Bug Summary

File:clang/lib/Sema/SemaType.cpp
Warning:line 959, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp

1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/DelayedDiagnostic.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/Support/ErrorHandling.h"
40#include <bitset>
41
42using namespace clang;
43
44enum TypeDiagSelector {
45 TDS_Function,
46 TDS_Pointer,
47 TDS_ObjCObjOrBlock
48};
49
50/// isOmittedBlockReturnType - Return true if this declarator is missing a
51/// return type because this is a omitted return type on a block literal.
52static bool isOmittedBlockReturnType(const Declarator &D) {
53 if (D.getContext() != DeclaratorContext::BlockLiteral ||
54 D.getDeclSpec().hasTypeSpecifier())
55 return false;
56
57 if (D.getNumTypeObjects() == 0)
58 return true; // ^{ ... }
59
60 if (D.getNumTypeObjects() == 1 &&
61 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
62 return true; // ^(int X, float Y) { ... }
63
64 return false;
65}
66
67/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
68/// doesn't apply to the given type.
69static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
70 QualType type) {
71 TypeDiagSelector WhichType;
72 bool useExpansionLoc = true;
73 switch (attr.getKind()) {
74 case ParsedAttr::AT_ObjCGC:
75 WhichType = TDS_Pointer;
76 break;
77 case ParsedAttr::AT_ObjCOwnership:
78 WhichType = TDS_ObjCObjOrBlock;
79 break;
80 default:
81 // Assume everything else was a function attribute.
82 WhichType = TDS_Function;
83 useExpansionLoc = false;
84 break;
85 }
86
87 SourceLocation loc = attr.getLoc();
88 StringRef name = attr.getAttrName()->getName();
89
90 // The GC attributes are usually written with macros; special-case them.
91 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
92 : nullptr;
93 if (useExpansionLoc && loc.isMacroID() && II) {
94 if (II->isStr("strong")) {
95 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
96 } else if (II->isStr("weak")) {
97 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
98 }
99 }
100
101 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
102 << type;
103}
104
105// objc_gc applies to Objective-C pointers or, otherwise, to the
106// smallest available pointer type (i.e. 'void*' in 'void**').
107#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
108 case ParsedAttr::AT_ObjCGC: \
109 case ParsedAttr::AT_ObjCOwnership
110
111// Calling convention attributes.
112#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
113 case ParsedAttr::AT_CDecl: \
114 case ParsedAttr::AT_FastCall: \
115 case ParsedAttr::AT_StdCall: \
116 case ParsedAttr::AT_ThisCall: \
117 case ParsedAttr::AT_RegCall: \
118 case ParsedAttr::AT_Pascal: \
119 case ParsedAttr::AT_SwiftCall: \
120 case ParsedAttr::AT_VectorCall: \
121 case ParsedAttr::AT_AArch64VectorPcs: \
122 case ParsedAttr::AT_MSABI: \
123 case ParsedAttr::AT_SysVABI: \
124 case ParsedAttr::AT_Pcs: \
125 case ParsedAttr::AT_IntelOclBicc: \
126 case ParsedAttr::AT_PreserveMost: \
127 case ParsedAttr::AT_PreserveAll
128
129// Function type attributes.
130#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
131 case ParsedAttr::AT_NSReturnsRetained: \
132 case ParsedAttr::AT_NoReturn: \
133 case ParsedAttr::AT_Regparm: \
134 case ParsedAttr::AT_CmseNSCall: \
135 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
136 case ParsedAttr::AT_AnyX86NoCfCheck: \
137 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
138
139// Microsoft-specific type qualifiers.
140#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
141 case ParsedAttr::AT_Ptr32: \
142 case ParsedAttr::AT_Ptr64: \
143 case ParsedAttr::AT_SPtr: \
144 case ParsedAttr::AT_UPtr
145
146// Nullability qualifiers.
147#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
\
148 case ParsedAttr::AT_TypeNonNull: \
149 case ParsedAttr::AT_TypeNullable: \
150 case ParsedAttr::AT_TypeNullableResult: \
151 case ParsedAttr::AT_TypeNullUnspecified
152
153namespace {
154 /// An object which stores processing state for the entire
155 /// GetTypeForDeclarator process.
156 class TypeProcessingState {
157 Sema &sema;
158
159 /// The declarator being processed.
160 Declarator &declarator;
161
162 /// The index of the declarator chunk we're currently processing.
163 /// May be the total number of valid chunks, indicating the
164 /// DeclSpec.
165 unsigned chunkIndex;
166
167 /// Whether there are non-trivial modifications to the decl spec.
168 bool trivial;
169
170 /// Whether we saved the attributes in the decl spec.
171 bool hasSavedAttrs;
172
173 /// The original set of attributes on the DeclSpec.
174 SmallVector<ParsedAttr *, 2> savedAttrs;
175
176 /// A list of attributes to diagnose the uselessness of when the
177 /// processing is complete.
178 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
179
180 /// Attributes corresponding to AttributedTypeLocs that we have not yet
181 /// populated.
182 // FIXME: The two-phase mechanism by which we construct Types and fill
183 // their TypeLocs makes it hard to correctly assign these. We keep the
184 // attributes in creation order as an attempt to make them line up
185 // properly.
186 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
187 SmallVector<TypeAttrPair, 8> AttrsForTypes;
188 bool AttrsForTypesSorted = true;
189
190 /// MacroQualifiedTypes mapping to macro expansion locations that will be
191 /// stored in a MacroQualifiedTypeLoc.
192 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
193
194 /// Flag to indicate we parsed a noderef attribute. This is used for
195 /// validating that noderef was used on a pointer or array.
196 bool parsedNoDeref;
197
198 public:
199 TypeProcessingState(Sema &sema, Declarator &declarator)
200 : sema(sema), declarator(declarator),
201 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
202 hasSavedAttrs(false), parsedNoDeref(false) {}
203
204 Sema &getSema() const {
205 return sema;
206 }
207
208 Declarator &getDeclarator() const {
209 return declarator;
210 }
211
212 bool isProcessingDeclSpec() const {
213 return chunkIndex == declarator.getNumTypeObjects();
214 }
215
216 unsigned getCurrentChunkIndex() const {
217 return chunkIndex;
218 }
219
220 void setCurrentChunkIndex(unsigned idx) {
221 assert(idx <= declarator.getNumTypeObjects())((idx <= declarator.getNumTypeObjects()) ? static_cast<
void> (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 221, __PRETTY_FUNCTION__))
;
222 chunkIndex = idx;
223 }
224
225 ParsedAttributesView &getCurrentAttributes() const {
226 if (isProcessingDeclSpec())
227 return getMutableDeclSpec().getAttributes();
228 return declarator.getTypeObject(chunkIndex).getAttrs();
229 }
230
231 /// Save the current set of attributes on the DeclSpec.
232 void saveDeclSpecAttrs() {
233 // Don't try to save them multiple times.
234 if (hasSavedAttrs) return;
235
236 DeclSpec &spec = getMutableDeclSpec();
237 for (ParsedAttr &AL : spec.getAttributes())
238 savedAttrs.push_back(&AL);
239 trivial &= savedAttrs.empty();
240 hasSavedAttrs = true;
241 }
242
243 /// Record that we had nowhere to put the given type attribute.
244 /// We will diagnose such attributes later.
245 void addIgnoredTypeAttr(ParsedAttr &attr) {
246 ignoredTypeAttrs.push_back(&attr);
247 }
248
249 /// Diagnose all the ignored type attributes, given that the
250 /// declarator worked out to the given type.
251 void diagnoseIgnoredTypeAttrs(QualType type) const {
252 for (auto *Attr : ignoredTypeAttrs)
253 diagnoseBadTypeAttribute(getSema(), *Attr, type);
254 }
255
256 /// Get an attributed type for the given attribute, and remember the Attr
257 /// object so that we can attach it to the AttributedTypeLoc.
258 QualType getAttributedType(Attr *A, QualType ModifiedType,
259 QualType EquivType) {
260 QualType T =
261 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
262 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
263 AttrsForTypesSorted = false;
264 return T;
265 }
266
267 /// Completely replace the \c auto in \p TypeWithAuto by
268 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
269 /// necessary.
270 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
271 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
272 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
273 // Attributed type still should be an attributed type after replacement.
274 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
275 for (TypeAttrPair &A : AttrsForTypes) {
276 if (A.first == AttrTy)
277 A.first = NewAttrTy;
278 }
279 AttrsForTypesSorted = false;
280 }
281 return T;
282 }
283
284 /// Extract and remove the Attr* for a given attributed type.
285 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
286 if (!AttrsForTypesSorted) {
287 llvm::stable_sort(AttrsForTypes, llvm::less_first());
288 AttrsForTypesSorted = true;
289 }
290
291 // FIXME: This is quadratic if we have lots of reuses of the same
292 // attributed type.
293 for (auto It = std::partition_point(
294 AttrsForTypes.begin(), AttrsForTypes.end(),
295 [=](const TypeAttrPair &A) { return A.first < AT; });
296 It != AttrsForTypes.end() && It->first == AT; ++It) {
297 if (It->second) {
298 const Attr *Result = It->second;
299 It->second = nullptr;
300 return Result;
301 }
302 }
303
304 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 304)
;
305 }
306
307 SourceLocation
308 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
309 auto FoundLoc = LocsForMacros.find(MQT);
310 assert(FoundLoc != LocsForMacros.end() &&((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType"
) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 311, __PRETTY_FUNCTION__))
311 "Unable to find macro expansion location for MacroQualifedType")((FoundLoc != LocsForMacros.end() && "Unable to find macro expansion location for MacroQualifedType"
) ? static_cast<void> (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 311, __PRETTY_FUNCTION__))
;
312 return FoundLoc->second;
313 }
314
315 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
316 SourceLocation Loc) {
317 LocsForMacros[MQT] = Loc;
318 }
319
320 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
321
322 bool didParseNoDeref() const { return parsedNoDeref; }
323
324 ~TypeProcessingState() {
325 if (trivial) return;
326
327 restoreDeclSpecAttrs();
328 }
329
330 private:
331 DeclSpec &getMutableDeclSpec() const {
332 return const_cast<DeclSpec&>(declarator.getDeclSpec());
333 }
334
335 void restoreDeclSpecAttrs() {
336 assert(hasSavedAttrs)((hasSavedAttrs) ? static_cast<void> (0) : __assert_fail
("hasSavedAttrs", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 336, __PRETTY_FUNCTION__))
;
337
338 getMutableDeclSpec().getAttributes().clearListOnly();
339 for (ParsedAttr *AL : savedAttrs)
340 getMutableDeclSpec().getAttributes().addAtEnd(AL);
341 }
342 };
343} // end anonymous namespace
344
345static void moveAttrFromListToList(ParsedAttr &attr,
346 ParsedAttributesView &fromList,
347 ParsedAttributesView &toList) {
348 fromList.remove(&attr);
349 toList.addAtEnd(&attr);
350}
351
352/// The location of a type attribute.
353enum TypeAttrLocation {
354 /// The attribute is in the decl-specifier-seq.
355 TAL_DeclSpec,
356 /// The attribute is part of a DeclaratorChunk.
357 TAL_DeclChunk,
358 /// The attribute is immediately after the declaration's name.
359 TAL_DeclName
360};
361
362static void processTypeAttrs(TypeProcessingState &state, QualType &type,
363 TypeAttrLocation TAL, ParsedAttributesView &attrs);
364
365static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
366 QualType &type);
367
368static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
369 ParsedAttr &attr, QualType &type);
370
371static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
372 QualType &type);
373
374static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
375 ParsedAttr &attr, QualType &type);
376
377static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
378 ParsedAttr &attr, QualType &type) {
379 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
380 return handleObjCGCTypeAttr(state, attr, type);
381 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((attr.getKind() == ParsedAttr::AT_ObjCOwnership) ? static_cast
<void> (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 381, __PRETTY_FUNCTION__))
;
382 return handleObjCOwnershipTypeAttr(state, attr, type);
383}
384
385/// Given the index of a declarator chunk, check whether that chunk
386/// directly specifies the return type of a function and, if so, find
387/// an appropriate place for it.
388///
389/// \param i - a notional index which the search will start
390/// immediately inside
391///
392/// \param onlyBlockPointers Whether we should only look into block
393/// pointer types (vs. all pointer types).
394static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
395 unsigned i,
396 bool onlyBlockPointers) {
397 assert(i <= declarator.getNumTypeObjects())((i <= declarator.getNumTypeObjects()) ? static_cast<void
> (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 397, __PRETTY_FUNCTION__))
;
398
399 DeclaratorChunk *result = nullptr;
400
401 // First, look inwards past parens for a function declarator.
402 for (; i != 0; --i) {
403 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
404 switch (fnChunk.Kind) {
405 case DeclaratorChunk::Paren:
406 continue;
407
408 // If we find anything except a function, bail out.
409 case DeclaratorChunk::Pointer:
410 case DeclaratorChunk::BlockPointer:
411 case DeclaratorChunk::Array:
412 case DeclaratorChunk::Reference:
413 case DeclaratorChunk::MemberPointer:
414 case DeclaratorChunk::Pipe:
415 return result;
416
417 // If we do find a function declarator, scan inwards from that,
418 // looking for a (block-)pointer declarator.
419 case DeclaratorChunk::Function:
420 for (--i; i != 0; --i) {
421 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
422 switch (ptrChunk.Kind) {
423 case DeclaratorChunk::Paren:
424 case DeclaratorChunk::Array:
425 case DeclaratorChunk::Function:
426 case DeclaratorChunk::Reference:
427 case DeclaratorChunk::Pipe:
428 continue;
429
430 case DeclaratorChunk::MemberPointer:
431 case DeclaratorChunk::Pointer:
432 if (onlyBlockPointers)
433 continue;
434
435 LLVM_FALLTHROUGH[[gnu::fallthrough]];
436
437 case DeclaratorChunk::BlockPointer:
438 result = &ptrChunk;
439 goto continue_outer;
440 }
441 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 441)
;
442 }
443
444 // If we run out of declarators doing that, we're done.
445 return result;
446 }
447 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 447)
;
448
449 // Okay, reconsider from our new point.
450 continue_outer: ;
451 }
452
453 // Ran out of chunks, bail out.
454 return result;
455}
456
457/// Given that an objc_gc attribute was written somewhere on a
458/// declaration *other* than on the declarator itself (for which, use
459/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
460/// didn't apply in whatever position it was written in, try to move
461/// it to a more appropriate position.
462static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
463 ParsedAttr &attr, QualType type) {
464 Declarator &declarator = state.getDeclarator();
465
466 // Move it to the outermost normal or block pointer declarator.
467 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
468 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
469 switch (chunk.Kind) {
470 case DeclaratorChunk::Pointer:
471 case DeclaratorChunk::BlockPointer: {
472 // But don't move an ARC ownership attribute to the return type
473 // of a block.
474 DeclaratorChunk *destChunk = nullptr;
475 if (state.isProcessingDeclSpec() &&
476 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
477 destChunk = maybeMovePastReturnType(declarator, i - 1,
478 /*onlyBlockPointers=*/true);
479 if (!destChunk) destChunk = &chunk;
480
481 moveAttrFromListToList(attr, state.getCurrentAttributes(),
482 destChunk->getAttrs());
483 return;
484 }
485
486 case DeclaratorChunk::Paren:
487 case DeclaratorChunk::Array:
488 continue;
489
490 // We may be starting at the return type of a block.
491 case DeclaratorChunk::Function:
492 if (state.isProcessingDeclSpec() &&
493 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
494 if (DeclaratorChunk *dest = maybeMovePastReturnType(
495 declarator, i,
496 /*onlyBlockPointers=*/true)) {
497 moveAttrFromListToList(attr, state.getCurrentAttributes(),
498 dest->getAttrs());
499 return;
500 }
501 }
502 goto error;
503
504 // Don't walk through these.
505 case DeclaratorChunk::Reference:
506 case DeclaratorChunk::MemberPointer:
507 case DeclaratorChunk::Pipe:
508 goto error;
509 }
510 }
511 error:
512
513 diagnoseBadTypeAttribute(state.getSema(), attr, type);
514}
515
516/// Distribute an objc_gc type attribute that was written on the
517/// declarator.
518static void distributeObjCPointerTypeAttrFromDeclarator(
519 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
520 Declarator &declarator = state.getDeclarator();
521
522 // objc_gc goes on the innermost pointer to something that's not a
523 // pointer.
524 unsigned innermost = -1U;
525 bool considerDeclSpec = true;
526 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
527 DeclaratorChunk &chunk = declarator.getTypeObject(i);
528 switch (chunk.Kind) {
529 case DeclaratorChunk::Pointer:
530 case DeclaratorChunk::BlockPointer:
531 innermost = i;
532 continue;
533
534 case DeclaratorChunk::Reference:
535 case DeclaratorChunk::MemberPointer:
536 case DeclaratorChunk::Paren:
537 case DeclaratorChunk::Array:
538 case DeclaratorChunk::Pipe:
539 continue;
540
541 case DeclaratorChunk::Function:
542 considerDeclSpec = false;
543 goto done;
544 }
545 }
546 done:
547
548 // That might actually be the decl spec if we weren't blocked by
549 // anything in the declarator.
550 if (considerDeclSpec) {
551 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
552 // Splice the attribute into the decl spec. Prevents the
553 // attribute from being applied multiple times and gives
554 // the source-location-filler something to work with.
555 state.saveDeclSpecAttrs();
556 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
557 declarator.getAttributes(), &attr);
558 return;
559 }
560 }
561
562 // Otherwise, if we found an appropriate chunk, splice the attribute
563 // into it.
564 if (innermost != -1U) {
565 moveAttrFromListToList(attr, declarator.getAttributes(),
566 declarator.getTypeObject(innermost).getAttrs());
567 return;
568 }
569
570 // Otherwise, diagnose when we're done building the type.
571 declarator.getAttributes().remove(&attr);
572 state.addIgnoredTypeAttr(attr);
573}
574
575/// A function type attribute was written somewhere in a declaration
576/// *other* than on the declarator itself or in the decl spec. Given
577/// that it didn't apply in whatever position it was written in, try
578/// to move it to a more appropriate position.
579static void distributeFunctionTypeAttr(TypeProcessingState &state,
580 ParsedAttr &attr, QualType type) {
581 Declarator &declarator = state.getDeclarator();
582
583 // Try to push the attribute from the return type of a function to
584 // the function itself.
585 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
586 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
587 switch (chunk.Kind) {
588 case DeclaratorChunk::Function:
589 moveAttrFromListToList(attr, state.getCurrentAttributes(),
590 chunk.getAttrs());
591 return;
592
593 case DeclaratorChunk::Paren:
594 case DeclaratorChunk::Pointer:
595 case DeclaratorChunk::BlockPointer:
596 case DeclaratorChunk::Array:
597 case DeclaratorChunk::Reference:
598 case DeclaratorChunk::MemberPointer:
599 case DeclaratorChunk::Pipe:
600 continue;
601 }
602 }
603
604 diagnoseBadTypeAttribute(state.getSema(), attr, type);
605}
606
607/// Try to distribute a function type attribute to the innermost
608/// function chunk or type. Returns true if the attribute was
609/// distributed, false if no location was found.
610static bool distributeFunctionTypeAttrToInnermost(
611 TypeProcessingState &state, ParsedAttr &attr,
612 ParsedAttributesView &attrList, QualType &declSpecType) {
613 Declarator &declarator = state.getDeclarator();
614
615 // Put it on the innermost function chunk, if there is one.
616 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
617 DeclaratorChunk &chunk = declarator.getTypeObject(i);
618 if (chunk.Kind != DeclaratorChunk::Function) continue;
619
620 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
621 return true;
622 }
623
624 return handleFunctionTypeAttr(state, attr, declSpecType);
625}
626
627/// A function type attribute was written in the decl spec. Try to
628/// apply it somewhere.
629static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
630 ParsedAttr &attr,
631 QualType &declSpecType) {
632 state.saveDeclSpecAttrs();
633
634 // C++11 attributes before the decl specifiers actually appertain to
635 // the declarators. Move them straight there. We don't support the
636 // 'put them wherever you like' semantics we allow for GNU attributes.
637 if (attr.isCXX11Attribute()) {
638 moveAttrFromListToList(attr, state.getCurrentAttributes(),
639 state.getDeclarator().getAttributes());
640 return;
641 }
642
643 // Try to distribute to the innermost.
644 if (distributeFunctionTypeAttrToInnermost(
645 state, attr, state.getCurrentAttributes(), declSpecType))
646 return;
647
648 // If that failed, diagnose the bad attribute when the declarator is
649 // fully built.
650 state.addIgnoredTypeAttr(attr);
651}
652
653/// A function type attribute was written on the declarator. Try to
654/// apply it somewhere.
655static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
656 ParsedAttr &attr,
657 QualType &declSpecType) {
658 Declarator &declarator = state.getDeclarator();
659
660 // Try to distribute to the innermost.
661 if (distributeFunctionTypeAttrToInnermost(
662 state, attr, declarator.getAttributes(), declSpecType))
663 return;
664
665 // If that failed, diagnose the bad attribute when the declarator is
666 // fully built.
667 declarator.getAttributes().remove(&attr);
668 state.addIgnoredTypeAttr(attr);
669}
670
671/// Given that there are attributes written on the declarator
672/// itself, try to distribute any type attributes to the appropriate
673/// declarator chunk.
674///
675/// These are attributes like the following:
676/// int f ATTR;
677/// int (f ATTR)();
678/// but not necessarily this:
679/// int f() ATTR;
680static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
681 QualType &declSpecType) {
682 // Collect all the type attributes from the declarator itself.
683 assert(!state.getDeclarator().getAttributes().empty() &&((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 684, __PRETTY_FUNCTION__))
684 "declarator has no attrs!")((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 684, __PRETTY_FUNCTION__))
;
685 // The called functions in this loop actually remove things from the current
686 // list, so iterating over the existing list isn't possible. Instead, make a
687 // non-owning copy and iterate over that.
688 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
689 for (ParsedAttr &attr : AttrsCopy) {
690 // Do not distribute C++11 attributes. They have strict rules for what
691 // they appertain to.
692 if (attr.isCXX11Attribute())
693 continue;
694
695 switch (attr.getKind()) {
696 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
697 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
698 break;
699
700 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
:
701 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
702 break;
703
704 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
705 // Microsoft type attributes cannot go after the declarator-id.
706 continue;
707
708 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
709 // Nullability specifiers cannot go after the declarator-id.
710
711 // Objective-C __kindof does not get distributed.
712 case ParsedAttr::AT_ObjCKindOf:
713 continue;
714
715 default:
716 break;
717 }
718 }
719}
720
721/// Add a synthetic '()' to a block-literal declarator if it is
722/// required, given the return type.
723static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
724 QualType declSpecType) {
725 Declarator &declarator = state.getDeclarator();
726
727 // First, check whether the declarator would produce a function,
728 // i.e. whether the innermost semantic chunk is a function.
729 if (declarator.isFunctionDeclarator()) {
730 // If so, make that declarator a prototyped declarator.
731 declarator.getFunctionTypeInfo().hasPrototype = true;
732 return;
733 }
734
735 // If there are any type objects, the type as written won't name a
736 // function, regardless of the decl spec type. This is because a
737 // block signature declarator is always an abstract-declarator, and
738 // abstract-declarators can't just be parentheses chunks. Therefore
739 // we need to build a function chunk unless there are no type
740 // objects and the decl spec type is a function.
741 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
742 return;
743
744 // Note that there *are* cases with invalid declarators where
745 // declarators consist solely of parentheses. In general, these
746 // occur only in failed efforts to make function declarators, so
747 // faking up the function chunk is still the right thing to do.
748
749 // Otherwise, we need to fake up a function declarator.
750 SourceLocation loc = declarator.getBeginLoc();
751
752 // ...and *prepend* it to the declarator.
