Bug Summary

File:clang/lib/Sema/SemaType.cpp
Warning:line 9010, column 24
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/include -I /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-12-08-060020-21985-1 -x c++ /build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/DelayedDiagnostic.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/Support/ErrorHandling.h"
40#include <bitset>
41
42using namespace clang;
43
44enum TypeDiagSelector {
45 TDS_Function,
46 TDS_Pointer,
47 TDS_ObjCObjOrBlock
48};
49
50/// isOmittedBlockReturnType - Return true if this declarator is missing a
51/// return type because this is a omitted return type on a block literal.
52static bool isOmittedBlockReturnType(const Declarator &D) {
53 if (D.getContext() != DeclaratorContext::BlockLiteral ||
54 D.getDeclSpec().hasTypeSpecifier())
55 return false;
56
57 if (D.getNumTypeObjects() == 0)
58 return true; // ^{ ... }
59
60 if (D.getNumTypeObjects() == 1 &&
61 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
62 return true; // ^(int X, float Y) { ... }
63
64 return false;
65}
66
67/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
68/// doesn't apply to the given type.
69static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
70 QualType type) {
71 TypeDiagSelector WhichType;
72 bool useExpansionLoc = true;
73 switch (attr.getKind()) {
74 case ParsedAttr::AT_ObjCGC:
75 WhichType = TDS_Pointer;
76 break;
77 case ParsedAttr::AT_ObjCOwnership:
78 WhichType = TDS_ObjCObjOrBlock;
79 break;
80 default:
81 // Assume everything else was a function attribute.
82 WhichType = TDS_Function;
83 useExpansionLoc = false;
84 break;
85 }
86
87 SourceLocation loc = attr.getLoc();
88 StringRef name = attr.getAttrName()->getName();
89
90 // The GC attributes are usually written with macros; special-case them.
91 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
92 : nullptr;
93 if (useExpansionLoc && loc.isMacroID() && II) {
94 if (II->isStr("strong")) {
95 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
96 } else if (II->isStr("weak")) {
97 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
98 }
99 }
100
101 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
102 << type;
103}
104
105// objc_gc applies to Objective-C pointers or, otherwise, to the
106// smallest available pointer type (i.e. 'void*' in 'void**').
107#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
108 case ParsedAttr::AT_ObjCGC: \
109 case ParsedAttr::AT_ObjCOwnership
110
111// Calling convention attributes.
112#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
113 case ParsedAttr::AT_CDecl: \
114 case ParsedAttr::AT_FastCall: \
115 case ParsedAttr::AT_StdCall: \
116 case ParsedAttr::AT_ThisCall: \
117 case ParsedAttr::AT_RegCall: \
118 case ParsedAttr::AT_Pascal: \
119 case ParsedAttr::AT_SwiftCall: \
120 case ParsedAttr::AT_VectorCall: \
121 case ParsedAttr::AT_AArch64VectorPcs: \
122 case ParsedAttr::AT_MSABI: \
123 case ParsedAttr::AT_SysVABI: \
124 case ParsedAttr::AT_Pcs: \
125 case ParsedAttr::AT_IntelOclBicc: \
126 case ParsedAttr::AT_PreserveMost: \
127 case ParsedAttr::AT_PreserveAll
128
129// Function type attributes.
130#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
131 case ParsedAttr::AT_NSReturnsRetained: \
132 case ParsedAttr::AT_NoReturn: \
133 case ParsedAttr::AT_Regparm: \
134 case ParsedAttr::AT_CmseNSCall: \
135 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
136 case ParsedAttr::AT_AnyX86NoCfCheck: \
137 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
138
139// Microsoft-specific type qualifiers.
140#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
141 case ParsedAttr::AT_Ptr32: \
142 case ParsedAttr::AT_Ptr64: \
143 case ParsedAttr::AT_SPtr: \
144 case ParsedAttr::AT_UPtr
145
146// Nullability qualifiers.
147#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
\
148 case ParsedAttr::AT_TypeNonNull: \
149 case ParsedAttr::AT_TypeNullable: \
150 case ParsedAttr::AT_TypeNullUnspecified
151
152namespace {
153 /// An object which stores processing state for the entire
154 /// GetTypeForDeclarator process.
155 class TypeProcessingState {
156 Sema &sema;
157
158 /// The declarator being processed.
159 Declarator &declarator;
160
161 /// The index of the declarator chunk we're currently processing.
162 /// May be the total number of valid chunks, indicating the
163 /// DeclSpec.
164 unsigned chunkIndex;
165
166 /// Whether there are non-trivial modifications to the decl spec.
167 bool trivial;
168
169 /// Whether we saved the attributes in the decl spec.
170 bool hasSavedAttrs;
171
172 /// The original set of attributes on the DeclSpec.
173 SmallVector<ParsedAttr *, 2> savedAttrs;
174
175 /// A list of attributes to diagnose the uselessness of when the
176 /// processing is complete.
177 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
178
179 /// Attributes corresponding to AttributedTypeLocs that we have not yet
180 /// populated.
181 // FIXME: The two-phase mechanism by which we construct Types and fill
182 // their TypeLocs makes it hard to correctly assign these. We keep the
183 // attributes in creation order as an attempt to make them line up
184 // properly.
185 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
186 SmallVector<TypeAttrPair, 8> AttrsForTypes;
187 bool AttrsForTypesSorted = true;
188
189 /// MacroQualifiedTypes mapping to macro expansion locations that will be
190 /// stored in a MacroQualifiedTypeLoc.
191 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
192
193 /// Flag to indicate we parsed a noderef attribute. This is used for
194 /// validating that noderef was used on a pointer or array.
195 bool parsedNoDeref;
196
197 public:
198 TypeProcessingState(Sema &sema, Declarator &declarator)
199 : sema(sema), declarator(declarator),
200 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
201 hasSavedAttrs(false), parsedNoDeref(false) {}
202
203 Sema &getSema() const {
204 return sema;
205 }
206
207 Declarator &getDeclarator() const {
208 return declarator;
209 }
210
211 bool isProcessingDeclSpec() const {
212 return chunkIndex == declarator.getNumTypeObjects();
213 }
214
215 unsigned getCurrentChunkIndex() const {
216 return chunkIndex;
217 }
218
219 void setCurrentChunkIndex(unsigned idx) {
220 assert(idx <= declarator.getNumTypeObjects())((idx <= declarator.getNumTypeObjects()) ? static_cast<
void> (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 chunkIndex = idx;
222 }
223
224 ParsedAttributesView &getCurrentAttributes() const {
225 if (isProcessingDeclSpec())
226 return getMutableDeclSpec().getAttributes();
227 return declarator.getTypeObject(chunkIndex).getAttrs();
228 }
229
230 /// Save the current set of attributes on the DeclSpec.
231 void saveDeclSpecAttrs() {
232 // Don't try to save them multiple times.
233 if (hasSavedAttrs) return;
234
235 DeclSpec &spec = getMutableDeclSpec();
236 for (ParsedAttr &AL : spec.getAttributes())
237 savedAttrs.push_back(&AL);
238 trivial &= savedAttrs.empty();
239 hasSavedAttrs = true;
240 }
241
242 /// Record that we had nowhere to put the given type attribute.
243 /// We will diagnose such attributes later.
244 void addIgnoredTypeAttr(ParsedAttr &attr) {
245 ignoredTypeAttrs.push_back(&attr);
246 }
247
248 /// Diagnose all the ignored type attributes, given that the
249 /// declarator worked out to the given type.
250 void diagnoseIgnoredTypeAttrs(QualType type) const {
251 for (auto *Attr : ignoredTypeAttrs)
252 diagnoseBadTypeAttribute(getSema(), *Attr, type);
253 }
254
255 /// Get an attributed type for the given attribute, and remember the Attr
256 /// object so that we can attach it to the AttributedTypeLoc.
257 QualType getAttributedType(Attr *A, QualType ModifiedType,
258 QualType EquivType) {
259 QualType T =
260 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
261 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
262 AttrsForTypesSorted = false;
263 return T;
264 }
265
266 /// Completely replace the \c auto in \p TypeWithAuto by
267 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
268 /// necessary.
269 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
270 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
271 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
272 // Attributed type still should be an attributed type after replacement.
273 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
274 for (TypeAttrPair &A : AttrsForTypes) {
275 if (A.first == AttrTy)
276 A.first = NewAttrTy;
277 }
278 AttrsForTypesSorted = false;
279 }
280 return T;
281 }
282
283 /// Extract and remove the Attr* for a given attributed type.
284 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
285 if (!AttrsForTypesSorted) {
286 llvm::stable_sort(AttrsForTypes, llvm::less_first());
287 AttrsForTypesSorted = true;
288 }
289
290 // FIXME: This is quadratic if we have lots of reuses of the same
291 // attributed type.
292 for (auto It = std::partition_point(
293 AttrsForTypes.begin(), AttrsForTypes.end(),
294 [=](const TypeAttrPair &A) { return A.first < AT; });
295 It != AttrsForTypes.end() && It->first == AT; ++It) {
296 if (It->second) {
297 const Attr *Result = It->second;
298 It->second = nullptr;
299 return Result;
300 }
301 }
302
303 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 303)
;
304 }
305
306 SourceLocation
307 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
308 auto FoundLoc = LocsForMacros.find(MQT);
309 assert(FoundLoc != LocsForMacros.end() &&((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType"
) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 310, __PRETTY_FUNCTION__))
310 "Unable to find macro expansion location for MacroQualifedType")((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType"
) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 310, __PRETTY_FUNCTION__))
;
311 return FoundLoc->second;
312 }
313
314 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
315 SourceLocation Loc) {
316 LocsForMacros[MQT] = Loc;
317 }
318
319 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
320
321 bool didParseNoDeref() const { return parsedNoDeref; }
322
323 ~TypeProcessingState() {
324 if (trivial) return;
325
326 restoreDeclSpecAttrs();
327 }
328
329 private:
330 DeclSpec &getMutableDeclSpec() const {
331 return const_cast<DeclSpec&>(declarator.getDeclSpec());
332 }
333
334 void restoreDeclSpecAttrs() {
335 assert(hasSavedAttrs)((hasSavedAttrs) ? static_cast<void> (0) : __assert_fail
("hasSavedAttrs", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 335, __PRETTY_FUNCTION__))
;
336
337 getMutableDeclSpec().getAttributes().clearListOnly();
338 for (ParsedAttr *AL : savedAttrs)
339 getMutableDeclSpec().getAttributes().addAtEnd(AL);
340 }
341 };
342} // end anonymous namespace
343
344static void moveAttrFromListToList(ParsedAttr &attr,
345 ParsedAttributesView &fromList,
346 ParsedAttributesView &toList) {
347 fromList.remove(&attr);
348 toList.addAtEnd(&attr);
349}
350
351/// The location of a type attribute.
352enum TypeAttrLocation {
353 /// The attribute is in the decl-specifier-seq.
354 TAL_DeclSpec,
355 /// The attribute is part of a DeclaratorChunk.
356 TAL_DeclChunk,
357 /// The attribute is immediately after the declaration's name.
358 TAL_DeclName
359};
360
361static void processTypeAttrs(TypeProcessingState &state, QualType &type,
362 TypeAttrLocation TAL, ParsedAttributesView &attrs);
363
364static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
365 QualType &type);
366
367static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
368 ParsedAttr &attr, QualType &type);
369
370static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
371 QualType &type);
372
373static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
374 ParsedAttr &attr, QualType &type);
375
376static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
377 ParsedAttr &attr, QualType &type) {
378 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
379 return handleObjCGCTypeAttr(state, attr, type);
380 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((attr.getKind() == ParsedAttr::AT_ObjCOwnership) ? static_cast
<void> (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 380, __PRETTY_FUNCTION__))
;
381 return handleObjCOwnershipTypeAttr(state, attr, type);
382}
383
384/// Given the index of a declarator chunk, check whether that chunk
385/// directly specifies the return type of a function and, if so, find
386/// an appropriate place for it.
387///
388/// \param i - a notional index which the search will start
389/// immediately inside
390///
391/// \param onlyBlockPointers Whether we should only look into block
392/// pointer types (vs. all pointer types).
393static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
394 unsigned i,
395 bool onlyBlockPointers) {
396 assert(i <= declarator.getNumTypeObjects())((i <= declarator.getNumTypeObjects()) ? static_cast<void
> (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 396, __PRETTY_FUNCTION__))
;
397
398 DeclaratorChunk *result = nullptr;
399
400 // First, look inwards past parens for a function declarator.
401 for (; i != 0; --i) {
402 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
403 switch (fnChunk.Kind) {
404 case DeclaratorChunk::Paren:
405 continue;
406
407 // If we find anything except a function, bail out.
408 case DeclaratorChunk::Pointer:
409 case DeclaratorChunk::BlockPointer:
410 case DeclaratorChunk::Array:
411 case DeclaratorChunk::Reference:
412 case DeclaratorChunk::MemberPointer:
413 case DeclaratorChunk::Pipe:
414 return result;
415
416 // If we do find a function declarator, scan inwards from that,
417 // looking for a (block-)pointer declarator.
418 case DeclaratorChunk::Function:
419 for (--i; i != 0; --i) {
420 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
421 switch (ptrChunk.Kind) {
422 case DeclaratorChunk::Paren:
423 case DeclaratorChunk::Array:
424 case DeclaratorChunk::Function:
425 case DeclaratorChunk::Reference:
426 case DeclaratorChunk::Pipe:
427 continue;
428
429 case DeclaratorChunk::MemberPointer:
430 case DeclaratorChunk::Pointer:
431 if (onlyBlockPointers)
432 continue;
433
434 LLVM_FALLTHROUGH[[gnu::fallthrough]];
435
436 case DeclaratorChunk::BlockPointer:
437 result = &ptrChunk;
438 goto continue_outer;
439 }
440 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 440)
;
441 }
442
443 // If we run out of declarators doing that, we're done.
444 return result;
445 }
446 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 446)
;
447
448 // Okay, reconsider from our new point.
449 continue_outer: ;
450 }
451
452 // Ran out of chunks, bail out.
453 return result;
454}
455
456/// Given that an objc_gc attribute was written somewhere on a
457/// declaration *other* than on the declarator itself (for which, use
458/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
459/// didn't apply in whatever position it was written in, try to move
460/// it to a more appropriate position.
461static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
462 ParsedAttr &attr, QualType type) {
463 Declarator &declarator = state.getDeclarator();
464
465 // Move it to the outermost normal or block pointer declarator.
466 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
467 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
468 switch (chunk.Kind) {
469 case DeclaratorChunk::Pointer:
470 case DeclaratorChunk::BlockPointer: {
471 // But don't move an ARC ownership attribute to the return type
472 // of a block.
473 DeclaratorChunk *destChunk = nullptr;
474 if (state.isProcessingDeclSpec() &&
475 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
476 destChunk = maybeMovePastReturnType(declarator, i - 1,
477 /*onlyBlockPointers=*/true);
478 if (!destChunk) destChunk = &chunk;
479
480 moveAttrFromListToList(attr, state.getCurrentAttributes(),
481 destChunk->getAttrs());
482 return;
483 }
484
485 case DeclaratorChunk::Paren:
486 case DeclaratorChunk::Array:
487 continue;
488
489 // We may be starting at the return type of a block.
490 case DeclaratorChunk::Function:
491 if (state.isProcessingDeclSpec() &&
492 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
493 if (DeclaratorChunk *dest = maybeMovePastReturnType(
494 declarator, i,
495 /*onlyBlockPointers=*/true)) {
496 moveAttrFromListToList(attr, state.getCurrentAttributes(),
497 dest->getAttrs());
498 return;
499 }
500 }
501 goto error;
502
503 // Don't walk through these.
504 case DeclaratorChunk::Reference:
505 case DeclaratorChunk::MemberPointer:
506 case DeclaratorChunk::Pipe:
507 goto error;
508 }
509 }
510 error:
511
512 diagnoseBadTypeAttribute(state.getSema(), attr, type);
513}
514
515/// Distribute an objc_gc type attribute that was written on the
516/// declarator.
517static void distributeObjCPointerTypeAttrFromDeclarator(
518 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
519 Declarator &declarator = state.getDeclarator();
520
521 // objc_gc goes on the innermost pointer to something that's not a
522 // pointer.
523 unsigned innermost = -1U;
524 bool considerDeclSpec = true;
525 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
526 DeclaratorChunk &chunk = declarator.getTypeObject(i);
527 switch (chunk.Kind) {
528 case DeclaratorChunk::Pointer:
529 case DeclaratorChunk::BlockPointer:
530 innermost = i;
531 continue;
532
533 case DeclaratorChunk::Reference:
534 case DeclaratorChunk::MemberPointer:
535 case DeclaratorChunk::Paren:
536 case DeclaratorChunk::Array:
537 case DeclaratorChunk::Pipe:
538 continue;
539
540 case DeclaratorChunk::Function:
541 considerDeclSpec = false;
542 goto done;
543 }
544 }
545 done:
546
547 // That might actually be the decl spec if we weren't blocked by
548 // anything in the declarator.
549 if (considerDeclSpec) {
550 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
551 // Splice the attribute into the decl spec. Prevents the
552 // attribute from being applied multiple times and gives
553 // the source-location-filler something to work with.
554 state.saveDeclSpecAttrs();
555 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
556 declarator.getAttributes(), &attr);
557 return;
558 }
559 }
560
561 // Otherwise, if we found an appropriate chunk, splice the attribute
562 // into it.
563 if (innermost != -1U) {
564 moveAttrFromListToList(attr, declarator.getAttributes(),
565 declarator.getTypeObject(innermost).getAttrs());
566 return;
567 }
568
569 // Otherwise, diagnose when we're done building the type.
570 declarator.getAttributes().remove(&attr);
571 state.addIgnoredTypeAttr(attr);
572}
573
574/// A function type attribute was written somewhere in a declaration
575/// *other* than on the declarator itself or in the decl spec. Given
576/// that it didn't apply in whatever position it was written in, try
577/// to move it to a more appropriate position.
578static void distributeFunctionTypeAttr(TypeProcessingState &state,
579 ParsedAttr &attr, QualType type) {
580 Declarator &declarator = state.getDeclarator();
581
582 // Try to push the attribute from the return type of a function to
583 // the function itself.
584 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
585 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
586 switch (chunk.Kind) {
587 case DeclaratorChunk::Function:
588 moveAttrFromListToList(attr, state.getCurrentAttributes(),
589 chunk.getAttrs());
590 return;
591
592 case DeclaratorChunk::Paren:
593 case DeclaratorChunk::Pointer:
594 case DeclaratorChunk::BlockPointer:
595 case DeclaratorChunk::Array:
596 case DeclaratorChunk::Reference:
597 case DeclaratorChunk::MemberPointer:
598 case DeclaratorChunk::Pipe:
599 continue;
600 }
601 }
602
603 diagnoseBadTypeAttribute(state.getSema(), attr, type);
604}
605
606/// Try to distribute a function type attribute to the innermost
607/// function chunk or type. Returns true if the attribute was
608/// distributed, false if no location was found.
609static bool distributeFunctionTypeAttrToInnermost(
610 TypeProcessingState &state, ParsedAttr &attr,
611 ParsedAttributesView &attrList, QualType &declSpecType) {
612 Declarator &declarator = state.getDeclarator();
613
614 // Put it on the innermost function chunk, if there is one.
615 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
616 DeclaratorChunk &chunk = declarator.getTypeObject(i);
617 if (chunk.Kind != DeclaratorChunk::Function) continue;
618
619 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
620 return true;
621 }
622
623 return handleFunctionTypeAttr(state, attr, declSpecType);
624}
625
626/// A function type attribute was written in the decl spec. Try to
627/// apply it somewhere.
628static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
629 ParsedAttr &attr,
630 QualType &declSpecType) {
631 state.saveDeclSpecAttrs();
632
633 // C++11 attributes before the decl specifiers actually appertain to
634 // the declarators. Move them straight there. We don't support the
635 // 'put them wherever you like' semantics we allow for GNU attributes.
636 if (attr.isCXX11Attribute()) {
637 moveAttrFromListToList(attr, state.getCurrentAttributes(),
638 state.getDeclarator().getAttributes());
639 return;
640 }
641
642 // Try to distribute to the innermost.
643 if (distributeFunctionTypeAttrToInnermost(
644 state, attr, state.getCurrentAttributes(), declSpecType))
645 return;
646
647 // If that failed, diagnose the bad attribute when the declarator is
648 // fully built.
649 state.addIgnoredTypeAttr(attr);
650}
651
652/// A function type attribute was written on the declarator. Try to
653/// apply it somewhere.
654static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
655 ParsedAttr &attr,
656 QualType &declSpecType) {
657 Declarator &declarator = state.getDeclarator();
658
659 // Try to distribute to the innermost.
660 if (distributeFunctionTypeAttrToInnermost(
661 state, attr, declarator.getAttributes(), declSpecType))
662 return;
663
664 // If that failed, diagnose the bad attribute when the declarator is
665 // fully built.
666 declarator.getAttributes().remove(&attr);
667 state.addIgnoredTypeAttr(attr);
668}
669
670/// Given that there are attributes written on the declarator
671/// itself, try to distribute any type attributes to the appropriate
672/// declarator chunk.
673///
674/// These are attributes like the following:
675/// int f ATTR;
676/// int (f ATTR)();
677/// but not necessarily this:
678/// int f() ATTR;
679static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
680 QualType &declSpecType) {
681 // Collect all the type attributes from the declarator itself.
682 assert(!state.getDeclarator().getAttributes().empty() &&((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 683, __PRETTY_FUNCTION__))
683 "declarator has no attrs!")((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 683, __PRETTY_FUNCTION__))
;
684 // The called functions in this loop actually remove things from the current
685 // list, so iterating over the existing list isn't possible. Instead, make a
686 // non-owning copy and iterate over that.
687 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
688 for (ParsedAttr &attr : AttrsCopy) {
689 // Do not distribute C++11 attributes. They have strict rules for what
690 // they appertain to.
691 if (attr.isCXX11Attribute())
692 continue;
693
694 switch (attr.getKind()) {
695 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
696 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
697 break;
698
699 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
:
700 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
701 break;
702
703 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
704 // Microsoft type attributes cannot go after the declarator-id.
705 continue;
706
707 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
:
708 // Nullability specifiers cannot go after the declarator-id.
709
710 // Objective-C __kindof does not get distributed.
711 case ParsedAttr::AT_ObjCKindOf:
712 continue;
713
714 default:
715 break;
716 }
717 }
718}
719
720/// Add a synthetic '()' to a block-literal declarator if it is
721/// required, given the return type.
722static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
723 QualType declSpecType) {
724 Declarator &declarator = state.getDeclarator();
725
726 // First, check whether the declarator would produce a function,
727 // i.e. whether the innermost semantic chunk is a function.
728 if (declarator.isFunctionDeclarator()) {
729 // If so, make that declarator a prototyped declarator.
730 declarator.getFunctionTypeInfo().hasPrototype = true;
731 return;
732 }
733
734 // If there are any type objects, the type as written won't name a
735 // function, regardless of the decl spec type. This is because a
736 // block signature declarator is always an abstract-declarator, and
737 // abstract-declarators can't just be parentheses chunks. Therefore
738 // we need to build a function chunk unless there are no type
739 // objects and the decl spec type is a function.
740 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
741 return;
742
743 // Note that there *are* cases with invalid declarators where
744 // declarators consist solely of parentheses. In general, these
745 // occur only in failed efforts to make function declarators, so
746 // faking up the function chunk is still the right thing to do.
747
748 // Otherwise, we need to fake up a function declarator.
749 SourceLocation loc = declarator.getBeginLoc();
750
751 // ...and *prepend* it to the declarator.
752 SourceLocation NoLoc;
753 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
754 /*HasProto=*/true,
755 /*IsAmbiguous=*/false,
756 /*LParenLoc=*/NoLoc,
757 /*ArgInfo=*/nullptr,
758 /*NumParams=*/0,
759 /*EllipsisLoc=*/NoLoc,
760 /*RParenLoc=*/NoLoc,
761 /*RefQualifierIsLvalueRef=*/true,
762 /*RefQualifierLoc=*/NoLoc,
763 /*MutableLoc=*/NoLoc, EST_None,
764 /*ESpecRange=*/SourceRange(),
765 /*Exceptions=*/nullptr,
766 /*ExceptionRanges=*/nullptr,
767 /*NumExceptions=*/0,
768 /*NoexceptExpr=*/nullptr,
769 /*ExceptionSpecTokens=*/nullptr,
770 /*DeclsInPrototype=*/None, loc, loc, declarator));
771
772 // For consistency, make sure the state still has us as processing
773 // the decl spec.
774 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((state.getCurrentChunkIndex() == declarator.getNumTypeObjects
() - 1) ? static_cast<void> (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 774, __PRETTY_FUNCTION__))
;
775 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
776}
777
778static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
779 unsigned &TypeQuals,
780 QualType TypeSoFar,
781 unsigned RemoveTQs,
782 unsigned DiagID) {
783 // If this occurs outside a template instantiation, warn the user about
784 // it; they probably didn't mean to specify a redundant qualifier.
785 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
786 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
787 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
788 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
789 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
790 if (!(RemoveTQs & Qual.first))
791 continue;
792
793 if (!S.inTemplateInstantiation()) {
794 if (TypeQuals & Qual.first)
795 S.Diag(Qual.second, DiagID)
796 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
797 << FixItHint::CreateRemoval(Qual.second);
798 }
799
800 TypeQuals &= ~Qual.first;
801 }
802}
803
804/// Return true if this is omitted block return type. Also check type
805/// attributes and type qualifiers when returning true.
806static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
807 QualType Result) {
808 if (!isOmittedBlockReturnType(declarator))
809 return false;
810
811 // Warn if we see type attributes for omitted return type on a block literal.
812 SmallVector<ParsedAttr *, 2> ToBeRemoved;
813 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
814 if (AL.isInvalid() || !AL.isTypeAttr())
815 continue;
816 S.Diag(AL.getLoc(),
817 diag::warn_block_literal_attributes_on_omitted_return_type)
818 << AL;
819 ToBeRemoved.push_back(&AL);
820 }
821 // Remove bad attributes from the list.
822 for (ParsedAttr *AL : ToBeRemoved)
823 declarator.getMutableDeclSpec().getAttributes().remove(AL);
824
825 // Warn if we see type qualifiers for omitted return type on a block literal.
826 const DeclSpec &DS = declarator.getDeclSpec();
827 unsigned TypeQuals = DS.getTypeQualifiers();
828 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
829 diag::warn_block_literal_qualifiers_on_omitted_return_type);
830 declarator.getMutableDeclSpec().ClearTypeQualifiers();
831
832 return true;
833}
834
835/// Apply Objective-C type arguments to the given type.
836static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
837 ArrayRef<TypeSourceInfo *> typeArgs,
838 SourceRange typeArgsRange,
839 bool failOnError = false) {
840 // We can only apply type arguments to an Objective-C class type.
841 const auto *objcObjectType = type->getAs<ObjCObjectType>();
842 if (!objcObjectType || !objcObjectType->getInterface()) {
843 S.Diag(loc, diag::err_objc_type_args_non_class)
844 << type
845 << typeArgsRange;
846
847 if (failOnError)
848 return QualType();
849 return type;
850 }
851
852 // The class type must be parameterized.
853 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
854 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
855 if (!typeParams) {
856 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
857 << objcClass->getDeclName()
858 << FixItHint::CreateRemoval(typeArgsRange);
859
860 if (failOnError)
861 return QualType();
862
863 return type;
864 }
865
866 // The type must not already be specialized.
867 if (objcObjectType->isSpecialized()) {
868 S.Diag(loc, diag::err_objc_type_args_specialized_class)
869 << type
870 << FixItHint::CreateRemoval(typeArgsRange);
871
872 if (failOnError)
873 return QualType();
874
875 return type;
876 }
877
878 // Check the type arguments.
879 SmallVector<QualType, 4> finalTypeArgs;
880 unsigned numTypeParams = typeParams->size();
881 bool anyPackExpansions = false;
882 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
883 TypeSourceInfo *typeArgInfo = typeArgs[i];
884 QualType typeArg = typeArgInfo->getType();
885
886 // Type arguments cannot have explicit qualifiers or nullability.
887 // We ignore indirect sources of these, e.g. behind typedefs or
888 // template arguments.
889 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
890 bool diagnosed = false;
891 SourceRange rangeToRemove;
892 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
893 rangeToRemove = attr.getLocalSourceRange();
894 if (attr.getTypePtr()->getImmediateNullability()) {
895 typeArg = attr.getTypePtr()->getModifiedType();
896 S.Diag(attr.getBeginLoc(),
897 diag::err_objc_type_arg_explicit_nullability)
898 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
899 diagnosed = true;
900 }
901 }
902
903 if (!diagnosed) {
904 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
905 << typeArg << typeArg.getQualifiers().getAsString()
906 << FixItHint::CreateRemoval(rangeToRemove);
907 }
908 }
909
910 // Remove qualifiers even if they're non-local.
911 typeArg = typeArg.getUnqualifiedType();
912
913 finalTypeArgs.push_back(typeArg);
914
915 if (typeArg->getAs<PackExpansionType>())
916 anyPackExpansions = true;
917
918 // Find the corresponding type parameter, if there is one.
919 ObjCTypeParamDecl *typeParam = nullptr;
920 if (!anyPackExpansions) {
921 if (i < numTypeParams) {
922 typeParam = typeParams->begin()[i];
923 } else {
924 // Too many arguments.
925 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
926 << false
927 << objcClass->getDeclName()
928 << (unsigned)typeArgs.size()
929 << numTypeParams;
930 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
931 << objcClass;
932
933 if (failOnError)
934 return QualType();
935
936 return type;
937 }
938 }
939
940 // Objective-C object pointer types must be substitutable for the bounds.
941 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
942 // If we don't have a type parameter to match against, assume
943 // everything is fine. There was a prior pack expansion that
944 // means we won't be able to match anything.
945 if (!typeParam) {
946 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 946, __PRETTY_FUNCTION__))
;
947 continue;
948 }
949
950 // Retrieve the bound.
951 QualType bound = typeParam->getUnderlyingType();
952 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
953
954 // Determine whether the type argument is substitutable for the bound.
955 if (typeArgObjC->isObjCIdType()) {
956 // When the type argument is 'id', the only acceptable type
957 // parameter bound is 'id'.
958 if (boundObjC->isObjCIdType())
959 continue;
960 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
961 // Otherwise, we follow the assignability rules.
962 continue;
963 }
964
965 // Diagnose the mismatch.
966 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
967 diag::err_objc_type_arg_does_not_match_bound)
968 << typeArg << bound << typeParam->getDeclName();
969 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
970 << typeParam->getDeclName();
971
972 if (failOnError)
973 return QualType();
974
975 return type;
976 }
977
978 // Block pointer types are permitted for unqualified 'id' bounds.
979 if (typeArg->isBlockPointerType()) {
980 // If we don't have a type parameter to match against, assume
981 // everything is fine. There was a prior pack expansion that
982 // means we won't be able to match anything.
983 if (!typeParam) {
984 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 984, __PRETTY_FUNCTION__))
;
985 continue;
986 }
987
988 // Retrieve the bound.
989 QualType bound = typeParam->getUnderlyingType();
990 if (bound->isBlockCompatibleObjCPointerType(S.Context))
991 continue;
992
993 // Diagnose the mismatch.
994 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
995 diag::err_objc_type_arg_does_not_match_bound)
996 << typeArg << bound << typeParam->getDeclName();
997 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
998 << typeParam->getDeclName();
999
1000 if (failOnError)
1001 return QualType();
1002
1003 return type;
1004 }
1005
1006 // Dependent types will be checked at instantiation time.
1007 if (typeArg->isDependentType()) {
1008 continue;
1009 }
1010
1011 // Diagnose non-id-compatible type arguments.
1012 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1013 diag::err_objc_type_arg_not_id_compatible)
1014 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1015
1016 if (failOnError)
1017 return QualType();
1018
1019 return type;
1020 }
1021
1022 // Make sure we didn't have the wrong number of arguments.
1023 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1024 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1025 << (typeArgs.size() < typeParams->size())
1026 << objcClass->getDeclName()
1027 << (unsigned)finalTypeArgs.size()
1028 << (unsigned)numTypeParams;
1029 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1030 << objcClass;
1031
1032 if (failOnError)
1033 return QualType();
1034
1035 return type;
1036 }
1037
1038 // Success. Form the specialized type.
1039 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1040}
1041
1042QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1043 SourceLocation ProtocolLAngleLoc,
1044 ArrayRef<ObjCProtocolDecl *> Protocols,
1045 ArrayRef<SourceLocation> ProtocolLocs,
1046 SourceLocation ProtocolRAngleLoc,
1047 bool FailOnError) {
1048 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1049 if (!Protocols.empty()) {
1050 bool HasError;
1051 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1052 HasError);
1053 if (HasError) {
1054 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1055 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1056 if (FailOnError) Result = QualType();
1057 }
1058 if (FailOnError && Result.isNull())
1059 return QualType();
1060 }
1061
1062 return Result;
1063}
1064
1065QualType Sema::BuildObjCObjectType(QualType BaseType,
1066 SourceLocation Loc,
1067 SourceLocation TypeArgsLAngleLoc,
1068 ArrayRef<TypeSourceInfo *> TypeArgs,
1069 SourceLocation TypeArgsRAngleLoc,
1070 SourceLocation ProtocolLAngleLoc,
1071 ArrayRef<ObjCProtocolDecl *> Protocols,
1072 ArrayRef<SourceLocation> ProtocolLocs,
1073 SourceLocation ProtocolRAngleLoc,
1074 bool FailOnError) {
1075 QualType Result = BaseType;
1076 if (!TypeArgs.empty()) {
1077 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1078 SourceRange(TypeArgsLAngleLoc,
1079 TypeArgsRAngleLoc),
1080 FailOnError);
1081 if (FailOnError && Result.isNull())
1082 return QualType();
1083 }
1084
1085 if (!Protocols.empty()) {
1086 bool HasError;
1087 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1088 HasError);
1089 if (HasError) {
1090 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1091 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1092 if (FailOnError) Result = QualType();
1093 }
1094 if (FailOnError && Result.isNull())
1095 return QualType();
1096 }
1097
1098 return Result;
1099}
1100
1101TypeResult Sema::actOnObjCProtocolQualifierType(
1102 SourceLocation lAngleLoc,
1103 ArrayRef<Decl *> protocols,
1104 ArrayRef<SourceLocation> protocolLocs,
1105 SourceLocation rAngleLoc) {
1106 // Form id<protocol-list>.
1107 QualType Result = Context.getObjCObjectType(
1108 Context.ObjCBuiltinIdTy, { },
1109 llvm::makeArrayRef(
1110 (ObjCProtocolDecl * const *)protocols.data(),
1111 protocols.size()),
1112 false);
1113 Result = Context.getObjCObjectPointerType(Result);
1114
1115 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1116 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1117
1118 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1119 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1120
1121 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1122 .castAs<ObjCObjectTypeLoc>();
1123 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1124 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1125
1126 // No type arguments.
1127 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1128 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1129
1130 // Fill in protocol qualifiers.
1131 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1132 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1133 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1134 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1135
1136 // We're done. Return the completed type to the parser.
1137 return CreateParsedType(Result, ResultTInfo);
1138}
1139
1140TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1141 Scope *S,
1142 SourceLocation Loc,
1143 ParsedType BaseType,
1144 SourceLocation TypeArgsLAngleLoc,
1145 ArrayRef<ParsedType> TypeArgs,
1146 SourceLocation TypeArgsRAngleLoc,
1147 SourceLocation ProtocolLAngleLoc,
1148 ArrayRef<Decl *> Protocols,
1149 ArrayRef<SourceLocation> ProtocolLocs,
1150 SourceLocation ProtocolRAngleLoc) {
1151 TypeSourceInfo *BaseTypeInfo = nullptr;
1152 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1153 if (T.isNull())
1154 return true;
1155
1156 // Handle missing type-source info.
1157 if (!BaseTypeInfo)
1158 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1159
1160 // Extract type arguments.
1161 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1162 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1163 TypeSourceInfo *TypeArgInfo = nullptr;
1164 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1165 if (TypeArg.isNull()) {
1166 ActualTypeArgInfos.clear();
1167 break;
1168 }
1169
1170 assert(TypeArgInfo && "No type source info?")((TypeArgInfo && "No type source info?") ? static_cast
<void> (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1170, __PRETTY_FUNCTION__))
;
1171 ActualTypeArgInfos.push_back(TypeArgInfo);
1172 }
1173
1174 // Build the object type.
1175 QualType Result = BuildObjCObjectType(
1176 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1177 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1178 ProtocolLAngleLoc,
1179 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1180 Protocols.size()),
1181 ProtocolLocs, ProtocolRAngleLoc,
1182 /*FailOnError=*/false);
1183
1184 if (Result == T)
1185 return BaseType;
1186
1187 // Create source information for this type.
