This function allows dependent template variables to be | |||
6378 | /// used in conjunction with the address_space attribute | |||
6379 | QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, | |||
6380 | SourceLocation AttrLoc) { | |||
6381 | if (!AddrSpace->isValueDependent()) { | |||
6382 | if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx, | |||
6383 | AttrLoc)) | |||
6384 | return QualType(); | |||
6385 | ||||
6386 | return Context.getAddrSpaceQualType(T, ASIdx); | |||
6387 | } | |||
6388 | ||||
6389 | // A check with similar intentions as checking if a type already has an | |||
6390 | // address space except for on a dependent types, basically if the | |||
6391 | // current type is already a DependentAddressSpaceType then its already | |||
6392 | // lined up to have another address space on it and we can't have | |||
6393 | // multiple address spaces on the one pointer indirection | |||
6394 | if (T->getAs<DependentAddressSpaceType>()) { | |||
6395 | Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); | |||
6396 | return QualType(); | |||
6397 | } | |||
6398 | ||||
6399 | return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc); | |||
6400 | } | |||
6401 | ||||
6402 | QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, | |||
6403 | SourceLocation AttrLoc) { | |||
6404 | LangAS ASIdx; | |||
6405 | if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc)) | |||
6406 | return QualType(); | |||
6407 | return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc); | |||
6408 | } | |||
6409 | ||||
6410 | /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the | |||
6411 | /// specified type. The attribute contains 1 argument, the id of the address | |||
6412 | /// space for the type. | |||
6413 | static void HandleAddressSpaceTypeAttribute(QualType &Type, | |||
6414 | const ParsedAttr &Attr, | |||
6415 | TypeProcessingState &State) { | |||
6416 | Sema &S = State.getSema(); | |||
6417 | ||||
6418 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be | |||
6419 | // qualified by an address-space qualifier." | |||
6420 | if (Type->isFunctionType()) { | |||
6421 | S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type); | |||
6422 | Attr.setInvalid(); | |||
6423 | return; | |||
6424 | } | |||
6425 | ||||
6426 | LangAS ASIdx; | |||
6427 | if (Attr.getKind() == ParsedAttr::AT_AddressSpace) { | |||
6428 | ||||
6429 | // Check the attribute arguments. | |||
6430 | if (Attr.getNumArgs() != 1) { | |||
6431 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | |||
6432 | << 1; | |||
6433 | Attr.setInvalid(); | |||
6434 | return; | |||
6435 | } | |||
6436 | ||||
6437 | Expr *ASArgExpr; | |||
6438 | if (Attr.isArgIdent(0)) { | |||
6439 | // Special case where the argument is a template id. | |||
6440 | CXXScopeSpec SS; | |||
6441 | SourceLocation TemplateKWLoc; | |||
6442 | UnqualifiedId id; | |||
6443 | id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc()); | |||
6444 | ||||
6445 | ExprResult AddrSpace = S.ActOnIdExpression( | |||
6446 | S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false, | |||
6447 | /*IsAddressOfOperand=*/false); | |||
6448 | if (AddrSpace.isInvalid()) | |||
6449 | return; | |||
6450 | ||||
6451 | ASArgExpr = static_cast<Expr *>(AddrSpace.get()); | |||
6452 | } else { | |||
6453 | ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0)); | |||
6454 | } | |||
6455 | ||||
6456 | LangAS ASIdx; | |||
6457 | if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) { | |||
6458 | Attr.setInvalid(); | |||
6459 | return; | |||
6460 | } | |||
6461 | ||||
6462 | ASTContext &Ctx = S.Context; | |||
6463 | auto *ASAttr = | |||
6464 | ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx)); | |||
6465 | ||||
6466 | // If the expression is not value dependent (not templated), then we can | |||
6467 | // apply the address space qualifiers just to the equivalent type. | |||
6468 | // Otherwise, we make an AttributedType with the modified and equivalent | |||
6469 | // type the same, and wrap it in a DependentAddressSpaceType. When this | |||
6470 | // dependent type is resolved, the qualifier is added to the equivalent type | |||
6471 | // later. | |||
6472 | QualType T; | |||
6473 | if (!ASArgExpr->isValueDependent()) { | |||
6474 | QualType EquivType = | |||
6475 | S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc()); | |||
6476 | if (EquivType.isNull()) { | |||
6477 | Attr.setInvalid(); | |||
6478 | return; | |||
6479 | } | |||
6480 | T = State.getAttributedType(ASAttr, Type, EquivType); | |||
6481 | } else { | |||
6482 | T = State.getAttributedType(ASAttr, Type, Type); | |||
6483 | T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc()); | |||
6484 | } | |||
6485 | ||||
6486 | if (!T.isNull()) | |||
6487 | Type = T; | |||
6488 | else | |||
6489 | Attr.setInvalid(); | |||
6490 | } else { | |||
6491 | // The keyword-based type attributes imply which address space to use. | |||
6492 | ASIdx = Attr.asOpenCLLangAS(); | |||
6493 | if (ASIdx == LangAS::Default) | |||
6494 | llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6494); | |||
6495 | ||||
6496 | if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx, | |||
6497 | Attr.getLoc())) { | |||
6498 | Attr.setInvalid(); | |||
6499 | return; | |||
6500 | } | |||
6501 | ||||
6502 | Type = S.Context.getAddrSpaceQualType(Type, ASIdx); | |||
6503 | } | |||
6504 | } | |||
6505 | ||||
6506 | /// handleObjCOwnershipTypeAttr - Process an objc_ownership | |||
6507 | /// attribute on the specified type. | |||
6508 | /// | |||
6509 | /// Returns 'true' if the attribute was handled. | |||
6510 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, | |||
6511 | ParsedAttr &attr, QualType &type) { | |||
6512 | bool NonObjCPointer = false; | |||
6513 | ||||
6514 | if (!type->isDependentType() && !type->isUndeducedType()) { | |||
6515 | if (const PointerType *ptr = type->getAs<PointerType>()) { | |||
6516 | QualType pointee = ptr->getPointeeType(); | |||
6517 | if (pointee->isObjCRetainableType() || pointee->isPointerType()) | |||
6518 | return false; | |||
6519 | // It is important not to lose the source info that there was an attribute | |||
6520 | // applied to non-objc pointer. We will create an attributed type but | |||
6521 | // its type will be the same as the original type. | |||
6522 | NonObjCPointer = true; | |||
6523 | } else if (!type->isObjCRetainableType()) { | |||
6524 | return false; | |||
6525 | } | |||
6526 | ||||
6527 | // Don't accept an ownership attribute in the declspec if it would | |||
6528 | // just be the return type of a block pointer. | |||
6529 | if (state.isProcessingDeclSpec()) { | |||
6530 | Declarator &D = state.getDeclarator(); | |||
6531 | if (maybeMovePastReturnType(D, D.getNumTypeObjects(), | |||
6532 | /*onlyBlockPointers=*/true)) | |||
6533 | return false; | |||
6534 | } | |||
6535 | } | |||
6536 | ||||
6537 | Sema &S = state.getSema(); | |||
6538 | SourceLocation AttrLoc = attr.getLoc(); | |||
6539 | if (AttrLoc.isMacroID()) | |||
6540 | AttrLoc = | |||
6541 | S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin(); | |||
6542 | ||||
6543 | if (!attr.isArgIdent(0)) { | |||
6544 | S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr | |||
6545 | << AANT_ArgumentString; | |||
6546 | attr.setInvalid(); | |||
6547 | return true; | |||
6548 | } | |||
6549 | ||||
6550 | IdentifierInfo *II = attr.getArgAsIdent(0)->Ident; | |||
6551 | Qualifiers::ObjCLifetime lifetime; | |||
6552 | if (II->isStr("none")) | |||
6553 | lifetime = Qualifiers::OCL_ExplicitNone; | |||
6554 | else if (II->isStr("strong")) | |||
6555 | lifetime = Qualifiers::OCL_Strong; | |||
6556 | else if (II->isStr("weak")) | |||
6557 | lifetime = Qualifiers::OCL_Weak; | |||
6558 | else if (II->isStr("autoreleasing")) | |||
6559 | lifetime = Qualifiers::OCL_Autoreleasing; | |||
6560 | else { | |||
6561 | S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II; | |||
6562 | attr.setInvalid(); | |||
6563 | return true; | |||
6564 | } | |||
6565 | ||||
6566 | // Just ignore lifetime attributes other than __weak and __unsafe_unretained | |||
6567 | // outside of ARC mode. | |||
6568 | if (!S.getLangOpts().ObjCAutoRefCount && | |||
6569 | lifetime != Qualifiers::OCL_Weak && | |||
6570 | lifetime != Qualifiers::OCL_ExplicitNone) { | |||
6571 | return true; | |||
6572 | } | |||
6573 | ||||
6574 | SplitQualType underlyingType = type.split(); | |||
6575 | ||||
6576 | // Check for redundant/conflicting ownership qualifiers. | |||
6577 | if (Qualifiers::ObjCLifetime previousLifetime | |||
6578 | = type.getQualifiers().getObjCLifetime()) { | |||
6579 | // If it's written directly, that's an error. | |||
6580 | if (S.Context.hasDirectOwnershipQualifier(type)) { | |||
6581 | S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant) | |||
6582 | << type; | |||
6583 | return true; | |||
6584 | } | |||
6585 | ||||
6586 | // Otherwise, if the qualifiers actually conflict, pull sugar off | |||
6587 | // and remove the ObjCLifetime qualifiers. | |||
6588 | if (previousLifetime != lifetime) { | |||
6589 | // It's possible to have multiple local ObjCLifetime qualifiers. We | |||
6590 | // can't stop after we reach a type that is directly qualified. | |||
6591 | const Type *prevTy = nullptr; | |||
6592 | while (!prevTy || prevTy != underlyingType.Ty) { | |||
6593 | prevTy = underlyingType.Ty; | |||
6594 | underlyingType = underlyingType.getSingleStepDesugaredType(); | |||
6595 | } | |||
6596 | underlyingType.Quals.removeObjCLifetime(); | |||
6597 | } | |||
6598 | } | |||
6599 | ||||
6600 | underlyingType.Quals.addObjCLifetime(lifetime); | |||
6601 | ||||
6602 | if (NonObjCPointer) { | |||
6603 | StringRef name = attr.getAttrName()->getName(); | |||
6604 | switch (lifetime) { | |||
6605 | case Qualifiers::OCL_None: | |||
6606 | case Qualifiers::OCL_ExplicitNone: | |||
6607 | break; | |||
6608 | case Qualifiers::OCL_Strong: name = "__strong"; break; | |||
6609 | case Qualifiers::OCL_Weak: name = "__weak"; break; | |||
6610 | case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break; | |||
6611 | } | |||
6612 | S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name | |||
6613 | << TDS_ObjCObjOrBlock << type; | |||
6614 | } | |||
6615 | ||||
6616 | // Don't actually add the __unsafe_unretained qualifier in non-ARC files, | |||
6617 | // because having both 'T' and '__unsafe_unretained T' exist in the type | |||
6618 | // system causes unfortunate widespread consistency problems. (For example, | |||
6619 | // they're not considered compatible types, and we mangle them identicially | |||
6620 | // as template arguments.) These problems are all individually fixable, | |||
6621 | // but it's easier to just not add the qualifier and instead sniff it out | |||
6622 | // in specific places using isObjCInertUnsafeUnretainedType(). | |||
6623 | // | |||
6624 | // Doing this does means we miss some trivial consistency checks that | |||
6625 | // would've triggered in ARC, but that's better than trying to solve all | |||
6626 | // the coexistence problems with __unsafe_unretained. | |||
6627 | if (!S.getLangOpts().ObjCAutoRefCount && | |||
6628 | lifetime == Qualifiers::OCL_ExplicitNone) { | |||
6629 | type = state.getAttributedType( | |||
6630 | createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr), | |||
6631 | type, type); | |||
6632 | return true; | |||
6633 | } | |||
6634 | ||||
6635 | QualType origType = type; | |||
6636 | if (!NonObjCPointer) | |||
6637 | type = S.Context.getQualifiedType(underlyingType); | |||
6638 | ||||
6639 | // If we have a valid source location for the attribute, use an | |||
6640 | // AttributedType instead. | |||
6641 | if (AttrLoc.isValid()) { | |||
6642 | type = state.getAttributedType(::new (S.Context) | |||
6643 | ObjCOwnershipAttr(S.Context, attr, II), | |||
6644 | origType, type); | |||
6645 | } | |||
6646 | ||||
6647 | auto diagnoseOrDelay = [](Sema &S, SourceLocation loc, | |||
6648 | unsigned diagnostic, QualType type) { | |||
6649 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | |||
6650 | S.DelayedDiagnostics.add( | |||
6651 | sema::DelayedDiagnostic::makeForbiddenType( | |||
6652 | S.getSourceManager().getExpansionLoc(loc), | |||
6653 | diagnostic, type, /*ignored*/ 0)); | |||
6654 | } else { | |||
6655 | S.Diag(loc, diagnostic); | |||
6656 | } | |||
6657 | }; | |||
6658 | ||||
6659 | // Sometimes, __weak isn't allowed. | |||
6660 | if (lifetime == Qualifiers::OCL_Weak && | |||
6661 | !S.getLangOpts().ObjCWeak && !NonObjCPointer) { | |||
6662 | ||||
6663 | // Use a specialized diagnostic if the runtime just doesn't support them. | |||
6664 | unsigned diagnostic = | |||
6665 | (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled | |||
6666 | : diag::err_arc_weak_no_runtime); | |||
6667 | ||||
6668 | // In any case, delay the diagnostic until we know what we're parsing. | |||
6669 | diagnoseOrDelay(S, AttrLoc, diagnostic, type); | |||
6670 | ||||
6671 | attr.setInvalid(); | |||
6672 | return true; | |||
6673 | } | |||
6674 | ||||
6675 | // Forbid __weak for class objects marked as | |||
6676 | // objc_arc_weak_reference_unavailable | |||
6677 | if (lifetime == Qualifiers::OCL_Weak) { | |||
6678 | if (const ObjCObjectPointerType *ObjT = | |||
6679 | type->getAs<ObjCObjectPointerType>()) { | |||
6680 | if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) { | |||
6681 | if (Class->isArcWeakrefUnavailable()) { | |||
6682 | S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class); | |||
6683 | S.Diag(ObjT->getInterfaceDecl()->getLocation(), | |||
6684 | diag::note_class_declared); | |||
6685 | } | |||
6686 | } | |||
6687 | } | |||
6688 | } | |||
6689 | ||||
6690 | return true; | |||
6691 | } | |||
6692 | ||||
6693 | /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type | |||
6694 | /// attribute on the specified type. Returns true to indicate that | |||
6695 | /// the attribute was handled, false to indicate that the type does | |||
6696 | /// not permit the attribute. | |||
6697 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | |||
6698 | QualType &type) { | |||
6699 | Sema &S = state.getSema(); | |||
6700 | ||||
6701 | // Delay if this isn't some kind of pointer. | |||
6702 | if (!type->isPointerType() && | |||
6703 | !type->isObjCObjectPointerType() && | |||
6704 | !type->isBlockPointerType()) | |||
6705 | return false; | |||
6706 | ||||
6707 | if (type.getObjCGCAttr() != Qualifiers::GCNone) { | |||
6708 | S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc); | |||
6709 | attr.setInvalid(); | |||
6710 | return true; | |||
6711 | } | |||
6712 | ||||
6713 | // Check the attribute arguments. | |||
6714 | if (!attr.isArgIdent(0)) { | |||
6715 | S.Diag(attr.getLoc(), diag::err_attribute_argument_type) | |||
6716 | << attr << AANT_ArgumentString; | |||
6717 | attr.setInvalid(); | |||
6718 | return true; | |||
6719 | } | |||
6720 | Qualifiers::GC GCAttr; | |||
6721 | if (attr.getNumArgs() > 1) { | |||
6722 | S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr | |||
6723 | << 1; | |||
6724 | attr.setInvalid(); | |||
6725 | return true; | |||
6726 | } | |||
6727 | ||||
6728 | IdentifierInfo *II = attr.getArgAsIdent(0)->Ident; | |||
6729 | if (II->isStr("weak")) | |||
6730 | GCAttr = Qualifiers::Weak; | |||
6731 | else if (II->isStr("strong")) | |||
6732 | GCAttr = Qualifiers::Strong; | |||
6733 | else { | |||
6734 | S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported) | |||
6735 | << attr << II; | |||
6736 | attr.setInvalid(); | |||
6737 | return true; | |||
6738 | } | |||
6739 | ||||
6740 | QualType origType = type; | |||
6741 | type = S.Context.getObjCGCQualType(origType, GCAttr); | |||
6742 | ||||
6743 | // Make an attributed type to preserve the source information. | |||
6744 | if (attr.getLoc().isValid()) | |||
6745 | type = state.getAttributedType( | |||
6746 | ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type); | |||
6747 | ||||
6748 | return true; | |||
6749 | } | |||
6750 | ||||
6751 | namespace { | |||
6752 | /// A helper class to unwrap a type down to a function for the | |||
6753 | /// purposes of applying attributes there. | |||
6754 | /// | |||
6755 | /// Use: | |||
6756 | /// FunctionTypeUnwrapper unwrapped(SemaRef, T); | |||
6757 | /// if (unwrapped.isFunctionType()) { | |||
6758 | /// const FunctionType *fn = unwrapped.get(); | |||
6759 | /// // change fn somehow | |||
6760 | /// T = unwrapped.wrap(fn); | |||
6761 | /// } | |||
6762 | struct FunctionTypeUnwrapper { | |||
6763 | enum WrapKind { | |||
6764 | Desugar, | |||
6765 | Attributed, | |||
6766 | Parens, | |||
6767 | Array, | |||
6768 | Pointer, | |||
6769 | BlockPointer, | |||
6770 | Reference, | |||
6771 | MemberPointer, | |||
6772 | MacroQualified, | |||
6773 | }; | |||
6774 | ||||
6775 | QualType Original; | |||
6776 | const FunctionType *Fn; | |||
6777 | SmallVector<unsigned char /*WrapKind*/, 8> Stack; | |||
6778 | ||||
6779 | FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) { | |||
6780 | while (true) { | |||
6781 | const Type *Ty = T.getTypePtr(); | |||
6782 | if (isa<FunctionType>(Ty)) { | |||
6783 | Fn = cast<FunctionType>(Ty); | |||
6784 | return; | |||
6785 | } else if (isa<ParenType>(Ty)) { | |||
6786 | T = cast<ParenType>(Ty)->getInnerType(); | |||
6787 | Stack.push_back(Parens); | |||
6788 | } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) || | |||
6789 | isa<IncompleteArrayType>(Ty)) { | |||
6790 | T = cast<ArrayType>(Ty)->getElementType(); | |||
6791 | Stack.push_back(Array); | |||
6792 | } else if (isa<PointerType>(Ty)) { | |||
6793 | T = cast<PointerType>(Ty)->getPointeeType(); | |||
6794 | Stack.push_back(Pointer); | |||
6795 | } else if (isa<BlockPointerType>(Ty)) { | |||
6796 | T = cast<BlockPointerType>(Ty)->getPointeeType(); | |||
6797 | Stack.push_back(BlockPointer); | |||
6798 | } else if (isa<MemberPointerType>(Ty)) { | |||
6799 | T = cast<MemberPointerType>(Ty)->getPointeeType(); | |||
6800 | Stack.push_back(MemberPointer); | |||
6801 | } else if (isa<ReferenceType>(Ty)) { | |||
6802 | T = cast<ReferenceType>(Ty)->getPointeeType(); | |||
6803 | Stack.push_back(Reference); | |||
6804 | } else if (isa<AttributedType>(Ty)) { | |||
6805 | T = cast<AttributedType>(Ty)->getEquivalentType(); | |||
6806 | Stack.push_back(Attributed); | |||
6807 | } else if (isa<MacroQualifiedType>(Ty)) { | |||
6808 | T = cast<MacroQualifiedType>(Ty)->getUnderlyingType(); | |||
6809 | Stack.push_back(MacroQualified); | |||
6810 | } else { | |||
6811 | const Type *DTy = Ty->getUnqualifiedDesugaredType(); | |||
6812 | if (Ty == DTy) { | |||
6813 | Fn = nullptr; | |||
6814 | return; | |||
6815 | } | |||
6816 | ||||
6817 | T = QualType(DTy, 0); | |||
6818 | Stack.push_back(Desugar); | |||
6819 | } | |||
6820 | } | |||
6821 | } | |||
6822 | ||||
6823 | bool isFunctionType() const { return (Fn != nullptr); } | |||
6824 | const FunctionType *get() const { return Fn; } | |||
6825 | ||||
6826 | QualType wrap(Sema &S, const FunctionType *New) { | |||
6827 | // If T wasn't modified from the unwrapped type, do nothing. | |||
6828 | if (New == get()) return Original; | |||
6829 | ||||
6830 | Fn = New; | |||
6831 | return wrap(S.Context, Original, 0); | |||
6832 | } | |||
6833 | ||||
6834 | private: | |||
6835 | QualType wrap(ASTContext &C, QualType Old, unsigned I) { | |||
6836 | if (I == Stack.size()) | |||
6837 | return C.getQualifiedType(Fn, Old.getQualifiers()); | |||
6838 | ||||
6839 | // Build up the inner type, applying the qualifiers from the old | |||
6840 | // type to the new type. | |||
6841 | SplitQualType SplitOld = Old.split(); | |||
6842 | ||||
6843 | // As a special case, tail-recurse if there are no qualifiers. | |||
6844 | if (SplitOld.Quals.empty()) | |||
6845 | return wrap(C, SplitOld.Ty, I); | |||
6846 | return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals); | |||
6847 | } | |||
6848 | ||||
6849 | QualType wrap(ASTContext &C, const Type *Old, unsigned I) { | |||
6850 | if (I == Stack.size()) return QualType(Fn, 0); | |||
6851 | ||||
6852 | switch (static_cast<WrapKind>(Stack[I++])) { | |||
6853 | case Desugar: | |||
6854 | // This is the point at which we potentially lose source | |||
6855 | // information. | |||
6856 | return wrap(C, Old->getUnqualifiedDesugaredType(), I); | |||
6857 | ||||
6858 | case Attributed: | |||
6859 | return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I); | |||
6860 | ||||
6861 | case Parens: { | |||
6862 | QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I); | |||
6863 | return C.getParenType(New); | |||
6864 | } | |||
6865 | ||||
6866 | case MacroQualified: | |||
6867 | return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I); | |||
6868 | ||||
6869 | case Array: { | |||
6870 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) { | |||
6871 | QualType New = wrap(C, CAT->getElementType(), I); | |||
6872 | return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(), | |||
6873 | CAT->getSizeModifier(), | |||
6874 | CAT->getIndexTypeCVRQualifiers()); | |||
6875 | } | |||
6876 | ||||
6877 | if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) { | |||
6878 | QualType New = wrap(C, VAT->getElementType(), I); | |||
6879 | return C.getVariableArrayType( | |||
6880 | New, VAT->getSizeExpr(), VAT->getSizeModifier(), | |||
6881 | VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange()); | |||
6882 | } | |||
6883 | ||||
6884 | const auto *IAT = cast<IncompleteArrayType>(Old); | |||
6885 | QualType New = wrap(C, IAT->getElementType(), I); | |||
6886 | return C.getIncompleteArrayType(New, IAT->getSizeModifier(), | |||
6887 | IAT->getIndexTypeCVRQualifiers()); | |||
6888 | } | |||
6889 | ||||
6890 | case Pointer: { | |||
6891 | QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I); | |||
6892 | return C.getPointerType(New); | |||
6893 | } | |||
6894 | ||||
6895 | case BlockPointer: { | |||
6896 | QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I); | |||
6897 | return C.getBlockPointerType(New); | |||
6898 | } | |||
6899 | ||||
6900 | case MemberPointer: { | |||
6901 | const MemberPointerType *OldMPT = cast<MemberPointerType>(Old); | |||
6902 | QualType New = wrap(C, OldMPT->getPointeeType(), I); | |||
6903 | return C.getMemberPointerType(New, OldMPT->getClass()); | |||
6904 | } | |||
6905 | ||||
6906 | case Reference: { | |||
6907 | const ReferenceType *OldRef = cast<ReferenceType>(Old); | |||
6908 | QualType New = wrap(C, OldRef->getPointeeType(), I); | |||
6909 | if (isa<LValueReferenceType>(OldRef)) | |||
6910 | return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue()); | |||
6911 | else | |||
6912 | return C.getRValueReferenceType(New); | |||
6913 | } | |||
6914 | } | |||
6915 | ||||
6916 | llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6916); | |||
6917 | } | |||
6918 | }; | |||
6919 | } // end anonymous namespace | |||
6920 | ||||
6921 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State, | |||
