Bug Summary

File:clang/lib/Sema/SemaType.cpp
Warning:line 6054, column 45
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaType.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaType.cpp

1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/DelayedDiagnostic.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/Support/ErrorHandling.h"
40#include <bitset>
41
42using namespace clang;
43
44enum TypeDiagSelector {
45 TDS_Function,
46 TDS_Pointer,
47 TDS_ObjCObjOrBlock
48};
49
50/// isOmittedBlockReturnType - Return true if this declarator is missing a
51/// return type because this is a omitted return type on a block literal.
52static bool isOmittedBlockReturnType(const Declarator &D) {
53 if (D.getContext() != DeclaratorContext::BlockLiteral ||
54 D.getDeclSpec().hasTypeSpecifier())
55 return false;
56
57 if (D.getNumTypeObjects() == 0)
58 return true; // ^{ ... }
59
60 if (D.getNumTypeObjects() == 1 &&
61 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
62 return true; // ^(int X, float Y) { ... }
63
64 return false;
65}
66
67/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
68/// doesn't apply to the given type.
69static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
70 QualType type) {
71 TypeDiagSelector WhichType;
72 bool useExpansionLoc = true;
73 switch (attr.getKind()) {
74 case ParsedAttr::AT_ObjCGC:
75 WhichType = TDS_Pointer;
76 break;
77 case ParsedAttr::AT_ObjCOwnership:
78 WhichType = TDS_ObjCObjOrBlock;
79 break;
80 default:
81 // Assume everything else was a function attribute.
82 WhichType = TDS_Function;
83 useExpansionLoc = false;
84 break;
85 }
86
87 SourceLocation loc = attr.getLoc();
88 StringRef name = attr.getAttrName()->getName();
89
90 // The GC attributes are usually written with macros; special-case them.
91 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
92 : nullptr;
93 if (useExpansionLoc && loc.isMacroID() && II) {
94 if (II->isStr("strong")) {
95 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
96 } else if (II->isStr("weak")) {
97 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
98 }
99 }
100
101 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
102 << type;
103}
104
105// objc_gc applies to Objective-C pointers or, otherwise, to the
106// smallest available pointer type (i.e. 'void*' in 'void**').
107#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
108 case ParsedAttr::AT_ObjCGC: \
109 case ParsedAttr::AT_ObjCOwnership
110
111// Calling convention attributes.
112#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
113 case ParsedAttr::AT_CDecl: \
114 case ParsedAttr::AT_FastCall: \
115 case ParsedAttr::AT_StdCall: \
116 case ParsedAttr::AT_ThisCall: \
117 case ParsedAttr::AT_RegCall: \
118 case ParsedAttr::AT_Pascal: \
119 case ParsedAttr::AT_SwiftCall: \
120 case ParsedAttr::AT_SwiftAsyncCall: \
121 case ParsedAttr::AT_VectorCall: \
122 case ParsedAttr::AT_AArch64VectorPcs: \
123 case ParsedAttr::AT_MSABI: \
124 case ParsedAttr::AT_SysVABI: \
125 case ParsedAttr::AT_Pcs: \
126 case ParsedAttr::AT_IntelOclBicc: \
127 case ParsedAttr::AT_PreserveMost: \
128 case ParsedAttr::AT_PreserveAll
129
130// Function type attributes.
131#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
132 case ParsedAttr::AT_NSReturnsRetained: \
133 case ParsedAttr::AT_NoReturn: \
134 case ParsedAttr::AT_Regparm: \
135 case ParsedAttr::AT_CmseNSCall: \
136 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
137 case ParsedAttr::AT_AnyX86NoCfCheck: \
138 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
139
140// Microsoft-specific type qualifiers.
141#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
142 case ParsedAttr::AT_Ptr32: \
143 case ParsedAttr::AT_Ptr64: \
144 case ParsedAttr::AT_SPtr: \
145 case ParsedAttr::AT_UPtr
146
147// Nullability qualifiers.
148#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
\
149 case ParsedAttr::AT_TypeNonNull: \
150 case ParsedAttr::AT_TypeNullable: \
151 case ParsedAttr::AT_TypeNullableResult: \
152 case ParsedAttr::AT_TypeNullUnspecified
153
154namespace {
155 /// An object which stores processing state for the entire
156 /// GetTypeForDeclarator process.
157 class TypeProcessingState {
158 Sema &sema;
159
160 /// The declarator being processed.
161 Declarator &declarator;
162
163 /// The index of the declarator chunk we're currently processing.
164 /// May be the total number of valid chunks, indicating the
165 /// DeclSpec.
166 unsigned chunkIndex;
167
168 /// Whether there are non-trivial modifications to the decl spec.
169 bool trivial;
170
171 /// Whether we saved the attributes in the decl spec.
172 bool hasSavedAttrs;
173
174 /// The original set of attributes on the DeclSpec.
175 SmallVector<ParsedAttr *, 2> savedAttrs;
176
177 /// A list of attributes to diagnose the uselessness of when the
178 /// processing is complete.
179 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
180
181 /// Attributes corresponding to AttributedTypeLocs that we have not yet
182 /// populated.
183 // FIXME: The two-phase mechanism by which we construct Types and fill
184 // their TypeLocs makes it hard to correctly assign these. We keep the
185 // attributes in creation order as an attempt to make them line up
186 // properly.
187 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
188 SmallVector<TypeAttrPair, 8> AttrsForTypes;
189 bool AttrsForTypesSorted = true;
190
191 /// MacroQualifiedTypes mapping to macro expansion locations that will be
192 /// stored in a MacroQualifiedTypeLoc.
193 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
194
195 /// Flag to indicate we parsed a noderef attribute. This is used for
196 /// validating that noderef was used on a pointer or array.
197 bool parsedNoDeref;
198
199 public:
200 TypeProcessingState(Sema &sema, Declarator &declarator)
201 : sema(sema), declarator(declarator),
202 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
203 hasSavedAttrs(false), parsedNoDeref(false) {}
204
205 Sema &getSema() const {
206 return sema;
207 }
208
209 Declarator &getDeclarator() const {
210 return declarator;
211 }
212
213 bool isProcessingDeclSpec() const {
214 return chunkIndex == declarator.getNumTypeObjects();
215 }
216
217 unsigned getCurrentChunkIndex() const {
218 return chunkIndex;
219 }
220
221 void setCurrentChunkIndex(unsigned idx) {
222 assert(idx <= declarator.getNumTypeObjects())(static_cast<void> (0));
223 chunkIndex = idx;
224 }
225
226 ParsedAttributesView &getCurrentAttributes() const {
227 if (isProcessingDeclSpec())
228 return getMutableDeclSpec().getAttributes();
229 return declarator.getTypeObject(chunkIndex).getAttrs();
230 }
231
232 /// Save the current set of attributes on the DeclSpec.
233 void saveDeclSpecAttrs() {
234 // Don't try to save them multiple times.
235 if (hasSavedAttrs) return;
236
237 DeclSpec &spec = getMutableDeclSpec();
238 for (ParsedAttr &AL : spec.getAttributes())
239 savedAttrs.push_back(&AL);
240 trivial &= savedAttrs.empty();
241 hasSavedAttrs = true;
242 }
243
244 /// Record that we had nowhere to put the given type attribute.
245 /// We will diagnose such attributes later.
246 void addIgnoredTypeAttr(ParsedAttr &attr) {
247 ignoredTypeAttrs.push_back(&attr);
248 }
249
250 /// Diagnose all the ignored type attributes, given that the
251 /// declarator worked out to the given type.
252 void diagnoseIgnoredTypeAttrs(QualType type) const {
253 for (auto *Attr : ignoredTypeAttrs)
254 diagnoseBadTypeAttribute(getSema(), *Attr, type);
255 }
256
257 /// Get an attributed type for the given attribute, and remember the Attr
258 /// object so that we can attach it to the AttributedTypeLoc.
259 QualType getAttributedType(Attr *A, QualType ModifiedType,
260 QualType EquivType) {
261 QualType T =
262 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
263 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
264 AttrsForTypesSorted = false;
265 return T;
266 }
267
268 /// Completely replace the \c auto in \p TypeWithAuto by
269 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
270 /// necessary.
271 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
272 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
273 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
274 // Attributed type still should be an attributed type after replacement.
275 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
276 for (TypeAttrPair &A : AttrsForTypes) {
277 if (A.first == AttrTy)
278 A.first = NewAttrTy;
279 }
280 AttrsForTypesSorted = false;
281 }
282 return T;
283 }
284
285 /// Extract and remove the Attr* for a given attributed type.
286 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
287 if (!AttrsForTypesSorted) {
288 llvm::stable_sort(AttrsForTypes, llvm::less_first());
289 AttrsForTypesSorted = true;
290 }
291
292 // FIXME: This is quadratic if we have lots of reuses of the same
293 // attributed type.
294 for (auto It = std::partition_point(
295 AttrsForTypes.begin(), AttrsForTypes.end(),
296 [=](const TypeAttrPair &A) { return A.first < AT; });
297 It != AttrsForTypes.end() && It->first == AT; ++It) {
298 if (It->second) {
299 const Attr *Result = It->second;
300 It->second = nullptr;
301 return Result;
302 }
303 }
304
305 llvm_unreachable("no Attr* for AttributedType*")__builtin_unreachable();
306 }
307
308 SourceLocation
309 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
310 auto FoundLoc = LocsForMacros.find(MQT);
311 assert(FoundLoc != LocsForMacros.end() &&(static_cast<void> (0))
312 "Unable to find macro expansion location for MacroQualifedType")(static_cast<void> (0));
313 return FoundLoc->second;
314 }
315
316 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
317 SourceLocation Loc) {
318 LocsForMacros[MQT] = Loc;
319 }
320
321 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
322
323 bool didParseNoDeref() const { return parsedNoDeref; }
324
325 ~TypeProcessingState() {
326 if (trivial) return;
327
328 restoreDeclSpecAttrs();
329 }
330
331 private:
332 DeclSpec &getMutableDeclSpec() const {
333 return const_cast<DeclSpec&>(declarator.getDeclSpec());
334 }
335
336 void restoreDeclSpecAttrs() {
337 assert(hasSavedAttrs)(static_cast<void> (0));
338
339 getMutableDeclSpec().getAttributes().clearListOnly();
340 for (ParsedAttr *AL : savedAttrs)
341 getMutableDeclSpec().getAttributes().addAtEnd(AL);
342 }
343 };
344} // end anonymous namespace
345
346static void moveAttrFromListToList(ParsedAttr &attr,
347 ParsedAttributesView &fromList,
348 ParsedAttributesView &toList) {
349 fromList.remove(&attr);
350 toList.addAtEnd(&attr);
351}
352
353/// The location of a type attribute.
354enum TypeAttrLocation {
355 /// The attribute is in the decl-specifier-seq.
356 TAL_DeclSpec,
357 /// The attribute is part of a DeclaratorChunk.
358 TAL_DeclChunk,
359 /// The attribute is immediately after the declaration's name.
360 TAL_DeclName
361};
362
363static void processTypeAttrs(TypeProcessingState &state, QualType &type,
364 TypeAttrLocation TAL, ParsedAttributesView &attrs);
365
366static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
367 QualType &type);
368
369static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
370 ParsedAttr &attr, QualType &type);
371
372static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
373 QualType &type);
374
375static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
376 ParsedAttr &attr, QualType &type);
377
378static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
379 ParsedAttr &attr, QualType &type) {
380 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
381 return handleObjCGCTypeAttr(state, attr, type);
382 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)(static_cast<void> (0));
383 return handleObjCOwnershipTypeAttr(state, attr, type);
384}
385
386/// Given the index of a declarator chunk, check whether that chunk
387/// directly specifies the return type of a function and, if so, find
388/// an appropriate place for it.
389///
390/// \param i - a notional index which the search will start
391/// immediately inside
392///
393/// \param onlyBlockPointers Whether we should only look into block
394/// pointer types (vs. all pointer types).
395static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
396 unsigned i,
397 bool onlyBlockPointers) {
398 assert(i <= declarator.getNumTypeObjects())(static_cast<void> (0));
399
400 DeclaratorChunk *result = nullptr;
401
402 // First, look inwards past parens for a function declarator.
403 for (; i != 0; --i) {
404 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
405 switch (fnChunk.Kind) {
406 case DeclaratorChunk::Paren:
407 continue;
408
409 // If we find anything except a function, bail out.
410 case DeclaratorChunk::Pointer:
411 case DeclaratorChunk::BlockPointer:
412 case DeclaratorChunk::Array:
413 case DeclaratorChunk::Reference:
414 case DeclaratorChunk::MemberPointer:
415 case DeclaratorChunk::Pipe:
416 return result;
417
418 // If we do find a function declarator, scan inwards from that,
419 // looking for a (block-)pointer declarator.
420 case DeclaratorChunk::Function:
421 for (--i; i != 0; --i) {
422 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
423 switch (ptrChunk.Kind) {
424 case DeclaratorChunk::Paren:
425 case DeclaratorChunk::Array:
426 case DeclaratorChunk::Function:
427 case DeclaratorChunk::Reference:
428 case DeclaratorChunk::Pipe:
429 continue;
430
431 case DeclaratorChunk::MemberPointer:
432 case DeclaratorChunk::Pointer:
433 if (onlyBlockPointers)
434 continue;
435
436 LLVM_FALLTHROUGH[[gnu::fallthrough]];
437
438 case DeclaratorChunk::BlockPointer:
439 result = &ptrChunk;
440 goto continue_outer;
441 }
442 llvm_unreachable("bad declarator chunk kind")__builtin_unreachable();
443 }
444
445 // If we run out of declarators doing that, we're done.
446 return result;
447 }
448 llvm_unreachable("bad declarator chunk kind")__builtin_unreachable();
449
450 // Okay, reconsider from our new point.
451 continue_outer: ;
452 }
453
454 // Ran out of chunks, bail out.
455 return result;
456}
457
458/// Given that an objc_gc attribute was written somewhere on a
459/// declaration *other* than on the declarator itself (for which, use
460/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
461/// didn't apply in whatever position it was written in, try to move
462/// it to a more appropriate position.
463static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
464 ParsedAttr &attr, QualType type) {
465 Declarator &declarator = state.getDeclarator();
466
467 // Move it to the outermost normal or block pointer declarator.
468 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
469 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
470 switch (chunk.Kind) {
471 case DeclaratorChunk::Pointer:
472 case DeclaratorChunk::BlockPointer: {
473 // But don't move an ARC ownership attribute to the return type
474 // of a block.
475 DeclaratorChunk *destChunk = nullptr;
476 if (state.isProcessingDeclSpec() &&
477 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
478 destChunk = maybeMovePastReturnType(declarator, i - 1,
479 /*onlyBlockPointers=*/true);
480 if (!destChunk) destChunk = &chunk;
481
482 moveAttrFromListToList(attr, state.getCurrentAttributes(),
483 destChunk->getAttrs());
484 return;
485 }
486
487 case DeclaratorChunk::Paren:
488 case DeclaratorChunk::Array:
489 continue;
490
491 // We may be starting at the return type of a block.
492 case DeclaratorChunk::Function:
493 if (state.isProcessingDeclSpec() &&
494 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
495 if (DeclaratorChunk *dest = maybeMovePastReturnType(
496 declarator, i,
497 /*onlyBlockPointers=*/true)) {
498 moveAttrFromListToList(attr, state.getCurrentAttributes(),
499 dest->getAttrs());
500 return;
501 }
502 }
503 goto error;
504
505 // Don't walk through these.
506 case DeclaratorChunk::Reference:
507 case DeclaratorChunk::MemberPointer:
508 case DeclaratorChunk::Pipe:
509 goto error;
510 }
511 }
512 error:
513
514 diagnoseBadTypeAttribute(state.getSema(), attr, type);
515}
516
517/// Distribute an objc_gc type attribute that was written on the
518/// declarator.
519static void distributeObjCPointerTypeAttrFromDeclarator(
520 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
521 Declarator &declarator = state.getDeclarator();
522
523 // objc_gc goes on the innermost pointer to something that's not a
524 // pointer.
525 unsigned innermost = -1U;
526 bool considerDeclSpec = true;
527 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
528 DeclaratorChunk &chunk = declarator.getTypeObject(i);
529 switch (chunk.Kind) {
530 case DeclaratorChunk::Pointer:
531 case DeclaratorChunk::BlockPointer:
532 innermost = i;
533 continue;
534
535 case DeclaratorChunk::Reference:
536 case DeclaratorChunk::MemberPointer:
537 case DeclaratorChunk::Paren:
538 case DeclaratorChunk::Array:
539 case DeclaratorChunk::Pipe:
540 continue;
541
542 case DeclaratorChunk::Function:
543 considerDeclSpec = false;
544 goto done;
545 }
546 }
547 done:
548
549 // That might actually be the decl spec if we weren't blocked by
550 // anything in the declarator.
551 if (considerDeclSpec) {
552 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
553 // Splice the attribute into the decl spec. Prevents the
554 // attribute from being applied multiple times and gives
555 // the source-location-filler something to work with.
556 state.saveDeclSpecAttrs();
557 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
558 declarator.getAttributes(), &attr);
559 return;
560 }
561 }
562
563 // Otherwise, if we found an appropriate chunk, splice the attribute
564 // into it.
565 if (innermost != -1U) {
566 moveAttrFromListToList(attr, declarator.getAttributes(),
567 declarator.getTypeObject(innermost).getAttrs());
568 return;
569 }
570
571 // Otherwise, diagnose when we're done building the type.
572 declarator.getAttributes().remove(&attr);
573 state.addIgnoredTypeAttr(attr);
574}
575
576/// A function type attribute was written somewhere in a declaration
577/// *other* than on the declarator itself or in the decl spec. Given
578/// that it didn't apply in whatever position it was written in, try
579/// to move it to a more appropriate position.
580static void distributeFunctionTypeAttr(TypeProcessingState &state,
581 ParsedAttr &attr, QualType type) {
582 Declarator &declarator = state.getDeclarator();
583
584 // Try to push the attribute from the return type of a function to
585 // the function itself.
586 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
587 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
588 switch (chunk.Kind) {
589 case DeclaratorChunk::Function:
590 moveAttrFromListToList(attr, state.getCurrentAttributes(),
591 chunk.getAttrs());
592 return;
593
594 case DeclaratorChunk::Paren:
595 case DeclaratorChunk::Pointer:
596 case DeclaratorChunk::BlockPointer:
597 case DeclaratorChunk::Array:
598 case DeclaratorChunk::Reference:
599 case DeclaratorChunk::MemberPointer:
600 case DeclaratorChunk::Pipe:
601 continue;
602 }
603 }
604
605 diagnoseBadTypeAttribute(state.getSema(), attr, type);
606}
607
608/// Try to distribute a function type attribute to the innermost
609/// function chunk or type. Returns true if the attribute was
610/// distributed, false if no location was found.
611static bool distributeFunctionTypeAttrToInnermost(
612 TypeProcessingState &state, ParsedAttr &attr,
613 ParsedAttributesView &attrList, QualType &declSpecType) {
614 Declarator &declarator = state.getDeclarator();
615
616 // Put it on the innermost function chunk, if there is one.
617 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
618 DeclaratorChunk &chunk = declarator.getTypeObject(i);
619 if (chunk.Kind != DeclaratorChunk::Function) continue;
620
621 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
622 return true;
623 }
624
625 return handleFunctionTypeAttr(state, attr, declSpecType);
626}
627
628/// A function type attribute was written in the decl spec. Try to
629/// apply it somewhere.
630static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
631 ParsedAttr &attr,
632 QualType &declSpecType) {
633 state.saveDeclSpecAttrs();
634
635 // C++11 attributes before the decl specifiers actually appertain to
636 // the declarators. Move them straight there. We don't support the
637 // 'put them wherever you like' semantics we allow for GNU attributes.
638 if (attr.isStandardAttributeSyntax()) {
639 moveAttrFromListToList(attr, state.getCurrentAttributes(),
640 state.getDeclarator().getAttributes());
641 return;
642 }
643
644 // Try to distribute to the innermost.
645 if (distributeFunctionTypeAttrToInnermost(
646 state, attr, state.getCurrentAttributes(), declSpecType))
647 return;
648
649 // If that failed, diagnose the bad attribute when the declarator is
650 // fully built.
651 state.addIgnoredTypeAttr(attr);
652}
653
654/// A function type attribute was written on the declarator. Try to
655/// apply it somewhere.
656static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
657 ParsedAttr &attr,
658 QualType &declSpecType) {
659 Declarator &declarator = state.getDeclarator();
660
661 // Try to distribute to the innermost.
662 if (distributeFunctionTypeAttrToInnermost(
663 state, attr, declarator.getAttributes(), declSpecType))
664 return;
665
666 // If that failed, diagnose the bad attribute when the declarator is
667 // fully built.
668 declarator.getAttributes().remove(&attr);
669 state.addIgnoredTypeAttr(attr);
670}
671
672/// Given that there are attributes written on the declarator
673/// itself, try to distribute any type attributes to the appropriate
674/// declarator chunk.
675///
676/// These are attributes like the following:
677/// int f ATTR;
678/// int (f ATTR)();
679/// but not necessarily this:
680/// int f() ATTR;
681static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
682 QualType &declSpecType) {
683 // Collect all the type attributes from the declarator itself.
684 assert(!state.getDeclarator().getAttributes().empty() &&(static_cast<void> (0))
685 "declarator has no attrs!")(static_cast<void> (0));
686 // The called functions in this loop actually remove things from the current
687 // list, so iterating over the existing list isn't possible. Instead, make a
688 // non-owning copy and iterate over that.
689 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
690 for (ParsedAttr &attr : AttrsCopy) {
691 // Do not distribute [[]] attributes. They have strict rules for what
692 // they appertain to.
693 if (attr.isStandardAttributeSyntax())
694 continue;
695
696 switch (attr.getKind()) {
697 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
698 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
699 break;
700
701 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
702 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
703 break;
704
705 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
706 // Microsoft type attributes cannot go after the declarator-id.
707 continue;
708
709 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
710 // Nullability specifiers cannot go after the declarator-id.
711
712 // Objective-C __kindof does not get distributed.
713 case ParsedAttr::AT_ObjCKindOf:
714 continue;
715
716 default:
717 break;
718 }
719 }
720}
721
722/// Add a synthetic '()' to a block-literal declarator if it is
723/// required, given the return type.
724static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
725 QualType declSpecType) {
726 Declarator &declarator = state.getDeclarator();
727
728 // First, check whether the declarator would produce a function,
729 // i.e. whether the innermost semantic chunk is a function.
730 if (declarator.isFunctionDeclarator()) {
731 // If so, make that declarator a prototyped declarator.
732 declarator.getFunctionTypeInfo().hasPrototype = true;
733 return;
734 }
735
736 // If there are any type objects, the type as written won't name a
737 // function, regardless of the decl spec type. This is because a
738 // block signature declarator is always an abstract-declarator, and
739 // abstract-declarators can't just be parentheses chunks. Therefore
740 // we need to build a function chunk unless there are no type
741 // objects and the decl spec type is a function.
742 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
743 return;
744
745 // Note that there *are* cases with invalid declarators where
746 // declarators consist solely of parentheses. In general, these
747 // occur only in failed efforts to make function declarators, so
748 // faking up the function chunk is still the right thing to do.
749
750 // Otherwise, we need to fake up a function declarator.
751 SourceLocation loc = declarator.getBeginLoc();
752
753 // ...and *prepend* it to the declarator.
754 SourceLocation NoLoc;
755 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
756 /*HasProto=*/true,
757 /*IsAmbiguous=*/false,
758 /*LParenLoc=*/NoLoc,
759 /*ArgInfo=*/nullptr,
760 /*NumParams=*/0,
761 /*EllipsisLoc=*/NoLoc,
762 /*RParenLoc=*/NoLoc,
763 /*RefQualifierIsLvalueRef=*/true,
764 /*RefQualifierLoc=*/NoLoc,
765 /*MutableLoc=*/NoLoc, EST_None,
766 /*ESpecRange=*/SourceRange(),
767 /*Exceptions=*/nullptr,
768 /*ExceptionRanges=*/nullptr,
769 /*NumExceptions=*/0,
770 /*NoexceptExpr=*/nullptr,
771 /*ExceptionSpecTokens=*/nullptr,
772 /*DeclsInPrototype=*/None, loc, loc, declarator));
773
774 // For consistency, make sure the state still has us as processing
775 // the decl spec.
