Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaType.cpp
Warning:line 968, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaType.cpp
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Sema/ScopeInfo.h"
33#include "clang/Sema/SemaInternal.h"
34#include "clang/Sema/Template.h"
35#include "clang/Sema/TemplateInstCallback.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/StringSwitch.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/Support/ErrorHandling.h"
41#include <bitset>
42
43using namespace clang;
44
45enum TypeDiagSelector {
46 TDS_Function,
47 TDS_Pointer,
48 TDS_ObjCObjOrBlock
49};
50
51/// isOmittedBlockReturnType - Return true if this declarator is missing a
52/// return type because this is a omitted return type on a block literal.
53static bool isOmittedBlockReturnType(const Declarator &D) {
54 if (D.getContext() != DeclaratorContext::BlockLiteral ||
55 D.getDeclSpec().hasTypeSpecifier())
56 return false;
57
58 if (D.getNumTypeObjects() == 0)
59 return true; // ^{ ... }
60
61 if (D.getNumTypeObjects() == 1 &&
62 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
63 return true; // ^(int X, float Y) { ... }
64
65 return false;
66}
67
68/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
69/// doesn't apply to the given type.
70static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
71 QualType type) {
72 TypeDiagSelector WhichType;
73 bool useExpansionLoc = true;
74 switch (attr.getKind()) {
75 case ParsedAttr::AT_ObjCGC:
76 WhichType = TDS_Pointer;
77 break;
78 case ParsedAttr::AT_ObjCOwnership:
79 WhichType = TDS_ObjCObjOrBlock;
80 break;
81 default:
82 // Assume everything else was a function attribute.
83 WhichType = TDS_Function;
84 useExpansionLoc = false;
85 break;
86 }
87
88 SourceLocation loc = attr.getLoc();
89 StringRef name = attr.getAttrName()->getName();
90
91 // The GC attributes are usually written with macros; special-case them.
92 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
93 : nullptr;
94 if (useExpansionLoc && loc.isMacroID() && II) {
95 if (II->isStr("strong")) {
96 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
97 } else if (II->isStr("weak")) {
98 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
99 }
100 }
101
102 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
103 << type;
104}
105
106// objc_gc applies to Objective-C pointers or, otherwise, to the
107// smallest available pointer type (i.e. 'void*' in 'void**').
108#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
109 case ParsedAttr::AT_ObjCGC: \
110 case ParsedAttr::AT_ObjCOwnership
111
112// Calling convention attributes.
113#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
114 case ParsedAttr::AT_CDecl: \
115 case ParsedAttr::AT_FastCall: \
116 case ParsedAttr::AT_StdCall: \
117 case ParsedAttr::AT_ThisCall: \
118 case ParsedAttr::AT_RegCall: \
119 case ParsedAttr::AT_Pascal: \
120 case ParsedAttr::AT_SwiftCall: \
121 case ParsedAttr::AT_SwiftAsyncCall: \
122 case ParsedAttr::AT_VectorCall: \
123 case ParsedAttr::AT_AArch64VectorPcs: \
124 case ParsedAttr::AT_MSABI: \
125 case ParsedAttr::AT_SysVABI: \
126 case ParsedAttr::AT_Pcs: \
127 case ParsedAttr::AT_IntelOclBicc: \
128 case ParsedAttr::AT_PreserveMost: \
129 case ParsedAttr::AT_PreserveAll
130
131// Function type attributes.
132#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
133 case ParsedAttr::AT_NSReturnsRetained: \
134 case ParsedAttr::AT_NoReturn: \
135 case ParsedAttr::AT_Regparm: \
136 case ParsedAttr::AT_CmseNSCall: \
137 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
138 case ParsedAttr::AT_AnyX86NoCfCheck: \
139 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
140
141// Microsoft-specific type qualifiers.
142#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
143 case ParsedAttr::AT_Ptr32: \
144 case ParsedAttr::AT_Ptr64: \
145 case ParsedAttr::AT_SPtr: \
146 case ParsedAttr::AT_UPtr
147
148// Nullability qualifiers.
149#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
\
150 case ParsedAttr::AT_TypeNonNull: \
151 case ParsedAttr::AT_TypeNullable: \
152 case ParsedAttr::AT_TypeNullableResult: \
153 case ParsedAttr::AT_TypeNullUnspecified
154
155namespace {
156 /// An object which stores processing state for the entire
157 /// GetTypeForDeclarator process.
158 class TypeProcessingState {
159 Sema &sema;
160
161 /// The declarator being processed.
162 Declarator &declarator;
163
164 /// The index of the declarator chunk we're currently processing.
165 /// May be the total number of valid chunks, indicating the
166 /// DeclSpec.
167 unsigned chunkIndex;
168
169 /// Whether there are non-trivial modifications to the decl spec.
170 bool trivial;
171
172 /// Whether we saved the attributes in the decl spec.
173 bool hasSavedAttrs;
174
175 /// The original set of attributes on the DeclSpec.
176 SmallVector<ParsedAttr *, 2> savedAttrs;
177
178 /// A list of attributes to diagnose the uselessness of when the
179 /// processing is complete.
180 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
181
182 /// Attributes corresponding to AttributedTypeLocs that we have not yet
183 /// populated.
184 // FIXME: The two-phase mechanism by which we construct Types and fill
185 // their TypeLocs makes it hard to correctly assign these. We keep the
186 // attributes in creation order as an attempt to make them line up
187 // properly.
188 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
189 SmallVector<TypeAttrPair, 8> AttrsForTypes;
190 bool AttrsForTypesSorted = true;
191
192 /// MacroQualifiedTypes mapping to macro expansion locations that will be
193 /// stored in a MacroQualifiedTypeLoc.
194 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
195
196 /// Flag to indicate we parsed a noderef attribute. This is used for
197 /// validating that noderef was used on a pointer or array.
198 bool parsedNoDeref;
199
200 public:
201 TypeProcessingState(Sema &sema, Declarator &declarator)
202 : sema(sema), declarator(declarator),
203 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
204 hasSavedAttrs(false), parsedNoDeref(false) {}
205
206 Sema &getSema() const {
207 return sema;
208 }
209
210 Declarator &getDeclarator() const {
211 return declarator;
212 }
213
214 bool isProcessingDeclSpec() const {
215 return chunkIndex == declarator.getNumTypeObjects();
216 }
217
218 unsigned getCurrentChunkIndex() const {
219 return chunkIndex;
220 }
221
222 void setCurrentChunkIndex(unsigned idx) {
223 assert(idx <= declarator.getNumTypeObjects())(static_cast <bool> (idx <= declarator.getNumTypeObjects
()) ? void (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "clang/lib/Sema/SemaType.cpp", 223, __extension__ __PRETTY_FUNCTION__
))
;
224 chunkIndex = idx;
225 }
226
227 ParsedAttributesView &getCurrentAttributes() const {
228 if (isProcessingDeclSpec())
229 return getMutableDeclSpec().getAttributes();
230 return declarator.getTypeObject(chunkIndex).getAttrs();
231 }
232
233 /// Save the current set of attributes on the DeclSpec.
234 void saveDeclSpecAttrs() {
235 // Don't try to save them multiple times.
236 if (hasSavedAttrs) return;
237
238 DeclSpec &spec = getMutableDeclSpec();
239 llvm::append_range(savedAttrs,
240 llvm::make_pointer_range(spec.getAttributes()));
241 trivial &= savedAttrs.empty();
242 hasSavedAttrs = true;
243 }
244
245 /// Record that we had nowhere to put the given type attribute.
246 /// We will diagnose such attributes later.
247 void addIgnoredTypeAttr(ParsedAttr &attr) {
248 ignoredTypeAttrs.push_back(&attr);
249 }
250
251 /// Diagnose all the ignored type attributes, given that the
252 /// declarator worked out to the given type.
253 void diagnoseIgnoredTypeAttrs(QualType type) const {
254 for (auto *Attr : ignoredTypeAttrs)
255 diagnoseBadTypeAttribute(getSema(), *Attr, type);
256 }
257
258 /// Get an attributed type for the given attribute, and remember the Attr
259 /// object so that we can attach it to the AttributedTypeLoc.
260 QualType getAttributedType(Attr *A, QualType ModifiedType,
261 QualType EquivType) {
262 QualType T =
263 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
264 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
265 AttrsForTypesSorted = false;
266 return T;
267 }
268
269 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
270 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
271 QualType WrappedType) {
272 return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
273 }
274
275 /// Completely replace the \c auto in \p TypeWithAuto by
276 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
277 /// necessary.
278 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
279 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
280 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
281 // Attributed type still should be an attributed type after replacement.
282 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
283 for (TypeAttrPair &A : AttrsForTypes) {
284 if (A.first == AttrTy)
285 A.first = NewAttrTy;
286 }
287 AttrsForTypesSorted = false;
288 }
289 return T;
290 }
291
292 /// Extract and remove the Attr* for a given attributed type.
293 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
294 if (!AttrsForTypesSorted) {
295 llvm::stable_sort(AttrsForTypes, llvm::less_first());
296 AttrsForTypesSorted = true;
297 }
298
299 // FIXME: This is quadratic if we have lots of reuses of the same
300 // attributed type.
301 for (auto It = std::partition_point(
302 AttrsForTypes.begin(), AttrsForTypes.end(),
303 [=](const TypeAttrPair &A) { return A.first < AT; });
304 It != AttrsForTypes.end() && It->first == AT; ++It) {
305 if (It->second) {
306 const Attr *Result = It->second;
307 It->second = nullptr;
308 return Result;
309 }
310 }
311
312 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "clang/lib/Sema/SemaType.cpp", 312)
;
313 }
314
315 SourceLocation
316 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
317 auto FoundLoc = LocsForMacros.find(MQT);
318 assert(FoundLoc != LocsForMacros.end() &&(static_cast <bool> (FoundLoc != LocsForMacros.end() &&
"Unable to find macro expansion location for MacroQualifedType"
) ? void (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "clang/lib/Sema/SemaType.cpp", 319, __extension__ __PRETTY_FUNCTION__
))
319 "Unable to find macro expansion location for MacroQualifedType")(static_cast <bool> (FoundLoc != LocsForMacros.end() &&
"Unable to find macro expansion location for MacroQualifedType"
) ? void (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "clang/lib/Sema/SemaType.cpp", 319, __extension__ __PRETTY_FUNCTION__
))
;
320 return FoundLoc->second;
321 }
322
323 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
324 SourceLocation Loc) {
325 LocsForMacros[MQT] = Loc;
326 }
327
328 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
329
330 bool didParseNoDeref() const { return parsedNoDeref; }
331
332 ~TypeProcessingState() {
333 if (trivial) return;
334
335 restoreDeclSpecAttrs();
336 }
337
338 private:
339 DeclSpec &getMutableDeclSpec() const {
340 return const_cast<DeclSpec&>(declarator.getDeclSpec());
341 }
342
343 void restoreDeclSpecAttrs() {
344 assert(hasSavedAttrs)(static_cast <bool> (hasSavedAttrs) ? void (0) : __assert_fail
("hasSavedAttrs", "clang/lib/Sema/SemaType.cpp", 344, __extension__
__PRETTY_FUNCTION__))
;
345
346 getMutableDeclSpec().getAttributes().clearListOnly();
347 for (ParsedAttr *AL : savedAttrs)
348 getMutableDeclSpec().getAttributes().addAtEnd(AL);
349 }
350 };
351} // end anonymous namespace
352
353static void moveAttrFromListToList(ParsedAttr &attr,
354 ParsedAttributesView &fromList,
355 ParsedAttributesView &toList) {
356 fromList.remove(&attr);
357 toList.addAtEnd(&attr);
358}
359
360/// The location of a type attribute.
361enum TypeAttrLocation {
362 /// The attribute is in the decl-specifier-seq.
363 TAL_DeclSpec,
364 /// The attribute is part of a DeclaratorChunk.
365 TAL_DeclChunk,
366 /// The attribute is immediately after the declaration's name.
367 TAL_DeclName
368};
369
370static void processTypeAttrs(TypeProcessingState &state, QualType &type,
371 TypeAttrLocation TAL,
372 const ParsedAttributesView &attrs);
373
374static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
375 QualType &type);
376
377static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
378 ParsedAttr &attr, QualType &type);
379
380static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
381 QualType &type);
382
383static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
384 ParsedAttr &attr, QualType &type);
385
386static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
387 ParsedAttr &attr, QualType &type) {
388 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
389 return handleObjCGCTypeAttr(state, attr, type);
390 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)(static_cast <bool> (attr.getKind() == ParsedAttr::AT_ObjCOwnership
) ? void (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "clang/lib/Sema/SemaType.cpp", 390, __extension__ __PRETTY_FUNCTION__
))
;
391 return handleObjCOwnershipTypeAttr(state, attr, type);
392}
393
394/// Given the index of a declarator chunk, check whether that chunk
395/// directly specifies the return type of a function and, if so, find
396/// an appropriate place for it.
397///
398/// \param i - a notional index which the search will start
399/// immediately inside
400///
401/// \param onlyBlockPointers Whether we should only look into block
402/// pointer types (vs. all pointer types).
403static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
404 unsigned i,
405 bool onlyBlockPointers) {
406 assert(i <= declarator.getNumTypeObjects())(static_cast <bool> (i <= declarator.getNumTypeObjects
()) ? void (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "clang/lib/Sema/SemaType.cpp", 406, __extension__ __PRETTY_FUNCTION__
))
;
407
408 DeclaratorChunk *result = nullptr;
409
410 // First, look inwards past parens for a function declarator.
411 for (; i != 0; --i) {
412 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
413 switch (fnChunk.Kind) {
414 case DeclaratorChunk::Paren:
415 continue;
416
417 // If we find anything except a function, bail out.
418 case DeclaratorChunk::Pointer:
419 case DeclaratorChunk::BlockPointer:
420 case DeclaratorChunk::Array:
421 case DeclaratorChunk::Reference:
422 case DeclaratorChunk::MemberPointer:
423 case DeclaratorChunk::Pipe:
424 return result;
425
426 // If we do find a function declarator, scan inwards from that,
427 // looking for a (block-)pointer declarator.
428 case DeclaratorChunk::Function:
429 for (--i; i != 0; --i) {
430 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
431 switch (ptrChunk.Kind) {
432 case DeclaratorChunk::Paren:
433 case DeclaratorChunk::Array:
434 case DeclaratorChunk::Function:
435 case DeclaratorChunk::Reference:
436 case DeclaratorChunk::Pipe:
437 continue;
438
439 case DeclaratorChunk::MemberPointer:
440 case DeclaratorChunk::Pointer:
441 if (onlyBlockPointers)
442 continue;
443
444 LLVM_FALLTHROUGH[[gnu::fallthrough]];
445
446 case DeclaratorChunk::BlockPointer:
447 result = &ptrChunk;
448 goto continue_outer;
449 }
450 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "clang/lib/Sema/SemaType.cpp", 450)
;
451 }
452
453 // If we run out of declarators doing that, we're done.
454 return result;
455 }
456 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "clang/lib/Sema/SemaType.cpp", 456)
;
457
458 // Okay, reconsider from our new point.
459 continue_outer: ;
460 }
461
462 // Ran out of chunks, bail out.
463 return result;
464}
465
466/// Given that an objc_gc attribute was written somewhere on a
467/// declaration *other* than on the declarator itself (for which, use
468/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
469/// didn't apply in whatever position it was written in, try to move
470/// it to a more appropriate position.
471static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
472 ParsedAttr &attr, QualType type) {
473 Declarator &declarator = state.getDeclarator();
474
475 // Move it to the outermost normal or block pointer declarator.
476 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
477 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
478 switch (chunk.Kind) {
479 case DeclaratorChunk::Pointer:
480 case DeclaratorChunk::BlockPointer: {
481 // But don't move an ARC ownership attribute to the return type
482 // of a block.
483 DeclaratorChunk *destChunk = nullptr;
484 if (state.isProcessingDeclSpec() &&
485 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
486 destChunk = maybeMovePastReturnType(declarator, i - 1,
487 /*onlyBlockPointers=*/true);
488 if (!destChunk) destChunk = &chunk;
489
490 moveAttrFromListToList(attr, state.getCurrentAttributes(),
491 destChunk->getAttrs());
492 return;
493 }
494
495 case DeclaratorChunk::Paren:
496 case DeclaratorChunk::Array:
497 continue;
498
499 // We may be starting at the return type of a block.
500 case DeclaratorChunk::Function:
501 if (state.isProcessingDeclSpec() &&
502 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
503 if (DeclaratorChunk *dest = maybeMovePastReturnType(
504 declarator, i,
505 /*onlyBlockPointers=*/true)) {
506 moveAttrFromListToList(attr, state.getCurrentAttributes(),
507 dest->getAttrs());
508 return;
509 }
510 }
511 goto error;
512
513 // Don't walk through these.
514 case DeclaratorChunk::Reference:
515 case DeclaratorChunk::MemberPointer:
516 case DeclaratorChunk::Pipe:
517 goto error;
518 }
519 }
520 error:
521
522 diagnoseBadTypeAttribute(state.getSema(), attr, type);
523}
524
525/// Distribute an objc_gc type attribute that was written on the
526/// declarator.
527static void distributeObjCPointerTypeAttrFromDeclarator(
528 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
529 Declarator &declarator = state.getDeclarator();
530
531 // objc_gc goes on the innermost pointer to something that's not a
532 // pointer.
533 unsigned innermost = -1U;
534 bool considerDeclSpec = true;
535 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
536 DeclaratorChunk &chunk = declarator.getTypeObject(i);
537 switch (chunk.Kind) {
538 case DeclaratorChunk::Pointer:
539 case DeclaratorChunk::BlockPointer:
540 innermost = i;
541 continue;
542
543 case DeclaratorChunk::Reference:
544 case DeclaratorChunk::MemberPointer:
545 case DeclaratorChunk::Paren:
546 case DeclaratorChunk::Array:
547 case DeclaratorChunk::Pipe:
548 continue;
549
550 case DeclaratorChunk::Function:
551 considerDeclSpec = false;
552 goto done;
553 }
554 }
555 done:
556
557 // That might actually be the decl spec if we weren't blocked by
558 // anything in the declarator.
559 if (considerDeclSpec) {
560 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
561 // Splice the attribute into the decl spec. Prevents the
562 // attribute from being applied multiple times and gives
563 // the source-location-filler something to work with.
564 state.saveDeclSpecAttrs();
565 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
566 declarator.getAttributes(), &attr);
567 return;
568 }
569 }
570
571 // Otherwise, if we found an appropriate chunk, splice the attribute
572 // into it.
573 if (innermost != -1U) {
574 moveAttrFromListToList(attr, declarator.getAttributes(),
575 declarator.getTypeObject(innermost).getAttrs());
576 return;
577 }
578
579 // Otherwise, diagnose when we're done building the type.
580 declarator.getAttributes().remove(&attr);
581 state.addIgnoredTypeAttr(attr);
582}
583
584/// A function type attribute was written somewhere in a declaration
585/// *other* than on the declarator itself or in the decl spec. Given
586/// that it didn't apply in whatever position it was written in, try
587/// to move it to a more appropriate position.
588static void distributeFunctionTypeAttr(TypeProcessingState &state,
589 ParsedAttr &attr, QualType type) {
590 Declarator &declarator = state.getDeclarator();
591
592 // Try to push the attribute from the return type of a function to
593 // the function itself.
594 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
595 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
596 switch (chunk.Kind) {
597 case DeclaratorChunk::Function:
598 moveAttrFromListToList(attr, state.getCurrentAttributes(),
599 chunk.getAttrs());
600 return;
601
602 case DeclaratorChunk::Paren:
603 case DeclaratorChunk::Pointer:
604 case DeclaratorChunk::BlockPointer:
605 case DeclaratorChunk::Array:
606 case DeclaratorChunk::Reference:
607 case DeclaratorChunk::MemberPointer:
608 case DeclaratorChunk::Pipe:
609 continue;
610 }
611 }
612
613 diagnoseBadTypeAttribute(state.getSema(), attr, type);
614}
615
616/// Try to distribute a function type attribute to the innermost
617/// function chunk or type. Returns true if the attribute was
618/// distributed, false if no location was found.
619static bool distributeFunctionTypeAttrToInnermost(
620 TypeProcessingState &state, ParsedAttr &attr,
621 ParsedAttributesView &attrList, QualType &declSpecType) {
622 Declarator &declarator = state.getDeclarator();
623
624 // Put it on the innermost function chunk, if there is one.
625 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
626 DeclaratorChunk &chunk = declarator.getTypeObject(i);
627 if (chunk.Kind != DeclaratorChunk::Function) continue;
628
629 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
630 return true;
631 }
632
633 return handleFunctionTypeAttr(state, attr, declSpecType);
634}
635
636/// A function type attribute was written in the decl spec. Try to
637/// apply it somewhere.
638static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
639 ParsedAttr &attr,
640 QualType &declSpecType) {
641 state.saveDeclSpecAttrs();
642
643 // C++11 attributes before the decl specifiers actually appertain to
644 // the declarators. Move them straight there. We don't support the
645 // 'put them wherever you like' semantics we allow for GNU attributes.
646 if (attr.isStandardAttributeSyntax()) {
647 moveAttrFromListToList(attr, state.getCurrentAttributes(),
648 state.getDeclarator().getAttributes());
649 return;
650 }
651
652 // Try to distribute to the innermost.
653 if (distributeFunctionTypeAttrToInnermost(
654 state, attr, state.getCurrentAttributes(), declSpecType))
655 return;
656
657 // If that failed, diagnose the bad attribute when the declarator is
658 // fully built.
659 state.addIgnoredTypeAttr(attr);
660}
661
662/// A function type attribute was written on the declarator. Try to
663/// apply it somewhere.
664static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
665 ParsedAttr &attr,
666 QualType &declSpecType) {
667 Declarator &declarator = state.getDeclarator();
668
669 // Try to distribute to the innermost.
670 if (distributeFunctionTypeAttrToInnermost(
671 state, attr, declarator.getAttributes(), declSpecType))
672 return;
673
674 // If that failed, diagnose the bad attribute when the declarator is
675 // fully built.
676 declarator.getAttributes().remove(&attr);
677 state.addIgnoredTypeAttr(attr);
678}
679
680/// Given that there are attributes written on the declarator
681/// itself, try to distribute any type attributes to the appropriate
682/// declarator chunk.
683///
684/// These are attributes like the following:
685/// int f ATTR;
686/// int (f ATTR)();
687/// but not necessarily this:
688/// int f() ATTR;
689static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
690 QualType &declSpecType) {
691 // Collect all the type attributes from the declarator itself.
692 assert(!state.getDeclarator().getAttributes().empty() &&(static_cast <bool> (!state.getDeclarator().getAttributes
().empty() && "declarator has no attrs!") ? void (0) :
__assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "clang/lib/Sema/SemaType.cpp", 693, __extension__ __PRETTY_FUNCTION__
))
693 "declarator has no attrs!")(static_cast <bool> (!state.getDeclarator().getAttributes
().empty() && "declarator has no attrs!") ? void (0) :
__assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "clang/lib/Sema/SemaType.cpp", 693, __extension__ __PRETTY_FUNCTION__
))
;
694 // The called functions in this loop actually remove things from the current
695 // list, so iterating over the existing list isn't possible. Instead, make a
696 // non-owning copy and iterate over that.
697 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
698 for (ParsedAttr &attr : AttrsCopy) {
699 // Do not distribute [[]] attributes. They have strict rules for what
700 // they appertain to.
701 if (attr.isStandardAttributeSyntax())
702 continue;
703
704 switch (attr.getKind()) {
705 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
706 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
707 break;
708
709 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
710 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
711 break;
712
713 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
714 // Microsoft type attributes cannot go after the declarator-id.
715 continue;
716
717 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
718 // Nullability specifiers cannot go after the declarator-id.
719
720 // Objective-C __kindof does not get distributed.
721 case ParsedAttr::AT_ObjCKindOf:
722 continue;
723
724 default:
725 break;
726 }
727 }
728}
729
730/// Add a synthetic '()' to a block-literal declarator if it is
731/// required, given the return type.
732static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
733 QualType declSpecType) {
734 Declarator &declarator = state.getDeclarator();
735
736 // First, check whether the declarator would produce a function,
737 // i.e. whether the innermost semantic chunk is a function.
738 if (declarator.isFunctionDeclarator()) {
739 // If so, make that declarator a prototyped declarator.
740 declarator.getFunctionTypeInfo().hasPrototype = true;
741 return;
742 }
743
744 // If there are any type objects, the type as written won't name a
745 // function, regardless of the decl spec type. This is because a
746 // block signature declarator is always an abstract-declarator, and
747 // abstract-declarators can't just be parentheses chunks. Therefore
748 // we need to build a function chunk unless there are no type
749 // objects and the decl spec type is a function.
750 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
751 return;
752
753 // Note that there *are* cases with invalid declarators where
754 // declarators consist solely of parentheses. In general, these
755 // occur only in failed efforts to make function declarators, so
756 // faking up the function chunk is still the right thing to do.
757
758 // Otherwise, we need to fake up a function declarator.
759 SourceLocation loc = declarator.getBeginLoc();
760
761 // ...and *prepend* it to the declarator.
762 SourceLocation NoLoc;
763 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
764 /*HasProto=*/true,
765 /*IsAmbiguous=*/false,
766 /*LParenLoc=*/NoLoc,
767 /*ArgInfo=*/nullptr,
768 /*NumParams=*/0,
769 /*EllipsisLoc=*/NoLoc,
770 /*RParenLoc=*/NoLoc,
771 /*RefQualifierIsLvalueRef=*/true,
772 /*RefQualifierLoc=*/NoLoc,
773 /*MutableLoc=*/NoLoc, EST_None,
774 /*ESpecRange=*/SourceRange(),
775 /*Exceptions=*/nullptr,
776 /*ExceptionRanges=*/nullptr,
777 /*NumExceptions=*/0,
778 /*NoexceptExpr=*/nullptr,
779 /*ExceptionSpecTokens=*/nullptr,
780 /*DeclsInPrototype=*/None, loc, loc, declarator));
781
782 // For consistency, make sure the state still has us as processing
783 // the decl spec.
784 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)(static_cast <bool> (state.getCurrentChunkIndex() == declarator
.getNumTypeObjects() - 1) ? void (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "clang/lib/Sema/SemaType.cpp", 784, __extension__ __PRETTY_FUNCTION__
))
;
785 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
786}
787
788static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
789 unsigned &TypeQuals,
790 QualType TypeSoFar,
791 unsigned RemoveTQs,
792 unsigned DiagID) {
793 // If this occurs outside a template instantiation, warn the user about
794 // it; they probably didn't mean to specify a redundant qualifier.
795 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
796 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
797 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
798 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
799 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
800 if (!(RemoveTQs & Qual.first))
801 continue;
802
803 if (!S.inTemplateInstantiation()) {
804 if (TypeQuals & Qual.first)
805 S.Diag(Qual.second, DiagID)
806 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
807 << FixItHint::CreateRemoval(Qual.second);
808 }
809
810 TypeQuals &= ~Qual.first;
811 }
812}
813
814/// Return true if this is omitted block return type. Also check type
815/// attributes and type qualifiers when returning true.
816static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
817 QualType Result) {
818 if (!isOmittedBlockReturnType(declarator))
819 return false;
820
821 // Warn if we see type attributes for omitted return type on a block literal.
822 SmallVector<ParsedAttr *, 2> ToBeRemoved;
823 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
824 if (AL.isInvalid() || !AL.isTypeAttr())
825 continue;
826 S.Diag(AL.getLoc(),
827 diag::warn_block_literal_attributes_on_omitted_return_type)
828 << AL;
829 ToBeRemoved.push_back(&AL);
830 }
831 // Remove bad attributes from the list.
832 for (ParsedAttr *AL : ToBeRemoved)
833 declarator.getMutableDeclSpec().getAttributes().remove(AL);
834
835 // Warn if we see type qualifiers for omitted return type on a block literal.
836 const DeclSpec &DS = declarator.getDeclSpec();
837 unsigned TypeQuals = DS.getTypeQualifiers();
838 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
839 diag::warn_block_literal_qualifiers_on_omitted_return_type);
840 declarator.getMutableDeclSpec().ClearTypeQualifiers();
841
842 return true;
843}
844
845/// Apply Objective-C type arguments to the given type.
846static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
847 ArrayRef<TypeSourceInfo *> typeArgs,
848 SourceRange typeArgsRange,
849 bool failOnError = false) {
850 // We can only apply type arguments to an Objective-C class type.
851 const auto *objcObjectType = type->getAs<ObjCObjectType>();
9
Assuming the object is a 'ObjCObjectType'
852 if (!objcObjectType || !objcObjectType->getInterface()) {
10
Assuming 'objcObjectType' is non-null
11
Assuming the condition is false
12
Taking false branch
853 S.Diag(loc, diag::err_objc_type_args_non_class)
854 << type
855 << typeArgsRange;
856
857 if (failOnError)
858 return QualType();
859 return type;
860 }
861
862 // The class type must be parameterized.
863 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
864 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
865 if (!typeParams) {
13
Assuming 'typeParams' is non-null
14
Taking false branch
866 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
867 << objcClass->getDeclName()
868 << FixItHint::CreateRemoval(typeArgsRange);
869
870 if (failOnError)
871 return QualType();
872
873 return type;
874 }
875
876 // The type must not already be specialized.
877 if (objcObjectType->isSpecialized()) {
15
Assuming the condition is false
16
Taking false branch
878 S.Diag(loc, diag::err_objc_type_args_specialized_class)
879 << type
880 << FixItHint::CreateRemoval(typeArgsRange);
881
882 if (failOnError)
883 return QualType();
884
885 return type;
886 }
887
888 // Check the type arguments.
889 SmallVector<QualType, 4> finalTypeArgs;
890 unsigned numTypeParams = typeParams->size();
891 bool anyPackExpansions = false;
892 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
17
Assuming 'i' is not equal to 'n'
18
Loop condition is true. Entering loop body
893 TypeSourceInfo *typeArgInfo = typeArgs[i];
894 QualType typeArg = typeArgInfo->getType();
895
896 // Type arguments cannot have explicit qualifiers or nullability.
897 // We ignore indirect sources of these, e.g. behind typedefs or
898 // template arguments.
899 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
19
Assuming the condition is false
20
Taking false branch
900 bool diagnosed = false;
901 SourceRange rangeToRemove;
902 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
903 rangeToRemove = attr.getLocalSourceRange();
904 if (attr.getTypePtr()->getImmediateNullability()) {
905 typeArg = attr.getTypePtr()->getModifiedType();
906 S.Diag(attr.getBeginLoc(),
907 diag::err_objc_type_arg_explicit_nullability)
908 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
909 diagnosed = true;
910 }
911 }
912
913 if (!diagnosed) {
914 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
915 << typeArg << typeArg.getQualifiers().getAsString()
916 << FixItHint::CreateRemoval(rangeToRemove);
917 }
918 }
919
920 // Remove qualifiers even if they're non-local.
921 typeArg = typeArg.getUnqualifiedType();
922
923 finalTypeArgs.push_back(typeArg);
924
925 if (typeArg->getAs<PackExpansionType>())
21
Assuming the object is not a 'PackExpansionType'
22
Taking false branch
926 anyPackExpansions = true;
927
928 // Find the corresponding type parameter, if there is one.
929 ObjCTypeParamDecl *typeParam = nullptr;
930 if (!anyPackExpansions
22.1
'anyPackExpansions' is false
) {
23
Taking true branch
931 if (i < numTypeParams) {
24
Assuming 'i' is < 'numTypeParams'
25
Taking true branch
932 typeParam = typeParams->begin()[i];
933 } else {
934 // Too many arguments.
935 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
936 << false
937 << objcClass->getDeclName()
938 << (unsigned)typeArgs.size()
939 << numTypeParams;
940 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
941 << objcClass;
942
943 if (failOnError)
944 return QualType();
945
946 return type;
947 }
948 }
949
950 // Objective-C object pointer types must be substitutable for the bounds.
951 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
26
Assuming the object is a 'ObjCObjectPointerType'
27
Assuming 'typeArgObjC' is non-null
28
Taking true branch
952 // If we don't have a type parameter to match against, assume
953 // everything is fine. There was a prior pack expansion that
954 // means we won't be able to match anything.
955 if (!typeParam) {
29
Assuming 'typeParam' is non-null
30
Taking false branch
956 assert(anyPackExpansions && "Too many arguments?")(static_cast <bool> (anyPackExpansions && "Too many arguments?"
) ? void (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "clang/lib/Sema/SemaType.cpp", 956, __extension__ __PRETTY_FUNCTION__
))
;
957 continue;
958 }
959
960 // Retrieve the bound.
961 QualType bound = typeParam->getUnderlyingType();
962 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
31
Assuming the object is not a 'ObjCObjectPointerType'
32
'boundObjC' initialized to a null pointer value
963
964 // Determine whether the type argument is substitutable for the bound.
965 if (typeArgObjC->isObjCIdType()) {
33
Taking true branch
966 // When the type argument is 'id', the only acceptable type
967 // parameter bound is 'id'.
968 if (boundObjC->isObjCIdType())
34
Called C++ object pointer is null
969 continue;
970 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
971 // Otherwise, we follow the assignability rules.
972 continue;
973 }
974
975 // Diagnose the mismatch.
976 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
977 diag::err_objc_type_arg_does_not_match_bound)
978 << typeArg << bound << typeParam->getDeclName();
979 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
980 << typeParam->getDeclName();
981
982 if (failOnError)
983 return QualType();
984
985 return type;
986 }
987
988 // Block pointer types are permitted for unqualified 'id' bounds.
989 if (typeArg->isBlockPointerType()) {
990 // If we don't have a type parameter to match against, assume
991 // everything is fine. There was a prior pack expansion that
992 // means we won't be able to match anything.
993 if (!typeParam) {
994 assert(anyPackExpansions && "Too many arguments?")(static_cast <bool> (anyPackExpansions && "Too many arguments?"
) ? void (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "clang/lib/Sema/SemaType.cpp", 994, __extension__ __PRETTY_FUNCTION__
))
;
995 continue;
996 }
997
998 // Retrieve the bound.
999 QualType bound = typeParam->getUnderlyingType();
1000 if (bound->isBlockCompatibleObjCPointerType(S.Context))
1001 continue;
1002
1003 // Diagnose the mismatch.
1004 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1005 diag::err_objc_type_arg_does_not_match_bound)
1006 << typeArg << bound << typeParam->getDeclName();
1007 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
1008 << typeParam->getDeclName();
1009
1010 if (failOnError)
1011 return QualType();
1012
1013 return type;
1014 }
1015
1016 // Dependent types will be checked at instantiation time.
1017 if (typeArg->isDependentType()) {
1018 continue;
1019 }
1020
1021 // Diagnose non-id-compatible type arguments.
1022 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1023 diag::err_objc_type_arg_not_id_compatible)
1024 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1025
1026 if (failOnError)
1027 return QualType();
1028
1029 return type;
1030 }
1031
1032 // Make sure we didn't have the wrong number of arguments.
1033 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1034 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1035 << (typeArgs.size() < typeParams->size())
1036 << objcClass->getDeclName()
1037 << (unsigned)finalTypeArgs.size()
1038 << (unsigned)numTypeParams;
1039 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1040 << objcClass;
1041
1042 if (failOnError)
1043 return QualType();
1044
1045 return type;
1046 }
1047
1048 // Success. Form the specialized type.
1049 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1050}
1051
1052QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1053 SourceLocation ProtocolLAngleLoc,
1054 ArrayRef<ObjCProtocolDecl *> Protocols,
1055 ArrayRef<SourceLocation> ProtocolLocs,
1056 SourceLocation ProtocolRAngleLoc,
1057 bool FailOnError) {
1058 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1059 if (!Protocols.empty()) {
1060 bool HasError;
1061 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1062 HasError);
1063 if (HasError) {
1064 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1065 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1066 if (FailOnError) Result = QualType();
1067 }
1068 if (FailOnError && Result.isNull())
1069 return QualType();
1070 }
1071
1072 return Result;
1073}
1074
1075QualType Sema::BuildObjCObjectType(QualType BaseType,
1076 SourceLocation Loc,
1077 SourceLocation TypeArgsLAngleLoc,
1078 ArrayRef<TypeSourceInfo *> TypeArgs,
1079 SourceLocation TypeArgsRAngleLoc,
1080 SourceLocation ProtocolLAngleLoc,
1081 ArrayRef<ObjCProtocolDecl *> Protocols,
1082 ArrayRef<SourceLocation> ProtocolLocs,
1083 SourceLocation ProtocolRAngleLoc,
1084 bool FailOnError) {
1085 QualType Result = BaseType;
1086 if (!TypeArgs.empty()) {
6
Assuming the condition is true
7
Taking true branch
1087 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
8
Calling 'applyObjCTypeArgs'
1088 SourceRange(TypeArgsLAngleLoc,
1089 TypeArgsRAngleLoc),
1090 FailOnError);
1091 if (FailOnError && Result.isNull())
1092 return QualType();
1093 }
1094
1095 if (!Protocols.empty()) {
1096 bool HasError;
1097 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1098 HasError);
1099 if (HasError) {
1100 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1101 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1102 if (FailOnError) Result = QualType();
1103 }
1104 if (FailOnError && Result.isNull())
1105 return QualType();
1106 }
1107
1108 return Result;
1109}
1110
1111TypeResult Sema::actOnObjCProtocolQualifierType(
1112 SourceLocation lAngleLoc,
1113 ArrayRef<Decl *> protocols,
1114 ArrayRef<SourceLocation> protocolLocs,
1115 SourceLocation rAngleLoc) {
1116 // Form id<protocol-list>.
1117 QualType Result = Context.getObjCObjectType(
1118 Context.ObjCBuiltinIdTy, { },
1119 llvm::makeArrayRef(
1120 (ObjCProtocolDecl * const *)protocols.data(),
1121 protocols.size()),
1122 false);
1123 Result = Context.getObjCObjectPointerType(Result);
1124
1125 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1126 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1127
1128 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1129 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1130
1131 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1132 .castAs<ObjCObjectTypeLoc>();
1133 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1134 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1135
1136 // No type arguments.
1137 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1138 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1139
1140 // Fill in protocol qualifiers.
1141 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1142 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1143 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1144 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1145
1146 // We're done. Return the completed type to the parser.
1147 return CreateParsedType(Result, ResultTInfo);
1148}
1149
1150TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1151 Scope *S,
1152 SourceLocation Loc,
1153 ParsedType BaseType,
1154 SourceLocation TypeArgsLAngleLoc,
1155 ArrayRef<ParsedType> TypeArgs,
1156 SourceLocation TypeArgsRAngleLoc,
1157 SourceLocation ProtocolLAngleLoc,
1158 ArrayRef<Decl *> Protocols,
1159 ArrayRef<SourceLocation> ProtocolLocs,
1160 SourceLocation ProtocolRAngleLoc) {
1161 TypeSourceInfo *BaseTypeInfo = nullptr;
1162 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1163 if (T.isNull())
1
Taking false branch
1164 return true;
1165
1166 // Handle missing type-source info.