1188 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1189 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1190
1191 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1192 // object pointer type. Fill in source information for it.
1193 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1194 // The '*' is implicit.
1195 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1196 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1197 }
1198
1199 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1200 // Protocol qualifier information.
1201 if (OTPTL.getNumProtocols() > 0) {
1202 assert(OTPTL.getNumProtocols() == Protocols.size())((OTPTL.getNumProtocols() == Protocols.size()) ? static_cast<
void> (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1202, __PRETTY_FUNCTION__))
;
1203 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1204 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1205 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1206 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1207 }
1208
1209 // We're done. Return the completed type to the parser.
1210 return CreateParsedType(Result, ResultTInfo);
1211 }
1212
1213 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1214
1215 // Type argument information.
1216 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1217 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())
? static_cast<void> (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1217, __PRETTY_FUNCTION__))
;
1218 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1219 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1220 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1221 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1222 } else {
1223 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1224 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1225 }
1226
1227 // Protocol qualifier information.
1228 if (ObjCObjectTL.getNumProtocols() > 0) {
1229 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((ObjCObjectTL.getNumProtocols() == Protocols.size()) ? static_cast
<void> (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1229, __PRETTY_FUNCTION__))
;
1230 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1231 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1232 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1233 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1234 } else {
1235 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1236 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1237 }
1238
1239 // Base type.
1240 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1241 if (ObjCObjectTL.getType() == T)
1242 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1243 else
1244 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1245
1246 // We're done. Return the completed type to the parser.
1247 return CreateParsedType(Result, ResultTInfo);
1248}
1249
1250static OpenCLAccessAttr::Spelling
1251getImageAccess(const ParsedAttributesView &Attrs) {
1252 for (const ParsedAttr &AL : Attrs)
1253 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1254 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1255 return OpenCLAccessAttr::Keyword_read_only;
1256}
1257
1258static QualType ConvertConstrainedAutoDeclSpecToType(Sema &S, DeclSpec &DS,
1259 AutoTypeKeyword AutoKW) {
1260 assert(DS.isConstrainedAuto())((DS.isConstrainedAuto()) ? static_cast<void> (0) : __assert_fail
("DS.isConstrainedAuto()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1260, __PRETTY_FUNCTION__))
;
1261 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
1262 TemplateArgumentListInfo TemplateArgsInfo;
1263 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1264 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1265 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1266 TemplateId->NumArgs);
1267 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1268 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1269 for (auto &ArgLoc : TemplateArgsInfo.arguments())
1270 TemplateArgs.push_back(ArgLoc.getArgument());
1271 return S.Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false,
1272 /*IsPack=*/false,
1273 cast<ConceptDecl>(TemplateId->Template.get()
1274 .getAsTemplateDecl()),
1275 TemplateArgs);
1276}
1277
1278/// Convert the specified declspec to the appropriate type
1279/// object.
1280/// \param state Specifies the declarator containing the declaration specifier
1281/// to be converted, along with other associated processing state.
1282/// \returns The type described by the declaration specifiers. This function
1283/// never returns null.
1284static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1285 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1286 // checking.
1287
1288 Sema &S = state.getSema();
1289 Declarator &declarator = state.getDeclarator();
1290 DeclSpec &DS = declarator.getMutableDeclSpec();
1291 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1292 if (DeclLoc.isInvalid())
1
Taking false branch
1293 DeclLoc = DS.getBeginLoc();
1294
1295 ASTContext &Context = S.Context;
1296
1297 QualType Result;
1298 switch (DS.getTypeSpecType()) {
2
Control jumps to 'case 31:' at line 1644
1299 case DeclSpec::TST_void:
1300 Result = Context.VoidTy;
1301 break;
1302 case DeclSpec::TST_char:
1303 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1304 Result = Context.CharTy;
1305 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1306 Result = Context.SignedCharTy;
1307 else {
1308 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1309, __PRETTY_FUNCTION__))
1309 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1309, __PRETTY_FUNCTION__))
;
1310 Result = Context.UnsignedCharTy;
1311 }
1312 break;
1313 case DeclSpec::TST_wchar:
1314 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1315 Result = Context.WCharTy;
1316 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1317 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1318 << DS.getSpecifierName(DS.getTypeSpecType(),
1319 Context.getPrintingPolicy());
1320 Result = Context.getSignedWCharType();
1321 } else {
1322 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1323, __PRETTY_FUNCTION__))
1323 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1323, __PRETTY_FUNCTION__))
;
1324 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1325 << DS.getSpecifierName(DS.getTypeSpecType(),
1326 Context.getPrintingPolicy());
1327 Result = Context.getUnsignedWCharType();
1328 }
1329 break;
1330 case DeclSpec::TST_char8:
1331 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1332, __PRETTY_FUNCTION__))
1332 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1332, __PRETTY_FUNCTION__))
;
1333 Result = Context.Char8Ty;
1334 break;
1335 case DeclSpec::TST_char16:
1336 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1337, __PRETTY_FUNCTION__))
1337 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1337, __PRETTY_FUNCTION__))
;
1338 Result = Context.Char16Ty;
1339 break;
1340 case DeclSpec::TST_char32:
1341 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1342, __PRETTY_FUNCTION__))
1342 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1342, __PRETTY_FUNCTION__))
;
1343 Result = Context.Char32Ty;
1344 break;
1345 case DeclSpec::TST_unspecified:
1346 // If this is a missing declspec in a block literal return context, then it
1347 // is inferred from the return statements inside the block.
1348 // The declspec is always missing in a lambda expr context; it is either
1349 // specified with a trailing return type or inferred.
1350 if (S.getLangOpts().CPlusPlus14 &&
1351 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1352 // In C++1y, a lambda's implicit return type is 'auto'.
1353 Result = Context.getAutoDeductType();
1354 break;
1355 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1356 checkOmittedBlockReturnType(S, declarator,
1357 Context.DependentTy)) {
1358 Result = Context.DependentTy;
1359 break;
1360 }
1361
1362 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1363 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1364 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1365 // Note that the one exception to this is function definitions, which are
1366 // allowed to be completely missing a declspec. This is handled in the
1367 // parser already though by it pretending to have seen an 'int' in this
1368 // case.
1369 if (S.getLangOpts().ImplicitInt) {
1370 // In C89 mode, we only warn if there is a completely missing declspec
1371 // when one is not allowed.
1372 if (DS.isEmpty()) {
1373 S.Diag(DeclLoc, diag::ext_missing_declspec)
1374 << DS.getSourceRange()
1375 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1376 }
1377 } else if (!DS.hasTypeSpecifier()) {
1378 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1379 // "At least one type specifier shall be given in the declaration
1380 // specifiers in each declaration, and in the specifier-qualifier list in
1381 // each struct declaration and type name."
1382 if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1383 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1384 << DS.getSourceRange();
1385
1386 // When this occurs in C++ code, often something is very broken with the
1387 // value being declared, poison it as invalid so we don't get chains of
1388 // errors.
1389 declarator.setInvalidType(true);
1390 } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1391 S.getLangOpts().OpenCLCPlusPlus) &&
1392 DS.isTypeSpecPipe()) {
1393 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1394 << DS.getSourceRange();
1395 declarator.setInvalidType(true);
1396 } else {
1397 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1398 << DS.getSourceRange();
1399 }
1400 }
1401
1402 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1403 case DeclSpec::TST_int: {
1404 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1405 switch (DS.getTypeSpecWidth()) {
1406 case TypeSpecifierWidth::Unspecified:
1407 Result = Context.IntTy;
1408 break;
1409 case TypeSpecifierWidth::Short:
1410 Result = Context.ShortTy;
1411 break;
1412 case TypeSpecifierWidth::Long:
1413 Result = Context.LongTy;
1414 break;
1415 case TypeSpecifierWidth::LongLong:
1416 Result = Context.LongLongTy;
1417
1418 // 'long long' is a C99 or C++11 feature.
1419 if (!S.getLangOpts().C99) {
1420 if (S.getLangOpts().CPlusPlus)
1421 S.Diag(DS.getTypeSpecWidthLoc(),
1422 S.getLangOpts().CPlusPlus11 ?
1423 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1424 else
1425 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1426 }
1427 break;
1428 }
1429 } else {
1430 switch (DS.getTypeSpecWidth()) {
1431 case TypeSpecifierWidth::Unspecified:
1432 Result = Context.UnsignedIntTy;
1433 break;
1434 case TypeSpecifierWidth::Short:
1435 Result = Context.UnsignedShortTy;
1436 break;
1437 case TypeSpecifierWidth::Long:
1438 Result = Context.UnsignedLongTy;
1439 break;
1440 case TypeSpecifierWidth::LongLong:
1441 Result = Context.UnsignedLongLongTy;
1442
1443 // 'long long' is a C99 or C++11 feature.
1444 if (!S.getLangOpts().C99) {
1445 if (S.getLangOpts().CPlusPlus)
1446 S.Diag(DS.getTypeSpecWidthLoc(),
1447 S.getLangOpts().CPlusPlus11 ?
1448 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1449 else
1450 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1451 }
1452 break;
1453 }
1454 }
1455 break;
1456 }
1457 case DeclSpec::TST_extint: {
1458 if (!S.Context.getTargetInfo().hasExtIntType())
1459 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1460 << "_ExtInt";
1461 Result =
1462 S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1463 DS.getRepAsExpr(), DS.getBeginLoc());
1464 if (Result.isNull()) {
1465 Result = Context.IntTy;
1466 declarator.setInvalidType(true);
1467 }
1468 break;
1469 }
1470 case DeclSpec::TST_accum: {
1471 switch (DS.getTypeSpecWidth()) {
1472 case TypeSpecifierWidth::Short:
1473 Result = Context.ShortAccumTy;
1474 break;
1475 case TypeSpecifierWidth::Unspecified:
1476 Result = Context.AccumTy;
1477 break;
1478 case TypeSpecifierWidth::Long:
1479 Result = Context.LongAccumTy;
1480 break;
1481 case TypeSpecifierWidth::LongLong:
1482 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1482)
;
1483 }
1484
1485 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1486 Result = Context.getCorrespondingUnsignedType(Result);
1487
1488 if (DS.isTypeSpecSat())
1489 Result = Context.getCorrespondingSaturatedType(Result);
1490
1491 break;
1492 }
1493 case DeclSpec::TST_fract: {
1494 switch (DS.getTypeSpecWidth()) {
1495 case TypeSpecifierWidth::Short:
1496 Result = Context.ShortFractTy;
1497 break;
1498 case TypeSpecifierWidth::Unspecified:
1499 Result = Context.FractTy;
1500 break;
1501 case TypeSpecifierWidth::Long:
1502 Result = Context.LongFractTy;
1503 break;
1504 case TypeSpecifierWidth::LongLong:
1505 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1505)
;
1506 }
1507
1508 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1509 Result = Context.getCorrespondingUnsignedType(Result);
1510
1511 if (DS.isTypeSpecSat())
1512 Result = Context.getCorrespondingSaturatedType(Result);
1513
1514 break;
1515 }
1516 case DeclSpec::TST_int128:
1517 if (!S.Context.getTargetInfo().hasInt128Type() &&
1518 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1519 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1520 << "__int128";
1521 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1522 Result = Context.UnsignedInt128Ty;
1523 else
1524 Result = Context.Int128Ty;
1525 break;
1526 case DeclSpec::TST_float16:
1527 // CUDA host and device may have different _Float16 support, therefore
1528 // do not diagnose _Float16 usage to avoid false alarm.
1529 // ToDo: more precise diagnostics for CUDA.
1530 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1531 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1532 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1533 << "_Float16";
1534 Result = Context.Float16Ty;
1535 break;
1536 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1537 case DeclSpec::TST_BFloat16:
1538 if (!S.Context.getTargetInfo().hasBFloat16Type())
1539 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1540 << "__bf16";
1541 Result = Context.BFloat16Ty;
1542 break;
1543 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1544 case DeclSpec::TST_double:
1545 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1546 Result = Context.LongDoubleTy;
1547 else
1548 Result = Context.DoubleTy;
1549 break;
1550 case DeclSpec::TST_float128:
1551 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1552 !S.getLangOpts().SYCLIsDevice &&
1553 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1554 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1555 << "__float128";
1556 Result = Context.Float128Ty;
1557 break;
1558 case DeclSpec::TST_bool:
1559 Result = Context.BoolTy; // _Bool or bool
1560 break;
1561 case DeclSpec::TST_decimal32: // _Decimal32
1562 case DeclSpec::TST_decimal64: // _Decimal64
1563 case DeclSpec::TST_decimal128: // _Decimal128
1564 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1565 Result = Context.IntTy;
1566 declarator.setInvalidType(true);
1567 break;
1568 case DeclSpec::TST_class:
1569 case DeclSpec::TST_enum:
1570 case DeclSpec::TST_union:
1571 case DeclSpec::TST_struct:
1572 case DeclSpec::TST_interface: {
1573 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1574 if (!D) {
1575 // This can happen in C++ with ambiguous lookups.
1576 Result = Context.IntTy;
1577 declarator.setInvalidType(true);
1578 break;
1579 }
1580
1581 // If the type is deprecated or unavailable, diagnose it.
1582 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1583
1584 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1587, __PRETTY_FUNCTION__))
1585 DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1587, __PRETTY_FUNCTION__))
1586 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1587, __PRETTY_FUNCTION__))
1587 "No qualifiers on tag names!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1587, __PRETTY_FUNCTION__))
;
1588
1589 // TypeQuals handled by caller.
1590 Result = Context.getTypeDeclType(D);
1591
1592 // In both C and C++, make an ElaboratedType.
1593 ElaboratedTypeKeyword Keyword
1594 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1595 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1596 DS.isTypeSpecOwned() ? D : nullptr);
1597 break;
1598 }
1599 case DeclSpec::TST_typename: {
1600 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1603, __PRETTY_FUNCTION__))
1601 DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1603, __PRETTY_FUNCTION__))
1602 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1603, __PRETTY_FUNCTION__))
1603 "Can't handle qualifiers on typedef names yet!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1603, __PRETTY_FUNCTION__))
;
1604 Result = S.GetTypeFromParser(DS.getRepAsType());
1605 if (Result.isNull()) {
1606 declarator.setInvalidType(true);
1607 }
1608
1609 // TypeQuals handled by caller.
1610 break;
1611 }
1612 case DeclSpec::TST_typeofType:
1613 // FIXME: Preserve type source info.
1614 Result = S.GetTypeFromParser(DS.getRepAsType());
1615 assert(!Result.isNull() && "Didn't get a type for typeof?")((!Result.isNull() && "Didn't get a type for typeof?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1615, __PRETTY_FUNCTION__))
;
1616 if (!Result->isDependentType())
1617 if (const TagType *TT = Result->getAs<TagType>())
1618 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1619 // TypeQuals handled by caller.
1620 Result = Context.getTypeOfType(Result);
1621 break;
1622 case DeclSpec::TST_typeofExpr: {
1623 Expr *E = DS.getRepAsExpr();
1624 assert(E && "Didn't get an expression for typeof?")((E && "Didn't get an expression for typeof?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1624, __PRETTY_FUNCTION__))
;
1625 // TypeQuals handled by caller.
1626 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1627 if (Result.isNull()) {
1628 Result = Context.IntTy;
1629 declarator.setInvalidType(true);
1630 }
1631 break;
1632 }
1633 case DeclSpec::TST_decltype: {
1634 Expr *E = DS.getRepAsExpr();
1635 assert(E && "Didn't get an expression for decltype?")((E && "Didn't get an expression for decltype?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1635, __PRETTY_FUNCTION__))
;
1636 // TypeQuals handled by caller.
1637 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1638 if (Result.isNull()) {
1639 Result = Context.IntTy;
1640 declarator.setInvalidType(true);
1641 }
1642 break;
1643 }
1644 case DeclSpec::TST_underlyingType:
1645 Result = S.GetTypeFromParser(DS.getRepAsType());
1646 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((!Result.isNull() && "Didn't get a type for __underlying_type?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1646, __PRETTY_FUNCTION__))
;
3
'?' condition is true
1647 Result = S.BuildUnaryTransformType(Result,
4
Calling 'Sema::BuildUnaryTransformType'
1648 UnaryTransformType::EnumUnderlyingType,
1649 DS.getTypeSpecTypeLoc());
1650 if (Result.isNull()) {
1651 Result = Context.IntTy;
1652 declarator.setInvalidType(true);
1653 }
1654 break;
1655
1656 case DeclSpec::TST_auto:
1657 if (DS.isConstrainedAuto()) {
1658 Result = ConvertConstrainedAutoDeclSpecToType(S, DS,
1659 AutoTypeKeyword::Auto);
1660 break;
1661 }
1662 Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1663 break;
1664
1665 case DeclSpec::TST_auto_type:
1666 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1667 break;
1668
1669 case DeclSpec::TST_decltype_auto:
1670 if (DS.isConstrainedAuto()) {
1671 Result =
1672 ConvertConstrainedAutoDeclSpecToType(S, DS,
1673 AutoTypeKeyword::DecltypeAuto);
1674 break;
1675 }
1676 Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1677 /*IsDependent*/ false);
1678 break;
1679
1680 case DeclSpec::TST_unknown_anytype:
1681 Result = Context.UnknownAnyTy;
1682 break;
1683
1684 case DeclSpec::TST_atomic:
1685 Result = S.GetTypeFromParser(DS.getRepAsType());
1686 assert(!Result.isNull() && "Didn't get a type for _Atomic?")((!Result.isNull() && "Didn't get a type for _Atomic?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1686, __PRETTY_FUNCTION__))
;
1687 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1688 if (Result.isNull()) {
1689 Result = Context.IntTy;
1690 declarator.setInvalidType(true);
1691 }
1692 break;
1693
1694#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1695 case DeclSpec::TST_##ImgType##_t: \
1696 switch (getImageAccess(DS.getAttributes())) { \
1697 case OpenCLAccessAttr::Keyword_write_only: \
1698 Result = Context.Id##WOTy; \
1699 break; \
1700 case OpenCLAccessAttr::Keyword_read_write: \
1701 Result = Context.Id##RWTy; \
1702 break; \
1703 case OpenCLAccessAttr::Keyword_read_only: \
1704 Result = Context.Id##ROTy; \
1705 break; \
1706 case OpenCLAccessAttr::SpellingNotCalculated: \
1707 llvm_unreachable("Spelling not yet calculated")::llvm::llvm_unreachable_internal("Spelling not yet calculated"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1707)
; \
1708 } \
1709 break;
1710#include "clang/Basic/OpenCLImageTypes.def"
1711
1712 case DeclSpec::TST_error:
1713 Result = Context.IntTy;
1714 declarator.setInvalidType(true);
1715 break;
1716 }
1717
1718 // FIXME: we want resulting declarations to be marked invalid, but claiming
1719 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1720 // a null type.
1721 if (Result->containsErrors())
1722 declarator.setInvalidType();
1723
1724 if (S.getLangOpts().OpenCL &&
1725 S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1726 declarator.setInvalidType(true);
1727
1728 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1729 DS.getTypeSpecType() == DeclSpec::TST_fract;
1730
1731 // Only fixed point types can be saturated
1732 if (DS.isTypeSpecSat() && !IsFixedPointType)
1733 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1734 << DS.getSpecifierName(DS.getTypeSpecType(),
1735 Context.getPrintingPolicy());
1736
1737 // Handle complex types.
1738 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1739 if (S.getLangOpts().Freestanding)
1740 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1741 Result = Context.getComplexType(Result);
1742 } else if (DS.isTypeAltiVecVector()) {
1743 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1744 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? static_cast<void> (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1744, __PRETTY_FUNCTION__))
;
1745 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1746 if (DS.isTypeAltiVecPixel())
1747 VecKind = VectorType::AltiVecPixel;
1748 else if (DS.isTypeAltiVecBool())
1749 VecKind = VectorType::AltiVecBool;
1750 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1751 }
1752
1753 // FIXME: Imaginary.
1754 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1755 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1756
1757 // Before we process any type attributes, synthesize a block literal
1758 // function declarator if necessary.
1759 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1760 maybeSynthesizeBlockSignature(state, Result);
1761
1762 // Apply any type attributes from the decl spec. This may cause the
1763 // list of type attributes to be temporarily saved while the type
1764 // attributes are pushed around.
1765 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1766 if (!DS.isTypeSpecPipe())
1767 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1768
1769 // Apply const/volatile/restrict qualifiers to T.
1770 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1771 // Warn about CV qualifiers on function types.
1772 // C99 6.7.3p8:
1773 // If the specification of a function type includes any type qualifiers,
1774 // the behavior is undefined.
1775 // C++11 [dcl.fct]p7:
1776 // The effect of a cv-qualifier-seq in a function declarator is not the
1777 // same as adding cv-qualification on top of the function type. In the
1778 // latter case, the cv-qualifiers are ignored.
1779 if (Result->isFunctionType()) {
1780 diagnoseAndRemoveTypeQualifiers(
1781 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1782 S.getLangOpts().CPlusPlus
1783 ? diag::warn_typecheck_function_qualifiers_ignored
1784 : diag::warn_typecheck_function_qualifiers_unspecified);
1785 // No diagnostic for 'restrict' or '_Atomic' applied to a
1786 // function type; we'll diagnose those later, in BuildQualifiedType.
1787 }
1788
1789 // C++11 [dcl.ref]p1:
1790 // Cv-qualified references are ill-formed except when the
1791 // cv-qualifiers are introduced through the use of a typedef-name
1792 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1793 //
1794 // There don't appear to be any other contexts in which a cv-qualified
1795 // reference type could be formed, so the 'ill-formed' clause here appears
1796 // to never happen.
1797 if (TypeQuals && Result->isReferenceType()) {
1798 diagnoseAndRemoveTypeQualifiers(
1799 S, DS, TypeQuals, Result,
1800 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1801 diag::warn_typecheck_reference_qualifiers);
1802 }
1803
1804 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1805 // than once in the same specifier-list or qualifier-list, either directly
1806 // or via one or more typedefs."
1807 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1808 && TypeQuals & Result.getCVRQualifiers()) {
1809 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1810 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1811 << "const";
1812 }
1813
1814 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1815 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1816 << "volatile";
1817 }
1818
1819 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1820 // produce a warning in this case.
1821 }
1822
1823 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1824
1825 // If adding qualifiers fails, just use the unqualified type.
1826 if (Qualified.isNull())
1827 declarator.setInvalidType(true);
1828 else
1829 Result = Qualified;
1830 }
1831
1832 assert(!Result.isNull() && "This function should not return a null type")((!Result.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1832, __PRETTY_FUNCTION__))
;
1833 return Result;
1834}
1835
1836static std::string getPrintableNameForEntity(DeclarationName Entity) {
1837 if (Entity)
1838 return Entity.getAsString();
1839
1840 return "type name";
1841}
1842
1843QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1844 Qualifiers Qs, const DeclSpec *DS) {
1845 if (T.isNull())
1846 return QualType();
1847
1848 // Ignore any attempt to form a cv-qualified reference.
1849 if (T->isReferenceType()) {
1850 Qs.removeConst();
1851 Qs.removeVolatile();
1852 }
1853
1854 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1855 // object or incomplete types shall not be restrict-qualified."
1856 if (Qs.hasRestrict()) {
1857 unsigned DiagID = 0;
1858 QualType ProblemTy;
1859
1860 if (T->isAnyPointerType() || T->isReferenceType() ||
1861 T->isMemberPointerType()) {
1862 QualType EltTy;
1863 if (T->isObjCObjectPointerType())
1864 EltTy = T;
1865 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1866 EltTy = PTy->getPointeeType();
1867 else
1868 EltTy = T->getPointeeType();
1869
1870 // If we have a pointer or reference, the pointee must have an object
1871 // incomplete type.
1872 if (!EltTy->isIncompleteOrObjectType()) {
1873 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1874 ProblemTy = EltTy;
1875 }
1876 } else if (!T->isDependentType()) {
1877 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1878 ProblemTy = T;
1879 }
1880
1881 if (DiagID) {
1882 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1883 Qs.removeRestrict();
1884 }
1885 }
1886
1887 return Context.getQualifiedType(T, Qs);
1888}
1889
1890QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1891 unsigned CVRAU, const DeclSpec *DS) {
1892 if (T.isNull())
1893 return QualType();
1894
1895 // Ignore any attempt to form a cv-qualified reference.
1896 if (T->isReferenceType())
1897 CVRAU &=
1898 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1899
1900 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1901 // TQ_unaligned;
1902 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1903
1904 // C11 6.7.3/5:
1905 // If the same qualifier appears more than once in the same
1906 // specifier-qualifier-list, either directly or via one or more typedefs,
1907 // the behavior is the same as if it appeared only once.
1908 //
1909 // It's not specified what happens when the _Atomic qualifier is applied to
1910 // a type specified with the _Atomic specifier, but we assume that this
1911 // should be treated as if the _Atomic qualifier appeared multiple times.
1912 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1913 // C11 6.7.3/5:
1914 // If other qualifiers appear along with the _Atomic qualifier in a
1915 // specifier-qualifier-list, the resulting type is the so-qualified
1916 // atomic type.
1917 //
1918 // Don't need to worry about array types here, since _Atomic can't be
1919 // applied to such types.
1920 SplitQualType Split = T.getSplitUnqualifiedType();
1921 T = BuildAtomicType(QualType(Split.Ty, 0),
1922 DS ? DS->getAtomicSpecLoc() : Loc);
1923 if (T.isNull())
1924 return T;
1925 Split.Quals.addCVRQualifiers(CVR);
1926 return BuildQualifiedType(T, Loc, Split.Quals);
1927 }
1928
1929 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1930 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1931 return BuildQualifiedType(T, Loc, Q, DS);
1932}
1933
1934/// Build a paren type including \p T.
1935QualType Sema::BuildParenType(QualType T) {
1936 return Context.getParenType(T);
1937}
1938
1939/// Given that we're building a pointer or reference to the given
1940static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1941 SourceLocation loc,
1942 bool isReference) {
1943 // Bail out if retention is unrequired or already specified.
1944 if (!type->isObjCLifetimeType() ||
1945 type.getObjCLifetime() != Qualifiers::OCL_None)
1946 return type;
1947
1948 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1949
1950 // If the object type is const-qualified, we can safely use
1951 // __unsafe_unretained. This is safe (because there are no read
1952 // barriers), and it'll be safe to coerce anything but __weak* to
1953 // the resulting type.
1954 if (type.isConstQualified()) {
1955 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1956
1957 // Otherwise, check whether the static type does not require
1958 // retaining. This currently only triggers for Class (possibly
1959 // protocol-qualifed, and arrays thereof).
1960 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1961 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1962
1963 // If we are in an unevaluated context, like sizeof, skip adding a
1964 // qualification.
1965 } else if (S.isUnevaluatedContext()) {
1966 return type;
1967
1968 // If that failed, give an error and recover using __strong. __strong
1969 // is the option most likely to prevent spurious second-order diagnostics,
1970 // like when binding a reference to a field.
1971 } else {
1972 // These types can show up in private ivars in system headers, so
1973 // we need this to not be an error in those cases. Instead we
1974 // want to delay.
1975 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1976 S.DelayedDiagnostics.add(
1977 sema::DelayedDiagnostic::makeForbiddenType(loc,
1978 diag::err_arc_indirect_no_ownership, type, isReference));
1979 } else {
1980 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1981 }
1982 implicitLifetime = Qualifiers::OCL_Strong;
1983 }
1984 assert(implicitLifetime && "didn't infer any lifetime!")((implicitLifetime && "didn't infer any lifetime!") ?
static_cast<void> (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 1984, __PRETTY_FUNCTION__))
;
1985
1986 Qualifiers qs;
1987 qs.addObjCLifetime(implicitLifetime);
1988 return S.Context.getQualifiedType(type, qs);
1989}
1990
1991static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1992 std::string Quals = FnTy->getMethodQuals().getAsString();
1993
1994 switch (FnTy->getRefQualifier()) {
1995 case RQ_None:
1996 break;
1997
1998 case RQ_LValue:
1999 if (!Quals.empty())
2000 Quals += ' ';
2001 Quals += '&';
2002 break;
2003
2004 case RQ_RValue:
2005 if (!Quals.empty())
2006 Quals += ' ';
2007 Quals += "&&";
2008 break;
2009 }
2010
2011 return Quals;
2012}
2013
2014namespace {
2015/// Kinds of declarator that cannot contain a qualified function type.
2016///
2017/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2018/// a function type with a cv-qualifier or a ref-qualifier can only appear
2019/// at the topmost level of a type.
2020///
2021/// Parens and member pointers are permitted. We don't diagnose array and
2022/// function declarators, because they don't allow function types at all.
2023///
2024/// The values of this enum are used in diagnostics.
2025enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2026} // end anonymous namespace
2027
2028/// Check whether the type T is a qualified function type, and if it is,
2029/// diagnose that it cannot be contained within the given kind of declarator.
2030static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2031 QualifiedFunctionKind QFK) {
2032 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2033 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2034 if (!FPT ||
2035 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2036 return false;
2037
2038 S.Diag(Loc, diag::err_compound_qualified_function_type)
2039 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2040 << getFunctionQualifiersAsString(FPT);
2041 return true;
2042}
2043
2044bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2045 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2046 if (!FPT ||
2047 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2048 return false;
2049
2050 Diag(Loc, diag::err_qualified_function_typeid)
2051 << T << getFunctionQualifiersAsString(FPT);
2052 return true;
2053}
2054
2055// Helper to deduce addr space of a pointee type in OpenCL mode.
2056static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2057 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2058 !PointeeType->isSamplerT() &&
2059 !PointeeType.hasAddressSpace())
2060 PointeeType = S.getASTContext().getAddrSpaceQualType(
2061 PointeeType,
2062 S.getLangOpts().OpenCLCPlusPlus || S.getLangOpts().OpenCLVersion == 200
2063 ? LangAS::opencl_generic
2064 : LangAS::opencl_private);
2065 return PointeeType;
2066}
2067
2068/// Build a pointer type.
2069///
2070/// \param T The type to which we'll be building a pointer.
2071///
2072/// \param Loc The location of the entity whose type involves this
2073/// pointer type or, if there is no such entity, the location of the
2074/// type that will have pointer type.
2075///
2076/// \param Entity The name of the entity that involves the pointer
2077/// type, if known.
2078///
2079/// \returns A suitable pointer type, if there are no
2080/// errors. Otherwise, returns a NULL type.
2081QualType Sema::BuildPointerType(QualType T,
2082 SourceLocation Loc, DeclarationName Entity) {
2083 if (T->isReferenceType()) {
2084 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2085 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2086 << getPrintableNameForEntity(Entity) << T;
2087 return QualType();
2088 }
2089
2090 if (T->isFunctionType() && getLangOpts().OpenCL) {
2091 Diag(Loc, diag::err_opencl_function_pointer);
2092 return QualType();
2093 }
2094
2095 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2096 return QualType();
2097
2098 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((!T->isObjCObjectType() && "Should build ObjCObjectPointerType"
) ? static_cast<void> (0) : __assert_fail ("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2098, __PRETTY_FUNCTION__))
;
2099
2100 // In ARC, it is forbidden to build pointers to unqualified pointers.
2101 if (getLangOpts().ObjCAutoRefCount)
2102 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2103
2104 if (getLangOpts().OpenCL)
2105 T = deduceOpenCLPointeeAddrSpace(*this, T);
2106
2107 // Build the pointer type.
2108 return Context.getPointerType(T);
2109}
2110
2111/// Build a reference type.
2112///
2113/// \param T The type to which we'll be building a reference.
2114///
2115/// \param Loc The location of the entity whose type involves this
2116/// reference type or, if there is no such entity, the location of the
2117/// type that will have reference type.
2118///
2119/// \param Entity The name of the entity that involves the reference
2120/// type, if known.
2121///
2122/// \returns A suitable reference type, if there are no
2123/// errors. Otherwise, returns a NULL type.
2124QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2125 SourceLocation Loc,
2126 DeclarationName Entity) {
2127 assert(Context.getCanonicalType(T) != Context.OverloadTy &&((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2128, __PRETTY_FUNCTION__))
2128 "Unresolved overloaded function type")((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2128, __PRETTY_FUNCTION__))
;
2129
2130 // C++0x [dcl.ref]p6:
2131 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2132 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2133 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2134 // the type "lvalue reference to T", while an attempt to create the type
2135 // "rvalue reference to cv TR" creates the type TR.
2136 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2137
2138 // C++ [dcl.ref]p4: There shall be no references to references.
2139 //
2140 // According to C++ DR 106, references to references are only
2141 // diagnosed when they are written directly (e.g., "int & &"),
2142 // but not when they happen via a typedef:
2143 //
2144 // typedef int& intref;
2145 // typedef intref& intref2;
2146 //
2147 // Parser::ParseDeclaratorInternal diagnoses the case where
2148 // references are written directly; here, we handle the
2149 // collapsing of references-to-references as described in C++0x.
2150 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2151
2152 // C++ [dcl.ref]p1:
2153 // A declarator that specifies the type "reference to cv void"
2154 // is ill-formed.
2155 if (T->isVoidType()) {
2156 Diag(Loc, diag::err_reference_to_void);
2157 return QualType();
2158 }
2159
2160 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2161 return QualType();
2162
2163 // In ARC, it is forbidden to build references to unqualified pointers.
2164 if (getLangOpts().ObjCAutoRefCount)
2165 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2166
2167 if (getLangOpts().OpenCL)
2168 T = deduceOpenCLPointeeAddrSpace(*this, T);
2169
2170 // Handle restrict on references.
2171 if (LValueRef)
2172 return Context.getLValueReferenceType(T, SpelledAsLValue);
2173 return Context.getRValueReferenceType(T);
2174}
2175
2176/// Build a Read-only Pipe type.
2177///
2178/// \param T The type to which we'll be building a Pipe.
2179///
2180/// \param Loc We do not use it for now.
2181///
2182/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2183/// NULL type.
2184QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2185 return Context.getReadPipeType(T);
2186}
2187
2188/// Build a Write-only Pipe type.
2189///
2190/// \param T The type to which we'll be building a Pipe.
2191///
2192/// \param Loc We do not use it for now.
2193///
2194/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2195/// NULL type.
2196QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2197 return Context.getWritePipeType(T);
2198}
2199
2200/// Build a extended int type.
2201///
2202/// \param IsUnsigned Boolean representing the signedness of the type.
2203///
2204/// \param BitWidth Size of this int type in bits, or an expression representing
2205/// that.
2206///
2207/// \param Loc Location of the keyword.
2208QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth,
2209 SourceLocation Loc) {
2210 if (BitWidth->isInstantiationDependent())
2211 return Context.getDependentExtIntType(IsUnsigned, BitWidth);
2212
2213 llvm::APSInt Bits(32);
2214 ExprResult ICE =
2215 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2216
2217 if (ICE.isInvalid())
2218 return QualType();
2219
2220 int64_t NumBits = Bits.getSExtValue();
2221 if (!IsUnsigned && NumBits < 2) {
2222 Diag(Loc, diag::err_ext_int_bad_size) << 0;
2223 return QualType();
2224 }
2225
2226 if (IsUnsigned && NumBits < 1) {
2227 Diag(Loc, diag::err_ext_int_bad_size) << 1;
2228 return QualType();
2229 }
2230
2231 if (NumBits > llvm::IntegerType::MAX_INT_BITS) {
2232 Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned
2233 << llvm::IntegerType::MAX_INT_BITS;
2234 return QualType();
2235 }
2236
2237 return Context.getExtIntType(IsUnsigned, NumBits);
2238}
2239
2240/// Check whether the specified array bound can be evaluated using the relevant
2241/// language rules. If so, returns the possibly-converted expression and sets
2242/// SizeVal to the size. If not, but the expression might be a VLA bound,
2243/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2244/// ExprError().
2245static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2246 llvm::APSInt &SizeVal, unsigned VLADiag,
2247 bool VLAIsError) {
2248 if (S.getLangOpts().CPlusPlus14 &&
2249 (VLAIsError ||
2250 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2251 // C++14 [dcl.array]p1:
2252 // The constant-expression shall be a converted constant expression of
2253 // type std::size_t.
2254 //
2255 // Don't apply this rule if we might be forming a VLA: in that case, we
2256 // allow non-constant expressions and constant-folding. We only need to use
2257 // the converted constant expression rules (to properly convert the source)
2258 // when the source expression is of class type.