776 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)(static_cast<void> (0));
777 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
778}
779
780static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
781 unsigned &TypeQuals,
782 QualType TypeSoFar,
783 unsigned RemoveTQs,
784 unsigned DiagID) {
785 // If this occurs outside a template instantiation, warn the user about
786 // it; they probably didn't mean to specify a redundant qualifier.
787 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
788 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
789 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
790 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
791 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
792 if (!(RemoveTQs & Qual.first))
793 continue;
794
795 if (!S.inTemplateInstantiation()) {
796 if (TypeQuals & Qual.first)
797 S.Diag(Qual.second, DiagID)
798 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
799 << FixItHint::CreateRemoval(Qual.second);
800 }
801
802 TypeQuals &= ~Qual.first;
803 }
804}
805
806/// Return true if this is omitted block return type. Also check type
807/// attributes and type qualifiers when returning true.
808static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
809 QualType Result) {
810 if (!isOmittedBlockReturnType(declarator))
811 return false;
812
813 // Warn if we see type attributes for omitted return type on a block literal.
814 SmallVector<ParsedAttr *, 2> ToBeRemoved;
815 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
816 if (AL.isInvalid() || !AL.isTypeAttr())
817 continue;
818 S.Diag(AL.getLoc(),
819 diag::warn_block_literal_attributes_on_omitted_return_type)
820 << AL;
821 ToBeRemoved.push_back(&AL);
822 }
823 // Remove bad attributes from the list.
824 for (ParsedAttr *AL : ToBeRemoved)
825 declarator.getMutableDeclSpec().getAttributes().remove(AL);
826
827 // Warn if we see type qualifiers for omitted return type on a block literal.
828 const DeclSpec &DS = declarator.getDeclSpec();
829 unsigned TypeQuals = DS.getTypeQualifiers();
830 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
831 diag::warn_block_literal_qualifiers_on_omitted_return_type);
832 declarator.getMutableDeclSpec().ClearTypeQualifiers();
833
834 return true;
835}
836
837/// Apply Objective-C type arguments to the given type.
838static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
839 ArrayRef<TypeSourceInfo *> typeArgs,
840 SourceRange typeArgsRange,
841 bool failOnError = false) {
842 // We can only apply type arguments to an Objective-C class type.
843 const auto *objcObjectType = type->getAs<ObjCObjectType>();
844 if (!objcObjectType || !objcObjectType->getInterface()) {
845 S.Diag(loc, diag::err_objc_type_args_non_class)
846 << type
847 << typeArgsRange;
848
849 if (failOnError)
850 return QualType();
851 return type;
852 }
853
854 // The class type must be parameterized.
855 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
856 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
857 if (!typeParams) {
858 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
859 << objcClass->getDeclName()
860 << FixItHint::CreateRemoval(typeArgsRange);
861
862 if (failOnError)
863 return QualType();
864
865 return type;
866 }
867
868 // The type must not already be specialized.
869 if (objcObjectType->isSpecialized()) {
870 S.Diag(loc, diag::err_objc_type_args_specialized_class)
871 << type
872 << FixItHint::CreateRemoval(typeArgsRange);
873
874 if (failOnError)
875 return QualType();
876
877 return type;
878 }
879
880 // Check the type arguments.
881 SmallVector<QualType, 4> finalTypeArgs;
882 unsigned numTypeParams = typeParams->size();
883 bool anyPackExpansions = false;
884 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
885 TypeSourceInfo *typeArgInfo = typeArgs[i];
886 QualType typeArg = typeArgInfo->getType();
887
888 // Type arguments cannot have explicit qualifiers or nullability.
889 // We ignore indirect sources of these, e.g. behind typedefs or
890 // template arguments.
891 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
892 bool diagnosed = false;
893 SourceRange rangeToRemove;
894 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
895 rangeToRemove = attr.getLocalSourceRange();
896 if (attr.getTypePtr()->getImmediateNullability()) {
897 typeArg = attr.getTypePtr()->getModifiedType();
898 S.Diag(attr.getBeginLoc(),
899 diag::err_objc_type_arg_explicit_nullability)
900 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
901 diagnosed = true;
902 }
903 }
904
905 if (!diagnosed) {
906 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
907 << typeArg << typeArg.getQualifiers().getAsString()
908 << FixItHint::CreateRemoval(rangeToRemove);
909 }
910 }
911
912 // Remove qualifiers even if they're non-local.
913 typeArg = typeArg.getUnqualifiedType();
914
915 finalTypeArgs.push_back(typeArg);
916
917 if (typeArg->getAs<PackExpansionType>())
918 anyPackExpansions = true;
919
920 // Find the corresponding type parameter, if there is one.
921 ObjCTypeParamDecl *typeParam = nullptr;
922 if (!anyPackExpansions) {
923 if (i < numTypeParams) {
924 typeParam = typeParams->begin()[i];
925 } else {
926 // Too many arguments.
927 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
928 << false
929 << objcClass->getDeclName()
930 << (unsigned)typeArgs.size()
931 << numTypeParams;
932 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
933 << objcClass;
934
935 if (failOnError)
936 return QualType();
937
938 return type;
939 }
940 }
941
942 // Objective-C object pointer types must be substitutable for the bounds.
943 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
944 // If we don't have a type parameter to match against, assume
945 // everything is fine. There was a prior pack expansion that
946 // means we won't be able to match anything.
947 if (!typeParam) {
948 assert(anyPackExpansions && "Too many arguments?")(static_cast<void> (0));
949 continue;
950 }
951
952 // Retrieve the bound.
953 QualType bound = typeParam->getUnderlyingType();
954 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
955
956 // Determine whether the type argument is substitutable for the bound.
957 if (typeArgObjC->isObjCIdType()) {
958 // When the type argument is 'id', the only acceptable type
959 // parameter bound is 'id'.
960 if (boundObjC->isObjCIdType())
961 continue;
962 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
963 // Otherwise, we follow the assignability rules.
964 continue;
965 }
966
967 // Diagnose the mismatch.
968 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
969 diag::err_objc_type_arg_does_not_match_bound)
970 << typeArg << bound << typeParam->getDeclName();
971 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
972 << typeParam->getDeclName();
973
974 if (failOnError)
975 return QualType();
976
977 return type;
978 }
979
980 // Block pointer types are permitted for unqualified 'id' bounds.
981 if (typeArg->isBlockPointerType()) {
982 // If we don't have a type parameter to match against, assume
983 // everything is fine. There was a prior pack expansion that
984 // means we won't be able to match anything.
985 if (!typeParam) {
986 assert(anyPackExpansions && "Too many arguments?")(static_cast<void> (0));
987 continue;
988 }
989
990 // Retrieve the bound.
991 QualType bound = typeParam->getUnderlyingType();
992 if (bound->isBlockCompatibleObjCPointerType(S.Context))
993 continue;
994
995 // Diagnose the mismatch.
996 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
997 diag::err_objc_type_arg_does_not_match_bound)
998 << typeArg << bound << typeParam->getDeclName();
999 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
1000 << typeParam->getDeclName();
1001
1002 if (failOnError)
1003 return QualType();
1004
1005 return type;
1006 }
1007
1008 // Dependent types will be checked at instantiation time.
1009 if (typeArg->isDependentType()) {
1010 continue;
1011 }
1012
1013 // Diagnose non-id-compatible type arguments.
1014 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1015 diag::err_objc_type_arg_not_id_compatible)
1016 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1017
1018 if (failOnError)
1019 return QualType();
1020
1021 return type;
1022 }
1023
1024 // Make sure we didn't have the wrong number of arguments.
1025 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1026 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1027 << (typeArgs.size() < typeParams->size())
1028 << objcClass->getDeclName()
1029 << (unsigned)finalTypeArgs.size()
1030 << (unsigned)numTypeParams;
1031 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1032 << objcClass;
1033
1034 if (failOnError)
1035 return QualType();
1036
1037 return type;
1038 }
1039
1040 // Success. Form the specialized type.
1041 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1042}
1043
1044QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1045 SourceLocation ProtocolLAngleLoc,
1046 ArrayRef<ObjCProtocolDecl *> Protocols,
1047 ArrayRef<SourceLocation> ProtocolLocs,
1048 SourceLocation ProtocolRAngleLoc,
1049 bool FailOnError) {
1050 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1051 if (!Protocols.empty()) {
1052 bool HasError;
1053 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1054 HasError);
1055 if (HasError) {
1056 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1057 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1058 if (FailOnError) Result = QualType();
1059 }
1060 if (FailOnError && Result.isNull())
1061 return QualType();
1062 }
1063
1064 return Result;
1065}
1066
1067QualType Sema::BuildObjCObjectType(QualType BaseType,
1068 SourceLocation Loc,
1069 SourceLocation TypeArgsLAngleLoc,
1070 ArrayRef<TypeSourceInfo *> TypeArgs,
1071 SourceLocation TypeArgsRAngleLoc,
1072 SourceLocation ProtocolLAngleLoc,
1073 ArrayRef<ObjCProtocolDecl *> Protocols,
1074 ArrayRef<SourceLocation> ProtocolLocs,
1075 SourceLocation ProtocolRAngleLoc,
1076 bool FailOnError) {
1077 QualType Result = BaseType;
1078 if (!TypeArgs.empty()) {
1079 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1080 SourceRange(TypeArgsLAngleLoc,
1081 TypeArgsRAngleLoc),
1082 FailOnError);
1083 if (FailOnError && Result.isNull())
1084 return QualType();
1085 }
1086
1087 if (!Protocols.empty()) {
1088 bool HasError;
1089 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1090 HasError);
1091 if (HasError) {
1092 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1093 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1094 if (FailOnError) Result = QualType();
1095 }
1096 if (FailOnError && Result.isNull())
1097 return QualType();
1098 }
1099
1100 return Result;
1101}
1102
1103TypeResult Sema::actOnObjCProtocolQualifierType(
1104 SourceLocation lAngleLoc,
1105 ArrayRef<Decl *> protocols,
1106 ArrayRef<SourceLocation> protocolLocs,
1107 SourceLocation rAngleLoc) {
1108 // Form id<protocol-list>.
1109 QualType Result = Context.getObjCObjectType(
1110 Context.ObjCBuiltinIdTy, { },
1111 llvm::makeArrayRef(
1112 (ObjCProtocolDecl * const *)protocols.data(),
1113 protocols.size()),
1114 false);
1115 Result = Context.getObjCObjectPointerType(Result);
1116
1117 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1118 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1119
1120 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1121 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1122
1123 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1124 .castAs<ObjCObjectTypeLoc>();
1125 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1126 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1127
1128 // No type arguments.
1129 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1130 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1131
1132 // Fill in protocol qualifiers.
1133 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1134 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1135 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1136 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1137
1138 // We're done. Return the completed type to the parser.
1139 return CreateParsedType(Result, ResultTInfo);
1140}
1141
1142TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1143 Scope *S,
1144 SourceLocation Loc,
1145 ParsedType BaseType,
1146 SourceLocation TypeArgsLAngleLoc,
1147 ArrayRef<ParsedType> TypeArgs,
1148 SourceLocation TypeArgsRAngleLoc,
1149 SourceLocation ProtocolLAngleLoc,
1150 ArrayRef<Decl *> Protocols,
1151 ArrayRef<SourceLocation> ProtocolLocs,
1152 SourceLocation ProtocolRAngleLoc) {
1153 TypeSourceInfo *BaseTypeInfo = nullptr;
1154 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1155 if (T.isNull())
1156 return true;
1157
1158 // Handle missing type-source info.
1159 if (!BaseTypeInfo)
1160 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1161
1162 // Extract type arguments.
1163 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1164 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1165 TypeSourceInfo *TypeArgInfo = nullptr;
1166 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1167 if (TypeArg.isNull()) {
1168 ActualTypeArgInfos.clear();
1169 break;
1170 }
1171
1172 assert(TypeArgInfo && "No type source info?")(static_cast<void> (0));
1173 ActualTypeArgInfos.push_back(TypeArgInfo);
1174 }
1175
1176 // Build the object type.
1177 QualType Result = BuildObjCObjectType(
1178 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1179 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1180 ProtocolLAngleLoc,
1181 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1182 Protocols.size()),
1183 ProtocolLocs, ProtocolRAngleLoc,
1184 /*FailOnError=*/false);
1185
1186 if (Result == T)
1187 return BaseType;
1188
1189 // Create source information for this type.
1190 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1191 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1192
1193 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1194 // object pointer type. Fill in source information for it.
1195 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1196 // The '*' is implicit.
1197 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1198 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1199 }
1200
1201 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1202 // Protocol qualifier information.
1203 if (OTPTL.getNumProtocols() > 0) {
1204 assert(OTPTL.getNumProtocols() == Protocols.size())(static_cast<void> (0));
1205 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1206 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1207 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1208 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1209 }
1210
1211 // We're done. Return the completed type to the parser.
1212 return CreateParsedType(Result, ResultTInfo);
1213 }
1214
1215 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1216
1217 // Type argument information.
1218 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1219 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())(static_cast<void> (0));
1220 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1221 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1222 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1223 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1224 } else {
1225 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1226 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1227 }
1228
1229 // Protocol qualifier information.
1230 if (ObjCObjectTL.getNumProtocols() > 0) {
1231 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())(static_cast<void> (0));
1232 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1233 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1234 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1235 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1236 } else {
1237 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1238 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1239 }
1240
1241 // Base type.
1242 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1243 if (ObjCObjectTL.getType() == T)
1244 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1245 else
1246 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1247
1248 // We're done. Return the completed type to the parser.
1249 return CreateParsedType(Result, ResultTInfo);
1250}
1251
1252static OpenCLAccessAttr::Spelling
1253getImageAccess(const ParsedAttributesView &Attrs) {
1254 for (const ParsedAttr &AL : Attrs)
1255 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1256 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1257 return OpenCLAccessAttr::Keyword_read_only;
1258}
1259
1260/// Convert the specified declspec to the appropriate type
1261/// object.
1262/// \param state Specifies the declarator containing the declaration specifier
1263/// to be converted, along with other associated processing state.
1264/// \returns The type described by the declaration specifiers. This function
1265/// never returns null.
1266static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1267 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1268 // checking.
1269
1270 Sema &S = state.getSema();
1271 Declarator &declarator = state.getDeclarator();
1272 DeclSpec &DS = declarator.getMutableDeclSpec();
1273 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1274 if (DeclLoc.isInvalid())
1275 DeclLoc = DS.getBeginLoc();
1276
1277 ASTContext &Context = S.Context;
1278
1279 QualType Result;
1280 switch (DS.getTypeSpecType()) {
1281 case DeclSpec::TST_void:
1282 Result = Context.VoidTy;
1283 break;
1284 case DeclSpec::TST_char:
1285 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1286 Result = Context.CharTy;
1287 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1288 Result = Context.SignedCharTy;
1289 else {
1290 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&(static_cast<void> (0))
1291 "Unknown TSS value")(static_cast<void> (0));
1292 Result = Context.UnsignedCharTy;
1293 }
1294 break;
1295 case DeclSpec::TST_wchar:
1296 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1297 Result = Context.WCharTy;
1298 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1299 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1300 << DS.getSpecifierName(DS.getTypeSpecType(),
1301 Context.getPrintingPolicy());
1302 Result = Context.getSignedWCharType();
1303 } else {
1304 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&(static_cast<void> (0))
1305 "Unknown TSS value")(static_cast<void> (0));
1306 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1307 << DS.getSpecifierName(DS.getTypeSpecType(),
1308 Context.getPrintingPolicy());
1309 Result = Context.getUnsignedWCharType();
1310 }
1311 break;
1312 case DeclSpec::TST_char8:
1313 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast<void> (0))
1314 "Unknown TSS value")(static_cast<void> (0));
1315 Result = Context.Char8Ty;
1316 break;
1317 case DeclSpec::TST_char16:
1318 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast<void> (0))
1319 "Unknown TSS value")(static_cast<void> (0));
1320 Result = Context.Char16Ty;
1321 break;
1322 case DeclSpec::TST_char32:
1323 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast<void> (0))
1324 "Unknown TSS value")(static_cast<void> (0));
1325 Result = Context.Char32Ty;
1326 break;
1327 case DeclSpec::TST_unspecified:
1328 // If this is a missing declspec in a block literal return context, then it
1329 // is inferred from the return statements inside the block.
1330 // The declspec is always missing in a lambda expr context; it is either
1331 // specified with a trailing return type or inferred.
1332 if (S.getLangOpts().CPlusPlus14 &&
1333 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1334 // In C++1y, a lambda's implicit return type is 'auto'.
1335 Result = Context.getAutoDeductType();
1336 break;
1337 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1338 checkOmittedBlockReturnType(S, declarator,
1339 Context.DependentTy)) {
1340 Result = Context.DependentTy;
1341 break;
1342 }
1343
1344 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1345 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1346 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1347 // Note that the one exception to this is function definitions, which are
1348 // allowed to be completely missing a declspec. This is handled in the
1349 // parser already though by it pretending to have seen an 'int' in this
1350 // case.
1351 if (S.getLangOpts().ImplicitInt) {
1352 // In C89 mode, we only warn if there is a completely missing declspec
1353 // when one is not allowed.
1354 if (DS.isEmpty()) {
1355 S.Diag(DeclLoc, diag::ext_missing_declspec)
1356 << DS.getSourceRange()
1357 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1358 }
1359 } else if (!DS.hasTypeSpecifier()) {
1360 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1361 // "At least one type specifier shall be given in the declaration
1362 // specifiers in each declaration, and in the specifier-qualifier list in
1363 // each struct declaration and type name."
1364 if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1365 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1366 << DS.getSourceRange();
1367
1368 // When this occurs in C++ code, often something is very broken with the
1369 // value being declared, poison it as invalid so we don't get chains of
1370 // errors.
1371 declarator.setInvalidType(true);
1372 } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1373 DS.isTypeSpecPipe()) {
1374 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1375 << DS.getSourceRange();
1376 declarator.setInvalidType(true);
1377 } else {
1378 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1379 << DS.getSourceRange();
1380 }
1381 }
1382
1383 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1384 case DeclSpec::TST_int: {
1385 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1386 switch (DS.getTypeSpecWidth()) {
1387 case TypeSpecifierWidth::Unspecified:
1388 Result = Context.IntTy;
1389 break;
1390 case TypeSpecifierWidth::Short:
1391 Result = Context.ShortTy;
1392 break;
1393 case TypeSpecifierWidth::Long:
1394 Result = Context.LongTy;
1395 break;
1396 case TypeSpecifierWidth::LongLong:
1397 Result = Context.LongLongTy;
1398
1399 // 'long long' is a C99 or C++11 feature.
1400 if (!S.getLangOpts().C99) {
1401 if (S.getLangOpts().CPlusPlus)
1402 S.Diag(DS.getTypeSpecWidthLoc(),
1403 S.getLangOpts().CPlusPlus11 ?
1404 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1405 else
1406 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1407 }
1408 break;
1409 }
1410 } else {
1411 switch (DS.getTypeSpecWidth()) {
1412 case TypeSpecifierWidth::Unspecified:
1413 Result = Context.UnsignedIntTy;
1414 break;
1415 case TypeSpecifierWidth::Short:
1416 Result = Context.UnsignedShortTy;
1417 break;
1418 case TypeSpecifierWidth::Long:
1419 Result = Context.UnsignedLongTy;
1420 break;
1421 case TypeSpecifierWidth::LongLong:
1422 Result = Context.UnsignedLongLongTy;
1423
1424 // 'long long' is a C99 or C++11 feature.
1425 if (!S.getLangOpts().C99) {
1426 if (S.getLangOpts().CPlusPlus)
1427 S.Diag(DS.getTypeSpecWidthLoc(),
1428 S.getLangOpts().CPlusPlus11 ?
1429 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1430 else
1431 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1432 }
1433 break;
1434 }
1435 }
1436 break;
1437 }
1438 case DeclSpec::TST_extint: {
1439 if (!S.Context.getTargetInfo().hasExtIntType())
1440 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1441 << "_ExtInt";
1442 Result =
1443 S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1444 DS.getRepAsExpr(), DS.getBeginLoc());
1445 if (Result.isNull()) {
1446 Result = Context.IntTy;
1447 declarator.setInvalidType(true);
1448 }
1449 break;
1450 }
1451 case DeclSpec::TST_accum: {
1452 switch (DS.getTypeSpecWidth()) {
1453 case TypeSpecifierWidth::Short:
1454 Result = Context.ShortAccumTy;
1455 break;
1456 case TypeSpecifierWidth::Unspecified:
1457 Result = Context.AccumTy;
1458 break;
1459 case TypeSpecifierWidth::Long:
1460 Result = Context.LongAccumTy;
1461 break;
1462 case TypeSpecifierWidth::LongLong:
1463 llvm_unreachable("Unable to specify long long as _Accum width")__builtin_unreachable();
1464 }
1465
1466 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1467 Result = Context.getCorrespondingUnsignedType(Result);
1468
1469 if (DS.isTypeSpecSat())
1470 Result = Context.getCorrespondingSaturatedType(Result);
1471
1472 break;
1473 }
1474 case DeclSpec::TST_fract: {
1475 switch (DS.getTypeSpecWidth()) {
1476 case TypeSpecifierWidth::Short:
1477 Result = Context.ShortFractTy;
1478 break;
1479 case TypeSpecifierWidth::Unspecified:
1480 Result = Context.FractTy;
1481 break;
1482 case TypeSpecifierWidth::Long:
1483 Result = Context.LongFractTy;
1484 break;
1485 case TypeSpecifierWidth::LongLong:
1486 llvm_unreachable("Unable to specify long long as _Fract width")__builtin_unreachable();
1487 }
1488
1489 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1490 Result = Context.getCorrespondingUnsignedType(Result);
1491
1492 if (DS.isTypeSpecSat())
1493 Result = Context.getCorrespondingSaturatedType(Result);
1494
1495 break;
1496 }
1497 case DeclSpec::TST_int128:
1498 if (!S.Context.getTargetInfo().hasInt128Type() &&
1499 !S.getLangOpts().SYCLIsDevice &&
1500 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1501 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1502 << "__int128";
1503 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1504 Result = Context.UnsignedInt128Ty;
1505 else
1506 Result = Context.Int128Ty;
1507 break;
1508 case DeclSpec::TST_float16:
1509 // CUDA host and device may have different _Float16 support, therefore
1510 // do not diagnose _Float16 usage to avoid false alarm.
1511 // ToDo: more precise diagnostics for CUDA.
1512 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1513 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1514 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1515 << "_Float16";
1516 Result = Context.Float16Ty;
1517 break;
1518 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1519 case DeclSpec::TST_BFloat16:
1520 if (!S.Context.getTargetInfo().hasBFloat16Type())
1521 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1522 << "__bf16";
1523 Result = Context.BFloat16Ty;
1524 break;
1525 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1526 case DeclSpec::TST_double:
1527 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1528 Result = Context.LongDoubleTy;
1529 else
1530 Result = Context.DoubleTy;
1531 if (S.getLangOpts().OpenCL) {
1532 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1533 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1534 << 0 << Result
1535 << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1536 ? "cl_khr_fp64 and __opencl_c_fp64"
1537 : "cl_khr_fp64");
1538 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1539 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1540 }
1541 break;
1542 case DeclSpec::TST_float128:
1543 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1544 !S.getLangOpts().SYCLIsDevice &&
1545 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1546 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1547 << "__float128";
1548 Result = Context.Float128Ty;
1549 break;
1550 case DeclSpec::TST_bool:
1551 Result = Context.BoolTy; // _Bool or bool
1552 break;
1553 case DeclSpec::TST_decimal32: // _Decimal32
1554 case DeclSpec::TST_decimal64: // _Decimal64
1555 case DeclSpec::TST_decimal128: // _Decimal128
1556 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1557 Result = Context.IntTy;
1558 declarator.setInvalidType(true);
1559 break;
1560 case DeclSpec::TST_class:
1561 case DeclSpec::TST_enum:
1562 case DeclSpec::TST_union:
1563 case DeclSpec::TST_struct:
1564 case DeclSpec::TST_interface: {
1565 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1566 if (!D) {
1567 // This can happen in C++ with ambiguous lookups.
