Bug Summary

File:clang/lib/Sema/SemaType.cpp
Warning:line 5851, column 15
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp

1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/DelayedDiagnostic.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/Support/ErrorHandling.h"
40#include <bitset>
41
42using namespace clang;
43
44enum TypeDiagSelector {
45 TDS_Function,
46 TDS_Pointer,
47 TDS_ObjCObjOrBlock
48};
49
50/// isOmittedBlockReturnType - Return true if this declarator is missing a
51/// return type because this is a omitted return type on a block literal.
52static bool isOmittedBlockReturnType(const Declarator &D) {
53 if (D.getContext() != DeclaratorContext::BlockLiteral ||
54 D.getDeclSpec().hasTypeSpecifier())
55 return false;
56
57 if (D.getNumTypeObjects() == 0)
58 return true; // ^{ ... }
59
60 if (D.getNumTypeObjects() == 1 &&
61 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
62 return true; // ^(int X, float Y) { ... }
63
64 return false;
65}
66
67/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
68/// doesn't apply to the given type.
69static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
70 QualType type) {
71 TypeDiagSelector WhichType;
72 bool useExpansionLoc = true;
73 switch (attr.getKind()) {
74 case ParsedAttr::AT_ObjCGC:
75 WhichType = TDS_Pointer;
76 break;
77 case ParsedAttr::AT_ObjCOwnership:
78 WhichType = TDS_ObjCObjOrBlock;
79 break;
80 default:
81 // Assume everything else was a function attribute.
82 WhichType = TDS_Function;
83 useExpansionLoc = false;
84 break;
85 }
86
87 SourceLocation loc = attr.getLoc();
88 StringRef name = attr.getAttrName()->getName();
89
90 // The GC attributes are usually written with macros; special-case them.
91 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
92 : nullptr;
93 if (useExpansionLoc && loc.isMacroID() && II) {
94 if (II->isStr("strong")) {
95 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
96 } else if (II->isStr("weak")) {
97 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
98 }
99 }
100
101 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
102 << type;
103}
104
105// objc_gc applies to Objective-C pointers or, otherwise, to the
106// smallest available pointer type (i.e. 'void*' in 'void**').
107#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
108 case ParsedAttr::AT_ObjCGC: \
109 case ParsedAttr::AT_ObjCOwnership
110
111// Calling convention attributes.
112#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
113 case ParsedAttr::AT_CDecl: \
114 case ParsedAttr::AT_FastCall: \
115 case ParsedAttr::AT_StdCall: \
116 case ParsedAttr::AT_ThisCall: \
117 case ParsedAttr::AT_RegCall: \
118 case ParsedAttr::AT_Pascal: \
119 case ParsedAttr::AT_SwiftCall: \
120 case ParsedAttr::AT_VectorCall: \
121 case ParsedAttr::AT_AArch64VectorPcs: \
122 case ParsedAttr::AT_MSABI: \
123 case ParsedAttr::AT_SysVABI: \
124 case ParsedAttr::AT_Pcs: \
125 case ParsedAttr::AT_IntelOclBicc: \
126 case ParsedAttr::AT_PreserveMost: \
127 case ParsedAttr::AT_PreserveAll
128
129// Function type attributes.
130#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
131 case ParsedAttr::AT_NSReturnsRetained: \
132 case ParsedAttr::AT_NoReturn: \
133 case ParsedAttr::AT_Regparm: \
134 case ParsedAttr::AT_CmseNSCall: \
135 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
136 case ParsedAttr::AT_AnyX86NoCfCheck: \
137 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
138
139// Microsoft-specific type qualifiers.
140#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
141 case ParsedAttr::AT_Ptr32: \
142 case ParsedAttr::AT_Ptr64: \
143 case ParsedAttr::AT_SPtr: \
144 case ParsedAttr::AT_UPtr
145
146// Nullability qualifiers.
147#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
\
148 case ParsedAttr::AT_TypeNonNull: \
149 case ParsedAttr::AT_TypeNullable: \
150 case ParsedAttr::AT_TypeNullableResult: \
151 case ParsedAttr::AT_TypeNullUnspecified
152
153namespace {
154 /// An object which stores processing state for the entire
155 /// GetTypeForDeclarator process.
156 class TypeProcessingState {
157 Sema &sema;
158
159 /// The declarator being processed.
160 Declarator &declarator;
161
162 /// The index of the declarator chunk we're currently processing.
163 /// May be the total number of valid chunks, indicating the
164 /// DeclSpec.
165 unsigned chunkIndex;
166
167 /// Whether there are non-trivial modifications to the decl spec.
168 bool trivial;
169
170 /// Whether we saved the attributes in the decl spec.
171 bool hasSavedAttrs;
172
173 /// The original set of attributes on the DeclSpec.
174 SmallVector<ParsedAttr *, 2> savedAttrs;
175
176 /// A list of attributes to diagnose the uselessness of when the
177 /// processing is complete.
178 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
179
180 /// Attributes corresponding to AttributedTypeLocs that we have not yet
181 /// populated.
182 // FIXME: The two-phase mechanism by which we construct Types and fill
183 // their TypeLocs makes it hard to correctly assign these. We keep the
184 // attributes in creation order as an attempt to make them line up
185 // properly.
186 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
187 SmallVector<TypeAttrPair, 8> AttrsForTypes;
188 bool AttrsForTypesSorted = true;
189
190 /// MacroQualifiedTypes mapping to macro expansion locations that will be
191 /// stored in a MacroQualifiedTypeLoc.
192 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
193
194 /// Flag to indicate we parsed a noderef attribute. This is used for
195 /// validating that noderef was used on a pointer or array.
196 bool parsedNoDeref;
197
198 public:
199 TypeProcessingState(Sema &sema, Declarator &declarator)
200 : sema(sema), declarator(declarator),
201 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
202 hasSavedAttrs(false), parsedNoDeref(false) {}
203
204 Sema &getSema() const {
205 return sema;
206 }
207
208 Declarator &getDeclarator() const {
209 return declarator;
210 }
211
212 bool isProcessingDeclSpec() const {
213 return chunkIndex == declarator.getNumTypeObjects();
214 }
215
216 unsigned getCurrentChunkIndex() const {
217 return chunkIndex;
218 }
219
220 void setCurrentChunkIndex(unsigned idx) {
221 assert(idx <= declarator.getNumTypeObjects())((idx <= declarator.getNumTypeObjects()) ? static_cast<
void> (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 221, __PRETTY_FUNCTION__))
;
222 chunkIndex = idx;
223 }
224
225 ParsedAttributesView &getCurrentAttributes() const {
226 if (isProcessingDeclSpec())
227 return getMutableDeclSpec().getAttributes();
228 return declarator.getTypeObject(chunkIndex).getAttrs();
229 }
230
231 /// Save the current set of attributes on the DeclSpec.
232 void saveDeclSpecAttrs() {
233 // Don't try to save them multiple times.
234 if (hasSavedAttrs) return;
235
236 DeclSpec &spec = getMutableDeclSpec();
237 for (ParsedAttr &AL : spec.getAttributes())
238 savedAttrs.push_back(&AL);
239 trivial &= savedAttrs.empty();
240 hasSavedAttrs = true;
241 }
242
243 /// Record that we had nowhere to put the given type attribute.
244 /// We will diagnose such attributes later.
245 void addIgnoredTypeAttr(ParsedAttr &attr) {
246 ignoredTypeAttrs.push_back(&attr);
247 }
248
249 /// Diagnose all the ignored type attributes, given that the
250 /// declarator worked out to the given type.
251 void diagnoseIgnoredTypeAttrs(QualType type) const {
252 for (auto *Attr : ignoredTypeAttrs)
253 diagnoseBadTypeAttribute(getSema(), *Attr, type);
254 }
255
256 /// Get an attributed type for the given attribute, and remember the Attr
257 /// object so that we can attach it to the AttributedTypeLoc.
258 QualType getAttributedType(Attr *A, QualType ModifiedType,
259 QualType EquivType) {
260 QualType T =
261 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
262 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
263 AttrsForTypesSorted = false;
264 return T;
265 }
266
267 /// Completely replace the \c auto in \p TypeWithAuto by
268 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
269 /// necessary.
270 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
271 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
272 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
273 // Attributed type still should be an attributed type after replacement.
274 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
275 for (TypeAttrPair &A : AttrsForTypes) {
276 if (A.first == AttrTy)
277 A.first = NewAttrTy;
278 }
279 AttrsForTypesSorted = false;
280 }
281 return T;
282 }
283
284 /// Extract and remove the Attr* for a given attributed type.
285 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
286 if (!AttrsForTypesSorted) {
287 llvm::stable_sort(AttrsForTypes, llvm::less_first());
288 AttrsForTypesSorted = true;
289 }
290
291 // FIXME: This is quadratic if we have lots of reuses of the same
292 // attributed type.
293 for (auto It = std::partition_point(
294 AttrsForTypes.begin(), AttrsForTypes.end(),
295 [=](const TypeAttrPair &A) { return A.first < AT; });
296 It != AttrsForTypes.end() && It->first == AT; ++It) {
297 if (It->second) {
298 const Attr *Result = It->second;
299 It->second = nullptr;
300 return Result;
301 }
302 }
303
304 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 304)
;
305 }
306
307 SourceLocation
308 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
309 auto FoundLoc = LocsForMacros.find(MQT);
310 assert(FoundLoc != LocsForMacros.end() &&((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType"
) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 311, __PRETTY_FUNCTION__))
311 "Unable to find macro expansion location for MacroQualifedType")((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType"
) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 311, __PRETTY_FUNCTION__))
;
312 return FoundLoc->second;
313 }
314
315 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
316 SourceLocation Loc) {
317 LocsForMacros[MQT] = Loc;
318 }
319
320 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
321
322 bool didParseNoDeref() const { return parsedNoDeref; }
323
324 ~TypeProcessingState() {
325 if (trivial) return;
326
327 restoreDeclSpecAttrs();
328 }
329
330 private:
331 DeclSpec &getMutableDeclSpec() const {
332 return const_cast<DeclSpec&>(declarator.getDeclSpec());
333 }
334
335 void restoreDeclSpecAttrs() {
336 assert(hasSavedAttrs)((hasSavedAttrs) ? static_cast<void> (0) : __assert_fail
("hasSavedAttrs", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 336, __PRETTY_FUNCTION__))
;
337
338 getMutableDeclSpec().getAttributes().clearListOnly();
339 for (ParsedAttr *AL : savedAttrs)
340 getMutableDeclSpec().getAttributes().addAtEnd(AL);
341 }
342 };
343} // end anonymous namespace
344
345static void moveAttrFromListToList(ParsedAttr &attr,
346 ParsedAttributesView &fromList,
347 ParsedAttributesView &toList) {
348 fromList.remove(&attr);
349 toList.addAtEnd(&attr);
350}
351
352/// The location of a type attribute.
353enum TypeAttrLocation {
354 /// The attribute is in the decl-specifier-seq.
355 TAL_DeclSpec,
356 /// The attribute is part of a DeclaratorChunk.
357 TAL_DeclChunk,
358 /// The attribute is immediately after the declaration's name.
359 TAL_DeclName
360};
361
362static void processTypeAttrs(TypeProcessingState &state, QualType &type,
363 TypeAttrLocation TAL, ParsedAttributesView &attrs);
364
365static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
366 QualType &type);
367
368static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
369 ParsedAttr &attr, QualType &type);
370
371static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
372 QualType &type);
373
374static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
375 ParsedAttr &attr, QualType &type);
376
377static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
378 ParsedAttr &attr, QualType &type) {
379 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
380 return handleObjCGCTypeAttr(state, attr, type);
381 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((attr.getKind() == ParsedAttr::AT_ObjCOwnership) ? static_cast
<void> (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 381, __PRETTY_FUNCTION__))
;
382 return handleObjCOwnershipTypeAttr(state, attr, type);
383}
384
385/// Given the index of a declarator chunk, check whether that chunk
386/// directly specifies the return type of a function and, if so, find
387/// an appropriate place for it.
388///
389/// \param i - a notional index which the search will start
390/// immediately inside
391///
392/// \param onlyBlockPointers Whether we should only look into block
393/// pointer types (vs. all pointer types).
394static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
395 unsigned i,
396 bool onlyBlockPointers) {
397 assert(i <= declarator.getNumTypeObjects())((i <= declarator.getNumTypeObjects()) ? static_cast<void
> (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 397, __PRETTY_FUNCTION__))
;
398
399 DeclaratorChunk *result = nullptr;
400
401 // First, look inwards past parens for a function declarator.
402 for (; i != 0; --i) {
403 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
404 switch (fnChunk.Kind) {
405 case DeclaratorChunk::Paren:
406 continue;
407
408 // If we find anything except a function, bail out.
409 case DeclaratorChunk::Pointer:
410 case DeclaratorChunk::BlockPointer:
411 case DeclaratorChunk::Array:
412 case DeclaratorChunk::Reference:
413 case DeclaratorChunk::MemberPointer:
414 case DeclaratorChunk::Pipe:
415 return result;
416
417 // If we do find a function declarator, scan inwards from that,
418 // looking for a (block-)pointer declarator.
419 case DeclaratorChunk::Function:
420 for (--i; i != 0; --i) {
421 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
422 switch (ptrChunk.Kind) {
423 case DeclaratorChunk::Paren:
424 case DeclaratorChunk::Array:
425 case DeclaratorChunk::Function:
426 case DeclaratorChunk::Reference:
427 case DeclaratorChunk::Pipe:
428 continue;
429
430 case DeclaratorChunk::MemberPointer:
431 case DeclaratorChunk::Pointer:
432 if (onlyBlockPointers)
433 continue;
434
435 LLVM_FALLTHROUGH[[gnu::fallthrough]];
436
437 case DeclaratorChunk::BlockPointer:
438 result = &ptrChunk;
439 goto continue_outer;
440 }
441 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 441)
;
442 }
443
444 // If we run out of declarators doing that, we're done.
445 return result;
446 }
447 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 447)
;
448
449 // Okay, reconsider from our new point.
450 continue_outer: ;
451 }
452
453 // Ran out of chunks, bail out.
454 return result;
455}
456
457/// Given that an objc_gc attribute was written somewhere on a
458/// declaration *other* than on the declarator itself (for which, use
459/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
460/// didn't apply in whatever position it was written in, try to move
461/// it to a more appropriate position.
462static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
463 ParsedAttr &attr, QualType type) {
464 Declarator &declarator = state.getDeclarator();
465
466 // Move it to the outermost normal or block pointer declarator.
467 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
468 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
469 switch (chunk.Kind) {
470 case DeclaratorChunk::Pointer:
471 case DeclaratorChunk::BlockPointer: {
472 // But don't move an ARC ownership attribute to the return type
473 // of a block.
474 DeclaratorChunk *destChunk = nullptr;
475 if (state.isProcessingDeclSpec() &&
476 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
477 destChunk = maybeMovePastReturnType(declarator, i - 1,
478 /*onlyBlockPointers=*/true);
479 if (!destChunk) destChunk = &chunk;
480
481 moveAttrFromListToList(attr, state.getCurrentAttributes(),
482 destChunk->getAttrs());
483 return;
484 }
485
486 case DeclaratorChunk::Paren:
487 case DeclaratorChunk::Array:
488 continue;
489
490 // We may be starting at the return type of a block.
491 case DeclaratorChunk::Function:
492 if (state.isProcessingDeclSpec() &&
493 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
494 if (DeclaratorChunk *dest = maybeMovePastReturnType(
495 declarator, i,
496 /*onlyBlockPointers=*/true)) {
497 moveAttrFromListToList(attr, state.getCurrentAttributes(),
498 dest->getAttrs());
499 return;
500 }
501 }
502 goto error;
503
504 // Don't walk through these.
505 case DeclaratorChunk::Reference:
506 case DeclaratorChunk::MemberPointer:
507 case DeclaratorChunk::Pipe:
508 goto error;
509 }
510 }
511 error:
512
513 diagnoseBadTypeAttribute(state.getSema(), attr, type);
514}
515
516/// Distribute an objc_gc type attribute that was written on the
517/// declarator.
518static void distributeObjCPointerTypeAttrFromDeclarator(
519 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
520 Declarator &declarator = state.getDeclarator();
521
522 // objc_gc goes on the innermost pointer to something that's not a
523 // pointer.
524 unsigned innermost = -1U;
525 bool considerDeclSpec = true;
526 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
527 DeclaratorChunk &chunk = declarator.getTypeObject(i);
528 switch (chunk.Kind) {
529 case DeclaratorChunk::Pointer:
530 case DeclaratorChunk::BlockPointer:
531 innermost = i;
532 continue;
533
534 case DeclaratorChunk::Reference:
535 case DeclaratorChunk::MemberPointer:
536 case DeclaratorChunk::Paren:
537 case DeclaratorChunk::Array:
538 case DeclaratorChunk::Pipe:
539 continue;
540
541 case DeclaratorChunk::Function:
542 considerDeclSpec = false;
543 goto done;
544 }
545 }
546 done:
547
548 // That might actually be the decl spec if we weren't blocked by
549 // anything in the declarator.
550 if (considerDeclSpec) {
551 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
552 // Splice the attribute into the decl spec. Prevents the
553 // attribute from being applied multiple times and gives
554 // the source-location-filler something to work with.
555 state.saveDeclSpecAttrs();
556 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
557 declarator.getAttributes(), &attr);
558 return;
559 }
560 }
561
562 // Otherwise, if we found an appropriate chunk, splice the attribute
563 // into it.
564 if (innermost != -1U) {
565 moveAttrFromListToList(attr, declarator.getAttributes(),
566 declarator.getTypeObject(innermost).getAttrs());
567 return;
568 }
569
570 // Otherwise, diagnose when we're done building the type.
571 declarator.getAttributes().remove(&attr);
572 state.addIgnoredTypeAttr(attr);
573}
574
575/// A function type attribute was written somewhere in a declaration
576/// *other* than on the declarator itself or in the decl spec. Given
577/// that it didn't apply in whatever position it was written in, try
578/// to move it to a more appropriate position.
579static void distributeFunctionTypeAttr(TypeProcessingState &state,
580 ParsedAttr &attr, QualType type) {
581 Declarator &declarator = state.getDeclarator();
582
583 // Try to push the attribute from the return type of a function to
584 // the function itself.
585 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
586 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
587 switch (chunk.Kind) {
588 case DeclaratorChunk::Function:
589 moveAttrFromListToList(attr, state.getCurrentAttributes(),
590 chunk.getAttrs());
591 return;
592
593 case DeclaratorChunk::Paren:
594 case DeclaratorChunk::Pointer:
595 case DeclaratorChunk::BlockPointer:
596 case DeclaratorChunk::Array:
597 case DeclaratorChunk::Reference:
598 case DeclaratorChunk::MemberPointer:
599 case DeclaratorChunk::Pipe:
600 continue;
601 }
602 }
603
604 diagnoseBadTypeAttribute(state.getSema(), attr, type);
605}
606
607/// Try to distribute a function type attribute to the innermost
608/// function chunk or type. Returns true if the attribute was
609/// distributed, false if no location was found.
610static bool distributeFunctionTypeAttrToInnermost(
611 TypeProcessingState &state, ParsedAttr &attr,
612 ParsedAttributesView &attrList, QualType &declSpecType) {
613 Declarator &declarator = state.getDeclarator();
614
615 // Put it on the innermost function chunk, if there is one.
616 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
617 DeclaratorChunk &chunk = declarator.getTypeObject(i);
618 if (chunk.Kind != DeclaratorChunk::Function) continue;
619
620 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
621 return true;
622 }
623
624 return handleFunctionTypeAttr(state, attr, declSpecType);
625}
626
627/// A function type attribute was written in the decl spec. Try to
628/// apply it somewhere.
629static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
630 ParsedAttr &attr,
631 QualType &declSpecType) {
632 state.saveDeclSpecAttrs();
633
634 // C++11 attributes before the decl specifiers actually appertain to
635 // the declarators. Move them straight there. We don't support the
636 // 'put them wherever you like' semantics we allow for GNU attributes.
637 if (attr.isCXX11Attribute()) {
638 moveAttrFromListToList(attr, state.getCurrentAttributes(),
639 state.getDeclarator().getAttributes());
640 return;
641 }
642
643 // Try to distribute to the innermost.
644 if (distributeFunctionTypeAttrToInnermost(
645 state, attr, state.getCurrentAttributes(), declSpecType))
646 return;
647
648 // If that failed, diagnose the bad attribute when the declarator is
649 // fully built.
650 state.addIgnoredTypeAttr(attr);
651}
652
653/// A function type attribute was written on the declarator. Try to
654/// apply it somewhere.
655static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
656 ParsedAttr &attr,
657 QualType &declSpecType) {
658 Declarator &declarator = state.getDeclarator();
659
660 // Try to distribute to the innermost.
661 if (distributeFunctionTypeAttrToInnermost(
662 state, attr, declarator.getAttributes(), declSpecType))
663 return;
664
665 // If that failed, diagnose the bad attribute when the declarator is
666 // fully built.
667 declarator.getAttributes().remove(&attr);
668 state.addIgnoredTypeAttr(attr);
669}
670
671/// Given that there are attributes written on the declarator
672/// itself, try to distribute any type attributes to the appropriate
673/// declarator chunk.
674///
675/// These are attributes like the following:
676/// int f ATTR;
677/// int (f ATTR)();
678/// but not necessarily this:
679/// int f() ATTR;
680static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
681 QualType &declSpecType) {
682 // Collect all the type attributes from the declarator itself.
683 assert(!state.getDeclarator().getAttributes().empty() &&((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 684, __PRETTY_FUNCTION__))
684 "declarator has no attrs!")((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 684, __PRETTY_FUNCTION__))
;
685 // The called functions in this loop actually remove things from the current
686 // list, so iterating over the existing list isn't possible. Instead, make a
687 // non-owning copy and iterate over that.
688 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
689 for (ParsedAttr &attr : AttrsCopy) {
690 // Do not distribute C++11 attributes. They have strict rules for what
691 // they appertain to.
692 if (attr.isCXX11Attribute())
693 continue;
694
695 switch (attr.getKind()) {
696 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
697 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
698 break;
699
700 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
:
701 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
702 break;
703
704 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
705 // Microsoft type attributes cannot go after the declarator-id.
706 continue;
707
708 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
709 // Nullability specifiers cannot go after the declarator-id.
710
711 // Objective-C __kindof does not get distributed.
712 case ParsedAttr::AT_ObjCKindOf:
713 continue;
714
715 default:
716 break;
717 }
718 }
719}
720
721/// Add a synthetic '()' to a block-literal declarator if it is
722/// required, given the return type.
723static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
724 QualType declSpecType) {
725 Declarator &declarator = state.getDeclarator();
726
727 // First, check whether the declarator would produce a function,
728 // i.e. whether the innermost semantic chunk is a function.
729 if (declarator.isFunctionDeclarator()) {
730 // If so, make that declarator a prototyped declarator.
731 declarator.getFunctionTypeInfo().hasPrototype = true;
732 return;
733 }
734
735 // If there are any type objects, the type as written won't name a
736 // function, regardless of the decl spec type. This is because a
737 // block signature declarator is always an abstract-declarator, and
738 // abstract-declarators can't just be parentheses chunks. Therefore
739 // we need to build a function chunk unless there are no type
740 // objects and the decl spec type is a function.
741 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
742 return;
743
744 // Note that there *are* cases with invalid declarators where
745 // declarators consist solely of parentheses. In general, these
746 // occur only in failed efforts to make function declarators, so
747 // faking up the function chunk is still the right thing to do.
748
749 // Otherwise, we need to fake up a function declarator.
750 SourceLocation loc = declarator.getBeginLoc();
751
752 // ...and *prepend* it to the declarator.
753 SourceLocation NoLoc;
754 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
755 /*HasProto=*/true,
756 /*IsAmbiguous=*/false,
757 /*LParenLoc=*/NoLoc,
758 /*ArgInfo=*/nullptr,
759 /*NumParams=*/0,
760 /*EllipsisLoc=*/NoLoc,
761 /*RParenLoc=*/NoLoc,
762 /*RefQualifierIsLvalueRef=*/true,
763 /*RefQualifierLoc=*/NoLoc,
764 /*MutableLoc=*/NoLoc, EST_None,
765 /*ESpecRange=*/SourceRange(),
766 /*Exceptions=*/nullptr,
767 /*ExceptionRanges=*/nullptr,
768 /*NumExceptions=*/0,
769 /*NoexceptExpr=*/nullptr,
770 /*ExceptionSpecTokens=*/nullptr,
771 /*DeclsInPrototype=*/None, loc, loc, declarator));
772
773 // For consistency, make sure the state still has us as processing
774 // the decl spec.
775 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((state.getCurrentChunkIndex() == declarator.getNumTypeObjects
() - 1) ? static_cast<void> (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 775, __PRETTY_FUNCTION__))
;
776 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
777}
778
779static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
780 unsigned &TypeQuals,
781 QualType TypeSoFar,
782 unsigned RemoveTQs,
783 unsigned DiagID) {
784 // If this occurs outside a template instantiation, warn the user about
785 // it; they probably didn't mean to specify a redundant qualifier.
786 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
787 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
788 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
789 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
790 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
791 if (!(RemoveTQs & Qual.first))
792 continue;
793
794 if (!S.inTemplateInstantiation()) {
795 if (TypeQuals & Qual.first)
796 S.Diag(Qual.second, DiagID)
797 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
798 << FixItHint::CreateRemoval(Qual.second);
799 }
800
801 TypeQuals &= ~Qual.first;
802 }
803}
804
805/// Return true if this is omitted block return type. Also check type
806/// attributes and type qualifiers when returning true.
807static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
808 QualType Result) {
809 if (!isOmittedBlockReturnType(declarator))
810 return false;
811
812 // Warn if we see type attributes for omitted return type on a block literal.
813 SmallVector<ParsedAttr *, 2> ToBeRemoved;
814 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
815 if (AL.isInvalid() || !AL.isTypeAttr())
816 continue;
817 S.Diag(AL.getLoc(),
818 diag::warn_block_literal_attributes_on_omitted_return_type)
819 << AL;
820 ToBeRemoved.push_back(&AL);
821 }
822 // Remove bad attributes from the list.
823 for (ParsedAttr *AL : ToBeRemoved)
824 declarator.getMutableDeclSpec().getAttributes().remove(AL);
825
826 // Warn if we see type qualifiers for omitted return type on a block literal.
827 const DeclSpec &DS = declarator.getDeclSpec();
828 unsigned TypeQuals = DS.getTypeQualifiers();
829 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
830 diag::warn_block_literal_qualifiers_on_omitted_return_type);
831 declarator.getMutableDeclSpec().ClearTypeQualifiers();
832
833 return true;
834}
835
836/// Apply Objective-C type arguments to the given type.
837static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
838 ArrayRef<TypeSourceInfo *> typeArgs,
839 SourceRange typeArgsRange,
840 bool failOnError = false) {
841 // We can only apply type arguments to an Objective-C class type.
842 const auto *objcObjectType = type->getAs<ObjCObjectType>();
843 if (!objcObjectType || !objcObjectType->getInterface()) {
844 S.Diag(loc, diag::err_objc_type_args_non_class)
845 << type
846 << typeArgsRange;
847
848 if (failOnError)
849 return QualType();
850 return type;
851 }
852
853 // The class type must be parameterized.
854 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
855 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
856 if (!typeParams) {
857 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
858 << objcClass->getDeclName()
859 << FixItHint::CreateRemoval(typeArgsRange);
860
861 if (failOnError)
862 return QualType();
863
864 return type;
865 }
866
867 // The type must not already be specialized.
868 if (objcObjectType->isSpecialized()) {
869 S.Diag(loc, diag::err_objc_type_args_specialized_class)
870 << type
871 << FixItHint::CreateRemoval(typeArgsRange);
872
873 if (failOnError)
874 return QualType();
875
876 return type;
877 }
878
879 // Check the type arguments.
880 SmallVector<QualType, 4> finalTypeArgs;
881 unsigned numTypeParams = typeParams->size();
882 bool anyPackExpansions = false;
883 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
884 TypeSourceInfo *typeArgInfo = typeArgs[i];
885 QualType typeArg = typeArgInfo->getType();
886
887 // Type arguments cannot have explicit qualifiers or nullability.
888 // We ignore indirect sources of these, e.g. behind typedefs or
889 // template arguments.
890 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
891 bool diagnosed = false;
892 SourceRange rangeToRemove;
893 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
894 rangeToRemove = attr.getLocalSourceRange();
895 if (attr.getTypePtr()->getImmediateNullability()) {
896 typeArg = attr.getTypePtr()->getModifiedType();
897 S.Diag(attr.getBeginLoc(),
898 diag::err_objc_type_arg_explicit_nullability)
899 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
900 diagnosed = true;
901 }
902 }
903
904 if (!diagnosed) {
905 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
906 << typeArg << typeArg.getQualifiers().getAsString()
907 << FixItHint::CreateRemoval(rangeToRemove);
908 }
909 }
910
911 // Remove qualifiers even if they're non-local.
912 typeArg = typeArg.getUnqualifiedType();
913
914 finalTypeArgs.push_back(typeArg);
915
916 if (typeArg->getAs<PackExpansionType>())
917 anyPackExpansions = true;
918
919 // Find the corresponding type parameter, if there is one.
920 ObjCTypeParamDecl *typeParam = nullptr;
921 if (!anyPackExpansions) {
922 if (i < numTypeParams) {
923 typeParam = typeParams->begin()[i];
924 } else {
925 // Too many arguments.
926 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
927 << false
928 << objcClass->getDeclName()
929 << (unsigned)typeArgs.size()
930 << numTypeParams;
931 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
932 << objcClass;
933
934 if (failOnError)
935 return QualType();
936
937 return type;
938 }
939 }
940
941 // Objective-C object pointer types must be substitutable for the bounds.
942 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
943 // If we don't have a type parameter to match against, assume
944 // everything is fine. There was a prior pack expansion that
945 // means we won't be able to match anything.
946 if (!typeParam) {
947 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 947, __PRETTY_FUNCTION__))
;
948 continue;
949 }
950
951 // Retrieve the bound.
952 QualType bound = typeParam->getUnderlyingType();
953 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
954
955 // Determine whether the type argument is substitutable for the bound.
956 if (typeArgObjC->isObjCIdType()) {
957 // When the type argument is 'id', the only acceptable type
958 // parameter bound is 'id'.
959 if (boundObjC->isObjCIdType())
960 continue;
961 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
962 // Otherwise, we follow the assignability rules.
963 continue;
964 }
965
966 // Diagnose the mismatch.
967 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
968 diag::err_objc_type_arg_does_not_match_bound)
969 << typeArg << bound << typeParam->getDeclName();
970 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
971 << typeParam->getDeclName();
972
973 if (failOnError)
974 return QualType();
975
976 return type;
977 }
978
979 // Block pointer types are permitted for unqualified 'id' bounds.
980 if (typeArg->isBlockPointerType()) {
981 // If we don't have a type parameter to match against, assume
982 // everything is fine. There was a prior pack expansion that
983 // means we won't be able to match anything.
984 if (!typeParam) {
985 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 985, __PRETTY_FUNCTION__))
;
986 continue;
987 }
988
989 // Retrieve the bound.
990 QualType bound = typeParam->getUnderlyingType();
991 if (bound->isBlockCompatibleObjCPointerType(S.Context))
992 continue;
993
994 // Diagnose the mismatch.
995 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
996 diag::err_objc_type_arg_does_not_match_bound)
997 << typeArg << bound << typeParam->getDeclName();
998 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
999 << typeParam->getDeclName();
1000
1001 if (failOnError)
1002 return QualType();
1003
1004 return type;
1005 }
1006
1007 // Dependent types will be checked at instantiation time.
1008 if (typeArg->isDependentType()) {
1009 continue;
1010 }
1011
1012 // Diagnose non-id-compatible type arguments.
1013 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1014 diag::err_objc_type_arg_not_id_compatible)
1015 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1016
1017 if (failOnError)
1018 return QualType();
1019
1020 return type;
1021 }
1022
1023 // Make sure we didn't have the wrong number of arguments.
1024 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1025 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1026 << (typeArgs.size() < typeParams->size())
1027 << objcClass->getDeclName()
1028 << (unsigned)finalTypeArgs.size()
1029 << (unsigned)numTypeParams;
1030 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1031 << objcClass;
1032
1033 if (failOnError)
1034 return QualType();
1035
1036 return type;
1037 }
1038
1039 // Success. Form the specialized type.
1040 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1041}
1042
1043QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1044 SourceLocation ProtocolLAngleLoc,
1045 ArrayRef<ObjCProtocolDecl *> Protocols,
1046 ArrayRef<SourceLocation> ProtocolLocs,
1047 SourceLocation ProtocolRAngleLoc,
1048 bool FailOnError) {
1049 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1050 if (!Protocols.empty()) {
1051 bool HasError;
1052 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1053 HasError);
1054 if (HasError) {
1055 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1056 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1057 if (FailOnError) Result = QualType();
1058 }
1059 if (FailOnError && Result.isNull())
1060 return QualType();
1061 }
1062
1063 return Result;
1064}
1065
1066QualType Sema::BuildObjCObjectType(QualType BaseType,
1067 SourceLocation Loc,
1068 SourceLocation TypeArgsLAngleLoc,
1069 ArrayRef<TypeSourceInfo *> TypeArgs,
1070 SourceLocation TypeArgsRAngleLoc,
1071 SourceLocation ProtocolLAngleLoc,
1072 ArrayRef<ObjCProtocolDecl *> Protocols,
1073 ArrayRef<SourceLocation> ProtocolLocs,
1074 SourceLocation ProtocolRAngleLoc,
1075 bool FailOnError) {
1076 QualType Result = BaseType;
1077 if (!TypeArgs.empty()) {
1078 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1079 SourceRange(TypeArgsLAngleLoc,
1080 TypeArgsRAngleLoc),
1081 FailOnError);
1082 if (FailOnError && Result.isNull())
1083 return QualType();
1084 }
1085
1086 if (!Protocols.empty()) {
1087 bool HasError;
1088 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1089 HasError);
1090 if (HasError) {
1091 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1092 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1093 if (FailOnError) Result = QualType();
1094 }
1095 if (FailOnError && Result.isNull())
1096 return QualType();
1097 }
1098
1099 return Result;
1100}
1101
1102TypeResult Sema::actOnObjCProtocolQualifierType(
1103 SourceLocation lAngleLoc,
1104 ArrayRef<Decl *> protocols,
1105 ArrayRef<SourceLocation> protocolLocs,
1106 SourceLocation rAngleLoc) {
1107 // Form id<protocol-list>.
1108 QualType Result = Context.getObjCObjectType(
1109 Context.ObjCBuiltinIdTy, { },
1110 llvm::makeArrayRef(
1111 (ObjCProtocolDecl * const *)protocols.data(),
1112 protocols.size()),
1113 false);
1114 Result = Context.getObjCObjectPointerType(Result);
1115
1116 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1117 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1118
1119 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1120 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1121
1122 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1123 .castAs<ObjCObjectTypeLoc>();
1124 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1125 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1126
1127 // No type arguments.
1128 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1129 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1130
1131 // Fill in protocol qualifiers.
1132 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1133 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1134 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1135 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1136
1137 // We're done. Return the completed type to the parser.
1138 return CreateParsedType(Result, ResultTInfo);
1139}
1140
1141TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1142 Scope *S,
1143 SourceLocation Loc,
1144 ParsedType BaseType,
1145 SourceLocation TypeArgsLAngleLoc,
1146 ArrayRef<ParsedType> TypeArgs,
1147 SourceLocation TypeArgsRAngleLoc,
1148 SourceLocation ProtocolLAngleLoc,
1149 ArrayRef<Decl *> Protocols,
1150 ArrayRef<SourceLocation> ProtocolLocs,
1151 SourceLocation ProtocolRAngleLoc) {
1152 TypeSourceInfo *BaseTypeInfo = nullptr;
1153 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1154 if (T.isNull())
1155 return true;
1156
1157 // Handle missing type-source info.
1158 if (!BaseTypeInfo)
1159 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1160
1161 // Extract type arguments.
1162 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1163 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1164 TypeSourceInfo *TypeArgInfo = nullptr;
1165 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1166 if (TypeArg.isNull()) {
1167 ActualTypeArgInfos.clear();
1168 break;
1169 }
1170
1171 assert(TypeArgInfo && "No type source info?")((TypeArgInfo && "No type source info?") ? static_cast
<void> (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1171, __PRETTY_FUNCTION__))
;
1172 ActualTypeArgInfos.push_back(TypeArgInfo);
1173 }
1174
1175 // Build the object type.
1176 QualType Result = BuildObjCObjectType(
1177 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1178 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1179 ProtocolLAngleLoc,
1180 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1181 Protocols.size()),
1182 ProtocolLocs, ProtocolRAngleLoc,
1183 /*FailOnError=*/false);
1184
1185 if (Result == T)
1186 return BaseType;
1187
1188 // Create source information for this type.
1189 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1190 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1191
1192 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1193 // object pointer type. Fill in source information for it.
1194 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1195 // The '*' is implicit.
1196 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1197 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1198 }
1199
1200 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1201 // Protocol qualifier information.
1202 if (OTPTL.getNumProtocols() > 0) {
1203 assert(OTPTL.getNumProtocols() == Protocols.size())((OTPTL.getNumProtocols() == Protocols.size()) ? static_cast<
void> (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1203, __PRETTY_FUNCTION__))
;
1204 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1205 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1206 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1207 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1208 }
1209
1210 // We're done. Return the completed type to the parser.
1211 return CreateParsedType(Result, ResultTInfo);
1212 }
1213
1214 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1215
1216 // Type argument information.
1217 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1218 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())
? static_cast<void> (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1218, __PRETTY_FUNCTION__))
;
1219 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1220 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1221 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1222 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1223 } else {
1224 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1225 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1226 }
1227
1228 // Protocol qualifier information.
1229 if (ObjCObjectTL.getNumProtocols() > 0) {
1230 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((ObjCObjectTL.getNumProtocols() == Protocols.size()) ? static_cast
<void> (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1232 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1233 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1234 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1235 } else {
1236 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1237 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1238 }
1239
1240 // Base type.
1241 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1242 if (ObjCObjectTL.getType() == T)
1243 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1244 else
1245 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1246
1247 // We're done. Return the completed type to the parser.
1248 return CreateParsedType(Result, ResultTInfo);
1249}
1250
1251static OpenCLAccessAttr::Spelling
1252getImageAccess(const ParsedAttributesView &Attrs) {
1253 for (const ParsedAttr &AL : Attrs)
1254 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1255 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1256 return OpenCLAccessAttr::Keyword_read_only;
1257}
1258
1259/// Convert the specified declspec to the appropriate type
1260/// object.
1261/// \param state Specifies the declarator containing the declaration specifier
1262/// to be converted, along with other associated processing state.
1263/// \returns The type described by the declaration specifiers. This function
1264/// never returns null.
1265static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1266 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1267 // checking.
1268
1269 Sema &S = state.getSema();
1270 Declarator &declarator = state.getDeclarator();
1271 DeclSpec &DS = declarator.getMutableDeclSpec();
1272 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1273 if (DeclLoc.isInvalid())
1274 DeclLoc = DS.getBeginLoc();
1275
1276 ASTContext &Context = S.Context;
1277
1278 QualType Result;
1279 switch (DS.getTypeSpecType()) {
1280 case DeclSpec::TST_void:
1281 Result = Context.VoidTy;
1282 break;
1283 case DeclSpec::TST_char:
1284 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1285 Result = Context.CharTy;
1286 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1287 Result = Context.SignedCharTy;
1288 else {
1289 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1290, __PRETTY_FUNCTION__))
1290 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1290, __PRETTY_FUNCTION__))
;
1291 Result = Context.UnsignedCharTy;
1292 }
1293 break;
1294 case DeclSpec::TST_wchar:
1295 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1296 Result = Context.WCharTy;
1297 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1298 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1299 << DS.getSpecifierName(DS.getTypeSpecType(),
1300 Context.getPrintingPolicy());
1301 Result = Context.getSignedWCharType();
1302 } else {
1303 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1304, __PRETTY_FUNCTION__))
1304 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1306 << DS.getSpecifierName(DS.getTypeSpecType(),
1307 Context.getPrintingPolicy());
1308 Result = Context.getUnsignedWCharType();
1309 }
1310 break;
1311 case DeclSpec::TST_char8:
1312 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1313, __PRETTY_FUNCTION__))
1313 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 Result = Context.Char8Ty;
1315 break;
1316 case DeclSpec::TST_char16:
1317 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1318, __PRETTY_FUNCTION__))
1318 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1318, __PRETTY_FUNCTION__))
;
1319 Result = Context.Char16Ty;
1320 break;
1321 case DeclSpec::TST_char32:
1322 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1323, __PRETTY_FUNCTION__))
1323 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1323, __PRETTY_FUNCTION__))
;
1324 Result = Context.Char32Ty;
1325 break;
1326 case DeclSpec::TST_unspecified:
1327 // If this is a missing declspec in a block literal return context, then it
1328 // is inferred from the return statements inside the block.
1329 // The declspec is always missing in a lambda expr context; it is either
1330 // specified with a trailing return type or inferred.
1331 if (S.getLangOpts().CPlusPlus14 &&
1332 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1333 // In C++1y, a lambda's implicit return type is 'auto'.
1334 Result = Context.getAutoDeductType();
1335 break;
1336 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1337 checkOmittedBlockReturnType(S, declarator,
1338 Context.DependentTy)) {
1339 Result = Context.DependentTy;
1340 break;
1341 }
1342
1343 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1344 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1345 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1346 // Note that the one exception to this is function definitions, which are
1347 // allowed to be completely missing a declspec. This is handled in the
1348 // parser already though by it pretending to have seen an 'int' in this
1349 // case.
1350 if (S.getLangOpts().ImplicitInt) {
1351 // In C89 mode, we only warn if there is a completely missing declspec
1352 // when one is not allowed.
1353 if (DS.isEmpty()) {
1354 S.Diag(DeclLoc, diag::ext_missing_declspec)
1355 << DS.getSourceRange()
1356 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1357 }
1358 } else if (!DS.hasTypeSpecifier()) {
1359 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1360 // "At least one type specifier shall be given in the declaration
1361 // specifiers in each declaration, and in the specifier-qualifier list in
1362 // each struct declaration and type name."
1363 if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1364 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1365 << DS.getSourceRange();
1366
1367 // When this occurs in C++ code, often something is very broken with the
1368 // value being declared, poison it as invalid so we don't get chains of
1369 // errors.
1370 declarator.setInvalidType(true);
1371 } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1372 S.getLangOpts().OpenCLCPlusPlus) &&
1373 DS.isTypeSpecPipe()) {
1374 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1375 << DS.getSourceRange();
1376 declarator.setInvalidType(true);
1377 } else {
1378 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1379 << DS.getSourceRange();
1380 }
1381 }
1382
1383 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1384 case DeclSpec::TST_int: {
1385 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1386 switch (DS.getTypeSpecWidth()) {
1387 case TypeSpecifierWidth::Unspecified:
1388 Result = Context.IntTy;
1389 break;
1390 case TypeSpecifierWidth::Short:
1391 Result = Context.ShortTy;
1392 break;
1393 case TypeSpecifierWidth::Long:
1394 Result = Context.LongTy;
1395 break;
1396 case TypeSpecifierWidth::LongLong:
1397 Result = Context.LongLongTy;
1398
1399 // 'long long' is a C99 or C++11 feature.
1400 if (!S.getLangOpts().C99) {
1401 if (S.getLangOpts().CPlusPlus)
1402 S.Diag(DS.getTypeSpecWidthLoc(),
1403 S.getLangOpts().CPlusPlus11 ?
1404 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1405 else
1406 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1407 }
1408 break;
1409 }
1410 } else {
1411 switch (DS.getTypeSpecWidth()) {
1412 case TypeSpecifierWidth::Unspecified:
1413 Result = Context.UnsignedIntTy;
1414 break;
1415 case TypeSpecifierWidth::Short:
1416 Result = Context.UnsignedShortTy;
1417 break;
1418 case TypeSpecifierWidth::Long:
1419 Result = Context.UnsignedLongTy;
1420 break;
1421 case TypeSpecifierWidth::LongLong:
1422 Result = Context.UnsignedLongLongTy;
1423
1424 // 'long long' is a C99 or C++11 feature.
1425 if (!S.getLangOpts().C99) {
1426 if (S.getLangOpts().CPlusPlus)
1427 S.Diag(DS.getTypeSpecWidthLoc(),
1428 S.getLangOpts().CPlusPlus11 ?
1429 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1430 else
1431 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1432 }
1433 break;
1434 }
1435 }
1436 break;
1437 }
1438 case DeclSpec::TST_extint: {
1439 if (!S.Context.getTargetInfo().hasExtIntType())
1440 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1441 << "_ExtInt";
1442 Result =
1443 S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1444 DS.getRepAsExpr(), DS.getBeginLoc());
1445 if (Result.isNull()) {
1446 Result = Context.IntTy;
1447 declarator.setInvalidType(true);
1448 }
1449 break;
1450 }
1451 case DeclSpec::TST_accum: {
1452 switch (DS.getTypeSpecWidth()) {
1453 case TypeSpecifierWidth::Short:
1454 Result = Context.ShortAccumTy;
1455 break;
1456 case TypeSpecifierWidth::Unspecified:
1457 Result = Context.AccumTy;
1458 break;
1459 case TypeSpecifierWidth::Long:
1460 Result = Context.LongAccumTy;
1461 break;
1462 case TypeSpecifierWidth::LongLong:
1463 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1463)
;
1464 }
1465
1466 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1467 Result = Context.getCorrespondingUnsignedType(Result);
1468
1469 if (DS.isTypeSpecSat())
1470 Result = Context.getCorrespondingSaturatedType(Result);
1471
1472 break;
1473 }
1474 case DeclSpec::TST_fract: {
1475 switch (DS.getTypeSpecWidth()) {
1476 case TypeSpecifierWidth::Short:
1477 Result = Context.ShortFractTy;
1478 break;
1479 case TypeSpecifierWidth::Unspecified:
1480 Result = Context.FractTy;
1481 break;
1482 case TypeSpecifierWidth::Long:
1483 Result = Context.LongFractTy;
1484 break;
1485 case TypeSpecifierWidth::LongLong:
1486 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1486)
;
1487 }
1488
1489 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1490 Result = Context.getCorrespondingUnsignedType(Result);
1491
1492 if (DS.isTypeSpecSat())
1493 Result = Context.getCorrespondingSaturatedType(Result);
1494
1495 break;
1496 }
1497 case DeclSpec::TST_int128:
1498 if (!S.Context.getTargetInfo().hasInt128Type() &&
1499 !S.getLangOpts().SYCLIsDevice &&
1500 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1501 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1502 << "__int128";
1503 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1504 Result = Context.UnsignedInt128Ty;
1505 else
1506 Result = Context.Int128Ty;
1507 break;
1508 case DeclSpec::TST_float16:
1509 // CUDA host and device may have different _Float16 support, therefore
1510 // do not diagnose _Float16 usage to avoid false alarm.
1511 // ToDo: more precise diagnostics for CUDA.
1512 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1513 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1514 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1515 << "_Float16";
1516 Result = Context.Float16Ty;
1517 break;
1518 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1519 case DeclSpec::TST_BFloat16:
1520 if (!S.Context.getTargetInfo().hasBFloat16Type())
1521 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1522 << "__bf16";
1523 Result = Context.BFloat16Ty;
1524 break;
1525 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1526 case DeclSpec::TST_double:
1527 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1528 Result = Context.LongDoubleTy;
1529 else
1530 Result = Context.DoubleTy;
1531 break;
1532 case DeclSpec::TST_float128:
1533 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1534 !S.getLangOpts().SYCLIsDevice &&
1535 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1536 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1537 << "__float128";
1538 Result = Context.Float128Ty;
1539 break;
1540 case DeclSpec::TST_bool:
1541 Result = Context.BoolTy; // _Bool or bool
1542 break;
1543 case DeclSpec::TST_decimal32: // _Decimal32
1544 case DeclSpec::TST_decimal64: // _Decimal64
1545 case DeclSpec::TST_decimal128: // _Decimal128
1546 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1547 Result = Context.IntTy;
1548 declarator.setInvalidType(true);
1549 break;
1550 case DeclSpec::TST_class:
1551 case DeclSpec::TST_enum:
1552 case DeclSpec::TST_union:
1553 case DeclSpec::TST_struct:
1554 case DeclSpec::TST_interface: {
1555 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1556 if (!D) {
1557 // This can happen in C++ with ambiguous lookups.
1558 Result = Context.IntTy;
1559 declarator.setInvalidType(true);
1560 break;
1561 }
1562
1563 // If the type is deprecated or unavailable, diagnose it.
1564 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1565
1566 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
1567 DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
1568 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
1569 "No qualifiers on tag names!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
;
1570
1571 // TypeQuals handled by caller.
1572 Result = Context.getTypeDeclType(D);
1573
1574 // In both C and C++, make an ElaboratedType.
1575 ElaboratedTypeKeyword Keyword
1576 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1577 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1578 DS.isTypeSpecOwned() ? D : nullptr);
1579 break;
1580 }
1581 case DeclSpec::TST_typename: {
1582 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
1583 DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
1584 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
1585 "Can't handle qualifiers on typedef names yet!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
;
1586 Result = S.GetTypeFromParser(DS.getRepAsType());
1587 if (Result.isNull()) {
1588 declarator.setInvalidType(true);
1589 }
1590
1591 // TypeQuals handled by caller.
1592 break;
1593 }
1594 case DeclSpec::TST_typeofType:
1595 // FIXME: Preserve type source info.
1596 Result = S.GetTypeFromParser(DS.getRepAsType());
1597 assert(!Result.isNull() && "Didn't get a type for typeof?")((!Result.isNull() && "Didn't get a type for typeof?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1597, __PRETTY_FUNCTION__))
;
1598 if (!Result->isDependentType())
1599 if (const TagType *TT = Result->getAs<TagType>())
1600 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1601 // TypeQuals handled by caller.
1602 Result = Context.getTypeOfType(Result);
1603 break;
1604 case DeclSpec::TST_typeofExpr: {
1605 Expr *E = DS.getRepAsExpr();
1606 assert(E && "Didn't get an expression for typeof?")((E && "Didn't get an expression for typeof?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1606, __PRETTY_FUNCTION__))
;
1607 // TypeQuals handled by caller.
1608 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1609 if (Result.isNull()) {
1610 Result = Context.IntTy;
1611 declarator.setInvalidType(true);
1612 }
1613 break;
1614 }
1615 case DeclSpec::TST_decltype: {
1616 Expr *E = DS.getRepAsExpr();
1617 assert(E && "Didn't get an expression for decltype?")((E && "Didn't get an expression for decltype?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1617, __PRETTY_FUNCTION__))
;
1618 // TypeQuals handled by caller.
1619 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1620 if (Result.isNull()) {
1621 Result = Context.IntTy;
1622 declarator.setInvalidType(true);
1623 }
1624 break;
1625 }
1626 case DeclSpec::TST_underlyingType:
1627 Result = S.GetTypeFromParser(DS.getRepAsType());
1628 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((!Result.isNull() && "Didn't get a type for __underlying_type?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1628, __PRETTY_FUNCTION__))
;
1629 Result = S.BuildUnaryTransformType(Result,
1630 UnaryTransformType::EnumUnderlyingType,
1631 DS.getTypeSpecTypeLoc());
1632 if (Result.isNull()) {
1633 Result = Context.IntTy;
1634 declarator.setInvalidType(true);
1635 }
1636 break;
1637
1638 case DeclSpec::TST_auto:
1639 case DeclSpec::TST_decltype_auto: {
1640 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1641 ? AutoTypeKeyword::DecltypeAuto
1642 : AutoTypeKeyword::Auto;
1643
1644 ConceptDecl *TypeConstraintConcept = nullptr;
1645 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1646 if (DS.isConstrainedAuto()) {
1647 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1648 TypeConstraintConcept =
1649 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1650 TemplateArgumentListInfo TemplateArgsInfo;
1651 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1652 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1653 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1654 TemplateId->NumArgs);
1655 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1656 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1657 TemplateArgs.push_back(ArgLoc.getArgument());
1658 } else {
1659 declarator.setInvalidType(true);
1660 }
1661 }
1662 Result = S.Context.getAutoType(QualType(), AutoKW,
1663 /*IsDependent*/ false, /*IsPack=*/false,
1664 TypeConstraintConcept, TemplateArgs);
1665 break;
1666 }
1667
1668 case DeclSpec::TST_auto_type:
1669 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1670 break;
1671
1672 case DeclSpec::TST_unknown_anytype:
1673 Result = Context.UnknownAnyTy;
1674 break;
1675
1676 case DeclSpec::TST_atomic:
1677 Result = S.GetTypeFromParser(DS.getRepAsType());
1678 assert(!Result.isNull() && "Didn't get a type for _Atomic?")((!Result.isNull() && "Didn't get a type for _Atomic?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1678, __PRETTY_FUNCTION__))
;
1679 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1680 if (Result.isNull()) {
1681 Result = Context.IntTy;
1682 declarator.setInvalidType(true);
1683 }
1684 break;
1685
1686#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1687 case DeclSpec::TST_##ImgType##_t: \
1688 switch (getImageAccess(DS.getAttributes())) { \
1689 case OpenCLAccessAttr::Keyword_write_only: \
1690 Result = Context.Id##WOTy; \
1691 break; \
1692 case OpenCLAccessAttr::Keyword_read_write: \
1693 Result = Context.Id##RWTy; \
1694 break; \
1695 case OpenCLAccessAttr::Keyword_read_only: \
1696 Result = Context.Id##ROTy; \
1697 break; \
1698 case OpenCLAccessAttr::SpellingNotCalculated: \
1699 llvm_unreachable("Spelling not yet calculated")::llvm::llvm_unreachable_internal("Spelling not yet calculated"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1699)
; \
1700 } \
1701 break;
1702#include "clang/Basic/OpenCLImageTypes.def"
1703
1704 case DeclSpec::TST_error:
1705 Result = Context.IntTy;
1706 declarator.setInvalidType(true);
1707 break;
1708 }
1709
1710 // FIXME: we want resulting declarations to be marked invalid, but claiming
1711 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1712 // a null type.
1713 if (Result->containsErrors())
1714 declarator.setInvalidType();
1715
1716 if (S.getLangOpts().OpenCL &&
1717 S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1718 declarator.setInvalidType(true);
1719
1720 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1721 DS.getTypeSpecType() == DeclSpec::TST_fract;
1722
1723 // Only fixed point types can be saturated
1724 if (DS.isTypeSpecSat() && !IsFixedPointType)
1725 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1726 << DS.getSpecifierName(DS.getTypeSpecType(),
1727 Context.getPrintingPolicy());
1728
1729 // Handle complex types.
1730 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1731 if (S.getLangOpts().Freestanding)
1732 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1733 Result = Context.getComplexType(Result);
1734 } else if (DS.isTypeAltiVecVector()) {
1735 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1736 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? static_cast<void> (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1736, __PRETTY_FUNCTION__))
;
1737 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1738 if (DS.isTypeAltiVecPixel())
1739 VecKind = VectorType::AltiVecPixel;
1740 else if (DS.isTypeAltiVecBool())
1741 VecKind = VectorType::AltiVecBool;
1742 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1743 }
1744
1745 // FIXME: Imaginary.
1746 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1747 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1748
1749 // Before we process any type attributes, synthesize a block literal
1750 // function declarator if necessary.
1751 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1752 maybeSynthesizeBlockSignature(state, Result);
1753
1754 // Apply any type attributes from the decl spec. This may cause the
1755 // list of type attributes to be temporarily saved while the type
1756 // attributes are pushed around.
1757 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1758 if (!DS.isTypeSpecPipe())
1759 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1760
1761 // Apply const/volatile/restrict qualifiers to T.
1762 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1763 // Warn about CV qualifiers on function types.
1764 // C99 6.7.3p8:
1765 // If the specification of a function type includes any type qualifiers,
1766 // the behavior is undefined.
1767 // C++11 [dcl.fct]p7:
1768 // The effect of a cv-qualifier-seq in a function declarator is not the
1769 // same as adding cv-qualification on top of the function type. In the
1770 // latter case, the cv-qualifiers are ignored.
1771 if (Result->isFunctionType()) {
1772 diagnoseAndRemoveTypeQualifiers(
1773 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1774 S.getLangOpts().CPlusPlus
1775 ? diag::warn_typecheck_function_qualifiers_ignored
1776 : diag::warn_typecheck_function_qualifiers_unspecified);
1777 // No diagnostic for 'restrict' or '_Atomic' applied to a
1778 // function type; we'll diagnose those later, in BuildQualifiedType.
1779 }
1780
1781 // C++11 [dcl.ref]p1:
1782 // Cv-qualified references are ill-formed except when the
1783 // cv-qualifiers are introduced through the use of a typedef-name
1784 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1785 //
1786 // There don't appear to be any other contexts in which a cv-qualified
1787 // reference type could be formed, so the 'ill-formed' clause here appears
1788 // to never happen.
1789 if (TypeQuals && Result->isReferenceType()) {
1790 diagnoseAndRemoveTypeQualifiers(
1791 S, DS, TypeQuals, Result,
1792 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1793 diag::warn_typecheck_reference_qualifiers);
1794 }
1795
1796 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1797 // than once in the same specifier-list or qualifier-list, either directly
1798 // or via one or more typedefs."
1799 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1800 && TypeQuals & Result.getCVRQualifiers()) {
1801 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1802 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1803 << "const";
1804 }
1805
1806 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1807 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1808 << "volatile";
1809 }
1810
1811 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1812 // produce a warning in this case.
1813 }
1814
1815 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1816
1817 // If adding qualifiers fails, just use the unqualified type.
1818 if (Qualified.isNull())
1819 declarator.setInvalidType(true);
1820 else
1821 Result = Qualified;
1822 }
1823
1824 assert(!Result.isNull() && "This function should not return a null type")((!Result.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1824, __PRETTY_FUNCTION__))
;
1825 return Result;
1826}
1827
1828static std::string getPrintableNameForEntity(DeclarationName Entity) {
1829 if (Entity)
1830 return Entity.getAsString();
1831
1832 return "type name";
1833}
1834
1835QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1836 Qualifiers Qs, const DeclSpec *DS) {
1837 if (T.isNull())
1838 return QualType();
1839
1840 // Ignore any attempt to form a cv-qualified reference.
1841 if (T->isReferenceType()) {
1842 Qs.removeConst();
1843 Qs.removeVolatile();
1844 }
1845
1846 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1847 // object or incomplete types shall not be restrict-qualified."
1848 if (Qs.hasRestrict()) {
1849 unsigned DiagID = 0;
1850 QualType ProblemTy;
1851
1852 if (T->isAnyPointerType() || T->isReferenceType() ||
1853 T->isMemberPointerType()) {
1854 QualType EltTy;
1855 if (T->isObjCObjectPointerType())
1856 EltTy = T;
1857 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1858 EltTy = PTy->getPointeeType();
1859 else
1860 EltTy = T->getPointeeType();
1861
1862 // If we have a pointer or reference, the pointee must have an object
1863 // incomplete type.
1864 if (!EltTy->isIncompleteOrObjectType()) {
1865 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1866 ProblemTy = EltTy;
1867 }
1868 } else if (!T->isDependentType()) {
1869 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1870 ProblemTy = T;
1871 }
1872
1873 if (DiagID) {
1874 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1875 Qs.removeRestrict();
1876 }
1877 }
1878
1879 return Context.getQualifiedType(T, Qs);
1880}
1881
1882QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1883 unsigned CVRAU, const DeclSpec *DS) {
1884 if (T.isNull())
1885 return QualType();
1886
1887 // Ignore any attempt to form a cv-qualified reference.
1888 if (T->isReferenceType())
1889 CVRAU &=
1890 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1891
1892 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1893 // TQ_unaligned;
1894 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1895
1896 // C11 6.7.3/5:
1897 // If the same qualifier appears more than once in the same
1898 // specifier-qualifier-list, either directly or via one or more typedefs,
1899 // the behavior is the same as if it appeared only once.
1900 //
1901 // It's not specified what happens when the _Atomic qualifier is applied to
1902 // a type specified with the _Atomic specifier, but we assume that this
1903 // should be treated as if the _Atomic qualifier appeared multiple times.
1904 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1905 // C11 6.7.3/5:
1906 // If other qualifiers appear along with the _Atomic qualifier in a
1907 // specifier-qualifier-list, the resulting type is the so-qualified
1908 // atomic type.
1909 //
1910 // Don't need to worry about array types here, since _Atomic can't be
1911 // applied to such types.
1912 SplitQualType Split = T.getSplitUnqualifiedType();
1913 T = BuildAtomicType(QualType(Split.Ty, 0),
1914 DS ? DS->getAtomicSpecLoc() : Loc);
1915 if (T.isNull())
1916 return T;
1917 Split.Quals.addCVRQualifiers(CVR);
1918 return BuildQualifiedType(T, Loc, Split.Quals);
1919 }
1920
1921 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1922 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1923 return BuildQualifiedType(T, Loc, Q, DS);
1924}
1925
1926/// Build a paren type including \p T.
1927QualType Sema::BuildParenType(QualType T) {
1928 return Context.getParenType(T);
1929}
1930
1931/// Given that we're building a pointer or reference to the given
1932static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1933 SourceLocation loc,
1934 bool isReference) {
1935 // Bail out if retention is unrequired or already specified.
1936 if (!type->isObjCLifetimeType() ||
1937 type.getObjCLifetime() != Qualifiers::OCL_None)
1938 return type;
1939
1940 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1941
1942 // If the object type is const-qualified, we can safely use
1943 // __unsafe_unretained. This is safe (because there are no read
1944 // barriers), and it'll be safe to coerce anything but __weak* to
1945 // the resulting type.
1946 if (type.isConstQualified()) {
1947 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1948
1949 // Otherwise, check whether the static type does not require
1950 // retaining. This currently only triggers for Class (possibly
1951 // protocol-qualifed, and arrays thereof).
1952 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1953 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1954
1955 // If we are in an unevaluated context, like sizeof, skip adding a
1956 // qualification.
1957 } else if (S.isUnevaluatedContext()) {
1958 return type;
1959
1960 // If that failed, give an error and recover using __strong. __strong
1961 // is the option most likely to prevent spurious second-order diagnostics,
1962 // like when binding a reference to a field.
1963 } else {
1964 // These types can show up in private ivars in system headers, so
1965 // we need this to not be an error in those cases. Instead we
1966 // want to delay.
1967 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1968 S.DelayedDiagnostics.add(
1969 sema::DelayedDiagnostic::makeForbiddenType(loc,
1970 diag::err_arc_indirect_no_ownership, type, isReference));
1971 } else {
1972 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1973 }
1974 implicitLifetime = Qualifiers::OCL_Strong;
1975 }
1976 assert(implicitLifetime && "didn't infer any lifetime!")((implicitLifetime && "didn't infer any lifetime!") ?
static_cast<void> (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1976, __PRETTY_FUNCTION__))
;
1977
1978 Qualifiers qs;
1979 qs.addObjCLifetime(implicitLifetime);
1980 return S.Context.getQualifiedType(type, qs);
1981}
1982
1983static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1984 std::string Quals = FnTy->getMethodQuals().getAsString();
1985
1986 switch (FnTy->getRefQualifier()) {
1987 case RQ_None:
1988 break;
1989
1990 case RQ_LValue:
1991 if (!Quals.empty())
1992 Quals += ' ';
1993 Quals += '&';
1994 break;
1995
1996 case RQ_RValue:
1997 if (!Quals.empty())
1998 Quals += ' ';
1999 Quals += "&&";
2000 break;
2001 }
2002
2003 return Quals;
2004}
2005
2006namespace {
2007/// Kinds of declarator that cannot contain a qualified function type.
2008///
2009/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2010/// a function type with a cv-qualifier or a ref-qualifier can only appear
2011/// at the topmost level of a type.
2012///
2013/// Parens and member pointers are permitted. We don't diagnose array and
2014/// function declarators, because they don't allow function types at all.
2015///
2016/// The values of this enum are used in diagnostics.
2017enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2018} // end anonymous namespace
2019
2020/// Check whether the type T is a qualified function type, and if it is,
2021/// diagnose that it cannot be contained within the given kind of declarator.
2022static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2023 QualifiedFunctionKind QFK) {
2024 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2025 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2026 if (!FPT ||
2027 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2028 return false;
2029
2030 S.Diag(Loc, diag::err_compound_qualified_function_type)
2031 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2032 << getFunctionQualifiersAsString(FPT);
2033 return true;
2034}
2035
2036bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2037 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2038 if (!FPT ||
2039 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2040 return false;
2041
2042 Diag(Loc, diag::err_qualified_function_typeid)
2043 << T << getFunctionQualifiersAsString(FPT);
2044 return true;
2045}
2046
2047// Helper to deduce addr space of a pointee type in OpenCL mode.
2048static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2049 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2050 !PointeeType->isSamplerT() &&
2051 !PointeeType.hasAddressSpace())
2052 PointeeType = S.getASTContext().getAddrSpaceQualType(
2053 PointeeType, S.getLangOpts().OpenCLGenericAddressSpace
2054 ? LangAS::opencl_generic
2055 : LangAS::opencl_private);
2056 return PointeeType;
2057}
2058
2059/// Build a pointer type.
2060///
2061/// \param T The type to which we'll be building a pointer.
2062///
2063/// \param Loc The location of the entity whose type involves this
2064/// pointer type or, if there is no such entity, the location of the
2065/// type that will have pointer type.
2066///
2067/// \param Entity The name of the entity that involves the pointer
2068/// type, if known.
2069///
2070/// \returns A suitable pointer type, if there are no
2071/// errors. Otherwise, returns a NULL type.
2072QualType Sema::BuildPointerType(QualType T,
2073 SourceLocation Loc, DeclarationName Entity) {
2074 if (T->isReferenceType()) {
2075 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2076 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2077 << getPrintableNameForEntity(Entity) << T;
2078 return QualType();
2079 }
2080
2081 if (T->isFunctionType() && getLangOpts().OpenCL &&
2082 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2083 getLangOpts())) {
2084 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2085 return QualType();
2086 }
2087
2088 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2089 return QualType();
2090
2091 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((!T->isObjCObjectType() && "Should build ObjCObjectPointerType"
) ? static_cast<void> (0) : __assert_fail ("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2091, __PRETTY_FUNCTION__))
;
2092
2093 // In ARC, it is forbidden to build pointers to unqualified pointers.
2094 if (getLangOpts().ObjCAutoRefCount)
2095 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2096
2097 if (getLangOpts().OpenCL)
2098 T = deduceOpenCLPointeeAddrSpace(*this, T);
2099
2100 // Build the pointer type.