2259 return S.CheckConvertedConstantExpression(
2260 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2261 }
2262
2263 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2264 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2265 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2266 public:
2267 unsigned VLADiag;
2268 bool VLAIsError;
2269 bool IsVLA = false;
2270
2271 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2272 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2273
2274 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2275 QualType T) override {
2276 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2277 }
2278
2279 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2280 SourceLocation Loc) override {
2281 IsVLA = !VLAIsError;
2282 return S.Diag(Loc, VLADiag);
2283 }
2284
2285 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2286 SourceLocation Loc) override {
2287 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2288 }
2289 } Diagnoser(VLADiag, VLAIsError);
2290
2291 ExprResult R =
2292 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2293 if (Diagnoser.IsVLA)
2294 return ExprResult();
2295 return R;
2296}
2297
2298/// Build an array type.
2299///
2300/// \param T The type of each element in the array.
2301///
2302/// \param ASM C99 array size modifier (e.g., '*', 'static').
2303///
2304/// \param ArraySize Expression describing the size of the array.
2305///
2306/// \param Brackets The range from the opening '[' to the closing ']'.
2307///
2308/// \param Entity The name of the entity that involves the array
2309/// type, if known.
2310///
2311/// \returns A suitable array type, if there are no errors. Otherwise,
2312/// returns a NULL type.
2313QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2314 Expr *ArraySize, unsigned Quals,
2315 SourceRange Brackets, DeclarationName Entity) {
2316
2317 SourceLocation Loc = Brackets.getBegin();
2318 if (getLangOpts().CPlusPlus) {
2319 // C++ [dcl.array]p1:
2320 // T is called the array element type; this type shall not be a reference
2321 // type, the (possibly cv-qualified) type void, a function type or an
2322 // abstract class type.
2323 //
2324 // C++ [dcl.array]p3:
2325 // When several "array of" specifications are adjacent, [...] only the
2326 // first of the constant expressions that specify the bounds of the arrays
2327 // may be omitted.
2328 //
2329 // Note: function types are handled in the common path with C.
2330 if (T->isReferenceType()) {
2331 Diag(Loc, diag::err_illegal_decl_array_of_references)
2332 << getPrintableNameForEntity(Entity) << T;
2333 return QualType();
2334 }
2335
2336 if (T->isVoidType() || T->isIncompleteArrayType()) {
2337 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2338 return QualType();
2339 }
2340
2341 if (RequireNonAbstractType(Brackets.getBegin(), T,
2342 diag::err_array_of_abstract_type))
2343 return QualType();
2344
2345 // Mentioning a member pointer type for an array type causes us to lock in
2346 // an inheritance model, even if it's inside an unused typedef.
2347 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2348 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2349 if (!MPTy->getClass()->isDependentType())
2350 (void)isCompleteType(Loc, T);
2351
2352 } else {
2353 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2354 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2355 if (RequireCompleteSizedType(Loc, T,
2356 diag::err_array_incomplete_or_sizeless_type))
2357 return QualType();
2358 }
2359
2360 if (T->isSizelessType()) {
2361 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2362 return QualType();
2363 }
2364
2365 if (T->isFunctionType()) {
2366 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2367 << getPrintableNameForEntity(Entity) << T;
2368 return QualType();
2369 }
2370
2371 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2372 // If the element type is a struct or union that contains a variadic
2373 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2374 if (EltTy->getDecl()->hasFlexibleArrayMember())
2375 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2376 } else if (T->isObjCObjectType()) {
2377 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2378 return QualType();
2379 }
2380
2381 // Do placeholder conversions on the array size expression.
2382 if (ArraySize && ArraySize->hasPlaceholderType()) {
2383 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2384 if (Result.isInvalid()) return QualType();
2385 ArraySize = Result.get();
2386 }
2387
2388 // Do lvalue-to-rvalue conversions on the array size expression.
2389 if (ArraySize && !ArraySize->isRValue()) {
2390 ExprResult Result = DefaultLvalueConversion(ArraySize);
2391 if (Result.isInvalid())
2392 return QualType();
2393
2394 ArraySize = Result.get();
2395 }
2396
2397 // C99 6.7.5.2p1: The size expression shall have integer type.
2398 // C++11 allows contextual conversions to such types.
2399 if (!getLangOpts().CPlusPlus11 &&
2400 ArraySize && !ArraySize->isTypeDependent() &&
2401 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2402 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2403 << ArraySize->getType() << ArraySize->getSourceRange();
2404 return QualType();
2405 }
2406
2407 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2408 unsigned VLADiag;
2409 bool VLAIsError;
2410 if (getLangOpts().OpenCL) {
2411 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2412 VLADiag = diag::err_opencl_vla;
2413 VLAIsError = true;
2414 } else if (getLangOpts().C99) {
2415 VLADiag = diag::warn_vla_used;
2416 VLAIsError = false;
2417 } else if (isSFINAEContext()) {
2418 VLADiag = diag::err_vla_in_sfinae;
2419 VLAIsError = true;
2420 } else {
2421 VLADiag = diag::ext_vla;
2422 VLAIsError = false;
2423 }
2424
2425 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2426 if (!ArraySize) {
2427 if (ASM == ArrayType::Star) {
2428 Diag(Loc, VLADiag);
2429 if (VLAIsError)
2430 return QualType();
2431
2432 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2433 } else {
2434 T = Context.getIncompleteArrayType(T, ASM, Quals);
2435 }
2436 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2437 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2438 } else {
2439 ExprResult R =
2440 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2441 if (R.isInvalid())
2442 return QualType();
2443
2444 if (!R.isUsable()) {
2445 // C99: an array with a non-ICE size is a VLA. We accept any expression
2446 // that we can fold to a non-zero positive value as a non-VLA as an
2447 // extension.
2448 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2449 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2450 !T->isConstantSizeType()) {
2451 // C99: an array with an element type that has a non-constant-size is a
2452 // VLA.
2453 // FIXME: Add a note to explain why this isn't a VLA.
2454 Diag(Loc, VLADiag);
2455 if (VLAIsError)
2456 return QualType();
2457 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2458 } else {
2459 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2460 // have a value greater than zero.
2461 // In C++, this follows from narrowing conversions being disallowed.
2462 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2463 if (Entity)
2464 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2465 << getPrintableNameForEntity(Entity)
2466 << ArraySize->getSourceRange();
2467 else
2468 Diag(ArraySize->getBeginLoc(),
2469 diag::err_typecheck_negative_array_size)
2470 << ArraySize->getSourceRange();
2471 return QualType();
2472 }
2473 if (ConstVal == 0) {
2474 // GCC accepts zero sized static arrays. We allow them when
2475 // we're not in a SFINAE context.
2476 Diag(ArraySize->getBeginLoc(),
2477 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2478 : diag::ext_typecheck_zero_array_size)
2479 << ArraySize->getSourceRange();
2480 }
2481
2482 // Is the array too large?
2483 unsigned ActiveSizeBits =
2484 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2485 !T->isIncompleteType() && !T->isUndeducedType())
2486 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2487 : ConstVal.getActiveBits();
2488 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2489 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2490 << ConstVal.toString(10) << ArraySize->getSourceRange();
2491 return QualType();
2492 }
2493
2494 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2495 }
2496 }
2497
2498 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2499 // CUDA device code and some other targets don't support VLAs.
2500 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2501 ? diag::err_cuda_vla
2502 : diag::err_vla_unsupported)
2503 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2504 ? CurrentCUDATarget()
2505 : CFT_InvalidTarget);
2506 }
2507
2508 // If this is not C99, diagnose array size modifiers on non-VLAs.
2509 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2510 (ASM != ArrayType::Normal || Quals != 0)) {
2511 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2512 : diag::ext_c99_array_usage)
2513 << ASM;
2514 }
2515
2516 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2517 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2518 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2519 if (getLangOpts().OpenCL) {
2520 const QualType ArrType = Context.getBaseElementType(T);
2521 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2522 ArrType->isSamplerT() || ArrType->isImageType()) {
2523 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2524 return QualType();
2525 }
2526 }
2527
2528 return T;
2529}
2530
2531QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2532 SourceLocation AttrLoc) {
2533 // The base type must be integer (not Boolean or enumeration) or float, and
2534 // can't already be a vector.
2535 if ((!CurType->isDependentType() &&
2536 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2537 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2538 CurType->isArrayType()) {
2539 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2540 return QualType();
2541 }
2542
2543 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2544 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2545 VectorType::GenericVector);
2546
2547 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2548 if (!VecSize) {
2549 Diag(AttrLoc, diag::err_attribute_argument_type)
2550 << "vector_size" << AANT_ArgumentIntegerConstant
2551 << SizeExpr->getSourceRange();
2552 return QualType();
2553 }
2554
2555 if (CurType->isDependentType())
2556 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2557 VectorType::GenericVector);
2558
2559 // vecSize is specified in bytes - convert to bits.
2560 if (!VecSize->isIntN(61)) {
2561 // Bit size will overflow uint64.
2562 Diag(AttrLoc, diag::err_attribute_size_too_large)
2563 << SizeExpr->getSourceRange() << "vector";
2564 return QualType();
2565 }
2566 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2567 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2568
2569 if (VectorSizeBits == 0) {
2570 Diag(AttrLoc, diag::err_attribute_zero_size)
2571 << SizeExpr->getSourceRange() << "vector";
2572 return QualType();
2573 }
2574
2575 if (VectorSizeBits % TypeSize) {
2576 Diag(AttrLoc, diag::err_attribute_invalid_size)
2577 << SizeExpr->getSourceRange();
2578 return QualType();
2579 }
2580
2581 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2582 Diag(AttrLoc, diag::err_attribute_size_too_large)
2583 << SizeExpr->getSourceRange() << "vector";
2584 return QualType();
2585 }
2586
2587 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2588 VectorType::GenericVector);
2589}
2590
2591/// Build an ext-vector type.
2592///
2593/// Run the required checks for the extended vector type.
2594QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2595 SourceLocation AttrLoc) {
2596 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2597 // in conjunction with complex types (pointers, arrays, functions, etc.).
2598 //
2599 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2600 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2601 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2602 // of bool aren't allowed.
2603 if ((!T->isDependentType() && !T->isIntegerType() &&
2604 !T->isRealFloatingType()) ||
2605 T->isBooleanType()) {
2606 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2607 return QualType();
2608 }
2609
2610 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2611 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2612 if (!vecSize) {
2613 Diag(AttrLoc, diag::err_attribute_argument_type)
2614 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2615 << ArraySize->getSourceRange();
2616 return QualType();
2617 }
2618
2619 if (!vecSize->isIntN(32)) {
2620 Diag(AttrLoc, diag::err_attribute_size_too_large)
2621 << ArraySize->getSourceRange() << "vector";
2622 return QualType();
2623 }
2624 // Unlike gcc's vector_size attribute, the size is specified as the
2625 // number of elements, not the number of bytes.
2626 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2627
2628 if (vectorSize == 0) {
2629 Diag(AttrLoc, diag::err_attribute_zero_size)
2630 << ArraySize->getSourceRange() << "vector";
2631 return QualType();
2632 }
2633
2634 return Context.getExtVectorType(T, vectorSize);
2635 }
2636
2637 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2638}
2639
2640QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2641 SourceLocation AttrLoc) {
2642 assert(Context.getLangOpts().MatrixTypes &&((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled"
) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2643, __PRETTY_FUNCTION__))
2643 "Should never build a matrix type when it is disabled")((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled"
) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2643, __PRETTY_FUNCTION__))
;
2644
2645 // Check element type, if it is not dependent.
2646 if (!ElementTy->isDependentType() &&
2647 !MatrixType::isValidElementType(ElementTy)) {
2648 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2649 return QualType();
2650 }
2651
2652 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2653 NumRows->isValueDependent() || NumCols->isValueDependent())
2654 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2655 AttrLoc);
2656
2657 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2658 Optional<llvm::APSInt> ValueColumns =
2659 NumCols->getIntegerConstantExpr(Context);
2660
2661 auto const RowRange = NumRows->getSourceRange();
2662 auto const ColRange = NumCols->getSourceRange();
2663
2664 // Both are row and column expressions are invalid.
2665 if (!ValueRows && !ValueColumns) {
2666 Diag(AttrLoc, diag::err_attribute_argument_type)
2667 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2668 << ColRange;
2669 return QualType();
2670 }
2671
2672 // Only the row expression is invalid.
2673 if (!ValueRows) {
2674 Diag(AttrLoc, diag::err_attribute_argument_type)
2675 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2676 return QualType();
2677 }
2678
2679 // Only the column expression is invalid.
2680 if (!ValueColumns) {
2681 Diag(AttrLoc, diag::err_attribute_argument_type)
2682 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2683 return QualType();
2684 }
2685
2686 // Check the matrix dimensions.
2687 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2688 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2689 if (MatrixRows == 0 && MatrixColumns == 0) {
2690 Diag(AttrLoc, diag::err_attribute_zero_size)
2691 << "matrix" << RowRange << ColRange;
2692 return QualType();
2693 }
2694 if (MatrixRows == 0) {
2695 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2696 return QualType();
2697 }
2698 if (MatrixColumns == 0) {
2699 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2700 return QualType();
2701 }
2702 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2703 Diag(AttrLoc, diag::err_attribute_size_too_large)
2704 << RowRange << "matrix row";
2705 return QualType();
2706 }
2707 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2708 Diag(AttrLoc, diag::err_attribute_size_too_large)
2709 << ColRange << "matrix column";
2710 return QualType();
2711 }
2712 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2713}
2714
2715bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2716 if (T->isArrayType() || T->isFunctionType()) {
2717 Diag(Loc, diag::err_func_returning_array_function)
2718 << T->isFunctionType() << T;
2719 return true;
2720 }
2721
2722 // Functions cannot return half FP.
2723 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2724 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2725 FixItHint::CreateInsertion(Loc, "*");
2726 return true;
2727 }
2728
2729 // Methods cannot return interface types. All ObjC objects are
2730 // passed by reference.
2731 if (T->isObjCObjectType()) {
2732 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2733 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2734 return true;
2735 }
2736
2737 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2738 T.hasNonTrivialToPrimitiveCopyCUnion())
2739 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2740 NTCUK_Destruct|NTCUK_Copy);
2741
2742 // C++2a [dcl.fct]p12:
2743 // A volatile-qualified return type is deprecated
2744 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2745 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2746
2747 return false;
2748}
2749
2750/// Check the extended parameter information. Most of the necessary
2751/// checking should occur when applying the parameter attribute; the
2752/// only other checks required are positional restrictions.
2753static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2754 const FunctionProtoType::ExtProtoInfo &EPI,
2755 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2756 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? static_cast<void> (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2756, __PRETTY_FUNCTION__))
;
2757
2758 bool hasCheckedSwiftCall = false;
2759 auto checkForSwiftCC = [&](unsigned paramIndex) {
2760 // Only do this once.
2761 if (hasCheckedSwiftCall) return;
2762 hasCheckedSwiftCall = true;
2763 if (EPI.ExtInfo.getCC() == CC_Swift) return;
2764 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2765 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2766 };
2767
2768 for (size_t paramIndex = 0, numParams = paramTypes.size();
2769 paramIndex != numParams; ++paramIndex) {
2770 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2771 // Nothing interesting to check for orindary-ABI parameters.
2772 case ParameterABI::Ordinary:
2773 continue;
2774
2775 // swift_indirect_result parameters must be a prefix of the function
2776 // arguments.
2777 case ParameterABI::SwiftIndirectResult:
2778 checkForSwiftCC(paramIndex);
2779 if (paramIndex != 0 &&
2780 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2781 != ParameterABI::SwiftIndirectResult) {
2782 S.Diag(getParamLoc(paramIndex),
2783 diag::err_swift_indirect_result_not_first);
2784 }
2785 continue;
2786
2787 case ParameterABI::SwiftContext:
2788 checkForSwiftCC(paramIndex);
2789 continue;
2790
2791 // swift_error parameters must be preceded by a swift_context parameter.
2792 case ParameterABI::SwiftErrorResult:
2793 checkForSwiftCC(paramIndex);
2794 if (paramIndex == 0 ||
2795 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2796 ParameterABI::SwiftContext) {
2797 S.Diag(getParamLoc(paramIndex),
2798 diag::err_swift_error_result_not_after_swift_context);
2799 }
2800 continue;
2801 }
2802 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 2802)
;
2803 }
2804}
2805
2806QualType Sema::BuildFunctionType(QualType T,
2807 MutableArrayRef<QualType> ParamTypes,
2808 SourceLocation Loc, DeclarationName Entity,
2809 const FunctionProtoType::ExtProtoInfo &EPI) {
2810 bool Invalid = false;
2811
2812 Invalid |= CheckFunctionReturnType(T, Loc);
2813
2814 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2815 // FIXME: Loc is too inprecise here, should use proper locations for args.
2816 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2817 if (ParamType->isVoidType()) {
2818 Diag(Loc, diag::err_param_with_void_type);
2819 Invalid = true;
2820 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2821 // Disallow half FP arguments.
2822 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2823 FixItHint::CreateInsertion(Loc, "*");
2824 Invalid = true;
2825 }
2826
2827 // C++2a [dcl.fct]p4:
2828 // A parameter with volatile-qualified type is deprecated
2829 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2830 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2831
2832 ParamTypes[Idx] = ParamType;
2833 }
2834
2835 if (EPI.ExtParameterInfos) {
2836 checkExtParameterInfos(*this, ParamTypes, EPI,
2837 [=](unsigned i) { return Loc; });
2838 }
2839
2840 if (EPI.ExtInfo.getProducesResult()) {
2841 // This is just a warning, so we can't fail to build if we see it.
2842 checkNSReturnsRetainedReturnType(Loc, T);
2843 }
2844
2845 if (Invalid)
2846 return QualType();
2847
2848 return Context.getFunctionType(T, ParamTypes, EPI);
2849}
2850
2851/// Build a member pointer type \c T Class::*.
2852///
2853/// \param T the type to which the member pointer refers.
2854/// \param Class the class type into which the member pointer points.
2855/// \param Loc the location where this type begins
2856/// \param Entity the name of the entity that will have this member pointer type
2857///
2858/// \returns a member pointer type, if successful, or a NULL type if there was
2859/// an error.
2860QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2861 SourceLocation Loc,
2862 DeclarationName Entity) {
2863 // Verify that we're not building a pointer to pointer to function with
2864 // exception specification.
2865 if (CheckDistantExceptionSpec(T)) {
2866 Diag(Loc, diag::err_distant_exception_spec);
2867 return QualType();
2868 }
2869
2870 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2871 // with reference type, or "cv void."
2872 if (T->isReferenceType()) {
2873 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2874 << getPrintableNameForEntity(Entity) << T;
2875 return QualType();
2876 }
2877
2878 if (T->isVoidType()) {
2879 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2880 << getPrintableNameForEntity(Entity);
2881 return QualType();
2882 }
2883
2884 if (!Class->isDependentType() && !Class->isRecordType()) {
2885 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2886 return QualType();
2887 }
2888
2889 // Adjust the default free function calling convention to the default method
2890 // calling convention.
2891 bool IsCtorOrDtor =
2892 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2893 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2894 if (T->isFunctionType())
2895 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2896
2897 return Context.getMemberPointerType(T, Class.getTypePtr());
2898}
2899
2900/// Build a block pointer type.
2901///
2902/// \param T The type to which we'll be building a block pointer.
2903///
2904/// \param Loc The source location, used for diagnostics.
2905///
2906/// \param Entity The name of the entity that involves the block pointer
2907/// type, if known.
2908///
2909/// \returns A suitable block pointer type, if there are no
2910/// errors. Otherwise, returns a NULL type.
2911QualType Sema::BuildBlockPointerType(QualType T,
2912 SourceLocation Loc,
2913 DeclarationName Entity) {
2914 if (!T->isFunctionType()) {
2915 Diag(Loc, diag::err_nonfunction_block_type);
2916 return QualType();
2917 }
2918
2919 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2920 return QualType();
2921
2922 if (getLangOpts().OpenCL)
2923 T = deduceOpenCLPointeeAddrSpace(*this, T);
2924
2925 return Context.getBlockPointerType(T);
2926}
2927
2928QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2929 QualType QT = Ty.get();
2930 if (QT.isNull()) {
2931 if (TInfo) *TInfo = nullptr;
2932 return QualType();
2933 }
2934
2935 TypeSourceInfo *DI = nullptr;
2936 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2937 QT = LIT->getType();
2938 DI = LIT->getTypeSourceInfo();
2939 }
2940
2941 if (TInfo) *TInfo = DI;
2942 return QT;
2943}
2944
2945static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2946 Qualifiers::ObjCLifetime ownership,
2947 unsigned chunkIndex);
2948
2949/// Given that this is the declaration of a parameter under ARC,
2950/// attempt to infer attributes and such for pointer-to-whatever
2951/// types.
2952static void inferARCWriteback(TypeProcessingState &state,
2953 QualType &declSpecType) {
2954 Sema &S = state.getSema();
2955 Declarator &declarator = state.getDeclarator();
2956
2957 // TODO: should we care about decl qualifiers?
2958
2959 // Check whether the declarator has the expected form. We walk
2960 // from the inside out in order to make the block logic work.
2961 unsigned outermostPointerIndex = 0;
2962 bool isBlockPointer = false;
2963 unsigned numPointers = 0;
2964 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2965 unsigned chunkIndex = i;
2966 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2967 switch (chunk.Kind) {
2968 case DeclaratorChunk::Paren:
2969 // Ignore parens.
2970 break;
2971
2972 case DeclaratorChunk::Reference:
2973 case DeclaratorChunk::Pointer:
2974 // Count the number of pointers. Treat references
2975 // interchangeably as pointers; if they're mis-ordered, normal
2976 // type building will discover that.
2977 outermostPointerIndex = chunkIndex;
2978 numPointers++;
2979 break;
2980
2981 case DeclaratorChunk::BlockPointer:
2982 // If we have a pointer to block pointer, that's an acceptable
2983 // indirect reference; anything else is not an application of
2984 // the rules.
2985 if (numPointers != 1) return;
2986 numPointers++;
2987 outermostPointerIndex = chunkIndex;
2988 isBlockPointer = true;
2989
2990 // We don't care about pointer structure in return values here.
2991 goto done;
2992
2993 case DeclaratorChunk::Array: // suppress if written (id[])?
2994 case DeclaratorChunk::Function:
2995 case DeclaratorChunk::MemberPointer:
2996 case DeclaratorChunk::Pipe:
2997 return;
2998 }
2999 }
3000 done:
3001
3002 // If we have *one* pointer, then we want to throw the qualifier on
3003 // the declaration-specifiers, which means that it needs to be a
3004 // retainable object type.
3005 if (numPointers == 1) {
3006 // If it's not a retainable object type, the rule doesn't apply.
3007 if (!declSpecType->isObjCRetainableType()) return;
3008
3009 // If it already has lifetime, don't do anything.
3010 if (declSpecType.getObjCLifetime()) return;
3011
3012 // Otherwise, modify the type in-place.
3013 Qualifiers qs;
3014
3015 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3016 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3017 else
3018 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3019 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3020
3021 // If we have *two* pointers, then we want to throw the qualifier on
3022 // the outermost pointer.
3023 } else if (numPointers == 2) {
3024 // If we don't have a block pointer, we need to check whether the
3025 // declaration-specifiers gave us something that will turn into a
3026 // retainable object pointer after we slap the first pointer on it.
3027 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3028 return;
3029
3030 // Look for an explicit lifetime attribute there.
3031 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3032 if (chunk.Kind != DeclaratorChunk::Pointer &&
3033 chunk.Kind != DeclaratorChunk::BlockPointer)
3034 return;
3035 for (const ParsedAttr &AL : chunk.getAttrs())
3036 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3037 return;
3038
3039 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3040 outermostPointerIndex);
3041
3042 // Any other number of pointers/references does not trigger the rule.
3043 } else return;
3044
3045 // TODO: mark whether we did this inference?
3046}
3047
3048void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3049 SourceLocation FallbackLoc,
3050 SourceLocation ConstQualLoc,
3051 SourceLocation VolatileQualLoc,
3052 SourceLocation RestrictQualLoc,
3053 SourceLocation AtomicQualLoc,
3054 SourceLocation UnalignedQualLoc) {
3055 if (!Quals)
3056 return;
3057
3058 struct Qual {
3059 const char *Name;
3060 unsigned Mask;
3061 SourceLocation Loc;
3062 } const QualKinds[5] = {
3063 { "const", DeclSpec::TQ_const, ConstQualLoc },
3064 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3065 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3066 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3067 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3068 };
3069
3070 SmallString<32> QualStr;
3071 unsigned NumQuals = 0;
3072 SourceLocation Loc;
3073 FixItHint FixIts[5];
3074
3075 // Build a string naming the redundant qualifiers.
3076 for (auto &E : QualKinds) {
3077 if (Quals & E.Mask) {
3078 if (!QualStr.empty()) QualStr += ' ';
3079 QualStr += E.Name;
3080
3081 // If we have a location for the qualifier, offer a fixit.
3082 SourceLocation QualLoc = E.Loc;
3083 if (QualLoc.isValid()) {
3084 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3085 if (Loc.isInvalid() ||
3086 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3087 Loc = QualLoc;
3088 }
3089
3090 ++NumQuals;
3091 }
3092 }
3093
3094 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3095 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3096}
3097
3098// Diagnose pointless type qualifiers on the return type of a function.
3099static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3100 Declarator &D,
3101 unsigned FunctionChunkIndex) {
3102 const DeclaratorChunk::FunctionTypeInfo &FTI =
3103 D.getTypeObject(FunctionChunkIndex).Fun;
3104 if (FTI.hasTrailingReturnType()) {
3105 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3106 RetTy.getLocalCVRQualifiers(),
3107 FTI.getTrailingReturnTypeLoc());
3108 return;
3109 }
3110
3111 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3112 End = D.getNumTypeObjects();
3113 OuterChunkIndex != End; ++OuterChunkIndex) {
3114 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3115 switch (OuterChunk.Kind) {
3116 case DeclaratorChunk::Paren:
3117 continue;
3118
3119 case DeclaratorChunk::Pointer: {
3120 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3121 S.diagnoseIgnoredQualifiers(
3122 diag::warn_qual_return_type,
3123 PTI.TypeQuals,
3124 SourceLocation(),
3125 SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
3126 SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
3127 SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
3128 SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
3129 SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
3130 return;
3131 }
3132
3133 case DeclaratorChunk::Function:
3134 case DeclaratorChunk::BlockPointer:
3135 case DeclaratorChunk::Reference:
3136 case DeclaratorChunk::Array:
3137 case DeclaratorChunk::MemberPointer:
3138 case DeclaratorChunk::Pipe:
3139 // FIXME: We can't currently provide an accurate source location and a
3140 // fix-it hint for these.
3141 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3142 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3143 RetTy.getCVRQualifiers() | AtomicQual,
3144 D.getIdentifierLoc());
3145 return;
3146 }
3147
3148 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3148)
;
3149 }
3150
3151 // If the qualifiers come from a conversion function type, don't diagnose
3152 // them -- they're not necessarily redundant, since such a conversion
3153 // operator can be explicitly called as "x.operator const int()".
3154 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3155 return;
3156
3157 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3158 // which are present there.
3159 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3160 D.getDeclSpec().getTypeQualifiers(),
3161 D.getIdentifierLoc(),
3162 D.getDeclSpec().getConstSpecLoc(),
3163 D.getDeclSpec().getVolatileSpecLoc(),
3164 D.getDeclSpec().getRestrictSpecLoc(),
3165 D.getDeclSpec().getAtomicSpecLoc(),
3166 D.getDeclSpec().getUnalignedSpecLoc());
3167}
3168
3169static std::pair<QualType, TypeSourceInfo *>
3170InventTemplateParameter(TypeProcessingState &state, QualType T,
3171 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3172 InventedTemplateParameterInfo &Info) {
3173 Sema &S = state.getSema();
3174 Declarator &D = state.getDeclarator();
3175
3176 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3177 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3178 const bool IsParameterPack = D.hasEllipsis();
3179
3180 // If auto is mentioned in a lambda parameter or abbreviated function
3181 // template context, convert it to a template parameter type.
3182
3183 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3184 // template parameter type. Template parameters are temporarily added
3185 // to the TU until the associated TemplateDecl is created.
3186 TemplateTypeParmDecl *InventedTemplateParam =
3187 TemplateTypeParmDecl::Create(
3188 S.Context, S.Context.getTranslationUnitDecl(),
3189 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3190 /*NameLoc=*/D.getIdentifierLoc(),
3191 TemplateParameterDepth, AutoParameterPosition,
3192 S.InventAbbreviatedTemplateParameterTypeName(
3193 D.getIdentifier(), AutoParameterPosition), false,
3194 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3195 InventedTemplateParam->setImplicit();
3196 Info.TemplateParams.push_back(InventedTemplateParam);
3197
3198 // Attach type constraints to the new parameter.
3199 if (Auto->isConstrained()) {
3200 if (TrailingTSI) {
3201 // The 'auto' appears in a trailing return type we've already built;
3202 // extract its type constraints to attach to the template parameter.
3203 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3204 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3205 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx)
3206 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3207
3208 S.AttachTypeConstraint(AutoLoc.getNestedNameSpecifierLoc(),
3209 AutoLoc.getConceptNameInfo(),
3210 AutoLoc.getNamedConcept(),
3211 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3212 InventedTemplateParam, D.getEllipsisLoc());
3213 } else {
3214 // The 'auto' appears in the decl-specifiers; we've not finished forming
3215 // TypeSourceInfo for it yet.
3216 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3217 TemplateArgumentListInfo TemplateArgsInfo;
3218 if (TemplateId->LAngleLoc.isValid()) {
3219 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3220 TemplateId->NumArgs);
3221 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3222 }
3223 S.AttachTypeConstraint(
3224 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3225 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3226 TemplateId->TemplateNameLoc),
3227 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3228 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3229 InventedTemplateParam, D.getEllipsisLoc());
3230 }
3231 }
3232
3233 // Replace the 'auto' in the function parameter with this invented
3234 // template type parameter.
3235 // FIXME: Retain some type sugar to indicate that this was written
3236 // as 'auto'?
3237 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3238 QualType NewT = state.ReplaceAutoType(T, Replacement);
3239 TypeSourceInfo *NewTSI =
3240 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3241 : nullptr;
3242 return {NewT, NewTSI};
3243}
3244
3245static TypeSourceInfo *
3246GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3247 QualType T, TypeSourceInfo *ReturnTypeInfo);
3248
3249static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3250 TypeSourceInfo *&ReturnTypeInfo) {
3251 Sema &SemaRef = state.getSema();
3252 Declarator &D = state.getDeclarator();
3253 QualType T;
3254 ReturnTypeInfo = nullptr;
3255
3256 // The TagDecl owned by the DeclSpec.
3257 TagDecl *OwnedTagDecl = nullptr;
3258
3259 switch (D.getName().getKind()) {
3260 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3261 case UnqualifiedIdKind::IK_OperatorFunctionId:
3262 case UnqualifiedIdKind::IK_Identifier:
3263 case UnqualifiedIdKind::IK_LiteralOperatorId:
3264 case UnqualifiedIdKind::IK_TemplateId:
3265 T = ConvertDeclSpecToType(state);
3266
3267 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3268 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3269 // Owned declaration is embedded in declarator.
3270 OwnedTagDecl->setEmbeddedInDeclarator(true);
3271 }
3272 break;
3273
3274 case UnqualifiedIdKind::IK_ConstructorName:
3275 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3276 case UnqualifiedIdKind::IK_DestructorName:
3277 // Constructors and destructors don't have return types. Use
3278 // "void" instead.
3279 T = SemaRef.Context.VoidTy;
3280 processTypeAttrs(state, T, TAL_DeclSpec,
3281 D.getMutableDeclSpec().getAttributes());
3282 break;
3283
3284 case UnqualifiedIdKind::IK_DeductionGuideName:
3285 // Deduction guides have a trailing return type and no type in their
3286 // decl-specifier sequence. Use a placeholder return type for now.
3287 T = SemaRef.Context.DependentTy;
3288 break;
3289
3290 case UnqualifiedIdKind::IK_ConversionFunctionId:
3291 // The result type of a conversion function is the type that it
3292 // converts to.
3293 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3294 &ReturnTypeInfo);
3295 break;
3296 }
3297
3298 if (!D.getAttributes().empty())
3299 distributeTypeAttrsFromDeclarator(state, T);
3300
3301 // Find the deduced type in this type. Look in the trailing return type if we
3302 // have one, otherwise in the DeclSpec type.
3303 // FIXME: The standard wording doesn't currently describe this.
3304 DeducedType *Deduced = T->getContainedDeducedType();
3305 bool DeducedIsTrailingReturnType = false;
3306 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3307 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3308 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3309 DeducedIsTrailingReturnType = true;
3310 }
3311
3312 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3313 if (Deduced) {
3314 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3315 int Error = -1;
3316
3317 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3318 // class template argument deduction)?
3319 bool IsCXXAutoType =
3320 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3321 bool IsDeducedReturnType = false;
3322
3323 switch (D.getContext()) {
3324 case DeclaratorContext::LambdaExpr:
3325 // Declared return type of a lambda-declarator is implicit and is always
3326 // 'auto'.
3327 break;
3328 case DeclaratorContext::ObjCParameter:
3329 case DeclaratorContext::ObjCResult:
3330 Error = 0;
3331 break;
3332 case DeclaratorContext::RequiresExpr:
3333 Error = 22;
3334 break;
3335 case DeclaratorContext::Prototype:
3336 case DeclaratorContext::LambdaExprParameter: {
3337 InventedTemplateParameterInfo *Info = nullptr;
3338 if (D.getContext() == DeclaratorContext::Prototype) {
3339 // With concepts we allow 'auto' in function parameters.
3340 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3341 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3342 Error = 0;
3343 break;
3344 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3345 Error = 21;
3346 break;
3347 }
3348
3349 Info = &SemaRef.InventedParameterInfos.back();
3350 } else {
3351 // In C++14, generic lambdas allow 'auto' in their parameters.
3352 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3353 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3354 Error = 16;
3355 break;
3356 }
3357 Info = SemaRef.getCurLambda();
3358 assert(Info && "No LambdaScopeInfo on the stack!")((Info && "No LambdaScopeInfo on the stack!") ? static_cast
<void> (0) : __assert_fail ("Info && \"No LambdaScopeInfo on the stack!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3358, __PRETTY_FUNCTION__))
;
3359 }
3360
3361 // We'll deal with inventing template parameters for 'auto' in trailing
3362 // return types when we pick up the trailing return type when processing
3363 // the function chunk.
3364 if (!DeducedIsTrailingReturnType)
3365 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3366 break;
3367 }
3368 case DeclaratorContext::Member: {
3369 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3370 D.isFunctionDeclarator())
3371 break;
3372 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3373 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3374 Error = 6; // Interface member.
3375 } else {
3376 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3377 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3377)
;
3378 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3379 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3380 case TTK_Class: Error = 5; /* Class member */ break;
3381 case TTK_Interface: Error = 6; /* Interface member */ break;
3382 }
3383 }
3384 if (D.getDeclSpec().isFriendSpecified())
3385 Error = 20; // Friend type
3386 break;
3387 }
3388 case DeclaratorContext::CXXCatch:
3389 case DeclaratorContext::ObjCCatch:
3390 Error = 7; // Exception declaration
3391 break;
3392 case DeclaratorContext::TemplateParam:
3393 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3394 !SemaRef.getLangOpts().CPlusPlus20)
3395 Error = 19; // Template parameter (until C++20)
3396 else if (!SemaRef.getLangOpts().CPlusPlus17)
3397 Error = 8; // Template parameter (until C++17)
3398 break;
3399 case DeclaratorContext::BlockLiteral:
3400 Error = 9; // Block literal
3401 break;
3402 case DeclaratorContext::TemplateArg:
3403 // Within a template argument list, a deduced template specialization
3404 // type will be reinterpreted as a template template argument.
3405 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3406 !D.getNumTypeObjects() &&
3407 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3408 break;
3409 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3410 case DeclaratorContext::TemplateTypeArg:
3411 Error = 10; // Template type argument
3412 break;
3413 case DeclaratorContext::AliasDecl:
3414 case DeclaratorContext::AliasTemplate:
3415 Error = 12; // Type alias
3416 break;
3417 case DeclaratorContext::TrailingReturn:
3418 case DeclaratorContext::TrailingReturnVar:
3419 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3420 Error = 13; // Function return type
3421 IsDeducedReturnType = true;
3422 break;
3423 case DeclaratorContext::ConversionId:
3424 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3425 Error = 14; // conversion-type-id
3426 IsDeducedReturnType = true;
3427 break;
3428 case DeclaratorContext::FunctionalCast:
3429 if (isa<DeducedTemplateSpecializationType>(Deduced))
3430 break;
3431 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3432 case DeclaratorContext::TypeName:
3433 Error = 15; // Generic
3434 break;
3435 case DeclaratorContext::File:
3436 case DeclaratorContext::Block:
3437 case DeclaratorContext::ForInit:
3438 case DeclaratorContext::SelectionInit:
3439 case DeclaratorContext::Condition:
3440 // FIXME: P0091R3 (erroneously) does not permit class template argument
3441 // deduction in conditions, for-init-statements, and other declarations
3442 // that are not simple-declarations.