753 SourceLocation NoLoc;
754 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
755 /*HasProto=*/true,
756 /*IsAmbiguous=*/false,
757 /*LParenLoc=*/NoLoc,
758 /*ArgInfo=*/nullptr,
759 /*NumParams=*/0,
760 /*EllipsisLoc=*/NoLoc,
761 /*RParenLoc=*/NoLoc,
762 /*RefQualifierIsLvalueRef=*/true,
763 /*RefQualifierLoc=*/NoLoc,
764 /*MutableLoc=*/NoLoc, EST_None,
765 /*ESpecRange=*/SourceRange(),
766 /*Exceptions=*/nullptr,
767 /*ExceptionRanges=*/nullptr,
768 /*NumExceptions=*/0,
769 /*NoexceptExpr=*/nullptr,
770 /*ExceptionSpecTokens=*/nullptr,
771 /*DeclsInPrototype=*/None, loc, loc, declarator));
772
773 // For consistency, make sure the state still has us as processing
774 // the decl spec.
775 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((state.getCurrentChunkIndex() == declarator.getNumTypeObjects
() - 1) ? static_cast<void> (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 775, __PRETTY_FUNCTION__))
;
776 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
777}
778
779static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
780 unsigned &TypeQuals,
781 QualType TypeSoFar,
782 unsigned RemoveTQs,
783 unsigned DiagID) {
784 // If this occurs outside a template instantiation, warn the user about
785 // it; they probably didn't mean to specify a redundant qualifier.
786 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
787 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
788 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
789 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
790 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
791 if (!(RemoveTQs & Qual.first))
792 continue;
793
794 if (!S.inTemplateInstantiation()) {
795 if (TypeQuals & Qual.first)
796 S.Diag(Qual.second, DiagID)
797 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
798 << FixItHint::CreateRemoval(Qual.second);
799 }
800
801 TypeQuals &= ~Qual.first;
802 }
803}
804
805/// Return true if this is omitted block return type. Also check type
806/// attributes and type qualifiers when returning true.
807static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
808 QualType Result) {
809 if (!isOmittedBlockReturnType(declarator))
810 return false;
811
812 // Warn if we see type attributes for omitted return type on a block literal.
813 SmallVector<ParsedAttr *, 2> ToBeRemoved;
814 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
815 if (AL.isInvalid() || !AL.isTypeAttr())
816 continue;
817 S.Diag(AL.getLoc(),
818 diag::warn_block_literal_attributes_on_omitted_return_type)
819 << AL;
820 ToBeRemoved.push_back(&AL);
821 }
822 // Remove bad attributes from the list.
823 for (ParsedAttr *AL : ToBeRemoved)
824 declarator.getMutableDeclSpec().getAttributes().remove(AL);
825
826 // Warn if we see type qualifiers for omitted return type on a block literal.
827 const DeclSpec &DS = declarator.getDeclSpec();
828 unsigned TypeQuals = DS.getTypeQualifiers();
829 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
830 diag::warn_block_literal_qualifiers_on_omitted_return_type);
831 declarator.getMutableDeclSpec().ClearTypeQualifiers();
832
833 return true;
834}
835
836/// Apply Objective-C type arguments to the given type.
837static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
838 ArrayRef<TypeSourceInfo *> typeArgs,
839 SourceRange typeArgsRange,
840 bool failOnError = false) {
841 // We can only apply type arguments to an Objective-C class type.
842 const auto *objcObjectType = type->getAs<ObjCObjectType>();
9
Assuming the object is a 'ObjCObjectType'
843 if (!objcObjectType || !objcObjectType->getInterface()) {
10
Assuming 'objcObjectType' is non-null
11
Assuming the condition is false
12
Taking false branch
844 S.Diag(loc, diag::err_objc_type_args_non_class)
845 << type
846 << typeArgsRange;
847
848 if (failOnError)
849 return QualType();
850 return type;
851 }
852
853 // The class type must be parameterized.
854 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
855 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
856 if (!typeParams) {
13
Assuming 'typeParams' is non-null
14
Taking false branch
857 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
858 << objcClass->getDeclName()
859 << FixItHint::CreateRemoval(typeArgsRange);
860
861 if (failOnError)
862 return QualType();
863
864 return type;
865 }
866
867 // The type must not already be specialized.
868 if (objcObjectType->isSpecialized()) {
15
Assuming the condition is false
16
Taking false branch
869 S.Diag(loc, diag::err_objc_type_args_specialized_class)
870 << type
871 << FixItHint::CreateRemoval(typeArgsRange);
872
873 if (failOnError)
874 return QualType();
875
876 return type;
877 }
878
879 // Check the type arguments.
880 SmallVector<QualType, 4> finalTypeArgs;
881 unsigned numTypeParams = typeParams->size();
882 bool anyPackExpansions = false;
883 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
17
Assuming 'i' is not equal to 'n'
18
Loop condition is true. Entering loop body
884 TypeSourceInfo *typeArgInfo = typeArgs[i];
885 QualType typeArg = typeArgInfo->getType();
886
887 // Type arguments cannot have explicit qualifiers or nullability.
888 // We ignore indirect sources of these, e.g. behind typedefs or
889 // template arguments.
890 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
19
Assuming the condition is false
20
Taking false branch
891 bool diagnosed = false;
892 SourceRange rangeToRemove;
893 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
894 rangeToRemove = attr.getLocalSourceRange();
895 if (attr.getTypePtr()->getImmediateNullability()) {
896 typeArg = attr.getTypePtr()->getModifiedType();
897 S.Diag(attr.getBeginLoc(),
898 diag::err_objc_type_arg_explicit_nullability)
899 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
900 diagnosed = true;
901 }
902 }
903
904 if (!diagnosed) {
905 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
906 << typeArg << typeArg.getQualifiers().getAsString()
907 << FixItHint::CreateRemoval(rangeToRemove);
908 }
909 }
910
911 // Remove qualifiers even if they're non-local.
912 typeArg = typeArg.getUnqualifiedType();
913
914 finalTypeArgs.push_back(typeArg);
915
916 if (typeArg->getAs<PackExpansionType>())
21
Assuming the object is not a 'PackExpansionType'
22
Taking false branch
917 anyPackExpansions = true;
918
919 // Find the corresponding type parameter, if there is one.
920 ObjCTypeParamDecl *typeParam = nullptr;
921 if (!anyPackExpansions
22.1
'anyPackExpansions' is false
22.1
'anyPackExpansions' is false
) {
23
Taking true branch
922 if (i < numTypeParams) {
24
Assuming 'i' is < 'numTypeParams'
25
Taking true branch
923 typeParam = typeParams->begin()[i];
924 } else {
925 // Too many arguments.
926 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
927 << false
928 << objcClass->getDeclName()
929 << (unsigned)typeArgs.size()
930 << numTypeParams;
931 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
932 << objcClass;
933
934 if (failOnError)
935 return QualType();
936
937 return type;
938 }
939 }
940
941 // Objective-C object pointer types must be substitutable for the bounds.
942 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
26
Assuming the object is a 'ObjCObjectPointerType'
27
Assuming 'typeArgObjC' is non-null
28
Taking true branch
943 // If we don't have a type parameter to match against, assume
944 // everything is fine. There was a prior pack expansion that
945 // means we won't be able to match anything.
946 if (!typeParam) {
29
Assuming 'typeParam' is non-null
30
Taking false branch
947 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 947, __PRETTY_FUNCTION__))
;
948 continue;
949 }
950
951 // Retrieve the bound.
952 QualType bound = typeParam->getUnderlyingType();
953 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
31
Assuming the object is not a 'ObjCObjectPointerType'
32
'boundObjC' initialized to a null pointer value
954
955 // Determine whether the type argument is substitutable for the bound.
956 if (typeArgObjC->isObjCIdType()) {
33
Calling 'ObjCObjectPointerType::isObjCIdType'
38
Returning from 'ObjCObjectPointerType::isObjCIdType'
39
Taking true branch
957 // When the type argument is 'id', the only acceptable type
958 // parameter bound is 'id'.
959 if (boundObjC->isObjCIdType())
40
Called C++ object pointer is null
960 continue;
961 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
962 // Otherwise, we follow the assignability rules.
963 continue;
964 }
965
966 // Diagnose the mismatch.
967 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
968 diag::err_objc_type_arg_does_not_match_bound)
969 << typeArg << bound << typeParam->getDeclName();
970 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
971 << typeParam->getDeclName();
972
973 if (failOnError)
974 return QualType();
975
976 return type;
977 }
978
979 // Block pointer types are permitted for unqualified 'id' bounds.
980 if (typeArg->isBlockPointerType()) {
981 // If we don't have a type parameter to match against, assume
982 // everything is fine. There was a prior pack expansion that
983 // means we won't be able to match anything.
984 if (!typeParam) {
985 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 985, __PRETTY_FUNCTION__))
;
986 continue;
987 }
988
989 // Retrieve the bound.
990 QualType bound = typeParam->getUnderlyingType();
991 if (bound->isBlockCompatibleObjCPointerType(S.Context))
992 continue;
993
994 // Diagnose the mismatch.
995 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
996 diag::err_objc_type_arg_does_not_match_bound)
997 << typeArg << bound << typeParam->getDeclName();
998 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
999 << typeParam->getDeclName();
1000
1001 if (failOnError)
1002 return QualType();
1003
1004 return type;
1005 }
1006
1007 // Dependent types will be checked at instantiation time.
1008 if (typeArg->isDependentType()) {
1009 continue;
1010 }
1011
1012 // Diagnose non-id-compatible type arguments.
1013 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1014 diag::err_objc_type_arg_not_id_compatible)
1015 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1016
1017 if (failOnError)
1018 return QualType();
1019
1020 return type;
1021 }
1022
1023 // Make sure we didn't have the wrong number of arguments.
1024 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1025 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1026 << (typeArgs.size() < typeParams->size())
1027 << objcClass->getDeclName()
1028 << (unsigned)finalTypeArgs.size()
1029 << (unsigned)numTypeParams;
1030 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1031 << objcClass;
1032
1033 if (failOnError)
1034 return QualType();
1035
1036 return type;
1037 }
1038
1039 // Success. Form the specialized type.
1040 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1041}
1042
1043QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1044 SourceLocation ProtocolLAngleLoc,
1045 ArrayRef<ObjCProtocolDecl *> Protocols,
1046 ArrayRef<SourceLocation> ProtocolLocs,
1047 SourceLocation ProtocolRAngleLoc,
1048 bool FailOnError) {
1049 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1050 if (!Protocols.empty()) {
1051 bool HasError;
1052 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1053 HasError);
1054 if (HasError) {
1055 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1056 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1057 if (FailOnError) Result = QualType();
1058 }
1059 if (FailOnError && Result.isNull())
1060 return QualType();
1061 }
1062
1063 return Result;
1064}
1065
1066QualType Sema::BuildObjCObjectType(QualType BaseType,
1067 SourceLocation Loc,
1068 SourceLocation TypeArgsLAngleLoc,
1069 ArrayRef<TypeSourceInfo *> TypeArgs,
1070 SourceLocation TypeArgsRAngleLoc,
1071 SourceLocation ProtocolLAngleLoc,
1072 ArrayRef<ObjCProtocolDecl *> Protocols,
1073 ArrayRef<SourceLocation> ProtocolLocs,
1074 SourceLocation ProtocolRAngleLoc,
1075 bool FailOnError) {
1076 QualType Result = BaseType;
1077 if (!TypeArgs.empty()) {
6
Assuming the condition is true
7
Taking true branch
1078 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
8
Calling 'applyObjCTypeArgs'
1079 SourceRange(TypeArgsLAngleLoc,
1080 TypeArgsRAngleLoc),
1081 FailOnError);
1082 if (FailOnError && Result.isNull())
1083 return QualType();
1084 }
1085
1086 if (!Protocols.empty()) {
1087 bool HasError;
1088 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1089 HasError);
1090 if (HasError) {
1091 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1092 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1093 if (FailOnError) Result = QualType();
1094 }
1095 if (FailOnError && Result.isNull())
1096 return QualType();
1097 }
1098
1099 return Result;
1100}
1101
1102TypeResult Sema::actOnObjCProtocolQualifierType(
1103 SourceLocation lAngleLoc,
1104 ArrayRef<Decl *> protocols,
1105 ArrayRef<SourceLocation> protocolLocs,
1106 SourceLocation rAngleLoc) {
1107 // Form id<protocol-list>.
1108 QualType Result = Context.getObjCObjectType(
1109 Context.ObjCBuiltinIdTy, { },
1110 llvm::makeArrayRef(
1111 (ObjCProtocolDecl * const *)protocols.data(),
1112 protocols.size()),
1113 false);
1114 Result = Context.getObjCObjectPointerType(Result);
1115
1116 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1117 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1118
1119 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1120 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1121
1122 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1123 .castAs<ObjCObjectTypeLoc>();
1124 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1125 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1126
1127 // No type arguments.
1128 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1129 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1130
1131 // Fill in protocol qualifiers.
1132 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1133 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1134 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1135 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1136
1137 // We're done. Return the completed type to the parser.
1138 return CreateParsedType(Result, ResultTInfo);
1139}
1140
1141TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1142 Scope *S,
1143 SourceLocation Loc,
1144 ParsedType BaseType,
1145 SourceLocation TypeArgsLAngleLoc,
1146 ArrayRef<ParsedType> TypeArgs,
1147 SourceLocation TypeArgsRAngleLoc,
1148 SourceLocation ProtocolLAngleLoc,
1149 ArrayRef<Decl *> Protocols,
1150 ArrayRef<SourceLocation> ProtocolLocs,
1151 SourceLocation ProtocolRAngleLoc) {
1152 TypeSourceInfo *BaseTypeInfo = nullptr;
1153 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1154 if (T.isNull())
1
Taking false branch
1155 return true;
1156
1157 // Handle missing type-source info.
1158 if (!BaseTypeInfo
1.1
'BaseTypeInfo' is null
1.1
'BaseTypeInfo' is null
)
2
Taking true branch
1159 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1160
1161 // Extract type arguments.
1162 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1163 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
3
Assuming 'i' is equal to 'n'
4
Loop condition is false. Execution continues on line 1176
1164 TypeSourceInfo *TypeArgInfo = nullptr;
1165 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1166 if (TypeArg.isNull()) {
1167 ActualTypeArgInfos.clear();
1168 break;
1169 }
1170
1171 assert(TypeArgInfo && "No type source info?")((TypeArgInfo && "No type source info?") ? static_cast
<void> (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1171, __PRETTY_FUNCTION__))
;
1172 ActualTypeArgInfos.push_back(TypeArgInfo);
1173 }
1174
1175 // Build the object type.
1176 QualType Result = BuildObjCObjectType(
5
Calling 'Sema::BuildObjCObjectType'
1177 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1178 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1179 ProtocolLAngleLoc,
1180 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1181 Protocols.size()),
1182 ProtocolLocs, ProtocolRAngleLoc,
1183 /*FailOnError=*/false);
1184
1185 if (Result == T)
1186 return BaseType;
1187
1188 // Create source information for this type.
1189 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1190 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1191
1192 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1193 // object pointer type. Fill in source information for it.
1194 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1195 // The '*' is implicit.
1196 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1197 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1198 }
1199
1200 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1201 // Protocol qualifier information.
1202 if (OTPTL.getNumProtocols() > 0) {
1203 assert(OTPTL.getNumProtocols() == Protocols.size())((OTPTL.getNumProtocols() == Protocols.size()) ? static_cast<
void> (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1203, __PRETTY_FUNCTION__))
;
1204 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1205 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1206 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1207 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1208 }
1209
1210 // We're done. Return the completed type to the parser.
1211 return CreateParsedType(Result, ResultTInfo);
1212 }
1213
1214 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1215
1216 // Type argument information.
1217 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1218 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())
? static_cast<void> (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1218, __PRETTY_FUNCTION__))
;
1219 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1220 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1221 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1222 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1223 } else {
1224 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1225 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1226 }
1227
1228 // Protocol qualifier information.
1229 if (ObjCObjectTL.getNumProtocols() > 0) {
1230 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((ObjCObjectTL.getNumProtocols() == Protocols.size()) ? static_cast
<void> (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1232 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1233 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1234 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1235 } else {
1236 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1237 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1238 }
1239
1240 // Base type.
1241 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1242 if (ObjCObjectTL.getType() == T)
1243 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1244 else
1245 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1246
1247 // We're done. Return the completed type to the parser.
1248 return CreateParsedType(Result, ResultTInfo);
1249}
1250
1251static OpenCLAccessAttr::Spelling
1252getImageAccess(const ParsedAttributesView &Attrs) {
1253 for (const ParsedAttr &AL : Attrs)
1254 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1255 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1256 return OpenCLAccessAttr::Keyword_read_only;
1257}
1258
1259/// Convert the specified declspec to the appropriate type
1260/// object.
1261/// \param state Specifies the declarator containing the declaration specifier
1262/// to be converted, along with other associated processing state.
1263/// \returns The type described by the declaration specifiers. This function
1264/// never returns null.
1265static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1266 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1267 // checking.
1268
1269 Sema &S = state.getSema();
1270 Declarator &declarator = state.getDeclarator();
1271 DeclSpec &DS = declarator.getMutableDeclSpec();
1272 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1273 if (DeclLoc.isInvalid())
1274 DeclLoc = DS.getBeginLoc();
1275
1276 ASTContext &Context = S.Context;
1277
1278 QualType Result;
1279 switch (DS.getTypeSpecType()) {
1280 case DeclSpec::TST_void:
1281 Result = Context.VoidTy;
1282 break;
1283 case DeclSpec::TST_char:
1284 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1285 Result = Context.CharTy;
1286 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1287 Result = Context.SignedCharTy;
1288 else {
1289 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1290, __PRETTY_FUNCTION__))
1290 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1290, __PRETTY_FUNCTION__))
;
1291 Result = Context.UnsignedCharTy;
1292 }
1293 break;
1294 case DeclSpec::TST_wchar:
1295 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1296 Result = Context.WCharTy;
1297 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1298 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1299 << DS.getSpecifierName(DS.getTypeSpecType(),
1300 Context.getPrintingPolicy());
1301 Result = Context.getSignedWCharType();
1302 } else {
1303 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1304, __PRETTY_FUNCTION__))
1304 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1306 << DS.getSpecifierName(DS.getTypeSpecType(),
1307 Context.getPrintingPolicy());
1308 Result = Context.getUnsignedWCharType();
1309 }
1310 break;
1311 case DeclSpec::TST_char8:
1312 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1313, __PRETTY_FUNCTION__))
1313 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 Result = Context.Char8Ty;
1315 break;
1316 case DeclSpec::TST_char16:
1317 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1318, __PRETTY_FUNCTION__))
1318 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1318, __PRETTY_FUNCTION__))
;
1319 Result = Context.Char16Ty;
1320 break;
1321 case DeclSpec::TST_char32:
1322 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1323, __PRETTY_FUNCTION__))
1323 "Unknown TSS value")((DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1323, __PRETTY_FUNCTION__))
;
1324 Result = Context.Char32Ty;
1325 break;
1326 case DeclSpec::TST_unspecified:
1327 // If this is a missing declspec in a block literal return context, then it
1328 // is inferred from the return statements inside the block.
1329 // The declspec is always missing in a lambda expr context; it is either
1330 // specified with a trailing return type or inferred.
1331 if (S.getLangOpts().CPlusPlus14 &&
1332 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1333 // In C++1y, a lambda's implicit return type is 'auto'.
1334 Result = Context.getAutoDeductType();
1335 break;
1336 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1337 checkOmittedBlockReturnType(S, declarator,
1338 Context.DependentTy)) {
1339 Result = Context.DependentTy;
1340 break;
1341 }
1342
1343 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1344 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1345 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1346 // Note that the one exception to this is function definitions, which are
1347 // allowed to be completely missing a declspec. This is handled in the
1348 // parser already though by it pretending to have seen an 'int' in this
1349 // case.
1350 if (S.getLangOpts().ImplicitInt) {
1351 // In C89 mode, we only warn if there is a completely missing declspec
1352 // when one is not allowed.
1353 if (DS.isEmpty()) {
1354 S.Diag(DeclLoc, diag::ext_missing_declspec)
1355 << DS.getSourceRange()
1356 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1357 }
1358 } else if (!DS.hasTypeSpecifier()) {
1359 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1360 // "At least one type specifier shall be given in the declaration
1361 // specifiers in each declaration, and in the specifier-qualifier list in
1362 // each struct declaration and type name."
1363 if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1364 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1365 << DS.getSourceRange();
1366
1367 // When this occurs in C++ code, often something is very broken with the
1368 // value being declared, poison it as invalid so we don't get chains of
1369 // errors.
1370 declarator.setInvalidType(true);
1371 } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1372 S.getLangOpts().OpenCLCPlusPlus) &&
1373 DS.isTypeSpecPipe()) {
1374 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1375 << DS.getSourceRange();
1376 declarator.setInvalidType(true);
1377 } else {
1378 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1379 << DS.getSourceRange();
1380 }
1381 }
1382
1383 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1384 case DeclSpec::TST_int: {
1385 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1386 switch (DS.getTypeSpecWidth()) {
1387 case TypeSpecifierWidth::Unspecified:
1388 Result = Context.IntTy;
1389 break;
1390 case TypeSpecifierWidth::Short:
1391 Result = Context.ShortTy;
1392 break;
1393 case TypeSpecifierWidth::Long:
1394 Result = Context.LongTy;
1395 break;
1396 case TypeSpecifierWidth::LongLong:
1397 Result = Context.LongLongTy;
1398
1399 // 'long long' is a C99 or C++11 feature.
1400 if (!S.getLangOpts().C99) {
1401 if (S.getLangOpts().CPlusPlus)
1402 S.Diag(DS.getTypeSpecWidthLoc(),
1403 S.getLangOpts().CPlusPlus11 ?
1404 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1405 else
1406 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1407 }
1408 break;
1409 }
1410 } else {
1411 switch (DS.getTypeSpecWidth()) {
1412 case TypeSpecifierWidth::Unspecified:
1413 Result = Context.UnsignedIntTy;
1414 break;
1415 case TypeSpecifierWidth::Short:
1416 Result = Context.UnsignedShortTy;
1417 break;
1418 case TypeSpecifierWidth::Long:
1419 Result = Context.UnsignedLongTy;
1420 break;
1421 case TypeSpecifierWidth::LongLong:
1422 Result = Context.UnsignedLongLongTy;
1423
1424 // 'long long' is a C99 or C++11 feature.
1425 if (!S.getLangOpts().C99) {
1426 if (S.getLangOpts().CPlusPlus)
1427 S.Diag(DS.getTypeSpecWidthLoc(),
1428 S.getLangOpts().CPlusPlus11 ?
1429 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1430 else
1431 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1432 }
1433 break;
1434 }
1435 }
1436 break;
1437 }
1438 case DeclSpec::TST_extint: {
1439 if (!S.Context.getTargetInfo().hasExtIntType())
1440 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1441 << "_ExtInt";
1442 Result =
1443 S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1444 DS.getRepAsExpr(), DS.getBeginLoc());
1445 if (Result.isNull()) {
1446 Result = Context.IntTy;
1447 declarator.setInvalidType(true);
1448 }
1449 break;
1450 }
1451 case DeclSpec::TST_accum: {
1452 switch (DS.getTypeSpecWidth()) {
1453 case TypeSpecifierWidth::Short:
1454 Result = Context.ShortAccumTy;
1455 break;
1456 case TypeSpecifierWidth::Unspecified:
1457 Result = Context.AccumTy;
1458 break;
1459 case TypeSpecifierWidth::Long:
1460 Result = Context.LongAccumTy;
1461 break;
1462 case TypeSpecifierWidth::LongLong:
1463 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1463)
;
1464 }
1465
1466 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1467 Result = Context.getCorrespondingUnsignedType(Result);
1468
1469 if (DS.isTypeSpecSat())
1470 Result = Context.getCorrespondingSaturatedType(Result);
1471
1472 break;
1473 }
1474 case DeclSpec::TST_fract: {
1475 switch (DS.getTypeSpecWidth()) {
1476 case TypeSpecifierWidth::Short:
1477 Result = Context.ShortFractTy;
1478 break;
1479 case TypeSpecifierWidth::Unspecified:
1480 Result = Context.FractTy;
1481 break;
1482 case TypeSpecifierWidth::Long:
1483 Result = Context.LongFractTy;
1484 break;
1485 case TypeSpecifierWidth::LongLong:
1486 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1486)
;
1487 }
1488
1489 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1490 Result = Context.getCorrespondingUnsignedType(Result);
1491
1492 if (DS.isTypeSpecSat())
1493 Result = Context.getCorrespondingSaturatedType(Result);
1494
1495 break;
1496 }
1497 case DeclSpec::TST_int128:
1498 if (!S.Context.getTargetInfo().hasInt128Type() &&
1499 !S.getLangOpts().SYCLIsDevice &&
1500 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1501 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1502 << "__int128";
1503 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1504 Result = Context.UnsignedInt128Ty;
1505 else
1506 Result = Context.Int128Ty;
1507 break;
1508 case DeclSpec::TST_float16:
1509 // CUDA host and device may have different _Float16 support, therefore
1510 // do not diagnose _Float16 usage to avoid false alarm.