6922 | ParsedAttr &PAttr, QualType &Type) { | |||
6923 | Sema &S = State.getSema(); | |||
6924 | ||||
6925 | Attr *A; | |||
6926 | switch (PAttr.getKind()) { | |||
6927 | default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 6927); | |||
6928 | case ParsedAttr::AT_Ptr32: | |||
6929 | A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr); | |||
6930 | break; | |||
6931 | case ParsedAttr::AT_Ptr64: | |||
6932 | A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr); | |||
6933 | break; | |||
6934 | case ParsedAttr::AT_SPtr: | |||
6935 | A = createSimpleAttr<SPtrAttr>(S.Context, PAttr); | |||
6936 | break; | |||
6937 | case ParsedAttr::AT_UPtr: | |||
6938 | A = createSimpleAttr<UPtrAttr>(S.Context, PAttr); | |||
6939 | break; | |||
6940 | } | |||
6941 | ||||
6942 | std::bitset<attr::LastAttr> Attrs; | |||
6943 | attr::Kind NewAttrKind = A->getKind(); | |||
6944 | QualType Desugared = Type; | |||
6945 | const AttributedType *AT = dyn_cast<AttributedType>(Type); | |||
6946 | while (AT) { | |||
6947 | Attrs[AT->getAttrKind()] = true; | |||
6948 | Desugared = AT->getModifiedType(); | |||
6949 | AT = dyn_cast<AttributedType>(Desugared); | |||
6950 | } | |||
6951 | ||||
6952 | // You cannot specify duplicate type attributes, so if the attribute has | |||
6953 | // already been applied, flag it. | |||
6954 | if (Attrs[NewAttrKind]) { | |||
6955 | S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr; | |||
6956 | return true; | |||
6957 | } | |||
6958 | Attrs[NewAttrKind] = true; | |||
6959 | ||||
6960 | // You cannot have both __sptr and __uptr on the same type, nor can you | |||
6961 | // have __ptr32 and __ptr64. | |||
6962 | if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) { | |||
6963 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) | |||
6964 | << "'__ptr32'" | |||
6965 | << "'__ptr64'"; | |||
6966 | return true; | |||
6967 | } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) { | |||
6968 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) | |||
6969 | << "'__sptr'" | |||
6970 | << "'__uptr'"; | |||
6971 | return true; | |||
6972 | } | |||
6973 | ||||
6974 | // Pointer type qualifiers can only operate on pointer types, but not | |||
6975 | // pointer-to-member types. | |||
6976 | // | |||
6977 | // FIXME: Should we really be disallowing this attribute if there is any | |||
6978 | // type sugar between it and the pointer (other than attributes)? Eg, this | |||
6979 | // disallows the attribute on a parenthesized pointer. | |||
6980 | // And if so, should we really allow *any* type attribute? | |||
6981 | if (!isa<PointerType>(Desugared)) { | |||
6982 | if (Type->isMemberPointerType()) | |||
6983 | S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr; | |||
6984 | else | |||
6985 | S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0; | |||
6986 | return true; | |||
6987 | } | |||
6988 | ||||
6989 | // Add address space to type based on its attributes. | |||
6990 | LangAS ASIdx = LangAS::Default; | |||
6991 | uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0); | |||
6992 | if (PtrWidth == 32) { | |||
6993 | if (Attrs[attr::Ptr64]) | |||
6994 | ASIdx = LangAS::ptr64; | |||
6995 | else if (Attrs[attr::UPtr]) | |||
6996 | ASIdx = LangAS::ptr32_uptr; | |||
6997 | } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) { | |||
6998 | if (Attrs[attr::UPtr]) | |||
6999 | ASIdx = LangAS::ptr32_uptr; | |||
7000 | else | |||
7001 | ASIdx = LangAS::ptr32_sptr; | |||
7002 | } | |||
7003 | ||||
7004 | QualType Pointee = Type->getPointeeType(); | |||
7005 | if (ASIdx != LangAS::Default) | |||
7006 | Pointee = S.Context.getAddrSpaceQualType( | |||
7007 | S.Context.removeAddrSpaceQualType(Pointee), ASIdx); | |||
7008 | Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee)); | |||
7009 | return false; | |||
7010 | } | |||
7011 | ||||
7012 | /// Map a nullability attribute kind to a nullability kind. | |||
7013 | static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) { | |||
7014 | switch (kind) { | |||
7015 | case ParsedAttr::AT_TypeNonNull: | |||
7016 | return NullabilityKind::NonNull; | |||
7017 | ||||
7018 | case ParsedAttr::AT_TypeNullable: | |||
7019 | return NullabilityKind::Nullable; | |||
7020 | ||||
7021 | case ParsedAttr::AT_TypeNullableResult: | |||
7022 | return NullabilityKind::NullableResult; | |||
7023 | ||||
7024 | case ParsedAttr::AT_TypeNullUnspecified: | |||
7025 | return NullabilityKind::Unspecified; | |||
7026 | ||||
7027 | default: | |||
7028 | llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7028); | |||
7029 | } | |||
7030 | } | |||
7031 | ||||
7032 | /// Applies a nullability type specifier to the given type, if possible. | |||
7033 | /// | |||
7034 | /// \param state The type processing state. | |||
7035 | /// | |||
7036 | /// \param type The type to which the nullability specifier will be | |||
7037 | /// added. On success, this type will be updated appropriately. | |||
7038 | /// | |||
7039 | /// \param attr The attribute as written on the type. | |||
7040 | /// | |||
7041 | /// \param allowOnArrayType Whether to accept nullability specifiers on an | |||
7042 | /// array type (e.g., because it will decay to a pointer). | |||
7043 | /// | |||
7044 | /// \returns true if a problem has been diagnosed, false on success. | |||
7045 | static bool checkNullabilityTypeSpecifier(TypeProcessingState &state, | |||
7046 | QualType &type, | |||
7047 | ParsedAttr &attr, | |||
7048 | bool allowOnArrayType) { | |||
7049 | Sema &S = state.getSema(); | |||
7050 | ||||
7051 | NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind()); | |||
7052 | SourceLocation nullabilityLoc = attr.getLoc(); | |||
7053 | bool isContextSensitive = attr.isContextSensitiveKeywordAttribute(); | |||
7054 | ||||
7055 | recordNullabilitySeen(S, nullabilityLoc); | |||
7056 | ||||
7057 | // Check for existing nullability attributes on the type. | |||
7058 | QualType desugared = type; | |||
7059 | while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) { | |||
7060 | // Check whether there is already a null | |||
7061 | if (auto existingNullability = attributed->getImmediateNullability()) { | |||
7062 | // Duplicated nullability. | |||
7063 | if (nullability == *existingNullability) { | |||
7064 | S.Diag(nullabilityLoc, diag::warn_nullability_duplicate) | |||
7065 | << DiagNullabilityKind(nullability, isContextSensitive) | |||
7066 | << FixItHint::CreateRemoval(nullabilityLoc); | |||
7067 | ||||
7068 | break; | |||
7069 | } | |||
7070 | ||||
7071 | // Conflicting nullability. | |||
7072 | S.Diag(nullabilityLoc, diag::err_nullability_conflicting) | |||
7073 | << DiagNullabilityKind(nullability, isContextSensitive) | |||
7074 | << DiagNullabilityKind(*existingNullability, false); | |||
7075 | return true; | |||
7076 | } | |||
7077 | ||||
7078 | desugared = attributed->getModifiedType(); | |||
7079 | } | |||
7080 | ||||
7081 | // If there is already a different nullability specifier, complain. | |||
7082 | // This (unlike the code above) looks through typedefs that might | |||
7083 | // have nullability specifiers on them, which means we cannot | |||
7084 | // provide a useful Fix-It. | |||
7085 | if (auto existingNullability = desugared->getNullability(S.Context)) { | |||
7086 | if (nullability != *existingNullability) { | |||
7087 | S.Diag(nullabilityLoc, diag::err_nullability_conflicting) | |||
7088 | << DiagNullabilityKind(nullability, isContextSensitive) | |||
7089 | << DiagNullabilityKind(*existingNullability, false); | |||
7090 | ||||
7091 | // Try to find the typedef with the existing nullability specifier. | |||
7092 | if (auto typedefType = desugared->getAs<TypedefType>()) { | |||
7093 | TypedefNameDecl *typedefDecl = typedefType->getDecl(); | |||
7094 | QualType underlyingType = typedefDecl->getUnderlyingType(); | |||
7095 | if (auto typedefNullability | |||
7096 | = AttributedType::stripOuterNullability(underlyingType)) { | |||
7097 | if (*typedefNullability == *existingNullability) { | |||
7098 | S.Diag(typedefDecl->getLocation(), diag::note_nullability_here) | |||
7099 | << DiagNullabilityKind(*existingNullability, false); | |||
7100 | } | |||
7101 | } | |||
7102 | } | |||
7103 | ||||
7104 | return true; | |||
7105 | } | |||
7106 | } | |||
7107 | ||||
7108 | // If this definitely isn't a pointer type, reject the specifier. | |||
7109 | if (!desugared->canHaveNullability() && | |||
7110 | !(allowOnArrayType && desugared->isArrayType())) { | |||
7111 | S.Diag(nullabilityLoc, diag::err_nullability_nonpointer) | |||
7112 | << DiagNullabilityKind(nullability, isContextSensitive) << type; | |||
7113 | return true; | |||
7114 | } | |||
7115 | ||||
7116 | // For the context-sensitive keywords/Objective-C property | |||
7117 | // attributes, require that the type be a single-level pointer. | |||
7118 | if (isContextSensitive) { | |||
7119 | // Make sure that the pointee isn't itself a pointer type. | |||
7120 | const Type *pointeeType = nullptr; | |||
7121 | if (desugared->isArrayType()) | |||
7122 | pointeeType = desugared->getArrayElementTypeNoTypeQual(); | |||
7123 | else if (desugared->isAnyPointerType()) | |||
7124 | pointeeType = desugared->getPointeeType().getTypePtr(); | |||
7125 | ||||
7126 | if (pointeeType && (pointeeType->isAnyPointerType() || | |||
7127 | pointeeType->isObjCObjectPointerType() || | |||
7128 | pointeeType->isMemberPointerType())) { | |||
7129 | S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel) | |||
7130 | << DiagNullabilityKind(nullability, true) | |||
7131 | << type; | |||
7132 | S.Diag(nullabilityLoc, diag::note_nullability_type_specifier) | |||
7133 | << DiagNullabilityKind(nullability, false) | |||
7134 | << type | |||
7135 | << FixItHint::CreateReplacement(nullabilityLoc, | |||
7136 | getNullabilitySpelling(nullability)); | |||
7137 | return true; | |||
7138 | } | |||
7139 | } | |||
7140 | ||||
7141 | // Form the attributed type. | |||
7142 | type = state.getAttributedType( | |||
7143 | createNullabilityAttr(S.Context, attr, nullability), type, type); | |||
7144 | return false; | |||
7145 | } | |||
7146 | ||||
7147 | /// Check the application of the Objective-C '__kindof' qualifier to | |||
7148 | /// the given type. | |||
7149 | static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type, | |||
7150 | ParsedAttr &attr) { | |||
7151 | Sema &S = state.getSema(); | |||
7152 | ||||
7153 | if (isa<ObjCTypeParamType>(type)) { | |||
7154 | // Build the attributed type to record where __kindof occurred. | |||
7155 | type = state.getAttributedType( | |||
7156 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type); | |||
7157 | return false; | |||
7158 | } | |||
7159 | ||||
7160 | // Find out if it's an Objective-C object or object pointer type; | |||
7161 | const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>(); | |||
7162 | const ObjCObjectType *objType = ptrType ? ptrType->getObjectType() | |||
7163 | : type->getAs<ObjCObjectType>(); | |||
7164 | ||||
7165 | // If not, we can't apply __kindof. | |||
7166 | if (!objType) { | |||
7167 | // FIXME: Handle dependent types that aren't yet object types. | |||
7168 | S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject) | |||
7169 | << type; | |||
7170 | return true; | |||
7171 | } | |||
7172 | ||||
7173 | // Rebuild the "equivalent" type, which pushes __kindof down into | |||
7174 | // the object type. | |||
7175 | // There is no need to apply kindof on an unqualified id type. | |||
7176 | QualType equivType = S.Context.getObjCObjectType( | |||
7177 | objType->getBaseType(), objType->getTypeArgsAsWritten(), | |||
7178 | objType->getProtocols(), | |||
7179 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); | |||
7180 | ||||
7181 | // If we started with an object pointer type, rebuild it. | |||
7182 | if (ptrType) { | |||
7183 | equivType = S.Context.getObjCObjectPointerType(equivType); | |||
7184 | if (auto nullability = type->getNullability(S.Context)) { | |||
7185 | // We create a nullability attribute from the __kindof attribute. | |||
7186 | // Make sure that will make sense. | |||
7187 | assert(attr.getAttributeSpellingListIndex() == 0 &&((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?" ) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7188, __PRETTY_FUNCTION__)) | |||
7188 | "multiple spellings for __kindof?")((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?" ) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7188, __PRETTY_FUNCTION__)); | |||
7189 | Attr *A = createNullabilityAttr(S.Context, attr, *nullability); | |||
7190 | A->setImplicit(true); | |||
7191 | equivType = state.getAttributedType(A, equivType, equivType); | |||
7192 | } | |||
7193 | } | |||
7194 | ||||
7195 | // Build the attributed type to record where __kindof occurred. | |||
7196 | type = state.getAttributedType( | |||
7197 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType); | |||
7198 | return false; | |||
7199 | } | |||
7200 | ||||
7201 | /// Distribute a nullability type attribute that cannot be applied to | |||
7202 | /// the type specifier to a pointer, block pointer, or member pointer | |||
7203 | /// declarator, complaining if necessary. | |||
7204 | /// | |||
7205 | /// \returns true if the nullability annotation was distributed, false | |||
7206 | /// otherwise. | |||
7207 | static bool distributeNullabilityTypeAttr(TypeProcessingState &state, | |||
7208 | QualType type, ParsedAttr &attr) { | |||
7209 | Declarator &declarator = state.getDeclarator(); | |||
7210 | ||||
7211 | /// Attempt to move the attribute to the specified chunk. | |||
7212 | auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool { | |||
7213 | // If there is already a nullability attribute there, don't add | |||
7214 | // one. | |||
7215 | if (hasNullabilityAttr(chunk.getAttrs())) | |||
7216 | return false; | |||
7217 | ||||
7218 | // Complain about the nullability qualifier being in the wrong | |||
7219 | // place. | |||
7220 | enum { | |||
7221 | PK_Pointer, | |||
7222 | PK_BlockPointer, | |||
7223 | PK_MemberPointer, | |||
7224 | PK_FunctionPointer, | |||
7225 | PK_MemberFunctionPointer, | |||
7226 | } pointerKind | |||
7227 | = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer | |||
7228 | : PK_Pointer) | |||
7229 | : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer | |||
7230 | : inFunction? PK_MemberFunctionPointer : PK_MemberPointer; | |||
7231 | ||||
7232 | auto diag = state.getSema().Diag(attr.getLoc(), | |||
7233 | diag::warn_nullability_declspec) | |||
7234 | << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()), | |||
7235 | attr.isContextSensitiveKeywordAttribute()) | |||
7236 | << type | |||
7237 | << static_cast<unsigned>(pointerKind); | |||
7238 | ||||
7239 | // FIXME: MemberPointer chunks don't carry the location of the *. | |||
7240 | if (chunk.Kind != DeclaratorChunk::MemberPointer) { | |||
7241 | diag << FixItHint::CreateRemoval(attr.getLoc()) | |||
7242 | << FixItHint::CreateInsertion( | |||
7243 | state.getSema().getPreprocessor().getLocForEndOfToken( | |||
7244 | chunk.Loc), | |||
7245 | " " + attr.getAttrName()->getName().str() + " "); | |||
7246 | } | |||
7247 | ||||
7248 | moveAttrFromListToList(attr, state.getCurrentAttributes(), | |||
7249 | chunk.getAttrs()); | |||
7250 | return true; | |||
7251 | }; | |||
7252 | ||||
7253 | // Move it to the outermost pointer, member pointer, or block | |||
7254 | // pointer declarator. | |||
7255 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { | |||
7256 | DeclaratorChunk &chunk = declarator.getTypeObject(i-1); | |||
7257 | switch (chunk.Kind) { | |||
7258 | case DeclaratorChunk::Pointer: | |||
7259 | case DeclaratorChunk::BlockPointer: | |||
7260 | case DeclaratorChunk::MemberPointer: | |||
7261 | return moveToChunk(chunk, false); | |||
7262 | ||||
7263 | case DeclaratorChunk::Paren: | |||
7264 | case DeclaratorChunk::Array: | |||
7265 | continue; | |||
7266 | ||||
7267 | case DeclaratorChunk::Function: | |||
7268 | // Try to move past the return type to a function/block/member | |||
7269 | // function pointer. | |||
7270 | if (DeclaratorChunk *dest = maybeMovePastReturnType( | |||
7271 | declarator, i, | |||
7272 | /*onlyBlockPointers=*/false)) { | |||
7273 | return moveToChunk(*dest, true); | |||
7274 | } | |||
7275 | ||||
7276 | return false; | |||
7277 | ||||
7278 | // Don't walk through these. | |||
7279 | case DeclaratorChunk::Reference: | |||
7280 | case DeclaratorChunk::Pipe: | |||
7281 | return false; | |||
7282 | } | |||
7283 | } | |||
7284 | ||||
7285 | return false; | |||
7286 | } | |||
7287 | ||||
7288 | static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) { | |||
7289 | assert(!Attr.isInvalid())((!Attr.isInvalid()) ? static_cast<void> (0) : __assert_fail ("!Attr.isInvalid()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7289, __PRETTY_FUNCTION__)); | |||
7290 | switch (Attr.getKind()) { | |||
7291 | default: | |||
7292 | llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7292); | |||
7293 | case ParsedAttr::AT_CDecl: | |||
7294 | return createSimpleAttr<CDeclAttr>(Ctx, Attr); | |||
7295 | case ParsedAttr::AT_FastCall: | |||
7296 | return createSimpleAttr<FastCallAttr>(Ctx, Attr); | |||
7297 | case ParsedAttr::AT_StdCall: | |||
7298 | return createSimpleAttr<StdCallAttr>(Ctx, Attr); | |||
7299 | case ParsedAttr::AT_ThisCall: | |||
7300 | return createSimpleAttr<ThisCallAttr>(Ctx, Attr); | |||
7301 | case ParsedAttr::AT_RegCall: | |||
7302 | return createSimpleAttr<RegCallAttr>(Ctx, Attr); | |||
7303 | case ParsedAttr::AT_Pascal: | |||
7304 | return createSimpleAttr<PascalAttr>(Ctx, Attr); | |||
7305 | case ParsedAttr::AT_SwiftCall: | |||
7306 | return createSimpleAttr<SwiftCallAttr>(Ctx, Attr); | |||
7307 | case ParsedAttr::AT_VectorCall: | |||
7308 | return createSimpleAttr<VectorCallAttr>(Ctx, Attr); | |||
7309 | case ParsedAttr::AT_AArch64VectorPcs: | |||
7310 | return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr); | |||
7311 | case ParsedAttr::AT_Pcs: { | |||
7312 | // The attribute may have had a fixit applied where we treated an | |||
7313 | // identifier as a string literal. The contents of the string are valid, | |||
7314 | // but the form may not be. | |||
7315 | StringRef Str; | |||
7316 | if (Attr.isArgExpr(0)) | |||
7317 | Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString(); | |||
7318 | else | |||
7319 | Str = Attr.getArgAsIdent(0)->Ident->getName(); | |||
7320 | PcsAttr::PCSType Type; | |||
7321 | if (!PcsAttr::ConvertStrToPCSType(Str, Type)) | |||
7322 | llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7322); | |||
7323 | return ::new (Ctx) PcsAttr(Ctx, Attr, Type); | |||
7324 | } | |||
7325 | case ParsedAttr::AT_IntelOclBicc: | |||
7326 | return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr); | |||
7327 | case ParsedAttr::AT_MSABI: | |||
7328 | return createSimpleAttr<MSABIAttr>(Ctx, Attr); | |||
7329 | case ParsedAttr::AT_SysVABI: | |||
7330 | return createSimpleAttr<SysVABIAttr>(Ctx, Attr); | |||
7331 | case ParsedAttr::AT_PreserveMost: | |||
7332 | return createSimpleAttr<PreserveMostAttr>(Ctx, Attr); | |||
7333 | case ParsedAttr::AT_PreserveAll: | |||
7334 | return createSimpleAttr<PreserveAllAttr>(Ctx, Attr); | |||
7335 | } | |||
7336 | llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7336); | |||
7337 | } | |||
7338 | ||||
7339 | /// Process an individual function attribute. Returns true to | |||
7340 | /// indicate that the attribute was handled, false if it wasn't. | |||
7341 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, | |||
7342 | QualType &type) { | |||
7343 | Sema &S = state.getSema(); | |||
7344 | ||||
7345 | FunctionTypeUnwrapper unwrapped(S, type); | |||
7346 | ||||
7347 | if (attr.getKind() == ParsedAttr::AT_NoReturn) { | |||
7348 | if (S.CheckAttrNoArgs(attr)) | |||
7349 | return true; | |||
7350 | ||||
7351 | // Delay if this is not a function type. | |||
7352 | if (!unwrapped.isFunctionType()) | |||
7353 | return false; | |||
7354 | ||||
7355 | // Otherwise we can process right away. | |||
7356 | FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true); | |||
7357 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7358 | return true; | |||
7359 | } | |||
7360 | ||||
7361 | if (attr.getKind() == ParsedAttr::AT_CmseNSCall) { | |||
7362 | // Delay if this is not a function type. | |||
7363 | if (!unwrapped.isFunctionType()) | |||
7364 | return false; | |||
7365 | ||||
7366 | // Ignore if we don't have CMSE enabled. | |||
7367 | if (!S.getLangOpts().Cmse) { | |||
7368 | S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr; | |||
7369 | attr.setInvalid(); | |||
7370 | return true; | |||
7371 | } | |||
7372 | ||||
7373 | // Otherwise we can process right away. | |||
7374 | FunctionType::ExtInfo EI = | |||
7375 | unwrapped.get()->getExtInfo().withCmseNSCall(true); | |||
7376 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7377 | return true; | |||
7378 | } | |||
7379 | ||||
7380 | // ns_returns_retained is not always a type attribute, but if we got | |||
7381 | // here, we're treating it as one right now. | |||
7382 | if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) { | |||
7383 | if (attr.getNumArgs()) return true; | |||
7384 | ||||
7385 | // Delay if this is not a function type. | |||
7386 | if (!unwrapped.isFunctionType()) | |||
7387 | return false; | |||
7388 | ||||
7389 | // Check whether the return type is reasonable. | |||
7390 | if (S.checkNSReturnsRetainedReturnType(attr.getLoc(), | |||
7391 | unwrapped.get()->getReturnType())) | |||
7392 | return true; | |||
7393 | ||||
7394 | // Only actually change the underlying type in ARC builds. | |||
7395 | QualType origType = type; | |||
7396 | if (state.getSema().getLangOpts().ObjCAutoRefCount) { | |||
7397 | FunctionType::ExtInfo EI | |||
7398 | = unwrapped.get()->getExtInfo().withProducesResult(true); | |||
7399 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7400 | } | |||
7401 | type = state.getAttributedType( | |||
7402 | createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr), | |||
7403 | origType, type); | |||
7404 | return true; | |||
7405 | } | |||
7406 | ||||
7407 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) { | |||
7408 | if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr)) | |||
7409 | return true; | |||
7410 | ||||
7411 | // Delay if this is not a function type. | |||
7412 | if (!unwrapped.isFunctionType()) | |||
7413 | return false; | |||
7414 | ||||
7415 | FunctionType::ExtInfo EI = | |||
7416 | unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true); | |||
7417 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7418 | return true; | |||
7419 | } | |||
7420 | ||||
7421 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) { | |||
7422 | if (!S.getLangOpts().CFProtectionBranch) { | |||
7423 | S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored); | |||
7424 | attr.setInvalid(); | |||
