Bug Summary

File:build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaType.cpp
Warning:line 952, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-10-03-140002-15933-1 -x c++ /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaType.cpp
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/Type.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/SourceLocation.h"
27#include "clang/Basic/Specifiers.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/Template.h"
37#include "clang/Sema/TemplateInstCallback.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallString.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <bitset>
44
45using namespace clang;
46
47enum TypeDiagSelector {
48 TDS_Function,
49 TDS_Pointer,
50 TDS_ObjCObjOrBlock
51};
52
53/// isOmittedBlockReturnType - Return true if this declarator is missing a
54/// return type because this is a omitted return type on a block literal.
55static bool isOmittedBlockReturnType(const Declarator &D) {
56 if (D.getContext() != DeclaratorContext::BlockLiteral ||
57 D.getDeclSpec().hasTypeSpecifier())
58 return false;
59
60 if (D.getNumTypeObjects() == 0)
61 return true; // ^{ ... }
62
63 if (D.getNumTypeObjects() == 1 &&
64 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
65 return true; // ^(int X, float Y) { ... }
66
67 return false;
68}
69
70/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
71/// doesn't apply to the given type.
72static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
73 QualType type) {
74 TypeDiagSelector WhichType;
75 bool useExpansionLoc = true;
76 switch (attr.getKind()) {
77 case ParsedAttr::AT_ObjCGC:
78 WhichType = TDS_Pointer;
79 break;
80 case ParsedAttr::AT_ObjCOwnership:
81 WhichType = TDS_ObjCObjOrBlock;
82 break;
83 default:
84 // Assume everything else was a function attribute.
85 WhichType = TDS_Function;
86 useExpansionLoc = false;
87 break;
88 }
89
90 SourceLocation loc = attr.getLoc();
91 StringRef name = attr.getAttrName()->getName();
92
93 // The GC attributes are usually written with macros; special-case them.
94 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
95 : nullptr;
96 if (useExpansionLoc && loc.isMacroID() && II) {
97 if (II->isStr("strong")) {
98 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
99 } else if (II->isStr("weak")) {
100 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
101 }
102 }
103
104 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
105 << type;
106}
107
108// objc_gc applies to Objective-C pointers or, otherwise, to the
109// smallest available pointer type (i.e. 'void*' in 'void**').
110#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
111 case ParsedAttr::AT_ObjCGC: \
112 case ParsedAttr::AT_ObjCOwnership
113
114// Calling convention attributes.
115#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_AArch64SVEPcs
: case ParsedAttr::AT_AMDGPUKernelCall: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
116 case ParsedAttr::AT_CDecl: \
117 case ParsedAttr::AT_FastCall: \
118 case ParsedAttr::AT_StdCall: \
119 case ParsedAttr::AT_ThisCall: \
120 case ParsedAttr::AT_RegCall: \
121 case ParsedAttr::AT_Pascal: \
122 case ParsedAttr::AT_SwiftCall: \
123 case ParsedAttr::AT_SwiftAsyncCall: \
124 case ParsedAttr::AT_VectorCall: \
125 case ParsedAttr::AT_AArch64VectorPcs: \
126 case ParsedAttr::AT_AArch64SVEPcs: \
127 case ParsedAttr::AT_AMDGPUKernelCall: \
128 case ParsedAttr::AT_MSABI: \
129 case ParsedAttr::AT_SysVABI: \
130 case ParsedAttr::AT_Pcs: \
131 case ParsedAttr::AT_IntelOclBicc: \
132 case ParsedAttr::AT_PreserveMost: \
133 case ParsedAttr::AT_PreserveAll
134
135// Function type attributes.
136#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_AArch64SVEPcs: case ParsedAttr::AT_AMDGPUKernelCall
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
137 case ParsedAttr::AT_NSReturnsRetained: \
138 case ParsedAttr::AT_NoReturn: \
139 case ParsedAttr::AT_Regparm: \
140 case ParsedAttr::AT_CmseNSCall: \
141 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
142 case ParsedAttr::AT_AnyX86NoCfCheck: \
143 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_AArch64SVEPcs
: case ParsedAttr::AT_AMDGPUKernelCall: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
144
145// Microsoft-specific type qualifiers.
146#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
147 case ParsedAttr::AT_Ptr32: \
148 case ParsedAttr::AT_Ptr64: \
149 case ParsedAttr::AT_SPtr: \
150 case ParsedAttr::AT_UPtr
151
152// Nullability qualifiers.
153#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
\
154 case ParsedAttr::AT_TypeNonNull: \
155 case ParsedAttr::AT_TypeNullable: \
156 case ParsedAttr::AT_TypeNullableResult: \
157 case ParsedAttr::AT_TypeNullUnspecified
158
159namespace {
160 /// An object which stores processing state for the entire
161 /// GetTypeForDeclarator process.
162 class TypeProcessingState {
163 Sema &sema;
164
165 /// The declarator being processed.
166 Declarator &declarator;
167
168 /// The index of the declarator chunk we're currently processing.
169 /// May be the total number of valid chunks, indicating the
170 /// DeclSpec.
171 unsigned chunkIndex;
172
173 /// The original set of attributes on the DeclSpec.
174 SmallVector<ParsedAttr *, 2> savedAttrs;
175
176 /// A list of attributes to diagnose the uselessness of when the
177 /// processing is complete.
178 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
179
180 /// Attributes corresponding to AttributedTypeLocs that we have not yet
181 /// populated.
182 // FIXME: The two-phase mechanism by which we construct Types and fill
183 // their TypeLocs makes it hard to correctly assign these. We keep the
184 // attributes in creation order as an attempt to make them line up
185 // properly.
186 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
187 SmallVector<TypeAttrPair, 8> AttrsForTypes;
188 bool AttrsForTypesSorted = true;
189
190 /// MacroQualifiedTypes mapping to macro expansion locations that will be
191 /// stored in a MacroQualifiedTypeLoc.
192 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
193
194 /// Flag to indicate we parsed a noderef attribute. This is used for
195 /// validating that noderef was used on a pointer or array.
196 bool parsedNoDeref;
197
198 public:
199 TypeProcessingState(Sema &sema, Declarator &declarator)
200 : sema(sema), declarator(declarator),
201 chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false) {}
202
203 Sema &getSema() const {
204 return sema;
205 }
206
207 Declarator &getDeclarator() const {
208 return declarator;
209 }
210
211 bool isProcessingDeclSpec() const {
212 return chunkIndex == declarator.getNumTypeObjects();
213 }
214
215 unsigned getCurrentChunkIndex() const {
216 return chunkIndex;
217 }
218
219 void setCurrentChunkIndex(unsigned idx) {
220 assert(idx <= declarator.getNumTypeObjects())(static_cast <bool> (idx <= declarator.getNumTypeObjects
()) ? void (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "clang/lib/Sema/SemaType.cpp", 220, __extension__ __PRETTY_FUNCTION__
))
;
221 chunkIndex = idx;
222 }
223
224 ParsedAttributesView &getCurrentAttributes() const {
225 if (isProcessingDeclSpec())
226 return getMutableDeclSpec().getAttributes();
227 return declarator.getTypeObject(chunkIndex).getAttrs();
228 }
229
230 /// Save the current set of attributes on the DeclSpec.
231 void saveDeclSpecAttrs() {
232 // Don't try to save them multiple times.
233 if (!savedAttrs.empty())
234 return;
235
236 DeclSpec &spec = getMutableDeclSpec();
237 llvm::append_range(savedAttrs,
238 llvm::make_pointer_range(spec.getAttributes()));
239 }
240
241 /// Record that we had nowhere to put the given type attribute.
242 /// We will diagnose such attributes later.
243 void addIgnoredTypeAttr(ParsedAttr &attr) {
244 ignoredTypeAttrs.push_back(&attr);
245 }
246
247 /// Diagnose all the ignored type attributes, given that the
248 /// declarator worked out to the given type.
249 void diagnoseIgnoredTypeAttrs(QualType type) const {
250 for (auto *Attr : ignoredTypeAttrs)
251 diagnoseBadTypeAttribute(getSema(), *Attr, type);
252 }
253
254 /// Get an attributed type for the given attribute, and remember the Attr
255 /// object so that we can attach it to the AttributedTypeLoc.
256 QualType getAttributedType(Attr *A, QualType ModifiedType,
257 QualType EquivType) {
258 QualType T =
259 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
260 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
261 AttrsForTypesSorted = false;
262 return T;
263 }
264
265 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
266 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
267 QualType WrappedType) {
268 return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
269 }
270
271 /// Completely replace the \c auto in \p TypeWithAuto by
272 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
273 /// necessary.
274 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
275 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
276 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
277 // Attributed type still should be an attributed type after replacement.
278 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
279 for (TypeAttrPair &A : AttrsForTypes) {
280 if (A.first == AttrTy)
281 A.first = NewAttrTy;
282 }
283 AttrsForTypesSorted = false;
284 }
285 return T;
286 }
287
288 /// Extract and remove the Attr* for a given attributed type.
289 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
290 if (!AttrsForTypesSorted) {
291 llvm::stable_sort(AttrsForTypes, llvm::less_first());
292 AttrsForTypesSorted = true;
293 }
294
295 // FIXME: This is quadratic if we have lots of reuses of the same
296 // attributed type.
297 for (auto It = std::partition_point(
298 AttrsForTypes.begin(), AttrsForTypes.end(),
299 [=](const TypeAttrPair &A) { return A.first < AT; });
300 It != AttrsForTypes.end() && It->first == AT; ++It) {
301 if (It->second) {
302 const Attr *Result = It->second;
303 It->second = nullptr;
304 return Result;
305 }
306 }
307
308 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "clang/lib/Sema/SemaType.cpp", 308)
;
309 }
310
311 SourceLocation
312 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
313 auto FoundLoc = LocsForMacros.find(MQT);
314 assert(FoundLoc != LocsForMacros.end() &&(static_cast <bool> (FoundLoc != LocsForMacros.end() &&
"Unable to find macro expansion location for MacroQualifedType"
) ? void (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "clang/lib/Sema/SemaType.cpp", 315, __extension__ __PRETTY_FUNCTION__
))
315 "Unable to find macro expansion location for MacroQualifedType")(static_cast <bool> (FoundLoc != LocsForMacros.end() &&
"Unable to find macro expansion location for MacroQualifedType"
) ? void (0) : __assert_fail ("FoundLoc != LocsForMacros.end() && \"Unable to find macro expansion location for MacroQualifedType\""
, "clang/lib/Sema/SemaType.cpp", 315, __extension__ __PRETTY_FUNCTION__
))
;
316 return FoundLoc->second;
317 }
318
319 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
320 SourceLocation Loc) {
321 LocsForMacros[MQT] = Loc;
322 }
323
324 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
325
326 bool didParseNoDeref() const { return parsedNoDeref; }
327
328 ~TypeProcessingState() {
329 if (savedAttrs.empty())
330 return;
331
332 getMutableDeclSpec().getAttributes().clearListOnly();
333 for (ParsedAttr *AL : savedAttrs)
334 getMutableDeclSpec().getAttributes().addAtEnd(AL);
335 }
336
337 private:
338 DeclSpec &getMutableDeclSpec() const {
339 return const_cast<DeclSpec&>(declarator.getDeclSpec());
340 }
341 };
342} // end anonymous namespace
343
344static void moveAttrFromListToList(ParsedAttr &attr,
345 ParsedAttributesView &fromList,
346 ParsedAttributesView &toList) {
347 fromList.remove(&attr);
348 toList.addAtEnd(&attr);
349}
350
351/// The location of a type attribute.
352enum TypeAttrLocation {
353 /// The attribute is in the decl-specifier-seq.
354 TAL_DeclSpec,
355 /// The attribute is part of a DeclaratorChunk.
356 TAL_DeclChunk,
357 /// The attribute is immediately after the declaration's name.
358 TAL_DeclName
359};
360
361static void processTypeAttrs(TypeProcessingState &state, QualType &type,
362 TypeAttrLocation TAL,
363 const ParsedAttributesView &attrs);
364
365static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
366 QualType &type);
367
368static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
369 ParsedAttr &attr, QualType &type);
370
371static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
372 QualType &type);
373
374static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
375 ParsedAttr &attr, QualType &type);
376
377static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
378 ParsedAttr &attr, QualType &type) {
379 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
380 return handleObjCGCTypeAttr(state, attr, type);
381 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)(static_cast <bool> (attr.getKind() == ParsedAttr::AT_ObjCOwnership
) ? void (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "clang/lib/Sema/SemaType.cpp", 381, __extension__ __PRETTY_FUNCTION__
))
;
382 return handleObjCOwnershipTypeAttr(state, attr, type);
383}
384
385/// Given the index of a declarator chunk, check whether that chunk
386/// directly specifies the return type of a function and, if so, find
387/// an appropriate place for it.
388///
389/// \param i - a notional index which the search will start
390/// immediately inside
391///
392/// \param onlyBlockPointers Whether we should only look into block
393/// pointer types (vs. all pointer types).
394static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
395 unsigned i,
396 bool onlyBlockPointers) {
397 assert(i <= declarator.getNumTypeObjects())(static_cast <bool> (i <= declarator.getNumTypeObjects
()) ? void (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "clang/lib/Sema/SemaType.cpp", 397, __extension__ __PRETTY_FUNCTION__
))
;
398
399 DeclaratorChunk *result = nullptr;
400
401 // First, look inwards past parens for a function declarator.