3443 break;
3444 case DeclaratorContext::CXXNew:
3445 // FIXME: P0091R3 does not permit class template argument deduction here,
3446 // but we follow GCC and allow it anyway.
3447 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3448 Error = 17; // 'new' type
3449 break;
3450 case DeclaratorContext::KNRTypeList:
3451 Error = 18; // K&R function parameter
3452 break;
3453 }
3454
3455 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3456 Error = 11;
3457
3458 // In Objective-C it is an error to use 'auto' on a function declarator
3459 // (and everywhere for '__auto_type').
3460 if (D.isFunctionDeclarator() &&
3461 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3462 Error = 13;
3463
3464 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3465 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3466 AutoRange = D.getName().getSourceRange();
3467
3468 if (Error != -1) {
3469 unsigned Kind;
3470 if (Auto) {
3471 switch (Auto->getKeyword()) {
3472 case AutoTypeKeyword::Auto: Kind = 0; break;
3473 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3474 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3475 }
3476 } else {
3477 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3478, __PRETTY_FUNCTION__))
3478 "unknown auto type")((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3478, __PRETTY_FUNCTION__))
;
3479 Kind = 3;
3480 }
3481
3482 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3483 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3484
3485 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3486 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3487 << QualType(Deduced, 0) << AutoRange;
3488 if (auto *TD = TN.getAsTemplateDecl())
3489 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3490
3491 T = SemaRef.Context.IntTy;
3492 D.setInvalidType(true);
3493 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3494 // If there was a trailing return type, we already got
3495 // warn_cxx98_compat_trailing_return_type in the parser.
3496 SemaRef.Diag(AutoRange.getBegin(),
3497 D.getContext() == DeclaratorContext::LambdaExprParameter
3498 ? diag::warn_cxx11_compat_generic_lambda
3499 : IsDeducedReturnType
3500 ? diag::warn_cxx11_compat_deduced_return_type
3501 : diag::warn_cxx98_compat_auto_type_specifier)
3502 << AutoRange;
3503 }
3504 }
3505
3506 if (SemaRef.getLangOpts().CPlusPlus &&
3507 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3508 // Check the contexts where C++ forbids the declaration of a new class
3509 // or enumeration in a type-specifier-seq.
3510 unsigned DiagID = 0;
3511 switch (D.getContext()) {
3512 case DeclaratorContext::TrailingReturn:
3513 case DeclaratorContext::TrailingReturnVar:
3514 // Class and enumeration definitions are syntactically not allowed in
3515 // trailing return types.
3516 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3516)
;
3517 break;
3518 case DeclaratorContext::File:
3519 case DeclaratorContext::Member:
3520 case DeclaratorContext::Block:
3521 case DeclaratorContext::ForInit:
3522 case DeclaratorContext::SelectionInit:
3523 case DeclaratorContext::BlockLiteral:
3524 case DeclaratorContext::LambdaExpr:
3525 // C++11 [dcl.type]p3:
3526 // A type-specifier-seq shall not define a class or enumeration unless
3527 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3528 // the declaration of a template-declaration.
3529 case DeclaratorContext::AliasDecl:
3530 break;
3531 case DeclaratorContext::AliasTemplate:
3532 DiagID = diag::err_type_defined_in_alias_template;
3533 break;
3534 case DeclaratorContext::TypeName:
3535 case DeclaratorContext::FunctionalCast:
3536 case DeclaratorContext::ConversionId:
3537 case DeclaratorContext::TemplateParam:
3538 case DeclaratorContext::CXXNew:
3539 case DeclaratorContext::CXXCatch:
3540 case DeclaratorContext::ObjCCatch:
3541 case DeclaratorContext::TemplateArg:
3542 case DeclaratorContext::TemplateTypeArg:
3543 DiagID = diag::err_type_defined_in_type_specifier;
3544 break;
3545 case DeclaratorContext::Prototype:
3546 case DeclaratorContext::LambdaExprParameter:
3547 case DeclaratorContext::ObjCParameter:
3548 case DeclaratorContext::ObjCResult:
3549 case DeclaratorContext::KNRTypeList:
3550 case DeclaratorContext::RequiresExpr:
3551 // C++ [dcl.fct]p6:
3552 // Types shall not be defined in return or parameter types.
3553 DiagID = diag::err_type_defined_in_param_type;
3554 break;
3555 case DeclaratorContext::Condition:
3556 // C++ 6.4p2:
3557 // The type-specifier-seq shall not contain typedef and shall not declare
3558 // a new class or enumeration.
3559 DiagID = diag::err_type_defined_in_condition;
3560 break;
3561 }
3562
3563 if (DiagID != 0) {
3564 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3565 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3566 D.setInvalidType(true);
3567 }
3568 }
3569
3570 assert(!T.isNull() && "This function should not return a null type")((!T.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3570, __PRETTY_FUNCTION__))
;
3571 return T;
3572}
3573
3574/// Produce an appropriate diagnostic for an ambiguity between a function
3575/// declarator and a C++ direct-initializer.
3576static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3577 DeclaratorChunk &DeclType, QualType RT) {
3578 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3579 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? static_cast<void> (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3579, __PRETTY_FUNCTION__))
;
3580
3581 // If the return type is void there is no ambiguity.
3582 if (RT->isVoidType())
3583 return;
3584
3585 // An initializer for a non-class type can have at most one argument.
3586 if (!RT->isRecordType() && FTI.NumParams > 1)
3587 return;
3588
3589 // An initializer for a reference must have exactly one argument.
3590 if (RT->isReferenceType() && FTI.NumParams != 1)
3591 return;
3592
3593 // Only warn if this declarator is declaring a function at block scope, and
3594 // doesn't have a storage class (such as 'extern') specified.
3595 if (!D.isFunctionDeclarator() ||
3596 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3597 !S.CurContext->isFunctionOrMethod() ||
3598 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3599 return;
3600
3601 // Inside a condition, a direct initializer is not permitted. We allow one to
3602 // be parsed in order to give better diagnostics in condition parsing.
3603 if (D.getContext() == DeclaratorContext::Condition)
3604 return;
3605
3606 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3607
3608 S.Diag(DeclType.Loc,
3609 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3610 : diag::warn_empty_parens_are_function_decl)
3611 << ParenRange;
3612
3613 // If the declaration looks like:
3614 // T var1,
3615 // f();
3616 // and name lookup finds a function named 'f', then the ',' was
3617 // probably intended to be a ';'.
3618 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3619 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3620 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3621 if (Comma.getFileID() != Name.getFileID() ||
3622 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3623 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3624 Sema::LookupOrdinaryName);
3625 if (S.LookupName(Result, S.getCurScope()))
3626 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3627 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3628 << D.getIdentifier();
3629 Result.suppressDiagnostics();
3630 }
3631 }
3632
3633 if (FTI.NumParams > 0) {
3634 // For a declaration with parameters, eg. "T var(T());", suggest adding
3635 // parens around the first parameter to turn the declaration into a
3636 // variable declaration.
3637 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3638 SourceLocation B = Range.getBegin();
3639 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3640 // FIXME: Maybe we should suggest adding braces instead of parens
3641 // in C++11 for classes that don't have an initializer_list constructor.
3642 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3643 << FixItHint::CreateInsertion(B, "(")
3644 << FixItHint::CreateInsertion(E, ")");
3645 } else {
3646 // For a declaration without parameters, eg. "T var();", suggest replacing
3647 // the parens with an initializer to turn the declaration into a variable
3648 // declaration.
3649 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3650
3651 // Empty parens mean value-initialization, and no parens mean
3652 // default initialization. These are equivalent if the default
3653 // constructor is user-provided or if zero-initialization is a
3654 // no-op.
3655 if (RD && RD->hasDefinition() &&
3656 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3657 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3658 << FixItHint::CreateRemoval(ParenRange);
3659 else {
3660 std::string Init =
3661 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3662 if (Init.empty() && S.LangOpts.CPlusPlus11)
3663 Init = "{}";
3664 if (!Init.empty())
3665 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3666 << FixItHint::CreateReplacement(ParenRange, Init);
3667 }
3668 }
3669}
3670
3671/// Produce an appropriate diagnostic for a declarator with top-level
3672/// parentheses.
3673static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3674 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3675 assert(Paren.Kind == DeclaratorChunk::Paren &&((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3676, __PRETTY_FUNCTION__))
3676 "do not have redundant top-level parentheses")((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3676, __PRETTY_FUNCTION__))
;
3677
3678 // This is a syntactic check; we're not interested in cases that arise
3679 // during template instantiation.
3680 if (S.inTemplateInstantiation())
3681 return;
3682
3683 // Check whether this could be intended to be a construction of a temporary
3684 // object in C++ via a function-style cast.
3685 bool CouldBeTemporaryObject =
3686 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3687 !D.isInvalidType() && D.getIdentifier() &&
3688 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3689 (T->isRecordType() || T->isDependentType()) &&
3690 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3691
3692 bool StartsWithDeclaratorId = true;
3693 for (auto &C : D.type_objects()) {
3694 switch (C.Kind) {
3695 case DeclaratorChunk::Paren:
3696 if (&C == &Paren)
3697 continue;
3698 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3699 case DeclaratorChunk::Pointer:
3700 StartsWithDeclaratorId = false;
3701 continue;
3702
3703 case DeclaratorChunk::Array:
3704 if (!C.Arr.NumElts)
3705 CouldBeTemporaryObject = false;
3706 continue;
3707
3708 case DeclaratorChunk::Reference:
3709 // FIXME: Suppress the warning here if there is no initializer; we're
3710 // going to give an error anyway.
3711 // We assume that something like 'T (&x) = y;' is highly likely to not
3712 // be intended to be a temporary object.
3713 CouldBeTemporaryObject = false;
3714 StartsWithDeclaratorId = false;
3715 continue;
3716
3717 case DeclaratorChunk::Function:
3718 // In a new-type-id, function chunks require parentheses.
3719 if (D.getContext() == DeclaratorContext::CXXNew)
3720 return;
3721 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3722 // redundant-parens warning, but we don't know whether the function
3723 // chunk was syntactically valid as an expression here.
3724 CouldBeTemporaryObject = false;
3725 continue;
3726
3727 case DeclaratorChunk::BlockPointer:
3728 case DeclaratorChunk::MemberPointer:
3729 case DeclaratorChunk::Pipe:
3730 // These cannot appear in expressions.
3731 CouldBeTemporaryObject = false;
3732 StartsWithDeclaratorId = false;
3733 continue;
3734 }
3735 }
3736
3737 // FIXME: If there is an initializer, assume that this is not intended to be
3738 // a construction of a temporary object.
3739
3740 // Check whether the name has already been declared; if not, this is not a
3741 // function-style cast.
3742 if (CouldBeTemporaryObject) {
3743 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3744 Sema::LookupOrdinaryName);
3745 if (!S.LookupName(Result, S.getCurScope()))
3746 CouldBeTemporaryObject = false;
3747 Result.suppressDiagnostics();
3748 }
3749
3750 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3751
3752 if (!CouldBeTemporaryObject) {
3753 // If we have A (::B), the parentheses affect the meaning of the program.
3754 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3755 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3756 // formally unambiguous.
3757 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3758 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3759 NNS = NNS->getPrefix()) {
3760 if (NNS->getKind() == NestedNameSpecifier::Global)
3761 return;
3762 }
3763 }
3764
3765 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3766 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3767 << FixItHint::CreateRemoval(Paren.EndLoc);
3768 return;
3769 }
3770
3771 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3772 << ParenRange << D.getIdentifier();
3773 auto *RD = T->getAsCXXRecordDecl();
3774 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3775 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3776 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3777 << D.getIdentifier();
3778 // FIXME: A cast to void is probably a better suggestion in cases where it's
3779 // valid (when there is no initializer and we're not in a condition).
3780 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3781 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3782 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3783 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3784 << FixItHint::CreateRemoval(Paren.Loc)
3785 << FixItHint::CreateRemoval(Paren.EndLoc);
3786}
3787
3788/// Helper for figuring out the default CC for a function declarator type. If
3789/// this is the outermost chunk, then we can determine the CC from the
3790/// declarator context. If not, then this could be either a member function
3791/// type or normal function type.
3792static CallingConv getCCForDeclaratorChunk(
3793 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3794 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3795 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function
) ? static_cast<void> (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3795, __PRETTY_FUNCTION__))
;
3796
3797 // Check for an explicit CC attribute.
3798 for (const ParsedAttr &AL : AttrList) {
3799 switch (AL.getKind()) {
3800 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
: {
3801 // Ignore attributes that don't validate or can't apply to the
3802 // function type. We'll diagnose the failure to apply them in
3803 // handleFunctionTypeAttr.
3804 CallingConv CC;
3805 if (!S.CheckCallingConvAttr(AL, CC) &&
3806 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3807 return CC;
3808 }
3809 break;
3810 }
3811
3812 default:
3813 break;
3814 }
3815 }
3816
3817 bool IsCXXInstanceMethod = false;
3818
3819 if (S.getLangOpts().CPlusPlus) {
3820 // Look inwards through parentheses to see if this chunk will form a
3821 // member pointer type or if we're the declarator. Any type attributes
3822 // between here and there will override the CC we choose here.
3823 unsigned I = ChunkIndex;
3824 bool FoundNonParen = false;
3825 while (I && !FoundNonParen) {
3826 --I;
3827 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3828 FoundNonParen = true;
3829 }
3830
3831 if (FoundNonParen) {
3832 // If we're not the declarator, we're a regular function type unless we're
3833 // in a member pointer.
3834 IsCXXInstanceMethod =
3835 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3836 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3837 // This can only be a call operator for a lambda, which is an instance
3838 // method.
3839 IsCXXInstanceMethod = true;
3840 } else {
3841 // We're the innermost decl chunk, so must be a function declarator.
3842 assert(D.isFunctionDeclarator())((D.isFunctionDeclarator()) ? static_cast<void> (0) : __assert_fail
("D.isFunctionDeclarator()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3842, __PRETTY_FUNCTION__))
;
3843
3844 // If we're inside a record, we're declaring a method, but it could be
3845 // explicitly or implicitly static.
3846 IsCXXInstanceMethod =
3847 D.isFirstDeclarationOfMember() &&
3848 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3849 !D.isStaticMember();
3850 }
3851 }
3852
3853 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3854 IsCXXInstanceMethod);
3855
3856 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3857 // and AMDGPU targets, hence it cannot be treated as a calling
3858 // convention attribute. This is the simplest place to infer
3859 // calling convention for OpenCL kernels.
3860 if (S.getLangOpts().OpenCL) {
3861 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3862 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3863 CC = CC_OpenCLKernel;
3864 break;
3865 }
3866 }
3867 }
3868
3869 return CC;
3870}
3871
3872namespace {
3873 /// A simple notion of pointer kinds, which matches up with the various
3874 /// pointer declarators.
3875 enum class SimplePointerKind {
3876 Pointer,
3877 BlockPointer,
3878 MemberPointer,
3879 Array,
3880 };
3881} // end anonymous namespace
3882
3883IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3884 switch (nullability) {
3885 case NullabilityKind::NonNull:
3886 if (!Ident__Nonnull)
3887 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3888 return Ident__Nonnull;
3889
3890 case NullabilityKind::Nullable:
3891 if (!Ident__Nullable)
3892 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3893 return Ident__Nullable;
3894
3895 case NullabilityKind::Unspecified:
3896 if (!Ident__Null_unspecified)
3897 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3898 return Ident__Null_unspecified;
3899 }
3900 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 3900)
;
3901}
3902
3903/// Retrieve the identifier "NSError".
3904IdentifierInfo *Sema::getNSErrorIdent() {
3905 if (!Ident_NSError)
3906 Ident_NSError = PP.getIdentifierInfo("NSError");
3907
3908 return Ident_NSError;
3909}
3910
3911/// Check whether there is a nullability attribute of any kind in the given
3912/// attribute list.
3913static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3914 for (const ParsedAttr &AL : attrs) {
3915 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3916 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3917 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3918 return true;
3919 }
3920
3921 return false;
3922}
3923
3924namespace {
3925 /// Describes the kind of a pointer a declarator describes.
3926 enum class PointerDeclaratorKind {
3927 // Not a pointer.
3928 NonPointer,
3929 // Single-level pointer.
3930 SingleLevelPointer,
3931 // Multi-level pointer (of any pointer kind).
3932 MultiLevelPointer,
3933 // CFFooRef*
3934 MaybePointerToCFRef,
3935 // CFErrorRef*
3936 CFErrorRefPointer,
3937 // NSError**
3938 NSErrorPointerPointer,
3939 };
3940
3941 /// Describes a declarator chunk wrapping a pointer that marks inference as
3942 /// unexpected.
3943 // These values must be kept in sync with diagnostics.
3944 enum class PointerWrappingDeclaratorKind {
3945 /// Pointer is top-level.
3946 None = -1,
3947 /// Pointer is an array element.
3948 Array = 0,
3949 /// Pointer is the referent type of a C++ reference.
3950 Reference = 1
3951 };
3952} // end anonymous namespace
3953
3954/// Classify the given declarator, whose type-specified is \c type, based on
3955/// what kind of pointer it refers to.
3956///
3957/// This is used to determine the default nullability.
3958static PointerDeclaratorKind
3959classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3960 PointerWrappingDeclaratorKind &wrappingKind) {
3961 unsigned numNormalPointers = 0;
3962
3963 // For any dependent type, we consider it a non-pointer.
3964 if (type->isDependentType())
3965 return PointerDeclaratorKind::NonPointer;
3966
3967 // Look through the declarator chunks to identify pointers.
3968 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3969 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3970 switch (chunk.Kind) {
3971 case DeclaratorChunk::Array:
3972 if (numNormalPointers == 0)
3973 wrappingKind = PointerWrappingDeclaratorKind::Array;
3974 break;
3975
3976 case DeclaratorChunk::Function:
3977 case DeclaratorChunk::Pipe:
3978 break;
3979
3980 case DeclaratorChunk::BlockPointer:
3981 case DeclaratorChunk::MemberPointer:
3982 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3983 : PointerDeclaratorKind::SingleLevelPointer;
3984
3985 case DeclaratorChunk::Paren:
3986 break;
3987
3988 case DeclaratorChunk::Reference:
3989 if (numNormalPointers == 0)
3990 wrappingKind = PointerWrappingDeclaratorKind::Reference;
3991 break;
3992
3993 case DeclaratorChunk::Pointer:
3994 ++numNormalPointers;
3995 if (numNormalPointers > 2)
3996 return PointerDeclaratorKind::MultiLevelPointer;
3997 break;
3998 }
3999 }
4000
4001 // Then, dig into the type specifier itself.
4002 unsigned numTypeSpecifierPointers = 0;
4003 do {
4004 // Decompose normal pointers.
4005 if (auto ptrType = type->getAs<PointerType>()) {
4006 ++numNormalPointers;
4007
4008 if (numNormalPointers > 2)
4009 return PointerDeclaratorKind::MultiLevelPointer;
4010
4011 type = ptrType->getPointeeType();
4012 ++numTypeSpecifierPointers;
4013 continue;
4014 }
4015
4016 // Decompose block pointers.
4017 if (type->getAs<BlockPointerType>()) {
4018 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4019 : PointerDeclaratorKind::SingleLevelPointer;
4020 }
4021
4022 // Decompose member pointers.
4023 if (type->getAs<MemberPointerType>()) {
4024 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4025 : PointerDeclaratorKind::SingleLevelPointer;
4026 }
4027
4028 // Look at Objective-C object pointers.
4029 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4030 ++numNormalPointers;
4031 ++numTypeSpecifierPointers;
4032
4033 // If this is NSError**, report that.
4034 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4035 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4036 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4037 return PointerDeclaratorKind::NSErrorPointerPointer;
4038 }
4039 }
4040
4041 break;
4042 }
4043
4044 // Look at Objective-C class types.
4045 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4046 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4047 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4048 return PointerDeclaratorKind::NSErrorPointerPointer;
4049 }
4050
4051 break;
4052 }
4053
4054 // If at this point we haven't seen a pointer, we won't see one.
4055 if (numNormalPointers == 0)
4056 return PointerDeclaratorKind::NonPointer;
4057
4058 if (auto recordType = type->getAs<RecordType>()) {
4059 RecordDecl *recordDecl = recordType->getDecl();
4060
4061 // If this is CFErrorRef*, report it as such.
4062 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4063 S.isCFError(recordDecl)) {
4064 return PointerDeclaratorKind::CFErrorRefPointer;
4065 }
4066 break;
4067 }
4068
4069 break;
4070 } while (true);
4071
4072 switch (numNormalPointers) {
4073 case 0:
4074 return PointerDeclaratorKind::NonPointer;
4075
4076 case 1:
4077 return PointerDeclaratorKind::SingleLevelPointer;
4078
4079 case 2:
4080 return PointerDeclaratorKind::MaybePointerToCFRef;
4081
4082 default:
4083 return PointerDeclaratorKind::MultiLevelPointer;
4084 }
4085}
4086
4087bool Sema::isCFError(RecordDecl *RD) {
4088 // If we already know about CFError, test it directly.
4089 if (CFError)
4090 return CFError == RD;
4091
4092 // Check whether this is CFError, which we identify based on its bridge to
4093 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4094 // declared with "objc_bridge_mutable", so look for either one of the two
4095 // attributes.
4096 if (RD->getTagKind() == TTK_Struct) {
4097 IdentifierInfo *bridgedType = nullptr;
4098 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4099 bridgedType = bridgeAttr->getBridgedType();
4100 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4101 bridgedType = bridgeAttr->getBridgedType();
4102
4103 if (bridgedType == getNSErrorIdent()) {
4104 CFError = RD;
4105 return true;
4106 }
4107 }
4108
4109 return false;
4110}
4111
4112static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4113 SourceLocation loc) {
4114 // If we're anywhere in a function, method, or closure context, don't perform
4115 // completeness checks.
4116 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4117 if (ctx->isFunctionOrMethod())
4118 return FileID();
4119
4120 if (ctx->isFileContext())
4121 break;
4122 }
4123
4124 // We only care about the expansion location.
4125 loc = S.SourceMgr.getExpansionLoc(loc);
4126 FileID file = S.SourceMgr.getFileID(loc);
4127 if (file.isInvalid())
4128 return FileID();
4129
4130 // Retrieve file information.
4131 bool invalid = false;
4132 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4133 if (invalid || !sloc.isFile())
4134 return FileID();
4135
4136 // We don't want to perform completeness checks on the main file or in
4137 // system headers.
4138 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4139 if (fileInfo.getIncludeLoc().isInvalid())
4140 return FileID();
4141 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4142 S.Diags.getSuppressSystemWarnings()) {
4143 return FileID();
4144 }
4145
4146 return file;
4147}
4148
4149/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4150/// taking into account whitespace before and after.
4151template <typename DiagBuilderT>
4152static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4153 SourceLocation PointerLoc,
4154 NullabilityKind Nullability) {
4155 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 4155, __PRETTY_FUNCTION__))
;
4156 if (PointerLoc.isMacroID())
4157 return;
4158
4159 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4160 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4161 return;
4162
4163 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4164 if (!NextChar)
4165 return;
4166
4167 SmallString<32> InsertionTextBuf{" "};
4168 InsertionTextBuf += getNullabilitySpelling(Nullability);
4169 InsertionTextBuf += " ";
4170 StringRef InsertionText = InsertionTextBuf.str();
4171
4172 if (isWhitespace(*NextChar)) {
4173 InsertionText = InsertionText.drop_back();
4174 } else if (NextChar[-1] == '[') {
4175 if (NextChar[0] == ']')
4176 InsertionText = InsertionText.drop_back().drop_front();
4177 else
4178 InsertionText = InsertionText.drop_front();
4179 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
4180 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
4181 InsertionText = InsertionText.drop_back().drop_front();
4182 }
4183
4184 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4185}
4186
4187static void emitNullabilityConsistencyWarning(Sema &S,
4188 SimplePointerKind PointerKind,
4189 SourceLocation PointerLoc,
4190 SourceLocation PointerEndLoc) {
4191 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 4191, __PRETTY_FUNCTION__))
;
4192
4193 if (PointerKind == SimplePointerKind::Array) {
4194 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4195 } else {
4196 S.Diag(PointerLoc, diag::warn_nullability_missing)
4197 << static_cast<unsigned>(PointerKind);
4198 }
4199
4200 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4201 if (FixItLoc.isMacroID())
4202 return;
4203
4204 auto addFixIt = [&](NullabilityKind Nullability) {
4205 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4206 Diag << static_cast<unsigned>(Nullability);
4207 Diag << static_cast<unsigned>(PointerKind);
4208 fixItNullability(S, Diag, FixItLoc, Nullability);
4209 };
4210 addFixIt(NullabilityKind::Nullable);
4211 addFixIt(NullabilityKind::NonNull);
4212}
4213
4214/// Complains about missing nullability if the file containing \p pointerLoc
4215/// has other uses of nullability (either the keywords or the \c assume_nonnull
4216/// pragma).
4217///
4218/// If the file has \e not seen other uses of nullability, this particular
4219/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4220static void
4221checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4222 SourceLocation pointerLoc,
4223 SourceLocation pointerEndLoc = SourceLocation()) {
4224 // Determine which file we're performing consistency checking for.
4225 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4226 if (file.isInvalid())
4227 return;
4228
4229 // If we haven't seen any type nullability in this file, we won't warn now
4230 // about anything.
4231 FileNullability &fileNullability = S.NullabilityMap[file];
4232 if (!fileNullability.SawTypeNullability) {
4233 // If this is the first pointer declarator in the file, and the appropriate
4234 // warning is on, record it in case we need to diagnose it retroactively.
4235 diag::kind diagKind;
4236 if (pointerKind == SimplePointerKind::Array)
4237 diagKind = diag::warn_nullability_missing_array;
4238 else
4239 diagKind = diag::warn_nullability_missing;
4240
4241 if (fileNullability.PointerLoc.isInvalid() &&
4242 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4243 fileNullability.PointerLoc = pointerLoc;
4244 fileNullability.PointerEndLoc = pointerEndLoc;
4245 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4246 }
4247
4248 return;
4249 }
4250
4251 // Complain about missing nullability.
4252 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4253}
4254
4255/// Marks that a nullability feature has been used in the file containing
4256/// \p loc.
4257///
4258/// If this file already had pointer types in it that were missing nullability,
4259/// the first such instance is retroactively diagnosed.
4260///
4261/// \sa checkNullabilityConsistency
4262static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4263 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4264 if (file.isInvalid())
4265 return;
4266
4267 FileNullability &fileNullability = S.NullabilityMap[file];
4268 if (fileNullability.SawTypeNullability)
4269 return;
4270 fileNullability.SawTypeNullability = true;
4271
4272 // If we haven't seen any type nullability before, now we have. Retroactively
4273 // diagnose the first unannotated pointer, if there was one.
4274 if (fileNullability.PointerLoc.isInvalid())
4275 return;
4276
4277 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4278 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4279 fileNullability.PointerEndLoc);
4280}
4281
4282/// Returns true if any of the declarator chunks before \p endIndex include a
4283/// level of indirection: array, pointer, reference, or pointer-to-member.
4284///
4285/// Because declarator chunks are stored in outer-to-inner order, testing
4286/// every chunk before \p endIndex is testing all chunks that embed the current
4287/// chunk as part of their type.
4288///
4289/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4290/// end index, in which case all chunks are tested.
4291static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4292 unsigned i = endIndex;
4293 while (i != 0) {
4294 // Walk outwards along the declarator chunks.
4295 --i;
4296 const DeclaratorChunk &DC = D.getTypeObject(i);
4297 switch (DC.Kind) {
4298 case DeclaratorChunk::Paren:
4299 break;
4300 case DeclaratorChunk::Array:
4301 case DeclaratorChunk::Pointer:
4302 case DeclaratorChunk::Reference:
4303 case DeclaratorChunk::MemberPointer:
4304 return true;
4305 case DeclaratorChunk::Function:
4306 case DeclaratorChunk::BlockPointer:
4307 case DeclaratorChunk::Pipe:
4308 // These are invalid anyway, so just ignore.
4309 break;
4310 }
4311 }
4312 return false;
4313}
4314
4315static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4316 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4317 Chunk.Kind == DeclaratorChunk::Array);
4318}
4319
4320template<typename AttrT>
4321static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4322 AL.setUsedAsTypeAttr();
4323 return ::new (Ctx) AttrT(Ctx, AL);
4324}
4325
4326static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4327 NullabilityKind NK) {
4328 switch (NK) {
4329 case NullabilityKind::NonNull:
4330 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4331
4332 case NullabilityKind::Nullable:
4333 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4334
4335 case NullabilityKind::Unspecified:
4336 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4337 }
4338 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 4338)
;
4339}
4340
4341// Diagnose whether this is a case with the multiple addr spaces.
4342// Returns true if this is an invalid case.
4343// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4344// by qualifiers for two or more different address spaces."
4345static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4346 LangAS ASNew,
4347 SourceLocation AttrLoc) {
4348 if (ASOld != LangAS::Default) {
4349 if (ASOld != ASNew) {
4350 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4351 return true;
4352 }
4353 // Emit a warning if they are identical; it's likely unintended.
4354 S.Diag(AttrLoc,
4355 diag::warn_attribute_address_multiple_identical_qualifiers);
4356 }
4357 return false;
4358}
4359
4360static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4361 QualType declSpecType,
4362 TypeSourceInfo *TInfo) {
4363 // The TypeSourceInfo that this function returns will not be a null type.
4364 // If there is an error, this function will fill in a dummy type as fallback.
4365 QualType T = declSpecType;
4366 Declarator &D = state.getDeclarator();
4367 Sema &S = state.getSema();
4368 ASTContext &Context = S.Context;
4369 const LangOptions &LangOpts = S.getLangOpts();
4370
4371 // The name we're declaring, if any.
4372 DeclarationName Name;
4373 if (D.getIdentifier())
4374 Name = D.getIdentifier();
4375
4376 // Does this declaration declare a typedef-name?
4377 bool IsTypedefName =
4378 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4379 D.getContext() == DeclaratorContext::AliasDecl ||
4380 D.getContext() == DeclaratorContext::AliasTemplate;
4381
4382 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4383 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4384 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4385 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4386
4387 // If T is 'decltype(auto)', the only declarators we can have are parens
4388 // and at most one function declarator if this is a function declaration.
4389 // If T is a deduced class template specialization type, we can have no
4390 // declarator chunks at all.
4391 if (auto *DT = T->getAs<DeducedType>()) {
4392 const AutoType *AT = T->getAs<AutoType>();
4393 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4394 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4395 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4396 unsigned Index = E - I - 1;
4397 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4398 unsigned DiagId = IsClassTemplateDeduction
4399 ? diag::err_deduced_class_template_compound_type
4400 : diag::err_decltype_auto_compound_type;
4401 unsigned DiagKind = 0;
4402 switch (DeclChunk.Kind) {
4403 case DeclaratorChunk::Paren:
4404 // FIXME: Rejecting this is a little silly.
4405 if (IsClassTemplateDeduction) {
4406 DiagKind = 4;
4407 break;
4408 }
4409 continue;
4410 case DeclaratorChunk::Function: {
4411 if (IsClassTemplateDeduction) {
4412 DiagKind = 3;
4413 break;
4414 }
4415 unsigned FnIndex;
4416 if (D.isFunctionDeclarationContext() &&
4417 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4418 continue;
4419 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4420 break;
4421 }
4422 case DeclaratorChunk::Pointer:
4423 case DeclaratorChunk::BlockPointer:
4424 case DeclaratorChunk::MemberPointer:
4425 DiagKind = 0;
4426 break;
4427 case DeclaratorChunk::Reference:
4428 DiagKind = 1;
4429 break;
4430 case DeclaratorChunk::Array:
4431 DiagKind = 2;
4432 break;
4433 case DeclaratorChunk::Pipe:
4434 break;
4435 }
4436
4437 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4438 D.setInvalidType(true);
4439 break;
4440 }
4441 }
4442 }
4443
4444 // Determine whether we should infer _Nonnull on pointer types.
4445 Optional<NullabilityKind> inferNullability;
4446 bool inferNullabilityCS = false;
4447 bool inferNullabilityInnerOnly = false;
4448 bool inferNullabilityInnerOnlyComplete = false;
4449
4450 // Are we in an assume-nonnull region?
4451 bool inAssumeNonNullRegion = false;
4452 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4453 if (assumeNonNullLoc.isValid()) {
4454 inAssumeNonNullRegion = true;
4455 recordNullabilitySeen(S, assumeNonNullLoc);
4456 }
4457
4458 // Whether to complain about missing nullability specifiers or not.
4459 enum {
4460 /// Never complain.
4461 CAMN_No,
4462 /// Complain on the inner pointers (but not the outermost
4463 /// pointer).
4464 CAMN_InnerPointers,
4465 /// Complain about any pointers that don't have nullability
4466 /// specified or inferred.
4467 CAMN_Yes
4468 } complainAboutMissingNullability = CAMN_No;
4469 unsigned NumPointersRemaining = 0;
4470 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4471
4472 if (IsTypedefName) {
4473 // For typedefs, we do not infer any nullability (the default),
4474 // and we only complain about missing nullability specifiers on
4475 // inner pointers.
4476 complainAboutMissingNullability = CAMN_InnerPointers;
4477
4478 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4479 !T->getNullability(S.Context)) {
4480 // Note that we allow but don't require nullability on dependent types.
4481 ++NumPointersRemaining;
4482 }
4483
4484 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4485 DeclaratorChunk &chunk = D.getTypeObject(i);
4486 switch (chunk.Kind) {
4487 case DeclaratorChunk::Array:
4488 case DeclaratorChunk::Function:
4489 case DeclaratorChunk::Pipe:
4490 break;
4491
4492 case DeclaratorChunk::BlockPointer:
4493 case DeclaratorChunk::MemberPointer:
4494 ++NumPointersRemaining;
4495 break;
4496
4497 case DeclaratorChunk::Paren:
4498 case DeclaratorChunk::Reference:
4499 continue;
4500
4501 case DeclaratorChunk::Pointer:
4502 ++NumPointersRemaining;
4503 continue;
4504 }
4505 }
4506 } else {
4507 bool isFunctionOrMethod = false;
4508 switch (auto context = state.getDeclarator().getContext()) {
4509 case DeclaratorContext::ObjCParameter:
4510 case DeclaratorContext::ObjCResult:
4511 case DeclaratorContext::Prototype:
4512 case DeclaratorContext::TrailingReturn:
4513 case DeclaratorContext::TrailingReturnVar:
4514 isFunctionOrMethod = true;
4515 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4516
4517 case DeclaratorContext::Member:
4518 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4519 complainAboutMissingNullability = CAMN_No;
4520 break;
4521 }
4522
4523 // Weak properties are inferred to be nullable.
4524 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4525 inferNullability = NullabilityKind::Nullable;
4526 break;
4527 }
4528
4529 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4530
4531 case DeclaratorContext::File:
4532 case DeclaratorContext::KNRTypeList: {
4533 complainAboutMissingNullability = CAMN_Yes;
4534
4535 // Nullability inference depends on the type and declarator.
4536 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4537 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4538 case PointerDeclaratorKind::NonPointer:
4539 case PointerDeclaratorKind::MultiLevelPointer:
4540 // Cannot infer nullability.
4541 break;
4542
4543 case PointerDeclaratorKind::SingleLevelPointer:
4544 // Infer _Nonnull if we are in an assumes-nonnull region.
4545 if (inAssumeNonNullRegion) {
4546 complainAboutInferringWithinChunk = wrappingKind;
4547 inferNullability = NullabilityKind::NonNull;
4548 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4549 context == DeclaratorContext::ObjCResult);
4550 }
4551 break;
4552
4553 case PointerDeclaratorKind::CFErrorRefPointer:
4554 case PointerDeclaratorKind::NSErrorPointerPointer:
4555 // Within a function or method signature, infer _Nullable at both
4556 // levels.
4557 if (isFunctionOrMethod && inAssumeNonNullRegion)
4558 inferNullability = NullabilityKind::Nullable;
4559 break;
4560
4561 case PointerDeclaratorKind::MaybePointerToCFRef:
4562 if (isFunctionOrMethod) {
4563 // On pointer-to-pointer parameters marked cf_returns_retained or
4564 // cf_returns_not_retained, if the outer pointer is explicit then
4565 // infer the inner pointer as _Nullable.