7425 | return true; | |||
7426 | } | |||
7427 | ||||
7428 | if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr)) | |||
7429 | return true; | |||
7430 | ||||
7431 | // If this is not a function type, warning will be asserted by subject | |||
7432 | // check. | |||
7433 | if (!unwrapped.isFunctionType()) | |||
7434 | return true; | |||
7435 | ||||
7436 | FunctionType::ExtInfo EI = | |||
7437 | unwrapped.get()->getExtInfo().withNoCfCheck(true); | |||
7438 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7439 | return true; | |||
7440 | } | |||
7441 | ||||
7442 | if (attr.getKind() == ParsedAttr::AT_Regparm) { | |||
7443 | unsigned value; | |||
7444 | if (S.CheckRegparmAttr(attr, value)) | |||
7445 | return true; | |||
7446 | ||||
7447 | // Delay if this is not a function type. | |||
7448 | if (!unwrapped.isFunctionType()) | |||
7449 | return false; | |||
7450 | ||||
7451 | // Diagnose regparm with fastcall. | |||
7452 | const FunctionType *fn = unwrapped.get(); | |||
7453 | CallingConv CC = fn->getCallConv(); | |||
7454 | if (CC == CC_X86FastCall) { | |||
7455 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | |||
7456 | << FunctionType::getNameForCallConv(CC) | |||
7457 | << "regparm"; | |||
7458 | attr.setInvalid(); | |||
7459 | return true; | |||
7460 | } | |||
7461 | ||||
7462 | FunctionType::ExtInfo EI = | |||
7463 | unwrapped.get()->getExtInfo().withRegParm(value); | |||
7464 | type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7465 | return true; | |||
7466 | } | |||
7467 | ||||
7468 | if (attr.getKind() == ParsedAttr::AT_NoThrow) { | |||
7469 | // Delay if this is not a function type. | |||
7470 | if (!unwrapped.isFunctionType()) | |||
7471 | return false; | |||
7472 | ||||
7473 | if (S.CheckAttrNoArgs(attr)) { | |||
7474 | attr.setInvalid(); | |||
7475 | return true; | |||
7476 | } | |||
7477 | ||||
7478 | // Otherwise we can process right away. | |||
7479 | auto *Proto = unwrapped.get()->castAs<FunctionProtoType>(); | |||
7480 | ||||
7481 | // MSVC ignores nothrow if it is in conflict with an explicit exception | |||
7482 | // specification. | |||
7483 | if (Proto->hasExceptionSpec()) { | |||
7484 | switch (Proto->getExceptionSpecType()) { | |||
7485 | case EST_None: | |||
7486 | llvm_unreachable("This doesn't have an exception spec!")::llvm::llvm_unreachable_internal("This doesn't have an exception spec!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7486); | |||
7487 | ||||
7488 | case EST_DynamicNone: | |||
7489 | case EST_BasicNoexcept: | |||
7490 | case EST_NoexceptTrue: | |||
7491 | case EST_NoThrow: | |||
7492 | // Exception spec doesn't conflict with nothrow, so don't warn. | |||
7493 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
7494 | case EST_Unparsed: | |||
7495 | case EST_Uninstantiated: | |||
7496 | case EST_DependentNoexcept: | |||
7497 | case EST_Unevaluated: | |||
7498 | // We don't have enough information to properly determine if there is a | |||
7499 | // conflict, so suppress the warning. | |||
7500 | break; | |||
7501 | case EST_Dynamic: | |||
7502 | case EST_MSAny: | |||
7503 | case EST_NoexceptFalse: | |||
7504 | S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored); | |||
7505 | break; | |||
7506 | } | |||
7507 | return true; | |||
7508 | } | |||
7509 | ||||
7510 | type = unwrapped.wrap( | |||
7511 | S, S.Context | |||
7512 | .getFunctionTypeWithExceptionSpec( | |||
7513 | QualType{Proto, 0}, | |||
7514 | FunctionProtoType::ExceptionSpecInfo{EST_NoThrow}) | |||
7515 | ->getAs<FunctionType>()); | |||
7516 | return true; | |||
7517 | } | |||
7518 | ||||
7519 | // Delay if the type didn't work out to a function. | |||
7520 | if (!unwrapped.isFunctionType()) return false; | |||
7521 | ||||
7522 | // Otherwise, a calling convention. | |||
7523 | CallingConv CC; | |||
7524 | if (S.CheckCallingConvAttr(attr, CC)) | |||
7525 | return true; | |||
7526 | ||||
7527 | const FunctionType *fn = unwrapped.get(); | |||
7528 | CallingConv CCOld = fn->getCallConv(); | |||
7529 | Attr *CCAttr = getCCTypeAttr(S.Context, attr); | |||
7530 | ||||
7531 | if (CCOld != CC) { | |||
7532 | // Error out on when there's already an attribute on the type | |||
7533 | // and the CCs don't match. | |||
7534 | if (S.getCallingConvAttributedType(type)) { | |||
7535 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | |||
7536 | << FunctionType::getNameForCallConv(CC) | |||
7537 | << FunctionType::getNameForCallConv(CCOld); | |||
7538 | attr.setInvalid(); | |||
7539 | return true; | |||
7540 | } | |||
7541 | } | |||
7542 | ||||
7543 | // Diagnose use of variadic functions with calling conventions that | |||
7544 | // don't support them (e.g. because they're callee-cleanup). | |||
7545 | // We delay warning about this on unprototyped function declarations | |||
7546 | // until after redeclaration checking, just in case we pick up a | |||
7547 | // prototype that way. And apparently we also "delay" warning about | |||
7548 | // unprototyped function types in general, despite not necessarily having | |||
7549 | // much ability to diagnose it later. | |||
7550 | if (!supportsVariadicCall(CC)) { | |||
7551 | const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn); | |||
7552 | if (FnP && FnP->isVariadic()) { | |||
7553 | // stdcall and fastcall are ignored with a warning for GCC and MS | |||
7554 | // compatibility. | |||
7555 | if (CC == CC_X86StdCall || CC == CC_X86FastCall) | |||
7556 | return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported) | |||
7557 | << FunctionType::getNameForCallConv(CC) | |||
7558 | << (int)Sema::CallingConventionIgnoredReason::VariadicFunction; | |||
7559 | ||||
7560 | attr.setInvalid(); | |||
7561 | return S.Diag(attr.getLoc(), diag::err_cconv_varargs) | |||
7562 | << FunctionType::getNameForCallConv(CC); | |||
7563 | } | |||
7564 | } | |||
7565 | ||||
7566 | // Also diagnose fastcall with regparm. | |||
7567 | if (CC == CC_X86FastCall && fn->getHasRegParm()) { | |||
7568 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) | |||
7569 | << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall); | |||
7570 | attr.setInvalid(); | |||
7571 | return true; | |||
7572 | } | |||
7573 | ||||
7574 | // Modify the CC from the wrapped function type, wrap it all back, and then | |||
7575 | // wrap the whole thing in an AttributedType as written. The modified type | |||
7576 | // might have a different CC if we ignored the attribute. | |||
7577 | QualType Equivalent; | |||
7578 | if (CCOld == CC) { | |||
7579 | Equivalent = type; | |||
7580 | } else { | |||
7581 | auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC); | |||
7582 | Equivalent = | |||
7583 | unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI)); | |||
7584 | } | |||
7585 | type = state.getAttributedType(CCAttr, type, Equivalent); | |||
7586 | return true; | |||
7587 | } | |||
7588 | ||||
7589 | bool Sema::hasExplicitCallingConv(QualType T) { | |||
7590 | const AttributedType *AT; | |||
7591 | ||||
7592 | // Stop if we'd be stripping off a typedef sugar node to reach the | |||
7593 | // AttributedType. | |||
7594 | while ((AT = T->getAs<AttributedType>()) && | |||
7595 | AT->getAs<TypedefType>() == T->getAs<TypedefType>()) { | |||
7596 | if (AT->isCallingConv()) | |||
7597 | return true; | |||
7598 | T = AT->getModifiedType(); | |||
7599 | } | |||
7600 | return false; | |||
7601 | } | |||
7602 | ||||
7603 | void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, | |||
7604 | SourceLocation Loc) { | |||
7605 | FunctionTypeUnwrapper Unwrapped(*this, T); | |||
7606 | const FunctionType *FT = Unwrapped.get(); | |||
7607 | bool IsVariadic = (isa<FunctionProtoType>(FT) && | |||
7608 | cast<FunctionProtoType>(FT)->isVariadic()); | |||
7609 | CallingConv CurCC = FT->getCallConv(); | |||
7610 | CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic); | |||
7611 | ||||
7612 | if (CurCC == ToCC) | |||
7613 | return; | |||
7614 | ||||
7615 | // MS compiler ignores explicit calling convention attributes on structors. We | |||
7616 | // should do the same. | |||
7617 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) { | |||
7618 | // Issue a warning on ignored calling convention -- except of __stdcall. | |||
7619 | // Again, this is what MS compiler does. | |||
7620 | if (CurCC != CC_X86StdCall) | |||
7621 | Diag(Loc, diag::warn_cconv_unsupported) | |||
7622 | << FunctionType::getNameForCallConv(CurCC) | |||
7623 | << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor; | |||
7624 | // Default adjustment. | |||
7625 | } else { | |||
7626 | // Only adjust types with the default convention. For example, on Windows | |||
7627 | // we should adjust a __cdecl type to __thiscall for instance methods, and a | |||
7628 | // __thiscall type to __cdecl for static methods. | |||
7629 | CallingConv DefaultCC = | |||
7630 | Context.getDefaultCallingConvention(IsVariadic, IsStatic); | |||
7631 | ||||
7632 | if (CurCC != DefaultCC || DefaultCC == ToCC) | |||
7633 | return; | |||
7634 | ||||
7635 | if (hasExplicitCallingConv(T)) | |||
7636 | return; | |||
7637 | } | |||
7638 | ||||
7639 | FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC)); | |||
7640 | QualType Wrapped = Unwrapped.wrap(*this, FT); | |||
7641 | T = Context.getAdjustedType(T, Wrapped); | |||
7642 | } | |||
7643 | ||||
7644 | /// HandleVectorSizeAttribute - this attribute is only applicable to integral | |||
7645 | /// and float scalars, although arrays, pointers, and function return values are | |||
7646 | /// allowed in conjunction with this construct. Aggregates with this attribute | |||
7647 | /// are invalid, even if they are of the same size as a corresponding scalar. | |||
7648 | /// The raw attribute should contain precisely 1 argument, the vector size for | |||
7649 | /// the variable, measured in bytes. If curType and rawAttr are well formed, | |||
7650 | /// this routine will return a new vector type. | |||
7651 | static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, | |||
7652 | Sema &S) { | |||
7653 | // Check the attribute arguments. | |||
7654 | if (Attr.getNumArgs() != 1) { | |||
7655 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | |||
7656 | << 1; | |||
7657 | Attr.setInvalid(); | |||
7658 | return; | |||
7659 | } | |||
7660 | ||||
7661 | Expr *SizeExpr; | |||
7662 | // Special case where the argument is a template id. | |||
7663 | if (Attr.isArgIdent(0)) { | |||
7664 | CXXScopeSpec SS; | |||
7665 | SourceLocation TemplateKWLoc; | |||
7666 | UnqualifiedId Id; | |||
7667 | Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc()); | |||
7668 | ||||
7669 | ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc, | |||
7670 | Id, /*HasTrailingLParen=*/false, | |||
7671 | /*IsAddressOfOperand=*/false); | |||
7672 | ||||
7673 | if (Size.isInvalid()) | |||
7674 | return; | |||
7675 | SizeExpr = Size.get(); | |||
7676 | } else { | |||
7677 | SizeExpr = Attr.getArgAsExpr(0); | |||
7678 | } | |||
7679 | ||||
7680 | QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc()); | |||
7681 | if (!T.isNull()) | |||
7682 | CurType = T; | |||
7683 | else | |||
7684 | Attr.setInvalid(); | |||
7685 | } | |||
7686 | ||||
7687 | /// Process the OpenCL-like ext_vector_type attribute when it occurs on | |||
7688 | /// a type. | |||
7689 | static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, | |||
7690 | Sema &S) { | |||
7691 | // check the attribute arguments. | |||
7692 | if (Attr.getNumArgs() != 1) { | |||
7693 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | |||
7694 | << 1; | |||
7695 | return; | |||
7696 | } | |||
7697 | ||||
7698 | Expr *sizeExpr; | |||
7699 | ||||
7700 | // Special case where the argument is a template id. | |||
7701 | if (Attr.isArgIdent(0)) { | |||
7702 | CXXScopeSpec SS; | |||
7703 | SourceLocation TemplateKWLoc; | |||
7704 | UnqualifiedId id; | |||
7705 | id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc()); | |||
7706 | ||||
7707 | ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc, | |||
7708 | id, /*HasTrailingLParen=*/false, | |||
7709 | /*IsAddressOfOperand=*/false); | |||
7710 | if (Size.isInvalid()) | |||
7711 | return; | |||
7712 | ||||
7713 | sizeExpr = Size.get(); | |||
7714 | } else { | |||
7715 | sizeExpr = Attr.getArgAsExpr(0); | |||
7716 | } | |||
7717 | ||||
7718 | // Create the vector type. | |||
7719 | QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc()); | |||
7720 | if (!T.isNull()) | |||
7721 | CurType = T; | |||
7722 | } | |||
7723 | ||||
7724 | static bool isPermittedNeonBaseType(QualType &Ty, | |||
7725 | VectorType::VectorKind VecKind, Sema &S) { | |||
7726 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | |||
7727 | if (!BTy) | |||
7728 | return false; | |||
7729 | ||||
7730 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); | |||
7731 | ||||
7732 | // Signed poly is mathematically wrong, but has been baked into some ABIs by | |||
7733 | // now. | |||
7734 | bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 || | |||
7735 | Triple.getArch() == llvm::Triple::aarch64_32 || | |||
7736 | Triple.getArch() == llvm::Triple::aarch64_be; | |||
7737 | if (VecKind == VectorType::NeonPolyVector) { | |||
7738 | if (IsPolyUnsigned) { | |||
7739 | // AArch64 polynomial vectors are unsigned. | |||
7740 | return BTy->getKind() == BuiltinType::UChar || | |||
7741 | BTy->getKind() == BuiltinType::UShort || | |||
7742 | BTy->getKind() == BuiltinType::ULong || | |||
7743 | BTy->getKind() == BuiltinType::ULongLong; | |||
7744 | } else { | |||
7745 | // AArch32 polynomial vectors are signed. | |||
7746 | return BTy->getKind() == BuiltinType::SChar || | |||
7747 | BTy->getKind() == BuiltinType::Short || | |||
7748 | BTy->getKind() == BuiltinType::LongLong; | |||
7749 | } | |||
7750 | } | |||
7751 | ||||
7752 | // Non-polynomial vector types: the usual suspects are allowed, as well as | |||
7753 | // float64_t on AArch64. | |||
7754 | if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) && | |||
7755 | BTy->getKind() == BuiltinType::Double) | |||
7756 | return true; | |||
7757 | ||||
7758 | return BTy->getKind() == BuiltinType::SChar || | |||
7759 | BTy->getKind() == BuiltinType::UChar || | |||
7760 | BTy->getKind() == BuiltinType::Short || | |||
7761 | BTy->getKind() == BuiltinType::UShort || | |||
7762 | BTy->getKind() == BuiltinType::Int || | |||
7763 | BTy->getKind() == BuiltinType::UInt || | |||
7764 | BTy->getKind() == BuiltinType::Long || | |||
7765 | BTy->getKind() == BuiltinType::ULong || | |||
7766 | BTy->getKind() == BuiltinType::LongLong || | |||
7767 | BTy->getKind() == BuiltinType::ULongLong || | |||
7768 | BTy->getKind() == BuiltinType::Float || | |||
7769 | BTy->getKind() == BuiltinType::Half || | |||
7770 | BTy->getKind() == BuiltinType::BFloat16; | |||
7771 | } | |||
7772 | ||||
7773 | static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr, | |||
7774 | llvm::APSInt &Result) { | |||
7775 | const auto *AttrExpr = Attr.getArgAsExpr(0); | |||
7776 | if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) { | |||
7777 | if (Optional<llvm::APSInt> Res = | |||
7778 | AttrExpr->getIntegerConstantExpr(S.Context)) { | |||
7779 | Result = *Res; | |||
7780 | return true; | |||
7781 | } | |||
7782 | } | |||
7783 | S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) | |||
7784 | << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange(); | |||
7785 | Attr.setInvalid(); | |||
7786 | return false; | |||
7787 | } | |||
7788 | ||||
7789 | /// HandleNeonVectorTypeAttr - The "neon_vector_type" and | |||
7790 | /// "neon_polyvector_type" attributes are used to create vector types that | |||
7791 | /// are mangled according to ARM's ABI. Otherwise, these types are identical | |||
7792 | /// to those created with the "vector_size" attribute. Unlike "vector_size" | |||
7793 | /// the argument to these Neon attributes is the number of vector elements, | |||
7794 | /// not the vector size in bytes. The vector width and element type must | |||
7795 | /// match one of the standard Neon vector types. | |||
7796 | static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, | |||
7797 | Sema &S, VectorType::VectorKind VecKind) { | |||
7798 | // Target must have NEON (or MVE, whose vectors are similar enough | |||
7799 | // not to need a separate attribute) | |||
7800 | if (!S.Context.getTargetInfo().hasFeature("neon") && | |||
7801 | !S.Context.getTargetInfo().hasFeature("mve")) { | |||
7802 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) | |||
7803 | << Attr << "'neon' or 'mve'"; | |||
7804 | Attr.setInvalid(); | |||
7805 | return; | |||
7806 | } | |||
7807 | // Check the attribute arguments. | |||
7808 | if (Attr.getNumArgs() != 1) { | |||
7809 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr | |||
7810 | << 1; | |||
7811 | Attr.setInvalid(); | |||
7812 | return; | |||
7813 | } | |||
7814 | // The number of elements must be an ICE. | |||
7815 | llvm::APSInt numEltsInt(32); | |||
7816 | if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt)) | |||
7817 | return; | |||
7818 | ||||
7819 | // Only certain element types are supported for Neon vectors. | |||
7820 | if (!isPermittedNeonBaseType(CurType, VecKind, S)) { | |||
7821 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; | |||
7822 | Attr.setInvalid(); | |||
7823 | return; | |||
7824 | } | |||
7825 | ||||
7826 | // The total size of the vector must be 64 or 128 bits. | |||
7827 | unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType)); | |||
7828 | unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue()); | |||
7829 | unsigned vecSize = typeSize * numElts; | |||
7830 | if (vecSize != 64 && vecSize != 128) { | |||
7831 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType; | |||
7832 | Attr.setInvalid(); | |||
7833 | return; | |||
7834 | } | |||
7835 | ||||
7836 | CurType = S.Context.getVectorType(CurType, numElts, VecKind); | |||
7837 | } | |||
7838 | ||||
7839 | /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is | |||
7840 | /// used to create fixed-length versions of sizeless SVE types defined by | |||
7841 | /// the ACLE, such as svint32_t and svbool_t. | |||
7842 | static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr, | |||
7843 | Sema &S) { | |||
7844 | // Target must have SVE. | |||
7845 | if (!S.Context.getTargetInfo().hasFeature("sve")) { | |||
7846 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'"; | |||
7847 | Attr.setInvalid(); | |||
7848 | return; | |||
7849 | } | |||
7850 | ||||
7851 | // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified. | |||
7852 | if (!S.getLangOpts().ArmSveVectorBits) { | |||
7853 | S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported) | |||
7854 | << Attr; | |||
7855 | Attr.setInvalid(); | |||
7856 | return; | |||
7857 | } | |||
7858 | ||||
7859 | // Check the attribute arguments. | |||
7860 | if (Attr.getNumArgs() != 1) { | |||
7861 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | |||
7862 | << Attr << 1; | |||
7863 | Attr.setInvalid(); | |||
7864 | return; | |||
7865 | } | |||
7866 | ||||
7867 | // The vector size must be an integer constant expression. | |||
7868 | llvm::APSInt SveVectorSizeInBits(32); | |||
7869 | if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits)) | |||
7870 | return; | |||
7871 | ||||
7872 | unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue()); | |||
7873 | ||||
7874 | // The attribute vector size must match -msve-vector-bits. | |||
7875 | if (VecSize != S.getLangOpts().ArmSveVectorBits) { | |||
7876 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size) | |||
7877 | << VecSize << S.getLangOpts().ArmSveVectorBits; | |||
7878 | Attr.setInvalid(); | |||
7879 | return; | |||
7880 | } | |||
7881 | ||||
7882 | // Attribute can only be attached to a single SVE vector or predicate type. | |||
7883 | if (!CurType->isVLSTBuiltinType()) { | |||
7884 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type) | |||
7885 | << Attr << CurType; | |||
7886 | Attr.setInvalid(); | |||
7887 | return; | |||
7888 | } | |||
7889 | ||||
7890 | const auto *BT = CurType->castAs<BuiltinType>(); | |||
7891 | ||||
7892 | QualType EltType = CurType->getSveEltType(S.Context); | |||
7893 | unsigned TypeSize = S.Context.getTypeSize(EltType); | |||
7894 | VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector; | |||
7895 | if (BT->getKind() == BuiltinType::SveBool) { | |||
7896 | // Predicates are represented as i8. | |||
7897 | VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth(); | |||
7898 | VecKind = VectorType::SveFixedLengthPredicateVector; | |||
7899 | } else | |||
7900 | VecSize /= TypeSize; | |||
7901 | CurType = S.Context.getVectorType(EltType, VecSize, VecKind); | |||
7902 | } | |||
7903 | ||||
7904 | static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State, | |||
7905 | QualType &CurType, | |||
7906 | ParsedAttr &Attr) { | |||
7907 | const VectorType *VT = dyn_cast<VectorType>(CurType); | |||
7908 | if (!VT || VT->getVectorKind() != VectorType::NeonVector) { | |||
7909 | State.getSema().Diag(Attr.getLoc(), | |||
7910 | diag::err_attribute_arm_mve_polymorphism); | |||
7911 | Attr.setInvalid(); | |||
7912 | return; | |||
7913 | } | |||
7914 | ||||
7915 | CurType = | |||
7916 | State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>( | |||
7917 | State.getSema().Context, Attr), | |||
7918 | CurType, CurType); | |||
7919 | } | |||
7920 | ||||
7921 | /// Handle OpenCL Access Qualifier Attribute. | |||
7922 | static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, | |||
7923 | Sema &S) { | |||
7924 | // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type. | |||
7925 | if (!(CurType->isImageType() || CurType->isPipeType())) { | |||
7926 | S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier); | |||
7927 | Attr.setInvalid(); | |||
7928 | return; | |||
7929 | } | |||
7930 | ||||
7931 | if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) { | |||
7932 | QualType BaseTy = TypedefTy->desugar(); | |||
7933 | ||||
7934 | std::string PrevAccessQual; | |||
7935 | if (BaseTy->isPipeType()) { | |||
7936 | if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) { | |||
7937 | OpenCLAccessAttr *Attr = | |||
7938 | TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>(); | |||
7939 | PrevAccessQual = Attr->getSpelling(); | |||
7940 | } else { | |||
7941 | PrevAccessQual = "read_only"; | |||
7942 | } | |||
7943 | } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) { | |||
7944 | ||||
7945 | switch (ImgType->getKind()) { | |||
7946 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | |||
7947 | case BuiltinType::Id: \ | |||
7948 | PrevAccessQual = #Access; \ | |||
7949 | break; | |||
7950 | #include "clang/Basic/OpenCLImageTypes.def" | |||
7951 | default: | |||
7952 | llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type." , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7952); | |||
7953 | } | |||
7954 | } else { | |||