1511 // ToDo: more precise diagnostics for CUDA.
1512 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1513 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1514 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1515 << "_Float16";
1516 Result = Context.Float16Ty;
1517 break;
1518 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1519 case DeclSpec::TST_BFloat16:
1520 if (!S.Context.getTargetInfo().hasBFloat16Type())
1521 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1522 << "__bf16";
1523 Result = Context.BFloat16Ty;
1524 break;
1525 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1526 case DeclSpec::TST_double:
1527 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1528 Result = Context.LongDoubleTy;
1529 else
1530 Result = Context.DoubleTy;
1531 break;
1532 case DeclSpec::TST_float128:
1533 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1534 !S.getLangOpts().SYCLIsDevice &&
1535 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1536 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1537 << "__float128";
1538 Result = Context.Float128Ty;
1539 break;
1540 case DeclSpec::TST_bool:
1541 Result = Context.BoolTy; // _Bool or bool
1542 break;
1543 case DeclSpec::TST_decimal32: // _Decimal32
1544 case DeclSpec::TST_decimal64: // _Decimal64
1545 case DeclSpec::TST_decimal128: // _Decimal128
1546 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1547 Result = Context.IntTy;
1548 declarator.setInvalidType(true);
1549 break;
1550 case DeclSpec::TST_class:
1551 case DeclSpec::TST_enum:
1552 case DeclSpec::TST_union:
1553 case DeclSpec::TST_struct:
1554 case DeclSpec::TST_interface: {
1555 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1556 if (!D) {
1557 // This can happen in C++ with ambiguous lookups.
1558 Result = Context.IntTy;
1559 declarator.setInvalidType(true);
1560 break;
1561 }
1562
1563 // If the type is deprecated or unavailable, diagnose it.
1564 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1565
1566 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
1567 DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
1568 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
1569 "No qualifiers on tag names!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1569, __PRETTY_FUNCTION__))
;
1570
1571 // TypeQuals handled by caller.
1572 Result = Context.getTypeDeclType(D);
1573
1574 // In both C and C++, make an ElaboratedType.
1575 ElaboratedTypeKeyword Keyword
1576 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1577 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1578 DS.isTypeSpecOwned() ? D : nullptr);
1579 break;
1580 }
1581 case DeclSpec::TST_typename: {
1582 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
1583 DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
1584 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
1585 "Can't handle qualifiers on typedef names yet!")((DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign()
== TypeSpecifierSign::Unspecified && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1585, __PRETTY_FUNCTION__))
;
1586 Result = S.GetTypeFromParser(DS.getRepAsType());
1587 if (Result.isNull()) {
1588 declarator.setInvalidType(true);
1589 }
1590
1591 // TypeQuals handled by caller.
1592 break;
1593 }
1594 case DeclSpec::TST_typeofType:
1595 // FIXME: Preserve type source info.
1596 Result = S.GetTypeFromParser(DS.getRepAsType());
1597 assert(!Result.isNull() && "Didn't get a type for typeof?")((!Result.isNull() && "Didn't get a type for typeof?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1597, __PRETTY_FUNCTION__))
;
1598 if (!Result->isDependentType())
1599 if (const TagType *TT = Result->getAs<TagType>())
1600 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1601 // TypeQuals handled by caller.
1602 Result = Context.getTypeOfType(Result);
1603 break;
1604 case DeclSpec::TST_typeofExpr: {
1605 Expr *E = DS.getRepAsExpr();
1606 assert(E && "Didn't get an expression for typeof?")((E && "Didn't get an expression for typeof?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1606, __PRETTY_FUNCTION__))
;
1607 // TypeQuals handled by caller.
1608 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1609 if (Result.isNull()) {
1610 Result = Context.IntTy;
1611 declarator.setInvalidType(true);
1612 }
1613 break;
1614 }
1615 case DeclSpec::TST_decltype: {
1616 Expr *E = DS.getRepAsExpr();
1617 assert(E && "Didn't get an expression for decltype?")((E && "Didn't get an expression for decltype?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1617, __PRETTY_FUNCTION__))
;
1618 // TypeQuals handled by caller.
1619 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1620 if (Result.isNull()) {
1621 Result = Context.IntTy;
1622 declarator.setInvalidType(true);
1623 }
1624 break;
1625 }
1626 case DeclSpec::TST_underlyingType:
1627 Result = S.GetTypeFromParser(DS.getRepAsType());
1628 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((!Result.isNull() && "Didn't get a type for __underlying_type?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1628, __PRETTY_FUNCTION__))
;
1629 Result = S.BuildUnaryTransformType(Result,
1630 UnaryTransformType::EnumUnderlyingType,
1631 DS.getTypeSpecTypeLoc());
1632 if (Result.isNull()) {
1633 Result = Context.IntTy;
1634 declarator.setInvalidType(true);
1635 }
1636 break;
1637
1638 case DeclSpec::TST_auto:
1639 case DeclSpec::TST_decltype_auto: {
1640 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1641 ? AutoTypeKeyword::DecltypeAuto
1642 : AutoTypeKeyword::Auto;
1643
1644 ConceptDecl *TypeConstraintConcept = nullptr;
1645 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1646 if (DS.isConstrainedAuto()) {
1647 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1648 TypeConstraintConcept =
1649 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1650 TemplateArgumentListInfo TemplateArgsInfo;
1651 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1652 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1653 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1654 TemplateId->NumArgs);
1655 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1656 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1657 TemplateArgs.push_back(ArgLoc.getArgument());
1658 } else {
1659 declarator.setInvalidType(true);
1660 }
1661 }
1662 Result = S.Context.getAutoType(QualType(), AutoKW,
1663 /*IsDependent*/ false, /*IsPack=*/false,
1664 TypeConstraintConcept, TemplateArgs);
1665 break;
1666 }
1667
1668 case DeclSpec::TST_auto_type:
1669 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1670 break;
1671
1672 case DeclSpec::TST_unknown_anytype:
1673 Result = Context.UnknownAnyTy;
1674 break;
1675
1676 case DeclSpec::TST_atomic:
1677 Result = S.GetTypeFromParser(DS.getRepAsType());
1678 assert(!Result.isNull() && "Didn't get a type for _Atomic?")((!Result.isNull() && "Didn't get a type for _Atomic?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1678, __PRETTY_FUNCTION__))
;
1679 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1680 if (Result.isNull()) {
1681 Result = Context.IntTy;
1682 declarator.setInvalidType(true);
1683 }
1684 break;
1685
1686#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1687 case DeclSpec::TST_##ImgType##_t: \
1688 switch (getImageAccess(DS.getAttributes())) { \
1689 case OpenCLAccessAttr::Keyword_write_only: \
1690 Result = Context.Id##WOTy; \
1691 break; \
1692 case OpenCLAccessAttr::Keyword_read_write: \
1693 Result = Context.Id##RWTy; \
1694 break; \
1695 case OpenCLAccessAttr::Keyword_read_only: \
1696 Result = Context.Id##ROTy; \
1697 break; \
1698 case OpenCLAccessAttr::SpellingNotCalculated: \
1699 llvm_unreachable("Spelling not yet calculated")::llvm::llvm_unreachable_internal("Spelling not yet calculated"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1699)
; \
1700 } \
1701 break;
1702#include "clang/Basic/OpenCLImageTypes.def"
1703
1704 case DeclSpec::TST_error:
1705 Result = Context.IntTy;
1706 declarator.setInvalidType(true);
1707 break;
1708 }
1709
1710 // FIXME: we want resulting declarations to be marked invalid, but claiming
1711 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1712 // a null type.
1713 if (Result->containsErrors())
1714 declarator.setInvalidType();
1715
1716 if (S.getLangOpts().OpenCL &&
1717 S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1718 declarator.setInvalidType(true);
1719
1720 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1721 DS.getTypeSpecType() == DeclSpec::TST_fract;
1722
1723 // Only fixed point types can be saturated
1724 if (DS.isTypeSpecSat() && !IsFixedPointType)
1725 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1726 << DS.getSpecifierName(DS.getTypeSpecType(),
1727 Context.getPrintingPolicy());
1728
1729 // Handle complex types.
1730 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1731 if (S.getLangOpts().Freestanding)
1732 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1733 Result = Context.getComplexType(Result);
1734 } else if (DS.isTypeAltiVecVector()) {
1735 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1736 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? static_cast<void> (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1736, __PRETTY_FUNCTION__))
;
1737 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1738 if (DS.isTypeAltiVecPixel())
1739 VecKind = VectorType::AltiVecPixel;
1740 else if (DS.isTypeAltiVecBool())
1741 VecKind = VectorType::AltiVecBool;
1742 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1743 }
1744
1745 // FIXME: Imaginary.
1746 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1747 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1748
1749 // Before we process any type attributes, synthesize a block literal
1750 // function declarator if necessary.
1751 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1752 maybeSynthesizeBlockSignature(state, Result);
1753
1754 // Apply any type attributes from the decl spec. This may cause the
1755 // list of type attributes to be temporarily saved while the type
1756 // attributes are pushed around.
1757 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1758 if (!DS.isTypeSpecPipe())
1759 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1760
1761 // Apply const/volatile/restrict qualifiers to T.
1762 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1763 // Warn about CV qualifiers on function types.
1764 // C99 6.7.3p8:
1765 // If the specification of a function type includes any type qualifiers,
1766 // the behavior is undefined.
1767 // C++11 [dcl.fct]p7:
1768 // The effect of a cv-qualifier-seq in a function declarator is not the
1769 // same as adding cv-qualification on top of the function type. In the
1770 // latter case, the cv-qualifiers are ignored.
1771 if (Result->isFunctionType()) {
1772 diagnoseAndRemoveTypeQualifiers(
1773 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1774 S.getLangOpts().CPlusPlus
1775 ? diag::warn_typecheck_function_qualifiers_ignored
1776 : diag::warn_typecheck_function_qualifiers_unspecified);
1777 // No diagnostic for 'restrict' or '_Atomic' applied to a
1778 // function type; we'll diagnose those later, in BuildQualifiedType.
1779 }
1780
1781 // C++11 [dcl.ref]p1:
1782 // Cv-qualified references are ill-formed except when the
1783 // cv-qualifiers are introduced through the use of a typedef-name
1784 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1785 //
1786 // There don't appear to be any other contexts in which a cv-qualified
1787 // reference type could be formed, so the 'ill-formed' clause here appears
1788 // to never happen.
1789 if (TypeQuals && Result->isReferenceType()) {
1790 diagnoseAndRemoveTypeQualifiers(
1791 S, DS, TypeQuals, Result,
1792 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1793 diag::warn_typecheck_reference_qualifiers);
1794 }
1795
1796 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1797 // than once in the same specifier-list or qualifier-list, either directly
1798 // or via one or more typedefs."
1799 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1800 && TypeQuals & Result.getCVRQualifiers()) {
1801 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1802 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1803 << "const";
1804 }
1805
1806 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1807 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1808 << "volatile";
1809 }
1810
1811 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1812 // produce a warning in this case.
1813 }
1814
1815 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1816
1817 // If adding qualifiers fails, just use the unqualified type.
1818 if (Qualified.isNull())
1819 declarator.setInvalidType(true);
1820 else
1821 Result = Qualified;
1822 }
1823
1824 assert(!Result.isNull() && "This function should not return a null type")((!Result.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1824, __PRETTY_FUNCTION__))
;
1825 return Result;
1826}
1827
1828static std::string getPrintableNameForEntity(DeclarationName Entity) {
1829 if (Entity)
1830 return Entity.getAsString();
1831
1832 return "type name";
1833}
1834
1835QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1836 Qualifiers Qs, const DeclSpec *DS) {
1837 if (T.isNull())
1838 return QualType();
1839
1840 // Ignore any attempt to form a cv-qualified reference.
1841 if (T->isReferenceType()) {
1842 Qs.removeConst();
1843 Qs.removeVolatile();
1844 }
1845
1846 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1847 // object or incomplete types shall not be restrict-qualified."
1848 if (Qs.hasRestrict()) {
1849 unsigned DiagID = 0;
1850 QualType ProblemTy;
1851
1852 if (T->isAnyPointerType() || T->isReferenceType() ||
1853 T->isMemberPointerType()) {
1854 QualType EltTy;
1855 if (T->isObjCObjectPointerType())
1856 EltTy = T;
1857 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1858 EltTy = PTy->getPointeeType();
1859 else
1860 EltTy = T->getPointeeType();
1861
1862 // If we have a pointer or reference, the pointee must have an object
1863 // incomplete type.
1864 if (!EltTy->isIncompleteOrObjectType()) {
1865 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1866 ProblemTy = EltTy;
1867 }
1868 } else if (!T->isDependentType()) {
1869 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1870 ProblemTy = T;
1871 }
1872
1873 if (DiagID) {
1874 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1875 Qs.removeRestrict();
1876 }
1877 }
1878
1879 return Context.getQualifiedType(T, Qs);
1880}
1881
1882QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1883 unsigned CVRAU, const DeclSpec *DS) {
1884 if (T.isNull())
1885 return QualType();
1886
1887 // Ignore any attempt to form a cv-qualified reference.
1888 if (T->isReferenceType())
1889 CVRAU &=
1890 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1891
1892 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1893 // TQ_unaligned;
1894 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1895
1896 // C11 6.7.3/5:
1897 // If the same qualifier appears more than once in the same
1898 // specifier-qualifier-list, either directly or via one or more typedefs,
1899 // the behavior is the same as if it appeared only once.
1900 //
1901 // It's not specified what happens when the _Atomic qualifier is applied to
1902 // a type specified with the _Atomic specifier, but we assume that this
1903 // should be treated as if the _Atomic qualifier appeared multiple times.
1904 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1905 // C11 6.7.3/5:
1906 // If other qualifiers appear along with the _Atomic qualifier in a
1907 // specifier-qualifier-list, the resulting type is the so-qualified
1908 // atomic type.
1909 //
1910 // Don't need to worry about array types here, since _Atomic can't be
1911 // applied to such types.
1912 SplitQualType Split = T.getSplitUnqualifiedType();
1913 T = BuildAtomicType(QualType(Split.Ty, 0),
1914 DS ? DS->getAtomicSpecLoc() : Loc);
1915 if (T.isNull())
1916 return T;
1917 Split.Quals.addCVRQualifiers(CVR);
1918 return BuildQualifiedType(T, Loc, Split.Quals);
1919 }
1920
1921 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1922 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1923 return BuildQualifiedType(T, Loc, Q, DS);
1924}
1925
1926/// Build a paren type including \p T.
1927QualType Sema::BuildParenType(QualType T) {
1928 return Context.getParenType(T);
1929}
1930
1931/// Given that we're building a pointer or reference to the given
1932static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1933 SourceLocation loc,
1934 bool isReference) {
1935 // Bail out if retention is unrequired or already specified.
1936 if (!type->isObjCLifetimeType() ||
1937 type.getObjCLifetime() != Qualifiers::OCL_None)
1938 return type;
1939
1940 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1941
1942 // If the object type is const-qualified, we can safely use
1943 // __unsafe_unretained. This is safe (because there are no read
1944 // barriers), and it'll be safe to coerce anything but __weak* to
1945 // the resulting type.
1946 if (type.isConstQualified()) {
1947 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1948
1949 // Otherwise, check whether the static type does not require
1950 // retaining. This currently only triggers for Class (possibly
1951 // protocol-qualifed, and arrays thereof).
1952 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1953 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1954
1955 // If we are in an unevaluated context, like sizeof, skip adding a
1956 // qualification.
1957 } else if (S.isUnevaluatedContext()) {
1958 return type;
1959
1960 // If that failed, give an error and recover using __strong. __strong
1961 // is the option most likely to prevent spurious second-order diagnostics,
1962 // like when binding a reference to a field.
1963 } else {
1964 // These types can show up in private ivars in system headers, so
1965 // we need this to not be an error in those cases. Instead we
1966 // want to delay.
1967 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1968 S.DelayedDiagnostics.add(
1969 sema::DelayedDiagnostic::makeForbiddenType(loc,
1970 diag::err_arc_indirect_no_ownership, type, isReference));
1971 } else {
1972 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1973 }
1974 implicitLifetime = Qualifiers::OCL_Strong;
1975 }
1976 assert(implicitLifetime && "didn't infer any lifetime!")((implicitLifetime && "didn't infer any lifetime!") ?
static_cast<void> (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 1976, __PRETTY_FUNCTION__))
;
1977
1978 Qualifiers qs;
1979 qs.addObjCLifetime(implicitLifetime);
1980 return S.Context.getQualifiedType(type, qs);
1981}
1982
1983static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1984 std::string Quals = FnTy->getMethodQuals().getAsString();
1985
1986 switch (FnTy->getRefQualifier()) {
1987 case RQ_None:
1988 break;
1989
1990 case RQ_LValue:
1991 if (!Quals.empty())
1992 Quals += ' ';
1993 Quals += '&';
1994 break;
1995
1996 case RQ_RValue:
1997 if (!Quals.empty())
1998 Quals += ' ';
1999 Quals += "&&";
2000 break;
2001 }
2002
2003 return Quals;
2004}
2005
2006namespace {
2007/// Kinds of declarator that cannot contain a qualified function type.
2008///
2009/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2010/// a function type with a cv-qualifier or a ref-qualifier can only appear
2011/// at the topmost level of a type.
2012///
2013/// Parens and member pointers are permitted. We don't diagnose array and
2014/// function declarators, because they don't allow function types at all.
2015///
2016/// The values of this enum are used in diagnostics.
2017enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2018} // end anonymous namespace
2019
2020/// Check whether the type T is a qualified function type, and if it is,
2021/// diagnose that it cannot be contained within the given kind of declarator.
2022static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2023 QualifiedFunctionKind QFK) {
2024 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2025 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2026 if (!FPT ||
2027 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2028 return false;
2029
2030 S.Diag(Loc, diag::err_compound_qualified_function_type)
2031 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2032 << getFunctionQualifiersAsString(FPT);
2033 return true;
2034}
2035
2036bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2037 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2038 if (!FPT ||
2039 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2040 return false;
2041
2042 Diag(Loc, diag::err_qualified_function_typeid)
2043 << T << getFunctionQualifiersAsString(FPT);
2044 return true;
2045}
2046
2047// Helper to deduce addr space of a pointee type in OpenCL mode.
2048static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2049 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2050 !PointeeType->isSamplerT() &&
2051 !PointeeType.hasAddressSpace())
2052 PointeeType = S.getASTContext().getAddrSpaceQualType(
2053 PointeeType, S.getLangOpts().OpenCLGenericAddressSpace
2054 ? LangAS::opencl_generic
2055 : LangAS::opencl_private);
2056 return PointeeType;
2057}
2058
2059/// Build a pointer type.
2060///
2061/// \param T The type to which we'll be building a pointer.
2062///
2063/// \param Loc The location of the entity whose type involves this
2064/// pointer type or, if there is no such entity, the location of the
2065/// type that will have pointer type.
2066///
2067/// \param Entity The name of the entity that involves the pointer
2068/// type, if known.
2069///
2070/// \returns A suitable pointer type, if there are no
2071/// errors. Otherwise, returns a NULL type.
2072QualType Sema::BuildPointerType(QualType T,
2073 SourceLocation Loc, DeclarationName Entity) {
2074 if (T->isReferenceType()) {
2075 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2076 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2077 << getPrintableNameForEntity(Entity) << T;
2078 return QualType();
2079 }
2080
2081 if (T->isFunctionType() && getLangOpts().OpenCL &&
2082 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2083 getLangOpts())) {
2084 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2085 return QualType();
2086 }
2087
2088 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2089 return QualType();
2090
2091 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((!T->isObjCObjectType() && "Should build ObjCObjectPointerType"
) ? static_cast<void> (0) : __assert_fail ("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2091, __PRETTY_FUNCTION__))
;
2092
2093 // In ARC, it is forbidden to build pointers to unqualified pointers.
2094 if (getLangOpts().ObjCAutoRefCount)
2095 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2096
2097 if (getLangOpts().OpenCL)
2098 T = deduceOpenCLPointeeAddrSpace(*this, T);
2099
2100 // Build the pointer type.
2101 return Context.getPointerType(T);
2102}
2103
2104/// Build a reference type.
2105///
2106/// \param T The type to which we'll be building a reference.
2107///
2108/// \param Loc The location of the entity whose type involves this
2109/// reference type or, if there is no such entity, the location of the
2110/// type that will have reference type.
2111///
2112/// \param Entity The name of the entity that involves the reference
2113/// type, if known.
2114///
2115/// \returns A suitable reference type, if there are no
2116/// errors. Otherwise, returns a NULL type.
2117QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2118 SourceLocation Loc,
2119 DeclarationName Entity) {
2120 assert(Context.getCanonicalType(T) != Context.OverloadTy &&((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2121, __PRETTY_FUNCTION__))
2121 "Unresolved overloaded function type")((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2121, __PRETTY_FUNCTION__))
;
2122
2123 // C++0x [dcl.ref]p6:
2124 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2125 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2126 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2127 // the type "lvalue reference to T", while an attempt to create the type
2128 // "rvalue reference to cv TR" creates the type TR.
2129 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2130
2131 // C++ [dcl.ref]p4: There shall be no references to references.
2132 //
2133 // According to C++ DR 106, references to references are only
2134 // diagnosed when they are written directly (e.g., "int & &"),
2135 // but not when they happen via a typedef:
2136 //
2137 // typedef int& intref;
2138 // typedef intref& intref2;
2139 //
2140 // Parser::ParseDeclaratorInternal diagnoses the case where
2141 // references are written directly; here, we handle the
2142 // collapsing of references-to-references as described in C++0x.
2143 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2144
2145 // C++ [dcl.ref]p1:
2146 // A declarator that specifies the type "reference to cv void"
2147 // is ill-formed.
2148 if (T->isVoidType()) {
2149 Diag(Loc, diag::err_reference_to_void);
2150 return QualType();
2151 }
2152
2153 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2154 return QualType();
2155
2156 if (T->isFunctionType() && getLangOpts().OpenCL &&
2157 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2158 getLangOpts())) {
2159 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2160 return QualType();
2161 }
2162
2163 // In ARC, it is forbidden to build references to unqualified pointers.
2164 if (getLangOpts().ObjCAutoRefCount)
2165 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2166
2167 if (getLangOpts().OpenCL)
2168 T = deduceOpenCLPointeeAddrSpace(*this, T);
2169
2170 // Handle restrict on references.
2171 if (LValueRef)
2172 return Context.getLValueReferenceType(T, SpelledAsLValue);
2173 return Context.getRValueReferenceType(T);
2174}
2175
2176/// Build a Read-only Pipe type.
2177///
2178/// \param T The type to which we'll be building a Pipe.
2179///
2180/// \param Loc We do not use it for now.
2181///
2182/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2183/// NULL type.
2184QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2185 return Context.getReadPipeType(T);
2186}
2187
2188/// Build a Write-only Pipe type.
2189///
2190/// \param T The type to which we'll be building a Pipe.
2191///
2192/// \param Loc We do not use it for now.
2193///
2194/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2195/// NULL type.
2196QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2197 return Context.getWritePipeType(T);
2198}
2199
2200/// Build a extended int type.
2201///
2202/// \param IsUnsigned Boolean representing the signedness of the type.
2203///
2204/// \param BitWidth Size of this int type in bits, or an expression representing
2205/// that.
2206///
2207/// \param Loc Location of the keyword.