2101 return Context.getPointerType(T);
2102}
2103
2104/// Build a reference type.
2105///
2106/// \param T The type to which we'll be building a reference.
2107///
2108/// \param Loc The location of the entity whose type involves this
2109/// reference type or, if there is no such entity, the location of the
2110/// type that will have reference type.
2111///
2112/// \param Entity The name of the entity that involves the reference
2113/// type, if known.
2114///
2115/// \returns A suitable reference type, if there are no
2116/// errors. Otherwise, returns a NULL type.
2117QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2118 SourceLocation Loc,
2119 DeclarationName Entity) {
2120 assert(Context.getCanonicalType(T) != Context.OverloadTy &&((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2121, __PRETTY_FUNCTION__))
2121 "Unresolved overloaded function type")((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2121, __PRETTY_FUNCTION__))
;
2122
2123 // C++0x [dcl.ref]p6:
2124 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2125 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2126 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2127 // the type "lvalue reference to T", while an attempt to create the type
2128 // "rvalue reference to cv TR" creates the type TR.
2129 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2130
2131 // C++ [dcl.ref]p4: There shall be no references to references.
2132 //
2133 // According to C++ DR 106, references to references are only
2134 // diagnosed when they are written directly (e.g., "int & &"),
2135 // but not when they happen via a typedef:
2136 //
2137 // typedef int& intref;
2138 // typedef intref& intref2;
2139 //
2140 // Parser::ParseDeclaratorInternal diagnoses the case where
2141 // references are written directly; here, we handle the
2142 // collapsing of references-to-references as described in C++0x.
2143 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2144
2145 // C++ [dcl.ref]p1:
2146 // A declarator that specifies the type "reference to cv void"
2147 // is ill-formed.
2148 if (T->isVoidType()) {
2149 Diag(Loc, diag::err_reference_to_void);
2150 return QualType();
2151 }
2152
2153 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2154 return QualType();
2155
2156 if (T->isFunctionType() && getLangOpts().OpenCL &&
2157 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2158 getLangOpts())) {
2159 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2160 return QualType();
2161 }
2162
2163 // In ARC, it is forbidden to build references to unqualified pointers.
2164 if (getLangOpts().ObjCAutoRefCount)
2165 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2166
2167 if (getLangOpts().OpenCL)
2168 T = deduceOpenCLPointeeAddrSpace(*this, T);
2169
2170 // Handle restrict on references.
2171 if (LValueRef)
2172 return Context.getLValueReferenceType(T, SpelledAsLValue);
2173 return Context.getRValueReferenceType(T);
2174}
2175
2176/// Build a Read-only Pipe type.
2177///
2178/// \param T The type to which we'll be building a Pipe.
2179///
2180/// \param Loc We do not use it for now.
2181///
2182/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2183/// NULL type.
2184QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2185 return Context.getReadPipeType(T);
2186}
2187
2188/// Build a Write-only Pipe type.
2189///
2190/// \param T The type to which we'll be building a Pipe.
2191///
2192/// \param Loc We do not use it for now.
2193///
2194/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2195/// NULL type.
2196QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2197 return Context.getWritePipeType(T);
2198}
2199
2200/// Build a extended int type.
2201///
2202/// \param IsUnsigned Boolean representing the signedness of the type.
2203///
2204/// \param BitWidth Size of this int type in bits, or an expression representing
2205/// that.
2206///
2207/// \param Loc Location of the keyword.
2208QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth,
2209 SourceLocation Loc) {
2210 if (BitWidth->isInstantiationDependent())
2211 return Context.getDependentExtIntType(IsUnsigned, BitWidth);
2212
2213 llvm::APSInt Bits(32);
2214 ExprResult ICE =
2215 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2216
2217 if (ICE.isInvalid())
2218 return QualType();
2219
2220 int64_t NumBits = Bits.getSExtValue();
2221 if (!IsUnsigned && NumBits < 2) {
2222 Diag(Loc, diag::err_ext_int_bad_size) << 0;
2223 return QualType();
2224 }
2225
2226 if (IsUnsigned && NumBits < 1) {
2227 Diag(Loc, diag::err_ext_int_bad_size) << 1;
2228 return QualType();
2229 }
2230
2231 if (NumBits > llvm::IntegerType::MAX_INT_BITS) {
2232 Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned
2233 << llvm::IntegerType::MAX_INT_BITS;
2234 return QualType();
2235 }
2236
2237 return Context.getExtIntType(IsUnsigned, NumBits);
2238}
2239
2240/// Check whether the specified array bound can be evaluated using the relevant
2241/// language rules. If so, returns the possibly-converted expression and sets
2242/// SizeVal to the size. If not, but the expression might be a VLA bound,
2243/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2244/// ExprError().
2245static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2246 llvm::APSInt &SizeVal, unsigned VLADiag,
2247 bool VLAIsError) {
2248 if (S.getLangOpts().CPlusPlus14 &&
2249 (VLAIsError ||
2250 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2251 // C++14 [dcl.array]p1:
2252 // The constant-expression shall be a converted constant expression of
2253 // type std::size_t.
2254 //
2255 // Don't apply this rule if we might be forming a VLA: in that case, we
2256 // allow non-constant expressions and constant-folding. We only need to use
2257 // the converted constant expression rules (to properly convert the source)
2258 // when the source expression is of class type.
2259 return S.CheckConvertedConstantExpression(
2260 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2261 }
2262
2263 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2264 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2265 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2266 public:
2267 unsigned VLADiag;
2268 bool VLAIsError;
2269 bool IsVLA = false;
2270
2271 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2272 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2273
2274 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2275 QualType T) override {
2276 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2277 }
2278
2279 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2280 SourceLocation Loc) override {
2281 IsVLA = !VLAIsError;
2282 return S.Diag(Loc, VLADiag);
2283 }
2284
2285 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2286 SourceLocation Loc) override {
2287 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2288 }
2289 } Diagnoser(VLADiag, VLAIsError);
2290
2291 ExprResult R =
2292 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2293 if (Diagnoser.IsVLA)
2294 return ExprResult();
2295 return R;
2296}
2297
2298/// Build an array type.
2299///
2300/// \param T The type of each element in the array.
2301///
2302/// \param ASM C99 array size modifier (e.g., '*', 'static').
2303///
2304/// \param ArraySize Expression describing the size of the array.
2305///
2306/// \param Brackets The range from the opening '[' to the closing ']'.
2307///
2308/// \param Entity The name of the entity that involves the array
2309/// type, if known.
2310///
2311/// \returns A suitable array type, if there are no errors. Otherwise,
2312/// returns a NULL type.
2313QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2314 Expr *ArraySize, unsigned Quals,
2315 SourceRange Brackets, DeclarationName Entity) {
2316
2317 SourceLocation Loc = Brackets.getBegin();
2318 if (getLangOpts().CPlusPlus) {
2319 // C++ [dcl.array]p1:
2320 // T is called the array element type; this type shall not be a reference
2321 // type, the (possibly cv-qualified) type void, a function type or an
2322 // abstract class type.
2323 //
2324 // C++ [dcl.array]p3:
2325 // When several "array of" specifications are adjacent, [...] only the
2326 // first of the constant expressions that specify the bounds of the arrays
2327 // may be omitted.
2328 //
2329 // Note: function types are handled in the common path with C.
2330 if (T->isReferenceType()) {
2331 Diag(Loc, diag::err_illegal_decl_array_of_references)
2332 << getPrintableNameForEntity(Entity) << T;
2333 return QualType();
2334 }
2335
2336 if (T->isVoidType() || T->isIncompleteArrayType()) {
2337 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2338 return QualType();
2339 }
2340
2341 if (RequireNonAbstractType(Brackets.getBegin(), T,
2342 diag::err_array_of_abstract_type))
2343 return QualType();
2344
2345 // Mentioning a member pointer type for an array type causes us to lock in
2346 // an inheritance model, even if it's inside an unused typedef.
2347 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2348 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2349 if (!MPTy->getClass()->isDependentType())
2350 (void)isCompleteType(Loc, T);
2351
2352 } else {
2353 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2354 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2355 if (RequireCompleteSizedType(Loc, T,
2356 diag::err_array_incomplete_or_sizeless_type))
2357 return QualType();
2358 }
2359
2360 if (T->isSizelessType()) {
2361 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2362 return QualType();
2363 }
2364
2365 if (T->isFunctionType()) {
2366 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2367 << getPrintableNameForEntity(Entity) << T;
2368 return QualType();
2369 }
2370
2371 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2372 // If the element type is a struct or union that contains a variadic
2373 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2374 if (EltTy->getDecl()->hasFlexibleArrayMember())
2375 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2376 } else if (T->isObjCObjectType()) {
2377 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2378 return QualType();
2379 }
2380
2381 // Do placeholder conversions on the array size expression.
2382 if (ArraySize && ArraySize->hasPlaceholderType()) {
2383 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2384 if (Result.isInvalid()) return QualType();
2385 ArraySize = Result.get();
2386 }
2387
2388 // Do lvalue-to-rvalue conversions on the array size expression.
2389 if (ArraySize && !ArraySize->isRValue()) {
2390 ExprResult Result = DefaultLvalueConversion(ArraySize);
2391 if (Result.isInvalid())
2392 return QualType();
2393
2394 ArraySize = Result.get();
2395 }
2396
2397 // C99 6.7.5.2p1: The size expression shall have integer type.
2398 // C++11 allows contextual conversions to such types.
2399 if (!getLangOpts().CPlusPlus11 &&
2400 ArraySize && !ArraySize->isTypeDependent() &&
2401 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2402 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2403 << ArraySize->getType() << ArraySize->getSourceRange();
2404 return QualType();
2405 }
2406
2407 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2408 unsigned VLADiag;
2409 bool VLAIsError;
2410 if (getLangOpts().OpenCL) {
2411 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2412 VLADiag = diag::err_opencl_vla;
2413 VLAIsError = true;
2414 } else if (getLangOpts().C99) {
2415 VLADiag = diag::warn_vla_used;
2416 VLAIsError = false;
2417 } else if (isSFINAEContext()) {
2418 VLADiag = diag::err_vla_in_sfinae;
2419 VLAIsError = true;
2420 } else {
2421 VLADiag = diag::ext_vla;
2422 VLAIsError = false;
2423 }
2424
2425 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2426 if (!ArraySize) {
2427 if (ASM == ArrayType::Star) {
2428 Diag(Loc, VLADiag);
2429 if (VLAIsError)
2430 return QualType();
2431
2432 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2433 } else {
2434 T = Context.getIncompleteArrayType(T, ASM, Quals);
2435 }
2436 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2437 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2438 } else {
2439 ExprResult R =
2440 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2441 if (R.isInvalid())
2442 return QualType();
2443
2444 if (!R.isUsable()) {
2445 // C99: an array with a non-ICE size is a VLA. We accept any expression
2446 // that we can fold to a non-zero positive value as a non-VLA as an
2447 // extension.
2448 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2449 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2450 !T->isConstantSizeType()) {
2451 // C99: an array with an element type that has a non-constant-size is a
2452 // VLA.
2453 // FIXME: Add a note to explain why this isn't a VLA.
2454 Diag(Loc, VLADiag);
2455 if (VLAIsError)
2456 return QualType();
2457 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2458 } else {
2459 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2460 // have a value greater than zero.
2461 // In C++, this follows from narrowing conversions being disallowed.
2462 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2463 if (Entity)
2464 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2465 << getPrintableNameForEntity(Entity)
2466 << ArraySize->getSourceRange();
2467 else
2468 Diag(ArraySize->getBeginLoc(),
2469 diag::err_typecheck_negative_array_size)
2470 << ArraySize->getSourceRange();
2471 return QualType();
2472 }
2473 if (ConstVal == 0) {
2474 // GCC accepts zero sized static arrays. We allow them when
2475 // we're not in a SFINAE context.
2476 Diag(ArraySize->getBeginLoc(),
2477 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2478 : diag::ext_typecheck_zero_array_size)
2479 << ArraySize->getSourceRange();
2480 }
2481
2482 // Is the array too large?
2483 unsigned ActiveSizeBits =
2484 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2485 !T->isIncompleteType() && !T->isUndeducedType())
2486 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2487 : ConstVal.getActiveBits();
2488 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2489 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2490 << ConstVal.toString(10) << ArraySize->getSourceRange();
2491 return QualType();
2492 }
2493
2494 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2495 }
2496 }
2497
2498 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2499 // CUDA device code and some other targets don't support VLAs.
2500 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2501 ? diag::err_cuda_vla
2502 : diag::err_vla_unsupported)
2503 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2504 ? CurrentCUDATarget()
2505 : CFT_InvalidTarget);
2506 }
2507
2508 // If this is not C99, diagnose array size modifiers on non-VLAs.
2509 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2510 (ASM != ArrayType::Normal || Quals != 0)) {
2511 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2512 : diag::ext_c99_array_usage)
2513 << ASM;
2514 }
2515
2516 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2517 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2518 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2519 if (getLangOpts().OpenCL) {
2520 const QualType ArrType = Context.getBaseElementType(T);
2521 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2522 ArrType->isSamplerT() || ArrType->isImageType()) {
2523 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2524 return QualType();
2525 }
2526 }
2527
2528 return T;
2529}
2530
2531QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2532 SourceLocation AttrLoc) {
2533 // The base type must be integer (not Boolean or enumeration) or float, and
2534 // can't already be a vector.
2535 if ((!CurType->isDependentType() &&
2536 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2537 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2538 CurType->isArrayType()) {
2539 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2540 return QualType();
2541 }
2542
2543 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2544 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2545 VectorType::GenericVector);
2546
2547 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2548 if (!VecSize) {
2549 Diag(AttrLoc, diag::err_attribute_argument_type)
2550 << "vector_size" << AANT_ArgumentIntegerConstant
2551 << SizeExpr->getSourceRange();
2552 return QualType();
2553 }
2554
2555 if (CurType->isDependentType())
2556 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2557 VectorType::GenericVector);
2558
2559 // vecSize is specified in bytes - convert to bits.
2560 if (!VecSize->isIntN(61)) {
2561 // Bit size will overflow uint64.
2562 Diag(AttrLoc, diag::err_attribute_size_too_large)
2563 << SizeExpr->getSourceRange() << "vector";
2564 return QualType();
2565 }
2566 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2567 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2568
2569 if (VectorSizeBits == 0) {
2570 Diag(AttrLoc, diag::err_attribute_zero_size)
2571 << SizeExpr->getSourceRange() << "vector";
2572 return QualType();
2573 }
2574
2575 if (VectorSizeBits % TypeSize) {
2576 Diag(AttrLoc, diag::err_attribute_invalid_size)
2577 << SizeExpr->getSourceRange();
2578 return QualType();
2579 }
2580
2581 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2582 Diag(AttrLoc, diag::err_attribute_size_too_large)
2583 << SizeExpr->getSourceRange() << "vector";
2584 return QualType();
2585 }
2586
2587 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2588 VectorType::GenericVector);
2589}
2590
2591/// Build an ext-vector type.
2592///
2593/// Run the required checks for the extended vector type.
2594QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2595 SourceLocation AttrLoc) {
2596 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2597 // in conjunction with complex types (pointers, arrays, functions, etc.).
2598 //
2599 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2600 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2601 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2602 // of bool aren't allowed.
2603 if ((!T->isDependentType() && !T->isIntegerType() &&
2604 !T->isRealFloatingType()) ||
2605 T->isBooleanType()) {
2606 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2607 return QualType();
2608 }
2609
2610 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2611 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2612 if (!vecSize) {
2613 Diag(AttrLoc, diag::err_attribute_argument_type)
2614 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2615 << ArraySize->getSourceRange();
2616 return QualType();
2617 }
2618
2619 if (!vecSize->isIntN(32)) {
2620 Diag(AttrLoc, diag::err_attribute_size_too_large)
2621 << ArraySize->getSourceRange() << "vector";
2622 return QualType();
2623 }
2624 // Unlike gcc's vector_size attribute, the size is specified as the
2625 // number of elements, not the number of bytes.
2626 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2627
2628 if (vectorSize == 0) {
2629 Diag(AttrLoc, diag::err_attribute_zero_size)
2630 << ArraySize->getSourceRange() << "vector";
2631 return QualType();
2632 }
2633
2634 return Context.getExtVectorType(T, vectorSize);
2635 }
2636
2637 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2638}
2639
2640QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2641 SourceLocation AttrLoc) {
2642 assert(Context.getLangOpts().MatrixTypes &&((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled"
) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2643, __PRETTY_FUNCTION__))
2643 "Should never build a matrix type when it is disabled")((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled"
) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2643, __PRETTY_FUNCTION__))
;
2644
2645 // Check element type, if it is not dependent.
2646 if (!ElementTy->isDependentType() &&
2647 !MatrixType::isValidElementType(ElementTy)) {
2648 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2649 return QualType();
2650 }
2651
2652 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2653 NumRows->isValueDependent() || NumCols->isValueDependent())
2654 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2655 AttrLoc);
2656
2657 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2658 Optional<llvm::APSInt> ValueColumns =
2659 NumCols->getIntegerConstantExpr(Context);
2660
2661 auto const RowRange = NumRows->getSourceRange();
2662 auto const ColRange = NumCols->getSourceRange();
2663
2664 // Both are row and column expressions are invalid.
2665 if (!ValueRows && !ValueColumns) {
2666 Diag(AttrLoc, diag::err_attribute_argument_type)
2667 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2668 << ColRange;
2669 return QualType();
2670 }
2671
2672 // Only the row expression is invalid.
2673 if (!ValueRows) {
2674 Diag(AttrLoc, diag::err_attribute_argument_type)
2675 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2676 return QualType();
2677 }
2678
2679 // Only the column expression is invalid.
2680 if (!ValueColumns) {
2681 Diag(AttrLoc, diag::err_attribute_argument_type)
2682 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2683 return QualType();
2684 }
2685
2686 // Check the matrix dimensions.
2687 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2688 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2689 if (MatrixRows == 0 && MatrixColumns == 0) {
2690 Diag(AttrLoc, diag::err_attribute_zero_size)
2691 << "matrix" << RowRange << ColRange;
2692 return QualType();
2693 }
2694 if (MatrixRows == 0) {
2695 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2696 return QualType();
2697 }
2698 if (MatrixColumns == 0) {
2699 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2700 return QualType();
2701 }
2702 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2703 Diag(AttrLoc, diag::err_attribute_size_too_large)
2704 << RowRange << "matrix row";
2705 return QualType();
2706 }
2707 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2708 Diag(AttrLoc, diag::err_attribute_size_too_large)
2709 << ColRange << "matrix column";
2710 return QualType();
2711 }
2712 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2713}
2714
2715bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2716 if (T->isArrayType() || T->isFunctionType()) {
2717 Diag(Loc, diag::err_func_returning_array_function)
2718 << T->isFunctionType() << T;
2719 return true;
2720 }
2721
2722 // Functions cannot return half FP.
2723 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2724 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2725 FixItHint::CreateInsertion(Loc, "*");
2726 return true;
2727 }
2728
2729 // Methods cannot return interface types. All ObjC objects are
2730 // passed by reference.
2731 if (T->isObjCObjectType()) {
2732 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2733 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2734 return true;
2735 }
2736
2737 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2738 T.hasNonTrivialToPrimitiveCopyCUnion())
2739 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2740 NTCUK_Destruct|NTCUK_Copy);
2741
2742 // C++2a [dcl.fct]p12:
2743 // A volatile-qualified return type is deprecated
2744 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2745 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2746
2747 return false;
2748}
2749
2750/// Check the extended parameter information. Most of the necessary
2751/// checking should occur when applying the parameter attribute; the
2752/// only other checks required are positional restrictions.
2753static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2754 const FunctionProtoType::ExtProtoInfo &EPI,
2755 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2756 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? static_cast<void> (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2756, __PRETTY_FUNCTION__))
;
2757
2758 bool hasCheckedSwiftCall = false;
2759 auto checkForSwiftCC = [&](unsigned paramIndex) {
2760 // Only do this once.
2761 if (hasCheckedSwiftCall) return;
2762 hasCheckedSwiftCall = true;
2763 if (EPI.ExtInfo.getCC() == CC_Swift) return;
2764 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2765 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2766 };
2767
2768 for (size_t paramIndex = 0, numParams = paramTypes.size();
2769 paramIndex != numParams; ++paramIndex) {
2770 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2771 // Nothing interesting to check for orindary-ABI parameters.
2772 case ParameterABI::Ordinary:
2773 continue;
2774
2775 // swift_indirect_result parameters must be a prefix of the function
2776 // arguments.
2777 case ParameterABI::SwiftIndirectResult:
2778 checkForSwiftCC(paramIndex);
2779 if (paramIndex != 0 &&
2780 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2781 != ParameterABI::SwiftIndirectResult) {
2782 S.Diag(getParamLoc(paramIndex),
2783 diag::err_swift_indirect_result_not_first);
2784 }
2785 continue;
2786
2787 case ParameterABI::SwiftContext:
2788 checkForSwiftCC(paramIndex);
2789 continue;
2790
2791 // swift_error parameters must be preceded by a swift_context parameter.
2792 case ParameterABI::SwiftErrorResult:
2793 checkForSwiftCC(paramIndex);
2794 if (paramIndex == 0 ||
2795 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2796 ParameterABI::SwiftContext) {
2797 S.Diag(getParamLoc(paramIndex),
2798 diag::err_swift_error_result_not_after_swift_context);
2799 }
2800 continue;
2801 }
2802 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2802)
;
2803 }
2804}
2805
2806QualType Sema::BuildFunctionType(QualType T,
2807 MutableArrayRef<QualType> ParamTypes,
2808 SourceLocation Loc, DeclarationName Entity,
2809 const FunctionProtoType::ExtProtoInfo &EPI) {
2810 bool Invalid = false;
2811
2812 Invalid |= CheckFunctionReturnType(T, Loc);
2813
2814 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2815 // FIXME: Loc is too inprecise here, should use proper locations for args.
2816 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2817 if (ParamType->isVoidType()) {
2818 Diag(Loc, diag::err_param_with_void_type);
2819 Invalid = true;
2820 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2821 // Disallow half FP arguments.
2822 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2823 FixItHint::CreateInsertion(Loc, "*");
2824 Invalid = true;
2825 }
2826
2827 // C++2a [dcl.fct]p4:
2828 // A parameter with volatile-qualified type is deprecated
2829 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2830 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2831
2832 ParamTypes[Idx] = ParamType;
2833 }
2834
2835 if (EPI.ExtParameterInfos) {
2836 checkExtParameterInfos(*this, ParamTypes, EPI,
2837 [=](unsigned i) { return Loc; });
2838 }
2839
2840 if (EPI.ExtInfo.getProducesResult()) {
2841 // This is just a warning, so we can't fail to build if we see it.
2842 checkNSReturnsRetainedReturnType(Loc, T);
2843 }
2844
2845 if (Invalid)
2846 return QualType();
2847
2848 return Context.getFunctionType(T, ParamTypes, EPI);
2849}
2850
2851/// Build a member pointer type \c T Class::*.
2852///
2853/// \param T the type to which the member pointer refers.
2854/// \param Class the class type into which the member pointer points.
2855/// \param Loc the location where this type begins
2856/// \param Entity the name of the entity that will have this member pointer type
2857///
2858/// \returns a member pointer type, if successful, or a NULL type if there was
2859/// an error.
2860QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2861 SourceLocation Loc,
2862 DeclarationName Entity) {
2863 // Verify that we're not building a pointer to pointer to function with
2864 // exception specification.
2865 if (CheckDistantExceptionSpec(T)) {
2866 Diag(Loc, diag::err_distant_exception_spec);
2867 return QualType();
2868 }
2869
2870 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2871 // with reference type, or "cv void."
2872 if (T->isReferenceType()) {
2873 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2874 << getPrintableNameForEntity(Entity) << T;
2875 return QualType();
2876 }
2877
2878 if (T->isVoidType()) {
2879 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2880 << getPrintableNameForEntity(Entity);
2881 return QualType();
2882 }
2883
2884 if (!Class->isDependentType() && !Class->isRecordType()) {
2885 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2886 return QualType();
2887 }
2888
2889 if (T->isFunctionType() && getLangOpts().OpenCL &&
2890 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2891 getLangOpts())) {
2892 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2893 return QualType();
2894 }
2895
2896 // Adjust the default free function calling convention to the default method
2897 // calling convention.
2898 bool IsCtorOrDtor =
2899 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2900 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2901 if (T->isFunctionType())
2902 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2903
2904 return Context.getMemberPointerType(T, Class.getTypePtr());
2905}
2906
2907/// Build a block pointer type.
2908///
2909/// \param T The type to which we'll be building a block pointer.
2910///
2911/// \param Loc The source location, used for diagnostics.
2912///
2913/// \param Entity The name of the entity that involves the block pointer
2914/// type, if known.
2915///
2916/// \returns A suitable block pointer type, if there are no
2917/// errors. Otherwise, returns a NULL type.
2918QualType Sema::BuildBlockPointerType(QualType T,
2919 SourceLocation Loc,
2920 DeclarationName Entity) {
2921 if (!T->isFunctionType()) {
2922 Diag(Loc, diag::err_nonfunction_block_type);
2923 return QualType();
2924 }
2925
2926 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2927 return QualType();
2928
2929 if (getLangOpts().OpenCL)
2930 T = deduceOpenCLPointeeAddrSpace(*this, T);
2931
2932 return Context.getBlockPointerType(T);
2933}
2934
2935QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2936 QualType QT = Ty.get();
2937 if (QT.isNull()) {
38
Calling 'QualType::isNull'
44
Returning from 'QualType::isNull'
45
Taking false branch
2938 if (TInfo) *TInfo = nullptr;
2939 return QualType();
2940 }
2941
2942 TypeSourceInfo *DI = nullptr;
46
'DI' initialized to a null pointer value
2943 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
47
Assuming 'LIT' is null
48
Taking false branch
2944 QT = LIT->getType();
2945 DI = LIT->getTypeSourceInfo();
2946 }
2947
2948 if (TInfo
48.1
'TInfo' is non-null
48.1
'TInfo' is non-null
48.1
'TInfo' is non-null
48.1
'TInfo' is non-null
48.1
'TInfo' is non-null
48.1
'TInfo' is non-null
) *TInfo = DI;
49
Taking true branch
50
Null pointer value stored to 'RepTInfo'
2949 return QT;
2950}
2951
2952static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2953 Qualifiers::ObjCLifetime ownership,
2954 unsigned chunkIndex);
2955
2956/// Given that this is the declaration of a parameter under ARC,
2957/// attempt to infer attributes and such for pointer-to-whatever
2958/// types.
2959static void inferARCWriteback(TypeProcessingState &state,
2960 QualType &declSpecType) {
2961 Sema &S = state.getSema();
2962 Declarator &declarator = state.getDeclarator();
2963
2964 // TODO: should we care about decl qualifiers?
2965
2966 // Check whether the declarator has the expected form. We walk
2967 // from the inside out in order to make the block logic work.
2968 unsigned outermostPointerIndex = 0;
2969 bool isBlockPointer = false;
2970 unsigned numPointers = 0;
2971 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2972 unsigned chunkIndex = i;
2973 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2974 switch (chunk.Kind) {
2975 case DeclaratorChunk::Paren:
2976 // Ignore parens.
2977 break;
2978
2979 case DeclaratorChunk::Reference:
2980 case DeclaratorChunk::Pointer:
2981 // Count the number of pointers. Treat references
2982 // interchangeably as pointers; if they're mis-ordered, normal
2983 // type building will discover that.
2984 outermostPointerIndex = chunkIndex;
2985 numPointers++;
2986 break;
2987
2988 case DeclaratorChunk::BlockPointer:
2989 // If we have a pointer to block pointer, that's an acceptable
2990 // indirect reference; anything else is not an application of
2991 // the rules.
2992 if (numPointers != 1) return;
2993 numPointers++;
2994 outermostPointerIndex = chunkIndex;
2995 isBlockPointer = true;
2996
2997 // We don't care about pointer structure in return values here.
2998 goto done;
2999
3000 case DeclaratorChunk::Array: // suppress if written (id[])?
3001 case DeclaratorChunk::Function:
3002 case DeclaratorChunk::MemberPointer:
3003 case DeclaratorChunk::Pipe:
3004 return;
3005 }
3006 }
3007 done:
3008
3009 // If we have *one* pointer, then we want to throw the qualifier on
3010 // the declaration-specifiers, which means that it needs to be a
3011 // retainable object type.
3012 if (numPointers == 1) {
3013 // If it's not a retainable object type, the rule doesn't apply.
3014 if (!declSpecType->isObjCRetainableType()) return;
3015
3016 // If it already has lifetime, don't do anything.
3017 if (declSpecType.getObjCLifetime()) return;
3018
3019 // Otherwise, modify the type in-place.
3020 Qualifiers qs;
3021
3022 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3023 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3024 else
3025 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3026 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3027
3028 // If we have *two* pointers, then we want to throw the qualifier on
3029 // the outermost pointer.
3030 } else if (numPointers == 2) {
3031 // If we don't have a block pointer, we need to check whether the
3032 // declaration-specifiers gave us something that will turn into a
3033 // retainable object pointer after we slap the first pointer on it.
3034 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3035 return;
3036
3037 // Look for an explicit lifetime attribute there.
3038 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3039 if (chunk.Kind != DeclaratorChunk::Pointer &&
3040 chunk.Kind != DeclaratorChunk::BlockPointer)
3041 return;
3042 for (const ParsedAttr &AL : chunk.getAttrs())
3043 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3044 return;
3045
3046 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3047 outermostPointerIndex);
3048
3049 // Any other number of pointers/references does not trigger the rule.
3050 } else return;
3051
3052 // TODO: mark whether we did this inference?
3053}
3054
3055void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3056 SourceLocation FallbackLoc,
3057 SourceLocation ConstQualLoc,
3058 SourceLocation VolatileQualLoc,
3059 SourceLocation RestrictQualLoc,
3060 SourceLocation AtomicQualLoc,
3061 SourceLocation UnalignedQualLoc) {
3062 if (!Quals)
3063 return;
3064
3065 struct Qual {
3066 const char *Name;
3067 unsigned Mask;
3068 SourceLocation Loc;
3069 } const QualKinds[5] = {
3070 { "const", DeclSpec::TQ_const, ConstQualLoc },
3071 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3072 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3073 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3074 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3075 };
3076
3077 SmallString<32> QualStr;
3078 unsigned NumQuals = 0;
3079 SourceLocation Loc;
3080 FixItHint FixIts[5];
3081
3082 // Build a string naming the redundant qualifiers.
3083 for (auto &E : QualKinds) {
3084 if (Quals & E.Mask) {
3085 if (!QualStr.empty()) QualStr += ' ';
3086 QualStr += E.Name;
3087
3088 // If we have a location for the qualifier, offer a fixit.
3089 SourceLocation QualLoc = E.Loc;
3090 if (QualLoc.isValid()) {
3091 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3092 if (Loc.isInvalid() ||
3093 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3094 Loc = QualLoc;
3095 }
3096
3097 ++NumQuals;
3098 }
3099 }
3100
3101 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3102 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3103}
3104
3105// Diagnose pointless type qualifiers on the return type of a function.
3106static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3107 Declarator &D,
3108 unsigned FunctionChunkIndex) {
3109 const DeclaratorChunk::FunctionTypeInfo &FTI =
3110 D.getTypeObject(FunctionChunkIndex).Fun;
3111 if (FTI.hasTrailingReturnType()) {
3112 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3113 RetTy.getLocalCVRQualifiers(),
3114 FTI.getTrailingReturnTypeLoc());
3115 return;
3116 }
3117
3118 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3119 End = D.getNumTypeObjects();
3120 OuterChunkIndex != End; ++OuterChunkIndex) {
3121 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3122 switch (OuterChunk.Kind) {
3123 case DeclaratorChunk::Paren:
3124 continue;
3125
3126 case DeclaratorChunk::Pointer: {
3127 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3128 S.diagnoseIgnoredQualifiers(
3129 diag::warn_qual_return_type,
3130 PTI.TypeQuals,
3131 SourceLocation(),
3132 PTI.ConstQualLoc,
3133 PTI.VolatileQualLoc,
3134 PTI.RestrictQualLoc,
3135 PTI.AtomicQualLoc,
3136 PTI.UnalignedQualLoc);
3137 return;
3138 }
3139
3140 case DeclaratorChunk::Function:
3141 case DeclaratorChunk::BlockPointer:
3142 case DeclaratorChunk::Reference:
3143 case DeclaratorChunk::Array:
3144 case DeclaratorChunk::MemberPointer:
3145 case DeclaratorChunk::Pipe:
3146 // FIXME: We can't currently provide an accurate source location and a
3147 // fix-it hint for these.
3148 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3149 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3150 RetTy.getCVRQualifiers() | AtomicQual,
3151 D.getIdentifierLoc());
3152 return;
3153 }
3154
3155 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3155)
;
3156 }
3157
3158 // If the qualifiers come from a conversion function type, don't diagnose
3159 // them -- they're not necessarily redundant, since such a conversion
3160 // operator can be explicitly called as "x.operator const int()".
3161 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3162 return;
3163
3164 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3165 // which are present there.
3166 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3167 D.getDeclSpec().getTypeQualifiers(),
3168 D.getIdentifierLoc(),
3169 D.getDeclSpec().getConstSpecLoc(),
3170 D.getDeclSpec().getVolatileSpecLoc(),
3171 D.getDeclSpec().getRestrictSpecLoc(),
3172 D.getDeclSpec().getAtomicSpecLoc(),
3173 D.getDeclSpec().getUnalignedSpecLoc());
3174}
3175
3176static std::pair<QualType, TypeSourceInfo *>
3177InventTemplateParameter(TypeProcessingState &state, QualType T,
3178 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3179 InventedTemplateParameterInfo &Info) {
3180 Sema &S = state.getSema();
3181 Declarator &D = state.getDeclarator();
3182
3183 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3184 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3185 const bool IsParameterPack = D.hasEllipsis();
3186
3187 // If auto is mentioned in a lambda parameter or abbreviated function
3188 // template context, convert it to a template parameter type.
3189
3190 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3191 // template parameter type. Template parameters are temporarily added
3192 // to the TU until the associated TemplateDecl is created.
3193 TemplateTypeParmDecl *InventedTemplateParam =
3194 TemplateTypeParmDecl::Create(
3195 S.Context, S.Context.getTranslationUnitDecl(),
3196 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3197 /*NameLoc=*/D.getIdentifierLoc(),
3198 TemplateParameterDepth, AutoParameterPosition,
3199 S.InventAbbreviatedTemplateParameterTypeName(
3200 D.getIdentifier(), AutoParameterPosition), false,
3201 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3202 InventedTemplateParam->setImplicit();
3203 Info.TemplateParams.push_back(InventedTemplateParam);
3204
3205 // Attach type constraints to the new parameter.
3206 if (Auto->isConstrained()) {
3207 if (TrailingTSI) {
3208 // The 'auto' appears in a trailing return type we've already built;
3209 // extract its type constraints to attach to the template parameter.
3210 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3211 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3212 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx)
3213 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3214
3215 S.AttachTypeConstraint(AutoLoc.getNestedNameSpecifierLoc(),
3216 AutoLoc.getConceptNameInfo(),
3217 AutoLoc.getNamedConcept(),
3218 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3219 InventedTemplateParam, D.getEllipsisLoc());
3220 } else {
3221 // The 'auto' appears in the decl-specifiers; we've not finished forming
3222 // TypeSourceInfo for it yet.
3223 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3224 TemplateArgumentListInfo TemplateArgsInfo;
3225 if (TemplateId->LAngleLoc.isValid()) {
3226 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3227 TemplateId->NumArgs);
3228 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3229 }
3230 S.AttachTypeConstraint(
3231 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3232 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3233 TemplateId->TemplateNameLoc),
3234 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3235 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3236 InventedTemplateParam, D.getEllipsisLoc());
3237 }
3238 }
3239
3240 // Replace the 'auto' in the function parameter with this invented
3241 // template type parameter.
3242 // FIXME: Retain some type sugar to indicate that this was written
3243 // as 'auto'?
3244 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3245 QualType NewT = state.ReplaceAutoType(T, Replacement);
3246 TypeSourceInfo *NewTSI =
3247 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3248 : nullptr;
3249 return {NewT, NewTSI};
3250}
3251
3252static TypeSourceInfo *
3253GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3254 QualType T, TypeSourceInfo *ReturnTypeInfo);
3255
3256static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3257 TypeSourceInfo *&ReturnTypeInfo) {
3258 Sema &SemaRef = state.getSema();
3259 Declarator &D = state.getDeclarator();
3260 QualType T;
3261 ReturnTypeInfo = nullptr;
3262
3263 // The TagDecl owned by the DeclSpec.
3264 TagDecl *OwnedTagDecl = nullptr;
3265
3266 switch (D.getName().getKind()) {
3267 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3268 case UnqualifiedIdKind::IK_OperatorFunctionId:
3269 case UnqualifiedIdKind::IK_Identifier:
3270 case UnqualifiedIdKind::IK_LiteralOperatorId:
3271 case UnqualifiedIdKind::IK_TemplateId:
3272 T = ConvertDeclSpecToType(state);
3273
3274 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3275 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3276 // Owned declaration is embedded in declarator.
3277 OwnedTagDecl->setEmbeddedInDeclarator(true);
3278 }
3279 break;
3280
3281 case UnqualifiedIdKind::IK_ConstructorName:
3282 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3283 case UnqualifiedIdKind::IK_DestructorName:
3284 // Constructors and destructors don't have return types. Use
3285 // "void" instead.
3286 T = SemaRef.Context.VoidTy;
3287 processTypeAttrs(state, T, TAL_DeclSpec,
3288 D.getMutableDeclSpec().getAttributes());
3289 break;
3290
3291 case UnqualifiedIdKind::IK_DeductionGuideName:
3292 // Deduction guides have a trailing return type and no type in their
3293 // decl-specifier sequence. Use a placeholder return type for now.
3294 T = SemaRef.Context.DependentTy;
3295 break;
3296
3297 case UnqualifiedIdKind::IK_ConversionFunctionId:
3298 // The result type of a conversion function is the type that it
3299 // converts to.
3300 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3301 &ReturnTypeInfo);
3302 break;
3303 }
3304
3305 if (!D.getAttributes().empty())
3306 distributeTypeAttrsFromDeclarator(state, T);
3307
3308 // Find the deduced type in this type. Look in the trailing return type if we
3309 // have one, otherwise in the DeclSpec type.
3310 // FIXME: The standard wording doesn't currently describe this.
3311 DeducedType *Deduced = T->getContainedDeducedType();
3312 bool DeducedIsTrailingReturnType = false;
3313 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3314 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3315 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3316 DeducedIsTrailingReturnType = true;
3317 }
3318
3319 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3320 if (Deduced) {
3321 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3322 int Error = -1;
3323
3324 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3325 // class template argument deduction)?
3326 bool IsCXXAutoType =
3327 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3328 bool IsDeducedReturnType = false;
3329
3330 switch (D.getContext()) {
3331 case DeclaratorContext::LambdaExpr:
3332 // Declared return type of a lambda-declarator is implicit and is always
3333 // 'auto'.
3334 break;
3335 case DeclaratorContext::ObjCParameter:
3336 case DeclaratorContext::ObjCResult:
3337 Error = 0;
3338 break;
3339 case DeclaratorContext::RequiresExpr:
3340 Error = 22;
3341 break;
3342 case DeclaratorContext::Prototype:
3343 case DeclaratorContext::LambdaExprParameter: {
3344 InventedTemplateParameterInfo *Info = nullptr;
3345 if (D.getContext() == DeclaratorContext::Prototype) {
3346 // With concepts we allow 'auto' in function parameters.
3347 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3348 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3349 Error = 0;
3350 break;
3351 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3352 Error = 21;
3353 break;
3354 }
3355
3356 Info = &SemaRef.InventedParameterInfos.back();
3357 } else {
3358 // In C++14, generic lambdas allow 'auto' in their parameters.
3359 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3360 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3361 Error = 16;
3362 break;
3363 }
3364 Info = SemaRef.getCurLambda();
3365 assert(Info && "No LambdaScopeInfo on the stack!")((Info && "No LambdaScopeInfo on the stack!") ? static_cast
<void> (0) : __assert_fail ("Info && \"No LambdaScopeInfo on the stack!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3365, __PRETTY_FUNCTION__))
;
3366 }
3367
3368 // We'll deal with inventing template parameters for 'auto' in trailing
3369 // return types when we pick up the trailing return type when processing
3370 // the function chunk.
3371 if (!DeducedIsTrailingReturnType)
3372 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3373 break;
3374 }
3375 case DeclaratorContext::Member: {
3376 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3377 D.isFunctionDeclarator())
3378 break;
3379 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3380 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3381 Error = 6; // Interface member.
3382 } else {
3383 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3384 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3384)
;
3385 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3386 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3387 case TTK_Class: Error = 5; /* Class member */ break;
3388 case TTK_Interface: Error = 6; /* Interface member */ break;
3389 }
3390 }
3391 if (D.getDeclSpec().isFriendSpecified())
3392 Error = 20; // Friend type
3393 break;
3394 }
3395 case DeclaratorContext::CXXCatch:
3396 case DeclaratorContext::ObjCCatch:
3397 Error = 7; // Exception declaration
3398 break;
3399 case DeclaratorContext::TemplateParam:
3400 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3401 !SemaRef.getLangOpts().CPlusPlus20)
3402 Error = 19; // Template parameter (until C++20)
3403 else if (!SemaRef.getLangOpts().CPlusPlus17)
3404 Error = 8; // Template parameter (until C++17)
3405 break;
3406 case DeclaratorContext::BlockLiteral:
3407 Error = 9; // Block literal
3408 break;
3409 case DeclaratorContext::TemplateArg:
3410 // Within a template argument list, a deduced template specialization
3411 // type will be reinterpreted as a template template argument.
3412 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3413 !D.getNumTypeObjects() &&
3414 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3415 break;
3416 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3417 case DeclaratorContext::TemplateTypeArg:
3418 Error = 10; // Template type argument
3419 break;
3420 case DeclaratorContext::AliasDecl:
3421 case DeclaratorContext::AliasTemplate:
3422 Error = 12; // Type alias
3423 break;
3424 case DeclaratorContext::TrailingReturn:
3425 case DeclaratorContext::TrailingReturnVar:
3426 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3427 Error = 13; // Function return type
3428 IsDeducedReturnType = true;
3429 break;
3430 case DeclaratorContext::ConversionId:
3431 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3432 Error = 14; // conversion-type-id
3433 IsDeducedReturnType = true;
3434 break;
3435 case DeclaratorContext::FunctionalCast:
3436 if (isa<DeducedTemplateSpecializationType>(Deduced))
3437 break;
3438 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3439 case DeclaratorContext::TypeName:
3440 Error = 15; // Generic
3441 break;
3442 case DeclaratorContext::File:
3443 case DeclaratorContext::Block:
3444 case DeclaratorContext::ForInit:
3445 case DeclaratorContext::SelectionInit:
3446 case DeclaratorContext::Condition:
3447 // FIXME: P0091R3 (erroneously) does not permit class template argument
3448 // deduction in conditions, for-init-statements, and other declarations
3449 // that are not simple-declarations.
3450 break;
3451 case DeclaratorContext::CXXNew:
3452 // FIXME: P0091R3 does not permit class template argument deduction here,
3453 // but we follow GCC and allow it anyway.
3454 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3455 Error = 17; // 'new' type
3456 break;
3457 case DeclaratorContext::KNRTypeList:
3458 Error = 18; // K&R function parameter
3459 break;
3460 }
3461
3462 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3463 Error = 11;
3464
3465 // In Objective-C it is an error to use 'auto' on a function declarator
3466 // (and everywhere for '__auto_type').
3467 if (D.isFunctionDeclarator() &&
3468 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3469 Error = 13;
3470
3471 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3472 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3473 AutoRange = D.getName().getSourceRange();
3474
3475 if (Error != -1) {
3476 unsigned Kind;
3477 if (Auto) {
3478 switch (Auto->getKeyword()) {
3479 case AutoTypeKeyword::Auto: Kind = 0; break;
3480 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3481 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3482 }
3483 } else {
3484 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3485, __PRETTY_FUNCTION__))
3485 "unknown auto type")((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3485, __PRETTY_FUNCTION__))
;
3486 Kind = 3;
3487 }
3488
3489 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3490 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3491
3492 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3493 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3494 << QualType(Deduced, 0) << AutoRange;
3495 if (auto *TD = TN.getAsTemplateDecl())
3496 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3497
3498 T = SemaRef.Context.IntTy;
3499 D.setInvalidType(true);
3500 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3501 // If there was a trailing return type, we already got
3502 // warn_cxx98_compat_trailing_return_type in the parser.
3503 SemaRef.Diag(AutoRange.getBegin(),
3504 D.getContext() == DeclaratorContext::LambdaExprParameter
3505 ? diag::warn_cxx11_compat_generic_lambda
3506 : IsDeducedReturnType
3507 ? diag::warn_cxx11_compat_deduced_return_type
3508 : diag::warn_cxx98_compat_auto_type_specifier)
3509 << AutoRange;
3510 }
3511 }
3512
3513 if (SemaRef.getLangOpts().CPlusPlus &&
3514 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3515 // Check the contexts where C++ forbids the declaration of a new class
3516 // or enumeration in a type-specifier-seq.
3517 unsigned DiagID = 0;
3518 switch (D.getContext()) {
3519 case DeclaratorContext::TrailingReturn:
3520 case DeclaratorContext::TrailingReturnVar:
3521 // Class and enumeration definitions are syntactically not allowed in
3522 // trailing return types.
3523 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3523)
;
3524 break;
3525 case DeclaratorContext::File:
3526 case DeclaratorContext::Member:
3527 case DeclaratorContext::Block:
3528 case DeclaratorContext::ForInit:
3529 case DeclaratorContext::SelectionInit:
3530 case DeclaratorContext::BlockLiteral:
3531 case DeclaratorContext::LambdaExpr:
3532 // C++11 [dcl.type]p3:
3533 // A type-specifier-seq shall not define a class or enumeration unless
3534 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3535 // the declaration of a template-declaration.
3536 case DeclaratorContext::AliasDecl:
3537 break;
3538 case DeclaratorContext::AliasTemplate:
3539 DiagID = diag::err_type_defined_in_alias_template;
3540 break;
3541 case DeclaratorContext::TypeName:
3542 case DeclaratorContext::FunctionalCast:
3543 case DeclaratorContext::ConversionId:
3544 case DeclaratorContext::TemplateParam:
3545 case DeclaratorContext::CXXNew:
3546 case DeclaratorContext::CXXCatch:
3547 case DeclaratorContext::ObjCCatch:
3548 case DeclaratorContext::TemplateArg:
3549 case DeclaratorContext::TemplateTypeArg:
3550 DiagID = diag::err_type_defined_in_type_specifier;
3551 break;
3552 case DeclaratorContext::Prototype:
3553 case DeclaratorContext::LambdaExprParameter:
3554 case DeclaratorContext::ObjCParameter:
3555 case DeclaratorContext::ObjCResult:
3556 case DeclaratorContext::KNRTypeList:
3557 case DeclaratorContext::RequiresExpr:
3558 // C++ [dcl.fct]p6:
3559 // Types shall not be defined in return or parameter types.
3560 DiagID = diag::err_type_defined_in_param_type;
3561 break;
3562 case DeclaratorContext::Condition:
3563 // C++ 6.4p2:
3564 // The type-specifier-seq shall not contain typedef and shall not declare
3565 // a new class or enumeration.
3566 DiagID = diag::err_type_defined_in_condition;
3567 break;
3568 }
3569
3570 if (DiagID != 0) {
3571 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3572 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3573 D.setInvalidType(true);
3574 }
3575 }
3576
3577 assert(!T.isNull() && "This function should not return a null type")((!T.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3577, __PRETTY_FUNCTION__))
;
3578 return T;
3579}
3580
3581/// Produce an appropriate diagnostic for an ambiguity between a function
3582/// declarator and a C++ direct-initializer.
3583static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3584 DeclaratorChunk &DeclType, QualType RT) {
3585 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3586 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? static_cast<void> (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3586, __PRETTY_FUNCTION__))
;
3587
3588 // If the return type is void there is no ambiguity.
3589 if (RT->isVoidType())
3590 return;
3591
3592 // An initializer for a non-class type can have at most one argument.
3593 if (!RT->isRecordType() && FTI.NumParams > 1)
3594 return;
3595
3596 // An initializer for a reference must have exactly one argument.
3597 if (RT->isReferenceType() && FTI.NumParams != 1)
3598 return;
3599
3600 // Only warn if this declarator is declaring a function at block scope, and
3601 // doesn't have a storage class (such as 'extern') specified.
3602 if (!D.isFunctionDeclarator() ||
3603 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3604 !S.CurContext->isFunctionOrMethod() ||
3605 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3606 return;
3607
3608 // Inside a condition, a direct initializer is not permitted. We allow one to
3609 // be parsed in order to give better diagnostics in condition parsing.
3610 if (D.getContext() == DeclaratorContext::Condition)
3611 return;
3612
3613 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3614
3615 S.Diag(DeclType.Loc,
3616 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3617 : diag::warn_empty_parens_are_function_decl)
3618 << ParenRange;
3619
3620 // If the declaration looks like:
3621 // T var1,
3622 // f();
3623 // and name lookup finds a function named 'f', then the ',' was
3624 // probably intended to be a ';'.
3625 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3626 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3627 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3628 if (Comma.getFileID() != Name.getFileID() ||
3629 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3630 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3631 Sema::LookupOrdinaryName);
3632 if (S.LookupName(Result, S.getCurScope()))
3633 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3634 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3635 << D.getIdentifier();
3636 Result.suppressDiagnostics();
3637 }
3638 }
3639
3640 if (FTI.NumParams > 0) {
3641 // For a declaration with parameters, eg. "T var(T());", suggest adding
3642 // parens around the first parameter to turn the declaration into a
3643 // variable declaration.
3644 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3645 SourceLocation B = Range.getBegin();
3646 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3647 // FIXME: Maybe we should suggest adding braces instead of parens
3648 // in C++11 for classes that don't have an initializer_list constructor.
3649 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3650 << FixItHint::CreateInsertion(B, "(")
3651 << FixItHint::CreateInsertion(E, ")");
3652 } else {
3653 // For a declaration without parameters, eg. "T var();", suggest replacing
3654 // the parens with an initializer to turn the declaration into a variable
3655 // declaration.
3656 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3657
3658 // Empty parens mean value-initialization, and no parens mean
3659 // default initialization. These are equivalent if the default
3660 // constructor is user-provided or if zero-initialization is a
3661 // no-op.
3662 if (RD && RD->hasDefinition() &&
3663 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3664 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3665 << FixItHint::CreateRemoval(ParenRange);
3666 else {
3667 std::string Init =
3668 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3669 if (Init.empty() && S.LangOpts.CPlusPlus11)
3670 Init = "{}";
3671 if (!Init.empty())
3672 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3673 << FixItHint::CreateReplacement(ParenRange, Init);
3674 }
3675 }
3676}
3677
3678/// Produce an appropriate diagnostic for a declarator with top-level
3679/// parentheses.
3680static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3681 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3682 assert(Paren.Kind == DeclaratorChunk::Paren &&((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3683, __PRETTY_FUNCTION__))
3683 "do not have redundant top-level parentheses")((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3683, __PRETTY_FUNCTION__))
;
3684
3685 // This is a syntactic check; we're not interested in cases that arise
3686 // during template instantiation.
3687 if (S.inTemplateInstantiation())
3688 return;
3689
3690 // Check whether this could be intended to be a construction of a temporary
3691 // object in C++ via a function-style cast.
3692 bool CouldBeTemporaryObject =
3693 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3694 !D.isInvalidType() && D.getIdentifier() &&
3695 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3696 (T->isRecordType() || T->isDependentType()) &&
3697 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3698
3699 bool StartsWithDeclaratorId = true;
3700 for (auto &C : D.type_objects()) {
3701 switch (C.Kind) {
3702 case DeclaratorChunk::Paren:
3703 if (&C == &Paren)
3704 continue;
3705 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3706 case DeclaratorChunk::Pointer:
3707 StartsWithDeclaratorId = false;
3708 continue;
3709
3710 case DeclaratorChunk::Array:
3711 if (!C.Arr.NumElts)
3712 CouldBeTemporaryObject = false;
3713 continue;
3714
3715 case DeclaratorChunk::Reference:
3716 // FIXME: Suppress the warning here if there is no initializer; we're
3717 // going to give an error anyway.
3718 // We assume that something like 'T (&x) = y;' is highly likely to not
3719 // be intended to be a temporary object.
3720 CouldBeTemporaryObject = false;
3721 StartsWithDeclaratorId = false;
3722 continue;
3723
3724 case DeclaratorChunk::Function:
3725 // In a new-type-id, function chunks require parentheses.
3726 if (D.getContext() == DeclaratorContext::CXXNew)
3727 return;
3728 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3729 // redundant-parens warning, but we don't know whether the function
3730 // chunk was syntactically valid as an expression here.
3731 CouldBeTemporaryObject = false;
3732 continue;
3733
3734 case DeclaratorChunk::BlockPointer:
3735 case DeclaratorChunk::MemberPointer:
3736 case DeclaratorChunk::Pipe:
3737 // These cannot appear in expressions.
3738 CouldBeTemporaryObject = false;
3739 StartsWithDeclaratorId = false;
3740 continue;
3741 }
3742 }
3743
3744 // FIXME: If there is an initializer, assume that this is not intended to be
3745 // a construction of a temporary object.
3746
3747 // Check whether the name has already been declared; if not, this is not a
3748 // function-style cast.
3749 if (CouldBeTemporaryObject) {
3750 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3751 Sema::LookupOrdinaryName);
3752 if (!S.LookupName(Result, S.getCurScope()))
3753 CouldBeTemporaryObject = false;
3754 Result.suppressDiagnostics();
3755 }
3756
3757 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3758
3759 if (!CouldBeTemporaryObject) {
3760 // If we have A (::B), the parentheses affect the meaning of the program.
3761 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3762 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3763 // formally unambiguous.
3764 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3765 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3766 NNS = NNS->getPrefix()) {
3767 if (NNS->getKind() == NestedNameSpecifier::Global)
3768 return;
3769 }
3770 }
3771
3772 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3773 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3774 << FixItHint::CreateRemoval(Paren.EndLoc);
3775 return;
3776 }
3777
3778 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3779 << ParenRange << D.getIdentifier();
3780 auto *RD = T->getAsCXXRecordDecl();
3781 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3782 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3783 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3784 << D.getIdentifier();
3785 // FIXME: A cast to void is probably a better suggestion in cases where it's
3786 // valid (when there is no initializer and we're not in a condition).
3787 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3788 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3789 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3790 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3791 << FixItHint::CreateRemoval(Paren.Loc)
3792 << FixItHint::CreateRemoval(Paren.EndLoc);
3793}
3794
3795/// Helper for figuring out the default CC for a function declarator type. If
3796/// this is the outermost chunk, then we can determine the CC from the
3797/// declarator context. If not, then this could be either a member function
3798/// type or normal function type.
3799static CallingConv getCCForDeclaratorChunk(
3800 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3801 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3802 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function
) ? static_cast<void> (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3802, __PRETTY_FUNCTION__))
;
3803
3804 // Check for an explicit CC attribute.
3805 for (const ParsedAttr &AL : AttrList) {
3806 switch (AL.getKind()) {
3807 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
: {
3808 // Ignore attributes that don't validate or can't apply to the
3809 // function type. We'll diagnose the failure to apply them in
3810 // handleFunctionTypeAttr.
3811 CallingConv CC;
3812 if (!S.CheckCallingConvAttr(AL, CC) &&
3813 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3814 return CC;
3815 }
3816 break;
3817 }
3818
3819 default:
3820 break;
3821 }
3822 }
3823
3824 bool IsCXXInstanceMethod = false;
3825
3826 if (S.getLangOpts().CPlusPlus) {
3827 // Look inwards through parentheses to see if this chunk will form a
3828 // member pointer type or if we're the declarator. Any type attributes
3829 // between here and there will override the CC we choose here.
3830 unsigned I = ChunkIndex;
3831 bool FoundNonParen = false;
3832 while (I && !FoundNonParen) {
3833 --I;
3834 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3835 FoundNonParen = true;
3836 }
3837
3838 if (FoundNonParen) {
3839 // If we're not the declarator, we're a regular function type unless we're
3840 // in a member pointer.
3841 IsCXXInstanceMethod =
3842 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3843 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3844 // This can only be a call operator for a lambda, which is an instance
3845 // method.
3846 IsCXXInstanceMethod = true;
3847 } else {
3848 // We're the innermost decl chunk, so must be a function declarator.
3849 assert(D.isFunctionDeclarator())((D.isFunctionDeclarator()) ? static_cast<void> (0) : __assert_fail
("D.isFunctionDeclarator()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3849, __PRETTY_FUNCTION__))
;
3850
3851 // If we're inside a record, we're declaring a method, but it could be
3852 // explicitly or implicitly static.
3853 IsCXXInstanceMethod =
3854 D.isFirstDeclarationOfMember() &&
3855 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3856 !D.isStaticMember();
3857 }
3858 }
3859
3860 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3861 IsCXXInstanceMethod);
3862
3863 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3864 // and AMDGPU targets, hence it cannot be treated as a calling
3865 // convention attribute. This is the simplest place to infer
3866 // calling convention for OpenCL kernels.
3867 if (S.getLangOpts().OpenCL) {
3868 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3869 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3870 CC = CC_OpenCLKernel;
3871 break;
3872 }
3873 }
3874 }
3875
3876 return CC;
3877}
3878
3879namespace {
3880 /// A simple notion of pointer kinds, which matches up with the various
3881 /// pointer declarators.
3882 enum class SimplePointerKind {
3883 Pointer,
3884 BlockPointer,
3885 MemberPointer,
3886 Array,
3887 };
3888} // end anonymous namespace
3889
3890IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3891 switch (nullability) {
3892 case NullabilityKind::NonNull:
3893 if (!Ident__Nonnull)
3894 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3895 return Ident__Nonnull;
3896
3897 case NullabilityKind::Nullable:
3898 if (!Ident__Nullable)
3899 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3900 return Ident__Nullable;
3901
3902 case NullabilityKind::NullableResult:
3903 if (!Ident__Nullable_result)
3904 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3905 return Ident__Nullable_result;
3906
3907 case NullabilityKind::Unspecified:
3908 if (!Ident__Null_unspecified)
3909 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3910 return Ident__Null_unspecified;
3911 }
3912 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3912)
;
3913}
3914
3915/// Retrieve the identifier "NSError".
3916IdentifierInfo *Sema::getNSErrorIdent() {
3917 if (!Ident_NSError)
3918 Ident_NSError = PP.getIdentifierInfo("NSError");
3919
3920 return Ident_NSError;
3921}
3922
3923/// Check whether there is a nullability attribute of any kind in the given
3924/// attribute list.
3925static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3926 for (const ParsedAttr &AL : attrs) {
3927 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3928 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3929 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3930 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3931 return true;
3932 }
3933
3934 return false;
3935}
3936
3937namespace {
3938 /// Describes the kind of a pointer a declarator describes.
3939 enum class PointerDeclaratorKind {
3940 // Not a pointer.
3941 NonPointer,
3942 // Single-level pointer.
3943 SingleLevelPointer,
3944 // Multi-level pointer (of any pointer kind).
3945 MultiLevelPointer,
3946 // CFFooRef*
3947 MaybePointerToCFRef,
3948 // CFErrorRef*
3949 CFErrorRefPointer,
3950 // NSError**
3951 NSErrorPointerPointer,
3952 };
3953
3954 /// Describes a declarator chunk wrapping a pointer that marks inference as
3955 /// unexpected.
3956 // These values must be kept in sync with diagnostics.
3957 enum class PointerWrappingDeclaratorKind {
3958 /// Pointer is top-level.
3959 None = -1,
3960 /// Pointer is an array element.
3961 Array = 0,
3962 /// Pointer is the referent type of a C++ reference.
3963 Reference = 1
3964 };
3965} // end anonymous namespace
3966
3967/// Classify the given declarator, whose type-specified is \c type, based on
3968/// what kind of pointer it refers to.
3969///
3970/// This is used to determine the default nullability.
3971static PointerDeclaratorKind
3972classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3973 PointerWrappingDeclaratorKind &wrappingKind) {
3974 unsigned numNormalPointers = 0;
3975
3976 // For any dependent type, we consider it a non-pointer.
3977 if (type->isDependentType())
3978 return PointerDeclaratorKind::NonPointer;
3979
3980 // Look through the declarator chunks to identify pointers.
3981 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3982 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3983 switch (chunk.Kind) {
3984 case DeclaratorChunk::Array:
3985 if (numNormalPointers == 0)
3986 wrappingKind = PointerWrappingDeclaratorKind::Array;
3987 break;
3988
3989 case DeclaratorChunk::Function:
3990 case DeclaratorChunk::Pipe:
3991 break;
3992
3993 case DeclaratorChunk::BlockPointer:
3994 case DeclaratorChunk::MemberPointer:
3995 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3996 : PointerDeclaratorKind::SingleLevelPointer;
3997
3998 case DeclaratorChunk::Paren:
3999 break;
4000
4001 case DeclaratorChunk::Reference:
4002 if (numNormalPointers == 0)
4003 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4004 break;
4005
4006 case DeclaratorChunk::Pointer:
4007 ++numNormalPointers;
4008 if (numNormalPointers > 2)
4009 return PointerDeclaratorKind::MultiLevelPointer;
4010 break;
4011 }
4012 }
4013
4014 // Then, dig into the type specifier itself.
4015 unsigned numTypeSpecifierPointers = 0;
4016 do {
4017 // Decompose normal pointers.
4018 if (auto ptrType = type->getAs<PointerType>()) {
4019 ++numNormalPointers;
4020
4021 if (numNormalPointers > 2)
4022 return PointerDeclaratorKind::MultiLevelPointer;
4023
4024 type = ptrType->getPointeeType();
4025 ++numTypeSpecifierPointers;
4026 continue;
4027 }
4028
4029 // Decompose block pointers.
4030 if (type->getAs<BlockPointerType>()) {
4031 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4032 : PointerDeclaratorKind::SingleLevelPointer;
4033 }
4034
4035 // Decompose member pointers.
4036 if (type->getAs<MemberPointerType>()) {
4037 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4038 : PointerDeclaratorKind::SingleLevelPointer;
4039 }
4040
4041 // Look at Objective-C object pointers.
4042 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4043 ++numNormalPointers;
4044 ++numTypeSpecifierPointers;
4045
4046 // If this is NSError**, report that.
4047 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4048 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4049 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4050 return PointerDeclaratorKind::NSErrorPointerPointer;
4051 }
4052 }
4053
4054 break;
4055 }
4056
4057 // Look at Objective-C class types.
4058 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4059 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4060 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4061 return PointerDeclaratorKind::NSErrorPointerPointer;
4062 }
4063
4064 break;
4065 }
4066
4067 // If at this point we haven't seen a pointer, we won't see one.
4068 if (numNormalPointers == 0)
4069 return PointerDeclaratorKind::NonPointer;
4070
4071 if (auto recordType = type->getAs<RecordType>()) {
4072 RecordDecl *recordDecl = recordType->getDecl();
4073
4074 // If this is CFErrorRef*, report it as such.
4075 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4076 S.isCFError(recordDecl)) {
4077 return PointerDeclaratorKind::CFErrorRefPointer;
4078 }
4079 break;
4080 }
4081
4082 break;
4083 } while (true);
4084
4085 switch (numNormalPointers) {
4086 case 0:
4087 return PointerDeclaratorKind::NonPointer;
4088
4089 case 1:
4090 return PointerDeclaratorKind::SingleLevelPointer;
4091
4092 case 2:
4093 return PointerDeclaratorKind::MaybePointerToCFRef;
4094
4095 default:
4096 return PointerDeclaratorKind::MultiLevelPointer;
4097 }
4098}
4099
4100bool Sema::isCFError(RecordDecl *RD) {
4101 // If we already know about CFError, test it directly.
4102 if (CFError)
4103 return CFError == RD;
4104
4105 // Check whether this is CFError, which we identify based on its bridge to
4106 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4107 // declared with "objc_bridge_mutable", so look for either one of the two
4108 // attributes.
4109 if (RD->getTagKind() == TTK_Struct) {
4110 IdentifierInfo *bridgedType = nullptr;
4111 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4112 bridgedType = bridgeAttr->getBridgedType();
4113 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4114 bridgedType = bridgeAttr->getBridgedType();
4115
4116 if (bridgedType == getNSErrorIdent()) {
4117 CFError = RD;
4118 return true;
4119 }
4120 }
4121
4122 return false;
4123}
4124
4125static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4126 SourceLocation loc) {
4127 // If we're anywhere in a function, method, or closure context, don't perform
4128 // completeness checks.
4129 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4130 if (ctx->isFunctionOrMethod())
4131 return FileID();
4132
4133 if (ctx->isFileContext())
4134 break;
4135 }
4136
4137 // We only care about the expansion location.
4138 loc = S.SourceMgr.getExpansionLoc(loc);
4139 FileID file = S.SourceMgr.getFileID(loc);
4140 if (file.isInvalid())
4141 return FileID();
4142
4143 // Retrieve file information.
4144 bool invalid = false;
4145 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4146 if (invalid || !sloc.isFile())
4147 return FileID();
4148
4149 // We don't want to perform completeness checks on the main file or in
4150 // system headers.
4151 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4152 if (fileInfo.getIncludeLoc().isInvalid())
4153 return FileID();
4154 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4155 S.Diags.getSuppressSystemWarnings()) {
4156 return FileID();
4157 }
4158
4159 return file;
4160}
4161
4162/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4163/// taking into account whitespace before and after.