7955 | llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 7955); | |||
7956 | } | |||
7957 | StringRef AttrName = Attr.getAttrName()->getName(); | |||
7958 | if (PrevAccessQual == AttrName.ltrim("_")) { | |||
7959 | // Duplicated qualifiers | |||
7960 | S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec) | |||
7961 | << AttrName << Attr.getRange(); | |||
7962 | } else { | |||
7963 | // Contradicting qualifiers | |||
7964 | S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers); | |||
7965 | } | |||
7966 | ||||
7967 | S.Diag(TypedefTy->getDecl()->getBeginLoc(), | |||
7968 | diag::note_opencl_typedef_access_qualifier) << PrevAccessQual; | |||
7969 | } else if (CurType->isPipeType()) { | |||
7970 | if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) { | |||
7971 | QualType ElemType = CurType->castAs<PipeType>()->getElementType(); | |||
7972 | CurType = S.Context.getWritePipeType(ElemType); | |||
7973 | } | |||
7974 | } | |||
7975 | } | |||
7976 | ||||
7977 | /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type | |||
7978 | static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr, | |||
7979 | Sema &S) { | |||
7980 | if (!S.getLangOpts().MatrixTypes) { | |||
7981 | S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled); | |||
7982 | return; | |||
7983 | } | |||
7984 | ||||
7985 | if (Attr.getNumArgs() != 2) { | |||
7986 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) | |||
7987 | << Attr << 2; | |||
7988 | return; | |||
7989 | } | |||
7990 | ||||
7991 | Expr *RowsExpr = nullptr; | |||
7992 | Expr *ColsExpr = nullptr; | |||
7993 | ||||
7994 | // TODO: Refactor parameter extraction into separate function | |||
7995 | // Get the number of rows | |||
7996 | if (Attr.isArgIdent(0)) { | |||
7997 | CXXScopeSpec SS; | |||
7998 | SourceLocation TemplateKeywordLoc; | |||
7999 | UnqualifiedId id; | |||
8000 | id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc()); | |||
8001 | ExprResult Rows = S.ActOnIdExpression(S.getCurScope(), SS, | |||
8002 | TemplateKeywordLoc, id, false, false); | |||
8003 | ||||
8004 | if (Rows.isInvalid()) | |||
8005 | // TODO: maybe a good error message would be nice here | |||
8006 | return; | |||
8007 | RowsExpr = Rows.get(); | |||
8008 | } else { | |||
8009 | assert(Attr.isArgExpr(0) &&((Attr.isArgExpr(0) && "Argument to should either be an identity or expression" ) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(0) && \"Argument to should either be an identity or expression\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8010, __PRETTY_FUNCTION__)) | |||
8010 | "Argument to should either be an identity or expression")((Attr.isArgExpr(0) && "Argument to should either be an identity or expression" ) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(0) && \"Argument to should either be an identity or expression\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8010, __PRETTY_FUNCTION__)); | |||
8011 | RowsExpr = Attr.getArgAsExpr(0); | |||
8012 | } | |||
8013 | ||||
8014 | // Get the number of columns | |||
8015 | if (Attr.isArgIdent(1)) { | |||
8016 | CXXScopeSpec SS; | |||
8017 | SourceLocation TemplateKeywordLoc; | |||
8018 | UnqualifiedId id; | |||
8019 | id.setIdentifier(Attr.getArgAsIdent(1)->Ident, Attr.getLoc()); | |||
8020 | ExprResult Columns = S.ActOnIdExpression( | |||
8021 | S.getCurScope(), SS, TemplateKeywordLoc, id, false, false); | |||
8022 | ||||
8023 | if (Columns.isInvalid()) | |||
8024 | // TODO: a good error message would be nice here | |||
8025 | return; | |||
8026 | RowsExpr = Columns.get(); | |||
8027 | } else { | |||
8028 | assert(Attr.isArgExpr(1) &&((Attr.isArgExpr(1) && "Argument to should either be an identity or expression" ) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(1) && \"Argument to should either be an identity or expression\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8029, __PRETTY_FUNCTION__)) | |||
8029 | "Argument to should either be an identity or expression")((Attr.isArgExpr(1) && "Argument to should either be an identity or expression" ) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(1) && \"Argument to should either be an identity or expression\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8029, __PRETTY_FUNCTION__)); | |||
8030 | ColsExpr = Attr.getArgAsExpr(1); | |||
8031 | } | |||
8032 | ||||
8033 | // Create the matrix type. | |||
8034 | QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc()); | |||
8035 | if (!T.isNull()) | |||
8036 | CurType = T; | |||
8037 | } | |||
8038 | ||||
8039 | static void HandleLifetimeBoundAttr(TypeProcessingState &State, | |||
8040 | QualType &CurType, | |||
8041 | ParsedAttr &Attr) { | |||
8042 | if (State.getDeclarator().isDeclarationOfFunction()) { | |||
8043 | CurType = State.getAttributedType( | |||
8044 | createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr), | |||
8045 | CurType, CurType); | |||
8046 | } else { | |||
8047 | Attr.diagnoseAppertainsTo(State.getSema(), nullptr); | |||
8048 | } | |||
8049 | } | |||
8050 | ||||
8051 | static bool isAddressSpaceKind(const ParsedAttr &attr) { | |||
8052 | auto attrKind = attr.getKind(); | |||
8053 | ||||
8054 | return attrKind == ParsedAttr::AT_AddressSpace || | |||
8055 | attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace || | |||
8056 | attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace || | |||
8057 | attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace || | |||
8058 | attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace || | |||
8059 | attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace || | |||
8060 | attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace || | |||
8061 | attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace; | |||
8062 | } | |||
8063 | ||||
8064 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, | |||
8065 | TypeAttrLocation TAL, | |||
8066 | ParsedAttributesView &attrs) { | |||
8067 | // Scan through and apply attributes to this type where it makes sense. Some | |||
8068 | // attributes (such as __address_space__, __vector_size__, etc) apply to the | |||
8069 | // type, but others can be present in the type specifiers even though they | |||
8070 | // apply to the decl. Here we apply type attributes and ignore the rest. | |||
8071 | ||||
8072 | // This loop modifies the list pretty frequently, but we still need to make | |||
8073 | // sure we visit every element once. Copy the attributes list, and iterate | |||
8074 | // over that. | |||
8075 | ParsedAttributesView AttrsCopy{attrs}; | |||
8076 | ||||
8077 | state.setParsedNoDeref(false); | |||
8078 | ||||
8079 | for (ParsedAttr &attr : AttrsCopy) { | |||
8080 | ||||
8081 | // Skip attributes that were marked to be invalid. | |||
8082 | if (attr.isInvalid()) | |||
| ||||
8083 | continue; | |||
8084 | ||||
8085 | if (attr.isCXX11Attribute()) { | |||
8086 | // [[gnu::...]] attributes are treated as declaration attributes, so may | |||
8087 | // not appertain to a DeclaratorChunk. If we handle them as type | |||
8088 | // attributes, accept them in that position and diagnose the GCC | |||
8089 | // incompatibility. | |||
8090 | if (attr.isGNUScope()) { | |||
8091 | bool IsTypeAttr = attr.isTypeAttr(); | |||
8092 | if (TAL == TAL_DeclChunk) { | |||
8093 | state.getSema().Diag(attr.getLoc(), | |||
8094 | IsTypeAttr | |||
8095 | ? diag::warn_gcc_ignores_type_attr | |||
8096 | : diag::warn_cxx11_gnu_attribute_on_type) | |||
8097 | << attr; | |||
8098 | if (!IsTypeAttr) | |||
8099 | continue; | |||
8100 | } | |||
8101 | } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) { | |||
8102 | // Otherwise, only consider type processing for a C++11 attribute if | |||
8103 | // it's actually been applied to a type. | |||
8104 | // We also allow C++11 address_space and | |||
8105 | // OpenCL language address space attributes to pass through. | |||
8106 | continue; | |||
8107 | } | |||
8108 | } | |||
8109 | ||||
8110 | // If this is an attribute we can handle, do so now, | |||
8111 | // otherwise, add it to the FnAttrs list for rechaining. | |||
8112 | switch (attr.getKind()) { | |||
8113 | default: | |||
8114 | // A C++11 attribute on a declarator chunk must appertain to a type. | |||
8115 | if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) { | |||
8116 | state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr) | |||
8117 | << attr; | |||
8118 | attr.setUsedAsTypeAttr(); | |||
8119 | } | |||
8120 | break; | |||
8121 | ||||
8122 | case ParsedAttr::UnknownAttribute: | |||
8123 | if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) | |||
8124 | state.getSema().Diag(attr.getLoc(), | |||
8125 | diag::warn_unknown_attribute_ignored) | |||
8126 | << attr << attr.getRange(); | |||
8127 | break; | |||
8128 | ||||
8129 | case ParsedAttr::IgnoredAttribute: | |||
8130 | break; | |||
8131 | ||||
8132 | case ParsedAttr::AT_MayAlias: | |||
8133 | // FIXME: This attribute needs to actually be handled, but if we ignore | |||
8134 | // it it breaks large amounts of Linux software. | |||
8135 | attr.setUsedAsTypeAttr(); | |||
8136 | break; | |||
8137 | case ParsedAttr::AT_OpenCLPrivateAddressSpace: | |||
8138 | case ParsedAttr::AT_OpenCLGlobalAddressSpace: | |||
8139 | case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: | |||
8140 | case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: | |||
8141 | case ParsedAttr::AT_OpenCLLocalAddressSpace: | |||
8142 | case ParsedAttr::AT_OpenCLConstantAddressSpace: | |||
8143 | case ParsedAttr::AT_OpenCLGenericAddressSpace: | |||
8144 | case ParsedAttr::AT_AddressSpace: | |||
8145 | HandleAddressSpaceTypeAttribute(type, attr, state); | |||
8146 | attr.setUsedAsTypeAttr(); | |||
8147 | break; | |||
8148 | OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership: | |||
8149 | if (!handleObjCPointerTypeAttr(state, attr, type)) | |||
8150 | distributeObjCPointerTypeAttr(state, attr, type); | |||
8151 | attr.setUsedAsTypeAttr(); | |||
8152 | break; | |||
8153 | case ParsedAttr::AT_VectorSize: | |||
8154 | HandleVectorSizeAttr(type, attr, state.getSema()); | |||
8155 | attr.setUsedAsTypeAttr(); | |||
8156 | break; | |||
8157 | case ParsedAttr::AT_ExtVectorType: | |||
8158 | HandleExtVectorTypeAttr(type, attr, state.getSema()); | |||
8159 | attr.setUsedAsTypeAttr(); | |||
8160 | break; | |||
8161 | case ParsedAttr::AT_NeonVectorType: | |||
8162 | HandleNeonVectorTypeAttr(type, attr, state.getSema(), | |||
8163 | VectorType::NeonVector); | |||
8164 | attr.setUsedAsTypeAttr(); | |||
8165 | break; | |||
8166 | case ParsedAttr::AT_NeonPolyVectorType: | |||
8167 | HandleNeonVectorTypeAttr(type, attr, state.getSema(), | |||
8168 | VectorType::NeonPolyVector); | |||
8169 | attr.setUsedAsTypeAttr(); | |||
8170 | break; | |||
8171 | case ParsedAttr::AT_ArmSveVectorBits: | |||
8172 | HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema()); | |||
8173 | attr.setUsedAsTypeAttr(); | |||
8174 | break; | |||
8175 | case ParsedAttr::AT_ArmMveStrictPolymorphism: { | |||
8176 | HandleArmMveStrictPolymorphismAttr(state, type, attr); | |||
8177 | attr.setUsedAsTypeAttr(); | |||
8178 | break; | |||
8179 | } | |||
8180 | case ParsedAttr::AT_OpenCLAccess: | |||
8181 | HandleOpenCLAccessAttr(type, attr, state.getSema()); | |||
8182 | attr.setUsedAsTypeAttr(); | |||
8183 | break; | |||
8184 | case ParsedAttr::AT_LifetimeBound: | |||
8185 | if (TAL == TAL_DeclChunk) | |||
8186 | HandleLifetimeBoundAttr(state, type, attr); | |||
8187 | break; | |||
8188 | ||||
8189 | case ParsedAttr::AT_NoDeref: { | |||
8190 | ASTContext &Ctx = state.getSema().Context; | |||
8191 | type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr), | |||
8192 | type, type); | |||
8193 | attr.setUsedAsTypeAttr(); | |||
8194 | state.setParsedNoDeref(true); | |||
8195 | break; | |||
8196 | } | |||
8197 | ||||
8198 | case ParsedAttr::AT_MatrixType: | |||
8199 | HandleMatrixTypeAttr(type, attr, state.getSema()); | |||
8200 | attr.setUsedAsTypeAttr(); | |||
8201 | break; | |||
8202 | ||||
8203 | MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr ::AT_SPtr: case ParsedAttr::AT_UPtr: | |||
8204 | if (!handleMSPointerTypeQualifierAttr(state, attr, type)) | |||
8205 | attr.setUsedAsTypeAttr(); | |||
8206 | break; | |||
8207 | ||||
8208 | ||||
8209 | NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable : case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified: | |||
8210 | // Either add nullability here or try to distribute it. We | |||
8211 | // don't want to distribute the nullability specifier past any | |||
8212 | // dependent type, because that complicates the user model. | |||
8213 | if (type->canHaveNullability() || type->isDependentType() || | |||
8214 | type->isArrayType() || | |||
8215 | !distributeNullabilityTypeAttr(state, type, attr)) { | |||
8216 | unsigned endIndex; | |||
8217 | if (TAL == TAL_DeclChunk) | |||
8218 | endIndex = state.getCurrentChunkIndex(); | |||
8219 | else | |||
8220 | endIndex = state.getDeclarator().getNumTypeObjects(); | |||
8221 | bool allowOnArrayType = | |||
8222 | state.getDeclarator().isPrototypeContext() && | |||
8223 | !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex); | |||
8224 | if (checkNullabilityTypeSpecifier( | |||
8225 | state, | |||
8226 | type, | |||
8227 | attr, | |||
8228 | allowOnArrayType)) { | |||
8229 | attr.setInvalid(); | |||
8230 | } | |||
8231 | ||||
8232 | attr.setUsedAsTypeAttr(); | |||
8233 | } | |||
8234 | break; | |||
8235 | ||||
8236 | case ParsedAttr::AT_ObjCKindOf: | |||
8237 | // '__kindof' must be part of the decl-specifiers. | |||
8238 | switch (TAL) { | |||
8239 | case TAL_DeclSpec: | |||
8240 | break; | |||
8241 | ||||
8242 | case TAL_DeclChunk: | |||
8243 | case TAL_DeclName: | |||
8244 | state.getSema().Diag(attr.getLoc(), | |||
8245 | diag::err_objc_kindof_wrong_position) | |||
8246 | << FixItHint::CreateRemoval(attr.getLoc()) | |||
8247 | << FixItHint::CreateInsertion( | |||
8248 | state.getDeclarator().getDeclSpec().getBeginLoc(), | |||
8249 | "__kindof "); | |||
8250 | break; | |||
8251 | } | |||
8252 | ||||
8253 | // Apply it regardless. | |||
8254 | if (checkObjCKindOfType(state, type, attr)) | |||
8255 | attr.setInvalid(); | |||
8256 | break; | |||
8257 | ||||
8258 | case ParsedAttr::AT_NoThrow: | |||
8259 | // Exception Specifications aren't generally supported in C mode throughout | |||
8260 | // clang, so revert to attribute-based handling for C. | |||
8261 | if (!state.getSema().getLangOpts().CPlusPlus) | |||
8262 | break; | |||
8263 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
8264 | FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn : case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall : case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr ::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr ::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr:: AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal : case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall : case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI : case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr ::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr ::AT_PreserveAll: | |||
8265 | attr.setUsedAsTypeAttr(); | |||
8266 | ||||
8267 | // Never process function type attributes as part of the | |||
8268 | // declaration-specifiers. | |||
8269 | if (TAL == TAL_DeclSpec) | |||
8270 | distributeFunctionTypeAttrFromDeclSpec(state, attr, type); | |||
8271 | ||||
8272 | // Otherwise, handle the possible delays. | |||
8273 | else if (!handleFunctionTypeAttr(state, attr, type)) | |||
8274 | distributeFunctionTypeAttr(state, attr, type); | |||
8275 | break; | |||
8276 | case ParsedAttr::AT_AcquireHandle: { | |||
8277 | if (!type->isFunctionType()) | |||
8278 | return; | |||
8279 | ||||
8280 | if (attr.getNumArgs() != 1) { | |||
8281 | state.getSema().Diag(attr.getLoc(), | |||
8282 | diag::err_attribute_wrong_number_arguments) | |||
8283 | << attr << 1; | |||
8284 | attr.setInvalid(); | |||
8285 | return; | |||
8286 | } | |||
8287 | ||||
8288 | StringRef HandleType; | |||
8289 | if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType)) | |||
8290 | return; | |||
8291 | type = state.getAttributedType( | |||
8292 | AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr), | |||
8293 | type, type); | |||
8294 | attr.setUsedAsTypeAttr(); | |||
8295 | break; | |||
8296 | } | |||
8297 | } | |||
8298 | ||||
8299 | // Handle attributes that are defined in a macro. We do not want this to be | |||
8300 | // applied to ObjC builtin attributes. | |||
8301 | if (isa<AttributedType>(type) && attr.hasMacroIdentifier() && | |||
8302 | !type.getQualifiers().hasObjCLifetime() && | |||
8303 | !type.getQualifiers().hasObjCGCAttr() && | |||
8304 | attr.getKind() != ParsedAttr::AT_ObjCGC && | |||
8305 | attr.getKind() != ParsedAttr::AT_ObjCOwnership) { | |||
8306 | const IdentifierInfo *MacroII = attr.getMacroIdentifier(); | |||
8307 | type = state.getSema().Context.getMacroQualifiedType(type, MacroII); | |||
8308 | state.setExpansionLocForMacroQualifiedType( | |||
8309 | cast<MacroQualifiedType>(type.getTypePtr()), | |||
8310 | attr.getMacroExpansionLoc()); | |||
8311 | } | |||
8312 | } | |||
8313 | ||||
8314 | if (!state.getSema().getLangOpts().OpenCL || | |||
8315 | type.getAddressSpace() != LangAS::Default) | |||
8316 | return; | |||
8317 | } | |||
8318 | ||||
8319 | void Sema::completeExprArrayBound(Expr *E) { | |||
8320 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | |||
8321 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | |||
8322 | if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) { | |||
8323 | auto *Def = Var->getDefinition(); | |||
8324 | if (!Def) { | |||
8325 | SourceLocation PointOfInstantiation = E->getExprLoc(); | |||
8326 | runWithSufficientStackSpace(PointOfInstantiation, [&] { | |||
8327 | InstantiateVariableDefinition(PointOfInstantiation, Var); | |||
8328 | }); | |||
8329 | Def = Var->getDefinition(); | |||
8330 | ||||
8331 | // If we don't already have a point of instantiation, and we managed | |||
8332 | // to instantiate a definition, this is the point of instantiation. | |||
8333 | // Otherwise, we don't request an end-of-TU instantiation, so this is | |||
8334 | // not a point of instantiation. | |||
8335 | // FIXME: Is this really the right behavior? | |||
8336 | if (Var->getPointOfInstantiation().isInvalid() && Def) { | |||
8337 | assert(Var->getTemplateSpecializationKind() ==((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation" ) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8339, __PRETTY_FUNCTION__)) | |||
8338 | TSK_ImplicitInstantiation &&((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation" ) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8339, __PRETTY_FUNCTION__)) | |||
8339 | "explicit instantiation with no point of instantiation")((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation" ) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8339, __PRETTY_FUNCTION__)); | |||
8340 | Var->setTemplateSpecializationKind( | |||
8341 | Var->getTemplateSpecializationKind(), PointOfInstantiation); | |||
8342 | } | |||
8343 | } | |||
8344 | ||||
8345 | // Update the type to the definition's type both here and within the | |||
8346 | // expression. | |||
8347 | if (Def) { | |||
8348 | DRE->setDecl(Def); | |||
8349 | QualType T = Def->getType(); | |||
8350 | DRE->setType(T); | |||
8351 | // FIXME: Update the type on all intervening expressions. | |||
8352 | E->setType(T); | |||
8353 | } | |||
8354 | ||||
8355 | // We still go on to try to complete the type independently, as it | |||
8356 | // may also require instantiations or diagnostics if it remains | |||
8357 | // incomplete. | |||
8358 | } | |||
8359 | } | |||
8360 | } | |||
8361 | } | |||
8362 | ||||
8363 | /// Ensure that the type of the given expression is complete. | |||
8364 | /// | |||
8365 | /// This routine checks whether the expression \p E has a complete type. If the | |||
8366 | /// expression refers to an instantiable construct, that instantiation is | |||
8367 | /// performed as needed to complete its type. Furthermore | |||
8368 | /// Sema::RequireCompleteType is called for the expression's type (or in the | |||
8369 | /// case of a reference type, the referred-to type). | |||
8370 | /// | |||
8371 | /// \param E The expression whose type is required to be complete. | |||
8372 | /// \param Kind Selects which completeness rules should be applied. | |||
8373 | /// \param Diagnoser The object that will emit a diagnostic if the type is | |||
8374 | /// incomplete. | |||
8375 | /// | |||
8376 | /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false | |||
8377 | /// otherwise. | |||
8378 | bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, | |||
8379 | TypeDiagnoser &Diagnoser) { | |||
8380 | QualType T = E->getType(); | |||
8381 | ||||
8382 | // Incomplete array types may be completed by the initializer attached to | |||
8383 | // their definitions. For static data members of class templates and for | |||
8384 | // variable templates, we need to instantiate the definition to get this | |||
8385 | // initializer and complete the type. | |||
8386 | if (T->isIncompleteArrayType()) { | |||
8387 | completeExprArrayBound(E); | |||
8388 | T = E->getType(); | |||
8389 | } | |||
8390 | ||||
8391 | // FIXME: Are there other cases which require instantiating something other | |||
8392 | // than the type to complete the type of an expression? | |||
8393 | ||||
8394 | return RequireCompleteType(E->getExprLoc(), T, Kind, Diagnoser); | |||
8395 | } | |||
8396 | ||||
8397 | bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) { | |||
8398 | BoundTypeDiagnoser<> Diagnoser(DiagID); | |||
8399 | return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser); | |||
8400 | } | |||
8401 | ||||
8402 | /// Ensure that the type T is a complete type. | |||
8403 | /// | |||
8404 | /// This routine checks whether the type @p T is complete in any | |||
8405 | /// context where a complete type is required. If @p T is a complete | |||
8406 | /// type, returns false. If @p T is a class template specialization, | |||
8407 | /// this routine then attempts to perform class template | |||
8408 | /// instantiation. If instantiation fails, or if @p T is incomplete | |||
8409 | /// and cannot be completed, issues the diagnostic @p diag (giving it | |||
8410 | /// the type @p T) and returns true. | |||
8411 | /// | |||
8412 | /// @param Loc The location in the source that the incomplete type | |||
8413 | /// diagnostic should refer to. | |||
8414 | /// | |||
8415 | /// @param T The type that this routine is examining for completeness. | |||
8416 | /// | |||
8417 | /// @param Kind Selects which completeness rules should be applied. | |||
8418 | /// | |||
8419 | /// @returns @c true if @p T is incomplete and a diagnostic was emitted, | |||
8420 | /// @c false otherwise. | |||