402 for (; i != 0; --i) {
403 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
404 switch (fnChunk.Kind) {
405 case DeclaratorChunk::Paren:
406 continue;
407
408 // If we find anything except a function, bail out.
409 case DeclaratorChunk::Pointer:
410 case DeclaratorChunk::BlockPointer:
411 case DeclaratorChunk::Array:
412 case DeclaratorChunk::Reference:
413 case DeclaratorChunk::MemberPointer:
414 case DeclaratorChunk::Pipe:
415 return result;
416
417 // If we do find a function declarator, scan inwards from that,
418 // looking for a (block-)pointer declarator.
419 case DeclaratorChunk::Function:
420 for (--i; i != 0; --i) {
421 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
422 switch (ptrChunk.Kind) {
423 case DeclaratorChunk::Paren:
424 case DeclaratorChunk::Array:
425 case DeclaratorChunk::Function:
426 case DeclaratorChunk::Reference:
427 case DeclaratorChunk::Pipe:
428 continue;
429
430 case DeclaratorChunk::MemberPointer:
431 case DeclaratorChunk::Pointer:
432 if (onlyBlockPointers)
433 continue;
434
435 [[fallthrough]];
436
437 case DeclaratorChunk::BlockPointer:
438 result = &ptrChunk;
439 goto continue_outer;
440 }
441 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "clang/lib/Sema/SemaType.cpp", 441)
;
442 }
443
444 // If we run out of declarators doing that, we're done.
445 return result;
446 }
447 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "clang/lib/Sema/SemaType.cpp", 447)
;
448
449 // Okay, reconsider from our new point.
450 continue_outer: ;
451 }
452
453 // Ran out of chunks, bail out.
454 return result;
455}
456
457/// Given that an objc_gc attribute was written somewhere on a
458/// declaration *other* than on the declarator itself (for which, use
459/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
460/// didn't apply in whatever position it was written in, try to move
461/// it to a more appropriate position.
462static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
463 ParsedAttr &attr, QualType type) {
464 Declarator &declarator = state.getDeclarator();
465
466 // Move it to the outermost normal or block pointer declarator.
467 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
468 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
469 switch (chunk.Kind) {
470 case DeclaratorChunk::Pointer:
471 case DeclaratorChunk::BlockPointer: {
472 // But don't move an ARC ownership attribute to the return type
473 // of a block.
474 DeclaratorChunk *destChunk = nullptr;
475 if (state.isProcessingDeclSpec() &&
476 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
477 destChunk = maybeMovePastReturnType(declarator, i - 1,
478 /*onlyBlockPointers=*/true);
479 if (!destChunk) destChunk = &chunk;
480
481 moveAttrFromListToList(attr, state.getCurrentAttributes(),
482 destChunk->getAttrs());
483 return;
484 }
485
486 case DeclaratorChunk::Paren:
487 case DeclaratorChunk::Array:
488 continue;
489
490 // We may be starting at the return type of a block.
491 case DeclaratorChunk::Function:
492 if (state.isProcessingDeclSpec() &&
493 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
494 if (DeclaratorChunk *dest = maybeMovePastReturnType(
495 declarator, i,
496 /*onlyBlockPointers=*/true)) {
497 moveAttrFromListToList(attr, state.getCurrentAttributes(),
498 dest->getAttrs());
499 return;
500 }
501 }
502 goto error;
503
504 // Don't walk through these.
505 case DeclaratorChunk::Reference:
506 case DeclaratorChunk::MemberPointer:
507 case DeclaratorChunk::Pipe:
508 goto error;
509 }
510 }
511 error:
512
513 diagnoseBadTypeAttribute(state.getSema(), attr, type);
514}
515
516/// Distribute an objc_gc type attribute that was written on the
517/// declarator.
518static void distributeObjCPointerTypeAttrFromDeclarator(
519 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
520 Declarator &declarator = state.getDeclarator();
521
522 // objc_gc goes on the innermost pointer to something that's not a
523 // pointer.
524 unsigned innermost = -1U;
525 bool considerDeclSpec = true;
526 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
527 DeclaratorChunk &chunk = declarator.getTypeObject(i);
528 switch (chunk.Kind) {
529 case DeclaratorChunk::Pointer:
530 case DeclaratorChunk::BlockPointer:
531 innermost = i;
532 continue;
533
534 case DeclaratorChunk::Reference:
535 case DeclaratorChunk::MemberPointer:
536 case DeclaratorChunk::Paren:
537 case DeclaratorChunk::Array:
538 case DeclaratorChunk::Pipe:
539 continue;
540
541 case DeclaratorChunk::Function:
542 considerDeclSpec = false;
543 goto done;
544 }
545 }
546 done:
547
548 // That might actually be the decl spec if we weren't blocked by
549 // anything in the declarator.
550 if (considerDeclSpec) {
551 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
552 // Splice the attribute into the decl spec. Prevents the
553 // attribute from being applied multiple times and gives
554 // the source-location-filler something to work with.
555 state.saveDeclSpecAttrs();
556 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
557 declarator.getAttributes(), &attr);
558 return;
559 }
560 }
561
562 // Otherwise, if we found an appropriate chunk, splice the attribute
563 // into it.
564 if (innermost != -1U) {
565 moveAttrFromListToList(attr, declarator.getAttributes(),
566 declarator.getTypeObject(innermost).getAttrs());
567 return;
568 }
569
570 // Otherwise, diagnose when we're done building the type.
571 declarator.getAttributes().remove(&attr);
572 state.addIgnoredTypeAttr(attr);
573}
574
575/// A function type attribute was written somewhere in a declaration
576/// *other* than on the declarator itself or in the decl spec. Given
577/// that it didn't apply in whatever position it was written in, try
578/// to move it to a more appropriate position.
579static void distributeFunctionTypeAttr(TypeProcessingState &state,
580 ParsedAttr &attr, QualType type) {
581 Declarator &declarator = state.getDeclarator();
582
583 // Try to push the attribute from the return type of a function to
584 // the function itself.
585 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
586 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
587 switch (chunk.Kind) {
588 case DeclaratorChunk::Function:
589 moveAttrFromListToList(attr, state.getCurrentAttributes(),
590 chunk.getAttrs());
591 return;
592
593 case DeclaratorChunk::Paren:
594 case DeclaratorChunk::Pointer:
595 case DeclaratorChunk::BlockPointer:
596 case DeclaratorChunk::Array:
597 case DeclaratorChunk::Reference:
598 case DeclaratorChunk::MemberPointer:
599 case DeclaratorChunk::Pipe:
600 continue;
601 }
602 }
603
604 diagnoseBadTypeAttribute(state.getSema(), attr, type);
605}
606
607/// Try to distribute a function type attribute to the innermost
608/// function chunk or type. Returns true if the attribute was
609/// distributed, false if no location was found.
610static bool distributeFunctionTypeAttrToInnermost(
611 TypeProcessingState &state, ParsedAttr &attr,
612 ParsedAttributesView &attrList, QualType &declSpecType) {
613 Declarator &declarator = state.getDeclarator();
614
615 // Put it on the innermost function chunk, if there is one.
616 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
617 DeclaratorChunk &chunk = declarator.getTypeObject(i);
618 if (chunk.Kind != DeclaratorChunk::Function) continue;
619
620 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
621 return true;
622 }
623
624 return handleFunctionTypeAttr(state, attr, declSpecType);
625}
626
627/// A function type attribute was written in the decl spec. Try to
628/// apply it somewhere.
629static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
630 ParsedAttr &attr,
631 QualType &declSpecType) {
632 state.saveDeclSpecAttrs();
633
634 // Try to distribute to the innermost.
635 if (distributeFunctionTypeAttrToInnermost(
636 state, attr, state.getCurrentAttributes(), declSpecType))
637 return;
638
639 // If that failed, diagnose the bad attribute when the declarator is
640 // fully built.
641 state.addIgnoredTypeAttr(attr);
642}
643
644/// A function type attribute was written on the declarator or declaration.
645/// Try to apply it somewhere.
646/// `Attrs` is the attribute list containing the declaration (either of the
647/// declarator or the declaration).
648static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
649 ParsedAttr &attr,
650 QualType &declSpecType) {
651 Declarator &declarator = state.getDeclarator();
652
653 // Try to distribute to the innermost.
654 if (distributeFunctionTypeAttrToInnermost(
655 state, attr, declarator.getAttributes(), declSpecType))
656 return;
657
658 // If that failed, diagnose the bad attribute when the declarator is
659 // fully built.
660 declarator.getAttributes().remove(&attr);
661 state.addIgnoredTypeAttr(attr);
662}
663
664/// Given that there are attributes written on the declarator or declaration
665/// itself, try to distribute any type attributes to the appropriate
666/// declarator chunk.
667///
668/// These are attributes like the following:
669/// int f ATTR;
670/// int (f ATTR)();
671/// but not necessarily this:
672/// int f() ATTR;
673///
674/// `Attrs` is the attribute list containing the declaration (either of the
675/// declarator or the declaration).
676static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
677 QualType &declSpecType) {
678 // The called functions in this loop actually remove things from the current
679 // list, so iterating over the existing list isn't possible. Instead, make a
680 // non-owning copy and iterate over that.
681 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
682 for (ParsedAttr &attr : AttrsCopy) {
683 // Do not distribute [[]] attributes. They have strict rules for what
684 // they appertain to.
685 if (attr.isStandardAttributeSyntax())
686 continue;
687
688 switch (attr.getKind()) {
689 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
690 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
691 break;
692
693 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_AArch64SVEPcs: case ParsedAttr::AT_AMDGPUKernelCall
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
694 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
695 break;
696
697 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
698 // Microsoft type attributes cannot go after the declarator-id.
699 continue;
700
701 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
702 // Nullability specifiers cannot go after the declarator-id.
703
704 // Objective-C __kindof does not get distributed.
705 case ParsedAttr::AT_ObjCKindOf:
706 continue;
707
708 default:
709 break;
710 }
711 }
712}
713
714/// Add a synthetic '()' to a block-literal declarator if it is
715/// required, given the return type.
716static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
717 QualType declSpecType) {
718 Declarator &declarator = state.getDeclarator();
719
720 // First, check whether the declarator would produce a function,
721 // i.e. whether the innermost semantic chunk is a function.
722 if (declarator.isFunctionDeclarator()) {
723 // If so, make that declarator a prototyped declarator.
724 declarator.getFunctionTypeInfo().hasPrototype = true;
725 return;
726 }
727
728 // If there are any type objects, the type as written won't name a
729 // function, regardless of the decl spec type. This is because a
730 // block signature declarator is always an abstract-declarator, and
731 // abstract-declarators can't just be parentheses chunks. Therefore
732 // we need to build a function chunk unless there are no type
733 // objects and the decl spec type is a function.
734 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
735 return;
736
737 // Note that there *are* cases with invalid declarators where
738 // declarators consist solely of parentheses. In general, these
739 // occur only in failed efforts to make function declarators, so
740 // faking up the function chunk is still the right thing to do.
741
742 // Otherwise, we need to fake up a function declarator.
743 SourceLocation loc = declarator.getBeginLoc();
744
745 // ...and *prepend* it to the declarator.
746 SourceLocation NoLoc;
747 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
748 /*HasProto=*/true,
749 /*IsAmbiguous=*/false,
750 /*LParenLoc=*/NoLoc,
751 /*ArgInfo=*/nullptr,
752 /*NumParams=*/0,
753 /*EllipsisLoc=*/NoLoc,
754 /*RParenLoc=*/NoLoc,
755 /*RefQualifierIsLvalueRef=*/true,
756 /*RefQualifierLoc=*/NoLoc,
757 /*MutableLoc=*/NoLoc, EST_None,
758 /*ESpecRange=*/SourceRange(),
759 /*Exceptions=*/nullptr,
760 /*ExceptionRanges=*/nullptr,
761 /*NumExceptions=*/0,
762 /*NoexceptExpr=*/nullptr,
763 /*ExceptionSpecTokens=*/nullptr,
764 /*DeclsInPrototype=*/None, loc, loc, declarator));
765
766 // For consistency, make sure the state still has us as processing
767 // the decl spec.
768 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)(static_cast <bool> (state.getCurrentChunkIndex() == declarator
.getNumTypeObjects() - 1) ? void (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "clang/lib/Sema/SemaType.cpp", 768, __extension__ __PRETTY_FUNCTION__
))
;
769 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
770}
771
772static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
773 unsigned &TypeQuals,
774 QualType TypeSoFar,
775 unsigned RemoveTQs,
776 unsigned DiagID) {
777 // If this occurs outside a template instantiation, warn the user about
778 // it; they probably didn't mean to specify a redundant qualifier.
779 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
780 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
781 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
782 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
783 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
784 if (!(RemoveTQs & Qual.first))
785 continue;
786
787 if (!S.inTemplateInstantiation()) {
788 if (TypeQuals & Qual.first)
789 S.Diag(Qual.second, DiagID)
790 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
791 << FixItHint::CreateRemoval(Qual.second);
792 }
793
794 TypeQuals &= ~Qual.first;
795 }
796}
797
798/// Return true if this is omitted block return type. Also check type
799/// attributes and type qualifiers when returning true.
800static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
801 QualType Result) {
802 if (!isOmittedBlockReturnType(declarator))
803 return false;
804
805 // Warn if we see type attributes for omitted return type on a block literal.