2208QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth,
2209 SourceLocation Loc) {
2210 if (BitWidth->isInstantiationDependent())
2211 return Context.getDependentExtIntType(IsUnsigned, BitWidth);
2212
2213 llvm::APSInt Bits(32);
2214 ExprResult ICE =
2215 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2216
2217 if (ICE.isInvalid())
2218 return QualType();
2219
2220 int64_t NumBits = Bits.getSExtValue();
2221 if (!IsUnsigned && NumBits < 2) {
2222 Diag(Loc, diag::err_ext_int_bad_size) << 0;
2223 return QualType();
2224 }
2225
2226 if (IsUnsigned && NumBits < 1) {
2227 Diag(Loc, diag::err_ext_int_bad_size) << 1;
2228 return QualType();
2229 }
2230
2231 if (NumBits > llvm::IntegerType::MAX_INT_BITS) {
2232 Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned
2233 << llvm::IntegerType::MAX_INT_BITS;
2234 return QualType();
2235 }
2236
2237 return Context.getExtIntType(IsUnsigned, NumBits);
2238}
2239
2240/// Check whether the specified array bound can be evaluated using the relevant
2241/// language rules. If so, returns the possibly-converted expression and sets
2242/// SizeVal to the size. If not, but the expression might be a VLA bound,
2243/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2244/// ExprError().
2245static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2246 llvm::APSInt &SizeVal, unsigned VLADiag,
2247 bool VLAIsError) {
2248 if (S.getLangOpts().CPlusPlus14 &&
2249 (VLAIsError ||
2250 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2251 // C++14 [dcl.array]p1:
2252 // The constant-expression shall be a converted constant expression of
2253 // type std::size_t.
2254 //
2255 // Don't apply this rule if we might be forming a VLA: in that case, we
2256 // allow non-constant expressions and constant-folding. We only need to use
2257 // the converted constant expression rules (to properly convert the source)
2258 // when the source expression is of class type.
2259 return S.CheckConvertedConstantExpression(
2260 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2261 }
2262
2263 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2264 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2265 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2266 public:
2267 unsigned VLADiag;
2268 bool VLAIsError;
2269 bool IsVLA = false;
2270
2271 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2272 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2273
2274 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2275 QualType T) override {
2276 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2277 }
2278
2279 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2280 SourceLocation Loc) override {
2281 IsVLA = !VLAIsError;
2282 return S.Diag(Loc, VLADiag);
2283 }
2284
2285 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2286 SourceLocation Loc) override {
2287 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2288 }
2289 } Diagnoser(VLADiag, VLAIsError);
2290
2291 ExprResult R =
2292 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2293 if (Diagnoser.IsVLA)
2294 return ExprResult();
2295 return R;
2296}
2297
2298/// Build an array type.
2299///
2300/// \param T The type of each element in the array.
2301///
2302/// \param ASM C99 array size modifier (e.g., '*', 'static').
2303///
2304/// \param ArraySize Expression describing the size of the array.
2305///
2306/// \param Brackets The range from the opening '[' to the closing ']'.
2307///
2308/// \param Entity The name of the entity that involves the array
2309/// type, if known.
2310///
2311/// \returns A suitable array type, if there are no errors. Otherwise,
2312/// returns a NULL type.
2313QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2314 Expr *ArraySize, unsigned Quals,
2315 SourceRange Brackets, DeclarationName Entity) {
2316
2317 SourceLocation Loc = Brackets.getBegin();
2318 if (getLangOpts().CPlusPlus) {
2319 // C++ [dcl.array]p1:
2320 // T is called the array element type; this type shall not be a reference
2321 // type, the (possibly cv-qualified) type void, a function type or an
2322 // abstract class type.
2323 //
2324 // C++ [dcl.array]p3:
2325 // When several "array of" specifications are adjacent, [...] only the
2326 // first of the constant expressions that specify the bounds of the arrays
2327 // may be omitted.
2328 //
2329 // Note: function types are handled in the common path with C.
2330 if (T->isReferenceType()) {
2331 Diag(Loc, diag::err_illegal_decl_array_of_references)
2332 << getPrintableNameForEntity(Entity) << T;
2333 return QualType();
2334 }
2335
2336 if (T->isVoidType() || T->isIncompleteArrayType()) {
2337 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2338 return QualType();
2339 }
2340
2341 if (RequireNonAbstractType(Brackets.getBegin(), T,
2342 diag::err_array_of_abstract_type))
2343 return QualType();
2344
2345 // Mentioning a member pointer type for an array type causes us to lock in
2346 // an inheritance model, even if it's inside an unused typedef.
2347 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2348 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2349 if (!MPTy->getClass()->isDependentType())
2350 (void)isCompleteType(Loc, T);
2351
2352 } else {
2353 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2354 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2355 if (RequireCompleteSizedType(Loc, T,
2356 diag::err_array_incomplete_or_sizeless_type))
2357 return QualType();
2358 }
2359
2360 if (T->isSizelessType()) {
2361 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2362 return QualType();
2363 }
2364
2365 if (T->isFunctionType()) {
2366 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2367 << getPrintableNameForEntity(Entity) << T;
2368 return QualType();
2369 }
2370
2371 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2372 // If the element type is a struct or union that contains a variadic
2373 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2374 if (EltTy->getDecl()->hasFlexibleArrayMember())
2375 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2376 } else if (T->isObjCObjectType()) {
2377 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2378 return QualType();
2379 }
2380
2381 // Do placeholder conversions on the array size expression.
2382 if (ArraySize && ArraySize->hasPlaceholderType()) {
2383 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2384 if (Result.isInvalid()) return QualType();
2385 ArraySize = Result.get();
2386 }
2387
2388 // Do lvalue-to-rvalue conversions on the array size expression.
2389 if (ArraySize && !ArraySize->isRValue()) {
2390 ExprResult Result = DefaultLvalueConversion(ArraySize);
2391 if (Result.isInvalid())
2392 return QualType();
2393
2394 ArraySize = Result.get();
2395 }
2396
2397 // C99 6.7.5.2p1: The size expression shall have integer type.
2398 // C++11 allows contextual conversions to such types.
2399 if (!getLangOpts().CPlusPlus11 &&
2400 ArraySize && !ArraySize->isTypeDependent() &&
2401 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2402 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2403 << ArraySize->getType() << ArraySize->getSourceRange();
2404 return QualType();
2405 }
2406
2407 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2408 unsigned VLADiag;
2409 bool VLAIsError;
2410 if (getLangOpts().OpenCL) {
2411 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2412 VLADiag = diag::err_opencl_vla;
2413 VLAIsError = true;
2414 } else if (getLangOpts().C99) {
2415 VLADiag = diag::warn_vla_used;
2416 VLAIsError = false;
2417 } else if (isSFINAEContext()) {
2418 VLADiag = diag::err_vla_in_sfinae;
2419 VLAIsError = true;
2420 } else {
2421 VLADiag = diag::ext_vla;
2422 VLAIsError = false;
2423 }
2424
2425 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2426 if (!ArraySize) {
2427 if (ASM == ArrayType::Star) {
2428 Diag(Loc, VLADiag);
2429 if (VLAIsError)
2430 return QualType();
2431
2432 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2433 } else {
2434 T = Context.getIncompleteArrayType(T, ASM, Quals);
2435 }
2436 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2437 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2438 } else {
2439 ExprResult R =
2440 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2441 if (R.isInvalid())
2442 return QualType();
2443
2444 if (!R.isUsable()) {
2445 // C99: an array with a non-ICE size is a VLA. We accept any expression
2446 // that we can fold to a non-zero positive value as a non-VLA as an
2447 // extension.
2448 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2449 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2450 !T->isConstantSizeType()) {
2451 // C99: an array with an element type that has a non-constant-size is a
2452 // VLA.
2453 // FIXME: Add a note to explain why this isn't a VLA.
2454 Diag(Loc, VLADiag);
2455 if (VLAIsError)
2456 return QualType();
2457 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2458 } else {
2459 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2460 // have a value greater than zero.
2461 // In C++, this follows from narrowing conversions being disallowed.
2462 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2463 if (Entity)
2464 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2465 << getPrintableNameForEntity(Entity)
2466 << ArraySize->getSourceRange();
2467 else
2468 Diag(ArraySize->getBeginLoc(),
2469 diag::err_typecheck_negative_array_size)
2470 << ArraySize->getSourceRange();
2471 return QualType();
2472 }
2473 if (ConstVal == 0) {
2474 // GCC accepts zero sized static arrays. We allow them when
2475 // we're not in a SFINAE context.
2476 Diag(ArraySize->getBeginLoc(),
2477 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2478 : diag::ext_typecheck_zero_array_size)
2479 << ArraySize->getSourceRange();
2480 }
2481
2482 // Is the array too large?
2483 unsigned ActiveSizeBits =
2484 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2485 !T->isIncompleteType() && !T->isUndeducedType())
2486 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2487 : ConstVal.getActiveBits();
2488 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2489 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2490 << ConstVal.toString(10) << ArraySize->getSourceRange();
2491 return QualType();
2492 }
2493
2494 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2495 }
2496 }
2497
2498 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2499 // CUDA device code and some other targets don't support VLAs.
2500 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2501 ? diag::err_cuda_vla
2502 : diag::err_vla_unsupported)
2503 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2504 ? CurrentCUDATarget()
2505 : CFT_InvalidTarget);
2506 }
2507
2508 // If this is not C99, diagnose array size modifiers on non-VLAs.
2509 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2510 (ASM != ArrayType::Normal || Quals != 0)) {
2511 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2512 : diag::ext_c99_array_usage)
2513 << ASM;
2514 }
2515
2516 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2517 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2518 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2519 if (getLangOpts().OpenCL) {
2520 const QualType ArrType = Context.getBaseElementType(T);
2521 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2522 ArrType->isSamplerT() || ArrType->isImageType()) {
2523 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2524 return QualType();
2525 }
2526 }
2527
2528 return T;
2529}
2530
2531QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2532 SourceLocation AttrLoc) {
2533 // The base type must be integer (not Boolean or enumeration) or float, and
2534 // can't already be a vector.
2535 if ((!CurType->isDependentType() &&
2536 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2537 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2538 CurType->isArrayType()) {
2539 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2540 return QualType();
2541 }
2542
2543 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2544 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2545 VectorType::GenericVector);
2546
2547 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2548 if (!VecSize) {
2549 Diag(AttrLoc, diag::err_attribute_argument_type)
2550 << "vector_size" << AANT_ArgumentIntegerConstant
2551 << SizeExpr->getSourceRange();
2552 return QualType();
2553 }
2554
2555 if (CurType->isDependentType())
2556 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2557 VectorType::GenericVector);
2558
2559 // vecSize is specified in bytes - convert to bits.
2560 if (!VecSize->isIntN(61)) {
2561 // Bit size will overflow uint64.
2562 Diag(AttrLoc, diag::err_attribute_size_too_large)
2563 << SizeExpr->getSourceRange() << "vector";
2564 return QualType();
2565 }
2566 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2567 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2568
2569 if (VectorSizeBits == 0) {
2570 Diag(AttrLoc, diag::err_attribute_zero_size)
2571 << SizeExpr->getSourceRange() << "vector";
2572 return QualType();
2573 }
2574
2575 if (VectorSizeBits % TypeSize) {
2576 Diag(AttrLoc, diag::err_attribute_invalid_size)
2577 << SizeExpr->getSourceRange();
2578 return QualType();
2579 }
2580
2581 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2582 Diag(AttrLoc, diag::err_attribute_size_too_large)
2583 << SizeExpr->getSourceRange() << "vector";
2584 return QualType();
2585 }
2586
2587 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2588 VectorType::GenericVector);
2589}
2590
2591/// Build an ext-vector type.
2592///
2593/// Run the required checks for the extended vector type.
2594QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2595 SourceLocation AttrLoc) {
2596 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2597 // in conjunction with complex types (pointers, arrays, functions, etc.).
2598 //
2599 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2600 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2601 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2602 // of bool aren't allowed.
2603 if ((!T->isDependentType() && !T->isIntegerType() &&
2604 !T->isRealFloatingType()) ||
2605 T->isBooleanType()) {
2606 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2607 return QualType();
2608 }
2609
2610 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2611 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2612 if (!vecSize) {
2613 Diag(AttrLoc, diag::err_attribute_argument_type)
2614 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2615 << ArraySize->getSourceRange();
2616 return QualType();
2617 }
2618
2619 if (!vecSize->isIntN(32)) {
2620 Diag(AttrLoc, diag::err_attribute_size_too_large)
2621 << ArraySize->getSourceRange() << "vector";
2622 return QualType();
2623 }
2624 // Unlike gcc's vector_size attribute, the size is specified as the
2625 // number of elements, not the number of bytes.
2626 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2627
2628 if (vectorSize == 0) {
2629 Diag(AttrLoc, diag::err_attribute_zero_size)
2630 << ArraySize->getSourceRange() << "vector";
2631 return QualType();
2632 }
2633
2634 return Context.getExtVectorType(T, vectorSize);
2635 }
2636
2637 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2638}
2639
2640QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2641 SourceLocation AttrLoc) {
2642 assert(Context.getLangOpts().MatrixTypes &&((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled"
) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2643, __PRETTY_FUNCTION__))
2643 "Should never build a matrix type when it is disabled")((Context.getLangOpts().MatrixTypes && "Should never build a matrix type when it is disabled"
) ? static_cast<void> (0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2643, __PRETTY_FUNCTION__))
;
2644
2645 // Check element type, if it is not dependent.
2646 if (!ElementTy->isDependentType() &&
2647 !MatrixType::isValidElementType(ElementTy)) {
2648 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2649 return QualType();
2650 }
2651
2652 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2653 NumRows->isValueDependent() || NumCols->isValueDependent())
2654 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2655 AttrLoc);
2656
2657 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2658 Optional<llvm::APSInt> ValueColumns =
2659 NumCols->getIntegerConstantExpr(Context);
2660
2661 auto const RowRange = NumRows->getSourceRange();
2662 auto const ColRange = NumCols->getSourceRange();
2663
2664 // Both are row and column expressions are invalid.
2665 if (!ValueRows && !ValueColumns) {
2666 Diag(AttrLoc, diag::err_attribute_argument_type)
2667 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2668 << ColRange;
2669 return QualType();
2670 }
2671
2672 // Only the row expression is invalid.
2673 if (!ValueRows) {
2674 Diag(AttrLoc, diag::err_attribute_argument_type)
2675 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2676 return QualType();
2677 }
2678
2679 // Only the column expression is invalid.
2680 if (!ValueColumns) {
2681 Diag(AttrLoc, diag::err_attribute_argument_type)
2682 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2683 return QualType();
2684 }
2685
2686 // Check the matrix dimensions.
2687 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2688 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2689 if (MatrixRows == 0 && MatrixColumns == 0) {
2690 Diag(AttrLoc, diag::err_attribute_zero_size)
2691 << "matrix" << RowRange << ColRange;
2692 return QualType();
2693 }
2694 if (MatrixRows == 0) {
2695 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2696 return QualType();
2697 }
2698 if (MatrixColumns == 0) {
2699 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2700 return QualType();
2701 }
2702 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2703 Diag(AttrLoc, diag::err_attribute_size_too_large)
2704 << RowRange << "matrix row";
2705 return QualType();
2706 }
2707 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2708 Diag(AttrLoc, diag::err_attribute_size_too_large)
2709 << ColRange << "matrix column";
2710 return QualType();
2711 }
2712 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2713}
2714
2715bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2716 if (T->isArrayType() || T->isFunctionType()) {
2717 Diag(Loc, diag::err_func_returning_array_function)
2718 << T->isFunctionType() << T;
2719 return true;
2720 }
2721
2722 // Functions cannot return half FP.
2723 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2724 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2725 FixItHint::CreateInsertion(Loc, "*");
2726 return true;
2727 }
2728
2729 // Methods cannot return interface types. All ObjC objects are
2730 // passed by reference.
2731 if (T->isObjCObjectType()) {
2732 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2733 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2734 return true;
2735 }
2736
2737 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2738 T.hasNonTrivialToPrimitiveCopyCUnion())
2739 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2740 NTCUK_Destruct|NTCUK_Copy);
2741
2742 // C++2a [dcl.fct]p12:
2743 // A volatile-qualified return type is deprecated
2744 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2745 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2746
2747 return false;
2748}
2749
2750/// Check the extended parameter information. Most of the necessary
2751/// checking should occur when applying the parameter attribute; the
2752/// only other checks required are positional restrictions.
2753static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2754 const FunctionProtoType::ExtProtoInfo &EPI,
2755 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2756 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? static_cast<void> (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2756, __PRETTY_FUNCTION__))
;
2757
2758 bool hasCheckedSwiftCall = false;
2759 auto checkForSwiftCC = [&](unsigned paramIndex) {
2760 // Only do this once.
2761 if (hasCheckedSwiftCall) return;
2762 hasCheckedSwiftCall = true;
2763 if (EPI.ExtInfo.getCC() == CC_Swift) return;
2764 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2765 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2766 };
2767
2768 for (size_t paramIndex = 0, numParams = paramTypes.size();
2769 paramIndex != numParams; ++paramIndex) {
2770 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2771 // Nothing interesting to check for orindary-ABI parameters.
2772 case ParameterABI::Ordinary:
2773 continue;
2774
2775 // swift_indirect_result parameters must be a prefix of the function
2776 // arguments.
2777 case ParameterABI::SwiftIndirectResult:
2778 checkForSwiftCC(paramIndex);
2779 if (paramIndex != 0 &&
2780 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2781 != ParameterABI::SwiftIndirectResult) {
2782 S.Diag(getParamLoc(paramIndex),
2783 diag::err_swift_indirect_result_not_first);
2784 }
2785 continue;
2786
2787 case ParameterABI::SwiftContext:
2788 checkForSwiftCC(paramIndex);
2789 continue;
2790
2791 // swift_error parameters must be preceded by a swift_context parameter.
2792 case ParameterABI::SwiftErrorResult:
2793 checkForSwiftCC(paramIndex);
2794 if (paramIndex == 0 ||
2795 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2796 ParameterABI::SwiftContext) {
2797 S.Diag(getParamLoc(paramIndex),
2798 diag::err_swift_error_result_not_after_swift_context);
2799 }
2800 continue;
2801 }
2802 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 2802)
;
2803 }
2804}
2805
2806QualType Sema::BuildFunctionType(QualType T,
2807 MutableArrayRef<QualType> ParamTypes,
2808 SourceLocation Loc, DeclarationName Entity,
2809 const FunctionProtoType::ExtProtoInfo &EPI) {
2810 bool Invalid = false;
2811
2812 Invalid |= CheckFunctionReturnType(T, Loc);
2813
2814 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2815 // FIXME: Loc is too inprecise here, should use proper locations for args.
2816 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2817 if (ParamType->isVoidType()) {
2818 Diag(Loc, diag::err_param_with_void_type);
2819 Invalid = true;
2820 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2821 // Disallow half FP arguments.
2822 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2823 FixItHint::CreateInsertion(Loc, "*");
2824 Invalid = true;
2825 }
2826
2827 // C++2a [dcl.fct]p4:
2828 // A parameter with volatile-qualified type is deprecated
2829 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2830 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2831
2832 ParamTypes[Idx] = ParamType;
2833 }
2834
2835 if (EPI.ExtParameterInfos) {
2836 checkExtParameterInfos(*this, ParamTypes, EPI,
2837 [=](unsigned i) { return Loc; });
2838 }
2839
2840 if (EPI.ExtInfo.getProducesResult()) {
2841 // This is just a warning, so we can't fail to build if we see it.
2842 checkNSReturnsRetainedReturnType(Loc, T);
2843 }
2844
2845 if (Invalid)
2846 return QualType();
2847
2848 return Context.getFunctionType(T, ParamTypes, EPI);
2849}
2850
2851/// Build a member pointer type \c T Class::*.
2852///
2853/// \param T the type to which the member pointer refers.
2854/// \param Class the class type into which the member pointer points.
2855/// \param Loc the location where this type begins
2856/// \param Entity the name of the entity that will have this member pointer type
2857///
2858/// \returns a member pointer type, if successful, or a NULL type if there was
2859/// an error.
2860QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2861 SourceLocation Loc,
2862 DeclarationName Entity) {
2863 // Verify that we're not building a pointer to pointer to function with
2864 // exception specification.
2865 if (CheckDistantExceptionSpec(T)) {
2866 Diag(Loc, diag::err_distant_exception_spec);
2867 return QualType();
2868 }
2869
2870 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2871 // with reference type, or "cv void."
2872 if (T->isReferenceType()) {
2873 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2874 << getPrintableNameForEntity(Entity) << T;
2875 return QualType();
2876 }
2877
2878 if (T->isVoidType()) {
2879 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2880 << getPrintableNameForEntity(Entity);
2881 return QualType();
2882 }
2883
2884 if (!Class->isDependentType() && !Class->isRecordType()) {
2885 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2886 return QualType();
2887 }
2888
2889 if (T->isFunctionType() && getLangOpts().OpenCL &&
2890 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2891 getLangOpts())) {
2892 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2893 return QualType();
2894 }
2895
2896 // Adjust the default free function calling convention to the default method
2897 // calling convention.
2898 bool IsCtorOrDtor =
2899 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2900 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2901 if (T->isFunctionType())
2902 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2903
2904 return Context.getMemberPointerType(T, Class.getTypePtr());
2905}
2906
2907/// Build a block pointer type.
2908///
2909/// \param T The type to which we'll be building a block pointer.
2910///
2911/// \param Loc The source location, used for diagnostics.
2912///
2913/// \param Entity The name of the entity that involves the block pointer
2914/// type, if known.
2915///
2916/// \returns A suitable block pointer type, if there are no
2917/// errors. Otherwise, returns a NULL type.
2918QualType Sema::BuildBlockPointerType(QualType T,
2919 SourceLocation Loc,
2920 DeclarationName Entity) {
2921 if (!T->isFunctionType()) {
2922 Diag(Loc, diag::err_nonfunction_block_type);
2923 return QualType();
2924 }
2925
2926 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2927 return QualType();
2928
2929 if (getLangOpts().OpenCL)
2930 T = deduceOpenCLPointeeAddrSpace(*this, T);
2931
2932 return Context.getBlockPointerType(T);
2933}
2934
2935QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2936 QualType QT = Ty.get();
2937 if (QT.isNull()) {
2938 if (TInfo) *TInfo = nullptr;
2939 return QualType();
2940 }
2941
2942 TypeSourceInfo *DI = nullptr;
2943 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2944 QT = LIT->getType();
2945 DI = LIT->getTypeSourceInfo();
2946 }
2947
2948 if (TInfo) *TInfo = DI;
2949 return QT;
2950}
2951
2952static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2953 Qualifiers::ObjCLifetime ownership,
2954 unsigned chunkIndex);
2955
2956/// Given that this is the declaration of a parameter under ARC,
2957/// attempt to infer attributes and such for pointer-to-whatever
2958/// types.
2959static void inferARCWriteback(TypeProcessingState &state,
2960 QualType &declSpecType) {
2961 Sema &S = state.getSema();
2962 Declarator &declarator = state.getDeclarator();
2963
2964 // TODO: should we care about decl qualifiers?
2965
2966 // Check whether the declarator has the expected form. We walk
2967 // from the inside out in order to make the block logic work.
2968 unsigned outermostPointerIndex = 0;
2969 bool isBlockPointer = false;
2970 unsigned numPointers = 0;
2971 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2972 unsigned chunkIndex = i;
2973 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2974 switch (chunk.Kind) {
2975 case DeclaratorChunk::Paren:
2976 // Ignore parens.
2977 break;
2978
2979 case DeclaratorChunk::Reference:
2980 case DeclaratorChunk::Pointer:
2981 // Count the number of pointers. Treat references
2982 // interchangeably as pointers; if they're mis-ordered, normal
2983 // type building will discover that.
2984 outermostPointerIndex = chunkIndex;
2985 numPointers++;
2986 break;
2987
2988 case DeclaratorChunk::BlockPointer:
2989 // If we have a pointer to block pointer, that's an acceptable
2990 // indirect reference; anything else is not an application of
2991 // the rules.