8421 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, | |||
8422 | CompleteTypeKind Kind, | |||
8423 | TypeDiagnoser &Diagnoser) { | |||
8424 | if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser)) | |||
8425 | return true; | |||
8426 | if (const TagType *Tag = T->getAs<TagType>()) { | |||
8427 | if (!Tag->getDecl()->isCompleteDefinitionRequired()) { | |||
8428 | Tag->getDecl()->setCompleteDefinitionRequired(); | |||
8429 | Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl()); | |||
8430 | } | |||
8431 | } | |||
8432 | return false; | |||
8433 | } | |||
8434 | ||||
8435 | bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) { | |||
8436 | llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls; | |||
8437 | if (!Suggested) | |||
8438 | return false; | |||
8439 | ||||
8440 | // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext | |||
8441 | // and isolate from other C++ specific checks. | |||
8442 | StructuralEquivalenceContext Ctx( | |||
8443 | D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls, | |||
8444 | StructuralEquivalenceKind::Default, | |||
8445 | false /*StrictTypeSpelling*/, true /*Complain*/, | |||
8446 | true /*ErrorOnTagTypeMismatch*/); | |||
8447 | return Ctx.IsEquivalent(D, Suggested); | |||
8448 | } | |||
8449 | ||||
8450 | /// Determine whether there is any declaration of \p D that was ever a | |||
8451 | /// definition (perhaps before module merging) and is currently visible. | |||
8452 | /// \param D The definition of the entity. | |||
8453 | /// \param Suggested Filled in with the declaration that should be made visible | |||
8454 | /// in order to provide a definition of this entity. | |||
8455 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, | |||
8456 | /// not defined. This only matters for enums with a fixed underlying | |||
8457 | /// type, since in all other cases, a type is complete if and only if it | |||
8458 | /// is defined. | |||
8459 | bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, | |||
8460 | bool OnlyNeedComplete) { | |||
8461 | // Easy case: if we don't have modules, all declarations are visible. | |||
8462 | if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility) | |||
8463 | return true; | |||
8464 | ||||
8465 | // If this definition was instantiated from a template, map back to the | |||
8466 | // pattern from which it was instantiated. | |||
8467 | if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) { | |||
8468 | // We're in the middle of defining it; this definition should be treated | |||
8469 | // as visible. | |||
8470 | return true; | |||
8471 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { | |||
8472 | if (auto *Pattern = RD->getTemplateInstantiationPattern()) | |||
8473 | RD = Pattern; | |||
8474 | D = RD->getDefinition(); | |||
8475 | } else if (auto *ED = dyn_cast<EnumDecl>(D)) { | |||
8476 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | |||
8477 | ED = Pattern; | |||
8478 | if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) { | |||
8479 | // If the enum has a fixed underlying type, it may have been forward | |||
8480 | // declared. In -fms-compatibility, `enum Foo;` will also forward declare | |||
8481 | // the enum and assign it the underlying type of `int`. Since we're only | |||
8482 | // looking for a complete type (not a definition), any visible declaration | |||
8483 | // of it will do. | |||
8484 | *Suggested = nullptr; | |||
8485 | for (auto *Redecl : ED->redecls()) { | |||
8486 | if (isVisible(Redecl)) | |||
8487 | return true; | |||
8488 | if (Redecl->isThisDeclarationADefinition() || | |||
8489 | (Redecl->isCanonicalDecl() && !*Suggested)) | |||
8490 | *Suggested = Redecl; | |||
8491 | } | |||
8492 | return false; | |||
8493 | } | |||
8494 | D = ED->getDefinition(); | |||
8495 | } else if (auto *FD = dyn_cast<FunctionDecl>(D)) { | |||
8496 | if (auto *Pattern = FD->getTemplateInstantiationPattern()) | |||
8497 | FD = Pattern; | |||
8498 | D = FD->getDefinition(); | |||
8499 | } else if (auto *VD = dyn_cast<VarDecl>(D)) { | |||
8500 | if (auto *Pattern = VD->getTemplateInstantiationPattern()) | |||
8501 | VD = Pattern; | |||
8502 | D = VD->getDefinition(); | |||
8503 | } | |||
8504 | assert(D && "missing definition for pattern of instantiated definition")((D && "missing definition for pattern of instantiated definition" ) ? static_cast<void> (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8504, __PRETTY_FUNCTION__)); | |||
8505 | ||||
8506 | *Suggested = D; | |||
8507 | ||||
8508 | auto DefinitionIsVisible = [&] { | |||
8509 | // The (primary) definition might be in a visible module. | |||
8510 | if (isVisible(D)) | |||
8511 | return true; | |||
8512 | ||||
8513 | // A visible module might have a merged definition instead. | |||
8514 | if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D) | |||
8515 | : hasVisibleMergedDefinition(D)) { | |||
8516 | if (CodeSynthesisContexts.empty() && | |||
8517 | !getLangOpts().ModulesLocalVisibility) { | |||
8518 | // Cache the fact that this definition is implicitly visible because | |||
8519 | // there is a visible merged definition. | |||
8520 | D->setVisibleDespiteOwningModule(); | |||
8521 | } | |||
8522 | return true; | |||
8523 | } | |||
8524 | ||||
8525 | return false; | |||
8526 | }; | |||
8527 | ||||
8528 | if (DefinitionIsVisible()) | |||
8529 | return true; | |||
8530 | ||||
8531 | // The external source may have additional definitions of this entity that are | |||
8532 | // visible, so complete the redeclaration chain now and ask again. | |||
8533 | if (auto *Source = Context.getExternalSource()) { | |||
8534 | Source->CompleteRedeclChain(D); | |||
8535 | return DefinitionIsVisible(); | |||
8536 | } | |||
8537 | ||||
8538 | return false; | |||
8539 | } | |||
8540 | ||||
8541 | /// Locks in the inheritance model for the given class and all of its bases. | |||
8542 | static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) { | |||
8543 | RD = RD->getMostRecentNonInjectedDecl(); | |||
8544 | if (!RD->hasAttr<MSInheritanceAttr>()) { | |||
8545 | MSInheritanceModel IM; | |||
8546 | bool BestCase = false; | |||
8547 | switch (S.MSPointerToMemberRepresentationMethod) { | |||
8548 | case LangOptions::PPTMK_BestCase: | |||
8549 | BestCase = true; | |||
8550 | IM = RD->calculateInheritanceModel(); | |||
8551 | break; | |||
8552 | case LangOptions::PPTMK_FullGeneralitySingleInheritance: | |||
8553 | IM = MSInheritanceModel::Single; | |||
8554 | break; | |||
8555 | case LangOptions::PPTMK_FullGeneralityMultipleInheritance: | |||
8556 | IM = MSInheritanceModel::Multiple; | |||
8557 | break; | |||
8558 | case LangOptions::PPTMK_FullGeneralityVirtualInheritance: | |||
8559 | IM = MSInheritanceModel::Unspecified; | |||
8560 | break; | |||
8561 | } | |||
8562 | ||||
8563 | SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid() | |||
8564 | ? S.ImplicitMSInheritanceAttrLoc | |||
8565 | : RD->getSourceRange(); | |||
8566 | RD->addAttr(MSInheritanceAttr::CreateImplicit( | |||
8567 | S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft, | |||
8568 | MSInheritanceAttr::Spelling(IM))); | |||
8569 | S.Consumer.AssignInheritanceModel(RD); | |||
8570 | } | |||
8571 | } | |||
8572 | ||||
8573 | /// The implementation of RequireCompleteType | |||
8574 | bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T, | |||
8575 | CompleteTypeKind Kind, | |||
8576 | TypeDiagnoser *Diagnoser) { | |||
8577 | // FIXME: Add this assertion to make sure we always get instantiation points. | |||
8578 | // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType"); | |||
8579 | // FIXME: Add this assertion to help us flush out problems with | |||
8580 | // checking for dependent types and type-dependent expressions. | |||
8581 | // | |||
8582 | // assert(!T->isDependentType() && | |||
8583 | // "Can't ask whether a dependent type is complete"); | |||
8584 | ||||
8585 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) { | |||
8586 | if (!MPTy->getClass()->isDependentType()) { | |||
8587 | if (getLangOpts().CompleteMemberPointers && | |||
8588 | !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() && | |||
8589 | RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind, | |||
8590 | diag::err_memptr_incomplete)) | |||
8591 | return true; | |||
8592 | ||||
8593 | // We lock in the inheritance model once somebody has asked us to ensure | |||
8594 | // that a pointer-to-member type is complete. | |||
8595 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
8596 | (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0)); | |||
8597 | assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl()); | |||
8598 | } | |||
8599 | } | |||
8600 | } | |||
8601 | ||||
8602 | NamedDecl *Def = nullptr; | |||
8603 | bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless); | |||
8604 | bool Incomplete = (T->isIncompleteType(&Def) || | |||
8605 | (!AcceptSizeless && T->isSizelessBuiltinType())); | |||
8606 | ||||
8607 | // Check that any necessary explicit specializations are visible. For an | |||
8608 | // enum, we just need the declaration, so don't check this. | |||
8609 | if (Def && !isa<EnumDecl>(Def)) | |||
8610 | checkSpecializationVisibility(Loc, Def); | |||
8611 | ||||
8612 | // If we have a complete type, we're done. | |||
8613 | if (!Incomplete) { | |||
8614 | // If we know about the definition but it is not visible, complain. | |||
8615 | NamedDecl *SuggestedDef = nullptr; | |||
8616 | if (Def && | |||
8617 | !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) { | |||
8618 | // If the user is going to see an error here, recover by making the | |||
8619 | // definition visible. | |||
8620 | bool TreatAsComplete = Diagnoser && !isSFINAEContext(); | |||
8621 | if (Diagnoser && SuggestedDef) | |||
8622 | diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition, | |||
8623 | /*Recover*/TreatAsComplete); | |||
8624 | return !TreatAsComplete; | |||
8625 | } else if (Def && !TemplateInstCallbacks.empty()) { | |||
8626 | CodeSynthesisContext TempInst; | |||
8627 | TempInst.Kind = CodeSynthesisContext::Memoization; | |||
8628 | TempInst.Template = Def; | |||
8629 | TempInst.Entity = Def; | |||
8630 | TempInst.PointOfInstantiation = Loc; | |||
8631 | atTemplateBegin(TemplateInstCallbacks, *this, TempInst); | |||
8632 | atTemplateEnd(TemplateInstCallbacks, *this, TempInst); | |||
8633 | } | |||
8634 | ||||
8635 | return false; | |||
8636 | } | |||
8637 | ||||
8638 | TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def); | |||
8639 | ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def); | |||
8640 | ||||
8641 | // Give the external source a chance to provide a definition of the type. | |||
8642 | // This is kept separate from completing the redeclaration chain so that | |||
8643 | // external sources such as LLDB can avoid synthesizing a type definition | |||
8644 | // unless it's actually needed. | |||
8645 | if (Tag || IFace) { | |||
8646 | // Avoid diagnosing invalid decls as incomplete. | |||
8647 | if (Def->isInvalidDecl()) | |||
8648 | return true; | |||
8649 | ||||
8650 | // Give the external AST source a chance to complete the type. | |||
8651 | if (auto *Source = Context.getExternalSource()) { | |||
8652 | if (Tag && Tag->hasExternalLexicalStorage()) | |||
8653 | Source->CompleteType(Tag); | |||
8654 | if (IFace && IFace->hasExternalLexicalStorage()) | |||
8655 | Source->CompleteType(IFace); | |||
8656 | // If the external source completed the type, go through the motions | |||
8657 | // again to ensure we're allowed to use the completed type. | |||
8658 | if (!T->isIncompleteType()) | |||
8659 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); | |||
8660 | } | |||
8661 | } | |||
8662 | ||||
8663 | // If we have a class template specialization or a class member of a | |||
8664 | // class template specialization, or an array with known size of such, | |||
8665 | // try to instantiate it. | |||
8666 | if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) { | |||
8667 | bool Instantiated = false; | |||
8668 | bool Diagnosed = false; | |||
8669 | if (RD->isDependentContext()) { | |||
8670 | // Don't try to instantiate a dependent class (eg, a member template of | |||
8671 | // an instantiated class template specialization). | |||
8672 | // FIXME: Can this ever happen? | |||
8673 | } else if (auto *ClassTemplateSpec = | |||
8674 | dyn_cast<ClassTemplateSpecializationDecl>(RD)) { | |||
8675 | if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) { | |||
8676 | runWithSufficientStackSpace(Loc, [&] { | |||
8677 | Diagnosed = InstantiateClassTemplateSpecialization( | |||
8678 | Loc, ClassTemplateSpec, TSK_ImplicitInstantiation, | |||
8679 | /*Complain=*/Diagnoser); | |||
8680 | }); | |||
8681 | Instantiated = true; | |||
8682 | } | |||
8683 | } else { | |||
8684 | CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass(); | |||
8685 | if (!RD->isBeingDefined() && Pattern) { | |||
8686 | MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo(); | |||
8687 | assert(MSI && "Missing member specialization information?")((MSI && "Missing member specialization information?" ) ? static_cast<void> (0) : __assert_fail ("MSI && \"Missing member specialization information?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8687, __PRETTY_FUNCTION__)); | |||
8688 | // This record was instantiated from a class within a template. | |||
8689 | if (MSI->getTemplateSpecializationKind() != | |||
8690 | TSK_ExplicitSpecialization) { | |||
8691 | runWithSufficientStackSpace(Loc, [&] { | |||
8692 | Diagnosed = InstantiateClass(Loc, RD, Pattern, | |||
8693 | getTemplateInstantiationArgs(RD), | |||
8694 | TSK_ImplicitInstantiation, | |||
8695 | /*Complain=*/Diagnoser); | |||
8696 | }); | |||
8697 | Instantiated = true; | |||
8698 | } | |||
8699 | } | |||
8700 | } | |||
8701 | ||||
8702 | if (Instantiated) { | |||
8703 | // Instantiate* might have already complained that the template is not | |||
8704 | // defined, if we asked it to. | |||
8705 | if (Diagnoser && Diagnosed) | |||
8706 | return true; | |||
8707 | // If we instantiated a definition, check that it's usable, even if | |||
8708 | // instantiation produced an error, so that repeated calls to this | |||
8709 | // function give consistent answers. | |||
8710 | if (!T->isIncompleteType()) | |||
8711 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); | |||
8712 | } | |||
8713 | } | |||
8714 | ||||
8715 | // FIXME: If we didn't instantiate a definition because of an explicit | |||
8716 | // specialization declaration, check that it's visible. | |||
8717 | ||||
8718 | if (!Diagnoser) | |||
8719 | return true; | |||
8720 | ||||
8721 | Diagnoser->diagnose(*this, Loc, T); | |||
8722 | ||||
8723 | // If the type was a forward declaration of a class/struct/union | |||
8724 | // type, produce a note. | |||
8725 | if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid()) | |||
8726 | Diag(Tag->getLocation(), | |||
8727 | Tag->isBeingDefined() ? diag::note_type_being_defined | |||
8728 | : diag::note_forward_declaration) | |||
8729 | << Context.getTagDeclType(Tag); | |||
8730 | ||||
8731 | // If the Objective-C class was a forward declaration, produce a note. | |||
8732 | if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid()) | |||
8733 | Diag(IFace->getLocation(), diag::note_forward_class); | |||
8734 | ||||
8735 | // If we have external information that we can use to suggest a fix, | |||
8736 | // produce a note. | |||
8737 | if (ExternalSource) | |||
8738 | ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T); | |||
8739 | ||||
8740 | return true; | |||
8741 | } | |||
8742 | ||||
8743 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, | |||
8744 | CompleteTypeKind Kind, unsigned DiagID) { | |||
8745 | BoundTypeDiagnoser<> Diagnoser(DiagID); | |||
8746 | return RequireCompleteType(Loc, T, Kind, Diagnoser); | |||
8747 | } | |||
8748 | ||||
8749 | /// Get diagnostic %select index for tag kind for | |||
8750 | /// literal type diagnostic message. | |||
8751 | /// WARNING: Indexes apply to particular diagnostics only! | |||
8752 | /// | |||
8753 | /// \returns diagnostic %select index. | |||
8754 | static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) { | |||
8755 | switch (Tag) { | |||
8756 | case TTK_Struct: return 0; | |||
8757 | case TTK_Interface: return 1; | |||
8758 | case TTK_Class: return 2; | |||
8759 | default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8759); | |||
8760 | } | |||
8761 | } | |||
8762 | ||||
8763 | /// Ensure that the type T is a literal type. | |||
8764 | /// | |||
8765 | /// This routine checks whether the type @p T is a literal type. If @p T is an | |||
8766 | /// incomplete type, an attempt is made to complete it. If @p T is a literal | |||
8767 | /// type, or @p AllowIncompleteType is true and @p T is an incomplete type, | |||
8768 | /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving | |||
8769 | /// it the type @p T), along with notes explaining why the type is not a | |||
8770 | /// literal type, and returns true. | |||
8771 | /// | |||
8772 | /// @param Loc The location in the source that the non-literal type | |||
8773 | /// diagnostic should refer to. | |||
8774 | /// | |||
8775 | /// @param T The type that this routine is examining for literalness. | |||
8776 | /// | |||
8777 | /// @param Diagnoser Emits a diagnostic if T is not a literal type. | |||
8778 | /// | |||
8779 | /// @returns @c true if @p T is not a literal type and a diagnostic was emitted, | |||
8780 | /// @c false otherwise. | |||
8781 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, | |||
8782 | TypeDiagnoser &Diagnoser) { | |||
8783 | assert(!T->isDependentType() && "type should not be dependent")((!T->isDependentType() && "type should not be dependent" ) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"type should not be dependent\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8783, __PRETTY_FUNCTION__)); | |||
8784 | ||||
8785 | QualType ElemType = Context.getBaseElementType(T); | |||
8786 | if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) && | |||
8787 | T->isLiteralType(Context)) | |||
8788 | return false; | |||
8789 | ||||
8790 | Diagnoser.diagnose(*this, Loc, T); | |||
8791 | ||||
8792 | if (T->isVariableArrayType()) | |||
8793 | return true; | |||
8794 | ||||
8795 | const RecordType *RT = ElemType->getAs<RecordType>(); | |||
8796 | if (!RT) | |||
8797 | return true; | |||
8798 | ||||
8799 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | |||
8800 | ||||
8801 | // A partially-defined class type can't be a literal type, because a literal | |||
8802 | // class type must have a trivial destructor (which can't be checked until | |||
8803 | // the class definition is complete). | |||
8804 | if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T)) | |||
8805 | return true; | |||
8806 | ||||
8807 | // [expr.prim.lambda]p3: | |||
8808 | // This class type is [not] a literal type. | |||
8809 | if (RD->isLambda() && !getLangOpts().CPlusPlus17) { | |||
8810 | Diag(RD->getLocation(), diag::note_non_literal_lambda); | |||
8811 | return true; | |||
8812 | } | |||
8813 | ||||
8814 | // If the class has virtual base classes, then it's not an aggregate, and | |||
8815 | // cannot have any constexpr constructors or a trivial default constructor, | |||
8816 | // so is non-literal. This is better to diagnose than the resulting absence | |||
8817 | // of constexpr constructors. | |||
8818 | if (RD->getNumVBases()) { | |||
8819 | Diag(RD->getLocation(), diag::note_non_literal_virtual_base) | |||
8820 | << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); | |||
8821 | for (const auto &I : RD->vbases()) | |||
8822 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) | |||
8823 | << I.getSourceRange(); | |||
8824 | } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() && | |||
8825 | !RD->hasTrivialDefaultConstructor()) { | |||
8826 | Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD; | |||
8827 | } else if (RD->hasNonLiteralTypeFieldsOrBases()) { | |||
8828 | for (const auto &I : RD->bases()) { | |||
8829 | if (!I.getType()->isLiteralType(Context)) { | |||
8830 | Diag(I.getBeginLoc(), diag::note_non_literal_base_class) | |||
8831 | << RD << I.getType() << I.getSourceRange(); | |||
8832 | return true; | |||
8833 | } | |||
8834 | } | |||
8835 | for (const auto *I : RD->fields()) { | |||
8836 | if (!I->getType()->isLiteralType(Context) || | |||
8837 | I->getType().isVolatileQualified()) { | |||
8838 | Diag(I->getLocation(), diag::note_non_literal_field) | |||
8839 | << RD << I << I->getType() | |||
8840 | << I->getType().isVolatileQualified(); | |||
8841 | return true; | |||
8842 | } | |||
8843 | } | |||
8844 | } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor() | |||
8845 | : !RD->hasTrivialDestructor()) { | |||
8846 | // All fields and bases are of literal types, so have trivial or constexpr | |||
8847 | // destructors. If this class's destructor is non-trivial / non-constexpr, | |||
8848 | // it must be user-declared. | |||
8849 | CXXDestructorDecl *Dtor = RD->getDestructor(); | |||
8850 | assert(Dtor && "class has literal fields and bases but no dtor?")((Dtor && "class has literal fields and bases but no dtor?" ) ? static_cast<void> (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8850, __PRETTY_FUNCTION__)); | |||
8851 | if (!Dtor) | |||
8852 | return true; | |||
8853 | ||||
8854 | if (getLangOpts().CPlusPlus20) { | |||
8855 | Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor) | |||
8856 | << RD; | |||
8857 | } else { | |||
8858 | Diag(Dtor->getLocation(), Dtor->isUserProvided() | |||
8859 | ? diag::note_non_literal_user_provided_dtor | |||
8860 | : diag::note_non_literal_nontrivial_dtor) | |||
8861 | << RD; | |||
8862 | if (!Dtor->isUserProvided()) | |||
8863 | SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI, | |||
8864 | /*Diagnose*/ true); | |||
8865 | } | |||
8866 | } | |||
8867 | ||||
8868 | return true; | |||
8869 | } | |||
8870 | ||||
8871 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) { | |||
8872 | BoundTypeDiagnoser<> Diagnoser(DiagID); | |||
8873 | return RequireLiteralType(Loc, T, Diagnoser); | |||
8874 | } | |||
8875 | ||||
8876 | /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified | |||
8877 | /// by the nested-name-specifier contained in SS, and that is (re)declared by | |||
8878 | /// OwnedTagDecl, which is nullptr if this is not a (re)declaration. | |||
8879 | QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword, | |||
8880 | const CXXScopeSpec &SS, QualType T, | |||
8881 | TagDecl *OwnedTagDecl) { | |||
8882 | if (T.isNull()) | |||
8883 | return T; | |||
8884 | NestedNameSpecifier *NNS; | |||
8885 | if (SS.isValid()) | |||
8886 | NNS = SS.getScopeRep(); | |||
8887 | else { | |||
8888 | if (Keyword == ETK_None) | |||
8889 | return T; | |||
8890 | NNS = nullptr; | |||
8891 | } | |||