1568 Result = Context.IntTy;
1569 declarator.setInvalidType(true);
1570 break;
1571 }
1572
1573 // If the type is deprecated or unavailable, diagnose it.
1574 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1575
1576 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&(static_cast<void> (0))
1577 DS.getTypeSpecComplex() == 0 &&(static_cast<void> (0))
1578 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast<void> (0))
1579 "No qualifiers on tag names!")(static_cast<void> (0));
1580
1581 // TypeQuals handled by caller.
1582 Result = Context.getTypeDeclType(D);
1583
1584 // In both C and C++, make an ElaboratedType.
1585 ElaboratedTypeKeyword Keyword
1586 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1587 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1588 DS.isTypeSpecOwned() ? D : nullptr);
1589 break;
1590 }
1591 case DeclSpec::TST_typename: {
1592 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&(static_cast<void> (0))
1593 DS.getTypeSpecComplex() == 0 &&(static_cast<void> (0))
1594 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast<void> (0))
1595 "Can't handle qualifiers on typedef names yet!")(static_cast<void> (0));
1596 Result = S.GetTypeFromParser(DS.getRepAsType());
1597 if (Result.isNull()) {
1598 declarator.setInvalidType(true);
1599 }
1600
1601 // TypeQuals handled by caller.
1602 break;
1603 }
1604 case DeclSpec::TST_typeofType:
1605 // FIXME: Preserve type source info.
1606 Result = S.GetTypeFromParser(DS.getRepAsType());
1607 assert(!Result.isNull() && "Didn't get a type for typeof?")(static_cast<void> (0));
1608 if (!Result->isDependentType())
1609 if (const TagType *TT = Result->getAs<TagType>())
1610 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1611 // TypeQuals handled by caller.
1612 Result = Context.getTypeOfType(Result);
1613 break;
1614 case DeclSpec::TST_typeofExpr: {
1615 Expr *E = DS.getRepAsExpr();
1616 assert(E && "Didn't get an expression for typeof?")(static_cast<void> (0));
1617 // TypeQuals handled by caller.
1618 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1619 if (Result.isNull()) {
1620 Result = Context.IntTy;
1621 declarator.setInvalidType(true);
1622 }
1623 break;
1624 }
1625 case DeclSpec::TST_decltype: {
1626 Expr *E = DS.getRepAsExpr();
1627 assert(E && "Didn't get an expression for decltype?")(static_cast<void> (0));
1628 // TypeQuals handled by caller.
1629 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1630 if (Result.isNull()) {
1631 Result = Context.IntTy;
1632 declarator.setInvalidType(true);
1633 }
1634 break;
1635 }
1636 case DeclSpec::TST_underlyingType:
1637 Result = S.GetTypeFromParser(DS.getRepAsType());
1638 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")(static_cast<void> (0));
1639 Result = S.BuildUnaryTransformType(Result,
1640 UnaryTransformType::EnumUnderlyingType,
1641 DS.getTypeSpecTypeLoc());
1642 if (Result.isNull()) {
1643 Result = Context.IntTy;
1644 declarator.setInvalidType(true);
1645 }
1646 break;
1647
1648 case DeclSpec::TST_auto:
1649 case DeclSpec::TST_decltype_auto: {
1650 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1651 ? AutoTypeKeyword::DecltypeAuto
1652 : AutoTypeKeyword::Auto;
1653
1654 ConceptDecl *TypeConstraintConcept = nullptr;
1655 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1656 if (DS.isConstrainedAuto()) {
1657 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1658 TypeConstraintConcept =
1659 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1660 TemplateArgumentListInfo TemplateArgsInfo;
1661 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1662 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1663 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1664 TemplateId->NumArgs);
1665 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1666 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1667 TemplateArgs.push_back(ArgLoc.getArgument());
1668 } else {
1669 declarator.setInvalidType(true);
1670 }
1671 }
1672 Result = S.Context.getAutoType(QualType(), AutoKW,
1673 /*IsDependent*/ false, /*IsPack=*/false,
1674 TypeConstraintConcept, TemplateArgs);
1675 break;
1676 }
1677
1678 case DeclSpec::TST_auto_type:
1679 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1680 break;
1681
1682 case DeclSpec::TST_unknown_anytype:
1683 Result = Context.UnknownAnyTy;
1684 break;
1685
1686 case DeclSpec::TST_atomic:
1687 Result = S.GetTypeFromParser(DS.getRepAsType());
1688 assert(!Result.isNull() && "Didn't get a type for _Atomic?")(static_cast<void> (0));
1689 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1690 if (Result.isNull()) {
1691 Result = Context.IntTy;
1692 declarator.setInvalidType(true);
1693 }
1694 break;
1695
1696#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1697 case DeclSpec::TST_##ImgType##_t: \
1698 switch (getImageAccess(DS.getAttributes())) { \
1699 case OpenCLAccessAttr::Keyword_write_only: \
1700 Result = Context.Id##WOTy; \
1701 break; \
1702 case OpenCLAccessAttr::Keyword_read_write: \
1703 Result = Context.Id##RWTy; \
1704 break; \
1705 case OpenCLAccessAttr::Keyword_read_only: \
1706 Result = Context.Id##ROTy; \
1707 break; \
1708 case OpenCLAccessAttr::SpellingNotCalculated: \
1709 llvm_unreachable("Spelling not yet calculated")__builtin_unreachable(); \
1710 } \
1711 break;
1712#include "clang/Basic/OpenCLImageTypes.def"
1713
1714 case DeclSpec::TST_error:
1715 Result = Context.IntTy;
1716 declarator.setInvalidType(true);
1717 break;
1718 }
1719
1720 // FIXME: we want resulting declarations to be marked invalid, but claiming
1721 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1722 // a null type.
1723 if (Result->containsErrors())
1724 declarator.setInvalidType();
1725
1726 if (S.getLangOpts().OpenCL) {
1727 const auto &OpenCLOptions = S.getOpenCLOptions();
1728 bool IsOpenCLC30 = (S.getLangOpts().OpenCLVersion == 300);
1729 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1730 // support.
1731 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1732 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1733 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1734 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1735 // only when the optional feature is supported
1736 if ((Result->isImageType() || Result->isSamplerT()) &&
1737 (IsOpenCLC30 &&
1738 !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1739 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1740 << 0 << Result << "__opencl_c_images";
1741 declarator.setInvalidType();
1742 } else if (Result->isOCLImage3dWOType() &&
1743 !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1744 S.getLangOpts())) {
1745 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1746 << 0 << Result
1747 << (IsOpenCLC30
1748 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1749 : "cl_khr_3d_image_writes");
1750 declarator.setInvalidType();
1751 }
1752 }
1753
1754 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1755 DS.getTypeSpecType() == DeclSpec::TST_fract;
1756
1757 // Only fixed point types can be saturated
1758 if (DS.isTypeSpecSat() && !IsFixedPointType)
1759 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1760 << DS.getSpecifierName(DS.getTypeSpecType(),
1761 Context.getPrintingPolicy());
1762
1763 // Handle complex types.
1764 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1765 if (S.getLangOpts().Freestanding)
1766 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1767 Result = Context.getComplexType(Result);
1768 } else if (DS.isTypeAltiVecVector()) {
1769 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1770 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")(static_cast<void> (0));
1771 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1772 if (DS.isTypeAltiVecPixel())
1773 VecKind = VectorType::AltiVecPixel;
1774 else if (DS.isTypeAltiVecBool())
1775 VecKind = VectorType::AltiVecBool;
1776 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1777 }
1778
1779 // FIXME: Imaginary.
1780 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1781 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1782
1783 // Before we process any type attributes, synthesize a block literal
1784 // function declarator if necessary.
1785 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1786 maybeSynthesizeBlockSignature(state, Result);
1787
1788 // Apply any type attributes from the decl spec. This may cause the
1789 // list of type attributes to be temporarily saved while the type
1790 // attributes are pushed around.
1791 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1792 if (!DS.isTypeSpecPipe())
1793 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1794
1795 // Apply const/volatile/restrict qualifiers to T.
1796 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1797 // Warn about CV qualifiers on function types.
1798 // C99 6.7.3p8:
1799 // If the specification of a function type includes any type qualifiers,
1800 // the behavior is undefined.
1801 // C++11 [dcl.fct]p7:
1802 // The effect of a cv-qualifier-seq in a function declarator is not the
1803 // same as adding cv-qualification on top of the function type. In the
1804 // latter case, the cv-qualifiers are ignored.
1805 if (Result->isFunctionType()) {
1806 diagnoseAndRemoveTypeQualifiers(
1807 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1808 S.getLangOpts().CPlusPlus
1809 ? diag::warn_typecheck_function_qualifiers_ignored
1810 : diag::warn_typecheck_function_qualifiers_unspecified);
1811 // No diagnostic for 'restrict' or '_Atomic' applied to a
1812 // function type; we'll diagnose those later, in BuildQualifiedType.
1813 }
1814
1815 // C++11 [dcl.ref]p1:
1816 // Cv-qualified references are ill-formed except when the
1817 // cv-qualifiers are introduced through the use of a typedef-name
1818 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1819 //
1820 // There don't appear to be any other contexts in which a cv-qualified
1821 // reference type could be formed, so the 'ill-formed' clause here appears
1822 // to never happen.
1823 if (TypeQuals && Result->isReferenceType()) {
1824 diagnoseAndRemoveTypeQualifiers(
1825 S, DS, TypeQuals, Result,
1826 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1827 diag::warn_typecheck_reference_qualifiers);
1828 }
1829
1830 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1831 // than once in the same specifier-list or qualifier-list, either directly
1832 // or via one or more typedefs."
1833 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1834 && TypeQuals & Result.getCVRQualifiers()) {
1835 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1836 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1837 << "const";
1838 }
1839
1840 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1841 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1842 << "volatile";
1843 }
1844
1845 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1846 // produce a warning in this case.
1847 }
1848
1849 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1850
1851 // If adding qualifiers fails, just use the unqualified type.
1852 if (Qualified.isNull())
1853 declarator.setInvalidType(true);
1854 else
1855 Result = Qualified;
1856 }
1857
1858 assert(!Result.isNull() && "This function should not return a null type")(static_cast<void> (0));
1859 return Result;
1860}
1861
1862static std::string getPrintableNameForEntity(DeclarationName Entity) {
1863 if (Entity)
1864 return Entity.getAsString();
1865
1866 return "type name";
1867}
1868
1869QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1870 Qualifiers Qs, const DeclSpec *DS) {
1871 if (T.isNull())
1872 return QualType();
1873
1874 // Ignore any attempt to form a cv-qualified reference.
1875 if (T->isReferenceType()) {
1876 Qs.removeConst();
1877 Qs.removeVolatile();
1878 }
1879
1880 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1881 // object or incomplete types shall not be restrict-qualified."
1882 if (Qs.hasRestrict()) {
1883 unsigned DiagID = 0;
1884 QualType ProblemTy;
1885
1886 if (T->isAnyPointerType() || T->isReferenceType() ||
1887 T->isMemberPointerType()) {
1888 QualType EltTy;
1889 if (T->isObjCObjectPointerType())
1890 EltTy = T;
1891 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1892 EltTy = PTy->getPointeeType();
1893 else
1894 EltTy = T->getPointeeType();
1895
1896 // If we have a pointer or reference, the pointee must have an object
1897 // incomplete type.
1898 if (!EltTy->isIncompleteOrObjectType()) {
1899 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1900 ProblemTy = EltTy;
1901 }
1902 } else if (!T->isDependentType()) {
1903 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1904 ProblemTy = T;
1905 }
1906
1907 if (DiagID) {
1908 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1909 Qs.removeRestrict();
1910 }
1911 }
1912
1913 return Context.getQualifiedType(T, Qs);
1914}
1915
1916QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1917 unsigned CVRAU, const DeclSpec *DS) {
1918 if (T.isNull())
1919 return QualType();
1920
1921 // Ignore any attempt to form a cv-qualified reference.
1922 if (T->isReferenceType())
1923 CVRAU &=
1924 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1925
1926 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1927 // TQ_unaligned;
1928 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1929
1930 // C11 6.7.3/5:
1931 // If the same qualifier appears more than once in the same
1932 // specifier-qualifier-list, either directly or via one or more typedefs,
1933 // the behavior is the same as if it appeared only once.
1934 //
1935 // It's not specified what happens when the _Atomic qualifier is applied to
1936 // a type specified with the _Atomic specifier, but we assume that this
1937 // should be treated as if the _Atomic qualifier appeared multiple times.
1938 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1939 // C11 6.7.3/5:
1940 // If other qualifiers appear along with the _Atomic qualifier in a
1941 // specifier-qualifier-list, the resulting type is the so-qualified
1942 // atomic type.
1943 //
1944 // Don't need to worry about array types here, since _Atomic can't be
1945 // applied to such types.
1946 SplitQualType Split = T.getSplitUnqualifiedType();
1947 T = BuildAtomicType(QualType(Split.Ty, 0),
1948 DS ? DS->getAtomicSpecLoc() : Loc);
1949 if (T.isNull())
1950 return T;
1951 Split.Quals.addCVRQualifiers(CVR);
1952 return BuildQualifiedType(T, Loc, Split.Quals);
1953 }
1954
1955 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1956 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1957 return BuildQualifiedType(T, Loc, Q, DS);
1958}
1959
1960/// Build a paren type including \p T.
1961QualType Sema::BuildParenType(QualType T) {
1962 return Context.getParenType(T);
1963}
1964
1965/// Given that we're building a pointer or reference to the given
1966static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1967 SourceLocation loc,
1968 bool isReference) {
1969 // Bail out if retention is unrequired or already specified.
1970 if (!type->isObjCLifetimeType() ||
1971 type.getObjCLifetime() != Qualifiers::OCL_None)
1972 return type;
1973
1974 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1975
1976 // If the object type is const-qualified, we can safely use
1977 // __unsafe_unretained. This is safe (because there are no read
1978 // barriers), and it'll be safe to coerce anything but __weak* to
1979 // the resulting type.
1980 if (type.isConstQualified()) {
1981 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1982
1983 // Otherwise, check whether the static type does not require
1984 // retaining. This currently only triggers for Class (possibly
1985 // protocol-qualifed, and arrays thereof).
1986 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1987 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1988
1989 // If we are in an unevaluated context, like sizeof, skip adding a
1990 // qualification.
1991 } else if (S.isUnevaluatedContext()) {
1992 return type;
1993
1994 // If that failed, give an error and recover using __strong. __strong
1995 // is the option most likely to prevent spurious second-order diagnostics,
1996 // like when binding a reference to a field.
1997 } else {
1998 // These types can show up in private ivars in system headers, so
1999 // we need this to not be an error in those cases. Instead we
2000 // want to delay.
2001 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2002 S.DelayedDiagnostics.add(
2003 sema::DelayedDiagnostic::makeForbiddenType(loc,
2004 diag::err_arc_indirect_no_ownership, type, isReference));
2005 } else {
2006 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2007 }
2008 implicitLifetime = Qualifiers::OCL_Strong;
2009 }
2010 assert(implicitLifetime && "didn't infer any lifetime!")(static_cast<void> (0));
2011
2012 Qualifiers qs;
2013 qs.addObjCLifetime(implicitLifetime);
2014 return S.Context.getQualifiedType(type, qs);
2015}
2016
2017static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2018 std::string Quals = FnTy->getMethodQuals().getAsString();
2019
2020 switch (FnTy->getRefQualifier()) {
2021 case RQ_None:
2022 break;
2023
2024 case RQ_LValue:
2025 if (!Quals.empty())
2026 Quals += ' ';
2027 Quals += '&';
2028 break;
2029
2030 case RQ_RValue:
2031 if (!Quals.empty())
2032 Quals += ' ';
2033 Quals += "&&";
2034 break;
2035 }
2036
2037 return Quals;
2038}
2039
2040namespace {
2041/// Kinds of declarator that cannot contain a qualified function type.
2042///
2043/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2044/// a function type with a cv-qualifier or a ref-qualifier can only appear
2045/// at the topmost level of a type.
2046///
2047/// Parens and member pointers are permitted. We don't diagnose array and
2048/// function declarators, because they don't allow function types at all.
2049///
2050/// The values of this enum are used in diagnostics.
2051enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2052} // end anonymous namespace
2053
2054/// Check whether the type T is a qualified function type, and if it is,
2055/// diagnose that it cannot be contained within the given kind of declarator.
2056static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2057 QualifiedFunctionKind QFK) {
2058 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2059 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2060 if (!FPT ||
2061 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2062 return false;
2063
2064 S.Diag(Loc, diag::err_compound_qualified_function_type)
2065 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2066 << getFunctionQualifiersAsString(FPT);
2067 return true;
2068}
2069
2070bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2071 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2072 if (!FPT ||
2073 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2074 return false;
2075
2076 Diag(Loc, diag::err_qualified_function_typeid)
2077 << T << getFunctionQualifiersAsString(FPT);
2078 return true;
2079}
2080
2081// Helper to deduce addr space of a pointee type in OpenCL mode.
2082static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2083 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2084 !PointeeType->isSamplerT() &&
2085 !PointeeType.hasAddressSpace())
2086 PointeeType = S.getASTContext().getAddrSpaceQualType(
2087 PointeeType, S.getLangOpts().OpenCLGenericAddressSpace
2088 ? LangAS::opencl_generic
2089 : LangAS::opencl_private);
2090 return PointeeType;
2091}
2092
2093/// Build a pointer type.
2094///
2095/// \param T The type to which we'll be building a pointer.
2096///
2097/// \param Loc The location of the entity whose type involves this
2098/// pointer type or, if there is no such entity, the location of the
2099/// type that will have pointer type.
2100///
2101/// \param Entity The name of the entity that involves the pointer
2102/// type, if known.
2103///
2104/// \returns A suitable pointer type, if there are no
2105/// errors. Otherwise, returns a NULL type.
2106QualType Sema::BuildPointerType(QualType T,
2107 SourceLocation Loc, DeclarationName Entity) {
2108 if (T->isReferenceType()) {
2109 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2110 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2111 << getPrintableNameForEntity(Entity) << T;
2112 return QualType();
2113 }
2114
2115 if (T->isFunctionType() && getLangOpts().OpenCL &&
2116 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2117 getLangOpts())) {
2118 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2119 return QualType();
2120 }
2121
2122 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2123 return QualType();
2124
2125 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")(static_cast<void> (0));
2126
2127 // In ARC, it is forbidden to build pointers to unqualified pointers.
2128 if (getLangOpts().ObjCAutoRefCount)
2129 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2130
2131 if (getLangOpts().OpenCL)
2132 T = deduceOpenCLPointeeAddrSpace(*this, T);
2133
2134 // Build the pointer type.
2135 return Context.getPointerType(T);
2136}
2137
2138/// Build a reference type.
2139///
2140/// \param T The type to which we'll be building a reference.
2141///
2142/// \param Loc The location of the entity whose type involves this
2143/// reference type or, if there is no such entity, the location of the
2144/// type that will have reference type.
2145///
2146/// \param Entity The name of the entity that involves the reference
2147/// type, if known.
2148///
2149/// \returns A suitable reference type, if there are no
2150/// errors. Otherwise, returns a NULL type.
2151QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2152 SourceLocation Loc,
2153 DeclarationName Entity) {
2154 assert(Context.getCanonicalType(T) != Context.OverloadTy &&(static_cast<void> (0))
2155 "Unresolved overloaded function type")(static_cast<void> (0));
2156
2157 // C++0x [dcl.ref]p6:
2158 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2159 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2160 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2161 // the type "lvalue reference to T", while an attempt to create the type
2162 // "rvalue reference to cv TR" creates the type TR.
2163 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2164
2165 // C++ [dcl.ref]p4: There shall be no references to references.
2166 //
2167 // According to C++ DR 106, references to references are only
2168 // diagnosed when they are written directly (e.g., "int & &"),
2169 // but not when they happen via a typedef:
2170 //
2171 // typedef int& intref;
2172 // typedef intref& intref2;
2173 //
2174 // Parser::ParseDeclaratorInternal diagnoses the case where
2175 // references are written directly; here, we handle the
2176 // collapsing of references-to-references as described in C++0x.
2177 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2178
2179 // C++ [dcl.ref]p1:
2180 // A declarator that specifies the type "reference to cv void"
2181 // is ill-formed.
2182 if (T->isVoidType()) {
2183 Diag(Loc, diag::err_reference_to_void);
2184 return QualType();
2185 }
2186
2187 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2188 return QualType();
2189
2190 if (T->isFunctionType() && getLangOpts().OpenCL &&
2191 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2192 getLangOpts())) {
2193 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2194 return QualType();
2195 }
2196
2197 // In ARC, it is forbidden to build references to unqualified pointers.
2198 if (getLangOpts().ObjCAutoRefCount)
2199 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2200
2201 if (getLangOpts().OpenCL)
2202 T = deduceOpenCLPointeeAddrSpace(*this, T);
2203
2204 // Handle restrict on references.
2205 if (LValueRef)
2206 return Context.getLValueReferenceType(T, SpelledAsLValue);
2207 return Context.getRValueReferenceType(T);
2208}
2209
2210/// Build a Read-only Pipe type.
2211///
2212/// \param T The type to which we'll be building a Pipe.
2213///
2214/// \param Loc We do not use it for now.
2215///
2216/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2217/// NULL type.
2218QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2219 return Context.getReadPipeType(T);
2220}
2221
2222/// Build a Write-only Pipe type.
2223///
2224/// \param T The type to which we'll be building a Pipe.
2225///
2226/// \param Loc We do not use it for now.
2227///
2228/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2229/// NULL type.
2230QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2231 return Context.getWritePipeType(T);
2232}
2233
2234/// Build a extended int type.
2235///
2236/// \param IsUnsigned Boolean representing the signedness of the type.
2237///
2238/// \param BitWidth Size of this int type in bits, or an expression representing
2239/// that.
2240///
2241/// \param Loc Location of the keyword.
2242QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth,
2243 SourceLocation Loc) {
2244 if (BitWidth->isInstantiationDependent())
2245 return Context.getDependentExtIntType(IsUnsigned, BitWidth);
2246
2247 llvm::APSInt Bits(32);
2248 ExprResult ICE =
2249 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2250
2251 if (ICE.isInvalid())
2252 return QualType();
2253
2254 int64_t NumBits = Bits.getSExtValue();
2255 if (!IsUnsigned && NumBits < 2) {
2256 Diag(Loc, diag::err_ext_int_bad_size) << 0;
2257 return QualType();
2258 }
2259
2260 if (IsUnsigned && NumBits < 1) {
2261 Diag(Loc, diag::err_ext_int_bad_size) << 1;
2262 return QualType();
2263 }
2264
2265 if (NumBits > llvm::IntegerType::MAX_INT_BITS) {
2266 Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned
2267 << llvm::IntegerType::MAX_INT_BITS;
2268 return QualType();
2269 }
2270
2271 return Context.getExtIntType(IsUnsigned, NumBits);
2272}
2273
2274/// Check whether the specified array bound can be evaluated using the relevant
2275/// language rules. If so, returns the possibly-converted expression and sets
2276/// SizeVal to the size. If not, but the expression might be a VLA bound,
2277/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2278/// ExprError().
2279static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2280 llvm::APSInt &SizeVal, unsigned VLADiag,
2281 bool VLAIsError) {
2282 if (S.getLangOpts().CPlusPlus14 &&
2283 (VLAIsError ||
2284 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2285 // C++14 [dcl.array]p1:
2286 // The constant-expression shall be a converted constant expression of
2287 // type std::size_t.