4566 auto hasCFReturnsAttr =
4567 [](const ParsedAttributesView &AttrList) -> bool {
4568 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4569 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4570 };
4571 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4572 if (hasCFReturnsAttr(D.getAttributes()) ||
4573 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4574 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4575 inferNullability = NullabilityKind::Nullable;
4576 inferNullabilityInnerOnly = true;
4577 }
4578 }
4579 }
4580 break;
4581 }
4582 break;
4583 }
4584
4585 case DeclaratorContext::ConversionId:
4586 complainAboutMissingNullability = CAMN_Yes;
4587 break;
4588
4589 case DeclaratorContext::AliasDecl:
4590 case DeclaratorContext::AliasTemplate:
4591 case DeclaratorContext::Block:
4592 case DeclaratorContext::BlockLiteral:
4593 case DeclaratorContext::Condition:
4594 case DeclaratorContext::CXXCatch:
4595 case DeclaratorContext::CXXNew:
4596 case DeclaratorContext::ForInit:
4597 case DeclaratorContext::SelectionInit:
4598 case DeclaratorContext::LambdaExpr:
4599 case DeclaratorContext::LambdaExprParameter:
4600 case DeclaratorContext::ObjCCatch:
4601 case DeclaratorContext::TemplateParam:
4602 case DeclaratorContext::TemplateArg:
4603 case DeclaratorContext::TemplateTypeArg:
4604 case DeclaratorContext::TypeName:
4605 case DeclaratorContext::FunctionalCast:
4606 case DeclaratorContext::RequiresExpr:
4607 // Don't infer in these contexts.
4608 break;
4609 }
4610 }
4611
4612 // Local function that returns true if its argument looks like a va_list.
4613 auto isVaList = [&S](QualType T) -> bool {
4614 auto *typedefTy = T->getAs<TypedefType>();
4615 if (!typedefTy)
4616 return false;
4617 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4618 do {
4619 if (typedefTy->getDecl() == vaListTypedef)
4620 return true;
4621 if (auto *name = typedefTy->getDecl()->getIdentifier())
4622 if (name->isStr("va_list"))
4623 return true;
4624 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4625 } while (typedefTy);
4626 return false;
4627 };
4628
4629 // Local function that checks the nullability for a given pointer declarator.
4630 // Returns true if _Nonnull was inferred.
4631 auto inferPointerNullability =
4632 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4633 SourceLocation pointerEndLoc,
4634 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4635 // We've seen a pointer.
4636 if (NumPointersRemaining > 0)
4637 --NumPointersRemaining;
4638
4639 // If a nullability attribute is present, there's nothing to do.
4640 if (hasNullabilityAttr(attrs))
4641 return nullptr;
4642
4643 // If we're supposed to infer nullability, do so now.
4644 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4645 ParsedAttr::Syntax syntax = inferNullabilityCS
4646 ? ParsedAttr::AS_ContextSensitiveKeyword
4647 : ParsedAttr::AS_Keyword;
4648 ParsedAttr *nullabilityAttr = Pool.create(
4649 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4650 nullptr, SourceLocation(), nullptr, 0, syntax);
4651
4652 attrs.addAtEnd(nullabilityAttr);
4653
4654 if (inferNullabilityCS) {
4655 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4656 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4657 }
4658
4659 if (pointerLoc.isValid() &&
4660 complainAboutInferringWithinChunk !=
4661 PointerWrappingDeclaratorKind::None) {
4662 auto Diag =
4663 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4664 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4665 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4666 }
4667
4668 if (inferNullabilityInnerOnly)
4669 inferNullabilityInnerOnlyComplete = true;
4670 return nullabilityAttr;
4671 }
4672
4673 // If we're supposed to complain about missing nullability, do so
4674 // now if it's truly missing.
4675 switch (complainAboutMissingNullability) {
4676 case CAMN_No:
4677 break;
4678
4679 case CAMN_InnerPointers:
4680 if (NumPointersRemaining == 0)
4681 break;
4682 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4683
4684 case CAMN_Yes:
4685 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4686 }
4687 return nullptr;
4688 };
4689
4690 // If the type itself could have nullability but does not, infer pointer
4691 // nullability and perform consistency checking.
4692 if (S.CodeSynthesisContexts.empty()) {
4693 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4694 !T->getNullability(S.Context)) {
4695 if (isVaList(T)) {
4696 // Record that we've seen a pointer, but do nothing else.
4697 if (NumPointersRemaining > 0)
4698 --NumPointersRemaining;
4699 } else {
4700 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4701 if (T->isBlockPointerType())
4702 pointerKind = SimplePointerKind::BlockPointer;
4703 else if (T->isMemberPointerType())
4704 pointerKind = SimplePointerKind::MemberPointer;
4705
4706 if (auto *attr = inferPointerNullability(
4707 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4708 D.getDeclSpec().getEndLoc(),
4709 D.getMutableDeclSpec().getAttributes(),
4710 D.getMutableDeclSpec().getAttributePool())) {
4711 T = state.getAttributedType(
4712 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4713 }
4714 }
4715 }
4716
4717 if (complainAboutMissingNullability == CAMN_Yes &&
4718 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4719 D.isPrototypeContext() &&
4720 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4721 checkNullabilityConsistency(S, SimplePointerKind::Array,
4722 D.getDeclSpec().getTypeSpecTypeLoc());
4723 }
4724 }
4725
4726 bool ExpectNoDerefChunk =
4727 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4728
4729 // Walk the DeclTypeInfo, building the recursive type as we go.
4730 // DeclTypeInfos are ordered from the identifier out, which is
4731 // opposite of what we want :).
4732 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4733 unsigned chunkIndex = e - i - 1;
4734 state.setCurrentChunkIndex(chunkIndex);
4735 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4736 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4737 switch (DeclType.Kind) {
4738 case DeclaratorChunk::Paren:
4739 if (i == 0)
4740 warnAboutRedundantParens(S, D, T);
4741 T = S.BuildParenType(T);
4742 break;
4743 case DeclaratorChunk::BlockPointer:
4744 // If blocks are disabled, emit an error.
4745 if (!LangOpts.Blocks)
4746 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4747
4748 // Handle pointer nullability.
4749 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4750 DeclType.EndLoc, DeclType.getAttrs(),
4751 state.getDeclarator().getAttributePool());
4752
4753 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4754 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4755 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4756 // qualified with const.
4757 if (LangOpts.OpenCL)
4758 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4759 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4760 }
4761 break;
4762 case DeclaratorChunk::Pointer:
4763 // Verify that we're not building a pointer to pointer to function with
4764 // exception specification.
4765 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4766 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4767 D.setInvalidType(true);
4768 // Build the type anyway.
4769 }
4770
4771 // Handle pointer nullability
4772 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4773 DeclType.EndLoc, DeclType.getAttrs(),
4774 state.getDeclarator().getAttributePool());
4775
4776 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4777 T = Context.getObjCObjectPointerType(T);
4778 if (DeclType.Ptr.TypeQuals)
4779 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4780 break;
4781 }
4782
4783 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4784 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4785 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4786 if (LangOpts.OpenCL) {
4787 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4788 T->isBlockPointerType()) {
4789 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4790 D.setInvalidType(true);
4791 }
4792 }
4793
4794 T = S.BuildPointerType(T, DeclType.Loc, Name);
4795 if (DeclType.Ptr.TypeQuals)
4796 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4797 break;
4798 case DeclaratorChunk::Reference: {
4799 // Verify that we're not building a reference to pointer to function with
4800 // exception specification.
4801 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4802 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4803 D.setInvalidType(true);
4804 // Build the type anyway.
4805 }
4806 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4807
4808 if (DeclType.Ref.HasRestrict)
4809 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4810 break;
4811 }
4812 case DeclaratorChunk::Array: {
4813 // Verify that we're not building an array of pointers to function with
4814 // exception specification.
4815 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4816 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4817 D.setInvalidType(true);
4818 // Build the type anyway.
4819 }
4820 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4821 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4822 ArrayType::ArraySizeModifier ASM;
4823 if (ATI.isStar)
4824 ASM = ArrayType::Star;
4825 else if (ATI.hasStatic)
4826 ASM = ArrayType::Static;
4827 else
4828 ASM = ArrayType::Normal;
4829 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4830 // FIXME: This check isn't quite right: it allows star in prototypes
4831 // for function definitions, and disallows some edge cases detailed
4832 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4833 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4834 ASM = ArrayType::Normal;
4835 D.setInvalidType(true);
4836 }
4837
4838 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4839 // shall appear only in a declaration of a function parameter with an
4840 // array type, ...
4841 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4842 if (!(D.isPrototypeContext() ||
4843 D.getContext() == DeclaratorContext::KNRTypeList)) {
4844 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4845 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4846 // Remove the 'static' and the type qualifiers.
4847 if (ASM == ArrayType::Static)
4848 ASM = ArrayType::Normal;
4849 ATI.TypeQuals = 0;
4850 D.setInvalidType(true);
4851 }
4852
4853 // C99 6.7.5.2p1: ... and then only in the outermost array type
4854 // derivation.
4855 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4856 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4857 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4858 if (ASM == ArrayType::Static)
4859 ASM = ArrayType::Normal;
4860 ATI.TypeQuals = 0;
4861 D.setInvalidType(true);
4862 }
4863 }
4864 const AutoType *AT = T->getContainedAutoType();
4865 // Allow arrays of auto if we are a generic lambda parameter.
4866 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4867 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
4868 // We've already diagnosed this for decltype(auto).
4869 if (!AT->isDecltypeAuto())
4870 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4871 << getPrintableNameForEntity(Name) << T;
4872 T = QualType();
4873 break;
4874 }
4875
4876 // Array parameters can be marked nullable as well, although it's not
4877 // necessary if they're marked 'static'.
4878 if (complainAboutMissingNullability == CAMN_Yes &&
4879 !hasNullabilityAttr(DeclType.getAttrs()) &&
4880 ASM != ArrayType::Static &&
4881 D.isPrototypeContext() &&
4882 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4883 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4884 }
4885
4886 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4887 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4888 break;
4889 }
4890 case DeclaratorChunk::Function: {
4891 // If the function declarator has a prototype (i.e. it is not () and
4892 // does not have a K&R-style identifier list), then the arguments are part
4893 // of the type, otherwise the argument list is ().
4894 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4895 IsQualifiedFunction =
4896 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4897
4898 // Check for auto functions and trailing return type and adjust the
4899 // return type accordingly.
4900 if (!D.isInvalidType()) {
4901 // trailing-return-type is only required if we're declaring a function,
4902 // and not, for instance, a pointer to a function.
4903 if (D.getDeclSpec().hasAutoTypeSpec() &&
4904 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4905 if (!S.getLangOpts().CPlusPlus14) {
4906 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4907 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4908 ? diag::err_auto_missing_trailing_return
4909 : diag::err_deduced_return_type);
4910 T = Context.IntTy;
4911 D.setInvalidType(true);
4912 } else {
4913 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4914 diag::warn_cxx11_compat_deduced_return_type);
4915 }
4916 } else if (FTI.hasTrailingReturnType()) {
4917 // T must be exactly 'auto' at this point. See CWG issue 681.
4918 if (isa<ParenType>(T)) {
4919 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4920 << T << D.getSourceRange();
4921 D.setInvalidType(true);
4922 } else if (D.getName().getKind() ==
4923 UnqualifiedIdKind::IK_DeductionGuideName) {
4924 if (T != Context.DependentTy) {
4925 S.Diag(D.getDeclSpec().getBeginLoc(),
4926 diag::err_deduction_guide_with_complex_decl)
4927 << D.getSourceRange();
4928 D.setInvalidType(true);
4929 }
4930 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4931 (T.hasQualifiers() || !isa<AutoType>(T) ||
4932 cast<AutoType>(T)->getKeyword() !=
4933 AutoTypeKeyword::Auto ||
4934 cast<AutoType>(T)->isConstrained())) {
4935 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4936 diag::err_trailing_return_without_auto)
4937 << T << D.getDeclSpec().getSourceRange();
4938 D.setInvalidType(true);
4939 }
4940 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4941 if (T.isNull()) {
4942 // An error occurred parsing the trailing return type.
4943 T = Context.IntTy;
4944 D.setInvalidType(true);
4945 } else if (AutoType *Auto = T->getContainedAutoType()) {
4946 // If the trailing return type contains an `auto`, we may need to
4947 // invent a template parameter for it, for cases like
4948 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4949 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4950 if (D.getContext() == DeclaratorContext::Prototype)
4951 InventedParamInfo = &S.InventedParameterInfos.back();
4952 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4953 InventedParamInfo = S.getCurLambda();
4954 if (InventedParamInfo) {
4955 std::tie(T, TInfo) = InventTemplateParameter(
4956 state, T, TInfo, Auto, *InventedParamInfo);
4957 }
4958 }
4959 } else {
4960 // This function type is not the type of the entity being declared,
4961 // so checking the 'auto' is not the responsibility of this chunk.
4962 }
4963 }
4964
4965 // C99 6.7.5.3p1: The return type may not be a function or array type.
4966 // For conversion functions, we'll diagnose this particular error later.
4967 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4968 (D.getName().getKind() !=
4969 UnqualifiedIdKind::IK_ConversionFunctionId)) {
4970 unsigned diagID = diag::err_func_returning_array_function;
4971 // Last processing chunk in block context means this function chunk
4972 // represents the block.
4973 if (chunkIndex == 0 &&
4974 D.getContext() == DeclaratorContext::BlockLiteral)
4975 diagID = diag::err_block_returning_array_function;
4976 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4977 T = Context.IntTy;
4978 D.setInvalidType(true);
4979 }
4980
4981 // Do not allow returning half FP value.
4982 // FIXME: This really should be in BuildFunctionType.
4983 if (T->isHalfType()) {
4984 if (S.getLangOpts().OpenCL) {
4985 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4986 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4987 << T << 0 /*pointer hint*/;
4988 D.setInvalidType(true);
4989 }
4990 } else if (!S.getLangOpts().HalfArgsAndReturns) {
4991 S.Diag(D.getIdentifierLoc(),
4992 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4993 D.setInvalidType(true);
4994 }
4995 }
4996
4997 if (LangOpts.OpenCL) {
4998 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4999 // function.
5000 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5001 T->isPipeType()) {
5002 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5003 << T << 1 /*hint off*/;
5004 D.setInvalidType(true);
5005 }
5006 // OpenCL doesn't support variadic functions and blocks
5007 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5008 // We also allow here any toolchain reserved identifiers.
5009 if (FTI.isVariadic &&
5010 !(D.getIdentifier() &&
5011 ((D.getIdentifier()->getName() == "printf" &&
5012 (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
5013 D.getIdentifier()->getName().startswith("__")))) {
5014 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5015 D.setInvalidType(true);
5016 }
5017 }
5018
5019 // Methods cannot return interface types. All ObjC objects are
5020 // passed by reference.
5021 if (T->isObjCObjectType()) {
5022 SourceLocation DiagLoc, FixitLoc;
5023 if (TInfo) {
5024 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5025 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5026 } else {
5027 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5028 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5029 }
5030 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5031 << 0 << T
5032 << FixItHint::CreateInsertion(FixitLoc, "*");
5033
5034 T = Context.getObjCObjectPointerType(T);
5035 if (TInfo) {
5036 TypeLocBuilder TLB;
5037 TLB.pushFullCopy(TInfo->getTypeLoc());
5038 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5039 TLoc.setStarLoc(FixitLoc);
5040 TInfo = TLB.getTypeSourceInfo(Context, T);
5041 }
5042
5043 D.setInvalidType(true);
5044 }
5045
5046 // cv-qualifiers on return types are pointless except when the type is a
5047 // class type in C++.
5048 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5049 !(S.getLangOpts().CPlusPlus &&
5050 (T->isDependentType() || T->isRecordType()))) {
5051 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5052 D.getFunctionDefinitionKind() ==
5053 FunctionDefinitionKind::Definition) {
5054 // [6.9.1/3] qualified void return is invalid on a C
5055 // function definition. Apparently ok on declarations and
5056 // in C++ though (!)
5057 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5058 } else
5059 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5060
5061 // C++2a [dcl.fct]p12:
5062 // A volatile-qualified return type is deprecated
5063 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5064 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5065 }
5066
5067 // Objective-C ARC ownership qualifiers are ignored on the function
5068 // return type (by type canonicalization). Complain if this attribute
5069 // was written here.
5070 if (T.getQualifiers().hasObjCLifetime()) {
5071 SourceLocation AttrLoc;
5072 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5073 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5074 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5075 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5076 AttrLoc = AL.getLoc();
5077 break;
5078 }
5079 }
5080 }
5081 if (AttrLoc.isInvalid()) {
5082 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5083 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5084 AttrLoc = AL.getLoc();
5085 break;
5086 }
5087 }
5088 }
5089
5090 if (AttrLoc.isValid()) {
5091 // The ownership attributes are almost always written via
5092 // the predefined
5093 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5094 if (AttrLoc.isMacroID())
5095 AttrLoc =
5096 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5097
5098 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5099 << T.getQualifiers().getObjCLifetime();
5100 }
5101 }
5102
5103 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5104 // C++ [dcl.fct]p6:
5105 // Types shall not be defined in return or parameter types.
5106 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5107 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5108 << Context.getTypeDeclType(Tag);
5109 }
5110
5111 // Exception specs are not allowed in typedefs. Complain, but add it
5112 // anyway.
5113 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5114 S.Diag(FTI.getExceptionSpecLocBeg(),
5115 diag::err_exception_spec_in_typedef)
5116 << (D.getContext() == DeclaratorContext::AliasDecl ||
5117 D.getContext() == DeclaratorContext::AliasTemplate);
5118
5119 // If we see "T var();" or "T var(T());" at block scope, it is probably
5120 // an attempt to initialize a variable, not a function declaration.
5121 if (FTI.isAmbiguous)
5122 warnAboutAmbiguousFunction(S, D, DeclType, T);
5123
5124 FunctionType::ExtInfo EI(
5125 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5126
5127 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5128 && !LangOpts.OpenCL) {
5129 // Simple void foo(), where the incoming T is the result type.
5130 T = Context.getFunctionNoProtoType(T, EI);
5131 } else {
5132 // We allow a zero-parameter variadic function in C if the
5133 // function is marked with the "overloadable" attribute. Scan
5134 // for this attribute now.
5135 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5136 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
5137 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5138
5139 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5140 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5141 // definition.
5142 S.Diag(FTI.Params[0].IdentLoc,
5143 diag::err_ident_list_in_fn_declaration);
5144 D.setInvalidType(true);
5145 // Recover by creating a K&R-style function type.
5146 T = Context.getFunctionNoProtoType(T, EI);
5147 break;
5148 }
5149
5150 FunctionProtoType::ExtProtoInfo EPI;
5151 EPI.ExtInfo = EI;
5152 EPI.Variadic = FTI.isVariadic;
5153 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5154 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5155 EPI.TypeQuals.addCVRUQualifiers(
5156 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5157 : 0);
5158 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5159 : FTI.RefQualifierIsLValueRef? RQ_LValue
5160 : RQ_RValue;
5161
5162 // Otherwise, we have a function with a parameter list that is
5163 // potentially variadic.
5164 SmallVector<QualType, 16> ParamTys;
5165 ParamTys.reserve(FTI.NumParams);
5166
5167 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5168 ExtParameterInfos(FTI.NumParams);
5169 bool HasAnyInterestingExtParameterInfos = false;
5170
5171 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5172 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5173 QualType ParamTy = Param->getType();
5174 assert(!ParamTy.isNull() && "Couldn't parse type?")((!ParamTy.isNull() && "Couldn't parse type?") ? static_cast
<void> (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5174, __PRETTY_FUNCTION__))
;
5175
5176 // Look for 'void'. void is allowed only as a single parameter to a
5177 // function with no other parameters (C99 6.7.5.3p10). We record
5178 // int(void) as a FunctionProtoType with an empty parameter list.
5179 if (ParamTy->isVoidType()) {
5180 // If this is something like 'float(int, void)', reject it. 'void'
5181 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5182 // have parameters of incomplete type.
5183 if (FTI.NumParams != 1 || FTI.isVariadic) {
5184 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5185 ParamTy = Context.IntTy;
5186 Param->setType(ParamTy);
5187 } else if (FTI.Params[i].Ident) {
5188 // Reject, but continue to parse 'int(void abc)'.
5189 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5190 ParamTy = Context.IntTy;
5191 Param->setType(ParamTy);
5192 } else {
5193 // Reject, but continue to parse 'float(const void)'.
5194 if (ParamTy.hasQualifiers())
5195 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5196
5197 // Do not add 'void' to the list.
5198 break;
5199 }
5200 } else if (ParamTy->isHalfType()) {
5201 // Disallow half FP parameters.
5202 // FIXME: This really should be in BuildFunctionType.
5203 if (S.getLangOpts().OpenCL) {
5204 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
5205 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5206 << ParamTy << 0;
5207 D.setInvalidType();
5208 Param->setInvalidDecl();
5209 }
5210 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5211 S.Diag(Param->getLocation(),
5212 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5213 D.setInvalidType();
5214 }
5215 } else if (!FTI.hasPrototype) {
5216 if (ParamTy->isPromotableIntegerType()) {
5217 ParamTy = Context.getPromotedIntegerType(ParamTy);
5218 Param->setKNRPromoted(true);
5219 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5220 if (BTy->getKind() == BuiltinType::Float) {
5221 ParamTy = Context.DoubleTy;
5222 Param->setKNRPromoted(true);
5223 }
5224 }
5225 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5226 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5227 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5228 << ParamTy << 1 /*hint off*/;
5229 D.setInvalidType();
5230 }
5231
5232 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5233 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5234 HasAnyInterestingExtParameterInfos = true;
5235 }
5236
5237 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5238 ExtParameterInfos[i] =
5239 ExtParameterInfos[i].withABI(attr->getABI());
5240 HasAnyInterestingExtParameterInfos = true;
5241 }
5242
5243 if (Param->hasAttr<PassObjectSizeAttr>()) {
5244 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5245 HasAnyInterestingExtParameterInfos = true;
5246 }
5247
5248 if (Param->hasAttr<NoEscapeAttr>()) {
5249 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5250 HasAnyInterestingExtParameterInfos = true;
5251 }
5252
5253 ParamTys.push_back(ParamTy);
5254 }
5255
5256 if (HasAnyInterestingExtParameterInfos) {
5257 EPI.ExtParameterInfos = ExtParameterInfos.data();
5258 checkExtParameterInfos(S, ParamTys, EPI,
5259 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5260 }
5261
5262 SmallVector<QualType, 4> Exceptions;
5263 SmallVector<ParsedType, 2> DynamicExceptions;
5264 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5265 Expr *NoexceptExpr = nullptr;
5266
5267 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5268 // FIXME: It's rather inefficient to have to split into two vectors
5269 // here.
5270 unsigned N = FTI.getNumExceptions();
5271 DynamicExceptions.reserve(N);
5272 DynamicExceptionRanges.reserve(N);
5273 for (unsigned I = 0; I != N; ++I) {
5274 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5275 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5276 }
5277 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5278 NoexceptExpr = FTI.NoexceptExpr;
5279 }
5280
5281 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5282 FTI.getExceptionSpecType(),
5283 DynamicExceptions,
5284 DynamicExceptionRanges,
5285 NoexceptExpr,
5286 Exceptions,
5287 EPI.ExceptionSpec);
5288
5289 // FIXME: Set address space from attrs for C++ mode here.
5290 // OpenCLCPlusPlus: A class member function has an address space.
5291 auto IsClassMember = [&]() {
5292 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5293 state.getDeclarator()
5294 .getCXXScopeSpec()
5295 .getScopeRep()
5296 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5297 state.getDeclarator().getContext() ==
5298 DeclaratorContext::Member ||
5299 state.getDeclarator().getContext() ==
5300 DeclaratorContext::LambdaExpr;
5301 };
5302
5303 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5304 LangAS ASIdx = LangAS::Default;
5305 // Take address space attr if any and mark as invalid to avoid adding
5306 // them later while creating QualType.
5307 if (FTI.MethodQualifiers)
5308 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5309 LangAS ASIdxNew = attr.asOpenCLLangAS();
5310 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5311 attr.getLoc()))
5312 D.setInvalidType(true);
5313 else
5314 ASIdx = ASIdxNew;
5315 }
5316 // If a class member function's address space is not set, set it to
5317 // __generic.
5318 LangAS AS =
5319 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5320 : ASIdx);
5321 EPI.TypeQuals.addAddressSpace(AS);
5322 }
5323 T = Context.getFunctionType(T, ParamTys, EPI);
5324 }
5325 break;
5326 }
5327 case DeclaratorChunk::MemberPointer: {
5328 // The scope spec must refer to a class, or be dependent.
5329 CXXScopeSpec &SS = DeclType.Mem.Scope();
5330 QualType ClsType;
5331
5332 // Handle pointer nullability.
5333 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5334 DeclType.EndLoc, DeclType.getAttrs(),
5335 state.getDeclarator().getAttributePool());
5336
5337 if (SS.isInvalid()) {
5338 // Avoid emitting extra errors if we already errored on the scope.
5339 D.setInvalidType(true);
5340 } else if (S.isDependentScopeSpecifier(SS) ||
5341 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5342 NestedNameSpecifier *NNS = SS.getScopeRep();
5343 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5344 switch (NNS->getKind()) {
5345 case NestedNameSpecifier::Identifier:
5346 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5347 NNS->getAsIdentifier());
5348 break;
5349
5350 case NestedNameSpecifier::Namespace:
5351 case NestedNameSpecifier::NamespaceAlias:
5352 case NestedNameSpecifier::Global:
5353 case NestedNameSpecifier::Super:
5354 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5354)
;
5355
5356 case NestedNameSpecifier::TypeSpec:
5357 case NestedNameSpecifier::TypeSpecWithTemplate:
5358 ClsType = QualType(NNS->getAsType(), 0);
5359 // Note: if the NNS has a prefix and ClsType is a nondependent
5360 // TemplateSpecializationType, then the NNS prefix is NOT included
5361 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5362 // NOTE: in particular, no wrap occurs if ClsType already is an
5363 // Elaborated, DependentName, or DependentTemplateSpecialization.
5364 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5365 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5366 break;
5367 }
5368 } else {
5369 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5370 diag::err_illegal_decl_mempointer_in_nonclass)
5371 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5372 << DeclType.Mem.Scope().getRange();
5373 D.setInvalidType(true);
5374 }
5375
5376 if (!ClsType.isNull())
5377 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5378 D.getIdentifier());
5379 if (T.isNull()) {
5380 T = Context.IntTy;
5381 D.setInvalidType(true);
5382 } else if (DeclType.Mem.TypeQuals) {
5383 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5384 }
5385 break;
5386 }
5387
5388 case DeclaratorChunk::Pipe: {
5389 T = S.BuildReadPipeType(T, DeclType.Loc);
5390 processTypeAttrs(state, T, TAL_DeclSpec,
5391 D.getMutableDeclSpec().getAttributes());
5392 break;
5393 }
5394 }
5395
5396 if (T.isNull()) {
5397 D.setInvalidType(true);
5398 T = Context.IntTy;
5399 }
5400
5401 // See if there are any attributes on this declarator chunk.
5402 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5403
5404 if (DeclType.Kind != DeclaratorChunk::Paren) {
5405 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5406 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5407
5408 ExpectNoDerefChunk = state.didParseNoDeref();
5409 }
5410 }
5411
5412 if (ExpectNoDerefChunk)
5413 S.Diag(state.getDeclarator().getBeginLoc(),
5414 diag::warn_noderef_on_non_pointer_or_array);
5415
5416 // GNU warning -Wstrict-prototypes
5417 // Warn if a function declaration is without a prototype.
5418 // This warning is issued for all kinds of unprototyped function
5419 // declarations (i.e. function type typedef, function pointer etc.)
5420 // C99 6.7.5.3p14:
5421 // The empty list in a function declarator that is not part of a definition
5422 // of that function specifies that no information about the number or types
5423 // of the parameters is supplied.
5424 if (!LangOpts.CPlusPlus &&
5425 D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) {
5426 bool IsBlock = false;
5427 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5428 switch (DeclType.Kind) {
5429 case DeclaratorChunk::BlockPointer:
5430 IsBlock = true;
5431 break;
5432 case DeclaratorChunk::Function: {
5433 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5434 // We supress the warning when there's no LParen location, as this
5435 // indicates the declaration was an implicit declaration, which gets
5436 // warned about separately via -Wimplicit-function-declaration.
5437 if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5438 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5439 << IsBlock
5440 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5441 IsBlock = false;
5442 break;
5443 }
5444 default:
5445 break;
5446 }
5447 }
5448 }
5449
5450 assert(!T.isNull() && "T must not be null after this point")((!T.isNull() && "T must not be null after this point"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5450, __PRETTY_FUNCTION__))
;
5451
5452 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5453 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5454 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? static_cast<void> (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5454, __PRETTY_FUNCTION__))
;
5455
5456 // C++ 8.3.5p4:
5457 // A cv-qualifier-seq shall only be part of the function type
5458 // for a nonstatic member function, the function type to which a pointer
5459 // to member refers, or the top-level function type of a function typedef
5460 // declaration.
5461 //
5462 // Core issue 547 also allows cv-qualifiers on function types that are
5463 // top-level template type arguments.
5464 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5465 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5466 Kind = DeductionGuide;
5467 else if (!D.getCXXScopeSpec().isSet()) {
5468 if ((D.getContext() == DeclaratorContext::Member ||
5469 D.getContext() == DeclaratorContext::LambdaExpr) &&
5470 !D.getDeclSpec().isFriendSpecified())
5471 Kind = Member;
5472 } else {
5473 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5474 if (!DC || DC->isRecord())
5475 Kind = Member;
5476 }
5477
5478 // C++11 [dcl.fct]p6 (w/DR1417):
5479 // An attempt to specify a function type with a cv-qualifier-seq or a
5480 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5481 // - the function type for a non-static member function,
5482 // - the function type to which a pointer to member refers,
5483 // - the top-level function type of a function typedef declaration or
5484 // alias-declaration,
5485 // - the type-id in the default argument of a type-parameter, or
5486 // - the type-id of a template-argument for a type-parameter
5487 //
5488 // FIXME: Checking this here is insufficient. We accept-invalid on:
5489 //
5490 // template<typename T> struct S { void f(T); };
5491 // S<int() const> s;
5492 //
5493 // ... for instance.
5494 if (IsQualifiedFunction &&
5495 !(Kind == Member &&
5496 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5497 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5498 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5499 SourceLocation Loc = D.getBeginLoc();
5500 SourceRange RemovalRange;
5501 unsigned I;
5502 if (D.isFunctionDeclarator(I)) {
5503 SmallVector<SourceLocation, 4> RemovalLocs;
5504 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5505 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5505, __PRETTY_FUNCTION__))
;
5506
5507 if (Chunk.Fun.hasRefQualifier())
5508 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5509
5510 if (Chunk.Fun.hasMethodTypeQualifiers())
5511 Chunk.Fun.MethodQualifiers->forEachQualifier(
5512 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5513 SourceLocation SL) { RemovalLocs.push_back(SL); });
5514
5515 if (!RemovalLocs.empty()) {
5516 llvm::sort(RemovalLocs,
5517 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5518 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5519 Loc = RemovalLocs.front();
5520 }
5521 }
5522
5523 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5524 << Kind << D.isFunctionDeclarator() << T
5525 << getFunctionQualifiersAsString(FnTy)
5526 << FixItHint::CreateRemoval(RemovalRange);
5527
5528 // Strip the cv-qualifiers and ref-qualifiers from the type.
5529 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5530 EPI.TypeQuals.removeCVRQualifiers();
5531 EPI.RefQualifier = RQ_None;
5532
5533 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5534 EPI);
5535 // Rebuild any parens around the identifier in the function type.
5536 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5537 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5538 break;
5539 T = S.BuildParenType(T);
5540 }
5541 }
5542 }
5543
5544 // Apply any undistributed attributes from the declarator.
5545 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5546
5547 // Diagnose any ignored type attributes.
5548 state.diagnoseIgnoredTypeAttrs(T);
5549
5550 // C++0x [dcl.constexpr]p9:
5551 // A constexpr specifier used in an object declaration declares the object
5552 // as const.
5553 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5554 T->isObjectType())
5555 T.addConst();
5556
5557 // C++2a [dcl.fct]p4:
5558 // A parameter with volatile-qualified type is deprecated
5559 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5560 (D.getContext() == DeclaratorContext::Prototype ||
5561 D.getContext() == DeclaratorContext::LambdaExprParameter))
5562 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5563
5564 // If there was an ellipsis in the declarator, the declaration declares a
5565 // parameter pack whose type may be a pack expansion type.
5566 if (D.hasEllipsis()) {
5567 // C++0x [dcl.fct]p13:
5568 // A declarator-id or abstract-declarator containing an ellipsis shall
5569 // only be used in a parameter-declaration. Such a parameter-declaration
5570 // is a parameter pack (14.5.3). [...]
5571 switch (D.getContext()) {
5572 case DeclaratorContext::Prototype:
5573 case DeclaratorContext::LambdaExprParameter:
5574 case DeclaratorContext::RequiresExpr:
5575 // C++0x [dcl.fct]p13:
5576 // [...] When it is part of a parameter-declaration-clause, the
5577 // parameter pack is a function parameter pack (14.5.3). The type T
5578 // of the declarator-id of the function parameter pack shall contain
5579 // a template parameter pack; each template parameter pack in T is
5580 // expanded by the function parameter pack.
5581 //
5582 // We represent function parameter packs as function parameters whose
5583 // type is a pack expansion.
5584 if (!T->containsUnexpandedParameterPack() &&
5585 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5586 S.Diag(D.getEllipsisLoc(),
5587 diag::err_function_parameter_pack_without_parameter_packs)
5588 << T << D.getSourceRange();
5589 D.setEllipsisLoc(SourceLocation());
5590 } else {
5591 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5592 }
5593 break;
5594 case DeclaratorContext::TemplateParam:
5595 // C++0x [temp.param]p15:
5596 // If a template-parameter is a [...] is a parameter-declaration that
5597 // declares a parameter pack (8.3.5), then the template-parameter is a
5598 // template parameter pack (14.5.3).
5599 //
5600 // Note: core issue 778 clarifies that, if there are any unexpanded
5601 // parameter packs in the type of the non-type template parameter, then
5602 // it expands those parameter packs.
5603 if (T->containsUnexpandedParameterPack())
5604 T = Context.getPackExpansionType(T, None);
5605 else
5606 S.Diag(D.getEllipsisLoc(),
5607 LangOpts.CPlusPlus11
5608 ? diag::warn_cxx98_compat_variadic_templates
5609 : diag::ext_variadic_templates);
5610 break;
5611
5612 case DeclaratorContext::File:
5613 case DeclaratorContext::KNRTypeList:
5614 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5615 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5616 case DeclaratorContext::TypeName:
5617 case DeclaratorContext::FunctionalCast:
5618 case DeclaratorContext::CXXNew:
5619 case DeclaratorContext::AliasDecl:
5620 case DeclaratorContext::AliasTemplate:
5621 case DeclaratorContext::Member:
5622 case DeclaratorContext::Block:
5623 case DeclaratorContext::ForInit:
5624 case DeclaratorContext::SelectionInit:
5625 case DeclaratorContext::Condition:
5626 case DeclaratorContext::CXXCatch:
5627 case DeclaratorContext::ObjCCatch:
5628 case DeclaratorContext::BlockLiteral:
5629 case DeclaratorContext::LambdaExpr:
5630 case DeclaratorContext::ConversionId:
5631 case DeclaratorContext::TrailingReturn:
5632 case DeclaratorContext::TrailingReturnVar:
5633 case DeclaratorContext::TemplateArg:
5634 case DeclaratorContext::TemplateTypeArg:
5635 // FIXME: We may want to allow parameter packs in block-literal contexts
5636 // in the future.
5637 S.Diag(D.getEllipsisLoc(),
5638 diag::err_ellipsis_in_declarator_not_parameter);
5639 D.setEllipsisLoc(SourceLocation());
5640 break;
5641 }
5642 }
5643
5644 assert(!T.isNull() && "T must not be null at the end of this function")((!T.isNull() && "T must not be null at the end of this function"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5644, __PRETTY_FUNCTION__))
;
5645 if (D.isInvalidType())
5646 return Context.getTrivialTypeSourceInfo(T);
5647
5648 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5649}
5650
5651/// GetTypeForDeclarator - Convert the type for the specified
5652/// declarator to Type instances.
5653///
5654/// The result of this call will never be null, but the associated
5655/// type may be a null type if there's an unrecoverable error.
5656TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5657 // Determine the type of the declarator. Not all forms of declarator
5658 // have a type.