4164template <typename DiagBuilderT>
4165static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4166 SourceLocation PointerLoc,
4167 NullabilityKind Nullability) {
4168 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 4168, __PRETTY_FUNCTION__))
;
4169 if (PointerLoc.isMacroID())
4170 return;
4171
4172 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4173 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4174 return;
4175
4176 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4177 if (!NextChar)
4178 return;
4179
4180 SmallString<32> InsertionTextBuf{" "};
4181 InsertionTextBuf += getNullabilitySpelling(Nullability);
4182 InsertionTextBuf += " ";
4183 StringRef InsertionText = InsertionTextBuf.str();
4184
4185 if (isWhitespace(*NextChar)) {
4186 InsertionText = InsertionText.drop_back();
4187 } else if (NextChar[-1] == '[') {
4188 if (NextChar[0] == ']')
4189 InsertionText = InsertionText.drop_back().drop_front();
4190 else
4191 InsertionText = InsertionText.drop_front();
4192 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
4193 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
4194 InsertionText = InsertionText.drop_back().drop_front();
4195 }
4196
4197 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4198}
4199
4200static void emitNullabilityConsistencyWarning(Sema &S,
4201 SimplePointerKind PointerKind,
4202 SourceLocation PointerLoc,
4203 SourceLocation PointerEndLoc) {
4204 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 4204, __PRETTY_FUNCTION__))
;
4205
4206 if (PointerKind == SimplePointerKind::Array) {
4207 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4208 } else {
4209 S.Diag(PointerLoc, diag::warn_nullability_missing)
4210 << static_cast<unsigned>(PointerKind);
4211 }
4212
4213 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4214 if (FixItLoc.isMacroID())
4215 return;
4216
4217 auto addFixIt = [&](NullabilityKind Nullability) {
4218 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4219 Diag << static_cast<unsigned>(Nullability);
4220 Diag << static_cast<unsigned>(PointerKind);
4221 fixItNullability(S, Diag, FixItLoc, Nullability);
4222 };
4223 addFixIt(NullabilityKind::Nullable);
4224 addFixIt(NullabilityKind::NonNull);
4225}
4226
4227/// Complains about missing nullability if the file containing \p pointerLoc
4228/// has other uses of nullability (either the keywords or the \c assume_nonnull
4229/// pragma).
4230///
4231/// If the file has \e not seen other uses of nullability, this particular
4232/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4233static void
4234checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4235 SourceLocation pointerLoc,
4236 SourceLocation pointerEndLoc = SourceLocation()) {
4237 // Determine which file we're performing consistency checking for.
4238 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4239 if (file.isInvalid())
4240 return;
4241
4242 // If we haven't seen any type nullability in this file, we won't warn now
4243 // about anything.
4244 FileNullability &fileNullability = S.NullabilityMap[file];
4245 if (!fileNullability.SawTypeNullability) {
4246 // If this is the first pointer declarator in the file, and the appropriate
4247 // warning is on, record it in case we need to diagnose it retroactively.
4248 diag::kind diagKind;
4249 if (pointerKind == SimplePointerKind::Array)
4250 diagKind = diag::warn_nullability_missing_array;
4251 else
4252 diagKind = diag::warn_nullability_missing;
4253
4254 if (fileNullability.PointerLoc.isInvalid() &&
4255 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4256 fileNullability.PointerLoc = pointerLoc;
4257 fileNullability.PointerEndLoc = pointerEndLoc;
4258 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4259 }
4260
4261 return;
4262 }
4263
4264 // Complain about missing nullability.
4265 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4266}
4267
4268/// Marks that a nullability feature has been used in the file containing
4269/// \p loc.
4270///
4271/// If this file already had pointer types in it that were missing nullability,
4272/// the first such instance is retroactively diagnosed.
4273///
4274/// \sa checkNullabilityConsistency
4275static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4276 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4277 if (file.isInvalid())
4278 return;
4279
4280 FileNullability &fileNullability = S.NullabilityMap[file];
4281 if (fileNullability.SawTypeNullability)
4282 return;
4283 fileNullability.SawTypeNullability = true;
4284
4285 // If we haven't seen any type nullability before, now we have. Retroactively
4286 // diagnose the first unannotated pointer, if there was one.
4287 if (fileNullability.PointerLoc.isInvalid())
4288 return;
4289
4290 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4291 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4292 fileNullability.PointerEndLoc);
4293}
4294
4295/// Returns true if any of the declarator chunks before \p endIndex include a
4296/// level of indirection: array, pointer, reference, or pointer-to-member.
4297///
4298/// Because declarator chunks are stored in outer-to-inner order, testing
4299/// every chunk before \p endIndex is testing all chunks that embed the current
4300/// chunk as part of their type.
4301///
4302/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4303/// end index, in which case all chunks are tested.
4304static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4305 unsigned i = endIndex;
4306 while (i != 0) {
4307 // Walk outwards along the declarator chunks.
4308 --i;
4309 const DeclaratorChunk &DC = D.getTypeObject(i);
4310 switch (DC.Kind) {
4311 case DeclaratorChunk::Paren:
4312 break;
4313 case DeclaratorChunk::Array:
4314 case DeclaratorChunk::Pointer:
4315 case DeclaratorChunk::Reference:
4316 case DeclaratorChunk::MemberPointer:
4317 return true;
4318 case DeclaratorChunk::Function:
4319 case DeclaratorChunk::BlockPointer:
4320 case DeclaratorChunk::Pipe:
4321 // These are invalid anyway, so just ignore.
4322 break;
4323 }
4324 }
4325 return false;
4326}
4327
4328static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4329 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4330 Chunk.Kind == DeclaratorChunk::Array);
4331}
4332
4333template<typename AttrT>
4334static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4335 AL.setUsedAsTypeAttr();
4336 return ::new (Ctx) AttrT(Ctx, AL);
4337}
4338
4339static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4340 NullabilityKind NK) {
4341 switch (NK) {
4342 case NullabilityKind::NonNull:
4343 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4344
4345 case NullabilityKind::Nullable:
4346 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4347
4348 case NullabilityKind::NullableResult:
4349 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4350
4351 case NullabilityKind::Unspecified:
4352 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4353 }
4354 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 4354)
;
4355}
4356
4357// Diagnose whether this is a case with the multiple addr spaces.
4358// Returns true if this is an invalid case.
4359// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4360// by qualifiers for two or more different address spaces."
4361static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4362 LangAS ASNew,
4363 SourceLocation AttrLoc) {
4364 if (ASOld != LangAS::Default) {
4365 if (ASOld != ASNew) {
4366 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4367 return true;
4368 }
4369 // Emit a warning if they are identical; it's likely unintended.
4370 S.Diag(AttrLoc,
4371 diag::warn_attribute_address_multiple_identical_qualifiers);
4372 }
4373 return false;
4374}
4375
4376static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4377 QualType declSpecType,
4378 TypeSourceInfo *TInfo) {
4379 // The TypeSourceInfo that this function returns will not be a null type.
4380 // If there is an error, this function will fill in a dummy type as fallback.
4381 QualType T = declSpecType;
4382 Declarator &D = state.getDeclarator();
4383 Sema &S = state.getSema();
4384 ASTContext &Context = S.Context;
4385 const LangOptions &LangOpts = S.getLangOpts();
4386
4387 // The name we're declaring, if any.
4388 DeclarationName Name;
4389 if (D.getIdentifier())
1
Taking false branch
4390 Name = D.getIdentifier();
4391
4392 // Does this declaration declare a typedef-name?
4393 bool IsTypedefName =
4394 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2
Assuming the condition is false
4395 D.getContext() == DeclaratorContext::AliasDecl ||
3
Assuming the condition is false
4396 D.getContext() == DeclaratorContext::AliasTemplate;
4
Assuming the condition is false
4397
4398 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4399 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4400 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4401 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4402
4403 // If T is 'decltype(auto)', the only declarators we can have are parens
4404 // and at most one function declarator if this is a function declaration.
4405 // If T is a deduced class template specialization type, we can have no
4406 // declarator chunks at all.
4407 if (auto *DT
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
= T->getAs<DeducedType>()) {
5
Assuming the object is not a 'DeducedType'
6
Taking false branch
4408 const AutoType *AT = T->getAs<AutoType>();
4409 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4410 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4411 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4412 unsigned Index = E - I - 1;
4413 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4414 unsigned DiagId = IsClassTemplateDeduction
4415 ? diag::err_deduced_class_template_compound_type
4416 : diag::err_decltype_auto_compound_type;
4417 unsigned DiagKind = 0;
4418 switch (DeclChunk.Kind) {
4419 case DeclaratorChunk::Paren:
4420 // FIXME: Rejecting this is a little silly.
4421 if (IsClassTemplateDeduction) {
4422 DiagKind = 4;
4423 break;
4424 }
4425 continue;
4426 case DeclaratorChunk::Function: {
4427 if (IsClassTemplateDeduction) {
4428 DiagKind = 3;
4429 break;
4430 }
4431 unsigned FnIndex;
4432 if (D.isFunctionDeclarationContext() &&
4433 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4434 continue;
4435 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4436 break;
4437 }
4438 case DeclaratorChunk::Pointer:
4439 case DeclaratorChunk::BlockPointer:
4440 case DeclaratorChunk::MemberPointer:
4441 DiagKind = 0;
4442 break;
4443 case DeclaratorChunk::Reference:
4444 DiagKind = 1;
4445 break;
4446 case DeclaratorChunk::Array:
4447 DiagKind = 2;
4448 break;
4449 case DeclaratorChunk::Pipe:
4450 break;
4451 }
4452
4453 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4454 D.setInvalidType(true);
4455 break;
4456 }
4457 }
4458 }
4459
4460 // Determine whether we should infer _Nonnull on pointer types.
4461 Optional<NullabilityKind> inferNullability;
4462 bool inferNullabilityCS = false;
4463 bool inferNullabilityInnerOnly = false;
4464 bool inferNullabilityInnerOnlyComplete = false;
4465
4466 // Are we in an assume-nonnull region?
4467 bool inAssumeNonNullRegion = false;
4468 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4469 if (assumeNonNullLoc.isValid()) {
7
Taking false branch
4470 inAssumeNonNullRegion = true;
4471 recordNullabilitySeen(S, assumeNonNullLoc);
4472 }
4473
4474 // Whether to complain about missing nullability specifiers or not.
4475 enum {
4476 /// Never complain.
4477 CAMN_No,
4478 /// Complain on the inner pointers (but not the outermost
4479 /// pointer).
4480 CAMN_InnerPointers,
4481 /// Complain about any pointers that don't have nullability
4482 /// specified or inferred.
4483 CAMN_Yes
4484 } complainAboutMissingNullability = CAMN_No;
4485 unsigned NumPointersRemaining = 0;
4486 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4487
4488 if (IsTypedefName
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
) {
8
Taking false branch
4489 // For typedefs, we do not infer any nullability (the default),
4490 // and we only complain about missing nullability specifiers on
4491 // inner pointers.
4492 complainAboutMissingNullability = CAMN_InnerPointers;
4493
4494 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4495 !T->getNullability(S.Context)) {
4496 // Note that we allow but don't require nullability on dependent types.
4497 ++NumPointersRemaining;
4498 }
4499
4500 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4501 DeclaratorChunk &chunk = D.getTypeObject(i);
4502 switch (chunk.Kind) {
4503 case DeclaratorChunk::Array:
4504 case DeclaratorChunk::Function:
4505 case DeclaratorChunk::Pipe:
4506 break;
4507
4508 case DeclaratorChunk::BlockPointer:
4509 case DeclaratorChunk::MemberPointer:
4510 ++NumPointersRemaining;
4511 break;
4512
4513 case DeclaratorChunk::Paren:
4514 case DeclaratorChunk::Reference:
4515 continue;
4516
4517 case DeclaratorChunk::Pointer:
4518 ++NumPointersRemaining;
4519 continue;
4520 }
4521 }
4522 } else {
4523 bool isFunctionOrMethod = false;
4524 switch (auto context = state.getDeclarator().getContext()) {
9
Control jumps to 'case Block:' at line 4607
4525 case DeclaratorContext::ObjCParameter:
4526 case DeclaratorContext::ObjCResult:
4527 case DeclaratorContext::Prototype:
4528 case DeclaratorContext::TrailingReturn:
4529 case DeclaratorContext::TrailingReturnVar:
4530 isFunctionOrMethod = true;
4531 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4532
4533 case DeclaratorContext::Member:
4534 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4535 complainAboutMissingNullability = CAMN_No;
4536 break;
4537 }
4538
4539 // Weak properties are inferred to be nullable.
4540 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4541 inferNullability = NullabilityKind::Nullable;
4542 break;
4543 }
4544
4545 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4546
4547 case DeclaratorContext::File:
4548 case DeclaratorContext::KNRTypeList: {
4549 complainAboutMissingNullability = CAMN_Yes;
4550
4551 // Nullability inference depends on the type and declarator.
4552 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4553 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4554 case PointerDeclaratorKind::NonPointer:
4555 case PointerDeclaratorKind::MultiLevelPointer:
4556 // Cannot infer nullability.
4557 break;
4558
4559 case PointerDeclaratorKind::SingleLevelPointer:
4560 // Infer _Nonnull if we are in an assumes-nonnull region.
4561 if (inAssumeNonNullRegion) {
4562 complainAboutInferringWithinChunk = wrappingKind;
4563 inferNullability = NullabilityKind::NonNull;
4564 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4565 context == DeclaratorContext::ObjCResult);
4566 }
4567 break;
4568
4569 case PointerDeclaratorKind::CFErrorRefPointer:
4570 case PointerDeclaratorKind::NSErrorPointerPointer:
4571 // Within a function or method signature, infer _Nullable at both
4572 // levels.
4573 if (isFunctionOrMethod && inAssumeNonNullRegion)
4574 inferNullability = NullabilityKind::Nullable;
4575 break;
4576
4577 case PointerDeclaratorKind::MaybePointerToCFRef:
4578 if (isFunctionOrMethod) {
4579 // On pointer-to-pointer parameters marked cf_returns_retained or
4580 // cf_returns_not_retained, if the outer pointer is explicit then
4581 // infer the inner pointer as _Nullable.
4582 auto hasCFReturnsAttr =
4583 [](const ParsedAttributesView &AttrList) -> bool {
4584 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4585 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4586 };
4587 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4588 if (hasCFReturnsAttr(D.getAttributes()) ||
4589 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4590 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4591 inferNullability = NullabilityKind::Nullable;
4592 inferNullabilityInnerOnly = true;
4593 }
4594 }
4595 }
4596 break;
4597 }
4598 break;
4599 }
4600
4601 case DeclaratorContext::ConversionId:
4602 complainAboutMissingNullability = CAMN_Yes;
4603 break;
4604
4605 case DeclaratorContext::AliasDecl:
4606 case DeclaratorContext::AliasTemplate:
4607 case DeclaratorContext::Block:
4608 case DeclaratorContext::BlockLiteral:
4609 case DeclaratorContext::Condition:
4610 case DeclaratorContext::CXXCatch:
4611 case DeclaratorContext::CXXNew:
4612 case DeclaratorContext::ForInit:
4613 case DeclaratorContext::SelectionInit:
4614 case DeclaratorContext::LambdaExpr:
4615 case DeclaratorContext::LambdaExprParameter:
4616 case DeclaratorContext::ObjCCatch:
4617 case DeclaratorContext::TemplateParam:
4618 case DeclaratorContext::TemplateArg:
4619 case DeclaratorContext::TemplateTypeArg:
4620 case DeclaratorContext::TypeName:
4621 case DeclaratorContext::FunctionalCast:
4622 case DeclaratorContext::RequiresExpr:
4623 // Don't infer in these contexts.
4624 break;
10
Execution continues on line 4629
4625 }
4626 }
4627
4628 // Local function that returns true if its argument looks like a va_list.
4629 auto isVaList = [&S](QualType T) -> bool {
4630 auto *typedefTy = T->getAs<TypedefType>();
4631 if (!typedefTy)
4632 return false;
4633 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4634 do {
4635 if (typedefTy->getDecl() == vaListTypedef)
4636 return true;
4637 if (auto *name = typedefTy->getDecl()->getIdentifier())
4638 if (name->isStr("va_list"))
4639 return true;
4640 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4641 } while (typedefTy);
4642 return false;
4643 };
4644
4645 // Local function that checks the nullability for a given pointer declarator.
4646 // Returns true if _Nonnull was inferred.
4647 auto inferPointerNullability =
4648 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4649 SourceLocation pointerEndLoc,
4650 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4651 // We've seen a pointer.
4652 if (NumPointersRemaining > 0)
4653 --NumPointersRemaining;
4654
4655 // If a nullability attribute is present, there's nothing to do.
4656 if (hasNullabilityAttr(attrs))
4657 return nullptr;
4658
4659 // If we're supposed to infer nullability, do so now.
4660 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4661 ParsedAttr::Syntax syntax = inferNullabilityCS
4662 ? ParsedAttr::AS_ContextSensitiveKeyword
4663 : ParsedAttr::AS_Keyword;
4664 ParsedAttr *nullabilityAttr = Pool.create(
4665 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4666 nullptr, SourceLocation(), nullptr, 0, syntax);
4667
4668 attrs.addAtEnd(nullabilityAttr);
4669
4670 if (inferNullabilityCS) {
4671 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4672 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4673 }
4674
4675 if (pointerLoc.isValid() &&
4676 complainAboutInferringWithinChunk !=
4677 PointerWrappingDeclaratorKind::None) {
4678 auto Diag =
4679 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4680 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4681 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4682 }
4683
4684 if (inferNullabilityInnerOnly)
4685 inferNullabilityInnerOnlyComplete = true;
4686 return nullabilityAttr;
4687 }
4688
4689 // If we're supposed to complain about missing nullability, do so
4690 // now if it's truly missing.
4691 switch (complainAboutMissingNullability) {
4692 case CAMN_No:
4693 break;
4694
4695 case CAMN_InnerPointers:
4696 if (NumPointersRemaining == 0)
4697 break;
4698 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4699
4700 case CAMN_Yes:
4701 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4702 }
4703 return nullptr;
4704 };
4705
4706 // If the type itself could have nullability but does not, infer pointer
4707 // nullability and perform consistency checking.
4708 if (S.CodeSynthesisContexts.empty()) {
11
Taking false branch
4709 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4710 !T->getNullability(S.Context)) {
4711 if (isVaList(T)) {
4712 // Record that we've seen a pointer, but do nothing else.
4713 if (NumPointersRemaining > 0)
4714 --NumPointersRemaining;
4715 } else {
4716 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4717 if (T->isBlockPointerType())
4718 pointerKind = SimplePointerKind::BlockPointer;
4719 else if (T->isMemberPointerType())
4720 pointerKind = SimplePointerKind::MemberPointer;
4721
4722 if (auto *attr = inferPointerNullability(
4723 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4724 D.getDeclSpec().getEndLoc(),
4725 D.getMutableDeclSpec().getAttributes(),
4726 D.getMutableDeclSpec().getAttributePool())) {
4727 T = state.getAttributedType(
4728 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4729 }
4730 }
4731 }
4732
4733 if (complainAboutMissingNullability == CAMN_Yes &&
4734 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4735 D.isPrototypeContext() &&
4736 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4737 checkNullabilityConsistency(S, SimplePointerKind::Array,
4738 D.getDeclSpec().getTypeSpecTypeLoc());
4739 }
4740 }
4741
4742 bool ExpectNoDerefChunk =
4743 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4744
4745 // Walk the DeclTypeInfo, building the recursive type as we go.
4746 // DeclTypeInfos are ordered from the identifier out, which is
4747 // opposite of what we want :).
4748 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
12
Assuming 'i' is equal to 'e'
13
Loop condition is false. Execution continues on line 5432
4749 unsigned chunkIndex = e - i - 1;
4750 state.setCurrentChunkIndex(chunkIndex);
4751 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4752 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4753 switch (DeclType.Kind) {
4754 case DeclaratorChunk::Paren:
4755 if (i == 0)
4756 warnAboutRedundantParens(S, D, T);
4757 T = S.BuildParenType(T);
4758 break;
4759 case DeclaratorChunk::BlockPointer:
4760 // If blocks are disabled, emit an error.
4761 if (!LangOpts.Blocks)
4762 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4763
4764 // Handle pointer nullability.
4765 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4766 DeclType.EndLoc, DeclType.getAttrs(),
4767 state.getDeclarator().getAttributePool());
4768
4769 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4770 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4771 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4772 // qualified with const.
4773 if (LangOpts.OpenCL)
4774 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4775 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4776 }
4777 break;
4778 case DeclaratorChunk::Pointer:
4779 // Verify that we're not building a pointer to pointer to function with
4780 // exception specification.
4781 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4782 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4783 D.setInvalidType(true);
4784 // Build the type anyway.
4785 }
4786
4787 // Handle pointer nullability
4788 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4789 DeclType.EndLoc, DeclType.getAttrs(),
4790 state.getDeclarator().getAttributePool());
4791
4792 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4793 T = Context.getObjCObjectPointerType(T);
4794 if (DeclType.Ptr.TypeQuals)
4795 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4796 break;
4797 }
4798
4799 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4800 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4801 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4802 if (LangOpts.OpenCL) {
4803 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4804 T->isBlockPointerType()) {
4805 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4806 D.setInvalidType(true);
4807 }
4808 }
4809
4810 T = S.BuildPointerType(T, DeclType.Loc, Name);
4811 if (DeclType.Ptr.TypeQuals)
4812 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4813 break;
4814 case DeclaratorChunk::Reference: {
4815 // Verify that we're not building a reference to pointer to function with
4816 // exception specification.
4817 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4818 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4819 D.setInvalidType(true);
4820 // Build the type anyway.
4821 }
4822 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4823
4824 if (DeclType.Ref.HasRestrict)
4825 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4826 break;
4827 }
4828 case DeclaratorChunk::Array: {
4829 // Verify that we're not building an array of pointers to function with
4830 // exception specification.
4831 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4832 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4833 D.setInvalidType(true);
4834 // Build the type anyway.
4835 }
4836 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4837 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4838 ArrayType::ArraySizeModifier ASM;
4839 if (ATI.isStar)
4840 ASM = ArrayType::Star;
4841 else if (ATI.hasStatic)
4842 ASM = ArrayType::Static;
4843 else
4844 ASM = ArrayType::Normal;
4845 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4846 // FIXME: This check isn't quite right: it allows star in prototypes
4847 // for function definitions, and disallows some edge cases detailed
4848 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4849 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4850 ASM = ArrayType::Normal;
4851 D.setInvalidType(true);
4852 }
4853
4854 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4855 // shall appear only in a declaration of a function parameter with an
4856 // array type, ...
4857 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4858 if (!(D.isPrototypeContext() ||
4859 D.getContext() == DeclaratorContext::KNRTypeList)) {
4860 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4861 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4862 // Remove the 'static' and the type qualifiers.
4863 if (ASM == ArrayType::Static)
4864 ASM = ArrayType::Normal;
4865 ATI.TypeQuals = 0;
4866 D.setInvalidType(true);
4867 }
4868
4869 // C99 6.7.5.2p1: ... and then only in the outermost array type
4870 // derivation.
4871 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4872 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4873 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4874 if (ASM == ArrayType::Static)
4875 ASM = ArrayType::Normal;
4876 ATI.TypeQuals = 0;
4877 D.setInvalidType(true);
4878 }
4879 }
4880 const AutoType *AT = T->getContainedAutoType();
4881 // Allow arrays of auto if we are a generic lambda parameter.
4882 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4883 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
4884 // We've already diagnosed this for decltype(auto).
4885 if (!AT->isDecltypeAuto())
4886 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4887 << getPrintableNameForEntity(Name) << T;
4888 T = QualType();
4889 break;
4890 }
4891
4892 // Array parameters can be marked nullable as well, although it's not
4893 // necessary if they're marked 'static'.
4894 if (complainAboutMissingNullability == CAMN_Yes &&
4895 !hasNullabilityAttr(DeclType.getAttrs()) &&
4896 ASM != ArrayType::Static &&
4897 D.isPrototypeContext() &&
4898 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4899 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4900 }
4901
4902 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4903 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4904 break;
4905 }
4906 case DeclaratorChunk::Function: {
4907 // If the function declarator has a prototype (i.e. it is not () and
4908 // does not have a K&R-style identifier list), then the arguments are part
4909 // of the type, otherwise the argument list is ().
4910 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4911 IsQualifiedFunction =
4912 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4913
4914 // Check for auto functions and trailing return type and adjust the
4915 // return type accordingly.
4916 if (!D.isInvalidType()) {
4917 // trailing-return-type is only required if we're declaring a function,
4918 // and not, for instance, a pointer to a function.
4919 if (D.getDeclSpec().hasAutoTypeSpec() &&
4920 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4921 if (!S.getLangOpts().CPlusPlus14) {
4922 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4923 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4924 ? diag::err_auto_missing_trailing_return
4925 : diag::err_deduced_return_type);
4926 T = Context.IntTy;
4927 D.setInvalidType(true);
4928 } else {
4929 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4930 diag::warn_cxx11_compat_deduced_return_type);
4931 }
4932 } else if (FTI.hasTrailingReturnType()) {
4933 // T must be exactly 'auto' at this point. See CWG issue 681.
4934 if (isa<ParenType>(T)) {
4935 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4936 << T << D.getSourceRange();
4937 D.setInvalidType(true);
4938 } else if (D.getName().getKind() ==
4939 UnqualifiedIdKind::IK_DeductionGuideName) {
4940 if (T != Context.DependentTy) {
4941 S.Diag(D.getDeclSpec().getBeginLoc(),
4942 diag::err_deduction_guide_with_complex_decl)
4943 << D.getSourceRange();
4944 D.setInvalidType(true);
4945 }
4946 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4947 (T.hasQualifiers() || !isa<AutoType>(T) ||
4948 cast<AutoType>(T)->getKeyword() !=
4949 AutoTypeKeyword::Auto ||
4950 cast<AutoType>(T)->isConstrained())) {
4951 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4952 diag::err_trailing_return_without_auto)
4953 << T << D.getDeclSpec().getSourceRange();
4954 D.setInvalidType(true);
4955 }
4956 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4957 if (T.isNull()) {
4958 // An error occurred parsing the trailing return type.
4959 T = Context.IntTy;
4960 D.setInvalidType(true);
4961 } else if (AutoType *Auto = T->getContainedAutoType()) {
4962 // If the trailing return type contains an `auto`, we may need to
4963 // invent a template parameter for it, for cases like
4964 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4965 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4966 if (D.getContext() == DeclaratorContext::Prototype)
4967 InventedParamInfo = &S.InventedParameterInfos.back();
4968 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4969 InventedParamInfo = S.getCurLambda();
4970 if (InventedParamInfo) {
4971 std::tie(T, TInfo) = InventTemplateParameter(
4972 state, T, TInfo, Auto, *InventedParamInfo);
4973 }
4974 }
4975 } else {
4976 // This function type is not the type of the entity being declared,
4977 // so checking the 'auto' is not the responsibility of this chunk.
4978 }
4979 }
4980
4981 // C99 6.7.5.3p1: The return type may not be a function or array type.
4982 // For conversion functions, we'll diagnose this particular error later.
4983 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4984 (D.getName().getKind() !=
4985 UnqualifiedIdKind::IK_ConversionFunctionId)) {
4986 unsigned diagID = diag::err_func_returning_array_function;
4987 // Last processing chunk in block context means this function chunk
4988 // represents the block.
4989 if (chunkIndex == 0 &&
4990 D.getContext() == DeclaratorContext::BlockLiteral)
4991 diagID = diag::err_block_returning_array_function;
4992 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4993 T = Context.IntTy;
4994 D.setInvalidType(true);
4995 }
4996
4997 // Do not allow returning half FP value.
4998 // FIXME: This really should be in BuildFunctionType.
4999 if (T->isHalfType()) {
5000 if (S.getLangOpts().OpenCL) {
5001 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5002 S.getLangOpts())) {
5003 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5004 << T << 0 /*pointer hint*/;
5005 D.setInvalidType(true);
5006 }
5007 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5008 S.Diag(D.getIdentifierLoc(),
5009 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5010 D.setInvalidType(true);
5011 }
5012 }
5013
5014 if (LangOpts.OpenCL) {
5015 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5016 // function.
5017 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5018 T->isPipeType()) {
5019 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5020 << T << 1 /*hint off*/;
5021 D.setInvalidType(true);
5022 }
5023 // OpenCL doesn't support variadic functions and blocks
5024 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5025 // We also allow here any toolchain reserved identifiers.
5026 if (FTI.isVariadic &&
5027 !S.getOpenCLOptions().isAvailableOption(
5028 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5029 !(D.getIdentifier() &&
5030 ((D.getIdentifier()->getName() == "printf" &&
5031 (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
5032 D.getIdentifier()->getName().startswith("__")))) {
5033 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5034 D.setInvalidType(true);
5035 }
5036 }
5037
5038 // Methods cannot return interface types. All ObjC objects are
5039 // passed by reference.
5040 if (T->isObjCObjectType()) {
5041 SourceLocation DiagLoc, FixitLoc;
5042 if (TInfo) {
5043 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5044 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5045 } else {
5046 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5047 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5048 }
5049 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5050 << 0 << T
5051 << FixItHint::CreateInsertion(FixitLoc, "*");
5052
5053 T = Context.getObjCObjectPointerType(T);
5054 if (TInfo) {
5055 TypeLocBuilder TLB;
5056 TLB.pushFullCopy(TInfo->getTypeLoc());
5057 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5058 TLoc.setStarLoc(FixitLoc);
5059 TInfo = TLB.getTypeSourceInfo(Context, T);
5060 }
5061
5062 D.setInvalidType(true);
5063 }
5064
5065 // cv-qualifiers on return types are pointless except when the type is a
5066 // class type in C++.
5067 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5068 !(S.getLangOpts().CPlusPlus &&
5069 (T->isDependentType() || T->isRecordType()))) {
5070 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5071 D.getFunctionDefinitionKind() ==
5072 FunctionDefinitionKind::Definition) {
5073 // [6.9.1/3] qualified void return is invalid on a C
5074 // function definition. Apparently ok on declarations and
5075 // in C++ though (!)
5076 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5077 } else
5078 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5079
5080 // C++2a [dcl.fct]p12:
5081 // A volatile-qualified return type is deprecated
5082 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5083 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5084 }
5085
5086 // Objective-C ARC ownership qualifiers are ignored on the function
5087 // return type (by type canonicalization). Complain if this attribute
5088 // was written here.
5089 if (T.getQualifiers().hasObjCLifetime()) {
5090 SourceLocation AttrLoc;
5091 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5092 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5093 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5094 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5095 AttrLoc = AL.getLoc();
5096 break;
5097 }
5098 }
5099 }
5100 if (AttrLoc.isInvalid()) {
5101 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5102 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5103 AttrLoc = AL.getLoc();
5104 break;
5105 }
5106 }
5107 }
5108
5109 if (AttrLoc.isValid()) {
5110 // The ownership attributes are almost always written via
5111 // the predefined
5112 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5113 if (AttrLoc.isMacroID())
5114 AttrLoc =
5115 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5116
5117 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5118 << T.getQualifiers().getObjCLifetime();
5119 }
5120 }
5121
5122 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5123 // C++ [dcl.fct]p6:
5124 // Types shall not be defined in return or parameter types.
5125 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5126 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5127 << Context.getTypeDeclType(Tag);
5128 }
5129
5130 // Exception specs are not allowed in typedefs. Complain, but add it
5131 // anyway.
5132 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5133 S.Diag(FTI.getExceptionSpecLocBeg(),
5134 diag::err_exception_spec_in_typedef)
5135 << (D.getContext() == DeclaratorContext::AliasDecl ||
5136 D.getContext() == DeclaratorContext::AliasTemplate);
5137
5138 // If we see "T var();" or "T var(T());" at block scope, it is probably
5139 // an attempt to initialize a variable, not a function declaration.
5140 if (FTI.isAmbiguous)
5141 warnAboutAmbiguousFunction(S, D, DeclType, T);
5142
5143 FunctionType::ExtInfo EI(
5144 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5145
5146 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5147 && !LangOpts.OpenCL) {
5148 // Simple void foo(), where the incoming T is the result type.
5149 T = Context.getFunctionNoProtoType(T, EI);
5150 } else {
5151 // We allow a zero-parameter variadic function in C if the
5152 // function is marked with the "overloadable" attribute. Scan
5153 // for this attribute now.
5154 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5155 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
5156 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5157
5158 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5159 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5160 // definition.
5161 S.Diag(FTI.Params[0].IdentLoc,
5162 diag::err_ident_list_in_fn_declaration);
5163 D.setInvalidType(true);
5164 // Recover by creating a K&R-style function type.
5165 T = Context.getFunctionNoProtoType(T, EI);
5166 break;
5167 }
5168
5169 FunctionProtoType::ExtProtoInfo EPI;
5170 EPI.ExtInfo = EI;
5171 EPI.Variadic = FTI.isVariadic;
5172 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5173 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5174 EPI.TypeQuals.addCVRUQualifiers(
5175 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5176 : 0);
5177 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5178 : FTI.RefQualifierIsLValueRef? RQ_LValue
5179 : RQ_RValue;
5180
5181 // Otherwise, we have a function with a parameter list that is
5182 // potentially variadic.
5183 SmallVector<QualType, 16> ParamTys;
5184 ParamTys.reserve(FTI.NumParams);
5185
5186 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5187 ExtParameterInfos(FTI.NumParams);
5188 bool HasAnyInterestingExtParameterInfos = false;
5189
5190 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5191 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5192 QualType ParamTy = Param->getType();
5193 assert(!ParamTy.isNull() && "Couldn't parse type?")((!ParamTy.isNull() && "Couldn't parse type?") ? static_cast
<void> (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5193, __PRETTY_FUNCTION__))
;
5194
5195 // Look for 'void'. void is allowed only as a single parameter to a
5196 // function with no other parameters (C99 6.7.5.3p10). We record
5197 // int(void) as a FunctionProtoType with an empty parameter list.
5198 if (ParamTy->isVoidType()) {
5199 // If this is something like 'float(int, void)', reject it. 'void'
5200 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5201 // have parameters of incomplete type.
5202 if (FTI.NumParams != 1 || FTI.isVariadic) {
5203 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5204 ParamTy = Context.IntTy;
5205 Param->setType(ParamTy);
5206 } else if (FTI.Params[i].Ident) {
5207 // Reject, but continue to parse 'int(void abc)'.
5208 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5209 ParamTy = Context.IntTy;
5210 Param->setType(ParamTy);
5211 } else {
5212 // Reject, but continue to parse 'float(const void)'.
5213 if (ParamTy.hasQualifiers())
5214 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5215
5216 // Do not add 'void' to the list.
5217 break;
5218 }
5219 } else if (ParamTy->isHalfType()) {
5220 // Disallow half FP parameters.
5221 // FIXME: This really should be in BuildFunctionType.
5222 if (S.getLangOpts().OpenCL) {
5223 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5224 S.getLangOpts())) {
5225 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5226 << ParamTy << 0;
5227 D.setInvalidType();
5228 Param->setInvalidDecl();
5229 }
5230 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5231 S.Diag(Param->getLocation(),
5232 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5233 D.setInvalidType();
5234 }
5235 } else if (!FTI.hasPrototype) {
5236 if (ParamTy->isPromotableIntegerType()) {
5237 ParamTy = Context.getPromotedIntegerType(ParamTy);
5238 Param->setKNRPromoted(true);
5239 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5240 if (BTy->getKind() == BuiltinType::Float) {
5241 ParamTy = Context.DoubleTy;
5242 Param->setKNRPromoted(true);
5243 }
5244 }
5245 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5246 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5247 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5248 << ParamTy << 1 /*hint off*/;
5249 D.setInvalidType();
5250 }
5251
5252 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5253 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5254 HasAnyInterestingExtParameterInfos = true;
5255 }
5256
5257 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5258 ExtParameterInfos[i] =
5259 ExtParameterInfos[i].withABI(attr->getABI());
5260 HasAnyInterestingExtParameterInfos = true;
5261 }
5262
5263 if (Param->hasAttr<PassObjectSizeAttr>()) {
5264 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5265 HasAnyInterestingExtParameterInfos = true;
5266 }
5267
5268 if (Param->hasAttr<NoEscapeAttr>()) {
5269 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5270 HasAnyInterestingExtParameterInfos = true;
5271 }
5272
5273 ParamTys.push_back(ParamTy);
5274 }
5275
5276 if (HasAnyInterestingExtParameterInfos) {
5277 EPI.ExtParameterInfos = ExtParameterInfos.data();
5278 checkExtParameterInfos(S, ParamTys, EPI,
5279 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5280 }
5281
5282 SmallVector<QualType, 4> Exceptions;
5283 SmallVector<ParsedType, 2> DynamicExceptions;
5284 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5285 Expr *NoexceptExpr = nullptr;
5286
5287 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5288 // FIXME: It's rather inefficient to have to split into two vectors
5289 // here.
5290 unsigned N = FTI.getNumExceptions();
5291 DynamicExceptions.reserve(N);
5292 DynamicExceptionRanges.reserve(N);
5293 for (unsigned I = 0; I != N; ++I) {
5294 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5295 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5296 }
5297 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5298 NoexceptExpr = FTI.NoexceptExpr;
5299 }
5300
5301 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5302 FTI.getExceptionSpecType(),
5303 DynamicExceptions,
5304 DynamicExceptionRanges,
5305 NoexceptExpr,
5306 Exceptions,
5307 EPI.ExceptionSpec);
5308
5309 // FIXME: Set address space from attrs for C++ mode here.
5310 // OpenCLCPlusPlus: A class member function has an address space.
5311 auto IsClassMember = [&]() {
5312 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5313 state.getDeclarator()
5314 .getCXXScopeSpec()
5315 .getScopeRep()
5316 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5317 state.getDeclarator().getContext() ==
5318 DeclaratorContext::Member ||
5319 state.getDeclarator().getContext() ==
5320 DeclaratorContext::LambdaExpr;
5321 };
5322
5323 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5324 LangAS ASIdx = LangAS::Default;
5325 // Take address space attr if any and mark as invalid to avoid adding
5326 // them later while creating QualType.
5327 if (FTI.MethodQualifiers)
5328 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5329 LangAS ASIdxNew = attr.asOpenCLLangAS();
5330 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5331 attr.getLoc()))
5332 D.setInvalidType(true);
5333 else
5334 ASIdx = ASIdxNew;
5335 }
5336 // If a class member function's address space is not set, set it to
5337 // __generic.
5338 LangAS AS =
5339 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5340 : ASIdx);
5341 EPI.TypeQuals.addAddressSpace(AS);
5342 }
5343 T = Context.getFunctionType(T, ParamTys, EPI);
5344 }
5345 break;
5346 }
5347 case DeclaratorChunk::MemberPointer: {
5348 // The scope spec must refer to a class, or be dependent.
5349 CXXScopeSpec &SS = DeclType.Mem.Scope();
5350 QualType ClsType;
5351
5352 // Handle pointer nullability.
5353 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5354 DeclType.EndLoc, DeclType.getAttrs(),
5355 state.getDeclarator().getAttributePool());
5356
5357 if (SS.isInvalid()) {
5358 // Avoid emitting extra errors if we already errored on the scope.
5359 D.setInvalidType(true);
5360 } else if (S.isDependentScopeSpecifier(SS) ||
5361 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5362 NestedNameSpecifier *NNS = SS.getScopeRep();
5363 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5364 switch (NNS->getKind()) {
5365 case NestedNameSpecifier::Identifier:
5366 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5367 NNS->getAsIdentifier());
5368 break;
5369
5370 case NestedNameSpecifier::Namespace:
5371 case NestedNameSpecifier::NamespaceAlias:
5372 case NestedNameSpecifier::Global:
5373 case NestedNameSpecifier::Super:
5374 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5374)
;
5375
5376 case NestedNameSpecifier::TypeSpec:
5377 case NestedNameSpecifier::TypeSpecWithTemplate:
5378 ClsType = QualType(NNS->getAsType(), 0);
5379 // Note: if the NNS has a prefix and ClsType is a nondependent
5380 // TemplateSpecializationType, then the NNS prefix is NOT included
5381 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5382 // NOTE: in particular, no wrap occurs if ClsType already is an
5383 // Elaborated, DependentName, or DependentTemplateSpecialization.
5384 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5385 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5386 break;
5387 }
5388 } else {
5389 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5390 diag::err_illegal_decl_mempointer_in_nonclass)
5391 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5392 << DeclType.Mem.Scope().getRange();
5393 D.setInvalidType(true);
5394 }
5395
5396 if (!ClsType.isNull())
5397 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5398 D.getIdentifier());
5399 if (T.isNull()) {
5400 T = Context.IntTy;
5401 D.setInvalidType(true);
5402 } else if (DeclType.Mem.TypeQuals) {
5403 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5404 }
5405 break;
5406 }
5407
5408 case DeclaratorChunk::Pipe: {
5409 T = S.BuildReadPipeType(T, DeclType.Loc);
5410 processTypeAttrs(state, T, TAL_DeclSpec,
5411 D.getMutableDeclSpec().getAttributes());
5412 break;
5413 }
5414 }
5415
5416 if (T.isNull()) {
5417 D.setInvalidType(true);
5418 T = Context.IntTy;
5419 }
5420
5421 // See if there are any attributes on this declarator chunk.
5422 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5423
5424 if (DeclType.Kind != DeclaratorChunk::Paren) {
5425 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5426 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5427
5428 ExpectNoDerefChunk = state.didParseNoDeref();
5429 }
5430 }
5431
5432 if (ExpectNoDerefChunk)
14
Assuming 'ExpectNoDerefChunk' is false
15
Taking false branch
5433 S.Diag(state.getDeclarator().getBeginLoc(),
5434 diag::warn_noderef_on_non_pointer_or_array);
5435
5436 // GNU warning -Wstrict-prototypes
5437 // Warn if a function declaration is without a prototype.
5438 // This warning is issued for all kinds of unprototyped function
5439 // declarations (i.e. function type typedef, function pointer etc.)
5440 // C99 6.7.5.3p14:
5441 // The empty list in a function declarator that is not part of a definition
5442 // of that function specifies that no information about the number or types
5443 // of the parameters is supplied.
5444 if (!LangOpts.CPlusPlus &&
16
Assuming field 'CPlusPlus' is not equal to 0
5445 D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) {
5446 bool IsBlock = false;
5447 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5448 switch (DeclType.Kind) {
5449 case DeclaratorChunk::BlockPointer:
5450 IsBlock = true;
5451 break;
5452 case DeclaratorChunk::Function: {
5453 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5454 // We supress the warning when there's no LParen location, as this
5455 // indicates the declaration was an implicit declaration, which gets
5456 // warned about separately via -Wimplicit-function-declaration.
5457 if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5458 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5459 << IsBlock
5460 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5461 IsBlock = false;
5462 break;
5463 }
5464 default:
5465 break;
5466 }
5467 }
5468 }
5469
5470 assert(!T.isNull() && "T must not be null after this point")((!T.isNull() && "T must not be null after this point"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5470, __PRETTY_FUNCTION__))
;
17
'?' condition is true
5471
5472 if (LangOpts.CPlusPlus
17.1
Field 'CPlusPlus' is not equal to 0
17.1
Field 'CPlusPlus' is not equal to 0
17.1
Field 'CPlusPlus' is not equal to 0
17.1
Field 'CPlusPlus' is not equal to 0
17.1
Field 'CPlusPlus' is not equal to 0
17.1
Field 'CPlusPlus' is not equal to 0
&& T->isFunctionType()) {
18
Taking false branch
5473 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5474 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? static_cast<void> (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5474, __PRETTY_FUNCTION__))
;
5475
5476 // C++ 8.3.5p4:
5477 // A cv-qualifier-seq shall only be part of the function type
5478 // for a nonstatic member function, the function type to which a pointer
5479 // to member refers, or the top-level function type of a function typedef
5480 // declaration.
5481 //
5482 // Core issue 547 also allows cv-qualifiers on function types that are
5483 // top-level template type arguments.
5484 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5485 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5486 Kind = DeductionGuide;
5487 else if (!D.getCXXScopeSpec().isSet()) {
5488 if ((D.getContext() == DeclaratorContext::Member ||
5489 D.getContext() == DeclaratorContext::LambdaExpr) &&
5490 !D.getDeclSpec().isFriendSpecified())
5491 Kind = Member;
5492 } else {
5493 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5494 if (!DC || DC->isRecord())
5495 Kind = Member;
5496 }
5497
5498 // C++11 [dcl.fct]p6 (w/DR1417):
5499 // An attempt to specify a function type with a cv-qualifier-seq or a
5500 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5501 // - the function type for a non-static member function,
5502 // - the function type to which a pointer to member refers,
5503 // - the top-level function type of a function typedef declaration or
5504 // alias-declaration,
5505 // - the type-id in the default argument of a type-parameter, or
5506 // - the type-id of a template-argument for a type-parameter
5507 //
5508 // FIXME: Checking this here is insufficient. We accept-invalid on:
5509 //
5510 // template<typename T> struct S { void f(T); };
5511 // S<int() const> s;
5512 //
5513 // ... for instance.
5514 if (IsQualifiedFunction &&
5515 !(Kind == Member &&
5516 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5517 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5518 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5519 SourceLocation Loc = D.getBeginLoc();
5520 SourceRange RemovalRange;
5521 unsigned I;
5522 if (D.isFunctionDeclarator(I)) {
5523 SmallVector<SourceLocation, 4> RemovalLocs;
5524 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5525 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5525, __PRETTY_FUNCTION__))
;
5526
5527 if (Chunk.Fun.hasRefQualifier())
5528 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5529
5530 if (Chunk.Fun.hasMethodTypeQualifiers())
5531 Chunk.Fun.MethodQualifiers->forEachQualifier(
5532 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5533 SourceLocation SL) { RemovalLocs.push_back(SL); });
5534
5535 if (!RemovalLocs.empty()) {
5536 llvm::sort(RemovalLocs,
5537 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5538 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5539 Loc = RemovalLocs.front();
5540 }
5541 }
5542
5543 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5544 << Kind << D.isFunctionDeclarator() << T
5545 << getFunctionQualifiersAsString(FnTy)
5546 << FixItHint::CreateRemoval(RemovalRange);
5547
5548 // Strip the cv-qualifiers and ref-qualifiers from the type.
5549 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5550 EPI.TypeQuals.removeCVRQualifiers();
5551 EPI.RefQualifier = RQ_None;
5552
5553 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5554 EPI);
5555 // Rebuild any parens around the identifier in the function type.
5556 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5557 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5558 break;
5559 T = S.BuildParenType(T);
5560 }
5561 }
5562 }
5563
5564 // Apply any undistributed attributes from the declarator.
5565 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5566
5567 // Diagnose any ignored type attributes.
5568 state.diagnoseIgnoredTypeAttrs(T);
5569
5570 // C++0x [dcl.constexpr]p9:
5571 // A constexpr specifier used in an object declaration declares the object
5572 // as const.
5573 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
19
Assuming the condition is false
5574 T->isObjectType())
5575 T.addConst();
5576
5577 // C++2a [dcl.fct]p4:
5578 // A parameter with volatile-qualified type is deprecated
5579 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
20
Assuming the condition is false
5580 (D.getContext() == DeclaratorContext::Prototype ||
5581 D.getContext() == DeclaratorContext::LambdaExprParameter))
5582 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5583
5584 // If there was an ellipsis in the declarator, the declaration declares a
5585 // parameter pack whose type may be a pack expansion type.
5586 if (D.hasEllipsis()) {
21
Taking false branch
5587 // C++0x [dcl.fct]p13:
5588 // A declarator-id or abstract-declarator containing an ellipsis shall
5589 // only be used in a parameter-declaration. Such a parameter-declaration
5590 // is a parameter pack (14.5.3). [...]
5591 switch (D.getContext()) {
5592 case DeclaratorContext::Prototype:
5593 case DeclaratorContext::LambdaExprParameter:
5594 case DeclaratorContext::RequiresExpr:
5595 // C++0x [dcl.fct]p13:
5596 // [...] When it is part of a parameter-declaration-clause, the
5597 // parameter pack is a function parameter pack (14.5.3). The type T
5598 // of the declarator-id of the function parameter pack shall contain
5599 // a template parameter pack; each template parameter pack in T is
5600 // expanded by the function parameter pack.
5601 //
5602 // We represent function parameter packs as function parameters whose
5603 // type is a pack expansion.
5604 if (!T->containsUnexpandedParameterPack() &&
5605 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5606 S.Diag(D.getEllipsisLoc(),
5607 diag::err_function_parameter_pack_without_parameter_packs)
5608 << T << D.getSourceRange();
5609 D.setEllipsisLoc(SourceLocation());
5610 } else {
5611 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5612 }
5613 break;
5614 case DeclaratorContext::TemplateParam:
5615 // C++0x [temp.param]p15:
5616 // If a template-parameter is a [...] is a parameter-declaration that
5617 // declares a parameter pack (8.3.5), then the template-parameter is a
5618 // template parameter pack (14.5.3).
5619 //
5620 // Note: core issue 778 clarifies that, if there are any unexpanded
5621 // parameter packs in the type of the non-type template parameter, then
5622 // it expands those parameter packs.
5623 if (T->containsUnexpandedParameterPack())
5624 T = Context.getPackExpansionType(T, None);
5625 else
5626 S.Diag(D.getEllipsisLoc(),
5627 LangOpts.CPlusPlus11
5628 ? diag::warn_cxx98_compat_variadic_templates
5629 : diag::ext_variadic_templates);
5630 break;
5631
5632 case DeclaratorContext::File:
5633 case DeclaratorContext::KNRTypeList:
5634 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5635 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5636 case DeclaratorContext::TypeName:
5637 case DeclaratorContext::FunctionalCast:
5638 case DeclaratorContext::CXXNew:
5639 case DeclaratorContext::AliasDecl:
5640 case DeclaratorContext::AliasTemplate:
5641 case DeclaratorContext::Member:
5642 case DeclaratorContext::Block:
5643 case DeclaratorContext::ForInit:
5644 case DeclaratorContext::SelectionInit:
5645 case DeclaratorContext::Condition:
5646 case DeclaratorContext::CXXCatch:
5647 case DeclaratorContext::ObjCCatch:
5648 case DeclaratorContext::BlockLiteral:
5649 case DeclaratorContext::LambdaExpr:
5650 case DeclaratorContext::ConversionId:
5651 case DeclaratorContext::TrailingReturn:
5652 case DeclaratorContext::TrailingReturnVar:
5653 case DeclaratorContext::TemplateArg:
5654 case DeclaratorContext::TemplateTypeArg:
5655 // FIXME: We may want to allow parameter packs in block-literal contexts
5656 // in the future.
5657 S.Diag(D.getEllipsisLoc(),
5658 diag::err_ellipsis_in_declarator_not_parameter);
5659 D.setEllipsisLoc(SourceLocation());
5660 break;
5661 }
5662 }
5663
5664 assert(!T.isNull() && "T must not be null at the end of this function")((!T.isNull() && "T must not be null at the end of this function"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5664, __PRETTY_FUNCTION__))
;
22
'?' condition is true
5665 if (D.isInvalidType())
23
Taking false branch
5666 return Context.getTrivialTypeSourceInfo(T);
5667
5668 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
24
Calling 'GetTypeSourceInfoForDeclarator'
5669}
5670
5671/// GetTypeForDeclarator - Convert the type for the specified
5672/// declarator to Type instances.
5673///
5674/// The result of this call will never be null, but the associated
5675/// type may be a null type if there's an unrecoverable error.
5676TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5677 // Determine the type of the declarator. Not all forms of declarator
5678 // have a type.
5679
5680 TypeProcessingState state(*this, D);
5681
5682 TypeSourceInfo *ReturnTypeInfo = nullptr;
5683 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5684 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5685 inferARCWriteback(state, T);
5686
5687 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5688}
5689
5690static void transferARCOwnershipToDeclSpec(Sema &S,
5691 QualType &declSpecTy,
5692 Qualifiers::ObjCLifetime ownership) {
5693 if (declSpecTy->isObjCRetainableType() &&
5694 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5695 Qualifiers qs;
5696 qs.addObjCLifetime(ownership);
5697 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5698 }
5699}
5700
5701static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5702 Qualifiers::ObjCLifetime ownership,
5703 unsigned chunkIndex) {
5704 Sema &S = state.getSema();
5705 Declarator &D = state.getDeclarator();
5706
5707 // Look for an explicit lifetime attribute.
5708 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5709 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5710 return;
5711
5712 const char *attrStr = nullptr;
5713 switch (ownership) {
5714 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5714)
;
5715 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5716 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5717 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5718 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5719 }
5720
5721 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5722 Arg->Ident = &S.Context.Idents.get(attrStr);
5723 Arg->Loc = SourceLocation();
5724
5725 ArgsUnion Args(Arg);
5726
5727 // If there wasn't one, add one (with an invalid source location
5728 // so that we don't make an AttributedType for it).
5729 ParsedAttr *attr = D.getAttributePool().create(
5730 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5731 /*scope*/ nullptr, SourceLocation(),
5732 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5733 chunk.getAttrs().addAtEnd(attr);
5734 // TODO: mark whether we did this inference?
5735}
5736
5737/// Used for transferring ownership in casts resulting in l-values.
5738static void transferARCOwnership(TypeProcessingState &state,
5739 QualType &declSpecTy,
5740 Qualifiers::ObjCLifetime ownership) {
5741 Sema &S = state.getSema();
5742 Declarator &D = state.getDeclarator();
5743
5744 int inner = -1;
5745 bool hasIndirection = false;
5746 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5747 DeclaratorChunk &chunk = D.getTypeObject(i);
5748 switch (chunk.Kind) {
5749 case DeclaratorChunk::Paren:
5750 // Ignore parens.
5751 break;
5752
5753 case DeclaratorChunk::Array:
5754 case DeclaratorChunk::Reference:
5755 case DeclaratorChunk::Pointer:
5756 if (inner != -1)
5757 hasIndirection = true;
5758 inner = i;
5759 break;
5760
5761 case DeclaratorChunk::BlockPointer:
5762 if (inner != -1)
5763 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5764 return;
5765
5766 case DeclaratorChunk::Function:
5767 case DeclaratorChunk::MemberPointer:
5768 case DeclaratorChunk::Pipe:
5769 return;
5770 }
5771 }
5772
5773 if (inner == -1)
5774 return;
5775
5776 DeclaratorChunk &chunk = D.getTypeObject(inner);
5777 if (chunk.Kind == DeclaratorChunk::Pointer) {
5778 if (declSpecTy->isObjCRetainableType())
5779 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5780 if (declSpecTy->isObjCObjectType() && hasIndirection)
5781 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5782 } else {
5783 assert(chunk.Kind == DeclaratorChunk::Array ||((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5784, __PRETTY_FUNCTION__))
5784 chunk.Kind == DeclaratorChunk::Reference)((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5784, __PRETTY_FUNCTION__))
;
5785 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5786 }
5787}
5788
5789TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5790 TypeProcessingState state(*this, D);
5791
5792 TypeSourceInfo *ReturnTypeInfo = nullptr;
5793 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5794
5795 if (getLangOpts().ObjC) {
5796 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5797 if (ownership != Qualifiers::OCL_None)
5798 transferARCOwnership(state, declSpecTy, ownership);
5799 }
5800
5801 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5802}
5803
5804static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5805 TypeProcessingState &State) {
5806 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5807}
5808
5809namespace {
5810 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5811 Sema &SemaRef;
5812 ASTContext &Context;
5813 TypeProcessingState &State;
5814 const DeclSpec &DS;
5815
5816 public:
5817 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5818 const DeclSpec &DS)
5819 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5820
5821 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5822 Visit(TL.getModifiedLoc());
5823 fillAttributedTypeLoc(TL, State);
5824 }
5825 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5826 Visit(TL.getInnerLoc());
34
Calling 'TypeLocVisitor::Visit'
5827 TL.setExpansionLoc(
5828 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5829 }
5830 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5831 Visit(TL.getUnqualifiedLoc());
5832 }
5833 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5834 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5835 }
5836 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5837 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5838 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5839 // addition field. What we have is good enough for dispay of location
5840 // of 'fixit' on interface name.
5841 TL.setNameEndLoc(DS.getEndLoc());
5842 }
5843 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5844 TypeSourceInfo *RepTInfo = nullptr;
5845 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5846 TL.copy(RepTInfo->getTypeLoc());
5847 }
5848 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5849 TypeSourceInfo *RepTInfo = nullptr;
5850 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
37
Calling 'Sema::GetTypeFromParser'
51
Returning from 'Sema::GetTypeFromParser'
5851 TL.copy(RepTInfo->getTypeLoc());
52
Called C++ object pointer is null
5852 }
5853 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5854 TypeSourceInfo *TInfo = nullptr;
5855 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5856
5857 // If we got no declarator info from previous Sema routines,
5858 // just fill with the typespec loc.
5859 if (!TInfo) {
5860 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5861 return;
5862 }
5863
5864 TypeLoc OldTL = TInfo->getTypeLoc();
5865 if (TInfo->getType()->getAs<ElaboratedType>()) {
5866 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5867 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5868 .castAs<TemplateSpecializationTypeLoc>();
5869 TL.copy(NamedTL);
5870 } else {
5871 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5872 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc
>().getRAngleLoc()) ? static_cast<void> (0) : __assert_fail
("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5872, __PRETTY_FUNCTION__))
;
5873 }
5874
5875 }
5876 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5877 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5877, __PRETTY_FUNCTION__))
;
5878 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5879 TL.setParensRange(DS.getTypeofParensRange());
5880 }
5881 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5882 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((DS.getTypeSpecType() == DeclSpec::TST_typeofType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5882, __PRETTY_FUNCTION__))
;
5883 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5884 TL.setParensRange(DS.getTypeofParensRange());
5885 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5885, __PRETTY_FUNCTION__))
;
5886 TypeSourceInfo *TInfo = nullptr;
5887 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5888 TL.setUnderlyingTInfo(TInfo);
5889 }
5890 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5891 // FIXME: This holds only because we only have one unary transform.
5892 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((DS.getTypeSpecType() == DeclSpec::TST_underlyingType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5892, __PRETTY_FUNCTION__))
;
5893 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5894 TL.setParensRange(DS.getTypeofParensRange());
5895 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5895, __PRETTY_FUNCTION__))
;
5896 TypeSourceInfo *TInfo = nullptr;
5897 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5898 TL.setUnderlyingTInfo(TInfo);
5899 }
5900 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5901 // By default, use the source location of the type specifier.
5902 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5903 if (TL.needsExtraLocalData()) {
5904 // Set info for the written builtin specifiers.
5905 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5906 // Try to have a meaningful source location.
5907 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5908 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5909 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5910 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5911 }
5912 }
5913 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5914 ElaboratedTypeKeyword Keyword
5915 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5916 if (DS.getTypeSpecType() == TST_typename) {
5917 TypeSourceInfo *TInfo = nullptr;
5918 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5919 if (TInfo) {
5920 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5921 return;
5922 }
5923 }
5924 TL.setElaboratedKeywordLoc(Keyword != ETK_None
5925 ? DS.getTypeSpecTypeLoc()
5926 : SourceLocation());
5927 const CXXScopeSpec& SS = DS.getTypeSpecScope();
5928 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5929 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5930 }
5931 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5932 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5932, __PRETTY_FUNCTION__))
;
5933 TypeSourceInfo *TInfo = nullptr;
5934 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5935 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5935, __PRETTY_FUNCTION__))
;
5936 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5937 }
5938 void VisitDependentTemplateSpecializationTypeLoc(
5939 DependentTemplateSpecializationTypeLoc TL) {
5940 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5940, __PRETTY_FUNCTION__))
;
5941 TypeSourceInfo *TInfo = nullptr;
5942 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5943 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5943, __PRETTY_FUNCTION__))
;
5944 TL.copy(
5945 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5946 }
5947 void VisitAutoTypeLoc(AutoTypeLoc TL) {
5948 assert(DS.getTypeSpecType() == TST_auto ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5951, __PRETTY_FUNCTION__))
5949 DS.getTypeSpecType() == TST_decltype_auto ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5951, __PRETTY_FUNCTION__))
5950 DS.getTypeSpecType() == TST_auto_type ||((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5951, __PRETTY_FUNCTION__))
5951 DS.getTypeSpecType() == TST_unspecified)((DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() ==
TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type ||
DS.getTypeSpecType() == TST_unspecified) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5951, __PRETTY_FUNCTION__))
;
5952 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5953 if (!DS.isConstrainedAuto())
5954 return;
5955 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
5956 if (!TemplateId)
5957 return;
5958 if (DS.getTypeSpecScope().isNotEmpty())
5959 TL.setNestedNameSpecifierLoc(
5960 DS.getTypeSpecScope().getWithLocInContext(Context));
5961 else
5962 TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
5963 TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
5964 TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
5965 TL.setFoundDecl(nullptr);
5966 TL.setLAngleLoc(TemplateId->LAngleLoc);
5967 TL.setRAngleLoc(TemplateId->RAngleLoc);
5968 if (TemplateId->NumArgs == 0)
5969 return;
5970 TemplateArgumentListInfo TemplateArgsInfo;
5971 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5972 TemplateId->NumArgs);
5973 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
5974 for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
5975 TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
5976 }
5977 void VisitTagTypeLoc(TagTypeLoc TL) {
5978 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5979 }
5980 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5981 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5982 // or an _Atomic qualifier.
5983 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5984 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5985 TL.setParensRange(DS.getTypeofParensRange());
5986
5987 TypeSourceInfo *TInfo = nullptr;
5988 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5989 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5989, __PRETTY_FUNCTION__))
;
5990 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5991 } else {
5992 TL.setKWLoc(DS.getAtomicSpecLoc());
5993 // No parens, to indicate this was spelled as an _Atomic qualifier.
5994 TL.setParensRange(SourceRange());
5995 Visit(TL.getValueLoc());
5996 }
5997 }
5998
5999 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6000 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6001
6002 TypeSourceInfo *TInfo = nullptr;
6003 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6004 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6005 }
6006
6007 void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6008 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6009 }
6010
6011 void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) {
6012 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6013 }
6014
6015 void VisitTypeLoc(TypeLoc TL) {
6016 // FIXME: add other typespec types and change this to an assert.
6017 TL.initialize(Context, DS.getTypeSpecTypeLoc());
6018 }
6019 };
6020
6021 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6022 ASTContext &Context;
6023 TypeProcessingState &State;
6024 const DeclaratorChunk &Chunk;
6025
6026 public:
6027 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6028 const DeclaratorChunk &Chunk)
6029 : Context(Context), State(State), Chunk(Chunk) {}
6030
6031 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6032 llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6032)
;
6033 }
6034 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6035 llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6035)
;
6036 }
6037
6038 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6039 fillAttributedTypeLoc(TL, State);
6040 }
6041 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6042 // nothing
6043 }
6044 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6045 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((Chunk.Kind == DeclaratorChunk::BlockPointer) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6045, __PRETTY_FUNCTION__))
;
6046 TL.setCaretLoc(Chunk.Loc);
6047 }
6048 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6049 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6049, __PRETTY_FUNCTION__))
;
6050 TL.setStarLoc(Chunk.Loc);
6051 }
6052 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6053 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6053, __PRETTY_FUNCTION__))
;
6054 TL.setStarLoc(Chunk.Loc);
6055 }
6056 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6057 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((Chunk.Kind == DeclaratorChunk::MemberPointer) ? static_cast
<void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6057, __PRETTY_FUNCTION__))
;
6058 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6059 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6060
6061 const Type* ClsTy = TL.getClass();
6062 QualType ClsQT = QualType(ClsTy, 0);
6063 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6064 // Now copy source location info into the type loc component.
6065 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6066 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6067 case NestedNameSpecifier::Identifier:
6068 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc"
) ? static_cast<void> (0) : __assert_fail ("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6068, __PRETTY_FUNCTION__))
;
6069 {
6070 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6071 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6072 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6073 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6074 }
6075 break;
6076
6077 case NestedNameSpecifier::TypeSpec:
6078 case NestedNameSpecifier::TypeSpecWithTemplate:
6079 if (isa<ElaboratedType>(ClsTy)) {
6080 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6081 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6082 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6083 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6084 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6085 } else {
6086 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6087 }
6088 break;
6089
6090 case NestedNameSpecifier::Namespace:
6091 case NestedNameSpecifier::NamespaceAlias:
6092 case NestedNameSpecifier::Global:
6093 case NestedNameSpecifier::Super:
6094 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6094)
;
6095 }
6096
6097 // Finally fill in MemberPointerLocInfo fields.
6098 TL.setStarLoc(Chunk.Mem.StarLoc);
6099 TL.setClassTInfo(ClsTInfo);
6100 }
6101 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6102 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6102, __PRETTY_FUNCTION__))
;
6103 // 'Amp' is misleading: this might have been originally
6104 /// spelled with AmpAmp.
6105 TL.setAmpLoc(Chunk.Loc);
6106 }
6107 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6108 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6108, __PRETTY_FUNCTION__))
;
6109 assert(!Chunk.Ref.LValueRef)((!Chunk.Ref.LValueRef) ? static_cast<void> (0) : __assert_fail
("!Chunk.Ref.LValueRef", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6109, __PRETTY_FUNCTION__))
;
6110 TL.setAmpAmpLoc(Chunk.Loc);
6111 }
6112 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6113 assert(Chunk.Kind == DeclaratorChunk::Array)((Chunk.Kind == DeclaratorChunk::Array) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6113, __PRETTY_FUNCTION__))
;
6114 TL.setLBracketLoc(Chunk.Loc);
6115 TL.setRBracketLoc(Chunk.EndLoc);
6116 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6117 }
6118 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6119 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6119, __PRETTY_FUNCTION__))
;
6120 TL.setLocalRangeBegin(Chunk.Loc);
6121 TL.setLocalRangeEnd(Chunk.EndLoc);
6122
6123 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6124 TL.setLParenLoc(FTI.getLParenLoc());
6125 TL.setRParenLoc(FTI.getRParenLoc());
6126 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6127 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6128 TL.setParam(tpi++, Param);
6129 }
6130 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6131 }
6132 void VisitParenTypeLoc(ParenTypeLoc TL) {
6133 assert(Chunk.Kind == DeclaratorChunk::Paren)((Chunk.Kind == DeclaratorChunk::Paren) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6133, __PRETTY_FUNCTION__))
;
6134 TL.setLParenLoc(Chunk.Loc);
6135 TL.setRParenLoc(Chunk.EndLoc);
6136 }
6137 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6138 assert(Chunk.Kind == DeclaratorChunk::Pipe)((Chunk.Kind == DeclaratorChunk::Pipe) ? static_cast<void>
(0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6138, __PRETTY_FUNCTION__))
;
6139 TL.setKWLoc(Chunk.Loc);
6140 }
6141 void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6142 TL.setNameLoc(Chunk.Loc);
6143 }
6144 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6145 TL.setExpansionLoc(Chunk.Loc);
6146 }
6147 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6148 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6149 TL.setNameLoc(Chunk.Loc);
6150 }
6151 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6152 TL.setNameLoc(Chunk.Loc);
6153 }
6154 void
6155 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6156 TL.setNameLoc(Chunk.Loc);
6157 }
6158
6159 void VisitTypeLoc(TypeLoc TL) {
6160 llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6160)
;
6161 }
6162 };
6163} // end anonymous namespace
6164
6165static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6166 SourceLocation Loc;
6167 switch (Chunk.Kind) {
6168 case DeclaratorChunk::Function:
6169 case DeclaratorChunk::Array:
6170 case DeclaratorChunk::Paren:
6171 case DeclaratorChunk::Pipe:
6172 llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6172)
;
6173
6174 case DeclaratorChunk::Pointer:
6175 Loc = Chunk.Ptr.AtomicQualLoc;
6176 break;
6177
6178 case DeclaratorChunk::BlockPointer:
6179 case DeclaratorChunk::Reference:
6180 case DeclaratorChunk::MemberPointer:
6181 // FIXME: Provide a source location for the _Atomic keyword.