1167 if (!BaseTypeInfo
1.1
'BaseTypeInfo' is null
)
2
Taking true branch
1168 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1169
1170 // Extract type arguments.
1171 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1172 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
3
Assuming 'i' is equal to 'n'
4
Loop condition is false. Execution continues on line 1185
1173 TypeSourceInfo *TypeArgInfo = nullptr;
1174 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1175 if (TypeArg.isNull()) {
1176 ActualTypeArgInfos.clear();
1177 break;
1178 }
1179
1180 assert(TypeArgInfo && "No type source info?")(static_cast <bool> (TypeArgInfo && "No type source info?"
) ? void (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "clang/lib/Sema/SemaType.cpp", 1180, __extension__ __PRETTY_FUNCTION__
))
;
1181 ActualTypeArgInfos.push_back(TypeArgInfo);
1182 }
1183
1184 // Build the object type.
1185 QualType Result = BuildObjCObjectType(
5
Calling 'Sema::BuildObjCObjectType'
1186 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1187 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1188 ProtocolLAngleLoc,
1189 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1190 Protocols.size()),
1191 ProtocolLocs, ProtocolRAngleLoc,
1192 /*FailOnError=*/false);
1193
1194 if (Result == T)
1195 return BaseType;
1196
1197 // Create source information for this type.
1198 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1199 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1200
1201 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1202 // object pointer type. Fill in source information for it.
1203 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1204 // The '*' is implicit.
1205 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1206 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1207 }
1208
1209 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1210 // Protocol qualifier information.
1211 if (OTPTL.getNumProtocols() > 0) {
1212 assert(OTPTL.getNumProtocols() == Protocols.size())(static_cast <bool> (OTPTL.getNumProtocols() == Protocols
.size()) ? void (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "clang/lib/Sema/SemaType.cpp", 1212, __extension__ __PRETTY_FUNCTION__
))
;
1213 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1214 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1215 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1216 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1217 }
1218
1219 // We're done. Return the completed type to the parser.
1220 return CreateParsedType(Result, ResultTInfo);
1221 }
1222
1223 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1224
1225 // Type argument information.
1226 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1227 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())(static_cast <bool> (ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos
.size()) ? void (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "clang/lib/Sema/SemaType.cpp", 1227, __extension__ __PRETTY_FUNCTION__
))
;
1228 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1229 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1230 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1231 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1232 } else {
1233 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1234 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1235 }
1236
1237 // Protocol qualifier information.
1238 if (ObjCObjectTL.getNumProtocols() > 0) {
1239 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())(static_cast <bool> (ObjCObjectTL.getNumProtocols() == Protocols
.size()) ? void (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "clang/lib/Sema/SemaType.cpp", 1239, __extension__ __PRETTY_FUNCTION__
))
;
1240 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1241 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1242 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1243 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1244 } else {
1245 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1246 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1247 }
1248
1249 // Base type.
1250 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1251 if (ObjCObjectTL.getType() == T)
1252 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1253 else
1254 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1255
1256 // We're done. Return the completed type to the parser.
1257 return CreateParsedType(Result, ResultTInfo);
1258}
1259
1260static OpenCLAccessAttr::Spelling
1261getImageAccess(const ParsedAttributesView &Attrs) {
1262 for (const ParsedAttr &AL : Attrs)
1263 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1264 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1265 return OpenCLAccessAttr::Keyword_read_only;
1266}
1267
1268/// Convert the specified declspec to the appropriate type
1269/// object.
1270/// \param state Specifies the declarator containing the declaration specifier
1271/// to be converted, along with other associated processing state.
1272/// \returns The type described by the declaration specifiers. This function
1273/// never returns null.
1274static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1275 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1276 // checking.
1277
1278 Sema &S = state.getSema();
1279 Declarator &declarator = state.getDeclarator();
1280 DeclSpec &DS = declarator.getMutableDeclSpec();
1281 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1282 if (DeclLoc.isInvalid())
1283 DeclLoc = DS.getBeginLoc();
1284
1285 ASTContext &Context = S.Context;
1286
1287 QualType Result;
1288 switch (DS.getTypeSpecType()) {
1289 case DeclSpec::TST_void:
1290 Result = Context.VoidTy;
1291 break;
1292 case DeclSpec::TST_char:
1293 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1294 Result = Context.CharTy;
1295 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1296 Result = Context.SignedCharTy;
1297 else {
1298 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1299, __extension__ __PRETTY_FUNCTION__
))
1299 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1299, __extension__ __PRETTY_FUNCTION__
))
;
1300 Result = Context.UnsignedCharTy;
1301 }
1302 break;
1303 case DeclSpec::TST_wchar:
1304 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1305 Result = Context.WCharTy;
1306 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1307 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1308 << DS.getSpecifierName(DS.getTypeSpecType(),
1309 Context.getPrintingPolicy());
1310 Result = Context.getSignedWCharType();
1311 } else {
1312 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1313, __extension__ __PRETTY_FUNCTION__
))
1313 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1313, __extension__ __PRETTY_FUNCTION__
))
;
1314 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1315 << DS.getSpecifierName(DS.getTypeSpecType(),
1316 Context.getPrintingPolicy());
1317 Result = Context.getUnsignedWCharType();
1318 }
1319 break;
1320 case DeclSpec::TST_char8:
1321 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1322, __extension__ __PRETTY_FUNCTION__
))
1322 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1322, __extension__ __PRETTY_FUNCTION__
))
;
1323 Result = Context.Char8Ty;
1324 break;
1325 case DeclSpec::TST_char16:
1326 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1327, __extension__ __PRETTY_FUNCTION__
))
1327 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1327, __extension__ __PRETTY_FUNCTION__
))
;
1328 Result = Context.Char16Ty;
1329 break;
1330 case DeclSpec::TST_char32:
1331 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1332, __extension__ __PRETTY_FUNCTION__
))
1332 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1332, __extension__ __PRETTY_FUNCTION__
))
;
1333 Result = Context.Char32Ty;
1334 break;
1335 case DeclSpec::TST_unspecified:
1336 // If this is a missing declspec in a block literal return context, then it
1337 // is inferred from the return statements inside the block.
1338 // The declspec is always missing in a lambda expr context; it is either
1339 // specified with a trailing return type or inferred.
1340 if (S.getLangOpts().CPlusPlus14 &&
1341 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1342 // In C++1y, a lambda's implicit return type is 'auto'.
1343 Result = Context.getAutoDeductType();
1344 break;
1345 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1346 checkOmittedBlockReturnType(S, declarator,
1347 Context.DependentTy)) {
1348 Result = Context.DependentTy;
1349 break;
1350 }
1351
1352 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1353 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1354 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1355 // Note that the one exception to this is function definitions, which are
1356 // allowed to be completely missing a declspec. This is handled in the
1357 // parser already though by it pretending to have seen an 'int' in this
1358 // case.
1359 if (S.getLangOpts().ImplicitInt) {
1360 // In C89 mode, we only warn if there is a completely missing declspec
1361 // when one is not allowed.
1362 if (DS.isEmpty()) {
1363 S.Diag(DeclLoc, diag::ext_missing_declspec)
1364 << DS.getSourceRange()
1365 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1366 }
1367 } else if (!DS.hasTypeSpecifier()) {
1368 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1369 // "At least one type specifier shall be given in the declaration
1370 // specifiers in each declaration, and in the specifier-qualifier list in
1371 // each struct declaration and type name."
1372 if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1373 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1374 << DS.getSourceRange();
1375
1376 // When this occurs in C++ code, often something is very broken with the
1377 // value being declared, poison it as invalid so we don't get chains of
1378 // errors.
1379 declarator.setInvalidType(true);
1380 } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1381 DS.isTypeSpecPipe()) {
1382 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1383 << DS.getSourceRange();
1384 declarator.setInvalidType(true);
1385 } else {
1386 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1387 << DS.getSourceRange();
1388 }
1389 }
1390
1391 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1392 case DeclSpec::TST_int: {
1393 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1394 switch (DS.getTypeSpecWidth()) {
1395 case TypeSpecifierWidth::Unspecified:
1396 Result = Context.IntTy;
1397 break;
1398 case TypeSpecifierWidth::Short:
1399 Result = Context.ShortTy;
1400 break;
1401 case TypeSpecifierWidth::Long:
1402 Result = Context.LongTy;
1403 break;
1404 case TypeSpecifierWidth::LongLong:
1405 Result = Context.LongLongTy;
1406
1407 // 'long long' is a C99 or C++11 feature.
1408 if (!S.getLangOpts().C99) {
1409 if (S.getLangOpts().CPlusPlus)
1410 S.Diag(DS.getTypeSpecWidthLoc(),
1411 S.getLangOpts().CPlusPlus11 ?
1412 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1413 else
1414 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1415 }
1416 break;
1417 }
1418 } else {
1419 switch (DS.getTypeSpecWidth()) {
1420 case TypeSpecifierWidth::Unspecified:
1421 Result = Context.UnsignedIntTy;
1422 break;
1423 case TypeSpecifierWidth::Short:
1424 Result = Context.UnsignedShortTy;
1425 break;
1426 case TypeSpecifierWidth::Long:
1427 Result = Context.UnsignedLongTy;
1428 break;
1429 case TypeSpecifierWidth::LongLong:
1430 Result = Context.UnsignedLongLongTy;
1431
1432 // 'long long' is a C99 or C++11 feature.
1433 if (!S.getLangOpts().C99) {
1434 if (S.getLangOpts().CPlusPlus)
1435 S.Diag(DS.getTypeSpecWidthLoc(),
1436 S.getLangOpts().CPlusPlus11 ?
1437 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1438 else
1439 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1440 }
1441 break;
1442 }
1443 }
1444 break;
1445 }
1446 case DeclSpec::TST_bitint: {
1447 if (!S.Context.getTargetInfo().hasBitIntType())
1448 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1449 Result =
1450 S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1451 DS.getRepAsExpr(), DS.getBeginLoc());
1452 if (Result.isNull()) {
1453 Result = Context.IntTy;
1454 declarator.setInvalidType(true);
1455 }
1456 break;
1457 }
1458 case DeclSpec::TST_accum: {
1459 switch (DS.getTypeSpecWidth()) {
1460 case TypeSpecifierWidth::Short:
1461 Result = Context.ShortAccumTy;
1462 break;
1463 case TypeSpecifierWidth::Unspecified:
1464 Result = Context.AccumTy;
1465 break;
1466 case TypeSpecifierWidth::Long:
1467 Result = Context.LongAccumTy;
1468 break;
1469 case TypeSpecifierWidth::LongLong:
1470 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "clang/lib/Sema/SemaType.cpp", 1470)
;
1471 }
1472
1473 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1474 Result = Context.getCorrespondingUnsignedType(Result);
1475
1476 if (DS.isTypeSpecSat())
1477 Result = Context.getCorrespondingSaturatedType(Result);
1478
1479 break;
1480 }
1481 case DeclSpec::TST_fract: {
1482 switch (DS.getTypeSpecWidth()) {
1483 case TypeSpecifierWidth::Short:
1484 Result = Context.ShortFractTy;
1485 break;
1486 case TypeSpecifierWidth::Unspecified:
1487 Result = Context.FractTy;
1488 break;
1489 case TypeSpecifierWidth::Long:
1490 Result = Context.LongFractTy;
1491 break;
1492 case TypeSpecifierWidth::LongLong:
1493 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "clang/lib/Sema/SemaType.cpp", 1493)
;
1494 }
1495
1496 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1497 Result = Context.getCorrespondingUnsignedType(Result);
1498
1499 if (DS.isTypeSpecSat())
1500 Result = Context.getCorrespondingSaturatedType(Result);
1501
1502 break;
1503 }
1504 case DeclSpec::TST_int128:
1505 if (!S.Context.getTargetInfo().hasInt128Type() &&
1506 !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1507 (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)))
1508 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1509 << "__int128";
1510 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1511 Result = Context.UnsignedInt128Ty;
1512 else
1513 Result = Context.Int128Ty;
1514 break;
1515 case DeclSpec::TST_float16:
1516 // CUDA host and device may have different _Float16 support, therefore
1517 // do not diagnose _Float16 usage to avoid false alarm.
1518 // ToDo: more precise diagnostics for CUDA.
1519 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1520 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1521 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1522 << "_Float16";
1523 Result = Context.Float16Ty;
1524 break;
1525 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1526 case DeclSpec::TST_BFloat16:
1527 if (!S.Context.getTargetInfo().hasBFloat16Type())
1528 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1529 << "__bf16";
1530 Result = Context.BFloat16Ty;
1531 break;
1532 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1533 case DeclSpec::TST_double:
1534 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1535 Result = Context.LongDoubleTy;
1536 else
1537 Result = Context.DoubleTy;
1538 if (S.getLangOpts().OpenCL) {
1539 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1540 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1541 << 0 << Result
1542 << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1543 ? "cl_khr_fp64 and __opencl_c_fp64"
1544 : "cl_khr_fp64");
1545 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1546 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1547 }
1548 break;
1549 case DeclSpec::TST_float128:
1550 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1551 !S.getLangOpts().SYCLIsDevice &&
1552 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1553 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1554 << "__float128";
1555 Result = Context.Float128Ty;
1556 break;
1557 case DeclSpec::TST_ibm128:
1558 if (!S.Context.getTargetInfo().hasIbm128Type() &&
1559 !S.getLangOpts().SYCLIsDevice &&
1560 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1561 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1562 Result = Context.Ibm128Ty;
1563 break;
1564 case DeclSpec::TST_bool:
1565 Result = Context.BoolTy; // _Bool or bool
1566 break;
1567 case DeclSpec::TST_decimal32: // _Decimal32
1568 case DeclSpec::TST_decimal64: // _Decimal64
1569 case DeclSpec::TST_decimal128: // _Decimal128
1570 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1571 Result = Context.IntTy;
1572 declarator.setInvalidType(true);
1573 break;
1574 case DeclSpec::TST_class:
1575 case DeclSpec::TST_enum:
1576 case DeclSpec::TST_union:
1577 case DeclSpec::TST_struct:
1578 case DeclSpec::TST_interface: {
1579 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1580 if (!D) {
1581 // This can happen in C++ with ambiguous lookups.
1582 Result = Context.IntTy;
1583 declarator.setInvalidType(true);
1584 break;
1585 }
1586
1587 // If the type is deprecated or unavailable, diagnose it.
1588 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1589
1590 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1593, __extension__ __PRETTY_FUNCTION__
))
1591 DS.getTypeSpecComplex() == 0 &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1593, __extension__ __PRETTY_FUNCTION__
))
1592 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1593, __extension__ __PRETTY_FUNCTION__
))
1593 "No qualifiers on tag names!")(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1593, __extension__ __PRETTY_FUNCTION__
))
;
1594
1595 // TypeQuals handled by caller.
1596 Result = Context.getTypeDeclType(D);
1597
1598 // In both C and C++, make an ElaboratedType.
1599 ElaboratedTypeKeyword Keyword
1600 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1601 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1602 DS.isTypeSpecOwned() ? D : nullptr);
1603 break;
1604 }
1605 case DeclSpec::TST_typename: {
1606 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1609, __extension__ __PRETTY_FUNCTION__
))
1607 DS.getTypeSpecComplex() == 0 &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1609, __extension__ __PRETTY_FUNCTION__
))
1608 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1609, __extension__ __PRETTY_FUNCTION__
))
1609 "Can't handle qualifiers on typedef names yet!")(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1609, __extension__ __PRETTY_FUNCTION__
))
;
1610 Result = S.GetTypeFromParser(DS.getRepAsType());
1611 if (Result.isNull()) {
1612 declarator.setInvalidType(true);
1613 }
1614
1615 // TypeQuals handled by caller.
1616 break;
1617 }
1618 case DeclSpec::TST_typeofType:
1619 // FIXME: Preserve type source info.
1620 Result = S.GetTypeFromParser(DS.getRepAsType());
1621 assert(!Result.isNull() && "Didn't get a type for typeof?")(static_cast <bool> (!Result.isNull() && "Didn't get a type for typeof?"
) ? void (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "clang/lib/Sema/SemaType.cpp", 1621, __extension__ __PRETTY_FUNCTION__
))
;
1622 if (!Result->isDependentType())
1623 if (const TagType *TT = Result->getAs<TagType>())
1624 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1625 // TypeQuals handled by caller.
1626 Result = Context.getTypeOfType(Result);
1627 break;
1628 case DeclSpec::TST_typeofExpr: {
1629 Expr *E = DS.getRepAsExpr();
1630 assert(E && "Didn't get an expression for typeof?")(static_cast <bool> (E && "Didn't get an expression for typeof?"
) ? void (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "clang/lib/Sema/SemaType.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
;
1631 // TypeQuals handled by caller.
1632 Result = S.BuildTypeofExprType(E);
1633 if (Result.isNull()) {
1634 Result = Context.IntTy;
1635 declarator.setInvalidType(true);
1636 }
1637 break;
1638 }
1639 case DeclSpec::TST_decltype: {
1640 Expr *E = DS.getRepAsExpr();
1641 assert(E && "Didn't get an expression for decltype?")(static_cast <bool> (E && "Didn't get an expression for decltype?"
) ? void (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "clang/lib/Sema/SemaType.cpp", 1641, __extension__ __PRETTY_FUNCTION__
))
;
1642 // TypeQuals handled by caller.
1643 Result = S.BuildDecltypeType(E);
1644 if (Result.isNull()) {
1645 Result = Context.IntTy;
1646 declarator.setInvalidType(true);
1647 }
1648 break;
1649 }
1650 case DeclSpec::TST_underlyingType:
1651 Result = S.GetTypeFromParser(DS.getRepAsType());
1652 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")(static_cast <bool> (!Result.isNull() && "Didn't get a type for __underlying_type?"
) ? void (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\""
, "clang/lib/Sema/SemaType.cpp", 1652, __extension__ __PRETTY_FUNCTION__
))
;
1653 Result = S.BuildUnaryTransformType(Result,
1654 UnaryTransformType::EnumUnderlyingType,
1655 DS.getTypeSpecTypeLoc());
1656 if (Result.isNull()) {
1657 Result = Context.IntTy;
1658 declarator.setInvalidType(true);
1659 }
1660 break;
1661
1662 case DeclSpec::TST_auto:
1663 case DeclSpec::TST_decltype_auto: {
1664 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1665 ? AutoTypeKeyword::DecltypeAuto
1666 : AutoTypeKeyword::Auto;
1667
1668 ConceptDecl *TypeConstraintConcept = nullptr;
1669 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1670 if (DS.isConstrainedAuto()) {
1671 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1672 TypeConstraintConcept =
1673 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1674 TemplateArgumentListInfo TemplateArgsInfo;
1675 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1676 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1677 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1678 TemplateId->NumArgs);
1679 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1680 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1681 TemplateArgs.push_back(ArgLoc.getArgument());
1682 } else {
1683 declarator.setInvalidType(true);
1684 }
1685 }
1686 Result = S.Context.getAutoType(QualType(), AutoKW,
1687 /*IsDependent*/ false, /*IsPack=*/false,
1688 TypeConstraintConcept, TemplateArgs);
1689 break;
1690 }
1691
1692 case DeclSpec::TST_auto_type:
1693 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1694 break;
1695
1696 case DeclSpec::TST_unknown_anytype:
1697 Result = Context.UnknownAnyTy;
1698 break;
1699
1700 case DeclSpec::TST_atomic:
1701 Result = S.GetTypeFromParser(DS.getRepAsType());
1702 assert(!Result.isNull() && "Didn't get a type for _Atomic?")(static_cast <bool> (!Result.isNull() && "Didn't get a type for _Atomic?"
) ? void (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "clang/lib/Sema/SemaType.cpp", 1702, __extension__ __PRETTY_FUNCTION__
))
;
1703 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1704 if (Result.isNull()) {
1705 Result = Context.IntTy;
1706 declarator.setInvalidType(true);
1707 }
1708 break;
1709
1710#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1711 case DeclSpec::TST_##ImgType##_t: \
1712 switch (getImageAccess(DS.getAttributes())) { \
1713 case OpenCLAccessAttr::Keyword_write_only: \
1714 Result = Context.Id##WOTy; \
1715 break; \
1716 case OpenCLAccessAttr::Keyword_read_write: \
1717 Result = Context.Id##RWTy; \
1718 break; \
1719 case OpenCLAccessAttr::Keyword_read_only: \
1720 Result = Context.Id##ROTy; \
1721 break; \
1722 case OpenCLAccessAttr::SpellingNotCalculated: \
1723 llvm_unreachable("Spelling not yet calculated")::llvm::llvm_unreachable_internal("Spelling not yet calculated"
, "clang/lib/Sema/SemaType.cpp", 1723)
; \
1724 } \
1725 break;
1726#include "clang/Basic/OpenCLImageTypes.def"
1727
1728 case DeclSpec::TST_error:
1729 Result = Context.IntTy;
1730 declarator.setInvalidType(true);
1731 break;
1732 }
1733
1734 // FIXME: we want resulting declarations to be marked invalid, but claiming
1735 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1736 // a null type.
1737 if (Result->containsErrors())
1738 declarator.setInvalidType();
1739
1740 if (S.getLangOpts().OpenCL) {
1741 const auto &OpenCLOptions = S.getOpenCLOptions();
1742 bool IsOpenCLC30Compatible =
1743 S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1744 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1745 // support.
1746 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1747 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1748 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1749 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1750 // only when the optional feature is supported
1751 if ((Result->isImageType() || Result->isSamplerT()) &&
1752 (IsOpenCLC30Compatible &&
1753 !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1754 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1755 << 0 << Result << "__opencl_c_images";
1756 declarator.setInvalidType();
1757 } else if (Result->isOCLImage3dWOType() &&
1758 !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1759 S.getLangOpts())) {
1760 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1761 << 0 << Result
1762 << (IsOpenCLC30Compatible
1763 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1764 : "cl_khr_3d_image_writes");
1765 declarator.setInvalidType();
1766 }
1767 }
1768
1769 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1770 DS.getTypeSpecType() == DeclSpec::TST_fract;
1771
1772 // Only fixed point types can be saturated
1773 if (DS.isTypeSpecSat() && !IsFixedPointType)
1774 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1775 << DS.getSpecifierName(DS.getTypeSpecType(),
1776 Context.getPrintingPolicy());
1777
1778 // Handle complex types.
1779 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1780 if (S.getLangOpts().Freestanding)
1781 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1782 Result = Context.getComplexType(Result);
1783 } else if (DS.isTypeAltiVecVector()) {
1784 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1785 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")(static_cast <bool> (typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? void (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "clang/lib/Sema/SemaType.cpp", 1785, __extension__ __PRETTY_FUNCTION__
))
;
1786 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1787 if (DS.isTypeAltiVecPixel())
1788 VecKind = VectorType::AltiVecPixel;
1789 else if (DS.isTypeAltiVecBool())
1790 VecKind = VectorType::AltiVecBool;
1791 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1792 }
1793
1794 // FIXME: Imaginary.
1795 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1796 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1797
1798 // Before we process any type attributes, synthesize a block literal
1799 // function declarator if necessary.
1800 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1801 maybeSynthesizeBlockSignature(state, Result);
1802
1803 // Apply any type attributes from the decl spec. This may cause the
1804 // list of type attributes to be temporarily saved while the type
1805 // attributes are pushed around.
1806 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1807 if (!DS.isTypeSpecPipe())
1808 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1809
1810 // Apply const/volatile/restrict qualifiers to T.
1811 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1812 // Warn about CV qualifiers on function types.
1813 // C99 6.7.3p8:
1814 // If the specification of a function type includes any type qualifiers,
1815 // the behavior is undefined.
1816 // C++11 [dcl.fct]p7:
1817 // The effect of a cv-qualifier-seq in a function declarator is not the
1818 // same as adding cv-qualification on top of the function type. In the
1819 // latter case, the cv-qualifiers are ignored.
1820 if (Result->isFunctionType()) {
1821 diagnoseAndRemoveTypeQualifiers(
1822 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1823 S.getLangOpts().CPlusPlus
1824 ? diag::warn_typecheck_function_qualifiers_ignored
1825 : diag::warn_typecheck_function_qualifiers_unspecified);
1826 // No diagnostic for 'restrict' or '_Atomic' applied to a
1827 // function type; we'll diagnose those later, in BuildQualifiedType.
1828 }
1829
1830 // C++11 [dcl.ref]p1:
1831 // Cv-qualified references are ill-formed except when the
1832 // cv-qualifiers are introduced through the use of a typedef-name
1833 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1834 //
1835 // There don't appear to be any other contexts in which a cv-qualified
1836 // reference type could be formed, so the 'ill-formed' clause here appears
1837 // to never happen.
1838 if (TypeQuals && Result->isReferenceType()) {
1839 diagnoseAndRemoveTypeQualifiers(
1840 S, DS, TypeQuals, Result,
1841 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1842 diag::warn_typecheck_reference_qualifiers);
1843 }
1844
1845 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1846 // than once in the same specifier-list or qualifier-list, either directly
1847 // or via one or more typedefs."
1848 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1849 && TypeQuals & Result.getCVRQualifiers()) {
1850 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1851 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1852 << "const";
1853 }
1854
1855 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1856 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1857 << "volatile";
1858 }
1859
1860 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1861 // produce a warning in this case.
1862 }
1863
1864 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1865
1866 // If adding qualifiers fails, just use the unqualified type.
1867 if (Qualified.isNull())
1868 declarator.setInvalidType(true);
1869 else
1870 Result = Qualified;
1871 }
1872
1873 assert(!Result.isNull() && "This function should not return a null type")(static_cast <bool> (!Result.isNull() && "This function should not return a null type"
) ? void (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "clang/lib/Sema/SemaType.cpp", 1873, __extension__ __PRETTY_FUNCTION__
))
;
1874 return Result;
1875}
1876
1877static std::string getPrintableNameForEntity(DeclarationName Entity) {
1878 if (Entity)
1879 return Entity.getAsString();
1880
1881 return "type name";
1882}
1883
1884static bool isDependentOrGNUAutoType(QualType T) {
1885 if (T->isDependentType())
1886 return true;
1887
1888 const auto *AT = dyn_cast<AutoType>(T);
1889 return AT && AT->isGNUAutoType();
1890}
1891
1892QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1893 Qualifiers Qs, const DeclSpec *DS) {
1894 if (T.isNull())
1895 return QualType();
1896
1897 // Ignore any attempt to form a cv-qualified reference.
1898 if (T->isReferenceType()) {
1899 Qs.removeConst();
1900 Qs.removeVolatile();
1901 }
1902
1903 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1904 // object or incomplete types shall not be restrict-qualified."
1905 if (Qs.hasRestrict()) {
1906 unsigned DiagID = 0;
1907 QualType ProblemTy;
1908
1909 if (T->isAnyPointerType() || T->isReferenceType() ||
1910 T->isMemberPointerType()) {
1911 QualType EltTy;
1912 if (T->isObjCObjectPointerType())
1913 EltTy = T;
1914 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1915 EltTy = PTy->getPointeeType();
1916 else
1917 EltTy = T->getPointeeType();
1918
1919 // If we have a pointer or reference, the pointee must have an object
1920 // incomplete type.
1921 if (!EltTy->isIncompleteOrObjectType()) {
1922 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1923 ProblemTy = EltTy;
1924 }
1925 } else if (!isDependentOrGNUAutoType(T)) {
1926 // For an __auto_type variable, we may not have seen the initializer yet
1927 // and so have no idea whether the underlying type is a pointer type or
1928 // not.
1929 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1930 ProblemTy = T;
1931 }
1932
1933 if (DiagID) {
1934 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1935 Qs.removeRestrict();
1936 }
1937 }
1938
1939 return Context.getQualifiedType(T, Qs);
1940}
1941
1942QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1943 unsigned CVRAU, const DeclSpec *DS) {
1944 if (T.isNull())
1945 return QualType();
1946
1947 // Ignore any attempt to form a cv-qualified reference.
1948 if (T->isReferenceType())
1949 CVRAU &=
1950 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1951
1952 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1953 // TQ_unaligned;
1954 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1955
1956 // C11 6.7.3/5:
1957 // If the same qualifier appears more than once in the same
1958 // specifier-qualifier-list, either directly or via one or more typedefs,
1959 // the behavior is the same as if it appeared only once.
1960 //
1961 // It's not specified what happens when the _Atomic qualifier is applied to
1962 // a type specified with the _Atomic specifier, but we assume that this
1963 // should be treated as if the _Atomic qualifier appeared multiple times.
1964 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1965 // C11 6.7.3/5:
1966 // If other qualifiers appear along with the _Atomic qualifier in a
1967 // specifier-qualifier-list, the resulting type is the so-qualified
1968 // atomic type.
1969 //
1970 // Don't need to worry about array types here, since _Atomic can't be
1971 // applied to such types.
1972 SplitQualType Split = T.getSplitUnqualifiedType();
1973 T = BuildAtomicType(QualType(Split.Ty, 0),
1974 DS ? DS->getAtomicSpecLoc() : Loc);
1975 if (T.isNull())
1976 return T;
1977 Split.Quals.addCVRQualifiers(CVR);
1978 return BuildQualifiedType(T, Loc, Split.Quals);
1979 }
1980
1981 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1982 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1983 return BuildQualifiedType(T, Loc, Q, DS);
1984}
1985
1986/// Build a paren type including \p T.
1987QualType Sema::BuildParenType(QualType T) {
1988 return Context.getParenType(T);
1989}
1990
1991/// Given that we're building a pointer or reference to the given
1992static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1993 SourceLocation loc,
1994 bool isReference) {
1995 // Bail out if retention is unrequired or already specified.
1996 if (!type->isObjCLifetimeType() ||
1997 type.getObjCLifetime() != Qualifiers::OCL_None)
1998 return type;
1999
2000 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
2001
2002 // If the object type is const-qualified, we can safely use
2003 // __unsafe_unretained. This is safe (because there are no read
2004 // barriers), and it'll be safe to coerce anything but __weak* to
2005 // the resulting type.
2006 if (type.isConstQualified()) {
2007 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2008
2009 // Otherwise, check whether the static type does not require
2010 // retaining. This currently only triggers for Class (possibly
2011 // protocol-qualifed, and arrays thereof).
2012 } else if (type->isObjCARCImplicitlyUnretainedType()) {
2013 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2014
2015 // If we are in an unevaluated context, like sizeof, skip adding a
2016 // qualification.
2017 } else if (S.isUnevaluatedContext()) {
2018 return type;
2019
2020 // If that failed, give an error and recover using __strong. __strong
2021 // is the option most likely to prevent spurious second-order diagnostics,
2022 // like when binding a reference to a field.
2023 } else {
2024 // These types can show up in private ivars in system headers, so
2025 // we need this to not be an error in those cases. Instead we
2026 // want to delay.
2027 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2028 S.DelayedDiagnostics.add(
2029 sema::DelayedDiagnostic::makeForbiddenType(loc,
2030 diag::err_arc_indirect_no_ownership, type, isReference));
2031 } else {
2032 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2033 }
2034 implicitLifetime = Qualifiers::OCL_Strong;
2035 }
2036 assert(implicitLifetime && "didn't infer any lifetime!")(static_cast <bool> (implicitLifetime && "didn't infer any lifetime!"
) ? void (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "clang/lib/Sema/SemaType.cpp", 2036, __extension__ __PRETTY_FUNCTION__
))
;
2037
2038 Qualifiers qs;
2039 qs.addObjCLifetime(implicitLifetime);
2040 return S.Context.getQualifiedType(type, qs);
2041}
2042
2043static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2044 std::string Quals = FnTy->getMethodQuals().getAsString();
2045
2046 switch (FnTy->getRefQualifier()) {
2047 case RQ_None:
2048 break;
2049
2050 case RQ_LValue:
2051 if (!Quals.empty())
2052 Quals += ' ';
2053 Quals += '&';
2054 break;
2055
2056 case RQ_RValue:
2057 if (!Quals.empty())
2058 Quals += ' ';
2059 Quals += "&&";
2060 break;
2061 }
2062
2063 return Quals;
2064}
2065
2066namespace {
2067/// Kinds of declarator that cannot contain a qualified function type.
2068///
2069/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2070/// a function type with a cv-qualifier or a ref-qualifier can only appear
2071/// at the topmost level of a type.
2072///
2073/// Parens and member pointers are permitted. We don't diagnose array and
2074/// function declarators, because they don't allow function types at all.
2075///
2076/// The values of this enum are used in diagnostics.
2077enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2078} // end anonymous namespace
2079
2080/// Check whether the type T is a qualified function type, and if it is,
2081/// diagnose that it cannot be contained within the given kind of declarator.
2082static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2083 QualifiedFunctionKind QFK) {
2084 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2085 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2086 if (!FPT ||
2087 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2088 return false;
2089
2090 S.Diag(Loc, diag::err_compound_qualified_function_type)
2091 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2092 << getFunctionQualifiersAsString(FPT);
2093 return true;
2094}
2095
2096bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2097 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2098 if (!FPT ||
2099 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2100 return false;
2101
2102 Diag(Loc, diag::err_qualified_function_typeid)
2103 << T << getFunctionQualifiersAsString(FPT);
2104 return true;
2105}
2106
2107// Helper to deduce addr space of a pointee type in OpenCL mode.
2108static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2109 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2110 !PointeeType->isSamplerT() &&
2111 !PointeeType.hasAddressSpace())
2112 PointeeType = S.getASTContext().getAddrSpaceQualType(
2113 PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2114 return PointeeType;
2115}
2116
2117/// Build a pointer type.
2118///
2119/// \param T The type to which we'll be building a pointer.
2120///
2121/// \param Loc The location of the entity whose type involves this
2122/// pointer type or, if there is no such entity, the location of the
2123/// type that will have pointer type.
2124///
2125/// \param Entity The name of the entity that involves the pointer
2126/// type, if known.
2127///
2128/// \returns A suitable pointer type, if there are no
2129/// errors. Otherwise, returns a NULL type.
2130QualType Sema::BuildPointerType(QualType T,
2131 SourceLocation Loc, DeclarationName Entity) {
2132 if (T->isReferenceType()) {
2133 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2134 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2135 << getPrintableNameForEntity(Entity) << T;
2136 return QualType();
2137 }
2138
2139 if (T->isFunctionType() && getLangOpts().OpenCL &&
2140 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2141 getLangOpts())) {
2142 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2143 return QualType();
2144 }
2145
2146 if (getLangOpts().HLSL) {
2147 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2148 return QualType();
2149 }
2150
2151 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2152 return QualType();
2153
2154 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")(static_cast <bool> (!T->isObjCObjectType() &&
"Should build ObjCObjectPointerType") ? void (0) : __assert_fail
("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "clang/lib/Sema/SemaType.cpp", 2154, __extension__ __PRETTY_FUNCTION__
))
;
2155
2156 // In ARC, it is forbidden to build pointers to unqualified pointers.
2157 if (getLangOpts().ObjCAutoRefCount)
2158 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2159
2160 if (getLangOpts().OpenCL)
2161 T = deduceOpenCLPointeeAddrSpace(*this, T);
2162
2163 // Build the pointer type.
2164 return Context.getPointerType(T);
2165}
2166
2167/// Build a reference type.
2168///
2169/// \param T The type to which we'll be building a reference.
2170///
2171/// \param Loc The location of the entity whose type involves this
2172/// reference type or, if there is no such entity, the location of the
2173/// type that will have reference type.
2174///
2175/// \param Entity The name of the entity that involves the reference
2176/// type, if known.
2177///
2178/// \returns A suitable reference type, if there are no
2179/// errors. Otherwise, returns a NULL type.
2180QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2181 SourceLocation Loc,
2182 DeclarationName Entity) {
2183 assert(Context.getCanonicalType(T) != Context.OverloadTy &&(static_cast <bool> (Context.getCanonicalType(T) != Context
.OverloadTy && "Unresolved overloaded function type")
? void (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "clang/lib/Sema/SemaType.cpp", 2184, __extension__ __PRETTY_FUNCTION__
))
2184 "Unresolved overloaded function type")(static_cast <bool> (Context.getCanonicalType(T) != Context
.OverloadTy && "Unresolved overloaded function type")
? void (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "clang/lib/Sema/SemaType.cpp", 2184, __extension__ __PRETTY_FUNCTION__
))
;
2185
2186 // C++0x [dcl.ref]p6:
2187 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2188 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2189 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2190 // the type "lvalue reference to T", while an attempt to create the type
2191 // "rvalue reference to cv TR" creates the type TR.
2192 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2193
2194 // C++ [dcl.ref]p4: There shall be no references to references.
2195 //
2196 // According to C++ DR 106, references to references are only
2197 // diagnosed when they are written directly (e.g., "int & &"),
2198 // but not when they happen via a typedef:
2199 //
2200 // typedef int& intref;
2201 // typedef intref& intref2;
2202 //
2203 // Parser::ParseDeclaratorInternal diagnoses the case where
2204 // references are written directly; here, we handle the
2205 // collapsing of references-to-references as described in C++0x.
2206 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2207
2208 // C++ [dcl.ref]p1:
2209 // A declarator that specifies the type "reference to cv void"
2210 // is ill-formed.
2211 if (T->isVoidType()) {
2212 Diag(Loc, diag::err_reference_to_void);
2213 return QualType();
2214 }
2215
2216 if (getLangOpts().HLSL) {
2217 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
2218 return QualType();
2219 }
2220
2221 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2222 return QualType();
2223
2224 if (T->isFunctionType() && getLangOpts().OpenCL &&
2225 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2226 getLangOpts())) {
2227 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2228 return QualType();
2229 }
2230
2231 // In ARC, it is forbidden to build references to unqualified pointers.
2232 if (getLangOpts().ObjCAutoRefCount)
2233 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2234
2235 if (getLangOpts().OpenCL)
2236 T = deduceOpenCLPointeeAddrSpace(*this, T);
2237
2238 // Handle restrict on references.
2239 if (LValueRef)
2240 return Context.getLValueReferenceType(T, SpelledAsLValue);
2241 return Context.getRValueReferenceType(T);
2242}
2243
2244/// Build a Read-only Pipe type.
2245///
2246/// \param T The type to which we'll be building a Pipe.
2247///
2248/// \param Loc We do not use it for now.
2249///
2250/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2251/// NULL type.
2252QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2253 return Context.getReadPipeType(T);
2254}
2255
2256/// Build a Write-only Pipe type.
2257///
2258/// \param T The type to which we'll be building a Pipe.
2259///
2260/// \param Loc We do not use it for now.
2261///
2262/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2263/// NULL type.