2288 //
2289 // Don't apply this rule if we might be forming a VLA: in that case, we
2290 // allow non-constant expressions and constant-folding. We only need to use
2291 // the converted constant expression rules (to properly convert the source)
2292 // when the source expression is of class type.
2293 return S.CheckConvertedConstantExpression(
2294 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2295 }
2296
2297 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2298 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2299 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2300 public:
2301 unsigned VLADiag;
2302 bool VLAIsError;
2303 bool IsVLA = false;
2304
2305 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2306 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2307
2308 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2309 QualType T) override {
2310 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2311 }
2312
2313 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2314 SourceLocation Loc) override {
2315 IsVLA = !VLAIsError;
2316 return S.Diag(Loc, VLADiag);
2317 }
2318
2319 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2320 SourceLocation Loc) override {
2321 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2322 }
2323 } Diagnoser(VLADiag, VLAIsError);
2324
2325 ExprResult R =
2326 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2327 if (Diagnoser.IsVLA)
2328 return ExprResult();
2329 return R;
2330}
2331
2332/// Build an array type.
2333///
2334/// \param T The type of each element in the array.
2335///
2336/// \param ASM C99 array size modifier (e.g., '*', 'static').
2337///
2338/// \param ArraySize Expression describing the size of the array.
2339///
2340/// \param Brackets The range from the opening '[' to the closing ']'.
2341///
2342/// \param Entity The name of the entity that involves the array
2343/// type, if known.
2344///
2345/// \returns A suitable array type, if there are no errors. Otherwise,
2346/// returns a NULL type.
2347QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2348 Expr *ArraySize, unsigned Quals,
2349 SourceRange Brackets, DeclarationName Entity) {
2350
2351 SourceLocation Loc = Brackets.getBegin();
2352 if (getLangOpts().CPlusPlus) {
2353 // C++ [dcl.array]p1:
2354 // T is called the array element type; this type shall not be a reference
2355 // type, the (possibly cv-qualified) type void, a function type or an
2356 // abstract class type.
2357 //
2358 // C++ [dcl.array]p3:
2359 // When several "array of" specifications are adjacent, [...] only the
2360 // first of the constant expressions that specify the bounds of the arrays
2361 // may be omitted.
2362 //
2363 // Note: function types are handled in the common path with C.
2364 if (T->isReferenceType()) {
2365 Diag(Loc, diag::err_illegal_decl_array_of_references)
2366 << getPrintableNameForEntity(Entity) << T;
2367 return QualType();
2368 }
2369
2370 if (T->isVoidType() || T->isIncompleteArrayType()) {
2371 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2372 return QualType();
2373 }
2374
2375 if (RequireNonAbstractType(Brackets.getBegin(), T,
2376 diag::err_array_of_abstract_type))
2377 return QualType();
2378
2379 // Mentioning a member pointer type for an array type causes us to lock in
2380 // an inheritance model, even if it's inside an unused typedef.
2381 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2382 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2383 if (!MPTy->getClass()->isDependentType())
2384 (void)isCompleteType(Loc, T);
2385
2386 } else {
2387 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2388 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2389 if (RequireCompleteSizedType(Loc, T,
2390 diag::err_array_incomplete_or_sizeless_type))
2391 return QualType();
2392 }
2393
2394 if (T->isSizelessType()) {
2395 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2396 return QualType();
2397 }
2398
2399 if (T->isFunctionType()) {
2400 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2401 << getPrintableNameForEntity(Entity) << T;
2402 return QualType();
2403 }
2404
2405 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2406 // If the element type is a struct or union that contains a variadic
2407 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2408 if (EltTy->getDecl()->hasFlexibleArrayMember())
2409 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2410 } else if (T->isObjCObjectType()) {
2411 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2412 return QualType();
2413 }
2414
2415 // Do placeholder conversions on the array size expression.
2416 if (ArraySize && ArraySize->hasPlaceholderType()) {
2417 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2418 if (Result.isInvalid()) return QualType();
2419 ArraySize = Result.get();
2420 }
2421
2422 // Do lvalue-to-rvalue conversions on the array size expression.
2423 if (ArraySize && !ArraySize->isPRValue()) {
2424 ExprResult Result = DefaultLvalueConversion(ArraySize);
2425 if (Result.isInvalid())
2426 return QualType();
2427
2428 ArraySize = Result.get();
2429 }
2430
2431 // C99 6.7.5.2p1: The size expression shall have integer type.
2432 // C++11 allows contextual conversions to such types.
2433 if (!getLangOpts().CPlusPlus11 &&
2434 ArraySize && !ArraySize->isTypeDependent() &&
2435 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2436 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2437 << ArraySize->getType() << ArraySize->getSourceRange();
2438 return QualType();
2439 }
2440
2441 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2442 unsigned VLADiag;
2443 bool VLAIsError;
2444 if (getLangOpts().OpenCL) {
2445 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2446 VLADiag = diag::err_opencl_vla;
2447 VLAIsError = true;
2448 } else if (getLangOpts().C99) {
2449 VLADiag = diag::warn_vla_used;
2450 VLAIsError = false;
2451 } else if (isSFINAEContext()) {
2452 VLADiag = diag::err_vla_in_sfinae;
2453 VLAIsError = true;
2454 } else {
2455 VLADiag = diag::ext_vla;
2456 VLAIsError = false;
2457 }
2458
2459 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2460 if (!ArraySize) {
2461 if (ASM == ArrayType::Star) {
2462 Diag(Loc, VLADiag);
2463 if (VLAIsError)
2464 return QualType();
2465
2466 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2467 } else {
2468 T = Context.getIncompleteArrayType(T, ASM, Quals);
2469 }
2470 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2471 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2472 } else {
2473 ExprResult R =
2474 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2475 if (R.isInvalid())
2476 return QualType();
2477
2478 if (!R.isUsable()) {
2479 // C99: an array with a non-ICE size is a VLA. We accept any expression
2480 // that we can fold to a non-zero positive value as a non-VLA as an
2481 // extension.
2482 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2483 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2484 !T->isConstantSizeType()) {
2485 // C99: an array with an element type that has a non-constant-size is a
2486 // VLA.
2487 // FIXME: Add a note to explain why this isn't a VLA.
2488 Diag(Loc, VLADiag);
2489 if (VLAIsError)
2490 return QualType();
2491 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2492 } else {
2493 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2494 // have a value greater than zero.
2495 // In C++, this follows from narrowing conversions being disallowed.
2496 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2497 if (Entity)
2498 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2499 << getPrintableNameForEntity(Entity)
2500 << ArraySize->getSourceRange();
2501 else
2502 Diag(ArraySize->getBeginLoc(),
2503 diag::err_typecheck_negative_array_size)
2504 << ArraySize->getSourceRange();
2505 return QualType();
2506 }
2507 if (ConstVal == 0) {
2508 // GCC accepts zero sized static arrays. We allow them when
2509 // we're not in a SFINAE context.
2510 Diag(ArraySize->getBeginLoc(),
2511 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2512 : diag::ext_typecheck_zero_array_size)
2513 << ArraySize->getSourceRange();
2514 }
2515
2516 // Is the array too large?
2517 unsigned ActiveSizeBits =
2518 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2519 !T->isIncompleteType() && !T->isUndeducedType())
2520 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2521 : ConstVal.getActiveBits();
2522 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2523 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2524 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2525 return QualType();
2526 }
2527
2528 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2529 }
2530 }
2531
2532 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2533 // CUDA device code and some other targets don't support VLAs.
2534 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2535 ? diag::err_cuda_vla
2536 : diag::err_vla_unsupported)
2537 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2538 ? CurrentCUDATarget()
2539 : CFT_InvalidTarget);
2540 }
2541
2542 // If this is not C99, diagnose array size modifiers on non-VLAs.
2543 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2544 (ASM != ArrayType::Normal || Quals != 0)) {
2545 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2546 : diag::ext_c99_array_usage)
2547 << ASM;
2548 }
2549
2550 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2551 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2552 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2553 if (getLangOpts().OpenCL) {
2554 const QualType ArrType = Context.getBaseElementType(T);
2555 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2556 ArrType->isSamplerT() || ArrType->isImageType()) {
2557 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2558 return QualType();
2559 }
2560 }
2561
2562 return T;
2563}
2564
2565QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2566 SourceLocation AttrLoc) {
2567 // The base type must be integer (not Boolean or enumeration) or float, and
2568 // can't already be a vector.
2569 if ((!CurType->isDependentType() &&
2570 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2571 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2572 CurType->isArrayType()) {
2573 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2574 return QualType();
2575 }
2576
2577 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2578 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2579 VectorType::GenericVector);
2580
2581 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2582 if (!VecSize) {
2583 Diag(AttrLoc, diag::err_attribute_argument_type)
2584 << "vector_size" << AANT_ArgumentIntegerConstant
2585 << SizeExpr->getSourceRange();
2586 return QualType();
2587 }
2588
2589 if (CurType->isDependentType())
2590 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2591 VectorType::GenericVector);
2592
2593 // vecSize is specified in bytes - convert to bits.
2594 if (!VecSize->isIntN(61)) {
2595 // Bit size will overflow uint64.
2596 Diag(AttrLoc, diag::err_attribute_size_too_large)
2597 << SizeExpr->getSourceRange() << "vector";
2598 return QualType();
2599 }
2600 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2601 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2602
2603 if (VectorSizeBits == 0) {
2604 Diag(AttrLoc, diag::err_attribute_zero_size)
2605 << SizeExpr->getSourceRange() << "vector";
2606 return QualType();
2607 }
2608
2609 if (VectorSizeBits % TypeSize) {
2610 Diag(AttrLoc, diag::err_attribute_invalid_size)
2611 << SizeExpr->getSourceRange();
2612 return QualType();
2613 }
2614
2615 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2616 Diag(AttrLoc, diag::err_attribute_size_too_large)
2617 << SizeExpr->getSourceRange() << "vector";
2618 return QualType();
2619 }
2620
2621 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2622 VectorType::GenericVector);
2623}
2624
2625/// Build an ext-vector type.
2626///
2627/// Run the required checks for the extended vector type.
2628QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2629 SourceLocation AttrLoc) {
2630 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2631 // in conjunction with complex types (pointers, arrays, functions, etc.).
2632 //
2633 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2634 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2635 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2636 // of bool aren't allowed.
2637 if ((!T->isDependentType() && !T->isIntegerType() &&
2638 !T->isRealFloatingType()) ||
2639 T->isBooleanType()) {
2640 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2641 return QualType();
2642 }
2643
2644 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2645 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2646 if (!vecSize) {
2647 Diag(AttrLoc, diag::err_attribute_argument_type)
2648 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2649 << ArraySize->getSourceRange();
2650 return QualType();
2651 }
2652
2653 if (!vecSize->isIntN(32)) {
2654 Diag(AttrLoc, diag::err_attribute_size_too_large)
2655 << ArraySize->getSourceRange() << "vector";
2656 return QualType();
2657 }
2658 // Unlike gcc's vector_size attribute, the size is specified as the
2659 // number of elements, not the number of bytes.
2660 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2661
2662 if (vectorSize == 0) {
2663 Diag(AttrLoc, diag::err_attribute_zero_size)
2664 << ArraySize->getSourceRange() << "vector";
2665 return QualType();
2666 }
2667
2668 return Context.getExtVectorType(T, vectorSize);
2669 }
2670
2671 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2672}
2673
2674QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2675 SourceLocation AttrLoc) {
2676 assert(Context.getLangOpts().MatrixTypes &&(static_cast<void> (0))
2677 "Should never build a matrix type when it is disabled")(static_cast<void> (0));
2678
2679 // Check element type, if it is not dependent.
2680 if (!ElementTy->isDependentType() &&
2681 !MatrixType::isValidElementType(ElementTy)) {
2682 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2683 return QualType();
2684 }
2685
2686 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2687 NumRows->isValueDependent() || NumCols->isValueDependent())
2688 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2689 AttrLoc);
2690
2691 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2692 Optional<llvm::APSInt> ValueColumns =
2693 NumCols->getIntegerConstantExpr(Context);
2694
2695 auto const RowRange = NumRows->getSourceRange();
2696 auto const ColRange = NumCols->getSourceRange();
2697
2698 // Both are row and column expressions are invalid.
2699 if (!ValueRows && !ValueColumns) {
2700 Diag(AttrLoc, diag::err_attribute_argument_type)
2701 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2702 << ColRange;
2703 return QualType();
2704 }
2705
2706 // Only the row expression is invalid.
2707 if (!ValueRows) {
2708 Diag(AttrLoc, diag::err_attribute_argument_type)
2709 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2710 return QualType();
2711 }
2712
2713 // Only the column expression is invalid.
2714 if (!ValueColumns) {
2715 Diag(AttrLoc, diag::err_attribute_argument_type)
2716 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2717 return QualType();
2718 }
2719
2720 // Check the matrix dimensions.
2721 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2722 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2723 if (MatrixRows == 0 && MatrixColumns == 0) {
2724 Diag(AttrLoc, diag::err_attribute_zero_size)
2725 << "matrix" << RowRange << ColRange;
2726 return QualType();
2727 }
2728 if (MatrixRows == 0) {
2729 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2730 return QualType();
2731 }
2732 if (MatrixColumns == 0) {
2733 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2734 return QualType();
2735 }
2736 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2737 Diag(AttrLoc, diag::err_attribute_size_too_large)
2738 << RowRange << "matrix row";
2739 return QualType();
2740 }
2741 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2742 Diag(AttrLoc, diag::err_attribute_size_too_large)
2743 << ColRange << "matrix column";
2744 return QualType();
2745 }
2746 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2747}
2748
2749bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2750 if (T->isArrayType() || T->isFunctionType()) {
2751 Diag(Loc, diag::err_func_returning_array_function)
2752 << T->isFunctionType() << T;
2753 return true;
2754 }
2755
2756 // Functions cannot return half FP.
2757 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2758 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2759 FixItHint::CreateInsertion(Loc, "*");
2760 return true;
2761 }
2762
2763 // Methods cannot return interface types. All ObjC objects are
2764 // passed by reference.
2765 if (T->isObjCObjectType()) {
2766 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2767 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2768 return true;
2769 }
2770
2771 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2772 T.hasNonTrivialToPrimitiveCopyCUnion())
2773 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2774 NTCUK_Destruct|NTCUK_Copy);
2775
2776 // C++2a [dcl.fct]p12:
2777 // A volatile-qualified return type is deprecated
2778 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2779 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2780
2781 return false;
2782}
2783
2784/// Check the extended parameter information. Most of the necessary
2785/// checking should occur when applying the parameter attribute; the
2786/// only other checks required are positional restrictions.
2787static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2788 const FunctionProtoType::ExtProtoInfo &EPI,
2789 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2790 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")(static_cast<void> (0));
2791
2792 bool emittedError = false;
2793 auto actualCC = EPI.ExtInfo.getCC();
2794 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2795 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2796 bool isCompatible =
2797 (required == RequiredCC::OnlySwift)
2798 ? (actualCC == CC_Swift)
2799 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2800 if (isCompatible || emittedError)
2801 return;
2802 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2803 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2804 << (required == RequiredCC::OnlySwift);
2805 emittedError = true;
2806 };
2807 for (size_t paramIndex = 0, numParams = paramTypes.size();
2808 paramIndex != numParams; ++paramIndex) {
2809 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2810 // Nothing interesting to check for orindary-ABI parameters.
2811 case ParameterABI::Ordinary:
2812 continue;
2813
2814 // swift_indirect_result parameters must be a prefix of the function
2815 // arguments.
2816 case ParameterABI::SwiftIndirectResult:
2817 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2818 if (paramIndex != 0 &&
2819 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2820 != ParameterABI::SwiftIndirectResult) {
2821 S.Diag(getParamLoc(paramIndex),
2822 diag::err_swift_indirect_result_not_first);
2823 }
2824 continue;
2825
2826 case ParameterABI::SwiftContext:
2827 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2828 continue;
2829
2830 // SwiftAsyncContext is not limited to swiftasynccall functions.
2831 case ParameterABI::SwiftAsyncContext:
2832 continue;
2833
2834 // swift_error parameters must be preceded by a swift_context parameter.
2835 case ParameterABI::SwiftErrorResult:
2836 checkCompatible(paramIndex, RequiredCC::OnlySwift);
2837 if (paramIndex == 0 ||
2838 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2839 ParameterABI::SwiftContext) {
2840 S.Diag(getParamLoc(paramIndex),
2841 diag::err_swift_error_result_not_after_swift_context);
2842 }
2843 continue;
2844 }
2845 llvm_unreachable("bad ABI kind")__builtin_unreachable();
2846 }
2847}
2848
2849QualType Sema::BuildFunctionType(QualType T,
2850 MutableArrayRef<QualType> ParamTypes,
2851 SourceLocation Loc, DeclarationName Entity,
2852 const FunctionProtoType::ExtProtoInfo &EPI) {
2853 bool Invalid = false;
2854
2855 Invalid |= CheckFunctionReturnType(T, Loc);
2856
2857 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2858 // FIXME: Loc is too inprecise here, should use proper locations for args.
2859 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2860 if (ParamType->isVoidType()) {
2861 Diag(Loc, diag::err_param_with_void_type);
2862 Invalid = true;
2863 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2864 // Disallow half FP arguments.
2865 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2866 FixItHint::CreateInsertion(Loc, "*");
2867 Invalid = true;
2868 }
2869
2870 // C++2a [dcl.fct]p4:
2871 // A parameter with volatile-qualified type is deprecated
2872 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2873 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2874
2875 ParamTypes[Idx] = ParamType;
2876 }
2877
2878 if (EPI.ExtParameterInfos) {
2879 checkExtParameterInfos(*this, ParamTypes, EPI,
2880 [=](unsigned i) { return Loc; });
2881 }
2882
2883 if (EPI.ExtInfo.getProducesResult()) {
2884 // This is just a warning, so we can't fail to build if we see it.
2885 checkNSReturnsRetainedReturnType(Loc, T);
2886 }
2887
2888 if (Invalid)
2889 return QualType();
2890
2891 return Context.getFunctionType(T, ParamTypes, EPI);
2892}
2893
2894/// Build a member pointer type \c T Class::*.
2895///
2896/// \param T the type to which the member pointer refers.
2897/// \param Class the class type into which the member pointer points.
2898/// \param Loc the location where this type begins
2899/// \param Entity the name of the entity that will have this member pointer type
2900///
2901/// \returns a member pointer type, if successful, or a NULL type if there was
2902/// an error.
2903QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2904 SourceLocation Loc,
2905 DeclarationName Entity) {
2906 // Verify that we're not building a pointer to pointer to function with
2907 // exception specification.
2908 if (CheckDistantExceptionSpec(T)) {
2909 Diag(Loc, diag::err_distant_exception_spec);
2910 return QualType();
2911 }
2912
2913 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2914 // with reference type, or "cv void."
2915 if (T->isReferenceType()) {
2916 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2917 << getPrintableNameForEntity(Entity) << T;
2918 return QualType();
2919 }
2920
2921 if (T->isVoidType()) {
2922 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2923 << getPrintableNameForEntity(Entity);
2924 return QualType();
2925 }
2926
2927 if (!Class->isDependentType() && !Class->isRecordType()) {
2928 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2929 return QualType();
2930 }
2931
2932 if (T->isFunctionType() && getLangOpts().OpenCL &&
2933 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2934 getLangOpts())) {
2935 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2936 return QualType();
2937 }
2938
2939 // Adjust the default free function calling convention to the default method
2940 // calling convention.
2941 bool IsCtorOrDtor =
2942 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2943 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2944 if (T->isFunctionType())
2945 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2946
2947 return Context.getMemberPointerType(T, Class.getTypePtr());
2948}
2949
2950/// Build a block pointer type.
2951///
2952/// \param T The type to which we'll be building a block pointer.
2953///
2954/// \param Loc The source location, used for diagnostics.
2955///
2956/// \param Entity The name of the entity that involves the block pointer
2957/// type, if known.
2958///
2959/// \returns A suitable block pointer type, if there are no
2960/// errors. Otherwise, returns a NULL type.
2961QualType Sema::BuildBlockPointerType(QualType T,
2962 SourceLocation Loc,
2963 DeclarationName Entity) {
2964 if (!T->isFunctionType()) {
2965 Diag(Loc, diag::err_nonfunction_block_type);
2966 return QualType();
2967 }
2968
2969 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2970 return QualType();
2971
2972 if (getLangOpts().OpenCL)
2973 T = deduceOpenCLPointeeAddrSpace(*this, T);
2974
2975 return Context.getBlockPointerType(T);
2976}
2977
2978QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2979 QualType QT = Ty.get();
2980 if (QT.isNull()) {
33
Calling 'QualType::isNull'
39
Returning from 'QualType::isNull'
40
Taking false branch
2981 if (TInfo) *TInfo = nullptr;
2982 return QualType();
2983 }
2984
2985 TypeSourceInfo *DI = nullptr;
41
'DI' initialized to a null pointer value
2986 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
42
Assuming 'LIT' is null
43
Taking false branch
2987 QT = LIT->getType();
2988 DI = LIT->getTypeSourceInfo();
2989 }
2990
2991 if (TInfo
43.1
'TInfo' is non-null
43.1
'TInfo' is non-null
43.1
'TInfo' is non-null
43.1
'TInfo' is non-null
43.1
'TInfo' is non-null
) *TInfo = DI;
44
Taking true branch
45
Null pointer value stored to 'TInfo'
2992 return QT;
2993}
2994
2995static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2996 Qualifiers::ObjCLifetime ownership,
2997 unsigned chunkIndex);
2998
2999/// Given that this is the declaration of a parameter under ARC,
3000/// attempt to infer attributes and such for pointer-to-whatever
3001/// types.
3002static void inferARCWriteback(TypeProcessingState &state,
3003 QualType &declSpecType) {
3004 Sema &S = state.getSema();
3005 Declarator &declarator = state.getDeclarator();
3006
3007 // TODO: should we care about decl qualifiers?
3008
3009 // Check whether the declarator has the expected form. We walk
3010 // from the inside out in order to make the block logic work.
3011 unsigned outermostPointerIndex = 0;
3012 bool isBlockPointer = false;
3013 unsigned numPointers = 0;
3014 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3015 unsigned chunkIndex = i;
3016 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
3017 switch (chunk.Kind) {
3018 case DeclaratorChunk::Paren:
3019 // Ignore parens.
3020 break;
3021
3022 case DeclaratorChunk::Reference:
3023 case DeclaratorChunk::Pointer:
3024 // Count the number of pointers. Treat references
3025 // interchangeably as pointers; if they're mis-ordered, normal
3026 // type building will discover that.
3027 outermostPointerIndex = chunkIndex;
3028 numPointers++;
3029 break;
3030
3031 case DeclaratorChunk::BlockPointer:
3032 // If we have a pointer to block pointer, that's an acceptable
3033 // indirect reference; anything else is not an application of
3034 // the rules.
3035 if (numPointers != 1) return;
3036 numPointers++;
3037 outermostPointerIndex = chunkIndex;
3038 isBlockPointer = true;
3039
3040 // We don't care about pointer structure in return values here.
3041 goto done;
3042
3043 case DeclaratorChunk::Array: // suppress if written (id[])?
3044 case DeclaratorChunk::Function:
3045 case DeclaratorChunk::MemberPointer:
3046 case DeclaratorChunk::Pipe:
3047 return;
3048 }
3049 }
3050 done:
3051
3052 // If we have *one* pointer, then we want to throw the qualifier on
3053 // the declaration-specifiers, which means that it needs to be a
3054 // retainable object type.
3055 if (numPointers == 1) {
3056 // If it's not a retainable object type, the rule doesn't apply.
3057 if (!declSpecType->isObjCRetainableType()) return;
3058
3059 // If it already has lifetime, don't do anything.
3060 if (declSpecType.getObjCLifetime()) return;
3061
3062 // Otherwise, modify the type in-place.
3063 Qualifiers qs;
3064
3065 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3066 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3067 else
3068 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3069 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3070
3071 // If we have *two* pointers, then we want to throw the qualifier on
3072 // the outermost pointer.