5659
5660 TypeProcessingState state(*this, D);
5661
5662 TypeSourceInfo *ReturnTypeInfo = nullptr;
5663 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5664 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5665 inferARCWriteback(state, T);
5666
5667 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5668}
5669
5670static void transferARCOwnershipToDeclSpec(Sema &S,
5671 QualType &declSpecTy,
5672 Qualifiers::ObjCLifetime ownership) {
5673 if (declSpecTy->isObjCRetainableType() &&
5674 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5675 Qualifiers qs;
5676 qs.addObjCLifetime(ownership);
5677 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5678 }
5679}
5680
5681static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5682 Qualifiers::ObjCLifetime ownership,
5683 unsigned chunkIndex) {
5684 Sema &S = state.getSema();
5685 Declarator &D = state.getDeclarator();
5686
5687 // Look for an explicit lifetime attribute.
5688 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5689 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5690 return;
5691
5692 const char *attrStr = nullptr;
5693 switch (ownership) {
5694 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5694)
;
5695 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5696 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5697 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5698 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5699 }
5700
5701 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5702 Arg->Ident = &S.Context.Idents.get(attrStr);
5703 Arg->Loc = SourceLocation();
5704
5705 ArgsUnion Args(Arg);
5706
5707 // If there wasn't one, add one (with an invalid source location
5708 // so that we don't make an AttributedType for it).
5709 ParsedAttr *attr = D.getAttributePool().create(
5710 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5711 /*scope*/ nullptr, SourceLocation(),
5712 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5713 chunk.getAttrs().addAtEnd(attr);
5714 // TODO: mark whether we did this inference?
5715}
5716
5717/// Used for transferring ownership in casts resulting in l-values.
5718static void transferARCOwnership(TypeProcessingState &state,
5719 QualType &declSpecTy,
5720 Qualifiers::ObjCLifetime ownership) {
5721 Sema &S = state.getSema();
5722 Declarator &D = state.getDeclarator();
5723
5724 int inner = -1;
5725 bool hasIndirection = false;
5726 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5727 DeclaratorChunk &chunk = D.getTypeObject(i);
5728 switch (chunk.Kind) {
5729 case DeclaratorChunk::Paren:
5730 // Ignore parens.
5731 break;
5732
5733 case DeclaratorChunk::Array:
5734 case DeclaratorChunk::Reference:
5735 case DeclaratorChunk::Pointer:
5736 if (inner != -1)
5737 hasIndirection = true;
5738 inner = i;
5739 break;
5740
5741 case DeclaratorChunk::BlockPointer:
5742 if (inner != -1)
5743 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5744 return;
5745
5746 case DeclaratorChunk::Function:
5747 case DeclaratorChunk::MemberPointer:
5748 case DeclaratorChunk::Pipe:
5749 return;
5750 }
5751 }
5752
5753 if (inner == -1)
5754 return;
5755
5756 DeclaratorChunk &chunk = D.getTypeObject(inner);
5757 if (chunk.Kind == DeclaratorChunk::Pointer) {
5758 if (declSpecTy->isObjCRetainableType())
5759 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5760 if (declSpecTy->isObjCObjectType() && hasIndirection)
5761 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5762 } else {
5763 assert(chunk.Kind == DeclaratorChunk::Array ||((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5764, __PRETTY_FUNCTION__))
5764 chunk.Kind == DeclaratorChunk::Reference)((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5764, __PRETTY_FUNCTION__))
;
5765 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5766 }
5767}
5768
5769TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5770 TypeProcessingState state(*this, D);
5771
5772 TypeSourceInfo *ReturnTypeInfo = nullptr;
5773 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5774
5775 if (getLangOpts().ObjC) {
5776 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5777 if (ownership != Qualifiers::OCL_None)
5778 transferARCOwnership(state, declSpecTy, ownership);
5779 }
5780
5781 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5782}
5783
5784static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5785 TypeProcessingState &State) {
5786 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5787}
5788
5789namespace {
5790 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5791 Sema &SemaRef;
5792 ASTContext &Context;
5793 TypeProcessingState &State;
5794 const DeclSpec &DS;
5795
5796 public:
5797 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5798 const DeclSpec &DS)
5799 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5800
5801 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5802 Visit(TL.getModifiedLoc());
5803 fillAttributedTypeLoc(TL, State);
5804 }
5805 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5806 Visit(TL.getInnerLoc());
5807 TL.setExpansionLoc(
5808 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5809 }
5810 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5811 Visit(TL.getUnqualifiedLoc());
5812 }
5813 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5814 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5815 }
5816 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5817 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5818 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5819 // addition field. What we have is good enough for dispay of location
5820 // of 'fixit' on interface name.
5821 TL.setNameEndLoc(DS.getEndLoc());
5822 }
5823 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5824 TypeSourceInfo *RepTInfo = nullptr;
5825 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5826 TL.copy(RepTInfo->getTypeLoc());
5827 }
5828 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5829 TypeSourceInfo *RepTInfo = nullptr;
5830 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5831 TL.copy(RepTInfo->getTypeLoc());
5832 }
5833 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5834 TypeSourceInfo *TInfo = nullptr;
5835 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5836
5837 // If we got no declarator info from previous Sema routines,
5838 // just fill with the typespec loc.
5839 if (!TInfo) {
5840 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5841 return;
5842 }
5843
5844 TypeLoc OldTL = TInfo->getTypeLoc();
5845 if (TInfo->getType()->getAs<ElaboratedType>()) {
5846 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5847 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5848 .castAs<TemplateSpecializationTypeLoc>();
5849 TL.copy(NamedTL);
5850 } else {
5851 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5852 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc
>().getRAngleLoc()) ? static_cast<void> (0) : __assert_fail
("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5852, __PRETTY_FUNCTION__))
;
5853 }
5854
5855 }
5856 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5857 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5857, __PRETTY_FUNCTION__))
;
5858 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5859 TL.setParensRange(DS.getTypeofParensRange());
5860 }
5861 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5862 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((DS.getTypeSpecType() == DeclSpec::TST_typeofType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5862, __PRETTY_FUNCTION__))
;
5863 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5864 TL.setParensRange(DS.getTypeofParensRange());
5865 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5865, __PRETTY_FUNCTION__))
;
5866 TypeSourceInfo *TInfo = nullptr;
5867 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5868 TL.setUnderlyingTInfo(TInfo);
5869 }
5870 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5871 // FIXME: This holds only because we only have one unary transform.
5872 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((DS.getTypeSpecType() == DeclSpec::TST_underlyingType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5872, __PRETTY_FUNCTION__))
;
5873 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5874 TL.setParensRange(DS.getTypeofParensRange());
5875 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5875, __PRETTY_FUNCTION__))
;
5876 TypeSourceInfo *TInfo = nullptr;
5877 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5878 TL.setUnderlyingTInfo(TInfo);
5879 }
5880 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5881 // By default, use the source location of the type specifier.
5882 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5883 if (TL.needsExtraLocalData()) {
5884 // Set info for the written builtin specifiers.
5885 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5886 // Try to have a meaningful source location.
5887 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5888 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5889 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5890 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5891 }
5892 }
5893 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5894 ElaboratedTypeKeyword Keyword
5895 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5896 if (DS.getTypeSpecType() == TST_typename) {
5897 TypeSourceInfo *TInfo = nullptr;
5898 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5899 if (TInfo) {
5900 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5901 return;
5902 }
5903 }
5904 TL.setElaboratedKeywordLoc(Keyword != ETK_None
5905 ? DS.getTypeSpecTypeLoc()
5906 : SourceLocation());
5907 const CXXScopeSpec& SS = DS.getTypeSpecScope();
5908 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5909 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5910 }
5911 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5912 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5912, __PRETTY_FUNCTION__))
;
5913 TypeSourceInfo *TInfo = nullptr;
5914 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5915 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5915, __PRETTY_FUNCTION__))
;
5916 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5917 }
5918 void VisitDependentTemplateSpecializationTypeLoc(
5919 DependentTemplateSpecializationTypeLoc TL) {
5920 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5920, __PRETTY_FUNCTION__))
;
5921 TypeSourceInfo *TInfo = nullptr;
5922 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5923 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5923, __PRETTY_FUNCTION__))
;
5924 TL.copy(
5925 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5926 }
5927 void VisitAutoTypeLoc(AutoTypeLoc TL) {
5928 assert(DS.getTypeSpecType() == TST_auto ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5931, __PRETTY_FUNCTION__))
5929 DS.getTypeSpecType() == TST_decltype_auto ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5931, __PRETTY_FUNCTION__))
5930 DS.getTypeSpecType() == TST_auto_type ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5931, __PRETTY_FUNCTION__))
5931 DS.getTypeSpecType() == TST_unspecified)((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5931, __PRETTY_FUNCTION__))
;
5932 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5933 if (!DS.isConstrainedAuto())
5934 return;
5935 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
5936 if (DS.getTypeSpecScope().isNotEmpty())
5937 TL.setNestedNameSpecifierLoc(
5938 DS.getTypeSpecScope().getWithLocInContext(Context));
5939 else
5940 TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
5941 TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
5942 TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
5943 TL.setFoundDecl(nullptr);
5944 TL.setLAngleLoc(TemplateId->LAngleLoc);
5945 TL.setRAngleLoc(TemplateId->RAngleLoc);
5946 if (TemplateId->NumArgs == 0)
5947 return;
5948 TemplateArgumentListInfo TemplateArgsInfo;
5949 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5950 TemplateId->NumArgs);
5951 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
5952 for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
5953 TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
5954 }
5955 void VisitTagTypeLoc(TagTypeLoc TL) {
5956 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5957 }
5958 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5959 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5960 // or an _Atomic qualifier.
5961 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5962 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5963 TL.setParensRange(DS.getTypeofParensRange());
5964
5965 TypeSourceInfo *TInfo = nullptr;
5966 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5967 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 5967, __PRETTY_FUNCTION__))
;
5968 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5969 } else {
5970 TL.setKWLoc(DS.getAtomicSpecLoc());
5971 // No parens, to indicate this was spelled as an _Atomic qualifier.
5972 TL.setParensRange(SourceRange());
5973 Visit(TL.getValueLoc());
5974 }
5975 }
5976
5977 void VisitPipeTypeLoc(PipeTypeLoc TL) {
5978 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5979
5980 TypeSourceInfo *TInfo = nullptr;
5981 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5982 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5983 }
5984
5985 void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
5986 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5987 }
5988
5989 void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) {
5990 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5991 }
5992
5993 void VisitTypeLoc(TypeLoc TL) {
5994 // FIXME: add other typespec types and change this to an assert.
5995 TL.initialize(Context, DS.getTypeSpecTypeLoc());
5996 }
5997 };
5998
5999 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6000 ASTContext &Context;
6001 TypeProcessingState &State;
6002 const DeclaratorChunk &Chunk;
6003
6004 public:
6005 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6006 const DeclaratorChunk &Chunk)
6007 : Context(Context), State(State), Chunk(Chunk) {}
6008
6009 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6010 llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6010)
;
6011 }
6012 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6013 llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6013)
;
6014 }
6015
6016 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6017 fillAttributedTypeLoc(TL, State);
6018 }
6019 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6020 // nothing
6021 }
6022 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6023 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((Chunk.Kind == DeclaratorChunk::BlockPointer) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6023, __PRETTY_FUNCTION__))
;
6024 TL.setCaretLoc(Chunk.Loc);
6025 }
6026 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6027 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6027, __PRETTY_FUNCTION__))
;
6028 TL.setStarLoc(Chunk.Loc);
6029 }
6030 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6031 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6031, __PRETTY_FUNCTION__))
;
6032 TL.setStarLoc(Chunk.Loc);
6033 }
6034 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6035 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((Chunk.Kind == DeclaratorChunk::MemberPointer) ? static_cast
<void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6035, __PRETTY_FUNCTION__))
;
6036 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6037 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6038
6039 const Type* ClsTy = TL.getClass();
6040 QualType ClsQT = QualType(ClsTy, 0);
6041 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6042 // Now copy source location info into the type loc component.
6043 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6044 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6045 case NestedNameSpecifier::Identifier:
6046 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc"
) ? static_cast<void> (0) : __assert_fail ("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6046, __PRETTY_FUNCTION__))
;
6047 {
6048 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6049 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6050 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6051 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6052 }
6053 break;
6054
6055 case NestedNameSpecifier::TypeSpec:
6056 case NestedNameSpecifier::TypeSpecWithTemplate:
6057 if (isa<ElaboratedType>(ClsTy)) {
6058 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6059 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6060 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6061 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6062 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6063 } else {
6064 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6065 }
6066 break;
6067
6068 case NestedNameSpecifier::Namespace:
6069 case NestedNameSpecifier::NamespaceAlias:
6070 case NestedNameSpecifier::Global:
6071 case NestedNameSpecifier::Super:
6072 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6072)
;
6073 }
6074
6075 // Finally fill in MemberPointerLocInfo fields.
6076 TL.setStarLoc(SourceLocation::getFromRawEncoding(Chunk.Mem.StarLoc));
6077 TL.setClassTInfo(ClsTInfo);
6078 }
6079 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6080 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6080, __PRETTY_FUNCTION__))
;
6081 // 'Amp' is misleading: this might have been originally
6082 /// spelled with AmpAmp.
6083 TL.setAmpLoc(Chunk.Loc);
6084 }
6085 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6086 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6086, __PRETTY_FUNCTION__))
;
6087 assert(!Chunk.Ref.LValueRef)((!Chunk.Ref.LValueRef) ? static_cast<void> (0) : __assert_fail
("!Chunk.Ref.LValueRef", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6087, __PRETTY_FUNCTION__))
;
6088 TL.setAmpAmpLoc(Chunk.Loc);
6089 }
6090 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6091 assert(Chunk.Kind == DeclaratorChunk::Array)((Chunk.Kind == DeclaratorChunk::Array) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6091, __PRETTY_FUNCTION__))
;
6092 TL.setLBracketLoc(Chunk.Loc);
6093 TL.setRBracketLoc(Chunk.EndLoc);
6094 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6095 }
6096 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6097 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6097, __PRETTY_FUNCTION__))
;
6098 TL.setLocalRangeBegin(Chunk.Loc);
6099 TL.setLocalRangeEnd(Chunk.EndLoc);
6100
6101 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6102 TL.setLParenLoc(FTI.getLParenLoc());
6103 TL.setRParenLoc(FTI.getRParenLoc());
6104 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6105 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6106 TL.setParam(tpi++, Param);
6107 }
6108 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6109 }
6110 void VisitParenTypeLoc(ParenTypeLoc TL) {
6111 assert(Chunk.Kind == DeclaratorChunk::Paren)((Chunk.Kind == DeclaratorChunk::Paren) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6111, __PRETTY_FUNCTION__))
;
6112 TL.setLParenLoc(Chunk.Loc);
6113 TL.setRParenLoc(Chunk.EndLoc);
6114 }
6115 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6116 assert(Chunk.Kind == DeclaratorChunk::Pipe)((Chunk.Kind == DeclaratorChunk::Pipe) ? static_cast<void>
(0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6116, __PRETTY_FUNCTION__))
;
6117 TL.setKWLoc(Chunk.Loc);
6118 }
6119 void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6120 TL.setNameLoc(Chunk.Loc);
6121 }
6122 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6123 TL.setExpansionLoc(Chunk.Loc);
6124 }
6125
6126 void VisitTypeLoc(TypeLoc TL) {
6127 llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6127)
;
6128 }
6129 };
6130} // end anonymous namespace
6131
6132static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6133 SourceLocation Loc;
6134 switch (Chunk.Kind) {
6135 case DeclaratorChunk::Function:
6136 case DeclaratorChunk::Array:
6137 case DeclaratorChunk::Paren:
6138 case DeclaratorChunk::Pipe:
6139 llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6139)
;
6140
6141 case DeclaratorChunk::Pointer:
6142 Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
6143 break;
6144
6145 case DeclaratorChunk::BlockPointer:
6146 case DeclaratorChunk::Reference:
6147 case DeclaratorChunk::MemberPointer:
6148 // FIXME: Provide a source location for the _Atomic keyword.
6149 break;
6150 }
6151
6152 ATL.setKWLoc(Loc);
6153 ATL.setParensRange(SourceRange());
6154}
6155
6156static void
6157fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6158 const ParsedAttributesView &Attrs) {
6159 for (const ParsedAttr &AL : Attrs) {
6160 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6161 DASTL.setAttrNameLoc(AL.getLoc());
6162 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6163 DASTL.setAttrOperandParensRange(SourceRange());
6164 return;
6165 }
6166 }
6167
6168 llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6169)
6169 "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6169)
;
6170}
6171
6172static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6173 const ParsedAttributesView &Attrs) {
6174 for (const ParsedAttr &AL : Attrs) {
6175 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6176 MTL.setAttrNameLoc(AL.getLoc());
6177 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6178 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6179 MTL.setAttrOperandParensRange(SourceRange());
6180 return;
6181 }
6182 }
6183
6184 llvm_unreachable("no matrix_type attribute found at the expected location!")::llvm::llvm_unreachable_internal("no matrix_type attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6184)
;
6185}
6186
6187/// Create and instantiate a TypeSourceInfo with type source information.
6188///
6189/// \param T QualType referring to the type as written in source code.
6190///
6191/// \param ReturnTypeInfo For declarators whose return type does not show
6192/// up in the normal place in the declaration specifiers (such as a C++
6193/// conversion function), this pointer will refer to a type source information
6194/// for that return type.
6195static TypeSourceInfo *
6196GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6197 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6198 Sema &S = State.getSema();
6199 Declarator &D = State.getDeclarator();
6200
6201 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6202 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6203
6204 // Handle parameter packs whose type is a pack expansion.
6205 if (isa<PackExpansionType>(T)) {
6206 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6207 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6208 }
6209
6210 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6211 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6212 // declarator chunk.
6213 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6214 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6215 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6216 }
6217
6218 while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
6219 TL.setExpansionLoc(
6220 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6221 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6222 }
6223
6224 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
6225 fillAttributedTypeLoc(TL, State);
6226 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6227 }
6228
6229 while (DependentAddressSpaceTypeLoc TL =
6230 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
6231 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6232 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6233 }
6234
6235 if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>())
6236 fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs());
6237
6238 // FIXME: Ordering here?
6239 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
6240 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6241
6242 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6243 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6244 }
6245
6246 // If we have different source information for the return type, use
6247 // that. This really only applies to C++ conversion functions.
6248 if (ReturnTypeInfo) {
6249 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6250 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((TL.getFullDataSize() == CurrTL.getFullDataSize()) ? static_cast
<void> (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6250, __PRETTY_FUNCTION__))
;
6251 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6252 } else {
6253 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6254 }
6255
6256 return TInfo;
6257}
6258
6259/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6260ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6261 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6262 // and Sema during declaration parsing. Try deallocating/caching them when
6263 // it's appropriate, instead of allocating them and keeping them around.
6264 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6265 TypeAlignment);
6266 new (LocT) LocInfoType(T, TInfo);
6267 assert(LocT->getTypeClass() != T->getTypeClass() &&((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6268, __PRETTY_FUNCTION__))
6268 "LocInfoType's TypeClass conflicts with an existing Type class")((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6268, __PRETTY_FUNCTION__))
;
6269 return ParsedType::make(QualType(LocT, 0));
6270}
6271
6272void LocInfoType::getAsStringInternal(std::string &Str,
6273 const PrintingPolicy &Policy) const {
6274 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6276)
6275 " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6276)
6276 " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6276)
;
6277}
6278
6279TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6280 // C99 6.7.6: Type names have no identifier. This is already validated by
6281 // the parser.
6282 assert(D.getIdentifier() == nullptr &&((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6283, __PRETTY_FUNCTION__))
6283 "Type name should have no identifier!")((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6283, __PRETTY_FUNCTION__))
;
6284
6285 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6286 QualType T = TInfo->getType();
6287 if (D.isInvalidType())
6288 return true;
6289
6290 // Make sure there are no unused decl attributes on the declarator.
6291 // We don't want to do this for ObjC parameters because we're going
6292 // to apply them to the actual parameter declaration.
6293 // Likewise, we don't want to do this for alias declarations, because
6294 // we are actually going to build a declaration from this eventually.
6295 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6296 D.getContext() != DeclaratorContext::AliasDecl &&
6297 D.getContext() != DeclaratorContext::AliasTemplate)
6298 checkUnusedDeclAttributes(D);
6299
6300 if (getLangOpts().CPlusPlus) {
6301 // Check that there are no default arguments (C++ only).
6302 CheckExtraCXXDefaultArguments(D);
6303 }
6304
6305 return CreateParsedType(T, TInfo);
6306}
6307
6308ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6309 QualType T = Context.getObjCInstanceType();
6310 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6311 return CreateParsedType(T, TInfo);
6312}
6313
6314//===----------------------------------------------------------------------===//
6315// Type Attribute Processing
6316//===----------------------------------------------------------------------===//
6317
6318/// Build an AddressSpace index from a constant expression and diagnose any
6319/// errors related to invalid address_spaces. Returns true on successfully
6320/// building an AddressSpace index.
6321static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6322 const Expr *AddrSpace,
6323 SourceLocation AttrLoc) {
6324 if (!AddrSpace->isValueDependent()) {
6325 Optional<llvm::APSInt> OptAddrSpace =
6326 AddrSpace->getIntegerConstantExpr(S.Context);
6327 if (!OptAddrSpace) {
6328 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6329 << "'address_space'" << AANT_ArgumentIntegerConstant
6330 << AddrSpace->getSourceRange();
6331 return false;
6332 }
6333 llvm::APSInt &addrSpace = *OptAddrSpace;
6334
6335 // Bounds checking.
6336 if (addrSpace.isSigned()) {
6337 if (addrSpace.isNegative()) {
6338 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6339 << AddrSpace->getSourceRange();
6340 return false;
6341 }
6342 addrSpace.setIsSigned(false);
6343 }
6344
6345 llvm::APSInt max(addrSpace.getBitWidth());
6346 max =
6347 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6348 if (addrSpace > max) {
6349 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6350 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6351 return false;
6352 }
6353
6354 ASIdx =
6355 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6356 return true;
6357 }
6358
6359 // Default value for DependentAddressSpaceTypes
6360 ASIdx = LangAS::Default;
6361 return true;
6362}
6363
6364/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6365/// is uninstantiated. If instantiated it will apply the appropriate address
6366/// space to the type. This function allows dependent template variables to be
6367/// used in conjunction with the address_space attribute
6368QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6369 SourceLocation AttrLoc) {
6370 if (!AddrSpace->isValueDependent()) {
6371 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6372 AttrLoc))
6373 return QualType();
6374
6375 return Context.getAddrSpaceQualType(T, ASIdx);
6376 }
6377
6378 // A check with similar intentions as checking if a type already has an
6379 // address space except for on a dependent types, basically if the
6380 // current type is already a DependentAddressSpaceType then its already
6381 // lined up to have another address space on it and we can't have
6382 // multiple address spaces on the one pointer indirection
6383 if (T->getAs<DependentAddressSpaceType>()) {
6384 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6385 return QualType();
6386 }
6387
6388 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6389}
6390
6391QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6392 SourceLocation AttrLoc) {
6393 LangAS ASIdx;
6394 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6395 return QualType();
6396 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6397}
6398
6399/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6400/// specified type. The attribute contains 1 argument, the id of the address
6401/// space for the type.
6402static void HandleAddressSpaceTypeAttribute(QualType &Type,
6403 const ParsedAttr &Attr,
6404 TypeProcessingState &State) {
6405 Sema &S = State.getSema();
6406
6407 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6408 // qualified by an address-space qualifier."
6409 if (Type->isFunctionType()) {
6410 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6411 Attr.setInvalid();
6412 return;
6413 }
6414
6415 LangAS ASIdx;
6416 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6417
6418 // Check the attribute arguments.
6419 if (Attr.getNumArgs() != 1) {
6420 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6421 << 1;
6422 Attr.setInvalid();
6423 return;
6424 }
6425
6426 Expr *ASArgExpr;
6427 if (Attr.isArgIdent(0)) {
6428 // Special case where the argument is a template id.
6429 CXXScopeSpec SS;
6430 SourceLocation TemplateKWLoc;
6431 UnqualifiedId id;
6432 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6433
6434 ExprResult AddrSpace = S.ActOnIdExpression(
6435 S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
6436 /*IsAddressOfOperand=*/false);
6437 if (AddrSpace.isInvalid())
6438 return;
6439
6440 ASArgExpr = static_cast<Expr *>(AddrSpace.get());
6441 } else {
6442 ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6443 }
6444
6445 LangAS ASIdx;
6446 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6447 Attr.setInvalid();
6448 return;
6449 }
6450
6451 ASTContext &Ctx = S.Context;
6452 auto *ASAttr =
6453 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6454
6455 // If the expression is not value dependent (not templated), then we can
6456 // apply the address space qualifiers just to the equivalent type.
6457 // Otherwise, we make an AttributedType with the modified and equivalent
6458 // type the same, and wrap it in a DependentAddressSpaceType. When this
6459 // dependent type is resolved, the qualifier is added to the equivalent type
6460 // later.
6461 QualType T;
6462 if (!ASArgExpr->isValueDependent()) {
6463 QualType EquivType =
6464 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6465 if (EquivType.isNull()) {
6466 Attr.setInvalid();
6467 return;
6468 }
6469 T = State.getAttributedType(ASAttr, Type, EquivType);
6470 } else {
6471 T = State.getAttributedType(ASAttr, Type, Type);
6472 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6473 }
6474
6475 if (!T.isNull())
6476 Type = T;
6477 else
6478 Attr.setInvalid();
6479 } else {
6480 // The keyword-based type attributes imply which address space to use.
6481 ASIdx = Attr.asOpenCLLangAS();
6482 if (ASIdx == LangAS::Default)
6483 llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6483)
;
6484
6485 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6486 Attr.getLoc())) {
6487 Attr.setInvalid();
6488 return;
6489 }
6490
6491 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6492 }
6493}
6494
6495/// handleObjCOwnershipTypeAttr - Process an objc_ownership
6496/// attribute on the specified type.
6497///
6498/// Returns 'true' if the attribute was handled.
6499static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6500 ParsedAttr &attr, QualType &type) {
6501 bool NonObjCPointer = false;
6502
6503 if (!type->isDependentType() && !type->isUndeducedType()) {
6504 if (const PointerType *ptr = type->getAs<PointerType>()) {
6505 QualType pointee = ptr->getPointeeType();
6506 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6507 return false;
6508 // It is important not to lose the source info that there was an attribute
6509 // applied to non-objc pointer. We will create an attributed type but
6510 // its type will be the same as the original type.
6511 NonObjCPointer = true;
6512 } else if (!type->isObjCRetainableType()) {
6513 return false;
6514 }
6515
6516 // Don't accept an ownership attribute in the declspec if it would
6517 // just be the return type of a block pointer.
6518 if (state.isProcessingDeclSpec()) {
6519 Declarator &D = state.getDeclarator();
6520 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6521 /*onlyBlockPointers=*/true))
6522 return false;
6523 }
6524 }
6525
6526 Sema &S = state.getSema();
6527 SourceLocation AttrLoc = attr.getLoc();
6528 if (AttrLoc.isMacroID())
6529 AttrLoc =
6530 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6531
6532 if (!attr.isArgIdent(0)) {
6533 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6534 << AANT_ArgumentString;
6535 attr.setInvalid();
6536 return true;
6537 }
6538
6539 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6540 Qualifiers::ObjCLifetime lifetime;
6541 if (II->isStr("none"))
6542 lifetime = Qualifiers::OCL_ExplicitNone;
6543 else if (II->isStr("strong"))
6544 lifetime = Qualifiers::OCL_Strong;
6545 else if (II->isStr("weak"))
6546 lifetime = Qualifiers::OCL_Weak;
6547 else if (II->isStr("autoreleasing"))
6548 lifetime = Qualifiers::OCL_Autoreleasing;
6549 else {
6550 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6551 attr.setInvalid();
6552 return true;
6553 }
6554
6555 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6556 // outside of ARC mode.
6557 if (!S.getLangOpts().ObjCAutoRefCount &&
6558 lifetime != Qualifiers::OCL_Weak &&
6559 lifetime != Qualifiers::OCL_ExplicitNone) {
6560 return true;
6561 }
6562
6563 SplitQualType underlyingType = type.split();
6564
6565 // Check for redundant/conflicting ownership qualifiers.
6566 if (Qualifiers::ObjCLifetime previousLifetime
6567 = type.getQualifiers().getObjCLifetime()) {
6568 // If it's written directly, that's an error.
6569 if (S.Context.hasDirectOwnershipQualifier(type)) {
6570 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6571 << type;
6572 return true;
6573 }
6574
6575 // Otherwise, if the qualifiers actually conflict, pull sugar off
6576 // and remove the ObjCLifetime qualifiers.
6577 if (previousLifetime != lifetime) {
6578 // It's possible to have multiple local ObjCLifetime qualifiers. We
6579 // can't stop after we reach a type that is directly qualified.
6580 const Type *prevTy = nullptr;
6581 while (!prevTy || prevTy != underlyingType.Ty) {
6582 prevTy = underlyingType.Ty;
6583 underlyingType = underlyingType.getSingleStepDesugaredType();
6584 }
6585 underlyingType.Quals.removeObjCLifetime();
6586 }
6587 }
6588
6589 underlyingType.Quals.addObjCLifetime(lifetime);
6590
6591 if (NonObjCPointer) {
6592 StringRef name = attr.getAttrName()->getName();
6593 switch (lifetime) {
6594 case Qualifiers::OCL_None:
6595 case Qualifiers::OCL_ExplicitNone:
6596 break;
6597 case Qualifiers::OCL_Strong: name = "__strong"; break;
6598 case Qualifiers::OCL_Weak: name = "__weak"; break;
6599 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6600 }
6601 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6602 << TDS_ObjCObjOrBlock << type;
6603 }
6604
6605 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6606 // because having both 'T' and '__unsafe_unretained T' exist in the type
6607 // system causes unfortunate widespread consistency problems. (For example,
6608 // they're not considered compatible types, and we mangle them identicially
6609 // as template arguments.) These problems are all individually fixable,
6610 // but it's easier to just not add the qualifier and instead sniff it out
6611 // in specific places using isObjCInertUnsafeUnretainedType().
6612 //
6613 // Doing this does means we miss some trivial consistency checks that
6614 // would've triggered in ARC, but that's better than trying to solve all
6615 // the coexistence problems with __unsafe_unretained.
6616 if (!S.getLangOpts().ObjCAutoRefCount &&
6617 lifetime == Qualifiers::OCL_ExplicitNone) {
6618 type = state.getAttributedType(
6619 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6620 type, type);
6621 return true;
6622 }
6623
6624 QualType origType = type;
6625 if (!NonObjCPointer)
6626 type = S.Context.getQualifiedType(underlyingType);
6627
6628 // If we have a valid source location for the attribute, use an
6629 // AttributedType instead.
6630 if (AttrLoc.isValid()) {
6631 type = state.getAttributedType(::new (S.Context)
6632 ObjCOwnershipAttr(S.Context, attr, II),
6633 origType, type);
6634 }
6635
6636 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6637 unsigned diagnostic, QualType type) {
6638 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6639 S.DelayedDiagnostics.add(
6640 sema::DelayedDiagnostic::makeForbiddenType(
6641 S.getSourceManager().getExpansionLoc(loc),
6642 diagnostic, type, /*ignored*/ 0));
6643 } else {
6644 S.Diag(loc, diagnostic);
6645 }
6646 };
6647
6648 // Sometimes, __weak isn't allowed.
6649 if (lifetime == Qualifiers::OCL_Weak &&
6650 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6651
6652 // Use a specialized diagnostic if the runtime just doesn't support them.
6653 unsigned diagnostic =
6654 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6655 : diag::err_arc_weak_no_runtime);
6656
6657 // In any case, delay the diagnostic until we know what we're parsing.
6658 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6659
6660 attr.setInvalid();
6661 return true;
6662 }
6663
6664 // Forbid __weak for class objects marked as
6665 // objc_arc_weak_reference_unavailable
6666 if (lifetime == Qualifiers::OCL_Weak) {
6667 if (const ObjCObjectPointerType *ObjT =
6668 type->getAs<ObjCObjectPointerType>()) {
6669 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6670 if (Class->isArcWeakrefUnavailable()) {
6671 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6672 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6673 diag::note_class_declared);
6674 }
6675 }
6676 }
6677 }
6678
6679 return true;
6680}
6681
6682/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6683/// attribute on the specified type. Returns true to indicate that
6684/// the attribute was handled, false to indicate that the type does
6685/// not permit the attribute.
6686static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6687 QualType &type) {
6688 Sema &S = state.getSema();
6689
6690 // Delay if this isn't some kind of pointer.
6691 if (!type->isPointerType() &&
6692 !type->isObjCObjectPointerType() &&
6693 !type->isBlockPointerType())
6694 return false;
6695
6696 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6697 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6698 attr.setInvalid();
6699 return true;
6700 }
6701
6702 // Check the attribute arguments.
6703 if (!attr.isArgIdent(0)) {
6704 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6705 << attr << AANT_ArgumentString;
6706 attr.setInvalid();
6707 return true;
6708 }
6709 Qualifiers::GC GCAttr;
6710 if (attr.getNumArgs() > 1) {
6711 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6712 << 1;
6713 attr.setInvalid();
6714 return true;
6715 }
6716
6717 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6718 if (II->isStr("weak"))
6719 GCAttr = Qualifiers::Weak;
6720 else if (II->isStr("strong"))
6721 GCAttr = Qualifiers::Strong;
6722 else {
6723 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6724 << attr << II;
6725 attr.setInvalid();
6726 return true;
6727 }
6728
6729 QualType origType = type;
6730 type = S.Context.getObjCGCQualType(origType, GCAttr);
6731
6732 // Make an attributed type to preserve the source information.
6733 if (attr.getLoc().isValid())
6734 type = state.getAttributedType(
6735 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6736
6737 return true;
6738}
6739
6740namespace {
6741 /// A helper class to unwrap a type down to a function for the
6742 /// purposes of applying attributes there.
6743 ///
6744 /// Use:
6745 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6746 /// if (unwrapped.isFunctionType()) {
6747 /// const FunctionType *fn = unwrapped.get();
6748 /// // change fn somehow
6749 /// T = unwrapped.wrap(fn);
6750 /// }
6751 struct FunctionTypeUnwrapper {
6752 enum WrapKind {
6753 Desugar,
6754 Attributed,
6755 Parens,
6756 Array,
6757 Pointer,
6758 BlockPointer,
6759 Reference,
6760 MemberPointer,
6761 MacroQualified,
6762 };
6763
6764 QualType Original;
6765 const FunctionType *Fn;
6766 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6767
6768 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6769 while (true) {
6770 const Type *Ty = T.getTypePtr();
6771 if (isa<FunctionType>(Ty)) {
6772 Fn = cast<FunctionType>(Ty);
6773 return;
6774 } else if (isa<ParenType>(Ty)) {
6775 T = cast<ParenType>(Ty)->getInnerType();
6776 Stack.push_back(Parens);
6777 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6778 isa<IncompleteArrayType>(Ty)) {
6779 T = cast<ArrayType>(Ty)->getElementType();
6780 Stack.push_back(Array);
6781 } else if (isa<PointerType>(Ty)) {
6782 T = cast<PointerType>(Ty)->getPointeeType();
6783 Stack.push_back(Pointer);
6784 } else if (isa<BlockPointerType>(Ty)) {
6785 T = cast<BlockPointerType>(Ty)->getPointeeType();
6786 Stack.push_back(BlockPointer);
6787 } else if (isa<MemberPointerType>(Ty)) {
6788 T = cast<MemberPointerType>(Ty)->getPointeeType();
6789 Stack.push_back(MemberPointer);
6790 } else if (isa<ReferenceType>(Ty)) {
6791 T = cast<ReferenceType>(Ty)->getPointeeType();
6792 Stack.push_back(Reference);
6793 } else if (isa<AttributedType>(Ty)) {
6794 T = cast<AttributedType>(Ty)->getEquivalentType();
6795 Stack.push_back(Attributed);
6796 } else if (isa<MacroQualifiedType>(Ty)) {
6797 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6798 Stack.push_back(MacroQualified);
6799 } else {
6800 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6801 if (Ty == DTy) {
6802 Fn = nullptr;
6803 return;
6804 }
6805
6806 T = QualType(DTy, 0);
6807 Stack.push_back(Desugar);
6808 }
6809 }
6810 }
6811
6812 bool isFunctionType() const { return (Fn != nullptr); }
6813 const FunctionType *get() const { return Fn; }
6814
6815 QualType wrap(Sema &S, const FunctionType *New) {
6816 // If T wasn't modified from the unwrapped type, do nothing.
6817 if (New == get()) return Original;
6818
6819 Fn = New;
6820 return wrap(S.Context, Original, 0);
6821 }
6822
6823 private:
6824 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6825 if (I == Stack.size())
6826 return C.getQualifiedType(Fn, Old.getQualifiers());
6827
6828 // Build up the inner type, applying the qualifiers from the old
6829 // type to the new type.