2264QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2265 return Context.getWritePipeType(T);
2266}
2267
2268/// Build a bit-precise integer type.
2269///
2270/// \param IsUnsigned Boolean representing the signedness of the type.
2271///
2272/// \param BitWidth Size of this int type in bits, or an expression representing
2273/// that.
2274///
2275/// \param Loc Location of the keyword.
2276QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
2277 SourceLocation Loc) {
2278 if (BitWidth->isInstantiationDependent())
2279 return Context.getDependentBitIntType(IsUnsigned, BitWidth);
2280
2281 llvm::APSInt Bits(32);
2282 ExprResult ICE =
2283 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2284
2285 if (ICE.isInvalid())
2286 return QualType();
2287
2288 size_t NumBits = Bits.getZExtValue();
2289 if (!IsUnsigned && NumBits < 2) {
2290 Diag(Loc, diag::err_bit_int_bad_size) << 0;
2291 return QualType();
2292 }
2293
2294 if (IsUnsigned && NumBits < 1) {
2295 Diag(Loc, diag::err_bit_int_bad_size) << 1;
2296 return QualType();
2297 }
2298
2299 const TargetInfo &TI = getASTContext().getTargetInfo();
2300 if (NumBits > TI.getMaxBitIntWidth()) {
2301 Diag(Loc, diag::err_bit_int_max_size)
2302 << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
2303 return QualType();
2304 }
2305
2306 return Context.getBitIntType(IsUnsigned, NumBits);
2307}
2308
2309/// Check whether the specified array bound can be evaluated using the relevant
2310/// language rules. If so, returns the possibly-converted expression and sets
2311/// SizeVal to the size. If not, but the expression might be a VLA bound,
2312/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2313/// ExprError().
2314static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2315 llvm::APSInt &SizeVal, unsigned VLADiag,
2316 bool VLAIsError) {
2317 if (S.getLangOpts().CPlusPlus14 &&
2318 (VLAIsError ||
2319 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2320 // C++14 [dcl.array]p1:
2321 // The constant-expression shall be a converted constant expression of
2322 // type std::size_t.
2323 //
2324 // Don't apply this rule if we might be forming a VLA: in that case, we
2325 // allow non-constant expressions and constant-folding. We only need to use
2326 // the converted constant expression rules (to properly convert the source)
2327 // when the source expression is of class type.
2328 return S.CheckConvertedConstantExpression(
2329 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2330 }
2331
2332 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2333 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2334 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2335 public:
2336 unsigned VLADiag;
2337 bool VLAIsError;
2338 bool IsVLA = false;
2339
2340 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2341 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2342
2343 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2344 QualType T) override {
2345 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2346 }
2347
2348 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2349 SourceLocation Loc) override {
2350 IsVLA = !VLAIsError;
2351 return S.Diag(Loc, VLADiag);
2352 }
2353
2354 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2355 SourceLocation Loc) override {
2356 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2357 }
2358 } Diagnoser(VLADiag, VLAIsError);
2359
2360 ExprResult R =
2361 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2362 if (Diagnoser.IsVLA)
2363 return ExprResult();
2364 return R;
2365}
2366
2367/// Build an array type.
2368///
2369/// \param T The type of each element in the array.
2370///
2371/// \param ASM C99 array size modifier (e.g., '*', 'static').
2372///
2373/// \param ArraySize Expression describing the size of the array.
2374///
2375/// \param Brackets The range from the opening '[' to the closing ']'.
2376///
2377/// \param Entity The name of the entity that involves the array
2378/// type, if known.
2379///
2380/// \returns A suitable array type, if there are no errors. Otherwise,
2381/// returns a NULL type.
2382QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2383 Expr *ArraySize, unsigned Quals,
2384 SourceRange Brackets, DeclarationName Entity) {
2385
2386 SourceLocation Loc = Brackets.getBegin();
2387 if (getLangOpts().CPlusPlus) {
2388 // C++ [dcl.array]p1:
2389 // T is called the array element type; this type shall not be a reference
2390 // type, the (possibly cv-qualified) type void, a function type or an
2391 // abstract class type.
2392 //
2393 // C++ [dcl.array]p3:
2394 // When several "array of" specifications are adjacent, [...] only the
2395 // first of the constant expressions that specify the bounds of the arrays
2396 // may be omitted.
2397 //
2398 // Note: function types are handled in the common path with C.
2399 if (T->isReferenceType()) {
2400 Diag(Loc, diag::err_illegal_decl_array_of_references)
2401 << getPrintableNameForEntity(Entity) << T;
2402 return QualType();
2403 }
2404
2405 if (T->isVoidType() || T->isIncompleteArrayType()) {
2406 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2407 return QualType();
2408 }
2409
2410 if (RequireNonAbstractType(Brackets.getBegin(), T,
2411 diag::err_array_of_abstract_type))
2412 return QualType();
2413
2414 // Mentioning a member pointer type for an array type causes us to lock in
2415 // an inheritance model, even if it's inside an unused typedef.
2416 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2417 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2418 if (!MPTy->getClass()->isDependentType())
2419 (void)isCompleteType(Loc, T);
2420
2421 } else {
2422 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2423 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2424 if (RequireCompleteSizedType(Loc, T,
2425 diag::err_array_incomplete_or_sizeless_type))
2426 return QualType();
2427 }
2428
2429 if (T->isSizelessType()) {
2430 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2431 return QualType();
2432 }
2433
2434 if (T->isFunctionType()) {
2435 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2436 << getPrintableNameForEntity(Entity) << T;
2437 return QualType();
2438 }
2439
2440 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2441 // If the element type is a struct or union that contains a variadic
2442 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2443 if (EltTy->getDecl()->hasFlexibleArrayMember())
2444 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2445 } else if (T->isObjCObjectType()) {
2446 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2447 return QualType();
2448 }
2449
2450 // Do placeholder conversions on the array size expression.
2451 if (ArraySize && ArraySize->hasPlaceholderType()) {
2452 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2453 if (Result.isInvalid()) return QualType();
2454 ArraySize = Result.get();
2455 }
2456
2457 // Do lvalue-to-rvalue conversions on the array size expression.
2458 if (ArraySize && !ArraySize->isPRValue()) {
2459 ExprResult Result = DefaultLvalueConversion(ArraySize);
2460 if (Result.isInvalid())
2461 return QualType();
2462
2463 ArraySize = Result.get();
2464 }
2465
2466 // C99 6.7.5.2p1: The size expression shall have integer type.
2467 // C++11 allows contextual conversions to such types.
2468 if (!getLangOpts().CPlusPlus11 &&
2469 ArraySize && !ArraySize->isTypeDependent() &&
2470 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2471 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2472 << ArraySize->getType() << ArraySize->getSourceRange();
2473 return QualType();
2474 }
2475
2476 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2477 unsigned VLADiag;
2478 bool VLAIsError;
2479 if (getLangOpts().OpenCL) {
2480 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2481 VLADiag = diag::err_opencl_vla;
2482 VLAIsError = true;
2483 } else if (getLangOpts().C99) {
2484 VLADiag = diag::warn_vla_used;
2485 VLAIsError = false;
2486 } else if (isSFINAEContext()) {
2487 VLADiag = diag::err_vla_in_sfinae;
2488 VLAIsError = true;
2489 } else if (getLangOpts().OpenMP && isInOpenMPTaskUntiedContext()) {
2490 VLADiag = diag::err_openmp_vla_in_task_untied;
2491 VLAIsError = true;
2492 } else {
2493 VLADiag = diag::ext_vla;
2494 VLAIsError = false;
2495 }
2496
2497 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2498 if (!ArraySize) {
2499 if (ASM == ArrayType::Star) {
2500 Diag(Loc, VLADiag);
2501 if (VLAIsError)
2502 return QualType();
2503
2504 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2505 } else {
2506 T = Context.getIncompleteArrayType(T, ASM, Quals);
2507 }
2508 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2509 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2510 } else {
2511 ExprResult R =
2512 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2513 if (R.isInvalid())
2514 return QualType();
2515
2516 if (!R.isUsable()) {
2517 // C99: an array with a non-ICE size is a VLA. We accept any expression
2518 // that we can fold to a non-zero positive value as a non-VLA as an
2519 // extension.
2520 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2521 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2522 !T->isConstantSizeType()) {
2523 // C99: an array with an element type that has a non-constant-size is a
2524 // VLA.
2525 // FIXME: Add a note to explain why this isn't a VLA.
2526 Diag(Loc, VLADiag);
2527 if (VLAIsError)
2528 return QualType();
2529 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2530 } else {
2531 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2532 // have a value greater than zero.
2533 // In C++, this follows from narrowing conversions being disallowed.
2534 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2535 if (Entity)
2536 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2537 << getPrintableNameForEntity(Entity)
2538 << ArraySize->getSourceRange();
2539 else
2540 Diag(ArraySize->getBeginLoc(),
2541 diag::err_typecheck_negative_array_size)
2542 << ArraySize->getSourceRange();
2543 return QualType();
2544 }
2545 if (ConstVal == 0) {
2546 // GCC accepts zero sized static arrays. We allow them when
2547 // we're not in a SFINAE context.
2548 Diag(ArraySize->getBeginLoc(),
2549 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2550 : diag::ext_typecheck_zero_array_size)
2551 << 0 << ArraySize->getSourceRange();
2552 }
2553
2554 // Is the array too large?
2555 unsigned ActiveSizeBits =
2556 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2557 !T->isIncompleteType() && !T->isUndeducedType())
2558 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2559 : ConstVal.getActiveBits();
2560 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2561 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2562 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2563 return QualType();
2564 }
2565
2566 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2567 }
2568 }
2569
2570 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2571 // CUDA device code and some other targets don't support VLAs.
2572 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2573 ? diag::err_cuda_vla
2574 : diag::err_vla_unsupported)
2575 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2576 ? CurrentCUDATarget()
2577 : CFT_InvalidTarget);
2578 }
2579
2580 // If this is not C99, diagnose array size modifiers on non-VLAs.
2581 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2582 (ASM != ArrayType::Normal || Quals != 0)) {
2583 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2584 : diag::ext_c99_array_usage)
2585 << ASM;
2586 }
2587
2588 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2589 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2590 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2591 if (getLangOpts().OpenCL) {
2592 const QualType ArrType = Context.getBaseElementType(T);
2593 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2594 ArrType->isSamplerT() || ArrType->isImageType()) {
2595 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2596 return QualType();
2597 }
2598 }
2599
2600 return T;
2601}
2602
2603QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2604 SourceLocation AttrLoc) {
2605 // The base type must be integer (not Boolean or enumeration) or float, and
2606 // can't already be a vector.
2607 if ((!CurType->isDependentType() &&
2608 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2609 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2610 CurType->isArrayType()) {
2611 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2612 return QualType();
2613 }
2614
2615 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2616 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2617 VectorType::GenericVector);
2618
2619 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2620 if (!VecSize) {
2621 Diag(AttrLoc, diag::err_attribute_argument_type)
2622 << "vector_size" << AANT_ArgumentIntegerConstant
2623 << SizeExpr->getSourceRange();
2624 return QualType();
2625 }
2626
2627 if (CurType->isDependentType())
2628 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2629 VectorType::GenericVector);
2630
2631 // vecSize is specified in bytes - convert to bits.
2632 if (!VecSize->isIntN(61)) {
2633 // Bit size will overflow uint64.
2634 Diag(AttrLoc, diag::err_attribute_size_too_large)
2635 << SizeExpr->getSourceRange() << "vector";
2636 return QualType();
2637 }
2638 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2639 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2640
2641 if (VectorSizeBits == 0) {
2642 Diag(AttrLoc, diag::err_attribute_zero_size)
2643 << SizeExpr->getSourceRange() << "vector";
2644 return QualType();
2645 }
2646
2647 if (VectorSizeBits % TypeSize) {
2648 Diag(AttrLoc, diag::err_attribute_invalid_size)
2649 << SizeExpr->getSourceRange();
2650 return QualType();
2651 }
2652
2653 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2654 Diag(AttrLoc, diag::err_attribute_size_too_large)
2655 << SizeExpr->getSourceRange() << "vector";
2656 return QualType();
2657 }
2658
2659 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2660 VectorType::GenericVector);
2661}
2662
2663/// Build an ext-vector type.
2664///
2665/// Run the required checks for the extended vector type.
2666QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2667 SourceLocation AttrLoc) {
2668 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2669 // in conjunction with complex types (pointers, arrays, functions, etc.).
2670 //
2671 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2672 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2673 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2674 // of bool aren't allowed.
2675 //
2676 // We explictly allow bool elements in ext_vector_type for C/C++.
2677 bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2678 if ((!T->isDependentType() && !T->isIntegerType() &&
2679 !T->isRealFloatingType()) ||
2680 (IsNoBoolVecLang && T->isBooleanType())) {
2681 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2682 return QualType();
2683 }
2684
2685 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2686 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2687 if (!vecSize) {
2688 Diag(AttrLoc, diag::err_attribute_argument_type)
2689 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2690 << ArraySize->getSourceRange();
2691 return QualType();
2692 }
2693
2694 if (!vecSize->isIntN(32)) {
2695 Diag(AttrLoc, diag::err_attribute_size_too_large)
2696 << ArraySize->getSourceRange() << "vector";
2697 return QualType();
2698 }
2699 // Unlike gcc's vector_size attribute, the size is specified as the
2700 // number of elements, not the number of bytes.
2701 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2702
2703 if (vectorSize == 0) {
2704 Diag(AttrLoc, diag::err_attribute_zero_size)
2705 << ArraySize->getSourceRange() << "vector";
2706 return QualType();
2707 }
2708
2709 return Context.getExtVectorType(T, vectorSize);
2710 }
2711
2712 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2713}
2714
2715QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2716 SourceLocation AttrLoc) {
2717 assert(Context.getLangOpts().MatrixTypes &&(static_cast <bool> (Context.getLangOpts().MatrixTypes &&
"Should never build a matrix type when it is disabled") ? void
(0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "clang/lib/Sema/SemaType.cpp", 2718, __extension__ __PRETTY_FUNCTION__
))
2718 "Should never build a matrix type when it is disabled")(static_cast <bool> (Context.getLangOpts().MatrixTypes &&
"Should never build a matrix type when it is disabled") ? void
(0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "clang/lib/Sema/SemaType.cpp", 2718, __extension__ __PRETTY_FUNCTION__
))
;
2719
2720 // Check element type, if it is not dependent.
2721 if (!ElementTy->isDependentType() &&
2722 !MatrixType::isValidElementType(ElementTy)) {
2723 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2724 return QualType();
2725 }
2726
2727 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2728 NumRows->isValueDependent() || NumCols->isValueDependent())
2729 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2730 AttrLoc);
2731
2732 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2733 Optional<llvm::APSInt> ValueColumns =
2734 NumCols->getIntegerConstantExpr(Context);
2735
2736 auto const RowRange = NumRows->getSourceRange();
2737 auto const ColRange = NumCols->getSourceRange();
2738
2739 // Both are row and column expressions are invalid.
2740 if (!ValueRows && !ValueColumns) {
2741 Diag(AttrLoc, diag::err_attribute_argument_type)
2742 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2743 << ColRange;
2744 return QualType();
2745 }
2746
2747 // Only the row expression is invalid.
2748 if (!ValueRows) {
2749 Diag(AttrLoc, diag::err_attribute_argument_type)
2750 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2751 return QualType();
2752 }
2753
2754 // Only the column expression is invalid.
2755 if (!ValueColumns) {
2756 Diag(AttrLoc, diag::err_attribute_argument_type)
2757 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2758 return QualType();
2759 }
2760
2761 // Check the matrix dimensions.
2762 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2763 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2764 if (MatrixRows == 0 && MatrixColumns == 0) {
2765 Diag(AttrLoc, diag::err_attribute_zero_size)
2766 << "matrix" << RowRange << ColRange;
2767 return QualType();
2768 }
2769 if (MatrixRows == 0) {
2770 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2771 return QualType();
2772 }
2773 if (MatrixColumns == 0) {
2774 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2775 return QualType();
2776 }
2777 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2778 Diag(AttrLoc, diag::err_attribute_size_too_large)
2779 << RowRange << "matrix row";
2780 return QualType();
2781 }
2782 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2783 Diag(AttrLoc, diag::err_attribute_size_too_large)
2784 << ColRange << "matrix column";
2785 return QualType();
2786 }
2787 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2788}
2789
2790bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2791 if (T->isArrayType() || T->isFunctionType()) {
2792 Diag(Loc, diag::err_func_returning_array_function)
2793 << T->isFunctionType() << T;
2794 return true;
2795 }
2796
2797 // Functions cannot return half FP.
2798 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2799 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2800 FixItHint::CreateInsertion(Loc, "*");
2801 return true;
2802 }
2803
2804 // Methods cannot return interface types. All ObjC objects are
2805 // passed by reference.
2806 if (T->isObjCObjectType()) {
2807 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2808 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2809 return true;
2810 }
2811
2812 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2813 T.hasNonTrivialToPrimitiveCopyCUnion())
2814 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2815 NTCUK_Destruct|NTCUK_Copy);
2816
2817 // C++2a [dcl.fct]p12:
2818 // A volatile-qualified return type is deprecated
2819 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2820 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2821
2822 return false;
2823}
2824
2825/// Check the extended parameter information. Most of the necessary
2826/// checking should occur when applying the parameter attribute; the
2827/// only other checks required are positional restrictions.
2828static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2829 const FunctionProtoType::ExtProtoInfo &EPI,
2830 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2831 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")(static_cast <bool> (EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? void (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "clang/lib/Sema/SemaType.cpp", 2831, __extension__ __PRETTY_FUNCTION__
))
;
2832
2833 bool emittedError = false;
2834 auto actualCC = EPI.ExtInfo.getCC();
2835 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2836 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2837 bool isCompatible =
2838 (required == RequiredCC::OnlySwift)
2839 ? (actualCC == CC_Swift)
2840 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2841 if (isCompatible || emittedError)
2842 return;
2843 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2844 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2845 << (required == RequiredCC::OnlySwift);
2846 emittedError = true;
2847 };
2848 for (size_t paramIndex = 0, numParams = paramTypes.size();
2849 paramIndex != numParams; ++paramIndex) {
2850 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2851 // Nothing interesting to check for orindary-ABI parameters.
2852 case ParameterABI::Ordinary:
2853 continue;
2854
2855 // swift_indirect_result parameters must be a prefix of the function
2856 // arguments.
2857 case ParameterABI::SwiftIndirectResult:
2858 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2859 if (paramIndex != 0 &&
2860 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2861 != ParameterABI::SwiftIndirectResult) {
2862 S.Diag(getParamLoc(paramIndex),
2863 diag::err_swift_indirect_result_not_first);
2864 }
2865 continue;
2866
2867 case ParameterABI::SwiftContext:
2868 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2869 continue;
2870
2871 // SwiftAsyncContext is not limited to swiftasynccall functions.
2872 case ParameterABI::SwiftAsyncContext:
2873 continue;
2874
2875 // swift_error parameters must be preceded by a swift_context parameter.
2876 case ParameterABI::SwiftErrorResult:
2877 checkCompatible(paramIndex, RequiredCC::OnlySwift);
2878 if (paramIndex == 0 ||
2879 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2880 ParameterABI::SwiftContext) {
2881 S.Diag(getParamLoc(paramIndex),
2882 diag::err_swift_error_result_not_after_swift_context);
2883 }
2884 continue;
2885 }
2886 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "clang/lib/Sema/SemaType.cpp"
, 2886)
;
2887 }
2888}
2889
2890QualType Sema::BuildFunctionType(QualType T,
2891 MutableArrayRef<QualType> ParamTypes,
2892 SourceLocation Loc, DeclarationName Entity,
2893 const FunctionProtoType::ExtProtoInfo &EPI) {
2894 bool Invalid = false;
2895
2896 Invalid |= CheckFunctionReturnType(T, Loc);
2897
2898 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2899 // FIXME: Loc is too inprecise here, should use proper locations for args.
2900 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2901 if (ParamType->isVoidType()) {
2902 Diag(Loc, diag::err_param_with_void_type);
2903 Invalid = true;
2904 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2905 // Disallow half FP arguments.
2906 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2907 FixItHint::CreateInsertion(Loc, "*");
2908 Invalid = true;
2909 }
2910
2911 // C++2a [dcl.fct]p4:
2912 // A parameter with volatile-qualified type is deprecated
2913 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2914 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2915
2916 ParamTypes[Idx] = ParamType;
2917 }
2918
2919 if (EPI.ExtParameterInfos) {
2920 checkExtParameterInfos(*this, ParamTypes, EPI,
2921 [=](unsigned i) { return Loc; });
2922 }
2923
2924 if (EPI.ExtInfo.getProducesResult()) {
2925 // This is just a warning, so we can't fail to build if we see it.
2926 checkNSReturnsRetainedReturnType(Loc, T);
2927 }
2928
2929 if (Invalid)
2930 return QualType();
2931
2932 return Context.getFunctionType(T, ParamTypes, EPI);
2933}
2934
2935/// Build a member pointer type \c T Class::*.
2936///
2937/// \param T the type to which the member pointer refers.
2938/// \param Class the class type into which the member pointer points.
2939/// \param Loc the location where this type begins
2940/// \param Entity the name of the entity that will have this member pointer type
2941///
2942/// \returns a member pointer type, if successful, or a NULL type if there was
2943/// an error.
2944QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2945 SourceLocation Loc,
2946 DeclarationName Entity) {
2947 // Verify that we're not building a pointer to pointer to function with
2948 // exception specification.
2949 if (CheckDistantExceptionSpec(T)) {
2950 Diag(Loc, diag::err_distant_exception_spec);
2951 return QualType();
2952 }
2953
2954 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2955 // with reference type, or "cv void."
2956 if (T->isReferenceType()) {
2957 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2958 << getPrintableNameForEntity(Entity) << T;
2959 return QualType();
2960 }
2961
2962 if (T->isVoidType()) {
2963 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2964 << getPrintableNameForEntity(Entity);
2965 return QualType();
2966 }
2967
2968 if (!Class->isDependentType() && !Class->isRecordType()) {
2969 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2970 return QualType();
2971 }
2972
2973 if (T->isFunctionType() && getLangOpts().OpenCL &&
2974 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2975 getLangOpts())) {
2976 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2977 return QualType();
2978 }
2979
2980 if (getLangOpts().HLSL) {
2981 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2982 return QualType();
2983 }
2984
2985 // Adjust the default free function calling convention to the default method
2986 // calling convention.
2987 bool IsCtorOrDtor =
2988 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2989 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2990 if (T->isFunctionType())
2991 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2992
2993 return Context.getMemberPointerType(T, Class.getTypePtr());
2994}
2995
2996/// Build a block pointer type.
2997///
2998/// \param T The type to which we'll be building a block pointer.
2999///
3000/// \param Loc The source location, used for diagnostics.
3001///
3002/// \param Entity The name of the entity that involves the block pointer
3003/// type, if known.
3004///
3005/// \returns A suitable block pointer type, if there are no
3006/// errors. Otherwise, returns a NULL type.
3007QualType Sema::BuildBlockPointerType(QualType T,
3008 SourceLocation Loc,
3009 DeclarationName Entity) {
3010 if (!T->isFunctionType()) {
3011 Diag(Loc, diag::err_nonfunction_block_type);
3012 return QualType();
3013 }
3014
3015 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
3016 return QualType();
3017
3018 if (getLangOpts().OpenCL)
3019 T = deduceOpenCLPointeeAddrSpace(*this, T);
3020
3021 return Context.getBlockPointerType(T);
3022}
3023
3024QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
3025 QualType QT = Ty.get();
3026 if (QT.isNull()) {
3027 if (TInfo) *TInfo = nullptr;
3028 return QualType();
3029 }
3030
3031 TypeSourceInfo *DI = nullptr;
3032 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
3033 QT = LIT->getType();
3034 DI = LIT->getTypeSourceInfo();
3035 }
3036
3037 if (TInfo) *TInfo = DI;
3038 return QT;
3039}
3040
3041static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3042 Qualifiers::ObjCLifetime ownership,
3043 unsigned chunkIndex);
3044
3045/// Given that this is the declaration of a parameter under ARC,
3046/// attempt to infer attributes and such for pointer-to-whatever
3047/// types.
3048static void inferARCWriteback(TypeProcessingState &state,
3049 QualType &declSpecType) {
3050 Sema &S = state.getSema();
3051 Declarator &declarator = state.getDeclarator();
3052
3053 // TODO: should we care about decl qualifiers?
3054
3055 // Check whether the declarator has the expected form. We walk
3056 // from the inside out in order to make the block logic work.
3057 unsigned outermostPointerIndex = 0;
3058 bool isBlockPointer = false;
3059 unsigned numPointers = 0;
3060 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3061 unsigned chunkIndex = i;
3062 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
3063 switch (chunk.Kind) {
3064 case DeclaratorChunk::Paren:
3065 // Ignore parens.
3066 break;
3067
3068 case DeclaratorChunk::Reference:
3069 case DeclaratorChunk::Pointer:
3070 // Count the number of pointers. Treat references
3071 // interchangeably as pointers; if they're mis-ordered, normal
3072 // type building will discover that.
3073 outermostPointerIndex = chunkIndex;
3074 numPointers++;
3075 break;
3076
3077 case DeclaratorChunk::BlockPointer:
3078 // If we have a pointer to block pointer, that's an acceptable
3079 // indirect reference; anything else is not an application of
3080 // the rules.
3081 if (numPointers != 1) return;
3082 numPointers++;
3083 outermostPointerIndex = chunkIndex;
3084 isBlockPointer = true;
3085
3086 // We don't care about pointer structure in return values here.
3087 goto done;
3088
3089 case DeclaratorChunk::Array: // suppress if written (id[])?
3090 case DeclaratorChunk::Function:
3091 case DeclaratorChunk::MemberPointer:
3092 case DeclaratorChunk::Pipe:
3093 return;
3094 }
3095 }
3096 done:
3097
3098 // If we have *one* pointer, then we want to throw the qualifier on
3099 // the declaration-specifiers, which means that it needs to be a
3100 // retainable object type.
3101 if (numPointers == 1) {
3102 // If it's not a retainable object type, the rule doesn't apply.
3103 if (!declSpecType->isObjCRetainableType()) return;
3104
3105 // If it already has lifetime, don't do anything.
3106 if (declSpecType.getObjCLifetime()) return;
3107
3108 // Otherwise, modify the type in-place.
3109 Qualifiers qs;
3110
3111 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3112 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3113 else
3114 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3115 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3116
3117 // If we have *two* pointers, then we want to throw the qualifier on
3118 // the outermost pointer.
3119 } else if (numPointers == 2) {
3120 // If we don't have a block pointer, we need to check whether the
3121 // declaration-specifiers gave us something that will turn into a
3122 // retainable object pointer after we slap the first pointer on it.
3123 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3124 return;
3125
3126 // Look for an explicit lifetime attribute there.
3127 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3128 if (chunk.Kind != DeclaratorChunk::Pointer &&
3129 chunk.Kind != DeclaratorChunk::BlockPointer)
3130 return;
3131 for (const ParsedAttr &AL : chunk.getAttrs())
3132 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3133 return;
3134
3135 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3136 outermostPointerIndex);
3137
3138 // Any other number of pointers/references does not trigger the rule.
3139 } else return;
3140
3141 // TODO: mark whether we did this inference?
3142}
3143
3144void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3145 SourceLocation FallbackLoc,
3146 SourceLocation ConstQualLoc,
3147 SourceLocation VolatileQualLoc,
3148 SourceLocation RestrictQualLoc,
3149 SourceLocation AtomicQualLoc,
3150 SourceLocation UnalignedQualLoc) {
3151 if (!Quals)
3152 return;
3153
3154 struct Qual {
3155 const char *Name;
3156 unsigned Mask;
3157 SourceLocation Loc;
3158 } const QualKinds[5] = {
3159 { "const", DeclSpec::TQ_const, ConstQualLoc },
3160 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3161 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3162 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3163 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3164 };
3165
3166 SmallString<32> QualStr;
3167 unsigned NumQuals = 0;
3168 SourceLocation Loc;
3169 FixItHint FixIts[5];
3170
3171 // Build a string naming the redundant qualifiers.
3172 for (auto &E : QualKinds) {
3173 if (Quals & E.Mask) {
3174 if (!QualStr.empty()) QualStr += ' ';
3175 QualStr += E.Name;
3176
3177 // If we have a location for the qualifier, offer a fixit.
3178 SourceLocation QualLoc = E.Loc;
3179 if (QualLoc.isValid()) {
3180 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3181 if (Loc.isInvalid() ||
3182 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3183 Loc = QualLoc;
3184 }
3185
3186 ++NumQuals;
3187 }
3188 }
3189
3190 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3191 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3192}
3193
3194// Diagnose pointless type qualifiers on the return type of a function.
3195static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3196 Declarator &D,
3197 unsigned FunctionChunkIndex) {
3198 const DeclaratorChunk::FunctionTypeInfo &FTI =
3199 D.getTypeObject(FunctionChunkIndex).Fun;
3200 if (FTI.hasTrailingReturnType()) {
3201 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3202 RetTy.getLocalCVRQualifiers(),
3203 FTI.getTrailingReturnTypeLoc());
3204 return;
3205 }
3206
3207 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3208 End = D.getNumTypeObjects();
3209 OuterChunkIndex != End; ++OuterChunkIndex) {
3210 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3211 switch (OuterChunk.Kind) {
3212 case DeclaratorChunk::Paren:
3213 continue;
3214
3215 case DeclaratorChunk::Pointer: {
3216 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3217 S.diagnoseIgnoredQualifiers(
3218 diag::warn_qual_return_type,
3219 PTI.TypeQuals,
3220 SourceLocation(),
3221 PTI.ConstQualLoc,
3222 PTI.VolatileQualLoc,
3223 PTI.RestrictQualLoc,
3224 PTI.AtomicQualLoc,
3225 PTI.UnalignedQualLoc);
3226 return;
3227 }
3228
3229 case DeclaratorChunk::Function:
3230 case DeclaratorChunk::BlockPointer:
3231 case DeclaratorChunk::Reference:
3232 case DeclaratorChunk::Array:
3233 case DeclaratorChunk::MemberPointer:
3234 case DeclaratorChunk::Pipe:
3235 // FIXME: We can't currently provide an accurate source location and a
3236 // fix-it hint for these.
3237 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3238 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3239 RetTy.getCVRQualifiers() | AtomicQual,
3240 D.getIdentifierLoc());
3241 return;
3242 }
3243
3244 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "clang/lib/Sema/SemaType.cpp", 3244)
;
3245 }
3246
3247 // If the qualifiers come from a conversion function type, don't diagnose
3248 // them -- they're not necessarily redundant, since such a conversion
3249 // operator can be explicitly called as "x.operator const int()".
3250 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3251 return;
3252
3253 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3254 // which are present there.
3255 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3256 D.getDeclSpec().getTypeQualifiers(),
3257 D.getIdentifierLoc(),
3258 D.getDeclSpec().getConstSpecLoc(),
3259 D.getDeclSpec().getVolatileSpecLoc(),
3260 D.getDeclSpec().getRestrictSpecLoc(),
3261 D.getDeclSpec().getAtomicSpecLoc(),
3262 D.getDeclSpec().getUnalignedSpecLoc());
3263}
3264
3265static std::pair<QualType, TypeSourceInfo *>
3266InventTemplateParameter(TypeProcessingState &state, QualType T,
3267 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3268 InventedTemplateParameterInfo &Info) {
3269 Sema &S = state.getSema();
3270 Declarator &D = state.getDeclarator();
3271
3272 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3273 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3274 const bool IsParameterPack = D.hasEllipsis();
3275
3276 // If auto is mentioned in a lambda parameter or abbreviated function
3277 // template context, convert it to a template parameter type.
3278
3279 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3280 // template parameter type. Template parameters are temporarily added
3281 // to the TU until the associated TemplateDecl is created.
3282 TemplateTypeParmDecl *InventedTemplateParam =
3283 TemplateTypeParmDecl::Create(
3284 S.Context, S.Context.getTranslationUnitDecl(),
3285 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3286 /*NameLoc=*/D.getIdentifierLoc(),
3287 TemplateParameterDepth, AutoParameterPosition,
3288 S.InventAbbreviatedTemplateParameterTypeName(
3289 D.getIdentifier(), AutoParameterPosition), false,
3290 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3291 InventedTemplateParam->setImplicit();
3292 Info.TemplateParams.push_back(InventedTemplateParam);
3293
3294 // Attach type constraints to the new parameter.
3295 if (Auto->isConstrained()) {
3296 if (TrailingTSI) {
3297 // The 'auto' appears in a trailing return type we've already built;
3298 // extract its type constraints to attach to the template parameter.
3299 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3300 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3301 bool Invalid = false;
3302 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3303 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3304 S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3305 Sema::UPPC_TypeConstraint))
3306 Invalid = true;
3307 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3308 }
3309
3310 if (!Invalid) {
3311 S.AttachTypeConstraint(
3312 AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3313 AutoLoc.getNamedConcept(),
3314 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3315 InventedTemplateParam, D.getEllipsisLoc());
3316 }
3317 } else {
3318 // The 'auto' appears in the decl-specifiers; we've not finished forming
3319 // TypeSourceInfo for it yet.
3320 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3321 TemplateArgumentListInfo TemplateArgsInfo;
3322 bool Invalid = false;
3323 if (TemplateId->LAngleLoc.isValid()) {
3324 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3325 TemplateId->NumArgs);
3326 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3327
3328 if (D.getEllipsisLoc().isInvalid()) {
3329 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3330 if (S.DiagnoseUnexpandedParameterPack(Arg,
3331 Sema::UPPC_TypeConstraint)) {
3332 Invalid = true;
3333 break;
3334 }
3335 }
3336 }
3337 }
3338 if (!Invalid) {
3339 S.AttachTypeConstraint(
3340 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3341 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3342 TemplateId->TemplateNameLoc),
3343 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3344 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3345 InventedTemplateParam, D.getEllipsisLoc());
3346 }
3347 }
3348 }
3349
3350 // Replace the 'auto' in the function parameter with this invented
3351 // template type parameter.
3352 // FIXME: Retain some type sugar to indicate that this was written
3353 // as 'auto'?
3354 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3355 QualType NewT = state.ReplaceAutoType(T, Replacement);
3356 TypeSourceInfo *NewTSI =
3357 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3358 : nullptr;
3359 return {NewT, NewTSI};
3360}
3361
3362static TypeSourceInfo *
3363GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3364 QualType T, TypeSourceInfo *ReturnTypeInfo);
3365
3366static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3367 TypeSourceInfo *&ReturnTypeInfo) {
3368 Sema &SemaRef = state.getSema();
3369 Declarator &D = state.getDeclarator();
3370 QualType T;
3371 ReturnTypeInfo = nullptr;
3372
3373 // The TagDecl owned by the DeclSpec.
3374 TagDecl *OwnedTagDecl = nullptr;
3375
3376 switch (D.getName().getKind()) {
3377 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3378 case UnqualifiedIdKind::IK_OperatorFunctionId:
3379 case UnqualifiedIdKind::IK_Identifier:
3380 case UnqualifiedIdKind::IK_LiteralOperatorId:
3381 case UnqualifiedIdKind::IK_TemplateId:
3382 T = ConvertDeclSpecToType(state);
3383
3384 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3385 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3386 // Owned declaration is embedded in declarator.
3387 OwnedTagDecl->setEmbeddedInDeclarator(true);
3388 }
3389 break;
3390
3391 case UnqualifiedIdKind::IK_ConstructorName:
3392 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3393 case UnqualifiedIdKind::IK_DestructorName:
3394 // Constructors and destructors don't have return types. Use
3395 // "void" instead.
3396 T = SemaRef.Context.VoidTy;
3397 processTypeAttrs(state, T, TAL_DeclSpec,
3398 D.getMutableDeclSpec().getAttributes());
3399 break;
3400
3401 case UnqualifiedIdKind::IK_DeductionGuideName:
3402 // Deduction guides have a trailing return type and no type in their
3403 // decl-specifier sequence. Use a placeholder return type for now.
3404 T = SemaRef.Context.DependentTy;
3405 break;
3406
3407 case UnqualifiedIdKind::IK_ConversionFunctionId:
3408 // The result type of a conversion function is the type that it
3409 // converts to.
3410 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3411 &ReturnTypeInfo);
3412 break;
3413 }
3414
3415 if (!D.getAttributes().empty())
3416 distributeTypeAttrsFromDeclarator(state, T);
3417
3418 // Find the deduced type in this type. Look in the trailing return type if we
3419 // have one, otherwise in the DeclSpec type.
3420 // FIXME: The standard wording doesn't currently describe this.
3421 DeducedType *Deduced = T->getContainedDeducedType();
3422 bool DeducedIsTrailingReturnType = false;
3423 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3424 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3425 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3426 DeducedIsTrailingReturnType = true;
3427 }
3428
3429 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3430 if (Deduced) {
3431 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3432 int Error = -1;
3433
3434 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3435 // class template argument deduction)?
3436 bool IsCXXAutoType =
3437 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3438 bool IsDeducedReturnType = false;
3439
3440 switch (D.getContext()) {
3441 case DeclaratorContext::LambdaExpr:
3442 // Declared return type of a lambda-declarator is implicit and is always
3443 // 'auto'.
3444 break;
3445 case DeclaratorContext::ObjCParameter:
3446 case DeclaratorContext::ObjCResult:
3447 Error = 0;
3448 break;
3449 case DeclaratorContext::RequiresExpr:
3450 Error = 22;
3451 break;
3452 case DeclaratorContext::Prototype:
3453 case DeclaratorContext::LambdaExprParameter: {
3454 InventedTemplateParameterInfo *Info = nullptr;
3455 if (D.getContext() == DeclaratorContext::Prototype) {
3456 // With concepts we allow 'auto' in function parameters.
3457 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3458 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3459 Error = 0;
3460 break;
3461 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3462 Error = 21;
3463 break;
3464 }
3465
3466 Info = &SemaRef.InventedParameterInfos.back();
3467 } else {
3468 // In C++14, generic lambdas allow 'auto' in their parameters.
3469 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3470 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3471 Error = 16;
3472 break;
3473 }
3474 Info = SemaRef.getCurLambda();
3475 assert(Info && "No LambdaScopeInfo on the stack!")(static_cast <bool> (Info && "No LambdaScopeInfo on the stack!"
) ? void (0) : __assert_fail ("Info && \"No LambdaScopeInfo on the stack!\""
, "clang/lib/Sema/SemaType.cpp", 3475, __extension__ __PRETTY_FUNCTION__
))
;
3476 }
3477
3478 // We'll deal with inventing template parameters for 'auto' in trailing
3479 // return types when we pick up the trailing return type when processing
3480 // the function chunk.