6182 break;
6183 }
6184
6185 ATL.setKWLoc(Loc);
6186 ATL.setParensRange(SourceRange());
6187}
6188
6189static void
6190fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6191 const ParsedAttributesView &Attrs) {
6192 for (const ParsedAttr &AL : Attrs) {
6193 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6194 DASTL.setAttrNameLoc(AL.getLoc());
6195 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6196 DASTL.setAttrOperandParensRange(SourceRange());
6197 return;
6198 }
6199 }
6200
6201 llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6202)
6202 "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6202)
;
6203}
6204
6205static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6206 const ParsedAttributesView &Attrs) {
6207 for (const ParsedAttr &AL : Attrs) {
6208 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6209 MTL.setAttrNameLoc(AL.getLoc());
6210 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6211 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6212 MTL.setAttrOperandParensRange(SourceRange());
6213 return;
6214 }
6215 }
6216
6217 llvm_unreachable("no matrix_type attribute found at the expected location!")::llvm::llvm_unreachable_internal("no matrix_type attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6217)
;
6218}
6219
6220/// Create and instantiate a TypeSourceInfo with type source information.
6221///
6222/// \param T QualType referring to the type as written in source code.
6223///
6224/// \param ReturnTypeInfo For declarators whose return type does not show
6225/// up in the normal place in the declaration specifiers (such as a C++
6226/// conversion function), this pointer will refer to a type source information
6227/// for that return type.
6228static TypeSourceInfo *
6229GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6230 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6231 Sema &S = State.getSema();
6232 Declarator &D = State.getDeclarator();
6233
6234 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6235 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6236
6237 // Handle parameter packs whose type is a pack expansion.
6238 if (isa<PackExpansionType>(T)) {
25
Assuming 'T' is not a 'PackExpansionType'
26
Taking false branch
6239 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6240 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6241 }
6242
6243 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
27
Assuming 'i' is equal to 'e'
28
Loop condition is false. Execution continues on line 6281
6244 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6245 // declarator chunk.
6246 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6247 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6248 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6249 }
6250
6251 while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
6252 TL.setExpansionLoc(
6253 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6254 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6255 }
6256
6257 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
6258 fillAttributedTypeLoc(TL, State);
6259 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6260 }
6261
6262 while (DependentAddressSpaceTypeLoc TL =
6263 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
6264 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6265 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6266 }
6267
6268 if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>())
6269 fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs());
6270
6271 // FIXME: Ordering here?
6272 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
6273 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6274
6275 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6276 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6277 }
6278
6279 // If we have different source information for the return type, use
6280 // that. This really only applies to C++ conversion functions.
6281 if (ReturnTypeInfo) {
29
Assuming 'ReturnTypeInfo' is null
30
Taking false branch
6282 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6283 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((TL.getFullDataSize() == CurrTL.getFullDataSize()) ? static_cast
<void> (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6283, __PRETTY_FUNCTION__))
;
6284 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6285 } else {
6286 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
31
Calling 'TypeLocVisitor::Visit'
6287 }
6288
6289 return TInfo;
6290}
6291
6292/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6293ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6294 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6295 // and Sema during declaration parsing. Try deallocating/caching them when
6296 // it's appropriate, instead of allocating them and keeping them around.
6297 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6298 TypeAlignment);
6299 new (LocT) LocInfoType(T, TInfo);
6300 assert(LocT->getTypeClass() != T->getTypeClass() &&((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6301, __PRETTY_FUNCTION__))
6301 "LocInfoType's TypeClass conflicts with an existing Type class")((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6301, __PRETTY_FUNCTION__))
;
6302 return ParsedType::make(QualType(LocT, 0));
6303}
6304
6305void LocInfoType::getAsStringInternal(std::string &Str,
6306 const PrintingPolicy &Policy) const {
6307 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6309)
6308 " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6309)
6309 " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6309)
;
6310}
6311
6312TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6313 // C99 6.7.6: Type names have no identifier. This is already validated by
6314 // the parser.
6315 assert(D.getIdentifier() == nullptr &&((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6316, __PRETTY_FUNCTION__))
6316 "Type name should have no identifier!")((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6316, __PRETTY_FUNCTION__))
;
6317
6318 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6319 QualType T = TInfo->getType();
6320 if (D.isInvalidType())
6321 return true;
6322
6323 // Make sure there are no unused decl attributes on the declarator.
6324 // We don't want to do this for ObjC parameters because we're going
6325 // to apply them to the actual parameter declaration.
6326 // Likewise, we don't want to do this for alias declarations, because
6327 // we are actually going to build a declaration from this eventually.
6328 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6329 D.getContext() != DeclaratorContext::AliasDecl &&
6330 D.getContext() != DeclaratorContext::AliasTemplate)
6331 checkUnusedDeclAttributes(D);
6332
6333 if (getLangOpts().CPlusPlus) {
6334 // Check that there are no default arguments (C++ only).
6335 CheckExtraCXXDefaultArguments(D);
6336 }
6337
6338 return CreateParsedType(T, TInfo);
6339}
6340
6341ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6342 QualType T = Context.getObjCInstanceType();
6343 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6344 return CreateParsedType(T, TInfo);
6345}
6346
6347//===----------------------------------------------------------------------===//
6348// Type Attribute Processing
6349//===----------------------------------------------------------------------===//
6350
6351/// Build an AddressSpace index from a constant expression and diagnose any
6352/// errors related to invalid address_spaces. Returns true on successfully
6353/// building an AddressSpace index.
6354static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6355 const Expr *AddrSpace,
6356 SourceLocation AttrLoc) {
6357 if (!AddrSpace->isValueDependent()) {
6358 Optional<llvm::APSInt> OptAddrSpace =
6359 AddrSpace->getIntegerConstantExpr(S.Context);
6360 if (!OptAddrSpace) {
6361 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6362 << "'address_space'" << AANT_ArgumentIntegerConstant
6363 << AddrSpace->getSourceRange();
6364 return false;
6365 }
6366 llvm::APSInt &addrSpace = *OptAddrSpace;
6367
6368 // Bounds checking.
6369 if (addrSpace.isSigned()) {
6370 if (addrSpace.isNegative()) {
6371 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6372 << AddrSpace->getSourceRange();
6373 return false;
6374 }
6375 addrSpace.setIsSigned(false);
6376 }
6377
6378 llvm::APSInt max(addrSpace.getBitWidth());
6379 max =
6380 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6381 if (addrSpace > max) {
6382 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6383 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6384 return false;
6385 }
6386
6387 ASIdx =
6388 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6389 return true;
6390 }
6391
6392 // Default value for DependentAddressSpaceTypes
6393 ASIdx = LangAS::Default;
6394 return true;
6395}
6396
6397/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6398/// is uninstantiated. If instantiated it will apply the appropriate address
6399/// space to the type. This function allows dependent template variables to be
6400/// used in conjunction with the address_space attribute
6401QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6402 SourceLocation AttrLoc) {
6403 if (!AddrSpace->isValueDependent()) {
6404 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6405 AttrLoc))
6406 return QualType();
6407
6408 return Context.getAddrSpaceQualType(T, ASIdx);
6409 }
6410
6411 // A check with similar intentions as checking if a type already has an
6412 // address space except for on a dependent types, basically if the
6413 // current type is already a DependentAddressSpaceType then its already
6414 // lined up to have another address space on it and we can't have
6415 // multiple address spaces on the one pointer indirection
6416 if (T->getAs<DependentAddressSpaceType>()) {
6417 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6418 return QualType();
6419 }
6420
6421 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6422}
6423
6424QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6425 SourceLocation AttrLoc) {
6426 LangAS ASIdx;
6427 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6428 return QualType();
6429 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6430}
6431
6432/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6433/// specified type. The attribute contains 1 argument, the id of the address
6434/// space for the type.
6435static void HandleAddressSpaceTypeAttribute(QualType &Type,
6436 const ParsedAttr &Attr,
6437 TypeProcessingState &State) {
6438 Sema &S = State.getSema();
6439
6440 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6441 // qualified by an address-space qualifier."
6442 if (Type->isFunctionType()) {
6443 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6444 Attr.setInvalid();
6445 return;
6446 }
6447
6448 LangAS ASIdx;
6449 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6450
6451 // Check the attribute arguments.
6452 if (Attr.getNumArgs() != 1) {
6453 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6454 << 1;
6455 Attr.setInvalid();
6456 return;
6457 }
6458
6459 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6460 LangAS ASIdx;
6461 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6462 Attr.setInvalid();
6463 return;
6464 }
6465
6466 ASTContext &Ctx = S.Context;
6467 auto *ASAttr =
6468 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6469
6470 // If the expression is not value dependent (not templated), then we can
6471 // apply the address space qualifiers just to the equivalent type.
6472 // Otherwise, we make an AttributedType with the modified and equivalent
6473 // type the same, and wrap it in a DependentAddressSpaceType. When this
6474 // dependent type is resolved, the qualifier is added to the equivalent type
6475 // later.
6476 QualType T;
6477 if (!ASArgExpr->isValueDependent()) {
6478 QualType EquivType =
6479 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6480 if (EquivType.isNull()) {
6481 Attr.setInvalid();
6482 return;
6483 }
6484 T = State.getAttributedType(ASAttr, Type, EquivType);
6485 } else {
6486 T = State.getAttributedType(ASAttr, Type, Type);
6487 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6488 }
6489
6490 if (!T.isNull())
6491 Type = T;
6492 else
6493 Attr.setInvalid();
6494 } else {
6495 // The keyword-based type attributes imply which address space to use.
6496 ASIdx = Attr.asOpenCLLangAS();
6497 if (ASIdx == LangAS::Default)
6498 llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6498)
;
6499
6500 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6501 Attr.getLoc())) {
6502 Attr.setInvalid();
6503 return;
6504 }
6505
6506 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6507 }
6508}
6509
6510/// handleObjCOwnershipTypeAttr - Process an objc_ownership
6511/// attribute on the specified type.
6512///
6513/// Returns 'true' if the attribute was handled.
6514static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6515 ParsedAttr &attr, QualType &type) {
6516 bool NonObjCPointer = false;
6517
6518 if (!type->isDependentType() && !type->isUndeducedType()) {
6519 if (const PointerType *ptr = type->getAs<PointerType>()) {
6520 QualType pointee = ptr->getPointeeType();
6521 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6522 return false;
6523 // It is important not to lose the source info that there was an attribute
6524 // applied to non-objc pointer. We will create an attributed type but
6525 // its type will be the same as the original type.
6526 NonObjCPointer = true;
6527 } else if (!type->isObjCRetainableType()) {
6528 return false;
6529 }
6530
6531 // Don't accept an ownership attribute in the declspec if it would
6532 // just be the return type of a block pointer.
6533 if (state.isProcessingDeclSpec()) {
6534 Declarator &D = state.getDeclarator();
6535 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6536 /*onlyBlockPointers=*/true))
6537 return false;
6538 }
6539 }
6540
6541 Sema &S = state.getSema();
6542 SourceLocation AttrLoc = attr.getLoc();
6543 if (AttrLoc.isMacroID())
6544 AttrLoc =
6545 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6546
6547 if (!attr.isArgIdent(0)) {
6548 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6549 << AANT_ArgumentString;
6550 attr.setInvalid();
6551 return true;
6552 }
6553
6554 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6555 Qualifiers::ObjCLifetime lifetime;
6556 if (II->isStr("none"))
6557 lifetime = Qualifiers::OCL_ExplicitNone;
6558 else if (II->isStr("strong"))
6559 lifetime = Qualifiers::OCL_Strong;
6560 else if (II->isStr("weak"))
6561 lifetime = Qualifiers::OCL_Weak;
6562 else if (II->isStr("autoreleasing"))
6563 lifetime = Qualifiers::OCL_Autoreleasing;
6564 else {
6565 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6566 attr.setInvalid();
6567 return true;
6568 }
6569
6570 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6571 // outside of ARC mode.
6572 if (!S.getLangOpts().ObjCAutoRefCount &&
6573 lifetime != Qualifiers::OCL_Weak &&
6574 lifetime != Qualifiers::OCL_ExplicitNone) {
6575 return true;
6576 }
6577
6578 SplitQualType underlyingType = type.split();
6579
6580 // Check for redundant/conflicting ownership qualifiers.
6581 if (Qualifiers::ObjCLifetime previousLifetime
6582 = type.getQualifiers().getObjCLifetime()) {
6583 // If it's written directly, that's an error.
6584 if (S.Context.hasDirectOwnershipQualifier(type)) {
6585 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6586 << type;
6587 return true;
6588 }
6589
6590 // Otherwise, if the qualifiers actually conflict, pull sugar off
6591 // and remove the ObjCLifetime qualifiers.
6592 if (previousLifetime != lifetime) {
6593 // It's possible to have multiple local ObjCLifetime qualifiers. We
6594 // can't stop after we reach a type that is directly qualified.
6595 const Type *prevTy = nullptr;
6596 while (!prevTy || prevTy != underlyingType.Ty) {
6597 prevTy = underlyingType.Ty;
6598 underlyingType = underlyingType.getSingleStepDesugaredType();
6599 }
6600 underlyingType.Quals.removeObjCLifetime();
6601 }
6602 }
6603
6604 underlyingType.Quals.addObjCLifetime(lifetime);
6605
6606 if (NonObjCPointer) {
6607 StringRef name = attr.getAttrName()->getName();
6608 switch (lifetime) {
6609 case Qualifiers::OCL_None:
6610 case Qualifiers::OCL_ExplicitNone:
6611 break;
6612 case Qualifiers::OCL_Strong: name = "__strong"; break;
6613 case Qualifiers::OCL_Weak: name = "__weak"; break;
6614 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6615 }
6616 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6617 << TDS_ObjCObjOrBlock << type;
6618 }
6619
6620 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6621 // because having both 'T' and '__unsafe_unretained T' exist in the type
6622 // system causes unfortunate widespread consistency problems. (For example,
6623 // they're not considered compatible types, and we mangle them identicially
6624 // as template arguments.) These problems are all individually fixable,
6625 // but it's easier to just not add the qualifier and instead sniff it out
6626 // in specific places using isObjCInertUnsafeUnretainedType().
6627 //
6628 // Doing this does means we miss some trivial consistency checks that
6629 // would've triggered in ARC, but that's better than trying to solve all
6630 // the coexistence problems with __unsafe_unretained.
6631 if (!S.getLangOpts().ObjCAutoRefCount &&
6632 lifetime == Qualifiers::OCL_ExplicitNone) {
6633 type = state.getAttributedType(
6634 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6635 type, type);
6636 return true;
6637 }
6638
6639 QualType origType = type;
6640 if (!NonObjCPointer)
6641 type = S.Context.getQualifiedType(underlyingType);
6642
6643 // If we have a valid source location for the attribute, use an
6644 // AttributedType instead.
6645 if (AttrLoc.isValid()) {
6646 type = state.getAttributedType(::new (S.Context)
6647 ObjCOwnershipAttr(S.Context, attr, II),
6648 origType, type);
6649 }
6650
6651 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6652 unsigned diagnostic, QualType type) {
6653 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6654 S.DelayedDiagnostics.add(
6655 sema::DelayedDiagnostic::makeForbiddenType(
6656 S.getSourceManager().getExpansionLoc(loc),
6657 diagnostic, type, /*ignored*/ 0));
6658 } else {
6659 S.Diag(loc, diagnostic);
6660 }
6661 };
6662
6663 // Sometimes, __weak isn't allowed.
6664 if (lifetime == Qualifiers::OCL_Weak &&
6665 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6666
6667 // Use a specialized diagnostic if the runtime just doesn't support them.
6668 unsigned diagnostic =
6669 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6670 : diag::err_arc_weak_no_runtime);
6671
6672 // In any case, delay the diagnostic until we know what we're parsing.
6673 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6674
6675 attr.setInvalid();
6676 return true;
6677 }
6678
6679 // Forbid __weak for class objects marked as
6680 // objc_arc_weak_reference_unavailable
6681 if (lifetime == Qualifiers::OCL_Weak) {
6682 if (const ObjCObjectPointerType *ObjT =
6683 type->getAs<ObjCObjectPointerType>()) {
6684 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6685 if (Class->isArcWeakrefUnavailable()) {
6686 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6687 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6688 diag::note_class_declared);
6689 }
6690 }
6691 }
6692 }
6693
6694 return true;
6695}
6696
6697/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6698/// attribute on the specified type. Returns true to indicate that
6699/// the attribute was handled, false to indicate that the type does
6700/// not permit the attribute.
6701static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6702 QualType &type) {
6703 Sema &S = state.getSema();
6704
6705 // Delay if this isn't some kind of pointer.
6706 if (!type->isPointerType() &&
6707 !type->isObjCObjectPointerType() &&
6708 !type->isBlockPointerType())
6709 return false;
6710
6711 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6712 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6713 attr.setInvalid();
6714 return true;
6715 }
6716
6717 // Check the attribute arguments.
6718 if (!attr.isArgIdent(0)) {
6719 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6720 << attr << AANT_ArgumentString;
6721 attr.setInvalid();
6722 return true;
6723 }
6724 Qualifiers::GC GCAttr;
6725 if (attr.getNumArgs() > 1) {
6726 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6727 << 1;
6728 attr.setInvalid();
6729 return true;
6730 }
6731
6732 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6733 if (II->isStr("weak"))
6734 GCAttr = Qualifiers::Weak;
6735 else if (II->isStr("strong"))
6736 GCAttr = Qualifiers::Strong;
6737 else {
6738 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6739 << attr << II;
6740 attr.setInvalid();
6741 return true;
6742 }
6743
6744 QualType origType = type;
6745 type = S.Context.getObjCGCQualType(origType, GCAttr);
6746
6747 // Make an attributed type to preserve the source information.
6748 if (attr.getLoc().isValid())
6749 type = state.getAttributedType(
6750 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6751
6752 return true;
6753}
6754
6755namespace {
6756 /// A helper class to unwrap a type down to a function for the
6757 /// purposes of applying attributes there.
6758 ///
6759 /// Use:
6760 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6761 /// if (unwrapped.isFunctionType()) {
6762 /// const FunctionType *fn = unwrapped.get();
6763 /// // change fn somehow
6764 /// T = unwrapped.wrap(fn);
6765 /// }
6766 struct FunctionTypeUnwrapper {
6767 enum WrapKind {
6768 Desugar,
6769 Attributed,
6770 Parens,
6771 Array,
6772 Pointer,
6773 BlockPointer,
6774 Reference,
6775 MemberPointer,
6776 MacroQualified,
6777 };
6778
6779 QualType Original;
6780 const FunctionType *Fn;
6781 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6782
6783 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6784 while (true) {
6785 const Type *Ty = T.getTypePtr();
6786 if (isa<FunctionType>(Ty)) {
6787 Fn = cast<FunctionType>(Ty);
6788 return;
6789 } else if (isa<ParenType>(Ty)) {
6790 T = cast<ParenType>(Ty)->getInnerType();
6791 Stack.push_back(Parens);
6792 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6793 isa<IncompleteArrayType>(Ty)) {
6794 T = cast<ArrayType>(Ty)->getElementType();
6795 Stack.push_back(Array);
6796 } else if (isa<PointerType>(Ty)) {
6797 T = cast<PointerType>(Ty)->getPointeeType();
6798 Stack.push_back(Pointer);
6799 } else if (isa<BlockPointerType>(Ty)) {
6800 T = cast<BlockPointerType>(Ty)->getPointeeType();
6801 Stack.push_back(BlockPointer);
6802 } else if (isa<MemberPointerType>(Ty)) {
6803 T = cast<MemberPointerType>(Ty)->getPointeeType();
6804 Stack.push_back(MemberPointer);
6805 } else if (isa<ReferenceType>(Ty)) {
6806 T = cast<ReferenceType>(Ty)->getPointeeType();
6807 Stack.push_back(Reference);
6808 } else if (isa<AttributedType>(Ty)) {
6809 T = cast<AttributedType>(Ty)->getEquivalentType();
6810 Stack.push_back(Attributed);
6811 } else if (isa<MacroQualifiedType>(Ty)) {
6812 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6813 Stack.push_back(MacroQualified);
6814 } else {
6815 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6816 if (Ty == DTy) {
6817 Fn = nullptr;
6818 return;
6819 }
6820
6821 T = QualType(DTy, 0);
6822 Stack.push_back(Desugar);
6823 }
6824 }
6825 }
6826
6827 bool isFunctionType() const { return (Fn != nullptr); }
6828 const FunctionType *get() const { return Fn; }
6829
6830 QualType wrap(Sema &S, const FunctionType *New) {
6831 // If T wasn't modified from the unwrapped type, do nothing.
6832 if (New == get()) return Original;
6833
6834 Fn = New;
6835 return wrap(S.Context, Original, 0);
6836 }
6837
6838 private:
6839 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6840 if (I == Stack.size())
6841 return C.getQualifiedType(Fn, Old.getQualifiers());
6842
6843 // Build up the inner type, applying the qualifiers from the old
6844 // type to the new type.
6845 SplitQualType SplitOld = Old.split();
6846
6847 // As a special case, tail-recurse if there are no qualifiers.
6848 if (SplitOld.Quals.empty())
6849 return wrap(C, SplitOld.Ty, I);
6850 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6851 }
6852
6853 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6854 if (I == Stack.size()) return QualType(Fn, 0);
6855
6856 switch (static_cast<WrapKind>(Stack[I++])) {
6857 case Desugar:
6858 // This is the point at which we potentially lose source
6859 // information.
6860 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6861
6862 case Attributed:
6863 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6864
6865 case Parens: {
6866 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6867 return C.getParenType(New);
6868 }
6869
6870 case MacroQualified:
6871 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6872
6873 case Array: {
6874 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6875 QualType New = wrap(C, CAT->getElementType(), I);
6876 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6877 CAT->getSizeModifier(),
6878 CAT->getIndexTypeCVRQualifiers());
6879 }
6880
6881 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6882 QualType New = wrap(C, VAT->getElementType(), I);
6883 return C.getVariableArrayType(
6884 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6885 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6886 }
6887
6888 const auto *IAT = cast<IncompleteArrayType>(Old);
6889 QualType New = wrap(C, IAT->getElementType(), I);
6890 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
6891 IAT->getIndexTypeCVRQualifiers());
6892 }
6893
6894 case Pointer: {
6895 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6896 return C.getPointerType(New);
6897 }
6898
6899 case BlockPointer: {
6900 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6901 return C.getBlockPointerType(New);
6902 }
6903
6904 case MemberPointer: {
6905 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6906 QualType New = wrap(C, OldMPT->getPointeeType(), I);
6907 return C.getMemberPointerType(New, OldMPT->getClass());
6908 }
6909
6910 case Reference: {
6911 const ReferenceType *OldRef = cast<ReferenceType>(Old);
6912 QualType New = wrap(C, OldRef->getPointeeType(), I);
6913 if (isa<LValueReferenceType>(OldRef))
6914 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6915 else
6916 return C.getRValueReferenceType(New);
6917 }
6918 }
6919
6920 llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6920)
;
6921 }
6922 };
6923} // end anonymous namespace
6924
6925static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6926 ParsedAttr &PAttr, QualType &Type) {
6927 Sema &S = State.getSema();
6928
6929 Attr *A;
6930 switch (PAttr.getKind()) {
6931 default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 6931)
;
6932 case ParsedAttr::AT_Ptr32:
6933 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6934 break;
6935 case ParsedAttr::AT_Ptr64:
6936 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6937 break;
6938 case ParsedAttr::AT_SPtr:
6939 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6940 break;
6941 case ParsedAttr::AT_UPtr:
6942 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6943 break;
6944 }
6945
6946 std::bitset<attr::LastAttr> Attrs;
6947 attr::Kind NewAttrKind = A->getKind();
6948 QualType Desugared = Type;
6949 const AttributedType *AT = dyn_cast<AttributedType>(Type);
6950 while (AT) {
6951 Attrs[AT->getAttrKind()] = true;
6952 Desugared = AT->getModifiedType();
6953 AT = dyn_cast<AttributedType>(Desugared);
6954 }
6955
6956 // You cannot specify duplicate type attributes, so if the attribute has
6957 // already been applied, flag it.
6958 if (Attrs[NewAttrKind]) {
6959 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
6960 return true;
6961 }
6962 Attrs[NewAttrKind] = true;
6963
6964 // You cannot have both __sptr and __uptr on the same type, nor can you
6965 // have __ptr32 and __ptr64.
6966 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
6967 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6968 << "'__ptr32'"
6969 << "'__ptr64'";
6970 return true;
6971 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
6972 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6973 << "'__sptr'"
6974 << "'__uptr'";
6975 return true;
6976 }
6977
6978 // Pointer type qualifiers can only operate on pointer types, but not
6979 // pointer-to-member types.
6980 //
6981 // FIXME: Should we really be disallowing this attribute if there is any
6982 // type sugar between it and the pointer (other than attributes)? Eg, this
6983 // disallows the attribute on a parenthesized pointer.
6984 // And if so, should we really allow *any* type attribute?
6985 if (!isa<PointerType>(Desugared)) {
6986 if (Type->isMemberPointerType())
6987 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6988 else
6989 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6990 return true;
6991 }
6992
6993 // Add address space to type based on its attributes.
6994 LangAS ASIdx = LangAS::Default;
6995 uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
6996 if (PtrWidth == 32) {
6997 if (Attrs[attr::Ptr64])
6998 ASIdx = LangAS::ptr64;
6999 else if (Attrs[attr::UPtr])
7000 ASIdx = LangAS::ptr32_uptr;
7001 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7002 if (Attrs[attr::UPtr])
7003 ASIdx = LangAS::ptr32_uptr;
7004 else
7005 ASIdx = LangAS::ptr32_sptr;
7006 }
7007
7008 QualType Pointee = Type->getPointeeType();
7009 if (ASIdx != LangAS::Default)
7010 Pointee = S.Context.getAddrSpaceQualType(
7011 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7012 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7013 return false;
7014}
7015
7016/// Map a nullability attribute kind to a nullability kind.
7017static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7018 switch (kind) {
7019 case ParsedAttr::AT_TypeNonNull:
7020 return NullabilityKind::NonNull;
7021
7022 case ParsedAttr::AT_TypeNullable:
7023 return NullabilityKind::Nullable;
7024
7025 case ParsedAttr::AT_TypeNullableResult:
7026 return NullabilityKind::NullableResult;
7027
7028 case ParsedAttr::AT_TypeNullUnspecified:
7029 return NullabilityKind::Unspecified;
7030
7031 default:
7032 llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7032)
;
7033 }
7034}
7035
7036/// Applies a nullability type specifier to the given type, if possible.
7037///
7038/// \param state The type processing state.
7039///
7040/// \param type The type to which the nullability specifier will be
7041/// added. On success, this type will be updated appropriately.
7042///
7043/// \param attr The attribute as written on the type.
7044///
7045/// \param allowOnArrayType Whether to accept nullability specifiers on an
7046/// array type (e.g., because it will decay to a pointer).
7047///
7048/// \returns true if a problem has been diagnosed, false on success.
7049static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7050 QualType &type,
7051 ParsedAttr &attr,
7052 bool allowOnArrayType) {
7053 Sema &S = state.getSema();
7054
7055 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7056 SourceLocation nullabilityLoc = attr.getLoc();
7057 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7058
7059 recordNullabilitySeen(S, nullabilityLoc);
7060
7061 // Check for existing nullability attributes on the type.
7062 QualType desugared = type;
7063 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7064 // Check whether there is already a null
7065 if (auto existingNullability = attributed->getImmediateNullability()) {
7066 // Duplicated nullability.
7067 if (nullability == *existingNullability) {
7068 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7069 << DiagNullabilityKind(nullability, isContextSensitive)
7070 << FixItHint::CreateRemoval(nullabilityLoc);
7071
7072 break;
7073 }
7074
7075 // Conflicting nullability.
7076 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7077 << DiagNullabilityKind(nullability, isContextSensitive)
7078 << DiagNullabilityKind(*existingNullability, false);
7079 return true;
7080 }
7081
7082 desugared = attributed->getModifiedType();
7083 }
7084
7085 // If there is already a different nullability specifier, complain.
7086 // This (unlike the code above) looks through typedefs that might
7087 // have nullability specifiers on them, which means we cannot
7088 // provide a useful Fix-It.
7089 if (auto existingNullability = desugared->getNullability(S.Context)) {
7090 if (nullability != *existingNullability) {
7091 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7092 << DiagNullabilityKind(nullability, isContextSensitive)
7093 << DiagNullabilityKind(*existingNullability, false);
7094
7095 // Try to find the typedef with the existing nullability specifier.
7096 if (auto typedefType = desugared->getAs<TypedefType>()) {
7097 TypedefNameDecl *typedefDecl = typedefType->getDecl();
7098 QualType underlyingType = typedefDecl->getUnderlyingType();
7099 if (auto typedefNullability
7100 = AttributedType::stripOuterNullability(underlyingType)) {
7101 if (*typedefNullability == *existingNullability) {
7102 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7103 << DiagNullabilityKind(*existingNullability, false);
7104 }
7105 }
7106 }
7107
7108 return true;
7109 }
7110 }
7111
7112 // If this definitely isn't a pointer type, reject the specifier.
7113 if (!desugared->canHaveNullability() &&
7114 !(allowOnArrayType && desugared->isArrayType())) {
7115 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7116 << DiagNullabilityKind(nullability, isContextSensitive) << type;
7117 return true;
7118 }
7119
7120 // For the context-sensitive keywords/Objective-C property
7121 // attributes, require that the type be a single-level pointer.
7122 if (isContextSensitive) {
7123 // Make sure that the pointee isn't itself a pointer type.
7124 const Type *pointeeType = nullptr;
7125 if (desugared->isArrayType())
7126 pointeeType = desugared->getArrayElementTypeNoTypeQual();
7127 else if (desugared->isAnyPointerType())
7128 pointeeType = desugared->getPointeeType().getTypePtr();
7129
7130 if (pointeeType && (pointeeType->isAnyPointerType() ||
7131 pointeeType->isObjCObjectPointerType() ||
7132 pointeeType->isMemberPointerType())) {
7133 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7134 << DiagNullabilityKind(nullability, true)
7135 << type;
7136 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7137 << DiagNullabilityKind(nullability, false)
7138 << type
7139 << FixItHint::CreateReplacement(nullabilityLoc,
7140 getNullabilitySpelling(nullability));
7141 return true;
7142 }
7143 }
7144
7145 // Form the attributed type.
7146 type = state.getAttributedType(
7147 createNullabilityAttr(S.Context, attr, nullability), type, type);
7148 return false;
7149}
7150
7151/// Check the application of the Objective-C '__kindof' qualifier to
7152/// the given type.
7153static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7154 ParsedAttr &attr) {
7155 Sema &S = state.getSema();
7156
7157 if (isa<ObjCTypeParamType>(type)) {
7158 // Build the attributed type to record where __kindof occurred.
7159 type = state.getAttributedType(
7160 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7161 return false;
7162 }
7163
7164 // Find out if it's an Objective-C object or object pointer type;
7165 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7166 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7167 : type->getAs<ObjCObjectType>();
7168
7169 // If not, we can't apply __kindof.
7170 if (!objType) {
7171 // FIXME: Handle dependent types that aren't yet object types.
7172 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7173 << type;
7174 return true;
7175 }
7176
7177 // Rebuild the "equivalent" type, which pushes __kindof down into
7178 // the object type.
7179 // There is no need to apply kindof on an unqualified id type.
7180 QualType equivType = S.Context.getObjCObjectType(
7181 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7182 objType->getProtocols(),
7183 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7184
7185 // If we started with an object pointer type, rebuild it.
7186 if (ptrType) {
7187 equivType = S.Context.getObjCObjectPointerType(equivType);
7188 if (auto nullability = type->getNullability(S.Context)) {
7189 // We create a nullability attribute from the __kindof attribute.
7190 // Make sure that will make sense.
7191 assert(attr.getAttributeSpellingListIndex() == 0 &&((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7192, __PRETTY_FUNCTION__))
7192 "multiple spellings for __kindof?")((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7192, __PRETTY_FUNCTION__))
;
7193 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7194 A->setImplicit(true);
7195 equivType = state.getAttributedType(A, equivType, equivType);
7196 }
7197 }
7198
7199 // Build the attributed type to record where __kindof occurred.
7200 type = state.getAttributedType(
7201 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7202 return false;
7203}
7204
7205/// Distribute a nullability type attribute that cannot be applied to
7206/// the type specifier to a pointer, block pointer, or member pointer
7207/// declarator, complaining if necessary.
7208///
7209/// \returns true if the nullability annotation was distributed, false
7210/// otherwise.
7211static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7212 QualType type, ParsedAttr &attr) {
7213 Declarator &declarator = state.getDeclarator();
7214
7215 /// Attempt to move the attribute to the specified chunk.
7216 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7217 // If there is already a nullability attribute there, don't add
7218 // one.
7219 if (hasNullabilityAttr(chunk.getAttrs()))
7220 return false;
7221
7222 // Complain about the nullability qualifier being in the wrong
7223 // place.
7224 enum {
7225 PK_Pointer,
7226 PK_BlockPointer,
7227 PK_MemberPointer,
7228 PK_FunctionPointer,
7229 PK_MemberFunctionPointer,
7230 } pointerKind
7231 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7232 : PK_Pointer)
7233 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7234 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7235
7236 auto diag = state.getSema().Diag(attr.getLoc(),
7237 diag::warn_nullability_declspec)
7238 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7239 attr.isContextSensitiveKeywordAttribute())
7240 << type
7241 << static_cast<unsigned>(pointerKind);
7242
7243 // FIXME: MemberPointer chunks don't carry the location of the *.
7244 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7245 diag << FixItHint::CreateRemoval(attr.getLoc())
7246 << FixItHint::CreateInsertion(
7247 state.getSema().getPreprocessor().getLocForEndOfToken(
7248 chunk.Loc),
7249 " " + attr.getAttrName()->getName().str() + " ");
7250 }
7251
7252 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7253 chunk.getAttrs());
7254 return true;
7255 };
7256
7257 // Move it to the outermost pointer, member pointer, or block
7258 // pointer declarator.
7259 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7260 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7261 switch (chunk.Kind) {
7262 case DeclaratorChunk::Pointer:
7263 case DeclaratorChunk::BlockPointer:
7264 case DeclaratorChunk::MemberPointer:
7265 return moveToChunk(chunk, false);
7266
7267 case DeclaratorChunk::Paren:
7268 case DeclaratorChunk::Array:
7269 continue;
7270
7271 case DeclaratorChunk::Function:
7272 // Try to move past the return type to a function/block/member
7273 // function pointer.
7274 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7275 declarator, i,
7276 /*onlyBlockPointers=*/false)) {
7277 return moveToChunk(*dest, true);
7278 }
7279
7280 return false;
7281
7282 // Don't walk through these.
7283 case DeclaratorChunk::Reference:
7284 case DeclaratorChunk::Pipe:
7285 return false;
7286 }
7287 }
7288
7289 return false;
7290}
7291
7292static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7293 assert(!Attr.isInvalid())((!Attr.isInvalid()) ? static_cast<void> (0) : __assert_fail
("!Attr.isInvalid()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7293, __PRETTY_FUNCTION__))
;
7294 switch (Attr.getKind()) {
7295 default:
7296 llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7296)
;
7297 case ParsedAttr::AT_CDecl:
7298 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7299 case ParsedAttr::AT_FastCall:
7300 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7301 case ParsedAttr::AT_StdCall:
7302 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7303 case ParsedAttr::AT_ThisCall:
7304 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7305 case ParsedAttr::AT_RegCall:
7306 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7307 case ParsedAttr::AT_Pascal:
7308 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7309 case ParsedAttr::AT_SwiftCall:
7310 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7311 case ParsedAttr::AT_VectorCall:
7312 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7313 case ParsedAttr::AT_AArch64VectorPcs:
7314 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7315 case ParsedAttr::AT_Pcs: {
7316 // The attribute may have had a fixit applied where we treated an
7317 // identifier as a string literal. The contents of the string are valid,
7318 // but the form may not be.
7319 StringRef Str;
7320 if (Attr.isArgExpr(0))
7321 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7322 else
7323 Str = Attr.getArgAsIdent(0)->Ident->getName();
7324 PcsAttr::PCSType Type;
7325 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7326 llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7326)
;
7327 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7328 }
7329 case ParsedAttr::AT_IntelOclBicc:
7330 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7331 case ParsedAttr::AT_MSABI:
7332 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7333 case ParsedAttr::AT_SysVABI:
7334 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7335 case ParsedAttr::AT_PreserveMost:
7336 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7337 case ParsedAttr::AT_PreserveAll:
7338 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7339 }
7340 llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7340)
;
7341}
7342
7343/// Process an individual function attribute. Returns true to
7344/// indicate that the attribute was handled, false if it wasn't.
7345static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7346 QualType &type) {
7347 Sema &S = state.getSema();
7348
7349 FunctionTypeUnwrapper unwrapped(S, type);
7350
7351 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7352 if (S.CheckAttrNoArgs(attr))
7353 return true;
7354
7355 // Delay if this is not a function type.
7356 if (!unwrapped.isFunctionType())
7357 return false;
7358
7359 // Otherwise we can process right away.
7360 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7361 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7362 return true;
7363 }
7364
7365 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7366 // Delay if this is not a function type.
7367 if (!unwrapped.isFunctionType())
7368 return false;
7369
7370 // Ignore if we don't have CMSE enabled.
7371 if (!S.getLangOpts().Cmse) {
7372 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7373 attr.setInvalid();
7374 return true;
7375 }
7376
7377 // Otherwise we can process right away.
7378 FunctionType::ExtInfo EI =
7379 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7380 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7381 return true;
7382 }
7383
7384 // ns_returns_retained is not always a type attribute, but if we got
7385 // here, we're treating it as one right now.
7386 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7387 if (attr.getNumArgs()) return true;
7388
7389 // Delay if this is not a function type.
7390 if (!unwrapped.isFunctionType())
7391 return false;
7392
7393 // Check whether the return type is reasonable.
7394 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7395 unwrapped.get()->getReturnType()))
7396 return true;
7397
7398 // Only actually change the underlying type in ARC builds.
7399 QualType origType = type;
7400 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7401 FunctionType::ExtInfo EI
7402 = unwrapped.get()->getExtInfo().withProducesResult(true);
7403 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7404 }
7405 type = state.getAttributedType(
7406 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7407 origType, type);
7408 return true;
7409 }
7410
7411 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7412 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7413 return true;
7414
7415 // Delay if this is not a function type.
7416 if (!unwrapped.isFunctionType())
7417 return false;
7418
7419 FunctionType::ExtInfo EI =
7420 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7421 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7422 return true;
7423 }
7424
7425 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7426 if (!S.getLangOpts().CFProtectionBranch) {
7427 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7428 attr.setInvalid();
7429 return true;
7430 }
7431
7432 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7433 return true;
7434
7435 // If this is not a function type, warning will be asserted by subject
7436 // check.
7437 if (!unwrapped.isFunctionType())
7438 return true;
7439
7440 FunctionType::ExtInfo EI =
7441 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7442 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7443 return true;
7444 }
7445
7446 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7447 unsigned value;
7448 if (S.CheckRegparmAttr(attr, value))
7449 return true;
7450
7451 // Delay if this is not a function type.
7452 if (!unwrapped.isFunctionType())
7453 return false;
7454
7455 // Diagnose regparm with fastcall.
7456 const FunctionType *fn = unwrapped.get();
7457 CallingConv CC = fn->getCallConv();
7458 if (CC == CC_X86FastCall) {
7459 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7460 << FunctionType::getNameForCallConv(CC)
7461 << "regparm";
7462 attr.setInvalid();
7463 return true;
7464 }
7465
7466 FunctionType::ExtInfo EI =
7467 unwrapped.get()->getExtInfo().withRegParm(value);
7468 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7469 return true;
7470 }
7471
7472 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7473 // Delay if this is not a function type.
7474 if (!unwrapped.isFunctionType())
7475 return false;
7476
7477 if (S.CheckAttrNoArgs(attr)) {
7478 attr.setInvalid();
7479 return true;
7480 }
7481
7482 // Otherwise we can process right away.
7483 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7484
7485 // MSVC ignores nothrow if it is in conflict with an explicit exception
7486 // specification.
7487 if (Proto->hasExceptionSpec()) {
7488 switch (Proto->getExceptionSpecType()) {
7489 case EST_None:
7490 llvm_unreachable("This doesn't have an exception spec!")::llvm::llvm_unreachable_internal("This doesn't have an exception spec!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7490)
;
7491
7492 case EST_DynamicNone:
7493 case EST_BasicNoexcept:
7494 case EST_NoexceptTrue:
7495 case EST_NoThrow:
7496 // Exception spec doesn't conflict with nothrow, so don't warn.
7497 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7498 case EST_Unparsed:
7499 case EST_Uninstantiated:
7500 case EST_DependentNoexcept:
7501 case EST_Unevaluated:
7502 // We don't have enough information to properly determine if there is a
7503 // conflict, so suppress the warning.
7504 break;
7505 case EST_Dynamic:
7506 case EST_MSAny:
7507 case EST_NoexceptFalse:
7508 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7509 break;
7510 }
7511 return true;
7512 }
7513
7514 type = unwrapped.wrap(
7515 S, S.Context
7516 .getFunctionTypeWithExceptionSpec(
7517 QualType{Proto, 0},
7518 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7519 ->getAs<FunctionType>());
7520 return true;
7521 }
7522
7523 // Delay if the type didn't work out to a function.
7524 if (!unwrapped.isFunctionType()) return false;
7525
7526 // Otherwise, a calling convention.
7527 CallingConv CC;
7528 if (S.CheckCallingConvAttr(attr, CC))
7529 return true;
7530
7531 const FunctionType *fn = unwrapped.get();
7532 CallingConv CCOld = fn->getCallConv();
7533 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7534
7535 if (CCOld != CC) {
7536 // Error out on when there's already an attribute on the type
7537 // and the CCs don't match.
7538 if (S.getCallingConvAttributedType(type)) {
7539 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7540 << FunctionType::getNameForCallConv(CC)
7541 << FunctionType::getNameForCallConv(CCOld);
7542 attr.setInvalid();
7543 return true;
7544 }
7545 }
7546
7547 // Diagnose use of variadic functions with calling conventions that
7548 // don't support them (e.g. because they're callee-cleanup).
7549 // We delay warning about this on unprototyped function declarations
7550 // until after redeclaration checking, just in case we pick up a
7551 // prototype that way. And apparently we also "delay" warning about
7552 // unprototyped function types in general, despite not necessarily having
7553 // much ability to diagnose it later.
7554 if (!supportsVariadicCall(CC)) {
7555 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7556 if (FnP && FnP->isVariadic()) {
7557 // stdcall and fastcall are ignored with a warning for GCC and MS
7558 // compatibility.
7559 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7560 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7561 << FunctionType::getNameForCallConv(CC)
7562 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7563
7564 attr.setInvalid();
7565 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7566 << FunctionType::getNameForCallConv(CC);
7567 }
7568 }
7569
7570 // Also diagnose fastcall with regparm.
7571 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7572 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7573 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7574 attr.setInvalid();
7575 return true;
7576 }
7577
7578 // Modify the CC from the wrapped function type, wrap it all back, and then
7579 // wrap the whole thing in an AttributedType as written. The modified type
7580 // might have a different CC if we ignored the attribute.
7581 QualType Equivalent;
7582 if (CCOld == CC) {
7583 Equivalent = type;
7584 } else {
7585 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7586 Equivalent =
7587 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7588 }
7589 type = state.getAttributedType(CCAttr, type, Equivalent);
7590 return true;
7591}
7592
7593bool Sema::hasExplicitCallingConv(QualType T) {
7594 const AttributedType *AT;
7595
7596 // Stop if we'd be stripping off a typedef sugar node to reach the
7597 // AttributedType.
7598 while ((AT = T->getAs<AttributedType>()) &&
7599 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7600 if (AT->isCallingConv())
7601 return true;
7602 T = AT->getModifiedType();
7603 }
7604 return false;
7605}
7606
7607void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7608 SourceLocation Loc) {
7609 FunctionTypeUnwrapper Unwrapped(*this, T);
7610 const FunctionType *FT = Unwrapped.get();
7611 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7612 cast<FunctionProtoType>(FT)->isVariadic());
7613 CallingConv CurCC = FT->getCallConv();
7614 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7615
7616 if (CurCC == ToCC)
7617 return;
7618
7619 // MS compiler ignores explicit calling convention attributes on structors. We
7620 // should do the same.
7621 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7622 // Issue a warning on ignored calling convention -- except of __stdcall.
7623 // Again, this is what MS compiler does.
7624 if (CurCC != CC_X86StdCall)
7625 Diag(Loc, diag::warn_cconv_unsupported)
7626 << FunctionType::getNameForCallConv(CurCC)
7627 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7628 // Default adjustment.
7629 } else {
7630 // Only adjust types with the default convention. For example, on Windows
7631 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7632 // __thiscall type to __cdecl for static methods.
7633 CallingConv DefaultCC =
7634 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7635
7636 if (CurCC != DefaultCC || DefaultCC == ToCC)
7637 return;
7638
7639 if (hasExplicitCallingConv(T))
7640 return;
7641 }
7642
7643 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7644 QualType Wrapped = Unwrapped.wrap(*this, FT);
7645 T = Context.getAdjustedType(T, Wrapped);
7646}
7647
7648/// HandleVectorSizeAttribute - this attribute is only applicable to integral
7649/// and float scalars, although arrays, pointers, and function return values are
7650/// allowed in conjunction with this construct. Aggregates with this attribute
7651/// are invalid, even if they are of the same size as a corresponding scalar.
7652/// The raw attribute should contain precisely 1 argument, the vector size for
7653/// the variable, measured in bytes. If curType and rawAttr are well formed,
7654/// this routine will return a new vector type.
7655static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7656 Sema &S) {
7657 // Check the attribute arguments.
7658 if (Attr.getNumArgs() != 1) {
7659 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7660 << 1;
7661 Attr.setInvalid();
7662 return;
7663 }
7664
7665 Expr *SizeExpr = Attr.getArgAsExpr(0);
7666 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7667 if (!T.isNull())
7668 CurType = T;
7669 else
7670 Attr.setInvalid();
7671}
7672
7673/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7674/// a type.
7675static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7676 Sema &S) {
7677 // check the attribute arguments.
7678 if (Attr.getNumArgs() != 1) {
7679 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7680 << 1;
7681 return;
7682 }
7683
7684 Expr *SizeExpr = Attr.getArgAsExpr(0);
7685 QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
7686 if (!T.isNull())
7687 CurType = T;
7688}
7689
7690static bool isPermittedNeonBaseType(QualType &Ty,
7691 VectorType::VectorKind VecKind, Sema &S) {
7692 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7693 if (!BTy)
7694 return false;
7695
7696 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7697
7698 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7699 // now.
7700 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7701 Triple.getArch() == llvm::Triple::aarch64_32 ||
7702 Triple.getArch() == llvm::Triple::aarch64_be;
7703 if (VecKind == VectorType::NeonPolyVector) {
7704 if (IsPolyUnsigned) {
7705 // AArch64 polynomial vectors are unsigned.
7706 return BTy->getKind() == BuiltinType::UChar ||
7707 BTy->getKind() == BuiltinType::UShort ||
7708 BTy->getKind() == BuiltinType::ULong ||
7709 BTy->getKind() == BuiltinType::ULongLong;
7710 } else {
7711 // AArch32 polynomial vectors are signed.
7712 return BTy->getKind() == BuiltinType::SChar ||
7713 BTy->getKind() == BuiltinType::Short ||
7714 BTy->getKind() == BuiltinType::LongLong;
7715 }
7716 }
7717
7718 // Non-polynomial vector types: the usual suspects are allowed, as well as
7719 // float64_t on AArch64.
7720 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
7721 BTy->getKind() == BuiltinType::Double)
7722 return true;
7723
7724 return BTy->getKind() == BuiltinType::SChar ||
7725 BTy->getKind() == BuiltinType::UChar ||
7726 BTy->getKind() == BuiltinType::Short ||
7727 BTy->getKind() == BuiltinType::UShort ||
7728 BTy->getKind() == BuiltinType::Int ||
7729 BTy->getKind() == BuiltinType::UInt ||
7730 BTy->getKind() == BuiltinType::Long ||
7731 BTy->getKind() == BuiltinType::ULong ||
7732 BTy->getKind() == BuiltinType::LongLong ||
7733 BTy->getKind() == BuiltinType::ULongLong ||
7734 BTy->getKind() == BuiltinType::Float ||
7735 BTy->getKind() == BuiltinType::Half ||
7736 BTy->getKind() == BuiltinType::BFloat16;
7737}
7738
7739static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
7740 llvm::APSInt &Result) {
7741 const auto *AttrExpr = Attr.getArgAsExpr(0);
7742 if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) {
7743 if (Optional<llvm::APSInt> Res =
7744 AttrExpr->getIntegerConstantExpr(S.Context)) {
7745 Result = *Res;
7746 return true;
7747 }
7748 }
7749 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7750 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
7751 Attr.setInvalid();
7752 return false;
7753}
7754
7755/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7756/// "neon_polyvector_type" attributes are used to create vector types that
7757/// are mangled according to ARM's ABI. Otherwise, these types are identical
7758/// to those created with the "vector_size" attribute. Unlike "vector_size"
7759/// the argument to these Neon attributes is the number of vector elements,
7760/// not the vector size in bytes. The vector width and element type must
7761/// match one of the standard Neon vector types.
7762static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7763 Sema &S, VectorType::VectorKind VecKind) {
7764 // Target must have NEON (or MVE, whose vectors are similar enough
7765 // not to need a separate attribute)
7766 if (!S.Context.getTargetInfo().hasFeature("neon") &&
7767 !S.Context.getTargetInfo().hasFeature("mve")) {
7768 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
7769 << Attr << "'neon' or 'mve'";
7770 Attr.setInvalid();
7771 return;
7772 }
7773 // Check the attribute arguments.
7774 if (Attr.getNumArgs() != 1) {
7775 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7776 << 1;
7777 Attr.setInvalid();
7778 return;
7779 }
7780 // The number of elements must be an ICE.
7781 llvm::APSInt numEltsInt(32);
7782 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
7783 return;
7784
7785 // Only certain element types are supported for Neon vectors.
7786 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7787 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7788 Attr.setInvalid();
7789 return;
7790 }
7791
7792 // The total size of the vector must be 64 or 128 bits.
7793 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7794 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7795 unsigned vecSize = typeSize * numElts;
7796 if (vecSize != 64 && vecSize != 128) {
7797 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7798 Attr.setInvalid();
7799 return;
7800 }
7801
7802 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7803}
7804
7805/// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
7806/// used to create fixed-length versions of sizeless SVE types defined by
7807/// the ACLE, such as svint32_t and svbool_t.
7808static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
7809 Sema &S) {
7810 // Target must have SVE.
7811 if (!S.Context.getTargetInfo().hasFeature("sve")) {
7812 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
7813 Attr.setInvalid();
7814 return;
7815 }
7816
7817 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified.
7818 if (!S.getLangOpts().ArmSveVectorBits) {
7819 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
7820 << Attr;
7821 Attr.setInvalid();
7822 return;
7823 }
7824
7825 // Check the attribute arguments.
7826 if (Attr.getNumArgs() != 1) {
7827 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7828 << Attr << 1;
7829 Attr.setInvalid();
7830 return;
7831 }
7832
7833 // The vector size must be an integer constant expression.
7834 llvm::APSInt SveVectorSizeInBits(32);
7835 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
7836 return;
7837
7838 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
7839
7840 // The attribute vector size must match -msve-vector-bits.
7841 if (VecSize != S.getLangOpts().ArmSveVectorBits) {
7842 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
7843 << VecSize << S.getLangOpts().ArmSveVectorBits;
7844 Attr.setInvalid();
7845 return;
7846 }
7847
7848 // Attribute can only be attached to a single SVE vector or predicate type.
7849 if (!CurType->isVLSTBuiltinType()) {
7850 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
7851 << Attr << CurType;
7852 Attr.setInvalid();
7853 return;
7854 }
7855
7856 const auto *BT = CurType->castAs<BuiltinType>();
7857
7858 QualType EltType = CurType->getSveEltType(S.Context);
7859 unsigned TypeSize = S.Context.getTypeSize(EltType);
7860 VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
7861 if (BT->getKind() == BuiltinType::SveBool) {
7862 // Predicates are represented as i8.
7863 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
7864 VecKind = VectorType::SveFixedLengthPredicateVector;
7865 } else
7866 VecSize /= TypeSize;
7867 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
7868}
7869
7870static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
7871 QualType &CurType,
7872 ParsedAttr &Attr) {
7873 const VectorType *VT = dyn_cast<VectorType>(CurType);
7874 if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
7875 State.getSema().Diag(Attr.getLoc(),
7876 diag::err_attribute_arm_mve_polymorphism);
7877 Attr.setInvalid();
7878 return;
7879 }
7880
7881 CurType =
7882 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
7883 State.getSema().Context, Attr),
7884 CurType, CurType);
7885}
7886
7887/// Handle OpenCL Access Qualifier Attribute.
7888static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7889 Sema &S) {
7890 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7891 if (!(CurType->isImageType() || CurType->isPipeType())) {
7892 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7893 Attr.setInvalid();
7894 return;
7895 }
7896
7897 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7898 QualType BaseTy = TypedefTy->desugar();
7899
7900 std::string PrevAccessQual;
7901 if (BaseTy->isPipeType()) {
7902 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7903 OpenCLAccessAttr *Attr =
7904 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7905 PrevAccessQual = Attr->getSpelling();
7906 } else {
7907 PrevAccessQual = "read_only";
7908 }
7909 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7910
7911 switch (ImgType->getKind()) {
7912 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7913 case BuiltinType::Id: \
7914 PrevAccessQual = #Access; \
7915 break;
7916 #include "clang/Basic/OpenCLImageTypes.def"
7917 default:
7918 llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type."
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7918)
;
7919 }
7920 } else {
7921 llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 7921)
;
7922 }
7923 StringRef AttrName = Attr.getAttrName()->getName();
7924 if (PrevAccessQual == AttrName.ltrim("_")) {
7925 // Duplicated qualifiers
7926 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7927 << AttrName << Attr.getRange();
7928 } else {
7929 // Contradicting qualifiers
7930 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7931 }
7932
7933 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7934 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7935 } else if (CurType->isPipeType()) {
7936 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7937 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
7938 CurType = S.Context.getWritePipeType(ElemType);
7939 }
7940 }
7941}
7942
7943/// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
7944static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7945 Sema &S) {
7946 if (!S.getLangOpts().MatrixTypes) {
7947 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
7948 return;
7949 }
7950
7951 if (Attr.getNumArgs() != 2) {
7952 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7953 << Attr << 2;
7954 return;
7955 }
7956
7957 Expr *RowsExpr = Attr.getArgAsExpr(0);
7958 Expr *ColsExpr = Attr.getArgAsExpr(1);
7959 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
7960 if (!T.isNull())
7961 CurType = T;
7962}
7963
7964static void HandleLifetimeBoundAttr(TypeProcessingState &State,
7965 QualType &CurType,
7966 ParsedAttr &Attr) {
7967 if (State.getDeclarator().isDeclarationOfFunction()) {
7968 CurType = State.getAttributedType(
7969 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
7970 CurType, CurType);
7971 }
7972}
7973
7974static bool isAddressSpaceKind(const ParsedAttr &attr) {
7975 auto attrKind = attr.getKind();
7976
7977 return attrKind == ParsedAttr::AT_AddressSpace ||
7978 attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace ||
7979 attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace ||
7980 attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace ||
7981 attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace ||
7982 attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace ||
7983 attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace ||
7984 attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace;
7985}
7986
7987static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7988 TypeAttrLocation TAL,
7989 ParsedAttributesView &attrs) {
7990 // Scan through and apply attributes to this type where it makes sense. Some
7991 // attributes (such as __address_space__, __vector_size__, etc) apply to the
7992 // type, but others can be present in the type specifiers even though they
7993 // apply to the decl. Here we apply type attributes and ignore the rest.
7994
7995 // This loop modifies the list pretty frequently, but we still need to make
7996 // sure we visit every element once. Copy the attributes list, and iterate
7997 // over that.
7998 ParsedAttributesView AttrsCopy{attrs};
7999
8000 state.setParsedNoDeref(false);
8001
8002 for (ParsedAttr &attr : AttrsCopy) {
8003
8004 // Skip attributes that were marked to be invalid.
8005 if (attr.isInvalid())
8006 continue;
8007
8008 if (attr.isCXX11Attribute()) {
8009 // [[gnu::...]] attributes are treated as declaration attributes, so may
8010 // not appertain to a DeclaratorChunk. If we handle them as type
8011 // attributes, accept them in that position and diagnose the GCC
8012 // incompatibility.
8013 if (attr.isGNUScope()) {
8014 bool IsTypeAttr = attr.isTypeAttr();
8015 if (TAL == TAL_DeclChunk) {
8016 state.getSema().Diag(attr.getLoc(),
8017 IsTypeAttr
8018 ? diag::warn_gcc_ignores_type_attr
8019 : diag::warn_cxx11_gnu_attribute_on_type)
8020 << attr;
8021 if (!IsTypeAttr)
8022 continue;
8023 }
8024 } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) {
8025 // Otherwise, only consider type processing for a C++11 attribute if
8026 // it's actually been applied to a type.
8027 // We also allow C++11 address_space and
8028 // OpenCL language address space attributes to pass through.
8029 continue;
8030 }
8031 }
8032
8033 // If this is an attribute we can handle, do so now,
8034 // otherwise, add it to the FnAttrs list for rechaining.
8035 switch (attr.getKind()) {
8036 default:
8037 // A C++11 attribute on a declarator chunk must appertain to a type.
8038 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
8039 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8040 << attr;
8041 attr.setUsedAsTypeAttr();
8042 }
8043 break;
8044
8045 case ParsedAttr::UnknownAttribute:
8046 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
8047 state.getSema().Diag(attr.getLoc(),
8048 diag::warn_unknown_attribute_ignored)
8049 << attr << attr.getRange();
8050 break;
8051
8052 case ParsedAttr::IgnoredAttribute:
8053 break;
8054
8055 case ParsedAttr::AT_MayAlias:
8056 // FIXME: This attribute needs to actually be handled, but if we ignore
8057 // it it breaks large amounts of Linux software.
8058 attr.setUsedAsTypeAttr();
8059 break;
8060 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8061 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8062 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8063 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8064 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8065 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8066 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8067 case ParsedAttr::AT_AddressSpace:
8068 HandleAddressSpaceTypeAttribute(type, attr, state);
8069 attr.setUsedAsTypeAttr();
8070 break;
8071 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
8072 if (!handleObjCPointerTypeAttr(state, attr, type))
8073 distributeObjCPointerTypeAttr(state, attr, type);
8074 attr.setUsedAsTypeAttr();
8075 break;
8076 case ParsedAttr::AT_VectorSize:
8077 HandleVectorSizeAttr(type, attr, state.getSema());
8078 attr.setUsedAsTypeAttr();
8079 break;
8080 case ParsedAttr::AT_ExtVectorType:
8081 HandleExtVectorTypeAttr(type, attr, state.getSema());
8082 attr.setUsedAsTypeAttr();
8083 break;
8084 case ParsedAttr::AT_NeonVectorType:
8085 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8086 VectorType::NeonVector);
8087 attr.setUsedAsTypeAttr();
8088 break;
8089 case ParsedAttr::AT_NeonPolyVectorType:
8090 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8091 VectorType::NeonPolyVector);
8092 attr.setUsedAsTypeAttr();
8093 break;
8094 case ParsedAttr::AT_ArmSveVectorBits:
8095 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8096 attr.setUsedAsTypeAttr();
8097 break;
8098 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8099 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8100 attr.setUsedAsTypeAttr();
8101 break;
8102 }
8103 case ParsedAttr::AT_OpenCLAccess:
8104 HandleOpenCLAccessAttr(type, attr, state.getSema());
8105 attr.setUsedAsTypeAttr();
8106 break;
8107 case ParsedAttr::AT_LifetimeBound:
8108 if (TAL == TAL_DeclChunk)
8109 HandleLifetimeBoundAttr(state, type, attr);
8110 break;
8111
8112 case ParsedAttr::AT_NoDeref: {
8113 ASTContext &Ctx = state.getSema().Context;
8114 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8115 type, type);
8116 attr.setUsedAsTypeAttr();
8117 state.setParsedNoDeref(true);
8118 break;
8119 }
8120
8121 case ParsedAttr::AT_MatrixType:
8122 HandleMatrixTypeAttr(type, attr, state.getSema());
8123 attr.setUsedAsTypeAttr();
8124 break;
8125
8126 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
8127 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8128 attr.setUsedAsTypeAttr();
8129 break;
8130
8131
8132 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
8133 // Either add nullability here or try to distribute it. We
8134 // don't want to distribute the nullability specifier past any
8135 // dependent type, because that complicates the user model.
8136 if (type->canHaveNullability() || type->isDependentType() ||
8137 type->isArrayType() ||
8138 !distributeNullabilityTypeAttr(state, type, attr)) {
8139 unsigned endIndex;
8140 if (TAL == TAL_DeclChunk)
8141 endIndex = state.getCurrentChunkIndex();
8142 else
8143 endIndex = state.getDeclarator().getNumTypeObjects();
8144 bool allowOnArrayType =
8145 state.getDeclarator().isPrototypeContext() &&
8146 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8147 if (checkNullabilityTypeSpecifier(
8148 state,
8149 type,
8150 attr,
8151 allowOnArrayType)) {
8152 attr.setInvalid();
8153 }
8154
8155 attr.setUsedAsTypeAttr();
8156 }
8157 break;
8158
8159 case ParsedAttr::AT_ObjCKindOf:
8160 // '__kindof' must be part of the decl-specifiers.
8161 switch (TAL) {
8162 case TAL_DeclSpec:
8163 break;
8164
8165 case TAL_DeclChunk:
8166 case TAL_DeclName:
8167 state.getSema().Diag(attr.getLoc(),
8168 diag::err_objc_kindof_wrong_position)
8169 << FixItHint::CreateRemoval(attr.getLoc())
8170 << FixItHint::CreateInsertion(
8171 state.getDeclarator().getDeclSpec().getBeginLoc(),
8172 "__kindof ");
8173 break;
8174 }
8175
8176 // Apply it regardless.
8177 if (checkObjCKindOfType(state, type, attr))
8178 attr.setInvalid();
8179 break;
8180
8181 case ParsedAttr::AT_NoThrow:
8182 // Exception Specifications aren't generally supported in C mode throughout
8183 // clang, so revert to attribute-based handling for C.
8184 if (!state.getSema().getLangOpts().CPlusPlus)
8185 break;
8186 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8187 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
:
8188 attr.setUsedAsTypeAttr();
8189
8190 // Never process function type attributes as part of the
8191 // declaration-specifiers.
8192 if (TAL == TAL_DeclSpec)
8193 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8194
8195 // Otherwise, handle the possible delays.
8196 else if (!handleFunctionTypeAttr(state, attr, type))
8197 distributeFunctionTypeAttr(state, attr, type);
8198 break;
8199 case ParsedAttr::AT_AcquireHandle: {
8200 if (!type->isFunctionType())
8201 return;
8202
8203 if (attr.getNumArgs() != 1) {
8204 state.getSema().Diag(attr.getLoc(),
8205 diag::err_attribute_wrong_number_arguments)
8206 << attr << 1;
8207 attr.setInvalid();
8208 return;
8209 }
8210
8211 StringRef HandleType;
8212 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8213 return;
8214 type = state.getAttributedType(
8215 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8216 type, type);
8217 attr.setUsedAsTypeAttr();
8218 break;
8219 }
8220 }
8221
8222 // Handle attributes that are defined in a macro. We do not want this to be
8223 // applied to ObjC builtin attributes.
8224 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8225 !type.getQualifiers().hasObjCLifetime() &&
8226 !type.getQualifiers().hasObjCGCAttr() &&
8227 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8228 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8229 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8230 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8231 state.setExpansionLocForMacroQualifiedType(
8232 cast<MacroQualifiedType>(type.getTypePtr()),
8233 attr.getMacroExpansionLoc());
8234 }
8235 }
8236
8237 if (!state.getSema().getLangOpts().OpenCL ||
8238 type.getAddressSpace() != LangAS::Default)
8239 return;
8240}
8241
8242void Sema::completeExprArrayBound(Expr *E) {
8243 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8244 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8245 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8246 auto *Def = Var->getDefinition();
8247 if (!Def) {
8248 SourceLocation PointOfInstantiation = E->getExprLoc();
8249 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8250 InstantiateVariableDefinition(PointOfInstantiation, Var);
8251 });
8252 Def = Var->getDefinition();
8253
8254 // If we don't already have a point of instantiation, and we managed
8255 // to instantiate a definition, this is the point of instantiation.
8256 // Otherwise, we don't request an end-of-TU instantiation, so this is
8257 // not a point of instantiation.
8258 // FIXME: Is this really the right behavior?
8259 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8260 assert(Var->getTemplateSpecializationKind() ==((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8262, __PRETTY_FUNCTION__))
8261 TSK_ImplicitInstantiation &&((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8262, __PRETTY_FUNCTION__))
8262 "explicit instantiation with no point of instantiation")((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8262, __PRETTY_FUNCTION__))
;
8263 Var->setTemplateSpecializationKind(
8264 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8265 }
8266 }
8267
8268 // Update the type to the definition's type both here and within the
8269 // expression.
8270 if (Def) {
8271 DRE->setDecl(Def);
8272 QualType T = Def->getType();
8273 DRE->setType(T);
8274 // FIXME: Update the type on all intervening expressions.
8275 E->setType(T);
8276 }
8277
8278 // We still go on to try to complete the type independently, as it
8279 // may also require instantiations or diagnostics if it remains
8280 // incomplete.
8281 }
8282 }
8283 }
8284}
8285
8286QualType Sema::getCompletedType(Expr *E) {
8287 // Incomplete array types may be completed by the initializer attached to
8288 // their definitions. For static data members of class templates and for
8289 // variable templates, we need to instantiate the definition to get this
8290 // initializer and complete the type.
8291 if (E->getType()->isIncompleteArrayType())
8292 completeExprArrayBound(E);
8293
8294 // FIXME: Are there other cases which require instantiating something other
8295 // than the type to complete the type of an expression?
8296
8297 return E->getType();
8298}
8299
8300/// Ensure that the type of the given expression is complete.