806 SmallVector<ParsedAttr *, 2> ToBeRemoved;
807 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
808 if (AL.isInvalid() || !AL.isTypeAttr())
809 continue;
810 S.Diag(AL.getLoc(),
811 diag::warn_block_literal_attributes_on_omitted_return_type)
812 << AL;
813 ToBeRemoved.push_back(&AL);
814 }
815 // Remove bad attributes from the list.
816 for (ParsedAttr *AL : ToBeRemoved)
817 declarator.getMutableDeclSpec().getAttributes().remove(AL);
818
819 // Warn if we see type qualifiers for omitted return type on a block literal.
820 const DeclSpec &DS = declarator.getDeclSpec();
821 unsigned TypeQuals = DS.getTypeQualifiers();
822 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
823 diag::warn_block_literal_qualifiers_on_omitted_return_type);
824 declarator.getMutableDeclSpec().ClearTypeQualifiers();
825
826 return true;
827}
828
829/// Apply Objective-C type arguments to the given type.
830static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
831 ArrayRef<TypeSourceInfo *> typeArgs,
832 SourceRange typeArgsRange,
833 bool failOnError = false) {
834 // We can only apply type arguments to an Objective-C class type.
835 const auto *objcObjectType = type->getAs<ObjCObjectType>();
9
Assuming the object is a 'const class clang::ObjCObjectType *'
836 if (!objcObjectType || !objcObjectType->getInterface()) {
10
Assuming 'objcObjectType' is non-null
11
Assuming the condition is false
12
Taking false branch
837 S.Diag(loc, diag::err_objc_type_args_non_class)
838 << type
839 << typeArgsRange;
840
841 if (failOnError)
842 return QualType();
843 return type;
844 }
845
846 // The class type must be parameterized.
847 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
848 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
849 if (!typeParams) {
13
Assuming 'typeParams' is non-null
14
Taking false branch
850 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
851 << objcClass->getDeclName()
852 << FixItHint::CreateRemoval(typeArgsRange);
853
854 if (failOnError)
855 return QualType();
856
857 return type;
858 }
859
860 // The type must not already be specialized.
861 if (objcObjectType->isSpecialized()) {
15
Assuming the condition is false
16
Taking false branch
862 S.Diag(loc, diag::err_objc_type_args_specialized_class)
863 << type
864 << FixItHint::CreateRemoval(typeArgsRange);
865
866 if (failOnError)
867 return QualType();
868
869 return type;
870 }
871
872 // Check the type arguments.
873 SmallVector<QualType, 4> finalTypeArgs;
874 unsigned numTypeParams = typeParams->size();
875 bool anyPackExpansions = false;
876 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
17
Assuming 'i' is not equal to 'n'
18
Loop condition is true. Entering loop body
877 TypeSourceInfo *typeArgInfo = typeArgs[i];
878 QualType typeArg = typeArgInfo->getType();
879
880 // Type arguments cannot have explicit qualifiers or nullability.
881 // We ignore indirect sources of these, e.g. behind typedefs or
882 // template arguments.
883 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
19
Assuming the condition is false
20
Taking false branch
884 bool diagnosed = false;
885 SourceRange rangeToRemove;
886 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
887 rangeToRemove = attr.getLocalSourceRange();
888 if (attr.getTypePtr()->getImmediateNullability()) {
889 typeArg = attr.getTypePtr()->getModifiedType();
890 S.Diag(attr.getBeginLoc(),
891 diag::err_objc_type_arg_explicit_nullability)
892 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
893 diagnosed = true;
894 }
895 }
896
897 if (!diagnosed) {
898 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
899 << typeArg << typeArg.getQualifiers().getAsString()
900 << FixItHint::CreateRemoval(rangeToRemove);
901 }
902 }
903
904 // Remove qualifiers even if they're non-local.
905 typeArg = typeArg.getUnqualifiedType();
906
907 finalTypeArgs.push_back(typeArg);
908
909 if (typeArg->getAs<PackExpansionType>())
21
Assuming the object is not a 'const class clang::PackExpansionType *'
22
Taking false branch
910 anyPackExpansions = true;
911
912 // Find the corresponding type parameter, if there is one.
913 ObjCTypeParamDecl *typeParam = nullptr;
914 if (!anyPackExpansions
22.1
'anyPackExpansions' is false
) {
23
Taking true branch
915 if (i < numTypeParams) {
24
Assuming 'i' is < 'numTypeParams'
25
Taking true branch
916 typeParam = typeParams->begin()[i];
917 } else {
918 // Too many arguments.
919 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
920 << false
921 << objcClass->getDeclName()
922 << (unsigned)typeArgs.size()
923 << numTypeParams;
924 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
925 << objcClass;
926
927 if (failOnError)
928 return QualType();
929
930 return type;
931 }
932 }
933
934 // Objective-C object pointer types must be substitutable for the bounds.
935 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
26
Assuming the object is a 'const class clang::ObjCObjectPointerType *'
27
Assuming 'typeArgObjC' is non-null
28
Taking true branch
936 // If we don't have a type parameter to match against, assume
937 // everything is fine. There was a prior pack expansion that
938 // means we won't be able to match anything.
939 if (!typeParam) {
29
Assuming 'typeParam' is non-null
30
Taking false branch
940 assert(anyPackExpansions && "Too many arguments?")(static_cast <bool> (anyPackExpansions && "Too many arguments?"
) ? void (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "clang/lib/Sema/SemaType.cpp", 940, __extension__ __PRETTY_FUNCTION__
))
;
941 continue;
942 }
943
944 // Retrieve the bound.
945 QualType bound = typeParam->getUnderlyingType();
946 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
31
Assuming the object is not a 'const class clang::ObjCObjectPointerType *'
32
'boundObjC' initialized to a null pointer value
947
948 // Determine whether the type argument is substitutable for the bound.
949 if (typeArgObjC->isObjCIdType()) {
33
Taking true branch
950 // When the type argument is 'id', the only acceptable type
951 // parameter bound is 'id'.
952 if (boundObjC->isObjCIdType())
34
Called C++ object pointer is null
953 continue;
954 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
955 // Otherwise, we follow the assignability rules.
956 continue;
957 }
958
959 // Diagnose the mismatch.
960 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
961 diag::err_objc_type_arg_does_not_match_bound)
962 << typeArg << bound << typeParam->getDeclName();
963 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
964 << typeParam->getDeclName();
965
966 if (failOnError)
967 return QualType();
968
969 return type;
970 }
971
972 // Block pointer types are permitted for unqualified 'id' bounds.
973 if (typeArg->isBlockPointerType()) {
974 // If we don't have a type parameter to match against, assume
975 // everything is fine. There was a prior pack expansion that
976 // means we won't be able to match anything.
977 if (!typeParam) {
978 assert(anyPackExpansions && "Too many arguments?")(static_cast <bool> (anyPackExpansions && "Too many arguments?"
) ? void (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "clang/lib/Sema/SemaType.cpp", 978, __extension__ __PRETTY_FUNCTION__
))
;
979 continue;
980 }
981
982 // Retrieve the bound.
983 QualType bound = typeParam->getUnderlyingType();
984 if (bound->isBlockCompatibleObjCPointerType(S.Context))
985 continue;
986
987 // Diagnose the mismatch.
988 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
989 diag::err_objc_type_arg_does_not_match_bound)
990 << typeArg << bound << typeParam->getDeclName();
991 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
992 << typeParam->getDeclName();
993
994 if (failOnError)
995 return QualType();
996
997 return type;
998 }
999
1000 // Dependent types will be checked at instantiation time.
1001 if (typeArg->isDependentType()) {
1002 continue;
1003 }
1004
1005 // Diagnose non-id-compatible type arguments.
1006 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1007 diag::err_objc_type_arg_not_id_compatible)
1008 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1009
1010 if (failOnError)
1011 return QualType();
1012
1013 return type;
1014 }
1015
1016 // Make sure we didn't have the wrong number of arguments.
1017 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1018 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1019 << (typeArgs.size() < typeParams->size())
1020 << objcClass->getDeclName()
1021 << (unsigned)finalTypeArgs.size()
1022 << (unsigned)numTypeParams;
1023 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1024 << objcClass;
1025
1026 if (failOnError)
1027 return QualType();
1028
1029 return type;
1030 }
1031
1032 // Success. Form the specialized type.
1033 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1034}
1035
1036QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1037 SourceLocation ProtocolLAngleLoc,
1038 ArrayRef<ObjCProtocolDecl *> Protocols,
1039 ArrayRef<SourceLocation> ProtocolLocs,
1040 SourceLocation ProtocolRAngleLoc,
1041 bool FailOnError) {
1042 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1043 if (!Protocols.empty()) {
1044 bool HasError;
1045 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1046 HasError);
1047 if (HasError) {
1048 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1049 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1050 if (FailOnError) Result = QualType();
1051 }
1052 if (FailOnError && Result.isNull())
1053 return QualType();
1054 }
1055
1056 return Result;
1057}
1058
1059QualType Sema::BuildObjCObjectType(QualType BaseType,
1060 SourceLocation Loc,
1061 SourceLocation TypeArgsLAngleLoc,
1062 ArrayRef<TypeSourceInfo *> TypeArgs,
1063 SourceLocation TypeArgsRAngleLoc,
1064 SourceLocation ProtocolLAngleLoc,
1065 ArrayRef<ObjCProtocolDecl *> Protocols,
1066 ArrayRef<SourceLocation> ProtocolLocs,
1067 SourceLocation ProtocolRAngleLoc,
1068 bool FailOnError) {
1069 QualType Result = BaseType;
1070 if (!TypeArgs.empty()) {
6
Assuming the condition is true
7
Taking true branch
1071 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
8
Calling 'applyObjCTypeArgs'
1072 SourceRange(TypeArgsLAngleLoc,
1073 TypeArgsRAngleLoc),
1074 FailOnError);
1075 if (FailOnError && Result.isNull())
1076 return QualType();
1077 }
1078
1079 if (!Protocols.empty()) {
1080 bool HasError;
1081 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1082 HasError);
1083 if (HasError) {
1084 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1085 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1086 if (FailOnError) Result = QualType();
1087 }
1088 if (FailOnError && Result.isNull())
1089 return QualType();
1090 }
1091
1092 return Result;
1093}
1094
1095TypeResult Sema::actOnObjCProtocolQualifierType(
1096 SourceLocation lAngleLoc,
1097 ArrayRef<Decl *> protocols,
1098 ArrayRef<SourceLocation> protocolLocs,
1099 SourceLocation rAngleLoc) {
1100 // Form id<protocol-list>.
1101 QualType Result = Context.getObjCObjectType(
1102 Context.ObjCBuiltinIdTy, { },
1103 llvm::makeArrayRef(
1104 (ObjCProtocolDecl * const *)protocols.data(),
1105 protocols.size()),
1106 false);
1107 Result = Context.getObjCObjectPointerType(Result);
1108
1109 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1110 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1111
1112 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1113 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1114
1115 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1116 .castAs<ObjCObjectTypeLoc>();
1117 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1118 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1119
1120 // No type arguments.
1121 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1122 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1123
1124 // Fill in protocol qualifiers.
1125 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1126 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1127 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1128 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1129
1130 // We're done. Return the completed type to the parser.
1131 return CreateParsedType(Result, ResultTInfo);
1132}
1133
1134TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1135 Scope *S,
1136 SourceLocation Loc,
1137 ParsedType BaseType,
1138 SourceLocation TypeArgsLAngleLoc,
1139 ArrayRef<ParsedType> TypeArgs,
1140 SourceLocation TypeArgsRAngleLoc,
1141 SourceLocation ProtocolLAngleLoc,
1142 ArrayRef<Decl *> Protocols,
1143 ArrayRef<SourceLocation> ProtocolLocs,
1144 SourceLocation ProtocolRAngleLoc) {
1145 TypeSourceInfo *BaseTypeInfo = nullptr;
1146 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1147 if (T.isNull())
1
Taking false branch
1148 return true;
1149
1150 // Handle missing type-source info.
1151 if (!BaseTypeInfo
1.1
'BaseTypeInfo' is null
)
2
Taking true branch
1152 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1153
1154 // Extract type arguments.
1155 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1156 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
3
Assuming 'i' is equal to 'n'
4
Loop condition is false. Execution continues on line 1169
1157 TypeSourceInfo *TypeArgInfo = nullptr;
1158 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1159 if (TypeArg.isNull()) {
1160 ActualTypeArgInfos.clear();
1161 break;
1162 }
1163
1164 assert(TypeArgInfo && "No type source info?")(static_cast <bool> (TypeArgInfo && "No type source info?"
) ? void (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "clang/lib/Sema/SemaType.cpp", 1164, __extension__ __PRETTY_FUNCTION__
))
;
1165 ActualTypeArgInfos.push_back(TypeArgInfo);
1166 }
1167
1168 // Build the object type.
1169 QualType Result = BuildObjCObjectType(
5
Calling 'Sema::BuildObjCObjectType'
1170 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1171 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1172 ProtocolLAngleLoc,
1173 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1174 Protocols.size()),
1175 ProtocolLocs, ProtocolRAngleLoc,
1176 /*FailOnError=*/false);
1177
1178 if (Result == T)
1179 return BaseType;
1180
1181 // Create source information for this type.
1182 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1183 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1184
1185 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1186 // object pointer type. Fill in source information for it.
1187 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1188 // The '*' is implicit.
1189 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1190 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1191 }
1192
1193 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1194 // Protocol qualifier information.