8892 | return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl); | |||
8893 | } | |||
8894 | ||||
8895 | QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) { | |||
8896 | assert(!E->hasPlaceholderType() && "unexpected placeholder")((!E->hasPlaceholderType() && "unexpected placeholder" ) ? static_cast<void> (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8896, __PRETTY_FUNCTION__)); | |||
8897 | ||||
8898 | if (!getLangOpts().CPlusPlus && E->refersToBitField()) | |||
8899 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2; | |||
8900 | ||||
8901 | if (!E->isTypeDependent()) { | |||
8902 | QualType T = E->getType(); | |||
8903 | if (const TagType *TT = T->getAs<TagType>()) | |||
8904 | DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc()); | |||
8905 | } | |||
8906 | return Context.getTypeOfExprType(E); | |||
8907 | } | |||
8908 | ||||
8909 | /// getDecltypeForExpr - Given an expr, will return the decltype for | |||
8910 | /// that expression, according to the rules in C++11 | |||
8911 | /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18. | |||
8912 | static QualType getDecltypeForExpr(Sema &S, Expr *E) { | |||
8913 | if (E->isTypeDependent()) | |||
8914 | return S.Context.DependentTy; | |||
8915 | ||||
8916 | // C++11 [dcl.type.simple]p4: | |||
8917 | // The type denoted by decltype(e) is defined as follows: | |||
8918 | ||||
8919 | // C++20: | |||
8920 | // - if E is an unparenthesized id-expression naming a non-type | |||
8921 | // template-parameter (13.2), decltype(E) is the type of the | |||
8922 | // template-parameter after performing any necessary type deduction | |||
8923 | // Note that this does not pick up the implicit 'const' for a template | |||
8924 | // parameter object. This rule makes no difference before C++20 so we apply | |||
8925 | // it unconditionally. | |||
8926 | if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) | |||
8927 | return SNTTPE->getParameterType(S.Context); | |||
8928 | ||||
8929 | // - if e is an unparenthesized id-expression or an unparenthesized class | |||
8930 | // member access (5.2.5), decltype(e) is the type of the entity named | |||
8931 | // by e. If there is no such entity, or if e names a set of overloaded | |||
8932 | // functions, the program is ill-formed; | |||
8933 | // | |||
8934 | // We apply the same rules for Objective-C ivar and property references. | |||
8935 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | |||
8936 | const ValueDecl *VD = DRE->getDecl(); | |||
8937 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD)) | |||
8938 | return TPO->getType().getUnqualifiedType(); | |||
8939 | return VD->getType(); | |||
8940 | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | |||
8941 | if (const ValueDecl *VD = ME->getMemberDecl()) | |||
8942 | if (isa<FieldDecl>(VD) || isa<VarDecl>(VD)) | |||
8943 | return VD->getType(); | |||
8944 | } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) { | |||
8945 | return IR->getDecl()->getType(); | |||
8946 | } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) { | |||
8947 | if (PR->isExplicitProperty()) | |||
8948 | return PR->getExplicitProperty()->getType(); | |||
8949 | } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) { | |||
8950 | return PE->getType(); | |||
8951 | } | |||
8952 | ||||
8953 | // C++11 [expr.lambda.prim]p18: | |||
8954 | // Every occurrence of decltype((x)) where x is a possibly | |||
8955 | // parenthesized id-expression that names an entity of automatic | |||
8956 | // storage duration is treated as if x were transformed into an | |||
8957 | // access to a corresponding data member of the closure type that | |||
8958 | // would have been declared if x were an odr-use of the denoted | |||
8959 | // entity. | |||
8960 | using namespace sema; | |||
8961 | if (S.getCurLambda()) { | |||
8962 | if (isa<ParenExpr>(E)) { | |||
8963 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | |||
8964 | if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { | |||
8965 | QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation()); | |||
8966 | if (!T.isNull()) | |||
8967 | return S.Context.getLValueReferenceType(T); | |||
8968 | } | |||
8969 | } | |||
8970 | } | |||
8971 | } | |||
8972 | ||||
8973 | ||||
8974 | // C++11 [dcl.type.simple]p4: | |||
8975 | // [...] | |||
8976 | QualType T = E->getType(); | |||
8977 | switch (E->getValueKind()) { | |||
8978 | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the | |||
8979 | // type of e; | |||
8980 | case VK_XValue: T = S.Context.getRValueReferenceType(T); break; | |||
8981 | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the | |||
8982 | // type of e; | |||
8983 | case VK_LValue: T = S.Context.getLValueReferenceType(T); break; | |||
8984 | // - otherwise, decltype(e) is the type of e. | |||
8985 | case VK_RValue: break; | |||
8986 | } | |||
8987 | ||||
8988 | return T; | |||
8989 | } | |||
8990 | ||||
8991 | QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc, | |||
8992 | bool AsUnevaluated) { | |||
8993 | assert(!E->hasPlaceholderType() && "unexpected placeholder")((!E->hasPlaceholderType() && "unexpected placeholder" ) ? static_cast<void> (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 8993, __PRETTY_FUNCTION__)); | |||
8994 | ||||
8995 | if (AsUnevaluated && CodeSynthesisContexts.empty() && | |||
8996 | !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) { | |||
8997 | // The expression operand for decltype is in an unevaluated expression | |||
8998 | // context, so side effects could result in unintended consequences. | |||
8999 | // Exclude instantiation-dependent expressions, because 'decltype' is often | |||
9000 | // used to build SFINAE gadgets. | |||
9001 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | |||
9002 | } | |||
9003 | ||||
9004 | return Context.getDecltypeType(E, getDecltypeForExpr(*this, E)); | |||
9005 | } | |||
9006 | ||||
9007 | QualType Sema::BuildUnaryTransformType(QualType BaseType, | |||
9008 | UnaryTransformType::UTTKind UKind, | |||
9009 | SourceLocation Loc) { | |||
9010 | switch (UKind) { | |||
9011 | case UnaryTransformType::EnumUnderlyingType: | |||
9012 | if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) { | |||
9013 | Diag(Loc, diag::err_only_enums_have_underlying_types); | |||
9014 | return QualType(); | |||
9015 | } else { | |||
9016 | QualType Underlying = BaseType; | |||
9017 | if (!BaseType->isDependentType()) { | |||
9018 | // The enum could be incomplete if we're parsing its definition or | |||
9019 | // recovering from an error. | |||
9020 | NamedDecl *FwdDecl = nullptr; | |||
9021 | if (BaseType->isIncompleteType(&FwdDecl)) { | |||
9022 | Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType; | |||
9023 | Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl; | |||
9024 | return QualType(); | |||
9025 | } | |||
9026 | ||||
9027 | EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl(); | |||
9028 | assert(ED && "EnumType has no EnumDecl")((ED && "EnumType has no EnumDecl") ? static_cast< void> (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 9028, __PRETTY_FUNCTION__)); | |||
9029 | ||||
9030 | DiagnoseUseOfDecl(ED, Loc); | |||
9031 | ||||
9032 | Underlying = ED->getIntegerType(); | |||
9033 | assert(!Underlying.isNull())((!Underlying.isNull()) ? static_cast<void> (0) : __assert_fail ("!Underlying.isNull()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 9033, __PRETTY_FUNCTION__)); | |||
9034 | } | |||
9035 | return Context.getUnaryTransformType(BaseType, Underlying, | |||
9036 | UnaryTransformType::EnumUnderlyingType); | |||
9037 | } | |||
9038 | } | |||
9039 | llvm_unreachable("unknown unary transform type")::llvm::llvm_unreachable_internal("unknown unary transform type" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/lib/Sema/SemaType.cpp" , 9039); | |||
9040 | } | |||
9041 | ||||
9042 | QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) { | |||
9043 | if (!T->isDependentType()) { | |||
9044 | // FIXME: It isn't entirely clear whether incomplete atomic types | |||
9045 | // are allowed or not; for simplicity, ban them for the moment. | |||
9046 | if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0)) | |||
9047 | return QualType(); | |||
9048 | ||||
9049 | int DisallowedKind = -1; | |||
9050 | if (T->isArrayType()) | |||
9051 | DisallowedKind = 1; | |||
9052 | else if (T->isFunctionType()) | |||
9053 | DisallowedKind = 2; | |||
9054 | else if (T->isReferenceType()) | |||
9055 | DisallowedKind = 3; | |||
9056 | else if (T->isAtomicType()) | |||
9057 | DisallowedKind = 4; | |||
9058 | else if (T.hasQualifiers()) | |||
9059 | DisallowedKind = 5; | |||
9060 | else if (T->isSizelessType()) | |||
9061 | DisallowedKind = 6; | |||
9062 | else if (!T.isTriviallyCopyableType(Context)) | |||
9063 | // Some other non-trivially-copyable type (probably a C++ class) | |||
9064 | DisallowedKind = 7; | |||
9065 | else if (T->isExtIntType()) { | |||
9066 | DisallowedKind = 8; | |||
9067 | } | |||
9068 | ||||
9069 | if (DisallowedKind != -1) { | |||
9070 | Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T; | |||
9071 | return QualType(); | |||
9072 | } | |||
9073 | ||||
9074 | // FIXME: Do we need any handling for ARC here? | |||
9075 | } | |||
9076 | ||||
9077 | // Build the pointer type. | |||
9078 | return Context.getAtomicType(T); | |||
9079 | } |
1 | //======- ParsedAttr.h - Parsed attribute sets ------------------*- C++ -*-===// | ||||||||
2 | // | ||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
6 | // | ||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||
8 | // | ||||||||
9 | // This file defines the ParsedAttr class, which is used to collect | ||||||||
10 | // parsed attributes. | ||||||||
11 | // | ||||||||
12 | //===----------------------------------------------------------------------===// | ||||||||
13 | |||||||||
14 | #ifndef LLVM_CLANG_SEMA_ATTRIBUTELIST_H | ||||||||
15 | #define LLVM_CLANG_SEMA_ATTRIBUTELIST_H | ||||||||
16 | |||||||||
17 | #include "clang/Basic/AttrSubjectMatchRules.h" | ||||||||
18 | #include "clang/Basic/AttributeCommonInfo.h" | ||||||||
19 | #include "clang/Basic/Diagnostic.h" | ||||||||
20 | #include "clang/Basic/SourceLocation.h" | ||||||||
21 | #include "clang/Sema/Ownership.h" | ||||||||
22 | #include "llvm/ADT/PointerUnion.h" | ||||||||
23 | #include "llvm/ADT/SmallVector.h" | ||||||||
24 | #include "llvm/ADT/TinyPtrVector.h" | ||||||||
25 | #include "llvm/Support/Allocator.h" | ||||||||
26 | #include "llvm/Support/Registry.h" | ||||||||
27 | #include "llvm/Support/VersionTuple.h" | ||||||||
28 | #include <cassert> | ||||||||
29 | #include <cstddef> | ||||||||
30 | #include <cstring> | ||||||||
31 | #include <utility> | ||||||||
32 | |||||||||
33 | namespace clang { | ||||||||
34 | |||||||||
35 | class ASTContext; | ||||||||
36 | class Decl; | ||||||||
37 | class Expr; | ||||||||
38 | class IdentifierInfo; | ||||||||
39 | class LangOptions; | ||||||||
40 | class ParsedAttr; | ||||||||
41 | class Sema; | ||||||||
42 | class TargetInfo; | ||||||||
43 | |||||||||
44 | struct ParsedAttrInfo { | ||||||||
45 | /// Corresponds to the Kind enum. | ||||||||
46 | unsigned AttrKind : 16; | ||||||||
47 | /// The number of required arguments of this attribute. | ||||||||
48 | unsigned NumArgs : 4; | ||||||||
49 | /// The number of optional arguments of this attributes. | ||||||||
50 | unsigned OptArgs : 4; | ||||||||
51 | /// True if the parsing does not match the semantic content. | ||||||||
52 | unsigned HasCustomParsing : 1; | ||||||||
53 | /// True if this attribute is only available for certain targets. | ||||||||
54 | unsigned IsTargetSpecific : 1; | ||||||||
55 | /// True if this attribute applies to types. | ||||||||
56 | unsigned IsType : 1; | ||||||||
57 | /// True if this attribute applies to statements. | ||||||||
58 | unsigned IsStmt : 1; | ||||||||
59 | /// True if this attribute has any spellings that are known to gcc. | ||||||||
60 | unsigned IsKnownToGCC : 1; | ||||||||
61 | /// True if this attribute is supported by #pragma clang attribute. | ||||||||
62 | unsigned IsSupportedByPragmaAttribute : 1; | ||||||||
63 | /// The syntaxes supported by this attribute and how they're spelled. | ||||||||
64 | struct Spelling { | ||||||||
65 | AttributeCommonInfo::Syntax Syntax; | ||||||||
66 | const char *NormalizedFullName; | ||||||||
67 | }; | ||||||||
68 | ArrayRef<Spelling> Spellings; | ||||||||
69 | |||||||||
70 | ParsedAttrInfo(AttributeCommonInfo::Kind AttrKind = | ||||||||
71 | AttributeCommonInfo::NoSemaHandlerAttribute) | ||||||||
72 | : AttrKind(AttrKind), NumArgs(0), OptArgs(0), HasCustomParsing(0), | ||||||||
73 | IsTargetSpecific(0), IsType(0), IsStmt(0), IsKnownToGCC(0), | ||||||||
74 | IsSupportedByPragmaAttribute(0) {} | ||||||||
75 | |||||||||
76 | virtual ~ParsedAttrInfo() = default; | ||||||||
77 | |||||||||
78 | /// Check if this attribute appertains to D, and issue a diagnostic if not. | ||||||||
79 | virtual bool diagAppertainsToDecl(Sema &S, const ParsedAttr &Attr, | ||||||||
80 | const Decl *D) const { | ||||||||
81 | return true; | ||||||||
82 | } | ||||||||
83 | /// Check if this attribute is allowed by the language we are compiling, and | ||||||||
84 | /// issue a diagnostic if not. | ||||||||
85 | virtual bool diagLangOpts(Sema &S, const ParsedAttr &Attr) const { | ||||||||
86 | return true; | ||||||||
87 | } | ||||||||
88 | /// Check if this attribute is allowed when compiling for the given target. | ||||||||
89 | virtual bool existsInTarget(const TargetInfo &Target) const { | ||||||||
90 | return true; | ||||||||
91 | } | ||||||||
92 | /// Convert the spelling index of Attr to a semantic spelling enum value. | ||||||||
93 | virtual unsigned | ||||||||
94 | spellingIndexToSemanticSpelling(const ParsedAttr &Attr) const { | ||||||||
95 | return UINT_MAX(2147483647 *2U +1U); | ||||||||
96 | } | ||||||||
97 | /// Populate Rules with the match rules of this attribute. | ||||||||
98 | virtual void getPragmaAttributeMatchRules( | ||||||||
99 | llvm::SmallVectorImpl<std::pair<attr::SubjectMatchRule, bool>> &Rules, | ||||||||
100 | const LangOptions &LangOpts) const { | ||||||||
101 | } | ||||||||
102 | enum AttrHandling { | ||||||||
103 | NotHandled, | ||||||||
104 | AttributeApplied, | ||||||||
105 | AttributeNotApplied | ||||||||
106 | }; | ||||||||
107 | /// If this ParsedAttrInfo knows how to handle this ParsedAttr applied to this | ||||||||
108 | /// Decl then do so and return either AttributeApplied if it was applied or | ||||||||
109 | /// AttributeNotApplied if it wasn't. Otherwise return NotHandled. | ||||||||
110 | virtual AttrHandling handleDeclAttribute(Sema &S, Decl *D, | ||||||||
111 | const ParsedAttr &Attr) const { | ||||||||
112 | return NotHandled; | ||||||||
113 | } | ||||||||
114 | |||||||||
115 | static const ParsedAttrInfo &get(const AttributeCommonInfo &A); | ||||||||
116 | }; | ||||||||
117 | |||||||||
118 | typedef llvm::Registry<ParsedAttrInfo> ParsedAttrInfoRegistry; | ||||||||
119 | |||||||||
120 | /// Represents information about a change in availability for | ||||||||
121 | /// an entity, which is part of the encoding of the 'availability' | ||||||||
122 | /// attribute. | ||||||||
123 | struct AvailabilityChange { | ||||||||
124 | /// The location of the keyword indicating the kind of change. | ||||||||
125 | SourceLocation KeywordLoc; | ||||||||
126 | |||||||||
127 | /// The version number at which the change occurred. | ||||||||
128 | VersionTuple Version; | ||||||||
129 | |||||||||
130 | /// The source range covering the version number. | ||||||||
131 | SourceRange VersionRange; | ||||||||
132 | |||||||||
133 | /// Determine whether this availability change is valid. | ||||||||
134 | bool isValid() const { return !Version.empty(); } | ||||||||
135 | }; | ||||||||
136 | |||||||||
137 | namespace detail { | ||||||||
138 | enum AvailabilitySlot { | ||||||||
139 | IntroducedSlot, DeprecatedSlot, ObsoletedSlot, NumAvailabilitySlots | ||||||||
140 | }; | ||||||||
141 | |||||||||
142 | /// Describes the trailing object for Availability attribute in ParsedAttr. | ||||||||
143 | struct AvailabilityData { | ||||||||
144 | AvailabilityChange Changes[NumAvailabilitySlots]; | ||||||||
145 | SourceLocation StrictLoc; | ||||||||
146 | const Expr *Replacement; | ||||||||
147 | |||||||||
148 | AvailabilityData(const AvailabilityChange &Introduced, | ||||||||
149 | const AvailabilityChange &Deprecated, | ||||||||
150 | const AvailabilityChange &Obsoleted, | ||||||||
151 | SourceLocation Strict, const Expr *ReplaceExpr) | ||||||||
152 | : StrictLoc(Strict), Replacement(ReplaceExpr) { | ||||||||
153 | Changes[IntroducedSlot] = Introduced; | ||||||||
154 | Changes[DeprecatedSlot] = Deprecated; | ||||||||
155 | Changes[ObsoletedSlot] = Obsoleted; | ||||||||
156 | } | ||||||||
157 | }; | ||||||||
158 | |||||||||
159 | struct TypeTagForDatatypeData { | ||||||||
160 | ParsedType MatchingCType; | ||||||||
161 | unsigned LayoutCompatible : 1; | ||||||||
162 | unsigned MustBeNull : 1; | ||||||||
163 | }; | ||||||||
164 | struct PropertyData { | ||||||||
165 | IdentifierInfo *GetterId, *SetterId; | ||||||||
166 | |||||||||
167 | PropertyData(IdentifierInfo *getterId, IdentifierInfo *setterId) | ||||||||
168 | : GetterId(getterId), SetterId(setterId) {} | ||||||||
169 | }; | ||||||||
170 | |||||||||
171 | } // namespace | ||||||||
172 | |||||||||
173 | /// Wraps an identifier and optional source location for the identifier. | ||||||||
174 | struct IdentifierLoc { | ||||||||
175 | SourceLocation Loc; | ||||||||
176 | IdentifierInfo *Ident; | ||||||||
177 | |||||||||
178 | static IdentifierLoc *create(ASTContext &Ctx, SourceLocation Loc, | ||||||||
179 | IdentifierInfo *Ident); | ||||||||
180 | }; | ||||||||
181 | |||||||||
182 | /// A union of the various pointer types that can be passed to an | ||||||||
183 | /// ParsedAttr as an argument. | ||||||||
184 | using ArgsUnion = llvm::PointerUnion<Expr *, IdentifierLoc *>; | ||||||||
185 | using ArgsVector = llvm::SmallVector<ArgsUnion, 12U>; | ||||||||
186 | |||||||||
187 | /// ParsedAttr - Represents a syntactic attribute. | ||||||||
188 | /// | ||||||||
189 | /// For a GNU attribute, there are four forms of this construct: | ||||||||
190 | /// | ||||||||
191 | /// 1: __attribute__(( const )). ParmName/Args/NumArgs will all be unused. | ||||||||
192 | /// 2: __attribute__(( mode(byte) )). ParmName used, Args/NumArgs unused. | ||||||||
193 | /// 3: __attribute__(( format(printf, 1, 2) )). ParmName/Args/NumArgs all used. | ||||||||
194 | /// 4: __attribute__(( aligned(16) )). ParmName is unused, Args/Num used. | ||||||||
195 | /// | ||||||||
196 | class ParsedAttr final | ||||||||
197 | : public AttributeCommonInfo, | ||||||||
198 | private llvm::TrailingObjects< | ||||||||
199 | ParsedAttr, ArgsUnion, detail::AvailabilityData, | ||||||||
200 | detail::TypeTagForDatatypeData, ParsedType, detail::PropertyData> { | ||||||||
201 | friend TrailingObjects; | ||||||||
202 | |||||||||
203 | size_t numTrailingObjects(OverloadToken<ArgsUnion>) const { return NumArgs; } | ||||||||
204 | size_t numTrailingObjects(OverloadToken<detail::AvailabilityData>) const { | ||||||||
205 | return IsAvailability; | ||||||||
206 | } | ||||||||
207 | size_t | ||||||||
208 | numTrailingObjects(OverloadToken<detail::TypeTagForDatatypeData>) const { | ||||||||
209 | return IsTypeTagForDatatype; | ||||||||
210 | } | ||||||||
211 | size_t numTrailingObjects(OverloadToken<ParsedType>) const { | ||||||||
212 | return HasParsedType; | ||||||||
213 | } | ||||||||
214 | size_t numTrailingObjects(OverloadToken<detail::PropertyData>) const { | ||||||||
215 | return IsProperty; | ||||||||
216 | } | ||||||||
217 | |||||||||
218 | private: | ||||||||
219 | IdentifierInfo *MacroII = nullptr; | ||||||||
220 | SourceLocation MacroExpansionLoc; | ||||||||
221 | SourceLocation EllipsisLoc; | ||||||||
222 | |||||||||
223 | /// The number of expression arguments this attribute has. | ||||||||
224 | /// The expressions themselves are stored after the object. | ||||||||
225 | unsigned NumArgs : 16; | ||||||||
226 | |||||||||
227 | /// True if already diagnosed as invalid. | ||||||||
228 | mutable unsigned Invalid : 1; | ||||||||
229 | |||||||||
230 | /// True if this attribute was used as a type attribute. | ||||||||
231 | mutable unsigned UsedAsTypeAttr : 1; | ||||||||
232 | |||||||||
233 | /// True if this has the extra information associated with an | ||||||||
234 | /// availability attribute. | ||||||||
235 | unsigned IsAvailability : 1; | ||||||||
236 | |||||||||
237 | /// True if this has extra information associated with a | ||||||||
238 | /// type_tag_for_datatype attribute. | ||||||||
239 | unsigned IsTypeTagForDatatype : 1; | ||||||||
240 | |||||||||
241 | /// True if this has extra information associated with a | ||||||||
242 | /// Microsoft __delcspec(property) attribute. | ||||||||
243 | unsigned IsProperty : 1; | ||||||||
244 | |||||||||
245 | /// True if this has a ParsedType | ||||||||
246 | unsigned HasParsedType : 1; | ||||||||
247 | |||||||||
248 | /// True if the processing cache is valid. | ||||||||
249 | mutable unsigned HasProcessingCache : 1; | ||||||||
250 | |||||||||
251 | /// A cached value. | ||||||||
252 | mutable unsigned ProcessingCache : 8; | ||||||||
253 | |||||||||
254 | /// True if the attribute is specified using '#pragma clang attribute'. | ||||||||
255 | mutable unsigned IsPragmaClangAttribute : 1; | ||||||||
256 | |||||||||
257 | /// The location of the 'unavailable' keyword in an | ||||||||
258 | /// availability attribute. | ||||||||
259 | SourceLocation UnavailableLoc; | ||||||||
260 | |||||||||
261 | const Expr *MessageExpr; | ||||||||
262 | |||||||||
263 | const ParsedAttrInfo &Info; | ||||||||
264 | |||||||||
265 | ArgsUnion *getArgsBuffer() { return getTrailingObjects<ArgsUnion>(); } | ||||||||
266 | ArgsUnion const *getArgsBuffer() const { | ||||||||
267 | return getTrailingObjects<ArgsUnion>(); | ||||||||
268 | } | ||||||||
269 | |||||||||
270 | detail::AvailabilityData *getAvailabilityData() { | ||||||||
271 | return getTrailingObjects<detail::AvailabilityData>(); | ||||||||
272 | } | ||||||||
273 | const detail::AvailabilityData *getAvailabilityData() const { | ||||||||
274 | return getTrailingObjects<detail::AvailabilityData>(); | ||||||||
275 | } | ||||||||
276 | |||||||||
277 | private: | ||||||||
278 | friend class AttributeFactory; | ||||||||
279 | friend class AttributePool; | ||||||||
280 | |||||||||
281 | /// Constructor for attributes with expression arguments. | ||||||||
282 | ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
283 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
284 | ArgsUnion *args, unsigned numArgs, Syntax syntaxUsed, | ||||||||
285 | SourceLocation ellipsisLoc) | ||||||||
286 | : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, | ||||||||
287 | syntaxUsed), | ||||||||