8301///
8302/// This routine checks whether the expression \p E has a complete type. If the
8303/// expression refers to an instantiable construct, that instantiation is
8304/// performed as needed to complete its type. Furthermore
8305/// Sema::RequireCompleteType is called for the expression's type (or in the
8306/// case of a reference type, the referred-to type).
8307///
8308/// \param E The expression whose type is required to be complete.
8309/// \param Kind Selects which completeness rules should be applied.
8310/// \param Diagnoser The object that will emit a diagnostic if the type is
8311/// incomplete.
8312///
8313/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8314/// otherwise.
8315bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8316 TypeDiagnoser &Diagnoser) {
8317 return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8318 Diagnoser);
8319}
8320
8321bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8322 BoundTypeDiagnoser<> Diagnoser(DiagID);
8323 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8324}
8325
8326/// Ensure that the type T is a complete type.
8327///
8328/// This routine checks whether the type @p T is complete in any
8329/// context where a complete type is required. If @p T is a complete
8330/// type, returns false. If @p T is a class template specialization,
8331/// this routine then attempts to perform class template
8332/// instantiation. If instantiation fails, or if @p T is incomplete
8333/// and cannot be completed, issues the diagnostic @p diag (giving it
8334/// the type @p T) and returns true.
8335///
8336/// @param Loc The location in the source that the incomplete type
8337/// diagnostic should refer to.
8338///
8339/// @param T The type that this routine is examining for completeness.
8340///
8341/// @param Kind Selects which completeness rules should be applied.
8342///
8343/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8344/// @c false otherwise.
8345bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8346 CompleteTypeKind Kind,
8347 TypeDiagnoser &Diagnoser) {
8348 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8349 return true;
8350 if (const TagType *Tag = T->getAs<TagType>()) {
8351 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8352 Tag->getDecl()->setCompleteDefinitionRequired();
8353 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8354 }
8355 }
8356 return false;
8357}
8358
8359bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8360 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8361 if (!Suggested)
8362 return false;
8363
8364 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8365 // and isolate from other C++ specific checks.
8366 StructuralEquivalenceContext Ctx(
8367 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8368 StructuralEquivalenceKind::Default,
8369 false /*StrictTypeSpelling*/, true /*Complain*/,
8370 true /*ErrorOnTagTypeMismatch*/);
8371 return Ctx.IsEquivalent(D, Suggested);
8372}
8373
8374/// Determine whether there is any declaration of \p D that was ever a
8375/// definition (perhaps before module merging) and is currently visible.
8376/// \param D The definition of the entity.
8377/// \param Suggested Filled in with the declaration that should be made visible
8378/// in order to provide a definition of this entity.
8379/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8380/// not defined. This only matters for enums with a fixed underlying
8381/// type, since in all other cases, a type is complete if and only if it
8382/// is defined.
8383bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8384 bool OnlyNeedComplete) {
8385 // Easy case: if we don't have modules, all declarations are visible.
8386 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8387 return true;
8388
8389 // If this definition was instantiated from a template, map back to the
8390 // pattern from which it was instantiated.
8391 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8392 // We're in the middle of defining it; this definition should be treated
8393 // as visible.
8394 return true;
8395 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8396 if (auto *Pattern = RD->getTemplateInstantiationPattern())
8397 RD = Pattern;
8398 D = RD->getDefinition();
8399 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8400 if (auto *Pattern = ED->getTemplateInstantiationPattern())
8401 ED = Pattern;
8402 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8403 // If the enum has a fixed underlying type, it may have been forward
8404 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8405 // the enum and assign it the underlying type of `int`. Since we're only
8406 // looking for a complete type (not a definition), any visible declaration
8407 // of it will do.
8408 *Suggested = nullptr;
8409 for (auto *Redecl : ED->redecls()) {
8410 if (isVisible(Redecl))
8411 return true;
8412 if (Redecl->isThisDeclarationADefinition() ||
8413 (Redecl->isCanonicalDecl() && !*Suggested))
8414 *Suggested = Redecl;
8415 }
8416 return false;
8417 }
8418 D = ED->getDefinition();
8419 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8420 if (auto *Pattern = FD->getTemplateInstantiationPattern())
8421 FD = Pattern;
8422 D = FD->getDefinition();
8423 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8424 if (auto *Pattern = VD->getTemplateInstantiationPattern())
8425 VD = Pattern;
8426 D = VD->getDefinition();
8427 }
8428 assert(D && "missing definition for pattern of instantiated definition")((D && "missing definition for pattern of instantiated definition"
) ? static_cast<void> (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8428, __PRETTY_FUNCTION__))
;
8429
8430 *Suggested = D;
8431
8432 auto DefinitionIsVisible = [&] {
8433 // The (primary) definition might be in a visible module.
8434 if (isVisible(D))
8435 return true;
8436
8437 // A visible module might have a merged definition instead.
8438 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8439 : hasVisibleMergedDefinition(D)) {
8440 if (CodeSynthesisContexts.empty() &&
8441 !getLangOpts().ModulesLocalVisibility) {
8442 // Cache the fact that this definition is implicitly visible because
8443 // there is a visible merged definition.
8444 D->setVisibleDespiteOwningModule();
8445 }
8446 return true;
8447 }
8448
8449 return false;
8450 };
8451
8452 if (DefinitionIsVisible())
8453 return true;
8454
8455 // The external source may have additional definitions of this entity that are
8456 // visible, so complete the redeclaration chain now and ask again.
8457 if (auto *Source = Context.getExternalSource()) {
8458 Source->CompleteRedeclChain(D);
8459 return DefinitionIsVisible();
8460 }
8461
8462 return false;
8463}
8464
8465/// Locks in the inheritance model for the given class and all of its bases.
8466static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8467 RD = RD->getMostRecentNonInjectedDecl();
8468 if (!RD->hasAttr<MSInheritanceAttr>()) {
8469 MSInheritanceModel IM;
8470 bool BestCase = false;
8471 switch (S.MSPointerToMemberRepresentationMethod) {
8472 case LangOptions::PPTMK_BestCase:
8473 BestCase = true;
8474 IM = RD->calculateInheritanceModel();
8475 break;
8476 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8477 IM = MSInheritanceModel::Single;
8478 break;
8479 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8480 IM = MSInheritanceModel::Multiple;
8481 break;
8482 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8483 IM = MSInheritanceModel::Unspecified;
8484 break;
8485 }
8486
8487 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8488 ? S.ImplicitMSInheritanceAttrLoc
8489 : RD->getSourceRange();
8490 RD->addAttr(MSInheritanceAttr::CreateImplicit(
8491 S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8492 MSInheritanceAttr::Spelling(IM)));
8493 S.Consumer.AssignInheritanceModel(RD);
8494 }
8495}
8496
8497/// The implementation of RequireCompleteType
8498bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8499 CompleteTypeKind Kind,
8500 TypeDiagnoser *Diagnoser) {
8501 // FIXME: Add this assertion to make sure we always get instantiation points.
8502 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8503 // FIXME: Add this assertion to help us flush out problems with
8504 // checking for dependent types and type-dependent expressions.
8505 //
8506 // assert(!T->isDependentType() &&
8507 // "Can't ask whether a dependent type is complete");
8508
8509 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8510 if (!MPTy->getClass()->isDependentType()) {
8511 if (getLangOpts().CompleteMemberPointers &&
8512 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8513 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8514 diag::err_memptr_incomplete))
8515 return true;
8516
8517 // We lock in the inheritance model once somebody has asked us to ensure
8518 // that a pointer-to-member type is complete.
8519 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8520 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8521 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8522 }
8523 }
8524 }
8525
8526 NamedDecl *Def = nullptr;
8527 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8528 bool Incomplete = (T->isIncompleteType(&Def) ||
8529 (!AcceptSizeless && T->isSizelessBuiltinType()));
8530
8531 // Check that any necessary explicit specializations are visible. For an
8532 // enum, we just need the declaration, so don't check this.
8533 if (Def && !isa<EnumDecl>(Def))
8534 checkSpecializationVisibility(Loc, Def);
8535
8536 // If we have a complete type, we're done.
8537 if (!Incomplete) {
8538 // If we know about the definition but it is not visible, complain.
8539 NamedDecl *SuggestedDef = nullptr;
8540 if (Def &&
8541 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8542 // If the user is going to see an error here, recover by making the
8543 // definition visible.
8544 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8545 if (Diagnoser && SuggestedDef)
8546 diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8547 /*Recover*/TreatAsComplete);
8548 return !TreatAsComplete;
8549 } else if (Def && !TemplateInstCallbacks.empty()) {
8550 CodeSynthesisContext TempInst;
8551 TempInst.Kind = CodeSynthesisContext::Memoization;
8552 TempInst.Template = Def;
8553 TempInst.Entity = Def;
8554 TempInst.PointOfInstantiation = Loc;
8555 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8556 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8557 }
8558
8559 return false;
8560 }
8561
8562 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8563 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8564
8565 // Give the external source a chance to provide a definition of the type.
8566 // This is kept separate from completing the redeclaration chain so that
8567 // external sources such as LLDB can avoid synthesizing a type definition
8568 // unless it's actually needed.
8569 if (Tag || IFace) {
8570 // Avoid diagnosing invalid decls as incomplete.
8571 if (Def->isInvalidDecl())
8572 return true;
8573
8574 // Give the external AST source a chance to complete the type.
8575 if (auto *Source = Context.getExternalSource()) {
8576 if (Tag && Tag->hasExternalLexicalStorage())
8577 Source->CompleteType(Tag);
8578 if (IFace && IFace->hasExternalLexicalStorage())
8579 Source->CompleteType(IFace);
8580 // If the external source completed the type, go through the motions
8581 // again to ensure we're allowed to use the completed type.
8582 if (!T->isIncompleteType())
8583 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8584 }
8585 }
8586
8587 // If we have a class template specialization or a class member of a
8588 // class template specialization, or an array with known size of such,
8589 // try to instantiate it.
8590 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8591 bool Instantiated = false;
8592 bool Diagnosed = false;
8593 if (RD->isDependentContext()) {
8594 // Don't try to instantiate a dependent class (eg, a member template of
8595 // an instantiated class template specialization).
8596 // FIXME: Can this ever happen?
8597 } else if (auto *ClassTemplateSpec =
8598 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8599 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8600 runWithSufficientStackSpace(Loc, [&] {
8601 Diagnosed = InstantiateClassTemplateSpecialization(
8602 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8603 /*Complain=*/Diagnoser);
8604 });
8605 Instantiated = true;
8606 }
8607 } else {
8608 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8609 if (!RD->isBeingDefined() && Pattern) {
8610 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8611 assert(MSI && "Missing member specialization information?")((MSI && "Missing member specialization information?"
) ? static_cast<void> (0) : __assert_fail ("MSI && \"Missing member specialization information?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8611, __PRETTY_FUNCTION__))
;
8612 // This record was instantiated from a class within a template.
8613 if (MSI->getTemplateSpecializationKind() !=
8614 TSK_ExplicitSpecialization) {
8615 runWithSufficientStackSpace(Loc, [&] {
8616 Diagnosed = InstantiateClass(Loc, RD, Pattern,
8617 getTemplateInstantiationArgs(RD),
8618 TSK_ImplicitInstantiation,
8619 /*Complain=*/Diagnoser);
8620 });
8621 Instantiated = true;
8622 }
8623 }
8624 }
8625
8626 if (Instantiated) {
8627 // Instantiate* might have already complained that the template is not
8628 // defined, if we asked it to.
8629 if (Diagnoser && Diagnosed)
8630 return true;
8631 // If we instantiated a definition, check that it's usable, even if
8632 // instantiation produced an error, so that repeated calls to this
8633 // function give consistent answers.
8634 if (!T->isIncompleteType())
8635 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8636 }
8637 }
8638
8639 // FIXME: If we didn't instantiate a definition because of an explicit
8640 // specialization declaration, check that it's visible.
8641
8642 if (!Diagnoser)
8643 return true;
8644
8645 Diagnoser->diagnose(*this, Loc, T);
8646
8647 // If the type was a forward declaration of a class/struct/union
8648 // type, produce a note.
8649 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
8650 Diag(Tag->getLocation(),
8651 Tag->isBeingDefined() ? diag::note_type_being_defined
8652 : diag::note_forward_declaration)
8653 << Context.getTagDeclType(Tag);
8654
8655 // If the Objective-C class was a forward declaration, produce a note.
8656 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
8657 Diag(IFace->getLocation(), diag::note_forward_class);
8658
8659 // If we have external information that we can use to suggest a fix,
8660 // produce a note.
8661 if (ExternalSource)
8662 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8663
8664 return true;
8665}
8666
8667bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8668 CompleteTypeKind Kind, unsigned DiagID) {
8669 BoundTypeDiagnoser<> Diagnoser(DiagID);
8670 return RequireCompleteType(Loc, T, Kind, Diagnoser);
8671}
8672
8673/// Get diagnostic %select index for tag kind for
8674/// literal type diagnostic message.
8675/// WARNING: Indexes apply to particular diagnostics only!
8676///
8677/// \returns diagnostic %select index.
8678static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8679 switch (Tag) {
8680 case TTK_Struct: return 0;
8681 case TTK_Interface: return 1;
8682 case TTK_Class: return 2;
8683 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8683)
;
8684 }
8685}
8686
8687/// Ensure that the type T is a literal type.
8688///
8689/// This routine checks whether the type @p T is a literal type. If @p T is an
8690/// incomplete type, an attempt is made to complete it. If @p T is a literal
8691/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8692/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8693/// it the type @p T), along with notes explaining why the type is not a
8694/// literal type, and returns true.
8695///
8696/// @param Loc The location in the source that the non-literal type
8697/// diagnostic should refer to.
8698///
8699/// @param T The type that this routine is examining for literalness.
8700///
8701/// @param Diagnoser Emits a diagnostic if T is not a literal type.
8702///
8703/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8704/// @c false otherwise.
8705bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8706 TypeDiagnoser &Diagnoser) {
8707 assert(!T->isDependentType() && "type should not be dependent")((!T->isDependentType() && "type should not be dependent"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"type should not be dependent\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8707, __PRETTY_FUNCTION__))
;
8708
8709 QualType ElemType = Context.getBaseElementType(T);
8710 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8711 T->isLiteralType(Context))
8712 return false;
8713
8714 Diagnoser.diagnose(*this, Loc, T);
8715
8716 if (T->isVariableArrayType())
8717 return true;
8718
8719 const RecordType *RT = ElemType->getAs<RecordType>();
8720 if (!RT)
8721 return true;
8722
8723 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8724
8725 // A partially-defined class type can't be a literal type, because a literal
8726 // class type must have a trivial destructor (which can't be checked until
8727 // the class definition is complete).
8728 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8729 return true;
8730
8731 // [expr.prim.lambda]p3:
8732 // This class type is [not] a literal type.
8733 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8734 Diag(RD->getLocation(), diag::note_non_literal_lambda);
8735 return true;
8736 }
8737
8738 // If the class has virtual base classes, then it's not an aggregate, and
8739 // cannot have any constexpr constructors or a trivial default constructor,
8740 // so is non-literal. This is better to diagnose than the resulting absence
8741 // of constexpr constructors.
8742 if (RD->getNumVBases()) {
8743 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8744 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8745 for (const auto &I : RD->vbases())
8746 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8747 << I.getSourceRange();
8748 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8749 !RD->hasTrivialDefaultConstructor()) {
8750 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8751 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8752 for (const auto &I : RD->bases()) {
8753 if (!I.getType()->isLiteralType(Context)) {
8754 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8755 << RD << I.getType() << I.getSourceRange();
8756 return true;
8757 }
8758 }
8759 for (const auto *I : RD->fields()) {
8760 if (!I->getType()->isLiteralType(Context) ||
8761 I->getType().isVolatileQualified()) {
8762 Diag(I->getLocation(), diag::note_non_literal_field)
8763 << RD << I << I->getType()
8764 << I->getType().isVolatileQualified();
8765 return true;
8766 }
8767 }
8768 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
8769 : !RD->hasTrivialDestructor()) {
8770 // All fields and bases are of literal types, so have trivial or constexpr
8771 // destructors. If this class's destructor is non-trivial / non-constexpr,
8772 // it must be user-declared.
8773 CXXDestructorDecl *Dtor = RD->getDestructor();
8774 assert(Dtor && "class has literal fields and bases but no dtor?")((Dtor && "class has literal fields and bases but no dtor?"
) ? static_cast<void> (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8774, __PRETTY_FUNCTION__))
;
8775 if (!Dtor)
8776 return true;
8777
8778 if (getLangOpts().CPlusPlus20) {
8779 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
8780 << RD;
8781 } else {
8782 Diag(Dtor->getLocation(), Dtor->isUserProvided()
8783 ? diag::note_non_literal_user_provided_dtor
8784 : diag::note_non_literal_nontrivial_dtor)
8785 << RD;
8786 if (!Dtor->isUserProvided())
8787 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8788 /*Diagnose*/ true);
8789 }
8790 }
8791
8792 return true;
8793}
8794
8795bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8796 BoundTypeDiagnoser<> Diagnoser(DiagID);
8797 return RequireLiteralType(Loc, T, Diagnoser);
8798}
8799
8800/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8801/// by the nested-name-specifier contained in SS, and that is (re)declared by
8802/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8803QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8804 const CXXScopeSpec &SS, QualType T,
8805 TagDecl *OwnedTagDecl) {
8806 if (T.isNull())
8807 return T;
8808 NestedNameSpecifier *NNS;
8809 if (SS.isValid())
8810 NNS = SS.getScopeRep();
8811 else {
8812 if (Keyword == ETK_None)
8813 return T;
8814 NNS = nullptr;
8815 }
8816 return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8817}
8818
8819QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8820 assert(!E->hasPlaceholderType() && "unexpected placeholder")((!E->hasPlaceholderType() && "unexpected placeholder"
) ? static_cast<void> (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8820, __PRETTY_FUNCTION__))
;
8821
8822 if (!getLangOpts().CPlusPlus && E->refersToBitField())
8823 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8824
8825 if (!E->isTypeDependent()) {
8826 QualType T = E->getType();
8827 if (const TagType *TT = T->getAs<TagType>())
8828 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8829 }
8830 return Context.getTypeOfExprType(E);
8831}
8832
8833/// getDecltypeForParenthesizedExpr - Given an expr, will return the type for
8834/// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
8835/// and class member access into account.
8836QualType Sema::getDecltypeForParenthesizedExpr(Expr *E) {
8837 // C++11 [dcl.type.simple]p4:
8838 // [...]
8839 QualType T = E->getType();
8840 switch (E->getValueKind()) {
8841 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8842 // type of e;
8843 case VK_XValue:
8844 return Context.getRValueReferenceType(T);
8845 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8846 // type of e;
8847 case VK_LValue:
8848 return Context.getLValueReferenceType(T);
8849 // - otherwise, decltype(e) is the type of e.
8850 case VK_RValue:
8851 return T;
8852 }
8853 llvm_unreachable("Unknown value kind")::llvm::llvm_unreachable_internal("Unknown value kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8853)
;
8854}
8855
8856/// getDecltypeForExpr - Given an expr, will return the decltype for
8857/// that expression, according to the rules in C++11
8858/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8859static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8860 if (E->isTypeDependent())
8861 return S.Context.DependentTy;
8862
8863 // C++11 [dcl.type.simple]p4:
8864 // The type denoted by decltype(e) is defined as follows:
8865
8866 // C++20:
8867 // - if E is an unparenthesized id-expression naming a non-type
8868 // template-parameter (13.2), decltype(E) is the type of the
8869 // template-parameter after performing any necessary type deduction
8870 // Note that this does not pick up the implicit 'const' for a template
8871 // parameter object. This rule makes no difference before C++20 so we apply
8872 // it unconditionally.
8873 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
8874 return SNTTPE->getParameterType(S.Context);
8875
8876 // - if e is an unparenthesized id-expression or an unparenthesized class
8877 // member access (5.2.5), decltype(e) is the type of the entity named
8878 // by e. If there is no such entity, or if e names a set of overloaded
8879 // functions, the program is ill-formed;
8880 //
8881 // We apply the same rules for Objective-C ivar and property references.
8882 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8883 const ValueDecl *VD = DRE->getDecl();
8884 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD))
8885 return TPO->getType().getUnqualifiedType();
8886 return VD->getType();
8887 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8888 if (const ValueDecl *VD = ME->getMemberDecl())
8889 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8890 return VD->getType();
8891 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8892 return IR->getDecl()->getType();
8893 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8894 if (PR->isExplicitProperty())
8895 return PR->getExplicitProperty()->getType();
8896 } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8897 return PE->getType();
8898 }
8899
8900 // C++11 [expr.lambda.prim]p18:
8901 // Every occurrence of decltype((x)) where x is a possibly
8902 // parenthesized id-expression that names an entity of automatic
8903 // storage duration is treated as if x were transformed into an
8904 // access to a corresponding data member of the closure type that
8905 // would have been declared if x were an odr-use of the denoted
8906 // entity.
8907 using namespace sema;
8908 if (S.getCurLambda()) {
8909 if (isa<ParenExpr>(E)) {
8910 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8911 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8912 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8913 if (!T.isNull())
8914 return S.Context.getLValueReferenceType(T);
8915 }
8916 }
8917 }
8918 }
8919
8920 return S.getDecltypeForParenthesizedExpr(E);
8921}
8922
8923QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8924 bool AsUnevaluated) {
8925 assert(!E->hasPlaceholderType() && "unexpected placeholder")((!E->hasPlaceholderType() && "unexpected placeholder"
) ? static_cast<void> (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8925, __PRETTY_FUNCTION__))
;
8926
8927 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8928 !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
8929 // The expression operand for decltype is in an unevaluated expression
8930 // context, so side effects could result in unintended consequences.
8931 // Exclude instantiation-dependent expressions, because 'decltype' is often
8932 // used to build SFINAE gadgets.
8933 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8934 }
8935
8936 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8937}
8938
8939QualType Sema::BuildUnaryTransformType(QualType BaseType,
8940 UnaryTransformType::UTTKind UKind,
8941 SourceLocation Loc) {
8942 switch (UKind) {
8943 case UnaryTransformType::EnumUnderlyingType:
8944 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8945 Diag(Loc, diag::err_only_enums_have_underlying_types);
8946 return QualType();
8947 } else {
8948 QualType Underlying = BaseType;
8949 if (!BaseType->isDependentType()) {
8950 // The enum could be incomplete if we're parsing its definition or
8951 // recovering from an error.
8952 NamedDecl *FwdDecl = nullptr;
8953 if (BaseType->isIncompleteType(&FwdDecl)) {
8954 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8955 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8956 return QualType();
8957 }
8958
8959 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
8960 assert(ED && "EnumType has no EnumDecl")((ED && "EnumType has no EnumDecl") ? static_cast<
void> (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8960, __PRETTY_FUNCTION__))
;
8961
8962 DiagnoseUseOfDecl(ED, Loc);
8963
8964 Underlying = ED->getIntegerType();
8965 assert(!Underlying.isNull())((!Underlying.isNull()) ? static_cast<void> (0) : __assert_fail
("!Underlying.isNull()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8965, __PRETTY_FUNCTION__))
;
8966 }
8967 return Context.getUnaryTransformType(BaseType, Underlying,
8968 UnaryTransformType::EnumUnderlyingType);
8969 }
8970 }
8971 llvm_unreachable("unknown unary transform type")::llvm::llvm_unreachable_internal("unknown unary transform type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 8971)
;
8972}
8973
8974QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
8975 if (!T->isDependentType()) {
8976 // FIXME: It isn't entirely clear whether incomplete atomic types
8977 // are allowed or not; for simplicity, ban them for the moment.
8978 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8979 return QualType();
8980
8981 int DisallowedKind = -1;
8982 if (T->isArrayType())
8983 DisallowedKind = 1;
8984 else if (T->isFunctionType())
8985 DisallowedKind = 2;
8986 else if (T->isReferenceType())
8987 DisallowedKind = 3;
8988 else if (T->isAtomicType())
8989 DisallowedKind = 4;
8990 else if (T.hasQualifiers())
8991 DisallowedKind = 5;
8992 else if (T->isSizelessType())
8993 DisallowedKind = 6;
8994 else if (!T.isTriviallyCopyableType(Context))
8995 // Some other non-trivially-copyable type (probably a C++ class)
8996 DisallowedKind = 7;
8997 else if (T->isExtIntType()) {
8998 DisallowedKind = 8;
8999 }
9000
9001 if (DisallowedKind != -1) {
9002 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9003 return QualType();
9004 }
9005
9006 // FIXME: Do we need any handling for ARC here?
9007 }
9008
9009 // Build the pointer type.
9010 return Context.getAtomicType(T);
9011}

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/TypeLocVisitor.h

1//===--- TypeLocVisitor.h - Visitor for TypeLoc subclasses ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the TypeLocVisitor interface.
10//
11//===----------------------------------------------------------------------===//
12#ifndef LLVM_CLANG_AST_TYPELOCVISITOR_H
13#define LLVM_CLANG_AST_TYPELOCVISITOR_H
14
15#include "clang/AST/TypeLoc.h"
16#include "llvm/Support/ErrorHandling.h"
17
18namespace clang {
19
20#define DISPATCH(CLASSNAME) \
21 return static_cast<ImplClass*>(this)-> \
22 Visit##CLASSNAME(TyLoc.castAs<CLASSNAME>())
23
24template<typename ImplClass, typename RetTy=void>
25class TypeLocVisitor {
26public:
27 RetTy Visit(TypeLoc TyLoc) {
28 switch (TyLoc.getTypeLocClass()) {
35
Control jumps to 'case ObjCObjectPointer:' at line 54
29#define ABSTRACT_TYPELOC(CLASS, PARENT)
30#define TYPELOC(CLASS, PARENT) \
31 case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc);
32#include "clang/AST/TypeLocNodes.def"
33 }
34 llvm_unreachable("unexpected type loc class!")::llvm::llvm_unreachable_internal("unexpected type loc class!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/TypeLocVisitor.h"
, 34)
;
35 }
36
37 RetTy Visit(UnqualTypeLoc TyLoc) {
38 switch (TyLoc.getTypeLocClass()) {
32
Control jumps to 'case MacroQualified:' at line 49
39#define ABSTRACT_TYPELOC(CLASS, PARENT)
40#define TYPELOC(CLASS, PARENT) \
41 case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc);
42#include "clang/AST/TypeLocNodes.def"
43 }
44 llvm_unreachable("unexpected type loc class!")::llvm::llvm_unreachable_internal("unexpected type loc class!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/TypeLocVisitor.h"
, 44)
;
45 }
46
47#define TYPELOC(CLASS, PARENT) \
48 RetTy Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
49 DISPATCH(PARENT); \
50 }
51#include "clang/AST/TypeLocNodes.def"
52
53 RetTy VisitTypeLoc(TypeLoc TyLoc) { return RetTy(); }
54};
55
56#undef DISPATCH
57
58} // end namespace clang
59
60#endif // LLVM_CLANG_AST_TYPELOCVISITOR_H

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/include/clang/AST/TypeNodes.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* An x-macro database of Clang type nodes *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef ABSTRACT_TYPE
10# define ABSTRACT_TYPE(Class, Base) TYPE(Class, Base)
11#endif
12#ifndef NON_CANONICAL_TYPE
13# define NON_CANONICAL_TYPE(Class, Base) TYPE(Class, Base)
14#endif
15#ifndef DEPENDENT_TYPE
16# define DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
17#endif
18#ifndef NON_CANONICAL_UNLESS_DEPENDENT_TYPE
19# define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
20#endif
21NON_CANONICAL_TYPE(Adjusted, Type)
22NON_CANONICAL_TYPE(Decayed, AdjustedType)
23ABSTRACT_TYPE(Array, Type)
24TYPE(ConstantArray, ArrayType)
25DEPENDENT_TYPE(DependentSizedArray, ArrayType)
26TYPE(IncompleteArray, ArrayType)
27TYPE(VariableArray, ArrayType)
28TYPE(Atomic, Type)
29NON_CANONICAL_TYPE(Attributed, Type)
30TYPE(BlockPointer, Type)
31TYPE(Builtin, Type)
32TYPE(Complex, Type)
33NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Decltype, Type)
34ABSTRACT_TYPE(Deduced, Type)
35TYPE(Auto, DeducedType)
36TYPE(DeducedTemplateSpecialization, DeducedType)
37DEPENDENT_TYPE(DependentAddressSpace, Type)
38DEPENDENT_TYPE(DependentExtInt, Type)
39DEPENDENT_TYPE(DependentName, Type)
40DEPENDENT_TYPE(DependentSizedExtVector, Type)
41DEPENDENT_TYPE(DependentTemplateSpecialization, Type)
42DEPENDENT_TYPE(DependentVector, Type)
43NON_CANONICAL_TYPE(Elaborated, Type)
44TYPE(ExtInt, Type)
45ABSTRACT_TYPE(Function, Type)
46TYPE(FunctionNoProto, FunctionType)
47TYPE(FunctionProto, FunctionType)
48DEPENDENT_TYPE(InjectedClassName, Type)
49NON_CANONICAL_TYPE(MacroQualified, Type)
33
Calling 'TypeSpecLocFiller::VisitMacroQualifiedTypeLoc'
50ABSTRACT_TYPE(Matrix, Type)
51TYPE(ConstantMatrix, MatrixType)
52DEPENDENT_TYPE(DependentSizedMatrix, MatrixType)
53TYPE(MemberPointer, Type)
54TYPE(ObjCObjectPointer, Type)
55TYPE(ObjCObject, Type)
56TYPE(ObjCInterface, ObjCObjectType)
57NON_CANONICAL_TYPE(ObjCTypeParam, Type)
58DEPENDENT_TYPE(PackExpansion, Type)
59NON_CANONICAL_TYPE(Paren, Type)
60TYPE(Pipe, Type)
61TYPE(Pointer, Type)
62ABSTRACT_TYPE(Reference, Type)
63TYPE(LValueReference, ReferenceType)
64TYPE(RValueReference, ReferenceType)
65DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type)
66NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type)
67ABSTRACT_TYPE(Tag, Type)
68TYPE(Enum, TagType)
69TYPE(Record, TagType)
70NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type)
71DEPENDENT_TYPE(TemplateTypeParm, Type)
72NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOfExpr, Type)
73NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOf, Type)
74NON_CANONICAL_TYPE(Typedef, Type)
75NON_CANONICAL_UNLESS_DEPENDENT_TYPE(UnaryTransform, Type)
76DEPENDENT_TYPE(UnresolvedUsing, Type)
77TYPE(Vector, Type)
78TYPE(ExtVector, VectorType)
79#ifdef LAST_TYPE
80LAST_TYPE(ExtVector)
81#undef LAST_TYPE
82#endif
83#ifdef LEAF_TYPE
84LEAF_TYPE(Builtin)
85LEAF_TYPE(Enum)
86LEAF_TYPE(InjectedClassName)
87LEAF_TYPE(ObjCInterface)
88LEAF_TYPE(Record)
89LEAF_TYPE(TemplateTypeParm)
90#undef LEAF_TYPE
91#endif
92#undef TYPE
93#undef ABSTRACT_TYPE
94#undef ABSTRACT_TYPE
95#undef NON_CANONICAL_TYPE
96#undef DEPENDENT_TYPE
97#undef NON_CANONICAL_UNLESS_DEPENDENT_TYPE

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/include/clang/AST/TypeNodes.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* An x-macro database of Clang type nodes *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef ABSTRACT_TYPE
10# define ABSTRACT_TYPE(Class, Base) TYPE(Class, Base)
11#endif
12#ifndef NON_CANONICAL_TYPE
13# define NON_CANONICAL_TYPE(Class, Base) TYPE(Class, Base)
14#endif
15#ifndef DEPENDENT_TYPE
16# define DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
17#endif
18#ifndef NON_CANONICAL_UNLESS_DEPENDENT_TYPE
19# define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
20#endif
21NON_CANONICAL_TYPE(Adjusted, Type)
22NON_CANONICAL_TYPE(Decayed, AdjustedType)
23ABSTRACT_TYPE(Array, Type)
24TYPE(ConstantArray, ArrayType)
25DEPENDENT_TYPE(DependentSizedArray, ArrayType)
26TYPE(IncompleteArray, ArrayType)
27TYPE(VariableArray, ArrayType)
28TYPE(Atomic, Type)
29NON_CANONICAL_TYPE(Attributed, Type)
30TYPE(BlockPointer, Type)
31TYPE(Builtin, Type)
32TYPE(Complex, Type)
33NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Decltype, Type)
34ABSTRACT_TYPE(Deduced, Type)
35TYPE(Auto, DeducedType)
36TYPE(DeducedTemplateSpecialization, DeducedType)
37DEPENDENT_TYPE(DependentAddressSpace, Type)
38DEPENDENT_TYPE(DependentExtInt, Type)
39DEPENDENT_TYPE(DependentName, Type)
40DEPENDENT_TYPE(DependentSizedExtVector, Type)
41DEPENDENT_TYPE(DependentTemplateSpecialization, Type)
42DEPENDENT_TYPE(DependentVector, Type)
43NON_CANONICAL_TYPE(Elaborated, Type)
44TYPE(ExtInt, Type)
45ABSTRACT_TYPE(Function, Type)
46TYPE(FunctionNoProto, FunctionType)
47TYPE(FunctionProto, FunctionType)
48DEPENDENT_TYPE(InjectedClassName, Type)
49NON_CANONICAL_TYPE(MacroQualified, Type)
50ABSTRACT_TYPE(Matrix, Type)
51TYPE(ConstantMatrix, MatrixType)
52DEPENDENT_TYPE(DependentSizedMatrix, MatrixType)
53TYPE(MemberPointer, Type)
54TYPE(ObjCObjectPointer, Type)
36
Calling 'TypeSpecLocFiller::VisitObjCObjectPointerTypeLoc'
55TYPE(ObjCObject, Type)
56TYPE(ObjCInterface, ObjCObjectType)
57NON_CANONICAL_TYPE(ObjCTypeParam, Type)
58DEPENDENT_TYPE(PackExpansion, Type)
59NON_CANONICAL_TYPE(Paren, Type)
60TYPE(Pipe, Type)
61TYPE(Pointer, Type)
62ABSTRACT_TYPE(Reference, Type)
63TYPE(LValueReference, ReferenceType)
64TYPE(RValueReference, ReferenceType)
65DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type)
66NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type)
67ABSTRACT_TYPE(Tag, Type)
68TYPE(Enum, TagType)
69TYPE(Record, TagType)
70NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type)
71DEPENDENT_TYPE(TemplateTypeParm, Type)
72NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOfExpr, Type)
73NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOf, Type)
74NON_CANONICAL_TYPE(Typedef, Type)
75NON_CANONICAL_UNLESS_DEPENDENT_TYPE(UnaryTransform, Type)
76DEPENDENT_TYPE(UnresolvedUsing, Type)
77TYPE(Vector, Type)
78TYPE(ExtVector, VectorType)
79#ifdef LAST_TYPE
80LAST_TYPE(ExtVector)
81#undef LAST_TYPE
82#endif
83#ifdef LEAF_TYPE
84LEAF_TYPE(Builtin)
85LEAF_TYPE(Enum)
86LEAF_TYPE(InjectedClassName)
87LEAF_TYPE(ObjCInterface)
88LEAF_TYPE(Record)
89LEAF_TYPE(TemplateTypeParm)
90#undef LEAF_TYPE
91#endif
92#undef TYPE
93#undef ABSTRACT_TYPE
94#undef ABSTRACT_TYPE
95#undef NON_CANONICAL_TYPE
96#undef DEPENDENT_TYPE
97#undef NON_CANONICAL_UNLESS_DEPENDENT_TYPE

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 282, __PRETTY_FUNCTION__))
;
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 286, __PRETTY_FUNCTION__))
;
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 293, __PRETTY_FUNCTION__))
;
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 297, __PRETTY_FUNCTION__))
;
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 315, __PRETTY_FUNCTION__))
;
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 343, __PRETTY_FUNCTION__))
;
344 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 344, __PRETTY_FUNCTION__))
;
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 373, __PRETTY_FUNCTION__))
;
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 382, __PRETTY_FUNCTION__))
;
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 388, __PRETTY_FUNCTION__))
;
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 397, __PRETTY_FUNCTION__))
;
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 401, __PRETTY_FUNCTION__))
;
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 408, __PRETTY_FUNCTION__))
;
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 463, __PRETTY_FUNCTION__))
463 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 463, __PRETTY_FUNCTION__))
;
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 465, __PRETTY_FUNCTION__))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 465, __PRETTY_FUNCTION__))
;
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 467, __PRETTY_FUNCTION__))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 467, __PRETTY_FUNCTION__))
;
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 // Consider pointer size address spaces to be equivalent to default.
490 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
491 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
492 }
493
494 /// Returns true if the address space in these qualifiers is equal to or
495 /// a superset of the address space in the argument qualifiers.
496 bool isAddressSpaceSupersetOf(Qualifiers other) const {
497 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
498 }
499
500 /// Determines if these qualifiers compatibly include another set.
501 /// Generally this answers the question of whether an object with the other
502 /// qualifiers can be safely used as an object with these qualifiers.
503 bool compatiblyIncludes(Qualifiers other) const {
504 return isAddressSpaceSupersetOf(other) &&
505 // ObjC GC qualifiers can match, be added, or be removed, but can't
506 // be changed.
507 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
508 !other.hasObjCGCAttr()) &&
509 // ObjC lifetime qualifiers must match exactly.
510 getObjCLifetime() == other.getObjCLifetime() &&
511 // CVR qualifiers may subset.
512 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
513 // U qualifier may superset.
514 (!other.hasUnaligned() || hasUnaligned());
515 }
516
517 /// Determines if these qualifiers compatibly include another set of
518 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
519 ///
520 /// One set of Objective-C lifetime qualifiers compatibly includes the other
521 /// if the lifetime qualifiers match, or if both are non-__weak and the
522 /// including set also contains the 'const' qualifier, or both are non-__weak
523 /// and one is None (which can only happen in non-ARC modes).
524 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
525 if (getObjCLifetime() == other.getObjCLifetime())
526 return true;
527
528 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
529 return false;
530
531 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
532 return true;
533
534 return hasConst();
535 }
536
537 /// Determine whether this set of qualifiers is a strict superset of
538 /// another set of qualifiers, not considering qualifier compatibility.
539 bool isStrictSupersetOf(Qualifiers Other) const;
540
541 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
542 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
543
544 explicit operator bool() const { return hasQualifiers(); }
545
546 Qualifiers &operator+=(Qualifiers R) {
547 addQualifiers(R);
548 return *this;
549 }
550
551 // Union two qualifier sets. If an enumerated qualifier appears
552 // in both sets, use the one from the right.
553 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
554 L += R;
555 return L;
556 }
557
558 Qualifiers &operator-=(Qualifiers R) {
559 removeQualifiers(R);
560 return *this;
561 }
562
563 /// Compute the difference between two qualifier sets.
564 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
565 L -= R;
566 return L;
567 }
568
569 std::string getAsString() const;
570 std::string getAsString(const PrintingPolicy &Policy) const;
571
572 static std::string getAddrSpaceAsString(LangAS AS);
573
574 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
575 void print(raw_ostream &OS, const PrintingPolicy &Policy,
576 bool appendSpaceIfNonEmpty = false) const;
577
578 void Profile(llvm::FoldingSetNodeID &ID) const {
579 ID.AddInteger(Mask);
580 }
581
582private:
583 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
584 // |C R V|U|GCAttr|Lifetime|AddressSpace|
585 uint32_t Mask = 0;
586
587 static const uint32_t UMask = 0x8;
588 static const uint32_t UShift = 3;
589 static const uint32_t GCAttrMask = 0x30;
590 static const uint32_t GCAttrShift = 4;
591 static const uint32_t LifetimeMask = 0x1C0;
592 static const uint32_t LifetimeShift = 6;
593 static const uint32_t AddressSpaceMask =
594 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
595 static const uint32_t AddressSpaceShift = 9;
596};
597
598/// A std::pair-like structure for storing a qualified type split
599/// into its local qualifiers and its locally-unqualified type.
600struct SplitQualType {
601 /// The locally-unqualified type.
602 const Type *Ty = nullptr;
603
604 /// The local qualifiers.
605 Qualifiers Quals;
606
607 SplitQualType() = default;
608 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
609
610 SplitQualType getSingleStepDesugaredType() const; // end of this file
611
612 // Make std::tie work.
613 std::pair<const Type *,Qualifiers> asPair() const {
614 return std::pair<const Type *, Qualifiers>(Ty, Quals);
615 }
616
617 friend bool operator==(SplitQualType a, SplitQualType b) {
618 return a.Ty == b.Ty && a.Quals == b.Quals;
619 }
620 friend bool operator!=(SplitQualType a, SplitQualType b) {
621 return a.Ty != b.Ty || a.Quals != b.Quals;
622 }
623};
624
625/// The kind of type we are substituting Objective-C type arguments into.
626///
627/// The kind of substitution affects the replacement of type parameters when
628/// no concrete type information is provided, e.g., when dealing with an
629/// unspecialized type.
630enum class ObjCSubstitutionContext {
631 /// An ordinary type.
632 Ordinary,
633
634 /// The result type of a method or function.
635 Result,
636
637 /// The parameter type of a method or function.
638 Parameter,
639
640 /// The type of a property.
641 Property,
642
643 /// The superclass of a type.
644 Superclass,
645};
646
647/// A (possibly-)qualified type.
648///
649/// For efficiency, we don't store CV-qualified types as nodes on their
650/// own: instead each reference to a type stores the qualifiers. This
651/// greatly reduces the number of nodes we need to allocate for types (for
652/// example we only need one for 'int', 'const int', 'volatile int',
653/// 'const volatile int', etc).
654///
655/// As an added efficiency bonus, instead of making this a pair, we
656/// just store the two bits we care about in the low bits of the
657/// pointer. To handle the packing/unpacking, we make QualType be a
658/// simple wrapper class that acts like a smart pointer. A third bit
659/// indicates whether there are extended qualifiers present, in which
660/// case the pointer points to a special structure.
661class QualType {
662 friend class QualifierCollector;
663
664 // Thankfully, these are efficiently composable.
665 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
666 Qualifiers::FastWidth> Value;
667
668 const ExtQuals *getExtQualsUnsafe() const {
669 return Value.getPointer().get<const ExtQuals*>();
670 }
671
672 const Type *getTypePtrUnsafe() const {
673 return Value.getPointer().get<const Type*>();
674 }
675
676 const ExtQualsTypeCommonBase *getCommonPtr() const {
677 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 677, __PRETTY_FUNCTION__))
;
678 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
679 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
680 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
681 }
682
683public:
684 QualType() = default;
685 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
686 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
687
688 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
689 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
690
691 /// Retrieves a pointer to the underlying (unqualified) type.
692 ///
693 /// This function requires that the type not be NULL. If the type might be
694 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
695 const Type *getTypePtr() const;
696
697 const Type *getTypePtrOrNull() const;
698
699 /// Retrieves a pointer to the name of the base type.
700 const IdentifierInfo *getBaseTypeIdentifier() const;
701
702 /// Divides a QualType into its unqualified type and a set of local
703 /// qualifiers.
704 SplitQualType split() const;
705
706 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
707
708 static QualType getFromOpaquePtr(const void *Ptr) {
709 QualType T;
710 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
711 return T;
712 }
713
714 const Type &operator*() const {
715 return *getTypePtr();
716 }
717
718 const Type *operator->() const {
719 return getTypePtr();
720 }
721
722 bool isCanonical() const;
723 bool isCanonicalAsParam() const;
724
725 /// Return true if this QualType doesn't point to a type yet.
726 bool isNull() const {
727 return Value.getPointer().isNull();
39
Calling 'PointerUnion::isNull'
42
Returning from 'PointerUnion::isNull'
43
Returning zero, which participates in a condition later
728 }
729
730 /// Determine whether this particular QualType instance has the
731 /// "const" qualifier set, without looking through typedefs that may have
732 /// added "const" at a different level.
733 bool isLocalConstQualified() const {
734 return (getLocalFastQualifiers() & Qualifiers::Const);
735 }
736
737 /// Determine whether this type is const-qualified.
738 bool isConstQualified() const;
739
740 /// Determine whether this particular QualType instance has the
741 /// "restrict" qualifier set, without looking through typedefs that may have
742 /// added "restrict" at a different level.
743 bool isLocalRestrictQualified() const {
744 return (getLocalFastQualifiers() & Qualifiers::Restrict);
745 }
746
747 /// Determine whether this type is restrict-qualified.
748 bool isRestrictQualified() const;
749
750 /// Determine whether this particular QualType instance has the
751 /// "volatile" qualifier set, without looking through typedefs that may have
752 /// added "volatile" at a different level.
753 bool isLocalVolatileQualified() const {
754 return (getLocalFastQualifiers() & Qualifiers::Volatile);
755 }
756
757 /// Determine whether this type is volatile-qualified.
758 bool isVolatileQualified() const;
759
760 /// Determine whether this particular QualType instance has any
761 /// qualifiers, without looking through any typedefs that might add
762 /// qualifiers at a different level.
763 bool hasLocalQualifiers() const {
764 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
765 }
766
767 /// Determine whether this type has any qualifiers.
768 bool hasQualifiers() const;
769
770 /// Determine whether this particular QualType instance has any
771 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
772 /// instance.
773 bool hasLocalNonFastQualifiers() const {
774 return Value.getPointer().is<const ExtQuals*>();
775 }
776
777 /// Retrieve the set of qualifiers local to this particular QualType
778 /// instance, not including any qualifiers acquired through typedefs or
779 /// other sugar.
780 Qualifiers getLocalQualifiers() const;
781
782 /// Retrieve the set of qualifiers applied to this type.
783 Qualifiers getQualifiers() const;
784
785 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
786 /// local to this particular QualType instance, not including any qualifiers
787 /// acquired through typedefs or other sugar.
788 unsigned getLocalCVRQualifiers() const {
789 return getLocalFastQualifiers();
790 }
791
792 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
793 /// applied to this type.
794 unsigned getCVRQualifiers() const;
795
796 bool isConstant(const ASTContext& Ctx) const {
797 return QualType::isConstant(*this, Ctx);
798 }
799
800 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
801 bool isPODType(const ASTContext &Context) const;
802
803 /// Return true if this is a POD type according to the rules of the C++98
804 /// standard, regardless of the current compilation's language.
805 bool isCXX98PODType(const ASTContext &Context) const;
806
807 /// Return true if this is a POD type according to the more relaxed rules
808 /// of the C++11 standard, regardless of the current compilation's language.
809 /// (C++0x [basic.types]p9). Note that, unlike
810 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
811 bool isCXX11PODType(const ASTContext &Context) const;
812
813 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
814 bool isTrivialType(const ASTContext &Context) const;
815
816 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
817 bool isTriviallyCopyableType(const ASTContext &Context) const;
818
819
820 /// Returns true if it is a class and it might be dynamic.
821 bool mayBeDynamicClass() const;
822
823 /// Returns true if it is not a class or if the class might not be dynamic.
824 bool mayBeNotDynamicClass() const;
825
826 // Don't promise in the API that anything besides 'const' can be
827 // easily added.
828
829 /// Add the `const` type qualifier to this QualType.
830 void addConst() {
831 addFastQualifiers(Qualifiers::Const);
832 }
833 QualType withConst() const {
834 return withFastQualifiers(Qualifiers::Const);
835 }
836
837 /// Add the `volatile` type qualifier to this QualType.
838 void addVolatile() {
839 addFastQualifiers(Qualifiers::Volatile);
840 }
841 QualType withVolatile() const {
842 return withFastQualifiers(Qualifiers::Volatile);
843 }
844
845 /// Add the `restrict` qualifier to this QualType.
846 void addRestrict() {
847 addFastQualifiers(Qualifiers::Restrict);
848 }
849 QualType withRestrict() const {
850 return withFastQualifiers(Qualifiers::Restrict);
851 }
852
853 QualType withCVRQualifiers(unsigned CVR) const {
854 return withFastQualifiers(CVR);
855 }
856
857 void addFastQualifiers(unsigned TQs) {
858 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 859, __PRETTY_FUNCTION__))
859 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 859, __PRETTY_FUNCTION__))
;
860 Value.setInt(Value.getInt() | TQs);
861 }
862
863 void removeLocalConst();
864 void removeLocalVolatile();
865 void removeLocalRestrict();
866 void removeLocalCVRQualifiers(unsigned Mask);
867
868 void removeLocalFastQualifiers() { Value.setInt(0); }
869 void removeLocalFastQualifiers(unsigned Mask) {
870 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 870, __PRETTY_FUNCTION__))
;
871 Value.setInt(Value.getInt() & ~Mask);
872 }
873
874 // Creates a type with the given qualifiers in addition to any
875 // qualifiers already on this type.
876 QualType withFastQualifiers(unsigned TQs) const {
877 QualType T = *this;
878 T.addFastQualifiers(TQs);
879 return T;
880 }
881
882 // Creates a type with exactly the given fast qualifiers, removing
883 // any existing fast qualifiers.
884 QualType withExactLocalFastQualifiers(unsigned TQs) const {
885 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
886 }
887
888 // Removes fast qualifiers, but leaves any extended qualifiers in place.
889 QualType withoutLocalFastQualifiers() const {
890 QualType T = *this;
891 T.removeLocalFastQualifiers();
892 return T;
893 }
894
895 QualType getCanonicalType() const;
896
897 /// Return this type with all of the instance-specific qualifiers
898 /// removed, but without removing any qualifiers that may have been applied
899 /// through typedefs.
900 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
901
902 /// Retrieve the unqualified variant of the given type,
903 /// removing as little sugar as possible.
904 ///
905 /// This routine looks through various kinds of sugar to find the
906 /// least-desugared type that is unqualified. For example, given:
907 ///
908 /// \code
909 /// typedef int Integer;
910 /// typedef const Integer CInteger;
911 /// typedef CInteger DifferenceType;
912 /// \endcode
913 ///
914 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
915 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
916 ///
917 /// The resulting type might still be qualified if it's sugar for an array
918 /// type. To strip qualifiers even from within a sugared array type, use
919 /// ASTContext::getUnqualifiedArrayType.
920 inline QualType getUnqualifiedType() const;
921
922 /// Retrieve the unqualified variant of the given type, removing as little
923 /// sugar as possible.
924 ///
925 /// Like getUnqualifiedType(), but also returns the set of
926 /// qualifiers that were built up.
927 ///
928 /// The resulting type might still be qualified if it's sugar for an array
929 /// type. To strip qualifiers even from within a sugared array type, use
930 /// ASTContext::getUnqualifiedArrayType.
931 inline SplitQualType getSplitUnqualifiedType() const;
932
933 /// Determine whether this type is more qualified than the other
934 /// given type, requiring exact equality for non-CVR qualifiers.
935 bool isMoreQualifiedThan(QualType Other) const;
936
937 /// Determine whether this type is at least as qualified as the other
938 /// given type, requiring exact equality for non-CVR qualifiers.
939 bool isAtLeastAsQualifiedAs(QualType Other) const;
940
941 QualType getNonReferenceType() const;
942
943 /// Determine the type of a (typically non-lvalue) expression with the
944 /// specified result type.
945 ///
946 /// This routine should be used for expressions for which the return type is
947 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
948 /// an lvalue. It removes a top-level reference (since there are no
949 /// expressions of reference type) and deletes top-level cvr-qualifiers
950 /// from non-class types (in C++) or all types (in C).
951 QualType getNonLValueExprType(const ASTContext &Context) const;
952
953 /// Remove an outer pack expansion type (if any) from this type. Used as part
954 /// of converting the type of a declaration to the type of an expression that
955 /// references that expression. It's meaningless for an expression to have a
956 /// pack expansion type.
957 QualType getNonPackExpansionType() const;
958
959 /// Return the specified type with any "sugar" removed from
960 /// the type. This takes off typedefs, typeof's etc. If the outer level of
961 /// the type is already concrete, it returns it unmodified. This is similar
962 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
963 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
964 /// concrete.
965 ///
966 /// Qualifiers are left in place.
967 QualType getDesugaredType(const ASTContext &Context) const {
968 return getDesugaredType(*this, Context);
969 }
970
971 SplitQualType getSplitDesugaredType() const {
972 return getSplitDesugaredType(*this);
973 }
974
975 /// Return the specified type with one level of "sugar" removed from
976 /// the type.
977 ///
978 /// This routine takes off the first typedef, typeof, etc. If the outer level
979 /// of the type is already concrete, it returns it unmodified.
980 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
981 return getSingleStepDesugaredTypeImpl(*this, Context);
982 }
983
984 /// Returns the specified type after dropping any
985 /// outer-level parentheses.
986 QualType IgnoreParens() const {
987 if (isa<ParenType>(*this))
988 return QualType::IgnoreParens(*this);
989 return *this;
990 }
991
992 /// Indicate whether the specified types and qualifiers are identical.
993 friend bool operator==(const QualType &LHS, const QualType &RHS) {
994 return LHS.Value == RHS.Value;
995 }
996 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
997 return LHS.Value != RHS.Value;
998 }
999 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1000 return LHS.Value < RHS.Value;
1001 }
1002
1003 static std::string getAsString(SplitQualType split,
1004 const PrintingPolicy &Policy) {
1005 return getAsString(split.Ty, split.Quals, Policy);
1006 }
1007 static std::string getAsString(const Type *ty, Qualifiers qs,
1008 const PrintingPolicy &Policy);
1009
1010 std::string getAsString() const;
1011 std::string getAsString(const PrintingPolicy &Policy) const;
1012
1013 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1014 const Twine &PlaceHolder = Twine(),
1015 unsigned Indentation = 0) const;
1016
1017 static void print(SplitQualType split, raw_ostream &OS,
1018 const PrintingPolicy &policy, const Twine &PlaceHolder,
1019 unsigned Indentation = 0) {
1020 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1021 }
1022
1023 static void print(const Type *ty, Qualifiers qs,
1024 raw_ostream &OS, const PrintingPolicy &policy,
1025 const Twine &PlaceHolder,
1026 unsigned Indentation = 0);
1027
1028 void getAsStringInternal(std::string &Str,
1029 const PrintingPolicy &Policy) const;
1030
1031 static void getAsStringInternal(SplitQualType split, std::string &out,
1032 const PrintingPolicy &policy) {
1033 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1034 }
1035
1036 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1037 std::string &out,
1038 const PrintingPolicy &policy);
1039
1040 class StreamedQualTypeHelper {
1041 const QualType &T;
1042 const PrintingPolicy &Policy;
1043 const Twine &PlaceHolder;
1044 unsigned Indentation;
1045
1046 public:
1047 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1048 const Twine &PlaceHolder, unsigned Indentation)
1049 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1050 Indentation(Indentation) {}
1051
1052 friend raw_ostream &operator<<(raw_ostream &OS,
1053 const StreamedQualTypeHelper &SQT) {
1054 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1055 return OS;
1056 }
1057 };
1058
1059 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder = Twine(),
1061 unsigned Indentation = 0) const {
1062 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1063 }
1064
1065 void dump(const char *s) const;
1066 void dump() const;
1067 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1068
1069 void Profile(llvm::FoldingSetNodeID &ID) const {
1070 ID.AddPointer(getAsOpaquePtr());
1071 }
1072
1073 /// Check if this type has any address space qualifier.
1074 inline bool hasAddressSpace() const;
1075
1076 /// Return the address space of this type.
1077 inline LangAS getAddressSpace() const;
1078
1079 /// Returns true if address space qualifiers overlap with T address space
1080 /// qualifiers.
1081 /// OpenCL C defines conversion rules for pointers to different address spaces
1082 /// and notion of overlapping address spaces.
1083 /// CL1.1 or CL1.2:
1084 /// address spaces overlap iff they are they same.
1085 /// OpenCL C v2.0 s6.5.5 adds:
1086 /// __generic overlaps with any address space except for __constant.
1087 bool isAddressSpaceOverlapping(QualType T) const {
1088 Qualifiers Q = getQualifiers();
1089 Qualifiers TQ = T.getQualifiers();
1090 // Address spaces overlap if at least one of them is a superset of another
1091 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1092 }
1093
1094 /// Returns gc attribute of this type.
1095 inline Qualifiers::GC getObjCGCAttr() const;
1096
1097 /// true when Type is objc's weak.
1098 bool isObjCGCWeak() const {
1099 return getObjCGCAttr() == Qualifiers::Weak;
1100 }
1101
1102 /// true when Type is objc's strong.
1103 bool isObjCGCStrong() const {
1104 return getObjCGCAttr() == Qualifiers::Strong;
1105 }
1106
1107 /// Returns lifetime attribute of this type.
1108 Qualifiers::ObjCLifetime getObjCLifetime() const {
1109 return getQualifiers().getObjCLifetime();
1110 }
1111
1112 bool hasNonTrivialObjCLifetime() const {
1113 return getQualifiers().hasNonTrivialObjCLifetime();
1114 }
1115
1116 bool hasStrongOrWeakObjCLifetime() const {
1117 return getQualifiers().hasStrongOrWeakObjCLifetime();
1118 }
1119
1120 // true when Type is objc's weak and weak is enabled but ARC isn't.
1121 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1122
1123 enum PrimitiveDefaultInitializeKind {
1124 /// The type does not fall into any of the following categories. Note that
1125 /// this case is zero-valued so that values of this enum can be used as a
1126 /// boolean condition for non-triviality.
1127 PDIK_Trivial,
1128
1129 /// The type is an Objective-C retainable pointer type that is qualified
1130 /// with the ARC __strong qualifier.
1131 PDIK_ARCStrong,
1132
1133 /// The type is an Objective-C retainable pointer type that is qualified
1134 /// with the ARC __weak qualifier.
1135 PDIK_ARCWeak,
1136
1137 /// The type is a struct containing a field whose type is not PCK_Trivial.
1138 PDIK_Struct
1139 };
1140
1141 /// Functions to query basic properties of non-trivial C struct types.
1142
1143 /// Check if this is a non-trivial type that would cause a C struct
1144 /// transitively containing this type to be non-trivial to default initialize
1145 /// and return the kind.
1146 PrimitiveDefaultInitializeKind
1147 isNonTrivialToPrimitiveDefaultInitialize() const;
1148
1149 enum PrimitiveCopyKind {
1150 /// The type does not fall into any of the following categories. Note that
1151 /// this case is zero-valued so that values of this enum can be used as a
1152 /// boolean condition for non-triviality.
1153 PCK_Trivial,
1154
1155 /// The type would be trivial except that it is volatile-qualified. Types
1156 /// that fall into one of the other non-trivial cases may additionally be
1157 /// volatile-qualified.
1158 PCK_VolatileTrivial,
1159
1160 /// The type is an Objective-C retainable pointer type that is qualified
1161 /// with the ARC __strong qualifier.
1162 PCK_ARCStrong,
1163
1164 /// The type is an Objective-C retainable pointer type that is qualified
1165 /// with the ARC __weak qualifier.
1166 PCK_ARCWeak,
1167
1168 /// The type is a struct containing a field whose type is neither
1169 /// PCK_Trivial nor PCK_VolatileTrivial.
1170 /// Note that a C++ struct type does not necessarily match this; C++ copying
1171 /// semantics are too complex to express here, in part because they depend
1172 /// on the exact constructor or assignment operator that is chosen by
1173 /// overload resolution to do the copy.
1174 PCK_Struct
1175 };
1176
1177 /// Check if this is a non-trivial type that would cause a C struct
1178 /// transitively containing this type to be non-trivial to copy and return the
1179 /// kind.
1180 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1181
1182 /// Check if this is a non-trivial type that would cause a C struct
1183 /// transitively containing this type to be non-trivial to destructively
1184 /// move and return the kind. Destructive move in this context is a C++-style
1185 /// move in which the source object is placed in a valid but unspecified state
1186 /// after it is moved, as opposed to a truly destructive move in which the
1187 /// source object is placed in an uninitialized state.
1188 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1189
1190 enum DestructionKind {
1191 DK_none,
1192 DK_cxx_destructor,
1193 DK_objc_strong_lifetime,
1194 DK_objc_weak_lifetime,
1195 DK_nontrivial_c_struct
1196 };
1197
1198 /// Returns a nonzero value if objects of this type require
1199 /// non-trivial work to clean up after. Non-zero because it's
1200 /// conceivable that qualifiers (objc_gc(weak)?) could make
1201 /// something require destruction.
1202 DestructionKind isDestructedType() const {
1203 return isDestructedTypeImpl(*this);
1204 }
1205
1206 /// Check if this is or contains a C union that is non-trivial to
1207 /// default-initialize, which is a union that has a member that is non-trivial
1208 /// to default-initialize. If this returns true,
1209 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1210 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1211
1212 /// Check if this is or contains a C union that is non-trivial to destruct,
1213 /// which is a union that has a member that is non-trivial to destruct. If
1214 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1215 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1216
1217 /// Check if this is or contains a C union that is non-trivial to copy, which
1218 /// is a union that has a member that is non-trivial to copy. If this returns
1219 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1220 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1221
1222 /// Determine whether expressions of the given type are forbidden
1223 /// from being lvalues in C.
1224 ///
1225 /// The expression types that are forbidden to be lvalues are:
1226 /// - 'void', but not qualified void
1227 /// - function types
1228 ///
1229 /// The exact rule here is C99 6.3.2.1:
1230 /// An lvalue is an expression with an object type or an incomplete
1231 /// type other than void.
1232 bool isCForbiddenLValueType() const;
1233
1234 /// Substitute type arguments for the Objective-C type parameters used in the
1235 /// subject type.
1236 ///
1237 /// \param ctx ASTContext in which the type exists.
1238 ///
1239 /// \param typeArgs The type arguments that will be substituted for the
1240 /// Objective-C type parameters in the subject type, which are generally
1241 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1242 /// parameters will be replaced with their bounds or id/Class, as appropriate
1243 /// for the context.
1244 ///
1245 /// \param context The context in which the subject type was written.
1246 ///
1247 /// \returns the resulting type.
1248 QualType substObjCTypeArgs(ASTContext &ctx,
1249 ArrayRef<QualType> typeArgs,
1250 ObjCSubstitutionContext context) const;
1251
1252 /// Substitute type arguments from an object type for the Objective-C type
1253 /// parameters used in the subject type.
1254 ///
1255 /// This operation combines the computation of type arguments for
1256 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1257 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1258 /// callers that need to perform a single substitution in isolation.
1259 ///
1260 /// \param objectType The type of the object whose member type we're
1261 /// substituting into. For example, this might be the receiver of a message
1262 /// or the base of a property access.
1263 ///
1264 /// \param dc The declaration context from which the subject type was
1265 /// retrieved, which indicates (for example) which type parameters should
1266 /// be substituted.
1267 ///
1268 /// \param context The context in which the subject type was written.
1269 ///
1270 /// \returns the subject type after replacing all of the Objective-C type
1271 /// parameters with their corresponding arguments.
1272 QualType substObjCMemberType(QualType objectType,
1273 const DeclContext *dc,
1274 ObjCSubstitutionContext context) const;
1275
1276 /// Strip Objective-C "__kindof" types from the given type.
1277 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1278
1279 /// Remove all qualifiers including _Atomic.
1280 QualType getAtomicUnqualifiedType() const;
1281
1282private:
1283 // These methods are implemented in a separate translation unit;
1284 // "static"-ize them to avoid creating temporary QualTypes in the
1285 // caller.
1286 static bool isConstant(QualType T, const ASTContext& Ctx);
1287 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1288 static SplitQualType getSplitDesugaredType(QualType T);
1289 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1290 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1291 const ASTContext &C);
1292 static QualType IgnoreParens(QualType T);
1293 static DestructionKind isDestructedTypeImpl(QualType type);
1294
1295 /// Check if \param RD is or contains a non-trivial C union.
1296 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1297 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1298 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1299};
1300
1301} // namespace clang
1302
1303namespace llvm {
1304
1305/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1306/// to a specific Type class.
1307template<> struct simplify_type< ::clang::QualType> {
1308 using SimpleType = const ::clang::Type *;
1309
1310 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1311 return Val.getTypePtr();
1312 }
1313};
1314
1315// Teach SmallPtrSet that QualType is "basically a pointer".
1316template<>
1317struct PointerLikeTypeTraits<clang::QualType> {
1318 static inline void *getAsVoidPointer(clang::QualType P) {
1319 return P.getAsOpaquePtr();
1320 }
1321
1322 static inline clang::QualType getFromVoidPointer(void *P) {
1323 return clang::QualType::getFromOpaquePtr(P);
1324 }
1325
1326 // Various qualifiers go in low bits.
1327 static constexpr int NumLowBitsAvailable = 0;
1328};
1329
1330} // namespace llvm
1331
1332namespace clang {
1333
1334/// Base class that is common to both the \c ExtQuals and \c Type
1335/// classes, which allows \c QualType to access the common fields between the
1336/// two.
1337class ExtQualsTypeCommonBase {
1338 friend class ExtQuals;
1339 friend class QualType;
1340 friend class Type;
1341
1342 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1343 /// a self-referential pointer (for \c Type).
1344 ///
1345 /// This pointer allows an efficient mapping from a QualType to its
1346 /// underlying type pointer.
1347 const Type *const BaseType;
1348
1349 /// The canonical type of this type. A QualType.
1350 QualType CanonicalType;
1351
1352 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1353 : BaseType(baseType), CanonicalType(canon) {}
1354};
1355
1356/// We can encode up to four bits in the low bits of a
1357/// type pointer, but there are many more type qualifiers that we want
1358/// to be able to apply to an arbitrary type. Therefore we have this
1359/// struct, intended to be heap-allocated and used by QualType to
1360/// store qualifiers.
1361///
1362/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1363/// in three low bits on the QualType pointer; a fourth bit records whether
1364/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1365/// Objective-C GC attributes) are much more rare.
1366class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1367 // NOTE: changing the fast qualifiers should be straightforward as
1368 // long as you don't make 'const' non-fast.
1369 // 1. Qualifiers:
1370 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1371 // Fast qualifiers must occupy the low-order bits.
1372 // b) Update Qualifiers::FastWidth and FastMask.
1373 // 2. QualType:
1374 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1375 // b) Update remove{Volatile,Restrict}, defined near the end of
1376 // this header.
1377 // 3. ASTContext:
1378 // a) Update get{Volatile,Restrict}Type.
1379
1380 /// The immutable set of qualifiers applied by this node. Always contains
1381 /// extended qualifiers.