3481 if (!DeducedIsTrailingReturnType)
3482 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3483 break;
3484 }
3485 case DeclaratorContext::Member: {
3486 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3487 D.isFunctionDeclarator())
3488 break;
3489 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3490 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3491 Error = 6; // Interface member.
3492 } else {
3493 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3494 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "clang/lib/Sema/SemaType.cpp"
, 3494)
;
3495 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3496 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3497 case TTK_Class: Error = 5; /* Class member */ break;
3498 case TTK_Interface: Error = 6; /* Interface member */ break;
3499 }
3500 }
3501 if (D.getDeclSpec().isFriendSpecified())
3502 Error = 20; // Friend type
3503 break;
3504 }
3505 case DeclaratorContext::CXXCatch:
3506 case DeclaratorContext::ObjCCatch:
3507 Error = 7; // Exception declaration
3508 break;
3509 case DeclaratorContext::TemplateParam:
3510 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3511 !SemaRef.getLangOpts().CPlusPlus20)
3512 Error = 19; // Template parameter (until C++20)
3513 else if (!SemaRef.getLangOpts().CPlusPlus17)
3514 Error = 8; // Template parameter (until C++17)
3515 break;
3516 case DeclaratorContext::BlockLiteral:
3517 Error = 9; // Block literal
3518 break;
3519 case DeclaratorContext::TemplateArg:
3520 // Within a template argument list, a deduced template specialization
3521 // type will be reinterpreted as a template template argument.
3522 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3523 !D.getNumTypeObjects() &&
3524 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3525 break;
3526 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3527 case DeclaratorContext::TemplateTypeArg:
3528 Error = 10; // Template type argument
3529 break;
3530 case DeclaratorContext::AliasDecl:
3531 case DeclaratorContext::AliasTemplate:
3532 Error = 12; // Type alias
3533 break;
3534 case DeclaratorContext::TrailingReturn:
3535 case DeclaratorContext::TrailingReturnVar:
3536 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3537 Error = 13; // Function return type
3538 IsDeducedReturnType = true;
3539 break;
3540 case DeclaratorContext::ConversionId:
3541 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3542 Error = 14; // conversion-type-id
3543 IsDeducedReturnType = true;
3544 break;
3545 case DeclaratorContext::FunctionalCast:
3546 if (isa<DeducedTemplateSpecializationType>(Deduced))
3547 break;
3548 if (SemaRef.getLangOpts().CPlusPlus2b && IsCXXAutoType &&
3549 !Auto->isDecltypeAuto())
3550 break; // auto(x)
3551 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3552 case DeclaratorContext::TypeName:
3553 Error = 15; // Generic
3554 break;
3555 case DeclaratorContext::File:
3556 case DeclaratorContext::Block:
3557 case DeclaratorContext::ForInit:
3558 case DeclaratorContext::SelectionInit:
3559 case DeclaratorContext::Condition:
3560 // FIXME: P0091R3 (erroneously) does not permit class template argument
3561 // deduction in conditions, for-init-statements, and other declarations
3562 // that are not simple-declarations.
3563 break;
3564 case DeclaratorContext::CXXNew:
3565 // FIXME: P0091R3 does not permit class template argument deduction here,
3566 // but we follow GCC and allow it anyway.
3567 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3568 Error = 17; // 'new' type
3569 break;
3570 case DeclaratorContext::KNRTypeList:
3571 Error = 18; // K&R function parameter
3572 break;
3573 }
3574
3575 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3576 Error = 11;
3577
3578 // In Objective-C it is an error to use 'auto' on a function declarator
3579 // (and everywhere for '__auto_type').
3580 if (D.isFunctionDeclarator() &&
3581 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3582 Error = 13;
3583
3584 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3585 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3586 AutoRange = D.getName().getSourceRange();
3587
3588 if (Error != -1) {
3589 unsigned Kind;
3590 if (Auto) {
3591 switch (Auto->getKeyword()) {
3592 case AutoTypeKeyword::Auto: Kind = 0; break;
3593 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3594 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3595 }
3596 } else {
3597 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&(static_cast <bool> (isa<DeducedTemplateSpecializationType
>(Deduced) && "unknown auto type") ? void (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "clang/lib/Sema/SemaType.cpp", 3598, __extension__ __PRETTY_FUNCTION__
))
3598 "unknown auto type")(static_cast <bool> (isa<DeducedTemplateSpecializationType
>(Deduced) && "unknown auto type") ? void (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "clang/lib/Sema/SemaType.cpp", 3598, __extension__ __PRETTY_FUNCTION__
))
;
3599 Kind = 3;
3600 }
3601
3602 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3603 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3604
3605 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3606 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3607 << QualType(Deduced, 0) << AutoRange;
3608 if (auto *TD = TN.getAsTemplateDecl())
3609 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3610
3611 T = SemaRef.Context.IntTy;
3612 D.setInvalidType(true);
3613 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3614 // If there was a trailing return type, we already got
3615 // warn_cxx98_compat_trailing_return_type in the parser.
3616 SemaRef.Diag(AutoRange.getBegin(),
3617 D.getContext() == DeclaratorContext::LambdaExprParameter
3618 ? diag::warn_cxx11_compat_generic_lambda
3619 : IsDeducedReturnType
3620 ? diag::warn_cxx11_compat_deduced_return_type
3621 : diag::warn_cxx98_compat_auto_type_specifier)
3622 << AutoRange;
3623 }
3624 }
3625
3626 if (SemaRef.getLangOpts().CPlusPlus &&
3627 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3628 // Check the contexts where C++ forbids the declaration of a new class
3629 // or enumeration in a type-specifier-seq.
3630 unsigned DiagID = 0;
3631 switch (D.getContext()) {
3632 case DeclaratorContext::TrailingReturn:
3633 case DeclaratorContext::TrailingReturnVar:
3634 // Class and enumeration definitions are syntactically not allowed in
3635 // trailing return types.
3636 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "clang/lib/Sema/SemaType.cpp", 3636)
;
3637 break;
3638 case DeclaratorContext::File:
3639 case DeclaratorContext::Member:
3640 case DeclaratorContext::Block:
3641 case DeclaratorContext::ForInit:
3642 case DeclaratorContext::SelectionInit:
3643 case DeclaratorContext::BlockLiteral:
3644 case DeclaratorContext::LambdaExpr:
3645 // C++11 [dcl.type]p3:
3646 // A type-specifier-seq shall not define a class or enumeration unless
3647 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3648 // the declaration of a template-declaration.
3649 case DeclaratorContext::AliasDecl:
3650 break;
3651 case DeclaratorContext::AliasTemplate:
3652 DiagID = diag::err_type_defined_in_alias_template;
3653 break;
3654 case DeclaratorContext::TypeName:
3655 case DeclaratorContext::FunctionalCast:
3656 case DeclaratorContext::ConversionId:
3657 case DeclaratorContext::TemplateParam:
3658 case DeclaratorContext::CXXNew:
3659 case DeclaratorContext::CXXCatch:
3660 case DeclaratorContext::ObjCCatch:
3661 case DeclaratorContext::TemplateArg:
3662 case DeclaratorContext::TemplateTypeArg:
3663 DiagID = diag::err_type_defined_in_type_specifier;
3664 break;
3665 case DeclaratorContext::Prototype:
3666 case DeclaratorContext::LambdaExprParameter:
3667 case DeclaratorContext::ObjCParameter:
3668 case DeclaratorContext::ObjCResult:
3669 case DeclaratorContext::KNRTypeList:
3670 case DeclaratorContext::RequiresExpr:
3671 // C++ [dcl.fct]p6:
3672 // Types shall not be defined in return or parameter types.
3673 DiagID = diag::err_type_defined_in_param_type;
3674 break;
3675 case DeclaratorContext::Condition:
3676 // C++ 6.4p2:
3677 // The type-specifier-seq shall not contain typedef and shall not declare
3678 // a new class or enumeration.
3679 DiagID = diag::err_type_defined_in_condition;
3680 break;
3681 }
3682
3683 if (DiagID != 0) {
3684 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3685 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3686 D.setInvalidType(true);
3687 }
3688 }
3689
3690 assert(!T.isNull() && "This function should not return a null type")(static_cast <bool> (!T.isNull() && "This function should not return a null type"
) ? void (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "clang/lib/Sema/SemaType.cpp", 3690, __extension__ __PRETTY_FUNCTION__
))
;
3691 return T;
3692}
3693
3694/// Produce an appropriate diagnostic for an ambiguity between a function
3695/// declarator and a C++ direct-initializer.
3696static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3697 DeclaratorChunk &DeclType, QualType RT) {
3698 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3699 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")(static_cast <bool> (FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? void (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "clang/lib/Sema/SemaType.cpp", 3699, __extension__ __PRETTY_FUNCTION__
))
;
3700
3701 // If the return type is void there is no ambiguity.
3702 if (RT->isVoidType())
3703 return;
3704
3705 // An initializer for a non-class type can have at most one argument.
3706 if (!RT->isRecordType() && FTI.NumParams > 1)
3707 return;
3708
3709 // An initializer for a reference must have exactly one argument.
3710 if (RT->isReferenceType() && FTI.NumParams != 1)
3711 return;
3712
3713 // Only warn if this declarator is declaring a function at block scope, and
3714 // doesn't have a storage class (such as 'extern') specified.
3715 if (!D.isFunctionDeclarator() ||
3716 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3717 !S.CurContext->isFunctionOrMethod() ||
3718 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3719 return;
3720
3721 // Inside a condition, a direct initializer is not permitted. We allow one to
3722 // be parsed in order to give better diagnostics in condition parsing.
3723 if (D.getContext() == DeclaratorContext::Condition)
3724 return;
3725
3726 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3727
3728 S.Diag(DeclType.Loc,
3729 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3730 : diag::warn_empty_parens_are_function_decl)
3731 << ParenRange;
3732
3733 // If the declaration looks like:
3734 // T var1,
3735 // f();
3736 // and name lookup finds a function named 'f', then the ',' was
3737 // probably intended to be a ';'.
3738 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3739 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3740 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3741 if (Comma.getFileID() != Name.getFileID() ||
3742 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3743 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3744 Sema::LookupOrdinaryName);
3745 if (S.LookupName(Result, S.getCurScope()))
3746 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3747 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3748 << D.getIdentifier();
3749 Result.suppressDiagnostics();
3750 }
3751 }
3752
3753 if (FTI.NumParams > 0) {
3754 // For a declaration with parameters, eg. "T var(T());", suggest adding
3755 // parens around the first parameter to turn the declaration into a
3756 // variable declaration.
3757 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3758 SourceLocation B = Range.getBegin();
3759 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3760 // FIXME: Maybe we should suggest adding braces instead of parens
3761 // in C++11 for classes that don't have an initializer_list constructor.
3762 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3763 << FixItHint::CreateInsertion(B, "(")
3764 << FixItHint::CreateInsertion(E, ")");
3765 } else {
3766 // For a declaration without parameters, eg. "T var();", suggest replacing
3767 // the parens with an initializer to turn the declaration into a variable
3768 // declaration.
3769 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3770
3771 // Empty parens mean value-initialization, and no parens mean
3772 // default initialization. These are equivalent if the default
3773 // constructor is user-provided or if zero-initialization is a
3774 // no-op.
3775 if (RD && RD->hasDefinition() &&
3776 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3777 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3778 << FixItHint::CreateRemoval(ParenRange);
3779 else {
3780 std::string Init =
3781 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3782 if (Init.empty() && S.LangOpts.CPlusPlus11)
3783 Init = "{}";
3784 if (!Init.empty())
3785 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3786 << FixItHint::CreateReplacement(ParenRange, Init);
3787 }
3788 }
3789}
3790
3791/// Produce an appropriate diagnostic for a declarator with top-level
3792/// parentheses.
3793static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3794 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3795 assert(Paren.Kind == DeclaratorChunk::Paren &&(static_cast <bool> (Paren.Kind == DeclaratorChunk::Paren
&& "do not have redundant top-level parentheses") ? void
(0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "clang/lib/Sema/SemaType.cpp", 3796, __extension__ __PRETTY_FUNCTION__
))
3796 "do not have redundant top-level parentheses")(static_cast <bool> (Paren.Kind == DeclaratorChunk::Paren
&& "do not have redundant top-level parentheses") ? void
(0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "clang/lib/Sema/SemaType.cpp", 3796, __extension__ __PRETTY_FUNCTION__
))
;
3797
3798 // This is a syntactic check; we're not interested in cases that arise
3799 // during template instantiation.
3800 if (S.inTemplateInstantiation())
3801 return;
3802
3803 // Check whether this could be intended to be a construction of a temporary
3804 // object in C++ via a function-style cast.
3805 bool CouldBeTemporaryObject =
3806 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3807 !D.isInvalidType() && D.getIdentifier() &&
3808 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3809 (T->isRecordType() || T->isDependentType()) &&
3810 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3811
3812 bool StartsWithDeclaratorId = true;
3813 for (auto &C : D.type_objects()) {
3814 switch (C.Kind) {
3815 case DeclaratorChunk::Paren:
3816 if (&C == &Paren)
3817 continue;
3818 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3819 case DeclaratorChunk::Pointer:
3820 StartsWithDeclaratorId = false;
3821 continue;
3822
3823 case DeclaratorChunk::Array:
3824 if (!C.Arr.NumElts)
3825 CouldBeTemporaryObject = false;
3826 continue;
3827
3828 case DeclaratorChunk::Reference:
3829 // FIXME: Suppress the warning here if there is no initializer; we're
3830 // going to give an error anyway.
3831 // We assume that something like 'T (&x) = y;' is highly likely to not
3832 // be intended to be a temporary object.
3833 CouldBeTemporaryObject = false;
3834 StartsWithDeclaratorId = false;
3835 continue;
3836
3837 case DeclaratorChunk::Function:
3838 // In a new-type-id, function chunks require parentheses.
3839 if (D.getContext() == DeclaratorContext::CXXNew)
3840 return;
3841 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3842 // redundant-parens warning, but we don't know whether the function
3843 // chunk was syntactically valid as an expression here.
3844 CouldBeTemporaryObject = false;
3845 continue;
3846
3847 case DeclaratorChunk::BlockPointer:
3848 case DeclaratorChunk::MemberPointer:
3849 case DeclaratorChunk::Pipe:
3850 // These cannot appear in expressions.
3851 CouldBeTemporaryObject = false;
3852 StartsWithDeclaratorId = false;
3853 continue;
3854 }
3855 }
3856
3857 // FIXME: If there is an initializer, assume that this is not intended to be
3858 // a construction of a temporary object.
3859
3860 // Check whether the name has already been declared; if not, this is not a
3861 // function-style cast.
3862 if (CouldBeTemporaryObject) {
3863 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3864 Sema::LookupOrdinaryName);
3865 if (!S.LookupName(Result, S.getCurScope()))
3866 CouldBeTemporaryObject = false;
3867 Result.suppressDiagnostics();
3868 }
3869
3870 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3871
3872 if (!CouldBeTemporaryObject) {
3873 // If we have A (::B), the parentheses affect the meaning of the program.
3874 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3875 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3876 // formally unambiguous.
3877 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3878 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3879 NNS = NNS->getPrefix()) {
3880 if (NNS->getKind() == NestedNameSpecifier::Global)
3881 return;
3882 }
3883 }
3884
3885 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3886 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3887 << FixItHint::CreateRemoval(Paren.EndLoc);
3888 return;
3889 }
3890
3891 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3892 << ParenRange << D.getIdentifier();
3893 auto *RD = T->getAsCXXRecordDecl();
3894 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3895 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3896 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3897 << D.getIdentifier();
3898 // FIXME: A cast to void is probably a better suggestion in cases where it's
3899 // valid (when there is no initializer and we're not in a condition).
3900 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3901 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3902 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3903 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3904 << FixItHint::CreateRemoval(Paren.Loc)
3905 << FixItHint::CreateRemoval(Paren.EndLoc);
3906}
3907
3908/// Helper for figuring out the default CC for a function declarator type. If
3909/// this is the outermost chunk, then we can determine the CC from the
3910/// declarator context. If not, then this could be either a member function
3911/// type or normal function type.
3912static CallingConv getCCForDeclaratorChunk(
3913 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3914 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3915 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)(static_cast <bool> (D.getTypeObject(ChunkIndex).Kind ==
DeclaratorChunk::Function) ? void (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "clang/lib/Sema/SemaType.cpp", 3915, __extension__ __PRETTY_FUNCTION__
))
;
3916
3917 // Check for an explicit CC attribute.
3918 for (const ParsedAttr &AL : AttrList) {
3919 switch (AL.getKind()) {
3920 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
: {
3921 // Ignore attributes that don't validate or can't apply to the
3922 // function type. We'll diagnose the failure to apply them in
3923 // handleFunctionTypeAttr.
3924 CallingConv CC;
3925 if (!S.CheckCallingConvAttr(AL, CC) &&
3926 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3927 return CC;
3928 }
3929 break;
3930 }
3931
3932 default:
3933 break;
3934 }
3935 }
3936
3937 bool IsCXXInstanceMethod = false;
3938
3939 if (S.getLangOpts().CPlusPlus) {
3940 // Look inwards through parentheses to see if this chunk will form a
3941 // member pointer type or if we're the declarator. Any type attributes
3942 // between here and there will override the CC we choose here.
3943 unsigned I = ChunkIndex;
3944 bool FoundNonParen = false;
3945 while (I && !FoundNonParen) {
3946 --I;
3947 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3948 FoundNonParen = true;
3949 }
3950
3951 if (FoundNonParen) {
3952 // If we're not the declarator, we're a regular function type unless we're
3953 // in a member pointer.
3954 IsCXXInstanceMethod =
3955 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3956 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3957 // This can only be a call operator for a lambda, which is an instance
3958 // method.
3959 IsCXXInstanceMethod = true;
3960 } else {
3961 // We're the innermost decl chunk, so must be a function declarator.
3962 assert(D.isFunctionDeclarator())(static_cast <bool> (D.isFunctionDeclarator()) ? void (
0) : __assert_fail ("D.isFunctionDeclarator()", "clang/lib/Sema/SemaType.cpp"
, 3962, __extension__ __PRETTY_FUNCTION__))
;
3963
3964 // If we're inside a record, we're declaring a method, but it could be
3965 // explicitly or implicitly static.
3966 IsCXXInstanceMethod =
3967 D.isFirstDeclarationOfMember() &&
3968 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3969 !D.isStaticMember();
3970 }
3971 }
3972
3973 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3974 IsCXXInstanceMethod);
3975
3976 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3977 // and AMDGPU targets, hence it cannot be treated as a calling
3978 // convention attribute. This is the simplest place to infer
3979 // calling convention for OpenCL kernels.
3980 if (S.getLangOpts().OpenCL) {
3981 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3982 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3983 CC = CC_OpenCLKernel;
3984 break;
3985 }
3986 }
3987 } else if (S.getLangOpts().CUDA) {
3988 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
3989 // sure the kernels will be marked with the right calling convention so that
3990 // they will be visible by the APIs that ingest SPIR-V.
3991 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3992 if (Triple.getArch() == llvm::Triple::spirv32 ||
3993 Triple.getArch() == llvm::Triple::spirv64) {
3994 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3995 if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3996 CC = CC_OpenCLKernel;
3997 break;
3998 }
3999 }
4000 }
4001 }
4002
4003 return CC;
4004}
4005
4006namespace {
4007 /// A simple notion of pointer kinds, which matches up with the various
4008 /// pointer declarators.
4009 enum class SimplePointerKind {
4010 Pointer,
4011 BlockPointer,
4012 MemberPointer,
4013 Array,
4014 };
4015} // end anonymous namespace
4016
4017IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
4018 switch (nullability) {
4019 case NullabilityKind::NonNull:
4020 if (!Ident__Nonnull)
4021 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
4022 return Ident__Nonnull;
4023
4024 case NullabilityKind::Nullable:
4025 if (!Ident__Nullable)
4026 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
4027 return Ident__Nullable;
4028
4029 case NullabilityKind::NullableResult:
4030 if (!Ident__Nullable_result)
4031 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
4032 return Ident__Nullable_result;
4033
4034 case NullabilityKind::Unspecified:
4035 if (!Ident__Null_unspecified)
4036 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
4037 return Ident__Null_unspecified;
4038 }
4039 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/lib/Sema/SemaType.cpp", 4039)
;
4040}
4041
4042/// Retrieve the identifier "NSError".
4043IdentifierInfo *Sema::getNSErrorIdent() {
4044 if (!Ident_NSError)
4045 Ident_NSError = PP.getIdentifierInfo("NSError");
4046
4047 return Ident_NSError;
4048}
4049
4050/// Check whether there is a nullability attribute of any kind in the given
4051/// attribute list.
4052static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
4053 for (const ParsedAttr &AL : attrs) {
4054 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
4055 AL.getKind() == ParsedAttr::AT_TypeNullable ||
4056 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
4057 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
4058 return true;
4059 }
4060
4061 return false;
4062}
4063
4064namespace {
4065 /// Describes the kind of a pointer a declarator describes.
4066 enum class PointerDeclaratorKind {
4067 // Not a pointer.
4068 NonPointer,
4069 // Single-level pointer.
4070 SingleLevelPointer,
4071 // Multi-level pointer (of any pointer kind).
4072 MultiLevelPointer,
4073 // CFFooRef*
4074 MaybePointerToCFRef,
4075 // CFErrorRef*
4076 CFErrorRefPointer,
4077 // NSError**
4078 NSErrorPointerPointer,
4079 };
4080
4081 /// Describes a declarator chunk wrapping a pointer that marks inference as
4082 /// unexpected.
4083 // These values must be kept in sync with diagnostics.
4084 enum class PointerWrappingDeclaratorKind {
4085 /// Pointer is top-level.
4086 None = -1,
4087 /// Pointer is an array element.
4088 Array = 0,
4089 /// Pointer is the referent type of a C++ reference.
4090 Reference = 1
4091 };
4092} // end anonymous namespace
4093
4094/// Classify the given declarator, whose type-specified is \c type, based on
4095/// what kind of pointer it refers to.
4096///
4097/// This is used to determine the default nullability.
4098static PointerDeclaratorKind
4099classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4100 PointerWrappingDeclaratorKind &wrappingKind) {
4101 unsigned numNormalPointers = 0;
4102
4103 // For any dependent type, we consider it a non-pointer.
4104 if (type->isDependentType())
4105 return PointerDeclaratorKind::NonPointer;
4106
4107 // Look through the declarator chunks to identify pointers.
4108 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4109 DeclaratorChunk &chunk = declarator.getTypeObject(i);
4110 switch (chunk.Kind) {
4111 case DeclaratorChunk::Array:
4112 if (numNormalPointers == 0)
4113 wrappingKind = PointerWrappingDeclaratorKind::Array;
4114 break;
4115
4116 case DeclaratorChunk::Function:
4117 case DeclaratorChunk::Pipe:
4118 break;
4119
4120 case DeclaratorChunk::BlockPointer:
4121 case DeclaratorChunk::MemberPointer:
4122 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4123 : PointerDeclaratorKind::SingleLevelPointer;
4124
4125 case DeclaratorChunk::Paren:
4126 break;
4127
4128 case DeclaratorChunk::Reference:
4129 if (numNormalPointers == 0)
4130 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4131 break;
4132
4133 case DeclaratorChunk::Pointer:
4134 ++numNormalPointers;
4135 if (numNormalPointers > 2)
4136 return PointerDeclaratorKind::MultiLevelPointer;
4137 break;
4138 }
4139 }
4140
4141 // Then, dig into the type specifier itself.
4142 unsigned numTypeSpecifierPointers = 0;
4143 do {
4144 // Decompose normal pointers.
4145 if (auto ptrType = type->getAs<PointerType>()) {
4146 ++numNormalPointers;
4147
4148 if (numNormalPointers > 2)
4149 return PointerDeclaratorKind::MultiLevelPointer;
4150
4151 type = ptrType->getPointeeType();
4152 ++numTypeSpecifierPointers;
4153 continue;
4154 }
4155
4156 // Decompose block pointers.
4157 if (type->getAs<BlockPointerType>()) {
4158 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4159 : PointerDeclaratorKind::SingleLevelPointer;
4160 }
4161
4162 // Decompose member pointers.
4163 if (type->getAs<MemberPointerType>()) {
4164 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4165 : PointerDeclaratorKind::SingleLevelPointer;
4166 }
4167
4168 // Look at Objective-C object pointers.
4169 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4170 ++numNormalPointers;
4171 ++numTypeSpecifierPointers;
4172
4173 // If this is NSError**, report that.
4174 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4175 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4176 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4177 return PointerDeclaratorKind::NSErrorPointerPointer;
4178 }
4179 }
4180
4181 break;
4182 }
4183
4184 // Look at Objective-C class types.
4185 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4186 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4187 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4188 return PointerDeclaratorKind::NSErrorPointerPointer;
4189 }
4190
4191 break;
4192 }
4193
4194 // If at this point we haven't seen a pointer, we won't see one.
4195 if (numNormalPointers == 0)
4196 return PointerDeclaratorKind::NonPointer;
4197
4198 if (auto recordType = type->getAs<RecordType>()) {
4199 RecordDecl *recordDecl = recordType->getDecl();
4200
4201 // If this is CFErrorRef*, report it as such.
4202 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4203 S.isCFError(recordDecl)) {
4204 return PointerDeclaratorKind::CFErrorRefPointer;
4205 }
4206 break;
4207 }
4208
4209 break;
4210 } while (true);
4211
4212 switch (numNormalPointers) {
4213 case 0:
4214 return PointerDeclaratorKind::NonPointer;
4215
4216 case 1:
4217 return PointerDeclaratorKind::SingleLevelPointer;
4218
4219 case 2:
4220 return PointerDeclaratorKind::MaybePointerToCFRef;
4221
4222 default:
4223 return PointerDeclaratorKind::MultiLevelPointer;
4224 }
4225}
4226
4227bool Sema::isCFError(RecordDecl *RD) {
4228 // If we already know about CFError, test it directly.
4229 if (CFError)
4230 return CFError == RD;
4231
4232 // Check whether this is CFError, which we identify based on its bridge to
4233 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4234 // declared with "objc_bridge_mutable", so look for either one of the two
4235 // attributes.
4236 if (RD->getTagKind() == TTK_Struct) {
4237 IdentifierInfo *bridgedType = nullptr;
4238 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4239 bridgedType = bridgeAttr->getBridgedType();
4240 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4241 bridgedType = bridgeAttr->getBridgedType();
4242
4243 if (bridgedType == getNSErrorIdent()) {
4244 CFError = RD;
4245 return true;
4246 }
4247 }
4248
4249 return false;
4250}
4251
4252static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4253 SourceLocation loc) {
4254 // If we're anywhere in a function, method, or closure context, don't perform
4255 // completeness checks.
4256 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4257 if (ctx->isFunctionOrMethod())
4258 return FileID();
4259
4260 if (ctx->isFileContext())
4261 break;
4262 }
4263
4264 // We only care about the expansion location.
4265 loc = S.SourceMgr.getExpansionLoc(loc);
4266 FileID file = S.SourceMgr.getFileID(loc);
4267 if (file.isInvalid())
4268 return FileID();
4269
4270 // Retrieve file information.
4271 bool invalid = false;
4272 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4273 if (invalid || !sloc.isFile())
4274 return FileID();
4275
4276 // We don't want to perform completeness checks on the main file or in
4277 // system headers.
4278 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4279 if (fileInfo.getIncludeLoc().isInvalid())
4280 return FileID();
4281 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4282 S.Diags.getSuppressSystemWarnings()) {
4283 return FileID();
4284 }
4285
4286 return file;
4287}
4288
4289/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4290/// taking into account whitespace before and after.
4291template <typename DiagBuilderT>
4292static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4293 SourceLocation PointerLoc,
4294 NullabilityKind Nullability) {
4295 assert(PointerLoc.isValid())(static_cast <bool> (PointerLoc.isValid()) ? void (0) :
__assert_fail ("PointerLoc.isValid()", "clang/lib/Sema/SemaType.cpp"
, 4295, __extension__ __PRETTY_FUNCTION__))
;
4296 if (PointerLoc.isMacroID())
4297 return;
4298
4299 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4300 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4301 return;
4302
4303 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4304 if (!NextChar)
4305 return;
4306
4307 SmallString<32> InsertionTextBuf{" "};
4308 InsertionTextBuf += getNullabilitySpelling(Nullability);
4309 InsertionTextBuf += " ";
4310 StringRef InsertionText = InsertionTextBuf.str();
4311
4312 if (isWhitespace(*NextChar)) {
4313 InsertionText = InsertionText.drop_back();
4314 } else if (NextChar[-1] == '[') {
4315 if (NextChar[0] == ']')
4316 InsertionText = InsertionText.drop_back().drop_front();
4317 else
4318 InsertionText = InsertionText.drop_front();
4319 } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4320 !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4321 InsertionText = InsertionText.drop_back().drop_front();
4322 }
4323
4324 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4325}
4326
4327static void emitNullabilityConsistencyWarning(Sema &S,
4328 SimplePointerKind PointerKind,
4329 SourceLocation PointerLoc,
4330 SourceLocation PointerEndLoc) {
4331 assert(PointerLoc.isValid())(static_cast <bool> (PointerLoc.isValid()) ? void (0) :
__assert_fail ("PointerLoc.isValid()", "clang/lib/Sema/SemaType.cpp"
, 4331, __extension__ __PRETTY_FUNCTION__))
;
4332
4333 if (PointerKind == SimplePointerKind::Array) {
4334 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4335 } else {
4336 S.Diag(PointerLoc, diag::warn_nullability_missing)
4337 << static_cast<unsigned>(PointerKind);
4338 }
4339
4340 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4341 if (FixItLoc.isMacroID())
4342 return;
4343
4344 auto addFixIt = [&](NullabilityKind Nullability) {
4345 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4346 Diag << static_cast<unsigned>(Nullability);
4347 Diag << static_cast<unsigned>(PointerKind);
4348 fixItNullability(S, Diag, FixItLoc, Nullability);
4349 };
4350 addFixIt(NullabilityKind::Nullable);
4351 addFixIt(NullabilityKind::NonNull);
4352}
4353
4354/// Complains about missing nullability if the file containing \p pointerLoc
4355/// has other uses of nullability (either the keywords or the \c assume_nonnull
4356/// pragma).
4357///
4358/// If the file has \e not seen other uses of nullability, this particular
4359/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4360static void
4361checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4362 SourceLocation pointerLoc,
4363 SourceLocation pointerEndLoc = SourceLocation()) {
4364 // Determine which file we're performing consistency checking for.
4365 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4366 if (file.isInvalid())
4367 return;
4368
4369 // If we haven't seen any type nullability in this file, we won't warn now
4370 // about anything.
4371 FileNullability &fileNullability = S.NullabilityMap[file];
4372 if (!fileNullability.SawTypeNullability) {
4373 // If this is the first pointer declarator in the file, and the appropriate
4374 // warning is on, record it in case we need to diagnose it retroactively.
4375 diag::kind diagKind;
4376 if (pointerKind == SimplePointerKind::Array)
4377 diagKind = diag::warn_nullability_missing_array;
4378 else
4379 diagKind = diag::warn_nullability_missing;
4380
4381 if (fileNullability.PointerLoc.isInvalid() &&
4382 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4383 fileNullability.PointerLoc = pointerLoc;
4384 fileNullability.PointerEndLoc = pointerEndLoc;
4385 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4386 }
4387
4388 return;
4389 }
4390
4391 // Complain about missing nullability.
4392 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4393}
4394
4395/// Marks that a nullability feature has been used in the file containing
4396/// \p loc.
4397///
4398/// If this file already had pointer types in it that were missing nullability,
4399/// the first such instance is retroactively diagnosed.
4400///
4401/// \sa checkNullabilityConsistency
4402static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4403 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4404 if (file.isInvalid())
4405 return;
4406
4407 FileNullability &fileNullability = S.NullabilityMap[file];
4408 if (fileNullability.SawTypeNullability)
4409 return;
4410 fileNullability.SawTypeNullability = true;
4411
4412 // If we haven't seen any type nullability before, now we have. Retroactively
4413 // diagnose the first unannotated pointer, if there was one.
4414 if (fileNullability.PointerLoc.isInvalid())
4415 return;
4416
4417 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4418 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4419 fileNullability.PointerEndLoc);
4420}
4421
4422/// Returns true if any of the declarator chunks before \p endIndex include a
4423/// level of indirection: array, pointer, reference, or pointer-to-member.
4424///
4425/// Because declarator chunks are stored in outer-to-inner order, testing
4426/// every chunk before \p endIndex is testing all chunks that embed the current
4427/// chunk as part of their type.
4428///
4429/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4430/// end index, in which case all chunks are tested.
4431static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4432 unsigned i = endIndex;
4433 while (i != 0) {
4434 // Walk outwards along the declarator chunks.
4435 --i;
4436 const DeclaratorChunk &DC = D.getTypeObject(i);
4437 switch (DC.Kind) {
4438 case DeclaratorChunk::Paren:
4439 break;
4440 case DeclaratorChunk::Array:
4441 case DeclaratorChunk::Pointer:
4442 case DeclaratorChunk::Reference:
4443 case DeclaratorChunk::MemberPointer:
4444 return true;
4445 case DeclaratorChunk::Function:
4446 case DeclaratorChunk::BlockPointer:
4447 case DeclaratorChunk::Pipe:
4448 // These are invalid anyway, so just ignore.
4449 break;
4450 }
4451 }
4452 return false;
4453}
4454
4455static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4456 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4457 Chunk.Kind == DeclaratorChunk::Array);
4458}
4459
4460template<typename AttrT>
4461static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4462 AL.setUsedAsTypeAttr();
4463 return ::new (Ctx) AttrT(Ctx, AL);
4464}
4465
4466static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4467 NullabilityKind NK) {
4468 switch (NK) {
4469 case NullabilityKind::NonNull:
4470 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4471
4472 case NullabilityKind::Nullable:
4473 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4474
4475 case NullabilityKind::NullableResult:
4476 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4477
4478 case NullabilityKind::Unspecified:
4479 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4480 }
4481 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "clang/lib/Sema/SemaType.cpp"
, 4481)
;
4482}
4483
4484// Diagnose whether this is a case with the multiple addr spaces.
4485// Returns true if this is an invalid case.
4486// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4487// by qualifiers for two or more different address spaces."
4488static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4489 LangAS ASNew,
4490 SourceLocation AttrLoc) {
4491 if (ASOld != LangAS::Default) {
4492 if (ASOld != ASNew) {
4493 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4494 return true;
4495 }
4496 // Emit a warning if they are identical; it's likely unintended.
4497 S.Diag(AttrLoc,
4498 diag::warn_attribute_address_multiple_identical_qualifiers);
4499 }
4500 return false;
4501}
4502
4503static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4504 QualType declSpecType,
4505 TypeSourceInfo *TInfo) {
4506 // The TypeSourceInfo that this function returns will not be a null type.
4507 // If there is an error, this function will fill in a dummy type as fallback.
4508 QualType T = declSpecType;
4509 Declarator &D = state.getDeclarator();
4510 Sema &S = state.getSema();
4511 ASTContext &Context = S.Context;
4512 const LangOptions &LangOpts = S.getLangOpts();
4513
4514 // The name we're declaring, if any.
4515 DeclarationName Name;
4516 if (D.getIdentifier())
4517 Name = D.getIdentifier();
4518
4519 // Does this declaration declare a typedef-name?
4520 bool IsTypedefName =
4521 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4522 D.getContext() == DeclaratorContext::AliasDecl ||
4523 D.getContext() == DeclaratorContext::AliasTemplate;
4524
4525 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4526 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4527 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4528 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4529
4530 // If T is 'decltype(auto)', the only declarators we can have are parens
4531 // and at most one function declarator if this is a function declaration.
4532 // If T is a deduced class template specialization type, we can have no
4533 // declarator chunks at all.
4534 if (auto *DT = T->getAs<DeducedType>()) {
4535 const AutoType *AT = T->getAs<AutoType>();
4536 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4537 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4538 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4539 unsigned Index = E - I - 1;
4540 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4541 unsigned DiagId = IsClassTemplateDeduction
4542 ? diag::err_deduced_class_template_compound_type
4543 : diag::err_decltype_auto_compound_type;
4544 unsigned DiagKind = 0;
4545 switch (DeclChunk.Kind) {
4546 case DeclaratorChunk::Paren:
4547 // FIXME: Rejecting this is a little silly.
4548 if (IsClassTemplateDeduction) {
4549 DiagKind = 4;
4550 break;
4551 }
4552 continue;
4553 case DeclaratorChunk::Function: {
4554 if (IsClassTemplateDeduction) {
4555 DiagKind = 3;
4556 break;
4557 }
4558 unsigned FnIndex;
4559 if (D.isFunctionDeclarationContext() &&
4560 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4561 continue;
4562 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4563 break;
4564 }
4565 case DeclaratorChunk::Pointer:
4566 case DeclaratorChunk::BlockPointer:
4567 case DeclaratorChunk::MemberPointer:
4568 DiagKind = 0;
4569 break;
4570 case DeclaratorChunk::Reference:
4571 DiagKind = 1;
4572 break;
4573 case DeclaratorChunk::Array:
4574 DiagKind = 2;
4575 break;
4576 case DeclaratorChunk::Pipe:
4577 break;
4578 }
4579
4580 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4581 D.setInvalidType(true);
4582 break;
4583 }
4584 }
4585 }
4586
4587 // Determine whether we should infer _Nonnull on pointer types.
4588 Optional<NullabilityKind> inferNullability;
4589 bool inferNullabilityCS = false;
4590 bool inferNullabilityInnerOnly = false;
4591 bool inferNullabilityInnerOnlyComplete = false;
4592
4593 // Are we in an assume-nonnull region?
4594 bool inAssumeNonNullRegion = false;
4595 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4596 if (assumeNonNullLoc.isValid()) {
4597 inAssumeNonNullRegion = true;
4598 recordNullabilitySeen(S, assumeNonNullLoc);
4599 }
4600
4601 // Whether to complain about missing nullability specifiers or not.
4602 enum {
4603 /// Never complain.
4604 CAMN_No,
4605 /// Complain on the inner pointers (but not the outermost
4606 /// pointer).
4607 CAMN_InnerPointers,
4608 /// Complain about any pointers that don't have nullability
4609 /// specified or inferred.
4610 CAMN_Yes
4611 } complainAboutMissingNullability = CAMN_No;
4612 unsigned NumPointersRemaining = 0;
4613 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4614
4615 if (IsTypedefName) {
4616 // For typedefs, we do not infer any nullability (the default),
4617 // and we only complain about missing nullability specifiers on
4618 // inner pointers.
4619 complainAboutMissingNullability = CAMN_InnerPointers;
4620
4621 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4622 !T->getNullability(S.Context)) {
4623 // Note that we allow but don't require nullability on dependent types.