288 | EllipsisLoc(ellipsisLoc), NumArgs(numArgs), Invalid(false), | ||||||||
289 | UsedAsTypeAttr(false), IsAvailability(false), | ||||||||
290 | IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false), | ||||||||
291 | HasProcessingCache(false), IsPragmaClangAttribute(false), | ||||||||
292 | Info(ParsedAttrInfo::get(*this)) { | ||||||||
293 | if (numArgs) | ||||||||
294 | memcpy(getArgsBuffer(), args, numArgs * sizeof(ArgsUnion)); | ||||||||
295 | } | ||||||||
296 | |||||||||
297 | /// Constructor for availability attributes. | ||||||||
298 | ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
299 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
300 | IdentifierLoc *Parm, const AvailabilityChange &introduced, | ||||||||
301 | const AvailabilityChange &deprecated, | ||||||||
302 | const AvailabilityChange &obsoleted, SourceLocation unavailable, | ||||||||
303 | const Expr *messageExpr, Syntax syntaxUsed, SourceLocation strict, | ||||||||
304 | const Expr *replacementExpr) | ||||||||
305 | : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, | ||||||||
306 | syntaxUsed), | ||||||||
307 | NumArgs(1), Invalid(false), UsedAsTypeAttr(false), IsAvailability(true), | ||||||||
308 | IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false), | ||||||||
309 | HasProcessingCache(false), IsPragmaClangAttribute(false), | ||||||||
310 | UnavailableLoc(unavailable), MessageExpr(messageExpr), | ||||||||
311 | Info(ParsedAttrInfo::get(*this)) { | ||||||||
312 | ArgsUnion PVal(Parm); | ||||||||
313 | memcpy(getArgsBuffer(), &PVal, sizeof(ArgsUnion)); | ||||||||
314 | new (getAvailabilityData()) detail::AvailabilityData( | ||||||||
315 | introduced, deprecated, obsoleted, strict, replacementExpr); | ||||||||
316 | } | ||||||||
317 | |||||||||
318 | /// Constructor for objc_bridge_related attributes. | ||||||||
319 | ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
320 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
321 | IdentifierLoc *Parm1, IdentifierLoc *Parm2, IdentifierLoc *Parm3, | ||||||||
322 | Syntax syntaxUsed) | ||||||||
323 | : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, | ||||||||
324 | syntaxUsed), | ||||||||
325 | NumArgs(3), Invalid(false), UsedAsTypeAttr(false), | ||||||||
326 | IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(false), | ||||||||
327 | HasParsedType(false), HasProcessingCache(false), | ||||||||
328 | IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { | ||||||||
329 | ArgsUnion *Args = getArgsBuffer(); | ||||||||
330 | Args[0] = Parm1; | ||||||||
331 | Args[1] = Parm2; | ||||||||
332 | Args[2] = Parm3; | ||||||||
333 | } | ||||||||
334 | |||||||||
335 | /// Constructor for type_tag_for_datatype attribute. | ||||||||
336 | ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
337 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
338 | IdentifierLoc *ArgKind, ParsedType matchingCType, | ||||||||
339 | bool layoutCompatible, bool mustBeNull, Syntax syntaxUsed) | ||||||||
340 | : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, | ||||||||
341 | syntaxUsed), | ||||||||
342 | NumArgs(1), Invalid(false), UsedAsTypeAttr(false), | ||||||||
343 | IsAvailability(false), IsTypeTagForDatatype(true), IsProperty(false), | ||||||||
344 | HasParsedType(false), HasProcessingCache(false), | ||||||||
345 | IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { | ||||||||
346 | ArgsUnion PVal(ArgKind); | ||||||||
347 | memcpy(getArgsBuffer(), &PVal, sizeof(ArgsUnion)); | ||||||||
348 | detail::TypeTagForDatatypeData &ExtraData = getTypeTagForDatatypeDataSlot(); | ||||||||
349 | new (&ExtraData.MatchingCType) ParsedType(matchingCType); | ||||||||
350 | ExtraData.LayoutCompatible = layoutCompatible; | ||||||||
351 | ExtraData.MustBeNull = mustBeNull; | ||||||||
352 | } | ||||||||
353 | |||||||||
354 | /// Constructor for attributes with a single type argument. | ||||||||
355 | ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
356 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
357 | ParsedType typeArg, Syntax syntaxUsed) | ||||||||
358 | : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, | ||||||||
359 | syntaxUsed), | ||||||||
360 | NumArgs(0), Invalid(false), UsedAsTypeAttr(false), | ||||||||
361 | IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(false), | ||||||||
362 | HasParsedType(true), HasProcessingCache(false), | ||||||||
363 | IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { | ||||||||
364 | new (&getTypeBuffer()) ParsedType(typeArg); | ||||||||
365 | } | ||||||||
366 | |||||||||
367 | /// Constructor for microsoft __declspec(property) attribute. | ||||||||
368 | ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
369 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
370 | IdentifierInfo *getterId, IdentifierInfo *setterId, | ||||||||
371 | Syntax syntaxUsed) | ||||||||
372 | : AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, | ||||||||
373 | syntaxUsed), | ||||||||
374 | NumArgs(0), Invalid(false), UsedAsTypeAttr(false), | ||||||||
375 | IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(true), | ||||||||
376 | HasParsedType(false), HasProcessingCache(false), | ||||||||
377 | IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) { | ||||||||
378 | new (&getPropertyDataBuffer()) detail::PropertyData(getterId, setterId); | ||||||||
379 | } | ||||||||
380 | |||||||||
381 | /// Type tag information is stored immediately following the arguments, if | ||||||||
382 | /// any, at the end of the object. They are mutually exclusive with | ||||||||
383 | /// availability slots. | ||||||||
384 | detail::TypeTagForDatatypeData &getTypeTagForDatatypeDataSlot() { | ||||||||
385 | return *getTrailingObjects<detail::TypeTagForDatatypeData>(); | ||||||||
386 | } | ||||||||
387 | const detail::TypeTagForDatatypeData &getTypeTagForDatatypeDataSlot() const { | ||||||||
388 | return *getTrailingObjects<detail::TypeTagForDatatypeData>(); | ||||||||
389 | } | ||||||||
390 | |||||||||
391 | /// The type buffer immediately follows the object and are mutually exclusive | ||||||||
392 | /// with arguments. | ||||||||
393 | ParsedType &getTypeBuffer() { return *getTrailingObjects<ParsedType>(); } | ||||||||
394 | const ParsedType &getTypeBuffer() const { | ||||||||
395 | return *getTrailingObjects<ParsedType>(); | ||||||||
396 | } | ||||||||
397 | |||||||||
398 | /// The property data immediately follows the object is is mutually exclusive | ||||||||
399 | /// with arguments. | ||||||||
400 | detail::PropertyData &getPropertyDataBuffer() { | ||||||||
401 | assert(IsProperty)((IsProperty) ? static_cast<void> (0) : __assert_fail ( "IsProperty", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 401, __PRETTY_FUNCTION__)); | ||||||||
402 | return *getTrailingObjects<detail::PropertyData>(); | ||||||||
403 | } | ||||||||
404 | const detail::PropertyData &getPropertyDataBuffer() const { | ||||||||
405 | assert(IsProperty)((IsProperty) ? static_cast<void> (0) : __assert_fail ( "IsProperty", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 405, __PRETTY_FUNCTION__)); | ||||||||
406 | return *getTrailingObjects<detail::PropertyData>(); | ||||||||
407 | } | ||||||||
408 | |||||||||
409 | size_t allocated_size() const; | ||||||||
410 | |||||||||
411 | public: | ||||||||
412 | ParsedAttr(const ParsedAttr &) = delete; | ||||||||
413 | ParsedAttr(ParsedAttr &&) = delete; | ||||||||
414 | ParsedAttr &operator=(const ParsedAttr &) = delete; | ||||||||
415 | ParsedAttr &operator=(ParsedAttr &&) = delete; | ||||||||
416 | ~ParsedAttr() = delete; | ||||||||
417 | |||||||||
418 | void operator delete(void *) = delete; | ||||||||
419 | |||||||||
420 | bool hasParsedType() const { return HasParsedType; } | ||||||||
421 | |||||||||
422 | /// Is this the Microsoft __declspec(property) attribute? | ||||||||
423 | bool isDeclspecPropertyAttribute() const { | ||||||||
424 | return IsProperty; | ||||||||
425 | } | ||||||||
426 | |||||||||
427 | bool isInvalid() const { return Invalid; } | ||||||||
428 | void setInvalid(bool b = true) const { Invalid = b; } | ||||||||
429 | |||||||||
430 | bool hasProcessingCache() const { return HasProcessingCache; } | ||||||||
431 | |||||||||
432 | unsigned getProcessingCache() const { | ||||||||
433 | assert(hasProcessingCache())((hasProcessingCache()) ? static_cast<void> (0) : __assert_fail ("hasProcessingCache()", "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 433, __PRETTY_FUNCTION__)); | ||||||||
434 | return ProcessingCache; | ||||||||
435 | } | ||||||||
436 | |||||||||
437 | void setProcessingCache(unsigned value) const { | ||||||||
438 | ProcessingCache = value; | ||||||||
439 | HasProcessingCache = true; | ||||||||
440 | } | ||||||||
441 | |||||||||
442 | bool isUsedAsTypeAttr() const { return UsedAsTypeAttr; } | ||||||||
443 | void setUsedAsTypeAttr(bool Used = true) { UsedAsTypeAttr = Used; } | ||||||||
444 | |||||||||
445 | /// True if the attribute is specified using '#pragma clang attribute'. | ||||||||
446 | bool isPragmaClangAttribute() const { return IsPragmaClangAttribute; } | ||||||||
447 | |||||||||
448 | void setIsPragmaClangAttribute() { IsPragmaClangAttribute = true; } | ||||||||
449 | |||||||||
450 | bool isPackExpansion() const { return EllipsisLoc.isValid(); } | ||||||||
451 | SourceLocation getEllipsisLoc() const { return EllipsisLoc; } | ||||||||
452 | |||||||||
453 | /// getNumArgs - Return the number of actual arguments to this attribute. | ||||||||
454 | unsigned getNumArgs() const { return NumArgs; } | ||||||||
455 | |||||||||
456 | /// getArg - Return the specified argument. | ||||||||
457 | ArgsUnion getArg(unsigned Arg) const { | ||||||||
458 | assert(Arg < NumArgs && "Arg access out of range!")((Arg < NumArgs && "Arg access out of range!") ? static_cast <void> (0) : __assert_fail ("Arg < NumArgs && \"Arg access out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 458, __PRETTY_FUNCTION__)); | ||||||||
459 | return getArgsBuffer()[Arg]; | ||||||||
460 | } | ||||||||
461 | |||||||||
462 | bool isArgExpr(unsigned Arg) const { | ||||||||
463 | return Arg < NumArgs && getArg(Arg).is<Expr*>(); | ||||||||
464 | } | ||||||||
465 | |||||||||
466 | Expr *getArgAsExpr(unsigned Arg) const { | ||||||||
467 | return getArg(Arg).get<Expr*>(); | ||||||||
468 | } | ||||||||
469 | |||||||||
470 | bool isArgIdent(unsigned Arg) const { | ||||||||
471 | return Arg
| ||||||||
472 | } | ||||||||
473 | |||||||||
474 | IdentifierLoc *getArgAsIdent(unsigned Arg) const { | ||||||||
475 | return getArg(Arg).get<IdentifierLoc*>(); | ||||||||
476 | } | ||||||||
477 | |||||||||
478 | const AvailabilityChange &getAvailabilityIntroduced() const { | ||||||||
479 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 480, __PRETTY_FUNCTION__)) | ||||||||
480 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 480, __PRETTY_FUNCTION__)); | ||||||||
481 | return getAvailabilityData()->Changes[detail::IntroducedSlot]; | ||||||||
482 | } | ||||||||
483 | |||||||||
484 | const AvailabilityChange &getAvailabilityDeprecated() const { | ||||||||
485 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 486, __PRETTY_FUNCTION__)) | ||||||||
486 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 486, __PRETTY_FUNCTION__)); | ||||||||
487 | return getAvailabilityData()->Changes[detail::DeprecatedSlot]; | ||||||||
488 | } | ||||||||
489 | |||||||||
490 | const AvailabilityChange &getAvailabilityObsoleted() const { | ||||||||
491 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 492, __PRETTY_FUNCTION__)) | ||||||||
492 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 492, __PRETTY_FUNCTION__)); | ||||||||
493 | return getAvailabilityData()->Changes[detail::ObsoletedSlot]; | ||||||||
494 | } | ||||||||
495 | |||||||||
496 | SourceLocation getStrictLoc() const { | ||||||||
497 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 498, __PRETTY_FUNCTION__)) | ||||||||
498 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 498, __PRETTY_FUNCTION__)); | ||||||||
499 | return getAvailabilityData()->StrictLoc; | ||||||||
500 | } | ||||||||
501 | |||||||||
502 | SourceLocation getUnavailableLoc() const { | ||||||||
503 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 504, __PRETTY_FUNCTION__)) | ||||||||
504 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 504, __PRETTY_FUNCTION__)); | ||||||||
505 | return UnavailableLoc; | ||||||||
506 | } | ||||||||
507 | |||||||||
508 | const Expr * getMessageExpr() const { | ||||||||
509 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 510, __PRETTY_FUNCTION__)) | ||||||||
510 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 510, __PRETTY_FUNCTION__)); | ||||||||
511 | return MessageExpr; | ||||||||
512 | } | ||||||||
513 | |||||||||
514 | const Expr *getReplacementExpr() const { | ||||||||
515 | assert(getParsedKind() == AT_Availability &&((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 516, __PRETTY_FUNCTION__)) | ||||||||
516 | "Not an availability attribute")((getParsedKind() == AT_Availability && "Not an availability attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_Availability && \"Not an availability attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 516, __PRETTY_FUNCTION__)); | ||||||||
517 | return getAvailabilityData()->Replacement; | ||||||||
518 | } | ||||||||
519 | |||||||||
520 | const ParsedType &getMatchingCType() const { | ||||||||
521 | assert(getParsedKind() == AT_TypeTagForDatatype &&((getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_TypeTagForDatatype && \"Not a type_tag_for_datatype attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 522, __PRETTY_FUNCTION__)) | ||||||||
522 | "Not a type_tag_for_datatype attribute")((getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_TypeTagForDatatype && \"Not a type_tag_for_datatype attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 522, __PRETTY_FUNCTION__)); | ||||||||
523 | return getTypeTagForDatatypeDataSlot().MatchingCType; | ||||||||
524 | } | ||||||||
525 | |||||||||
526 | bool getLayoutCompatible() const { | ||||||||
527 | assert(getParsedKind() == AT_TypeTagForDatatype &&((getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_TypeTagForDatatype && \"Not a type_tag_for_datatype attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 528, __PRETTY_FUNCTION__)) | ||||||||
528 | "Not a type_tag_for_datatype attribute")((getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_TypeTagForDatatype && \"Not a type_tag_for_datatype attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 528, __PRETTY_FUNCTION__)); | ||||||||
529 | return getTypeTagForDatatypeDataSlot().LayoutCompatible; | ||||||||
530 | } | ||||||||
531 | |||||||||
532 | bool getMustBeNull() const { | ||||||||
533 | assert(getParsedKind() == AT_TypeTagForDatatype &&((getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_TypeTagForDatatype && \"Not a type_tag_for_datatype attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 534, __PRETTY_FUNCTION__)) | ||||||||
534 | "Not a type_tag_for_datatype attribute")((getParsedKind() == AT_TypeTagForDatatype && "Not a type_tag_for_datatype attribute" ) ? static_cast<void> (0) : __assert_fail ("getParsedKind() == AT_TypeTagForDatatype && \"Not a type_tag_for_datatype attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 534, __PRETTY_FUNCTION__)); | ||||||||
535 | return getTypeTagForDatatypeDataSlot().MustBeNull; | ||||||||
536 | } | ||||||||
537 | |||||||||
538 | const ParsedType &getTypeArg() const { | ||||||||
539 | assert(HasParsedType && "Not a type attribute")((HasParsedType && "Not a type attribute") ? static_cast <void> (0) : __assert_fail ("HasParsedType && \"Not a type attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 539, __PRETTY_FUNCTION__)); | ||||||||
540 | return getTypeBuffer(); | ||||||||
541 | } | ||||||||
542 | |||||||||
543 | IdentifierInfo *getPropertyDataGetter() const { | ||||||||
544 | assert(isDeclspecPropertyAttribute() &&((isDeclspecPropertyAttribute() && "Not a __delcspec(property) attribute" ) ? static_cast<void> (0) : __assert_fail ("isDeclspecPropertyAttribute() && \"Not a __delcspec(property) attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 545, __PRETTY_FUNCTION__)) | ||||||||
545 | "Not a __delcspec(property) attribute")((isDeclspecPropertyAttribute() && "Not a __delcspec(property) attribute" ) ? static_cast<void> (0) : __assert_fail ("isDeclspecPropertyAttribute() && \"Not a __delcspec(property) attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 545, __PRETTY_FUNCTION__)); | ||||||||
546 | return getPropertyDataBuffer().GetterId; | ||||||||
547 | } | ||||||||
548 | |||||||||
549 | IdentifierInfo *getPropertyDataSetter() const { | ||||||||
550 | assert(isDeclspecPropertyAttribute() &&((isDeclspecPropertyAttribute() && "Not a __delcspec(property) attribute" ) ? static_cast<void> (0) : __assert_fail ("isDeclspecPropertyAttribute() && \"Not a __delcspec(property) attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 551, __PRETTY_FUNCTION__)) | ||||||||
551 | "Not a __delcspec(property) attribute")((isDeclspecPropertyAttribute() && "Not a __delcspec(property) attribute" ) ? static_cast<void> (0) : __assert_fail ("isDeclspecPropertyAttribute() && \"Not a __delcspec(property) attribute\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 551, __PRETTY_FUNCTION__)); | ||||||||
552 | return getPropertyDataBuffer().SetterId; | ||||||||
553 | } | ||||||||
554 | |||||||||
555 | /// Set the macro identifier info object that this parsed attribute was | ||||||||
556 | /// declared in if it was declared in a macro. Also set the expansion location | ||||||||
557 | /// of the macro. | ||||||||
558 | void setMacroIdentifier(IdentifierInfo *MacroName, SourceLocation Loc) { | ||||||||
559 | MacroII = MacroName; | ||||||||
560 | MacroExpansionLoc = Loc; | ||||||||
561 | } | ||||||||
562 | |||||||||
563 | /// Returns true if this attribute was declared in a macro. | ||||||||
564 | bool hasMacroIdentifier() const { return MacroII != nullptr; } | ||||||||
565 | |||||||||
566 | /// Return the macro identifier if this attribute was declared in a macro. | ||||||||
567 | /// nullptr is returned if it was not declared in a macro. | ||||||||
568 | IdentifierInfo *getMacroIdentifier() const { return MacroII; } | ||||||||
569 | |||||||||
570 | SourceLocation getMacroExpansionLoc() const { | ||||||||
571 | assert(hasMacroIdentifier() && "Can only get the macro expansion location "((hasMacroIdentifier() && "Can only get the macro expansion location " "if this attribute has a macro identifier.") ? static_cast< void> (0) : __assert_fail ("hasMacroIdentifier() && \"Can only get the macro expansion location \" \"if this attribute has a macro identifier.\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 572, __PRETTY_FUNCTION__)) | ||||||||
572 | "if this attribute has a macro identifier.")((hasMacroIdentifier() && "Can only get the macro expansion location " "if this attribute has a macro identifier.") ? static_cast< void> (0) : __assert_fail ("hasMacroIdentifier() && \"Can only get the macro expansion location \" \"if this attribute has a macro identifier.\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 572, __PRETTY_FUNCTION__)); | ||||||||
573 | return MacroExpansionLoc; | ||||||||
574 | } | ||||||||
575 | |||||||||
576 | bool isTargetSpecificAttr() const; | ||||||||
577 | bool isTypeAttr() const; | ||||||||
578 | bool isStmtAttr() const; | ||||||||
579 | |||||||||
580 | bool hasCustomParsing() const; | ||||||||
581 | unsigned getMinArgs() const; | ||||||||
582 | unsigned getMaxArgs() const; | ||||||||
583 | bool hasVariadicArg() const; | ||||||||
584 | bool diagnoseAppertainsTo(class Sema &S, const Decl *D) const; | ||||||||
585 | bool appliesToDecl(const Decl *D, attr::SubjectMatchRule MatchRule) const; | ||||||||
586 | void getMatchRules(const LangOptions &LangOpts, | ||||||||
587 | SmallVectorImpl<std::pair<attr::SubjectMatchRule, bool>> | ||||||||
588 | &MatchRules) const; | ||||||||
589 | bool diagnoseLangOpts(class Sema &S) const; | ||||||||
590 | bool existsInTarget(const TargetInfo &Target) const; | ||||||||
591 | bool isKnownToGCC() const; | ||||||||
592 | bool isSupportedByPragmaAttribute() const; | ||||||||
593 | |||||||||
594 | /// If the parsed attribute has a semantic equivalent, and it would | ||||||||
595 | /// have a semantic Spelling enumeration (due to having semantically-distinct | ||||||||
596 | /// spelling variations), return the value of that semantic spelling. If the | ||||||||
597 | /// parsed attribute does not have a semantic equivalent, or would not have | ||||||||
598 | /// a Spelling enumeration, the value UINT_MAX is returned. | ||||||||
599 | unsigned getSemanticSpelling() const; | ||||||||
600 | |||||||||
601 | /// If this is an OpenCL addr space attribute returns its representation | ||||||||
602 | /// in LangAS, otherwise returns default addr space. | ||||||||
603 | LangAS asOpenCLLangAS() const { | ||||||||
604 | switch (getParsedKind()) { | ||||||||
605 | case ParsedAttr::AT_OpenCLConstantAddressSpace: | ||||||||
606 | return LangAS::opencl_constant; | ||||||||
607 | case ParsedAttr::AT_OpenCLGlobalAddressSpace: | ||||||||
608 | return LangAS::opencl_global; | ||||||||
609 | case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: | ||||||||
610 | return LangAS::opencl_global_device; | ||||||||
611 | case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: | ||||||||
612 | return LangAS::opencl_global_host; | ||||||||
613 | case ParsedAttr::AT_OpenCLLocalAddressSpace: | ||||||||
614 | return LangAS::opencl_local; | ||||||||
615 | case ParsedAttr::AT_OpenCLPrivateAddressSpace: | ||||||||
616 | return LangAS::opencl_private; | ||||||||
617 | case ParsedAttr::AT_OpenCLGenericAddressSpace: | ||||||||
618 | return LangAS::opencl_generic; | ||||||||
619 | default: | ||||||||
620 | return LangAS::Default; | ||||||||
621 | } | ||||||||
622 | } | ||||||||
623 | |||||||||
624 | AttributeCommonInfo::Kind getKind() const { | ||||||||
625 | return AttributeCommonInfo::Kind(Info.AttrKind); | ||||||||
626 | } | ||||||||
627 | const ParsedAttrInfo &getInfo() const { return Info; } | ||||||||
628 | }; | ||||||||
629 | |||||||||
630 | class AttributePool; | ||||||||
631 | /// A factory, from which one makes pools, from which one creates | ||||||||
632 | /// individual attributes which are deallocated with the pool. | ||||||||
633 | /// | ||||||||
634 | /// Note that it's tolerably cheap to create and destroy one of | ||||||||
635 | /// these as long as you don't actually allocate anything in it. | ||||||||
636 | class AttributeFactory { | ||||||||
637 | public: | ||||||||
638 | enum { | ||||||||
639 | AvailabilityAllocSize = | ||||||||
640 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
641 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
642 | detail::PropertyData>(1, 1, 0, 0, 0), | ||||||||