1382 Qualifiers Quals;
1383
1384 ExtQuals *this_() { return this; }
1385
1386public:
1387 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1388 : ExtQualsTypeCommonBase(baseType,
1389 canon.isNull() ? QualType(this_(), 0) : canon),
1390 Quals(quals) {
1391 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1392, __PRETTY_FUNCTION__))
1392 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1392, __PRETTY_FUNCTION__))
;
1393 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1394, __PRETTY_FUNCTION__))
1394 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1394, __PRETTY_FUNCTION__))
;
1395 }
1396
1397 Qualifiers getQualifiers() const { return Quals; }
1398
1399 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1400 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1401
1402 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1403 Qualifiers::ObjCLifetime getObjCLifetime() const {
1404 return Quals.getObjCLifetime();
1405 }
1406
1407 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1408 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1409
1410 const Type *getBaseType() const { return BaseType; }
1411
1412public:
1413 void Profile(llvm::FoldingSetNodeID &ID) const {
1414 Profile(ID, getBaseType(), Quals);
1415 }
1416
1417 static void Profile(llvm::FoldingSetNodeID &ID,
1418 const Type *BaseType,
1419 Qualifiers Quals) {
1420 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1420, __PRETTY_FUNCTION__))
;
1421 ID.AddPointer(BaseType);
1422 Quals.Profile(ID);
1423 }
1424};
1425
1426/// The kind of C++11 ref-qualifier associated with a function type.
1427/// This determines whether a member function's "this" object can be an
1428/// lvalue, rvalue, or neither.
1429enum RefQualifierKind {
1430 /// No ref-qualifier was provided.
1431 RQ_None = 0,
1432
1433 /// An lvalue ref-qualifier was provided (\c &).
1434 RQ_LValue,
1435
1436 /// An rvalue ref-qualifier was provided (\c &&).
1437 RQ_RValue
1438};
1439
1440/// Which keyword(s) were used to create an AutoType.
1441enum class AutoTypeKeyword {
1442 /// auto
1443 Auto,
1444
1445 /// decltype(auto)
1446 DecltypeAuto,
1447
1448 /// __auto_type (GNU extension)
1449 GNUAutoType
1450};
1451
1452/// The base class of the type hierarchy.
1453///
1454/// A central concept with types is that each type always has a canonical
1455/// type. A canonical type is the type with any typedef names stripped out
1456/// of it or the types it references. For example, consider:
1457///
1458/// typedef int foo;
1459/// typedef foo* bar;
1460/// 'int *' 'foo *' 'bar'
1461///
1462/// There will be a Type object created for 'int'. Since int is canonical, its
1463/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1464/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1465/// there is a PointerType that represents 'int*', which, like 'int', is
1466/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1467/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1468/// is also 'int*'.
1469///
1470/// Non-canonical types are useful for emitting diagnostics, without losing
1471/// information about typedefs being used. Canonical types are useful for type
1472/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1473/// about whether something has a particular form (e.g. is a function type),
1474/// because they implicitly, recursively, strip all typedefs out of a type.
1475///
1476/// Types, once created, are immutable.
1477///
1478class alignas(8) Type : public ExtQualsTypeCommonBase {
1479public:
1480 enum TypeClass {
1481#define TYPE(Class, Base) Class,
1482#define LAST_TYPE(Class) TypeLast = Class
1483#define ABSTRACT_TYPE(Class, Base)
1484#include "clang/AST/TypeNodes.inc"
1485 };
1486
1487private:
1488 /// Bitfields required by the Type class.
1489 class TypeBitfields {
1490 friend class Type;
1491 template <class T> friend class TypePropertyCache;
1492
1493 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1494 unsigned TC : 8;
1495
1496 /// Store information on the type dependency.
1497 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1498
1499 /// True if the cache (i.e. the bitfields here starting with
1500 /// 'Cache') is valid.
1501 mutable unsigned CacheValid : 1;
1502
1503 /// Linkage of this type.
1504 mutable unsigned CachedLinkage : 3;
1505
1506 /// Whether this type involves and local or unnamed types.
1507 mutable unsigned CachedLocalOrUnnamed : 1;
1508
1509 /// Whether this type comes from an AST file.
1510 mutable unsigned FromAST : 1;
1511
1512 bool isCacheValid() const {
1513 return CacheValid;
1514 }
1515
1516 Linkage getLinkage() const {
1517 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1517, __PRETTY_FUNCTION__))
;
1518 return static_cast<Linkage>(CachedLinkage);
1519 }
1520
1521 bool hasLocalOrUnnamedType() const {
1522 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1522, __PRETTY_FUNCTION__))
;
1523 return CachedLocalOrUnnamed;
1524 }
1525 };
1526 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1527
1528protected:
1529 // These classes allow subclasses to somewhat cleanly pack bitfields
1530 // into Type.
1531
1532 class ArrayTypeBitfields {
1533 friend class ArrayType;
1534
1535 unsigned : NumTypeBits;
1536
1537 /// CVR qualifiers from declarations like
1538 /// 'int X[static restrict 4]'. For function parameters only.
1539 unsigned IndexTypeQuals : 3;
1540
1541 /// Storage class qualifiers from declarations like
1542 /// 'int X[static restrict 4]'. For function parameters only.
1543 /// Actually an ArrayType::ArraySizeModifier.
1544 unsigned SizeModifier : 3;
1545 };
1546
1547 class ConstantArrayTypeBitfields {
1548 friend class ConstantArrayType;
1549
1550 unsigned : NumTypeBits + 3 + 3;
1551
1552 /// Whether we have a stored size expression.
1553 unsigned HasStoredSizeExpr : 1;
1554 };
1555
1556 class BuiltinTypeBitfields {
1557 friend class BuiltinType;
1558
1559 unsigned : NumTypeBits;
1560
1561 /// The kind (BuiltinType::Kind) of builtin type this is.
1562 unsigned Kind : 8;
1563 };
1564
1565 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1566 /// Only common bits are stored here. Additional uncommon bits are stored
1567 /// in a trailing object after FunctionProtoType.
1568 class FunctionTypeBitfields {
1569 friend class FunctionProtoType;
1570 friend class FunctionType;
1571
1572 unsigned : NumTypeBits;
1573
1574 /// Extra information which affects how the function is called, like
1575 /// regparm and the calling convention.
1576 unsigned ExtInfo : 13;
1577
1578 /// The ref-qualifier associated with a \c FunctionProtoType.
1579 ///
1580 /// This is a value of type \c RefQualifierKind.
1581 unsigned RefQualifier : 2;
1582
1583 /// Used only by FunctionProtoType, put here to pack with the
1584 /// other bitfields.
1585 /// The qualifiers are part of FunctionProtoType because...
1586 ///
1587 /// C++ 8.3.5p4: The return type, the parameter type list and the
1588 /// cv-qualifier-seq, [...], are part of the function type.
1589 unsigned FastTypeQuals : Qualifiers::FastWidth;
1590 /// Whether this function has extended Qualifiers.
1591 unsigned HasExtQuals : 1;
1592
1593 /// The number of parameters this function has, not counting '...'.
1594 /// According to [implimits] 8 bits should be enough here but this is
1595 /// somewhat easy to exceed with metaprogramming and so we would like to
1596 /// keep NumParams as wide as reasonably possible.
1597 unsigned NumParams : 16;
1598
1599 /// The type of exception specification this function has.
1600 unsigned ExceptionSpecType : 4;
1601
1602 /// Whether this function has extended parameter information.
1603 unsigned HasExtParameterInfos : 1;
1604
1605 /// Whether the function is variadic.
1606 unsigned Variadic : 1;
1607
1608 /// Whether this function has a trailing return type.
1609 unsigned HasTrailingReturn : 1;
1610 };
1611
1612 class ObjCObjectTypeBitfields {
1613 friend class ObjCObjectType;
1614
1615 unsigned : NumTypeBits;
1616
1617 /// The number of type arguments stored directly on this object type.
1618 unsigned NumTypeArgs : 7;
1619
1620 /// The number of protocols stored directly on this object type.
1621 unsigned NumProtocols : 6;
1622
1623 /// Whether this is a "kindof" type.
1624 unsigned IsKindOf : 1;
1625 };
1626
1627 class ReferenceTypeBitfields {
1628 friend class ReferenceType;
1629
1630 unsigned : NumTypeBits;
1631
1632 /// True if the type was originally spelled with an lvalue sigil.
1633 /// This is never true of rvalue references but can also be false
1634 /// on lvalue references because of C++0x [dcl.typedef]p9,
1635 /// as follows:
1636 ///
1637 /// typedef int &ref; // lvalue, spelled lvalue
1638 /// typedef int &&rvref; // rvalue
1639 /// ref &a; // lvalue, inner ref, spelled lvalue
1640 /// ref &&a; // lvalue, inner ref
1641 /// rvref &a; // lvalue, inner ref, spelled lvalue
1642 /// rvref &&a; // rvalue, inner ref
1643 unsigned SpelledAsLValue : 1;
1644
1645 /// True if the inner type is a reference type. This only happens
1646 /// in non-canonical forms.
1647 unsigned InnerRef : 1;
1648 };
1649
1650 class TypeWithKeywordBitfields {
1651 friend class TypeWithKeyword;
1652
1653 unsigned : NumTypeBits;
1654
1655 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1656 unsigned Keyword : 8;
1657 };
1658
1659 enum { NumTypeWithKeywordBits = 8 };
1660
1661 class ElaboratedTypeBitfields {
1662 friend class ElaboratedType;
1663
1664 unsigned : NumTypeBits;
1665 unsigned : NumTypeWithKeywordBits;
1666
1667 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1668 unsigned HasOwnedTagDecl : 1;
1669 };
1670
1671 class VectorTypeBitfields {
1672 friend class VectorType;
1673 friend class DependentVectorType;
1674
1675 unsigned : NumTypeBits;
1676
1677 /// The kind of vector, either a generic vector type or some
1678 /// target-specific vector type such as for AltiVec or Neon.
1679 unsigned VecKind : 3;
1680 /// The number of elements in the vector.
1681 uint32_t NumElements;
1682 };
1683
1684 class AttributedTypeBitfields {
1685 friend class AttributedType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// An AttributedType::Kind
1690 unsigned AttrKind : 32 - NumTypeBits;
1691 };
1692
1693 class AutoTypeBitfields {
1694 friend class AutoType;
1695
1696 unsigned : NumTypeBits;
1697
1698 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1699 /// or '__auto_type'? AutoTypeKeyword value.
1700 unsigned Keyword : 2;
1701
1702 /// The number of template arguments in the type-constraints, which is
1703 /// expected to be able to hold at least 1024 according to [implimits].
1704 /// However as this limit is somewhat easy to hit with template
1705 /// metaprogramming we'd prefer to keep it as large as possible.
1706 /// At the moment it has been left as a non-bitfield since this type
1707 /// safely fits in 64 bits as an unsigned, so there is no reason to
1708 /// introduce the performance impact of a bitfield.
1709 unsigned NumArgs;
1710 };
1711
1712 class SubstTemplateTypeParmPackTypeBitfields {
1713 friend class SubstTemplateTypeParmPackType;
1714
1715 unsigned : NumTypeBits;
1716
1717 /// The number of template arguments in \c Arguments, which is
1718 /// expected to be able to hold at least 1024 according to [implimits].
1719 /// However as this limit is somewhat easy to hit with template
1720 /// metaprogramming we'd prefer to keep it as large as possible.
1721 /// At the moment it has been left as a non-bitfield since this type
1722 /// safely fits in 64 bits as an unsigned, so there is no reason to
1723 /// introduce the performance impact of a bitfield.
1724 unsigned NumArgs;
1725 };
1726
1727 class TemplateSpecializationTypeBitfields {
1728 friend class TemplateSpecializationType;
1729
1730 unsigned : NumTypeBits;
1731
1732 /// Whether this template specialization type is a substituted type alias.
1733 unsigned TypeAlias : 1;
1734
1735 /// The number of template arguments named in this class template
1736 /// specialization, which is expected to be able to hold at least 1024
1737 /// according to [implimits]. However, as this limit is somewhat easy to
1738 /// hit with template metaprogramming we'd prefer to keep it as large
1739 /// as possible. At the moment it has been left as a non-bitfield since
1740 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1741 /// to introduce the performance impact of a bitfield.
1742 unsigned NumArgs;
1743 };
1744
1745 class DependentTemplateSpecializationTypeBitfields {
1746 friend class DependentTemplateSpecializationType;
1747
1748 unsigned : NumTypeBits;
1749 unsigned : NumTypeWithKeywordBits;
1750
1751 /// The number of template arguments named in this class template
1752 /// specialization, which is expected to be able to hold at least 1024
1753 /// according to [implimits]. However, as this limit is somewhat easy to
1754 /// hit with template metaprogramming we'd prefer to keep it as large
1755 /// as possible. At the moment it has been left as a non-bitfield since
1756 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1757 /// to introduce the performance impact of a bitfield.
1758 unsigned NumArgs;
1759 };
1760
1761 class PackExpansionTypeBitfields {
1762 friend class PackExpansionType;
1763
1764 unsigned : NumTypeBits;
1765
1766 /// The number of expansions that this pack expansion will
1767 /// generate when substituted (+1), which is expected to be able to
1768 /// hold at least 1024 according to [implimits]. However, as this limit
1769 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1770 /// keep it as large as possible. At the moment it has been left as a
1771 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1772 /// there is no reason to introduce the performance impact of a bitfield.
1773 ///
1774 /// This field will only have a non-zero value when some of the parameter
1775 /// packs that occur within the pattern have been substituted but others
1776 /// have not.
1777 unsigned NumExpansions;
1778 };
1779
1780 union {
1781 TypeBitfields TypeBits;
1782 ArrayTypeBitfields ArrayTypeBits;
1783 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1784 AttributedTypeBitfields AttributedTypeBits;
1785 AutoTypeBitfields AutoTypeBits;
1786 BuiltinTypeBitfields BuiltinTypeBits;
1787 FunctionTypeBitfields FunctionTypeBits;
1788 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1789 ReferenceTypeBitfields ReferenceTypeBits;
1790 TypeWithKeywordBitfields TypeWithKeywordBits;
1791 ElaboratedTypeBitfields ElaboratedTypeBits;
1792 VectorTypeBitfields VectorTypeBits;
1793 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1794 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1795 DependentTemplateSpecializationTypeBitfields
1796 DependentTemplateSpecializationTypeBits;
1797 PackExpansionTypeBitfields PackExpansionTypeBits;
1798 };
1799
1800private:
1801 template <class T> friend class TypePropertyCache;
1802
1803 /// Set whether this type comes from an AST file.
1804 void setFromAST(bool V = true) const {
1805 TypeBits.FromAST = V;
1806 }
1807
1808protected:
1809 friend class ASTContext;
1810
1811 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1812 : ExtQualsTypeCommonBase(this,
1813 canon.isNull() ? QualType(this_(), 0) : canon) {
1814 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1815 "changing bitfields changed sizeof(Type)!");
1816 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1817 "Insufficient alignment!");
1818 TypeBits.TC = tc;
1819 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1820 TypeBits.CacheValid = false;
1821 TypeBits.CachedLocalOrUnnamed = false;
1822 TypeBits.CachedLinkage = NoLinkage;
1823 TypeBits.FromAST = false;
1824 }
1825
1826 // silence VC++ warning C4355: 'this' : used in base member initializer list
1827 Type *this_() { return this; }
1828
1829 void setDependence(TypeDependence D) {
1830 TypeBits.Dependence = static_cast<unsigned>(D);
1831 }
1832
1833 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1834
1835public:
1836 friend class ASTReader;
1837 friend class ASTWriter;
1838 template <class T> friend class serialization::AbstractTypeReader;
1839 template <class T> friend class serialization::AbstractTypeWriter;
1840
1841 Type(const Type &) = delete;
1842 Type(Type &&) = delete;
1843 Type &operator=(const Type &) = delete;
1844 Type &operator=(Type &&) = delete;
1845
1846 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1847
1848 /// Whether this type comes from an AST file.
1849 bool isFromAST() const { return TypeBits.FromAST; }
1850
1851 /// Whether this type is or contains an unexpanded parameter
1852 /// pack, used to support C++0x variadic templates.
1853 ///
1854 /// A type that contains a parameter pack shall be expanded by the
1855 /// ellipsis operator at some point. For example, the typedef in the
1856 /// following example contains an unexpanded parameter pack 'T':
1857 ///
1858 /// \code
1859 /// template<typename ...T>
1860 /// struct X {
1861 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1862 /// };
1863 /// \endcode
1864 ///
1865 /// Note that this routine does not specify which
1866 bool containsUnexpandedParameterPack() const {
1867 return getDependence() & TypeDependence::UnexpandedPack;
1868 }
1869
1870 /// Determines if this type would be canonical if it had no further
1871 /// qualification.
1872 bool isCanonicalUnqualified() const {
1873 return CanonicalType == QualType(this, 0);
1874 }
1875
1876 /// Pull a single level of sugar off of this locally-unqualified type.
1877 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1878 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1879 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1880
1881 /// As an extension, we classify types as one of "sized" or "sizeless";
1882 /// every type is one or the other. Standard types are all sized;
1883 /// sizeless types are purely an extension.
1884 ///
1885 /// Sizeless types contain data with no specified size, alignment,
1886 /// or layout.
1887 bool isSizelessType() const;
1888 bool isSizelessBuiltinType() const;
1889
1890 /// Determines if this is a sizeless type supported by the
1891 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1892 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1893 bool isVLSTBuiltinType() const;
1894
1895 /// Returns the representative type for the element of an SVE builtin type.
1896 /// This is used to represent fixed-length SVE vectors created with the
1897 /// 'arm_sve_vector_bits' type attribute as VectorType.
1898 QualType getSveEltType(const ASTContext &Ctx) const;
1899
1900 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1901 /// object types, function types, and incomplete types.
1902
1903 /// Return true if this is an incomplete type.
1904 /// A type that can describe objects, but which lacks information needed to
1905 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1906 /// routine will need to determine if the size is actually required.
1907 ///
1908 /// Def If non-null, and the type refers to some kind of declaration
1909 /// that can be completed (such as a C struct, C++ class, or Objective-C
1910 /// class), will be set to the declaration.
1911 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1912
1913 /// Return true if this is an incomplete or object
1914 /// type, in other words, not a function type.
1915 bool isIncompleteOrObjectType() const {
1916 return !isFunctionType();
1917 }
1918
1919 /// Determine whether this type is an object type.
1920 bool isObjectType() const {
1921 // C++ [basic.types]p8:
1922 // An object type is a (possibly cv-qualified) type that is not a
1923 // function type, not a reference type, and not a void type.
1924 return !isReferenceType() && !isFunctionType() && !isVoidType();
1925 }
1926
1927 /// Return true if this is a literal type
1928 /// (C++11 [basic.types]p10)
1929 bool isLiteralType(const ASTContext &Ctx) const;
1930
1931 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1932 bool isStructuralType() const;
1933
1934 /// Test if this type is a standard-layout type.
1935 /// (C++0x [basic.type]p9)
1936 bool isStandardLayoutType() const;
1937
1938 /// Helper methods to distinguish type categories. All type predicates
1939 /// operate on the canonical type, ignoring typedefs and qualifiers.
1940
1941 /// Returns true if the type is a builtin type.
1942 bool isBuiltinType() const;
1943
1944 /// Test for a particular builtin type.
1945 bool isSpecificBuiltinType(unsigned K) const;
1946
1947 /// Test for a type which does not represent an actual type-system type but
1948 /// is instead used as a placeholder for various convenient purposes within
1949 /// Clang. All such types are BuiltinTypes.
1950 bool isPlaceholderType() const;
1951 const BuiltinType *getAsPlaceholderType() const;
1952
1953 /// Test for a specific placeholder type.
1954 bool isSpecificPlaceholderType(unsigned K) const;
1955
1956 /// Test for a placeholder type other than Overload; see
1957 /// BuiltinType::isNonOverloadPlaceholderType.
1958 bool isNonOverloadPlaceholderType() const;
1959
1960 /// isIntegerType() does *not* include complex integers (a GCC extension).
1961 /// isComplexIntegerType() can be used to test for complex integers.
1962 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1963 bool isEnumeralType() const;
1964
1965 /// Determine whether this type is a scoped enumeration type.
1966 bool isScopedEnumeralType() const;
1967 bool isBooleanType() const;
1968 bool isCharType() const;
1969 bool isWideCharType() const;
1970 bool isChar8Type() const;
1971 bool isChar16Type() const;
1972 bool isChar32Type() const;
1973 bool isAnyCharacterType() const;
1974 bool isIntegralType(const ASTContext &Ctx) const;
1975
1976 /// Determine whether this type is an integral or enumeration type.
1977 bool isIntegralOrEnumerationType() const;
1978
1979 /// Determine whether this type is an integral or unscoped enumeration type.
1980 bool isIntegralOrUnscopedEnumerationType() const;
1981 bool isUnscopedEnumerationType() const;
1982
1983 /// Floating point categories.
1984 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1985 /// isComplexType() does *not* include complex integers (a GCC extension).
1986 /// isComplexIntegerType() can be used to test for complex integers.
1987 bool isComplexType() const; // C99 6.2.5p11 (complex)
1988 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1989 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1990 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1991 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1992 bool isBFloat16Type() const;
1993 bool isFloat128Type() const;
1994 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1995 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1996 bool isVoidType() const; // C99 6.2.5p19
1997 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1998 bool isAggregateType() const;
1999 bool isFundamentalType() const;
2000 bool isCompoundType() const;
2001
2002 // Type Predicates: Check to see if this type is structurally the specified
2003 // type, ignoring typedefs and qualifiers.
2004 bool isFunctionType() const;
2005 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2006 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2007 bool isPointerType() const;
2008 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2009 bool isBlockPointerType() const;
2010 bool isVoidPointerType() const;
2011 bool isReferenceType() const;
2012 bool isLValueReferenceType() const;
2013 bool isRValueReferenceType() const;
2014 bool isObjectPointerType() const;
2015 bool isFunctionPointerType() const;
2016 bool isFunctionReferenceType() const;
2017 bool isMemberPointerType() const;
2018 bool isMemberFunctionPointerType() const;
2019 bool isMemberDataPointerType() const;
2020 bool isArrayType() const;
2021 bool isConstantArrayType() const;
2022 bool isIncompleteArrayType() const;
2023 bool isVariableArrayType() const;
2024 bool isDependentSizedArrayType() const;
2025 bool isRecordType() const;
2026 bool isClassType() const;
2027 bool isStructureType() const;
2028 bool isObjCBoxableRecordType() const;
2029 bool isInterfaceType() const;
2030 bool isStructureOrClassType() const;
2031 bool isUnionType() const;
2032 bool isComplexIntegerType() const; // GCC _Complex integer type.
2033 bool isVectorType() const; // GCC vector type.
2034 bool isExtVectorType() const; // Extended vector type.
2035 bool isMatrixType() const; // Matrix type.
2036 bool isConstantMatrixType() const; // Constant matrix type.
2037 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2038 bool isObjCObjectPointerType() const; // pointer to ObjC object
2039 bool isObjCRetainableType() const; // ObjC object or block pointer
2040 bool isObjCLifetimeType() const; // (array of)* retainable type
2041 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2042 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2043 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2044 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2045 // for the common case.
2046 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2047 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2048 bool isObjCQualifiedIdType() const; // id<foo>
2049 bool isObjCQualifiedClassType() const; // Class<foo>
2050 bool isObjCObjectOrInterfaceType() const;
2051 bool isObjCIdType() const; // id
2052 bool isDecltypeType() const;
2053 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2054 /// qualifier?
2055 ///
2056 /// This approximates the answer to the following question: if this
2057 /// translation unit were compiled in ARC, would this type be qualified
2058 /// with __unsafe_unretained?
2059 bool isObjCInertUnsafeUnretainedType() const {
2060 return hasAttr(attr::ObjCInertUnsafeUnretained);
2061 }
2062
2063 /// Whether the type is Objective-C 'id' or a __kindof type of an
2064 /// object type, e.g., __kindof NSView * or __kindof id
2065 /// <NSCopying>.
2066 ///
2067 /// \param bound Will be set to the bound on non-id subtype types,
2068 /// which will be (possibly specialized) Objective-C class type, or
2069 /// null for 'id.
2070 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2071 const ObjCObjectType *&bound) const;
2072
2073 bool isObjCClassType() const; // Class
2074
2075 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2076 /// Class type, e.g., __kindof Class <NSCopying>.
2077 ///
2078 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2079 /// here because Objective-C's type system cannot express "a class
2080 /// object for a subclass of NSFoo".
2081 bool isObjCClassOrClassKindOfType() const;
2082
2083 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2084 bool isObjCSelType() const; // Class
2085 bool isObjCBuiltinType() const; // 'id' or 'Class'
2086 bool isObjCARCBridgableType() const;
2087 bool isCARCBridgableType() const;
2088 bool isTemplateTypeParmType() const; // C++ template type parameter
2089 bool isNullPtrType() const; // C++11 std::nullptr_t
2090 bool isNothrowT() const; // C++ std::nothrow_t
2091 bool isAlignValT() const; // C++17 std::align_val_t
2092 bool isStdByteType() const; // C++17 std::byte
2093 bool isAtomicType() const; // C11 _Atomic()
2094 bool isUndeducedAutoType() const; // C++11 auto or
2095 // C++14 decltype(auto)
2096 bool isTypedefNameType() const; // typedef or alias template
2097
2098#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2099 bool is##Id##Type() const;
2100#include "clang/Basic/OpenCLImageTypes.def"
2101
2102 bool isImageType() const; // Any OpenCL image type
2103
2104 bool isSamplerT() const; // OpenCL sampler_t
2105 bool isEventT() const; // OpenCL event_t
2106 bool isClkEventT() const; // OpenCL clk_event_t
2107 bool isQueueT() const; // OpenCL queue_t
2108 bool isReserveIDT() const; // OpenCL reserve_id_t
2109
2110#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLExtensionTypes.def"
2113 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2114 bool isOCLIntelSubgroupAVCType() const;
2115 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2116
2117 bool isPipeType() const; // OpenCL pipe type
2118 bool isExtIntType() const; // Extended Int Type
2119 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2120
2121 /// Determines if this type, which must satisfy
2122 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2123 /// than implicitly __strong.
2124 bool isObjCARCImplicitlyUnretainedType() const;
2125
2126 /// Check if the type is the CUDA device builtin surface type.
2127 bool isCUDADeviceBuiltinSurfaceType() const;
2128 /// Check if the type is the CUDA device builtin texture type.
2129 bool isCUDADeviceBuiltinTextureType() const;
2130
2131 /// Return the implicit lifetime for this type, which must not be dependent.
2132 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2133
2134 enum ScalarTypeKind {
2135 STK_CPointer,
2136 STK_BlockPointer,
2137 STK_ObjCObjectPointer,
2138 STK_MemberPointer,
2139 STK_Bool,
2140 STK_Integral,
2141 STK_Floating,
2142 STK_IntegralComplex,
2143 STK_FloatingComplex,
2144 STK_FixedPoint
2145 };
2146
2147 /// Given that this is a scalar type, classify it.
2148 ScalarTypeKind getScalarTypeKind() const;
2149
2150 TypeDependence getDependence() const {
2151 return static_cast<TypeDependence>(TypeBits.Dependence);
2152 }
2153
2154 /// Whether this type is an error type.
2155 bool containsErrors() const {
2156 return getDependence() & TypeDependence::Error;
2157 }
2158
2159 /// Whether this type is a dependent type, meaning that its definition
2160 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2161 bool isDependentType() const {
2162 return getDependence() & TypeDependence::Dependent;
2163 }
2164
2165 /// Determine whether this type is an instantiation-dependent type,
2166 /// meaning that the type involves a template parameter (even if the
2167 /// definition does not actually depend on the type substituted for that
2168 /// template parameter).
2169 bool isInstantiationDependentType() const {
2170 return getDependence() & TypeDependence::Instantiation;
2171 }
2172
2173 /// Determine whether this type is an undeduced type, meaning that
2174 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2175 /// deduced.
2176 bool isUndeducedType() const;
2177
2178 /// Whether this type is a variably-modified type (C99 6.7.5).
2179 bool isVariablyModifiedType() const {
2180 return getDependence() & TypeDependence::VariablyModified;
2181 }
2182
2183 /// Whether this type involves a variable-length array type
2184 /// with a definite size.
2185 bool hasSizedVLAType() const;
2186
2187 /// Whether this type is or contains a local or unnamed type.
2188 bool hasUnnamedOrLocalType() const;
2189
2190 bool isOverloadableType() const;
2191
2192 /// Determine wither this type is a C++ elaborated-type-specifier.
2193 bool isElaboratedTypeSpecifier() const;
2194
2195 bool canDecayToPointerType() const;
2196
2197 /// Whether this type is represented natively as a pointer. This includes
2198 /// pointers, references, block pointers, and Objective-C interface,
2199 /// qualified id, and qualified interface types, as well as nullptr_t.
2200 bool hasPointerRepresentation() const;
2201
2202 /// Whether this type can represent an objective pointer type for the
2203 /// purpose of GC'ability
2204 bool hasObjCPointerRepresentation() const;
2205
2206 /// Determine whether this type has an integer representation
2207 /// of some sort, e.g., it is an integer type or a vector.
2208 bool hasIntegerRepresentation() const;
2209
2210 /// Determine whether this type has an signed integer representation
2211 /// of some sort, e.g., it is an signed integer type or a vector.
2212 bool hasSignedIntegerRepresentation() const;
2213
2214 /// Determine whether this type has an unsigned integer representation
2215 /// of some sort, e.g., it is an unsigned integer type or a vector.
2216 bool hasUnsignedIntegerRepresentation() const;
2217
2218 /// Determine whether this type has a floating-point representation
2219 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2220 bool hasFloatingRepresentation() const;
2221
2222 // Type Checking Functions: Check to see if this type is structurally the
2223 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2224 // the best type we can.
2225 const RecordType *getAsStructureType() const;
2226 /// NOTE: getAs*ArrayType are methods on ASTContext.
2227 const RecordType *getAsUnionType() const;
2228 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2229 const ObjCObjectType *getAsObjCInterfaceType() const;
2230
2231 // The following is a convenience method that returns an ObjCObjectPointerType
2232 // for object declared using an interface.
2233 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2234 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2235 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2236 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2237
2238 /// Retrieves the CXXRecordDecl that this type refers to, either
2239 /// because the type is a RecordType or because it is the injected-class-name
2240 /// type of a class template or class template partial specialization.
2241 CXXRecordDecl *getAsCXXRecordDecl() const;
2242
2243 /// Retrieves the RecordDecl this type refers to.
2244 RecordDecl *getAsRecordDecl() const;
2245
2246 /// Retrieves the TagDecl that this type refers to, either
2247 /// because the type is a TagType or because it is the injected-class-name
2248 /// type of a class template or class template partial specialization.
2249 TagDecl *getAsTagDecl() const;
2250
2251 /// If this is a pointer or reference to a RecordType, return the
2252 /// CXXRecordDecl that the type refers to.
2253 ///
2254 /// If this is not a pointer or reference, or the type being pointed to does
2255 /// not refer to a CXXRecordDecl, returns NULL.
2256 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2257
2258 /// Get the DeducedType whose type will be deduced for a variable with
2259 /// an initializer of this type. This looks through declarators like pointer
2260 /// types, but not through decltype or typedefs.
2261 DeducedType *getContainedDeducedType() const;
2262
2263 /// Get the AutoType whose type will be deduced for a variable with
2264 /// an initializer of this type. This looks through declarators like pointer
2265 /// types, but not through decltype or typedefs.
2266 AutoType *getContainedAutoType() const {
2267 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2268 }
2269
2270 /// Determine whether this type was written with a leading 'auto'
2271 /// corresponding to a trailing return type (possibly for a nested
2272 /// function type within a pointer to function type or similar).
2273 bool hasAutoForTrailingReturnType() const;
2274
2275 /// Member-template getAs<specific type>'. Look through sugar for
2276 /// an instance of \<specific type>. This scheme will eventually
2277 /// replace the specific getAsXXXX methods above.
2278 ///
2279 /// There are some specializations of this member template listed
2280 /// immediately following this class.
2281 template <typename T> const T *getAs() const;
2282
2283 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2284 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2285 /// This is used when you need to walk over sugar nodes that represent some
2286 /// kind of type adjustment from a type that was written as a \<specific type>
2287 /// to another type that is still canonically a \<specific type>.
2288 template <typename T> const T *getAsAdjusted() const;
2289
2290 /// A variant of getAs<> for array types which silently discards
2291 /// qualifiers from the outermost type.
2292 const ArrayType *getAsArrayTypeUnsafe() const;
2293
2294 /// Member-template castAs<specific type>. Look through sugar for
2295 /// the underlying instance of \<specific type>.
2296 ///
2297 /// This method has the same relationship to getAs<T> as cast<T> has
2298 /// to dyn_cast<T>; which is to say, the underlying type *must*
2299 /// have the intended type, and this method will never return null.
2300 template <typename T> const T *castAs() const;
2301
2302 /// A variant of castAs<> for array type which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *castAsArrayTypeUnsafe() const;
2305
2306 /// Determine whether this type had the specified attribute applied to it
2307 /// (looking through top-level type sugar).
2308 bool hasAttr(attr::Kind AK) const;
2309
2310 /// Get the base element type of this type, potentially discarding type
2311 /// qualifiers. This should never be used when type qualifiers
2312 /// are meaningful.
2313 const Type *getBaseElementTypeUnsafe() const;
2314
2315 /// If this is an array type, return the element type of the array,
2316 /// potentially with type qualifiers missing.
2317 /// This should never be used when type qualifiers are meaningful.
2318 const Type *getArrayElementTypeNoTypeQual() const;
2319
2320 /// If this is a pointer type, return the pointee type.
2321 /// If this is an array type, return the array element type.
2322 /// This should never be used when type qualifiers are meaningful.
2323 const Type *getPointeeOrArrayElementType() const;
2324
2325 /// If this is a pointer, ObjC object pointer, or block
2326 /// pointer, this returns the respective pointee.
2327 QualType getPointeeType() const;
2328
2329 /// Return the specified type with any "sugar" removed from the type,
2330 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2331 const Type *getUnqualifiedDesugaredType() const;
2332
2333 /// More type predicates useful for type checking/promotion
2334 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2335
2336 /// Return true if this is an integer type that is
2337 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2338 /// or an enum decl which has a signed representation.
2339 bool isSignedIntegerType() const;
2340
2341 /// Return true if this is an integer type that is
2342 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2343 /// or an enum decl which has an unsigned representation.
2344 bool isUnsignedIntegerType() const;
2345
2346 /// Determines whether this is an integer type that is signed or an
2347 /// enumeration types whose underlying type is a signed integer type.
2348 bool isSignedIntegerOrEnumerationType() const;
2349
2350 /// Determines whether this is an integer type that is unsigned or an
2351 /// enumeration types whose underlying type is a unsigned integer type.
2352 bool isUnsignedIntegerOrEnumerationType() const;
2353
2354 /// Return true if this is a fixed point type according to
2355 /// ISO/IEC JTC1 SC22 WG14 N1169.
2356 bool isFixedPointType() const;
2357
2358 /// Return true if this is a fixed point or integer type.
2359 bool isFixedPointOrIntegerType() const;
2360
2361 /// Return true if this is a saturated fixed point type according to
2362 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2363 bool isSaturatedFixedPointType() const;
2364
2365 /// Return true if this is a saturated fixed point type according to
2366 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2367 bool isUnsaturatedFixedPointType() const;
2368
2369 /// Return true if this is a fixed point type that is signed according
2370 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2371 bool isSignedFixedPointType() const;
2372
2373 /// Return true if this is a fixed point type that is unsigned according
2374 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2375 bool isUnsignedFixedPointType() const;
2376
2377 /// Return true if this is not a variable sized type,
2378 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2379 /// incomplete types.
2380 bool isConstantSizeType() const;
2381
2382 /// Returns true if this type can be represented by some
2383 /// set of type specifiers.
2384 bool isSpecifierType() const;
2385
2386 /// Determine the linkage of this type.
2387 Linkage getLinkage() const;
2388
2389 /// Determine the visibility of this type.
2390 Visibility getVisibility() const {
2391 return getLinkageAndVisibility().getVisibility();
2392 }
2393
2394 /// Return true if the visibility was explicitly set is the code.
2395 bool isVisibilityExplicit() const {
2396 return getLinkageAndVisibility().isVisibilityExplicit();
2397 }
2398
2399 /// Determine the linkage and visibility of this type.
2400 LinkageInfo getLinkageAndVisibility() const;
2401
2402 /// True if the computed linkage is valid. Used for consistency
2403 /// checking. Should always return true.
2404 bool isLinkageValid() const;
2405
2406 /// Determine the nullability of the given type.
2407 ///
2408 /// Note that nullability is only captured as sugar within the type
2409 /// system, not as part of the canonical type, so nullability will
2410 /// be lost by canonicalization and desugaring.
2411 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2412
2413 /// Determine whether the given type can have a nullability
2414 /// specifier applied to it, i.e., if it is any kind of pointer type.
2415 ///
2416 /// \param ResultIfUnknown The value to return if we don't yet know whether
2417 /// this type can have nullability because it is dependent.
2418 bool canHaveNullability(bool ResultIfUnknown = true) const;
2419
2420 /// Retrieve the set of substitutions required when accessing a member
2421 /// of the Objective-C receiver type that is declared in the given context.
2422 ///
2423 /// \c *this is the type of the object we're operating on, e.g., the
2424 /// receiver for a message send or the base of a property access, and is
2425 /// expected to be of some object or object pointer type.
2426 ///
2427 /// \param dc The declaration context for which we are building up a
2428 /// substitution mapping, which should be an Objective-C class, extension,
2429 /// category, or method within.
2430 ///
2431 /// \returns an array of type arguments that can be substituted for
2432 /// the type parameters of the given declaration context in any type described
2433 /// within that context, or an empty optional to indicate that no
2434 /// substitution is required.
2435 Optional<ArrayRef<QualType>>
2436 getObjCSubstitutions(const DeclContext *dc) const;
2437
2438 /// Determines if this is an ObjC interface type that may accept type
2439 /// parameters.
2440 bool acceptsObjCTypeParams() const;
2441
2442 const char *getTypeClassName() const;
2443
2444 QualType getCanonicalTypeInternal() const {
2445 return CanonicalType;
2446 }
2447
2448 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2449 void dump() const;
2450 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2451};
2452
2453/// This will check for a TypedefType by removing any existing sugar
2454/// until it reaches a TypedefType or a non-sugared type.
2455template <> const TypedefType *Type::getAs() const;
2456
2457/// This will check for a TemplateSpecializationType by removing any
2458/// existing sugar until it reaches a TemplateSpecializationType or a
2459/// non-sugared type.
2460template <> const TemplateSpecializationType *Type::getAs() const;
2461
2462/// This will check for an AttributedType by removing any existing sugar
2463/// until it reaches an AttributedType or a non-sugared type.
2464template <> const AttributedType *Type::getAs() const;
2465
2466// We can do canonical leaf types faster, because we don't have to
2467// worry about preserving child type decoration.
2468#define TYPE(Class, Base)
2469#define LEAF_TYPE(Class) \
2470template <> inline const Class##Type *Type::getAs() const { \
2471 return dyn_cast<Class##Type>(CanonicalType); \
2472} \
2473template <> inline const Class##Type *Type::castAs() const { \
2474 return cast<Class##Type>(CanonicalType); \
2475}
2476#include "clang/AST/TypeNodes.inc"
2477
2478/// This class is used for builtin types like 'int'. Builtin
2479/// types are always canonical and have a literal name field.
2480class BuiltinType : public Type {
2481public:
2482 enum Kind {
2483// OpenCL image types
2484#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2485#include "clang/Basic/OpenCLImageTypes.def"
2486// OpenCL extension types
2487#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2488#include "clang/Basic/OpenCLExtensionTypes.def"
2489// SVE Types
2490#define SVE_TYPE(Name, Id, SingletonId) Id,
2491#include "clang/Basic/AArch64SVEACLETypes.def"
2492// PPC MMA Types
2493#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2494#include "clang/Basic/PPCTypes.def"
2495// RVV Types
2496#define RVV_TYPE(Name, Id, SingletonId) Id,
2497#include "clang/Basic/RISCVVTypes.def"
2498// All other builtin types
2499#define BUILTIN_TYPE(Id, SingletonId) Id,
2500#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2501#include "clang/AST/BuiltinTypes.def"
2502 };
2503
2504private:
2505 friend class ASTContext; // ASTContext creates these.
2506
2507 BuiltinType(Kind K)
2508 : Type(Builtin, QualType(),
2509 K == Dependent ? TypeDependence::DependentInstantiation
2510 : TypeDependence::None) {
2511 BuiltinTypeBits.Kind = K;
2512 }
2513
2514public:
2515 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2516 StringRef getName(const PrintingPolicy &Policy) const;
2517
2518 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2519 // The StringRef is null-terminated.
2520 StringRef str = getName(Policy);
2521 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 2521, __PRETTY_FUNCTION__))
;
2522 return str.data();
2523 }
2524
2525 bool isSugared() const { return false; }
2526 QualType desugar() const { return QualType(this, 0); }
2527
2528 bool isInteger() const {
2529 return getKind() >= Bool && getKind() <= Int128;
2530 }
2531
2532 bool isSignedInteger() const {
2533 return getKind() >= Char_S && getKind() <= Int128;
2534 }
2535
2536 bool isUnsignedInteger() const {
2537 return getKind() >= Bool && getKind() <= UInt128;
2538 }
2539
2540 bool isFloatingPoint() const {
2541 return getKind() >= Half && getKind() <= Float128;
2542 }
2543
2544 /// Determines whether the given kind corresponds to a placeholder type.
2545 static bool isPlaceholderTypeKind(Kind K) {
2546 return K >= Overload;
2547 }
2548
2549 /// Determines whether this type is a placeholder type, i.e. a type
2550 /// which cannot appear in arbitrary positions in a fully-formed
2551 /// expression.
2552 bool isPlaceholderType() const {
2553 return isPlaceholderTypeKind(getKind());
2554 }
2555
2556 /// Determines whether this type is a placeholder type other than
2557 /// Overload. Most placeholder types require only syntactic
2558 /// information about their context in order to be resolved (e.g.
2559 /// whether it is a call expression), which means they can (and
2560 /// should) be resolved in an earlier "phase" of analysis.
2561 /// Overload expressions sometimes pick up further information
2562 /// from their context, like whether the context expects a
2563 /// specific function-pointer type, and so frequently need
2564 /// special treatment.
2565 bool isNonOverloadPlaceholderType() const {
2566 return getKind() > Overload;
2567 }
2568
2569 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2570};
2571
2572/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2573/// types (_Complex float etc) as well as the GCC integer complex extensions.
2574class ComplexType : public Type, public llvm::FoldingSetNode {
2575 friend class ASTContext; // ASTContext creates these.
2576
2577 QualType ElementType;
2578
2579 ComplexType(QualType Element, QualType CanonicalPtr)
2580 : Type(Complex, CanonicalPtr, Element->getDependence()),
2581 ElementType(Element) {}
2582
2583public:
2584 QualType getElementType() const { return ElementType; }
2585
2586 bool isSugared() const { return false; }
2587 QualType desugar() const { return QualType(this, 0); }
2588
2589 void Profile(llvm::FoldingSetNodeID &ID) {
2590 Profile(ID, getElementType());
2591 }
2592
2593 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2594 ID.AddPointer(Element.getAsOpaquePtr());
2595 }
2596
2597 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2598};
2599
2600/// Sugar for parentheses used when specifying types.
2601class ParenType : public Type, public llvm::FoldingSetNode {
2602 friend class ASTContext; // ASTContext creates these.
2603
2604 QualType Inner;
2605
2606 ParenType(QualType InnerType, QualType CanonType)
2607 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2608
2609public:
2610 QualType getInnerType() const { return Inner; }
2611
2612 bool isSugared() const { return true; }
2613 QualType desugar() const { return getInnerType(); }
2614
2615 void Profile(llvm::FoldingSetNodeID &ID) {
2616 Profile(ID, getInnerType());
2617 }
2618
2619 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2620 Inner.Profile(ID);
2621 }
2622
2623 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2624};
2625
2626/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2627class PointerType : public Type, public llvm::FoldingSetNode {
2628 friend class ASTContext; // ASTContext creates these.
2629
2630 QualType PointeeType;
2631
2632 PointerType(QualType Pointee, QualType CanonicalPtr)
2633 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2634 PointeeType(Pointee) {}
2635
2636public:
2637 QualType getPointeeType() const { return PointeeType; }
2638
2639 bool isSugared() const { return false; }
2640 QualType desugar() const { return QualType(this, 0); }
2641
2642 void Profile(llvm::FoldingSetNodeID &ID) {
2643 Profile(ID, getPointeeType());
2644 }
2645
2646 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2647 ID.AddPointer(Pointee.getAsOpaquePtr());
2648 }
2649
2650 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2651};
2652
2653/// Represents a type which was implicitly adjusted by the semantic
2654/// engine for arbitrary reasons. For example, array and function types can
2655/// decay, and function types can have their calling conventions adjusted.
2656class AdjustedType : public Type, public llvm::FoldingSetNode {
2657 QualType OriginalTy;
2658 QualType AdjustedTy;
2659
2660protected:
2661 friend class ASTContext; // ASTContext creates these.
2662
2663 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2664 QualType CanonicalPtr)
2665 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2666 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2667
2668public:
2669 QualType getOriginalType() const { return OriginalTy; }
2670 QualType getAdjustedType() const { return AdjustedTy; }
2671
2672 bool isSugared() const { return true; }
2673 QualType desugar() const { return AdjustedTy; }
2674
2675 void Profile(llvm::FoldingSetNodeID &ID) {
2676 Profile(ID, OriginalTy, AdjustedTy);
2677 }
2678
2679 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2680 ID.AddPointer(Orig.getAsOpaquePtr());
2681 ID.AddPointer(New.getAsOpaquePtr());
2682 }
2683
2684 static bool classof(const Type *T) {
2685 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2686 }
2687};
2688
2689/// Represents a pointer type decayed from an array or function type.
2690class DecayedType : public AdjustedType {
2691 friend class ASTContext; // ASTContext creates these.
2692
2693 inline
2694 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2695
2696public:
2697 QualType getDecayedType() const { return getAdjustedType(); }
2698
2699 inline QualType getPointeeType() const;
2700
2701 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2702};
2703
2704/// Pointer to a block type.
2705/// This type is to represent types syntactically represented as
2706/// "void (^)(int)", etc. Pointee is required to always be a function type.
2707class BlockPointerType : public Type, public llvm::FoldingSetNode {
2708 friend class ASTContext; // ASTContext creates these.
2709
2710 // Block is some kind of pointer type
2711 QualType PointeeType;
2712
2713 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2714 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2715 PointeeType(Pointee) {}
2716
2717public:
2718 // Get the pointee type. Pointee is required to always be a function type.
2719 QualType getPointeeType() const { return PointeeType; }
2720
2721 bool isSugared() const { return false; }
2722 QualType desugar() const { return QualType(this, 0); }
2723
2724 void Profile(llvm::FoldingSetNodeID &ID) {
2725 Profile(ID, getPointeeType());
2726 }
2727
2728 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2729 ID.AddPointer(Pointee.getAsOpaquePtr());
2730 }
2731
2732 static bool classof(const Type *T) {
2733 return T->getTypeClass() == BlockPointer;
2734 }
2735};
2736
2737/// Base for LValueReferenceType and RValueReferenceType
2738class ReferenceType : public Type, public llvm::FoldingSetNode {
2739 QualType PointeeType;
2740
2741protected:
2742 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2743 bool SpelledAsLValue)
2744 : Type(tc, CanonicalRef, Referencee->getDependence()),
2745 PointeeType(Referencee) {
2746 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2747 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2748 }
2749
2750public:
2751 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2752 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2753
2754 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2755
2756 QualType getPointeeType() const {
2757 // FIXME: this might strip inner qualifiers; okay?
2758 const ReferenceType *T = this;
2759 while (T->isInnerRef())
2760 T = T->PointeeType->castAs<ReferenceType>();
2761 return T->PointeeType;
2762 }
2763
2764 void Profile(llvm::FoldingSetNodeID &ID) {
2765 Profile(ID, PointeeType, isSpelledAsLValue());
2766 }
2767
2768 static void Profile(llvm::FoldingSetNodeID &ID,
2769 QualType Referencee,
2770 bool SpelledAsLValue) {
2771 ID.AddPointer(Referencee.getAsOpaquePtr());
2772 ID.AddBoolean(SpelledAsLValue);
2773 }
2774
2775 static bool classof(const Type *T) {
2776 return T->getTypeClass() == LValueReference ||
2777 T->getTypeClass() == RValueReference;
2778 }
2779};
2780
2781/// An lvalue reference type, per C++11 [dcl.ref].
2782class LValueReferenceType : public ReferenceType {
2783 friend class ASTContext; // ASTContext creates these
2784
2785 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2786 bool SpelledAsLValue)
2787 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2788 SpelledAsLValue) {}
2789
2790public:
2791 bool isSugared() const { return false; }
2792 QualType desugar() const { return QualType(this, 0); }
2793
2794 static bool classof(const Type *T) {
2795 return T->getTypeClass() == LValueReference;
2796 }
2797};
2798
2799/// An rvalue reference type, per C++11 [dcl.ref].
2800class RValueReferenceType : public ReferenceType {
2801 friend class ASTContext; // ASTContext creates these
2802
2803 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2804 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2805
2806public:
2807 bool isSugared() const { return false; }
2808 QualType desugar() const { return QualType(this, 0); }
2809
2810 static bool classof(const Type *T) {
2811 return T->getTypeClass() == RValueReference;
2812 }
2813};
2814
2815/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2816///
2817/// This includes both pointers to data members and pointer to member functions.
2818class MemberPointerType : public Type, public llvm::FoldingSetNode {
2819 friend class ASTContext; // ASTContext creates these.
2820
2821 QualType PointeeType;
2822
2823 /// The class of which the pointee is a member. Must ultimately be a
2824 /// RecordType, but could be a typedef or a template parameter too.
2825 const Type *Class;
2826
2827 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2828 : Type(MemberPointer, CanonicalPtr,
2829 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2830 Pointee->getDependence()),
2831 PointeeType(Pointee), Class(Cls) {}
2832
2833public:
2834 QualType getPointeeType() const { return PointeeType; }
2835
2836 /// Returns true if the member type (i.e. the pointee type) is a
2837 /// function type rather than a data-member type.
2838 bool isMemberFunctionPointer() const {
2839 return PointeeType->isFunctionProtoType();
2840 }
2841
2842 /// Returns true if the member type (i.e. the pointee type) is a
2843 /// data type rather than a function type.
2844 bool isMemberDataPointer() const {
2845 return !PointeeType->isFunctionProtoType();
2846 }
2847
2848 const Type *getClass() const { return Class; }
2849 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2850
2851 bool isSugared() const { return false; }
2852 QualType desugar() const { return QualType(this, 0); }
2853
2854 void Profile(llvm::FoldingSetNodeID &ID) {
2855 Profile(ID, getPointeeType(), getClass());
2856 }
2857
2858 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2859 const Type *Class) {
2860 ID.AddPointer(Pointee.getAsOpaquePtr());
2861 ID.AddPointer(Class);
2862 }
2863
2864 static bool classof(const Type *T) {
2865 return T->getTypeClass() == MemberPointer;
2866 }
2867};
2868
2869/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2870class ArrayType : public Type, public llvm::FoldingSetNode {
2871public:
2872 /// Capture whether this is a normal array (e.g. int X[4])
2873 /// an array with a static size (e.g. int X[static 4]), or an array
2874 /// with a star size (e.g. int X[*]).
2875 /// 'static' is only allowed on function parameters.
2876 enum ArraySizeModifier {
2877 Normal, Static, Star
2878 };
2879
2880private:
2881 /// The element type of the array.
2882 QualType ElementType;
2883
2884protected:
2885 friend class ASTContext; // ASTContext creates these.
2886
2887 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2888 unsigned tq, const Expr *sz = nullptr);
2889
2890public:
2891 QualType getElementType() const { return ElementType; }
2892
2893 ArraySizeModifier getSizeModifier() const {
2894 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2895 }
2896
2897 Qualifiers getIndexTypeQualifiers() const {
2898 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2899 }
2900
2901 unsigned getIndexTypeCVRQualifiers() const {
2902 return ArrayTypeBits.IndexTypeQuals;
2903 }
2904
2905 static bool classof(const Type *T) {
2906 return T->getTypeClass() == ConstantArray ||
2907 T->getTypeClass() == VariableArray ||
2908 T->getTypeClass() == IncompleteArray ||
2909 T->getTypeClass() == DependentSizedArray;
2910 }
2911};
2912
2913/// Represents the canonical version of C arrays with a specified constant size.
2914/// For example, the canonical type for 'int A[4 + 4*100]' is a
2915/// ConstantArrayType where the element type is 'int' and the size is 404.
2916class ConstantArrayType final
2917 : public ArrayType,
2918 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2919 friend class ASTContext; // ASTContext creates these.
2920 friend TrailingObjects;
2921
2922 llvm::APInt Size; // Allows us to unique the type.
2923
2924 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2925 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2926 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2927 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2928 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2929 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 2929, __PRETTY_FUNCTION__))
;
2930 *getTrailingObjects<const Expr*>() = sz;
2931 }
2932 }
2933
2934 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2935 return ConstantArrayTypeBits.HasStoredSizeExpr;
2936 }
2937
2938public:
2939 const llvm::APInt &getSize() const { return Size; }
2940 const Expr *getSizeExpr() const {
2941 return ConstantArrayTypeBits.HasStoredSizeExpr
2942 ? *getTrailingObjects<const Expr *>()
2943 : nullptr;
2944 }
2945 bool isSugared() const { return false; }
2946 QualType desugar() const { return QualType(this, 0); }
2947
2948 /// Determine the number of bits required to address a member of
2949 // an array with the given element type and number of elements.
2950 static unsigned getNumAddressingBits(const ASTContext &Context,
2951 QualType ElementType,
2952 const llvm::APInt &NumElements);
2953
2954 /// Determine the maximum number of active bits that an array's size
2955 /// can require, which limits the maximum size of the array.
2956 static unsigned getMaxSizeBits(const ASTContext &Context);
2957
2958 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2959 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2960 getSizeModifier(), getIndexTypeCVRQualifiers());
2961 }
2962
2963 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2964 QualType ET, const llvm::APInt &ArraySize,
2965 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2966 unsigned TypeQuals);
2967
2968 static bool classof(const Type *T) {
2969 return T->getTypeClass() == ConstantArray;
2970 }
2971};
2972
2973/// Represents a C array with an unspecified size. For example 'int A[]' has
2974/// an IncompleteArrayType where the element type is 'int' and the size is
2975/// unspecified.
2976class IncompleteArrayType : public ArrayType {
2977 friend class ASTContext; // ASTContext creates these.
2978
2979 IncompleteArrayType(QualType et, QualType can,
2980 ArraySizeModifier sm, unsigned tq)
2981 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2982
2983public:
2984 friend class StmtIteratorBase;
2985
2986 bool isSugared() const { return false; }
2987 QualType desugar() const { return QualType(this, 0); }
2988
2989 static bool classof(const Type *T) {
2990 return T->getTypeClass() == IncompleteArray;
2991 }
2992
2993 void Profile(llvm::FoldingSetNodeID &ID) {
2994 Profile(ID, getElementType(), getSizeModifier(),
2995 getIndexTypeCVRQualifiers());
2996 }
2997
2998 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2999 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3000 ID.AddPointer(ET.getAsOpaquePtr());
3001 ID.AddInteger(SizeMod);
3002 ID.AddInteger(TypeQuals);
3003 }
3004};
3005
3006/// Represents a C array with a specified size that is not an
3007/// integer-constant-expression. For example, 'int s[x+foo()]'.
3008/// Since the size expression is an arbitrary expression, we store it as such.
3009///
3010/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3011/// should not be: two lexically equivalent variable array types could mean
3012/// different things, for example, these variables do not have the same type
3013/// dynamically:
3014///
3015/// void foo(int x) {
3016/// int Y[x];
3017/// ++x;
3018/// int Z[x];
3019/// }
3020class VariableArrayType : public ArrayType {
3021 friend class ASTContext; // ASTContext creates these.
3022
3023 /// An assignment-expression. VLA's are only permitted within
3024 /// a function block.
3025 Stmt *SizeExpr;
3026
3027 /// The range spanned by the left and right array brackets.
3028 SourceRange Brackets;
3029
3030 VariableArrayType(QualType et, QualType can, Expr *e,
3031 ArraySizeModifier sm, unsigned tq,
3032 SourceRange brackets)
3033 : ArrayType(VariableArray, et, can, sm, tq, e),
3034 SizeExpr((Stmt*) e), Brackets(brackets) {}
3035
3036public:
3037 friend class StmtIteratorBase;
3038
3039 Expr *getSizeExpr() const {
3040 // We use C-style casts instead of cast<> here because we do not wish
3041 // to have a dependency of Type.h on Stmt.h/Expr.h.
3042 return (Expr*) SizeExpr;
3043 }
3044
3045 SourceRange getBracketsRange() const { return Brackets; }
3046 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3047 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3048
3049 bool isSugared() const { return false; }
3050 QualType desugar() const { return QualType(this, 0); }
3051
3052 static bool classof(const Type *T) {
3053 return T->getTypeClass() == VariableArray;
3054 }
3055
3056 void Profile(llvm::FoldingSetNodeID &ID) {
3057 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 3057)
;
3058 }
3059};
3060
3061/// Represents an array type in C++ whose size is a value-dependent expression.
3062///
3063/// For example:
3064/// \code
3065/// template<typename T, int Size>
3066/// class array {
3067/// T data[Size];
3068/// };
3069/// \endcode
3070///
3071/// For these types, we won't actually know what the array bound is
3072/// until template instantiation occurs, at which point this will
3073/// become either a ConstantArrayType or a VariableArrayType.
3074class DependentSizedArrayType : public ArrayType {
3075 friend class ASTContext; // ASTContext creates these.
3076
3077 const ASTContext &Context;
3078
3079 /// An assignment expression that will instantiate to the
3080 /// size of the array.
3081 ///
3082 /// The expression itself might be null, in which case the array
3083 /// type will have its size deduced from an initializer.
3084 Stmt *SizeExpr;
3085
3086 /// The range spanned by the left and right array brackets.
3087 SourceRange Brackets;
3088
3089 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3090 Expr *e, ArraySizeModifier sm, unsigned tq,
3091 SourceRange brackets);
3092
3093public:
3094 friend class StmtIteratorBase;
3095
3096 Expr *getSizeExpr() const {
3097 // We use C-style casts instead of cast<> here because we do not wish
3098 // to have a dependency of Type.h on Stmt.h/Expr.h.
3099 return (Expr*) SizeExpr;
3100 }
3101
3102 SourceRange getBracketsRange() const { return Brackets; }
3103 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3104 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3105
3106 bool isSugared() const { return false; }
3107 QualType desugar() const { return QualType(this, 0); }
3108
3109 static bool classof(const Type *T) {
3110 return T->getTypeClass() == DependentSizedArray;
3111 }
3112
3113 void Profile(llvm::FoldingSetNodeID &ID) {
3114 Profile(ID, Context, getElementType(),
3115 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3116 }
3117
3118 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3119 QualType ET, ArraySizeModifier SizeMod,
3120 unsigned TypeQuals, Expr *E);
3121};
3122
3123/// Represents an extended address space qualifier where the input address space
3124/// value is dependent. Non-dependent address spaces are not represented with a
3125/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3126///
3127/// For example:
3128/// \code
3129/// template<typename T, int AddrSpace>
3130/// class AddressSpace {
3131/// typedef T __attribute__((address_space(AddrSpace))) type;
3132/// }
3133/// \endcode
3134class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3135 friend class ASTContext;
3136
3137 const ASTContext &Context;
3138 Expr *AddrSpaceExpr;
3139 QualType PointeeType;
3140 SourceLocation loc;
3141
3142 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3143 QualType can, Expr *AddrSpaceExpr,
3144 SourceLocation loc);
3145
3146public:
3147 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3148 QualType getPointeeType() const { return PointeeType; }
3149 SourceLocation getAttributeLoc() const { return loc; }
3150
3151 bool isSugared() const { return false; }
3152 QualType desugar() const { return QualType(this, 0); }
3153
3154 static bool classof(const Type *T) {
3155 return T->getTypeClass() == DependentAddressSpace;
3156 }
3157
3158 void Profile(llvm::FoldingSetNodeID &ID) {
3159 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3160 }
3161
3162 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3163 QualType PointeeType, Expr *AddrSpaceExpr);
3164};
3165
3166/// Represents an extended vector type where either the type or size is
3167/// dependent.
3168///
3169/// For example:
3170/// \code
3171/// template<typename T, int Size>
3172/// class vector {
3173/// typedef T __attribute__((ext_vector_type(Size))) type;
3174/// }
3175/// \endcode
3176class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3177 friend class ASTContext;
3178
3179 const ASTContext &Context;
3180 Expr *SizeExpr;
3181
3182 /// The element type of the array.
3183 QualType ElementType;
3184
3185 SourceLocation loc;
3186
3187 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3188 QualType can, Expr *SizeExpr, SourceLocation loc);
3189
3190public:
3191 Expr *getSizeExpr() const { return SizeExpr; }
3192 QualType getElementType() const { return ElementType; }
3193 SourceLocation getAttributeLoc() const { return loc; }
3194
3195 bool isSugared() const { return false; }
3196 QualType desugar() const { return QualType(this, 0); }
3197
3198 static bool classof(const Type *T) {
3199 return T->getTypeClass() == DependentSizedExtVector;
3200 }
3201
3202 void Profile(llvm::FoldingSetNodeID &ID) {
3203 Profile(ID, Context, getElementType(), getSizeExpr());
3204 }
3205
3206 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3207 QualType ElementType, Expr *SizeExpr);
3208};
3209
3210
3211/// Represents a GCC generic vector type. This type is created using
3212/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3213/// bytes; or from an Altivec __vector or vector declaration.
3214/// Since the constructor takes the number of vector elements, the
3215/// client is responsible for converting the size into the number of elements.
3216class VectorType : public Type, public llvm::FoldingSetNode {
3217public:
3218 enum VectorKind {
3219 /// not a target-specific vector type
3220 GenericVector,
3221
3222 /// is AltiVec vector
3223 AltiVecVector,
3224
3225 /// is AltiVec 'vector Pixel'
3226 AltiVecPixel,
3227
3228 /// is AltiVec 'vector bool ...'
3229 AltiVecBool,
3230
3231 /// is ARM Neon vector
3232 NeonVector,
3233
3234 /// is ARM Neon polynomial vector
3235 NeonPolyVector,
3236
3237 /// is AArch64 SVE fixed-length data vector
3238 SveFixedLengthDataVector,
3239
3240 /// is AArch64 SVE fixed-length predicate vector
3241 SveFixedLengthPredicateVector
3242 };
3243
3244protected:
3245 friend class ASTContext; // ASTContext creates these.
3246
3247 /// The element type of the vector.
3248 QualType ElementType;
3249
3250 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3251 VectorKind vecKind);
3252
3253 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3254 QualType canonType, VectorKind vecKind);
3255
3256public:
3257 QualType getElementType() const { return ElementType; }
3258 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3259
3260 bool isSugared() const { return false; }
3261 QualType desugar() const { return QualType(this, 0); }
3262
3263 VectorKind getVectorKind() const {
3264 return VectorKind(VectorTypeBits.VecKind);
3265 }
3266
3267 void Profile(llvm::FoldingSetNodeID &ID) {
3268 Profile(ID, getElementType(), getNumElements(),
3269 getTypeClass(), getVectorKind());
3270 }
3271
3272 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3273 unsigned NumElements, TypeClass TypeClass,
3274 VectorKind VecKind) {
3275 ID.AddPointer(ElementType.getAsOpaquePtr());
3276 ID.AddInteger(NumElements);
3277 ID.AddInteger(TypeClass);
3278 ID.AddInteger(VecKind);
3279 }
3280
3281 static bool classof(const Type *T) {
3282 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3283 }
3284};
3285
3286/// Represents a vector type where either the type or size is dependent.
3287////
3288/// For example:
3289/// \code
3290/// template<typename T, int Size>
3291/// class vector {
3292/// typedef T __attribute__((vector_size(Size))) type;
3293/// }
3294/// \endcode
3295class DependentVectorType : public Type, public llvm::FoldingSetNode {
3296 friend class ASTContext;
3297
3298 const ASTContext &Context;
3299 QualType ElementType;
3300 Expr *SizeExpr;
3301 SourceLocation Loc;
3302
3303 DependentVectorType(const ASTContext &Context, QualType ElementType,
3304 QualType CanonType, Expr *SizeExpr,
3305 SourceLocation Loc, VectorType::VectorKind vecKind);
3306
3307public:
3308 Expr *getSizeExpr() const { return SizeExpr; }
3309 QualType getElementType() const { return ElementType; }
3310 SourceLocation getAttributeLoc() const { return Loc; }
3311 VectorType::VectorKind getVectorKind() const {
3312 return VectorType::VectorKind(VectorTypeBits.VecKind);
3313 }
3314
3315 bool isSugared() const { return false; }
3316 QualType desugar() const { return QualType(this, 0); }
3317
3318 static bool classof(const Type *T) {
3319 return T->getTypeClass() == DependentVector;
3320 }
3321
3322 void Profile(llvm::FoldingSetNodeID &ID) {
3323 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3324 }
3325
3326 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3327 QualType ElementType, const Expr *SizeExpr,
3328 VectorType::VectorKind VecKind);
3329};
3330
3331/// ExtVectorType - Extended vector type. This type is created using
3332/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3333/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3334/// class enables syntactic extensions, like Vector Components for accessing
3335/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3336/// Shading Language).
3337class ExtVectorType : public VectorType {
3338 friend class ASTContext; // ASTContext creates these.
3339
3340 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3341 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3342
3343public:
3344 static int getPointAccessorIdx(char c) {
3345 switch (c) {
3346 default: return -1;
3347 case 'x': case 'r': return 0;
3348 case 'y': case 'g': return 1;
3349 case 'z': case 'b': return 2;
3350 case 'w': case 'a': return 3;
3351 }
3352 }
3353
3354 static int getNumericAccessorIdx(char c) {
3355 switch (c) {
3356 default: return -1;
3357 case '0': return 0;
3358 case '1': return 1;
3359 case '2': return 2;
3360 case '3': return 3;
3361 case '4': return 4;
3362 case '5': return 5;
3363 case '6': return 6;
3364 case '7': return 7;
3365 case '8': return 8;
3366 case '9': return 9;
3367 case 'A':
3368 case 'a': return 10;
3369 case 'B':
3370 case 'b': return 11;
3371 case 'C':
3372 case 'c': return 12;
3373 case 'D':
3374 case 'd': return 13;
3375 case 'E':
3376 case 'e': return 14;
3377 case 'F':
3378 case 'f': return 15;
3379 }
3380 }
3381
3382 static int getAccessorIdx(char c, bool isNumericAccessor) {
3383 if (isNumericAccessor)
3384 return getNumericAccessorIdx(c);
3385 else
3386 return getPointAccessorIdx(c);
3387 }
3388
3389 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3390 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3391 return unsigned(idx-1) < getNumElements();
3392 return false;
3393 }
3394
3395 bool isSugared() const { return false; }
3396 QualType desugar() const { return QualType(this, 0); }
3397
3398 static bool classof(const Type *T) {
3399 return T->getTypeClass() == ExtVector;
3400 }
3401};
3402
3403/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3404/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3405/// number of rows and "columns" specifies the number of columns.