4624 ++NumPointersRemaining;
4625 }
4626
4627 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4628 DeclaratorChunk &chunk = D.getTypeObject(i);
4629 switch (chunk.Kind) {
4630 case DeclaratorChunk::Array:
4631 case DeclaratorChunk::Function:
4632 case DeclaratorChunk::Pipe:
4633 break;
4634
4635 case DeclaratorChunk::BlockPointer:
4636 case DeclaratorChunk::MemberPointer:
4637 ++NumPointersRemaining;
4638 break;
4639
4640 case DeclaratorChunk::Paren:
4641 case DeclaratorChunk::Reference:
4642 continue;
4643
4644 case DeclaratorChunk::Pointer:
4645 ++NumPointersRemaining;
4646 continue;
4647 }
4648 }
4649 } else {
4650 bool isFunctionOrMethod = false;
4651 switch (auto context = state.getDeclarator().getContext()) {
4652 case DeclaratorContext::ObjCParameter:
4653 case DeclaratorContext::ObjCResult:
4654 case DeclaratorContext::Prototype:
4655 case DeclaratorContext::TrailingReturn:
4656 case DeclaratorContext::TrailingReturnVar:
4657 isFunctionOrMethod = true;
4658 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4659
4660 case DeclaratorContext::Member:
4661 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4662 complainAboutMissingNullability = CAMN_No;
4663 break;
4664 }
4665
4666 // Weak properties are inferred to be nullable.
4667 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4668 inferNullability = NullabilityKind::Nullable;
4669 break;
4670 }
4671
4672 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4673
4674 case DeclaratorContext::File:
4675 case DeclaratorContext::KNRTypeList: {
4676 complainAboutMissingNullability = CAMN_Yes;
4677
4678 // Nullability inference depends on the type and declarator.
4679 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4680 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4681 case PointerDeclaratorKind::NonPointer:
4682 case PointerDeclaratorKind::MultiLevelPointer:
4683 // Cannot infer nullability.
4684 break;
4685
4686 case PointerDeclaratorKind::SingleLevelPointer:
4687 // Infer _Nonnull if we are in an assumes-nonnull region.
4688 if (inAssumeNonNullRegion) {
4689 complainAboutInferringWithinChunk = wrappingKind;
4690 inferNullability = NullabilityKind::NonNull;
4691 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4692 context == DeclaratorContext::ObjCResult);
4693 }
4694 break;
4695
4696 case PointerDeclaratorKind::CFErrorRefPointer:
4697 case PointerDeclaratorKind::NSErrorPointerPointer:
4698 // Within a function or method signature, infer _Nullable at both
4699 // levels.
4700 if (isFunctionOrMethod && inAssumeNonNullRegion)
4701 inferNullability = NullabilityKind::Nullable;
4702 break;
4703
4704 case PointerDeclaratorKind::MaybePointerToCFRef:
4705 if (isFunctionOrMethod) {
4706 // On pointer-to-pointer parameters marked cf_returns_retained or
4707 // cf_returns_not_retained, if the outer pointer is explicit then
4708 // infer the inner pointer as _Nullable.
4709 auto hasCFReturnsAttr =
4710 [](const ParsedAttributesView &AttrList) -> bool {
4711 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4712 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4713 };
4714 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4715 if (hasCFReturnsAttr(D.getAttributes()) ||
4716 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4717 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4718 inferNullability = NullabilityKind::Nullable;
4719 inferNullabilityInnerOnly = true;
4720 }
4721 }
4722 }
4723 break;
4724 }
4725 break;
4726 }
4727
4728 case DeclaratorContext::ConversionId:
4729 complainAboutMissingNullability = CAMN_Yes;
4730 break;
4731
4732 case DeclaratorContext::AliasDecl:
4733 case DeclaratorContext::AliasTemplate:
4734 case DeclaratorContext::Block:
4735 case DeclaratorContext::BlockLiteral:
4736 case DeclaratorContext::Condition:
4737 case DeclaratorContext::CXXCatch:
4738 case DeclaratorContext::CXXNew:
4739 case DeclaratorContext::ForInit:
4740 case DeclaratorContext::SelectionInit:
4741 case DeclaratorContext::LambdaExpr:
4742 case DeclaratorContext::LambdaExprParameter:
4743 case DeclaratorContext::ObjCCatch:
4744 case DeclaratorContext::TemplateParam:
4745 case DeclaratorContext::TemplateArg:
4746 case DeclaratorContext::TemplateTypeArg:
4747 case DeclaratorContext::TypeName:
4748 case DeclaratorContext::FunctionalCast:
4749 case DeclaratorContext::RequiresExpr:
4750 // Don't infer in these contexts.
4751 break;
4752 }
4753 }
4754
4755 // Local function that returns true if its argument looks like a va_list.
4756 auto isVaList = [&S](QualType T) -> bool {
4757 auto *typedefTy = T->getAs<TypedefType>();
4758 if (!typedefTy)
4759 return false;
4760 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4761 do {
4762 if (typedefTy->getDecl() == vaListTypedef)
4763 return true;
4764 if (auto *name = typedefTy->getDecl()->getIdentifier())
4765 if (name->isStr("va_list"))
4766 return true;
4767 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4768 } while (typedefTy);
4769 return false;
4770 };
4771
4772 // Local function that checks the nullability for a given pointer declarator.
4773 // Returns true if _Nonnull was inferred.
4774 auto inferPointerNullability =
4775 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4776 SourceLocation pointerEndLoc,
4777 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4778 // We've seen a pointer.
4779 if (NumPointersRemaining > 0)
4780 --NumPointersRemaining;
4781
4782 // If a nullability attribute is present, there's nothing to do.
4783 if (hasNullabilityAttr(attrs))
4784 return nullptr;
4785
4786 // If we're supposed to infer nullability, do so now.
4787 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4788 ParsedAttr::Syntax syntax = inferNullabilityCS
4789 ? ParsedAttr::AS_ContextSensitiveKeyword
4790 : ParsedAttr::AS_Keyword;
4791 ParsedAttr *nullabilityAttr = Pool.create(
4792 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4793 nullptr, SourceLocation(), nullptr, 0, syntax);
4794
4795 attrs.addAtEnd(nullabilityAttr);
4796
4797 if (inferNullabilityCS) {
4798 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4799 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4800 }
4801
4802 if (pointerLoc.isValid() &&
4803 complainAboutInferringWithinChunk !=
4804 PointerWrappingDeclaratorKind::None) {
4805 auto Diag =
4806 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4807 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4808 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4809 }
4810
4811 if (inferNullabilityInnerOnly)
4812 inferNullabilityInnerOnlyComplete = true;
4813 return nullabilityAttr;
4814 }
4815
4816 // If we're supposed to complain about missing nullability, do so
4817 // now if it's truly missing.
4818 switch (complainAboutMissingNullability) {
4819 case CAMN_No:
4820 break;
4821
4822 case CAMN_InnerPointers:
4823 if (NumPointersRemaining == 0)
4824 break;
4825 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4826
4827 case CAMN_Yes:
4828 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4829 }
4830 return nullptr;
4831 };
4832
4833 // If the type itself could have nullability but does not, infer pointer
4834 // nullability and perform consistency checking.
4835 if (S.CodeSynthesisContexts.empty()) {
4836 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4837 !T->getNullability(S.Context)) {
4838 if (isVaList(T)) {
4839 // Record that we've seen a pointer, but do nothing else.
4840 if (NumPointersRemaining > 0)
4841 --NumPointersRemaining;
4842 } else {
4843 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4844 if (T->isBlockPointerType())
4845 pointerKind = SimplePointerKind::BlockPointer;
4846 else if (T->isMemberPointerType())
4847 pointerKind = SimplePointerKind::MemberPointer;
4848
4849 if (auto *attr = inferPointerNullability(
4850 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4851 D.getDeclSpec().getEndLoc(),
4852 D.getMutableDeclSpec().getAttributes(),
4853 D.getMutableDeclSpec().getAttributePool())) {
4854 T = state.getAttributedType(
4855 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4856 }
4857 }
4858 }
4859
4860 if (complainAboutMissingNullability == CAMN_Yes &&
4861 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4862 D.isPrototypeContext() &&
4863 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4864 checkNullabilityConsistency(S, SimplePointerKind::Array,
4865 D.getDeclSpec().getTypeSpecTypeLoc());
4866 }
4867 }
4868
4869 bool ExpectNoDerefChunk =
4870 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4871
4872 // Walk the DeclTypeInfo, building the recursive type as we go.
4873 // DeclTypeInfos are ordered from the identifier out, which is
4874 // opposite of what we want :).
4875 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4876 unsigned chunkIndex = e - i - 1;
4877 state.setCurrentChunkIndex(chunkIndex);
4878 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4879 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4880 switch (DeclType.Kind) {
4881 case DeclaratorChunk::Paren:
4882 if (i == 0)
4883 warnAboutRedundantParens(S, D, T);
4884 T = S.BuildParenType(T);
4885 break;
4886 case DeclaratorChunk::BlockPointer:
4887 // If blocks are disabled, emit an error.
4888 if (!LangOpts.Blocks)
4889 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4890
4891 // Handle pointer nullability.
4892 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4893 DeclType.EndLoc, DeclType.getAttrs(),
4894 state.getDeclarator().getAttributePool());
4895
4896 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4897 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4898 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4899 // qualified with const.
4900 if (LangOpts.OpenCL)
4901 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4902 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4903 }
4904 break;
4905 case DeclaratorChunk::Pointer:
4906 // Verify that we're not building a pointer to pointer to function with
4907 // exception specification.
4908 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4909 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4910 D.setInvalidType(true);
4911 // Build the type anyway.
4912 }
4913
4914 // Handle pointer nullability
4915 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4916 DeclType.EndLoc, DeclType.getAttrs(),
4917 state.getDeclarator().getAttributePool());
4918
4919 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4920 T = Context.getObjCObjectPointerType(T);
4921 if (DeclType.Ptr.TypeQuals)
4922 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4923 break;
4924 }
4925
4926 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4927 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4928 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4929 if (LangOpts.OpenCL) {
4930 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4931 T->isBlockPointerType()) {
4932 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4933 D.setInvalidType(true);
4934 }
4935 }
4936
4937 T = S.BuildPointerType(T, DeclType.Loc, Name);
4938 if (DeclType.Ptr.TypeQuals)
4939 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4940 break;
4941 case DeclaratorChunk::Reference: {
4942 // Verify that we're not building a reference to pointer to function with
4943 // exception specification.
4944 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4945 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4946 D.setInvalidType(true);
4947 // Build the type anyway.
4948 }
4949 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4950
4951 if (DeclType.Ref.HasRestrict)
4952 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4953 break;
4954 }
4955 case DeclaratorChunk::Array: {
4956 // Verify that we're not building an array of pointers to function with
4957 // exception specification.
4958 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4959 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4960 D.setInvalidType(true);
4961 // Build the type anyway.
4962 }
4963 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4964 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4965 ArrayType::ArraySizeModifier ASM;
4966 if (ATI.isStar)
4967 ASM = ArrayType::Star;
4968 else if (ATI.hasStatic)
4969 ASM = ArrayType::Static;
4970 else
4971 ASM = ArrayType::Normal;
4972 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4973 // FIXME: This check isn't quite right: it allows star in prototypes
4974 // for function definitions, and disallows some edge cases detailed
4975 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4976 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4977 ASM = ArrayType::Normal;
4978 D.setInvalidType(true);
4979 }
4980
4981 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4982 // shall appear only in a declaration of a function parameter with an
4983 // array type, ...
4984 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4985 if (!(D.isPrototypeContext() ||
4986 D.getContext() == DeclaratorContext::KNRTypeList)) {
4987 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4988 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4989 // Remove the 'static' and the type qualifiers.
4990 if (ASM == ArrayType::Static)
4991 ASM = ArrayType::Normal;
4992 ATI.TypeQuals = 0;
4993 D.setInvalidType(true);
4994 }
4995
4996 // C99 6.7.5.2p1: ... and then only in the outermost array type
4997 // derivation.
4998 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4999 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
5000 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
5001 if (ASM == ArrayType::Static)
5002 ASM = ArrayType::Normal;
5003 ATI.TypeQuals = 0;
5004 D.setInvalidType(true);
5005 }
5006 }
5007 const AutoType *AT = T->getContainedAutoType();
5008 // Allow arrays of auto if we are a generic lambda parameter.
5009 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
5010 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
5011 // We've already diagnosed this for decltype(auto).
5012 if (!AT->isDecltypeAuto())
5013 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
5014 << getPrintableNameForEntity(Name) << T;
5015 T = QualType();
5016 break;
5017 }
5018
5019 // Array parameters can be marked nullable as well, although it's not
5020 // necessary if they're marked 'static'.
5021 if (complainAboutMissingNullability == CAMN_Yes &&
5022 !hasNullabilityAttr(DeclType.getAttrs()) &&
5023 ASM != ArrayType::Static &&
5024 D.isPrototypeContext() &&
5025 !hasOuterPointerLikeChunk(D, chunkIndex)) {
5026 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
5027 }
5028
5029 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
5030 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
5031 break;
5032 }
5033 case DeclaratorChunk::Function: {
5034 // If the function declarator has a prototype (i.e. it is not () and
5035 // does not have a K&R-style identifier list), then the arguments are part
5036 // of the type, otherwise the argument list is ().
5037 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5038 IsQualifiedFunction =
5039 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
5040
5041 // Check for auto functions and trailing return type and adjust the
5042 // return type accordingly.
5043 if (!D.isInvalidType()) {
5044 // trailing-return-type is only required if we're declaring a function,
5045 // and not, for instance, a pointer to a function.
5046 if (D.getDeclSpec().hasAutoTypeSpec() &&
5047 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
5048 if (!S.getLangOpts().CPlusPlus14) {
5049 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5050 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5051 ? diag::err_auto_missing_trailing_return
5052 : diag::err_deduced_return_type);
5053 T = Context.IntTy;
5054 D.setInvalidType(true);
5055 } else {
5056 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5057 diag::warn_cxx11_compat_deduced_return_type);
5058 }
5059 } else if (FTI.hasTrailingReturnType()) {
5060 // T must be exactly 'auto' at this point. See CWG issue 681.
5061 if (isa<ParenType>(T)) {
5062 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5063 << T << D.getSourceRange();
5064 D.setInvalidType(true);
5065 } else if (D.getName().getKind() ==
5066 UnqualifiedIdKind::IK_DeductionGuideName) {
5067 if (T != Context.DependentTy) {
5068 S.Diag(D.getDeclSpec().getBeginLoc(),
5069 diag::err_deduction_guide_with_complex_decl)
5070 << D.getSourceRange();
5071 D.setInvalidType(true);
5072 }
5073 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5074 (T.hasQualifiers() || !isa<AutoType>(T) ||
5075 cast<AutoType>(T)->getKeyword() !=
5076 AutoTypeKeyword::Auto ||
5077 cast<AutoType>(T)->isConstrained())) {
5078 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5079 diag::err_trailing_return_without_auto)
5080 << T << D.getDeclSpec().getSourceRange();
5081 D.setInvalidType(true);
5082 }
5083 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
5084 if (T.isNull()) {
5085 // An error occurred parsing the trailing return type.
5086 T = Context.IntTy;
5087 D.setInvalidType(true);
5088 } else if (AutoType *Auto = T->getContainedAutoType()) {
5089 // If the trailing return type contains an `auto`, we may need to
5090 // invent a template parameter for it, for cases like
5091 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5092 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5093 if (D.getContext() == DeclaratorContext::Prototype)
5094 InventedParamInfo = &S.InventedParameterInfos.back();
5095 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5096 InventedParamInfo = S.getCurLambda();
5097 if (InventedParamInfo) {
5098 std::tie(T, TInfo) = InventTemplateParameter(
5099 state, T, TInfo, Auto, *InventedParamInfo);
5100 }
5101 }
5102 } else {
5103 // This function type is not the type of the entity being declared,
5104 // so checking the 'auto' is not the responsibility of this chunk.
5105 }
5106 }
5107
5108 // C99 6.7.5.3p1: The return type may not be a function or array type.
5109 // For conversion functions, we'll diagnose this particular error later.
5110 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5111 (D.getName().getKind() !=
5112 UnqualifiedIdKind::IK_ConversionFunctionId)) {
5113 unsigned diagID = diag::err_func_returning_array_function;
5114 // Last processing chunk in block context means this function chunk
5115 // represents the block.
5116 if (chunkIndex == 0 &&
5117 D.getContext() == DeclaratorContext::BlockLiteral)
5118 diagID = diag::err_block_returning_array_function;
5119 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
5120 T = Context.IntTy;
5121 D.setInvalidType(true);
5122 }
5123
5124 // Do not allow returning half FP value.
5125 // FIXME: This really should be in BuildFunctionType.
5126 if (T->isHalfType()) {
5127 if (S.getLangOpts().OpenCL) {
5128 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5129 S.getLangOpts())) {
5130 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5131 << T << 0 /*pointer hint*/;
5132 D.setInvalidType(true);
5133 }
5134 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5135 S.Diag(D.getIdentifierLoc(),
5136 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5137 D.setInvalidType(true);
5138 }
5139 }
5140
5141 if (LangOpts.OpenCL) {
5142 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5143 // function.
5144 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5145 T->isPipeType()) {
5146 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5147 << T << 1 /*hint off*/;
5148 D.setInvalidType(true);
5149 }
5150 // OpenCL doesn't support variadic functions and blocks
5151 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5152 // We also allow here any toolchain reserved identifiers.
5153 if (FTI.isVariadic &&
5154 !S.getOpenCLOptions().isAvailableOption(
5155 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5156 !(D.getIdentifier() &&
5157 ((D.getIdentifier()->getName() == "printf" &&
5158 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
5159 D.getIdentifier()->getName().startswith("__")))) {
5160 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5161 D.setInvalidType(true);
5162 }
5163 }
5164
5165 // Methods cannot return interface types. All ObjC objects are
5166 // passed by reference.
5167 if (T->isObjCObjectType()) {
5168 SourceLocation DiagLoc, FixitLoc;
5169 if (TInfo) {
5170 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5171 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5172 } else {
5173 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5174 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5175 }
5176 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5177 << 0 << T
5178 << FixItHint::CreateInsertion(FixitLoc, "*");
5179
5180 T = Context.getObjCObjectPointerType(T);
5181 if (TInfo) {
5182 TypeLocBuilder TLB;
5183 TLB.pushFullCopy(TInfo->getTypeLoc());
5184 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5185 TLoc.setStarLoc(FixitLoc);
5186 TInfo = TLB.getTypeSourceInfo(Context, T);
5187 }
5188
5189 D.setInvalidType(true);
5190 }
5191
5192 // cv-qualifiers on return types are pointless except when the type is a
5193 // class type in C++.
5194 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5195 !(S.getLangOpts().CPlusPlus &&
5196 (T->isDependentType() || T->isRecordType()))) {
5197 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5198 D.getFunctionDefinitionKind() ==
5199 FunctionDefinitionKind::Definition) {
5200 // [6.9.1/3] qualified void return is invalid on a C
5201 // function definition. Apparently ok on declarations and
5202 // in C++ though (!)
5203 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5204 } else
5205 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5206
5207 // C++2a [dcl.fct]p12:
5208 // A volatile-qualified return type is deprecated
5209 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5210 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5211 }
5212
5213 // Objective-C ARC ownership qualifiers are ignored on the function
5214 // return type (by type canonicalization). Complain if this attribute
5215 // was written here.
5216 if (T.getQualifiers().hasObjCLifetime()) {
5217 SourceLocation AttrLoc;
5218 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5219 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5220 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5221 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5222 AttrLoc = AL.getLoc();
5223 break;
5224 }
5225 }
5226 }
5227 if (AttrLoc.isInvalid()) {
5228 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5229 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5230 AttrLoc = AL.getLoc();
5231 break;
5232 }
5233 }
5234 }
5235
5236 if (AttrLoc.isValid()) {
5237 // The ownership attributes are almost always written via
5238 // the predefined
5239 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5240 if (AttrLoc.isMacroID())
5241 AttrLoc =
5242 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5243
5244 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5245 << T.getQualifiers().getObjCLifetime();
5246 }
5247 }
5248
5249 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5250 // C++ [dcl.fct]p6:
5251 // Types shall not be defined in return or parameter types.
5252 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5253 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5254 << Context.getTypeDeclType(Tag);
5255 }
5256
5257 // Exception specs are not allowed in typedefs. Complain, but add it
5258 // anyway.
5259 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5260 S.Diag(FTI.getExceptionSpecLocBeg(),
5261 diag::err_exception_spec_in_typedef)
5262 << (D.getContext() == DeclaratorContext::AliasDecl ||
5263 D.getContext() == DeclaratorContext::AliasTemplate);
5264
5265 // If we see "T var();" or "T var(T());" at block scope, it is probably
5266 // an attempt to initialize a variable, not a function declaration.
5267 if (FTI.isAmbiguous)
5268 warnAboutAmbiguousFunction(S, D, DeclType, T);
5269
5270 FunctionType::ExtInfo EI(
5271 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5272
5273 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5274 && !LangOpts.OpenCL) {
5275 // Simple void foo(), where the incoming T is the result type.
5276 T = Context.getFunctionNoProtoType(T, EI);
5277 } else {
5278 // We allow a zero-parameter variadic function in C if the
5279 // function is marked with the "overloadable" attribute. Scan
5280 // for this attribute now.
5281 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5282 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable) &&
5283 !D.getDeclSpec().getAttributes().hasAttribute(
5284 ParsedAttr::AT_Overloadable))
5285 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5286
5287 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5288 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5289 // definition.
5290 S.Diag(FTI.Params[0].IdentLoc,
5291 diag::err_ident_list_in_fn_declaration);
5292 D.setInvalidType(true);
5293 // Recover by creating a K&R-style function type.
5294 T = Context.getFunctionNoProtoType(T, EI);
5295 break;
5296 }
5297
5298 FunctionProtoType::ExtProtoInfo EPI;
5299 EPI.ExtInfo = EI;
5300 EPI.Variadic = FTI.isVariadic;
5301 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5302 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5303 EPI.TypeQuals.addCVRUQualifiers(
5304 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5305 : 0);
5306 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5307 : FTI.RefQualifierIsLValueRef? RQ_LValue
5308 : RQ_RValue;
5309
5310 // Otherwise, we have a function with a parameter list that is
5311 // potentially variadic.
5312 SmallVector<QualType, 16> ParamTys;
5313 ParamTys.reserve(FTI.NumParams);
5314
5315 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5316 ExtParameterInfos(FTI.NumParams);
5317 bool HasAnyInterestingExtParameterInfos = false;
5318
5319 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5320 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5321 QualType ParamTy = Param->getType();
5322 assert(!ParamTy.isNull() && "Couldn't parse type?")(static_cast <bool> (!ParamTy.isNull() && "Couldn't parse type?"
) ? void (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "clang/lib/Sema/SemaType.cpp", 5322, __extension__ __PRETTY_FUNCTION__
))
;
5323
5324 // Look for 'void'. void is allowed only as a single parameter to a
5325 // function with no other parameters (C99 6.7.5.3p10). We record
5326 // int(void) as a FunctionProtoType with an empty parameter list.
5327 if (ParamTy->isVoidType()) {
5328 // If this is something like 'float(int, void)', reject it. 'void'
5329 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5330 // have parameters of incomplete type.
5331 if (FTI.NumParams != 1 || FTI.isVariadic) {
5332 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5333 ParamTy = Context.IntTy;
5334 Param->setType(ParamTy);
5335 } else if (FTI.Params[i].Ident) {
5336 // Reject, but continue to parse 'int(void abc)'.
5337 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5338 ParamTy = Context.IntTy;
5339 Param->setType(ParamTy);
5340 } else {
5341 // Reject, but continue to parse 'float(const void)'.
5342 if (ParamTy.hasQualifiers())
5343 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5344
5345 // Do not add 'void' to the list.
5346 break;
5347 }
5348 } else if (ParamTy->isHalfType()) {
5349 // Disallow half FP parameters.
5350 // FIXME: This really should be in BuildFunctionType.
5351 if (S.getLangOpts().OpenCL) {
5352 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5353 S.getLangOpts())) {
5354 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5355 << ParamTy << 0;
5356 D.setInvalidType();
5357 Param->setInvalidDecl();
5358 }
5359 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5360 S.Diag(Param->getLocation(),
5361 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5362 D.setInvalidType();
5363 }
5364 } else if (!FTI.hasPrototype) {
5365 if (ParamTy->isPromotableIntegerType()) {
5366 ParamTy = Context.getPromotedIntegerType(ParamTy);
5367 Param->setKNRPromoted(true);
5368 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5369 if (BTy->getKind() == BuiltinType::Float) {
5370 ParamTy = Context.DoubleTy;
5371 Param->setKNRPromoted(true);
5372 }
5373 }
5374 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5375 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5376 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5377 << ParamTy << 1 /*hint off*/;
5378 D.setInvalidType();
5379 }
5380
5381 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5382 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5383 HasAnyInterestingExtParameterInfos = true;
5384 }
5385
5386 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5387 ExtParameterInfos[i] =
5388 ExtParameterInfos[i].withABI(attr->getABI());
5389 HasAnyInterestingExtParameterInfos = true;
5390 }
5391
5392 if (Param->hasAttr<PassObjectSizeAttr>()) {
5393 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5394 HasAnyInterestingExtParameterInfos = true;
5395 }
5396
5397 if (Param->hasAttr<NoEscapeAttr>()) {
5398 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5399 HasAnyInterestingExtParameterInfos = true;
5400 }
5401
5402 ParamTys.push_back(ParamTy);
5403 }
5404
5405 if (HasAnyInterestingExtParameterInfos) {
5406 EPI.ExtParameterInfos = ExtParameterInfos.data();
5407 checkExtParameterInfos(S, ParamTys, EPI,
5408 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5409 }
5410
5411 SmallVector<QualType, 4> Exceptions;
5412 SmallVector<ParsedType, 2> DynamicExceptions;
5413 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5414 Expr *NoexceptExpr = nullptr;
5415
5416 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5417 // FIXME: It's rather inefficient to have to split into two vectors
5418 // here.
5419 unsigned N = FTI.getNumExceptions();
5420 DynamicExceptions.reserve(N);
5421 DynamicExceptionRanges.reserve(N);
5422 for (unsigned I = 0; I != N; ++I) {
5423 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5424 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5425 }
5426 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5427 NoexceptExpr = FTI.NoexceptExpr;
5428 }
5429
5430 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5431 FTI.getExceptionSpecType(),
5432 DynamicExceptions,
5433 DynamicExceptionRanges,
5434 NoexceptExpr,
5435 Exceptions,
5436 EPI.ExceptionSpec);
5437
5438 // FIXME: Set address space from attrs for C++ mode here.
5439 // OpenCLCPlusPlus: A class member function has an address space.
5440 auto IsClassMember = [&]() {
5441 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5442 state.getDeclarator()
5443 .getCXXScopeSpec()
5444 .getScopeRep()
5445 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5446 state.getDeclarator().getContext() ==
5447 DeclaratorContext::Member ||
5448 state.getDeclarator().getContext() ==
5449 DeclaratorContext::LambdaExpr;
5450 };
5451
5452 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5453 LangAS ASIdx = LangAS::Default;
5454 // Take address space attr if any and mark as invalid to avoid adding
5455 // them later while creating QualType.
5456 if (FTI.MethodQualifiers)
5457 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5458 LangAS ASIdxNew = attr.asOpenCLLangAS();
5459 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5460 attr.getLoc()))
5461 D.setInvalidType(true);
5462 else
5463 ASIdx = ASIdxNew;
5464 }
5465 // If a class member function's address space is not set, set it to
5466 // __generic.
5467 LangAS AS =
5468 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5469 : ASIdx);
5470 EPI.TypeQuals.addAddressSpace(AS);
5471 }
5472 T = Context.getFunctionType(T, ParamTys, EPI);
5473 }
5474 break;
5475 }
5476 case DeclaratorChunk::MemberPointer: {
5477 // The scope spec must refer to a class, or be dependent.
5478 CXXScopeSpec &SS = DeclType.Mem.Scope();
5479 QualType ClsType;
5480
5481 // Handle pointer nullability.
5482 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5483 DeclType.EndLoc, DeclType.getAttrs(),
5484 state.getDeclarator().getAttributePool());
5485
5486 if (SS.isInvalid()) {
5487 // Avoid emitting extra errors if we already errored on the scope.
5488 D.setInvalidType(true);
5489 } else if (S.isDependentScopeSpecifier(SS) ||
5490 isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5491 NestedNameSpecifier *NNS = SS.getScopeRep();
5492 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5493 switch (NNS->getKind()) {
5494 case NestedNameSpecifier::Identifier:
5495 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5496 NNS->getAsIdentifier());
5497 break;
5498
5499 case NestedNameSpecifier::Namespace:
5500 case NestedNameSpecifier::NamespaceAlias:
5501 case NestedNameSpecifier::Global:
5502 case NestedNameSpecifier::Super:
5503 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "clang/lib/Sema/SemaType.cpp", 5503)
;
5504
5505 case NestedNameSpecifier::TypeSpec:
5506 case NestedNameSpecifier::TypeSpecWithTemplate:
5507 ClsType = QualType(NNS->getAsType(), 0);
5508 // Note: if the NNS has a prefix and ClsType is a nondependent
5509 // TemplateSpecializationType, then the NNS prefix is NOT included
5510 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5511 // NOTE: in particular, no wrap occurs if ClsType already is an
5512 // Elaborated, DependentName, or DependentTemplateSpecialization.
5513 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5514 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5515 break;
5516 }
5517 } else {
5518 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5519 diag::err_illegal_decl_mempointer_in_nonclass)
5520 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5521 << DeclType.Mem.Scope().getRange();
5522 D.setInvalidType(true);
5523 }
5524
5525 if (!ClsType.isNull())
5526 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5527 D.getIdentifier());
5528 if (T.isNull()) {
5529 T = Context.IntTy;
5530 D.setInvalidType(true);
5531 } else if (DeclType.Mem.TypeQuals) {
5532 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5533 }
5534 break;
5535 }
5536
5537 case DeclaratorChunk::Pipe: {
5538 T = S.BuildReadPipeType(T, DeclType.Loc);
5539 processTypeAttrs(state, T, TAL_DeclSpec,
5540 D.getMutableDeclSpec().getAttributes());
5541 break;
5542 }
5543 }
5544
5545 if (T.isNull()) {
5546 D.setInvalidType(true);
5547 T = Context.IntTy;
5548 }
5549
5550 // See if there are any attributes on this declarator chunk.
5551 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5552
5553 if (DeclType.Kind != DeclaratorChunk::Paren) {
5554 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5555 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5556
5557 ExpectNoDerefChunk = state.didParseNoDeref();
5558 }
5559 }
5560
5561 if (ExpectNoDerefChunk)
5562 S.Diag(state.getDeclarator().getBeginLoc(),
5563 diag::warn_noderef_on_non_pointer_or_array);
5564
5565 // GNU warning -Wstrict-prototypes
5566 // Warn if a function declaration or definition is without a prototype.
5567 // This warning is issued for all kinds of unprototyped function
5568 // declarations (i.e. function type typedef, function pointer etc.)
5569 // C99 6.7.5.3p14:
5570 // The empty list in a function declarator that is not part of a definition
5571 // of that function specifies that no information about the number or types
5572 // of the parameters is supplied.
5573 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5574 // function declarations whose behavior changes in C2x.
5575 if (!LangOpts.CPlusPlus) {
5576 bool IsBlock = false;
5577 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5578 switch (DeclType.Kind) {
5579 case DeclaratorChunk::BlockPointer:
5580 IsBlock = true;
5581 break;
5582 case DeclaratorChunk::Function: {
5583 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5584 // We suppress the warning when there's no LParen location, as this
5585 // indicates the declaration was an implicit declaration, which gets
5586 // warned about separately via -Wimplicit-function-declaration.
5587 if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5588 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5589 << IsBlock
5590 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5591 IsBlock = false;
5592 break;
5593 }
5594 default:
5595 break;
5596 }
5597 }
5598 }
5599
5600 assert(!T.isNull() && "T must not be null after this point")(static_cast <bool> (!T.isNull() && "T must not be null after this point"
) ? void (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "clang/lib/Sema/SemaType.cpp", 5600, __extension__ __PRETTY_FUNCTION__
))
;
5601
5602 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5603 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5604 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")(static_cast <bool> (FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? void (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "clang/lib/Sema/SemaType.cpp", 5604, __extension__ __PRETTY_FUNCTION__
))
;
5605
5606 // C++ 8.3.5p4:
5607 // A cv-qualifier-seq shall only be part of the function type
5608 // for a nonstatic member function, the function type to which a pointer
5609 // to member refers, or the top-level function type of a function typedef
5610 // declaration.
5611 //
5612 // Core issue 547 also allows cv-qualifiers on function types that are
5613 // top-level template type arguments.
5614 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5615 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5616 Kind = DeductionGuide;
5617 else if (!D.getCXXScopeSpec().isSet()) {
5618 if ((D.getContext() == DeclaratorContext::Member ||
5619 D.getContext() == DeclaratorContext::LambdaExpr) &&
5620 !D.getDeclSpec().isFriendSpecified())
5621 Kind = Member;
5622 } else {
5623 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5624 if (!DC || DC->isRecord())
5625 Kind = Member;
5626 }
5627
5628 // C++11 [dcl.fct]p6 (w/DR1417):
5629 // An attempt to specify a function type with a cv-qualifier-seq or a
5630 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5631 // - the function type for a non-static member function,
5632 // - the function type to which a pointer to member refers,
5633 // - the top-level function type of a function typedef declaration or
5634 // alias-declaration,
5635 // - the type-id in the default argument of a type-parameter, or
5636 // - the type-id of a template-argument for a type-parameter
5637 //
5638 // FIXME: Checking this here is insufficient. We accept-invalid on:
5639 //
5640 // template<typename T> struct S { void f(T); };
5641 // S<int() const> s;
5642 //
5643 // ... for instance.
5644 if (IsQualifiedFunction &&
5645 !(Kind == Member &&
5646 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5647 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5648 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5649 SourceLocation Loc = D.getBeginLoc();
5650 SourceRange RemovalRange;
5651 unsigned I;
5652 if (D.isFunctionDeclarator(I)) {
5653 SmallVector<SourceLocation, 4> RemovalLocs;
5654 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5655 assert(Chunk.Kind == DeclaratorChunk::Function)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Function
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "clang/lib/Sema/SemaType.cpp", 5655, __extension__ __PRETTY_FUNCTION__
))
;
5656
5657 if (Chunk.Fun.hasRefQualifier())
5658 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5659
5660 if (Chunk.Fun.hasMethodTypeQualifiers())
5661 Chunk.Fun.MethodQualifiers->forEachQualifier(
5662 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5663 SourceLocation SL) { RemovalLocs.push_back(SL); });
5664
5665 if (!RemovalLocs.empty()) {
5666 llvm::sort(RemovalLocs,
5667 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5668 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5669 Loc = RemovalLocs.front();
5670 }
5671 }
5672
5673 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5674 << Kind << D.isFunctionDeclarator() << T
5675 << getFunctionQualifiersAsString(FnTy)
5676 << FixItHint::CreateRemoval(RemovalRange);
5677
5678 // Strip the cv-qualifiers and ref-qualifiers from the type.
5679 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5680 EPI.TypeQuals.removeCVRQualifiers();
5681 EPI.RefQualifier = RQ_None;
5682
5683 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5684 EPI);
5685 // Rebuild any parens around the identifier in the function type.
5686 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5687 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5688 break;
5689 T = S.BuildParenType(T);
5690 }
5691 }
5692 }
5693
5694 // Apply any undistributed attributes from the declarator.
5695 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5696
5697 // Diagnose any ignored type attributes.
5698 state.diagnoseIgnoredTypeAttrs(T);
5699
5700 // C++0x [dcl.constexpr]p9:
5701 // A constexpr specifier used in an object declaration declares the object
5702 // as const.
5703 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5704 T->isObjectType())
5705 T.addConst();
5706
5707 // C++2a [dcl.fct]p4:
5708 // A parameter with volatile-qualified type is deprecated
5709 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5710 (D.getContext() == DeclaratorContext::Prototype ||
5711 D.getContext() == DeclaratorContext::LambdaExprParameter))
5712 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5713
5714 // If there was an ellipsis in the declarator, the declaration declares a
5715 // parameter pack whose type may be a pack expansion type.
5716 if (D.hasEllipsis()) {
5717 // C++0x [dcl.fct]p13:
5718 // A declarator-id or abstract-declarator containing an ellipsis shall
5719 // only be used in a parameter-declaration. Such a parameter-declaration
5720 // is a parameter pack (14.5.3). [...]
5721 switch (D.getContext()) {
5722 case DeclaratorContext::Prototype:
5723 case DeclaratorContext::LambdaExprParameter:
5724 case DeclaratorContext::RequiresExpr:
5725 // C++0x [dcl.fct]p13:
5726 // [...] When it is part of a parameter-declaration-clause, the
5727 // parameter pack is a function parameter pack (14.5.3). The type T
5728 // of the declarator-id of the function parameter pack shall contain
5729 // a template parameter pack; each template parameter pack in T is
5730 // expanded by the function parameter pack.
5731 //
5732 // We represent function parameter packs as function parameters whose
5733 // type is a pack expansion.
5734 if (!T->containsUnexpandedParameterPack() &&
5735 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5736 S.Diag(D.getEllipsisLoc(),
5737 diag::err_function_parameter_pack_without_parameter_packs)
5738 << T << D.getSourceRange();
5739 D.setEllipsisLoc(SourceLocation());
5740 } else {
5741 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5742 }
5743 break;
5744 case DeclaratorContext::TemplateParam:
5745 // C++0x [temp.param]p15:
5746 // If a template-parameter is a [...] is a parameter-declaration that
5747 // declares a parameter pack (8.3.5), then the template-parameter is a
5748 // template parameter pack (14.5.3).
5749 //
5750 // Note: core issue 778 clarifies that, if there are any unexpanded
5751 // parameter packs in the type of the non-type template parameter, then
5752 // it expands those parameter packs.