1195 if (OTPTL.getNumProtocols() > 0) {
1196 assert(OTPTL.getNumProtocols() == Protocols.size())(static_cast <bool> (OTPTL.getNumProtocols() == Protocols
.size()) ? void (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "clang/lib/Sema/SemaType.cpp", 1196, __extension__ __PRETTY_FUNCTION__
))
;
1197 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1198 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1199 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1200 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1201 }
1202
1203 // We're done. Return the completed type to the parser.
1204 return CreateParsedType(Result, ResultTInfo);
1205 }
1206
1207 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1208
1209 // Type argument information.
1210 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1211 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())(static_cast <bool> (ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos
.size()) ? void (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "clang/lib/Sema/SemaType.cpp", 1211, __extension__ __PRETTY_FUNCTION__
))
;
1212 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1213 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1214 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1215 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1216 } else {
1217 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1218 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1219 }
1220
1221 // Protocol qualifier information.
1222 if (ObjCObjectTL.getNumProtocols() > 0) {
1223 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())(static_cast <bool> (ObjCObjectTL.getNumProtocols() == Protocols
.size()) ? void (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "clang/lib/Sema/SemaType.cpp", 1223, __extension__ __PRETTY_FUNCTION__
))
;
1224 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1225 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1226 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1227 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1228 } else {
1229 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1230 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1231 }
1232
1233 // Base type.
1234 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1235 if (ObjCObjectTL.getType() == T)
1236 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1237 else
1238 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1239
1240 // We're done. Return the completed type to the parser.
1241 return CreateParsedType(Result, ResultTInfo);
1242}
1243
1244static OpenCLAccessAttr::Spelling
1245getImageAccess(const ParsedAttributesView &Attrs) {
1246 for (const ParsedAttr &AL : Attrs)
1247 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1248 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1249 return OpenCLAccessAttr::Keyword_read_only;
1250}
1251
1252static UnaryTransformType::UTTKind
1253TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
1254 switch (SwitchTST) {
1255#define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
1256 case TST_##Trait: \
1257 return UnaryTransformType::Enum;
1258#include "clang/Basic/TransformTypeTraits.def"
1259 default:
1260 llvm_unreachable("attempted to parse a non-unary transform builtin")::llvm::llvm_unreachable_internal("attempted to parse a non-unary transform builtin"
, "clang/lib/Sema/SemaType.cpp", 1260)
;
1261 }
1262}
1263
1264/// Convert the specified declspec to the appropriate type
1265/// object.
1266/// \param state Specifies the declarator containing the declaration specifier
1267/// to be converted, along with other associated processing state.
1268/// \returns The type described by the declaration specifiers. This function
1269/// never returns null.
1270static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1271 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1272 // checking.
1273
1274 Sema &S = state.getSema();
1275 Declarator &declarator = state.getDeclarator();
1276 DeclSpec &DS = declarator.getMutableDeclSpec();
1277 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1278 if (DeclLoc.isInvalid())
1279 DeclLoc = DS.getBeginLoc();
1280
1281 ASTContext &Context = S.Context;
1282
1283 QualType Result;
1284 switch (DS.getTypeSpecType()) {
1285 case DeclSpec::TST_void:
1286 Result = Context.VoidTy;
1287 break;
1288 case DeclSpec::TST_char:
1289 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1290 Result = Context.CharTy;
1291 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1292 Result = Context.SignedCharTy;
1293 else {
1294 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1295, __extension__ __PRETTY_FUNCTION__
))
1295 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1295, __extension__ __PRETTY_FUNCTION__
))
;
1296 Result = Context.UnsignedCharTy;
1297 }
1298 break;
1299 case DeclSpec::TST_wchar:
1300 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1301 Result = Context.WCharTy;
1302 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1303 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1304 << DS.getSpecifierName(DS.getTypeSpecType(),
1305 Context.getPrintingPolicy());
1306 Result = Context.getSignedWCharType();
1307 } else {
1308 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1309, __extension__ __PRETTY_FUNCTION__
))
1309 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unsigned && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1309, __extension__ __PRETTY_FUNCTION__
))
;
1310 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1311 << DS.getSpecifierName(DS.getTypeSpecType(),
1312 Context.getPrintingPolicy());
1313 Result = Context.getUnsignedWCharType();
1314 }
1315 break;
1316 case DeclSpec::TST_char8:
1317 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
1318 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
;
1319 Result = Context.Char8Ty;
1320 break;
1321 case DeclSpec::TST_char16:
1322 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1323, __extension__ __PRETTY_FUNCTION__
))
1323 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1323, __extension__ __PRETTY_FUNCTION__
))
;
1324 Result = Context.Char16Ty;
1325 break;
1326 case DeclSpec::TST_char32:
1327 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1328, __extension__ __PRETTY_FUNCTION__
))
1328 "Unknown TSS value")(static_cast <bool> (DS.getTypeSpecSign() == TypeSpecifierSign
::Unspecified && "Unknown TSS value") ? void (0) : __assert_fail
("DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Unknown TSS value\""
, "clang/lib/Sema/SemaType.cpp", 1328, __extension__ __PRETTY_FUNCTION__
))
;
1329 Result = Context.Char32Ty;
1330 break;
1331 case DeclSpec::TST_unspecified:
1332 // If this is a missing declspec in a block literal return context, then it
1333 // is inferred from the return statements inside the block.
1334 // The declspec is always missing in a lambda expr context; it is either
1335 // specified with a trailing return type or inferred.
1336 if (S.getLangOpts().CPlusPlus14 &&
1337 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1338 // In C++1y, a lambda's implicit return type is 'auto'.
1339 Result = Context.getAutoDeductType();
1340 break;
1341 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1342 checkOmittedBlockReturnType(S, declarator,
1343 Context.DependentTy)) {
1344 Result = Context.DependentTy;
1345 break;
1346 }
1347
1348 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1349 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1350 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1351 // Note that the one exception to this is function definitions, which are
1352 // allowed to be completely missing a declspec. This is handled in the
1353 // parser already though by it pretending to have seen an 'int' in this
1354 // case.
1355 if (S.getLangOpts().isImplicitIntRequired()) {
1356 S.Diag(DeclLoc, diag::warn_missing_type_specifier)
1357 << DS.getSourceRange()
1358 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1359 } else if (!DS.hasTypeSpecifier()) {
1360 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1361 // "At least one type specifier shall be given in the declaration
1362 // specifiers in each declaration, and in the specifier-qualifier list in
1363 // each struct declaration and type name."
1364 if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
1365 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1366 << DS.getSourceRange();
1367
1368 // When this occurs, often something is very broken with the value
1369 // being declared, poison it as invalid so we don't get chains of
1370 // errors.
1371 declarator.setInvalidType(true);
1372 } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1373 DS.isTypeSpecPipe()) {
1374 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1375 << DS.getSourceRange();
1376 declarator.setInvalidType(true);
1377 } else {
1378 assert(S.getLangOpts().isImplicitIntAllowed() &&(static_cast <bool> (S.getLangOpts().isImplicitIntAllowed
() && "implicit int is disabled?") ? void (0) : __assert_fail
("S.getLangOpts().isImplicitIntAllowed() && \"implicit int is disabled?\""
, "clang/lib/Sema/SemaType.cpp", 1379, __extension__ __PRETTY_FUNCTION__
))
1379 "implicit int is disabled?")(static_cast <bool> (S.getLangOpts().isImplicitIntAllowed
() && "implicit int is disabled?") ? void (0) : __assert_fail
("S.getLangOpts().isImplicitIntAllowed() && \"implicit int is disabled?\""
, "clang/lib/Sema/SemaType.cpp", 1379, __extension__ __PRETTY_FUNCTION__
))
;
1380 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1381 << DS.getSourceRange()
1382 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1383 }
1384 }
1385
1386 [[fallthrough]];
1387 case DeclSpec::TST_int: {
1388 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1389 switch (DS.getTypeSpecWidth()) {
1390 case TypeSpecifierWidth::Unspecified:
1391 Result = Context.IntTy;
1392 break;
1393 case TypeSpecifierWidth::Short:
1394 Result = Context.ShortTy;
1395 break;
1396 case TypeSpecifierWidth::Long:
1397 Result = Context.LongTy;
1398 break;
1399 case TypeSpecifierWidth::LongLong:
1400 Result = Context.LongLongTy;
1401
1402 // 'long long' is a C99 or C++11 feature.
1403 if (!S.getLangOpts().C99) {
1404 if (S.getLangOpts().CPlusPlus)
1405 S.Diag(DS.getTypeSpecWidthLoc(),
1406 S.getLangOpts().CPlusPlus11 ?
1407 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1408 else
1409 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1410 }
1411 break;
1412 }
1413 } else {
1414 switch (DS.getTypeSpecWidth()) {
1415 case TypeSpecifierWidth::Unspecified:
1416 Result = Context.UnsignedIntTy;
1417 break;
1418 case TypeSpecifierWidth::Short:
1419 Result = Context.UnsignedShortTy;
1420 break;
1421 case TypeSpecifierWidth::Long:
1422 Result = Context.UnsignedLongTy;
1423 break;
1424 case TypeSpecifierWidth::LongLong:
1425 Result = Context.UnsignedLongLongTy;
1426
1427 // 'long long' is a C99 or C++11 feature.
1428 if (!S.getLangOpts().C99) {
1429 if (S.getLangOpts().CPlusPlus)
1430 S.Diag(DS.getTypeSpecWidthLoc(),
1431 S.getLangOpts().CPlusPlus11 ?
1432 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1433 else
1434 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1435 }
1436 break;
1437 }
1438 }
1439 break;
1440 }
1441 case DeclSpec::TST_bitint: {
1442 if (!S.Context.getTargetInfo().hasBitIntType())
1443 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1444 Result =
1445 S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1446 DS.getRepAsExpr(), DS.getBeginLoc());
1447 if (Result.isNull()) {
1448 Result = Context.IntTy;
1449 declarator.setInvalidType(true);
1450 }
1451 break;
1452 }
1453 case DeclSpec::TST_accum: {
1454 switch (DS.getTypeSpecWidth()) {
1455 case TypeSpecifierWidth::Short:
1456 Result = Context.ShortAccumTy;
1457 break;
1458 case TypeSpecifierWidth::Unspecified:
1459 Result = Context.AccumTy;
1460 break;
1461 case TypeSpecifierWidth::Long:
1462 Result = Context.LongAccumTy;
1463 break;
1464 case TypeSpecifierWidth::LongLong:
1465 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "clang/lib/Sema/SemaType.cpp", 1465)
;
1466 }
1467
1468 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1469 Result = Context.getCorrespondingUnsignedType(Result);
1470
1471 if (DS.isTypeSpecSat())
1472 Result = Context.getCorrespondingSaturatedType(Result);
1473
1474 break;
1475 }
1476 case DeclSpec::TST_fract: {
1477 switch (DS.getTypeSpecWidth()) {
1478 case TypeSpecifierWidth::Short:
1479 Result = Context.ShortFractTy;
1480 break;
1481 case TypeSpecifierWidth::Unspecified:
1482 Result = Context.FractTy;
1483 break;
1484 case TypeSpecifierWidth::Long:
1485 Result = Context.LongFractTy;
1486 break;
1487 case TypeSpecifierWidth::LongLong:
1488 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "clang/lib/Sema/SemaType.cpp", 1488)
;
1489 }
1490
1491 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1492 Result = Context.getCorrespondingUnsignedType(Result);
1493
1494 if (DS.isTypeSpecSat())
1495 Result = Context.getCorrespondingSaturatedType(Result);
1496
1497 break;
1498 }
1499 case DeclSpec::TST_int128:
1500 if (!S.Context.getTargetInfo().hasInt128Type() &&
1501 !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1502 (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice)))
1503 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1504 << "__int128";
1505 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1506 Result = Context.UnsignedInt128Ty;
1507 else
1508 Result = Context.Int128Ty;
1509 break;
1510 case DeclSpec::TST_float16:
1511 // CUDA host and device may have different _Float16 support, therefore
1512 // do not diagnose _Float16 usage to avoid false alarm.
1513 // ToDo: more precise diagnostics for CUDA.
1514 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1515 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1516 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1517 << "_Float16";
1518 Result = Context.Float16Ty;
1519 break;
1520 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1521 case DeclSpec::TST_BFloat16:
1522 if (!S.Context.getTargetInfo().hasBFloat16Type())
1523 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1524 << "__bf16";
1525 Result = Context.BFloat16Ty;
1526 break;
1527 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1528 case DeclSpec::TST_double:
1529 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1530 Result = Context.LongDoubleTy;
1531 else
1532 Result = Context.DoubleTy;
1533 if (S.getLangOpts().OpenCL) {
1534 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1535 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1536 << 0 << Result
1537 << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1538 ? "cl_khr_fp64 and __opencl_c_fp64"
1539 : "cl_khr_fp64");
1540 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1541 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1542 }
1543 break;
1544 case DeclSpec::TST_float128:
1545 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1546 !S.getLangOpts().SYCLIsDevice &&
1547 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1548 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1549 << "__float128";
1550 Result = Context.Float128Ty;
1551 break;
1552 case DeclSpec::TST_ibm128:
1553 if (!S.Context.getTargetInfo().hasIbm128Type() &&
1554 !S.getLangOpts().SYCLIsDevice &&
1555 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1556 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1557 Result = Context.Ibm128Ty;
1558 break;
1559 case DeclSpec::TST_bool:
1560 Result = Context.BoolTy; // _Bool or bool
1561 break;
1562 case DeclSpec::TST_decimal32: // _Decimal32
1563 case DeclSpec::TST_decimal64: // _Decimal64
1564 case DeclSpec::TST_decimal128: // _Decimal128
1565 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1566 Result = Context.IntTy;
1567 declarator.setInvalidType(true);
1568 break;
1569 case DeclSpec::TST_class:
1570 case DeclSpec::TST_enum:
1571 case DeclSpec::TST_union:
1572 case DeclSpec::TST_struct:
1573 case DeclSpec::TST_interface: {
1574 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1575 if (!D) {
1576 // This can happen in C++ with ambiguous lookups.