3073 } else if (numPointers == 2) {
3074 // If we don't have a block pointer, we need to check whether the
3075 // declaration-specifiers gave us something that will turn into a
3076 // retainable object pointer after we slap the first pointer on it.
3077 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3078 return;
3079
3080 // Look for an explicit lifetime attribute there.
3081 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3082 if (chunk.Kind != DeclaratorChunk::Pointer &&
3083 chunk.Kind != DeclaratorChunk::BlockPointer)
3084 return;
3085 for (const ParsedAttr &AL : chunk.getAttrs())
3086 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3087 return;
3088
3089 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3090 outermostPointerIndex);
3091
3092 // Any other number of pointers/references does not trigger the rule.
3093 } else return;
3094
3095 // TODO: mark whether we did this inference?
3096}
3097
3098void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3099 SourceLocation FallbackLoc,
3100 SourceLocation ConstQualLoc,
3101 SourceLocation VolatileQualLoc,
3102 SourceLocation RestrictQualLoc,
3103 SourceLocation AtomicQualLoc,
3104 SourceLocation UnalignedQualLoc) {
3105 if (!Quals)
3106 return;
3107
3108 struct Qual {
3109 const char *Name;
3110 unsigned Mask;
3111 SourceLocation Loc;
3112 } const QualKinds[5] = {
3113 { "const", DeclSpec::TQ_const, ConstQualLoc },
3114 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3115 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3116 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3117 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3118 };
3119
3120 SmallString<32> QualStr;
3121 unsigned NumQuals = 0;
3122 SourceLocation Loc;
3123 FixItHint FixIts[5];
3124
3125 // Build a string naming the redundant qualifiers.
3126 for (auto &E : QualKinds) {
3127 if (Quals & E.Mask) {
3128 if (!QualStr.empty()) QualStr += ' ';
3129 QualStr += E.Name;
3130
3131 // If we have a location for the qualifier, offer a fixit.
3132 SourceLocation QualLoc = E.Loc;
3133 if (QualLoc.isValid()) {
3134 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3135 if (Loc.isInvalid() ||
3136 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3137 Loc = QualLoc;
3138 }
3139
3140 ++NumQuals;
3141 }
3142 }
3143
3144 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3145 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3146}
3147
3148// Diagnose pointless type qualifiers on the return type of a function.
3149static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3150 Declarator &D,
3151 unsigned FunctionChunkIndex) {
3152 const DeclaratorChunk::FunctionTypeInfo &FTI =
3153 D.getTypeObject(FunctionChunkIndex).Fun;
3154 if (FTI.hasTrailingReturnType()) {
3155 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3156 RetTy.getLocalCVRQualifiers(),
3157 FTI.getTrailingReturnTypeLoc());
3158 return;
3159 }
3160
3161 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3162 End = D.getNumTypeObjects();
3163 OuterChunkIndex != End; ++OuterChunkIndex) {
3164 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3165 switch (OuterChunk.Kind) {
3166 case DeclaratorChunk::Paren:
3167 continue;
3168
3169 case DeclaratorChunk::Pointer: {
3170 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3171 S.diagnoseIgnoredQualifiers(
3172 diag::warn_qual_return_type,
3173 PTI.TypeQuals,
3174 SourceLocation(),
3175 PTI.ConstQualLoc,
3176 PTI.VolatileQualLoc,
3177 PTI.RestrictQualLoc,
3178 PTI.AtomicQualLoc,
3179 PTI.UnalignedQualLoc);
3180 return;
3181 }
3182
3183 case DeclaratorChunk::Function:
3184 case DeclaratorChunk::BlockPointer:
3185 case DeclaratorChunk::Reference:
3186 case DeclaratorChunk::Array:
3187 case DeclaratorChunk::MemberPointer:
3188 case DeclaratorChunk::Pipe:
3189 // FIXME: We can't currently provide an accurate source location and a
3190 // fix-it hint for these.
3191 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3192 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3193 RetTy.getCVRQualifiers() | AtomicQual,
3194 D.getIdentifierLoc());
3195 return;
3196 }
3197
3198 llvm_unreachable("unknown declarator chunk kind")__builtin_unreachable();
3199 }
3200
3201 // If the qualifiers come from a conversion function type, don't diagnose
3202 // them -- they're not necessarily redundant, since such a conversion
3203 // operator can be explicitly called as "x.operator const int()".
3204 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3205 return;
3206
3207 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3208 // which are present there.
3209 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3210 D.getDeclSpec().getTypeQualifiers(),
3211 D.getIdentifierLoc(),
3212 D.getDeclSpec().getConstSpecLoc(),
3213 D.getDeclSpec().getVolatileSpecLoc(),
3214 D.getDeclSpec().getRestrictSpecLoc(),
3215 D.getDeclSpec().getAtomicSpecLoc(),
3216 D.getDeclSpec().getUnalignedSpecLoc());
3217}
3218
3219static std::pair<QualType, TypeSourceInfo *>
3220InventTemplateParameter(TypeProcessingState &state, QualType T,
3221 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3222 InventedTemplateParameterInfo &Info) {
3223 Sema &S = state.getSema();
3224 Declarator &D = state.getDeclarator();
3225
3226 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3227 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3228 const bool IsParameterPack = D.hasEllipsis();
3229
3230 // If auto is mentioned in a lambda parameter or abbreviated function
3231 // template context, convert it to a template parameter type.
3232
3233 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3234 // template parameter type. Template parameters are temporarily added
3235 // to the TU until the associated TemplateDecl is created.
3236 TemplateTypeParmDecl *InventedTemplateParam =
3237 TemplateTypeParmDecl::Create(
3238 S.Context, S.Context.getTranslationUnitDecl(),
3239 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3240 /*NameLoc=*/D.getIdentifierLoc(),
3241 TemplateParameterDepth, AutoParameterPosition,
3242 S.InventAbbreviatedTemplateParameterTypeName(
3243 D.getIdentifier(), AutoParameterPosition), false,
3244 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3245 InventedTemplateParam->setImplicit();
3246 Info.TemplateParams.push_back(InventedTemplateParam);
3247
3248 // Attach type constraints to the new parameter.
3249 if (Auto->isConstrained()) {
3250 if (TrailingTSI) {
3251 // The 'auto' appears in a trailing return type we've already built;
3252 // extract its type constraints to attach to the template parameter.
3253 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3254 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3255 bool Invalid = false;
3256 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3257 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3258 S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3259 Sema::UPPC_TypeConstraint))
3260 Invalid = true;
3261 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3262 }
3263
3264 if (!Invalid) {
3265 S.AttachTypeConstraint(
3266 AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3267 AutoLoc.getNamedConcept(),
3268 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3269 InventedTemplateParam, D.getEllipsisLoc());
3270 }
3271 } else {
3272 // The 'auto' appears in the decl-specifiers; we've not finished forming
3273 // TypeSourceInfo for it yet.
3274 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3275 TemplateArgumentListInfo TemplateArgsInfo;
3276 bool Invalid = false;
3277 if (TemplateId->LAngleLoc.isValid()) {
3278 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3279 TemplateId->NumArgs);
3280 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3281
3282 if (D.getEllipsisLoc().isInvalid()) {
3283 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3284 if (S.DiagnoseUnexpandedParameterPack(Arg,
3285 Sema::UPPC_TypeConstraint)) {
3286 Invalid = true;
3287 break;
3288 }
3289 }
3290 }
3291 }
3292 if (!Invalid) {
3293 S.AttachTypeConstraint(
3294 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3295 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3296 TemplateId->TemplateNameLoc),
3297 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3298 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3299 InventedTemplateParam, D.getEllipsisLoc());
3300 }
3301 }
3302 }
3303
3304 // Replace the 'auto' in the function parameter with this invented
3305 // template type parameter.
3306 // FIXME: Retain some type sugar to indicate that this was written
3307 // as 'auto'?
3308 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3309 QualType NewT = state.ReplaceAutoType(T, Replacement);
3310 TypeSourceInfo *NewTSI =
3311 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3312 : nullptr;
3313 return {NewT, NewTSI};
3314}
3315
3316static TypeSourceInfo *
3317GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3318 QualType T, TypeSourceInfo *ReturnTypeInfo);
3319
3320static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3321 TypeSourceInfo *&ReturnTypeInfo) {
3322 Sema &SemaRef = state.getSema();
3323 Declarator &D = state.getDeclarator();
3324 QualType T;
3325 ReturnTypeInfo = nullptr;
3326
3327 // The TagDecl owned by the DeclSpec.
3328 TagDecl *OwnedTagDecl = nullptr;
3329
3330 switch (D.getName().getKind()) {
3331 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3332 case UnqualifiedIdKind::IK_OperatorFunctionId:
3333 case UnqualifiedIdKind::IK_Identifier:
3334 case UnqualifiedIdKind::IK_LiteralOperatorId:
3335 case UnqualifiedIdKind::IK_TemplateId:
3336 T = ConvertDeclSpecToType(state);
3337
3338 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3339 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3340 // Owned declaration is embedded in declarator.
3341 OwnedTagDecl->setEmbeddedInDeclarator(true);
3342 }
3343 break;
3344
3345 case UnqualifiedIdKind::IK_ConstructorName:
3346 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3347 case UnqualifiedIdKind::IK_DestructorName:
3348 // Constructors and destructors don't have return types. Use
3349 // "void" instead.
3350 T = SemaRef.Context.VoidTy;
3351 processTypeAttrs(state, T, TAL_DeclSpec,
3352 D.getMutableDeclSpec().getAttributes());
3353 break;
3354
3355 case UnqualifiedIdKind::IK_DeductionGuideName:
3356 // Deduction guides have a trailing return type and no type in their
3357 // decl-specifier sequence. Use a placeholder return type for now.
3358 T = SemaRef.Context.DependentTy;
3359 break;
3360
3361 case UnqualifiedIdKind::IK_ConversionFunctionId:
3362 // The result type of a conversion function is the type that it
3363 // converts to.
3364 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3365 &ReturnTypeInfo);
3366 break;
3367 }
3368
3369 if (!D.getAttributes().empty())
3370 distributeTypeAttrsFromDeclarator(state, T);
3371
3372 // Find the deduced type in this type. Look in the trailing return type if we
3373 // have one, otherwise in the DeclSpec type.
3374 // FIXME: The standard wording doesn't currently describe this.
3375 DeducedType *Deduced = T->getContainedDeducedType();
3376 bool DeducedIsTrailingReturnType = false;
3377 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3378 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3379 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3380 DeducedIsTrailingReturnType = true;
3381 }
3382
3383 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3384 if (Deduced) {
3385 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3386 int Error = -1;
3387
3388 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3389 // class template argument deduction)?
3390 bool IsCXXAutoType =
3391 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3392 bool IsDeducedReturnType = false;
3393
3394 switch (D.getContext()) {
3395 case DeclaratorContext::LambdaExpr:
3396 // Declared return type of a lambda-declarator is implicit and is always
3397 // 'auto'.
3398 break;
3399 case DeclaratorContext::ObjCParameter:
3400 case DeclaratorContext::ObjCResult:
3401 Error = 0;
3402 break;
3403 case DeclaratorContext::RequiresExpr:
3404 Error = 22;
3405 break;
3406 case DeclaratorContext::Prototype:
3407 case DeclaratorContext::LambdaExprParameter: {
3408 InventedTemplateParameterInfo *Info = nullptr;
3409 if (D.getContext() == DeclaratorContext::Prototype) {
3410 // With concepts we allow 'auto' in function parameters.
3411 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3412 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3413 Error = 0;
3414 break;
3415 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3416 Error = 21;
3417 break;
3418 }
3419
3420 Info = &SemaRef.InventedParameterInfos.back();
3421 } else {
3422 // In C++14, generic lambdas allow 'auto' in their parameters.
3423 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3424 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3425 Error = 16;
3426 break;
3427 }
3428 Info = SemaRef.getCurLambda();
3429 assert(Info && "No LambdaScopeInfo on the stack!")(static_cast<void> (0));
3430 }
3431
3432 // We'll deal with inventing template parameters for 'auto' in trailing
3433 // return types when we pick up the trailing return type when processing
3434 // the function chunk.
3435 if (!DeducedIsTrailingReturnType)
3436 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3437 break;
3438 }
3439 case DeclaratorContext::Member: {
3440 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3441 D.isFunctionDeclarator())
3442 break;
3443 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3444 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3445 Error = 6; // Interface member.
3446 } else {
3447 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3448 case TTK_Enum: llvm_unreachable("unhandled tag kind")__builtin_unreachable();
3449 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3450 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3451 case TTK_Class: Error = 5; /* Class member */ break;
3452 case TTK_Interface: Error = 6; /* Interface member */ break;
3453 }
3454 }
3455 if (D.getDeclSpec().isFriendSpecified())
3456 Error = 20; // Friend type
3457 break;
3458 }
3459 case DeclaratorContext::CXXCatch:
3460 case DeclaratorContext::ObjCCatch:
3461 Error = 7; // Exception declaration
3462 break;
3463 case DeclaratorContext::TemplateParam:
3464 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3465 !SemaRef.getLangOpts().CPlusPlus20)
3466 Error = 19; // Template parameter (until C++20)
3467 else if (!SemaRef.getLangOpts().CPlusPlus17)
3468 Error = 8; // Template parameter (until C++17)
3469 break;
3470 case DeclaratorContext::BlockLiteral:
3471 Error = 9; // Block literal
3472 break;
3473 case DeclaratorContext::TemplateArg:
3474 // Within a template argument list, a deduced template specialization
3475 // type will be reinterpreted as a template template argument.
3476 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3477 !D.getNumTypeObjects() &&
3478 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3479 break;
3480 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3481 case DeclaratorContext::TemplateTypeArg:
3482 Error = 10; // Template type argument
3483 break;
3484 case DeclaratorContext::AliasDecl:
3485 case DeclaratorContext::AliasTemplate:
3486 Error = 12; // Type alias
3487 break;
3488 case DeclaratorContext::TrailingReturn:
3489 case DeclaratorContext::TrailingReturnVar:
3490 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3491 Error = 13; // Function return type
3492 IsDeducedReturnType = true;
3493 break;
3494 case DeclaratorContext::ConversionId:
3495 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3496 Error = 14; // conversion-type-id
3497 IsDeducedReturnType = true;
3498 break;
3499 case DeclaratorContext::FunctionalCast:
3500 if (isa<DeducedTemplateSpecializationType>(Deduced))
3501 break;
3502 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3503 case DeclaratorContext::TypeName:
3504 Error = 15; // Generic
3505 break;
3506 case DeclaratorContext::File:
3507 case DeclaratorContext::Block:
3508 case DeclaratorContext::ForInit:
3509 case DeclaratorContext::SelectionInit:
3510 case DeclaratorContext::Condition:
3511 // FIXME: P0091R3 (erroneously) does not permit class template argument
3512 // deduction in conditions, for-init-statements, and other declarations
3513 // that are not simple-declarations.
3514 break;
3515 case DeclaratorContext::CXXNew:
3516 // FIXME: P0091R3 does not permit class template argument deduction here,
3517 // but we follow GCC and allow it anyway.
3518 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3519 Error = 17; // 'new' type
3520 break;
3521 case DeclaratorContext::KNRTypeList:
3522 Error = 18; // K&R function parameter
3523 break;
3524 }
3525
3526 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3527 Error = 11;
3528
3529 // In Objective-C it is an error to use 'auto' on a function declarator
3530 // (and everywhere for '__auto_type').
3531 if (D.isFunctionDeclarator() &&
3532 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3533 Error = 13;
3534
3535 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3536 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3537 AutoRange = D.getName().getSourceRange();
3538
3539 if (Error != -1) {
3540 unsigned Kind;
3541 if (Auto) {
3542 switch (Auto->getKeyword()) {
3543 case AutoTypeKeyword::Auto: Kind = 0; break;
3544 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3545 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3546 }
3547 } else {
3548 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&(static_cast<void> (0))
3549 "unknown auto type")(static_cast<void> (0));
3550 Kind = 3;
3551 }
3552
3553 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3554 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3555
3556 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3557 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3558 << QualType(Deduced, 0) << AutoRange;
3559 if (auto *TD = TN.getAsTemplateDecl())
3560 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3561
3562 T = SemaRef.Context.IntTy;
3563 D.setInvalidType(true);
3564 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3565 // If there was a trailing return type, we already got
3566 // warn_cxx98_compat_trailing_return_type in the parser.
3567 SemaRef.Diag(AutoRange.getBegin(),
3568 D.getContext() == DeclaratorContext::LambdaExprParameter
3569 ? diag::warn_cxx11_compat_generic_lambda
3570 : IsDeducedReturnType
3571 ? diag::warn_cxx11_compat_deduced_return_type
3572 : diag::warn_cxx98_compat_auto_type_specifier)
3573 << AutoRange;
3574 }
3575 }
3576
3577 if (SemaRef.getLangOpts().CPlusPlus &&
3578 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3579 // Check the contexts where C++ forbids the declaration of a new class
3580 // or enumeration in a type-specifier-seq.
3581 unsigned DiagID = 0;
3582 switch (D.getContext()) {
3583 case DeclaratorContext::TrailingReturn:
3584 case DeclaratorContext::TrailingReturnVar:
3585 // Class and enumeration definitions are syntactically not allowed in
3586 // trailing return types.
3587 llvm_unreachable("parser should not have allowed this")__builtin_unreachable();
3588 break;
3589 case DeclaratorContext::File:
3590 case DeclaratorContext::Member:
3591 case DeclaratorContext::Block:
3592 case DeclaratorContext::ForInit:
3593 case DeclaratorContext::SelectionInit:
3594 case DeclaratorContext::BlockLiteral:
3595 case DeclaratorContext::LambdaExpr:
3596 // C++11 [dcl.type]p3:
3597 // A type-specifier-seq shall not define a class or enumeration unless
3598 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3599 // the declaration of a template-declaration.
3600 case DeclaratorContext::AliasDecl:
3601 break;
3602 case DeclaratorContext::AliasTemplate:
3603 DiagID = diag::err_type_defined_in_alias_template;
3604 break;
3605 case DeclaratorContext::TypeName:
3606 case DeclaratorContext::FunctionalCast:
3607 case DeclaratorContext::ConversionId:
3608 case DeclaratorContext::TemplateParam:
3609 case DeclaratorContext::CXXNew:
3610 case DeclaratorContext::CXXCatch:
3611 case DeclaratorContext::ObjCCatch:
3612 case DeclaratorContext::TemplateArg:
3613 case DeclaratorContext::TemplateTypeArg:
3614 DiagID = diag::err_type_defined_in_type_specifier;
3615 break;
3616 case DeclaratorContext::Prototype:
3617 case DeclaratorContext::LambdaExprParameter:
3618 case DeclaratorContext::ObjCParameter:
3619 case DeclaratorContext::ObjCResult:
3620 case DeclaratorContext::KNRTypeList:
3621 case DeclaratorContext::RequiresExpr:
3622 // C++ [dcl.fct]p6:
3623 // Types shall not be defined in return or parameter types.
3624 DiagID = diag::err_type_defined_in_param_type;
3625 break;
3626 case DeclaratorContext::Condition:
3627 // C++ 6.4p2:
3628 // The type-specifier-seq shall not contain typedef and shall not declare
3629 // a new class or enumeration.
3630 DiagID = diag::err_type_defined_in_condition;
3631 break;
3632 }
3633
3634 if (DiagID != 0) {
3635 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3636 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3637 D.setInvalidType(true);
3638 }
3639 }
3640
3641 assert(!T.isNull() && "This function should not return a null type")(static_cast<void> (0));
3642 return T;
3643}
3644
3645/// Produce an appropriate diagnostic for an ambiguity between a function
3646/// declarator and a C++ direct-initializer.
3647static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3648 DeclaratorChunk &DeclType, QualType RT) {
3649 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3650 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")(static_cast<void> (0));
3651
3652 // If the return type is void there is no ambiguity.
3653 if (RT->isVoidType())
3654 return;
3655
3656 // An initializer for a non-class type can have at most one argument.
3657 if (!RT->isRecordType() && FTI.NumParams > 1)
3658 return;
3659
3660 // An initializer for a reference must have exactly one argument.
3661 if (RT->isReferenceType() && FTI.NumParams != 1)
3662 return;
3663
3664 // Only warn if this declarator is declaring a function at block scope, and
3665 // doesn't have a storage class (such as 'extern') specified.
3666 if (!D.isFunctionDeclarator() ||
3667 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3668 !S.CurContext->isFunctionOrMethod() ||
3669 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3670 return;
3671
3672 // Inside a condition, a direct initializer is not permitted. We allow one to
3673 // be parsed in order to give better diagnostics in condition parsing.
3674 if (D.getContext() == DeclaratorContext::Condition)
3675 return;
3676
3677 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3678
3679 S.Diag(DeclType.Loc,
3680 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3681 : diag::warn_empty_parens_are_function_decl)
3682 << ParenRange;
3683
3684 // If the declaration looks like:
3685 // T var1,
3686 // f();
3687 // and name lookup finds a function named 'f', then the ',' was
3688 // probably intended to be a ';'.
3689 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3690 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3691 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3692 if (Comma.getFileID() != Name.getFileID() ||
3693 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3694 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3695 Sema::LookupOrdinaryName);
3696 if (S.LookupName(Result, S.getCurScope()))
3697 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3698 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3699 << D.getIdentifier();
3700 Result.suppressDiagnostics();
3701 }
3702 }
3703
3704 if (FTI.NumParams > 0) {
3705 // For a declaration with parameters, eg. "T var(T());", suggest adding
3706 // parens around the first parameter to turn the declaration into a
3707 // variable declaration.
3708 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3709 SourceLocation B = Range.getBegin();
3710 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3711 // FIXME: Maybe we should suggest adding braces instead of parens
3712 // in C++11 for classes that don't have an initializer_list constructor.
3713 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3714 << FixItHint::CreateInsertion(B, "(")
3715 << FixItHint::CreateInsertion(E, ")");
3716 } else {
3717 // For a declaration without parameters, eg. "T var();", suggest replacing
3718 // the parens with an initializer to turn the declaration into a variable
3719 // declaration.
3720 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3721
3722 // Empty parens mean value-initialization, and no parens mean
3723 // default initialization. These are equivalent if the default
3724 // constructor is user-provided or if zero-initialization is a
3725 // no-op.
3726 if (RD && RD->hasDefinition() &&
3727 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3728 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3729 << FixItHint::CreateRemoval(ParenRange);
3730 else {
3731 std::string Init =
3732 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3733 if (Init.empty() && S.LangOpts.CPlusPlus11)
3734 Init = "{}";
3735 if (!Init.empty())
3736 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3737 << FixItHint::CreateReplacement(ParenRange, Init);
3738 }
3739 }
3740}
3741
3742/// Produce an appropriate diagnostic for a declarator with top-level
3743/// parentheses.
3744static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3745 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3746 assert(Paren.Kind == DeclaratorChunk::Paren &&(static_cast<void> (0))
3747 "do not have redundant top-level parentheses")(static_cast<void> (0));
3748
3749 // This is a syntactic check; we're not interested in cases that arise
3750 // during template instantiation.
3751 if (S.inTemplateInstantiation())
3752 return;
3753
3754 // Check whether this could be intended to be a construction of a temporary
3755 // object in C++ via a function-style cast.
3756 bool CouldBeTemporaryObject =
3757 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3758 !D.isInvalidType() && D.getIdentifier() &&
3759 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3760 (T->isRecordType() || T->isDependentType()) &&
3761 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3762
3763 bool StartsWithDeclaratorId = true;
3764 for (auto &C : D.type_objects()) {
3765 switch (C.Kind) {
3766 case DeclaratorChunk::Paren:
3767 if (&C == &Paren)
3768 continue;
3769 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3770 case DeclaratorChunk::Pointer:
3771 StartsWithDeclaratorId = false;
3772 continue;
3773
3774 case DeclaratorChunk::Array:
3775 if (!C.Arr.NumElts)
3776 CouldBeTemporaryObject = false;
3777 continue;
3778
3779 case DeclaratorChunk::Reference:
3780 // FIXME: Suppress the warning here if there is no initializer; we're
3781 // going to give an error anyway.