3406class MatrixType : public Type, public llvm::FoldingSetNode {
3407protected:
3408 friend class ASTContext;
3409
3410 /// The element type of the matrix.
3411 QualType ElementType;
3412
3413 MatrixType(QualType ElementTy, QualType CanonElementTy);
3414
3415 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3416 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3417
3418public:
3419 /// Returns type of the elements being stored in the matrix
3420 QualType getElementType() const { return ElementType; }
3421
3422 /// Valid elements types are the following:
3423 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3424 /// and _Bool
3425 /// * the standard floating types float or double
3426 /// * a half-precision floating point type, if one is supported on the target
3427 static bool isValidElementType(QualType T) {
3428 return T->isDependentType() ||
3429 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3430 }
3431
3432 bool isSugared() const { return false; }
3433 QualType desugar() const { return QualType(this, 0); }
3434
3435 static bool classof(const Type *T) {
3436 return T->getTypeClass() == ConstantMatrix ||
3437 T->getTypeClass() == DependentSizedMatrix;
3438 }
3439};
3440
3441/// Represents a concrete matrix type with constant number of rows and columns
3442class ConstantMatrixType final : public MatrixType {
3443protected:
3444 friend class ASTContext;
3445
3446 /// The element type of the matrix.
3447 // FIXME: Appears to be unused? There is also MatrixType::ElementType...
3448 QualType ElementType;
3449
3450 /// Number of rows and columns.
3451 unsigned NumRows;
3452 unsigned NumColumns;
3453
3454 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3455
3456 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3457 unsigned NColumns, QualType CanonElementType);
3458
3459 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3460 unsigned NColumns, QualType CanonElementType);
3461
3462public:
3463 /// Returns the number of rows in the matrix.
3464 unsigned getNumRows() const { return NumRows; }
3465
3466 /// Returns the number of columns in the matrix.
3467 unsigned getNumColumns() const { return NumColumns; }
3468
3469 /// Returns the number of elements required to embed the matrix into a vector.
3470 unsigned getNumElementsFlattened() const {
3471 return getNumRows() * getNumColumns();
3472 }
3473
3474 /// Returns true if \p NumElements is a valid matrix dimension.
3475 static constexpr bool isDimensionValid(size_t NumElements) {
3476 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3477 }
3478
3479 /// Returns the maximum number of elements per dimension.
3480 static constexpr unsigned getMaxElementsPerDimension() {
3481 return MaxElementsPerDimension;
3482 }
3483
3484 void Profile(llvm::FoldingSetNodeID &ID) {
3485 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3486 getTypeClass());
3487 }
3488
3489 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3490 unsigned NumRows, unsigned NumColumns,
3491 TypeClass TypeClass) {
3492 ID.AddPointer(ElementType.getAsOpaquePtr());
3493 ID.AddInteger(NumRows);
3494 ID.AddInteger(NumColumns);
3495 ID.AddInteger(TypeClass);
3496 }
3497
3498 static bool classof(const Type *T) {
3499 return T->getTypeClass() == ConstantMatrix;
3500 }
3501};
3502
3503/// Represents a matrix type where the type and the number of rows and columns
3504/// is dependent on a template.
3505class DependentSizedMatrixType final : public MatrixType {
3506 friend class ASTContext;
3507
3508 const ASTContext &Context;
3509 Expr *RowExpr;
3510 Expr *ColumnExpr;
3511
3512 SourceLocation loc;
3513
3514 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3515 QualType CanonicalType, Expr *RowExpr,
3516 Expr *ColumnExpr, SourceLocation loc);
3517
3518public:
3519 QualType getElementType() const { return ElementType; }
3520 Expr *getRowExpr() const { return RowExpr; }
3521 Expr *getColumnExpr() const { return ColumnExpr; }
3522 SourceLocation getAttributeLoc() const { return loc; }
3523
3524 bool isSugared() const { return false; }
3525 QualType desugar() const { return QualType(this, 0); }
3526
3527 static bool classof(const Type *T) {
3528 return T->getTypeClass() == DependentSizedMatrix;
3529 }
3530
3531 void Profile(llvm::FoldingSetNodeID &ID) {
3532 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3533 }
3534
3535 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3536 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3537};
3538
3539/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3540/// class of FunctionNoProtoType and FunctionProtoType.
3541class FunctionType : public Type {
3542 // The type returned by the function.
3543 QualType ResultType;
3544
3545public:
3546 /// Interesting information about a specific parameter that can't simply
3547 /// be reflected in parameter's type. This is only used by FunctionProtoType
3548 /// but is in FunctionType to make this class available during the
3549 /// specification of the bases of FunctionProtoType.
3550 ///
3551 /// It makes sense to model language features this way when there's some
3552 /// sort of parameter-specific override (such as an attribute) that
3553 /// affects how the function is called. For example, the ARC ns_consumed
3554 /// attribute changes whether a parameter is passed at +0 (the default)
3555 /// or +1 (ns_consumed). This must be reflected in the function type,
3556 /// but isn't really a change to the parameter type.
3557 ///
3558 /// One serious disadvantage of modelling language features this way is
3559 /// that they generally do not work with language features that attempt
3560 /// to destructure types. For example, template argument deduction will
3561 /// not be able to match a parameter declared as
3562 /// T (*)(U)
3563 /// against an argument of type
3564 /// void (*)(__attribute__((ns_consumed)) id)
3565 /// because the substitution of T=void, U=id into the former will
3566 /// not produce the latter.
3567 class ExtParameterInfo {
3568 enum {
3569 ABIMask = 0x0F,
3570 IsConsumed = 0x10,
3571 HasPassObjSize = 0x20,
3572 IsNoEscape = 0x40,
3573 };
3574 unsigned char Data = 0;
3575
3576 public:
3577 ExtParameterInfo() = default;
3578
3579 /// Return the ABI treatment of this parameter.
3580 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3581 ExtParameterInfo withABI(ParameterABI kind) const {
3582 ExtParameterInfo copy = *this;
3583 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3584 return copy;
3585 }
3586
3587 /// Is this parameter considered "consumed" by Objective-C ARC?
3588 /// Consumed parameters must have retainable object type.
3589 bool isConsumed() const { return (Data & IsConsumed); }
3590 ExtParameterInfo withIsConsumed(bool consumed) const {
3591 ExtParameterInfo copy = *this;
3592 if (consumed)
3593 copy.Data |= IsConsumed;
3594 else
3595 copy.Data &= ~IsConsumed;
3596 return copy;
3597 }
3598
3599 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3600 ExtParameterInfo withHasPassObjectSize() const {
3601 ExtParameterInfo Copy = *this;
3602 Copy.Data |= HasPassObjSize;
3603 return Copy;
3604 }
3605
3606 bool isNoEscape() const { return Data & IsNoEscape; }
3607 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3608 ExtParameterInfo Copy = *this;
3609 if (NoEscape)
3610 Copy.Data |= IsNoEscape;
3611 else
3612 Copy.Data &= ~IsNoEscape;
3613 return Copy;
3614 }
3615
3616 unsigned char getOpaqueValue() const { return Data; }
3617 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3618 ExtParameterInfo result;
3619 result.Data = data;
3620 return result;
3621 }
3622
3623 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3624 return lhs.Data == rhs.Data;
3625 }
3626
3627 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3628 return lhs.Data != rhs.Data;
3629 }
3630 };
3631
3632 /// A class which abstracts out some details necessary for
3633 /// making a call.
3634 ///
3635 /// It is not actually used directly for storing this information in
3636 /// a FunctionType, although FunctionType does currently use the
3637 /// same bit-pattern.
3638 ///
3639 // If you add a field (say Foo), other than the obvious places (both,
3640 // constructors, compile failures), what you need to update is
3641 // * Operator==
3642 // * getFoo
3643 // * withFoo
3644 // * functionType. Add Foo, getFoo.
3645 // * ASTContext::getFooType
3646 // * ASTContext::mergeFunctionTypes
3647 // * FunctionNoProtoType::Profile
3648 // * FunctionProtoType::Profile
3649 // * TypePrinter::PrintFunctionProto
3650 // * AST read and write
3651 // * Codegen
3652 class ExtInfo {
3653 friend class FunctionType;
3654
3655 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3656 // adjust the Bits field below, and if you add bits, you'll need to adjust
3657 // Type::FunctionTypeBitfields::ExtInfo as well.
3658
3659 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3660 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3661 //
3662 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3663 enum { CallConvMask = 0x1F };
3664 enum { NoReturnMask = 0x20 };
3665 enum { ProducesResultMask = 0x40 };
3666 enum { NoCallerSavedRegsMask = 0x80 };
3667 enum {
3668 RegParmMask = 0x700,
3669 RegParmOffset = 8
3670 };
3671 enum { NoCfCheckMask = 0x800 };
3672 enum { CmseNSCallMask = 0x1000 };
3673 uint16_t Bits = CC_C;
3674
3675 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3676
3677 public:
3678 // Constructor with no defaults. Use this when you know that you
3679 // have all the elements (when reading an AST file for example).
3680 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3681 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3682 bool cmseNSCall) {
3683 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 3683, __PRETTY_FUNCTION__))
;
3684 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3685 (producesResult ? ProducesResultMask : 0) |
3686 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3687 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3688 (NoCfCheck ? NoCfCheckMask : 0) |
3689 (cmseNSCall ? CmseNSCallMask : 0);
3690 }
3691
3692 // Constructor with all defaults. Use when for example creating a
3693 // function known to use defaults.
3694 ExtInfo() = default;
3695
3696 // Constructor with just the calling convention, which is an important part
3697 // of the canonical type.
3698 ExtInfo(CallingConv CC) : Bits(CC) {}
3699
3700 bool getNoReturn() const { return Bits & NoReturnMask; }
3701 bool getProducesResult() const { return Bits & ProducesResultMask; }
3702 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3703 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3704 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3705 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3706
3707 unsigned getRegParm() const {
3708 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3709 if (RegParm > 0)
3710 --RegParm;
3711 return RegParm;
3712 }
3713
3714 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3715
3716 bool operator==(ExtInfo Other) const {
3717 return Bits == Other.Bits;
3718 }
3719 bool operator!=(ExtInfo Other) const {
3720 return Bits != Other.Bits;
3721 }
3722
3723 // Note that we don't have setters. That is by design, use
3724 // the following with methods instead of mutating these objects.
3725
3726 ExtInfo withNoReturn(bool noReturn) const {
3727 if (noReturn)
3728 return ExtInfo(Bits | NoReturnMask);
3729 else
3730 return ExtInfo(Bits & ~NoReturnMask);
3731 }
3732
3733 ExtInfo withProducesResult(bool producesResult) const {
3734 if (producesResult)
3735 return ExtInfo(Bits | ProducesResultMask);
3736 else
3737 return ExtInfo(Bits & ~ProducesResultMask);
3738 }
3739
3740 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3741 if (cmseNSCall)
3742 return ExtInfo(Bits | CmseNSCallMask);
3743 else
3744 return ExtInfo(Bits & ~CmseNSCallMask);
3745 }
3746
3747 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3748 if (noCallerSavedRegs)
3749 return ExtInfo(Bits | NoCallerSavedRegsMask);
3750 else
3751 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3752 }
3753
3754 ExtInfo withNoCfCheck(bool noCfCheck) const {
3755 if (noCfCheck)
3756 return ExtInfo(Bits | NoCfCheckMask);
3757 else
3758 return ExtInfo(Bits & ~NoCfCheckMask);
3759 }
3760
3761 ExtInfo withRegParm(unsigned RegParm) const {
3762 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 3762, __PRETTY_FUNCTION__))
;
3763 return ExtInfo((Bits & ~RegParmMask) |
3764 ((RegParm + 1) << RegParmOffset));
3765 }
3766
3767 ExtInfo withCallingConv(CallingConv cc) const {
3768 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3769 }
3770
3771 void Profile(llvm::FoldingSetNodeID &ID) const {
3772 ID.AddInteger(Bits);
3773 }
3774 };
3775
3776 /// A simple holder for a QualType representing a type in an
3777 /// exception specification. Unfortunately needed by FunctionProtoType
3778 /// because TrailingObjects cannot handle repeated types.
3779 struct ExceptionType { QualType Type; };
3780
3781 /// A simple holder for various uncommon bits which do not fit in
3782 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3783 /// alignment of subsequent objects in TrailingObjects. You must update
3784 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3785 struct alignas(void *) FunctionTypeExtraBitfields {
3786 /// The number of types in the exception specification.
3787 /// A whole unsigned is not needed here and according to
3788 /// [implimits] 8 bits would be enough here.
3789 unsigned NumExceptionType;
3790 };
3791
3792protected:
3793 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3794 TypeDependence Dependence, ExtInfo Info)
3795 : Type(tc, Canonical, Dependence), ResultType(res) {
3796 FunctionTypeBits.ExtInfo = Info.Bits;
3797 }
3798
3799 Qualifiers getFastTypeQuals() const {
3800 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3801 }
3802
3803public:
3804 QualType getReturnType() const { return ResultType; }
3805
3806 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3807 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3808
3809 /// Determine whether this function type includes the GNU noreturn
3810 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3811 /// type.
3812 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3813
3814 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3815 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3816 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3817
3818 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3819 "Const, volatile and restrict are assumed to be a subset of "
3820 "the fast qualifiers.");
3821
3822 bool isConst() const { return getFastTypeQuals().hasConst(); }
3823 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3824 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3825
3826 /// Determine the type of an expression that calls a function of
3827 /// this type.
3828 QualType getCallResultType(const ASTContext &Context) const {
3829 return getReturnType().getNonLValueExprType(Context);
3830 }
3831
3832 static StringRef getNameForCallConv(CallingConv CC);
3833
3834 static bool classof(const Type *T) {
3835 return T->getTypeClass() == FunctionNoProto ||
3836 T->getTypeClass() == FunctionProto;
3837 }
3838};
3839
3840/// Represents a K&R-style 'int foo()' function, which has
3841/// no information available about its arguments.
3842class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3843 friend class ASTContext; // ASTContext creates these.
3844
3845 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3846 : FunctionType(FunctionNoProto, Result, Canonical,
3847 Result->getDependence() &
3848 ~(TypeDependence::DependentInstantiation |
3849 TypeDependence::UnexpandedPack),
3850 Info) {}
3851
3852public:
3853 // No additional state past what FunctionType provides.
3854
3855 bool isSugared() const { return false; }
3856 QualType desugar() const { return QualType(this, 0); }
3857
3858 void Profile(llvm::FoldingSetNodeID &ID) {
3859 Profile(ID, getReturnType(), getExtInfo());
3860 }
3861
3862 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3863 ExtInfo Info) {
3864 Info.Profile(ID);
3865 ID.AddPointer(ResultType.getAsOpaquePtr());
3866 }
3867
3868 static bool classof(const Type *T) {
3869 return T->getTypeClass() == FunctionNoProto;
3870 }
3871};
3872
3873/// Represents a prototype with parameter type info, e.g.
3874/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3875/// parameters, not as having a single void parameter. Such a type can have
3876/// an exception specification, but this specification is not part of the
3877/// canonical type. FunctionProtoType has several trailing objects, some of
3878/// which optional. For more information about the trailing objects see
3879/// the first comment inside FunctionProtoType.
3880class FunctionProtoType final
3881 : public FunctionType,
3882 public llvm::FoldingSetNode,
3883 private llvm::TrailingObjects<
3884 FunctionProtoType, QualType, SourceLocation,
3885 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3886 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3887 friend class ASTContext; // ASTContext creates these.
3888 friend TrailingObjects;
3889
3890 // FunctionProtoType is followed by several trailing objects, some of
3891 // which optional. They are in order:
3892 //
3893 // * An array of getNumParams() QualType holding the parameter types.
3894 // Always present. Note that for the vast majority of FunctionProtoType,
3895 // these will be the only trailing objects.
3896 //
3897 // * Optionally if the function is variadic, the SourceLocation of the
3898 // ellipsis.
3899 //
3900 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3901 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3902 // a single FunctionTypeExtraBitfields. Present if and only if
3903 // hasExtraBitfields() is true.
3904 //
3905 // * Optionally exactly one of:
3906 // * an array of getNumExceptions() ExceptionType,
3907 // * a single Expr *,
3908 // * a pair of FunctionDecl *,
3909 // * a single FunctionDecl *
3910 // used to store information about the various types of exception
3911 // specification. See getExceptionSpecSize for the details.
3912 //
3913 // * Optionally an array of getNumParams() ExtParameterInfo holding
3914 // an ExtParameterInfo for each of the parameters. Present if and
3915 // only if hasExtParameterInfos() is true.
3916 //
3917 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3918 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3919 // if hasExtQualifiers() is true.
3920 //
3921 // The optional FunctionTypeExtraBitfields has to be before the data
3922 // related to the exception specification since it contains the number
3923 // of exception types.
3924 //
3925 // We put the ExtParameterInfos last. If all were equal, it would make
3926 // more sense to put these before the exception specification, because
3927 // it's much easier to skip past them compared to the elaborate switch
3928 // required to skip the exception specification. However, all is not
3929 // equal; ExtParameterInfos are used to model very uncommon features,
3930 // and it's better not to burden the more common paths.
3931
3932public:
3933 /// Holds information about the various types of exception specification.
3934 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3935 /// used to group together the various bits of information about the
3936 /// exception specification.
3937 struct ExceptionSpecInfo {
3938 /// The kind of exception specification this is.
3939 ExceptionSpecificationType Type = EST_None;
3940
3941 /// Explicitly-specified list of exception types.
3942 ArrayRef<QualType> Exceptions;
3943
3944 /// Noexcept expression, if this is a computed noexcept specification.
3945 Expr *NoexceptExpr = nullptr;
3946
3947 /// The function whose exception specification this is, for
3948 /// EST_Unevaluated and EST_Uninstantiated.
3949 FunctionDecl *SourceDecl = nullptr;
3950
3951 /// The function template whose exception specification this is instantiated
3952 /// from, for EST_Uninstantiated.
3953 FunctionDecl *SourceTemplate = nullptr;
3954
3955 ExceptionSpecInfo() = default;
3956
3957 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3958 };
3959
3960 /// Extra information about a function prototype. ExtProtoInfo is not
3961 /// stored as such in FunctionProtoType but is used to group together
3962 /// the various bits of extra information about a function prototype.
3963 struct ExtProtoInfo {
3964 FunctionType::ExtInfo ExtInfo;
3965 bool Variadic : 1;
3966 bool HasTrailingReturn : 1;
3967 Qualifiers TypeQuals;
3968 RefQualifierKind RefQualifier = RQ_None;
3969 ExceptionSpecInfo ExceptionSpec;
3970 const ExtParameterInfo *ExtParameterInfos = nullptr;
3971 SourceLocation EllipsisLoc;
3972
3973 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3974
3975 ExtProtoInfo(CallingConv CC)
3976 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3977
3978 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3979 ExtProtoInfo Result(*this);
3980 Result.ExceptionSpec = ESI;
3981 return Result;
3982 }
3983 };
3984
3985private:
3986 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3987 return getNumParams();
3988 }
3989
3990 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3991 return isVariadic();
3992 }
3993
3994 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3995 return hasExtraBitfields();
3996 }
3997
3998 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3999 return getExceptionSpecSize().NumExceptionType;
4000 }
4001
4002 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4003 return getExceptionSpecSize().NumExprPtr;
4004 }
4005
4006 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4007 return getExceptionSpecSize().NumFunctionDeclPtr;
4008 }
4009
4010 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4011 return hasExtParameterInfos() ? getNumParams() : 0;
4012 }
4013
4014 /// Determine whether there are any argument types that
4015 /// contain an unexpanded parameter pack.
4016 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4017 unsigned numArgs) {
4018 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4019 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4020 return true;
4021
4022 return false;
4023 }
4024
4025 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4026 QualType canonical, const ExtProtoInfo &epi);
4027
4028 /// This struct is returned by getExceptionSpecSize and is used to
4029 /// translate an ExceptionSpecificationType to the number and kind
4030 /// of trailing objects related to the exception specification.
4031 struct ExceptionSpecSizeHolder {
4032 unsigned NumExceptionType;
4033 unsigned NumExprPtr;
4034 unsigned NumFunctionDeclPtr;
4035 };
4036
4037 /// Return the number and kind of trailing objects
4038 /// related to the exception specification.
4039 static ExceptionSpecSizeHolder
4040 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4041 switch (EST) {
4042 case EST_None:
4043 case EST_DynamicNone:
4044 case EST_MSAny:
4045 case EST_BasicNoexcept:
4046 case EST_Unparsed:
4047 case EST_NoThrow:
4048 return {0, 0, 0};
4049
4050 case EST_Dynamic:
4051 return {NumExceptions, 0, 0};
4052
4053 case EST_DependentNoexcept:
4054 case EST_NoexceptFalse:
4055 case EST_NoexceptTrue:
4056 return {0, 1, 0};
4057
4058 case EST_Uninstantiated:
4059 return {0, 0, 2};
4060
4061 case EST_Unevaluated:
4062 return {0, 0, 1};
4063 }
4064 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4064)
;
4065 }
4066
4067 /// Return the number and kind of trailing objects
4068 /// related to the exception specification.
4069 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4070 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4071 }
4072
4073 /// Whether the trailing FunctionTypeExtraBitfields is present.
4074 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4075 // If the exception spec type is EST_Dynamic then we have > 0 exception
4076 // types and the exact number is stored in FunctionTypeExtraBitfields.
4077 return EST == EST_Dynamic;
4078 }
4079
4080 /// Whether the trailing FunctionTypeExtraBitfields is present.
4081 bool hasExtraBitfields() const {
4082 return hasExtraBitfields(getExceptionSpecType());
4083 }
4084
4085 bool hasExtQualifiers() const {
4086 return FunctionTypeBits.HasExtQuals;
4087 }
4088
4089public:
4090 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4091
4092 QualType getParamType(unsigned i) const {
4093 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4093, __PRETTY_FUNCTION__))
;
4094 return param_type_begin()[i];
4095 }
4096
4097 ArrayRef<QualType> getParamTypes() const {
4098 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4099 }
4100
4101 ExtProtoInfo getExtProtoInfo() const {
4102 ExtProtoInfo EPI;
4103 EPI.ExtInfo = getExtInfo();
4104 EPI.Variadic = isVariadic();
4105 EPI.EllipsisLoc = getEllipsisLoc();
4106 EPI.HasTrailingReturn = hasTrailingReturn();
4107 EPI.ExceptionSpec = getExceptionSpecInfo();
4108 EPI.TypeQuals = getMethodQuals();
4109 EPI.RefQualifier = getRefQualifier();
4110 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4111 return EPI;
4112 }
4113
4114 /// Get the kind of exception specification on this function.
4115 ExceptionSpecificationType getExceptionSpecType() const {
4116 return static_cast<ExceptionSpecificationType>(
4117 FunctionTypeBits.ExceptionSpecType);
4118 }
4119
4120 /// Return whether this function has any kind of exception spec.
4121 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4122
4123 /// Return whether this function has a dynamic (throw) exception spec.
4124 bool hasDynamicExceptionSpec() const {
4125 return isDynamicExceptionSpec(getExceptionSpecType());
4126 }
4127
4128 /// Return whether this function has a noexcept exception spec.
4129 bool hasNoexceptExceptionSpec() const {
4130 return isNoexceptExceptionSpec(getExceptionSpecType());
4131 }
4132
4133 /// Return whether this function has a dependent exception spec.
4134 bool hasDependentExceptionSpec() const;
4135
4136 /// Return whether this function has an instantiation-dependent exception
4137 /// spec.
4138 bool hasInstantiationDependentExceptionSpec() const;
4139
4140 /// Return all the available information about this type's exception spec.
4141 ExceptionSpecInfo getExceptionSpecInfo() const {
4142 ExceptionSpecInfo Result;
4143 Result.Type = getExceptionSpecType();
4144 if (Result.Type == EST_Dynamic) {
4145 Result.Exceptions = exceptions();
4146 } else if (isComputedNoexcept(Result.Type)) {
4147 Result.NoexceptExpr = getNoexceptExpr();
4148 } else if (Result.Type == EST_Uninstantiated) {
4149 Result.SourceDecl = getExceptionSpecDecl();
4150 Result.SourceTemplate = getExceptionSpecTemplate();
4151 } else if (Result.Type == EST_Unevaluated) {
4152 Result.SourceDecl = getExceptionSpecDecl();
4153 }
4154 return Result;
4155 }
4156
4157 /// Return the number of types in the exception specification.
4158 unsigned getNumExceptions() const {
4159 return getExceptionSpecType() == EST_Dynamic
4160 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4161 ->NumExceptionType
4162 : 0;
4163 }
4164
4165 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4166 QualType getExceptionType(unsigned i) const {
4167 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4167, __PRETTY_FUNCTION__))
;
4168 return exception_begin()[i];
4169 }
4170
4171 /// Return the expression inside noexcept(expression), or a null pointer
4172 /// if there is none (because the exception spec is not of this form).
4173 Expr *getNoexceptExpr() const {
4174 if (!isComputedNoexcept(getExceptionSpecType()))
4175 return nullptr;
4176 return *getTrailingObjects<Expr *>();
4177 }
4178
4179 /// If this function type has an exception specification which hasn't
4180 /// been determined yet (either because it has not been evaluated or because
4181 /// it has not been instantiated), this is the function whose exception
4182 /// specification is represented by this type.
4183 FunctionDecl *getExceptionSpecDecl() const {
4184 if (getExceptionSpecType() != EST_Uninstantiated &&
4185 getExceptionSpecType() != EST_Unevaluated)
4186 return nullptr;
4187 return getTrailingObjects<FunctionDecl *>()[0];
4188 }
4189
4190 /// If this function type has an uninstantiated exception
4191 /// specification, this is the function whose exception specification
4192 /// should be instantiated to find the exception specification for
4193 /// this type.
4194 FunctionDecl *getExceptionSpecTemplate() const {
4195 if (getExceptionSpecType() != EST_Uninstantiated)
4196 return nullptr;
4197 return getTrailingObjects<FunctionDecl *>()[1];
4198 }
4199
4200 /// Determine whether this function type has a non-throwing exception
4201 /// specification.
4202 CanThrowResult canThrow() const;
4203
4204 /// Determine whether this function type has a non-throwing exception
4205 /// specification. If this depends on template arguments, returns
4206 /// \c ResultIfDependent.
4207 bool isNothrow(bool ResultIfDependent = false) const {
4208 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4209 }
4210
4211 /// Whether this function prototype is variadic.
4212 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4213
4214 SourceLocation getEllipsisLoc() const {
4215 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4216 : SourceLocation();
4217 }
4218
4219 /// Determines whether this function prototype contains a
4220 /// parameter pack at the end.
4221 ///
4222 /// A function template whose last parameter is a parameter pack can be
4223 /// called with an arbitrary number of arguments, much like a variadic
4224 /// function.
4225 bool isTemplateVariadic() const;
4226
4227 /// Whether this function prototype has a trailing return type.
4228 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4229
4230 Qualifiers getMethodQuals() const {
4231 if (hasExtQualifiers())
4232 return *getTrailingObjects<Qualifiers>();
4233 else
4234 return getFastTypeQuals();
4235 }
4236
4237 /// Retrieve the ref-qualifier associated with this function type.
4238 RefQualifierKind getRefQualifier() const {
4239 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4240 }
4241
4242 using param_type_iterator = const QualType *;
4243 using param_type_range = llvm::iterator_range<param_type_iterator>;
4244
4245 param_type_range param_types() const {
4246 return param_type_range(param_type_begin(), param_type_end());
4247 }
4248
4249 param_type_iterator param_type_begin() const {
4250 return getTrailingObjects<QualType>();
4251 }
4252
4253 param_type_iterator param_type_end() const {
4254 return param_type_begin() + getNumParams();
4255 }
4256
4257 using exception_iterator = const QualType *;
4258
4259 ArrayRef<QualType> exceptions() const {
4260 return llvm::makeArrayRef(exception_begin(), exception_end());
4261 }
4262
4263 exception_iterator exception_begin() const {
4264 return reinterpret_cast<exception_iterator>(
4265 getTrailingObjects<ExceptionType>());
4266 }
4267
4268 exception_iterator exception_end() const {
4269 return exception_begin() + getNumExceptions();
4270 }
4271
4272 /// Is there any interesting extra information for any of the parameters
4273 /// of this function type?
4274 bool hasExtParameterInfos() const {
4275 return FunctionTypeBits.HasExtParameterInfos;
4276 }
4277
4278 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4279 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4279, __PRETTY_FUNCTION__))
;
4280 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4281 getNumParams());
4282 }
4283
4284 /// Return a pointer to the beginning of the array of extra parameter
4285 /// information, if present, or else null if none of the parameters
4286 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4287 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4288 if (!hasExtParameterInfos())
4289 return nullptr;
4290 return getTrailingObjects<ExtParameterInfo>();
4291 }
4292
4293 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4294 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4294, __PRETTY_FUNCTION__))
;
4295 if (hasExtParameterInfos())
4296 return getTrailingObjects<ExtParameterInfo>()[I];
4297 return ExtParameterInfo();
4298 }
4299
4300 ParameterABI getParameterABI(unsigned I) const {
4301 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4301, __PRETTY_FUNCTION__))
;
4302 if (hasExtParameterInfos())
4303 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4304 return ParameterABI::Ordinary;
4305 }
4306
4307 bool isParamConsumed(unsigned I) const {
4308 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4308, __PRETTY_FUNCTION__))
;
4309 if (hasExtParameterInfos())
4310 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4311 return false;
4312 }
4313
4314 bool isSugared() const { return false; }
4315 QualType desugar() const { return QualType(this, 0); }
4316
4317 void printExceptionSpecification(raw_ostream &OS,
4318 const PrintingPolicy &Policy) const;
4319
4320 static bool classof(const Type *T) {
4321 return T->getTypeClass() == FunctionProto;
4322 }
4323
4324 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4325 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4326 param_type_iterator ArgTys, unsigned NumArgs,
4327 const ExtProtoInfo &EPI, const ASTContext &Context,
4328 bool Canonical);
4329};
4330
4331/// Represents the dependent type named by a dependently-scoped
4332/// typename using declaration, e.g.
4333/// using typename Base<T>::foo;
4334///
4335/// Template instantiation turns these into the underlying type.
4336class UnresolvedUsingType : public Type {
4337 friend class ASTContext; // ASTContext creates these.
4338
4339 UnresolvedUsingTypenameDecl *Decl;
4340
4341 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4342 : Type(UnresolvedUsing, QualType(),
4343 TypeDependence::DependentInstantiation),
4344 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4345
4346public:
4347 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4348
4349 bool isSugared() const { return false; }
4350 QualType desugar() const { return QualType(this, 0); }
4351
4352 static bool classof(const Type *T) {
4353 return T->getTypeClass() == UnresolvedUsing;
4354 }
4355
4356 void Profile(llvm::FoldingSetNodeID &ID) {
4357 return Profile(ID, Decl);
4358 }
4359
4360 static void Profile(llvm::FoldingSetNodeID &ID,
4361 UnresolvedUsingTypenameDecl *D) {
4362 ID.AddPointer(D);
4363 }
4364};
4365
4366class TypedefType : public Type {
4367 TypedefNameDecl *Decl;
4368
4369private:
4370 friend class ASTContext; // ASTContext creates these.
4371
4372 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4373 QualType can);
4374
4375public:
4376 TypedefNameDecl *getDecl() const { return Decl; }
4377
4378 bool isSugared() const { return true; }
4379 QualType desugar() const;
4380
4381 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4382};
4383
4384/// Sugar type that represents a type that was qualified by a qualifier written
4385/// as a macro invocation.
4386class MacroQualifiedType : public Type {
4387 friend class ASTContext; // ASTContext creates these.
4388
4389 QualType UnderlyingTy;
4390 const IdentifierInfo *MacroII;
4391
4392 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4393 const IdentifierInfo *MacroII)
4394 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4395 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4396 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4397, __PRETTY_FUNCTION__))
4397 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4397, __PRETTY_FUNCTION__))
;
4398 }
4399
4400public:
4401 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4402 QualType getUnderlyingType() const { return UnderlyingTy; }
4403
4404 /// Return this attributed type's modified type with no qualifiers attached to
4405 /// it.
4406 QualType getModifiedType() const;
4407
4408 bool isSugared() const { return true; }
4409 QualType desugar() const;
4410
4411 static bool classof(const Type *T) {
4412 return T->getTypeClass() == MacroQualified;
4413 }
4414};
4415
4416/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4417class TypeOfExprType : public Type {
4418 Expr *TOExpr;
4419
4420protected:
4421 friend class ASTContext; // ASTContext creates these.
4422
4423 TypeOfExprType(Expr *E, QualType can = QualType());
4424
4425public:
4426 Expr *getUnderlyingExpr() const { return TOExpr; }
4427
4428 /// Remove a single level of sugar.
4429 QualType desugar() const;
4430
4431 /// Returns whether this type directly provides sugar.
4432 bool isSugared() const;
4433
4434 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4435};
4436
4437/// Internal representation of canonical, dependent
4438/// `typeof(expr)` types.
4439///
4440/// This class is used internally by the ASTContext to manage
4441/// canonical, dependent types, only. Clients will only see instances
4442/// of this class via TypeOfExprType nodes.
4443class DependentTypeOfExprType
4444 : public TypeOfExprType, public llvm::FoldingSetNode {
4445 const ASTContext &Context;
4446
4447public:
4448 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4449 : TypeOfExprType(E), Context(Context) {}
4450
4451 void Profile(llvm::FoldingSetNodeID &ID) {
4452 Profile(ID, Context, getUnderlyingExpr());
4453 }
4454
4455 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4456 Expr *E);
4457};
4458
4459/// Represents `typeof(type)`, a GCC extension.
4460class TypeOfType : public Type {
4461 friend class ASTContext; // ASTContext creates these.
4462
4463 QualType TOType;
4464
4465 TypeOfType(QualType T, QualType can)
4466 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4467 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4467, __PRETTY_FUNCTION__))
;
4468 }
4469
4470public:
4471 QualType getUnderlyingType() const { return TOType; }
4472
4473 /// Remove a single level of sugar.
4474 QualType desugar() const { return getUnderlyingType(); }
4475
4476 /// Returns whether this type directly provides sugar.
4477 bool isSugared() const { return true; }
4478
4479 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4480};
4481
4482/// Represents the type `decltype(expr)` (C++11).
4483class DecltypeType : public Type {
4484 Expr *E;
4485 QualType UnderlyingType;
4486
4487protected:
4488 friend class ASTContext; // ASTContext creates these.
4489
4490 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4491
4492public:
4493 Expr *getUnderlyingExpr() const { return E; }
4494 QualType getUnderlyingType() const { return UnderlyingType; }
4495
4496 /// Remove a single level of sugar.
4497 QualType desugar() const;
4498
4499 /// Returns whether this type directly provides sugar.
4500 bool isSugared() const;
4501
4502 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4503};
4504
4505/// Internal representation of canonical, dependent
4506/// decltype(expr) types.
4507///
4508/// This class is used internally by the ASTContext to manage
4509/// canonical, dependent types, only. Clients will only see instances
4510/// of this class via DecltypeType nodes.
4511class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4512 const ASTContext &Context;
4513
4514public:
4515 DependentDecltypeType(const ASTContext &Context, Expr *E);
4516
4517 void Profile(llvm::FoldingSetNodeID &ID) {
4518 Profile(ID, Context, getUnderlyingExpr());
4519 }
4520
4521 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4522 Expr *E);
4523};
4524
4525/// A unary type transform, which is a type constructed from another.
4526class UnaryTransformType : public Type {
4527public:
4528 enum UTTKind {
4529 EnumUnderlyingType
4530 };
4531
4532private:
4533 /// The untransformed type.
4534 QualType BaseType;
4535
4536 /// The transformed type if not dependent, otherwise the same as BaseType.
4537 QualType UnderlyingType;
4538
4539 UTTKind UKind;
4540
4541protected:
4542 friend class ASTContext;
4543
4544 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4545 QualType CanonicalTy);
4546
4547public:
4548 bool isSugared() const { return !isDependentType(); }
4549 QualType desugar() const { return UnderlyingType; }
4550
4551 QualType getUnderlyingType() const { return UnderlyingType; }
4552 QualType getBaseType() const { return BaseType; }
4553
4554 UTTKind getUTTKind() const { return UKind; }
4555
4556 static bool classof(const Type *T) {
4557 return T->getTypeClass() == UnaryTransform;
4558 }
4559};
4560
4561/// Internal representation of canonical, dependent
4562/// __underlying_type(type) types.
4563///
4564/// This class is used internally by the ASTContext to manage
4565/// canonical, dependent types, only. Clients will only see instances
4566/// of this class via UnaryTransformType nodes.
4567class DependentUnaryTransformType : public UnaryTransformType,
4568 public llvm::FoldingSetNode {
4569public:
4570 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4571 UTTKind UKind);
4572
4573 void Profile(llvm::FoldingSetNodeID &ID) {
4574 Profile(ID, getBaseType(), getUTTKind());
4575 }
4576
4577 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4578 UTTKind UKind) {
4579 ID.AddPointer(BaseType.getAsOpaquePtr());
4580 ID.AddInteger((unsigned)UKind);
4581 }
4582};
4583
4584class TagType : public Type {
4585 friend class ASTReader;
4586 template <class T> friend class serialization::AbstractTypeReader;
4587
4588 /// Stores the TagDecl associated with this type. The decl may point to any
4589 /// TagDecl that declares the entity.
4590 TagDecl *decl;
4591
4592protected:
4593 TagType(TypeClass TC, const TagDecl *D, QualType can);
4594
4595public:
4596 TagDecl *getDecl() const;
4597
4598 /// Determines whether this type is in the process of being defined.
4599 bool isBeingDefined() const;
4600
4601 static bool classof(const Type *T) {
4602 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4603 }
4604};
4605
4606/// A helper class that allows the use of isa/cast/dyncast
4607/// to detect TagType objects of structs/unions/classes.
4608class RecordType : public TagType {
4609protected:
4610 friend class ASTContext; // ASTContext creates these.
4611
4612 explicit RecordType(const RecordDecl *D)
4613 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4614 explicit RecordType(TypeClass TC, RecordDecl *D)
4615 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4616
4617public:
4618 RecordDecl *getDecl() const {
4619 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4620 }
4621
4622 /// Recursively check all fields in the record for const-ness. If any field
4623 /// is declared const, return true. Otherwise, return false.
4624 bool hasConstFields() const;
4625
4626 bool isSugared() const { return false; }
4627 QualType desugar() const { return QualType(this, 0); }
4628
4629 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4630};
4631
4632/// A helper class that allows the use of isa/cast/dyncast
4633/// to detect TagType objects of enums.
4634class EnumType : public TagType {
4635 friend class ASTContext; // ASTContext creates these.
4636
4637 explicit EnumType(const EnumDecl *D)
4638 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4639
4640public:
4641 EnumDecl *getDecl() const {
4642 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4643 }
4644
4645 bool isSugared() const { return false; }
4646 QualType desugar() const { return QualType(this, 0); }
4647
4648 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4649};
4650
4651/// An attributed type is a type to which a type attribute has been applied.
4652///
4653/// The "modified type" is the fully-sugared type to which the attributed
4654/// type was applied; generally it is not canonically equivalent to the
4655/// attributed type. The "equivalent type" is the minimally-desugared type
4656/// which the type is canonically equivalent to.
4657///
4658/// For example, in the following attributed type:
4659/// int32_t __attribute__((vector_size(16)))
4660/// - the modified type is the TypedefType for int32_t
4661/// - the equivalent type is VectorType(16, int32_t)
4662/// - the canonical type is VectorType(16, int)
4663class AttributedType : public Type, public llvm::FoldingSetNode {
4664public:
4665 using Kind = attr::Kind;
4666
4667private:
4668 friend class ASTContext; // ASTContext creates these
4669
4670 QualType ModifiedType;
4671 QualType EquivalentType;
4672
4673 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4674 QualType equivalent)
4675 : Type(Attributed, canon, equivalent->getDependence()),
4676 ModifiedType(modified), EquivalentType(equivalent) {
4677 AttributedTypeBits.AttrKind = attrKind;
4678 }
4679
4680public:
4681 Kind getAttrKind() const {
4682 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4683 }
4684
4685 QualType getModifiedType() const { return ModifiedType; }
4686 QualType getEquivalentType() const { return EquivalentType; }
4687
4688 bool isSugared() const { return true; }
4689 QualType desugar() const { return getEquivalentType(); }
4690
4691 /// Does this attribute behave like a type qualifier?
4692 ///
4693 /// A type qualifier adjusts a type to provide specialized rules for
4694 /// a specific object, like the standard const and volatile qualifiers.
4695 /// This includes attributes controlling things like nullability,
4696 /// address spaces, and ARC ownership. The value of the object is still
4697 /// largely described by the modified type.
4698 ///
4699 /// In contrast, many type attributes "rewrite" their modified type to
4700 /// produce a fundamentally different type, not necessarily related in any
4701 /// formalizable way to the original type. For example, calling convention
4702 /// and vector attributes are not simple type qualifiers.
4703 ///
4704 /// Type qualifiers are often, but not always, reflected in the canonical
4705 /// type.
4706 bool isQualifier() const;
4707
4708 bool isMSTypeSpec() const;
4709
4710 bool isCallingConv() const;
4711
4712 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4713
4714 /// Retrieve the attribute kind corresponding to the given
4715 /// nullability kind.
4716 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4717 switch (kind) {
4718 case NullabilityKind::NonNull:
4719 return attr::TypeNonNull;
4720
4721 case NullabilityKind::Nullable:
4722 return attr::TypeNullable;
4723
4724 case NullabilityKind::NullableResult:
4725 return attr::TypeNullableResult;
4726
4727 case NullabilityKind::Unspecified:
4728 return attr::TypeNullUnspecified;
4729 }
4730 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 4730)
;
4731 }
4732
4733 /// Strip off the top-level nullability annotation on the given
4734 /// type, if it's there.
4735 ///
4736 /// \param T The type to strip. If the type is exactly an
4737 /// AttributedType specifying nullability (without looking through
4738 /// type sugar), the nullability is returned and this type changed
4739 /// to the underlying modified type.
4740 ///
4741 /// \returns the top-level nullability, if present.
4742 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4743
4744 void Profile(llvm::FoldingSetNodeID &ID) {
4745 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4746 }
4747
4748 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4749 QualType modified, QualType equivalent) {
4750 ID.AddInteger(attrKind);
4751 ID.AddPointer(modified.getAsOpaquePtr());
4752 ID.AddPointer(equivalent.getAsOpaquePtr());
4753 }
4754
4755 static bool classof(const Type *T) {
4756 return T->getTypeClass() == Attributed;
4757 }
4758};
4759
4760class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4761 friend class ASTContext; // ASTContext creates these
4762
4763 // Helper data collector for canonical types.
4764 struct CanonicalTTPTInfo {
4765 unsigned Depth : 15;
4766 unsigned ParameterPack : 1;
4767 unsigned Index : 16;
4768 };
4769
4770 union {
4771 // Info for the canonical type.
4772 CanonicalTTPTInfo CanTTPTInfo;
4773
4774 // Info for the non-canonical type.
4775 TemplateTypeParmDecl *TTPDecl;
4776 };
4777
4778 /// Build a non-canonical type.
4779 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4780 : Type(TemplateTypeParm, Canon,
4781 TypeDependence::DependentInstantiation |
4782 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4783 TTPDecl(TTPDecl) {}
4784
4785 /// Build the canonical type.
4786 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4787 : Type(TemplateTypeParm, QualType(this, 0),
4788 TypeDependence::DependentInstantiation |
4789 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4790 CanTTPTInfo.Depth = D;
4791 CanTTPTInfo.Index = I;
4792 CanTTPTInfo.ParameterPack = PP;
4793 }
4794
4795 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4796 QualType Can = getCanonicalTypeInternal();
4797 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4798 }
4799
4800public:
4801 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4802 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4803 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4804
4805 TemplateTypeParmDecl *getDecl() const {
4806 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4807 }
4808
4809 IdentifierInfo *getIdentifier() const;
4810
4811 bool isSugared() const { return false; }
4812 QualType desugar() const { return QualType(this, 0); }
4813
4814 void Profile(llvm::FoldingSetNodeID &ID) {
4815 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4816 }
4817
4818 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4819 unsigned Index, bool ParameterPack,
4820 TemplateTypeParmDecl *TTPDecl) {
4821 ID.AddInteger(Depth);
4822 ID.AddInteger(Index);
4823 ID.AddBoolean(ParameterPack);
4824 ID.AddPointer(TTPDecl);
4825 }
4826
4827 static bool classof(const Type *T) {
4828 return T->getTypeClass() == TemplateTypeParm;
4829 }
4830};
4831
4832/// Represents the result of substituting a type for a template
4833/// type parameter.
4834///
4835/// Within an instantiated template, all template type parameters have
4836/// been replaced with these. They are used solely to record that a
4837/// type was originally written as a template type parameter;
4838/// therefore they are never canonical.
4839class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4840 friend class ASTContext;
4841
4842 // The original type parameter.
4843 const TemplateTypeParmType *Replaced;
4844
4845 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4846 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4847 Replaced(Param) {}
4848
4849public:
4850 /// Gets the template parameter that was substituted for.
4851 const TemplateTypeParmType *getReplacedParameter() const {
4852 return Replaced;
4853 }
4854
4855 /// Gets the type that was substituted for the template
4856 /// parameter.
4857 QualType getReplacementType() const {
4858 return getCanonicalTypeInternal();
4859 }
4860
4861 bool isSugared() const { return true; }
4862 QualType desugar() const { return getReplacementType(); }
4863
4864 void Profile(llvm::FoldingSetNodeID &ID) {
4865 Profile(ID, getReplacedParameter(), getReplacementType());
4866 }
4867
4868 static void Profile(llvm::FoldingSetNodeID &ID,
4869 const TemplateTypeParmType *Replaced,
4870 QualType Replacement) {
4871 ID.AddPointer(Replaced);
4872 ID.AddPointer(Replacement.getAsOpaquePtr());
4873 }
4874
4875 static bool classof(const Type *T) {
4876 return T->getTypeClass() == SubstTemplateTypeParm;
4877 }
4878};
4879
4880/// Represents the result of substituting a set of types for a template
4881/// type parameter pack.
4882///
4883/// When a pack expansion in the source code contains multiple parameter packs
4884/// and those parameter packs correspond to different levels of template
4885/// parameter lists, this type node is used to represent a template type
4886/// parameter pack from an outer level, which has already had its argument pack
4887/// substituted but that still lives within a pack expansion that itself
4888/// could not be instantiated. When actually performing a substitution into
4889/// that pack expansion (e.g., when all template parameters have corresponding
4890/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4891/// at the current pack substitution index.
4892class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4893 friend class ASTContext;
4894
4895 /// The original type parameter.
4896 const TemplateTypeParmType *Replaced;
4897
4898 /// A pointer to the set of template arguments that this
4899 /// parameter pack is instantiated with.
4900 const TemplateArgument *Arguments;
4901
4902 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4903 QualType Canon,
4904 const TemplateArgument &ArgPack);
4905
4906public:
4907 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4908
4909 /// Gets the template parameter that was substituted for.
4910 const TemplateTypeParmType *getReplacedParameter() const {
4911 return Replaced;
4912 }
4913
4914 unsigned getNumArgs() const {
4915 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4916 }
4917
4918 bool isSugared() const { return false; }
4919 QualType desugar() const { return QualType(this, 0); }
4920
4921 TemplateArgument getArgumentPack() const;
4922
4923 void Profile(llvm::FoldingSetNodeID &ID);
4924 static void Profile(llvm::FoldingSetNodeID &ID,
4925 const TemplateTypeParmType *Replaced,
4926 const TemplateArgument &ArgPack);
4927
4928 static bool classof(const Type *T) {
4929 return T->getTypeClass() == SubstTemplateTypeParmPack;
4930 }
4931};
4932
4933/// Common base class for placeholders for types that get replaced by
4934/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4935/// class template types, and constrained type names.
4936///
4937/// These types are usually a placeholder for a deduced type. However, before
4938/// the initializer is attached, or (usually) if the initializer is
4939/// type-dependent, there is no deduced type and the type is canonical. In
4940/// the latter case, it is also a dependent type.
4941class DeducedType : public Type {
4942protected:
4943 DeducedType(TypeClass TC, QualType DeducedAsType,
4944 TypeDependence ExtraDependence)
4945 : Type(TC,
4946 // FIXME: Retain the sugared deduced type?
4947 DeducedAsType.isNull() ? QualType(this, 0)
4948 : DeducedAsType.getCanonicalType(),
4949 ExtraDependence | (DeducedAsType.isNull()
4950 ? TypeDependence::None
4951 : DeducedAsType->getDependence() &
4952 ~TypeDependence::VariablyModified)) {}
4953
4954public:
4955 bool isSugared() const { return !isCanonicalUnqualified(); }
4956 QualType desugar() const { return getCanonicalTypeInternal(); }
4957
4958 /// Get the type deduced for this placeholder type, or null if it's
4959 /// either not been deduced or was deduced to a dependent type.
4960 QualType getDeducedType() const {
4961 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4962 }
4963 bool isDeduced() const {
4964 return !isCanonicalUnqualified() || isDependentType();
4965 }
4966
4967 static bool classof(const Type *T) {
4968 return T->getTypeClass() == Auto ||
4969 T->getTypeClass() == DeducedTemplateSpecialization;
4970 }
4971};
4972
4973/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4974/// by a type-constraint.
4975class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4976 friend class ASTContext; // ASTContext creates these
4977
4978 ConceptDecl *TypeConstraintConcept;
4979
4980 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4981 TypeDependence ExtraDependence, ConceptDecl *CD,
4982 ArrayRef<TemplateArgument> TypeConstraintArgs);
4983
4984 const TemplateArgument *getArgBuffer() const {
4985 return reinterpret_cast<const TemplateArgument*>(this+1);
4986 }
4987
4988 TemplateArgument *getArgBuffer() {
4989 return reinterpret_cast<TemplateArgument*>(this+1);
4990 }
4991
4992public:
4993 /// Retrieve the template arguments.
4994 const TemplateArgument *getArgs() const {
4995 return getArgBuffer();
4996 }
4997
4998 /// Retrieve the number of template arguments.
4999 unsigned getNumArgs() const {
5000 return AutoTypeBits.NumArgs;
5001 }
5002
5003 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5004
5005 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5006 return {getArgs(), getNumArgs()};
5007 }
5008
5009 ConceptDecl *getTypeConstraintConcept() const {
5010 return TypeConstraintConcept;
5011 }
5012
5013 bool isConstrained() const {
5014 return TypeConstraintConcept != nullptr;
5015 }
5016
5017 bool isDecltypeAuto() const {
5018 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5019 }
5020
5021 AutoTypeKeyword getKeyword() const {
5022 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5023 }
5024
5025 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5026 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5027 getTypeConstraintConcept(), getTypeConstraintArguments());
5028 }
5029
5030 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5031 QualType Deduced, AutoTypeKeyword Keyword,
5032 bool IsDependent, ConceptDecl *CD,
5033 ArrayRef<TemplateArgument> Arguments);
5034
5035 static bool classof(const Type *T) {
5036 return T->getTypeClass() == Auto;
5037 }
5038};
5039
5040/// Represents a C++17 deduced template specialization type.
5041class DeducedTemplateSpecializationType : public DeducedType,
5042 public llvm::FoldingSetNode {
5043 friend class ASTContext; // ASTContext creates these
5044
5045 /// The name of the template whose arguments will be deduced.
5046 TemplateName Template;
5047
5048 DeducedTemplateSpecializationType(TemplateName Template,
5049 QualType DeducedAsType,
5050 bool IsDeducedAsDependent)
5051 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5052 toTypeDependence(Template.getDependence()) |
5053 (IsDeducedAsDependent
5054 ? TypeDependence::DependentInstantiation
5055 : TypeDependence::None)),
5056 Template(Template) {}
5057
5058public:
5059 /// Retrieve the name of the template that we are deducing.
5060 TemplateName getTemplateName() const { return Template;}
5061
5062 void Profile(llvm::FoldingSetNodeID &ID) {
5063 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5064 }
5065
5066 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5067 QualType Deduced, bool IsDependent) {
5068 Template.Profile(ID);
5069 ID.AddPointer(Deduced.getAsOpaquePtr());
5070 ID.AddBoolean(IsDependent);
5071 }
5072
5073 static bool classof(const Type *T) {
5074 return T->getTypeClass() == DeducedTemplateSpecialization;
5075 }
5076};
5077
5078/// Represents a type template specialization; the template
5079/// must be a class template, a type alias template, or a template
5080/// template parameter. A template which cannot be resolved to one of
5081/// these, e.g. because it is written with a dependent scope
5082/// specifier, is instead represented as a
5083/// @c DependentTemplateSpecializationType.
5084///
5085/// A non-dependent template specialization type is always "sugar",
5086/// typically for a \c RecordType. For example, a class template
5087/// specialization type of \c vector<int> will refer to a tag type for
5088/// the instantiation \c std::vector<int, std::allocator<int>>
5089///
5090/// Template specializations are dependent if either the template or
5091/// any of the template arguments are dependent, in which case the
5092/// type may also be canonical.
5093///
5094/// Instances of this type are allocated with a trailing array of
5095/// TemplateArguments, followed by a QualType representing the
5096/// non-canonical aliased type when the template is a type alias
5097/// template.
5098class alignas(8) TemplateSpecializationType
5099 : public Type,
5100 public llvm::FoldingSetNode {
5101 friend class ASTContext; // ASTContext creates these
5102
5103 /// The name of the template being specialized. This is
5104 /// either a TemplateName::Template (in which case it is a
5105 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5106 /// TypeAliasTemplateDecl*), a
5107 /// TemplateName::SubstTemplateTemplateParmPack, or a
5108 /// TemplateName::SubstTemplateTemplateParm (in which case the
5109 /// replacement must, recursively, be one of these).
5110 TemplateName Template;
5111
5112 TemplateSpecializationType(TemplateName T,
5113 ArrayRef<TemplateArgument> Args,
5114 QualType Canon,
5115 QualType Aliased);
5116
5117public:
5118 /// Determine whether any of the given template arguments are dependent.
5119 ///
5120 /// The converted arguments should be supplied when known; whether an
5121 /// argument is dependent can depend on the conversions performed on it
5122 /// (for example, a 'const int' passed as a template argument might be
5123 /// dependent if the parameter is a reference but non-dependent if the
5124 /// parameter is an int).
5125 ///
5126 /// Note that the \p Args parameter is unused: this is intentional, to remind
5127 /// the caller that they need to pass in the converted arguments, not the
5128 /// specified arguments.
5129 static bool
5130 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5131 ArrayRef<TemplateArgument> Converted);
5132 static bool
5133 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5134 ArrayRef<TemplateArgument> Converted);
5135 static bool anyInstantiationDependentTemplateArguments(
5136 ArrayRef<TemplateArgumentLoc> Args);
5137
5138 /// True if this template specialization type matches a current
5139 /// instantiation in the context in which it is found.
5140 bool isCurrentInstantiation() const {
5141 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5142 }
5143
5144 /// Determine if this template specialization type is for a type alias
5145 /// template that has been substituted.
5146 ///
5147 /// Nearly every template specialization type whose template is an alias
5148 /// template will be substituted. However, this is not the case when
5149 /// the specialization contains a pack expansion but the template alias
5150 /// does not have a corresponding parameter pack, e.g.,
5151 ///
5152 /// \code
5153 /// template<typename T, typename U, typename V> struct S;
5154 /// template<typename T, typename U> using A = S<T, int, U>;
5155 /// template<typename... Ts> struct X {
5156 /// typedef A<Ts...> type; // not a type alias
5157 /// };
5158 /// \endcode
5159 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5160
5161 /// Get the aliased type, if this is a specialization of a type alias
5162 /// template.
5163 QualType getAliasedType() const {
5164 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5164, __PRETTY_FUNCTION__))
;
5165 return *reinterpret_cast<const QualType*>(end());
5166 }
5167
5168 using iterator = const TemplateArgument *;
5169
5170 iterator begin() const { return getArgs(); }
5171 iterator end() const; // defined inline in TemplateBase.h
5172
5173 /// Retrieve the name of the template that we are specializing.
5174 TemplateName getTemplateName() const { return Template; }
5175
5176 /// Retrieve the template arguments.
5177 const TemplateArgument *getArgs() const {
5178 return reinterpret_cast<const TemplateArgument *>(this + 1);
5179 }
5180
5181 /// Retrieve the number of template arguments.
5182 unsigned getNumArgs() const {
5183 return TemplateSpecializationTypeBits.NumArgs;
5184 }
5185
5186 /// Retrieve a specific template argument as a type.
5187 /// \pre \c isArgType(Arg)
5188 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5189
5190 ArrayRef<TemplateArgument> template_arguments() const {
5191 return {getArgs(), getNumArgs()};
5192 }
5193
5194 bool isSugared() const {
5195 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5196 }
5197
5198 QualType desugar() const {
5199 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5200 }
5201
5202 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5203 Profile(ID, Template, template_arguments(), Ctx);
5204 if (isTypeAlias())
5205 getAliasedType().Profile(ID);
5206 }
5207
5208 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5209 ArrayRef<TemplateArgument> Args,
5210 const ASTContext &Context);
5211
5212 static bool classof(const Type *T) {
5213 return T->getTypeClass() == TemplateSpecialization;
5214 }
5215};
5216
5217/// Print a template argument list, including the '<' and '>'
5218/// enclosing the template arguments.
5219void printTemplateArgumentList(raw_ostream &OS,
5220 ArrayRef<TemplateArgument> Args,
5221 const PrintingPolicy &Policy,
5222 const TemplateParameterList *TPL = nullptr);
5223
5224void printTemplateArgumentList(raw_ostream &OS,
5225 ArrayRef<TemplateArgumentLoc> Args,
5226 const PrintingPolicy &Policy,
5227 const TemplateParameterList *TPL = nullptr);
5228
5229void printTemplateArgumentList(raw_ostream &OS,
5230 const TemplateArgumentListInfo &Args,
5231 const PrintingPolicy &Policy,
5232 const TemplateParameterList *TPL = nullptr);
5233
5234/// The injected class name of a C++ class template or class
5235/// template partial specialization. Used to record that a type was
5236/// spelled with a bare identifier rather than as a template-id; the
5237/// equivalent for non-templated classes is just RecordType.
5238///
5239/// Injected class name types are always dependent. Template
5240/// instantiation turns these into RecordTypes.
5241///
5242/// Injected class name types are always canonical. This works
5243/// because it is impossible to compare an injected class name type
5244/// with the corresponding non-injected template type, for the same
5245/// reason that it is impossible to directly compare template
5246/// parameters from different dependent contexts: injected class name
5247/// types can only occur within the scope of a particular templated
5248/// declaration, and within that scope every template specialization
5249/// will canonicalize to the injected class name (when appropriate
5250/// according to the rules of the language).
5251class InjectedClassNameType : public Type {
5252 friend class ASTContext; // ASTContext creates these.
5253 friend class ASTNodeImporter;
5254 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5255 // currently suitable for AST reading, too much
5256 // interdependencies.
5257 template <class T> friend class serialization::AbstractTypeReader;
5258
5259 CXXRecordDecl *Decl;
5260
5261 /// The template specialization which this type represents.
5262 /// For example, in
5263 /// template <class T> class A { ... };
5264 /// this is A<T>, whereas in
5265 /// template <class X, class Y> class A<B<X,Y> > { ... };
5266 /// this is A<B<X,Y> >.
5267 ///
5268 /// It is always unqualified, always a template specialization type,
5269 /// and always dependent.
5270 QualType InjectedType;
5271
5272 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5273 : Type(InjectedClassName, QualType(),
5274 TypeDependence::DependentInstantiation),
5275 Decl(D), InjectedType(TST) {
5276 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5276, __PRETTY_FUNCTION__))
;
5277 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5277, __PRETTY_FUNCTION__))
;
5278 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5278, __PRETTY_FUNCTION__))
;
5279 }
5280
5281public:
5282 QualType getInjectedSpecializationType() const { return InjectedType; }
5283
5284 const TemplateSpecializationType *getInjectedTST() const {
5285 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5286 }
5287
5288 TemplateName getTemplateName() const {
5289 return getInjectedTST()->getTemplateName();
5290 }
5291
5292 CXXRecordDecl *getDecl() const;
5293
5294 bool isSugared() const { return false; }
5295 QualType desugar() const { return QualType(this, 0); }
5296
5297 static bool classof(const Type *T) {
5298 return T->getTypeClass() == InjectedClassName;
5299 }
5300};
5301
5302/// The kind of a tag type.
5303enum TagTypeKind {
5304 /// The "struct" keyword.
5305 TTK_Struct,
5306
5307 /// The "__interface" keyword.
5308 TTK_Interface,
5309
5310 /// The "union" keyword.
5311 TTK_Union,
5312
5313 /// The "class" keyword.
5314 TTK_Class,
5315
5316 /// The "enum" keyword.
5317 TTK_Enum
5318};
5319
5320/// The elaboration keyword that precedes a qualified type name or
5321/// introduces an elaborated-type-specifier.
5322enum ElaboratedTypeKeyword {
5323 /// The "struct" keyword introduces the elaborated-type-specifier.
5324 ETK_Struct,
5325
5326 /// The "__interface" keyword introduces the elaborated-type-specifier.
5327 ETK_Interface,
5328
5329 /// The "union" keyword introduces the elaborated-type-specifier.
5330 ETK_Union,
5331
5332 /// The "class" keyword introduces the elaborated-type-specifier.
5333 ETK_Class,
5334
5335 /// The "enum" keyword introduces the elaborated-type-specifier.
5336 ETK_Enum,
5337
5338 /// The "typename" keyword precedes the qualified type name, e.g.,
5339 /// \c typename T::type.
5340 ETK_Typename,
5341
5342 /// No keyword precedes the qualified type name.
5343 ETK_None
5344};
5345
5346/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5347/// The keyword in stored in the free bits of the base class.
5348/// Also provides a few static helpers for converting and printing
5349/// elaborated type keyword and tag type kind enumerations.
5350class TypeWithKeyword : public Type {
5351protected:
5352 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5353 QualType Canonical, TypeDependence Dependence)
5354 : Type(tc, Canonical, Dependence) {
5355 TypeWithKeywordBits.Keyword = Keyword;
5356 }
5357
5358public:
5359 ElaboratedTypeKeyword getKeyword() const {
5360 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5361 }
5362
5363 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5364 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5365
5366 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5367 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5368 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5369
5370 /// Converts a TagTypeKind into an elaborated type keyword.
5371 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5372
5373 /// Converts an elaborated type keyword into a TagTypeKind.
5374 /// It is an error to provide an elaborated type keyword
5375 /// which *isn't* a tag kind here.
5376 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5377
5378 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5379
5380 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5381
5382 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5383 return getKeywordName(getKeywordForTagTypeKind(Kind));
5384 }
5385
5386 class CannotCastToThisType {};
5387 static CannotCastToThisType classof(const Type *);
5388};
5389
5390/// Represents a type that was referred to using an elaborated type
5391/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5392/// or both.
5393///
5394/// This type is used to keep track of a type name as written in the
5395/// source code, including tag keywords and any nested-name-specifiers.
5396/// The type itself is always "sugar", used to express what was written
5397/// in the source code but containing no additional semantic information.
5398class ElaboratedType final
5399 : public TypeWithKeyword,
5400 public llvm::FoldingSetNode,
5401 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5402 friend class ASTContext; // ASTContext creates these
5403 friend TrailingObjects;
5404
5405 /// The nested name specifier containing the qualifier.
5406 NestedNameSpecifier *NNS;
5407
5408 /// The type that this qualified name refers to.
5409 QualType NamedType;
5410
5411 /// The (re)declaration of this tag type owned by this occurrence is stored
5412 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5413 /// it, or obtain a null pointer if there is none.
5414
5415 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5416 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5417 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5418 // Any semantic dependence on the qualifier will have
5419 // been incorporated into NamedType. We still need to
5420 // track syntactic (instantiation / error / pack)
5421 // dependence on the qualifier.
5422 NamedType->getDependence() |
5423 (NNS ? toSyntacticDependence(
5424 toTypeDependence(NNS->getDependence()))
5425 : TypeDependence::None)),
5426 NNS(NNS), NamedType(NamedType) {
5427 ElaboratedTypeBits.HasOwnedTagDecl = false;
5428 if (OwnedTagDecl) {
5429 ElaboratedTypeBits.HasOwnedTagDecl = true;
5430 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5431 }
5432 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5434, __PRETTY_FUNCTION__))
5433 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5434, __PRETTY_FUNCTION__))
5434 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5434, __PRETTY_FUNCTION__))
;
5435 }
5436
5437public:
5438 /// Retrieve the qualification on this type.
5439 NestedNameSpecifier *getQualifier() const { return NNS; }
5440
5441 /// Retrieve the type named by the qualified-id.
5442 QualType getNamedType() const { return NamedType; }
5443
5444 /// Remove a single level of sugar.
5445 QualType desugar() const { return getNamedType(); }
5446
5447 /// Returns whether this type directly provides sugar.
5448 bool isSugared() const { return true; }
5449
5450 /// Return the (re)declaration of this type owned by this occurrence of this
5451 /// type, or nullptr if there is none.
5452 TagDecl *getOwnedTagDecl() const {
5453 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5454 : nullptr;
5455 }
5456
5457 void Profile(llvm::FoldingSetNodeID &ID) {
5458 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5459 }
5460
5461 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5462 NestedNameSpecifier *NNS, QualType NamedType,
5463 TagDecl *OwnedTagDecl) {
5464 ID.AddInteger(Keyword);
5465 ID.AddPointer(NNS);
5466 NamedType.Profile(ID);
5467 ID.AddPointer(OwnedTagDecl);
5468 }
5469
5470 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5471};
5472
5473/// Represents a qualified type name for which the type name is
5474/// dependent.
5475///
5476/// DependentNameType represents a class of dependent types that involve a
5477/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5478/// name of a type. The DependentNameType may start with a "typename" (for a
5479/// typename-specifier), "class", "struct", "union", or "enum" (for a
5480/// dependent elaborated-type-specifier), or nothing (in contexts where we
5481/// know that we must be referring to a type, e.g., in a base class specifier).
5482/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5483/// mode, this type is used with non-dependent names to delay name lookup until
5484/// instantiation.