2992 if (numPointers != 1) return;
2993 numPointers++;
2994 outermostPointerIndex = chunkIndex;
2995 isBlockPointer = true;
2996
2997 // We don't care about pointer structure in return values here.
2998 goto done;
2999
3000 case DeclaratorChunk::Array: // suppress if written (id[])?
3001 case DeclaratorChunk::Function:
3002 case DeclaratorChunk::MemberPointer:
3003 case DeclaratorChunk::Pipe:
3004 return;
3005 }
3006 }
3007 done:
3008
3009 // If we have *one* pointer, then we want to throw the qualifier on
3010 // the declaration-specifiers, which means that it needs to be a
3011 // retainable object type.
3012 if (numPointers == 1) {
3013 // If it's not a retainable object type, the rule doesn't apply.
3014 if (!declSpecType->isObjCRetainableType()) return;
3015
3016 // If it already has lifetime, don't do anything.
3017 if (declSpecType.getObjCLifetime()) return;
3018
3019 // Otherwise, modify the type in-place.
3020 Qualifiers qs;
3021
3022 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3023 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3024 else
3025 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3026 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3027
3028 // If we have *two* pointers, then we want to throw the qualifier on
3029 // the outermost pointer.
3030 } else if (numPointers == 2) {
3031 // If we don't have a block pointer, we need to check whether the
3032 // declaration-specifiers gave us something that will turn into a
3033 // retainable object pointer after we slap the first pointer on it.
3034 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3035 return;
3036
3037 // Look for an explicit lifetime attribute there.
3038 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3039 if (chunk.Kind != DeclaratorChunk::Pointer &&
3040 chunk.Kind != DeclaratorChunk::BlockPointer)
3041 return;
3042 for (const ParsedAttr &AL : chunk.getAttrs())
3043 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3044 return;
3045
3046 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3047 outermostPointerIndex);
3048
3049 // Any other number of pointers/references does not trigger the rule.
3050 } else return;
3051
3052 // TODO: mark whether we did this inference?
3053}
3054
3055void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3056 SourceLocation FallbackLoc,
3057 SourceLocation ConstQualLoc,
3058 SourceLocation VolatileQualLoc,
3059 SourceLocation RestrictQualLoc,
3060 SourceLocation AtomicQualLoc,
3061 SourceLocation UnalignedQualLoc) {
3062 if (!Quals)
3063 return;
3064
3065 struct Qual {
3066 const char *Name;
3067 unsigned Mask;
3068 SourceLocation Loc;
3069 } const QualKinds[5] = {
3070 { "const", DeclSpec::TQ_const, ConstQualLoc },
3071 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3072 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3073 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3074 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3075 };
3076
3077 SmallString<32> QualStr;
3078 unsigned NumQuals = 0;
3079 SourceLocation Loc;
3080 FixItHint FixIts[5];
3081
3082 // Build a string naming the redundant qualifiers.
3083 for (auto &E : QualKinds) {
3084 if (Quals & E.Mask) {
3085 if (!QualStr.empty()) QualStr += ' ';
3086 QualStr += E.Name;
3087
3088 // If we have a location for the qualifier, offer a fixit.
3089 SourceLocation QualLoc = E.Loc;
3090 if (QualLoc.isValid()) {
3091 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3092 if (Loc.isInvalid() ||
3093 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3094 Loc = QualLoc;
3095 }
3096
3097 ++NumQuals;
3098 }
3099 }
3100
3101 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3102 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3103}
3104
3105// Diagnose pointless type qualifiers on the return type of a function.
3106static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3107 Declarator &D,
3108 unsigned FunctionChunkIndex) {
3109 const DeclaratorChunk::FunctionTypeInfo &FTI =
3110 D.getTypeObject(FunctionChunkIndex).Fun;
3111 if (FTI.hasTrailingReturnType()) {
3112 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3113 RetTy.getLocalCVRQualifiers(),
3114 FTI.getTrailingReturnTypeLoc());
3115 return;
3116 }
3117
3118 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3119 End = D.getNumTypeObjects();
3120 OuterChunkIndex != End; ++OuterChunkIndex) {
3121 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3122 switch (OuterChunk.Kind) {
3123 case DeclaratorChunk::Paren:
3124 continue;
3125
3126 case DeclaratorChunk::Pointer: {
3127 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3128 S.diagnoseIgnoredQualifiers(
3129 diag::warn_qual_return_type,
3130 PTI.TypeQuals,
3131 SourceLocation(),
3132 PTI.ConstQualLoc,
3133 PTI.VolatileQualLoc,
3134 PTI.RestrictQualLoc,
3135 PTI.AtomicQualLoc,
3136 PTI.UnalignedQualLoc);
3137 return;
3138 }
3139
3140 case DeclaratorChunk::Function:
3141 case DeclaratorChunk::BlockPointer:
3142 case DeclaratorChunk::Reference:
3143 case DeclaratorChunk::Array:
3144 case DeclaratorChunk::MemberPointer:
3145 case DeclaratorChunk::Pipe:
3146 // FIXME: We can't currently provide an accurate source location and a
3147 // fix-it hint for these.
3148 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3149 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3150 RetTy.getCVRQualifiers() | AtomicQual,
3151 D.getIdentifierLoc());
3152 return;
3153 }
3154
3155 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3155)
;
3156 }
3157
3158 // If the qualifiers come from a conversion function type, don't diagnose
3159 // them -- they're not necessarily redundant, since such a conversion
3160 // operator can be explicitly called as "x.operator const int()".
3161 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3162 return;
3163
3164 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3165 // which are present there.
3166 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3167 D.getDeclSpec().getTypeQualifiers(),
3168 D.getIdentifierLoc(),
3169 D.getDeclSpec().getConstSpecLoc(),
3170 D.getDeclSpec().getVolatileSpecLoc(),
3171 D.getDeclSpec().getRestrictSpecLoc(),
3172 D.getDeclSpec().getAtomicSpecLoc(),
3173 D.getDeclSpec().getUnalignedSpecLoc());
3174}
3175
3176static std::pair<QualType, TypeSourceInfo *>
3177InventTemplateParameter(TypeProcessingState &state, QualType T,
3178 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3179 InventedTemplateParameterInfo &Info) {
3180 Sema &S = state.getSema();
3181 Declarator &D = state.getDeclarator();
3182
3183 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3184 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3185 const bool IsParameterPack = D.hasEllipsis();
3186
3187 // If auto is mentioned in a lambda parameter or abbreviated function
3188 // template context, convert it to a template parameter type.
3189
3190 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3191 // template parameter type. Template parameters are temporarily added
3192 // to the TU until the associated TemplateDecl is created.
3193 TemplateTypeParmDecl *InventedTemplateParam =
3194 TemplateTypeParmDecl::Create(
3195 S.Context, S.Context.getTranslationUnitDecl(),
3196 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3197 /*NameLoc=*/D.getIdentifierLoc(),
3198 TemplateParameterDepth, AutoParameterPosition,
3199 S.InventAbbreviatedTemplateParameterTypeName(
3200 D.getIdentifier(), AutoParameterPosition), false,
3201 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3202 InventedTemplateParam->setImplicit();
3203 Info.TemplateParams.push_back(InventedTemplateParam);
3204
3205 // Attach type constraints to the new parameter.
3206 if (Auto->isConstrained()) {
3207 if (TrailingTSI) {
3208 // The 'auto' appears in a trailing return type we've already built;
3209 // extract its type constraints to attach to the template parameter.
3210 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3211 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3212 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx)
3213 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3214
3215 S.AttachTypeConstraint(AutoLoc.getNestedNameSpecifierLoc(),
3216 AutoLoc.getConceptNameInfo(),
3217 AutoLoc.getNamedConcept(),
3218 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3219 InventedTemplateParam, D.getEllipsisLoc());
3220 } else {
3221 // The 'auto' appears in the decl-specifiers; we've not finished forming
3222 // TypeSourceInfo for it yet.
3223 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3224 TemplateArgumentListInfo TemplateArgsInfo;
3225 if (TemplateId->LAngleLoc.isValid()) {
3226 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3227 TemplateId->NumArgs);
3228 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3229 }
3230 S.AttachTypeConstraint(
3231 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3232 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3233 TemplateId->TemplateNameLoc),
3234 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3235 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3236 InventedTemplateParam, D.getEllipsisLoc());
3237 }
3238 }
3239
3240 // Replace the 'auto' in the function parameter with this invented
3241 // template type parameter.
3242 // FIXME: Retain some type sugar to indicate that this was written
3243 // as 'auto'?
3244 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3245 QualType NewT = state.ReplaceAutoType(T, Replacement);
3246 TypeSourceInfo *NewTSI =
3247 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3248 : nullptr;
3249 return {NewT, NewTSI};
3250}
3251
3252static TypeSourceInfo *
3253GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3254 QualType T, TypeSourceInfo *ReturnTypeInfo);
3255
3256static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3257 TypeSourceInfo *&ReturnTypeInfo) {
3258 Sema &SemaRef = state.getSema();
3259 Declarator &D = state.getDeclarator();
3260 QualType T;
3261 ReturnTypeInfo = nullptr;
3262
3263 // The TagDecl owned by the DeclSpec.
3264 TagDecl *OwnedTagDecl = nullptr;
3265
3266 switch (D.getName().getKind()) {
3267 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3268 case UnqualifiedIdKind::IK_OperatorFunctionId:
3269 case UnqualifiedIdKind::IK_Identifier:
3270 case UnqualifiedIdKind::IK_LiteralOperatorId:
3271 case UnqualifiedIdKind::IK_TemplateId:
3272 T = ConvertDeclSpecToType(state);
3273
3274 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3275 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3276 // Owned declaration is embedded in declarator.
3277 OwnedTagDecl->setEmbeddedInDeclarator(true);
3278 }
3279 break;
3280
3281 case UnqualifiedIdKind::IK_ConstructorName:
3282 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3283 case UnqualifiedIdKind::IK_DestructorName:
3284 // Constructors and destructors don't have return types. Use
3285 // "void" instead.
3286 T = SemaRef.Context.VoidTy;
3287 processTypeAttrs(state, T, TAL_DeclSpec,
3288 D.getMutableDeclSpec().getAttributes());
3289 break;
3290
3291 case UnqualifiedIdKind::IK_DeductionGuideName:
3292 // Deduction guides have a trailing return type and no type in their
3293 // decl-specifier sequence. Use a placeholder return type for now.
3294 T = SemaRef.Context.DependentTy;
3295 break;
3296
3297 case UnqualifiedIdKind::IK_ConversionFunctionId:
3298 // The result type of a conversion function is the type that it
3299 // converts to.
3300 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3301 &ReturnTypeInfo);
3302 break;
3303 }
3304
3305 if (!D.getAttributes().empty())
3306 distributeTypeAttrsFromDeclarator(state, T);
3307
3308 // Find the deduced type in this type. Look in the trailing return type if we
3309 // have one, otherwise in the DeclSpec type.
3310 // FIXME: The standard wording doesn't currently describe this.
3311 DeducedType *Deduced = T->getContainedDeducedType();
3312 bool DeducedIsTrailingReturnType = false;
3313 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3314 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3315 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3316 DeducedIsTrailingReturnType = true;
3317 }
3318
3319 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3320 if (Deduced) {
3321 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3322 int Error = -1;
3323
3324 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3325 // class template argument deduction)?
3326 bool IsCXXAutoType =
3327 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3328 bool IsDeducedReturnType = false;
3329
3330 switch (D.getContext()) {
3331 case DeclaratorContext::LambdaExpr:
3332 // Declared return type of a lambda-declarator is implicit and is always
3333 // 'auto'.
3334 break;
3335 case DeclaratorContext::ObjCParameter:
3336 case DeclaratorContext::ObjCResult:
3337 Error = 0;
3338 break;
3339 case DeclaratorContext::RequiresExpr:
3340 Error = 22;
3341 break;
3342 case DeclaratorContext::Prototype:
3343 case DeclaratorContext::LambdaExprParameter: {
3344 InventedTemplateParameterInfo *Info = nullptr;
3345 if (D.getContext() == DeclaratorContext::Prototype) {
3346 // With concepts we allow 'auto' in function parameters.
3347 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3348 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3349 Error = 0;
3350 break;
3351 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3352 Error = 21;
3353 break;
3354 }
3355
3356 Info = &SemaRef.InventedParameterInfos.back();
3357 } else {
3358 // In C++14, generic lambdas allow 'auto' in their parameters.
3359 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3360 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3361 Error = 16;
3362 break;
3363 }
3364 Info = SemaRef.getCurLambda();
3365 assert(Info && "No LambdaScopeInfo on the stack!")((Info && "No LambdaScopeInfo on the stack!") ? static_cast
<void> (0) : __assert_fail ("Info && \"No LambdaScopeInfo on the stack!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3365, __PRETTY_FUNCTION__))
;
3366 }
3367
3368 // We'll deal with inventing template parameters for 'auto' in trailing
3369 // return types when we pick up the trailing return type when processing
3370 // the function chunk.
3371 if (!DeducedIsTrailingReturnType)
3372 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3373 break;
3374 }
3375 case DeclaratorContext::Member: {
3376 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3377 D.isFunctionDeclarator())
3378 break;
3379 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3380 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3381 Error = 6; // Interface member.
3382 } else {
3383 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3384 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3384)
;
3385 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3386 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3387 case TTK_Class: Error = 5; /* Class member */ break;
3388 case TTK_Interface: Error = 6; /* Interface member */ break;
3389 }
3390 }
3391 if (D.getDeclSpec().isFriendSpecified())
3392 Error = 20; // Friend type
3393 break;
3394 }
3395 case DeclaratorContext::CXXCatch:
3396 case DeclaratorContext::ObjCCatch:
3397 Error = 7; // Exception declaration
3398 break;
3399 case DeclaratorContext::TemplateParam:
3400 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3401 !SemaRef.getLangOpts().CPlusPlus20)
3402 Error = 19; // Template parameter (until C++20)
3403 else if (!SemaRef.getLangOpts().CPlusPlus17)
3404 Error = 8; // Template parameter (until C++17)
3405 break;
3406 case DeclaratorContext::BlockLiteral:
3407 Error = 9; // Block literal
3408 break;
3409 case DeclaratorContext::TemplateArg:
3410 // Within a template argument list, a deduced template specialization
3411 // type will be reinterpreted as a template template argument.
3412 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3413 !D.getNumTypeObjects() &&
3414 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3415 break;
3416 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3417 case DeclaratorContext::TemplateTypeArg:
3418 Error = 10; // Template type argument
3419 break;
3420 case DeclaratorContext::AliasDecl:
3421 case DeclaratorContext::AliasTemplate:
3422 Error = 12; // Type alias
3423 break;
3424 case DeclaratorContext::TrailingReturn:
3425 case DeclaratorContext::TrailingReturnVar:
3426 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3427 Error = 13; // Function return type
3428 IsDeducedReturnType = true;
3429 break;
3430 case DeclaratorContext::ConversionId:
3431 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3432 Error = 14; // conversion-type-id
3433 IsDeducedReturnType = true;
3434 break;
3435 case DeclaratorContext::FunctionalCast:
3436 if (isa<DeducedTemplateSpecializationType>(Deduced))
3437 break;
3438 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3439 case DeclaratorContext::TypeName:
3440 Error = 15; // Generic
3441 break;
3442 case DeclaratorContext::File:
3443 case DeclaratorContext::Block:
3444 case DeclaratorContext::ForInit:
3445 case DeclaratorContext::SelectionInit:
3446 case DeclaratorContext::Condition:
3447 // FIXME: P0091R3 (erroneously) does not permit class template argument
3448 // deduction in conditions, for-init-statements, and other declarations
3449 // that are not simple-declarations.
3450 break;
3451 case DeclaratorContext::CXXNew:
3452 // FIXME: P0091R3 does not permit class template argument deduction here,
3453 // but we follow GCC and allow it anyway.
3454 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3455 Error = 17; // 'new' type
3456 break;
3457 case DeclaratorContext::KNRTypeList:
3458 Error = 18; // K&R function parameter
3459 break;
3460 }
3461
3462 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3463 Error = 11;
3464
3465 // In Objective-C it is an error to use 'auto' on a function declarator
3466 // (and everywhere for '__auto_type').
3467 if (D.isFunctionDeclarator() &&
3468 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3469 Error = 13;
3470
3471 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3472 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3473 AutoRange = D.getName().getSourceRange();
3474
3475 if (Error != -1) {
3476 unsigned Kind;
3477 if (Auto) {
3478 switch (Auto->getKeyword()) {
3479 case AutoTypeKeyword::Auto: Kind = 0; break;
3480 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3481 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3482 }
3483 } else {
3484 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3485, __PRETTY_FUNCTION__))
3485 "unknown auto type")((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3485, __PRETTY_FUNCTION__))
;
3486 Kind = 3;
3487 }
3488
3489 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3490 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3491
3492 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3493 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3494 << QualType(Deduced, 0) << AutoRange;
3495 if (auto *TD = TN.getAsTemplateDecl())
3496 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3497
3498 T = SemaRef.Context.IntTy;
3499 D.setInvalidType(true);
3500 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3501 // If there was a trailing return type, we already got
3502 // warn_cxx98_compat_trailing_return_type in the parser.
3503 SemaRef.Diag(AutoRange.getBegin(),
3504 D.getContext() == DeclaratorContext::LambdaExprParameter
3505 ? diag::warn_cxx11_compat_generic_lambda
3506 : IsDeducedReturnType
3507 ? diag::warn_cxx11_compat_deduced_return_type
3508 : diag::warn_cxx98_compat_auto_type_specifier)
3509 << AutoRange;
3510 }
3511 }
3512
3513 if (SemaRef.getLangOpts().CPlusPlus &&
3514 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3515 // Check the contexts where C++ forbids the declaration of a new class
3516 // or enumeration in a type-specifier-seq.
3517 unsigned DiagID = 0;
3518 switch (D.getContext()) {
3519 case DeclaratorContext::TrailingReturn:
3520 case DeclaratorContext::TrailingReturnVar:
3521 // Class and enumeration definitions are syntactically not allowed in
3522 // trailing return types.
3523 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3523)
;
3524 break;
3525 case DeclaratorContext::File:
3526 case DeclaratorContext::Member:
3527 case DeclaratorContext::Block:
3528 case DeclaratorContext::ForInit:
3529 case DeclaratorContext::SelectionInit:
3530 case DeclaratorContext::BlockLiteral:
3531 case DeclaratorContext::LambdaExpr:
3532 // C++11 [dcl.type]p3:
3533 // A type-specifier-seq shall not define a class or enumeration unless
3534 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3535 // the declaration of a template-declaration.
3536 case DeclaratorContext::AliasDecl:
3537 break;
3538 case DeclaratorContext::AliasTemplate:
3539 DiagID = diag::err_type_defined_in_alias_template;
3540 break;
3541 case DeclaratorContext::TypeName:
3542 case DeclaratorContext::FunctionalCast:
3543 case DeclaratorContext::ConversionId:
3544 case DeclaratorContext::TemplateParam:
3545 case DeclaratorContext::CXXNew:
3546 case DeclaratorContext::CXXCatch:
3547 case DeclaratorContext::ObjCCatch:
3548 case DeclaratorContext::TemplateArg:
3549 case DeclaratorContext::TemplateTypeArg:
3550 DiagID = diag::err_type_defined_in_type_specifier;
3551 break;
3552 case DeclaratorContext::Prototype:
3553 case DeclaratorContext::LambdaExprParameter:
3554 case DeclaratorContext::ObjCParameter:
3555 case DeclaratorContext::ObjCResult:
3556 case DeclaratorContext::KNRTypeList:
3557 case DeclaratorContext::RequiresExpr:
3558 // C++ [dcl.fct]p6:
3559 // Types shall not be defined in return or parameter types.
3560 DiagID = diag::err_type_defined_in_param_type;
3561 break;
3562 case DeclaratorContext::Condition:
3563 // C++ 6.4p2:
3564 // The type-specifier-seq shall not contain typedef and shall not declare
3565 // a new class or enumeration.
3566 DiagID = diag::err_type_defined_in_condition;
3567 break;
3568 }
3569
3570 if (DiagID != 0) {
3571 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3572 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3573 D.setInvalidType(true);
3574 }
3575 }
3576
3577 assert(!T.isNull() && "This function should not return a null type")((!T.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3577, __PRETTY_FUNCTION__))
;
3578 return T;
3579}
3580
3581/// Produce an appropriate diagnostic for an ambiguity between a function
3582/// declarator and a C++ direct-initializer.
3583static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3584 DeclaratorChunk &DeclType, QualType RT) {
3585 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3586 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? static_cast<void> (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3586, __PRETTY_FUNCTION__))
;
3587
3588 // If the return type is void there is no ambiguity.
3589 if (RT->isVoidType())
3590 return;
3591
3592 // An initializer for a non-class type can have at most one argument.
3593 if (!RT->isRecordType() && FTI.NumParams > 1)
3594 return;
3595
3596 // An initializer for a reference must have exactly one argument.
3597 if (RT->isReferenceType() && FTI.NumParams != 1)
3598 return;
3599
3600 // Only warn if this declarator is declaring a function at block scope, and
3601 // doesn't have a storage class (such as 'extern') specified.
3602 if (!D.isFunctionDeclarator() ||
3603 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3604 !S.CurContext->isFunctionOrMethod() ||
3605 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3606 return;
3607
3608 // Inside a condition, a direct initializer is not permitted. We allow one to
3609 // be parsed in order to give better diagnostics in condition parsing.
3610 if (D.getContext() == DeclaratorContext::Condition)
3611 return;
3612
3613 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3614
3615 S.Diag(DeclType.Loc,
3616 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3617 : diag::warn_empty_parens_are_function_decl)
3618 << ParenRange;
3619
3620 // If the declaration looks like:
3621 // T var1,
3622 // f();
3623 // and name lookup finds a function named 'f', then the ',' was
3624 // probably intended to be a ';'.
3625 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3626 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3627 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3628 if (Comma.getFileID() != Name.getFileID() ||
3629 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3630 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3631 Sema::LookupOrdinaryName);
3632 if (S.LookupName(Result, S.getCurScope()))
3633 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3634 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3635 << D.getIdentifier();
3636 Result.suppressDiagnostics();
3637 }
3638 }
3639
3640 if (FTI.NumParams > 0) {
3641 // For a declaration with parameters, eg. "T var(T());", suggest adding
3642 // parens around the first parameter to turn the declaration into a
3643 // variable declaration.
3644 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3645 SourceLocation B = Range.getBegin();
3646 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3647 // FIXME: Maybe we should suggest adding braces instead of parens
3648 // in C++11 for classes that don't have an initializer_list constructor.
3649 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3650 << FixItHint::CreateInsertion(B, "(")
3651 << FixItHint::CreateInsertion(E, ")");
3652 } else {
3653 // For a declaration without parameters, eg. "T var();", suggest replacing
3654 // the parens with an initializer to turn the declaration into a variable
3655 // declaration.
3656 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3657
3658 // Empty parens mean value-initialization, and no parens mean
3659 // default initialization. These are equivalent if the default
3660 // constructor is user-provided or if zero-initialization is a
3661 // no-op.
3662 if (RD && RD->hasDefinition() &&
3663 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3664 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3665 << FixItHint::CreateRemoval(ParenRange);
3666 else {
3667 std::string Init =
3668 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3669 if (Init.empty() && S.LangOpts.CPlusPlus11)
3670 Init = "{}";
3671 if (!Init.empty())
3672 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3673 << FixItHint::CreateReplacement(ParenRange, Init);
3674 }
3675 }
3676}
3677
3678/// Produce an appropriate diagnostic for a declarator with top-level
3679/// parentheses.
3680static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3681 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3682 assert(Paren.Kind == DeclaratorChunk::Paren &&((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3683, __PRETTY_FUNCTION__))
3683 "do not have redundant top-level parentheses")((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3683, __PRETTY_FUNCTION__))
;
3684
3685 // This is a syntactic check; we're not interested in cases that arise
3686 // during template instantiation.
3687 if (S.inTemplateInstantiation())
3688 return;
3689
3690 // Check whether this could be intended to be a construction of a temporary
3691 // object in C++ via a function-style cast.