1577 Result = Context.IntTy;
1578 declarator.setInvalidType(true);
1579 break;
1580 }
1581
1582 // If the type is deprecated or unavailable, diagnose it.
1583 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1584
1585 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1588, __extension__ __PRETTY_FUNCTION__
))
1586 DS.getTypeSpecComplex() == 0 &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1588, __extension__ __PRETTY_FUNCTION__
))
1587 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1588, __extension__ __PRETTY_FUNCTION__
))
1588 "No qualifiers on tag names!")(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"No qualifiers on tag names!") ? void (0) : __assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"No qualifiers on tag names!\""
, "clang/lib/Sema/SemaType.cpp", 1588, __extension__ __PRETTY_FUNCTION__
))
;
1589
1590 // TypeQuals handled by caller.
1591 Result = Context.getTypeDeclType(D);
1592
1593 // In both C and C++, make an ElaboratedType.
1594 ElaboratedTypeKeyword Keyword
1595 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1596 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1597 DS.isTypeSpecOwned() ? D : nullptr);
1598 break;
1599 }
1600 case DeclSpec::TST_typename: {
1601 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1604, __extension__ __PRETTY_FUNCTION__
))
1602 DS.getTypeSpecComplex() == 0 &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1604, __extension__ __PRETTY_FUNCTION__
))
1603 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1604, __extension__ __PRETTY_FUNCTION__
))
1604 "Can't handle qualifiers on typedef names yet!")(static_cast <bool> (DS.getTypeSpecWidth() == TypeSpecifierWidth
::Unspecified && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
"Can't handle qualifiers on typedef names yet!") ? void (0) :
__assert_fail ("DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && \"Can't handle qualifiers on typedef names yet!\""
, "clang/lib/Sema/SemaType.cpp", 1604, __extension__ __PRETTY_FUNCTION__
))
;
1605 Result = S.GetTypeFromParser(DS.getRepAsType());
1606 if (Result.isNull()) {
1607 declarator.setInvalidType(true);
1608 }
1609
1610 // TypeQuals handled by caller.
1611 break;
1612 }
1613 case DeclSpec::TST_typeof_unqualType:
1614 case DeclSpec::TST_typeofType:
1615 // FIXME: Preserve type source info.
1616 Result = S.GetTypeFromParser(DS.getRepAsType());
1617 assert(!Result.isNull() && "Didn't get a type for typeof?")(static_cast <bool> (!Result.isNull() && "Didn't get a type for typeof?"
) ? void (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "clang/lib/Sema/SemaType.cpp", 1617, __extension__ __PRETTY_FUNCTION__
))
;
1618 if (!Result->isDependentType())
1619 if (const TagType *TT = Result->getAs<TagType>())
1620 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1621 // TypeQuals handled by caller.
1622 Result = Context.getTypeOfType(
1623 Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1624 ? TypeOfKind::Unqualified
1625 : TypeOfKind::Qualified);
1626 break;
1627 case DeclSpec::TST_typeof_unqualExpr:
1628 case DeclSpec::TST_typeofExpr: {
1629 Expr *E = DS.getRepAsExpr();
1630 assert(E && "Didn't get an expression for typeof?")(static_cast <bool> (E && "Didn't get an expression for typeof?"
) ? void (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "clang/lib/Sema/SemaType.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
;
1631 // TypeQuals handled by caller.
1632 Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1633 DeclSpec::TST_typeof_unqualExpr
1634 ? TypeOfKind::Unqualified
1635 : TypeOfKind::Qualified);
1636 if (Result.isNull()) {
1637 Result = Context.IntTy;
1638 declarator.setInvalidType(true);
1639 }
1640 break;
1641 }
1642 case DeclSpec::TST_decltype: {
1643 Expr *E = DS.getRepAsExpr();
1644 assert(E && "Didn't get an expression for decltype?")(static_cast <bool> (E && "Didn't get an expression for decltype?"
) ? void (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "clang/lib/Sema/SemaType.cpp", 1644, __extension__ __PRETTY_FUNCTION__
))
;
1645 // TypeQuals handled by caller.
1646 Result = S.BuildDecltypeType(E);
1647 if (Result.isNull()) {
1648 Result = Context.IntTy;
1649 declarator.setInvalidType(true);
1650 }
1651 break;
1652 }
1653#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1654#include "clang/Basic/TransformTypeTraits.def"
1655 Result = S.GetTypeFromParser(DS.getRepAsType());
1656 assert(!Result.isNull() && "Didn't get a type for the transformation?")(static_cast <bool> (!Result.isNull() && "Didn't get a type for the transformation?"
) ? void (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for the transformation?\""
, "clang/lib/Sema/SemaType.cpp", 1656, __extension__ __PRETTY_FUNCTION__
))
;
1657 Result = S.BuildUnaryTransformType(
1658 Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1659 DS.getTypeSpecTypeLoc());
1660 if (Result.isNull()) {
1661 Result = Context.IntTy;
1662 declarator.setInvalidType(true);
1663 }
1664 break;
1665
1666 case DeclSpec::TST_auto:
1667 case DeclSpec::TST_decltype_auto: {
1668 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1669 ? AutoTypeKeyword::DecltypeAuto
1670 : AutoTypeKeyword::Auto;
1671
1672 ConceptDecl *TypeConstraintConcept = nullptr;
1673 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1674 if (DS.isConstrainedAuto()) {
1675 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1676 TypeConstraintConcept =
1677 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1678 TemplateArgumentListInfo TemplateArgsInfo;
1679 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1680 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1681 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1682 TemplateId->NumArgs);
1683 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1684 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1685 TemplateArgs.push_back(ArgLoc.getArgument());
1686 } else {
1687 declarator.setInvalidType(true);
1688 }
1689 }
1690 Result = S.Context.getAutoType(QualType(), AutoKW,
1691 /*IsDependent*/ false, /*IsPack=*/false,
1692 TypeConstraintConcept, TemplateArgs);
1693 break;
1694 }
1695
1696 case DeclSpec::TST_auto_type:
1697 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1698 break;
1699
1700 case DeclSpec::TST_unknown_anytype:
1701 Result = Context.UnknownAnyTy;
1702 break;
1703
1704 case DeclSpec::TST_atomic:
1705 Result = S.GetTypeFromParser(DS.getRepAsType());
1706 assert(!Result.isNull() && "Didn't get a type for _Atomic?")(static_cast <bool> (!Result.isNull() && "Didn't get a type for _Atomic?"
) ? void (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "clang/lib/Sema/SemaType.cpp", 1706, __extension__ __PRETTY_FUNCTION__
))
;
1707 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1708 if (Result.isNull()) {
1709 Result = Context.IntTy;
1710 declarator.setInvalidType(true);
1711 }
1712 break;
1713
1714#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1715 case DeclSpec::TST_##ImgType##_t: \
1716 switch (getImageAccess(DS.getAttributes())) { \
1717 case OpenCLAccessAttr::Keyword_write_only: \
1718 Result = Context.Id##WOTy; \
1719 break; \
1720 case OpenCLAccessAttr::Keyword_read_write: \
1721 Result = Context.Id##RWTy; \
1722 break; \
1723 case OpenCLAccessAttr::Keyword_read_only: \
1724 Result = Context.Id##ROTy; \
1725 break; \
1726 case OpenCLAccessAttr::SpellingNotCalculated: \
1727 llvm_unreachable("Spelling not yet calculated")::llvm::llvm_unreachable_internal("Spelling not yet calculated"
, "clang/lib/Sema/SemaType.cpp", 1727)
; \
1728 } \
1729 break;
1730#include "clang/Basic/OpenCLImageTypes.def"
1731
1732 case DeclSpec::TST_error:
1733 Result = Context.IntTy;
1734 declarator.setInvalidType(true);
1735 break;
1736 }
1737
1738 // FIXME: we want resulting declarations to be marked invalid, but claiming
1739 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1740 // a null type.
1741 if (Result->containsErrors())
1742 declarator.setInvalidType();
1743
1744 if (S.getLangOpts().OpenCL) {
1745 const auto &OpenCLOptions = S.getOpenCLOptions();
1746 bool IsOpenCLC30Compatible =
1747 S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1748 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1749 // support.
1750 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1751 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1752 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1753 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1754 // only when the optional feature is supported
1755 if ((Result->isImageType() || Result->isSamplerT()) &&
1756 (IsOpenCLC30Compatible &&
1757 !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1758 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1759 << 0 << Result << "__opencl_c_images";
1760 declarator.setInvalidType();
1761 } else if (Result->isOCLImage3dWOType() &&
1762 !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1763 S.getLangOpts())) {
1764 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1765 << 0 << Result
1766 << (IsOpenCLC30Compatible
1767 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1768 : "cl_khr_3d_image_writes");
1769 declarator.setInvalidType();
1770 }
1771 }
1772
1773 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1774 DS.getTypeSpecType() == DeclSpec::TST_fract;
1775
1776 // Only fixed point types can be saturated
1777 if (DS.isTypeSpecSat() && !IsFixedPointType)
1778 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1779 << DS.getSpecifierName(DS.getTypeSpecType(),
1780 Context.getPrintingPolicy());
1781
1782 // Handle complex types.
1783 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1784 if (S.getLangOpts().Freestanding)
1785 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1786 Result = Context.getComplexType(Result);
1787 } else if (DS.isTypeAltiVecVector()) {
1788 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1789 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")(static_cast <bool> (typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? void (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "clang/lib/Sema/SemaType.cpp", 1789, __extension__ __PRETTY_FUNCTION__
))
;
1790 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1791 if (DS.isTypeAltiVecPixel())
1792 VecKind = VectorType::AltiVecPixel;
1793 else if (DS.isTypeAltiVecBool())
1794 VecKind = VectorType::AltiVecBool;
1795 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1796 }
1797
1798 // FIXME: Imaginary.
1799 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1800 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1801
1802 // Before we process any type attributes, synthesize a block literal
1803 // function declarator if necessary.
1804 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1805 maybeSynthesizeBlockSignature(state, Result);
1806
1807 // Apply any type attributes from the decl spec. This may cause the
1808 // list of type attributes to be temporarily saved while the type
1809 // attributes are pushed around.
1810 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1811 if (!DS.isTypeSpecPipe()) {
1812 // We also apply declaration attributes that "slide" to the decl spec.
1813 // Ordering can be important for attributes. The decalaration attributes
1814 // come syntactically before the decl spec attributes, so we process them
1815 // in that order.
1816 ParsedAttributesView SlidingAttrs;
1817 for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1818 if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1819 SlidingAttrs.addAtEnd(&AL);
1820
1821 // For standard syntax attributes, which would normally appertain to the
1822 // declaration here, suggest moving them to the type instead. But only
1823 // do this for our own vendor attributes; moving other vendors'
1824 // attributes might hurt portability.
1825 // There's one special case that we need to deal with here: The
1826 // `MatrixType` attribute may only be used in a typedef declaration. If
1827 // it's being used anywhere else, don't output the warning as
1828 // ProcessDeclAttributes() will output an error anyway.
1829 if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1830 !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1831 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1832 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1833 << AL;
1834 }
1835 }
1836 }
1837 // During this call to processTypeAttrs(),
1838 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1839 // reference to the DeclSpec attributes, rather than the declaration
1840 // attributes. However, this doesn't matter, as getCurrentAttributes()
1841 // is only called when distributing attributes from one attribute list
1842 // to another. Declaration attributes are always C++11 attributes, and these
1843 // are never distributed.
1844 processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1845 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1846 }
1847
1848 // Apply const/volatile/restrict qualifiers to T.
1849 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1850 // Warn about CV qualifiers on function types.
1851 // C99 6.7.3p8:
1852 // If the specification of a function type includes any type qualifiers,
1853 // the behavior is undefined.
1854 // C++11 [dcl.fct]p7:
1855 // The effect of a cv-qualifier-seq in a function declarator is not the
1856 // same as adding cv-qualification on top of the function type. In the
1857 // latter case, the cv-qualifiers are ignored.
1858 if (Result->isFunctionType()) {
1859 diagnoseAndRemoveTypeQualifiers(
1860 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1861 S.getLangOpts().CPlusPlus
1862 ? diag::warn_typecheck_function_qualifiers_ignored
1863 : diag::warn_typecheck_function_qualifiers_unspecified);
1864 // No diagnostic for 'restrict' or '_Atomic' applied to a
1865 // function type; we'll diagnose those later, in BuildQualifiedType.
1866 }
1867
1868 // C++11 [dcl.ref]p1:
1869 // Cv-qualified references are ill-formed except when the
1870 // cv-qualifiers are introduced through the use of a typedef-name
1871 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1872 //
1873 // There don't appear to be any other contexts in which a cv-qualified
1874 // reference type could be formed, so the 'ill-formed' clause here appears
1875 // to never happen.
1876 if (TypeQuals && Result->isReferenceType()) {
1877 diagnoseAndRemoveTypeQualifiers(
1878 S, DS, TypeQuals, Result,
1879 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1880 diag::warn_typecheck_reference_qualifiers);
1881 }
1882
1883 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1884 // than once in the same specifier-list or qualifier-list, either directly
1885 // or via one or more typedefs."