6830 SplitQualType SplitOld = Old.split();
6831
6832 // As a special case, tail-recurse if there are no qualifiers.
6833 if (SplitOld.Quals.empty())
6834 return wrap(C, SplitOld.Ty, I);
6835 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6836 }
6837
6838 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6839 if (I == Stack.size()) return QualType(Fn, 0);
6840
6841 switch (static_cast<WrapKind>(Stack[I++])) {
6842 case Desugar:
6843 // This is the point at which we potentially lose source
6844 // information.
6845 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6846
6847 case Attributed:
6848 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6849
6850 case Parens: {
6851 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6852 return C.getParenType(New);
6853 }
6854
6855 case MacroQualified:
6856 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6857
6858 case Array: {
6859 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6860 QualType New = wrap(C, CAT->getElementType(), I);
6861 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6862 CAT->getSizeModifier(),
6863 CAT->getIndexTypeCVRQualifiers());
6864 }
6865
6866 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6867 QualType New = wrap(C, VAT->getElementType(), I);
6868 return C.getVariableArrayType(
6869 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6870 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6871 }
6872
6873 const auto *IAT = cast<IncompleteArrayType>(Old);
6874 QualType New = wrap(C, IAT->getElementType(), I);
6875 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
6876 IAT->getIndexTypeCVRQualifiers());
6877 }
6878
6879 case Pointer: {
6880 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6881 return C.getPointerType(New);
6882 }
6883
6884 case BlockPointer: {
6885 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6886 return C.getBlockPointerType(New);
6887 }
6888
6889 case MemberPointer: {
6890 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6891 QualType New = wrap(C, OldMPT->getPointeeType(), I);
6892 return C.getMemberPointerType(New, OldMPT->getClass());
6893 }
6894
6895 case Reference: {
6896 const ReferenceType *OldRef = cast<ReferenceType>(Old);
6897 QualType New = wrap(C, OldRef->getPointeeType(), I);
6898 if (isa<LValueReferenceType>(OldRef))
6899 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6900 else
6901 return C.getRValueReferenceType(New);
6902 }
6903 }
6904
6905 llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6905)
;
6906 }
6907 };
6908} // end anonymous namespace
6909
6910static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6911 ParsedAttr &PAttr, QualType &Type) {
6912 Sema &S = State.getSema();
6913
6914 Attr *A;
6915 switch (PAttr.getKind()) {
6916 default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 6916)
;
6917 case ParsedAttr::AT_Ptr32:
6918 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6919 break;
6920 case ParsedAttr::AT_Ptr64:
6921 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6922 break;
6923 case ParsedAttr::AT_SPtr:
6924 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6925 break;
6926 case ParsedAttr::AT_UPtr:
6927 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6928 break;
6929 }
6930
6931 std::bitset<attr::LastAttr> Attrs;
6932 attr::Kind NewAttrKind = A->getKind();
6933 QualType Desugared = Type;
6934 const AttributedType *AT = dyn_cast<AttributedType>(Type);
6935 while (AT) {
6936 Attrs[AT->getAttrKind()] = true;
6937 Desugared = AT->getModifiedType();
6938 AT = dyn_cast<AttributedType>(Desugared);
6939 }
6940
6941 // You cannot specify duplicate type attributes, so if the attribute has
6942 // already been applied, flag it.
6943 if (Attrs[NewAttrKind]) {
6944 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
6945 return true;
6946 }
6947 Attrs[NewAttrKind] = true;
6948
6949 // You cannot have both __sptr and __uptr on the same type, nor can you
6950 // have __ptr32 and __ptr64.
6951 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
6952 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6953 << "'__ptr32'"
6954 << "'__ptr64'";
6955 return true;
6956 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
6957 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6958 << "'__sptr'"
6959 << "'__uptr'";
6960 return true;
6961 }
6962
6963 // Pointer type qualifiers can only operate on pointer types, but not
6964 // pointer-to-member types.
6965 //
6966 // FIXME: Should we really be disallowing this attribute if there is any
6967 // type sugar between it and the pointer (other than attributes)? Eg, this
6968 // disallows the attribute on a parenthesized pointer.
6969 // And if so, should we really allow *any* type attribute?
6970 if (!isa<PointerType>(Desugared)) {
6971 if (Type->isMemberPointerType())
6972 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6973 else
6974 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6975 return true;
6976 }
6977
6978 // Add address space to type based on its attributes.
6979 LangAS ASIdx = LangAS::Default;
6980 uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
6981 if (PtrWidth == 32) {
6982 if (Attrs[attr::Ptr64])
6983 ASIdx = LangAS::ptr64;
6984 else if (Attrs[attr::UPtr])
6985 ASIdx = LangAS::ptr32_uptr;
6986 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
6987 if (Attrs[attr::UPtr])
6988 ASIdx = LangAS::ptr32_uptr;
6989 else
6990 ASIdx = LangAS::ptr32_sptr;
6991 }
6992
6993 QualType Pointee = Type->getPointeeType();
6994 if (ASIdx != LangAS::Default)
6995 Pointee = S.Context.getAddrSpaceQualType(
6996 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
6997 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
6998 return false;
6999}
7000
7001/// Map a nullability attribute kind to a nullability kind.
7002static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7003 switch (kind) {
7004 case ParsedAttr::AT_TypeNonNull:
7005 return NullabilityKind::NonNull;
7006
7007 case ParsedAttr::AT_TypeNullable:
7008 return NullabilityKind::Nullable;
7009
7010 case ParsedAttr::AT_TypeNullUnspecified:
7011 return NullabilityKind::Unspecified;
7012
7013 default:
7014 llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7014)
;
7015 }
7016}
7017
7018/// Applies a nullability type specifier to the given type, if possible.
7019///
7020/// \param state The type processing state.
7021///
7022/// \param type The type to which the nullability specifier will be
7023/// added. On success, this type will be updated appropriately.
7024///
7025/// \param attr The attribute as written on the type.
7026///
7027/// \param allowOnArrayType Whether to accept nullability specifiers on an
7028/// array type (e.g., because it will decay to a pointer).
7029///
7030/// \returns true if a problem has been diagnosed, false on success.
7031static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7032 QualType &type,
7033 ParsedAttr &attr,
7034 bool allowOnArrayType) {
7035 Sema &S = state.getSema();
7036
7037 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7038 SourceLocation nullabilityLoc = attr.getLoc();
7039 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7040
7041 recordNullabilitySeen(S, nullabilityLoc);
7042
7043 // Check for existing nullability attributes on the type.
7044 QualType desugared = type;
7045 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7046 // Check whether there is already a null
7047 if (auto existingNullability = attributed->getImmediateNullability()) {
7048 // Duplicated nullability.
7049 if (nullability == *existingNullability) {
7050 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7051 << DiagNullabilityKind(nullability, isContextSensitive)
7052 << FixItHint::CreateRemoval(nullabilityLoc);
7053
7054 break;
7055 }
7056
7057 // Conflicting nullability.
7058 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7059 << DiagNullabilityKind(nullability, isContextSensitive)
7060 << DiagNullabilityKind(*existingNullability, false);
7061 return true;
7062 }
7063
7064 desugared = attributed->getModifiedType();
7065 }
7066
7067 // If there is already a different nullability specifier, complain.
7068 // This (unlike the code above) looks through typedefs that might
7069 // have nullability specifiers on them, which means we cannot
7070 // provide a useful Fix-It.
7071 if (auto existingNullability = desugared->getNullability(S.Context)) {
7072 if (nullability != *existingNullability) {
7073 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7074 << DiagNullabilityKind(nullability, isContextSensitive)
7075 << DiagNullabilityKind(*existingNullability, false);
7076
7077 // Try to find the typedef with the existing nullability specifier.
7078 if (auto typedefType = desugared->getAs<TypedefType>()) {
7079 TypedefNameDecl *typedefDecl = typedefType->getDecl();
7080 QualType underlyingType = typedefDecl->getUnderlyingType();
7081 if (auto typedefNullability
7082 = AttributedType::stripOuterNullability(underlyingType)) {
7083 if (*typedefNullability == *existingNullability) {
7084 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7085 << DiagNullabilityKind(*existingNullability, false);
7086 }
7087 }
7088 }
7089
7090 return true;
7091 }
7092 }
7093
7094 // If this definitely isn't a pointer type, reject the specifier.
7095 if (!desugared->canHaveNullability() &&
7096 !(allowOnArrayType && desugared->isArrayType())) {
7097 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7098 << DiagNullabilityKind(nullability, isContextSensitive) << type;
7099 return true;
7100 }
7101
7102 // For the context-sensitive keywords/Objective-C property
7103 // attributes, require that the type be a single-level pointer.
7104 if (isContextSensitive) {
7105 // Make sure that the pointee isn't itself a pointer type.
7106 const Type *pointeeType = nullptr;
7107 if (desugared->isArrayType())
7108 pointeeType = desugared->getArrayElementTypeNoTypeQual();
7109 else if (desugared->isAnyPointerType())
7110 pointeeType = desugared->getPointeeType().getTypePtr();
7111
7112 if (pointeeType && (pointeeType->isAnyPointerType() ||
7113 pointeeType->isObjCObjectPointerType() ||
7114 pointeeType->isMemberPointerType())) {
7115 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7116 << DiagNullabilityKind(nullability, true)
7117 << type;
7118 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7119 << DiagNullabilityKind(nullability, false)
7120 << type
7121 << FixItHint::CreateReplacement(nullabilityLoc,
7122 getNullabilitySpelling(nullability));
7123 return true;
7124 }
7125 }
7126
7127 // Form the attributed type.
7128 type = state.getAttributedType(
7129 createNullabilityAttr(S.Context, attr, nullability), type, type);
7130 return false;
7131}
7132
7133/// Check the application of the Objective-C '__kindof' qualifier to
7134/// the given type.
7135static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7136 ParsedAttr &attr) {
7137 Sema &S = state.getSema();
7138
7139 if (isa<ObjCTypeParamType>(type)) {
7140 // Build the attributed type to record where __kindof occurred.
7141 type = state.getAttributedType(
7142 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7143 return false;
7144 }
7145
7146 // Find out if it's an Objective-C object or object pointer type;
7147 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7148 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7149 : type->getAs<ObjCObjectType>();
7150
7151 // If not, we can't apply __kindof.
7152 if (!objType) {
7153 // FIXME: Handle dependent types that aren't yet object types.
7154 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7155 << type;
7156 return true;
7157 }
7158
7159 // Rebuild the "equivalent" type, which pushes __kindof down into
7160 // the object type.
7161 // There is no need to apply kindof on an unqualified id type.
7162 QualType equivType = S.Context.getObjCObjectType(
7163 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7164 objType->getProtocols(),
7165 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7166
7167 // If we started with an object pointer type, rebuild it.
7168 if (ptrType) {
7169 equivType = S.Context.getObjCObjectPointerType(equivType);
7170 if (auto nullability = type->getNullability(S.Context)) {
7171 // We create a nullability attribute from the __kindof attribute.
7172 // Make sure that will make sense.
7173 assert(attr.getAttributeSpellingListIndex() == 0 &&((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7174, __PRETTY_FUNCTION__))
7174 "multiple spellings for __kindof?")((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7174, __PRETTY_FUNCTION__))
;
7175 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7176 A->setImplicit(true);
7177 equivType = state.getAttributedType(A, equivType, equivType);
7178 }
7179 }
7180
7181 // Build the attributed type to record where __kindof occurred.
7182 type = state.getAttributedType(
7183 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7184 return false;
7185}
7186
7187/// Distribute a nullability type attribute that cannot be applied to
7188/// the type specifier to a pointer, block pointer, or member pointer
7189/// declarator, complaining if necessary.
7190///
7191/// \returns true if the nullability annotation was distributed, false
7192/// otherwise.
7193static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7194 QualType type, ParsedAttr &attr) {
7195 Declarator &declarator = state.getDeclarator();
7196
7197 /// Attempt to move the attribute to the specified chunk.
7198 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7199 // If there is already a nullability attribute there, don't add
7200 // one.
7201 if (hasNullabilityAttr(chunk.getAttrs()))
7202 return false;
7203
7204 // Complain about the nullability qualifier being in the wrong
7205 // place.
7206 enum {
7207 PK_Pointer,
7208 PK_BlockPointer,
7209 PK_MemberPointer,
7210 PK_FunctionPointer,
7211 PK_MemberFunctionPointer,
7212 } pointerKind
7213 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7214 : PK_Pointer)
7215 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7216 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7217
7218 auto diag = state.getSema().Diag(attr.getLoc(),
7219 diag::warn_nullability_declspec)
7220 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7221 attr.isContextSensitiveKeywordAttribute())
7222 << type
7223 << static_cast<unsigned>(pointerKind);
7224
7225 // FIXME: MemberPointer chunks don't carry the location of the *.
7226 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7227 diag << FixItHint::CreateRemoval(attr.getLoc())
7228 << FixItHint::CreateInsertion(
7229 state.getSema().getPreprocessor().getLocForEndOfToken(
7230 chunk.Loc),
7231 " " + attr.getAttrName()->getName().str() + " ");
7232 }
7233
7234 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7235 chunk.getAttrs());
7236 return true;
7237 };
7238
7239 // Move it to the outermost pointer, member pointer, or block
7240 // pointer declarator.
7241 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7242 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7243 switch (chunk.Kind) {
7244 case DeclaratorChunk::Pointer:
7245 case DeclaratorChunk::BlockPointer:
7246 case DeclaratorChunk::MemberPointer:
7247 return moveToChunk(chunk, false);
7248
7249 case DeclaratorChunk::Paren:
7250 case DeclaratorChunk::Array:
7251 continue;
7252
7253 case DeclaratorChunk::Function:
7254 // Try to move past the return type to a function/block/member
7255 // function pointer.
7256 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7257 declarator, i,
7258 /*onlyBlockPointers=*/false)) {
7259 return moveToChunk(*dest, true);
7260 }
7261
7262 return false;
7263
7264 // Don't walk through these.
7265 case DeclaratorChunk::Reference:
7266 case DeclaratorChunk::Pipe:
7267 return false;
7268 }
7269 }
7270
7271 return false;
7272}
7273
7274static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7275 assert(!Attr.isInvalid())((!Attr.isInvalid()) ? static_cast<void> (0) : __assert_fail
("!Attr.isInvalid()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7275, __PRETTY_FUNCTION__))
;
7276 switch (Attr.getKind()) {
7277 default:
7278 llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7278)
;
7279 case ParsedAttr::AT_CDecl:
7280 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7281 case ParsedAttr::AT_FastCall:
7282 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7283 case ParsedAttr::AT_StdCall:
7284 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7285 case ParsedAttr::AT_ThisCall:
7286 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7287 case ParsedAttr::AT_RegCall:
7288 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7289 case ParsedAttr::AT_Pascal:
7290 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7291 case ParsedAttr::AT_SwiftCall:
7292 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7293 case ParsedAttr::AT_VectorCall:
7294 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7295 case ParsedAttr::AT_AArch64VectorPcs:
7296 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7297 case ParsedAttr::AT_Pcs: {
7298 // The attribute may have had a fixit applied where we treated an
7299 // identifier as a string literal. The contents of the string are valid,
7300 // but the form may not be.
7301 StringRef Str;
7302 if (Attr.isArgExpr(0))
7303 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7304 else
7305 Str = Attr.getArgAsIdent(0)->Ident->getName();
7306 PcsAttr::PCSType Type;
7307 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7308 llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7308)
;
7309 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7310 }
7311 case ParsedAttr::AT_IntelOclBicc:
7312 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7313 case ParsedAttr::AT_MSABI:
7314 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7315 case ParsedAttr::AT_SysVABI:
7316 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7317 case ParsedAttr::AT_PreserveMost:
7318 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7319 case ParsedAttr::AT_PreserveAll:
7320 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7321 }
7322 llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7322)
;
7323}
7324
7325/// Process an individual function attribute. Returns true to
7326/// indicate that the attribute was handled, false if it wasn't.
7327static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7328 QualType &type) {
7329 Sema &S = state.getSema();
7330
7331 FunctionTypeUnwrapper unwrapped(S, type);
7332
7333 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7334 if (S.CheckAttrNoArgs(attr))
7335 return true;
7336
7337 // Delay if this is not a function type.
7338 if (!unwrapped.isFunctionType())
7339 return false;
7340
7341 // Otherwise we can process right away.
7342 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7343 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7344 return true;
7345 }
7346
7347 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7348 // Delay if this is not a function type.
7349 if (!unwrapped.isFunctionType())
7350 return false;
7351
7352 // Ignore if we don't have CMSE enabled.
7353 if (!S.getLangOpts().Cmse) {
7354 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7355 attr.setInvalid();
7356 return true;
7357 }
7358
7359 // Otherwise we can process right away.
7360 FunctionType::ExtInfo EI =
7361 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7362 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7363 return true;
7364 }
7365
7366 // ns_returns_retained is not always a type attribute, but if we got
7367 // here, we're treating it as one right now.
7368 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7369 if (attr.getNumArgs()) return true;
7370
7371 // Delay if this is not a function type.
7372 if (!unwrapped.isFunctionType())
7373 return false;
7374
7375 // Check whether the return type is reasonable.
7376 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7377 unwrapped.get()->getReturnType()))
7378 return true;
7379
7380 // Only actually change the underlying type in ARC builds.
7381 QualType origType = type;
7382 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7383 FunctionType::ExtInfo EI
7384 = unwrapped.get()->getExtInfo().withProducesResult(true);
7385 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7386 }
7387 type = state.getAttributedType(
7388 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7389 origType, type);
7390 return true;
7391 }
7392
7393 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7394 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7395 return true;
7396
7397 // Delay if this is not a function type.
7398 if (!unwrapped.isFunctionType())
7399 return false;
7400
7401 FunctionType::ExtInfo EI =
7402 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7403 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7404 return true;
7405 }
7406
7407 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7408 if (!S.getLangOpts().CFProtectionBranch) {
7409 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7410 attr.setInvalid();
7411 return true;
7412 }
7413
7414 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7415 return true;
7416
7417 // If this is not a function type, warning will be asserted by subject
7418 // check.
7419 if (!unwrapped.isFunctionType())
7420 return true;
7421
7422 FunctionType::ExtInfo EI =
7423 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7424 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7425 return true;
7426 }
7427
7428 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7429 unsigned value;
7430 if (S.CheckRegparmAttr(attr, value))
7431 return true;
7432
7433 // Delay if this is not a function type.
7434 if (!unwrapped.isFunctionType())
7435 return false;
7436
7437 // Diagnose regparm with fastcall.
7438 const FunctionType *fn = unwrapped.get();
7439 CallingConv CC = fn->getCallConv();
7440 if (CC == CC_X86FastCall) {
7441 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7442 << FunctionType::getNameForCallConv(CC)
7443 << "regparm";
7444 attr.setInvalid();
7445 return true;
7446 }
7447
7448 FunctionType::ExtInfo EI =
7449 unwrapped.get()->getExtInfo().withRegParm(value);
7450 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7451 return true;
7452 }
7453
7454 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7455 // Delay if this is not a function type.
7456 if (!unwrapped.isFunctionType())
7457 return false;
7458
7459 if (S.CheckAttrNoArgs(attr)) {
7460 attr.setInvalid();
7461 return true;
7462 }
7463
7464 // Otherwise we can process right away.
7465 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7466
7467 // MSVC ignores nothrow if it is in conflict with an explicit exception
7468 // specification.
7469 if (Proto->hasExceptionSpec()) {
7470 switch (Proto->getExceptionSpecType()) {
7471 case EST_None:
7472 llvm_unreachable("This doesn't have an exception spec!")::llvm::llvm_unreachable_internal("This doesn't have an exception spec!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7472)
;
7473
7474 case EST_DynamicNone:
7475 case EST_BasicNoexcept:
7476 case EST_NoexceptTrue:
7477 case EST_NoThrow:
7478 // Exception spec doesn't conflict with nothrow, so don't warn.
7479 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7480 case EST_Unparsed:
7481 case EST_Uninstantiated:
7482 case EST_DependentNoexcept:
7483 case EST_Unevaluated:
7484 // We don't have enough information to properly determine if there is a
7485 // conflict, so suppress the warning.
7486 break;
7487 case EST_Dynamic:
7488 case EST_MSAny:
7489 case EST_NoexceptFalse:
7490 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7491 break;
7492 }
7493 return true;
7494 }
7495
7496 type = unwrapped.wrap(
7497 S, S.Context
7498 .getFunctionTypeWithExceptionSpec(
7499 QualType{Proto, 0},
7500 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7501 ->getAs<FunctionType>());
7502 return true;
7503 }
7504
7505 // Delay if the type didn't work out to a function.
7506 if (!unwrapped.isFunctionType()) return false;
7507
7508 // Otherwise, a calling convention.
7509 CallingConv CC;
7510 if (S.CheckCallingConvAttr(attr, CC))
7511 return true;
7512
7513 const FunctionType *fn = unwrapped.get();
7514 CallingConv CCOld = fn->getCallConv();
7515 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7516
7517 if (CCOld != CC) {
7518 // Error out on when there's already an attribute on the type
7519 // and the CCs don't match.
7520 if (S.getCallingConvAttributedType(type)) {
7521 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7522 << FunctionType::getNameForCallConv(CC)
7523 << FunctionType::getNameForCallConv(CCOld);
7524 attr.setInvalid();
7525 return true;
7526 }
7527 }
7528
7529 // Diagnose use of variadic functions with calling conventions that
7530 // don't support them (e.g. because they're callee-cleanup).
7531 // We delay warning about this on unprototyped function declarations
7532 // until after redeclaration checking, just in case we pick up a
7533 // prototype that way. And apparently we also "delay" warning about
7534 // unprototyped function types in general, despite not necessarily having
7535 // much ability to diagnose it later.
7536 if (!supportsVariadicCall(CC)) {
7537 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7538 if (FnP && FnP->isVariadic()) {
7539 // stdcall and fastcall are ignored with a warning for GCC and MS
7540 // compatibility.
7541 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7542 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7543 << FunctionType::getNameForCallConv(CC)
7544 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7545
7546 attr.setInvalid();
7547 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7548 << FunctionType::getNameForCallConv(CC);
7549 }
7550 }
7551
7552 // Also diagnose fastcall with regparm.
7553 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7554 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7555 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7556 attr.setInvalid();
7557 return true;
7558 }
7559
7560 // Modify the CC from the wrapped function type, wrap it all back, and then
7561 // wrap the whole thing in an AttributedType as written. The modified type
7562 // might have a different CC if we ignored the attribute.
7563 QualType Equivalent;
7564 if (CCOld == CC) {
7565 Equivalent = type;
7566 } else {
7567 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7568 Equivalent =
7569 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7570 }
7571 type = state.getAttributedType(CCAttr, type, Equivalent);
7572 return true;
7573}
7574
7575bool Sema::hasExplicitCallingConv(QualType T) {
7576 const AttributedType *AT;
7577
7578 // Stop if we'd be stripping off a typedef sugar node to reach the
7579 // AttributedType.
7580 while ((AT = T->getAs<AttributedType>()) &&
7581 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7582 if (AT->isCallingConv())
7583 return true;
7584 T = AT->getModifiedType();
7585 }
7586 return false;
7587}
7588
7589void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7590 SourceLocation Loc) {
7591 FunctionTypeUnwrapper Unwrapped(*this, T);
7592 const FunctionType *FT = Unwrapped.get();
7593 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7594 cast<FunctionProtoType>(FT)->isVariadic());
7595 CallingConv CurCC = FT->getCallConv();
7596 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7597
7598 if (CurCC == ToCC)
7599 return;
7600
7601 // MS compiler ignores explicit calling convention attributes on structors. We
7602 // should do the same.
7603 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7604 // Issue a warning on ignored calling convention -- except of __stdcall.
7605 // Again, this is what MS compiler does.
7606 if (CurCC != CC_X86StdCall)
7607 Diag(Loc, diag::warn_cconv_unsupported)
7608 << FunctionType::getNameForCallConv(CurCC)
7609 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7610 // Default adjustment.
7611 } else {
7612 // Only adjust types with the default convention. For example, on Windows
7613 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7614 // __thiscall type to __cdecl for static methods.
7615 CallingConv DefaultCC =
7616 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7617
7618 if (CurCC != DefaultCC || DefaultCC == ToCC)
7619 return;
7620
7621 if (hasExplicitCallingConv(T))
7622 return;
7623 }
7624
7625 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7626 QualType Wrapped = Unwrapped.wrap(*this, FT);
7627 T = Context.getAdjustedType(T, Wrapped);
7628}
7629
7630/// HandleVectorSizeAttribute - this attribute is only applicable to integral
7631/// and float scalars, although arrays, pointers, and function return values are
7632/// allowed in conjunction with this construct. Aggregates with this attribute
7633/// are invalid, even if they are of the same size as a corresponding scalar.
7634/// The raw attribute should contain precisely 1 argument, the vector size for
7635/// the variable, measured in bytes. If curType and rawAttr are well formed,
7636/// this routine will return a new vector type.
7637static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7638 Sema &S) {
7639 // Check the attribute arguments.
7640 if (Attr.getNumArgs() != 1) {
7641 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7642 << 1;
7643 Attr.setInvalid();
7644 return;
7645 }
7646
7647 Expr *SizeExpr;
7648 // Special case where the argument is a template id.
7649 if (Attr.isArgIdent(0)) {
7650 CXXScopeSpec SS;
7651 SourceLocation TemplateKWLoc;
7652 UnqualifiedId Id;
7653 Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7654
7655 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7656 Id, /*HasTrailingLParen=*/false,
7657 /*IsAddressOfOperand=*/false);
7658
7659 if (Size.isInvalid())
7660 return;
7661 SizeExpr = Size.get();
7662 } else {
7663 SizeExpr = Attr.getArgAsExpr(0);
7664 }
7665
7666 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7667 if (!T.isNull())
7668 CurType = T;
7669 else
7670 Attr.setInvalid();
7671}
7672
7673/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7674/// a type.
7675static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7676 Sema &S) {
7677 // check the attribute arguments.
7678 if (Attr.getNumArgs() != 1) {
7679 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7680 << 1;
7681 return;
7682 }
7683
7684 Expr *sizeExpr;
7685
7686 // Special case where the argument is a template id.
7687 if (Attr.isArgIdent(0)) {
7688 CXXScopeSpec SS;
7689 SourceLocation TemplateKWLoc;
7690 UnqualifiedId id;
7691 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7692
7693 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7694 id, /*HasTrailingLParen=*/false,
7695 /*IsAddressOfOperand=*/false);
7696 if (Size.isInvalid())
7697 return;
7698
7699 sizeExpr = Size.get();
7700 } else {
7701 sizeExpr = Attr.getArgAsExpr(0);
7702 }
7703
7704 // Create the vector type.
7705 QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
7706 if (!T.isNull())
7707 CurType = T;
7708}
7709
7710static bool isPermittedNeonBaseType(QualType &Ty,
7711 VectorType::VectorKind VecKind, Sema &S) {
7712 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7713 if (!BTy)
7714 return false;
7715
7716 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7717
7718 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7719 // now.
7720 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7721 Triple.getArch() == llvm::Triple::aarch64_32 ||
7722 Triple.getArch() == llvm::Triple::aarch64_be;
7723 if (VecKind == VectorType::NeonPolyVector) {
7724 if (IsPolyUnsigned) {
7725 // AArch64 polynomial vectors are unsigned.
7726 return BTy->getKind() == BuiltinType::UChar ||
7727 BTy->getKind() == BuiltinType::UShort ||
7728 BTy->getKind() == BuiltinType::ULong ||
7729 BTy->getKind() == BuiltinType::ULongLong;
7730 } else {
7731 // AArch32 polynomial vectors are signed.
7732 return BTy->getKind() == BuiltinType::SChar ||
7733 BTy->getKind() == BuiltinType::Short ||
7734 BTy->getKind() == BuiltinType::LongLong;
7735 }
7736 }
7737
7738 // Non-polynomial vector types: the usual suspects are allowed, as well as
7739 // float64_t on AArch64.
7740 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
7741 BTy->getKind() == BuiltinType::Double)
7742 return true;
7743
7744 return BTy->getKind() == BuiltinType::SChar ||
7745 BTy->getKind() == BuiltinType::UChar ||
7746 BTy->getKind() == BuiltinType::Short ||
7747 BTy->getKind() == BuiltinType::UShort ||
7748 BTy->getKind() == BuiltinType::Int ||
7749 BTy->getKind() == BuiltinType::UInt ||
7750 BTy->getKind() == BuiltinType::Long ||
7751 BTy->getKind() == BuiltinType::ULong ||
7752 BTy->getKind() == BuiltinType::LongLong ||
7753 BTy->getKind() == BuiltinType::ULongLong ||
7754 BTy->getKind() == BuiltinType::Float ||
7755 BTy->getKind() == BuiltinType::Half ||
7756 BTy->getKind() == BuiltinType::BFloat16;
7757}
7758
7759static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
7760 llvm::APSInt &Result) {
7761 const auto *AttrExpr = Attr.getArgAsExpr(0);
7762 if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) {
7763 if (Optional<llvm::APSInt> Res =
7764 AttrExpr->getIntegerConstantExpr(S.Context)) {
7765 Result = *Res;
7766 return true;
7767 }
7768 }
7769 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7770 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
7771 Attr.setInvalid();
7772 return false;
7773}
7774
7775/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7776/// "neon_polyvector_type" attributes are used to create vector types that
7777/// are mangled according to ARM's ABI. Otherwise, these types are identical
7778/// to those created with the "vector_size" attribute. Unlike "vector_size"
7779/// the argument to these Neon attributes is the number of vector elements,
7780/// not the vector size in bytes. The vector width and element type must
7781/// match one of the standard Neon vector types.
7782static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7783 Sema &S, VectorType::VectorKind VecKind) {
7784 // Target must have NEON (or MVE, whose vectors are similar enough
7785 // not to need a separate attribute)
7786 if (!S.Context.getTargetInfo().hasFeature("neon") &&
7787 !S.Context.getTargetInfo().hasFeature("mve")) {
7788 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7789 Attr.setInvalid();
7790 return;
7791 }
7792 // Check the attribute arguments.
7793 if (Attr.getNumArgs() != 1) {
7794 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7795 << 1;
7796 Attr.setInvalid();
7797 return;
7798 }
7799 // The number of elements must be an ICE.
7800 llvm::APSInt numEltsInt(32);
7801 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
7802 return;
7803
7804 // Only certain element types are supported for Neon vectors.
7805 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7806 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7807 Attr.setInvalid();
7808 return;
7809 }
7810
7811 // The total size of the vector must be 64 or 128 bits.
7812 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7813 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7814 unsigned vecSize = typeSize * numElts;
7815 if (vecSize != 64 && vecSize != 128) {
7816 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7817 Attr.setInvalid();
7818 return;
7819 }
7820
7821 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7822}
7823
7824/// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
7825/// used to create fixed-length versions of sizeless SVE types defined by
7826/// the ACLE, such as svint32_t and svbool_t.
7827static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
7828 Sema &S) {
7829 // Target must have SVE.
7830 if (!S.Context.getTargetInfo().hasFeature("sve")) {
7831 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7832 Attr.setInvalid();
7833 return;
7834 }
7835
7836 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified.
7837 if (!S.getLangOpts().ArmSveVectorBits) {
7838 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
7839 << Attr;
7840 Attr.setInvalid();
7841 return;
7842 }
7843
7844 // Check the attribute arguments.
7845 if (Attr.getNumArgs() != 1) {
7846 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7847 << Attr << 1;
7848 Attr.setInvalid();
7849 return;
7850 }
7851
7852 // The vector size must be an integer constant expression.
7853 llvm::APSInt SveVectorSizeInBits(32);
7854 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
7855 return;
7856
7857 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
7858
7859 // The attribute vector size must match -msve-vector-bits.
7860 if (VecSize != S.getLangOpts().ArmSveVectorBits) {
7861 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
7862 << VecSize << S.getLangOpts().ArmSveVectorBits;
7863 Attr.setInvalid();
7864 return;
7865 }
7866
7867 // Attribute can only be attached to a single SVE vector or predicate type.
7868 if (!CurType->isVLSTBuiltinType()) {
7869 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
7870 << Attr << CurType;
7871 Attr.setInvalid();
7872 return;
7873 }
7874
7875 const auto *BT = CurType->castAs<BuiltinType>();
7876
7877 QualType EltType = CurType->getSveEltType(S.Context);
7878 unsigned TypeSize = S.Context.getTypeSize(EltType);
7879 VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
7880 if (BT->getKind() == BuiltinType::SveBool) {
7881 // Predicates are represented as i8.
7882 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
7883 VecKind = VectorType::SveFixedLengthPredicateVector;
7884 } else
7885 VecSize /= TypeSize;
7886 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
7887}
7888
7889static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
7890 QualType &CurType,
7891 ParsedAttr &Attr) {
7892 const VectorType *VT = dyn_cast<VectorType>(CurType);
7893 if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
7894 State.getSema().Diag(Attr.getLoc(),
7895 diag::err_attribute_arm_mve_polymorphism);
7896 Attr.setInvalid();
7897 return;
7898 }
7899
7900 CurType =
7901 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
7902 State.getSema().Context, Attr),
7903 CurType, CurType);
7904}
7905
7906/// Handle OpenCL Access Qualifier Attribute.
7907static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7908 Sema &S) {
7909 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7910 if (!(CurType->isImageType() || CurType->isPipeType())) {
7911 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7912 Attr.setInvalid();
7913 return;
7914 }
7915
7916 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7917 QualType BaseTy = TypedefTy->desugar();
7918
7919 std::string PrevAccessQual;
7920 if (BaseTy->isPipeType()) {
7921 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7922 OpenCLAccessAttr *Attr =
7923 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7924 PrevAccessQual = Attr->getSpelling();
7925 } else {
7926 PrevAccessQual = "read_only";
7927 }
7928 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7929
7930 switch (ImgType->getKind()) {
7931 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7932 case BuiltinType::Id: \
7933 PrevAccessQual = #Access; \
7934 break;
7935 #include "clang/Basic/OpenCLImageTypes.def"
7936 default:
7937 llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type."
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7937)
;
7938 }
7939 } else {
7940 llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7940)
;
7941 }
7942 StringRef AttrName = Attr.getAttrName()->getName();
7943 if (PrevAccessQual == AttrName.ltrim("_")) {
7944 // Duplicated qualifiers
7945 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7946 << AttrName << Attr.getRange();
7947 } else {
7948 // Contradicting qualifiers
7949 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7950 }
7951
7952 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7953 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7954 } else if (CurType->isPipeType()) {
7955 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7956 QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7957 CurType = S.Context.getWritePipeType(ElemType);
7958 }
7959 }
7960}
7961
7962/// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
7963static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7964 Sema &S) {
7965 if (!S.getLangOpts().MatrixTypes) {
7966 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
7967 return;
7968 }
7969
7970 if (Attr.getNumArgs() != 2) {
7971 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7972 << Attr << 2;
7973 return;
7974 }
7975
7976 Expr *RowsExpr = nullptr;
7977 Expr *ColsExpr = nullptr;
7978
7979 // TODO: Refactor parameter extraction into separate function
7980 // Get the number of rows
7981 if (Attr.isArgIdent(0)) {
7982 CXXScopeSpec SS;
7983 SourceLocation TemplateKeywordLoc;
7984 UnqualifiedId id;
7985 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7986 ExprResult Rows = S.ActOnIdExpression(S.getCurScope(), SS,
7987 TemplateKeywordLoc, id, false, false);
7988
7989 if (Rows.isInvalid())
7990 // TODO: maybe a good error message would be nice here
7991 return;
7992 RowsExpr = Rows.get();
7993 } else {
7994 assert(Attr.isArgExpr(0) &&((Attr.isArgExpr(0) && "Argument to should either be an identity or expression"
) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(0) && \"Argument to should either be an identity or expression\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7995, __PRETTY_FUNCTION__))
7995 "Argument to should either be an identity or expression")((Attr.isArgExpr(0) && "Argument to should either be an identity or expression"
) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(0) && \"Argument to should either be an identity or expression\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 7995, __PRETTY_FUNCTION__))
;
7996 RowsExpr = Attr.getArgAsExpr(0);
7997 }
7998
7999 // Get the number of columns
8000 if (Attr.isArgIdent(1)) {
8001 CXXScopeSpec SS;
8002 SourceLocation TemplateKeywordLoc;
8003 UnqualifiedId id;
8004 id.setIdentifier(Attr.getArgAsIdent(1)->Ident, Attr.getLoc());
8005 ExprResult Columns = S.ActOnIdExpression(
8006 S.getCurScope(), SS, TemplateKeywordLoc, id, false, false);
8007
8008 if (Columns.isInvalid())
8009 // TODO: a good error message would be nice here
8010 return;
8011 RowsExpr = Columns.get();
8012 } else {
8013 assert(Attr.isArgExpr(1) &&((Attr.isArgExpr(1) && "Argument to should either be an identity or expression"
) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(1) && \"Argument to should either be an identity or expression\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8014, __PRETTY_FUNCTION__))
8014 "Argument to should either be an identity or expression")((Attr.isArgExpr(1) && "Argument to should either be an identity or expression"
) ? static_cast<void> (0) : __assert_fail ("Attr.isArgExpr(1) && \"Argument to should either be an identity or expression\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8014, __PRETTY_FUNCTION__))
;
8015 ColsExpr = Attr.getArgAsExpr(1);
8016 }
8017
8018 // Create the matrix type.