3692 bool CouldBeTemporaryObject =
3693 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3694 !D.isInvalidType() && D.getIdentifier() &&
3695 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3696 (T->isRecordType() || T->isDependentType()) &&
3697 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3698
3699 bool StartsWithDeclaratorId = true;
3700 for (auto &C : D.type_objects()) {
3701 switch (C.Kind) {
3702 case DeclaratorChunk::Paren:
3703 if (&C == &Paren)
3704 continue;
3705 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3706 case DeclaratorChunk::Pointer:
3707 StartsWithDeclaratorId = false;
3708 continue;
3709
3710 case DeclaratorChunk::Array:
3711 if (!C.Arr.NumElts)
3712 CouldBeTemporaryObject = false;
3713 continue;
3714
3715 case DeclaratorChunk::Reference:
3716 // FIXME: Suppress the warning here if there is no initializer; we're
3717 // going to give an error anyway.
3718 // We assume that something like 'T (&x) = y;' is highly likely to not
3719 // be intended to be a temporary object.
3720 CouldBeTemporaryObject = false;
3721 StartsWithDeclaratorId = false;
3722 continue;
3723
3724 case DeclaratorChunk::Function:
3725 // In a new-type-id, function chunks require parentheses.
3726 if (D.getContext() == DeclaratorContext::CXXNew)
3727 return;
3728 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3729 // redundant-parens warning, but we don't know whether the function
3730 // chunk was syntactically valid as an expression here.
3731 CouldBeTemporaryObject = false;
3732 continue;
3733
3734 case DeclaratorChunk::BlockPointer:
3735 case DeclaratorChunk::MemberPointer:
3736 case DeclaratorChunk::Pipe:
3737 // These cannot appear in expressions.
3738 CouldBeTemporaryObject = false;
3739 StartsWithDeclaratorId = false;
3740 continue;
3741 }
3742 }
3743
3744 // FIXME: If there is an initializer, assume that this is not intended to be
3745 // a construction of a temporary object.
3746
3747 // Check whether the name has already been declared; if not, this is not a
3748 // function-style cast.
3749 if (CouldBeTemporaryObject) {
3750 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3751 Sema::LookupOrdinaryName);
3752 if (!S.LookupName(Result, S.getCurScope()))
3753 CouldBeTemporaryObject = false;
3754 Result.suppressDiagnostics();
3755 }
3756
3757 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3758
3759 if (!CouldBeTemporaryObject) {
3760 // If we have A (::B), the parentheses affect the meaning of the program.
3761 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3762 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3763 // formally unambiguous.
3764 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3765 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3766 NNS = NNS->getPrefix()) {
3767 if (NNS->getKind() == NestedNameSpecifier::Global)
3768 return;
3769 }
3770 }
3771
3772 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3773 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3774 << FixItHint::CreateRemoval(Paren.EndLoc);
3775 return;
3776 }
3777
3778 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3779 << ParenRange << D.getIdentifier();
3780 auto *RD = T->getAsCXXRecordDecl();
3781 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3782 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3783 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3784 << D.getIdentifier();
3785 // FIXME: A cast to void is probably a better suggestion in cases where it's
3786 // valid (when there is no initializer and we're not in a condition).
3787 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3788 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3789 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3790 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3791 << FixItHint::CreateRemoval(Paren.Loc)
3792 << FixItHint::CreateRemoval(Paren.EndLoc);
3793}
3794
3795/// Helper for figuring out the default CC for a function declarator type. If
3796/// this is the outermost chunk, then we can determine the CC from the
3797/// declarator context. If not, then this could be either a member function
3798/// type or normal function type.
3799static CallingConv getCCForDeclaratorChunk(
3800 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3801 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3802 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function
) ? static_cast<void> (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3802, __PRETTY_FUNCTION__))
;
3803
3804 // Check for an explicit CC attribute.
3805 for (const ParsedAttr &AL : AttrList) {
3806 switch (AL.getKind()) {
3807 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
: {
3808 // Ignore attributes that don't validate or can't apply to the
3809 // function type. We'll diagnose the failure to apply them in
3810 // handleFunctionTypeAttr.
3811 CallingConv CC;
3812 if (!S.CheckCallingConvAttr(AL, CC) &&
3813 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3814 return CC;
3815 }
3816 break;
3817 }
3818
3819 default:
3820 break;
3821 }
3822 }
3823
3824 bool IsCXXInstanceMethod = false;
3825
3826 if (S.getLangOpts().CPlusPlus) {
3827 // Look inwards through parentheses to see if this chunk will form a
3828 // member pointer type or if we're the declarator. Any type attributes
3829 // between here and there will override the CC we choose here.
3830 unsigned I = ChunkIndex;
3831 bool FoundNonParen = false;
3832 while (I && !FoundNonParen) {
3833 --I;
3834 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3835 FoundNonParen = true;
3836 }
3837
3838 if (FoundNonParen) {
3839 // If we're not the declarator, we're a regular function type unless we're
3840 // in a member pointer.
3841 IsCXXInstanceMethod =
3842 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3843 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3844 // This can only be a call operator for a lambda, which is an instance
3845 // method.
3846 IsCXXInstanceMethod = true;
3847 } else {
3848 // We're the innermost decl chunk, so must be a function declarator.
3849 assert(D.isFunctionDeclarator())((D.isFunctionDeclarator()) ? static_cast<void> (0) : __assert_fail
("D.isFunctionDeclarator()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3849, __PRETTY_FUNCTION__))
;
3850
3851 // If we're inside a record, we're declaring a method, but it could be
3852 // explicitly or implicitly static.
3853 IsCXXInstanceMethod =
3854 D.isFirstDeclarationOfMember() &&
3855 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3856 !D.isStaticMember();
3857 }
3858 }
3859
3860 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3861 IsCXXInstanceMethod);
3862
3863 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3864 // and AMDGPU targets, hence it cannot be treated as a calling
3865 // convention attribute. This is the simplest place to infer
3866 // calling convention for OpenCL kernels.
3867 if (S.getLangOpts().OpenCL) {
3868 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3869 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3870 CC = CC_OpenCLKernel;
3871 break;
3872 }
3873 }
3874 }
3875
3876 return CC;
3877}
3878
3879namespace {
3880 /// A simple notion of pointer kinds, which matches up with the various
3881 /// pointer declarators.
3882 enum class SimplePointerKind {
3883 Pointer,
3884 BlockPointer,
3885 MemberPointer,
3886 Array,
3887 };
3888} // end anonymous namespace
3889
3890IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3891 switch (nullability) {
3892 case NullabilityKind::NonNull:
3893 if (!Ident__Nonnull)
3894 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3895 return Ident__Nonnull;
3896
3897 case NullabilityKind::Nullable:
3898 if (!Ident__Nullable)
3899 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3900 return Ident__Nullable;
3901
3902 case NullabilityKind::NullableResult:
3903 if (!Ident__Nullable_result)
3904 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3905 return Ident__Nullable_result;
3906
3907 case NullabilityKind::Unspecified:
3908 if (!Ident__Null_unspecified)
3909 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3910 return Ident__Null_unspecified;
3911 }
3912 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 3912)
;
3913}
3914
3915/// Retrieve the identifier "NSError".
3916IdentifierInfo *Sema::getNSErrorIdent() {
3917 if (!Ident_NSError)
3918 Ident_NSError = PP.getIdentifierInfo("NSError");
3919
3920 return Ident_NSError;
3921}
3922
3923/// Check whether there is a nullability attribute of any kind in the given
3924/// attribute list.
3925static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3926 for (const ParsedAttr &AL : attrs) {
3927 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3928 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3929 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3930 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3931 return true;
3932 }
3933
3934 return false;
3935}
3936
3937namespace {
3938 /// Describes the kind of a pointer a declarator describes.
3939 enum class PointerDeclaratorKind {
3940 // Not a pointer.
3941 NonPointer,
3942 // Single-level pointer.
3943 SingleLevelPointer,
3944 // Multi-level pointer (of any pointer kind).
3945 MultiLevelPointer,
3946 // CFFooRef*
3947 MaybePointerToCFRef,
3948 // CFErrorRef*
3949 CFErrorRefPointer,
3950 // NSError**
3951 NSErrorPointerPointer,
3952 };
3953
3954 /// Describes a declarator chunk wrapping a pointer that marks inference as
3955 /// unexpected.
3956 // These values must be kept in sync with diagnostics.
3957 enum class PointerWrappingDeclaratorKind {
3958 /// Pointer is top-level.
3959 None = -1,
3960 /// Pointer is an array element.
3961 Array = 0,
3962 /// Pointer is the referent type of a C++ reference.
3963 Reference = 1
3964 };
3965} // end anonymous namespace
3966
3967/// Classify the given declarator, whose type-specified is \c type, based on
3968/// what kind of pointer it refers to.
3969///
3970/// This is used to determine the default nullability.
3971static PointerDeclaratorKind
3972classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3973 PointerWrappingDeclaratorKind &wrappingKind) {
3974 unsigned numNormalPointers = 0;
3975
3976 // For any dependent type, we consider it a non-pointer.
3977 if (type->isDependentType())
3978 return PointerDeclaratorKind::NonPointer;
3979
3980 // Look through the declarator chunks to identify pointers.
3981 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3982 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3983 switch (chunk.Kind) {
3984 case DeclaratorChunk::Array:
3985 if (numNormalPointers == 0)
3986 wrappingKind = PointerWrappingDeclaratorKind::Array;
3987 break;
3988
3989 case DeclaratorChunk::Function:
3990 case DeclaratorChunk::Pipe:
3991 break;
3992
3993 case DeclaratorChunk::BlockPointer:
3994 case DeclaratorChunk::MemberPointer:
3995 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3996 : PointerDeclaratorKind::SingleLevelPointer;
3997
3998 case DeclaratorChunk::Paren:
3999 break;
4000
4001 case DeclaratorChunk::Reference:
4002 if (numNormalPointers == 0)
4003 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4004 break;
4005
4006 case DeclaratorChunk::Pointer:
4007 ++numNormalPointers;
4008 if (numNormalPointers > 2)
4009 return PointerDeclaratorKind::MultiLevelPointer;
4010 break;
4011 }
4012 }
4013
4014 // Then, dig into the type specifier itself.
4015 unsigned numTypeSpecifierPointers = 0;
4016 do {
4017 // Decompose normal pointers.
4018 if (auto ptrType = type->getAs<PointerType>()) {
4019 ++numNormalPointers;
4020
4021 if (numNormalPointers > 2)
4022 return PointerDeclaratorKind::MultiLevelPointer;
4023
4024 type = ptrType->getPointeeType();
4025 ++numTypeSpecifierPointers;
4026 continue;
4027 }
4028
4029 // Decompose block pointers.
4030 if (type->getAs<BlockPointerType>()) {
4031 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4032 : PointerDeclaratorKind::SingleLevelPointer;
4033 }
4034
4035 // Decompose member pointers.
4036 if (type->getAs<MemberPointerType>()) {
4037 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4038 : PointerDeclaratorKind::SingleLevelPointer;
4039 }
4040
4041 // Look at Objective-C object pointers.
4042 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4043 ++numNormalPointers;
4044 ++numTypeSpecifierPointers;
4045
4046 // If this is NSError**, report that.
4047 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4048 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4049 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4050 return PointerDeclaratorKind::NSErrorPointerPointer;
4051 }
4052 }
4053
4054 break;
4055 }
4056
4057 // Look at Objective-C class types.
4058 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4059 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4060 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4061 return PointerDeclaratorKind::NSErrorPointerPointer;
4062 }
4063
4064 break;
4065 }
4066
4067 // If at this point we haven't seen a pointer, we won't see one.
4068 if (numNormalPointers == 0)
4069 return PointerDeclaratorKind::NonPointer;
4070
4071 if (auto recordType = type->getAs<RecordType>()) {
4072 RecordDecl *recordDecl = recordType->getDecl();
4073
4074 // If this is CFErrorRef*, report it as such.
4075 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4076 S.isCFError(recordDecl)) {
4077 return PointerDeclaratorKind::CFErrorRefPointer;
4078 }
4079 break;
4080 }
4081
4082 break;
4083 } while (true);
4084
4085 switch (numNormalPointers) {
4086 case 0:
4087 return PointerDeclaratorKind::NonPointer;
4088
4089 case 1:
4090 return PointerDeclaratorKind::SingleLevelPointer;
4091
4092 case 2:
4093 return PointerDeclaratorKind::MaybePointerToCFRef;
4094
4095 default:
4096 return PointerDeclaratorKind::MultiLevelPointer;
4097 }
4098}
4099
4100bool Sema::isCFError(RecordDecl *RD) {
4101 // If we already know about CFError, test it directly.
4102 if (CFError)
4103 return CFError == RD;
4104
4105 // Check whether this is CFError, which we identify based on its bridge to
4106 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4107 // declared with "objc_bridge_mutable", so look for either one of the two
4108 // attributes.
4109 if (RD->getTagKind() == TTK_Struct) {
4110 IdentifierInfo *bridgedType = nullptr;
4111 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4112 bridgedType = bridgeAttr->getBridgedType();
4113 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4114 bridgedType = bridgeAttr->getBridgedType();
4115
4116 if (bridgedType == getNSErrorIdent()) {
4117 CFError = RD;
4118 return true;
4119 }
4120 }
4121
4122 return false;
4123}
4124
4125static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4126 SourceLocation loc) {
4127 // If we're anywhere in a function, method, or closure context, don't perform
4128 // completeness checks.
4129 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4130 if (ctx->isFunctionOrMethod())
4131 return FileID();
4132
4133 if (ctx->isFileContext())
4134 break;
4135 }
4136
4137 // We only care about the expansion location.
4138 loc = S.SourceMgr.getExpansionLoc(loc);
4139 FileID file = S.SourceMgr.getFileID(loc);
4140 if (file.isInvalid())
4141 return FileID();
4142
4143 // Retrieve file information.
4144 bool invalid = false;
4145 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4146 if (invalid || !sloc.isFile())
4147 return FileID();
4148
4149 // We don't want to perform completeness checks on the main file or in
4150 // system headers.
4151 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4152 if (fileInfo.getIncludeLoc().isInvalid())
4153 return FileID();
4154 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4155 S.Diags.getSuppressSystemWarnings()) {
4156 return FileID();
4157 }
4158
4159 return file;
4160}
4161
4162/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4163/// taking into account whitespace before and after.
4164template <typename DiagBuilderT>
4165static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4166 SourceLocation PointerLoc,
4167 NullabilityKind Nullability) {
4168 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 4168, __PRETTY_FUNCTION__))
;
4169 if (PointerLoc.isMacroID())
4170 return;
4171
4172 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4173 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4174 return;
4175
4176 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4177 if (!NextChar)
4178 return;
4179
4180 SmallString<32> InsertionTextBuf{" "};
4181 InsertionTextBuf += getNullabilitySpelling(Nullability);
4182 InsertionTextBuf += " ";
4183 StringRef InsertionText = InsertionTextBuf.str();
4184
4185 if (isWhitespace(*NextChar)) {
4186 InsertionText = InsertionText.drop_back();
4187 } else if (NextChar[-1] == '[') {
4188 if (NextChar[0] == ']')
4189 InsertionText = InsertionText.drop_back().drop_front();
4190 else
4191 InsertionText = InsertionText.drop_front();
4192 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
4193 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
4194 InsertionText = InsertionText.drop_back().drop_front();
4195 }
4196
4197 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4198}
4199
4200static void emitNullabilityConsistencyWarning(Sema &S,
4201 SimplePointerKind PointerKind,
4202 SourceLocation PointerLoc,
4203 SourceLocation PointerEndLoc) {
4204 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 4204, __PRETTY_FUNCTION__))
;
4205
4206 if (PointerKind == SimplePointerKind::Array) {
4207 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4208 } else {
4209 S.Diag(PointerLoc, diag::warn_nullability_missing)
4210 << static_cast<unsigned>(PointerKind);
4211 }
4212
4213 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4214 if (FixItLoc.isMacroID())
4215 return;
4216
4217 auto addFixIt = [&](NullabilityKind Nullability) {
4218 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4219 Diag << static_cast<unsigned>(Nullability);
4220 Diag << static_cast<unsigned>(PointerKind);
4221 fixItNullability(S, Diag, FixItLoc, Nullability);
4222 };
4223 addFixIt(NullabilityKind::Nullable);
4224 addFixIt(NullabilityKind::NonNull);
4225}
4226
4227/// Complains about missing nullability if the file containing \p pointerLoc
4228/// has other uses of nullability (either the keywords or the \c assume_nonnull
4229/// pragma).
4230///
4231/// If the file has \e not seen other uses of nullability, this particular
4232/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4233static void
4234checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4235 SourceLocation pointerLoc,
4236 SourceLocation pointerEndLoc = SourceLocation()) {
4237 // Determine which file we're performing consistency checking for.
4238 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4239 if (file.isInvalid())
4240 return;
4241
4242 // If we haven't seen any type nullability in this file, we won't warn now
4243 // about anything.
4244 FileNullability &fileNullability = S.NullabilityMap[file];
4245 if (!fileNullability.SawTypeNullability) {
4246 // If this is the first pointer declarator in the file, and the appropriate
4247 // warning is on, record it in case we need to diagnose it retroactively.
4248 diag::kind diagKind;
4249 if (pointerKind == SimplePointerKind::Array)
4250 diagKind = diag::warn_nullability_missing_array;
4251 else
4252 diagKind = diag::warn_nullability_missing;
4253
4254 if (fileNullability.PointerLoc.isInvalid() &&
4255 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4256 fileNullability.PointerLoc = pointerLoc;
4257 fileNullability.PointerEndLoc = pointerEndLoc;
4258 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4259 }
4260
4261 return;
4262 }
4263
4264 // Complain about missing nullability.
4265 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4266}
4267
4268/// Marks that a nullability feature has been used in the file containing
4269/// \p loc.
4270///
4271/// If this file already had pointer types in it that were missing nullability,
4272/// the first such instance is retroactively diagnosed.
4273///
4274/// \sa checkNullabilityConsistency
4275static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4276 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4277 if (file.isInvalid())
4278 return;
4279
4280 FileNullability &fileNullability = S.NullabilityMap[file];
4281 if (fileNullability.SawTypeNullability)
4282 return;
4283 fileNullability.SawTypeNullability = true;
4284
4285 // If we haven't seen any type nullability before, now we have. Retroactively
4286 // diagnose the first unannotated pointer, if there was one.
4287 if (fileNullability.PointerLoc.isInvalid())
4288 return;
4289
4290 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4291 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4292 fileNullability.PointerEndLoc);
4293}
4294
4295/// Returns true if any of the declarator chunks before \p endIndex include a
4296/// level of indirection: array, pointer, reference, or pointer-to-member.
4297///
4298/// Because declarator chunks are stored in outer-to-inner order, testing
4299/// every chunk before \p endIndex is testing all chunks that embed the current
4300/// chunk as part of their type.
4301///
4302/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4303/// end index, in which case all chunks are tested.
4304static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4305 unsigned i = endIndex;
4306 while (i != 0) {
4307 // Walk outwards along the declarator chunks.
4308 --i;
4309 const DeclaratorChunk &DC = D.getTypeObject(i);
4310 switch (DC.Kind) {
4311 case DeclaratorChunk::Paren:
4312 break;
4313 case DeclaratorChunk::Array:
4314 case DeclaratorChunk::Pointer:
4315 case DeclaratorChunk::Reference:
4316 case DeclaratorChunk::MemberPointer:
4317 return true;
4318 case DeclaratorChunk::Function:
4319 case DeclaratorChunk::BlockPointer:
4320 case DeclaratorChunk::Pipe:
4321 // These are invalid anyway, so just ignore.
4322 break;
4323 }
4324 }
4325 return false;
4326}
4327
4328static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4329 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4330 Chunk.Kind == DeclaratorChunk::Array);
4331}
4332
4333template<typename AttrT>
4334static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4335 AL.setUsedAsTypeAttr();
4336 return ::new (Ctx) AttrT(Ctx, AL);
4337}
4338
4339static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4340 NullabilityKind NK) {
4341 switch (NK) {
4342 case NullabilityKind::NonNull:
4343 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4344
4345 case NullabilityKind::Nullable:
4346 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4347
4348 case NullabilityKind::NullableResult:
4349 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4350
4351 case NullabilityKind::Unspecified:
4352 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4353 }
4354 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 4354)
;
4355}
4356
4357// Diagnose whether this is a case with the multiple addr spaces.
4358// Returns true if this is an invalid case.
4359// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4360// by qualifiers for two or more different address spaces."
4361static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4362 LangAS ASNew,
4363 SourceLocation AttrLoc) {
4364 if (ASOld != LangAS::Default) {
4365 if (ASOld != ASNew) {
4366 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4367 return true;
4368 }
4369 // Emit a warning if they are identical; it's likely unintended.
4370 S.Diag(AttrLoc,
4371 diag::warn_attribute_address_multiple_identical_qualifiers);
4372 }
4373 return false;
4374}
4375
4376static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4377 QualType declSpecType,
4378 TypeSourceInfo *TInfo) {
4379 // The TypeSourceInfo that this function returns will not be a null type.
4380 // If there is an error, this function will fill in a dummy type as fallback.
4381 QualType T = declSpecType;
4382 Declarator &D = state.getDeclarator();
4383 Sema &S = state.getSema();
4384 ASTContext &Context = S.Context;
4385 const LangOptions &LangOpts = S.getLangOpts();
4386
4387 // The name we're declaring, if any.
4388 DeclarationName Name;
4389 if (D.getIdentifier())
4390 Name = D.getIdentifier();
4391
4392 // Does this declaration declare a typedef-name?
4393 bool IsTypedefName =
4394 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4395 D.getContext() == DeclaratorContext::AliasDecl ||
4396 D.getContext() == DeclaratorContext::AliasTemplate;
4397
4398 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4399 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4400 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4401 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4402
4403 // If T is 'decltype(auto)', the only declarators we can have are parens
4404 // and at most one function declarator if this is a function declaration.
4405 // If T is a deduced class template specialization type, we can have no
4406 // declarator chunks at all.
4407 if (auto *DT = T->getAs<DeducedType>()) {
4408 const AutoType *AT = T->getAs<AutoType>();
4409 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4410 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4411 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4412 unsigned Index = E - I - 1;
4413 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4414 unsigned DiagId = IsClassTemplateDeduction
4415 ? diag::err_deduced_class_template_compound_type
4416 : diag::err_decltype_auto_compound_type;
4417 unsigned DiagKind = 0;
4418 switch (DeclChunk.Kind) {
4419 case DeclaratorChunk::Paren:
4420 // FIXME: Rejecting this is a little silly.
4421 if (IsClassTemplateDeduction) {
4422 DiagKind = 4;
4423 break;
4424 }
4425 continue;
4426 case DeclaratorChunk::Function: {
4427 if (IsClassTemplateDeduction) {
4428 DiagKind = 3;
4429 break;
4430 }
4431 unsigned FnIndex;
4432 if (D.isFunctionDeclarationContext() &&
4433 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4434 continue;
4435 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4436 break;
4437 }
4438 case DeclaratorChunk::Pointer:
4439 case DeclaratorChunk::BlockPointer:
4440 case DeclaratorChunk::MemberPointer:
4441 DiagKind = 0;
4442 break;
4443 case DeclaratorChunk::Reference:
4444 DiagKind = 1;
4445 break;
4446 case DeclaratorChunk::Array:
4447 DiagKind = 2;
4448 break;
4449 case DeclaratorChunk::Pipe:
4450 break;
4451 }
4452
4453 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4454 D.setInvalidType(true);
4455 break;
4456 }
4457 }
4458 }
4459
4460 // Determine whether we should infer _Nonnull on pointer types.
4461 Optional<NullabilityKind> inferNullability;
4462 bool inferNullabilityCS = false;
4463 bool inferNullabilityInnerOnly = false;
4464 bool inferNullabilityInnerOnlyComplete = false;
4465
4466 // Are we in an assume-nonnull region?
4467 bool inAssumeNonNullRegion = false;
4468 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4469 if (assumeNonNullLoc.isValid()) {
4470 inAssumeNonNullRegion = true;
4471 recordNullabilitySeen(S, assumeNonNullLoc);
4472 }
4473
4474 // Whether to complain about missing nullability specifiers or not.