1886 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1887 && TypeQuals & Result.getCVRQualifiers()) {
1888 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1889 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1890 << "const";
1891 }
1892
1893 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1894 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1895 << "volatile";
1896 }
1897
1898 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1899 // produce a warning in this case.
1900 }
1901
1902 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1903
1904 // If adding qualifiers fails, just use the unqualified type.
1905 if (Qualified.isNull())
1906 declarator.setInvalidType(true);
1907 else
1908 Result = Qualified;
1909 }
1910
1911 assert(!Result.isNull() && "This function should not return a null type")(static_cast <bool> (!Result.isNull() && "This function should not return a null type"
) ? void (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "clang/lib/Sema/SemaType.cpp", 1911, __extension__ __PRETTY_FUNCTION__
))
;
1912 return Result;
1913}
1914
1915static std::string getPrintableNameForEntity(DeclarationName Entity) {
1916 if (Entity)
1917 return Entity.getAsString();
1918
1919 return "type name";
1920}
1921
1922static bool isDependentOrGNUAutoType(QualType T) {
1923 if (T->isDependentType())
1924 return true;
1925
1926 const auto *AT = dyn_cast<AutoType>(T);
1927 return AT && AT->isGNUAutoType();
1928}
1929
1930QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1931 Qualifiers Qs, const DeclSpec *DS) {
1932 if (T.isNull())
1933 return QualType();
1934
1935 // Ignore any attempt to form a cv-qualified reference.
1936 if (T->isReferenceType()) {
1937 Qs.removeConst();
1938 Qs.removeVolatile();
1939 }
1940
1941 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1942 // object or incomplete types shall not be restrict-qualified."
1943 if (Qs.hasRestrict()) {
1944 unsigned DiagID = 0;
1945 QualType ProblemTy;
1946
1947 if (T->isAnyPointerType() || T->isReferenceType() ||
1948 T->isMemberPointerType()) {
1949 QualType EltTy;
1950 if (T->isObjCObjectPointerType())
1951 EltTy = T;
1952 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1953 EltTy = PTy->getPointeeType();
1954 else
1955 EltTy = T->getPointeeType();
1956
1957 // If we have a pointer or reference, the pointee must have an object
1958 // incomplete type.
1959 if (!EltTy->isIncompleteOrObjectType()) {
1960 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1961 ProblemTy = EltTy;
1962 }
1963 } else if (!isDependentOrGNUAutoType(T)) {
1964 // For an __auto_type variable, we may not have seen the initializer yet
1965 // and so have no idea whether the underlying type is a pointer type or
1966 // not.
1967 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1968 ProblemTy = T;
1969 }
1970
1971 if (DiagID) {
1972 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1973 Qs.removeRestrict();
1974 }
1975 }
1976
1977 return Context.getQualifiedType(T, Qs);
1978}
1979
1980QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1981 unsigned CVRAU, const DeclSpec *DS) {
1982 if (T.isNull())
1983 return QualType();
1984
1985 // Ignore any attempt to form a cv-qualified reference.
1986 if (T->isReferenceType())
1987 CVRAU &=
1988 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1989
1990 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1991 // TQ_unaligned;
1992 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1993
1994 // C11 6.7.3/5:
1995 // If the same qualifier appears more than once in the same
1996 // specifier-qualifier-list, either directly or via one or more typedefs,
1997 // the behavior is the same as if it appeared only once.
1998 //
1999 // It's not specified what happens when the _Atomic qualifier is applied to
2000 // a type specified with the _Atomic specifier, but we assume that this
2001 // should be treated as if the _Atomic qualifier appeared multiple times.
2002 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
2003 // C11 6.7.3/5:
2004 // If other qualifiers appear along with the _Atomic qualifier in a
2005 // specifier-qualifier-list, the resulting type is the so-qualified
2006 // atomic type.
2007 //
2008 // Don't need to worry about array types here, since _Atomic can't be
2009 // applied to such types.
2010 SplitQualType Split = T.getSplitUnqualifiedType();
2011 T = BuildAtomicType(QualType(Split.Ty, 0),
2012 DS ? DS->getAtomicSpecLoc() : Loc);
2013 if (T.isNull())
2014 return T;
2015 Split.Quals.addCVRQualifiers(CVR);
2016 return BuildQualifiedType(T, Loc, Split.Quals);
2017 }
2018
2019 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
2020 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
2021 return BuildQualifiedType(T, Loc, Q, DS);
2022}
2023
2024/// Build a paren type including \p T.
2025QualType Sema::BuildParenType(QualType T) {
2026 return Context.getParenType(T);
2027}
2028
2029/// Given that we're building a pointer or reference to the given
2030static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
2031 SourceLocation loc,
2032 bool isReference) {
2033 // Bail out if retention is unrequired or already specified.
2034 if (!type->isObjCLifetimeType() ||
2035 type.getObjCLifetime() != Qualifiers::OCL_None)
2036 return type;
2037
2038 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
2039
2040 // If the object type is const-qualified, we can safely use
2041 // __unsafe_unretained. This is safe (because there are no read
2042 // barriers), and it'll be safe to coerce anything but __weak* to
2043 // the resulting type.
2044 if (type.isConstQualified()) {
2045 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2046
2047 // Otherwise, check whether the static type does not require
2048 // retaining. This currently only triggers for Class (possibly
2049 // protocol-qualifed, and arrays thereof).
2050 } else if (type->isObjCARCImplicitlyUnretainedType()) {
2051 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2052
2053 // If we are in an unevaluated context, like sizeof, skip adding a
2054 // qualification.
2055 } else if (S.isUnevaluatedContext()) {
2056 return type;
2057
2058 // If that failed, give an error and recover using __strong. __strong
2059 // is the option most likely to prevent spurious second-order diagnostics,
2060 // like when binding a reference to a field.
2061 } else {
2062 // These types can show up in private ivars in system headers, so
2063 // we need this to not be an error in those cases. Instead we
2064 // want to delay.
2065 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2066 S.DelayedDiagnostics.add(
2067 sema::DelayedDiagnostic::makeForbiddenType(loc,
2068 diag::err_arc_indirect_no_ownership, type, isReference));
2069 } else {
2070 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2071 }
2072 implicitLifetime = Qualifiers::OCL_Strong;
2073 }
2074 assert(implicitLifetime && "didn't infer any lifetime!")(static_cast <bool> (implicitLifetime && "didn't infer any lifetime!"
) ? void (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "clang/lib/Sema/SemaType.cpp", 2074, __extension__ __PRETTY_FUNCTION__
))
;
2075
2076 Qualifiers qs;
2077 qs.addObjCLifetime(implicitLifetime);
2078 return S.Context.getQualifiedType(type, qs);
2079}
2080
2081static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2082 std::string Quals = FnTy->getMethodQuals().getAsString();
2083
2084 switch (FnTy->getRefQualifier()) {
2085 case RQ_None:
2086 break;
2087
2088 case RQ_LValue:
2089 if (!Quals.empty())
2090 Quals += ' ';
2091 Quals += '&';
2092 break;
2093
2094 case RQ_RValue:
2095 if (!Quals.empty())
2096 Quals += ' ';
2097 Quals += "&&";
2098 break;
2099 }
2100
2101 return Quals;
2102}
2103
2104namespace {
2105/// Kinds of declarator that cannot contain a qualified function type.
2106///
2107/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2108/// a function type with a cv-qualifier or a ref-qualifier can only appear
2109/// at the topmost level of a type.
2110///
2111/// Parens and member pointers are permitted. We don't diagnose array and
2112/// function declarators, because they don't allow function types at all.
2113///
2114/// The values of this enum are used in diagnostics.
2115enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2116} // end anonymous namespace
2117
2118/// Check whether the type T is a qualified function type, and if it is,
2119/// diagnose that it cannot be contained within the given kind of declarator.
2120static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2121 QualifiedFunctionKind QFK) {
2122 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2123 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2124 if (!FPT ||
2125 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2126 return false;
2127
2128 S.Diag(Loc, diag::err_compound_qualified_function_type)
2129 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2130 << getFunctionQualifiersAsString(FPT);
2131 return true;
2132}
2133
2134bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2135 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2136 if (!FPT ||
2137 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2138 return false;
2139
2140 Diag(Loc, diag::err_qualified_function_typeid)
2141 << T << getFunctionQualifiersAsString(FPT);
2142 return true;
2143}
2144
2145// Helper to deduce addr space of a pointee type in OpenCL mode.
2146static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2147 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2148 !PointeeType->isSamplerT() &&
2149 !PointeeType.hasAddressSpace())
2150 PointeeType = S.getASTContext().getAddrSpaceQualType(
2151 PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2152 return PointeeType;
2153}
2154
2155/// Build a pointer type.
2156///
2157/// \param T The type to which we'll be building a pointer.
2158///
2159/// \param Loc The location of the entity whose type involves this
2160/// pointer type or, if there is no such entity, the location of the
2161/// type that will have pointer type.
2162///
2163/// \param Entity The name of the entity that involves the pointer
2164/// type, if known.
2165///
2166/// \returns A suitable pointer type, if there are no
2167/// errors. Otherwise, returns a NULL type.
2168QualType Sema::BuildPointerType(QualType T,
2169 SourceLocation Loc, DeclarationName Entity) {
2170 if (T->isReferenceType()) {
2171 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2172 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2173 << getPrintableNameForEntity(Entity) << T;
2174 return QualType();
2175 }
2176
2177 if (T->isFunctionType() && getLangOpts().OpenCL &&
2178 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2179 getLangOpts())) {
2180 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2181 return QualType();
2182 }
2183
2184 if (getLangOpts().HLSL && Loc.isValid()) {
2185 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2186 return QualType();
2187 }
2188
2189 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2190 return QualType();
2191
2192 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")(static_cast <bool> (!T->isObjCObjectType() &&
"Should build ObjCObjectPointerType") ? void (0) : __assert_fail
("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "clang/lib/Sema/SemaType.cpp", 2192, __extension__ __PRETTY_FUNCTION__
))
;
2193
2194 // In ARC, it is forbidden to build pointers to unqualified pointers.
2195 if (getLangOpts().ObjCAutoRefCount)
2196 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2197
2198 if (getLangOpts().OpenCL)
2199 T = deduceOpenCLPointeeAddrSpace(*this, T);
2200
2201 // Build the pointer type.
2202 return Context.getPointerType(T);
2203}
2204
2205/// Build a reference type.
2206///
2207/// \param T The type to which we'll be building a reference.
2208///
2209/// \param Loc The location of the entity whose type involves this
2210/// reference type or, if there is no such entity, the location of the
2211/// type that will have reference type.
2212///
2213/// \param Entity The name of the entity that involves the reference
2214/// type, if known.
2215///
2216/// \returns A suitable reference type, if there are no
2217/// errors. Otherwise, returns a NULL type.
2218QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2219 SourceLocation Loc,
2220 DeclarationName Entity) {
2221 assert(Context.getCanonicalType(T) != Context.OverloadTy &&(static_cast <bool> (Context.getCanonicalType(T) != Context
.OverloadTy && "Unresolved overloaded function type")
? void (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "clang/lib/Sema/SemaType.cpp", 2222, __extension__ __PRETTY_FUNCTION__
))
2222 "Unresolved overloaded function type")(static_cast <bool> (Context.getCanonicalType(T) != Context
.OverloadTy && "Unresolved overloaded function type")
? void (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "clang/lib/Sema/SemaType.cpp", 2222, __extension__ __PRETTY_FUNCTION__
))
;
2223
2224 // C++0x [dcl.ref]p6:
2225 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2226 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2227 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2228 // the type "lvalue reference to T", while an attempt to create the type
2229 // "rvalue reference to cv TR" creates the type TR.
2230 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2231
2232 // C++ [dcl.ref]p4: There shall be no references to references.
2233 //
2234 // According to C++ DR 106, references to references are only
2235 // diagnosed when they are written directly (e.g., "int & &"),
2236 // but not when they happen via a typedef:
2237 //
2238 // typedef int& intref;
2239 // typedef intref& intref2;
2240 //
2241 // Parser::ParseDeclaratorInternal diagnoses the case where
2242 // references are written directly; here, we handle the
2243 // collapsing of references-to-references as described in C++0x.
2244 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2245
2246 // C++ [dcl.ref]p1:
2247 // A declarator that specifies the type "reference to cv void"
2248 // is ill-formed.
2249 if (T->isVoidType()) {
2250 Diag(Loc, diag::err_reference_to_void);
2251 return QualType();
2252 }
2253
2254 if (getLangOpts().HLSL && Loc.isValid()) {
2255 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
2256 return QualType();
2257 }
2258
2259 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2260 return QualType();
2261
2262 if (T->isFunctionType() && getLangOpts().OpenCL &&
2263 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2264 getLangOpts())) {
2265 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2266 return QualType();
2267 }
2268
2269 // In ARC, it is forbidden to build references to unqualified pointers.
2270 if (getLangOpts().ObjCAutoRefCount)
2271 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2272
2273 if (getLangOpts().OpenCL)
2274 T = deduceOpenCLPointeeAddrSpace(*this, T);
2275
2276 // Handle restrict on references.
2277 if (LValueRef)
2278 return Context.getLValueReferenceType(T, SpelledAsLValue);
2279 return Context.getRValueReferenceType(T);
2280}
2281
2282/// Build a Read-only Pipe type.
2283///
2284/// \param T The type to which we'll be building a Pipe.