5753 if (T->containsUnexpandedParameterPack())
5754 T = Context.getPackExpansionType(T, None);
5755 else
5756 S.Diag(D.getEllipsisLoc(),
5757 LangOpts.CPlusPlus11
5758 ? diag::warn_cxx98_compat_variadic_templates
5759 : diag::ext_variadic_templates);
5760 break;
5761
5762 case DeclaratorContext::File:
5763 case DeclaratorContext::KNRTypeList:
5764 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5765 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5766 case DeclaratorContext::TypeName:
5767 case DeclaratorContext::FunctionalCast:
5768 case DeclaratorContext::CXXNew:
5769 case DeclaratorContext::AliasDecl:
5770 case DeclaratorContext::AliasTemplate:
5771 case DeclaratorContext::Member:
5772 case DeclaratorContext::Block:
5773 case DeclaratorContext::ForInit:
5774 case DeclaratorContext::SelectionInit:
5775 case DeclaratorContext::Condition:
5776 case DeclaratorContext::CXXCatch:
5777 case DeclaratorContext::ObjCCatch:
5778 case DeclaratorContext::BlockLiteral:
5779 case DeclaratorContext::LambdaExpr:
5780 case DeclaratorContext::ConversionId:
5781 case DeclaratorContext::TrailingReturn:
5782 case DeclaratorContext::TrailingReturnVar:
5783 case DeclaratorContext::TemplateArg:
5784 case DeclaratorContext::TemplateTypeArg:
5785 // FIXME: We may want to allow parameter packs in block-literal contexts
5786 // in the future.
5787 S.Diag(D.getEllipsisLoc(),
5788 diag::err_ellipsis_in_declarator_not_parameter);
5789 D.setEllipsisLoc(SourceLocation());
5790 break;
5791 }
5792 }
5793
5794 assert(!T.isNull() && "T must not be null at the end of this function")(static_cast <bool> (!T.isNull() && "T must not be null at the end of this function"
) ? void (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "clang/lib/Sema/SemaType.cpp", 5794, __extension__ __PRETTY_FUNCTION__
))
;
5795 if (D.isInvalidType())
5796 return Context.getTrivialTypeSourceInfo(T);
5797
5798 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5799}
5800
5801/// GetTypeForDeclarator - Convert the type for the specified
5802/// declarator to Type instances.
5803///
5804/// The result of this call will never be null, but the associated
5805/// type may be a null type if there's an unrecoverable error.
5806TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5807 // Determine the type of the declarator. Not all forms of declarator
5808 // have a type.
5809
5810 TypeProcessingState state(*this, D);
5811
5812 TypeSourceInfo *ReturnTypeInfo = nullptr;
5813 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5814 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5815 inferARCWriteback(state, T);
5816
5817 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5818}
5819
5820static void transferARCOwnershipToDeclSpec(Sema &S,
5821 QualType &declSpecTy,
5822 Qualifiers::ObjCLifetime ownership) {
5823 if (declSpecTy->isObjCRetainableType() &&
5824 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5825 Qualifiers qs;
5826 qs.addObjCLifetime(ownership);
5827 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5828 }
5829}
5830
5831static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5832 Qualifiers::ObjCLifetime ownership,
5833 unsigned chunkIndex) {
5834 Sema &S = state.getSema();
5835 Declarator &D = state.getDeclarator();
5836
5837 // Look for an explicit lifetime attribute.
5838 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5839 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5840 return;
5841
5842 const char *attrStr = nullptr;
5843 switch (ownership) {
5844 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "clang/lib/Sema/SemaType.cpp"
, 5844)
;
5845 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5846 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5847 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5848 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5849 }
5850
5851 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5852 Arg->Ident = &S.Context.Idents.get(attrStr);
5853 Arg->Loc = SourceLocation();
5854
5855 ArgsUnion Args(Arg);
5856
5857 // If there wasn't one, add one (with an invalid source location
5858 // so that we don't make an AttributedType for it).
5859 ParsedAttr *attr = D.getAttributePool().create(
5860 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5861 /*scope*/ nullptr, SourceLocation(),
5862 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5863 chunk.getAttrs().addAtEnd(attr);
5864 // TODO: mark whether we did this inference?
5865}
5866
5867/// Used for transferring ownership in casts resulting in l-values.
5868static void transferARCOwnership(TypeProcessingState &state,
5869 QualType &declSpecTy,
5870 Qualifiers::ObjCLifetime ownership) {
5871 Sema &S = state.getSema();
5872 Declarator &D = state.getDeclarator();
5873
5874 int inner = -1;
5875 bool hasIndirection = false;
5876 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5877 DeclaratorChunk &chunk = D.getTypeObject(i);
5878 switch (chunk.Kind) {
5879 case DeclaratorChunk::Paren:
5880 // Ignore parens.
5881 break;
5882
5883 case DeclaratorChunk::Array:
5884 case DeclaratorChunk::Reference:
5885 case DeclaratorChunk::Pointer:
5886 if (inner != -1)
5887 hasIndirection = true;
5888 inner = i;
5889 break;
5890
5891 case DeclaratorChunk::BlockPointer:
5892 if (inner != -1)
5893 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5894 return;
5895
5896 case DeclaratorChunk::Function:
5897 case DeclaratorChunk::MemberPointer:
5898 case DeclaratorChunk::Pipe:
5899 return;
5900 }
5901 }
5902
5903 if (inner == -1)
5904 return;
5905
5906 DeclaratorChunk &chunk = D.getTypeObject(inner);
5907 if (chunk.Kind == DeclaratorChunk::Pointer) {
5908 if (declSpecTy->isObjCRetainableType())
5909 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5910 if (declSpecTy->isObjCObjectType() && hasIndirection)
5911 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5912 } else {
5913 assert(chunk.Kind == DeclaratorChunk::Array ||(static_cast <bool> (chunk.Kind == DeclaratorChunk::Array
|| chunk.Kind == DeclaratorChunk::Reference) ? void (0) : __assert_fail
("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 5914, __extension__ __PRETTY_FUNCTION__
))
5914 chunk.Kind == DeclaratorChunk::Reference)(static_cast <bool> (chunk.Kind == DeclaratorChunk::Array
|| chunk.Kind == DeclaratorChunk::Reference) ? void (0) : __assert_fail
("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 5914, __extension__ __PRETTY_FUNCTION__
))
;
5915 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5916 }
5917}
5918
5919TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5920 TypeProcessingState state(*this, D);
5921
5922 TypeSourceInfo *ReturnTypeInfo = nullptr;
5923 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5924
5925 if (getLangOpts().ObjC) {
5926 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5927 if (ownership != Qualifiers::OCL_None)
5928 transferARCOwnership(state, declSpecTy, ownership);
5929 }
5930
5931 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5932}
5933
5934static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5935 TypeProcessingState &State) {
5936 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5937}
5938
5939namespace {
5940 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5941 Sema &SemaRef;
5942 ASTContext &Context;
5943 TypeProcessingState &State;
5944 const DeclSpec &DS;
5945
5946 public:
5947 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5948 const DeclSpec &DS)
5949 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5950
5951 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5952 Visit(TL.getModifiedLoc());
5953 fillAttributedTypeLoc(TL, State);
5954 }
5955 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5956 Visit(TL.getWrappedLoc());
5957 }
5958 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5959 Visit(TL.getInnerLoc());
5960 TL.setExpansionLoc(
5961 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5962 }
5963 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5964 Visit(TL.getUnqualifiedLoc());
5965 }
5966 // Allow to fill pointee's type locations, e.g.,
5967 // int __attr * __attr * __attr *p;
5968 void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5969 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5970 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5971 }
5972 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5973 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5974 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5975 // addition field. What we have is good enough for display of location
5976 // of 'fixit' on interface name.
5977 TL.setNameEndLoc(DS.getEndLoc());
5978 }
5979 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5980 TypeSourceInfo *RepTInfo = nullptr;
5981 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5982 TL.copy(RepTInfo->getTypeLoc());
5983 }
5984 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5985 TypeSourceInfo *RepTInfo = nullptr;
5986 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5987 TL.copy(RepTInfo->getTypeLoc());
5988 }
5989 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5990 TypeSourceInfo *TInfo = nullptr;
5991 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5992
5993 // If we got no declarator info from previous Sema routines,
5994 // just fill with the typespec loc.
5995 if (!TInfo) {
5996 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5997 return;
5998 }
5999
6000 TypeLoc OldTL = TInfo->getTypeLoc();
6001 if (TInfo->getType()->getAs<ElaboratedType>()) {
6002 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
6003 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
6004 .castAs<TemplateSpecializationTypeLoc>();
6005 TL.copy(NamedTL);
6006 } else {
6007 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
6008 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())(static_cast <bool> (TL.getRAngleLoc() == OldTL.castAs<
TemplateSpecializationTypeLoc>().getRAngleLoc()) ? void (0
) : __assert_fail ("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "clang/lib/Sema/SemaType.cpp", 6008, __extension__ __PRETTY_FUNCTION__
))
;
6009 }
6010
6011 }
6012 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
6013 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_typeofExpr) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr"
, "clang/lib/Sema/SemaType.cpp", 6013, __extension__ __PRETTY_FUNCTION__
))
;
6014 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6015 TL.setParensRange(DS.getTypeofParensRange());
6016 }
6017 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
6018 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_typeofType) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType"
, "clang/lib/Sema/SemaType.cpp", 6018, __extension__ __PRETTY_FUNCTION__
))
;
6019 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6020 TL.setParensRange(DS.getTypeofParensRange());
6021 assert(DS.getRepAsType())(static_cast <bool> (DS.getRepAsType()) ? void (0) : __assert_fail
("DS.getRepAsType()", "clang/lib/Sema/SemaType.cpp", 6021, __extension__
__PRETTY_FUNCTION__))
;
6022 TypeSourceInfo *TInfo = nullptr;
6023 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6024 TL.setUnderlyingTInfo(TInfo);
6025 }
6026 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
6027 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype"
, "clang/lib/Sema/SemaType.cpp", 6027, __extension__ __PRETTY_FUNCTION__
))
;
6028 TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
6029 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6030 }
6031 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
6032 // FIXME: This holds only because we only have one unary transform.
6033 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_underlyingType) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType"
, "clang/lib/Sema/SemaType.cpp", 6033, __extension__ __PRETTY_FUNCTION__
))
;
6034 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6035 TL.setParensRange(DS.getTypeofParensRange());
6036 assert(DS.getRepAsType())(static_cast <bool> (DS.getRepAsType()) ? void (0) : __assert_fail
("DS.getRepAsType()", "clang/lib/Sema/SemaType.cpp", 6036, __extension__
__PRETTY_FUNCTION__))
;
6037 TypeSourceInfo *TInfo = nullptr;
6038 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6039 TL.setUnderlyingTInfo(TInfo);
6040 }
6041 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
6042 // By default, use the source location of the type specifier.
6043 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
6044 if (TL.needsExtraLocalData()) {
6045 // Set info for the written builtin specifiers.
6046 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
6047 // Try to have a meaningful source location.
6048 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
6049 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
6050 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
6051 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
6052 }
6053 }
6054 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
6055 ElaboratedTypeKeyword Keyword
6056 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
6057 if (DS.getTypeSpecType() == TST_typename) {
6058 TypeSourceInfo *TInfo = nullptr;
6059 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6060 if (TInfo) {
6061 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
6062 return;
6063 }
6064 }
6065 TL.setElaboratedKeywordLoc(Keyword != ETK_None
6066 ? DS.getTypeSpecTypeLoc()
6067 : SourceLocation());
6068 const CXXScopeSpec& SS = DS.getTypeSpecScope();
6069 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6070 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6071 }
6072 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6073 assert(DS.getTypeSpecType() == TST_typename)(static_cast <bool> (DS.getTypeSpecType() == TST_typename
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "clang/lib/Sema/SemaType.cpp", 6073, __extension__ __PRETTY_FUNCTION__
))
;
6074 TypeSourceInfo *TInfo = nullptr;
6075 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6076 assert(TInfo)(static_cast <bool> (TInfo) ? void (0) : __assert_fail (
"TInfo", "clang/lib/Sema/SemaType.cpp", 6076, __extension__ __PRETTY_FUNCTION__
))
;
6077 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6078 }
6079 void VisitDependentTemplateSpecializationTypeLoc(
6080 DependentTemplateSpecializationTypeLoc TL) {
6081 assert(DS.getTypeSpecType() == TST_typename)(static_cast <bool> (DS.getTypeSpecType() == TST_typename
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "clang/lib/Sema/SemaType.cpp", 6081, __extension__ __PRETTY_FUNCTION__
))
;
6082 TypeSourceInfo *TInfo = nullptr;
6083 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6084 assert(TInfo)(static_cast <bool> (TInfo) ? void (0) : __assert_fail (
"TInfo", "clang/lib/Sema/SemaType.cpp", 6084, __extension__ __PRETTY_FUNCTION__
))
;
6085 TL.copy(
6086 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6087 }
6088 void VisitAutoTypeLoc(AutoTypeLoc TL) {
6089 assert(DS.getTypeSpecType() == TST_auto ||(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6092, __extension__ __PRETTY_FUNCTION__
))
6090 DS.getTypeSpecType() == TST_decltype_auto ||(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6092, __extension__ __PRETTY_FUNCTION__
))
6091 DS.getTypeSpecType() == TST_auto_type ||(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6092, __extension__ __PRETTY_FUNCTION__
))
6092 DS.getTypeSpecType() == TST_unspecified)(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6092, __extension__ __PRETTY_FUNCTION__
))
;
6093 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6094 if (DS.getTypeSpecType() == TST_decltype_auto)
6095 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6096 if (!DS.isConstrainedAuto())
6097 return;
6098 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6099 if (!TemplateId)
6100 return;
6101 if (DS.getTypeSpecScope().isNotEmpty())
6102 TL.setNestedNameSpecifierLoc(
6103 DS.getTypeSpecScope().getWithLocInContext(Context));
6104 else
6105 TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6106 TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
6107 TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
6108 TL.setFoundDecl(nullptr);
6109 TL.setLAngleLoc(TemplateId->LAngleLoc);
6110 TL.setRAngleLoc(TemplateId->RAngleLoc);
6111 if (TemplateId->NumArgs == 0)
6112 return;
6113 TemplateArgumentListInfo TemplateArgsInfo;
6114 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6115 TemplateId->NumArgs);
6116 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6117 for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
6118 TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
6119 }
6120 void VisitTagTypeLoc(TagTypeLoc TL) {
6121 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6122 }
6123 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6124 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6125 // or an _Atomic qualifier.
6126 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6127 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6128 TL.setParensRange(DS.getTypeofParensRange());
6129
6130 TypeSourceInfo *TInfo = nullptr;
6131 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6132 assert(TInfo)(static_cast <bool> (TInfo) ? void (0) : __assert_fail (
"TInfo", "clang/lib/Sema/SemaType.cpp", 6132, __extension__ __PRETTY_FUNCTION__
))
;
6133 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6134 } else {
6135 TL.setKWLoc(DS.getAtomicSpecLoc());
6136 // No parens, to indicate this was spelled as an _Atomic qualifier.
6137 TL.setParensRange(SourceRange());
6138 Visit(TL.getValueLoc());
6139 }
6140 }
6141
6142 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6143 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6144
6145 TypeSourceInfo *TInfo = nullptr;
6146 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6147 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6148 }
6149
6150 void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6151 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6152 }
6153
6154 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6155 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6156 }
6157
6158 void VisitTypeLoc(TypeLoc TL) {
6159 // FIXME: add other typespec types and change this to an assert.
6160 TL.initialize(Context, DS.getTypeSpecTypeLoc());
6161 }
6162 };
6163
6164 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6165 ASTContext &Context;
6166 TypeProcessingState &State;
6167 const DeclaratorChunk &Chunk;
6168
6169 public:
6170 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6171 const DeclaratorChunk &Chunk)
6172 : Context(Context), State(State), Chunk(Chunk) {}
6173
6174 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6175 llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!"
, "clang/lib/Sema/SemaType.cpp", 6175)
;
6176 }
6177 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6178 llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!"
, "clang/lib/Sema/SemaType.cpp", 6178)
;
6179 }
6180
6181 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6182 fillAttributedTypeLoc(TL, State);
6183 }
6184 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6185 // nothing
6186 }
6187 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6188 // nothing
6189 }
6190 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6191 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::BlockPointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer"
, "clang/lib/Sema/SemaType.cpp", 6191, __extension__ __PRETTY_FUNCTION__
))
;
6192 TL.setCaretLoc(Chunk.Loc);
6193 }
6194 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6195 assert(Chunk.Kind == DeclaratorChunk::Pointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Pointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "clang/lib/Sema/SemaType.cpp", 6195, __extension__ __PRETTY_FUNCTION__
))
;
6196 TL.setStarLoc(Chunk.Loc);
6197 }
6198 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6199 assert(Chunk.Kind == DeclaratorChunk::Pointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Pointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "clang/lib/Sema/SemaType.cpp", 6199, __extension__ __PRETTY_FUNCTION__
))
;
6200 TL.setStarLoc(Chunk.Loc);
6201 }
6202 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6203 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::MemberPointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer"
, "clang/lib/Sema/SemaType.cpp", 6203, __extension__ __PRETTY_FUNCTION__
))
;
6204 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6205 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6206
6207 const Type* ClsTy = TL.getClass();
6208 QualType ClsQT = QualType(ClsTy, 0);
6209 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6210 // Now copy source location info into the type loc component.
6211 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6212 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6213 case NestedNameSpecifier::Identifier:
6214 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")(static_cast <bool> (isa<DependentNameType>(ClsTy
) && "Unexpected TypeLoc") ? void (0) : __assert_fail
("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\""
, "clang/lib/Sema/SemaType.cpp", 6214, __extension__ __PRETTY_FUNCTION__
))
;
6215 {
6216 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6217 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6218 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6219 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6220 }
6221 break;
6222
6223 case NestedNameSpecifier::TypeSpec:
6224 case NestedNameSpecifier::TypeSpecWithTemplate:
6225 if (isa<ElaboratedType>(ClsTy)) {
6226 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6227 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6228 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6229 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6230 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6231 } else {
6232 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6233 }
6234 break;
6235
6236 case NestedNameSpecifier::Namespace:
6237 case NestedNameSpecifier::NamespaceAlias:
6238 case NestedNameSpecifier::Global:
6239 case NestedNameSpecifier::Super:
6240 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "clang/lib/Sema/SemaType.cpp", 6240)
;
6241 }
6242
6243 // Finally fill in MemberPointerLocInfo fields.
6244 TL.setStarLoc(Chunk.Mem.StarLoc);
6245 TL.setClassTInfo(ClsTInfo);
6246 }
6247 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6248 assert(Chunk.Kind == DeclaratorChunk::Reference)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Reference
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 6248, __extension__ __PRETTY_FUNCTION__
))
;
6249 // 'Amp' is misleading: this might have been originally
6250 /// spelled with AmpAmp.
6251 TL.setAmpLoc(Chunk.Loc);
6252 }
6253 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6254 assert(Chunk.Kind == DeclaratorChunk::Reference)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Reference
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 6254, __extension__ __PRETTY_FUNCTION__
))
;
6255 assert(!Chunk.Ref.LValueRef)(static_cast <bool> (!Chunk.Ref.LValueRef) ? void (0) :
__assert_fail ("!Chunk.Ref.LValueRef", "clang/lib/Sema/SemaType.cpp"
, 6255, __extension__ __PRETTY_FUNCTION__))
;
6256 TL.setAmpAmpLoc(Chunk.Loc);
6257 }
6258 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6259 assert(Chunk.Kind == DeclaratorChunk::Array)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Array
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array"
, "clang/lib/Sema/SemaType.cpp", 6259, __extension__ __PRETTY_FUNCTION__
))
;
6260 TL.setLBracketLoc(Chunk.Loc);
6261 TL.setRBracketLoc(Chunk.EndLoc);
6262 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6263 }
6264 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6265 assert(Chunk.Kind == DeclaratorChunk::Function)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Function
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "clang/lib/Sema/SemaType.cpp", 6265, __extension__ __PRETTY_FUNCTION__
))
;
6266 TL.setLocalRangeBegin(Chunk.Loc);
6267 TL.setLocalRangeEnd(Chunk.EndLoc);
6268
6269 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6270 TL.setLParenLoc(FTI.getLParenLoc());
6271 TL.setRParenLoc(FTI.getRParenLoc());
6272 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6273 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6274 TL.setParam(tpi++, Param);
6275 }
6276 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6277 }
6278 void VisitParenTypeLoc(ParenTypeLoc TL) {
6279 assert(Chunk.Kind == DeclaratorChunk::Paren)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Paren
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren"
, "clang/lib/Sema/SemaType.cpp", 6279, __extension__ __PRETTY_FUNCTION__
))
;
6280 TL.setLParenLoc(Chunk.Loc);
6281 TL.setRParenLoc(Chunk.EndLoc);
6282 }
6283 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6284 assert(Chunk.Kind == DeclaratorChunk::Pipe)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Pipe
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe"
, "clang/lib/Sema/SemaType.cpp", 6284, __extension__ __PRETTY_FUNCTION__
))
;
6285 TL.setKWLoc(Chunk.Loc);
6286 }
6287 void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6288 TL.setNameLoc(Chunk.Loc);
6289 }
6290 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6291 TL.setExpansionLoc(Chunk.Loc);
6292 }
6293 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6294 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6295 TL.setNameLoc(Chunk.Loc);
6296 }
6297 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6298 TL.setNameLoc(Chunk.Loc);
6299 }
6300 void
6301 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6302 TL.setNameLoc(Chunk.Loc);
6303 }
6304
6305 void VisitTypeLoc(TypeLoc TL) {
6306 llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!"
, "clang/lib/Sema/SemaType.cpp", 6306)
;
6307 }
6308 };
6309} // end anonymous namespace
6310
6311static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6312 SourceLocation Loc;
6313 switch (Chunk.Kind) {
6314 case DeclaratorChunk::Function:
6315 case DeclaratorChunk::Array:
6316 case DeclaratorChunk::Paren:
6317 case DeclaratorChunk::Pipe:
6318 llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified"
, "clang/lib/Sema/SemaType.cpp", 6318)
;
6319
6320 case DeclaratorChunk::Pointer:
6321 Loc = Chunk.Ptr.AtomicQualLoc;
6322 break;
6323
6324 case DeclaratorChunk::BlockPointer:
6325 case DeclaratorChunk::Reference:
6326 case DeclaratorChunk::MemberPointer:
6327 // FIXME: Provide a source location for the _Atomic keyword.
6328 break;
6329 }
6330
6331 ATL.setKWLoc(Loc);
6332 ATL.setParensRange(SourceRange());
6333}
6334
6335static void
6336fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6337 const ParsedAttributesView &Attrs) {
6338 for (const ParsedAttr &AL : Attrs) {
6339 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6340 DASTL.setAttrNameLoc(AL.getLoc());
6341 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6342 DASTL.setAttrOperandParensRange(SourceRange());
6343 return;
6344 }
6345 }
6346
6347 llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "clang/lib/Sema/SemaType.cpp", 6348)
6348 "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "clang/lib/Sema/SemaType.cpp", 6348)
;
6349}
6350
6351static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6352 const ParsedAttributesView &Attrs) {
6353 for (const ParsedAttr &AL : Attrs) {
6354 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6355 MTL.setAttrNameLoc(AL.getLoc());
6356 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6357 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6358 MTL.setAttrOperandParensRange(SourceRange());
6359 return;
6360 }
6361 }
6362
6363 llvm_unreachable("no matrix_type attribute found at the expected location!")::llvm::llvm_unreachable_internal("no matrix_type attribute found at the expected location!"
, "clang/lib/Sema/SemaType.cpp", 6363)
;
6364}
6365
6366/// Create and instantiate a TypeSourceInfo with type source information.
6367///
6368/// \param T QualType referring to the type as written in source code.
6369///
6370/// \param ReturnTypeInfo For declarators whose return type does not show
6371/// up in the normal place in the declaration specifiers (such as a C++
6372/// conversion function), this pointer will refer to a type source information
6373/// for that return type.
6374static TypeSourceInfo *
6375GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6376 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6377 Sema &S = State.getSema();
6378 Declarator &D = State.getDeclarator();
6379
6380 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6381 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6382
6383 // Handle parameter packs whose type is a pack expansion.
6384 if (isa<PackExpansionType>(T)) {
6385 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6386 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6387 }
6388
6389 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6390 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6391 // declarator chunk.
6392 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6393 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6394 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6395 }
6396
6397 while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
6398 TL.setExpansionLoc(
6399 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6400 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6401 }
6402
6403 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
6404 fillAttributedTypeLoc(TL, State);
6405 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6406 }
6407
6408 while (DependentAddressSpaceTypeLoc TL =
6409 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
6410 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6411 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6412 }
6413
6414 if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>())
6415 fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs());
6416
6417 // FIXME: Ordering here?
6418 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
6419 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6420
6421 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6422 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6423 }
6424
6425 // If we have different source information for the return type, use
6426 // that. This really only applies to C++ conversion functions.
6427 if (ReturnTypeInfo) {
6428 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6429 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())(static_cast <bool> (TL.getFullDataSize() == CurrTL.getFullDataSize
()) ? void (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()"
, "clang/lib/Sema/SemaType.cpp", 6429, __extension__ __PRETTY_FUNCTION__
))
;
6430 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6431 } else {
6432 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6433 }
6434
6435 return TInfo;
6436}
6437
6438/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6439ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6440 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6441 // and Sema during declaration parsing. Try deallocating/caching them when
6442 // it's appropriate, instead of allocating them and keeping them around.
6443 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6444 TypeAlignment);
6445 new (LocT) LocInfoType(T, TInfo);
6446 assert(LocT->getTypeClass() != T->getTypeClass() &&(static_cast <bool> (LocT->getTypeClass() != T->getTypeClass
() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? void (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "clang/lib/Sema/SemaType.cpp", 6447, __extension__ __PRETTY_FUNCTION__
))
6447 "LocInfoType's TypeClass conflicts with an existing Type class")(static_cast <bool> (LocT->getTypeClass() != T->getTypeClass
() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? void (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "clang/lib/Sema/SemaType.cpp", 6447, __extension__ __PRETTY_FUNCTION__
))
;
6448 return ParsedType::make(QualType(LocT, 0));
6449}
6450
6451void LocInfoType::getAsStringInternal(std::string &Str,
6452 const PrintingPolicy &Policy) const {
6453 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "clang/lib/Sema/SemaType.cpp", 6455)
6454 " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "clang/lib/Sema/SemaType.cpp", 6455)
6455 " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "clang/lib/Sema/SemaType.cpp", 6455)
;
6456}
6457
6458TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6459 // C99 6.7.6: Type names have no identifier. This is already validated by
6460 // the parser.
6461 assert(D.getIdentifier() == nullptr &&(static_cast <bool> (D.getIdentifier() == nullptr &&
"Type name should have no identifier!") ? void (0) : __assert_fail
("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "clang/lib/Sema/SemaType.cpp", 6462, __extension__ __PRETTY_FUNCTION__
))
6462 "Type name should have no identifier!")(static_cast <bool> (D.getIdentifier() == nullptr &&
"Type name should have no identifier!") ? void (0) : __assert_fail
("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "clang/lib/Sema/SemaType.cpp", 6462, __extension__ __PRETTY_FUNCTION__
))
;
6463
6464 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6465 QualType T = TInfo->getType();
6466 if (D.isInvalidType())
6467 return true;
6468
6469 // Make sure there are no unused decl attributes on the declarator.
6470 // We don't want to do this for ObjC parameters because we're going
6471 // to apply them to the actual parameter declaration.
6472 // Likewise, we don't want to do this for alias declarations, because
6473 // we are actually going to build a declaration from this eventually.
6474 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6475 D.getContext() != DeclaratorContext::AliasDecl &&
6476 D.getContext() != DeclaratorContext::AliasTemplate)
6477 checkUnusedDeclAttributes(D);
6478
6479 if (getLangOpts().CPlusPlus) {
6480 // Check that there are no default arguments (C++ only).
6481 CheckExtraCXXDefaultArguments(D);
6482 }
6483
6484 return CreateParsedType(T, TInfo);
6485}
6486
6487ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6488 QualType T = Context.getObjCInstanceType();
6489 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6490 return CreateParsedType(T, TInfo);
6491}
6492
6493//===----------------------------------------------------------------------===//
6494// Type Attribute Processing
6495//===----------------------------------------------------------------------===//
6496
6497/// Build an AddressSpace index from a constant expression and diagnose any
6498/// errors related to invalid address_spaces. Returns true on successfully
6499/// building an AddressSpace index.
6500static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6501 const Expr *AddrSpace,
6502 SourceLocation AttrLoc) {
6503 if (!AddrSpace->isValueDependent()) {
6504 Optional<llvm::APSInt> OptAddrSpace =
6505 AddrSpace->getIntegerConstantExpr(S.Context);
6506 if (!OptAddrSpace) {
6507 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6508 << "'address_space'" << AANT_ArgumentIntegerConstant
6509 << AddrSpace->getSourceRange();
6510 return false;
6511 }
6512 llvm::APSInt &addrSpace = *OptAddrSpace;
6513
6514 // Bounds checking.
6515 if (addrSpace.isSigned()) {
6516 if (addrSpace.isNegative()) {
6517 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6518 << AddrSpace->getSourceRange();
6519 return false;
6520 }
6521 addrSpace.setIsSigned(false);
6522 }
6523
6524 llvm::APSInt max(addrSpace.getBitWidth());
6525 max =
6526 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6527
6528 if (addrSpace > max) {
6529 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6530 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6531 return false;
6532 }
6533
6534 ASIdx =
6535 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6536 return true;
6537 }
6538
6539 // Default value for DependentAddressSpaceTypes
6540 ASIdx = LangAS::Default;
6541 return true;
6542}
6543
6544/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6545/// is uninstantiated. If instantiated it will apply the appropriate address
6546/// space to the type. This function allows dependent template variables to be
6547/// used in conjunction with the address_space attribute
6548QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6549 SourceLocation AttrLoc) {
6550 if (!AddrSpace->isValueDependent()) {
6551 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6552 AttrLoc))
6553 return QualType();
6554
6555 return Context.getAddrSpaceQualType(T, ASIdx);
6556 }
6557
6558 // A check with similar intentions as checking if a type already has an
6559 // address space except for on a dependent types, basically if the
6560 // current type is already a DependentAddressSpaceType then its already
6561 // lined up to have another address space on it and we can't have
6562 // multiple address spaces on the one pointer indirection
6563 if (T->getAs<DependentAddressSpaceType>()) {
6564 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6565 return QualType();
6566 }
6567
6568 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6569}
6570
6571QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6572 SourceLocation AttrLoc) {
6573 LangAS ASIdx;
6574 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6575 return QualType();
6576 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6577}
6578
6579static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6580 TypeProcessingState &State) {
6581 Sema &S = State.getSema();
6582
6583 // Check the number of attribute arguments.
6584 if (Attr.getNumArgs() != 1) {
6585 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6586 << Attr << 1;
6587 Attr.setInvalid();
6588 return;
6589 }
6590
6591 // Ensure the argument is a string.
6592 auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6593 if (!StrLiteral) {
6594 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6595 << Attr << AANT_ArgumentString;
6596 Attr.setInvalid();
6597 return;
6598 }
6599
6600 ASTContext &Ctx = S.Context;
6601 StringRef BTFTypeTag = StrLiteral->getString();
6602 Type = State.getBTFTagAttributedType(
6603 ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6604}
6605
6606/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6607/// specified type. The attribute contains 1 argument, the id of the address
6608/// space for the type.
6609static void HandleAddressSpaceTypeAttribute(QualType &Type,
6610 const ParsedAttr &Attr,
6611 TypeProcessingState &State) {
6612 Sema &S = State.getSema();
6613
6614 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6615 // qualified by an address-space qualifier."
6616 if (Type->isFunctionType()) {
6617 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6618 Attr.setInvalid();
6619 return;
6620 }
6621
6622 LangAS ASIdx;
6623 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6624
6625 // Check the attribute arguments.
6626 if (Attr.getNumArgs() != 1) {
6627 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6628 << 1;
6629 Attr.setInvalid();
6630 return;
6631 }
6632
6633 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6634 LangAS ASIdx;
6635 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6636 Attr.setInvalid();
6637 return;
6638 }
6639
6640 ASTContext &Ctx = S.Context;
6641 auto *ASAttr =
6642 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6643
6644 // If the expression is not value dependent (not templated), then we can
6645 // apply the address space qualifiers just to the equivalent type.
6646 // Otherwise, we make an AttributedType with the modified and equivalent
6647 // type the same, and wrap it in a DependentAddressSpaceType. When this
6648 // dependent type is resolved, the qualifier is added to the equivalent type
6649 // later.
6650 QualType T;
6651 if (!ASArgExpr->isValueDependent()) {
6652 QualType EquivType =
6653 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6654 if (EquivType.isNull()) {
6655 Attr.setInvalid();
6656 return;
6657 }
6658 T = State.getAttributedType(ASAttr, Type, EquivType);
6659 } else {
6660 T = State.getAttributedType(ASAttr, Type, Type);
6661 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6662 }
6663
6664 if (!T.isNull())
6665 Type = T;
6666 else
6667 Attr.setInvalid();
6668 } else {
6669 // The keyword-based type attributes imply which address space to use.
6670 ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6671 : Attr.asOpenCLLangAS();
6672
6673 if (ASIdx == LangAS::Default)
6674 llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "clang/lib/Sema/SemaType.cpp"
, 6674)
;
6675
6676 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6677 Attr.getLoc())) {
6678 Attr.setInvalid();
6679 return;
6680 }
6681
6682 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6683 }
6684}
6685
6686/// handleObjCOwnershipTypeAttr - Process an objc_ownership
6687/// attribute on the specified type.
6688///
6689/// Returns 'true' if the attribute was handled.
6690static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6691 ParsedAttr &attr, QualType &type) {
6692 bool NonObjCPointer = false;
6693
6694 if (!type->isDependentType() && !type->isUndeducedType()) {
6695 if (const PointerType *ptr = type->getAs<PointerType>()) {
6696 QualType pointee = ptr->getPointeeType();
6697 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6698 return false;
6699 // It is important not to lose the source info that there was an attribute
6700 // applied to non-objc pointer. We will create an attributed type but
6701 // its type will be the same as the original type.
6702 NonObjCPointer = true;
6703 } else if (!type->isObjCRetainableType()) {
6704 return false;
6705 }
6706
6707 // Don't accept an ownership attribute in the declspec if it would
6708 // just be the return type of a block pointer.
6709 if (state.isProcessingDeclSpec()) {
6710 Declarator &D = state.getDeclarator();
6711 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6712 /*onlyBlockPointers=*/true))
6713 return false;
6714 }
6715 }
6716
6717 Sema &S = state.getSema();
6718 SourceLocation AttrLoc = attr.getLoc();
6719 if (AttrLoc.isMacroID())
6720 AttrLoc =
6721 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6722
6723 if (!attr.isArgIdent(0)) {
6724 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6725 << AANT_ArgumentString;
6726 attr.setInvalid();
6727 return true;
6728 }
6729
6730 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6731 Qualifiers::ObjCLifetime lifetime;
6732 if (II->isStr("none"))
6733 lifetime = Qualifiers::OCL_ExplicitNone;
6734 else if (II->isStr("strong"))
6735 lifetime = Qualifiers::OCL_Strong;
6736 else if (II->isStr("weak"))
6737 lifetime = Qualifiers::OCL_Weak;
6738 else if (II->isStr("autoreleasing"))
6739 lifetime = Qualifiers::OCL_Autoreleasing;
6740 else {
6741 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6742 attr.setInvalid();
6743 return true;
6744 }
6745
6746 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6747 // outside of ARC mode.
6748 if (!S.getLangOpts().ObjCAutoRefCount &&
6749 lifetime != Qualifiers::OCL_Weak &&
6750 lifetime != Qualifiers::OCL_ExplicitNone) {
6751 return true;
6752 }
6753
6754 SplitQualType underlyingType = type.split();
6755
6756 // Check for redundant/conflicting ownership qualifiers.
6757 if (Qualifiers::ObjCLifetime previousLifetime
6758 = type.getQualifiers().getObjCLifetime()) {
6759 // If it's written directly, that's an error.
6760 if (S.Context.hasDirectOwnershipQualifier(type)) {
6761 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6762 << type;
6763 return true;
6764 }
6765
6766 // Otherwise, if the qualifiers actually conflict, pull sugar off
6767 // and remove the ObjCLifetime qualifiers.
6768 if (previousLifetime != lifetime) {
6769 // It's possible to have multiple local ObjCLifetime qualifiers. We
6770 // can't stop after we reach a type that is directly qualified.
6771 const Type *prevTy = nullptr;
6772 while (!prevTy || prevTy != underlyingType.Ty) {
6773 prevTy = underlyingType.Ty;
6774 underlyingType = underlyingType.getSingleStepDesugaredType();
6775 }
6776 underlyingType.Quals.removeObjCLifetime();
6777 }
6778 }
6779
6780 underlyingType.Quals.addObjCLifetime(lifetime);
6781
6782 if (NonObjCPointer) {
6783 StringRef name = attr.getAttrName()->getName();
6784 switch (lifetime) {
6785 case Qualifiers::OCL_None:
6786 case Qualifiers::OCL_ExplicitNone:
6787 break;
6788 case Qualifiers::OCL_Strong: name = "__strong"; break;
6789 case Qualifiers::OCL_Weak: name = "__weak"; break;
6790 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6791 }
6792 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6793 << TDS_ObjCObjOrBlock << type;
6794 }
6795
6796 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6797 // because having both 'T' and '__unsafe_unretained T' exist in the type
6798 // system causes unfortunate widespread consistency problems. (For example,
6799 // they're not considered compatible types, and we mangle them identicially
6800 // as template arguments.) These problems are all individually fixable,
6801 // but it's easier to just not add the qualifier and instead sniff it out
6802 // in specific places using isObjCInertUnsafeUnretainedType().
6803 //
6804 // Doing this does means we miss some trivial consistency checks that
6805 // would've triggered in ARC, but that's better than trying to solve all
6806 // the coexistence problems with __unsafe_unretained.
6807 if (!S.getLangOpts().ObjCAutoRefCount &&
6808 lifetime == Qualifiers::OCL_ExplicitNone) {
6809 type = state.getAttributedType(
6810 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6811 type, type);
6812 return true;
6813 }
6814
6815 QualType origType = type;
6816 if (!NonObjCPointer)
6817 type = S.Context.getQualifiedType(underlyingType);
6818
6819 // If we have a valid source location for the attribute, use an
6820 // AttributedType instead.
6821 if (AttrLoc.isValid()) {
6822 type = state.getAttributedType(::new (S.Context)
6823 ObjCOwnershipAttr(S.Context, attr, II),
6824 origType, type);
6825 }
6826
6827 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6828 unsigned diagnostic, QualType type) {
6829 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6830 S.DelayedDiagnostics.add(
6831 sema::DelayedDiagnostic::makeForbiddenType(
6832 S.getSourceManager().getExpansionLoc(loc),
6833 diagnostic, type, /*ignored*/ 0));
6834 } else {
6835 S.Diag(loc, diagnostic);
6836 }
6837 };
6838
6839 // Sometimes, __weak isn't allowed.
6840 if (lifetime == Qualifiers::OCL_Weak &&
6841 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6842
6843 // Use a specialized diagnostic if the runtime just doesn't support them.