5485class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5486 friend class ASTContext; // ASTContext creates these
5487
5488 /// The nested name specifier containing the qualifier.
5489 NestedNameSpecifier *NNS;
5490
5491 /// The type that this typename specifier refers to.
5492 const IdentifierInfo *Name;
5493
5494 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5495 const IdentifierInfo *Name, QualType CanonType)
5496 : TypeWithKeyword(Keyword, DependentName, CanonType,
5497 TypeDependence::DependentInstantiation |
5498 toTypeDependence(NNS->getDependence())),
5499 NNS(NNS), Name(Name) {}
5500
5501public:
5502 /// Retrieve the qualification on this type.
5503 NestedNameSpecifier *getQualifier() const { return NNS; }
5504
5505 /// Retrieve the type named by the typename specifier as an identifier.
5506 ///
5507 /// This routine will return a non-NULL identifier pointer when the
5508 /// form of the original typename was terminated by an identifier,
5509 /// e.g., "typename T::type".
5510 const IdentifierInfo *getIdentifier() const {
5511 return Name;
5512 }
5513
5514 bool isSugared() const { return false; }
5515 QualType desugar() const { return QualType(this, 0); }
5516
5517 void Profile(llvm::FoldingSetNodeID &ID) {
5518 Profile(ID, getKeyword(), NNS, Name);
5519 }
5520
5521 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5522 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5523 ID.AddInteger(Keyword);
5524 ID.AddPointer(NNS);
5525 ID.AddPointer(Name);
5526 }
5527
5528 static bool classof(const Type *T) {
5529 return T->getTypeClass() == DependentName;
5530 }
5531};
5532
5533/// Represents a template specialization type whose template cannot be
5534/// resolved, e.g.
5535/// A<T>::template B<T>
5536class alignas(8) DependentTemplateSpecializationType
5537 : public TypeWithKeyword,
5538 public llvm::FoldingSetNode {
5539 friend class ASTContext; // ASTContext creates these
5540
5541 /// The nested name specifier containing the qualifier.
5542 NestedNameSpecifier *NNS;
5543
5544 /// The identifier of the template.
5545 const IdentifierInfo *Name;
5546
5547 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5548 NestedNameSpecifier *NNS,
5549 const IdentifierInfo *Name,
5550 ArrayRef<TemplateArgument> Args,
5551 QualType Canon);
5552
5553 const TemplateArgument *getArgBuffer() const {
5554 return reinterpret_cast<const TemplateArgument*>(this+1);
5555 }
5556
5557 TemplateArgument *getArgBuffer() {
5558 return reinterpret_cast<TemplateArgument*>(this+1);
5559 }
5560
5561public:
5562 NestedNameSpecifier *getQualifier() const { return NNS; }
5563 const IdentifierInfo *getIdentifier() const { return Name; }
5564
5565 /// Retrieve the template arguments.
5566 const TemplateArgument *getArgs() const {
5567 return getArgBuffer();
5568 }
5569
5570 /// Retrieve the number of template arguments.
5571 unsigned getNumArgs() const {
5572 return DependentTemplateSpecializationTypeBits.NumArgs;
5573 }
5574
5575 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5576
5577 ArrayRef<TemplateArgument> template_arguments() const {
5578 return {getArgs(), getNumArgs()};
5579 }
5580
5581 using iterator = const TemplateArgument *;
5582
5583 iterator begin() const { return getArgs(); }
5584 iterator end() const; // inline in TemplateBase.h
5585
5586 bool isSugared() const { return false; }
5587 QualType desugar() const { return QualType(this, 0); }
5588
5589 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5590 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5591 }
5592
5593 static void Profile(llvm::FoldingSetNodeID &ID,
5594 const ASTContext &Context,
5595 ElaboratedTypeKeyword Keyword,
5596 NestedNameSpecifier *Qualifier,
5597 const IdentifierInfo *Name,
5598 ArrayRef<TemplateArgument> Args);
5599
5600 static bool classof(const Type *T) {
5601 return T->getTypeClass() == DependentTemplateSpecialization;
5602 }
5603};
5604
5605/// Represents a pack expansion of types.
5606///
5607/// Pack expansions are part of C++11 variadic templates. A pack
5608/// expansion contains a pattern, which itself contains one or more
5609/// "unexpanded" parameter packs. When instantiated, a pack expansion
5610/// produces a series of types, each instantiated from the pattern of
5611/// the expansion, where the Ith instantiation of the pattern uses the
5612/// Ith arguments bound to each of the unexpanded parameter packs. The
5613/// pack expansion is considered to "expand" these unexpanded
5614/// parameter packs.
5615///
5616/// \code
5617/// template<typename ...Types> struct tuple;
5618///
5619/// template<typename ...Types>
5620/// struct tuple_of_references {
5621/// typedef tuple<Types&...> type;
5622/// };
5623/// \endcode
5624///
5625/// Here, the pack expansion \c Types&... is represented via a
5626/// PackExpansionType whose pattern is Types&.
5627class PackExpansionType : public Type, public llvm::FoldingSetNode {
5628 friend class ASTContext; // ASTContext creates these
5629
5630 /// The pattern of the pack expansion.
5631 QualType Pattern;
5632
5633 PackExpansionType(QualType Pattern, QualType Canon,
5634 Optional<unsigned> NumExpansions)
5635 : Type(PackExpansion, Canon,
5636 (Pattern->getDependence() | TypeDependence::Dependent |
5637 TypeDependence::Instantiation) &
5638 ~TypeDependence::UnexpandedPack),
5639 Pattern(Pattern) {
5640 PackExpansionTypeBits.NumExpansions =
5641 NumExpansions ? *NumExpansions + 1 : 0;
5642 }
5643
5644public:
5645 /// Retrieve the pattern of this pack expansion, which is the
5646 /// type that will be repeatedly instantiated when instantiating the
5647 /// pack expansion itself.
5648 QualType getPattern() const { return Pattern; }
5649
5650 /// Retrieve the number of expansions that this pack expansion will
5651 /// generate, if known.
5652 Optional<unsigned> getNumExpansions() const {
5653 if (PackExpansionTypeBits.NumExpansions)
5654 return PackExpansionTypeBits.NumExpansions - 1;
5655 return None;
5656 }
5657
5658 bool isSugared() const { return false; }
5659 QualType desugar() const { return QualType(this, 0); }
5660
5661 void Profile(llvm::FoldingSetNodeID &ID) {
5662 Profile(ID, getPattern(), getNumExpansions());
5663 }
5664
5665 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5666 Optional<unsigned> NumExpansions) {
5667 ID.AddPointer(Pattern.getAsOpaquePtr());
5668 ID.AddBoolean(NumExpansions.hasValue());
5669 if (NumExpansions)
5670 ID.AddInteger(*NumExpansions);
5671 }
5672
5673 static bool classof(const Type *T) {
5674 return T->getTypeClass() == PackExpansion;
5675 }
5676};
5677
5678/// This class wraps the list of protocol qualifiers. For types that can
5679/// take ObjC protocol qualifers, they can subclass this class.
5680template <class T>
5681class ObjCProtocolQualifiers {
5682protected:
5683 ObjCProtocolQualifiers() = default;
5684
5685 ObjCProtocolDecl * const *getProtocolStorage() const {
5686 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5687 }
5688
5689 ObjCProtocolDecl **getProtocolStorage() {
5690 return static_cast<T*>(this)->getProtocolStorageImpl();
5691 }
5692
5693 void setNumProtocols(unsigned N) {
5694 static_cast<T*>(this)->setNumProtocolsImpl(N);
5695 }
5696
5697 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5698 setNumProtocols(protocols.size());
5699 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5700, __PRETTY_FUNCTION__))
5700 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5700, __PRETTY_FUNCTION__))
;
5701 if (!protocols.empty())
5702 memcpy(getProtocolStorage(), protocols.data(),
5703 protocols.size() * sizeof(ObjCProtocolDecl*));
5704 }
5705
5706public:
5707 using qual_iterator = ObjCProtocolDecl * const *;
5708 using qual_range = llvm::iterator_range<qual_iterator>;
5709
5710 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5711 qual_iterator qual_begin() const { return getProtocolStorage(); }
5712 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5713
5714 bool qual_empty() const { return getNumProtocols() == 0; }
5715
5716 /// Return the number of qualifying protocols in this type, or 0 if
5717 /// there are none.
5718 unsigned getNumProtocols() const {
5719 return static_cast<const T*>(this)->getNumProtocolsImpl();
5720 }
5721
5722 /// Fetch a protocol by index.
5723 ObjCProtocolDecl *getProtocol(unsigned I) const {
5724 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5724, __PRETTY_FUNCTION__))
;
5725 return qual_begin()[I];
5726 }
5727
5728 /// Retrieve all of the protocol qualifiers.
5729 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5730 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5731 }
5732};
5733
5734/// Represents a type parameter type in Objective C. It can take
5735/// a list of protocols.
5736class ObjCTypeParamType : public Type,
5737 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5738 public llvm::FoldingSetNode {
5739 friend class ASTContext;
5740 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5741
5742 /// The number of protocols stored on this type.
5743 unsigned NumProtocols : 6;
5744
5745 ObjCTypeParamDecl *OTPDecl;
5746
5747 /// The protocols are stored after the ObjCTypeParamType node. In the
5748 /// canonical type, the list of protocols are sorted alphabetically
5749 /// and uniqued.
5750 ObjCProtocolDecl **getProtocolStorageImpl();
5751
5752 /// Return the number of qualifying protocols in this interface type,
5753 /// or 0 if there are none.
5754 unsigned getNumProtocolsImpl() const {
5755 return NumProtocols;
5756 }
5757
5758 void setNumProtocolsImpl(unsigned N) {
5759 NumProtocols = N;
5760 }
5761
5762 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5763 QualType can,
5764 ArrayRef<ObjCProtocolDecl *> protocols);
5765
5766public:
5767 bool isSugared() const { return true; }
5768 QualType desugar() const { return getCanonicalTypeInternal(); }
5769
5770 static bool classof(const Type *T) {
5771 return T->getTypeClass() == ObjCTypeParam;
5772 }
5773
5774 void Profile(llvm::FoldingSetNodeID &ID);
5775 static void Profile(llvm::FoldingSetNodeID &ID,
5776 const ObjCTypeParamDecl *OTPDecl,
5777 QualType CanonicalType,
5778 ArrayRef<ObjCProtocolDecl *> protocols);
5779
5780 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5781};
5782
5783/// Represents a class type in Objective C.
5784///
5785/// Every Objective C type is a combination of a base type, a set of
5786/// type arguments (optional, for parameterized classes) and a list of
5787/// protocols.
5788///
5789/// Given the following declarations:
5790/// \code
5791/// \@class C<T>;
5792/// \@protocol P;
5793/// \endcode
5794///
5795/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5796/// with base C and no protocols.
5797///
5798/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5799/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5800/// protocol list.
5801/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5802/// and protocol list [P].
5803///
5804/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5805/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5806/// and no protocols.
5807///
5808/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5809/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5810/// this should get its own sugar class to better represent the source.
5811class ObjCObjectType : public Type,
5812 public ObjCProtocolQualifiers<ObjCObjectType> {
5813 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5814
5815 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5816 // after the ObjCObjectPointerType node.
5817 // ObjCObjectType.NumProtocols - the number of protocols stored
5818 // after the type arguments of ObjCObjectPointerType node.
5819 //
5820 // These protocols are those written directly on the type. If
5821 // protocol qualifiers ever become additive, the iterators will need
5822 // to get kindof complicated.
5823 //
5824 // In the canonical object type, these are sorted alphabetically
5825 // and uniqued.
5826
5827 /// Either a BuiltinType or an InterfaceType or sugar for either.
5828 QualType BaseType;
5829
5830 /// Cached superclass type.
5831 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5832 CachedSuperClassType;
5833
5834 QualType *getTypeArgStorage();
5835 const QualType *getTypeArgStorage() const {
5836 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5837 }
5838
5839 ObjCProtocolDecl **getProtocolStorageImpl();
5840 /// Return the number of qualifying protocols in this interface type,
5841 /// or 0 if there are none.
5842 unsigned getNumProtocolsImpl() const {
5843 return ObjCObjectTypeBits.NumProtocols;
5844 }
5845 void setNumProtocolsImpl(unsigned N) {
5846 ObjCObjectTypeBits.NumProtocols = N;
5847 }
5848
5849protected:
5850 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5851
5852 ObjCObjectType(QualType Canonical, QualType Base,
5853 ArrayRef<QualType> typeArgs,
5854 ArrayRef<ObjCProtocolDecl *> protocols,
5855 bool isKindOf);
5856
5857 ObjCObjectType(enum Nonce_ObjCInterface)
5858 : Type(ObjCInterface, QualType(), TypeDependence::None),
5859 BaseType(QualType(this_(), 0)) {
5860 ObjCObjectTypeBits.NumProtocols = 0;
5861 ObjCObjectTypeBits.NumTypeArgs = 0;
5862 ObjCObjectTypeBits.IsKindOf = 0;
5863 }
5864
5865 void computeSuperClassTypeSlow() const;
5866
5867public:
5868 /// Gets the base type of this object type. This is always (possibly
5869 /// sugar for) one of:
5870 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5871 /// user, which is a typedef for an ObjCObjectPointerType)
5872 /// - the 'Class' builtin type (same caveat)
5873 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5874 QualType getBaseType() const { return BaseType; }
5875
5876 bool isObjCId() const {
5877 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5878 }
5879
5880 bool isObjCClass() const {
5881 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5882 }
5883
5884 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5885 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5886 bool isObjCUnqualifiedIdOrClass() const {
5887 if (!qual_empty()) return false;
5888 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5889 return T->getKind() == BuiltinType::ObjCId ||
5890 T->getKind() == BuiltinType::ObjCClass;
5891 return false;
5892 }
5893 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5894 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5895
5896 /// Gets the interface declaration for this object type, if the base type
5897 /// really is an interface.
5898 ObjCInterfaceDecl *getInterface() const;
5899
5900 /// Determine whether this object type is "specialized", meaning
5901 /// that it has type arguments.
5902 bool isSpecialized() const;
5903
5904 /// Determine whether this object type was written with type arguments.
5905 bool isSpecializedAsWritten() const {
5906 return ObjCObjectTypeBits.NumTypeArgs > 0;
5907 }
5908
5909 /// Determine whether this object type is "unspecialized", meaning
5910 /// that it has no type arguments.
5911 bool isUnspecialized() const { return !isSpecialized(); }
5912
5913 /// Determine whether this object type is "unspecialized" as
5914 /// written, meaning that it has no type arguments.
5915 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5916
5917 /// Retrieve the type arguments of this object type (semantically).
5918 ArrayRef<QualType> getTypeArgs() const;
5919
5920 /// Retrieve the type arguments of this object type as they were
5921 /// written.
5922 ArrayRef<QualType> getTypeArgsAsWritten() const {
5923 return llvm::makeArrayRef(getTypeArgStorage(),
5924 ObjCObjectTypeBits.NumTypeArgs);
5925 }
5926
5927 /// Whether this is a "__kindof" type as written.
5928 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5929
5930 /// Whether this ia a "__kindof" type (semantically).
5931 bool isKindOfType() const;
5932
5933 /// Retrieve the type of the superclass of this object type.
5934 ///
5935 /// This operation substitutes any type arguments into the
5936 /// superclass of the current class type, potentially producing a
5937 /// specialization of the superclass type. Produces a null type if
5938 /// there is no superclass.
5939 QualType getSuperClassType() const {
5940 if (!CachedSuperClassType.getInt())
5941 computeSuperClassTypeSlow();
5942
5943 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 5943, __PRETTY_FUNCTION__))
;
5944 return QualType(CachedSuperClassType.getPointer(), 0);
5945 }
5946
5947 /// Strip off the Objective-C "kindof" type and (with it) any
5948 /// protocol qualifiers.
5949 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5950
5951 bool isSugared() const { return false; }
5952 QualType desugar() const { return QualType(this, 0); }
5953
5954 static bool classof(const Type *T) {
5955 return T->getTypeClass() == ObjCObject ||
5956 T->getTypeClass() == ObjCInterface;
5957 }
5958};
5959
5960/// A class providing a concrete implementation
5961/// of ObjCObjectType, so as to not increase the footprint of
5962/// ObjCInterfaceType. Code outside of ASTContext and the core type
5963/// system should not reference this type.
5964class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5965 friend class ASTContext;
5966
5967 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5968 // will need to be modified.
5969
5970 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5971 ArrayRef<QualType> typeArgs,
5972 ArrayRef<ObjCProtocolDecl *> protocols,
5973 bool isKindOf)
5974 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5975
5976public:
5977 void Profile(llvm::FoldingSetNodeID &ID);
5978 static void Profile(llvm::FoldingSetNodeID &ID,
5979 QualType Base,
5980 ArrayRef<QualType> typeArgs,
5981 ArrayRef<ObjCProtocolDecl *> protocols,
5982 bool isKindOf);
5983};
5984
5985inline QualType *ObjCObjectType::getTypeArgStorage() {
5986 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5987}
5988
5989inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5990 return reinterpret_cast<ObjCProtocolDecl**>(
5991 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5992}
5993
5994inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5995 return reinterpret_cast<ObjCProtocolDecl**>(
5996 static_cast<ObjCTypeParamType*>(this)+1);
5997}
5998
5999/// Interfaces are the core concept in Objective-C for object oriented design.
6000/// They basically correspond to C++ classes. There are two kinds of interface
6001/// types: normal interfaces like `NSString`, and qualified interfaces, which
6002/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6003///
6004/// ObjCInterfaceType guarantees the following properties when considered
6005/// as a subtype of its superclass, ObjCObjectType:
6006/// - There are no protocol qualifiers. To reinforce this, code which
6007/// tries to invoke the protocol methods via an ObjCInterfaceType will
6008/// fail to compile.
6009/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6010/// T->getBaseType() == QualType(T, 0).
6011class ObjCInterfaceType : public ObjCObjectType {
6012 friend class ASTContext; // ASTContext creates these.
6013 friend class ASTReader;
6014 friend class ObjCInterfaceDecl;
6015 template <class T> friend class serialization::AbstractTypeReader;
6016
6017 mutable ObjCInterfaceDecl *Decl;
6018
6019 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6020 : ObjCObjectType(Nonce_ObjCInterface),
6021 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6022
6023public:
6024 /// Get the declaration of this interface.
6025 ObjCInterfaceDecl *getDecl() const { return Decl; }
6026
6027 bool isSugared() const { return false; }
6028 QualType desugar() const { return QualType(this, 0); }
6029
6030 static bool classof(const Type *T) {
6031 return T->getTypeClass() == ObjCInterface;
6032 }
6033
6034 // Nonsense to "hide" certain members of ObjCObjectType within this
6035 // class. People asking for protocols on an ObjCInterfaceType are
6036 // not going to get what they want: ObjCInterfaceTypes are
6037 // guaranteed to have no protocols.
6038 enum {
6039 qual_iterator,
6040 qual_begin,
6041 qual_end,
6042 getNumProtocols,
6043 getProtocol
6044 };
6045};
6046
6047inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6048 QualType baseType = getBaseType();
6049 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6050 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6051 return T->getDecl();
6052
6053 baseType = ObjT->getBaseType();
6054 }
6055
6056 return nullptr;
6057}
6058
6059/// Represents a pointer to an Objective C object.
6060///
6061/// These are constructed from pointer declarators when the pointee type is
6062/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6063/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6064/// and 'Class<P>' are translated into these.
6065///
6066/// Pointers to pointers to Objective C objects are still PointerTypes;
6067/// only the first level of pointer gets it own type implementation.
6068class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6069 friend class ASTContext; // ASTContext creates these.
6070
6071 QualType PointeeType;
6072
6073 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6074 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6075 PointeeType(Pointee) {}
6076
6077public:
6078 /// Gets the type pointed to by this ObjC pointer.
6079 /// The result will always be an ObjCObjectType or sugar thereof.
6080 QualType getPointeeType() const { return PointeeType; }
6081
6082 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6083 ///
6084 /// This method is equivalent to getPointeeType() except that
6085 /// it discards any typedefs (or other sugar) between this
6086 /// type and the "outermost" object type. So for:
6087 /// \code
6088 /// \@class A; \@protocol P; \@protocol Q;
6089 /// typedef A<P> AP;
6090 /// typedef A A1;
6091 /// typedef A1<P> A1P;
6092 /// typedef A1P<Q> A1PQ;
6093 /// \endcode
6094 /// For 'A*', getObjectType() will return 'A'.
6095 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6096 /// For 'AP*', getObjectType() will return 'A<P>'.
6097 /// For 'A1*', getObjectType() will return 'A'.
6098 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6099 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6100 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6101 /// adding protocols to a protocol-qualified base discards the
6102 /// old qualifiers (for now). But if it didn't, getObjectType()
6103 /// would return 'A1P<Q>' (and we'd have to make iterating over
6104 /// qualifiers more complicated).
6105 const ObjCObjectType *getObjectType() const {
6106 return PointeeType->castAs<ObjCObjectType>();
6107 }
6108
6109 /// If this pointer points to an Objective C
6110 /// \@interface type, gets the type for that interface. Any protocol
6111 /// qualifiers on the interface are ignored.
6112 ///
6113 /// \return null if the base type for this pointer is 'id' or 'Class'
6114 const ObjCInterfaceType *getInterfaceType() const;
6115
6116 /// If this pointer points to an Objective \@interface
6117 /// type, gets the declaration for that interface.
6118 ///
6119 /// \return null if the base type for this pointer is 'id' or 'Class'
6120 ObjCInterfaceDecl *getInterfaceDecl() const {
6121 return getObjectType()->getInterface();
6122 }
6123
6124 /// True if this is equivalent to the 'id' type, i.e. if
6125 /// its object type is the primitive 'id' type with no protocols.
6126 bool isObjCIdType() const {
6127 return getObjectType()->isObjCUnqualifiedId();
6128 }
6129
6130 /// True if this is equivalent to the 'Class' type,
6131 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6132 bool isObjCClassType() const {
6133 return getObjectType()->isObjCUnqualifiedClass();
6134 }
6135
6136 /// True if this is equivalent to the 'id' or 'Class' type,
6137 bool isObjCIdOrClassType() const {
6138 return getObjectType()->isObjCUnqualifiedIdOrClass();
6139 }
6140
6141 /// True if this is equivalent to 'id<P>' for some non-empty set of
6142 /// protocols.
6143 bool isObjCQualifiedIdType() const {
6144 return getObjectType()->isObjCQualifiedId();
6145 }
6146
6147 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6148 /// protocols.
6149 bool isObjCQualifiedClassType() const {
6150 return getObjectType()->isObjCQualifiedClass();
6151 }
6152
6153 /// Whether this is a "__kindof" type.
6154 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6155
6156 /// Whether this type is specialized, meaning that it has type arguments.
6157 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6158
6159 /// Whether this type is specialized, meaning that it has type arguments.
6160 bool isSpecializedAsWritten() const {
6161 return getObjectType()->isSpecializedAsWritten();
6162 }
6163
6164 /// Whether this type is unspecialized, meaning that is has no type arguments.
6165 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6166
6167 /// Determine whether this object type is "unspecialized" as
6168 /// written, meaning that it has no type arguments.
6169 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6170
6171 /// Retrieve the type arguments for this type.
6172 ArrayRef<QualType> getTypeArgs() const {
6173 return getObjectType()->getTypeArgs();
6174 }
6175
6176 /// Retrieve the type arguments for this type.
6177 ArrayRef<QualType> getTypeArgsAsWritten() const {
6178 return getObjectType()->getTypeArgsAsWritten();
6179 }
6180
6181 /// An iterator over the qualifiers on the object type. Provided
6182 /// for convenience. This will always iterate over the full set of
6183 /// protocols on a type, not just those provided directly.
6184 using qual_iterator = ObjCObjectType::qual_iterator;
6185 using qual_range = llvm::iterator_range<qual_iterator>;
6186
6187 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6188
6189 qual_iterator qual_begin() const {
6190 return getObjectType()->qual_begin();
6191 }
6192
6193 qual_iterator qual_end() const {
6194 return getObjectType()->qual_end();
6195 }
6196
6197 bool qual_empty() const { return getObjectType()->qual_empty(); }
6198
6199 /// Return the number of qualifying protocols on the object type.
6200 unsigned getNumProtocols() const {
6201 return getObjectType()->getNumProtocols();
6202 }
6203
6204 /// Retrieve a qualifying protocol by index on the object type.
6205 ObjCProtocolDecl *getProtocol(unsigned I) const {
6206 return getObjectType()->getProtocol(I);
6207 }
6208
6209 bool isSugared() const { return false; }
6210 QualType desugar() const { return QualType(this, 0); }
6211
6212 /// Retrieve the type of the superclass of this object pointer type.
6213 ///
6214 /// This operation substitutes any type arguments into the
6215 /// superclass of the current class type, potentially producing a
6216 /// pointer to a specialization of the superclass type. Produces a
6217 /// null type if there is no superclass.
6218 QualType getSuperClassType() const;
6219
6220 /// Strip off the Objective-C "kindof" type and (with it) any
6221 /// protocol qualifiers.
6222 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6223 const ASTContext &ctx) const;
6224
6225 void Profile(llvm::FoldingSetNodeID &ID) {
6226 Profile(ID, getPointeeType());
6227 }
6228
6229 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6230 ID.AddPointer(T.getAsOpaquePtr());
6231 }
6232
6233 static bool classof(const Type *T) {
6234 return T->getTypeClass() == ObjCObjectPointer;
6235 }
6236};
6237
6238class AtomicType : public Type, public llvm::FoldingSetNode {
6239 friend class ASTContext; // ASTContext creates these.
6240
6241 QualType ValueType;
6242
6243 AtomicType(QualType ValTy, QualType Canonical)
6244 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6245
6246public:
6247 /// Gets the type contained by this atomic type, i.e.
6248 /// the type returned by performing an atomic load of this atomic type.
6249 QualType getValueType() const { return ValueType; }
6250
6251 bool isSugared() const { return false; }
6252 QualType desugar() const { return QualType(this, 0); }
6253
6254 void Profile(llvm::FoldingSetNodeID &ID) {
6255 Profile(ID, getValueType());
6256 }
6257
6258 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6259 ID.AddPointer(T.getAsOpaquePtr());
6260 }
6261
6262 static bool classof(const Type *T) {
6263 return T->getTypeClass() == Atomic;
6264 }
6265};
6266
6267/// PipeType - OpenCL20.
6268class PipeType : public Type, public llvm::FoldingSetNode {
6269 friend class ASTContext; // ASTContext creates these.
6270
6271 QualType ElementType;
6272 bool isRead;
6273
6274 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6275 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6276 ElementType(elemType), isRead(isRead) {}
6277
6278public:
6279 QualType getElementType() const { return ElementType; }
6280
6281 bool isSugared() const { return false; }
6282
6283 QualType desugar() const { return QualType(this, 0); }
6284
6285 void Profile(llvm::FoldingSetNodeID &ID) {
6286 Profile(ID, getElementType(), isReadOnly());
6287 }
6288
6289 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6290 ID.AddPointer(T.getAsOpaquePtr());
6291 ID.AddBoolean(isRead);
6292 }
6293
6294 static bool classof(const Type *T) {
6295 return T->getTypeClass() == Pipe;
6296 }
6297
6298 bool isReadOnly() const { return isRead; }
6299};
6300
6301/// A fixed int type of a specified bitwidth.
6302class ExtIntType final : public Type, public llvm::FoldingSetNode {
6303 friend class ASTContext;
6304 unsigned IsUnsigned : 1;
6305 unsigned NumBits : 24;
6306
6307protected:
6308 ExtIntType(bool isUnsigned, unsigned NumBits);
6309
6310public:
6311 bool isUnsigned() const { return IsUnsigned; }
6312 bool isSigned() const { return !IsUnsigned; }
6313 unsigned getNumBits() const { return NumBits; }
6314
6315 bool isSugared() const { return false; }
6316 QualType desugar() const { return QualType(this, 0); }
6317
6318 void Profile(llvm::FoldingSetNodeID &ID) {
6319 Profile(ID, isUnsigned(), getNumBits());
6320 }
6321
6322 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6323 unsigned NumBits) {
6324 ID.AddBoolean(IsUnsigned);
6325 ID.AddInteger(NumBits);
6326 }
6327
6328 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6329};
6330
6331class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6332 friend class ASTContext;
6333 const ASTContext &Context;
6334 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6335
6336protected:
6337 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6338 Expr *NumBits);
6339
6340public:
6341 bool isUnsigned() const;
6342 bool isSigned() const { return !isUnsigned(); }
6343 Expr *getNumBitsExpr() const;
6344
6345 bool isSugared() const { return false; }
6346 QualType desugar() const { return QualType(this, 0); }
6347
6348 void Profile(llvm::FoldingSetNodeID &ID) {
6349 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6350 }
6351 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6352 bool IsUnsigned, Expr *NumBitsExpr);
6353
6354 static bool classof(const Type *T) {
6355 return T->getTypeClass() == DependentExtInt;
6356 }
6357};
6358
6359/// A qualifier set is used to build a set of qualifiers.
6360class QualifierCollector : public Qualifiers {
6361public:
6362 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6363
6364 /// Collect any qualifiers on the given type and return an
6365 /// unqualified type. The qualifiers are assumed to be consistent
6366 /// with those already in the type.
6367 const Type *strip(QualType type) {
6368 addFastQualifiers(type.getLocalFastQualifiers());
6369 if (!type.hasLocalNonFastQualifiers())
6370 return type.getTypePtrUnsafe();
6371
6372 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6373 addConsistentQualifiers(extQuals->getQualifiers());
6374 return extQuals->getBaseType();
6375 }
6376
6377 /// Apply the collected qualifiers to the given type.
6378 QualType apply(const ASTContext &Context, QualType QT) const;
6379
6380 /// Apply the collected qualifiers to the given type.
6381 QualType apply(const ASTContext &Context, const Type* T) const;
6382};
6383
6384/// A container of type source information.
6385///
6386/// A client can read the relevant info using TypeLoc wrappers, e.g:
6387/// @code
6388/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6389/// TL.getBeginLoc().print(OS, SrcMgr);
6390/// @endcode
6391class alignas(8) TypeSourceInfo {
6392 // Contains a memory block after the class, used for type source information,
6393 // allocated by ASTContext.
6394 friend class ASTContext;
6395
6396 QualType Ty;
6397
6398 TypeSourceInfo(QualType ty) : Ty(ty) {}
6399
6400public:
6401 /// Return the type wrapped by this type source info.
6402 QualType getType() const { return Ty; }
6403
6404 /// Return the TypeLoc wrapper for the type source info.
6405 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6406
6407 /// Override the type stored in this TypeSourceInfo. Use with caution!
6408 void overrideType(QualType T) { Ty = T; }
6409};
6410
6411// Inline function definitions.
6412
6413inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6414 SplitQualType desugar =
6415 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6416 desugar.Quals.addConsistentQualifiers(Quals);
6417 return desugar;
6418}
6419
6420inline const Type *QualType::getTypePtr() const {
6421 return getCommonPtr()->BaseType;
6422}
6423
6424inline const Type *QualType::getTypePtrOrNull() const {
6425 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6426}
6427
6428inline SplitQualType QualType::split() const {
6429 if (!hasLocalNonFastQualifiers())
6430 return SplitQualType(getTypePtrUnsafe(),
6431 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6432
6433 const ExtQuals *eq = getExtQualsUnsafe();
6434 Qualifiers qs = eq->getQualifiers();
6435 qs.addFastQualifiers(getLocalFastQualifiers());
6436 return SplitQualType(eq->getBaseType(), qs);
6437}
6438
6439inline Qualifiers QualType::getLocalQualifiers() const {
6440 Qualifiers Quals;
6441 if (hasLocalNonFastQualifiers())
6442 Quals = getExtQualsUnsafe()->getQualifiers();
6443 Quals.addFastQualifiers(getLocalFastQualifiers());
6444 return Quals;
6445}
6446
6447inline Qualifiers QualType::getQualifiers() const {
6448 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6449 quals.addFastQualifiers(getLocalFastQualifiers());
6450 return quals;
6451}
6452
6453inline unsigned QualType::getCVRQualifiers() const {
6454 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6455 cvr |= getLocalCVRQualifiers();
6456 return cvr;
6457}
6458
6459inline QualType QualType::getCanonicalType() const {
6460 QualType canon = getCommonPtr()->CanonicalType;
6461 return canon.withFastQualifiers(getLocalFastQualifiers());
6462}
6463
6464inline bool QualType::isCanonical() const {
6465 return getTypePtr()->isCanonicalUnqualified();
6466}
6467
6468inline bool QualType::isCanonicalAsParam() const {
6469 if (!isCanonical()) return false;
6470 if (hasLocalQualifiers()) return false;
6471
6472 const Type *T = getTypePtr();
6473 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6474 return false;
6475
6476 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6477}
6478
6479inline bool QualType::isConstQualified() const {
6480 return isLocalConstQualified() ||
6481 getCommonPtr()->CanonicalType.isLocalConstQualified();
6482}
6483
6484inline bool QualType::isRestrictQualified() const {
6485 return isLocalRestrictQualified() ||
6486 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6487}
6488
6489
6490inline bool QualType::isVolatileQualified() const {
6491 return isLocalVolatileQualified() ||
6492 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6493}
6494
6495inline bool QualType::hasQualifiers() const {
6496 return hasLocalQualifiers() ||
6497 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6498}
6499
6500inline QualType QualType::getUnqualifiedType() const {
6501 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6502 return QualType(getTypePtr(), 0);
6503
6504 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6505}
6506
6507inline SplitQualType QualType::getSplitUnqualifiedType() const {
6508 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6509 return split();
6510
6511 return getSplitUnqualifiedTypeImpl(*this);
6512}
6513
6514inline void QualType::removeLocalConst() {
6515 removeLocalFastQualifiers(Qualifiers::Const);
6516}
6517
6518inline void QualType::removeLocalRestrict() {
6519 removeLocalFastQualifiers(Qualifiers::Restrict);
6520}
6521
6522inline void QualType::removeLocalVolatile() {
6523 removeLocalFastQualifiers(Qualifiers::Volatile);
6524}
6525
6526inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6527 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 6527, __PRETTY_FUNCTION__))
;
6528 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6529 "Fast bits differ from CVR bits!");
6530
6531 // Fast path: we don't need to touch the slow qualifiers.
6532 removeLocalFastQualifiers(Mask);
6533}
6534
6535/// Check if this type has any address space qualifier.
6536inline bool QualType::hasAddressSpace() const {
6537 return getQualifiers().hasAddressSpace();
6538}
6539
6540/// Return the address space of this type.
6541inline LangAS QualType::getAddressSpace() const {
6542 return getQualifiers().getAddressSpace();
6543}
6544
6545/// Return the gc attribute of this type.
6546inline Qualifiers::GC QualType::getObjCGCAttr() const {
6547 return getQualifiers().getObjCGCAttr();
6548}
6549
6550inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6551 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6552 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6553 return false;
6554}
6555
6556inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6557 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6558 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6559 return false;
6560}
6561
6562inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6563 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6564 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6565 return false;
6566}
6567
6568inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6569 if (const auto *PT = t.getAs<PointerType>()) {
6570 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6571 return FT->getExtInfo();
6572 } else if (const auto *FT = t.getAs<FunctionType>())
6573 return FT->getExtInfo();
6574
6575 return FunctionType::ExtInfo();
6576}
6577
6578inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6579 return getFunctionExtInfo(*t);
6580}
6581
6582/// Determine whether this type is more
6583/// qualified than the Other type. For example, "const volatile int"
6584/// is more qualified than "const int", "volatile int", and
6585/// "int". However, it is not more qualified than "const volatile
6586/// int".
6587inline bool QualType::isMoreQualifiedThan(QualType other) const {
6588 Qualifiers MyQuals = getQualifiers();
6589 Qualifiers OtherQuals = other.getQualifiers();
6590 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6591}
6592
6593/// Determine whether this type is at last
6594/// as qualified as the Other type. For example, "const volatile
6595/// int" is at least as qualified as "const int", "volatile int",
6596/// "int", and "const volatile int".
6597inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6598 Qualifiers OtherQuals = other.getQualifiers();
6599
6600 // Ignore __unaligned qualifier if this type is a void.
6601 if (getUnqualifiedType()->isVoidType())
6602 OtherQuals.removeUnaligned();
6603
6604 return getQualifiers().compatiblyIncludes(OtherQuals);
6605}
6606
6607/// If Type is a reference type (e.g., const
6608/// int&), returns the type that the reference refers to ("const
6609/// int"). Otherwise, returns the type itself. This routine is used
6610/// throughout Sema to implement C++ 5p6:
6611///
6612/// If an expression initially has the type "reference to T" (8.3.2,
6613/// 8.5.3), the type is adjusted to "T" prior to any further
6614/// analysis, the expression designates the object or function
6615/// denoted by the reference, and the expression is an lvalue.
6616inline QualType QualType::getNonReferenceType() const {
6617 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6618 return RefType->getPointeeType();
6619 else
6620 return *this;
6621}
6622
6623inline bool QualType::isCForbiddenLValueType() const {
6624 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6625 getTypePtr()->isFunctionType());
6626}
6627
6628/// Tests whether the type is categorized as a fundamental type.
6629///
6630/// \returns True for types specified in C++0x [basic.fundamental].
6631inline bool Type::isFundamentalType() const {
6632 return isVoidType() ||
6633 isNullPtrType() ||
6634 // FIXME: It's really annoying that we don't have an
6635 // 'isArithmeticType()' which agrees with the standard definition.
6636 (isArithmeticType() && !isEnumeralType());
6637}
6638
6639/// Tests whether the type is categorized as a compound type.
6640///
6641/// \returns True for types specified in C++0x [basic.compound].
6642inline bool Type::isCompoundType() const {
6643 // C++0x [basic.compound]p1:
6644 // Compound types can be constructed in the following ways:
6645 // -- arrays of objects of a given type [...];
6646 return isArrayType() ||
6647 // -- functions, which have parameters of given types [...];
6648 isFunctionType() ||
6649 // -- pointers to void or objects or functions [...];
6650 isPointerType() ||
6651 // -- references to objects or functions of a given type. [...]
6652 isReferenceType() ||
6653 // -- classes containing a sequence of objects of various types, [...];
6654 isRecordType() ||
6655 // -- unions, which are classes capable of containing objects of different
6656 // types at different times;
6657 isUnionType() ||
6658 // -- enumerations, which comprise a set of named constant values. [...];
6659 isEnumeralType() ||
6660 // -- pointers to non-static class members, [...].
6661 isMemberPointerType();
6662}
6663
6664inline bool Type::isFunctionType() const {
6665 return isa<FunctionType>(CanonicalType);
6666}
6667
6668inline bool Type::isPointerType() const {
6669 return isa<PointerType>(CanonicalType);
6670}
6671
6672inline bool Type::isAnyPointerType() const {
6673 return isPointerType() || isObjCObjectPointerType();
6674}
6675
6676inline bool Type::isBlockPointerType() const {
6677 return isa<BlockPointerType>(CanonicalType);
6678}
6679
6680inline bool Type::isReferenceType() const {
6681 return isa<ReferenceType>(CanonicalType);
6682}
6683
6684inline bool Type::isLValueReferenceType() const {
6685 return isa<LValueReferenceType>(CanonicalType);
6686}
6687
6688inline bool Type::isRValueReferenceType() const {
6689 return isa<RValueReferenceType>(CanonicalType);
6690}
6691
6692inline bool Type::isObjectPointerType() const {
6693 // Note: an "object pointer type" is not the same thing as a pointer to an
6694 // object type; rather, it is a pointer to an object type or a pointer to cv
6695 // void.
6696 if (const auto *T = getAs<PointerType>())
6697 return !T->getPointeeType()->isFunctionType();
6698 else
6699 return false;
6700}
6701
6702inline bool Type::isFunctionPointerType() const {
6703 if (const auto *T = getAs<PointerType>())
6704 return T->getPointeeType()->isFunctionType();
6705 else
6706 return false;
6707}
6708
6709inline bool Type::isFunctionReferenceType() const {
6710 if (const auto *T = getAs<ReferenceType>())
6711 return T->getPointeeType()->isFunctionType();
6712 else
6713 return false;
6714}
6715
6716inline bool Type::isMemberPointerType() const {
6717 return isa<MemberPointerType>(CanonicalType);
6718}
6719
6720inline bool Type::isMemberFunctionPointerType() const {
6721 if (const auto *T = getAs<MemberPointerType>())
6722 return T->isMemberFunctionPointer();
6723 else
6724 return false;
6725}
6726
6727inline bool Type::isMemberDataPointerType() const {
6728 if (const auto *T = getAs<MemberPointerType>())
6729 return T->isMemberDataPointer();
6730 else
6731 return false;
6732}
6733
6734inline bool Type::isArrayType() const {
6735 return isa<ArrayType>(CanonicalType);
6736}
6737
6738inline bool Type::isConstantArrayType() const {
6739 return isa<ConstantArrayType>(CanonicalType);
6740}
6741
6742inline bool Type::isIncompleteArrayType() const {
6743 return isa<IncompleteArrayType>(CanonicalType);
6744}
6745
6746inline bool Type::isVariableArrayType() const {
6747 return isa<VariableArrayType>(CanonicalType);
6748}
6749
6750inline bool Type::isDependentSizedArrayType() const {
6751 return isa<DependentSizedArrayType>(CanonicalType);
6752}
6753
6754inline bool Type::isBuiltinType() const {
6755 return isa<BuiltinType>(CanonicalType);
6756}
6757
6758inline bool Type::isRecordType() const {
6759 return isa<RecordType>(CanonicalType);
6760}
6761
6762inline bool Type::isEnumeralType() const {
6763 return isa<EnumType>(CanonicalType);
6764}
6765
6766inline bool Type::isAnyComplexType() const {
6767 return isa<ComplexType>(CanonicalType);
6768}
6769
6770inline bool Type::isVectorType() const {
6771 return isa<VectorType>(CanonicalType);
6772}
6773
6774inline bool Type::isExtVectorType() const {
6775 return isa<ExtVectorType>(CanonicalType);
6776}
6777
6778inline bool Type::isMatrixType() const {
6779 return isa<MatrixType>(CanonicalType);
6780}
6781
6782inline bool Type::isConstantMatrixType() const {
6783 return isa<ConstantMatrixType>(CanonicalType);
6784}
6785
6786inline bool Type::isDependentAddressSpaceType() const {
6787 return isa<DependentAddressSpaceType>(CanonicalType);
6788}
6789
6790inline bool Type::isObjCObjectPointerType() const {
6791 return isa<ObjCObjectPointerType>(CanonicalType);
6792}
6793
6794inline bool Type::isObjCObjectType() const {
6795 return isa<ObjCObjectType>(CanonicalType);
6796}
6797
6798inline bool Type::isObjCObjectOrInterfaceType() const {
6799 return isa<ObjCInterfaceType>(CanonicalType) ||
6800 isa<ObjCObjectType>(CanonicalType);
6801}
6802
6803inline bool Type::isAtomicType() const {
6804 return isa<AtomicType>(CanonicalType);
6805}
6806
6807inline bool Type::isUndeducedAutoType() const {
6808 return isa<AutoType>(CanonicalType);
6809}
6810
6811inline bool Type::isObjCQualifiedIdType() const {
6812 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6813 return OPT->isObjCQualifiedIdType();
6814 return false;
6815}
6816
6817inline bool Type::isObjCQualifiedClassType() const {
6818 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6819 return OPT->isObjCQualifiedClassType();
6820 return false;
6821}
6822
6823inline bool Type::isObjCIdType() const {
6824 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6825 return OPT->isObjCIdType();
6826 return false;
6827}
6828
6829inline bool Type::isObjCClassType() const {
6830 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6831 return OPT->isObjCClassType();
6832 return false;
6833}
6834
6835inline bool Type::isObjCSelType() const {
6836 if (const auto *OPT = getAs<PointerType>())
6837 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6838 return false;
6839}
6840
6841inline bool Type::isObjCBuiltinType() const {
6842 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6843}
6844
6845inline bool Type::isDecltypeType() const {
6846 return isa<DecltypeType>(this);
6847}
6848
6849#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6850 inline bool Type::is##Id##Type() const { \
6851 return isSpecificBuiltinType(BuiltinType::Id); \
6852 }
6853#include "clang/Basic/OpenCLImageTypes.def"
6854
6855inline bool Type::isSamplerT() const {
6856 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6857}
6858
6859inline bool Type::isEventT() const {
6860 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6861}
6862
6863inline bool Type::isClkEventT() const {
6864 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6865}
6866
6867inline bool Type::isQueueT() const {
6868 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6869}
6870
6871inline bool Type::isReserveIDT() const {
6872 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6873}
6874
6875inline bool Type::isImageType() const {
6876#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6877 return
6878#include "clang/Basic/OpenCLImageTypes.def"
6879 false; // end boolean or operation
6880}
6881
6882inline bool Type::isPipeType() const {
6883 return isa<PipeType>(CanonicalType);
6884}
6885
6886inline bool Type::isExtIntType() const {
6887 return isa<ExtIntType>(CanonicalType);
6888}
6889
6890#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6891 inline bool Type::is##Id##Type() const { \
6892 return isSpecificBuiltinType(BuiltinType::Id); \
6893 }
6894#include "clang/Basic/OpenCLExtensionTypes.def"
6895
6896inline bool Type::isOCLIntelSubgroupAVCType() const {
6897#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6898 isOCLIntelSubgroupAVC##Id##Type() ||
6899 return
6900#include "clang/Basic/OpenCLExtensionTypes.def"
6901 false; // end of boolean or operation
6902}
6903
6904inline bool Type::isOCLExtOpaqueType() const {
6905#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6906 return
6907#include "clang/Basic/OpenCLExtensionTypes.def"
6908 false; // end of boolean or operation
6909}
6910
6911inline bool Type::isOpenCLSpecificType() const {
6912 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6913 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6914}
6915
6916inline bool Type::isTemplateTypeParmType() const {
6917 return isa<TemplateTypeParmType>(CanonicalType);
6918}
6919
6920inline bool Type::isSpecificBuiltinType(unsigned K) const {
6921 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6922 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6923 }
6924 return false;
6925}
6926
6927inline bool Type::isPlaceholderType() const {
6928 if (const auto *BT = dyn_cast<BuiltinType>(this))
6929 return BT->isPlaceholderType();
6930 return false;
6931}
6932
6933inline const BuiltinType *Type::getAsPlaceholderType() const {
6934 if (const auto *BT = dyn_cast<BuiltinType>(this))
6935 if (BT->isPlaceholderType())
6936 return BT;
6937 return nullptr;
6938}
6939
6940inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6941 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 6941, __PRETTY_FUNCTION__))
;
6942 return isSpecificBuiltinType(K);
6943}
6944
6945inline bool Type::isNonOverloadPlaceholderType() const {
6946 if (const auto *BT = dyn_cast<BuiltinType>(this))
6947 return BT->isNonOverloadPlaceholderType();
6948 return false;
6949}
6950
6951inline bool Type::isVoidType() const {
6952 return isSpecificBuiltinType(BuiltinType::Void);
6953}
6954
6955inline bool Type::isHalfType() const {
6956 // FIXME: Should we allow complex __fp16? Probably not.
6957 return isSpecificBuiltinType(BuiltinType::Half);
6958}
6959
6960inline bool Type::isFloat16Type() const {
6961 return isSpecificBuiltinType(BuiltinType::Float16);
6962}
6963
6964inline bool Type::isBFloat16Type() const {
6965 return isSpecificBuiltinType(BuiltinType::BFloat16);
6966}
6967
6968inline bool Type::isFloat128Type() const {
6969 return isSpecificBuiltinType(BuiltinType::Float128);
6970}
6971
6972inline bool Type::isNullPtrType() const {
6973 return isSpecificBuiltinType(BuiltinType::NullPtr);
6974}
6975
6976bool IsEnumDeclComplete(EnumDecl *);
6977bool IsEnumDeclScoped(EnumDecl *);
6978
6979inline bool Type::isIntegerType() const {
6980 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6981 return BT->getKind() >= BuiltinType::Bool &&
6982 BT->getKind() <= BuiltinType::Int128;
6983 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6984 // Incomplete enum types are not treated as integer types.
6985 // FIXME: In C++, enum types are never integer types.
6986 return IsEnumDeclComplete(ET->getDecl()) &&
6987 !IsEnumDeclScoped(ET->getDecl());
6988 }
6989 return isExtIntType();
6990}
6991
6992inline bool Type::isFixedPointType() const {
6993 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6994 return BT->getKind() >= BuiltinType::ShortAccum &&
6995 BT->getKind() <= BuiltinType::SatULongFract;
6996 }
6997 return false;
6998}
6999
7000inline bool Type::isFixedPointOrIntegerType() const {
7001 return isFixedPointType() || isIntegerType();
7002}
7003
7004inline bool Type::isSaturatedFixedPointType() const {
7005 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7006 return BT->getKind() >= BuiltinType::SatShortAccum &&
7007 BT->getKind() <= BuiltinType::SatULongFract;
7008 }
7009 return false;
7010}
7011
7012inline bool Type::isUnsaturatedFixedPointType() const {
7013 return isFixedPointType() && !isSaturatedFixedPointType();
7014}
7015
7016inline bool Type::isSignedFixedPointType() const {
7017 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7018 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7019 BT->getKind() <= BuiltinType::LongAccum) ||
7020 (BT->getKind() >= BuiltinType::ShortFract &&
7021 BT->getKind() <= BuiltinType::LongFract) ||
7022 (BT->getKind() >= BuiltinType::SatShortAccum &&
7023 BT->getKind() <= BuiltinType::SatLongAccum) ||
7024 (BT->getKind() >= BuiltinType::SatShortFract &&
7025 BT->getKind() <= BuiltinType::SatLongFract));
7026 }
7027 return false;
7028}
7029
7030inline bool Type::isUnsignedFixedPointType() const {
7031 return isFixedPointType() && !isSignedFixedPointType();
7032}
7033
7034inline bool Type::isScalarType() const {
7035 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7036 return BT->getKind() > BuiltinType::Void &&
7037 BT->getKind() <= BuiltinType::NullPtr;
7038 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7039 // Enums are scalar types, but only if they are defined. Incomplete enums
7040 // are not treated as scalar types.
7041 return IsEnumDeclComplete(ET->getDecl());
7042 return isa<PointerType>(CanonicalType) ||
7043 isa<BlockPointerType>(CanonicalType) ||
7044 isa<MemberPointerType>(CanonicalType) ||
7045 isa<ComplexType>(CanonicalType) ||
7046 isa<ObjCObjectPointerType>(CanonicalType) ||
7047 isExtIntType();
7048}
7049
7050inline bool Type::isIntegralOrEnumerationType() const {
7051 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7052 return BT->getKind() >= BuiltinType::Bool &&
7053 BT->getKind() <= BuiltinType::Int128;
7054
7055 // Check for a complete enum type; incomplete enum types are not properly an
7056 // enumeration type in the sense required here.
7057 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7058 return IsEnumDeclComplete(ET->getDecl());
7059
7060 return isExtIntType();
7061}
7062
7063inline bool Type::isBooleanType() const {
7064 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7065 return BT->getKind() == BuiltinType::Bool;
7066 return false;
7067}
7068
7069inline bool Type::isUndeducedType() const {
7070 auto *DT = getContainedDeducedType();
7071 return DT && !DT->isDeduced();
7072}
7073
7074/// Determines whether this is a type for which one can define
7075/// an overloaded operator.
7076inline bool Type::isOverloadableType() const {
7077 return isDependentType() || isRecordType() || isEnumeralType();
7078}
7079
7080/// Determines whether this type is written as a typedef-name.
7081inline bool Type::isTypedefNameType() const {
7082 if (getAs<TypedefType>())
7083 return true;
7084 if (auto *TST = getAs<TemplateSpecializationType>())
7085 return TST->isTypeAlias();
7086 return false;
7087}
7088
7089/// Determines whether this type can decay to a pointer type.
7090inline bool Type::canDecayToPointerType() const {
7091 return isFunctionType() || isArrayType();
7092}
7093
7094inline bool Type::hasPointerRepresentation() const {
7095 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7096 isObjCObjectPointerType() || isNullPtrType());
7097}
7098
7099inline bool Type::hasObjCPointerRepresentation() const {
7100 return isObjCObjectPointerType();
7101}
7102
7103inline const Type *Type::getBaseElementTypeUnsafe() const {
7104 const Type *type = this;
7105 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7106 type = arrayType->getElementType().getTypePtr();
7107 return type;
7108}
7109
7110inline const Type *Type::getPointeeOrArrayElementType() const {
7111 const Type *type = this;
7112 if (type->isAnyPointerType())
7113 return type->getPointeeType().getTypePtr();
7114 else if (type->isArrayType())
7115 return type->getBaseElementTypeUnsafe();
7116 return type;
7117}
7118/// Insertion operator for partial diagnostics. This allows sending adress
7119/// spaces into a diagnostic with <<.
7120inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7121 LangAS AS) {
7122 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7123 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7124 return PD;
7125}
7126
7127/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7128/// into a diagnostic with <<.
7129inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7130 Qualifiers Q) {
7131 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7132 DiagnosticsEngine::ArgumentKind::ak_qual);
7133 return PD;
7134}
7135
7136/// Insertion operator for partial diagnostics. This allows sending QualType's
7137/// into a diagnostic with <<.
7138inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7139 QualType T) {
7140 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7141 DiagnosticsEngine::ak_qualtype);
7142 return PD;
7143}
7144
7145// Helper class template that is used by Type::getAs to ensure that one does
7146// not try to look through a qualified type to get to an array type.
7147template <typename T>
7148using TypeIsArrayType =
7149 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7150 std::is_base_of<ArrayType, T>::value>;
7151
7152// Member-template getAs<specific type>'.
7153template <typename T> const T *Type::getAs() const {
7154 static_assert(!TypeIsArrayType<T>::value,
7155 "ArrayType cannot be used with getAs!");
7156
7157 // If this is directly a T type, return it.
7158 if (const auto *Ty = dyn_cast<T>(this))
7159 return Ty;
7160
7161 // If the canonical form of this type isn't the right kind, reject it.
7162 if (!isa<T>(CanonicalType))
7163 return nullptr;
7164
7165 // If this is a typedef for the type, strip the typedef off without
7166 // losing all typedef information.
7167 return cast<T>(getUnqualifiedDesugaredType());
7168}
7169
7170template <typename T> const T *Type::getAsAdjusted() const {
7171 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7172
7173 // If this is directly a T type, return it.
7174 if (const auto *Ty = dyn_cast<T>(this))
7175 return Ty;
7176
7177 // If the canonical form of this type isn't the right kind, reject it.
7178 if (!isa<T>(CanonicalType))
7179 return nullptr;
7180
7181 // Strip off type adjustments that do not modify the underlying nature of the
7182 // type.
7183 const Type *Ty = this;
7184 while (Ty) {
7185 if (const auto *A = dyn_cast<AttributedType>(Ty))
7186 Ty = A->getModifiedType().getTypePtr();
7187 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7188 Ty = E->desugar().getTypePtr();
7189 else if (const auto *P = dyn_cast<ParenType>(Ty))
7190 Ty = P->desugar().getTypePtr();
7191 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7192 Ty = A->desugar().getTypePtr();
7193 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7194 Ty = M->desugar().getTypePtr();
7195 else
7196 break;
7197 }
7198
7199 // Just because the canonical type is correct does not mean we can use cast<>,
7200 // since we may not have stripped off all the sugar down to the base type.
7201 return dyn_cast<T>(Ty);
7202}
7203
7204inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7205 // If this is directly an array type, return it.
7206 if (const auto *arr = dyn_cast<ArrayType>(this))
7207 return arr;
7208
7209 // If the canonical form of this type isn't the right kind, reject it.
7210 if (!isa<ArrayType>(CanonicalType))
7211 return nullptr;
7212
7213 // If this is a typedef for the type, strip the typedef off without
7214 // losing all typedef information.
7215 return cast<ArrayType>(getUnqualifiedDesugaredType());
7216}
7217
7218template <typename T> const T *Type::castAs() const {
7219 static_assert(!TypeIsArrayType<T>::value,
7220 "ArrayType cannot be used with castAs!");
7221
7222 if (const auto *ty = dyn_cast<T>(this)) return ty;
7223 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 7223, __PRETTY_FUNCTION__))
;
7224 return cast<T>(getUnqualifiedDesugaredType());
7225}
7226
7227inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7228 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 7228, __PRETTY_FUNCTION__))
;
7229 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7230 return cast<ArrayType>(getUnqualifiedDesugaredType());
7231}
7232
7233DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7234 QualType CanonicalPtr)
7235 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7236#ifndef NDEBUG
7237 QualType Adjusted = getAdjustedType();
7238 (void)AttributedType::stripOuterNullability(Adjusted);
7239 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 7239, __PRETTY_FUNCTION__))
;
7240#endif
7241}
7242
7243QualType DecayedType::getPointeeType() const {
7244 QualType Decayed = getDecayedType();
7245 (void)AttributedType::stripOuterNullability(Decayed);
7246 return cast<PointerType>(Decayed)->getPointeeType();
7247}
7248
7249// Get the decimal string representation of a fixed point type, represented
7250// as a scaled integer.
7251// TODO: At some point, we should change the arguments to instead just accept an
7252// APFixedPoint instead of APSInt and scale.
7253void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7254 unsigned Scale);
7255
7256} // namespace clang
7257
7258#endif // LLVM_CLANG_AST_TYPE_H

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerUnion class, which is a discriminated union of
10// pointer types.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_POINTERUNION_H
15#define LLVM_ADT_POINTERUNION_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/Support/PointerLikeTypeTraits.h"
20#include <cassert>
21#include <cstddef>
22#include <cstdint>
23
24namespace llvm {
25
26template <typename T> struct PointerUnionTypeSelectorReturn {
27 using Return = T;
28};
29
30/// Get a type based on whether two types are the same or not.
31///
32/// For:
33///
34/// \code
35/// using Ret = typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return;
36/// \endcode
37///
38/// Ret will be EQ type if T1 is same as T2 or NE type otherwise.
39template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
40struct PointerUnionTypeSelector {
41 using Return = typename PointerUnionTypeSelectorReturn<RET_NE>::Return;
42};
43
44template <typename T, typename RET_EQ, typename RET_NE>
45struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> {
46 using Return = typename PointerUnionTypeSelectorReturn<RET_EQ>::Return;
47};
48
49template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
50struct PointerUnionTypeSelectorReturn<
51 PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>> {
52 using Return =
53 typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return;
54};
55
56namespace pointer_union_detail {
57 /// Determine the number of bits required to store integers with values < n.
58 /// This is ceil(log2(n)).
59 constexpr int bitsRequired(unsigned n) {
60 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
61 }
62
63 template <typename... Ts> constexpr int lowBitsAvailable() {
64 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
65 }
66
67 /// Find the index of a type in a list of types. TypeIndex<T, Us...>::Index
68 /// is the index of T in Us, or sizeof...(Us) if T does not appear in the
69 /// list.
70 template <typename T, typename ...Us> struct TypeIndex;
71 template <typename T, typename ...Us> struct TypeIndex<T, T, Us...> {
72 static constexpr int Index = 0;
73 };
74 template <typename T, typename U, typename... Us>
75 struct TypeIndex<T, U, Us...> {
76 static constexpr int Index = 1 + TypeIndex<T, Us...>::Index;
77 };
78 template <typename T> struct TypeIndex<T> {
79 static constexpr int Index = 0;
80 };
81
82 /// Find the first type in a list of types.
83 template <typename T, typename...> struct GetFirstType {
84 using type = T;
85 };
86
87 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
88 /// for the template arguments.
89 template <typename ...PTs> class PointerUnionUIntTraits {
90 public:
91 static inline void *getAsVoidPointer(void *P) { return P; }
92 static inline void *getFromVoidPointer(void *P) { return P; }
93 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
94 };
95
96 template <typename Derived, typename ValTy, int I, typename ...Types>
97 class PointerUnionMembers;
98
99 template <typename Derived, typename ValTy, int I>
100 class PointerUnionMembers<Derived, ValTy, I> {
101 protected:
102 ValTy Val;
103 PointerUnionMembers() = default;
104 PointerUnionMembers(ValTy Val) : Val(Val) {}
105
106 friend struct PointerLikeTypeTraits<Derived>;
107 };
108
109 template <typename Derived, typename ValTy, int I, typename Type,
110 typename ...Types>
111 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
112 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
113 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
114 public:
115 using Base::Base;
116 PointerUnionMembers() = default;
117 PointerUnionMembers(Type V)
118 : Base(ValTy(const_cast<void *>(
119 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
120 I)) {}
121
122 using Base::operator=;
123 Derived &operator=(Type V) {
124 this->Val = ValTy(
125 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
126 I);
127 return static_cast<Derived &>(*this);
128 };
129 };
130}
131
132/// A discriminated union of two or more pointer types, with the discriminator
133/// in the low bit of the pointer.
134///
135/// This implementation is extremely efficient in space due to leveraging the
136/// low bits of the pointer, while exposing a natural and type-safe API.
137///
138/// Common use patterns would be something like this:
139/// PointerUnion<int*, float*> P;
140/// P = (int*)0;
141/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
142/// X = P.get<int*>(); // ok.
143/// Y = P.get<float*>(); // runtime assertion failure.
144/// Z = P.get<double*>(); // compile time failure.
145/// P = (float*)0;
146/// Y = P.get<float*>(); // ok.
147/// X = P.get<int*>(); // runtime assertion failure.
148template <typename... PTs>
149class PointerUnion
150 : public pointer_union_detail::PointerUnionMembers<
151 PointerUnion<PTs...>,
152 PointerIntPair<
153 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
154 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
155 0, PTs...> {
156 // The first type is special because we want to directly cast a pointer to a
157 // default-initialized union to a pointer to the first type. But we don't
158 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
159 // because it's much more convenient to have a name for the whole pack. So
160 // split off the first type here.
161 using First = typename pointer_union_detail::GetFirstType<PTs...>::type;
162 using Base = typename PointerUnion::PointerUnionMembers;
163
164public:
165 PointerUnion() = default;
166
167 PointerUnion(std::nullptr_t) : PointerUnion() {}
168 using Base::Base;
169
170 /// Test if the pointer held in the union is null, regardless of
171 /// which type it is.
172 bool isNull() const { return !this->Val.getPointer(); }
40
Assuming the condition is false
41
Returning zero, which participates in a condition later
173
174 explicit operator bool() const { return !isNull(); }
175
176 /// Test if the Union currently holds the type matching T.
177 template <typename T> bool is() const {
178 constexpr int Index = pointer_union_detail::TypeIndex<T, PTs...>::Index;
179 static_assert(Index < sizeof...(PTs),
180 "PointerUnion::is<T> given type not in the union");
181 return this->Val.getInt() == Index;
182 }
183
184 /// Returns the value of the specified pointer type.
185 ///
186 /// If the specified pointer type is incorrect, assert.
187 template <typename T> T get() const {
188 assert(is<T>() && "Invalid accessor called")((is<T>() && "Invalid accessor called") ? static_cast
<void> (0) : __assert_fail ("is<T>() && \"Invalid accessor called\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h"
, 188, __PRETTY_FUNCTION__))
;
189 return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer());
190 }
191
192 /// Returns the current pointer if it is of the specified pointer type,
193 /// otherwise returns null.
194 template <typename T> T dyn_cast() const {
195 if (is<T>())
196 return get<T>();
197 return T();
198 }
199
200 /// If the union is set to the first pointer type get an address pointing to
201 /// it.
202 First const *getAddrOfPtr1() const {
203 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
204 }
205
206 /// If the union is set to the first pointer type get an address pointing to
207 /// it.
208 First *getAddrOfPtr1() {
209 assert(is<First>() && "Val is not the first pointer")((is<First>() && "Val is not the first pointer"
) ? static_cast<void> (0) : __assert_fail ("is<First>() && \"Val is not the first pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h"
, 209, __PRETTY_FUNCTION__))
;
210 assert(((PointerLikeTypeTraits<First>::getAsVoidPointer(get<
First>()) == this->Val.getPointer() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? static_cast<void> (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h"
, 213, __PRETTY_FUNCTION__))
211 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==((PointerLikeTypeTraits<First>::getAsVoidPointer(get<
First>()) == this->Val.getPointer() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? static_cast<void> (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h"
, 213, __PRETTY_FUNCTION__))
212 this->Val.getPointer() &&((PointerLikeTypeTraits<First>::getAsVoidPointer(get<
First>()) == this->Val.getPointer() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? static_cast<void> (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h"
, 213, __PRETTY_FUNCTION__))
213 "Can't get the address because PointerLikeTypeTraits changes the ptr")((PointerLikeTypeTraits<First>::getAsVoidPointer(get<
First>()) == this->Val.getPointer() && "Can't get the address because PointerLikeTypeTraits changes the ptr"
) ? static_cast<void> (0) : __assert_fail ("PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) == this->Val.getPointer() && \"Can't get the address because PointerLikeTypeTraits changes the ptr\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PointerUnion.h"
, 213, __PRETTY_FUNCTION__))
;
214 return const_cast<First *>(
215 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
216 }
217
218 /// Assignment from nullptr which just clears the union.
219 const PointerUnion &operator=(std::nullptr_t) {
220 this->Val.initWithPointer(nullptr);
221 return *this;
222 }
223
224 /// Assignment from elements of the union.
225 using Base::operator=;
226
227 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
228 static inline PointerUnion getFromOpaqueValue(void *VP) {
229 PointerUnion V;
230 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
231 return V;
232 }
233};
234
235template <typename ...PTs>
236bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
237 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
238}
239
240template <typename ...PTs>
241bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
242 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
243}
244
245template <typename ...PTs>
246bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
247 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
248}
249
250// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
251// # low bits available = min(PT1bits,PT2bits)-1.
252template <typename ...PTs>
253struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
254 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
255 return P.getOpaqueValue();
256 }
257
258 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
259 return PointerUnion<PTs...>::getFromOpaqueValue(P);
260 }
261
262 // The number of bits available are the min of the pointer types minus the
263 // bits needed for the discriminator.
264 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
265 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
266};
267
268// Teach DenseMap how to use PointerUnions as keys.
269template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
270 using Union = PointerUnion<PTs...>;
271 using FirstInfo =
272 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
273
274 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
275
276 static inline Union getTombstoneKey() {
277 return Union(FirstInfo::getTombstoneKey());
278 }
279
280 static unsigned getHashValue(const Union &UnionVal) {
281 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
282 return DenseMapInfo<intptr_t>::getHashValue(key);
283 }
284
285 static bool isEqual(const Union &LHS, const Union &RHS) {
286 return LHS == RHS;
287 }
288};
289
290} // end namespace llvm
291
292#endif // LLVM_ADT_POINTERUNION_H