2285///
2286/// \param Loc We do not use it for now.
2287///
2288/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2289/// NULL type.
2290QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2291 return Context.getReadPipeType(T);
2292}
2293
2294/// Build a Write-only Pipe type.
2295///
2296/// \param T The type to which we'll be building a Pipe.
2297///
2298/// \param Loc We do not use it for now.
2299///
2300/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2301/// NULL type.
2302QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2303 return Context.getWritePipeType(T);
2304}
2305
2306/// Build a bit-precise integer type.
2307///
2308/// \param IsUnsigned Boolean representing the signedness of the type.
2309///
2310/// \param BitWidth Size of this int type in bits, or an expression representing
2311/// that.
2312///
2313/// \param Loc Location of the keyword.
2314QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
2315 SourceLocation Loc) {
2316 if (BitWidth->isInstantiationDependent())
2317 return Context.getDependentBitIntType(IsUnsigned, BitWidth);
2318
2319 llvm::APSInt Bits(32);
2320 ExprResult ICE =
2321 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2322
2323 if (ICE.isInvalid())
2324 return QualType();
2325
2326 size_t NumBits = Bits.getZExtValue();
2327 if (!IsUnsigned && NumBits < 2) {
2328 Diag(Loc, diag::err_bit_int_bad_size) << 0;
2329 return QualType();
2330 }
2331
2332 if (IsUnsigned && NumBits < 1) {
2333 Diag(Loc, diag::err_bit_int_bad_size) << 1;
2334 return QualType();
2335 }
2336
2337 const TargetInfo &TI = getASTContext().getTargetInfo();
2338 if (NumBits > TI.getMaxBitIntWidth()) {
2339 Diag(Loc, diag::err_bit_int_max_size)
2340 << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
2341 return QualType();
2342 }
2343
2344 return Context.getBitIntType(IsUnsigned, NumBits);
2345}
2346
2347/// Check whether the specified array bound can be evaluated using the relevant
2348/// language rules. If so, returns the possibly-converted expression and sets
2349/// SizeVal to the size. If not, but the expression might be a VLA bound,
2350/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2351/// ExprError().
2352static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2353 llvm::APSInt &SizeVal, unsigned VLADiag,
2354 bool VLAIsError) {
2355 if (S.getLangOpts().CPlusPlus14 &&
2356 (VLAIsError ||
2357 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2358 // C++14 [dcl.array]p1:
2359 // The constant-expression shall be a converted constant expression of
2360 // type std::size_t.
2361 //
2362 // Don't apply this rule if we might be forming a VLA: in that case, we
2363 // allow non-constant expressions and constant-folding. We only need to use
2364 // the converted constant expression rules (to properly convert the source)
2365 // when the source expression is of class type.
2366 return S.CheckConvertedConstantExpression(
2367 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2368 }
2369
2370 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2371 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2372 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2373 public:
2374 unsigned VLADiag;
2375 bool VLAIsError;
2376 bool IsVLA = false;
2377
2378 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2379 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2380
2381 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2382 QualType T) override {
2383 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2384 }
2385
2386 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2387 SourceLocation Loc) override {
2388 IsVLA = !VLAIsError;
2389 return S.Diag(Loc, VLADiag);
2390 }
2391
2392 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2393 SourceLocation Loc) override {
2394 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2395 }
2396 } Diagnoser(VLADiag, VLAIsError);
2397
2398 ExprResult R =
2399 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2400 if (Diagnoser.IsVLA)
2401 return ExprResult();
2402 return R;
2403}
2404
2405bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2406 EltTy = Context.getBaseElementType(EltTy);
2407 if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2408 EltTy->isUndeducedType())
2409 return true;
2410
2411 CharUnits Size = Context.getTypeSizeInChars(EltTy);
2412 CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2413
2414 if (Size.isMultipleOf(Alignment))
2415 return true;
2416
2417 Diag(Loc, diag::err_array_element_alignment)
2418 << EltTy << Size.getQuantity() << Alignment.getQuantity();
2419 return false;
2420}
2421
2422/// Build an array type.
2423///
2424/// \param T The type of each element in the array.
2425///
2426/// \param ASM C99 array size modifier (e.g., '*', 'static').
2427///
2428/// \param ArraySize Expression describing the size of the array.
2429///
2430/// \param Brackets The range from the opening '[' to the closing ']'.
2431///
2432/// \param Entity The name of the entity that involves the array
2433/// type, if known.
2434///
2435/// \returns A suitable array type, if there are no errors. Otherwise,
2436/// returns a NULL type.
2437QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2438 Expr *ArraySize, unsigned Quals,
2439 SourceRange Brackets, DeclarationName Entity) {
2440
2441 SourceLocation Loc = Brackets.getBegin();
2442 if (getLangOpts().CPlusPlus) {
2443 // C++ [dcl.array]p1:
2444 // T is called the array element type; this type shall not be a reference
2445 // type, the (possibly cv-qualified) type void, a function type or an
2446 // abstract class type.
2447 //
2448 // C++ [dcl.array]p3:
2449 // When several "array of" specifications are adjacent, [...] only the
2450 // first of the constant expressions that specify the bounds of the arrays
2451 // may be omitted.
2452 //
2453 // Note: function types are handled in the common path with C.
2454 if (T->isReferenceType()) {
2455 Diag(Loc, diag::err_illegal_decl_array_of_references)
2456 << getPrintableNameForEntity(Entity) << T;
2457 return QualType();
2458 }
2459
2460 if (T->isVoidType() || T->isIncompleteArrayType()) {
2461 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2462 return QualType();
2463 }
2464
2465 if (RequireNonAbstractType(Brackets.getBegin(), T,
2466 diag::err_array_of_abstract_type))
2467 return QualType();
2468
2469 // Mentioning a member pointer type for an array type causes us to lock in
2470 // an inheritance model, even if it's inside an unused typedef.
2471 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2472 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2473 if (!MPTy->getClass()->isDependentType())
2474 (void)isCompleteType(Loc, T);
2475
2476 } else {
2477 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2478 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2479 if (RequireCompleteSizedType(Loc, T,
2480 diag::err_array_incomplete_or_sizeless_type))
2481 return QualType();
2482 }
2483
2484 if (T->isSizelessType()) {
2485 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2486 return QualType();
2487 }
2488
2489 if (T->isFunctionType()) {
2490 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2491 << getPrintableNameForEntity(Entity) << T;
2492 return QualType();
2493 }
2494
2495 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2496 // If the element type is a struct or union that contains a variadic
2497 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2498 if (EltTy->getDecl()->hasFlexibleArrayMember())
2499 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2500 } else if (T->isObjCObjectType()) {
2501 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2502 return QualType();
2503 }
2504
2505 if (!checkArrayElementAlignment(T, Loc))
2506 return QualType();
2507
2508 // Do placeholder conversions on the array size expression.
2509 if (ArraySize && ArraySize->hasPlaceholderType()) {
2510 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2511 if (Result.isInvalid()) return QualType();
2512 ArraySize = Result.get();
2513 }
2514
2515 // Do lvalue-to-rvalue conversions on the array size expression.
2516 if (ArraySize && !ArraySize->isPRValue()) {
2517 ExprResult Result = DefaultLvalueConversion(ArraySize);
2518 if (Result.isInvalid())
2519 return QualType();
2520
2521 ArraySize = Result.get();
2522 }
2523
2524 // C99 6.7.5.2p1: The size expression shall have integer type.
2525 // C++11 allows contextual conversions to such types.
2526 if (!getLangOpts().CPlusPlus11 &&
2527 ArraySize && !ArraySize->isTypeDependent() &&
2528 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2529 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2530 << ArraySize->getType() << ArraySize->getSourceRange();
2531 return QualType();
2532 }
2533
2534 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2535 unsigned VLADiag;
2536 bool VLAIsError;
2537 if (getLangOpts().OpenCL) {
2538 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2539 VLADiag = diag::err_opencl_vla;
2540 VLAIsError = true;
2541 } else if (getLangOpts().C99) {
2542 VLADiag = diag::warn_vla_used;
2543 VLAIsError = false;
2544 } else if (isSFINAEContext()) {
2545 VLADiag = diag::err_vla_in_sfinae;
2546 VLAIsError = true;
2547 } else if (getLangOpts().OpenMP && isInOpenMPTaskUntiedContext()) {
2548 VLADiag = diag::err_openmp_vla_in_task_untied;
2549 VLAIsError = true;
2550 } else {
2551 VLADiag = diag::ext_vla;
2552 VLAIsError = false;
2553 }
2554
2555 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2556 if (!ArraySize) {
2557 if (ASM == ArrayType::Star) {
2558 Diag(Loc, VLADiag);
2559 if (VLAIsError)
2560 return QualType();
2561
2562 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2563 } else {
2564 T = Context.getIncompleteArrayType(T, ASM, Quals);
2565 }
2566 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2567 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2568 } else {
2569 ExprResult R =
2570 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2571 if (R.isInvalid())
2572 return QualType();
2573
2574 if (!R.isUsable()) {
2575 // C99: an array with a non-ICE size is a VLA. We accept any expression
2576 // that we can fold to a non-zero positive value as a non-VLA as an
2577 // extension.
2578 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2579 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2580 !T->isConstantSizeType()) {
2581 // C99: an array with an element type that has a non-constant-size is a
2582 // VLA.
2583 // FIXME: Add a note to explain why this isn't a VLA.
2584 Diag(Loc, VLADiag);
2585 if (VLAIsError)
2586 return QualType();
2587 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2588 } else {
2589 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2590 // have a value greater than zero.
2591 // In C++, this follows from narrowing conversions being disallowed.
2592 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2593 if (Entity)
2594 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2595 << getPrintableNameForEntity(Entity)
2596 << ArraySize->getSourceRange();
2597 else
2598 Diag(ArraySize->getBeginLoc(),
2599 diag::err_typecheck_negative_array_size)
2600 << ArraySize->getSourceRange();
2601 return QualType();
2602 }
2603 if (ConstVal == 0) {
2604 // GCC accepts zero sized static arrays. We allow them when
2605 // we're not in a SFINAE context.
2606 Diag(ArraySize->getBeginLoc(),
2607 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2608 : diag::ext_typecheck_zero_array_size)
2609 << 0 << ArraySize->getSourceRange();
2610 }
2611
2612 // Is the array too large?
2613 unsigned ActiveSizeBits =
2614 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2615 !T->isIncompleteType() && !T->isUndeducedType())
2616 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2617 : ConstVal.getActiveBits();
2618 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2619 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2620 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2621 return QualType();
2622 }
2623
2624 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2625 }
2626 }
2627
2628 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2629 // CUDA device code and some other targets don't support VLAs.
2630 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2631 ? diag::err_cuda_vla
2632 : diag::err_vla_unsupported)
2633 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2634 ? CurrentCUDATarget()
2635 : CFT_InvalidTarget);
2636 }
2637
2638 // If this is not C99, diagnose array size modifiers on non-VLAs.
2639 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2640 (ASM != ArrayType::Normal || Quals != 0)) {
2641 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2642 : diag::ext_c99_array_usage)
2643 << ASM;
2644 }
2645
2646 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2647 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2648 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2649 if (getLangOpts().OpenCL) {
2650 const QualType ArrType = Context.getBaseElementType(T);
2651 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2652 ArrType->isSamplerT() || ArrType->isImageType()) {
2653 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2654 return QualType();
2655 }
2656 }
2657
2658 return T;
2659}
2660
2661QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2662 SourceLocation AttrLoc) {
2663 // The base type must be integer (not Boolean or enumeration) or float, and
2664 // can't already be a vector.
2665 if ((!CurType->isDependentType() &&
2666 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2667 (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2668 !CurType->isBitIntType()) ||
2669 CurType->isArrayType()) {
2670 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2671 return QualType();
2672 }
2673 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2674 if (CurType->isBitIntType()) {
2675 unsigned NumBits = CurType->getAs<BitIntType>()->getNumBits();
2676 if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2677 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2678 << (NumBits < 8);
2679 return QualType();
2680 }
2681 }
2682
2683 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2684 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2685 VectorType::GenericVector);
2686
2687 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2688 if (!VecSize) {
2689 Diag(AttrLoc, diag::err_attribute_argument_type)
2690 << "vector_size" << AANT_ArgumentIntegerConstant
2691 << SizeExpr->getSourceRange();
2692 return QualType();
2693 }
2694
2695 if (CurType->isDependentType())
2696 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2697 VectorType::GenericVector);
2698
2699 // vecSize is specified in bytes - convert to bits.
2700 if (!VecSize->isIntN(61)) {
2701 // Bit size will overflow uint64.
2702 Diag(AttrLoc, diag::err_attribute_size_too_large)
2703 << SizeExpr->getSourceRange() << "vector";
2704 return QualType();
2705 }
2706 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2707 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2708
2709 if (VectorSizeBits == 0) {
2710 Diag(AttrLoc, diag::err_attribute_zero_size)
2711 << SizeExpr->getSourceRange() << "vector";
2712 return QualType();
2713 }
2714
2715 if (!TypeSize || VectorSizeBits % TypeSize) {
2716 Diag(AttrLoc, diag::err_attribute_invalid_size)
2717 << SizeExpr->getSourceRange();
2718 return QualType();
2719 }
2720
2721 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2722 Diag(AttrLoc, diag::err_attribute_size_too_large)
2723 << SizeExpr->getSourceRange() << "vector";
2724 return QualType();
2725 }
2726
2727 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2728 VectorType::GenericVector);
2729}
2730
2731/// Build an ext-vector type.