3782 // We assume that something like 'T (&x) = y;' is highly likely to not
3783 // be intended to be a temporary object.
3784 CouldBeTemporaryObject = false;
3785 StartsWithDeclaratorId = false;
3786 continue;
3787
3788 case DeclaratorChunk::Function:
3789 // In a new-type-id, function chunks require parentheses.
3790 if (D.getContext() == DeclaratorContext::CXXNew)
3791 return;
3792 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3793 // redundant-parens warning, but we don't know whether the function
3794 // chunk was syntactically valid as an expression here.
3795 CouldBeTemporaryObject = false;
3796 continue;
3797
3798 case DeclaratorChunk::BlockPointer:
3799 case DeclaratorChunk::MemberPointer:
3800 case DeclaratorChunk::Pipe:
3801 // These cannot appear in expressions.
3802 CouldBeTemporaryObject = false;
3803 StartsWithDeclaratorId = false;
3804 continue;
3805 }
3806 }
3807
3808 // FIXME: If there is an initializer, assume that this is not intended to be
3809 // a construction of a temporary object.
3810
3811 // Check whether the name has already been declared; if not, this is not a
3812 // function-style cast.
3813 if (CouldBeTemporaryObject) {
3814 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3815 Sema::LookupOrdinaryName);
3816 if (!S.LookupName(Result, S.getCurScope()))
3817 CouldBeTemporaryObject = false;
3818 Result.suppressDiagnostics();
3819 }
3820
3821 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3822
3823 if (!CouldBeTemporaryObject) {
3824 // If we have A (::B), the parentheses affect the meaning of the program.
3825 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3826 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3827 // formally unambiguous.
3828 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3829 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3830 NNS = NNS->getPrefix()) {
3831 if (NNS->getKind() == NestedNameSpecifier::Global)
3832 return;
3833 }
3834 }
3835
3836 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3837 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3838 << FixItHint::CreateRemoval(Paren.EndLoc);
3839 return;
3840 }
3841
3842 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3843 << ParenRange << D.getIdentifier();
3844 auto *RD = T->getAsCXXRecordDecl();
3845 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3846 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3847 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3848 << D.getIdentifier();
3849 // FIXME: A cast to void is probably a better suggestion in cases where it's
3850 // valid (when there is no initializer and we're not in a condition).
3851 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3852 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3853 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3854 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3855 << FixItHint::CreateRemoval(Paren.Loc)
3856 << FixItHint::CreateRemoval(Paren.EndLoc);
3857}
3858
3859/// Helper for figuring out the default CC for a function declarator type. If
3860/// this is the outermost chunk, then we can determine the CC from the
3861/// declarator context. If not, then this could be either a member function
3862/// type or normal function type.
3863static CallingConv getCCForDeclaratorChunk(
3864 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3865 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3866 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)(static_cast<void> (0));
3867
3868 // Check for an explicit CC attribute.
3869 for (const ParsedAttr &AL : AttrList) {
3870 switch (AL.getKind()) {
3871 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
: {
3872 // Ignore attributes that don't validate or can't apply to the
3873 // function type. We'll diagnose the failure to apply them in
3874 // handleFunctionTypeAttr.
3875 CallingConv CC;
3876 if (!S.CheckCallingConvAttr(AL, CC) &&
3877 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3878 return CC;
3879 }
3880 break;
3881 }
3882
3883 default:
3884 break;
3885 }
3886 }
3887
3888 bool IsCXXInstanceMethod = false;
3889
3890 if (S.getLangOpts().CPlusPlus) {
3891 // Look inwards through parentheses to see if this chunk will form a
3892 // member pointer type or if we're the declarator. Any type attributes
3893 // between here and there will override the CC we choose here.
3894 unsigned I = ChunkIndex;
3895 bool FoundNonParen = false;
3896 while (I && !FoundNonParen) {
3897 --I;
3898 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3899 FoundNonParen = true;
3900 }
3901
3902 if (FoundNonParen) {
3903 // If we're not the declarator, we're a regular function type unless we're
3904 // in a member pointer.
3905 IsCXXInstanceMethod =
3906 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3907 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3908 // This can only be a call operator for a lambda, which is an instance
3909 // method.
3910 IsCXXInstanceMethod = true;
3911 } else {
3912 // We're the innermost decl chunk, so must be a function declarator.
3913 assert(D.isFunctionDeclarator())(static_cast<void> (0));
3914
3915 // If we're inside a record, we're declaring a method, but it could be
3916 // explicitly or implicitly static.
3917 IsCXXInstanceMethod =
3918 D.isFirstDeclarationOfMember() &&
3919 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3920 !D.isStaticMember();
3921 }
3922 }
3923
3924 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3925 IsCXXInstanceMethod);
3926
3927 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3928 // and AMDGPU targets, hence it cannot be treated as a calling
3929 // convention attribute. This is the simplest place to infer
3930 // calling convention for OpenCL kernels.
3931 if (S.getLangOpts().OpenCL) {
3932 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3933 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3934 CC = CC_OpenCLKernel;
3935 break;
3936 }
3937 }
3938 }
3939
3940 return CC;
3941}
3942
3943namespace {
3944 /// A simple notion of pointer kinds, which matches up with the various
3945 /// pointer declarators.
3946 enum class SimplePointerKind {
3947 Pointer,
3948 BlockPointer,
3949 MemberPointer,
3950 Array,
3951 };
3952} // end anonymous namespace
3953
3954IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3955 switch (nullability) {
3956 case NullabilityKind::NonNull:
3957 if (!Ident__Nonnull)
3958 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3959 return Ident__Nonnull;
3960
3961 case NullabilityKind::Nullable:
3962 if (!Ident__Nullable)
3963 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3964 return Ident__Nullable;
3965
3966 case NullabilityKind::NullableResult:
3967 if (!Ident__Nullable_result)
3968 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3969 return Ident__Nullable_result;
3970
3971 case NullabilityKind::Unspecified:
3972 if (!Ident__Null_unspecified)
3973 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3974 return Ident__Null_unspecified;
3975 }
3976 llvm_unreachable("Unknown nullability kind.")__builtin_unreachable();
3977}
3978
3979/// Retrieve the identifier "NSError".
3980IdentifierInfo *Sema::getNSErrorIdent() {
3981 if (!Ident_NSError)
3982 Ident_NSError = PP.getIdentifierInfo("NSError");
3983
3984 return Ident_NSError;
3985}
3986
3987/// Check whether there is a nullability attribute of any kind in the given
3988/// attribute list.
3989static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3990 for (const ParsedAttr &AL : attrs) {
3991 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3992 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3993 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3994 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3995 return true;
3996 }
3997
3998 return false;
3999}
4000
4001namespace {
4002 /// Describes the kind of a pointer a declarator describes.
4003 enum class PointerDeclaratorKind {
4004 // Not a pointer.
4005 NonPointer,
4006 // Single-level pointer.
4007 SingleLevelPointer,
4008 // Multi-level pointer (of any pointer kind).
4009 MultiLevelPointer,
4010 // CFFooRef*
4011 MaybePointerToCFRef,
4012 // CFErrorRef*
4013 CFErrorRefPointer,
4014 // NSError**
4015 NSErrorPointerPointer,
4016 };
4017
4018 /// Describes a declarator chunk wrapping a pointer that marks inference as
4019 /// unexpected.
4020 // These values must be kept in sync with diagnostics.
4021 enum class PointerWrappingDeclaratorKind {
4022 /// Pointer is top-level.
4023 None = -1,
4024 /// Pointer is an array element.
4025 Array = 0,
4026 /// Pointer is the referent type of a C++ reference.
4027 Reference = 1
4028 };
4029} // end anonymous namespace
4030
4031/// Classify the given declarator, whose type-specified is \c type, based on
4032/// what kind of pointer it refers to.
4033///
4034/// This is used to determine the default nullability.
4035static PointerDeclaratorKind
4036classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4037 PointerWrappingDeclaratorKind &wrappingKind) {
4038 unsigned numNormalPointers = 0;
4039
4040 // For any dependent type, we consider it a non-pointer.
4041 if (type->isDependentType())
4042 return PointerDeclaratorKind::NonPointer;
4043
4044 // Look through the declarator chunks to identify pointers.
4045 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4046 DeclaratorChunk &chunk = declarator.getTypeObject(i);
4047 switch (chunk.Kind) {
4048 case DeclaratorChunk::Array:
4049 if (numNormalPointers == 0)
4050 wrappingKind = PointerWrappingDeclaratorKind::Array;
4051 break;
4052
4053 case DeclaratorChunk::Function:
4054 case DeclaratorChunk::Pipe:
4055 break;
4056
4057 case DeclaratorChunk::BlockPointer:
4058 case DeclaratorChunk::MemberPointer:
4059 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4060 : PointerDeclaratorKind::SingleLevelPointer;
4061
4062 case DeclaratorChunk::Paren:
4063 break;
4064
4065 case DeclaratorChunk::Reference:
4066 if (numNormalPointers == 0)
4067 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4068 break;
4069
4070 case DeclaratorChunk::Pointer:
4071 ++numNormalPointers;
4072 if (numNormalPointers > 2)
4073 return PointerDeclaratorKind::MultiLevelPointer;
4074 break;
4075 }
4076 }
4077
4078 // Then, dig into the type specifier itself.
4079 unsigned numTypeSpecifierPointers = 0;
4080 do {
4081 // Decompose normal pointers.
4082 if (auto ptrType = type->getAs<PointerType>()) {
4083 ++numNormalPointers;
4084
4085 if (numNormalPointers > 2)
4086 return PointerDeclaratorKind::MultiLevelPointer;
4087
4088 type = ptrType->getPointeeType();
4089 ++numTypeSpecifierPointers;
4090 continue;
4091 }
4092
4093 // Decompose block pointers.
4094 if (type->getAs<BlockPointerType>()) {
4095 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4096 : PointerDeclaratorKind::SingleLevelPointer;
4097 }
4098
4099 // Decompose member pointers.
4100 if (type->getAs<MemberPointerType>()) {
4101 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4102 : PointerDeclaratorKind::SingleLevelPointer;
4103 }
4104
4105 // Look at Objective-C object pointers.
4106 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4107 ++numNormalPointers;
4108 ++numTypeSpecifierPointers;
4109
4110 // If this is NSError**, report that.
4111 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4112 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4113 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4114 return PointerDeclaratorKind::NSErrorPointerPointer;
4115 }
4116 }
4117
4118 break;
4119 }
4120
4121 // Look at Objective-C class types.
4122 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4123 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4124 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4125 return PointerDeclaratorKind::NSErrorPointerPointer;
4126 }
4127
4128 break;
4129 }
4130
4131 // If at this point we haven't seen a pointer, we won't see one.
4132 if (numNormalPointers == 0)
4133 return PointerDeclaratorKind::NonPointer;
4134
4135 if (auto recordType = type->getAs<RecordType>()) {
4136 RecordDecl *recordDecl = recordType->getDecl();
4137
4138 // If this is CFErrorRef*, report it as such.
4139 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4140 S.isCFError(recordDecl)) {
4141 return PointerDeclaratorKind::CFErrorRefPointer;
4142 }
4143 break;
4144 }
4145
4146 break;
4147 } while (true);
4148
4149 switch (numNormalPointers) {
4150 case 0:
4151 return PointerDeclaratorKind::NonPointer;
4152
4153 case 1:
4154 return PointerDeclaratorKind::SingleLevelPointer;
4155
4156 case 2:
4157 return PointerDeclaratorKind::MaybePointerToCFRef;
4158
4159 default:
4160 return PointerDeclaratorKind::MultiLevelPointer;
4161 }
4162}
4163
4164bool Sema::isCFError(RecordDecl *RD) {
4165 // If we already know about CFError, test it directly.
4166 if (CFError)
4167 return CFError == RD;
4168
4169 // Check whether this is CFError, which we identify based on its bridge to
4170 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4171 // declared with "objc_bridge_mutable", so look for either one of the two
4172 // attributes.
4173 if (RD->getTagKind() == TTK_Struct) {
4174 IdentifierInfo *bridgedType = nullptr;
4175 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4176 bridgedType = bridgeAttr->getBridgedType();
4177 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4178 bridgedType = bridgeAttr->getBridgedType();
4179
4180 if (bridgedType == getNSErrorIdent()) {
4181 CFError = RD;
4182 return true;
4183 }
4184 }
4185
4186 return false;
4187}
4188
4189static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4190 SourceLocation loc) {
4191 // If we're anywhere in a function, method, or closure context, don't perform
4192 // completeness checks.
4193 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4194 if (ctx->isFunctionOrMethod())
4195 return FileID();
4196
4197 if (ctx->isFileContext())
4198 break;
4199 }
4200
4201 // We only care about the expansion location.
4202 loc = S.SourceMgr.getExpansionLoc(loc);
4203 FileID file = S.SourceMgr.getFileID(loc);
4204 if (file.isInvalid())
4205 return FileID();
4206
4207 // Retrieve file information.
4208 bool invalid = false;
4209 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4210 if (invalid || !sloc.isFile())
4211 return FileID();
4212
4213 // We don't want to perform completeness checks on the main file or in
4214 // system headers.
4215 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4216 if (fileInfo.getIncludeLoc().isInvalid())
4217 return FileID();
4218 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4219 S.Diags.getSuppressSystemWarnings()) {
4220 return FileID();
4221 }
4222
4223 return file;
4224}
4225
4226/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4227/// taking into account whitespace before and after.
4228template <typename DiagBuilderT>
4229static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4230 SourceLocation PointerLoc,
4231 NullabilityKind Nullability) {
4232 assert(PointerLoc.isValid())(static_cast<void> (0));
4233 if (PointerLoc.isMacroID())
4234 return;
4235
4236 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4237 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4238 return;
4239
4240 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4241 if (!NextChar)
4242 return;
4243
4244 SmallString<32> InsertionTextBuf{" "};
4245 InsertionTextBuf += getNullabilitySpelling(Nullability);
4246 InsertionTextBuf += " ";
4247 StringRef InsertionText = InsertionTextBuf.str();
4248
4249 if (isWhitespace(*NextChar)) {
4250 InsertionText = InsertionText.drop_back();
4251 } else if (NextChar[-1] == '[') {
4252 if (NextChar[0] == ']')
4253 InsertionText = InsertionText.drop_back().drop_front();
4254 else
4255 InsertionText = InsertionText.drop_front();
4256 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
4257 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
4258 InsertionText = InsertionText.drop_back().drop_front();
4259 }
4260
4261 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4262}
4263
4264static void emitNullabilityConsistencyWarning(Sema &S,
4265 SimplePointerKind PointerKind,
4266 SourceLocation PointerLoc,
4267 SourceLocation PointerEndLoc) {
4268 assert(PointerLoc.isValid())(static_cast<void> (0));
4269
4270 if (PointerKind == SimplePointerKind::Array) {
4271 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4272 } else {
4273 S.Diag(PointerLoc, diag::warn_nullability_missing)
4274 << static_cast<unsigned>(PointerKind);
4275 }
4276
4277 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4278 if (FixItLoc.isMacroID())
4279 return;
4280
4281 auto addFixIt = [&](NullabilityKind Nullability) {
4282 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4283 Diag << static_cast<unsigned>(Nullability);
4284 Diag << static_cast<unsigned>(PointerKind);
4285 fixItNullability(S, Diag, FixItLoc, Nullability);
4286 };
4287 addFixIt(NullabilityKind::Nullable);
4288 addFixIt(NullabilityKind::NonNull);
4289}
4290
4291/// Complains about missing nullability if the file containing \p pointerLoc
4292/// has other uses of nullability (either the keywords or the \c assume_nonnull
4293/// pragma).
4294///
4295/// If the file has \e not seen other uses of nullability, this particular
4296/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4297static void
4298checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4299 SourceLocation pointerLoc,
4300 SourceLocation pointerEndLoc = SourceLocation()) {
4301 // Determine which file we're performing consistency checking for.
4302 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4303 if (file.isInvalid())
4304 return;
4305
4306 // If we haven't seen any type nullability in this file, we won't warn now
4307 // about anything.
4308 FileNullability &fileNullability = S.NullabilityMap[file];
4309 if (!fileNullability.SawTypeNullability) {
4310 // If this is the first pointer declarator in the file, and the appropriate
4311 // warning is on, record it in case we need to diagnose it retroactively.
4312 diag::kind diagKind;
4313 if (pointerKind == SimplePointerKind::Array)
4314 diagKind = diag::warn_nullability_missing_array;
4315 else
4316 diagKind = diag::warn_nullability_missing;
4317
4318 if (fileNullability.PointerLoc.isInvalid() &&
4319 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4320 fileNullability.PointerLoc = pointerLoc;
4321 fileNullability.PointerEndLoc = pointerEndLoc;
4322 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4323 }
4324
4325 return;
4326 }
4327
4328 // Complain about missing nullability.
4329 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4330}
4331
4332/// Marks that a nullability feature has been used in the file containing
4333/// \p loc.
4334///
4335/// If this file already had pointer types in it that were missing nullability,
4336/// the first such instance is retroactively diagnosed.
4337///
4338/// \sa checkNullabilityConsistency
4339static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4340 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4341 if (file.isInvalid())
4342 return;
4343
4344 FileNullability &fileNullability = S.NullabilityMap[file];
4345 if (fileNullability.SawTypeNullability)
4346 return;
4347 fileNullability.SawTypeNullability = true;
4348
4349 // If we haven't seen any type nullability before, now we have. Retroactively
4350 // diagnose the first unannotated pointer, if there was one.
4351 if (fileNullability.PointerLoc.isInvalid())
4352 return;
4353
4354 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4355 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4356 fileNullability.PointerEndLoc);
4357}
4358
4359/// Returns true if any of the declarator chunks before \p endIndex include a
4360/// level of indirection: array, pointer, reference, or pointer-to-member.
4361///
4362/// Because declarator chunks are stored in outer-to-inner order, testing
4363/// every chunk before \p endIndex is testing all chunks that embed the current
4364/// chunk as part of their type.
4365///
4366/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4367/// end index, in which case all chunks are tested.
4368static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4369 unsigned i = endIndex;
4370 while (i != 0) {
4371 // Walk outwards along the declarator chunks.
4372 --i;
4373 const DeclaratorChunk &DC = D.getTypeObject(i);
4374 switch (DC.Kind) {
4375 case DeclaratorChunk::Paren:
4376 break;
4377 case DeclaratorChunk::Array:
4378 case DeclaratorChunk::Pointer:
4379 case DeclaratorChunk::Reference:
4380 case DeclaratorChunk::MemberPointer:
4381 return true;
4382 case DeclaratorChunk::Function:
4383 case DeclaratorChunk::BlockPointer:
4384 case DeclaratorChunk::Pipe:
4385 // These are invalid anyway, so just ignore.
4386 break;
4387 }
4388 }
4389 return false;
4390}
4391
4392static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4393 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4394 Chunk.Kind == DeclaratorChunk::Array);
4395}
4396
4397template<typename AttrT>
4398static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4399 AL.setUsedAsTypeAttr();
4400 return ::new (Ctx) AttrT(Ctx, AL);
4401}
4402
4403static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4404 NullabilityKind NK) {
4405 switch (NK) {
4406 case NullabilityKind::NonNull:
4407 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4408
4409 case NullabilityKind::Nullable:
4410 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4411
4412 case NullabilityKind::NullableResult:
4413 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4414
4415 case NullabilityKind::Unspecified:
4416 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4417 }
4418 llvm_unreachable("unknown NullabilityKind")__builtin_unreachable();
4419}
4420
4421// Diagnose whether this is a case with the multiple addr spaces.
4422// Returns true if this is an invalid case.
4423// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4424// by qualifiers for two or more different address spaces."
4425static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4426 LangAS ASNew,
4427 SourceLocation AttrLoc) {
4428 if (ASOld != LangAS::Default) {
4429 if (ASOld != ASNew) {
4430 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4431 return true;
4432 }
4433 // Emit a warning if they are identical; it's likely unintended.
4434 S.Diag(AttrLoc,
4435 diag::warn_attribute_address_multiple_identical_qualifiers);
4436 }
4437 return false;
4438}
4439
4440static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4441 QualType declSpecType,
4442 TypeSourceInfo *TInfo) {
4443 // The TypeSourceInfo that this function returns will not be a null type.
4444 // If there is an error, this function will fill in a dummy type as fallback.
4445 QualType T = declSpecType;
4446 Declarator &D = state.getDeclarator();
4447 Sema &S = state.getSema();
4448 ASTContext &Context = S.Context;
4449 const LangOptions &LangOpts = S.getLangOpts();
4450
4451 // The name we're declaring, if any.
4452 DeclarationName Name;
4453 if (D.getIdentifier())
4454 Name = D.getIdentifier();
4455
4456 // Does this declaration declare a typedef-name?
4457 bool IsTypedefName =
4458 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
1
Assuming the condition is false
4459 D.getContext() == DeclaratorContext::AliasDecl ||
2
Assuming the condition is false
4460 D.getContext() == DeclaratorContext::AliasTemplate;
3
Assuming the condition is false
4461
4462 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4463 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4464 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4465 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4466
4467 // If T is 'decltype(auto)', the only declarators we can have are parens
4468 // and at most one function declarator if this is a function declaration.
4469 // If T is a deduced class template specialization type, we can have no
4470 // declarator chunks at all.
4471 if (auto *DT
4.1
'DT' is null
4.1
'DT' is null
4.1
'DT' is null
4.1
'DT' is null
4.1
'DT' is null
= T->getAs<DeducedType>()) {
4
Assuming the object is not a 'DeducedType'
5
Taking false branch
4472 const AutoType *AT = T->getAs<AutoType>();
4473 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4474 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4475 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4476 unsigned Index = E - I - 1;
4477 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4478 unsigned DiagId = IsClassTemplateDeduction
4479 ? diag::err_deduced_class_template_compound_type
4480 : diag::err_decltype_auto_compound_type;
4481 unsigned DiagKind = 0;
4482 switch (DeclChunk.Kind) {
4483 case DeclaratorChunk::Paren:
4484 // FIXME: Rejecting this is a little silly.
4485 if (IsClassTemplateDeduction) {
4486 DiagKind = 4;
4487 break;
4488 }
4489 continue;
4490 case DeclaratorChunk::Function: {
4491 if (IsClassTemplateDeduction) {
4492 DiagKind = 3;
4493 break;
4494 }
4495 unsigned FnIndex;
4496 if (D.isFunctionDeclarationContext() &&
4497 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4498 continue;
4499 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4500 break;
4501 }
4502 case DeclaratorChunk::Pointer:
4503 case DeclaratorChunk::BlockPointer:
4504 case DeclaratorChunk::MemberPointer:
4505 DiagKind = 0;
4506 break;
4507 case DeclaratorChunk::Reference:
4508 DiagKind = 1;
4509 break;
4510 case DeclaratorChunk::Array:
4511 DiagKind = 2;
4512 break;
4513 case DeclaratorChunk::Pipe:
4514 break;
4515 }
4516
4517 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4518 D.setInvalidType(true);
4519 break;
4520 }
4521 }
4522 }
4523
4524 // Determine whether we should infer _Nonnull on pointer types.
4525 Optional<NullabilityKind> inferNullability;
4526 bool inferNullabilityCS = false;
4527 bool inferNullabilityInnerOnly = false;
4528 bool inferNullabilityInnerOnlyComplete = false;
4529
4530 // Are we in an assume-nonnull region?
4531 bool inAssumeNonNullRegion = false;
4532 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4533 if (assumeNonNullLoc.isValid()) {
6
Taking false branch
4534 inAssumeNonNullRegion = true;
4535 recordNullabilitySeen(S, assumeNonNullLoc);
4536 }
4537
4538 // Whether to complain about missing nullability specifiers or not.
4539 enum {
4540 /// Never complain.
4541 CAMN_No,
4542 /// Complain on the inner pointers (but not the outermost
4543 /// pointer).
4544 CAMN_InnerPointers,
4545 /// Complain about any pointers that don't have nullability
4546 /// specified or inferred.