4475 enum {
4476 /// Never complain.
4477 CAMN_No,
4478 /// Complain on the inner pointers (but not the outermost
4479 /// pointer).
4480 CAMN_InnerPointers,
4481 /// Complain about any pointers that don't have nullability
4482 /// specified or inferred.
4483 CAMN_Yes
4484 } complainAboutMissingNullability = CAMN_No;
4485 unsigned NumPointersRemaining = 0;
4486 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4487
4488 if (IsTypedefName) {
4489 // For typedefs, we do not infer any nullability (the default),
4490 // and we only complain about missing nullability specifiers on
4491 // inner pointers.
4492 complainAboutMissingNullability = CAMN_InnerPointers;
4493
4494 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4495 !T->getNullability(S.Context)) {
4496 // Note that we allow but don't require nullability on dependent types.
4497 ++NumPointersRemaining;
4498 }
4499
4500 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4501 DeclaratorChunk &chunk = D.getTypeObject(i);
4502 switch (chunk.Kind) {
4503 case DeclaratorChunk::Array:
4504 case DeclaratorChunk::Function:
4505 case DeclaratorChunk::Pipe:
4506 break;
4507
4508 case DeclaratorChunk::BlockPointer:
4509 case DeclaratorChunk::MemberPointer:
4510 ++NumPointersRemaining;
4511 break;
4512
4513 case DeclaratorChunk::Paren:
4514 case DeclaratorChunk::Reference:
4515 continue;
4516
4517 case DeclaratorChunk::Pointer:
4518 ++NumPointersRemaining;
4519 continue;
4520 }
4521 }
4522 } else {
4523 bool isFunctionOrMethod = false;
4524 switch (auto context = state.getDeclarator().getContext()) {
4525 case DeclaratorContext::ObjCParameter:
4526 case DeclaratorContext::ObjCResult:
4527 case DeclaratorContext::Prototype:
4528 case DeclaratorContext::TrailingReturn:
4529 case DeclaratorContext::TrailingReturnVar:
4530 isFunctionOrMethod = true;
4531 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4532
4533 case DeclaratorContext::Member:
4534 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4535 complainAboutMissingNullability = CAMN_No;
4536 break;
4537 }
4538
4539 // Weak properties are inferred to be nullable.
4540 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4541 inferNullability = NullabilityKind::Nullable;
4542 break;
4543 }
4544
4545 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4546
4547 case DeclaratorContext::File:
4548 case DeclaratorContext::KNRTypeList: {
4549 complainAboutMissingNullability = CAMN_Yes;
4550
4551 // Nullability inference depends on the type and declarator.
4552 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4553 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4554 case PointerDeclaratorKind::NonPointer:
4555 case PointerDeclaratorKind::MultiLevelPointer:
4556 // Cannot infer nullability.
4557 break;
4558
4559 case PointerDeclaratorKind::SingleLevelPointer:
4560 // Infer _Nonnull if we are in an assumes-nonnull region.
4561 if (inAssumeNonNullRegion) {
4562 complainAboutInferringWithinChunk = wrappingKind;
4563 inferNullability = NullabilityKind::NonNull;
4564 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4565 context == DeclaratorContext::ObjCResult);
4566 }
4567 break;
4568
4569 case PointerDeclaratorKind::CFErrorRefPointer:
4570 case PointerDeclaratorKind::NSErrorPointerPointer:
4571 // Within a function or method signature, infer _Nullable at both
4572 // levels.
4573 if (isFunctionOrMethod && inAssumeNonNullRegion)
4574 inferNullability = NullabilityKind::Nullable;
4575 break;
4576
4577 case PointerDeclaratorKind::MaybePointerToCFRef:
4578 if (isFunctionOrMethod) {
4579 // On pointer-to-pointer parameters marked cf_returns_retained or
4580 // cf_returns_not_retained, if the outer pointer is explicit then
4581 // infer the inner pointer as _Nullable.
4582 auto hasCFReturnsAttr =
4583 [](const ParsedAttributesView &AttrList) -> bool {
4584 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4585 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4586 };
4587 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4588 if (hasCFReturnsAttr(D.getAttributes()) ||
4589 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4590 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4591 inferNullability = NullabilityKind::Nullable;
4592 inferNullabilityInnerOnly = true;
4593 }
4594 }
4595 }
4596 break;
4597 }
4598 break;
4599 }
4600
4601 case DeclaratorContext::ConversionId:
4602 complainAboutMissingNullability = CAMN_Yes;
4603 break;
4604
4605 case DeclaratorContext::AliasDecl:
4606 case DeclaratorContext::AliasTemplate:
4607 case DeclaratorContext::Block:
4608 case DeclaratorContext::BlockLiteral:
4609 case DeclaratorContext::Condition:
4610 case DeclaratorContext::CXXCatch:
4611 case DeclaratorContext::CXXNew:
4612 case DeclaratorContext::ForInit:
4613 case DeclaratorContext::SelectionInit:
4614 case DeclaratorContext::LambdaExpr:
4615 case DeclaratorContext::LambdaExprParameter:
4616 case DeclaratorContext::ObjCCatch:
4617 case DeclaratorContext::TemplateParam:
4618 case DeclaratorContext::TemplateArg:
4619 case DeclaratorContext::TemplateTypeArg:
4620 case DeclaratorContext::TypeName:
4621 case DeclaratorContext::FunctionalCast:
4622 case DeclaratorContext::RequiresExpr:
4623 // Don't infer in these contexts.
4624 break;
4625 }
4626 }
4627
4628 // Local function that returns true if its argument looks like a va_list.
4629 auto isVaList = [&S](QualType T) -> bool {
4630 auto *typedefTy = T->getAs<TypedefType>();
4631 if (!typedefTy)
4632 return false;
4633 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4634 do {
4635 if (typedefTy->getDecl() == vaListTypedef)
4636 return true;
4637 if (auto *name = typedefTy->getDecl()->getIdentifier())
4638 if (name->isStr("va_list"))
4639 return true;
4640 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4641 } while (typedefTy);
4642 return false;
4643 };
4644
4645 // Local function that checks the nullability for a given pointer declarator.
4646 // Returns true if _Nonnull was inferred.
4647 auto inferPointerNullability =
4648 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4649 SourceLocation pointerEndLoc,
4650 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4651 // We've seen a pointer.
4652 if (NumPointersRemaining > 0)
4653 --NumPointersRemaining;
4654
4655 // If a nullability attribute is present, there's nothing to do.
4656 if (hasNullabilityAttr(attrs))
4657 return nullptr;
4658
4659 // If we're supposed to infer nullability, do so now.
4660 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4661 ParsedAttr::Syntax syntax = inferNullabilityCS
4662 ? ParsedAttr::AS_ContextSensitiveKeyword
4663 : ParsedAttr::AS_Keyword;
4664 ParsedAttr *nullabilityAttr = Pool.create(
4665 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4666 nullptr, SourceLocation(), nullptr, 0, syntax);
4667
4668 attrs.addAtEnd(nullabilityAttr);
4669
4670 if (inferNullabilityCS) {
4671 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4672 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4673 }
4674
4675 if (pointerLoc.isValid() &&
4676 complainAboutInferringWithinChunk !=
4677 PointerWrappingDeclaratorKind::None) {
4678 auto Diag =
4679 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4680 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4681 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4682 }
4683
4684 if (inferNullabilityInnerOnly)
4685 inferNullabilityInnerOnlyComplete = true;
4686 return nullabilityAttr;
4687 }
4688
4689 // If we're supposed to complain about missing nullability, do so
4690 // now if it's truly missing.
4691 switch (complainAboutMissingNullability) {
4692 case CAMN_No:
4693 break;
4694
4695 case CAMN_InnerPointers:
4696 if (NumPointersRemaining == 0)
4697 break;
4698 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4699
4700 case CAMN_Yes:
4701 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4702 }
4703 return nullptr;
4704 };
4705
4706 // If the type itself could have nullability but does not, infer pointer
4707 // nullability and perform consistency checking.
4708 if (S.CodeSynthesisContexts.empty()) {
4709 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4710 !T->getNullability(S.Context)) {
4711 if (isVaList(T)) {
4712 // Record that we've seen a pointer, but do nothing else.
4713 if (NumPointersRemaining > 0)
4714 --NumPointersRemaining;
4715 } else {
4716 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4717 if (T->isBlockPointerType())
4718 pointerKind = SimplePointerKind::BlockPointer;
4719 else if (T->isMemberPointerType())
4720 pointerKind = SimplePointerKind::MemberPointer;
4721
4722 if (auto *attr = inferPointerNullability(
4723 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4724 D.getDeclSpec().getEndLoc(),
4725 D.getMutableDeclSpec().getAttributes(),
4726 D.getMutableDeclSpec().getAttributePool())) {
4727 T = state.getAttributedType(
4728 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4729 }
4730 }
4731 }
4732
4733 if (complainAboutMissingNullability == CAMN_Yes &&
4734 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4735 D.isPrototypeContext() &&
4736 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4737 checkNullabilityConsistency(S, SimplePointerKind::Array,
4738 D.getDeclSpec().getTypeSpecTypeLoc());
4739 }
4740 }
4741
4742 bool ExpectNoDerefChunk =
4743 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4744
4745 // Walk the DeclTypeInfo, building the recursive type as we go.
4746 // DeclTypeInfos are ordered from the identifier out, which is
4747 // opposite of what we want :).
4748 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4749 unsigned chunkIndex = e - i - 1;
4750 state.setCurrentChunkIndex(chunkIndex);
4751 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4752 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4753 switch (DeclType.Kind) {
4754 case DeclaratorChunk::Paren:
4755 if (i == 0)
4756 warnAboutRedundantParens(S, D, T);
4757 T = S.BuildParenType(T);
4758 break;
4759 case DeclaratorChunk::BlockPointer:
4760 // If blocks are disabled, emit an error.
4761 if (!LangOpts.Blocks)
4762 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4763
4764 // Handle pointer nullability.
4765 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4766 DeclType.EndLoc, DeclType.getAttrs(),
4767 state.getDeclarator().getAttributePool());
4768
4769 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4770 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4771 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4772 // qualified with const.
4773 if (LangOpts.OpenCL)
4774 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4775 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4776 }
4777 break;
4778 case DeclaratorChunk::Pointer:
4779 // Verify that we're not building a pointer to pointer to function with
4780 // exception specification.
4781 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4782 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4783 D.setInvalidType(true);
4784 // Build the type anyway.
4785 }
4786
4787 // Handle pointer nullability
4788 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4789 DeclType.EndLoc, DeclType.getAttrs(),
4790 state.getDeclarator().getAttributePool());
4791
4792 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4793 T = Context.getObjCObjectPointerType(T);
4794 if (DeclType.Ptr.TypeQuals)
4795 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4796 break;
4797 }
4798
4799 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4800 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4801 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4802 if (LangOpts.OpenCL) {
4803 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4804 T->isBlockPointerType()) {
4805 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4806 D.setInvalidType(true);
4807 }
4808 }
4809
4810 T = S.BuildPointerType(T, DeclType.Loc, Name);
4811 if (DeclType.Ptr.TypeQuals)
4812 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4813 break;
4814 case DeclaratorChunk::Reference: {
4815 // Verify that we're not building a reference to pointer to function with
4816 // exception specification.
4817 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4818 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4819 D.setInvalidType(true);
4820 // Build the type anyway.
4821 }
4822 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4823
4824 if (DeclType.Ref.HasRestrict)
4825 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4826 break;
4827 }
4828 case DeclaratorChunk::Array: {
4829 // Verify that we're not building an array of pointers to function with
4830 // exception specification.
4831 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4832 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4833 D.setInvalidType(true);
4834 // Build the type anyway.
4835 }
4836 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4837 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4838 ArrayType::ArraySizeModifier ASM;
4839 if (ATI.isStar)
4840 ASM = ArrayType::Star;
4841 else if (ATI.hasStatic)
4842 ASM = ArrayType::Static;
4843 else
4844 ASM = ArrayType::Normal;
4845 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4846 // FIXME: This check isn't quite right: it allows star in prototypes
4847 // for function definitions, and disallows some edge cases detailed
4848 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4849 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4850 ASM = ArrayType::Normal;
4851 D.setInvalidType(true);
4852 }
4853
4854 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4855 // shall appear only in a declaration of a function parameter with an
4856 // array type, ...
4857 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4858 if (!(D.isPrototypeContext() ||
4859 D.getContext() == DeclaratorContext::KNRTypeList)) {
4860 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4861 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4862 // Remove the 'static' and the type qualifiers.
4863 if (ASM == ArrayType::Static)
4864 ASM = ArrayType::Normal;
4865 ATI.TypeQuals = 0;
4866 D.setInvalidType(true);
4867 }
4868
4869 // C99 6.7.5.2p1: ... and then only in the outermost array type
4870 // derivation.
4871 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4872 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4873 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4874 if (ASM == ArrayType::Static)
4875 ASM = ArrayType::Normal;
4876 ATI.TypeQuals = 0;
4877 D.setInvalidType(true);
4878 }
4879 }
4880 const AutoType *AT = T->getContainedAutoType();
4881 // Allow arrays of auto if we are a generic lambda parameter.
4882 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4883 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
4884 // We've already diagnosed this for decltype(auto).
4885 if (!AT->isDecltypeAuto())
4886 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4887 << getPrintableNameForEntity(Name) << T;
4888 T = QualType();
4889 break;
4890 }
4891
4892 // Array parameters can be marked nullable as well, although it's not
4893 // necessary if they're marked 'static'.
4894 if (complainAboutMissingNullability == CAMN_Yes &&
4895 !hasNullabilityAttr(DeclType.getAttrs()) &&
4896 ASM != ArrayType::Static &&
4897 D.isPrototypeContext() &&
4898 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4899 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4900 }
4901
4902 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4903 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4904 break;
4905 }
4906 case DeclaratorChunk::Function: {
4907 // If the function declarator has a prototype (i.e. it is not () and
4908 // does not have a K&R-style identifier list), then the arguments are part
4909 // of the type, otherwise the argument list is ().
4910 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4911 IsQualifiedFunction =
4912 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4913
4914 // Check for auto functions and trailing return type and adjust the
4915 // return type accordingly.
4916 if (!D.isInvalidType()) {
4917 // trailing-return-type is only required if we're declaring a function,
4918 // and not, for instance, a pointer to a function.
4919 if (D.getDeclSpec().hasAutoTypeSpec() &&
4920 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4921 if (!S.getLangOpts().CPlusPlus14) {
4922 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4923 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4924 ? diag::err_auto_missing_trailing_return
4925 : diag::err_deduced_return_type);
4926 T = Context.IntTy;
4927 D.setInvalidType(true);
4928 } else {
4929 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4930 diag::warn_cxx11_compat_deduced_return_type);
4931 }
4932 } else if (FTI.hasTrailingReturnType()) {
4933 // T must be exactly 'auto' at this point. See CWG issue 681.
4934 if (isa<ParenType>(T)) {
4935 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4936 << T << D.getSourceRange();
4937 D.setInvalidType(true);
4938 } else if (D.getName().getKind() ==
4939 UnqualifiedIdKind::IK_DeductionGuideName) {
4940 if (T != Context.DependentTy) {
4941 S.Diag(D.getDeclSpec().getBeginLoc(),
4942 diag::err_deduction_guide_with_complex_decl)
4943 << D.getSourceRange();
4944 D.setInvalidType(true);
4945 }
4946 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4947 (T.hasQualifiers() || !isa<AutoType>(T) ||
4948 cast<AutoType>(T)->getKeyword() !=
4949 AutoTypeKeyword::Auto ||
4950 cast<AutoType>(T)->isConstrained())) {
4951 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4952 diag::err_trailing_return_without_auto)
4953 << T << D.getDeclSpec().getSourceRange();
4954 D.setInvalidType(true);
4955 }
4956 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4957 if (T.isNull()) {
4958 // An error occurred parsing the trailing return type.
4959 T = Context.IntTy;
4960 D.setInvalidType(true);
4961 } else if (AutoType *Auto = T->getContainedAutoType()) {
4962 // If the trailing return type contains an `auto`, we may need to
4963 // invent a template parameter for it, for cases like
4964 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4965 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4966 if (D.getContext() == DeclaratorContext::Prototype)
4967 InventedParamInfo = &S.InventedParameterInfos.back();
4968 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4969 InventedParamInfo = S.getCurLambda();
4970 if (InventedParamInfo) {
4971 std::tie(T, TInfo) = InventTemplateParameter(
4972 state, T, TInfo, Auto, *InventedParamInfo);
4973 }
4974 }
4975 } else {
4976 // This function type is not the type of the entity being declared,
4977 // so checking the 'auto' is not the responsibility of this chunk.
4978 }
4979 }
4980
4981 // C99 6.7.5.3p1: The return type may not be a function or array type.
4982 // For conversion functions, we'll diagnose this particular error later.
4983 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4984 (D.getName().getKind() !=
4985 UnqualifiedIdKind::IK_ConversionFunctionId)) {
4986 unsigned diagID = diag::err_func_returning_array_function;
4987 // Last processing chunk in block context means this function chunk
4988 // represents the block.
4989 if (chunkIndex == 0 &&
4990 D.getContext() == DeclaratorContext::BlockLiteral)
4991 diagID = diag::err_block_returning_array_function;
4992 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4993 T = Context.IntTy;
4994 D.setInvalidType(true);
4995 }
4996
4997 // Do not allow returning half FP value.
4998 // FIXME: This really should be in BuildFunctionType.
4999 if (T->isHalfType()) {
5000 if (S.getLangOpts().OpenCL) {
5001 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5002 S.getLangOpts())) {
5003 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5004 << T << 0 /*pointer hint*/;
5005 D.setInvalidType(true);
5006 }
5007 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5008 S.Diag(D.getIdentifierLoc(),
5009 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5010 D.setInvalidType(true);
5011 }
5012 }
5013
5014 if (LangOpts.OpenCL) {
5015 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5016 // function.
5017 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5018 T->isPipeType()) {
5019 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5020 << T << 1 /*hint off*/;
5021 D.setInvalidType(true);
5022 }
5023 // OpenCL doesn't support variadic functions and blocks
5024 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5025 // We also allow here any toolchain reserved identifiers.
5026 if (FTI.isVariadic &&
5027 !S.getOpenCLOptions().isAvailableOption(
5028 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5029 !(D.getIdentifier() &&
5030 ((D.getIdentifier()->getName() == "printf" &&
5031 (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
5032 D.getIdentifier()->getName().startswith("__")))) {
5033 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5034 D.setInvalidType(true);
5035 }
5036 }
5037
5038 // Methods cannot return interface types. All ObjC objects are
5039 // passed by reference.
5040 if (T->isObjCObjectType()) {
5041 SourceLocation DiagLoc, FixitLoc;
5042 if (TInfo) {
5043 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5044 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5045 } else {
5046 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5047 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5048 }
5049 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5050 << 0 << T
5051 << FixItHint::CreateInsertion(FixitLoc, "*");
5052
5053 T = Context.getObjCObjectPointerType(T);
5054 if (TInfo) {
5055 TypeLocBuilder TLB;
5056 TLB.pushFullCopy(TInfo->getTypeLoc());
5057 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5058 TLoc.setStarLoc(FixitLoc);
5059 TInfo = TLB.getTypeSourceInfo(Context, T);
5060 }
5061
5062 D.setInvalidType(true);
5063 }
5064
5065 // cv-qualifiers on return types are pointless except when the type is a
5066 // class type in C++.
5067 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5068 !(S.getLangOpts().CPlusPlus &&
5069 (T->isDependentType() || T->isRecordType()))) {
5070 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5071 D.getFunctionDefinitionKind() ==
5072 FunctionDefinitionKind::Definition) {
5073 // [6.9.1/3] qualified void return is invalid on a C
5074 // function definition. Apparently ok on declarations and
5075 // in C++ though (!)
5076 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5077 } else
5078 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5079
5080 // C++2a [dcl.fct]p12:
5081 // A volatile-qualified return type is deprecated
5082 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5083 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5084 }
5085
5086 // Objective-C ARC ownership qualifiers are ignored on the function
5087 // return type (by type canonicalization). Complain if this attribute
5088 // was written here.
5089 if (T.getQualifiers().hasObjCLifetime()) {
5090 SourceLocation AttrLoc;
5091 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5092 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5093 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5094 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5095 AttrLoc = AL.getLoc();
5096 break;
5097 }
5098 }
5099 }
5100 if (AttrLoc.isInvalid()) {
5101 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5102 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5103 AttrLoc = AL.getLoc();
5104 break;
5105 }
5106 }
5107 }
5108
5109 if (AttrLoc.isValid()) {
5110 // The ownership attributes are almost always written via
5111 // the predefined
5112 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5113 if (AttrLoc.isMacroID())
5114 AttrLoc =
5115 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5116
5117 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5118 << T.getQualifiers().getObjCLifetime();
5119 }
5120 }
5121
5122 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5123 // C++ [dcl.fct]p6:
5124 // Types shall not be defined in return or parameter types.
5125 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5126 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5127 << Context.getTypeDeclType(Tag);
5128 }
5129
5130 // Exception specs are not allowed in typedefs. Complain, but add it
5131 // anyway.
5132 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5133 S.Diag(FTI.getExceptionSpecLocBeg(),
5134 diag::err_exception_spec_in_typedef)
5135 << (D.getContext() == DeclaratorContext::AliasDecl ||
5136 D.getContext() == DeclaratorContext::AliasTemplate);
5137
5138 // If we see "T var();" or "T var(T());" at block scope, it is probably
5139 // an attempt to initialize a variable, not a function declaration.
5140 if (FTI.isAmbiguous)
5141 warnAboutAmbiguousFunction(S, D, DeclType, T);
5142
5143 FunctionType::ExtInfo EI(
5144 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5145
5146 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5147 && !LangOpts.OpenCL) {
5148 // Simple void foo(), where the incoming T is the result type.
5149 T = Context.getFunctionNoProtoType(T, EI);
5150 } else {
5151 // We allow a zero-parameter variadic function in C if the
5152 // function is marked with the "overloadable" attribute. Scan
5153 // for this attribute now.
5154 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5155 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
5156 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5157
5158 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5159 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5160 // definition.
5161 S.Diag(FTI.Params[0].IdentLoc,
5162 diag::err_ident_list_in_fn_declaration);
5163 D.setInvalidType(true);
5164 // Recover by creating a K&R-style function type.
5165 T = Context.getFunctionNoProtoType(T, EI);
5166 break;
5167 }
5168
5169 FunctionProtoType::ExtProtoInfo EPI;
5170 EPI.ExtInfo = EI;
5171 EPI.Variadic = FTI.isVariadic;
5172 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5173 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5174 EPI.TypeQuals.addCVRUQualifiers(
5175 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5176 : 0);
5177 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5178 : FTI.RefQualifierIsLValueRef? RQ_LValue
5179 : RQ_RValue;
5180
5181 // Otherwise, we have a function with a parameter list that is
5182 // potentially variadic.
5183 SmallVector<QualType, 16> ParamTys;
5184 ParamTys.reserve(FTI.NumParams);
5185
5186 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5187 ExtParameterInfos(FTI.NumParams);
5188 bool HasAnyInterestingExtParameterInfos = false;
5189
5190 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5191 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5192 QualType ParamTy = Param->getType();
5193 assert(!ParamTy.isNull() && "Couldn't parse type?")((!ParamTy.isNull() && "Couldn't parse type?") ? static_cast
<void> (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5193, __PRETTY_FUNCTION__))
;
5194
5195 // Look for 'void'. void is allowed only as a single parameter to a
5196 // function with no other parameters (C99 6.7.5.3p10). We record
5197 // int(void) as a FunctionProtoType with an empty parameter list.
5198 if (ParamTy->isVoidType()) {
5199 // If this is something like 'float(int, void)', reject it. 'void'
5200 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5201 // have parameters of incomplete type.
5202 if (FTI.NumParams != 1 || FTI.isVariadic) {
5203 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5204 ParamTy = Context.IntTy;
5205 Param->setType(ParamTy);
5206 } else if (FTI.Params[i].Ident) {
5207 // Reject, but continue to parse 'int(void abc)'.