6844 unsigned diagnostic =
6845 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6846 : diag::err_arc_weak_no_runtime);
6847
6848 // In any case, delay the diagnostic until we know what we're parsing.
6849 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6850
6851 attr.setInvalid();
6852 return true;
6853 }
6854
6855 // Forbid __weak for class objects marked as
6856 // objc_arc_weak_reference_unavailable
6857 if (lifetime == Qualifiers::OCL_Weak) {
6858 if (const ObjCObjectPointerType *ObjT =
6859 type->getAs<ObjCObjectPointerType>()) {
6860 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6861 if (Class->isArcWeakrefUnavailable()) {
6862 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6863 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6864 diag::note_class_declared);
6865 }
6866 }
6867 }
6868 }
6869
6870 return true;
6871}
6872
6873/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6874/// attribute on the specified type. Returns true to indicate that
6875/// the attribute was handled, false to indicate that the type does
6876/// not permit the attribute.
6877static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6878 QualType &type) {
6879 Sema &S = state.getSema();
6880
6881 // Delay if this isn't some kind of pointer.
6882 if (!type->isPointerType() &&
6883 !type->isObjCObjectPointerType() &&
6884 !type->isBlockPointerType())
6885 return false;
6886
6887 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6888 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6889 attr.setInvalid();
6890 return true;
6891 }
6892
6893 // Check the attribute arguments.
6894 if (!attr.isArgIdent(0)) {
6895 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6896 << attr << AANT_ArgumentString;
6897 attr.setInvalid();
6898 return true;
6899 }
6900 Qualifiers::GC GCAttr;
6901 if (attr.getNumArgs() > 1) {
6902 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6903 << 1;
6904 attr.setInvalid();
6905 return true;
6906 }
6907
6908 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6909 if (II->isStr("weak"))
6910 GCAttr = Qualifiers::Weak;
6911 else if (II->isStr("strong"))
6912 GCAttr = Qualifiers::Strong;
6913 else {
6914 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6915 << attr << II;
6916 attr.setInvalid();
6917 return true;
6918 }
6919
6920 QualType origType = type;
6921 type = S.Context.getObjCGCQualType(origType, GCAttr);
6922
6923 // Make an attributed type to preserve the source information.
6924 if (attr.getLoc().isValid())
6925 type = state.getAttributedType(
6926 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6927
6928 return true;
6929}
6930
6931namespace {
6932 /// A helper class to unwrap a type down to a function for the
6933 /// purposes of applying attributes there.
6934 ///
6935 /// Use:
6936 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6937 /// if (unwrapped.isFunctionType()) {
6938 /// const FunctionType *fn = unwrapped.get();
6939 /// // change fn somehow
6940 /// T = unwrapped.wrap(fn);
6941 /// }
6942 struct FunctionTypeUnwrapper {
6943 enum WrapKind {
6944 Desugar,
6945 Attributed,
6946 Parens,
6947 Array,
6948 Pointer,
6949 BlockPointer,
6950 Reference,
6951 MemberPointer,
6952 MacroQualified,
6953 };
6954
6955 QualType Original;
6956 const FunctionType *Fn;
6957 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6958
6959 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6960 while (true) {
6961 const Type *Ty = T.getTypePtr();
6962 if (isa<FunctionType>(Ty)) {
6963 Fn = cast<FunctionType>(Ty);
6964 return;
6965 } else if (isa<ParenType>(Ty)) {
6966 T = cast<ParenType>(Ty)->getInnerType();
6967 Stack.push_back(Parens);
6968 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6969 isa<IncompleteArrayType>(Ty)) {
6970 T = cast<ArrayType>(Ty)->getElementType();
6971 Stack.push_back(Array);
6972 } else if (isa<PointerType>(Ty)) {
6973 T = cast<PointerType>(Ty)->getPointeeType();
6974 Stack.push_back(Pointer);
6975 } else if (isa<BlockPointerType>(Ty)) {
6976 T = cast<BlockPointerType>(Ty)->getPointeeType();
6977 Stack.push_back(BlockPointer);
6978 } else if (isa<MemberPointerType>(Ty)) {
6979 T = cast<MemberPointerType>(Ty)->getPointeeType();
6980 Stack.push_back(MemberPointer);
6981 } else if (isa<ReferenceType>(Ty)) {
6982 T = cast<ReferenceType>(Ty)->getPointeeType();
6983 Stack.push_back(Reference);
6984 } else if (isa<AttributedType>(Ty)) {
6985 T = cast<AttributedType>(Ty)->getEquivalentType();
6986 Stack.push_back(Attributed);
6987 } else if (isa<MacroQualifiedType>(Ty)) {
6988 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6989 Stack.push_back(MacroQualified);
6990 } else {
6991 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6992 if (Ty == DTy) {
6993 Fn = nullptr;
6994 return;
6995 }
6996
6997 T = QualType(DTy, 0);
6998 Stack.push_back(Desugar);
6999 }
7000 }
7001 }
7002
7003 bool isFunctionType() const { return (Fn != nullptr); }
7004 const FunctionType *get() const { return Fn; }
7005
7006 QualType wrap(Sema &S, const FunctionType *New) {
7007 // If T wasn't modified from the unwrapped type, do nothing.
7008 if (New == get()) return Original;
7009
7010 Fn = New;
7011 return wrap(S.Context, Original, 0);
7012 }
7013
7014 private:
7015 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
7016 if (I == Stack.size())
7017 return C.getQualifiedType(Fn, Old.getQualifiers());
7018
7019 // Build up the inner type, applying the qualifiers from the old
7020 // type to the new type.
7021 SplitQualType SplitOld = Old.split();
7022
7023 // As a special case, tail-recurse if there are no qualifiers.
7024 if (SplitOld.Quals.empty())
7025 return wrap(C, SplitOld.Ty, I);
7026 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
7027 }
7028
7029 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
7030 if (I == Stack.size()) return QualType(Fn, 0);
7031
7032 switch (static_cast<WrapKind>(Stack[I++])) {
7033 case Desugar:
7034 // This is the point at which we potentially lose source
7035 // information.
7036 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
7037
7038 case Attributed:
7039 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
7040
7041 case Parens: {
7042 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
7043 return C.getParenType(New);
7044 }
7045
7046 case MacroQualified:
7047 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
7048
7049 case Array: {
7050 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
7051 QualType New = wrap(C, CAT->getElementType(), I);
7052 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
7053 CAT->getSizeModifier(),
7054 CAT->getIndexTypeCVRQualifiers());
7055 }
7056
7057 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
7058 QualType New = wrap(C, VAT->getElementType(), I);
7059 return C.getVariableArrayType(
7060 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
7061 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7062 }
7063
7064 const auto *IAT = cast<IncompleteArrayType>(Old);
7065 QualType New = wrap(C, IAT->getElementType(), I);
7066 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7067 IAT->getIndexTypeCVRQualifiers());
7068 }
7069
7070 case Pointer: {
7071 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7072 return C.getPointerType(New);
7073 }
7074
7075 case BlockPointer: {
7076 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7077 return C.getBlockPointerType(New);
7078 }
7079
7080 case MemberPointer: {
7081 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7082 QualType New = wrap(C, OldMPT->getPointeeType(), I);
7083 return C.getMemberPointerType(New, OldMPT->getClass());
7084 }
7085
7086 case Reference: {
7087 const ReferenceType *OldRef = cast<ReferenceType>(Old);
7088 QualType New = wrap(C, OldRef->getPointeeType(), I);
7089 if (isa<LValueReferenceType>(OldRef))
7090 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7091 else
7092 return C.getRValueReferenceType(New);
7093 }
7094 }
7095
7096 llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "clang/lib/Sema/SemaType.cpp"
, 7096)
;
7097 }
7098 };
7099} // end anonymous namespace
7100
7101static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7102 ParsedAttr &PAttr, QualType &Type) {
7103 Sema &S = State.getSema();
7104
7105 Attr *A;
7106 switch (PAttr.getKind()) {
7107 default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "clang/lib/Sema/SemaType.cpp"
, 7107)
;
7108 case ParsedAttr::AT_Ptr32:
7109 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7110 break;
7111 case ParsedAttr::AT_Ptr64:
7112 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7113 break;
7114 case ParsedAttr::AT_SPtr:
7115 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7116 break;
7117 case ParsedAttr::AT_UPtr:
7118 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7119 break;
7120 }
7121
7122 std::bitset<attr::LastAttr> Attrs;
7123 attr::Kind NewAttrKind = A->getKind();
7124 QualType Desugared = Type;
7125 const AttributedType *AT = dyn_cast<AttributedType>(Type);
7126 while (AT) {
7127 Attrs[AT->getAttrKind()] = true;
7128 Desugared = AT->getModifiedType();
7129 AT = dyn_cast<AttributedType>(Desugared);
7130 }
7131
7132 // You cannot specify duplicate type attributes, so if the attribute has
7133 // already been applied, flag it.
7134 if (Attrs[NewAttrKind]) {
7135 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7136 return true;
7137 }
7138 Attrs[NewAttrKind] = true;
7139
7140 // You cannot have both __sptr and __uptr on the same type, nor can you
7141 // have __ptr32 and __ptr64.
7142 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7143 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7144 << "'__ptr32'"
7145 << "'__ptr64'";
7146 return true;
7147 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7148 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7149 << "'__sptr'"
7150 << "'__uptr'";
7151 return true;
7152 }
7153
7154 // Pointer type qualifiers can only operate on pointer types, but not
7155 // pointer-to-member types.
7156 //
7157 // FIXME: Should we really be disallowing this attribute if there is any
7158 // type sugar between it and the pointer (other than attributes)? Eg, this
7159 // disallows the attribute on a parenthesized pointer.
7160 // And if so, should we really allow *any* type attribute?
7161 if (!isa<PointerType>(Desugared)) {
7162 if (Type->isMemberPointerType())
7163 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7164 else
7165 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7166 return true;
7167 }
7168
7169 // Add address space to type based on its attributes.
7170 LangAS ASIdx = LangAS::Default;
7171 uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
7172 if (PtrWidth == 32) {
7173 if (Attrs[attr::Ptr64])
7174 ASIdx = LangAS::ptr64;
7175 else if (Attrs[attr::UPtr])
7176 ASIdx = LangAS::ptr32_uptr;
7177 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7178 if (Attrs[attr::UPtr])
7179 ASIdx = LangAS::ptr32_uptr;
7180 else
7181 ASIdx = LangAS::ptr32_sptr;
7182 }
7183
7184 QualType Pointee = Type->getPointeeType();
7185 if (ASIdx != LangAS::Default)
7186 Pointee = S.Context.getAddrSpaceQualType(
7187 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7188 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7189 return false;
7190}
7191
7192/// Map a nullability attribute kind to a nullability kind.
7193static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7194 switch (kind) {
7195 case ParsedAttr::AT_TypeNonNull:
7196 return NullabilityKind::NonNull;
7197
7198 case ParsedAttr::AT_TypeNullable:
7199 return NullabilityKind::Nullable;
7200
7201 case ParsedAttr::AT_TypeNullableResult:
7202 return NullabilityKind::NullableResult;
7203
7204 case ParsedAttr::AT_TypeNullUnspecified:
7205 return NullabilityKind::Unspecified;
7206
7207 default:
7208 llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind"
, "clang/lib/Sema/SemaType.cpp", 7208)
;
7209 }
7210}
7211
7212/// Applies a nullability type specifier to the given type, if possible.
7213///
7214/// \param state The type processing state.
7215///
7216/// \param type The type to which the nullability specifier will be
7217/// added. On success, this type will be updated appropriately.
7218///
7219/// \param attr The attribute as written on the type.
7220///
7221/// \param allowOnArrayType Whether to accept nullability specifiers on an
7222/// array type (e.g., because it will decay to a pointer).
7223///
7224/// \returns true if a problem has been diagnosed, false on success.
7225static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7226 QualType &type,
7227 ParsedAttr &attr,
7228 bool allowOnArrayType) {
7229 Sema &S = state.getSema();
7230
7231 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7232 SourceLocation nullabilityLoc = attr.getLoc();
7233 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7234
7235 recordNullabilitySeen(S, nullabilityLoc);
7236
7237 // Check for existing nullability attributes on the type.
7238 QualType desugared = type;
7239 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7240 // Check whether there is already a null
7241 if (auto existingNullability = attributed->getImmediateNullability()) {
7242 // Duplicated nullability.
7243 if (nullability == *existingNullability) {
7244 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7245 << DiagNullabilityKind(nullability, isContextSensitive)
7246 << FixItHint::CreateRemoval(nullabilityLoc);
7247
7248 break;
7249 }
7250
7251 // Conflicting nullability.
7252 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7253 << DiagNullabilityKind(nullability, isContextSensitive)
7254 << DiagNullabilityKind(*existingNullability, false);
7255 return true;
7256 }
7257
7258 desugared = attributed->getModifiedType();
7259 }
7260
7261 // If there is already a different nullability specifier, complain.
7262 // This (unlike the code above) looks through typedefs that might
7263 // have nullability specifiers on them, which means we cannot
7264 // provide a useful Fix-It.
7265 if (auto existingNullability = desugared->getNullability(S.Context)) {
7266 if (nullability != *existingNullability) {
7267 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7268 << DiagNullabilityKind(nullability, isContextSensitive)
7269 << DiagNullabilityKind(*existingNullability, false);
7270
7271 // Try to find the typedef with the existing nullability specifier.
7272 if (auto typedefType = desugared->getAs<TypedefType>()) {
7273 TypedefNameDecl *typedefDecl = typedefType->getDecl();
7274 QualType underlyingType = typedefDecl->getUnderlyingType();
7275 if (auto typedefNullability
7276 = AttributedType::stripOuterNullability(underlyingType)) {
7277 if (*typedefNullability == *existingNullability) {
7278 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7279 << DiagNullabilityKind(*existingNullability, false);
7280 }
7281 }
7282 }
7283
7284 return true;
7285 }
7286 }
7287
7288 // If this definitely isn't a pointer type, reject the specifier.
7289 if (!desugared->canHaveNullability() &&
7290 !(allowOnArrayType && desugared->isArrayType())) {
7291 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7292 << DiagNullabilityKind(nullability, isContextSensitive) << type;
7293 return true;
7294 }
7295
7296 // For the context-sensitive keywords/Objective-C property
7297 // attributes, require that the type be a single-level pointer.
7298 if (isContextSensitive) {
7299 // Make sure that the pointee isn't itself a pointer type.
7300 const Type *pointeeType = nullptr;
7301 if (desugared->isArrayType())
7302 pointeeType = desugared->getArrayElementTypeNoTypeQual();
7303 else if (desugared->isAnyPointerType())
7304 pointeeType = desugared->getPointeeType().getTypePtr();
7305
7306 if (pointeeType && (pointeeType->isAnyPointerType() ||
7307 pointeeType->isObjCObjectPointerType() ||
7308 pointeeType->isMemberPointerType())) {
7309 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7310 << DiagNullabilityKind(nullability, true)
7311 << type;
7312 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7313 << DiagNullabilityKind(nullability, false)
7314 << type
7315 << FixItHint::CreateReplacement(nullabilityLoc,
7316 getNullabilitySpelling(nullability));
7317 return true;
7318 }
7319 }
7320
7321 // Form the attributed type.
7322 type = state.getAttributedType(
7323 createNullabilityAttr(S.Context, attr, nullability), type, type);
7324 return false;
7325}
7326
7327/// Check the application of the Objective-C '__kindof' qualifier to
7328/// the given type.
7329static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7330 ParsedAttr &attr) {
7331 Sema &S = state.getSema();
7332
7333 if (isa<ObjCTypeParamType>(type)) {
7334 // Build the attributed type to record where __kindof occurred.
7335 type = state.getAttributedType(
7336 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7337 return false;
7338 }
7339
7340 // Find out if it's an Objective-C object or object pointer type;
7341 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7342 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7343 : type->getAs<ObjCObjectType>();
7344
7345 // If not, we can't apply __kindof.
7346 if (!objType) {
7347 // FIXME: Handle dependent types that aren't yet object types.
7348 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7349 << type;
7350 return true;
7351 }
7352
7353 // Rebuild the "equivalent" type, which pushes __kindof down into
7354 // the object type.
7355 // There is no need to apply kindof on an unqualified id type.
7356 QualType equivType = S.Context.getObjCObjectType(
7357 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7358 objType->getProtocols(),
7359 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7360
7361 // If we started with an object pointer type, rebuild it.
7362 if (ptrType) {
7363 equivType = S.Context.getObjCObjectPointerType(equivType);
7364 if (auto nullability = type->getNullability(S.Context)) {
7365 // We create a nullability attribute from the __kindof attribute.
7366 // Make sure that will make sense.
7367 assert(attr.getAttributeSpellingListIndex() == 0 &&(static_cast <bool> (attr.getAttributeSpellingListIndex
() == 0 && "multiple spellings for __kindof?") ? void
(0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "clang/lib/Sema/SemaType.cpp", 7368, __extension__ __PRETTY_FUNCTION__
))
7368 "multiple spellings for __kindof?")(static_cast <bool> (attr.getAttributeSpellingListIndex
() == 0 && "multiple spellings for __kindof?") ? void
(0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "clang/lib/Sema/SemaType.cpp", 7368, __extension__ __PRETTY_FUNCTION__
))
;
7369 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7370 A->setImplicit(true);
7371 equivType = state.getAttributedType(A, equivType, equivType);
7372 }
7373 }
7374
7375 // Build the attributed type to record where __kindof occurred.
7376 type = state.getAttributedType(
7377 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7378 return false;
7379}
7380
7381/// Distribute a nullability type attribute that cannot be applied to
7382/// the type specifier to a pointer, block pointer, or member pointer
7383/// declarator, complaining if necessary.
7384///
7385/// \returns true if the nullability annotation was distributed, false
7386/// otherwise.
7387static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7388 QualType type, ParsedAttr &attr) {
7389 Declarator &declarator = state.getDeclarator();
7390
7391 /// Attempt to move the attribute to the specified chunk.
7392 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7393 // If there is already a nullability attribute there, don't add
7394 // one.
7395 if (hasNullabilityAttr(chunk.getAttrs()))
7396 return false;
7397
7398 // Complain about the nullability qualifier being in the wrong
7399 // place.
7400 enum {
7401 PK_Pointer,
7402 PK_BlockPointer,
7403 PK_MemberPointer,
7404 PK_FunctionPointer,
7405 PK_MemberFunctionPointer,
7406 } pointerKind
7407 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7408 : PK_Pointer)
7409 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7410 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7411
7412 auto diag = state.getSema().Diag(attr.getLoc(),
7413 diag::warn_nullability_declspec)
7414 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7415 attr.isContextSensitiveKeywordAttribute())
7416 << type
7417 << static_cast<unsigned>(pointerKind);
7418
7419 // FIXME: MemberPointer chunks don't carry the location of the *.
7420 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7421 diag << FixItHint::CreateRemoval(attr.getLoc())
7422 << FixItHint::CreateInsertion(
7423 state.getSema().getPreprocessor().getLocForEndOfToken(
7424 chunk.Loc),
7425 " " + attr.getAttrName()->getName().str() + " ");
7426 }
7427
7428 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7429 chunk.getAttrs());
7430 return true;
7431 };
7432
7433 // Move it to the outermost pointer, member pointer, or block
7434 // pointer declarator.
7435 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7436 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7437 switch (chunk.Kind) {
7438 case DeclaratorChunk::Pointer:
7439 case DeclaratorChunk::BlockPointer:
7440 case DeclaratorChunk::MemberPointer:
7441 return moveToChunk(chunk, false);
7442
7443 case DeclaratorChunk::Paren:
7444 case DeclaratorChunk::Array:
7445 continue;
7446
7447 case DeclaratorChunk::Function:
7448 // Try to move past the return type to a function/block/member
7449 // function pointer.
7450 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7451 declarator, i,
7452 /*onlyBlockPointers=*/false)) {
7453 return moveToChunk(*dest, true);
7454 }
7455
7456 return false;
7457
7458 // Don't walk through these.
7459 case DeclaratorChunk::Reference:
7460 case DeclaratorChunk::Pipe:
7461 return false;
7462 }
7463 }
7464
7465 return false;
7466}
7467
7468static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7469 assert(!Attr.isInvalid())(static_cast <bool> (!Attr.isInvalid()) ? void (0) : __assert_fail
("!Attr.isInvalid()", "clang/lib/Sema/SemaType.cpp", 7469, __extension__
__PRETTY_FUNCTION__))
;
7470 switch (Attr.getKind()) {
7471 default:
7472 llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute"
, "clang/lib/Sema/SemaType.cpp", 7472)
;
7473 case ParsedAttr::AT_CDecl:
7474 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7475 case ParsedAttr::AT_FastCall:
7476 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7477 case ParsedAttr::AT_StdCall:
7478 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7479 case ParsedAttr::AT_ThisCall:
7480 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7481 case ParsedAttr::AT_RegCall:
7482 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7483 case ParsedAttr::AT_Pascal:
7484 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7485 case ParsedAttr::AT_SwiftCall:
7486 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7487 case ParsedAttr::AT_SwiftAsyncCall:
7488 return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7489 case ParsedAttr::AT_VectorCall:
7490 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7491 case ParsedAttr::AT_AArch64VectorPcs:
7492 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7493 case ParsedAttr::AT_Pcs: {
7494 // The attribute may have had a fixit applied where we treated an
7495 // identifier as a string literal. The contents of the string are valid,
7496 // but the form may not be.
7497 StringRef Str;
7498 if (Attr.isArgExpr(0))
7499 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7500 else
7501 Str = Attr.getArgAsIdent(0)->Ident->getName();
7502 PcsAttr::PCSType Type;
7503 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7504 llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute"
, "clang/lib/Sema/SemaType.cpp", 7504)
;
7505 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7506 }
7507 case ParsedAttr::AT_IntelOclBicc:
7508 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7509 case ParsedAttr::AT_MSABI:
7510 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7511 case ParsedAttr::AT_SysVABI:
7512 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7513 case ParsedAttr::AT_PreserveMost:
7514 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7515 case ParsedAttr::AT_PreserveAll:
7516 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7517 }
7518 llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!"
, "clang/lib/Sema/SemaType.cpp", 7518)
;
7519}
7520
7521/// Process an individual function attribute. Returns true to
7522/// indicate that the attribute was handled, false if it wasn't.
7523static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7524 QualType &type) {
7525 Sema &S = state.getSema();
7526
7527 FunctionTypeUnwrapper unwrapped(S, type);
7528
7529 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7530 if (S.CheckAttrNoArgs(attr))
7531 return true;
7532
7533 // Delay if this is not a function type.
7534 if (!unwrapped.isFunctionType())
7535 return false;
7536
7537 // Otherwise we can process right away.
7538 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7539 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7540 return true;
7541 }
7542
7543 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7544 // Delay if this is not a function type.
7545 if (!unwrapped.isFunctionType())
7546 return false;
7547
7548 // Ignore if we don't have CMSE enabled.
7549 if (!S.getLangOpts().Cmse) {
7550 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7551 attr.setInvalid();
7552 return true;
7553 }
7554
7555 // Otherwise we can process right away.
7556 FunctionType::ExtInfo EI =
7557 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7558 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7559 return true;
7560 }
7561
7562 // ns_returns_retained is not always a type attribute, but if we got
7563 // here, we're treating it as one right now.
7564 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7565 if (attr.getNumArgs()) return true;
7566
7567 // Delay if this is not a function type.
7568 if (!unwrapped.isFunctionType())
7569 return false;
7570
7571 // Check whether the return type is reasonable.
7572 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7573 unwrapped.get()->getReturnType()))
7574 return true;
7575
7576 // Only actually change the underlying type in ARC builds.
7577 QualType origType = type;
7578 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7579 FunctionType::ExtInfo EI
7580 = unwrapped.get()->getExtInfo().withProducesResult(true);
7581 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7582 }
7583 type = state.getAttributedType(
7584 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7585 origType, type);
7586 return true;
7587 }
7588
7589 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7590 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7591 return true;
7592
7593 // Delay if this is not a function type.
7594 if (!unwrapped.isFunctionType())
7595 return false;
7596
7597 FunctionType::ExtInfo EI =
7598 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7599 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7600 return true;
7601 }
7602
7603 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7604 if (!S.getLangOpts().CFProtectionBranch) {
7605 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7606 attr.setInvalid();
7607 return true;
7608 }
7609
7610 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7611 return true;
7612
7613 // If this is not a function type, warning will be asserted by subject
7614 // check.
7615 if (!unwrapped.isFunctionType())
7616 return true;
7617
7618 FunctionType::ExtInfo EI =
7619 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7620 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7621 return true;
7622 }
7623
7624 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7625 unsigned value;
7626 if (S.CheckRegparmAttr(attr, value))
7627 return true;
7628
7629 // Delay if this is not a function type.
7630 if (!unwrapped.isFunctionType())
7631 return false;
7632
7633 // Diagnose regparm with fastcall.
7634 const FunctionType *fn = unwrapped.get();
7635 CallingConv CC = fn->getCallConv();
7636 if (CC == CC_X86FastCall) {
7637 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7638 << FunctionType::getNameForCallConv(CC)
7639 << "regparm";
7640 attr.setInvalid();
7641 return true;
7642 }
7643
7644 FunctionType::ExtInfo EI =
7645 unwrapped.get()->getExtInfo().withRegParm(value);
7646 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7647 return true;
7648 }
7649
7650 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7651 // Delay if this is not a function type.
7652 if (!unwrapped.isFunctionType())
7653 return false;
7654
7655 if (S.CheckAttrNoArgs(attr)) {
7656 attr.setInvalid();
7657 return true;
7658 }
7659
7660 // Otherwise we can process right away.
7661 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7662
7663 // MSVC ignores nothrow if it is in conflict with an explicit exception
7664 // specification.
7665 if (Proto->hasExceptionSpec()) {
7666 switch (Proto->getExceptionSpecType()) {
7667 case EST_None:
7668 llvm_unreachable("This doesn't have an exception spec!")::llvm::llvm_unreachable_internal("This doesn't have an exception spec!"
, "clang/lib/Sema/SemaType.cpp", 7668)
;
7669
7670 case EST_DynamicNone:
7671 case EST_BasicNoexcept:
7672 case EST_NoexceptTrue:
7673 case EST_NoThrow:
7674 // Exception spec doesn't conflict with nothrow, so don't warn.
7675 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7676 case EST_Unparsed:
7677 case EST_Uninstantiated:
7678 case EST_DependentNoexcept:
7679 case EST_Unevaluated:
7680 // We don't have enough information to properly determine if there is a
7681 // conflict, so suppress the warning.
7682 break;
7683 case EST_Dynamic:
7684 case EST_MSAny:
7685 case EST_NoexceptFalse:
7686 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7687 break;
7688 }
7689 return true;
7690 }
7691
7692 type = unwrapped.wrap(
7693 S, S.Context
7694 .getFunctionTypeWithExceptionSpec(
7695 QualType{Proto, 0},
7696 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7697 ->getAs<FunctionType>());
7698 return true;
7699 }
7700
7701 // Delay if the type didn't work out to a function.
7702 if (!unwrapped.isFunctionType()) return false;
7703
7704 // Otherwise, a calling convention.
7705 CallingConv CC;
7706 if (S.CheckCallingConvAttr(attr, CC))
7707 return true;
7708
7709 const FunctionType *fn = unwrapped.get();
7710 CallingConv CCOld = fn->getCallConv();
7711 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7712
7713 if (CCOld != CC) {
7714 // Error out on when there's already an attribute on the type
7715 // and the CCs don't match.
7716 if (S.getCallingConvAttributedType(type)) {
7717 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7718 << FunctionType::getNameForCallConv(CC)
7719 << FunctionType::getNameForCallConv(CCOld);
7720 attr.setInvalid();
7721 return true;
7722 }
7723 }
7724
7725 // Diagnose use of variadic functions with calling conventions that
7726 // don't support them (e.g. because they're callee-cleanup).
7727 // We delay warning about this on unprototyped function declarations
7728 // until after redeclaration checking, just in case we pick up a
7729 // prototype that way. And apparently we also "delay" warning about
7730 // unprototyped function types in general, despite not necessarily having
7731 // much ability to diagnose it later.
7732 if (!supportsVariadicCall(CC)) {
7733 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7734 if (FnP && FnP->isVariadic()) {
7735 // stdcall and fastcall are ignored with a warning for GCC and MS
7736 // compatibility.
7737 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7738 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7739 << FunctionType::getNameForCallConv(CC)
7740 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7741
7742 attr.setInvalid();
7743 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7744 << FunctionType::getNameForCallConv(CC);
7745 }
7746 }
7747
7748 // Also diagnose fastcall with regparm.
7749 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7750 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7751 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7752 attr.setInvalid();
7753 return true;
7754 }
7755
7756 // Modify the CC from the wrapped function type, wrap it all back, and then
7757 // wrap the whole thing in an AttributedType as written. The modified type
7758 // might have a different CC if we ignored the attribute.
7759 QualType Equivalent;
7760 if (CCOld == CC) {
7761 Equivalent = type;
7762 } else {
7763 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7764 Equivalent =
7765 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7766 }
7767 type = state.getAttributedType(CCAttr, type, Equivalent);
7768 return true;
7769}
7770
7771bool Sema::hasExplicitCallingConv(QualType T) {
7772 const AttributedType *AT;
7773
7774 // Stop if we'd be stripping off a typedef sugar node to reach the
7775 // AttributedType.
7776 while ((AT = T->getAs<AttributedType>()) &&
7777 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7778 if (AT->isCallingConv())
7779 return true;
7780 T = AT->getModifiedType();
7781 }
7782 return false;
7783}
7784
7785void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7786 SourceLocation Loc) {
7787 FunctionTypeUnwrapper Unwrapped(*this, T);
7788 const FunctionType *FT = Unwrapped.get();
7789 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7790 cast<FunctionProtoType>(FT)->isVariadic());
7791 CallingConv CurCC = FT->getCallConv();
7792 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7793
7794 if (CurCC == ToCC)
7795 return;
7796
7797 // MS compiler ignores explicit calling convention attributes on structors. We
7798 // should do the same.
7799 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7800 // Issue a warning on ignored calling convention -- except of __stdcall.
7801 // Again, this is what MS compiler does.
7802 if (CurCC != CC_X86StdCall)
7803 Diag(Loc, diag::warn_cconv_unsupported)
7804 << FunctionType::getNameForCallConv(CurCC)
7805 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7806 // Default adjustment.
7807 } else {
7808 // Only adjust types with the default convention. For example, on Windows
7809 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7810 // __thiscall type to __cdecl for static methods.
7811 CallingConv DefaultCC =
7812 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7813
7814 if (CurCC != DefaultCC || DefaultCC == ToCC)
7815 return;
7816
7817 if (hasExplicitCallingConv(T))
7818 return;
7819 }
7820
7821 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7822 QualType Wrapped = Unwrapped.wrap(*this, FT);
7823 T = Context.getAdjustedType(T, Wrapped);
7824}
7825
7826/// HandleVectorSizeAttribute - this attribute is only applicable to integral
7827/// and float scalars, although arrays, pointers, and function return values are
7828/// allowed in conjunction with this construct. Aggregates with this attribute
7829/// are invalid, even if they are of the same size as a corresponding scalar.
7830/// The raw attribute should contain precisely 1 argument, the vector size for
7831/// the variable, measured in bytes. If curType and rawAttr are well formed,
7832/// this routine will return a new vector type.
7833static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7834 Sema &S) {
7835 // Check the attribute arguments.
7836 if (Attr.getNumArgs() != 1) {
7837 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7838 << 1;
7839 Attr.setInvalid();
7840 return;
7841 }
7842
7843 Expr *SizeExpr = Attr.getArgAsExpr(0);
7844 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7845 if (!T.isNull())
7846 CurType = T;
7847 else
7848 Attr.setInvalid();
7849}
7850
7851/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7852/// a type.
7853static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7854 Sema &S) {
7855 // check the attribute arguments.
7856 if (Attr.getNumArgs() != 1) {
7857 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7858 << 1;
7859 return;
7860 }
7861
7862 Expr *SizeExpr = Attr.getArgAsExpr(0);
7863 QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
7864 if (!T.isNull())
7865 CurType = T;
7866}
7867
7868static bool isPermittedNeonBaseType(QualType &Ty,
7869 VectorType::VectorKind VecKind, Sema &S) {
7870 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7871 if (!BTy)
7872 return false;
7873
7874 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7875
7876 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7877 // now.
7878 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7879 Triple.getArch() == llvm::Triple::aarch64_32 ||
7880 Triple.getArch() == llvm::Triple::aarch64_be;
7881 if (VecKind == VectorType::NeonPolyVector) {
7882 if (IsPolyUnsigned) {
7883 // AArch64 polynomial vectors are unsigned.
7884 return BTy->getKind() == BuiltinType::UChar ||
7885 BTy->getKind() == BuiltinType::UShort ||
7886 BTy->getKind() == BuiltinType::ULong ||
7887 BTy->getKind() == BuiltinType::ULongLong;
7888 } else {
7889 // AArch32 polynomial vectors are signed.
7890 return BTy->getKind() == BuiltinType::SChar ||
7891 BTy->getKind() == BuiltinType::Short ||
7892 BTy->getKind() == BuiltinType::LongLong;
7893 }
7894 }
7895
7896 // Non-polynomial vector types: the usual suspects are allowed, as well as
7897 // float64_t on AArch64.
7898 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
7899 BTy->getKind() == BuiltinType::Double)
7900 return true;
7901
7902 return BTy->getKind() == BuiltinType::SChar ||
7903 BTy->getKind() == BuiltinType::UChar ||
7904 BTy->getKind() == BuiltinType::Short ||
7905 BTy->getKind() == BuiltinType::UShort ||
7906 BTy->getKind() == BuiltinType::Int ||
7907 BTy->getKind() == BuiltinType::UInt ||
7908 BTy->getKind() == BuiltinType::Long ||
7909 BTy->getKind() == BuiltinType::ULong ||
7910 BTy->getKind() == BuiltinType::LongLong ||
7911 BTy->getKind() == BuiltinType::ULongLong ||
7912 BTy->getKind() == BuiltinType::Float ||
7913 BTy->getKind() == BuiltinType::Half ||
7914 BTy->getKind() == BuiltinType::BFloat16;
7915}
7916
7917static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
7918 llvm::APSInt &Result) {
7919 const auto *AttrExpr = Attr.getArgAsExpr(0);
7920 if (!AttrExpr->isTypeDependent()) {
7921 if (Optional<llvm::APSInt> Res =
7922 AttrExpr->getIntegerConstantExpr(S.Context)) {
7923 Result = *Res;
7924 return true;
7925 }
7926 }
7927 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7928 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
7929 Attr.setInvalid();
7930 return false;
7931}
7932
7933/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7934/// "neon_polyvector_type" attributes are used to create vector types that
7935/// are mangled according to ARM's ABI. Otherwise, these types are identical
7936/// to those created with the "vector_size" attribute. Unlike "vector_size"
7937/// the argument to these Neon attributes is the number of vector elements,
7938/// not the vector size in bytes. The vector width and element type must
7939/// match one of the standard Neon vector types.
7940static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7941 Sema &S, VectorType::VectorKind VecKind) {
7942 // Target must have NEON (or MVE, whose vectors are similar enough
7943 // not to need a separate attribute)
7944 if (!S.Context.getTargetInfo().hasFeature("neon") &&
7945 !S.Context.getTargetInfo().hasFeature("mve")) {
7946 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
7947 << Attr << "'neon' or 'mve'";
7948 Attr.setInvalid();
7949 return;
7950 }
7951 // Check the attribute arguments.
7952 if (Attr.getNumArgs() != 1) {
7953 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7954 << 1;
7955 Attr.setInvalid();
7956 return;
7957 }
7958 // The number of elements must be an ICE.
7959 llvm::APSInt numEltsInt(32);
7960 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
7961 return;
7962
7963 // Only certain element types are supported for Neon vectors.
7964 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7965 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7966 Attr.setInvalid();
7967 return;
7968 }
7969
7970 // The total size of the vector must be 64 or 128 bits.
7971 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7972 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7973 unsigned vecSize = typeSize * numElts;
7974 if (vecSize != 64 && vecSize != 128) {
7975 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7976 Attr.setInvalid();
7977 return;
7978 }
7979
7980 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7981}
7982
7983/// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
7984/// used to create fixed-length versions of sizeless SVE types defined by
7985/// the ACLE, such as svint32_t and svbool_t.
7986static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
7987 Sema &S) {
7988 // Target must have SVE.
7989 if (!S.Context.getTargetInfo().hasFeature("sve")) {
7990 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
7991 Attr.setInvalid();
7992 return;
7993 }
7994
7995 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
7996 // if <bits>+ syntax is used.
7997 if (!S.getLangOpts().VScaleMin ||
7998 S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
7999 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8000 << Attr;
8001 Attr.setInvalid();
8002 return;
8003 }
8004
8005 // Check the attribute arguments.
8006 if (Attr.getNumArgs() != 1) {
8007 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8008 << Attr << 1;
8009 Attr.setInvalid();
8010 return;
8011 }
8012
8013 // The vector size must be an integer constant expression.
8014 llvm::APSInt SveVectorSizeInBits(32);
8015 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8016 return;
8017
8018 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8019
8020 // The attribute vector size must match -msve-vector-bits.
8021 if (VecSize != S.getLangOpts().VScaleMin * 128) {
8022 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8023 << VecSize << S.getLangOpts().VScaleMin * 128;
8024 Attr.setInvalid();
8025 return;
8026 }
8027
8028 // Attribute can only be attached to a single SVE vector or predicate type.
8029 if (!CurType->isVLSTBuiltinType()) {
8030 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8031 << Attr << CurType;
8032 Attr.setInvalid();
8033 return;
8034 }
8035
8036 const auto *BT = CurType->castAs<BuiltinType>();
8037
8038 QualType EltType = CurType->getSveEltType(S.Context);
8039 unsigned TypeSize = S.Context.getTypeSize(EltType);
8040 VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
8041 if (BT->getKind() == BuiltinType::SveBool) {
8042 // Predicates are represented as i8.
8043 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8044 VecKind = VectorType::SveFixedLengthPredicateVector;
8045 } else
8046 VecSize /= TypeSize;
8047 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8048}
8049
8050static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8051 QualType &CurType,
8052 ParsedAttr &Attr) {
8053 const VectorType *VT = dyn_cast<VectorType>(CurType);
8054 if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
8055 State.getSema().Diag(Attr.getLoc(),
8056 diag::err_attribute_arm_mve_polymorphism);
8057 Attr.setInvalid();
8058 return;
8059 }
8060
8061 CurType =
8062 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8063 State.getSema().Context, Attr),
8064 CurType, CurType);
8065}
8066
8067/// Handle OpenCL Access Qualifier Attribute.