643 | TypeTagForDatatypeAllocSize = | ||||||||
644 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
645 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
646 | detail::PropertyData>(1, 0, 1, 0, 0), | ||||||||
647 | PropertyAllocSize = | ||||||||
648 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
649 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
650 | detail::PropertyData>(0, 0, 0, 0, 1), | ||||||||
651 | }; | ||||||||
652 | |||||||||
653 | private: | ||||||||
654 | enum { | ||||||||
655 | /// The number of free lists we want to be sure to support | ||||||||
656 | /// inline. This is just enough that availability attributes | ||||||||
657 | /// don't surpass it. It's actually very unlikely we'll see an | ||||||||
658 | /// attribute that needs more than that; on x86-64 you'd need 10 | ||||||||
659 | /// expression arguments, and on i386 you'd need 19. | ||||||||
660 | InlineFreeListsCapacity = | ||||||||
661 | 1 + (AvailabilityAllocSize - sizeof(ParsedAttr)) / sizeof(void *) | ||||||||
662 | }; | ||||||||
663 | |||||||||
664 | llvm::BumpPtrAllocator Alloc; | ||||||||
665 | |||||||||
666 | /// Free lists. The index is determined by the following formula: | ||||||||
667 | /// (size - sizeof(ParsedAttr)) / sizeof(void*) | ||||||||
668 | SmallVector<SmallVector<ParsedAttr *, 8>, InlineFreeListsCapacity> FreeLists; | ||||||||
669 | |||||||||
670 | // The following are the private interface used by AttributePool. | ||||||||
671 | friend class AttributePool; | ||||||||
672 | |||||||||
673 | /// Allocate an attribute of the given size. | ||||||||
674 | void *allocate(size_t size); | ||||||||
675 | |||||||||
676 | void deallocate(ParsedAttr *AL); | ||||||||
677 | |||||||||
678 | /// Reclaim all the attributes in the given pool chain, which is | ||||||||
679 | /// non-empty. Note that the current implementation is safe | ||||||||
680 | /// against reclaiming things which were not actually allocated | ||||||||
681 | /// with the allocator, although of course it's important to make | ||||||||
682 | /// sure that their allocator lives at least as long as this one. | ||||||||
683 | void reclaimPool(AttributePool &head); | ||||||||
684 | |||||||||
685 | public: | ||||||||
686 | AttributeFactory(); | ||||||||
687 | ~AttributeFactory(); | ||||||||
688 | }; | ||||||||
689 | |||||||||
690 | class AttributePool { | ||||||||
691 | friend class AttributeFactory; | ||||||||
692 | friend class ParsedAttributes; | ||||||||
693 | AttributeFactory &Factory; | ||||||||
694 | llvm::TinyPtrVector<ParsedAttr *> Attrs; | ||||||||
695 | |||||||||
696 | void *allocate(size_t size) { | ||||||||
697 | return Factory.allocate(size); | ||||||||
698 | } | ||||||||
699 | |||||||||
700 | ParsedAttr *add(ParsedAttr *attr) { | ||||||||
701 | Attrs.push_back(attr); | ||||||||
702 | return attr; | ||||||||
703 | } | ||||||||
704 | |||||||||
705 | void remove(ParsedAttr *attr) { | ||||||||
706 | assert(llvm::is_contained(Attrs, attr) &&((llvm::is_contained(Attrs, attr) && "Can't take attribute from a pool that doesn't own it!" ) ? static_cast<void> (0) : __assert_fail ("llvm::is_contained(Attrs, attr) && \"Can't take attribute from a pool that doesn't own it!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 707, __PRETTY_FUNCTION__)) | ||||||||
707 | "Can't take attribute from a pool that doesn't own it!")((llvm::is_contained(Attrs, attr) && "Can't take attribute from a pool that doesn't own it!" ) ? static_cast<void> (0) : __assert_fail ("llvm::is_contained(Attrs, attr) && \"Can't take attribute from a pool that doesn't own it!\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 707, __PRETTY_FUNCTION__)); | ||||||||
708 | Attrs.erase(llvm::find(Attrs, attr)); | ||||||||
709 | } | ||||||||
710 | |||||||||
711 | void takePool(AttributePool &pool); | ||||||||
712 | |||||||||
713 | public: | ||||||||
714 | /// Create a new pool for a factory. | ||||||||
715 | AttributePool(AttributeFactory &factory) : Factory(factory) {} | ||||||||
716 | |||||||||
717 | AttributePool(const AttributePool &) = delete; | ||||||||
718 | |||||||||
719 | ~AttributePool() { Factory.reclaimPool(*this); } | ||||||||
720 | |||||||||
721 | /// Move the given pool's allocations to this pool. | ||||||||
722 | AttributePool(AttributePool &&pool) = default; | ||||||||
723 | |||||||||
724 | AttributeFactory &getFactory() const { return Factory; } | ||||||||
725 | |||||||||
726 | void clear() { | ||||||||
727 | Factory.reclaimPool(*this); | ||||||||
728 | Attrs.clear(); | ||||||||
729 | } | ||||||||
730 | |||||||||
731 | /// Take the given pool's allocations and add them to this pool. | ||||||||
732 | void takeAllFrom(AttributePool &pool) { | ||||||||
733 | takePool(pool); | ||||||||
734 | pool.Attrs.clear(); | ||||||||
735 | } | ||||||||
736 | |||||||||
737 | ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
738 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
739 | ArgsUnion *args, unsigned numArgs, | ||||||||
740 | ParsedAttr::Syntax syntax, | ||||||||
741 | SourceLocation ellipsisLoc = SourceLocation()) { | ||||||||
742 | size_t temp = | ||||||||
743 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
744 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
745 | detail::PropertyData>(numArgs, 0, 0, 0, 0); | ||||||||
746 | (void)temp; | ||||||||
747 | void *memory = allocate( | ||||||||
748 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
749 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
750 | detail::PropertyData>(numArgs, 0, 0, 0, | ||||||||
751 | 0)); | ||||||||
752 | return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, | ||||||||
753 | args, numArgs, syntax, ellipsisLoc)); | ||||||||
754 | } | ||||||||
755 | |||||||||
756 | ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
757 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
758 | IdentifierLoc *Param, const AvailabilityChange &introduced, | ||||||||
759 | const AvailabilityChange &deprecated, | ||||||||
760 | const AvailabilityChange &obsoleted, | ||||||||
761 | SourceLocation unavailable, const Expr *MessageExpr, | ||||||||
762 | ParsedAttr::Syntax syntax, SourceLocation strict, | ||||||||
763 | const Expr *ReplacementExpr) { | ||||||||
764 | void *memory = allocate(AttributeFactory::AvailabilityAllocSize); | ||||||||
765 | return add(new (memory) ParsedAttr( | ||||||||
766 | attrName, attrRange, scopeName, scopeLoc, Param, introduced, deprecated, | ||||||||
767 | obsoleted, unavailable, MessageExpr, syntax, strict, ReplacementExpr)); | ||||||||
768 | } | ||||||||
769 | |||||||||
770 | ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
771 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
772 | IdentifierLoc *Param1, IdentifierLoc *Param2, | ||||||||
773 | IdentifierLoc *Param3, ParsedAttr::Syntax syntax) { | ||||||||
774 | void *memory = allocate( | ||||||||
775 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
776 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
777 | detail::PropertyData>(3, 0, 0, 0, 0)); | ||||||||
778 | return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, | ||||||||
779 | Param1, Param2, Param3, syntax)); | ||||||||
780 | } | ||||||||
781 | |||||||||
782 | ParsedAttr * | ||||||||
783 | createTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
784 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
785 | IdentifierLoc *argumentKind, | ||||||||
786 | ParsedType matchingCType, bool layoutCompatible, | ||||||||
787 | bool mustBeNull, ParsedAttr::Syntax syntax) { | ||||||||
788 | void *memory = allocate(AttributeFactory::TypeTagForDatatypeAllocSize); | ||||||||
789 | return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, | ||||||||
790 | argumentKind, matchingCType, | ||||||||
791 | layoutCompatible, mustBeNull, syntax)); | ||||||||
792 | } | ||||||||
793 | |||||||||
794 | ParsedAttr *createTypeAttribute(IdentifierInfo *attrName, | ||||||||
795 | SourceRange attrRange, | ||||||||
796 | IdentifierInfo *scopeName, | ||||||||
797 | SourceLocation scopeLoc, ParsedType typeArg, | ||||||||
798 | ParsedAttr::Syntax syntaxUsed) { | ||||||||
799 | void *memory = allocate( | ||||||||
800 | ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData, | ||||||||
801 | detail::TypeTagForDatatypeData, ParsedType, | ||||||||
802 | detail::PropertyData>(0, 0, 0, 1, 0)); | ||||||||
803 | return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, | ||||||||
804 | typeArg, syntaxUsed)); | ||||||||
805 | } | ||||||||
806 | |||||||||
807 | ParsedAttr * | ||||||||
808 | createPropertyAttribute(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
809 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
810 | IdentifierInfo *getterId, IdentifierInfo *setterId, | ||||||||
811 | ParsedAttr::Syntax syntaxUsed) { | ||||||||
812 | void *memory = allocate(AttributeFactory::PropertyAllocSize); | ||||||||
813 | return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc, | ||||||||
814 | getterId, setterId, syntaxUsed)); | ||||||||
815 | } | ||||||||
816 | }; | ||||||||
817 | |||||||||
818 | class ParsedAttributesView { | ||||||||
819 | using VecTy = llvm::TinyPtrVector<ParsedAttr *>; | ||||||||
820 | using SizeType = decltype(std::declval<VecTy>().size()); | ||||||||
821 | |||||||||
822 | public: | ||||||||
823 | bool empty() const { return AttrList.empty(); } | ||||||||
824 | SizeType size() const { return AttrList.size(); } | ||||||||
825 | ParsedAttr &operator[](SizeType pos) { return *AttrList[pos]; } | ||||||||
826 | const ParsedAttr &operator[](SizeType pos) const { return *AttrList[pos]; } | ||||||||
827 | |||||||||
828 | void addAtEnd(ParsedAttr *newAttr) { | ||||||||
829 | assert(newAttr)((newAttr) ? static_cast<void> (0) : __assert_fail ("newAttr" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 829, __PRETTY_FUNCTION__)); | ||||||||
830 | AttrList.push_back(newAttr); | ||||||||
831 | } | ||||||||
832 | |||||||||
833 | void remove(ParsedAttr *ToBeRemoved) { | ||||||||
834 | assert(is_contained(AttrList, ToBeRemoved) &&((is_contained(AttrList, ToBeRemoved) && "Cannot remove attribute that isn't in the list" ) ? static_cast<void> (0) : __assert_fail ("is_contained(AttrList, ToBeRemoved) && \"Cannot remove attribute that isn't in the list\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 835, __PRETTY_FUNCTION__)) | ||||||||
835 | "Cannot remove attribute that isn't in the list")((is_contained(AttrList, ToBeRemoved) && "Cannot remove attribute that isn't in the list" ) ? static_cast<void> (0) : __assert_fail ("is_contained(AttrList, ToBeRemoved) && \"Cannot remove attribute that isn't in the list\"" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 835, __PRETTY_FUNCTION__)); | ||||||||
836 | AttrList.erase(llvm::find(AttrList, ToBeRemoved)); | ||||||||
837 | } | ||||||||
838 | |||||||||
839 | void clearListOnly() { AttrList.clear(); } | ||||||||
840 | |||||||||
841 | struct iterator : llvm::iterator_adaptor_base<iterator, VecTy::iterator, | ||||||||
842 | std::random_access_iterator_tag, | ||||||||
843 | ParsedAttr> { | ||||||||
844 | iterator() : iterator_adaptor_base(nullptr) {} | ||||||||
845 | iterator(VecTy::iterator I) : iterator_adaptor_base(I) {} | ||||||||
846 | reference operator*() { return **I; } | ||||||||
847 | friend class ParsedAttributesView; | ||||||||
848 | }; | ||||||||
849 | struct const_iterator | ||||||||
850 | : llvm::iterator_adaptor_base<const_iterator, VecTy::const_iterator, | ||||||||
851 | std::random_access_iterator_tag, | ||||||||
852 | ParsedAttr> { | ||||||||
853 | const_iterator() : iterator_adaptor_base(nullptr) {} | ||||||||
854 | const_iterator(VecTy::const_iterator I) : iterator_adaptor_base(I) {} | ||||||||
855 | |||||||||
856 | reference operator*() const { return **I; } | ||||||||
857 | friend class ParsedAttributesView; | ||||||||
858 | }; | ||||||||
859 | |||||||||
860 | void addAll(iterator B, iterator E) { | ||||||||
861 | AttrList.insert(AttrList.begin(), B.I, E.I); | ||||||||
862 | } | ||||||||
863 | |||||||||
864 | void addAll(const_iterator B, const_iterator E) { | ||||||||
865 | AttrList.insert(AttrList.begin(), B.I, E.I); | ||||||||
866 | } | ||||||||
867 | |||||||||
868 | void addAllAtEnd(iterator B, iterator E) { | ||||||||
869 | AttrList.insert(AttrList.end(), B.I, E.I); | ||||||||
870 | } | ||||||||
871 | |||||||||
872 | void addAllAtEnd(const_iterator B, const_iterator E) { | ||||||||
873 | AttrList.insert(AttrList.end(), B.I, E.I); | ||||||||
874 | } | ||||||||
875 | |||||||||
876 | iterator begin() { return iterator(AttrList.begin()); } | ||||||||
877 | const_iterator begin() const { return const_iterator(AttrList.begin()); } | ||||||||
878 | iterator end() { return iterator(AttrList.end()); } | ||||||||
879 | const_iterator end() const { return const_iterator(AttrList.end()); } | ||||||||
880 | |||||||||
881 | ParsedAttr &front() { | ||||||||
882 | assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 882, __PRETTY_FUNCTION__)); | ||||||||
883 | return *AttrList.front(); | ||||||||
884 | } | ||||||||
885 | const ParsedAttr &front() const { | ||||||||
886 | assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 886, __PRETTY_FUNCTION__)); | ||||||||
887 | return *AttrList.front(); | ||||||||
888 | } | ||||||||
889 | ParsedAttr &back() { | ||||||||
890 | assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 890, __PRETTY_FUNCTION__)); | ||||||||
891 | return *AttrList.back(); | ||||||||
892 | } | ||||||||
893 | const ParsedAttr &back() const { | ||||||||
894 | assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()" , "/build/llvm-toolchain-snapshot-12~++20210105111114+53a341a61d1f/clang/include/clang/Sema/ParsedAttr.h" , 894, __PRETTY_FUNCTION__)); | ||||||||
895 | return *AttrList.back(); | ||||||||
896 | } | ||||||||
897 | |||||||||
898 | bool hasAttribute(ParsedAttr::Kind K) const { | ||||||||
899 | return llvm::any_of(AttrList, [K](const ParsedAttr *AL) { | ||||||||
900 | return AL->getParsedKind() == K; | ||||||||
901 | }); | ||||||||
902 | } | ||||||||
903 | |||||||||
904 | private: | ||||||||
905 | VecTy AttrList; | ||||||||
906 | }; | ||||||||
907 | |||||||||
908 | /// ParsedAttributes - A collection of parsed attributes. Currently | ||||||||
909 | /// we don't differentiate between the various attribute syntaxes, | ||||||||
910 | /// which is basically silly. | ||||||||
911 | /// | ||||||||
912 | /// Right now this is a very lightweight container, but the expectation | ||||||||
913 | /// is that this will become significantly more serious. | ||||||||
914 | class ParsedAttributes : public ParsedAttributesView { | ||||||||
915 | public: | ||||||||
916 | ParsedAttributes(AttributeFactory &factory) : pool(factory) {} | ||||||||
917 | ParsedAttributes(const ParsedAttributes &) = delete; | ||||||||
918 | |||||||||
919 | AttributePool &getPool() const { return pool; } | ||||||||
920 | |||||||||
921 | void takeAllFrom(ParsedAttributes &attrs) { | ||||||||
922 | addAll(attrs.begin(), attrs.end()); | ||||||||
923 | attrs.clearListOnly(); | ||||||||
924 | pool.takeAllFrom(attrs.pool); | ||||||||
925 | } | ||||||||
926 | |||||||||
927 | void takeOneFrom(ParsedAttributes &Attrs, ParsedAttr *PA) { | ||||||||
928 | Attrs.getPool().remove(PA); | ||||||||
929 | Attrs.remove(PA); | ||||||||
930 | getPool().add(PA); | ||||||||
931 | addAtEnd(PA); | ||||||||
932 | } | ||||||||
933 | |||||||||
934 | void clear() { | ||||||||
935 | clearListOnly(); | ||||||||
936 | pool.clear(); | ||||||||
937 | } | ||||||||
938 | |||||||||
939 | /// Add attribute with expression arguments. | ||||||||
940 | ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
941 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
942 | ArgsUnion *args, unsigned numArgs, | ||||||||
943 | ParsedAttr::Syntax syntax, | ||||||||
944 | SourceLocation ellipsisLoc = SourceLocation()) { | ||||||||
945 | ParsedAttr *attr = pool.create(attrName, attrRange, scopeName, scopeLoc, | ||||||||
946 | args, numArgs, syntax, ellipsisLoc); | ||||||||
947 | addAtEnd(attr); | ||||||||
948 | return attr; | ||||||||
949 | } | ||||||||
950 | |||||||||
951 | /// Add availability attribute. | ||||||||
952 | ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
953 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
954 | IdentifierLoc *Param, const AvailabilityChange &introduced, | ||||||||
955 | const AvailabilityChange &deprecated, | ||||||||
956 | const AvailabilityChange &obsoleted, | ||||||||
957 | SourceLocation unavailable, const Expr *MessageExpr, | ||||||||
958 | ParsedAttr::Syntax syntax, SourceLocation strict, | ||||||||
959 | const Expr *ReplacementExpr) { | ||||||||
960 | ParsedAttr *attr = pool.create( | ||||||||
961 | attrName, attrRange, scopeName, scopeLoc, Param, introduced, deprecated, | ||||||||
962 | obsoleted, unavailable, MessageExpr, syntax, strict, ReplacementExpr); | ||||||||
963 | addAtEnd(attr); | ||||||||
964 | return attr; | ||||||||
965 | } | ||||||||
966 | |||||||||
967 | /// Add objc_bridge_related attribute. | ||||||||
968 | ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
969 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
970 | IdentifierLoc *Param1, IdentifierLoc *Param2, | ||||||||
971 | IdentifierLoc *Param3, ParsedAttr::Syntax syntax) { | ||||||||
972 | ParsedAttr *attr = pool.create(attrName, attrRange, scopeName, scopeLoc, | ||||||||
973 | Param1, Param2, Param3, syntax); | ||||||||
974 | addAtEnd(attr); | ||||||||
975 | return attr; | ||||||||
976 | } | ||||||||
977 | |||||||||
978 | /// Add type_tag_for_datatype attribute. | ||||||||
979 | ParsedAttr * | ||||||||
980 | addNewTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
981 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
982 | IdentifierLoc *argumentKind, | ||||||||
983 | ParsedType matchingCType, bool layoutCompatible, | ||||||||
984 | bool mustBeNull, ParsedAttr::Syntax syntax) { | ||||||||
985 | ParsedAttr *attr = pool.createTypeTagForDatatype( | ||||||||
986 | attrName, attrRange, scopeName, scopeLoc, argumentKind, matchingCType, | ||||||||
987 | layoutCompatible, mustBeNull, syntax); | ||||||||
988 | addAtEnd(attr); | ||||||||
989 | return attr; | ||||||||
990 | } | ||||||||
991 | |||||||||
992 | /// Add an attribute with a single type argument. | ||||||||
993 | ParsedAttr *addNewTypeAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
994 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
995 | ParsedType typeArg, | ||||||||
996 | ParsedAttr::Syntax syntaxUsed) { | ||||||||
997 | ParsedAttr *attr = pool.createTypeAttribute(attrName, attrRange, scopeName, | ||||||||
998 | scopeLoc, typeArg, syntaxUsed); | ||||||||
999 | addAtEnd(attr); | ||||||||
1000 | return attr; | ||||||||
1001 | } | ||||||||
1002 | |||||||||
1003 | /// Add microsoft __delspec(property) attribute. | ||||||||
1004 | ParsedAttr * | ||||||||
1005 | addNewPropertyAttr(IdentifierInfo *attrName, SourceRange attrRange, | ||||||||
1006 | IdentifierInfo *scopeName, SourceLocation scopeLoc, | ||||||||
1007 | IdentifierInfo *getterId, IdentifierInfo *setterId, | ||||||||
1008 | ParsedAttr::Syntax syntaxUsed) { | ||||||||
1009 | ParsedAttr *attr = | ||||||||
1010 | pool.createPropertyAttribute(attrName, attrRange, scopeName, scopeLoc, | ||||||||
1011 | getterId, setterId, syntaxUsed); | ||||||||
1012 | addAtEnd(attr); | ||||||||
1013 | return attr; | ||||||||
1014 | } | ||||||||
1015 | |||||||||
1016 | private: | ||||||||
1017 | mutable AttributePool pool; | ||||||||
1018 | }; | ||||||||
1019 | |||||||||
1020 | /// These constants match the enumerated choices of | ||||||||
1021 | /// err_attribute_argument_n_type and err_attribute_argument_type. | ||||||||
1022 | enum AttributeArgumentNType { | ||||||||
1023 | AANT_ArgumentIntOrBool, | ||||||||
1024 | AANT_ArgumentIntegerConstant, | ||||||||
1025 | AANT_ArgumentString, | ||||||||
1026 | AANT_ArgumentIdentifier, | ||||||||
1027 | AANT_ArgumentConstantExpr, | ||||||||
1028 | }; | ||||||||
1029 | |||||||||
1030 | /// These constants match the enumerated choices of | ||||||||
1031 | /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type. | ||||||||
1032 | enum AttributeDeclKind { | ||||||||
1033 | ExpectedFunction, | ||||||||
1034 | ExpectedUnion, | ||||||||
1035 | ExpectedVariableOrFunction, | ||||||||
1036 | ExpectedFunctionOrMethod, | ||||||||
1037 | ExpectedFunctionMethodOrBlock, | ||||||||
1038 | ExpectedFunctionMethodOrParameter, | ||||||||
1039 | ExpectedVariable, | ||||||||
1040 | ExpectedVariableOrField, | ||||||||
1041 | ExpectedVariableFieldOrTag, | ||||||||
1042 | ExpectedTypeOrNamespace, | ||||||||
1043 | ExpectedFunctionVariableOrClass, | ||||||||
1044 | ExpectedKernelFunction, | ||||||||
1045 | ExpectedFunctionWithProtoType, | ||||||||
1046 | }; | ||||||||
1047 | |||||||||
1048 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, | ||||||||
1049 | const ParsedAttr &At) { | ||||||||
1050 | DB.AddTaggedVal(reinterpret_cast<intptr_t>(At.getAttrName()), | ||||||||
1051 | DiagnosticsEngine::ak_identifierinfo); | ||||||||
1052 | return DB; | ||||||||
1053 | } | ||||||||
1054 | |||||||||
1055 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, | ||||||||
1056 | const ParsedAttr *At) { | ||||||||
1057 | DB.AddTaggedVal(reinterpret_cast<intptr_t>(At->getAttrName()), | ||||||||
1058 | DiagnosticsEngine::ak_identifierinfo); | ||||||||
1059 | return DB; | ||||||||
1060 | } | ||||||||
1061 | |||||||||
1062 | /// AttributeCommonInfo has a non-explicit constructor which takes an | ||||||||
1063 | /// SourceRange as its only argument, this constructor has many uses so making | ||||||||
1064 | /// it explicit is hard. This constructor causes ambiguity with | ||||||||
1065 | /// DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, SourceRange R). | ||||||||
1066 | /// We use SFINAE to disable any conversion and remove any ambiguity. | ||||||||
1067 | template <typename ACI, | ||||||||
1068 | typename std::enable_if_t< | ||||||||
1069 | std::is_same<ACI, AttributeCommonInfo>::value, int> = 0> | ||||||||
1070 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, | ||||||||
1071 | const ACI &CI) { | ||||||||
1072 | DB.AddTaggedVal(reinterpret_cast<intptr_t>(CI.getAttrName()), | ||||||||
1073 | DiagnosticsEngine::ak_identifierinfo); | ||||||||
1074 | return DB; | ||||||||
1075 | } | ||||||||
1076 | |||||||||
1077 | template <typename ACI, | ||||||||
1078 | typename std::enable_if_t< | ||||||||
1079 | std::is_same<ACI, AttributeCommonInfo>::value, int> = 0> | ||||||||
1080 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, | ||||||||
1081 | const ACI* CI) { | ||||||||
1082 | DB.AddTaggedVal(reinterpret_cast<intptr_t>(CI->getAttrName()), | ||||||||
1083 | DiagnosticsEngine::ak_identifierinfo); | ||||||||
1084 | return DB; | ||||||||
1085 | } | ||||||||
1086 | |||||||||
1087 | } // namespace clang | ||||||||
1088 | |||||||||
1089 | #endif // LLVM_CLANG_SEMA_ATTRIBUTELIST_H |