8019 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8020 if (!T.isNull())
8021 CurType = T;
8022}
8023
8024static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8025 QualType &CurType,
8026 ParsedAttr &Attr) {
8027 if (State.getDeclarator().isDeclarationOfFunction()) {
8028 CurType = State.getAttributedType(
8029 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8030 CurType, CurType);
8031 } else {
8032 Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
8033 }
8034}
8035
8036static bool isAddressSpaceKind(const ParsedAttr &attr) {
8037 auto attrKind = attr.getKind();
8038
8039 return attrKind == ParsedAttr::AT_AddressSpace ||
8040 attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace ||
8041 attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace ||
8042 attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace ||
8043 attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace ||
8044 attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace ||
8045 attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace ||
8046 attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace;
8047}
8048
8049static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8050 TypeAttrLocation TAL,
8051 ParsedAttributesView &attrs) {
8052 // Scan through and apply attributes to this type where it makes sense. Some
8053 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8054 // type, but others can be present in the type specifiers even though they
8055 // apply to the decl. Here we apply type attributes and ignore the rest.
8056
8057 // This loop modifies the list pretty frequently, but we still need to make
8058 // sure we visit every element once. Copy the attributes list, and iterate
8059 // over that.
8060 ParsedAttributesView AttrsCopy{attrs};
8061
8062 state.setParsedNoDeref(false);
8063
8064 for (ParsedAttr &attr : AttrsCopy) {
8065
8066 // Skip attributes that were marked to be invalid.
8067 if (attr.isInvalid())
8068 continue;
8069
8070 if (attr.isCXX11Attribute()) {
8071 // [[gnu::...]] attributes are treated as declaration attributes, so may
8072 // not appertain to a DeclaratorChunk. If we handle them as type
8073 // attributes, accept them in that position and diagnose the GCC
8074 // incompatibility.
8075 if (attr.isGNUScope()) {
8076 bool IsTypeAttr = attr.isTypeAttr();
8077 if (TAL == TAL_DeclChunk) {
8078 state.getSema().Diag(attr.getLoc(),
8079 IsTypeAttr
8080 ? diag::warn_gcc_ignores_type_attr
8081 : diag::warn_cxx11_gnu_attribute_on_type)
8082 << attr;
8083 if (!IsTypeAttr)
8084 continue;
8085 }
8086 } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) {
8087 // Otherwise, only consider type processing for a C++11 attribute if
8088 // it's actually been applied to a type.
8089 // We also allow C++11 address_space and
8090 // OpenCL language address space attributes to pass through.
8091 continue;
8092 }
8093 }
8094
8095 // If this is an attribute we can handle, do so now,
8096 // otherwise, add it to the FnAttrs list for rechaining.
8097 switch (attr.getKind()) {
8098 default:
8099 // A C++11 attribute on a declarator chunk must appertain to a type.
8100 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
8101 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8102 << attr;
8103 attr.setUsedAsTypeAttr();
8104 }
8105 break;
8106
8107 case ParsedAttr::UnknownAttribute:
8108 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
8109 state.getSema().Diag(attr.getLoc(),
8110 diag::warn_unknown_attribute_ignored)
8111 << attr << attr.getRange();
8112 break;
8113
8114 case ParsedAttr::IgnoredAttribute:
8115 break;
8116
8117 case ParsedAttr::AT_MayAlias:
8118 // FIXME: This attribute needs to actually be handled, but if we ignore
8119 // it it breaks large amounts of Linux software.
8120 attr.setUsedAsTypeAttr();
8121 break;
8122 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8123 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8124 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8125 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8126 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8127 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8128 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8129 case ParsedAttr::AT_AddressSpace:
8130 HandleAddressSpaceTypeAttribute(type, attr, state);
8131 attr.setUsedAsTypeAttr();
8132 break;
8133 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
8134 if (!handleObjCPointerTypeAttr(state, attr, type))
8135 distributeObjCPointerTypeAttr(state, attr, type);
8136 attr.setUsedAsTypeAttr();
8137 break;
8138 case ParsedAttr::AT_VectorSize:
8139 HandleVectorSizeAttr(type, attr, state.getSema());
8140 attr.setUsedAsTypeAttr();
8141 break;
8142 case ParsedAttr::AT_ExtVectorType:
8143 HandleExtVectorTypeAttr(type, attr, state.getSema());
8144 attr.setUsedAsTypeAttr();
8145 break;
8146 case ParsedAttr::AT_NeonVectorType:
8147 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8148 VectorType::NeonVector);
8149 attr.setUsedAsTypeAttr();
8150 break;
8151 case ParsedAttr::AT_NeonPolyVectorType:
8152 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8153 VectorType::NeonPolyVector);
8154 attr.setUsedAsTypeAttr();
8155 break;
8156 case ParsedAttr::AT_ArmSveVectorBits:
8157 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8158 attr.setUsedAsTypeAttr();
8159 break;
8160 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8161 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8162 attr.setUsedAsTypeAttr();
8163 break;
8164 }
8165 case ParsedAttr::AT_OpenCLAccess:
8166 HandleOpenCLAccessAttr(type, attr, state.getSema());
8167 attr.setUsedAsTypeAttr();
8168 break;
8169 case ParsedAttr::AT_LifetimeBound:
8170 if (TAL == TAL_DeclChunk)
8171 HandleLifetimeBoundAttr(state, type, attr);
8172 break;
8173
8174 case ParsedAttr::AT_NoDeref: {
8175 ASTContext &Ctx = state.getSema().Context;
8176 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8177 type, type);
8178 attr.setUsedAsTypeAttr();
8179 state.setParsedNoDeref(true);
8180 break;
8181 }
8182
8183 case ParsedAttr::AT_MatrixType:
8184 HandleMatrixTypeAttr(type, attr, state.getSema());
8185 attr.setUsedAsTypeAttr();
8186 break;
8187
8188 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
8189 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8190 attr.setUsedAsTypeAttr();
8191 break;
8192
8193
8194 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
:
8195 // Either add nullability here or try to distribute it. We
8196 // don't want to distribute the nullability specifier past any
8197 // dependent type, because that complicates the user model.
8198 if (type->canHaveNullability() || type->isDependentType() ||
8199 type->isArrayType() ||
8200 !distributeNullabilityTypeAttr(state, type, attr)) {
8201 unsigned endIndex;
8202 if (TAL == TAL_DeclChunk)
8203 endIndex = state.getCurrentChunkIndex();
8204 else
8205 endIndex = state.getDeclarator().getNumTypeObjects();
8206 bool allowOnArrayType =
8207 state.getDeclarator().isPrototypeContext() &&
8208 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8209 if (checkNullabilityTypeSpecifier(
8210 state,
8211 type,
8212 attr,
8213 allowOnArrayType)) {
8214 attr.setInvalid();
8215 }
8216
8217 attr.setUsedAsTypeAttr();
8218 }
8219 break;
8220
8221 case ParsedAttr::AT_ObjCKindOf:
8222 // '__kindof' must be part of the decl-specifiers.
8223 switch (TAL) {
8224 case TAL_DeclSpec:
8225 break;
8226
8227 case TAL_DeclChunk:
8228 case TAL_DeclName:
8229 state.getSema().Diag(attr.getLoc(),
8230 diag::err_objc_kindof_wrong_position)
8231 << FixItHint::CreateRemoval(attr.getLoc())
8232 << FixItHint::CreateInsertion(
8233 state.getDeclarator().getDeclSpec().getBeginLoc(),
8234 "__kindof ");
8235 break;
8236 }
8237
8238 // Apply it regardless.
8239 if (checkObjCKindOfType(state, type, attr))
8240 attr.setInvalid();
8241 break;
8242
8243 case ParsedAttr::AT_NoThrow:
8244 // Exception Specifications aren't generally supported in C mode throughout
8245 // clang, so revert to attribute-based handling for C.
8246 if (!state.getSema().getLangOpts().CPlusPlus)
8247 break;
8248 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8249 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
:
8250 attr.setUsedAsTypeAttr();
8251
8252 // Never process function type attributes as part of the
8253 // declaration-specifiers.
8254 if (TAL == TAL_DeclSpec)
8255 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8256
8257 // Otherwise, handle the possible delays.
8258 else if (!handleFunctionTypeAttr(state, attr, type))
8259 distributeFunctionTypeAttr(state, attr, type);
8260 break;
8261 case ParsedAttr::AT_AcquireHandle: {
8262 if (!type->isFunctionType())
8263 return;
8264
8265 if (attr.getNumArgs() != 1) {
8266 state.getSema().Diag(attr.getLoc(),
8267 diag::err_attribute_wrong_number_arguments)
8268 << attr << 1;
8269 attr.setInvalid();
8270 return;
8271 }
8272
8273 StringRef HandleType;
8274 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8275 return;
8276 type = state.getAttributedType(
8277 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8278 type, type);
8279 attr.setUsedAsTypeAttr();
8280 break;
8281 }
8282 }
8283
8284 // Handle attributes that are defined in a macro. We do not want this to be
8285 // applied to ObjC builtin attributes.
8286 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8287 !type.getQualifiers().hasObjCLifetime() &&
8288 !type.getQualifiers().hasObjCGCAttr() &&
8289 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8290 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8291 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8292 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8293 state.setExpansionLocForMacroQualifiedType(
8294 cast<MacroQualifiedType>(type.getTypePtr()),
8295 attr.getMacroExpansionLoc());
8296 }
8297 }
8298
8299 if (!state.getSema().getLangOpts().OpenCL ||
8300 type.getAddressSpace() != LangAS::Default)
8301 return;
8302}
8303
8304void Sema::completeExprArrayBound(Expr *E) {
8305 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8306 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8307 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8308 auto *Def = Var->getDefinition();
8309 if (!Def) {
8310 SourceLocation PointOfInstantiation = E->getExprLoc();
8311 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8312 InstantiateVariableDefinition(PointOfInstantiation, Var);
8313 });
8314 Def = Var->getDefinition();
8315
8316 // If we don't already have a point of instantiation, and we managed
8317 // to instantiate a definition, this is the point of instantiation.
8318 // Otherwise, we don't request an end-of-TU instantiation, so this is
8319 // not a point of instantiation.
8320 // FIXME: Is this really the right behavior?
8321 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8322 assert(Var->getTemplateSpecializationKind() ==((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8324, __PRETTY_FUNCTION__))
8323 TSK_ImplicitInstantiation &&((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8324, __PRETTY_FUNCTION__))
8324 "explicit instantiation with no point of instantiation")((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8324, __PRETTY_FUNCTION__))
;
8325 Var->setTemplateSpecializationKind(
8326 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8327 }
8328 }
8329
8330 // Update the type to the definition's type both here and within the
8331 // expression.
8332 if (Def) {
8333 DRE->setDecl(Def);
8334 QualType T = Def->getType();
8335 DRE->setType(T);
8336 // FIXME: Update the type on all intervening expressions.
8337 E->setType(T);
8338 }
8339
8340 // We still go on to try to complete the type independently, as it
8341 // may also require instantiations or diagnostics if it remains
8342 // incomplete.
8343 }
8344 }
8345 }
8346}
8347
8348/// Ensure that the type of the given expression is complete.
8349///
8350/// This routine checks whether the expression \p E has a complete type. If the
8351/// expression refers to an instantiable construct, that instantiation is
8352/// performed as needed to complete its type. Furthermore
8353/// Sema::RequireCompleteType is called for the expression's type (or in the
8354/// case of a reference type, the referred-to type).
8355///
8356/// \param E The expression whose type is required to be complete.
8357/// \param Kind Selects which completeness rules should be applied.
8358/// \param Diagnoser The object that will emit a diagnostic if the type is
8359/// incomplete.
8360///
8361/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8362/// otherwise.
8363bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8364 TypeDiagnoser &Diagnoser) {
8365 QualType T = E->getType();
8366
8367 // Incomplete array types may be completed by the initializer attached to
8368 // their definitions. For static data members of class templates and for
8369 // variable templates, we need to instantiate the definition to get this
8370 // initializer and complete the type.
8371 if (T->isIncompleteArrayType()) {
8372 completeExprArrayBound(E);
8373 T = E->getType();
8374 }
8375
8376 // FIXME: Are there other cases which require instantiating something other
8377 // than the type to complete the type of an expression?
8378
8379 return RequireCompleteType(E->getExprLoc(), T, Kind, Diagnoser);
8380}
8381
8382bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8383 BoundTypeDiagnoser<> Diagnoser(DiagID);
8384 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8385}
8386
8387/// Ensure that the type T is a complete type.
8388///
8389/// This routine checks whether the type @p T is complete in any
8390/// context where a complete type is required. If @p T is a complete
8391/// type, returns false. If @p T is a class template specialization,
8392/// this routine then attempts to perform class template
8393/// instantiation. If instantiation fails, or if @p T is incomplete
8394/// and cannot be completed, issues the diagnostic @p diag (giving it
8395/// the type @p T) and returns true.
8396///
8397/// @param Loc The location in the source that the incomplete type
8398/// diagnostic should refer to.
8399///
8400/// @param T The type that this routine is examining for completeness.
8401///
8402/// @param Kind Selects which completeness rules should be applied.
8403///
8404/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8405/// @c false otherwise.
8406bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8407 CompleteTypeKind Kind,
8408 TypeDiagnoser &Diagnoser) {
8409 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8410 return true;
8411 if (const TagType *Tag = T->getAs<TagType>()) {
8412 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8413 Tag->getDecl()->setCompleteDefinitionRequired();
8414 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8415 }
8416 }
8417 return false;
8418}
8419
8420bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8421 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8422 if (!Suggested)
8423 return false;
8424
8425 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8426 // and isolate from other C++ specific checks.
8427 StructuralEquivalenceContext Ctx(
8428 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8429 StructuralEquivalenceKind::Default,
8430 false /*StrictTypeSpelling*/, true /*Complain*/,
8431 true /*ErrorOnTagTypeMismatch*/);
8432 return Ctx.IsEquivalent(D, Suggested);
8433}
8434
8435/// Determine whether there is any declaration of \p D that was ever a
8436/// definition (perhaps before module merging) and is currently visible.
8437/// \param D The definition of the entity.
8438/// \param Suggested Filled in with the declaration that should be made visible
8439/// in order to provide a definition of this entity.
8440/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8441/// not defined. This only matters for enums with a fixed underlying
8442/// type, since in all other cases, a type is complete if and only if it
8443/// is defined.
8444bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8445 bool OnlyNeedComplete) {
8446 // Easy case: if we don't have modules, all declarations are visible.
8447 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8448 return true;
8449
8450 // If this definition was instantiated from a template, map back to the
8451 // pattern from which it was instantiated.
8452 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8453 // We're in the middle of defining it; this definition should be treated
8454 // as visible.
8455 return true;
8456 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8457 if (auto *Pattern = RD->getTemplateInstantiationPattern())
8458 RD = Pattern;
8459 D = RD->getDefinition();
8460 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8461 if (auto *Pattern = ED->getTemplateInstantiationPattern())
8462 ED = Pattern;
8463 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8464 // If the enum has a fixed underlying type, it may have been forward
8465 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8466 // the enum and assign it the underlying type of `int`. Since we're only
8467 // looking for a complete type (not a definition), any visible declaration
8468 // of it will do.
8469 *Suggested = nullptr;
8470 for (auto *Redecl : ED->redecls()) {
8471 if (isVisible(Redecl))
8472 return true;
8473 if (Redecl->isThisDeclarationADefinition() ||
8474 (Redecl->isCanonicalDecl() && !*Suggested))
8475 *Suggested = Redecl;
8476 }
8477 return false;
8478 }
8479 D = ED->getDefinition();
8480 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8481 if (auto *Pattern = FD->getTemplateInstantiationPattern())
8482 FD = Pattern;
8483 D = FD->getDefinition();
8484 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8485 if (auto *Pattern = VD->getTemplateInstantiationPattern())
8486 VD = Pattern;
8487 D = VD->getDefinition();
8488 }
8489 assert(D && "missing definition for pattern of instantiated definition")((D && "missing definition for pattern of instantiated definition"
) ? static_cast<void> (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8489, __PRETTY_FUNCTION__))
;
8490
8491 *Suggested = D;
8492
8493 auto DefinitionIsVisible = [&] {
8494 // The (primary) definition might be in a visible module.
8495 if (isVisible(D))
8496 return true;
8497
8498 // A visible module might have a merged definition instead.
8499 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8500 : hasVisibleMergedDefinition(D)) {
8501 if (CodeSynthesisContexts.empty() &&
8502 !getLangOpts().ModulesLocalVisibility) {
8503 // Cache the fact that this definition is implicitly visible because
8504 // there is a visible merged definition.
8505 D->setVisibleDespiteOwningModule();
8506 }
8507 return true;
8508 }
8509
8510 return false;
8511 };
8512
8513 if (DefinitionIsVisible())
8514 return true;
8515
8516 // The external source may have additional definitions of this entity that are
8517 // visible, so complete the redeclaration chain now and ask again.
8518 if (auto *Source = Context.getExternalSource()) {
8519 Source->CompleteRedeclChain(D);
8520 return DefinitionIsVisible();
8521 }
8522
8523 return false;
8524}
8525
8526/// Locks in the inheritance model for the given class and all of its bases.
8527static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8528 RD = RD->getMostRecentNonInjectedDecl();
8529 if (!RD->hasAttr<MSInheritanceAttr>()) {
8530 MSInheritanceModel IM;
8531 bool BestCase = false;
8532 switch (S.MSPointerToMemberRepresentationMethod) {
8533 case LangOptions::PPTMK_BestCase:
8534 BestCase = true;
8535 IM = RD->calculateInheritanceModel();
8536 break;
8537 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8538 IM = MSInheritanceModel::Single;
8539 break;
8540 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8541 IM = MSInheritanceModel::Multiple;
8542 break;
8543 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8544 IM = MSInheritanceModel::Unspecified;
8545 break;
8546 }
8547
8548 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8549 ? S.ImplicitMSInheritanceAttrLoc
8550 : RD->getSourceRange();
8551 RD->addAttr(MSInheritanceAttr::CreateImplicit(
8552 S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8553 MSInheritanceAttr::Spelling(IM)));
8554 S.Consumer.AssignInheritanceModel(RD);
8555 }
8556}
8557
8558/// The implementation of RequireCompleteType
8559bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8560 CompleteTypeKind Kind,
8561 TypeDiagnoser *Diagnoser) {
8562 // FIXME: Add this assertion to make sure we always get instantiation points.
8563 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8564 // FIXME: Add this assertion to help us flush out problems with
8565 // checking for dependent types and type-dependent expressions.
8566 //
8567 // assert(!T->isDependentType() &&
8568 // "Can't ask whether a dependent type is complete");
8569
8570 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8571 if (!MPTy->getClass()->isDependentType()) {
8572 if (getLangOpts().CompleteMemberPointers &&
8573 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8574 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8575 diag::err_memptr_incomplete))
8576 return true;
8577
8578 // We lock in the inheritance model once somebody has asked us to ensure
8579 // that a pointer-to-member type is complete.
8580 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8581 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8582 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8583 }
8584 }
8585 }
8586
8587 NamedDecl *Def = nullptr;
8588 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8589 bool Incomplete = (T->isIncompleteType(&Def) ||
8590 (!AcceptSizeless && T->isSizelessBuiltinType()));
8591
8592 // Check that any necessary explicit specializations are visible. For an
8593 // enum, we just need the declaration, so don't check this.
8594 if (Def && !isa<EnumDecl>(Def))
8595 checkSpecializationVisibility(Loc, Def);
8596
8597 // If we have a complete type, we're done.
8598 if (!Incomplete) {
8599 // If we know about the definition but it is not visible, complain.
8600 NamedDecl *SuggestedDef = nullptr;
8601 if (Def &&
8602 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8603 // If the user is going to see an error here, recover by making the
8604 // definition visible.
8605 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8606 if (Diagnoser && SuggestedDef)
8607 diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8608 /*Recover*/TreatAsComplete);
8609 return !TreatAsComplete;
8610 } else if (Def && !TemplateInstCallbacks.empty()) {
8611 CodeSynthesisContext TempInst;
8612 TempInst.Kind = CodeSynthesisContext::Memoization;
8613 TempInst.Template = Def;
8614 TempInst.Entity = Def;
8615 TempInst.PointOfInstantiation = Loc;
8616 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8617 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8618 }
8619
8620 return false;
8621 }
8622
8623 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8624 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8625
8626 // Give the external source a chance to provide a definition of the type.
8627 // This is kept separate from completing the redeclaration chain so that
8628 // external sources such as LLDB can avoid synthesizing a type definition
8629 // unless it's actually needed.
8630 if (Tag || IFace) {
8631 // Avoid diagnosing invalid decls as incomplete.
8632 if (Def->isInvalidDecl())
8633 return true;
8634
8635 // Give the external AST source a chance to complete the type.
8636 if (auto *Source = Context.getExternalSource()) {
8637 if (Tag && Tag->hasExternalLexicalStorage())
8638 Source->CompleteType(Tag);
8639 if (IFace && IFace->hasExternalLexicalStorage())
8640 Source->CompleteType(IFace);
8641 // If the external source completed the type, go through the motions
8642 // again to ensure we're allowed to use the completed type.
8643 if (!T->isIncompleteType())
8644 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8645 }
8646 }
8647
8648 // If we have a class template specialization or a class member of a
8649 // class template specialization, or an array with known size of such,
8650 // try to instantiate it.
8651 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8652 bool Instantiated = false;
8653 bool Diagnosed = false;
8654 if (RD->isDependentContext()) {
8655 // Don't try to instantiate a dependent class (eg, a member template of
8656 // an instantiated class template specialization).
8657 // FIXME: Can this ever happen?
8658 } else if (auto *ClassTemplateSpec =
8659 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8660 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8661 runWithSufficientStackSpace(Loc, [&] {
8662 Diagnosed = InstantiateClassTemplateSpecialization(
8663 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8664 /*Complain=*/Diagnoser);
8665 });
8666 Instantiated = true;
8667 }
8668 } else {
8669 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8670 if (!RD->isBeingDefined() && Pattern) {
8671 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8672 assert(MSI && "Missing member specialization information?")((MSI && "Missing member specialization information?"
) ? static_cast<void> (0) : __assert_fail ("MSI && \"Missing member specialization information?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8672, __PRETTY_FUNCTION__))
;
8673 // This record was instantiated from a class within a template.
8674 if (MSI->getTemplateSpecializationKind() !=
8675 TSK_ExplicitSpecialization) {
8676 runWithSufficientStackSpace(Loc, [&] {
8677 Diagnosed = InstantiateClass(Loc, RD, Pattern,
8678 getTemplateInstantiationArgs(RD),
8679 TSK_ImplicitInstantiation,
8680 /*Complain=*/Diagnoser);
8681 });
8682 Instantiated = true;
8683 }
8684 }
8685 }
8686
8687 if (Instantiated) {
8688 // Instantiate* might have already complained that the template is not
8689 // defined, if we asked it to.
8690 if (Diagnoser && Diagnosed)
8691 return true;
8692 // If we instantiated a definition, check that it's usable, even if
8693 // instantiation produced an error, so that repeated calls to this
8694 // function give consistent answers.
8695 if (!T->isIncompleteType())
8696 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8697 }
8698 }
8699
8700 // FIXME: If we didn't instantiate a definition because of an explicit
8701 // specialization declaration, check that it's visible.
8702
8703 if (!Diagnoser)
8704 return true;
8705
8706 Diagnoser->diagnose(*this, Loc, T);
8707
8708 // If the type was a forward declaration of a class/struct/union
8709 // type, produce a note.
8710 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
8711 Diag(Tag->getLocation(),
8712 Tag->isBeingDefined() ? diag::note_type_being_defined
8713 : diag::note_forward_declaration)
8714 << Context.getTagDeclType(Tag);
8715
8716 // If the Objective-C class was a forward declaration, produce a note.
8717 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
8718 Diag(IFace->getLocation(), diag::note_forward_class);
8719
8720 // If we have external information that we can use to suggest a fix,
8721 // produce a note.
8722 if (ExternalSource)
8723 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8724
8725 return true;
8726}
8727
8728bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8729 CompleteTypeKind Kind, unsigned DiagID) {
8730 BoundTypeDiagnoser<> Diagnoser(DiagID);
8731 return RequireCompleteType(Loc, T, Kind, Diagnoser);
8732}
8733
8734/// Get diagnostic %select index for tag kind for
8735/// literal type diagnostic message.
8736/// WARNING: Indexes apply to particular diagnostics only!
8737///
8738/// \returns diagnostic %select index.
8739static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8740 switch (Tag) {
8741 case TTK_Struct: return 0;
8742 case TTK_Interface: return 1;
8743 case TTK_Class: return 2;
8744 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8744)
;
8745 }
8746}
8747
8748/// Ensure that the type T is a literal type.
8749///
8750/// This routine checks whether the type @p T is a literal type. If @p T is an
8751/// incomplete type, an attempt is made to complete it. If @p T is a literal
8752/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8753/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8754/// it the type @p T), along with notes explaining why the type is not a
8755/// literal type, and returns true.
8756///
8757/// @param Loc The location in the source that the non-literal type
8758/// diagnostic should refer to.
8759///
8760/// @param T The type that this routine is examining for literalness.
8761///
8762/// @param Diagnoser Emits a diagnostic if T is not a literal type.
8763///
8764/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8765/// @c false otherwise.
8766bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8767 TypeDiagnoser &Diagnoser) {
8768 assert(!T->isDependentType() && "type should not be dependent")((!T->isDependentType() && "type should not be dependent"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"type should not be dependent\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8768, __PRETTY_FUNCTION__))
;
8769
8770 QualType ElemType = Context.getBaseElementType(T);
8771 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8772 T->isLiteralType(Context))
8773 return false;
8774
8775 Diagnoser.diagnose(*this, Loc, T);
8776
8777 if (T->isVariableArrayType())
8778 return true;
8779
8780 const RecordType *RT = ElemType->getAs<RecordType>();
8781 if (!RT)
8782 return true;
8783
8784 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8785
8786 // A partially-defined class type can't be a literal type, because a literal
8787 // class type must have a trivial destructor (which can't be checked until
8788 // the class definition is complete).
8789 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8790 return true;
8791
8792 // [expr.prim.lambda]p3:
8793 // This class type is [not] a literal type.
8794 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8795 Diag(RD->getLocation(), diag::note_non_literal_lambda);
8796 return true;
8797 }
8798
8799 // If the class has virtual base classes, then it's not an aggregate, and
8800 // cannot have any constexpr constructors or a trivial default constructor,
8801 // so is non-literal. This is better to diagnose than the resulting absence
8802 // of constexpr constructors.
8803 if (RD->getNumVBases()) {
8804 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8805 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8806 for (const auto &I : RD->vbases())
8807 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8808 << I.getSourceRange();
8809 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8810 !RD->hasTrivialDefaultConstructor()) {
8811 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8812 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8813 for (const auto &I : RD->bases()) {
8814 if (!I.getType()->isLiteralType(Context)) {
8815 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8816 << RD << I.getType() << I.getSourceRange();
8817 return true;
8818 }
8819 }
8820 for (const auto *I : RD->fields()) {
8821 if (!I->getType()->isLiteralType(Context) ||
8822 I->getType().isVolatileQualified()) {
8823 Diag(I->getLocation(), diag::note_non_literal_field)
8824 << RD << I << I->getType()
8825 << I->getType().isVolatileQualified();
8826 return true;
8827 }
8828 }
8829 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
8830 : !RD->hasTrivialDestructor()) {
8831 // All fields and bases are of literal types, so have trivial or constexpr
8832 // destructors. If this class's destructor is non-trivial / non-constexpr,
8833 // it must be user-declared.
8834 CXXDestructorDecl *Dtor = RD->getDestructor();
8835 assert(Dtor && "class has literal fields and bases but no dtor?")((Dtor && "class has literal fields and bases but no dtor?"
) ? static_cast<void> (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8835, __PRETTY_FUNCTION__))
;
8836 if (!Dtor)
8837 return true;
8838
8839 if (getLangOpts().CPlusPlus20) {
8840 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
8841 << RD;
8842 } else {
8843 Diag(Dtor->getLocation(), Dtor->isUserProvided()
8844 ? diag::note_non_literal_user_provided_dtor
8845 : diag::note_non_literal_nontrivial_dtor)
8846 << RD;
8847 if (!Dtor->isUserProvided())
8848 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8849 /*Diagnose*/ true);
8850 }
8851 }
8852
8853 return true;
8854}
8855
8856bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8857 BoundTypeDiagnoser<> Diagnoser(DiagID);
8858 return RequireLiteralType(Loc, T, Diagnoser);
8859}
8860
8861/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8862/// by the nested-name-specifier contained in SS, and that is (re)declared by
8863/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8864QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8865 const CXXScopeSpec &SS, QualType T,
8866 TagDecl *OwnedTagDecl) {
8867 if (T.isNull())
8868 return T;
8869 NestedNameSpecifier *NNS;
8870 if (SS.isValid())
8871 NNS = SS.getScopeRep();
8872 else {
8873 if (Keyword == ETK_None)
8874 return T;
8875 NNS = nullptr;
8876 }
8877 return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8878}
8879
8880QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8881 assert(!E->hasPlaceholderType() && "unexpected placeholder")((!E->hasPlaceholderType() && "unexpected placeholder"
) ? static_cast<void> (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8881, __PRETTY_FUNCTION__))
;
8882
8883 if (!getLangOpts().CPlusPlus && E->refersToBitField())
8884 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8885
8886 if (!E->isTypeDependent()) {
8887 QualType T = E->getType();
8888 if (const TagType *TT = T->getAs<TagType>())
8889 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8890 }
8891 return Context.getTypeOfExprType(E);
8892}
8893
8894/// getDecltypeForExpr - Given an expr, will return the decltype for
8895/// that expression, according to the rules in C++11
8896/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8897static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8898 if (E->isTypeDependent())
8899 return S.Context.DependentTy;
8900
8901 // C++11 [dcl.type.simple]p4:
8902 // The type denoted by decltype(e) is defined as follows:
8903
8904 // C++20:
8905 // - if E is an unparenthesized id-expression naming a non-type
8906 // template-parameter (13.2), decltype(E) is the type of the
8907 // template-parameter after performing any necessary type deduction
8908 // Note that this does not pick up the implicit 'const' for a template
8909 // parameter object. This rule makes no difference before C++20 so we apply
8910 // it unconditionally.
8911 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
8912 return SNTTPE->getParameterType(S.Context);
8913
8914 // - if e is an unparenthesized id-expression or an unparenthesized class
8915 // member access (5.2.5), decltype(e) is the type of the entity named
8916 // by e. If there is no such entity, or if e names a set of overloaded
8917 // functions, the program is ill-formed;
8918 //
8919 // We apply the same rules for Objective-C ivar and property references.
8920 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8921 const ValueDecl *VD = DRE->getDecl();
8922 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD))
8923 return TPO->getType().getUnqualifiedType();
8924 return VD->getType();
8925 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8926 if (const ValueDecl *VD = ME->getMemberDecl())
8927 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8928 return VD->getType();
8929 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8930 return IR->getDecl()->getType();
8931 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8932 if (PR->isExplicitProperty())
8933 return PR->getExplicitProperty()->getType();
8934 } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8935 return PE->getType();
8936 }
8937
8938 // C++11 [expr.lambda.prim]p18:
8939 // Every occurrence of decltype((x)) where x is a possibly
8940 // parenthesized id-expression that names an entity of automatic
8941 // storage duration is treated as if x were transformed into an
8942 // access to a corresponding data member of the closure type that
8943 // would have been declared if x were an odr-use of the denoted
8944 // entity.
8945 using namespace sema;
8946 if (S.getCurLambda()) {
8947 if (isa<ParenExpr>(E)) {
8948 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8949 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8950 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8951 if (!T.isNull())
8952 return S.Context.getLValueReferenceType(T);
8953 }
8954 }
8955 }
8956 }
8957
8958
8959 // C++11 [dcl.type.simple]p4:
8960 // [...]
8961 QualType T = E->getType();
8962 switch (E->getValueKind()) {
8963 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8964 // type of e;
8965 case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8966 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8967 // type of e;
8968 case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8969 // - otherwise, decltype(e) is the type of e.
8970 case VK_RValue: break;
8971 }
8972
8973 return T;
8974}
8975
8976QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8977 bool AsUnevaluated) {
8978 assert(!E->hasPlaceholderType() && "unexpected placeholder")((!E->hasPlaceholderType() && "unexpected placeholder"
) ? static_cast<void> (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 8978, __PRETTY_FUNCTION__))
;
8979
8980 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8981 E->HasSideEffects(Context, false)) {
8982 // The expression operand for decltype is in an unevaluated expression
8983 // context, so side effects could result in unintended consequences.
8984 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8985 }
8986
8987 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8988}
8989
8990QualType Sema::BuildUnaryTransformType(QualType BaseType,
8991 UnaryTransformType::UTTKind UKind,
8992 SourceLocation Loc) {
8993 switch (UKind) {
5
Control jumps to 'case EnumUnderlyingType:' at line 8994
8994 case UnaryTransformType::EnumUnderlyingType:
8995 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
6
Assuming the condition is false
8996 Diag(Loc, diag::err_only_enums_have_underlying_types);
8997 return QualType();
8998 } else {
8999 QualType Underlying = BaseType;
9000 if (!BaseType->isDependentType()) {
7
Assuming the condition is true
8
Taking true branch
9001 // The enum could be incomplete if we're parsing its definition or
9002 // recovering from an error.
9003 NamedDecl *FwdDecl = nullptr;
9004 if (BaseType->isIncompleteType(&FwdDecl)) {
9
Assuming the condition is false
10
Taking false branch
9005 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9006 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9007 return QualType();
9008 }
9009
9010 EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
11
Assuming the object is not a 'EnumType'
12
Called C++ object pointer is null
9011 assert(ED && "EnumType has no EnumDecl")((ED && "EnumType has no EnumDecl") ? static_cast<
void> (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\""
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 9011, __PRETTY_FUNCTION__))
;
9012
9013 DiagnoseUseOfDecl(ED, Loc);
9014
9015 Underlying = ED->getIntegerType();
9016 assert(!Underlying.isNull())((!Underlying.isNull()) ? static_cast<void> (0) : __assert_fail
("!Underlying.isNull()", "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 9016, __PRETTY_FUNCTION__))
;
9017 }
9018 return Context.getUnaryTransformType(BaseType, Underlying,
9019 UnaryTransformType::EnumUnderlyingType);
9020 }
9021 }
9022 llvm_unreachable("unknown unary transform type")::llvm::llvm_unreachable_internal("unknown unary transform type"
, "/build/llvm-toolchain-snapshot-12~++20201207111113+1df0677e6ac/clang/lib/Sema/SemaType.cpp"
, 9022)
;
9023}
9024
9025QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9026 if (!T->isDependentType()) {
9027 // FIXME: It isn't entirely clear whether incomplete atomic types
9028 // are allowed or not; for simplicity, ban them for the moment.
9029 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9030 return QualType();
9031
9032 int DisallowedKind = -1;
9033 if (T->isArrayType())
9034 DisallowedKind = 1;
9035 else if (T->isFunctionType())
9036 DisallowedKind = 2;
9037 else if (T->isReferenceType())
9038 DisallowedKind = 3;
9039 else if (T->isAtomicType())
9040 DisallowedKind = 4;
9041 else if (T.hasQualifiers())
9042 DisallowedKind = 5;
9043 else if (T->isSizelessType())
9044 DisallowedKind = 6;
9045 else if (!T.isTriviallyCopyableType(Context))
9046 // Some other non-trivially-copyable type (probably a C++ class)
9047 DisallowedKind = 7;
9048 else if (T->isExtIntType()) {
9049 DisallowedKind = 8;
9050 }
9051
9052 if (DisallowedKind != -1) {
9053 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9054 return QualType();
9055 }
9056
9057 // FIXME: Do we need any handling for ARC here?
9058 }
9059
9060 // Build the pointer type.
9061 return Context.getAtomicType(T);
9062}