8068static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8069 Sema &S) {
8070 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8071 if (!(CurType->isImageType() || CurType->isPipeType())) {
8072 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8073 Attr.setInvalid();
8074 return;
8075 }
8076
8077 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8078 QualType BaseTy = TypedefTy->desugar();
8079
8080 std::string PrevAccessQual;
8081 if (BaseTy->isPipeType()) {
8082 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8083 OpenCLAccessAttr *Attr =
8084 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8085 PrevAccessQual = Attr->getSpelling();
8086 } else {
8087 PrevAccessQual = "read_only";
8088 }
8089 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8090
8091 switch (ImgType->getKind()) {
8092 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8093 case BuiltinType::Id: \
8094 PrevAccessQual = #Access; \
8095 break;
8096 #include "clang/Basic/OpenCLImageTypes.def"
8097 default:
8098 llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type."
, "clang/lib/Sema/SemaType.cpp", 8098)
;
8099 }
8100 } else {
8101 llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "clang/lib/Sema/SemaType.cpp"
, 8101)
;
8102 }
8103 StringRef AttrName = Attr.getAttrName()->getName();
8104 if (PrevAccessQual == AttrName.ltrim("_")) {
8105 // Duplicated qualifiers
8106 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8107 << AttrName << Attr.getRange();
8108 } else {
8109 // Contradicting qualifiers
8110 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8111 }
8112
8113 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8114 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8115 } else if (CurType->isPipeType()) {
8116 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8117 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8118 CurType = S.Context.getWritePipeType(ElemType);
8119 }
8120 }
8121}
8122
8123/// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8124static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8125 Sema &S) {
8126 if (!S.getLangOpts().MatrixTypes) {
8127 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8128 return;
8129 }
8130
8131 if (Attr.getNumArgs() != 2) {
8132 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8133 << Attr << 2;
8134 return;
8135 }
8136
8137 Expr *RowsExpr = Attr.getArgAsExpr(0);
8138 Expr *ColsExpr = Attr.getArgAsExpr(1);
8139 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8140 if (!T.isNull())
8141 CurType = T;
8142}
8143
8144static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8145 QualType &CurType,
8146 ParsedAttr &Attr) {
8147 if (State.getDeclarator().isDeclarationOfFunction()) {
8148 CurType = State.getAttributedType(
8149 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8150 CurType, CurType);
8151 }
8152}
8153
8154static bool isAddressSpaceKind(const ParsedAttr &attr) {
8155 auto attrKind = attr.getKind();
8156
8157 return attrKind == ParsedAttr::AT_AddressSpace ||
8158 attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace ||
8159 attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace ||
8160 attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace ||
8161 attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace ||
8162 attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace ||
8163 attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace ||
8164 attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace;
8165}
8166
8167static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8168 TypeAttrLocation TAL,
8169 const ParsedAttributesView &attrs) {
8170
8171 state.setParsedNoDeref(false);
8172 if (attrs.empty())
8173 return;
8174
8175 // Scan through and apply attributes to this type where it makes sense. Some
8176 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8177 // type, but others can be present in the type specifiers even though they
8178 // apply to the decl. Here we apply type attributes and ignore the rest.
8179
8180 // This loop modifies the list pretty frequently, but we still need to make
8181 // sure we visit every element once. Copy the attributes list, and iterate
8182 // over that.
8183 ParsedAttributesView AttrsCopy{attrs};
8184 for (ParsedAttr &attr : AttrsCopy) {
8185
8186 // Skip attributes that were marked to be invalid.
8187 if (attr.isInvalid())
8188 continue;
8189
8190 if (attr.isStandardAttributeSyntax()) {
8191 // [[gnu::...]] attributes are treated as declaration attributes, so may
8192 // not appertain to a DeclaratorChunk. If we handle them as type
8193 // attributes, accept them in that position and diagnose the GCC
8194 // incompatibility.
8195 if (attr.isGNUScope()) {
8196 bool IsTypeAttr = attr.isTypeAttr();
8197 if (TAL == TAL_DeclChunk) {
8198 state.getSema().Diag(attr.getLoc(),
8199 IsTypeAttr
8200 ? diag::warn_gcc_ignores_type_attr
8201 : diag::warn_cxx11_gnu_attribute_on_type)
8202 << attr;
8203 if (!IsTypeAttr)
8204 continue;
8205 }
8206 } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) {
8207 // Otherwise, only consider type processing for a C++11 attribute if
8208 // it's actually been applied to a type.
8209 // We also allow C++11 address_space and
8210 // OpenCL language address space attributes to pass through.
8211 continue;
8212 }
8213 }
8214
8215 // If this is an attribute we can handle, do so now,
8216 // otherwise, add it to the FnAttrs list for rechaining.
8217 switch (attr.getKind()) {
8218 default:
8219 // A [[]] attribute on a declarator chunk must appertain to a type.
8220 if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) {
8221 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8222 << attr;
8223 attr.setUsedAsTypeAttr();
8224 }
8225 break;
8226
8227 case ParsedAttr::UnknownAttribute:
8228 if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk)
8229 state.getSema().Diag(attr.getLoc(),
8230 diag::warn_unknown_attribute_ignored)
8231 << attr << attr.getRange();
8232 break;
8233
8234 case ParsedAttr::IgnoredAttribute:
8235 break;
8236
8237 case ParsedAttr::AT_BTFTypeTag:
8238 HandleBTFTypeTagAttribute(type, attr, state);
8239 attr.setUsedAsTypeAttr();
8240 break;
8241
8242 case ParsedAttr::AT_MayAlias:
8243 // FIXME: This attribute needs to actually be handled, but if we ignore
8244 // it it breaks large amounts of Linux software.
8245 attr.setUsedAsTypeAttr();
8246 break;
8247 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8248 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8249 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8250 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8251 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8252 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8253 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8254 case ParsedAttr::AT_AddressSpace:
8255 HandleAddressSpaceTypeAttribute(type, attr, state);
8256 attr.setUsedAsTypeAttr();
8257 break;
8258 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
8259 if (!handleObjCPointerTypeAttr(state, attr, type))
8260 distributeObjCPointerTypeAttr(state, attr, type);
8261 attr.setUsedAsTypeAttr();
8262 break;
8263 case ParsedAttr::AT_VectorSize:
8264 HandleVectorSizeAttr(type, attr, state.getSema());
8265 attr.setUsedAsTypeAttr();
8266 break;
8267 case ParsedAttr::AT_ExtVectorType:
8268 HandleExtVectorTypeAttr(type, attr, state.getSema());
8269 attr.setUsedAsTypeAttr();
8270 break;
8271 case ParsedAttr::AT_NeonVectorType:
8272 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8273 VectorType::NeonVector);
8274 attr.setUsedAsTypeAttr();
8275 break;
8276 case ParsedAttr::AT_NeonPolyVectorType:
8277 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8278 VectorType::NeonPolyVector);
8279 attr.setUsedAsTypeAttr();
8280 break;
8281 case ParsedAttr::AT_ArmSveVectorBits:
8282 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8283 attr.setUsedAsTypeAttr();
8284 break;
8285 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8286 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8287 attr.setUsedAsTypeAttr();
8288 break;
8289 }
8290 case ParsedAttr::AT_OpenCLAccess:
8291 HandleOpenCLAccessAttr(type, attr, state.getSema());
8292 attr.setUsedAsTypeAttr();
8293 break;
8294 case ParsedAttr::AT_LifetimeBound:
8295 if (TAL == TAL_DeclChunk)
8296 HandleLifetimeBoundAttr(state, type, attr);
8297 break;
8298
8299 case ParsedAttr::AT_NoDeref: {
8300 ASTContext &Ctx = state.getSema().Context;
8301 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8302 type, type);
8303 attr.setUsedAsTypeAttr();
8304 state.setParsedNoDeref(true);
8305 break;
8306 }
8307
8308 case ParsedAttr::AT_MatrixType:
8309 HandleMatrixTypeAttr(type, attr, state.getSema());
8310 attr.setUsedAsTypeAttr();
8311 break;
8312
8313 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
8314 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8315 attr.setUsedAsTypeAttr();
8316 break;
8317
8318
8319 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
8320 // Either add nullability here or try to distribute it. We
8321 // don't want to distribute the nullability specifier past any
8322 // dependent type, because that complicates the user model.
8323 if (type->canHaveNullability() || type->isDependentType() ||
8324 type->isArrayType() ||
8325 !distributeNullabilityTypeAttr(state, type, attr)) {
8326 unsigned endIndex;
8327 if (TAL == TAL_DeclChunk)
8328 endIndex = state.getCurrentChunkIndex();
8329 else
8330 endIndex = state.getDeclarator().getNumTypeObjects();
8331 bool allowOnArrayType =
8332 state.getDeclarator().isPrototypeContext() &&
8333 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8334 if (checkNullabilityTypeSpecifier(
8335 state,
8336 type,
8337 attr,
8338 allowOnArrayType)) {
8339 attr.setInvalid();
8340 }
8341
8342 attr.setUsedAsTypeAttr();
8343 }
8344 break;
8345
8346 case ParsedAttr::AT_ObjCKindOf:
8347 // '__kindof' must be part of the decl-specifiers.
8348 switch (TAL) {
8349 case TAL_DeclSpec:
8350 break;
8351
8352 case TAL_DeclChunk:
8353 case TAL_DeclName:
8354 state.getSema().Diag(attr.getLoc(),
8355 diag::err_objc_kindof_wrong_position)
8356 << FixItHint::CreateRemoval(attr.getLoc())
8357 << FixItHint::CreateInsertion(
8358 state.getDeclarator().getDeclSpec().getBeginLoc(),
8359 "__kindof ");
8360 break;
8361 }
8362
8363 // Apply it regardless.
8364 if (checkObjCKindOfType(state, type, attr))
8365 attr.setInvalid();
8366 break;
8367
8368 case ParsedAttr::AT_NoThrow:
8369 // Exception Specifications aren't generally supported in C mode throughout
8370 // clang, so revert to attribute-based handling for C.
8371 if (!state.getSema().getLangOpts().CPlusPlus)
8372 break;
8373 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8374 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
8375 attr.setUsedAsTypeAttr();
8376
8377 // Never process function type attributes as part of the
8378 // declaration-specifiers.
8379 if (TAL == TAL_DeclSpec)
8380 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8381
8382 // Otherwise, handle the possible delays.
8383 else if (!handleFunctionTypeAttr(state, attr, type))
8384 distributeFunctionTypeAttr(state, attr, type);
8385 break;
8386 case ParsedAttr::AT_AcquireHandle: {
8387 if (!type->isFunctionType())
8388 return;
8389
8390 if (attr.getNumArgs() != 1) {
8391 state.getSema().Diag(attr.getLoc(),
8392 diag::err_attribute_wrong_number_arguments)
8393 << attr << 1;
8394 attr.setInvalid();
8395 return;
8396 }
8397
8398 StringRef HandleType;
8399 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8400 return;
8401 type = state.getAttributedType(
8402 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8403 type, type);
8404 attr.setUsedAsTypeAttr();
8405 break;
8406 }
8407 }
8408
8409 // Handle attributes that are defined in a macro. We do not want this to be
8410 // applied to ObjC builtin attributes.
8411 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8412 !type.getQualifiers().hasObjCLifetime() &&
8413 !type.getQualifiers().hasObjCGCAttr() &&
8414 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8415 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8416 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8417 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8418 state.setExpansionLocForMacroQualifiedType(
8419 cast<MacroQualifiedType>(type.getTypePtr()),
8420 attr.getMacroExpansionLoc());
8421 }
8422 }
8423}
8424
8425void Sema::completeExprArrayBound(Expr *E) {
8426 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8427 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8428 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8429 auto *Def = Var->getDefinition();
8430 if (!Def) {
8431 SourceLocation PointOfInstantiation = E->getExprLoc();
8432 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8433 InstantiateVariableDefinition(PointOfInstantiation, Var);
8434 });
8435 Def = Var->getDefinition();
8436
8437 // If we don't already have a point of instantiation, and we managed
8438 // to instantiate a definition, this is the point of instantiation.
8439 // Otherwise, we don't request an end-of-TU instantiation, so this is
8440 // not a point of instantiation.
8441 // FIXME: Is this really the right behavior?
8442 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8443 assert(Var->getTemplateSpecializationKind() ==(static_cast <bool> (Var->getTemplateSpecializationKind
() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation"
) ? void (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "clang/lib/Sema/SemaType.cpp", 8445, __extension__ __PRETTY_FUNCTION__
))
8444 TSK_ImplicitInstantiation &&(static_cast <bool> (Var->getTemplateSpecializationKind
() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation"
) ? void (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "clang/lib/Sema/SemaType.cpp", 8445, __extension__ __PRETTY_FUNCTION__
))
8445 "explicit instantiation with no point of instantiation")(static_cast <bool> (Var->getTemplateSpecializationKind
() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation"
) ? void (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "clang/lib/Sema/SemaType.cpp", 8445, __extension__ __PRETTY_FUNCTION__
))
;
8446 Var->setTemplateSpecializationKind(
8447 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8448 }
8449 }
8450
8451 // Update the type to the definition's type both here and within the
8452 // expression.
8453 if (Def) {
8454 DRE->setDecl(Def);
8455 QualType T = Def->getType();
8456 DRE->setType(T);
8457 // FIXME: Update the type on all intervening expressions.
8458 E->setType(T);
8459 }
8460
8461 // We still go on to try to complete the type independently, as it
8462 // may also require instantiations or diagnostics if it remains
8463 // incomplete.
8464 }
8465 }
8466 }
8467}
8468
8469QualType Sema::getCompletedType(Expr *E) {
8470 // Incomplete array types may be completed by the initializer attached to
8471 // their definitions. For static data members of class templates and for
8472 // variable templates, we need to instantiate the definition to get this
8473 // initializer and complete the type.
8474 if (E->getType()->isIncompleteArrayType())
8475 completeExprArrayBound(E);
8476
8477 // FIXME: Are there other cases which require instantiating something other
8478 // than the type to complete the type of an expression?
8479
8480 return E->getType();
8481}
8482
8483/// Ensure that the type of the given expression is complete.
8484///
8485/// This routine checks whether the expression \p E has a complete type. If the
8486/// expression refers to an instantiable construct, that instantiation is
8487/// performed as needed to complete its type. Furthermore
8488/// Sema::RequireCompleteType is called for the expression's type (or in the
8489/// case of a reference type, the referred-to type).
8490///
8491/// \param E The expression whose type is required to be complete.
8492/// \param Kind Selects which completeness rules should be applied.
8493/// \param Diagnoser The object that will emit a diagnostic if the type is
8494/// incomplete.
8495///
8496/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8497/// otherwise.
8498bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8499 TypeDiagnoser &Diagnoser) {
8500 return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8501 Diagnoser);
8502}
8503
8504bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8505 BoundTypeDiagnoser<> Diagnoser(DiagID);
8506 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8507}
8508
8509/// Ensure that the type T is a complete type.
8510///
8511/// This routine checks whether the type @p T is complete in any
8512/// context where a complete type is required. If @p T is a complete
8513/// type, returns false. If @p T is a class template specialization,
8514/// this routine then attempts to perform class template
8515/// instantiation. If instantiation fails, or if @p T is incomplete
8516/// and cannot be completed, issues the diagnostic @p diag (giving it
8517/// the type @p T) and returns true.
8518///
8519/// @param Loc The location in the source that the incomplete type
8520/// diagnostic should refer to.
8521///
8522/// @param T The type that this routine is examining for completeness.
8523///
8524/// @param Kind Selects which completeness rules should be applied.
8525///
8526/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8527/// @c false otherwise.
8528bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8529 CompleteTypeKind Kind,
8530 TypeDiagnoser &Diagnoser) {
8531 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8532 return true;
8533 if (const TagType *Tag = T->getAs<TagType>()) {
8534 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8535 Tag->getDecl()->setCompleteDefinitionRequired();
8536 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8537 }
8538 }
8539 return false;
8540}
8541
8542bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8543 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8544 if (!Suggested)
8545 return false;
8546
8547 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8548 // and isolate from other C++ specific checks.
8549 StructuralEquivalenceContext Ctx(
8550 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8551 StructuralEquivalenceKind::Default,
8552 false /*StrictTypeSpelling*/, true /*Complain*/,
8553 true /*ErrorOnTagTypeMismatch*/);
8554 return Ctx.IsEquivalent(D, Suggested);
8555}
8556
8557/// Determine whether there is any declaration of \p D that was ever a
8558/// definition (perhaps before module merging) and is currently visible.
8559/// \param D The definition of the entity.
8560/// \param Suggested Filled in with the declaration that should be made visible
8561/// in order to provide a definition of this entity.
8562/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8563/// not defined. This only matters for enums with a fixed underlying
8564/// type, since in all other cases, a type is complete if and only if it
8565/// is defined.
8566bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8567 bool OnlyNeedComplete) {
8568 // Easy case: if we don't have modules, all declarations are visible.
8569 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8570 return true;
8571
8572 // If this definition was instantiated from a template, map back to the
8573 // pattern from which it was instantiated.
8574 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8575 // We're in the middle of defining it; this definition should be treated
8576 // as visible.
8577 return true;
8578 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8579 if (auto *Pattern = RD->getTemplateInstantiationPattern())
8580 RD = Pattern;
8581 D = RD->getDefinition();
8582 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8583 if (auto *Pattern = ED->getTemplateInstantiationPattern())
8584 ED = Pattern;
8585 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8586 // If the enum has a fixed underlying type, it may have been forward
8587 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8588 // the enum and assign it the underlying type of `int`. Since we're only
8589 // looking for a complete type (not a definition), any visible declaration
8590 // of it will do.
8591 *Suggested = nullptr;
8592 for (auto *Redecl : ED->redecls()) {
8593 if (isVisible(Redecl))
8594 return true;
8595 if (Redecl->isThisDeclarationADefinition() ||
8596 (Redecl->isCanonicalDecl() && !*Suggested))
8597 *Suggested = Redecl;
8598 }
8599 return false;
8600 }
8601 D = ED->getDefinition();
8602 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8603 if (auto *Pattern = FD->getTemplateInstantiationPattern())
8604 FD = Pattern;
8605 D = FD->getDefinition();
8606 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8607 if (auto *Pattern = VD->getTemplateInstantiationPattern())
8608 VD = Pattern;
8609 D = VD->getDefinition();
8610 }
8611 assert(D && "missing definition for pattern of instantiated definition")(static_cast <bool> (D && "missing definition for pattern of instantiated definition"
) ? void (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\""
, "clang/lib/Sema/SemaType.cpp", 8611, __extension__ __PRETTY_FUNCTION__
))
;
8612
8613 *Suggested = D;
8614
8615 auto DefinitionIsVisible = [&] {
8616 // The (primary) definition might be in a visible module.
8617 if (isVisible(D))
8618 return true;
8619
8620 // A visible module might have a merged definition instead.
8621 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8622 : hasVisibleMergedDefinition(D)) {
8623 if (CodeSynthesisContexts.empty() &&
8624 !getLangOpts().ModulesLocalVisibility) {
8625 // Cache the fact that this definition is implicitly visible because
8626 // there is a visible merged definition.
8627 D->setVisibleDespiteOwningModule();
8628 }
8629 return true;
8630 }
8631
8632 return false;
8633 };
8634
8635 if (DefinitionIsVisible())
8636 return true;
8637
8638 // The external source may have additional definitions of this entity that are
8639 // visible, so complete the redeclaration chain now and ask again.
8640 if (auto *Source = Context.getExternalSource()) {
8641 Source->CompleteRedeclChain(D);
8642 return DefinitionIsVisible();
8643 }
8644
8645 return false;
8646}
8647
8648/// Locks in the inheritance model for the given class and all of its bases.
8649static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8650 RD = RD->getMostRecentNonInjectedDecl();
8651 if (!RD->hasAttr<MSInheritanceAttr>()) {
8652 MSInheritanceModel IM;
8653 bool BestCase = false;
8654 switch (S.MSPointerToMemberRepresentationMethod) {
8655 case LangOptions::PPTMK_BestCase:
8656 BestCase = true;
8657 IM = RD->calculateInheritanceModel();
8658 break;
8659 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8660 IM = MSInheritanceModel::Single;
8661 break;
8662 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8663 IM = MSInheritanceModel::Multiple;
8664 break;
8665 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8666 IM = MSInheritanceModel::Unspecified;
8667 break;
8668 }
8669
8670 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8671 ? S.ImplicitMSInheritanceAttrLoc
8672 : RD->getSourceRange();
8673 RD->addAttr(MSInheritanceAttr::CreateImplicit(
8674 S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8675 MSInheritanceAttr::Spelling(IM)));
8676 S.Consumer.AssignInheritanceModel(RD);
8677 }
8678}
8679
8680/// The implementation of RequireCompleteType
8681bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8682 CompleteTypeKind Kind,
8683 TypeDiagnoser *Diagnoser) {
8684 // FIXME: Add this assertion to make sure we always get instantiation points.
8685 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8686 // FIXME: Add this assertion to help us flush out problems with
8687 // checking for dependent types and type-dependent expressions.
8688 //
8689 // assert(!T->isDependentType() &&
8690 // "Can't ask whether a dependent type is complete");
8691
8692 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8693 if (!MPTy->getClass()->isDependentType()) {
8694 if (getLangOpts().CompleteMemberPointers &&
8695 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8696 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8697 diag::err_memptr_incomplete))
8698 return true;
8699
8700 // We lock in the inheritance model once somebody has asked us to ensure
8701 // that a pointer-to-member type is complete.
8702 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8703 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8704 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8705 }
8706 }
8707 }
8708
8709 NamedDecl *Def = nullptr;
8710 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8711 bool Incomplete = (T->isIncompleteType(&Def) ||
8712 (!AcceptSizeless && T->isSizelessBuiltinType()));
8713
8714 // Check that any necessary explicit specializations are visible. For an
8715 // enum, we just need the declaration, so don't check this.
8716 if (Def && !isa<EnumDecl>(Def))
8717 checkSpecializationVisibility(Loc, Def);
8718
8719 // If we have a complete type, we're done.
8720 if (!Incomplete) {
8721 // If we know about the definition but it is not visible, complain.
8722 NamedDecl *SuggestedDef = nullptr;
8723 if (Def &&
8724 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8725 // If the user is going to see an error here, recover by making the
8726 // definition visible.
8727 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8728 if (Diagnoser && SuggestedDef)
8729 diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8730 /*Recover*/TreatAsComplete);
8731 return !TreatAsComplete;
8732 } else if (Def && !TemplateInstCallbacks.empty()) {
8733 CodeSynthesisContext TempInst;
8734 TempInst.Kind = CodeSynthesisContext::Memoization;
8735 TempInst.Template = Def;
8736 TempInst.Entity = Def;
8737 TempInst.PointOfInstantiation = Loc;
8738 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8739 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8740 }
8741
8742 return false;
8743 }
8744
8745 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8746 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8747
8748 // Give the external source a chance to provide a definition of the type.
8749 // This is kept separate from completing the redeclaration chain so that
8750 // external sources such as LLDB can avoid synthesizing a type definition
8751 // unless it's actually needed.
8752 if (Tag || IFace) {
8753 // Avoid diagnosing invalid decls as incomplete.
8754 if (Def->isInvalidDecl())
8755 return true;
8756
8757 // Give the external AST source a chance to complete the type.
8758 if (auto *Source = Context.getExternalSource()) {
8759 if (Tag && Tag->hasExternalLexicalStorage())
8760 Source->CompleteType(Tag);
8761 if (IFace && IFace->hasExternalLexicalStorage())
8762 Source->CompleteType(IFace);
8763 // If the external source completed the type, go through the motions
8764 // again to ensure we're allowed to use the completed type.
8765 if (!T->isIncompleteType())
8766 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8767 }
8768 }
8769
8770 // If we have a class template specialization or a class member of a
8771 // class template specialization, or an array with known size of such,
8772 // try to instantiate it.
8773 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8774 bool Instantiated = false;
8775 bool Diagnosed = false;
8776 if (RD->isDependentContext()) {
8777 // Don't try to instantiate a dependent class (eg, a member template of
8778 // an instantiated class template specialization).
8779 // FIXME: Can this ever happen?
8780 } else if (auto *ClassTemplateSpec =
8781 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8782 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8783 runWithSufficientStackSpace(Loc, [&] {
8784 Diagnosed = InstantiateClassTemplateSpecialization(
8785 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8786 /*Complain=*/Diagnoser);
8787 });
8788 Instantiated = true;
8789 }
8790 } else {
8791 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8792 if (!RD->isBeingDefined() && Pattern) {
8793 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8794 assert(MSI && "Missing member specialization information?")(static_cast <bool> (MSI && "Missing member specialization information?"
) ? void (0) : __assert_fail ("MSI && \"Missing member specialization information?\""
, "clang/lib/Sema/SemaType.cpp", 8794, __extension__ __PRETTY_FUNCTION__
))
;
8795 // This record was instantiated from a class within a template.
8796 if (MSI->getTemplateSpecializationKind() !=
8797 TSK_ExplicitSpecialization) {
8798 runWithSufficientStackSpace(Loc, [&] {
8799 Diagnosed = InstantiateClass(Loc, RD, Pattern,
8800 getTemplateInstantiationArgs(RD),
8801 TSK_ImplicitInstantiation,
8802 /*Complain=*/Diagnoser);
8803 });
8804 Instantiated = true;
8805 }
8806 }
8807 }
8808
8809 if (Instantiated) {
8810 // Instantiate* might have already complained that the template is not
8811 // defined, if we asked it to.
8812 if (Diagnoser && Diagnosed)
8813 return true;
8814 // If we instantiated a definition, check that it's usable, even if
8815 // instantiation produced an error, so that repeated calls to this
8816 // function give consistent answers.
8817 if (!T->isIncompleteType())
8818 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8819 }
8820 }
8821
8822 // FIXME: If we didn't instantiate a definition because of an explicit
8823 // specialization declaration, check that it's visible.
8824
8825 if (!Diagnoser)
8826 return true;
8827
8828 Diagnoser->diagnose(*this, Loc, T);
8829
8830 // If the type was a forward declaration of a class/struct/union
8831 // type, produce a note.
8832 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
8833 Diag(Tag->getLocation(),
8834 Tag->isBeingDefined() ? diag::note_type_being_defined
8835 : diag::note_forward_declaration)
8836 << Context.getTagDeclType(Tag);
8837
8838 // If the Objective-C class was a forward declaration, produce a note.
8839 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
8840 Diag(IFace->getLocation(), diag::note_forward_class);
8841
8842 // If we have external information that we can use to suggest a fix,
8843 // produce a note.
8844 if (ExternalSource)
8845 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8846
8847 return true;
8848}
8849
8850bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8851 CompleteTypeKind Kind, unsigned DiagID) {
8852 BoundTypeDiagnoser<> Diagnoser(DiagID);
8853 return RequireCompleteType(Loc, T, Kind, Diagnoser);
8854}
8855
8856/// Get diagnostic %select index for tag kind for
8857/// literal type diagnostic message.
8858/// WARNING: Indexes apply to particular diagnostics only!
8859///
8860/// \returns diagnostic %select index.
8861static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8862 switch (Tag) {
8863 case TTK_Struct: return 0;
8864 case TTK_Interface: return 1;
8865 case TTK_Class: return 2;
8866 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!"
, "clang/lib/Sema/SemaType.cpp", 8866)
;
8867 }
8868}
8869
8870/// Ensure that the type T is a literal type.
8871///
8872/// This routine checks whether the type @p T is a literal type. If @p T is an
8873/// incomplete type, an attempt is made to complete it. If @p T is a literal
8874/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8875/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8876/// it the type @p T), along with notes explaining why the type is not a
8877/// literal type, and returns true.
8878///
8879/// @param Loc The location in the source that the non-literal type
8880/// diagnostic should refer to.
8881///
8882/// @param T The type that this routine is examining for literalness.
8883///
8884/// @param Diagnoser Emits a diagnostic if T is not a literal type.
8885///
8886/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8887/// @c false otherwise.
8888bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8889 TypeDiagnoser &Diagnoser) {
8890 assert(!T->isDependentType() && "type should not be dependent")(static_cast <bool> (!T->isDependentType() &&
"type should not be dependent") ? void (0) : __assert_fail (
"!T->isDependentType() && \"type should not be dependent\""
, "clang/lib/Sema/SemaType.cpp", 8890, __extension__ __PRETTY_FUNCTION__
))
;
8891
8892 QualType ElemType = Context.getBaseElementType(T);
8893 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8894 T->isLiteralType(Context))
8895 return false;
8896
8897 Diagnoser.diagnose(*this, Loc, T);
8898
8899 if (T->isVariableArrayType())
8900 return true;
8901
8902 const RecordType *RT = ElemType->getAs<RecordType>();
8903 if (!RT)
8904 return true;
8905
8906 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8907
8908 // A partially-defined class type can't be a literal type, because a literal
8909 // class type must have a trivial destructor (which can't be checked until
8910 // the class definition is complete).
8911 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8912 return true;
8913
8914 // [expr.prim.lambda]p3:
8915 // This class type is [not] a literal type.
8916 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8917 Diag(RD->getLocation(), diag::note_non_literal_lambda);
8918 return true;
8919 }
8920
8921 // If the class has virtual base classes, then it's not an aggregate, and
8922 // cannot have any constexpr constructors or a trivial default constructor,
8923 // so is non-literal. This is better to diagnose than the resulting absence
8924 // of constexpr constructors.
8925 if (RD->getNumVBases()) {
8926 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8927 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8928 for (const auto &I : RD->vbases())
8929 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8930 << I.getSourceRange();
8931 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8932 !RD->hasTrivialDefaultConstructor()) {
8933 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8934 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8935 for (const auto &I : RD->bases()) {
8936 if (!I.getType()->isLiteralType(Context)) {
8937 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8938 << RD << I.getType() << I.getSourceRange();
8939 return true;
8940 }
8941 }
8942 for (const auto *I : RD->fields()) {
8943 if (!I->getType()->isLiteralType(Context) ||
8944 I->getType().isVolatileQualified()) {
8945 Diag(I->getLocation(), diag::note_non_literal_field)
8946 << RD << I << I->getType()
8947 << I->getType().isVolatileQualified();
8948 return true;
8949 }
8950 }
8951 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
8952 : !RD->hasTrivialDestructor()) {
8953 // All fields and bases are of literal types, so have trivial or constexpr
8954 // destructors. If this class's destructor is non-trivial / non-constexpr,
8955 // it must be user-declared.
8956 CXXDestructorDecl *Dtor = RD->getDestructor();
8957 assert(Dtor && "class has literal fields and bases but no dtor?")(static_cast <bool> (Dtor && "class has literal fields and bases but no dtor?"
) ? void (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\""
, "clang/lib/Sema/SemaType.cpp", 8957, __extension__ __PRETTY_FUNCTION__
))
;
8958 if (!Dtor)
8959 return true;
8960
8961 if (getLangOpts().CPlusPlus20) {
8962 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
8963 << RD;
8964 } else {
8965 Diag(Dtor->getLocation(), Dtor->isUserProvided()
8966 ? diag::note_non_literal_user_provided_dtor
8967 : diag::note_non_literal_nontrivial_dtor)
8968 << RD;
8969 if (!Dtor->isUserProvided())
8970 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8971 /*Diagnose*/ true);
8972 }
8973 }
8974
8975 return true;
8976}
8977
8978bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8979 BoundTypeDiagnoser<> Diagnoser(DiagID);
8980 return RequireLiteralType(Loc, T, Diagnoser);
8981}
8982
8983/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8984/// by the nested-name-specifier contained in SS, and that is (re)declared by
8985/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8986QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8987 const CXXScopeSpec &SS, QualType T,
8988 TagDecl *OwnedTagDecl) {
8989 if (T.isNull())
8990 return T;
8991 NestedNameSpecifier *NNS;
8992 if (SS.isValid())
8993 NNS = SS.getScopeRep();
8994 else {
8995 if (Keyword == ETK_None)
8996 return T;
8997 NNS = nullptr;
8998 }
8999 return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
9000}
9001
9002QualType Sema::BuildTypeofExprType(Expr *E) {
9003 assert(!E->hasPlaceholderType() && "unexpected placeholder")(static_cast <bool> (!E->hasPlaceholderType() &&
"unexpected placeholder") ? void (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "clang/lib/Sema/SemaType.cpp", 9003, __extension__ __PRETTY_FUNCTION__
))
;
9004
9005 if (!getLangOpts().CPlusPlus && E->refersToBitField())
9006 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
9007
9008 if (!E->isTypeDependent()) {
9009 QualType T = E->getType();
9010 if (const TagType *TT = T->getAs<TagType>())
9011 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9012 }
9013 return Context.getTypeOfExprType(E);
9014}
9015
9016/// getDecltypeForExpr - Given an expr, will return the decltype for
9017/// that expression, according to the rules in C++11
9018/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9019QualType Sema::getDecltypeForExpr(Expr *E) {
9020 if (E->isTypeDependent())
9021 return Context.DependentTy;
9022
9023 Expr *IDExpr = E;
9024 if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9025 IDExpr = ImplCastExpr->getSubExpr();
9026
9027 // C++11 [dcl.type.simple]p4:
9028 // The type denoted by decltype(e) is defined as follows:
9029
9030 // C++20:
9031 // - if E is an unparenthesized id-expression naming a non-type
9032 // template-parameter (13.2), decltype(E) is the type of the
9033 // template-parameter after performing any necessary type deduction
9034 // Note that this does not pick up the implicit 'const' for a template
9035 // parameter object. This rule makes no difference before C++20 so we apply
9036 // it unconditionally.
9037 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9038 return SNTTPE->getParameterType(Context);
9039
9040 // - if e is an unparenthesized id-expression or an unparenthesized class
9041 // member access (5.2.5), decltype(e) is the type of the entity named
9042 // by e. If there is no such entity, or if e names a set of overloaded
9043 // functions, the program is ill-formed;
9044 //
9045 // We apply the same rules for Objective-C ivar and property references.
9046 if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9047 const ValueDecl *VD = DRE->getDecl();
9048 QualType T = VD->getType();
9049 return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9050 }
9051 if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9052 if (const auto *VD = ME->getMemberDecl())
9053 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9054 return VD->getType();
9055 } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9056 return IR->getDecl()->getType();
9057 } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9058 if (PR->isExplicitProperty())
9059 return PR->getExplicitProperty()->getType();
9060 } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9061 return PE->getType();
9062 }
9063
9064 // C++11 [expr.lambda.prim]p18:
9065 // Every occurrence of decltype((x)) where x is a possibly
9066 // parenthesized id-expression that names an entity of automatic
9067 // storage duration is treated as if x were transformed into an
9068 // access to a corresponding data member of the closure type that
9069 // would have been declared if x were an odr-use of the denoted
9070 // entity.
9071 if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9072 if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9073 if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9074 QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9075 if (!T.isNull())
9076 return Context.getLValueReferenceType(T);
9077 }
9078 }
9079 }
9080
9081 return Context.getReferenceQualifiedType(E);
9082}
9083
9084QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9085 assert(!E->hasPlaceholderType() && "unexpected placeholder")(static_cast <bool> (!E->hasPlaceholderType() &&
"unexpected placeholder") ? void (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "clang/lib/Sema/SemaType.cpp", 9085, __extension__ __PRETTY_FUNCTION__
))
;
9086
9087 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9088 !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9089 // The expression operand for decltype is in an unevaluated expression
9090 // context, so side effects could result in unintended consequences.
9091 // Exclude instantiation-dependent expressions, because 'decltype' is often
9092 // used to build SFINAE gadgets.
9093 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9094 }
9095 return Context.getDecltypeType(E, getDecltypeForExpr(E));
9096}
9097
9098QualType Sema::BuildUnaryTransformType(QualType BaseType,
9099 UnaryTransformType::UTTKind UKind,
9100 SourceLocation Loc) {
9101 switch (UKind) {
9102 case UnaryTransformType::EnumUnderlyingType:
9103 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
9104 Diag(Loc, diag::err_only_enums_have_underlying_types);
9105 return QualType();
9106 } else {
9107 QualType Underlying = BaseType;
9108 if (!BaseType->isDependentType()) {
9109 // The enum could be incomplete if we're parsing its definition or
9110 // recovering from an error.
9111 NamedDecl *FwdDecl = nullptr;
9112 if (BaseType->isIncompleteType(&FwdDecl)) {
9113 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9114 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9115 return QualType();
9116 }
9117
9118 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9119 assert(ED && "EnumType has no EnumDecl")(static_cast <bool> (ED && "EnumType has no EnumDecl"
) ? void (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\""
, "clang/lib/Sema/SemaType.cpp", 9119, __extension__ __PRETTY_FUNCTION__
))
;
9120
9121 DiagnoseUseOfDecl(ED, Loc);
9122
9123 Underlying = ED->getIntegerType();
9124 assert(!Underlying.isNull())(static_cast <bool> (!Underlying.isNull()) ? void (0) :
__assert_fail ("!Underlying.isNull()", "clang/lib/Sema/SemaType.cpp"
, 9124, __extension__ __PRETTY_FUNCTION__))
;
9125 }
9126 return Context.getUnaryTransformType(BaseType, Underlying,
9127 UnaryTransformType::EnumUnderlyingType);
9128 }
9129 }
9130 llvm_unreachable("unknown unary transform type")::llvm::llvm_unreachable_internal("unknown unary transform type"
, "clang/lib/Sema/SemaType.cpp", 9130)
;
9131}
9132
9133QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9134 if (!isDependentOrGNUAutoType(T)) {
9135 // FIXME: It isn't entirely clear whether incomplete atomic types
9136 // are allowed or not; for simplicity, ban them for the moment.
9137 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9138 return QualType();
9139
9140 int DisallowedKind = -1;
9141 if (T->isArrayType())
9142 DisallowedKind = 1;
9143 else if (T->isFunctionType())
9144 DisallowedKind = 2;
9145 else if (T->isReferenceType())
9146 DisallowedKind = 3;
9147 else if (T->isAtomicType())
9148 DisallowedKind = 4;
9149 else if (T.hasQualifiers())
9150 DisallowedKind = 5;
9151 else if (T->isSizelessType())
9152 DisallowedKind = 6;
9153 else if (!T.isTriviallyCopyableType(Context))
9154 // Some other non-trivially-copyable type (probably a C++ class)
9155 DisallowedKind = 7;
9156 else if (T->isBitIntType())
9157 DisallowedKind = 8;
9158
9159 if (DisallowedKind != -1) {
9160 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9161 return QualType();
9162 }
9163
9164 // FIXME: Do we need any handling for ARC here?
9165 }
9166
9167 // Build the pointer type.
9168 return Context.getAtomicType(T);
9169}