5208 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5209 ParamTy = Context.IntTy;
5210 Param->setType(ParamTy);
5211 } else {
5212 // Reject, but continue to parse 'float(const void)'.
5213 if (ParamTy.hasQualifiers())
5214 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5215
5216 // Do not add 'void' to the list.
5217 break;
5218 }
5219 } else if (ParamTy->isHalfType()) {
5220 // Disallow half FP parameters.
5221 // FIXME: This really should be in BuildFunctionType.
5222 if (S.getLangOpts().OpenCL) {
5223 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5224 S.getLangOpts())) {
5225 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5226 << ParamTy << 0;
5227 D.setInvalidType();
5228 Param->setInvalidDecl();
5229 }
5230 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5231 S.Diag(Param->getLocation(),
5232 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5233 D.setInvalidType();
5234 }
5235 } else if (!FTI.hasPrototype) {
5236 if (ParamTy->isPromotableIntegerType()) {
5237 ParamTy = Context.getPromotedIntegerType(ParamTy);
5238 Param->setKNRPromoted(true);
5239 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5240 if (BTy->getKind() == BuiltinType::Float) {
5241 ParamTy = Context.DoubleTy;
5242 Param->setKNRPromoted(true);
5243 }
5244 }
5245 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5246 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5247 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5248 << ParamTy << 1 /*hint off*/;
5249 D.setInvalidType();
5250 }
5251
5252 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5253 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5254 HasAnyInterestingExtParameterInfos = true;
5255 }
5256
5257 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5258 ExtParameterInfos[i] =
5259 ExtParameterInfos[i].withABI(attr->getABI());
5260 HasAnyInterestingExtParameterInfos = true;
5261 }
5262
5263 if (Param->hasAttr<PassObjectSizeAttr>()) {
5264 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5265 HasAnyInterestingExtParameterInfos = true;
5266 }
5267
5268 if (Param->hasAttr<NoEscapeAttr>()) {
5269 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5270 HasAnyInterestingExtParameterInfos = true;
5271 }
5272
5273 ParamTys.push_back(ParamTy);
5274 }
5275
5276 if (HasAnyInterestingExtParameterInfos) {
5277 EPI.ExtParameterInfos = ExtParameterInfos.data();
5278 checkExtParameterInfos(S, ParamTys, EPI,
5279 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5280 }
5281
5282 SmallVector<QualType, 4> Exceptions;
5283 SmallVector<ParsedType, 2> DynamicExceptions;
5284 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5285 Expr *NoexceptExpr = nullptr;
5286
5287 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5288 // FIXME: It's rather inefficient to have to split into two vectors
5289 // here.
5290 unsigned N = FTI.getNumExceptions();
5291 DynamicExceptions.reserve(N);
5292 DynamicExceptionRanges.reserve(N);
5293 for (unsigned I = 0; I != N; ++I) {
5294 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5295 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5296 }
5297 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5298 NoexceptExpr = FTI.NoexceptExpr;
5299 }
5300
5301 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5302 FTI.getExceptionSpecType(),
5303 DynamicExceptions,
5304 DynamicExceptionRanges,
5305 NoexceptExpr,
5306 Exceptions,
5307 EPI.ExceptionSpec);
5308
5309 // FIXME: Set address space from attrs for C++ mode here.
5310 // OpenCLCPlusPlus: A class member function has an address space.
5311 auto IsClassMember = [&]() {
5312 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5313 state.getDeclarator()
5314 .getCXXScopeSpec()
5315 .getScopeRep()
5316 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5317 state.getDeclarator().getContext() ==
5318 DeclaratorContext::Member ||
5319 state.getDeclarator().getContext() ==
5320 DeclaratorContext::LambdaExpr;
5321 };
5322
5323 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5324 LangAS ASIdx = LangAS::Default;
5325 // Take address space attr if any and mark as invalid to avoid adding
5326 // them later while creating QualType.
5327 if (FTI.MethodQualifiers)
5328 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5329 LangAS ASIdxNew = attr.asOpenCLLangAS();
5330 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5331 attr.getLoc()))
5332 D.setInvalidType(true);
5333 else
5334 ASIdx = ASIdxNew;
5335 }
5336 // If a class member function's address space is not set, set it to
5337 // __generic.
5338 LangAS AS =
5339 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5340 : ASIdx);
5341 EPI.TypeQuals.addAddressSpace(AS);
5342 }
5343 T = Context.getFunctionType(T, ParamTys, EPI);
5344 }
5345 break;
5346 }
5347 case DeclaratorChunk::MemberPointer: {
5348 // The scope spec must refer to a class, or be dependent.
5349 CXXScopeSpec &SS = DeclType.Mem.Scope();
5350 QualType ClsType;
5351
5352 // Handle pointer nullability.
5353 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5354 DeclType.EndLoc, DeclType.getAttrs(),
5355 state.getDeclarator().getAttributePool());
5356
5357 if (SS.isInvalid()) {
5358 // Avoid emitting extra errors if we already errored on the scope.
5359 D.setInvalidType(true);
5360 } else if (S.isDependentScopeSpecifier(SS) ||
5361 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5362 NestedNameSpecifier *NNS = SS.getScopeRep();
5363 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5364 switch (NNS->getKind()) {
5365 case NestedNameSpecifier::Identifier:
5366 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5367 NNS->getAsIdentifier());
5368 break;
5369
5370 case NestedNameSpecifier::Namespace:
5371 case NestedNameSpecifier::NamespaceAlias:
5372 case NestedNameSpecifier::Global:
5373 case NestedNameSpecifier::Super:
5374 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5374)
;
5375
5376 case NestedNameSpecifier::TypeSpec:
5377 case NestedNameSpecifier::TypeSpecWithTemplate:
5378 ClsType = QualType(NNS->getAsType(), 0);
5379 // Note: if the NNS has a prefix and ClsType is a nondependent
5380 // TemplateSpecializationType, then the NNS prefix is NOT included
5381 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5382 // NOTE: in particular, no wrap occurs if ClsType already is an
5383 // Elaborated, DependentName, or DependentTemplateSpecialization.
5384 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5385 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5386 break;
5387 }
5388 } else {
5389 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5390 diag::err_illegal_decl_mempointer_in_nonclass)
5391 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5392 << DeclType.Mem.Scope().getRange();
5393 D.setInvalidType(true);
5394 }
5395
5396 if (!ClsType.isNull())
5397 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5398 D.getIdentifier());
5399 if (T.isNull()) {
5400 T = Context.IntTy;
5401 D.setInvalidType(true);
5402 } else if (DeclType.Mem.TypeQuals) {
5403 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5404 }
5405 break;
5406 }
5407
5408 case DeclaratorChunk::Pipe: {
5409 T = S.BuildReadPipeType(T, DeclType.Loc);
5410 processTypeAttrs(state, T, TAL_DeclSpec,
5411 D.getMutableDeclSpec().getAttributes());
5412 break;
5413 }
5414 }
5415
5416 if (T.isNull()) {
5417 D.setInvalidType(true);
5418 T = Context.IntTy;
5419 }
5420
5421 // See if there are any attributes on this declarator chunk.
5422 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5423
5424 if (DeclType.Kind != DeclaratorChunk::Paren) {
5425 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5426 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5427
5428 ExpectNoDerefChunk = state.didParseNoDeref();
5429 }
5430 }
5431
5432 if (ExpectNoDerefChunk)
5433 S.Diag(state.getDeclarator().getBeginLoc(),
5434 diag::warn_noderef_on_non_pointer_or_array);
5435
5436 // GNU warning -Wstrict-prototypes
5437 // Warn if a function declaration is without a prototype.
5438 // This warning is issued for all kinds of unprototyped function
5439 // declarations (i.e. function type typedef, function pointer etc.)
5440 // C99 6.7.5.3p14:
5441 // The empty list in a function declarator that is not part of a definition
5442 // of that function specifies that no information about the number or types
5443 // of the parameters is supplied.
5444 if (!LangOpts.CPlusPlus &&
5445 D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) {
5446 bool IsBlock = false;
5447 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5448 switch (DeclType.Kind) {
5449 case DeclaratorChunk::BlockPointer:
5450 IsBlock = true;
5451 break;
5452 case DeclaratorChunk::Function: {
5453 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5454 // We supress the warning when there's no LParen location, as this
5455 // indicates the declaration was an implicit declaration, which gets
5456 // warned about separately via -Wimplicit-function-declaration.
5457 if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5458 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5459 << IsBlock
5460 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5461 IsBlock = false;
5462 break;
5463 }
5464 default:
5465 break;
5466 }
5467 }
5468 }
5469
5470 assert(!T.isNull() && "T must not be null after this point")((!T.isNull() && "T must not be null after this point"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5470, __PRETTY_FUNCTION__))
;
5471
5472 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5473 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5474 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? static_cast<void> (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5474, __PRETTY_FUNCTION__))
;
5475
5476 // C++ 8.3.5p4:
5477 // A cv-qualifier-seq shall only be part of the function type
5478 // for a nonstatic member function, the function type to which a pointer
5479 // to member refers, or the top-level function type of a function typedef
5480 // declaration.
5481 //
5482 // Core issue 547 also allows cv-qualifiers on function types that are
5483 // top-level template type arguments.
5484 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5485 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5486 Kind = DeductionGuide;
5487 else if (!D.getCXXScopeSpec().isSet()) {
5488 if ((D.getContext() == DeclaratorContext::Member ||
5489 D.getContext() == DeclaratorContext::LambdaExpr) &&
5490 !D.getDeclSpec().isFriendSpecified())
5491 Kind = Member;
5492 } else {
5493 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5494 if (!DC || DC->isRecord())
5495 Kind = Member;
5496 }
5497
5498 // C++11 [dcl.fct]p6 (w/DR1417):
5499 // An attempt to specify a function type with a cv-qualifier-seq or a
5500 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5501 // - the function type for a non-static member function,
5502 // - the function type to which a pointer to member refers,
5503 // - the top-level function type of a function typedef declaration or
5504 // alias-declaration,
5505 // - the type-id in the default argument of a type-parameter, or
5506 // - the type-id of a template-argument for a type-parameter
5507 //
5508 // FIXME: Checking this here is insufficient. We accept-invalid on:
5509 //
5510 // template<typename T> struct S { void f(T); };
5511 // S<int() const> s;
5512 //
5513 // ... for instance.
5514 if (IsQualifiedFunction &&
5515 !(Kind == Member &&
5516 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5517 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5518 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5519 SourceLocation Loc = D.getBeginLoc();
5520 SourceRange RemovalRange;
5521 unsigned I;
5522 if (D.isFunctionDeclarator(I)) {
5523 SmallVector<SourceLocation, 4> RemovalLocs;
5524 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5525 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5525, __PRETTY_FUNCTION__))
;
5526
5527 if (Chunk.Fun.hasRefQualifier())
5528 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5529
5530 if (Chunk.Fun.hasMethodTypeQualifiers())
5531 Chunk.Fun.MethodQualifiers->forEachQualifier(
5532 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5533 SourceLocation SL) { RemovalLocs.push_back(SL); });
5534
5535 if (!RemovalLocs.empty()) {
5536 llvm::sort(RemovalLocs,
5537 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5538 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5539 Loc = RemovalLocs.front();
5540 }
5541 }
5542
5543 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5544 << Kind << D.isFunctionDeclarator() << T
5545 << getFunctionQualifiersAsString(FnTy)
5546 << FixItHint::CreateRemoval(RemovalRange);
5547
5548 // Strip the cv-qualifiers and ref-qualifiers from the type.
5549 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5550 EPI.TypeQuals.removeCVRQualifiers();
5551 EPI.RefQualifier = RQ_None;
5552
5553 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5554 EPI);
5555 // Rebuild any parens around the identifier in the function type.
5556 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5557 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5558 break;
5559 T = S.BuildParenType(T);
5560 }
5561 }
5562 }
5563
5564 // Apply any undistributed attributes from the declarator.
5565 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5566
5567 // Diagnose any ignored type attributes.
5568 state.diagnoseIgnoredTypeAttrs(T);
5569
5570 // C++0x [dcl.constexpr]p9:
5571 // A constexpr specifier used in an object declaration declares the object
5572 // as const.
5573 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5574 T->isObjectType())
5575 T.addConst();
5576
5577 // C++2a [dcl.fct]p4:
5578 // A parameter with volatile-qualified type is deprecated
5579 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5580 (D.getContext() == DeclaratorContext::Prototype ||
5581 D.getContext() == DeclaratorContext::LambdaExprParameter))
5582 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5583
5584 // If there was an ellipsis in the declarator, the declaration declares a
5585 // parameter pack whose type may be a pack expansion type.
5586 if (D.hasEllipsis()) {
5587 // C++0x [dcl.fct]p13:
5588 // A declarator-id or abstract-declarator containing an ellipsis shall
5589 // only be used in a parameter-declaration. Such a parameter-declaration
5590 // is a parameter pack (14.5.3). [...]
5591 switch (D.getContext()) {
5592 case DeclaratorContext::Prototype:
5593 case DeclaratorContext::LambdaExprParameter:
5594 case DeclaratorContext::RequiresExpr:
5595 // C++0x [dcl.fct]p13:
5596 // [...] When it is part of a parameter-declaration-clause, the
5597 // parameter pack is a function parameter pack (14.5.3). The type T
5598 // of the declarator-id of the function parameter pack shall contain
5599 // a template parameter pack; each template parameter pack in T is
5600 // expanded by the function parameter pack.
5601 //
5602 // We represent function parameter packs as function parameters whose
5603 // type is a pack expansion.
5604 if (!T->containsUnexpandedParameterPack() &&
5605 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5606 S.Diag(D.getEllipsisLoc(),
5607 diag::err_function_parameter_pack_without_parameter_packs)
5608 << T << D.getSourceRange();
5609 D.setEllipsisLoc(SourceLocation());
5610 } else {
5611 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5612 }
5613 break;
5614 case DeclaratorContext::TemplateParam:
5615 // C++0x [temp.param]p15:
5616 // If a template-parameter is a [...] is a parameter-declaration that
5617 // declares a parameter pack (8.3.5), then the template-parameter is a
5618 // template parameter pack (14.5.3).
5619 //
5620 // Note: core issue 778 clarifies that, if there are any unexpanded
5621 // parameter packs in the type of the non-type template parameter, then
5622 // it expands those parameter packs.
5623 if (T->containsUnexpandedParameterPack())
5624 T = Context.getPackExpansionType(T, None);
5625 else
5626 S.Diag(D.getEllipsisLoc(),
5627 LangOpts.CPlusPlus11
5628 ? diag::warn_cxx98_compat_variadic_templates
5629 : diag::ext_variadic_templates);
5630 break;
5631
5632 case DeclaratorContext::File:
5633 case DeclaratorContext::KNRTypeList:
5634 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5635 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5636 case DeclaratorContext::TypeName:
5637 case DeclaratorContext::FunctionalCast:
5638 case DeclaratorContext::CXXNew:
5639 case DeclaratorContext::AliasDecl:
5640 case DeclaratorContext::AliasTemplate:
5641 case DeclaratorContext::Member:
5642 case DeclaratorContext::Block:
5643 case DeclaratorContext::ForInit:
5644 case DeclaratorContext::SelectionInit:
5645 case DeclaratorContext::Condition:
5646 case DeclaratorContext::CXXCatch:
5647 case DeclaratorContext::ObjCCatch:
5648 case DeclaratorContext::BlockLiteral:
5649 case DeclaratorContext::LambdaExpr:
5650 case DeclaratorContext::ConversionId:
5651 case DeclaratorContext::TrailingReturn:
5652 case DeclaratorContext::TrailingReturnVar:
5653 case DeclaratorContext::TemplateArg:
5654 case DeclaratorContext::TemplateTypeArg:
5655 // FIXME: We may want to allow parameter packs in block-literal contexts
5656 // in the future.
5657 S.Diag(D.getEllipsisLoc(),
5658 diag::err_ellipsis_in_declarator_not_parameter);
5659 D.setEllipsisLoc(SourceLocation());
5660 break;
5661 }
5662 }
5663
5664 assert(!T.isNull() && "T must not be null at the end of this function")((!T.isNull() && "T must not be null at the end of this function"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5664, __PRETTY_FUNCTION__))
;
5665 if (D.isInvalidType())
5666 return Context.getTrivialTypeSourceInfo(T);
5667
5668 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5669}
5670
5671/// GetTypeForDeclarator - Convert the type for the specified
5672/// declarator to Type instances.
5673///
5674/// The result of this call will never be null, but the associated
5675/// type may be a null type if there's an unrecoverable error.
5676TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5677 // Determine the type of the declarator. Not all forms of declarator
5678 // have a type.
5679
5680 TypeProcessingState state(*this, D);
5681
5682 TypeSourceInfo *ReturnTypeInfo = nullptr;
5683 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5684 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5685 inferARCWriteback(state, T);
5686
5687 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5688}
5689
5690static void transferARCOwnershipToDeclSpec(Sema &S,
5691 QualType &declSpecTy,
5692 Qualifiers::ObjCLifetime ownership) {
5693 if (declSpecTy->isObjCRetainableType() &&
5694 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5695 Qualifiers qs;
5696 qs.addObjCLifetime(ownership);
5697 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5698 }
5699}
5700
5701static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5702 Qualifiers::ObjCLifetime ownership,
5703 unsigned chunkIndex) {
5704 Sema &S = state.getSema();
5705 Declarator &D = state.getDeclarator();
5706
5707 // Look for an explicit lifetime attribute.
5708 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5709 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5710 return;
5711
5712 const char *attrStr = nullptr;
5713 switch (ownership) {
5714 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5714)
;
5715 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5716 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5717 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5718 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5719 }
5720
5721 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5722 Arg->Ident = &S.Context.Idents.get(attrStr);
5723 Arg->Loc = SourceLocation();
5724
5725 ArgsUnion Args(Arg);
5726
5727 // If there wasn't one, add one (with an invalid source location
5728 // so that we don't make an AttributedType for it).
5729 ParsedAttr *attr = D.getAttributePool().create(
5730 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5731 /*scope*/ nullptr, SourceLocation(),
5732 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5733 chunk.getAttrs().addAtEnd(attr);
5734 // TODO: mark whether we did this inference?
5735}
5736
5737/// Used for transferring ownership in casts resulting in l-values.
5738static void transferARCOwnership(TypeProcessingState &state,
5739 QualType &declSpecTy,
5740 Qualifiers::ObjCLifetime ownership) {
5741 Sema &S = state.getSema();
5742 Declarator &D = state.getDeclarator();
5743
5744 int inner = -1;
5745 bool hasIndirection = false;
5746 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5747 DeclaratorChunk &chunk = D.getTypeObject(i);
5748 switch (chunk.Kind) {
5749 case DeclaratorChunk::Paren:
5750 // Ignore parens.
5751 break;
5752
5753 case DeclaratorChunk::Array:
5754 case DeclaratorChunk::Reference:
5755 case DeclaratorChunk::Pointer:
5756 if (inner != -1)
5757 hasIndirection = true;
5758 inner = i;
5759 break;
5760
5761 case DeclaratorChunk::BlockPointer:
5762 if (inner != -1)
5763 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5764 return;
5765
5766 case DeclaratorChunk::Function:
5767 case DeclaratorChunk::MemberPointer:
5768 case DeclaratorChunk::Pipe:
5769 return;
5770 }
5771 }
5772
5773 if (inner == -1)
5774 return;
5775
5776 DeclaratorChunk &chunk = D.getTypeObject(inner);
5777 if (chunk.Kind == DeclaratorChunk::Pointer) {
5778 if (declSpecTy->isObjCRetainableType())
5779 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5780 if (declSpecTy->isObjCObjectType() && hasIndirection)
5781 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5782 } else {
5783 assert(chunk.Kind == DeclaratorChunk::Array ||((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5784, __PRETTY_FUNCTION__))
5784 chunk.Kind == DeclaratorChunk::Reference)((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5784, __PRETTY_FUNCTION__))
;
5785 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5786 }
5787}
5788
5789TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5790 TypeProcessingState state(*this, D);
5791
5792 TypeSourceInfo *ReturnTypeInfo = nullptr;
5793 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5794
5795 if (getLangOpts().ObjC) {
5796 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5797 if (ownership != Qualifiers::OCL_None)
5798 transferARCOwnership(state, declSpecTy, ownership);
5799 }
5800
5801 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5802}
5803
5804static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5805 TypeProcessingState &State) {
5806 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5807}
5808
5809namespace {
5810 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5811 Sema &SemaRef;
5812 ASTContext &Context;
5813 TypeProcessingState &State;
5814 const DeclSpec &DS;
5815
5816 public:
5817 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5818 const DeclSpec &DS)
5819 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5820
5821 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5822 Visit(TL.getModifiedLoc());
5823 fillAttributedTypeLoc(TL, State);
5824 }
5825 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5826 Visit(TL.getInnerLoc());
5827 TL.setExpansionLoc(
5828 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5829 }
5830 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5831 Visit(TL.getUnqualifiedLoc());
5832 }
5833 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5834 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5835 }
5836 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5837 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5838 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5839 // addition field. What we have is good enough for dispay of location
5840 // of 'fixit' on interface name.
5841 TL.setNameEndLoc(DS.getEndLoc());
5842 }
5843 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5844 TypeSourceInfo *RepTInfo = nullptr;
5845 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5846 TL.copy(RepTInfo->getTypeLoc());
5847 }
5848 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5849 TypeSourceInfo *RepTInfo = nullptr;
5850 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5851 TL.copy(RepTInfo->getTypeLoc());
5852 }
5853 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5854 TypeSourceInfo *TInfo = nullptr;
5855 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5856
5857 // If we got no declarator info from previous Sema routines,
5858 // just fill with the typespec loc.
5859 if (!TInfo) {
5860 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5861 return;
5862 }
5863
5864 TypeLoc OldTL = TInfo->getTypeLoc();
5865 if (TInfo->getType()->getAs<ElaboratedType>()) {
5866 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5867 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5868 .castAs<TemplateSpecializationTypeLoc>();
5869 TL.copy(NamedTL);
5870 } else {
5871 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5872 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc
>().getRAngleLoc()) ? static_cast<void> (0) : __assert_fail
("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5872, __PRETTY_FUNCTION__))
;
5873 }
5874
5875 }
5876 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5877 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5877, __PRETTY_FUNCTION__))
;
5878 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5879 TL.setParensRange(DS.getTypeofParensRange());
5880 }
5881 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5882 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((DS.getTypeSpecType() == DeclSpec::TST_typeofType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5882, __PRETTY_FUNCTION__))
;
5883 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5884 TL.setParensRange(DS.getTypeofParensRange());
5885 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5885, __PRETTY_FUNCTION__))
;
5886 TypeSourceInfo *TInfo = nullptr;
5887 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5888 TL.setUnderlyingTInfo(TInfo);
5889 }
5890 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5891 // FIXME: This holds only because we only have one unary transform.
5892 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((DS.getTypeSpecType() == DeclSpec::TST_underlyingType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5892, __PRETTY_FUNCTION__))
;
5893 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5894 TL.setParensRange(DS.getTypeofParensRange());
5895 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5895, __PRETTY_FUNCTION__))
;
5896 TypeSourceInfo *TInfo = nullptr;
5897 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5898 TL.setUnderlyingTInfo(TInfo);
5899 }
5900 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5901 // By default, use the source location of the type specifier.
5902 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5903 if (TL.needsExtraLocalData()) {
5904 // Set info for the written builtin specifiers.
5905 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5906 // Try to have a meaningful source location.
5907 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5908 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5909 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5910 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5911 }
5912 }
5913 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5914 ElaboratedTypeKeyword Keyword
5915 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5916 if (DS.getTypeSpecType() == TST_typename) {
5917 TypeSourceInfo *TInfo = nullptr;
5918 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5919 if (TInfo) {
5920 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5921 return;
5922 }
5923 }
5924 TL.setElaboratedKeywordLoc(Keyword != ETK_None
5925 ? DS.getTypeSpecTypeLoc()
5926 : SourceLocation());
5927 const CXXScopeSpec& SS = DS.getTypeSpecScope();
5928 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5929 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5930 }
5931 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5932 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaType.cpp"
, 5932, __PRETTY_FUNCTION__))
;
5933 TypeSourceInf