4547 CAMN_Yes
4548 } complainAboutMissingNullability = CAMN_No;
4549 unsigned NumPointersRemaining = 0;
4550 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4551
4552 if (IsTypedefName
6.1
'IsTypedefName' is false
6.1
'IsTypedefName' is false
6.1
'IsTypedefName' is false
6.1
'IsTypedefName' is false
6.1
'IsTypedefName' is false
) {
7
Taking false branch
4553 // For typedefs, we do not infer any nullability (the default),
4554 // and we only complain about missing nullability specifiers on
4555 // inner pointers.
4556 complainAboutMissingNullability = CAMN_InnerPointers;
4557
4558 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4559 !T->getNullability(S.Context)) {
4560 // Note that we allow but don't require nullability on dependent types.
4561 ++NumPointersRemaining;
4562 }
4563
4564 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4565 DeclaratorChunk &chunk = D.getTypeObject(i);
4566 switch (chunk.Kind) {
4567 case DeclaratorChunk::Array:
4568 case DeclaratorChunk::Function:
4569 case DeclaratorChunk::Pipe:
4570 break;
4571
4572 case DeclaratorChunk::BlockPointer:
4573 case DeclaratorChunk::MemberPointer:
4574 ++NumPointersRemaining;
4575 break;
4576
4577 case DeclaratorChunk::Paren:
4578 case DeclaratorChunk::Reference:
4579 continue;
4580
4581 case DeclaratorChunk::Pointer:
4582 ++NumPointersRemaining;
4583 continue;
4584 }
4585 }
4586 } else {
4587 bool isFunctionOrMethod = false;
4588 switch (auto context = state.getDeclarator().getContext()) {
8
Control jumps to 'case Block:' at line 4671
4589 case DeclaratorContext::ObjCParameter:
4590 case DeclaratorContext::ObjCResult:
4591 case DeclaratorContext::Prototype:
4592 case DeclaratorContext::TrailingReturn:
4593 case DeclaratorContext::TrailingReturnVar:
4594 isFunctionOrMethod = true;
4595 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4596
4597 case DeclaratorContext::Member:
4598 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4599 complainAboutMissingNullability = CAMN_No;
4600 break;
4601 }
4602
4603 // Weak properties are inferred to be nullable.
4604 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4605 inferNullability = NullabilityKind::Nullable;
4606 break;
4607 }
4608
4609 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4610
4611 case DeclaratorContext::File:
4612 case DeclaratorContext::KNRTypeList: {
4613 complainAboutMissingNullability = CAMN_Yes;
4614
4615 // Nullability inference depends on the type and declarator.
4616 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4617 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4618 case PointerDeclaratorKind::NonPointer:
4619 case PointerDeclaratorKind::MultiLevelPointer:
4620 // Cannot infer nullability.
4621 break;
4622
4623 case PointerDeclaratorKind::SingleLevelPointer:
4624 // Infer _Nonnull if we are in an assumes-nonnull region.
4625 if (inAssumeNonNullRegion) {
4626 complainAboutInferringWithinChunk = wrappingKind;
4627 inferNullability = NullabilityKind::NonNull;
4628 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4629 context == DeclaratorContext::ObjCResult);
4630 }
4631 break;
4632
4633 case PointerDeclaratorKind::CFErrorRefPointer:
4634 case PointerDeclaratorKind::NSErrorPointerPointer:
4635 // Within a function or method signature, infer _Nullable at both
4636 // levels.
4637 if (isFunctionOrMethod && inAssumeNonNullRegion)
4638 inferNullability = NullabilityKind::Nullable;
4639 break;
4640
4641 case PointerDeclaratorKind::MaybePointerToCFRef:
4642 if (isFunctionOrMethod) {
4643 // On pointer-to-pointer parameters marked cf_returns_retained or
4644 // cf_returns_not_retained, if the outer pointer is explicit then
4645 // infer the inner pointer as _Nullable.
4646 auto hasCFReturnsAttr =
4647 [](const ParsedAttributesView &AttrList) -> bool {
4648 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4649 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4650 };
4651 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4652 if (hasCFReturnsAttr(D.getAttributes()) ||
4653 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4654 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4655 inferNullability = NullabilityKind::Nullable;
4656 inferNullabilityInnerOnly = true;
4657 }
4658 }
4659 }
4660 break;
4661 }
4662 break;
4663 }
4664
4665 case DeclaratorContext::ConversionId:
4666 complainAboutMissingNullability = CAMN_Yes;
4667 break;
4668
4669 case DeclaratorContext::AliasDecl:
4670 case DeclaratorContext::AliasTemplate:
4671 case DeclaratorContext::Block:
4672 case DeclaratorContext::BlockLiteral:
4673 case DeclaratorContext::Condition:
4674 case DeclaratorContext::CXXCatch:
4675 case DeclaratorContext::CXXNew:
4676 case DeclaratorContext::ForInit:
4677 case DeclaratorContext::SelectionInit:
4678 case DeclaratorContext::LambdaExpr:
4679 case DeclaratorContext::LambdaExprParameter:
4680 case DeclaratorContext::ObjCCatch:
4681 case DeclaratorContext::TemplateParam:
4682 case DeclaratorContext::TemplateArg:
4683 case DeclaratorContext::TemplateTypeArg:
4684 case DeclaratorContext::TypeName:
4685 case DeclaratorContext::FunctionalCast:
4686 case DeclaratorContext::RequiresExpr:
4687 // Don't infer in these contexts.
4688 break;
9
Execution continues on line 4693
4689 }
4690 }
4691
4692 // Local function that returns true if its argument looks like a va_list.
4693 auto isVaList = [&S](QualType T) -> bool {
4694 auto *typedefTy = T->getAs<TypedefType>();
4695 if (!typedefTy)
4696 return false;
4697 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4698 do {
4699 if (typedefTy->getDecl() == vaListTypedef)
4700 return true;
4701 if (auto *name = typedefTy->getDecl()->getIdentifier())
4702 if (name->isStr("va_list"))
4703 return true;
4704 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4705 } while (typedefTy);
4706 return false;
4707 };
4708
4709 // Local function that checks the nullability for a given pointer declarator.
4710 // Returns true if _Nonnull was inferred.
4711 auto inferPointerNullability =
4712 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4713 SourceLocation pointerEndLoc,
4714 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4715 // We've seen a pointer.
4716 if (NumPointersRemaining > 0)
4717 --NumPointersRemaining;
4718
4719 // If a nullability attribute is present, there's nothing to do.
4720 if (hasNullabilityAttr(attrs))
4721 return nullptr;
4722
4723 // If we're supposed to infer nullability, do so now.
4724 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4725 ParsedAttr::Syntax syntax = inferNullabilityCS
4726 ? ParsedAttr::AS_ContextSensitiveKeyword
4727 : ParsedAttr::AS_Keyword;
4728 ParsedAttr *nullabilityAttr = Pool.create(
4729 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4730 nullptr, SourceLocation(), nullptr, 0, syntax);
4731
4732 attrs.addAtEnd(nullabilityAttr);
4733
4734 if (inferNullabilityCS) {
4735 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4736 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4737 }
4738
4739 if (pointerLoc.isValid() &&
4740 complainAboutInferringWithinChunk !=
4741 PointerWrappingDeclaratorKind::None) {
4742 auto Diag =
4743 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4744 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4745 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4746 }
4747
4748 if (inferNullabilityInnerOnly)
4749 inferNullabilityInnerOnlyComplete = true;
4750 return nullabilityAttr;
4751 }
4752
4753 // If we're supposed to complain about missing nullability, do so
4754 // now if it's truly missing.
4755 switch (complainAboutMissingNullability) {
4756 case CAMN_No:
4757 break;
4758
4759 case CAMN_InnerPointers:
4760 if (NumPointersRemaining == 0)
4761 break;
4762 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4763
4764 case CAMN_Yes:
4765 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4766 }
4767 return nullptr;
4768 };
4769
4770 // If the type itself could have nullability but does not, infer pointer
4771 // nullability and perform consistency checking.
4772 if (S.CodeSynthesisContexts.empty()) {
10
Taking false branch
4773 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4774 !T->getNullability(S.Context)) {
4775 if (isVaList(T)) {
4776 // Record that we've seen a pointer, but do nothing else.
4777 if (NumPointersRemaining > 0)
4778 --NumPointersRemaining;
4779 } else {
4780 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4781 if (T->isBlockPointerType())
4782 pointerKind = SimplePointerKind::BlockPointer;
4783 else if (T->isMemberPointerType())
4784 pointerKind = SimplePointerKind::MemberPointer;
4785
4786 if (auto *attr = inferPointerNullability(
4787 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4788 D.getDeclSpec().getEndLoc(),
4789 D.getMutableDeclSpec().getAttributes(),
4790 D.getMutableDeclSpec().getAttributePool())) {
4791 T = state.getAttributedType(
4792 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4793 }
4794 }
4795 }
4796
4797 if (complainAboutMissingNullability == CAMN_Yes &&
4798 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4799 D.isPrototypeContext() &&
4800 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4801 checkNullabilityConsistency(S, SimplePointerKind::Array,
4802 D.getDeclSpec().getTypeSpecTypeLoc());
4803 }
4804 }
4805
4806 bool ExpectNoDerefChunk =
4807 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4808
4809 // Walk the DeclTypeInfo, building the recursive type as we go.
4810 // DeclTypeInfos are ordered from the identifier out, which is
4811 // opposite of what we want :).
4812 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
11
Assuming 'i' is equal to 'e'
12
Loop condition is false. Execution continues on line 5496
4813 unsigned chunkIndex = e - i - 1;
4814 state.setCurrentChunkIndex(chunkIndex);
4815 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4816 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4817 switch (DeclType.Kind) {
4818 case DeclaratorChunk::Paren:
4819 if (i == 0)
4820 warnAboutRedundantParens(S, D, T);
4821 T = S.BuildParenType(T);
4822 break;
4823 case DeclaratorChunk::BlockPointer:
4824 // If blocks are disabled, emit an error.
4825 if (!LangOpts.Blocks)
4826 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4827
4828 // Handle pointer nullability.
4829 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4830 DeclType.EndLoc, DeclType.getAttrs(),
4831 state.getDeclarator().getAttributePool());
4832
4833 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4834 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4835 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4836 // qualified with const.
4837 if (LangOpts.OpenCL)
4838 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4839 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4840 }
4841 break;
4842 case DeclaratorChunk::Pointer:
4843 // Verify that we're not building a pointer to pointer to function with
4844 // exception specification.
4845 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4846 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4847 D.setInvalidType(true);
4848 // Build the type anyway.
4849 }
4850
4851 // Handle pointer nullability
4852 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4853 DeclType.EndLoc, DeclType.getAttrs(),
4854 state.getDeclarator().getAttributePool());
4855
4856 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4857 T = Context.getObjCObjectPointerType(T);
4858 if (DeclType.Ptr.TypeQuals)
4859 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4860 break;
4861 }
4862
4863 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4864 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4865 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4866 if (LangOpts.OpenCL) {
4867 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4868 T->isBlockPointerType()) {
4869 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4870 D.setInvalidType(true);
4871 }
4872 }
4873
4874 T = S.BuildPointerType(T, DeclType.Loc, Name);
4875 if (DeclType.Ptr.TypeQuals)
4876 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4877 break;
4878 case DeclaratorChunk::Reference: {
4879 // Verify that we're not building a reference to pointer to function with
4880 // exception specification.
4881 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4882 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4883 D.setInvalidType(true);
4884 // Build the type anyway.
4885 }
4886 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4887
4888 if (DeclType.Ref.HasRestrict)
4889 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4890 break;
4891 }
4892 case DeclaratorChunk::Array: {
4893 // Verify that we're not building an array of pointers to function with
4894 // exception specification.
4895 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4896 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4897 D.setInvalidType(true);
4898 // Build the type anyway.
4899 }
4900 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4901 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4902 ArrayType::ArraySizeModifier ASM;
4903 if (ATI.isStar)
4904 ASM = ArrayType::Star;
4905 else if (ATI.hasStatic)
4906 ASM = ArrayType::Static;
4907 else
4908 ASM = ArrayType::Normal;
4909 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4910 // FIXME: This check isn't quite right: it allows star in prototypes
4911 // for function definitions, and disallows some edge cases detailed
4912 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4913 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4914 ASM = ArrayType::Normal;
4915 D.setInvalidType(true);
4916 }
4917
4918 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4919 // shall appear only in a declaration of a function parameter with an
4920 // array type, ...
4921 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4922 if (!(D.isPrototypeContext() ||
4923 D.getContext() == DeclaratorContext::KNRTypeList)) {
4924 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4925 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4926 // Remove the 'static' and the type qualifiers.
4927 if (ASM == ArrayType::Static)
4928 ASM = ArrayType::Normal;
4929 ATI.TypeQuals = 0;
4930 D.setInvalidType(true);
4931 }
4932
4933 // C99 6.7.5.2p1: ... and then only in the outermost array type
4934 // derivation.
4935 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4936 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4937 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4938 if (ASM == ArrayType::Static)
4939 ASM = ArrayType::Normal;
4940 ATI.TypeQuals = 0;
4941 D.setInvalidType(true);
4942 }
4943 }
4944 const AutoType *AT = T->getContainedAutoType();
4945 // Allow arrays of auto if we are a generic lambda parameter.
4946 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4947 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
4948 // We've already diagnosed this for decltype(auto).
4949 if (!AT->isDecltypeAuto())
4950 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4951 << getPrintableNameForEntity(Name) << T;
4952 T = QualType();
4953 break;
4954 }
4955
4956 // Array parameters can be marked nullable as well, although it's not
4957 // necessary if they're marked 'static'.
4958 if (complainAboutMissingNullability == CAMN_Yes &&
4959 !hasNullabilityAttr(DeclType.getAttrs()) &&
4960 ASM != ArrayType::Static &&
4961 D.isPrototypeContext() &&
4962 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4963 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4964 }
4965
4966 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4967 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4968 break;
4969 }
4970 case DeclaratorChunk::Function: {
4971 // If the function declarator has a prototype (i.e. it is not () and
4972 // does not have a K&R-style identifier list), then the arguments are part
4973 // of the type, otherwise the argument list is ().
4974 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4975 IsQualifiedFunction =
4976 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4977
4978 // Check for auto functions and trailing return type and adjust the
4979 // return type accordingly.
4980 if (!D.isInvalidType()) {
4981 // trailing-return-type is only required if we're declaring a function,
4982 // and not, for instance, a pointer to a function.
4983 if (D.getDeclSpec().hasAutoTypeSpec() &&
4984 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4985 if (!S.getLangOpts().CPlusPlus14) {
4986 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4987 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4988 ? diag::err_auto_missing_trailing_return
4989 : diag::err_deduced_return_type);
4990 T = Context.IntTy;
4991 D.setInvalidType(true);
4992 } else {
4993 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4994 diag::warn_cxx11_compat_deduced_return_type);
4995 }
4996 } else if (FTI.hasTrailingReturnType()) {
4997 // T must be exactly 'auto' at this point. See CWG issue 681.
4998 if (isa<ParenType>(T)) {
4999 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5000 << T << D.getSourceRange();
5001 D.setInvalidType(true);
5002 } else if (D.getName().getKind() ==
5003 UnqualifiedIdKind::IK_DeductionGuideName) {
5004 if (T != Context.DependentTy) {
5005 S.Diag(D.getDeclSpec().getBeginLoc(),
5006 diag::err_deduction_guide_with_complex_decl)
5007 << D.getSourceRange();
5008 D.setInvalidType(true);
5009 }
5010 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5011 (T.hasQualifiers() || !isa<AutoType>(T) ||
5012 cast<AutoType>(T)->getKeyword() !=
5013 AutoTypeKeyword::Auto ||
5014 cast<AutoType>(T)->isConstrained())) {
5015 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5016 diag::err_trailing_return_without_auto)
5017 << T << D.getDeclSpec().getSourceRange();
5018 D.setInvalidType(true);
5019 }
5020 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
5021 if (T.isNull()) {
5022 // An error occurred parsing the trailing return type.
5023 T = Context.IntTy;
5024 D.setInvalidType(true);
5025 } else if (AutoType *Auto = T->getContainedAutoType()) {
5026 // If the trailing return type contains an `auto`, we may need to
5027 // invent a template parameter for it, for cases like
5028 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5029 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5030 if (D.getContext() == DeclaratorContext::Prototype)
5031 InventedParamInfo = &S.InventedParameterInfos.back();
5032 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5033 InventedParamInfo = S.getCurLambda();
5034 if (InventedParamInfo) {
5035 std::tie(T, TInfo) = InventTemplateParameter(
5036 state, T, TInfo, Auto, *InventedParamInfo);
5037 }
5038 }
5039 } else {
5040 // This function type is not the type of the entity being declared,
5041 // so checking the 'auto' is not the responsibility of this chunk.
5042 }
5043 }
5044
5045 // C99 6.7.5.3p1: The return type may not be a function or array type.
5046 // For conversion functions, we'll diagnose this particular error later.
5047 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5048 (D.getName().getKind() !=
5049 UnqualifiedIdKind::IK_ConversionFunctionId)) {
5050 unsigned diagID = diag::err_func_returning_array_function;
5051 // Last processing chunk in block context means this function chunk
5052 // represents the block.
5053 if (chunkIndex == 0 &&
5054 D.getContext() == DeclaratorContext::BlockLiteral)
5055 diagID = diag::err_block_returning_array_function;
5056 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
5057 T = Context.IntTy;
5058 D.setInvalidType(true);
5059 }
5060
5061 // Do not allow returning half FP value.
5062 // FIXME: This really should be in BuildFunctionType.
5063 if (T->isHalfType()) {
5064 if (S.getLangOpts().OpenCL) {
5065 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5066 S.getLangOpts())) {
5067 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5068 << T << 0 /*pointer hint*/;
5069 D.setInvalidType(true);
5070 }
5071 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5072 S.Diag(D.getIdentifierLoc(),
5073 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5074 D.setInvalidType(true);
5075 }
5076 }
5077
5078 if (LangOpts.OpenCL) {
5079 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5080 // function.
5081 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5082 T->isPipeType()) {
5083 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5084 << T << 1 /*hint off*/;
5085 D.setInvalidType(true);
5086 }
5087 // OpenCL doesn't support variadic functions and blocks
5088 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5089 // We also allow here any toolchain reserved identifiers.
5090 if (FTI.isVariadic &&
5091 !S.getOpenCLOptions().isAvailableOption(
5092 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5093 !(D.getIdentifier() &&
5094 ((D.getIdentifier()->getName() == "printf" &&
5095 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
5096 D.getIdentifier()->getName().startswith("__")))) {
5097 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5098 D.setInvalidType(true);
5099 }
5100 }
5101
5102 // Methods cannot return interface types. All ObjC objects are
5103 // passed by reference.
5104 if (T->isObjCObjectType()) {
5105 SourceLocation DiagLoc, FixitLoc;
5106 if (TInfo) {
5107 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5108 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5109 } else {
5110 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5111 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5112 }
5113 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5114 << 0 << T
5115 << FixItHint::CreateInsertion(FixitLoc, "*");
5116
5117 T = Context.getObjCObjectPointerType(T);
5118 if (TInfo) {
5119 TypeLocBuilder TLB;
5120 TLB.pushFullCopy(TInfo->getTypeLoc());
5121 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5122 TLoc.setStarLoc(FixitLoc);
5123 TInfo = TLB.getTypeSourceInfo(Context, T);
5124 }
5125
5126 D.setInvalidType(true);
5127 }
5128
5129 // cv-qualifiers on return types are pointless except when the type is a
5130 // class type in C++.
5131 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5132 !(S.getLangOpts().CPlusPlus &&
5133 (T->isDependentType() || T->isRecordType()))) {
5134 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5135 D.getFunctionDefinitionKind() ==
5136 FunctionDefinitionKind::Definition) {
5137 // [6.9.1/3] qualified void return is invalid on a C
5138 // function definition. Apparently ok on declarations and
5139 // in C++ though (!)
5140 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5141 } else
5142 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5143
5144 // C++2a [dcl.fct]p12:
5145 // A volatile-qualified return type is deprecated
5146 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5147 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5148 }
5149
5150 // Objective-C ARC ownership qualifiers are ignored on the function
5151 // return type (by type canonicalization). Complain if this attribute
5152 // was written here.
5153 if (T.getQualifiers().hasObjCLifetime()) {
5154 SourceLocation AttrLoc;
5155 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5156 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5157 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5158 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5159 AttrLoc = AL.getLoc();
5160 break;
5161 }
5162 }
5163 }
5164 if (AttrLoc.isInvalid()) {
5165 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5166 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5167 AttrLoc = AL.getLoc();
5168 break;
5169 }
5170 }
5171 }
5172
5173 if (AttrLoc.isValid()) {
5174 // The ownership attributes are almost always written via
5175 // the predefined
5176 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5177 if (AttrLoc.isMacroID())
5178 AttrLoc =
5179 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5180
5181 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5182 << T.getQualifiers().getObjCLifetime();
5183 }
5184 }
5185
5186 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5187 // C++ [dcl.fct]p6:
5188 // Types shall not be defined in return or parameter types.
5189 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5190 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5191 << Context.getTypeDeclType(Tag);
5192 }
5193
5194 // Exception specs are not allowed in typedefs. Complain, but add it
5195 // anyway.
5196 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5197 S.Diag(FTI.getExceptionSpecLocBeg(),
5198 diag::err_exception_spec_in_typedef)
5199 << (D.getContext() == DeclaratorContext::AliasDecl ||
5200 D.getContext() == DeclaratorContext::AliasTemplate);
5201
5202 // If we see "T var();" or "T var(T());" at block scope, it is probably
5203 // an attempt to initialize a variable, not a function declaration.
5204 if (FTI.isAmbiguous)
5205 warnAboutAmbiguousFunction(S, D, DeclType, T);
5206
5207 FunctionType::ExtInfo EI(
5208 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5209
5210 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5211 && !LangOpts.OpenCL) {
5212 // Simple void foo(), where the incoming T is the result type.
5213 T = Context.getFunctionNoProtoType(T, EI);
5214 } else {
5215 // We allow a zero-parameter variadic function in C if the
5216 // function is marked with the "overloadable" attribute. Scan
5217 // for this attribute now.
5218 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5219 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
5220 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5221
5222 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5223 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5224 // definition.
5225 S.Diag(FTI.Params[0].IdentLoc,
5226 diag::err_ident_list_in_fn_declaration);
5227 D.setInvalidType(true);
5228 // Recover by creating a K&R-style function type.
5229 T = Context.getFunctionNoProtoType(T, EI);
5230 break;
5231 }
5232
5233 FunctionProtoType::ExtProtoInfo EPI;
5234 EPI.ExtInfo = EI;
5235 EPI.Variadic = FTI.isVariadic;
5236 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5237 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5238 EPI.TypeQuals.addCVRUQualifiers(
5239 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5240 : 0);
5241 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5242 : FTI.RefQualifierIsLValueRef? RQ_LValue
5243 : RQ_RValue;
5244
5245 // Otherwise, we have a function with a parameter list that is
5246 // potentially variadic.
5247 SmallVector<QualType, 16> ParamTys;
5248 ParamTys.reserve(FTI.NumParams);
5249
5250 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5251 ExtParameterInfos(FTI.NumParams);
5252 bool HasAnyInterestingExtParameterInfos = false;
5253
5254 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5255 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5256 QualType ParamTy = Param->getType();
5257 assert(!ParamTy.isNull() && "Couldn't parse type?")(static_cast<void> (0));
5258
5259 // Look for 'void'. void is allowed only as a single parameter to a
5260 // function with no other parameters (C99 6.7.5.3p10). We record
5261 // int(void) as a FunctionProtoType with an empty parameter list.
5262 if (ParamTy->isVoidType()) {
5263 // If this is something like 'float(int, void)', reject it. 'void'
5264 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5265 // have parameters of incomplete type.
5266 if (FTI.NumParams != 1 || FTI.isVariadic) {
5267 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5268 ParamTy = Context.IntTy;
5269 Param->setType(ParamTy);
5270 } else if (FTI.Params[i].Ident) {
5271 // Reject, but continue to parse 'int(void abc)'.
5272 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5273 ParamTy = Context.IntTy;
5274 Param->setType(ParamTy);
5275 } else {
5276 // Reject, but continue to parse 'float(const void)'.
5277 if (ParamTy.hasQualifiers())
5278 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5279
5280 // Do not add 'void' to the list.
5281 break;
5282 }
5283 } else if (ParamTy->isHalfType()) {
5284 // Disallow half FP parameters.
5285 // FIXME: This really should be in BuildFunctionType.
5286 if (S.getLangOpts().OpenCL) {
5287 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5288 S.getLangOpts())) {
5289 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5290 << ParamTy << 0;
5291 D.setInvalidType();
5292 Param->setInvalidDecl();
5293 }
5294 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5295 S.Diag(Param->getLocation(),
5296 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5297 D.setInvalidType();
5298 }
5299 } else if (!FTI.hasPrototype) {
5300 if (ParamTy->isPromotableIntegerType()) {
5301 ParamTy = Context.getPromotedIntegerType(ParamTy);
5302 Param->setKNRPromoted(true);
5303 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5304 if (BTy->getKind() == BuiltinType::Float) {
5305 ParamTy = Context.DoubleTy;
5306 Param->setKNRPromoted(true);
5307 }
5308 }
5309 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5310 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5311 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5312 << ParamTy << 1 /*hint off*/;
5313 D.setInvalidType();
5314 }
5315
5316 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5317 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5318 HasAnyInterestingExtParameterInfos = true;
5319 }
5320
5321 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5322 ExtParameterInfos[i] =
5323 ExtParameterInfos[i].withABI(attr->getABI());
5324 HasAnyInterestingExtParameterInfos = true;
5325 }
5326
5327 if (Param->hasAttr<PassObjectSizeAttr>()) {
5328 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5329 HasAnyInterestingExtParameterInfos = true;
5330 }
5331
5332 if (Param->hasAttr<NoEscapeAttr>()) {
5333 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5334 HasAnyInterestingExtParameterInfos = true;
5335 }
5336
5337 ParamTys.push_back(ParamTy);
5338 }
5339
5340 if (HasAnyInterestingExtParameterInfos) {
5341 EPI.ExtParameterInfos = ExtParameterInfos.data();
5342 checkExtParameterInfos(S, ParamTys, EPI,
5343 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5344 }
5345
5346 SmallVector<QualType, 4> Exceptions;
5347 SmallVector<ParsedType, 2> DynamicExceptions;
5348 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5349 Expr *NoexceptExpr = nullptr;
5350
5351 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5352 // FIXME: It's rather inefficient to have to split into two vectors
5353 // here.
5354 unsigned N = FTI.getNumExceptions();
5355 DynamicExceptions.reserve(N);
5356 DynamicExceptionRanges.reserve(N);
5357 for (unsigned I = 0; I != N; ++I) {
5358 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5359 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5360 }
5361 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5362 NoexceptExpr = FTI.NoexceptExpr;
5363 }
5364
5365 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5366 FTI.getExceptionSpecType(),
5367 DynamicExceptions,
5368 DynamicExceptionRanges,
5369 NoexceptExpr,
5370 Exceptions,
5371 EPI.ExceptionSpec);
5372
5373 // FIXME: Set address space from attrs for C++ mode here.
5374 // OpenCLCPlusPlus: A class member function has an address space.
5375 auto IsClassMember = [&]() {
5376 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5377 state.getDeclarator()
5378 .getCXXScopeSpec()
5379 .getScopeRep()
5380 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5381 state.getDeclarator().getContext() ==
5382 DeclaratorContext::Member ||
5383 state.getDeclarator().getContext() ==
5384 DeclaratorContext::LambdaExpr;
5385 };
5386
5387 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5388 LangAS ASIdx = LangAS::Default;
5389 // Take address space attr if any and mark as invalid to avoid adding
5390 // them later while creating QualType.
5391 if (FTI.MethodQualifiers)
5392 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5393 LangAS ASIdxNew = attr.asOpenCLLangAS();
5394 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5395 attr.getLoc()))
5396 D.setInvalidType(true);
5397 else
5398 ASIdx = ASIdxNew;
5399 }
5400 // If a class member function's address space is not set, set it to
5401 // __generic.
5402 LangAS AS =
5403 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5404 : ASIdx);
5405 EPI.TypeQuals.addAddressSpace(AS);
5406 }
5407 T = Context.getFunctionType(T, ParamTys, EPI);
5408 }
5409 break;
5410 }
5411 case DeclaratorChunk::MemberPointer: {
5412 // The scope spec must refer to a class, or be dependent.
5413 CXXScopeSpec &SS = DeclType.Mem.Scope();
5414 QualType ClsType;
5415
5416 // Handle pointer nullability.
5417 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5418 DeclType.EndLoc, DeclType.getAttrs(),
5419 state.getDeclarator().getAttributePool());
5420
5421 if (SS.isInvalid()) {
5422 // Avoid emitting extra errors if we already errored on the scope.
5423 D.setInvalidType(true);
5424 } else if (S.isDependentScopeSpecifier(SS) ||
5425 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5426 NestedNameSpecifier *NNS = SS.getScopeRep();
5427 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5428 switch (NNS->getKind()) {
5429 case NestedNameSpecifier::Identifier:
5430 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5431 NNS->getAsIdentifier());
5432 break;
5433
5434 case NestedNameSpecifier::Namespace:
5435 case NestedNameSpecifier::NamespaceAlias:
5436 case NestedNameSpecifier::Global:
5437 case NestedNameSpecifier::Super:
5438 llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable();
5439
5440 case NestedNameSpecifier::TypeSpec:
5441 case NestedNameSpecifier::TypeSpecWithTemplate:
5442 ClsType = QualType(NNS->getAsType(), 0);
5443 // Note: if the NNS has a prefix and ClsType is a nondependent
5444 // TemplateSpecializationType, then the NNS prefix is NOT included
5445 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5446 // NOTE: in particular, no wrap occurs if ClsType already is an
5447 // Elaborated, DependentName, or DependentTemplateSpecialization.
5448 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5449 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5450 break;
5451 }
5452 } else {
5453 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5454 diag::err_illegal_decl_mempointer_in_nonclass)
5455 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5456 << DeclType.Mem.Scope().getRange();
5457 D.setInvalidType(true);
5458 }
5459
5460 if (!ClsType.isNull())
5461 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5462 D.getIdentifier());
5463 if (T.isNull()) {
5464 T = Context.IntTy;
5465 D.setInvalidType(true);
5466 } else if (DeclType.Mem.TypeQuals) {
5467 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5468 }
5469 break;
5470 }
5471
5472 case DeclaratorChunk::Pipe: {
5473 T = S.BuildReadPipeType(T, DeclType.Loc);
5474 processTypeAttrs(state, T, TAL_DeclSpec,
5475 D.getMutableDeclSpec().getAttributes());
5476 break;
5477 }
5478 }
5479
5480 if (T.isNull()) {
5481 D.setInvalidType(true);
5482 T = Context.IntTy;
5483 }
5484
5485 // See if there are any attributes on this declarator chunk.
5486 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5487
5488 if (DeclType.Kind != DeclaratorChunk::Paren) {
5489 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5490 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5491
5492 ExpectNoDerefChunk = state.didParseNoDeref();
5493 }
5494 }
5495
5496 if (ExpectNoDerefChunk)
13
Assuming 'ExpectNoDerefChunk' is false
5497 S.Diag(state.getDeclarator().getBeginLoc(),
5498 diag::warn_noderef_on_non_pointer_or_array);
5499
5500 // GNU warning -Wstrict-prototypes
5501 // Warn if a function declaration is without a prototype.
5502 // This warning is issued for all kinds of unprototyped function
5503 // declarations (i.e. function type typedef, function pointer etc.)
5504 // C99 6.7.5.3p14:
5505 // The empty list in a function declarator that is not part of a definition
5506 // of that function specifies that no information about the number or types
5507 // of the parameters is supplied.
5508 if (!LangOpts.CPlusPlus &&
14
Assuming field 'CPlusPlus' is not equal to 0
5509 D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) {
5510 bool IsBlock = false;
5511 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5512 switch (DeclType.Kind) {
5513 case DeclaratorChunk::BlockPointer:
5514 IsBlock = true;
5515 break;
5516 case DeclaratorChunk::Function: {
5517 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5518 // We supress the warning when there's no LParen location, as this
5519 // indicates the declaration was an implicit declaration, which gets
5520 // warned about separately via -Wimplicit-function-declaration.
5521 if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5522 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5523 << IsBlock
5524 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5525 IsBlock = false;
5526 break;
5527 }
5528 default:
5529 break;
5530 }
5531 }
5532 }
5533
5534 assert(!T.isNull() && "T must not be null after this point")(static_cast<void> (0));
5535
5536 if (LangOpts.CPlusPlus
14.1
Field 'CPlusPlus' is not equal to 0
14.1
Field 'CPlusPlus' is not equal to 0
14.1
Field 'CPlusPlus' is not equal to 0
14.1
Field 'CPlusPlus' is not equal to 0
14.1
Field 'CPlusPlus' is not equal to 0
&& T->isFunctionType()) {
15
Taking false branch
5537 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5538 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")(static_cast<void> (0));
5539
5540 // C++ 8.3.5p4:
5541 // A cv-qualifier-seq shall only be part of the function type
5542 // for a nonstatic member function, the function type to which a pointer
5543 // to member refers, or the top-level function type of a function typedef
5544 // declaration.
5545 //
5546 // Core issue 547 also allows cv-qualifiers on function types that are
5547 // top-level template type arguments.
5548 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5549 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5550 Kind = DeductionGuide;
5551 else if (!D.getCXXScopeSpec().isSet()) {
5552 if ((D.getContext() == DeclaratorContext::Member ||
5553 D.getContext() == DeclaratorContext::LambdaExpr) &&
5554 !D.getDeclSpec().isFriendSpecified())
5555 Kind = Member;
5556 } else {
5557 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5558 if (!DC || DC->isRecord())
5559 Kind = Member;
5560 }
5561
5562 // C++11 [dcl.fct]p6 (w/DR1417):
5563 // An attempt to specify a function type with a cv-qualifier-seq or a
5564 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5565 // - the function type for a non-static member function,
5566 // - the function type to which a pointer to member refers,
5567 // - the top-level function type of a function typedef declaration or
5568 // alias-declaration,
5569 // - the type-id in the default argument of a type-parameter, or
5570 // - the type-id of a template-argument for a type-parameter
5571 //
5572 // FIXME: Checking this here is insufficient. We accept-invalid on:
5573 //
5574 // template<typename T> struct S { void f(T); };
5575 // S<int() const> s;
5576 //
5577 // ... for instance.
5578 if (IsQualifiedFunction &&
5579 !(Kind == Member &&
5580 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5581 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5582 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5583 SourceLocation Loc = D.getBeginLoc();
5584 SourceRange RemovalRange;
5585 unsigned I;
5586 if (D.isFunctionDeclarator(I)) {
5587 SmallVector<SourceLocation, 4> RemovalLocs;
5588 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5589 assert(Chunk.Kind == DeclaratorChunk::Function)(static_cast<void> (0));
5590
5591 if (Chunk.Fun.hasRefQualifier())
5592 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5593
5594 if (Chunk.Fun.hasMethodTypeQualifiers())
5595 Chunk.Fun.MethodQualifiers->forEachQualifier(
5596 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5597 SourceLocation SL) { RemovalLocs.push_back(SL); });
5598
5599 if (!RemovalLocs.empty()) {
5600 llvm::sort(RemovalLocs,
5601 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5602 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5603 Loc = RemovalLocs.front();
5604 }
5605 }
5606
5607 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5608 << Kind << D.isFunctionDeclarator() << T
5609 << getFunctionQualifiersAsString(FnTy)
5610 << FixItHint::CreateRemoval(RemovalRange);
5611
5612 // Strip the cv-qualifiers and ref-qualifiers from the type.
5613 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5614 EPI.TypeQuals.removeCVRQualifiers();
5615 EPI.RefQualifier = RQ_None;
5616
5617 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5618 EPI);
5619 // Rebuild any parens around the identifier in the function type.
5620 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5621 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5622 break;
5623 T = S.BuildParenType(T);
5624 }
5625 }
5626 }
5627
5628 // Apply any undistributed attributes from the declarator.
5629 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5630
5631 // Diagnose any ignored type attributes.
5632 state.diagnoseIgnoredTypeAttrs(T);
5633
5634 // C++0x [dcl.constexpr]p9:
5635 // A constexpr specifier used in an object declaration declares the object
5636 // as const.
5637 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
16
Assuming the condition is false
5638 T->isObjectType())
5639 T.addConst();
5640
5641 // C++2a [dcl.fct]p4:
5642 // A parameter with volatile-qualified type is deprecated
5643 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
17
Assuming the condition is false
5644 (D.getContext() == DeclaratorContext::Prototype ||
5645 D.getContext() == DeclaratorContext::LambdaExprParameter))
5646 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5647
5648 // If there was an ellipsis in the declarator, the declaration declares a
5649 // parameter pack whose type may be a pack expansion type.
5650 if (D.hasEllipsis()) {
18
Taking false branch
5651 // C++0x [dcl.fct]p13:
5652 // A declarator-id or abstract-declarator containing an ellipsis shall
5653 // only be used in a parameter-declaration. Such a parameter-declaration
5654 // is a parameter pack (14.5.3). [...]
5655 switch (D.getContext()) {
5656 case DeclaratorContext::Prototype:
5657 case DeclaratorContext::LambdaExprParameter:
5658 case DeclaratorContext::RequiresExpr:
5659 // C++0x [dcl.fct]p13:
5660 // [...] When it is part of a parameter-declaration-clause, the
5661 // parameter pack is a function parameter pack (14.5.3). The type T
5662 // of the declarator-id of the function parameter pack shall contain
5663 // a template parameter pack; each template parameter pack in T is
5664 // expanded by the function parameter pack.
5665 //
5666 // We represent function parameter packs as function parameters whose
5667 // type is a pack expansion.
5668 if (!T->containsUnexpandedParameterPack() &&
5669 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5670 S.Diag(D.getEllipsisLoc(),
5671 diag::err_function_parameter_pack_without_parameter_packs)
5672 << T << D.getSourceRange();
5673 D.setEllipsisLoc(SourceLocation());
5674 } else {
5675 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5676 }
5677 break;
5678 case DeclaratorContext::TemplateParam:
5679 // C++0x [temp.param]p15:
5680 // If a template-parameter is a [...] is a parameter-declaration that
5681 // declares a parameter pack (8.3.5), then the template-parameter is a
5682 // template parameter pack (14.5.3).
5683 //
5684 // Note: core issue 778 clarifies that, if there are any unexpanded
5685 // parameter packs in the type of the non-type template parameter, then
5686 // it expands those parameter packs.
5687 if (T->containsUnexpandedParameterPack())
5688 T = Context.getPackExpansionType(T, None);
5689 else
5690 S.Diag(D.getEllipsisLoc(),
5691 LangOpts.CPlusPlus11
5692 ? diag::warn_cxx98_compat_variadic_templates
5693 : diag::ext_variadic_templates);
5694 break;
5695
5696 case DeclaratorContext::File:
5697 case DeclaratorContext::KNRTypeList:
5698 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5699 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5700 case DeclaratorContext::TypeName:
5701 case DeclaratorContext::FunctionalCast:
5702 case DeclaratorContext::CXXNew:
5703 case DeclaratorContext::AliasDecl:
5704 case DeclaratorContext::AliasTemplate:
5705 case DeclaratorContext::Member:
5706 case DeclaratorContext::Block:
5707 case DeclaratorContext::ForInit:
5708 case DeclaratorContext::SelectionInit:
5709 case DeclaratorContext::Condition:
5710 case DeclaratorContext::CXXCatch:
5711 case DeclaratorContext::ObjCCatch:
5712 case DeclaratorContext::BlockLiteral:
5713 case DeclaratorContext::LambdaExpr:
5714 case DeclaratorContext::ConversionId:
5715 case DeclaratorContext::TrailingReturn:
5716 case DeclaratorContext::TrailingReturnVar:
5717 case DeclaratorContext::TemplateArg:
5718 case DeclaratorContext::TemplateTypeArg:
5719 // FIXME: We may want to allow parameter packs in block-literal contexts
5720 // in the future.
5721 S.Diag(D.getEllipsisLoc(),
5722 diag::err_ellipsis_in_declarator_not_parameter);
5723 D.setEllipsisLoc(SourceLocation());
5724 break;
5725 }
5726 }
5727
5728 assert(!T.isNull() && "T must not be null at the end of this function")(static_cast<void> (0));
5729 if (D.isInvalidType())
19
Taking false branch
5730 return Context.getTrivialTypeSourceInfo(T);
5731
5732 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
20
Calling 'GetTypeSourceInfoForDeclarator'
5733}
5734
5735/// GetTypeForDeclarator - Convert the type for the specified
5736/// declarator to Type instances.
5737///
5738/// The result of this call will never be null, but the associated
5739/// type may be a null type if there's an unrecoverable error.
5740TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5741 // Determine the type of the declarator. Not all forms of declarator
5742 // have a type.
5743
5744 TypeProcessingState state(*this, D);
5745
5746 TypeSourceInfo *ReturnTypeInfo = nullptr;
5747 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5748 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5749 inferARCWriteback(state, T);
5750
5751 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5752}
5753
5754static void transferARCOwnershipToDeclSpec(Sema &S,
5755 QualType &declSpecTy,
5756 Qualifiers::ObjCLifetime ownership) {
5757 if (declSpecTy->isObjCRetainableType() &&
5758 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5759 Qualifiers qs;
5760 qs.addObjCLifetime(ownership);
5761 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5762 }
5763}
5764
5765static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5766 Qualifiers::ObjCLifetime ownership,
5767 unsigned chunkIndex) {
5768 Sema &S = state.getSema();
5769 Declarator &D = state.getDeclarator();
5770
5771 // Look for an explicit lifetime attribute.
5772 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5773 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5774 return;
5775
5776 const char *attrStr = nullptr;
5777 switch (ownership) {
5778 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")__builtin_unreachable();
5779 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5780 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5781 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5782 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5783 }
5784
5785 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5786 Arg->Ident = &S.Context.Idents.get(attrStr);
5787 Arg->Loc = SourceLocation();
5788
5789 ArgsUnion Args(Arg);
5790
5791 // If there wasn't one, add one (with an invalid source location
5792 // so that we don't make an AttributedType for it).
5793 ParsedAttr *attr = D.getAttributePool().create(
5794 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5795 /*scope*/ nullptr, SourceLocation(),
5796 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5797 chunk.getAttrs().addAtEnd(attr);
5798 // TODO: mark whether we did this inference?
5799}
5800
5801/// Used for transferring ownership in casts resulting in l-values.
5802static void transferARCOwnership(TypeProcessingState &state,
5803 QualType &declSpecTy,
5804 Qualifiers::ObjCLifetime ownership) {
5805 Sema &S = state.getSema();
5806 Declarator &D = state.getDeclarator();
5807
5808 int inner = -1;
5809 bool hasIndirection = false;
5810 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5811 DeclaratorChunk &chunk = D.getTypeObject(i);
5812 switch (chunk.Kind) {
5813 case DeclaratorChunk::Paren:
5814 // Ignore parens.
5815 break;
5816
5817 case DeclaratorChunk::Array:
5818 case DeclaratorChunk::Reference:
5819 case DeclaratorChunk::Pointer:
5820 if (inner != -1)
5821 hasIndirection = true;
5822 inner = i;
5823 break;
5824
5825 case DeclaratorChunk::BlockPointer:
5826 if (inner != -1)
5827 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5828 return;
5829
5830 case DeclaratorChunk::Function:
5831 case DeclaratorChunk::MemberPointer:
5832 case DeclaratorChunk::Pipe:
5833 return;
5834 }
5835 }
5836
5837 if (inner == -1)
5838 return;
5839
5840 DeclaratorChunk &chunk = D.getTypeObject(inner);
5841 if (chunk.Kind == DeclaratorChunk::Pointer) {
5842 if (declSpecTy->isObjCRetainableType())
5843 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5844 if (declSpecTy->isObjCObjectType() && hasIndirection)
5845 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5846 } else {
5847 assert(chunk.Kind == DeclaratorChunk::Array ||(static_cast<void> (0))
5848 chunk.Kind == DeclaratorChunk::Reference)(static_cast<void> (0));
5849 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5850 }
5851}
5852
5853TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5854 TypeProcessingState state(*this, D);
5855
5856 TypeSourceInfo *ReturnTypeInfo = nullptr;
5857 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5858
5859 if (getLangOpts().ObjC) {
5860 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5861 if (ownership != Qualifiers::OCL_None)
5862 transferARCOwnership(state, declSpecTy, ownership);
5863 }
5864
5865 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5866}
5867
5868static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5869 TypeProcessingState &State) {
5870 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5871}
5872
5873namespace {
5874 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5875 Sema &SemaRef;
5876 ASTContext &Context;
5877 TypeProcessingState &State;
5878 const DeclSpec &DS;
5879
5880 public:
5881 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5882 const DeclSpec &DS)
5883 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5884
5885 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5886 Visit(TL.getModifiedLoc());
5887 fillAttributedTypeLoc(TL, State);
5888 }
5889 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5890 Visit(TL.getInnerLoc());
5891 TL.setExpansionLoc(
5892 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5893 }
5894 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5895 Visit(TL.getUnqualifiedLoc());
5896 }
5897 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5898 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5899 }
5900 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5901 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5902 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5903 // addition field. What we have is good enough for dispay of location
5904 // of 'fixit' on interface name.
5905 TL.setNameEndLoc(DS.getEndLoc());
5906 }
5907 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5908 TypeSourceInfo *RepTInfo = nullptr;
5909 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5910 TL.copy(RepTInfo->getTypeLoc());
5911 }
5912 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5913 TypeSourceInfo *RepTInfo = nullptr;
5914 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5915 TL.copy(RepTInfo->getTypeLoc());
5916 }
5917 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5918 TypeSourceInfo *TInfo = nullptr;
5919 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5920
5921 // If we got no declarator info from previous Sema routines,
5922 // just fill with the typespec loc.
5923 if (!TInfo) {
5924 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5925 return;
5926 }
5927
5928 TypeLoc OldTL = TInfo->getTypeLoc();
5929 if (TInfo->getType()->getAs<ElaboratedType>()) {
5930 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5931 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5932 .castAs<TemplateSpecializationTypeLoc>();
5933 TL.copy(NamedTL);
5934 } else {
5935 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5936 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())(static_cast<void> (0));
5937 }
5938
5939 }
5940 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5941 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)(static_cast<void> (0));
5942 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5943 TL.setParensRange(DS.getTypeofParensRange());
5944 }
5945 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5946 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)(static_cast<void> (0));
5947 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5948 TL.setParensRange(DS.getTypeofParensRange());
5949 assert(DS.getRepAsType())(static_cast<void> (0));
5950 TypeSourceInfo *TInfo = nullptr;
5951 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5952 TL.setUnderlyingTInfo(TInfo);
5953 }
5954 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5955 // FIXME: This holds only because we only have one unary transform.
5956 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)(static_cast<void> (0));
5957 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5958 TL.setParensRange(DS.getTypeofParensRange());
5959 assert(DS.getRepAsType())(static_cast<void> (0));
5960 TypeSourceInfo *TInfo = nullptr;
5961 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5962 TL.setUnderlyingTInfo(TInfo);
5963 }
5964 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5965 // By default, use the source location of the type specifier.
5966 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5967 if (TL.needsExtraLocalData()) {
5968 // Set info for the written builtin specifiers.
5969 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5970 // Try to have a meaningful source location.
5971 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5972 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5973 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5974 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5975 }
5976 }
5977 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5978 ElaboratedTypeKeyword Keyword
5979 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5980 if (DS.getTypeSpecType() == TST_typename) {
5981 TypeSourceInfo *TInfo = nullptr;
5982 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5983 if (TInfo) {
5984 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5985