2732///
2733/// Run the required checks for the extended vector type.
2734QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2735 SourceLocation AttrLoc) {
2736 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2737 // in conjunction with complex types (pointers, arrays, functions, etc.).
2738 //
2739 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2740 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2741 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2742 // of bool aren't allowed.
2743 //
2744 // We explictly allow bool elements in ext_vector_type for C/C++.
2745 bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2746 if ((!T->isDependentType() && !T->isIntegerType() &&
2747 !T->isRealFloatingType()) ||
2748 (IsNoBoolVecLang && T->isBooleanType())) {
2749 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2750 return QualType();
2751 }
2752
2753 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2754 if (T->isBitIntType()) {
2755 unsigned NumBits = T->getAs<BitIntType>()->getNumBits();
2756 if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2757 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2758 << (NumBits < 8);
2759 return QualType();
2760 }
2761 }
2762
2763 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2764 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2765 if (!vecSize) {
2766 Diag(AttrLoc, diag::err_attribute_argument_type)
2767 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2768 << ArraySize->getSourceRange();
2769 return QualType();
2770 }
2771
2772 if (!vecSize->isIntN(32)) {
2773 Diag(AttrLoc, diag::err_attribute_size_too_large)
2774 << ArraySize->getSourceRange() << "vector";
2775 return QualType();
2776 }
2777 // Unlike gcc's vector_size attribute, the size is specified as the
2778 // number of elements, not the number of bytes.
2779 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2780
2781 if (vectorSize == 0) {
2782 Diag(AttrLoc, diag::err_attribute_zero_size)
2783 << ArraySize->getSourceRange() << "vector";
2784 return QualType();
2785 }
2786
2787 return Context.getExtVectorType(T, vectorSize);
2788 }
2789
2790 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2791}
2792
2793QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2794 SourceLocation AttrLoc) {
2795 assert(Context.getLangOpts().MatrixTypes &&(static_cast <bool> (Context.getLangOpts().MatrixTypes &&
"Should never build a matrix type when it is disabled") ? void
(0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "clang/lib/Sema/SemaType.cpp", 2796, __extension__ __PRETTY_FUNCTION__
))
2796 "Should never build a matrix type when it is disabled")(static_cast <bool> (Context.getLangOpts().MatrixTypes &&
"Should never build a matrix type when it is disabled") ? void
(0) : __assert_fail ("Context.getLangOpts().MatrixTypes && \"Should never build a matrix type when it is disabled\""
, "clang/lib/Sema/SemaType.cpp", 2796, __extension__ __PRETTY_FUNCTION__
))
;
2797
2798 // Check element type, if it is not dependent.
2799 if (!ElementTy->isDependentType() &&
2800 !MatrixType::isValidElementType(ElementTy)) {
2801 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2802 return QualType();
2803 }
2804
2805 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2806 NumRows->isValueDependent() || NumCols->isValueDependent())
2807 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2808 AttrLoc);
2809
2810 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2811 Optional<llvm::APSInt> ValueColumns =
2812 NumCols->getIntegerConstantExpr(Context);
2813
2814 auto const RowRange = NumRows->getSourceRange();
2815 auto const ColRange = NumCols->getSourceRange();
2816
2817 // Both are row and column expressions are invalid.
2818 if (!ValueRows && !ValueColumns) {
2819 Diag(AttrLoc, diag::err_attribute_argument_type)
2820 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2821 << ColRange;
2822 return QualType();
2823 }
2824
2825 // Only the row expression is invalid.
2826 if (!ValueRows) {
2827 Diag(AttrLoc, diag::err_attribute_argument_type)
2828 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2829 return QualType();
2830 }
2831
2832 // Only the column expression is invalid.
2833 if (!ValueColumns) {
2834 Diag(AttrLoc, diag::err_attribute_argument_type)
2835 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2836 return QualType();
2837 }
2838
2839 // Check the matrix dimensions.
2840 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2841 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2842 if (MatrixRows == 0 && MatrixColumns == 0) {
2843 Diag(AttrLoc, diag::err_attribute_zero_size)
2844 << "matrix" << RowRange << ColRange;
2845 return QualType();
2846 }
2847 if (MatrixRows == 0) {
2848 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2849 return QualType();
2850 }
2851 if (MatrixColumns == 0) {
2852 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2853 return QualType();
2854 }
2855 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2856 Diag(AttrLoc, diag::err_attribute_size_too_large)
2857 << RowRange << "matrix row";
2858 return QualType();
2859 }
2860 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2861 Diag(AttrLoc, diag::err_attribute_size_too_large)
2862 << ColRange << "matrix column";
2863 return QualType();
2864 }
2865 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2866}
2867
2868bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2869 if (T->isArrayType() || T->isFunctionType()) {
2870 Diag(Loc, diag::err_func_returning_array_function)
2871 << T->isFunctionType() << T;
2872 return true;
2873 }
2874
2875 // Functions cannot return half FP.
2876 if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2877 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2878 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2879 FixItHint::CreateInsertion(Loc, "*");
2880 return true;
2881 }
2882
2883 // Methods cannot return interface types. All ObjC objects are
2884 // passed by reference.
2885 if (T->isObjCObjectType()) {
2886 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2887 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2888 return true;
2889 }
2890
2891 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2892 T.hasNonTrivialToPrimitiveCopyCUnion())
2893 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2894 NTCUK_Destruct|NTCUK_Copy);
2895
2896 // C++2a [dcl.fct]p12:
2897 // A volatile-qualified return type is deprecated
2898 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2899 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2900
2901 return false;
2902}
2903
2904/// Check the extended parameter information. Most of the necessary
2905/// checking should occur when applying the parameter attribute; the
2906/// only other checks required are positional restrictions.
2907static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2908 const FunctionProtoType::ExtProtoInfo &EPI,
2909 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2910 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")(static_cast <bool> (EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? void (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "clang/lib/Sema/SemaType.cpp", 2910, __extension__ __PRETTY_FUNCTION__
))
;
2911
2912 bool emittedError = false;
2913 auto actualCC = EPI.ExtInfo.getCC();
2914 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2915 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2916 bool isCompatible =
2917 (required == RequiredCC::OnlySwift)
2918 ? (actualCC == CC_Swift)
2919 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2920 if (isCompatible || emittedError)
2921 return;
2922 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2923 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2924 << (required == RequiredCC::OnlySwift);
2925 emittedError = true;
2926 };
2927 for (size_t paramIndex = 0, numParams = paramTypes.size();
2928 paramIndex != numParams; ++paramIndex) {
2929 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2930 // Nothing interesting to check for orindary-ABI parameters.
2931 case ParameterABI::Ordinary:
2932 continue;
2933
2934 // swift_indirect_result parameters must be a prefix of the function
2935 // arguments.
2936 case ParameterABI::SwiftIndirectResult:
2937 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2938 if (paramIndex != 0 &&
2939 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2940 != ParameterABI::SwiftIndirectResult) {
2941 S.Diag(getParamLoc(paramIndex),
2942 diag::err_swift_indirect_result_not_first);
2943 }
2944 continue;
2945
2946 case ParameterABI::SwiftContext:
2947 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2948 continue;
2949
2950 // SwiftAsyncContext is not limited to swiftasynccall functions.
2951 case ParameterABI::SwiftAsyncContext:
2952 continue;
2953
2954 // swift_error parameters must be preceded by a swift_context parameter.
2955 case ParameterABI::SwiftErrorResult:
2956 checkCompatible(paramIndex, RequiredCC::OnlySwift);
2957 if (paramIndex == 0 ||
2958 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2959 ParameterABI::SwiftContext) {
2960 S.Diag(getParamLoc(paramIndex),
2961 diag::err_swift_error_result_not_after_swift_context);
2962 }
2963 continue;
2964 }
2965 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "clang/lib/Sema/SemaType.cpp"
, 2965)
;
2966 }
2967}
2968
2969QualType Sema::BuildFunctionType(QualType T,
2970 MutableArrayRef<QualType> ParamTypes,
2971 SourceLocation Loc, DeclarationName Entity,
2972 const FunctionProtoType::ExtProtoInfo &EPI) {
2973 bool Invalid = false;
2974
2975 Invalid |= CheckFunctionReturnType(T, Loc);
2976
2977 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2978 // FIXME: Loc is too inprecise here, should use proper locations for args.
2979 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2980 if (ParamType->isVoidType()) {
2981 Diag(Loc, diag::err_param_with_void_type);
2982 Invalid = true;
2983 } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2984 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2985 // Disallow half FP arguments.
2986 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2987 FixItHint::CreateInsertion(Loc, "*");
2988 Invalid = true;
2989 }
2990
2991 // C++2a [dcl.fct]p4:
2992 // A parameter with volatile-qualified type is deprecated
2993 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2994 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2995
2996 ParamTypes[Idx] = ParamType;
2997 }
2998
2999 if (EPI.ExtParameterInfos) {
3000 checkExtParameterInfos(*this, ParamTypes, EPI,
3001 [=](unsigned i) { return Loc; });
3002 }
3003
3004 if (EPI.ExtInfo.getProducesResult()) {
3005 // This is just a warning, so we can't fail to build if we see it.
3006 checkNSReturnsRetainedReturnType(Loc, T);
3007 }
3008
3009 if (Invalid)
3010 return QualType();
3011
3012 return Context.getFunctionType(T, ParamTypes, EPI);
3013}
3014
3015/// Build a member pointer type \c T Class::*.
3016///
3017/// \param T the type to which the member pointer refers.
3018/// \param Class the class type into which the member pointer points.
3019/// \param Loc the location where this type begins
3020/// \param Entity the name of the entity that will have this member pointer type
3021///
3022/// \returns a member pointer type, if successful, or a NULL type if there was
3023/// an error.
3024QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
3025 SourceLocation Loc,
3026 DeclarationName Entity) {
3027 // Verify that we're not building a pointer to pointer to function with
3028 // exception specification.
3029 if (CheckDistantExceptionSpec(T)) {
3030 Diag(Loc, diag::err_distant_exception_spec);
3031 return QualType();
3032 }
3033
3034 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
3035 // with reference type, or "cv void."
3036 if (T->isReferenceType()) {
3037 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
3038 << getPrintableNameForEntity(Entity) << T;
3039 return QualType();
3040 }
3041
3042 if (T->isVoidType()) {
3043 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
3044 << getPrintableNameForEntity(Entity);
3045 return QualType();
3046 }
3047
3048 if (!Class->isDependentType() && !Class->isRecordType()) {
3049 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
3050 return QualType();
3051 }
3052
3053 if (T->isFunctionType() && getLangOpts().OpenCL &&
3054 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
3055 getLangOpts())) {
3056 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
3057 return QualType();
3058 }
3059
3060 if (getLangOpts().HLSL && Loc.isValid()) {
3061 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
3062 return QualType();
3063 }
3064
3065 // Adjust the default free function calling convention to the default method
3066 // calling convention.
3067 bool IsCtorOrDtor =
3068 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
3069 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
3070 if (T->isFunctionType())
3071 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
3072
3073 return Context.getMemberPointerType(T, Class.getTypePtr());
3074}
3075
3076/// Build a block pointer type.
3077///
3078/// \param T The type to which we'll be building a block pointer.
3079///
3080/// \param Loc The source location, used for diagnostics.
3081///
3082/// \param Entity The name of the entity that involves the block pointer
3083/// type, if known.
3084///
3085/// \returns A suitable block pointer type, if there are no
3086/// errors. Otherwise, returns a NULL type.
3087QualType Sema::BuildBlockPointerType(QualType T,
3088 SourceLocation Loc,
3089 DeclarationName Entity) {
3090 if (!T->isFunctionType()) {
3091 Diag(Loc, diag::err_nonfunction_block_type);
3092 return QualType();
3093 }
3094
3095 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
3096 return QualType();
3097
3098 if (getLangOpts().OpenCL)
3099 T = deduceOpenCLPointeeAddrSpace(*this, T);
3100
3101 return Context.getBlockPointerType(T);
3102}
3103
3104QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
3105 QualType QT = Ty.get();
3106 if (QT.isNull()) {
3107 if (TInfo) *TInfo = nullptr;
3108 return QualType();
3109 }
3110
3111 TypeSourceInfo *DI = nullptr;
3112 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
3113 QT = LIT->getType();
3114 DI = LIT->getTypeSourceInfo();
3115 }
3116
3117 if (TInfo) *TInfo = DI;
3118 return QT;
3119}
3120
3121static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3122 Qualifiers::ObjCLifetime ownership,
3123 unsigned chunkIndex);
3124
3125/// Given that this is the declaration of a parameter under ARC,
3126/// attempt to infer attributes and such for pointer-to-whatever
3127/// types.
3128static void inferARCWriteback(TypeProcessingState &state,
3129 QualType &declSpecType) {
3130 Sema &S = state.getSema();
3131 Declarator &declarator = state.getDeclarator();
3132
3133 // TODO: should we care about decl qualifiers?
3134
3135 // Check whether the declarator has the expected form. We walk
3136 // from the inside out in order to make the block logic work.
3137 unsigned outermostPointerIndex = 0;
3138 bool isBlockPointer = false;
3139 unsigned numPointers = 0;
3140 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3141 unsigned chunkIndex = i;
3142 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
3143 switch (chunk.Kind) {
3144 case DeclaratorChunk::Paren:
3145 // Ignore parens.
3146 break;
3147
3148 case DeclaratorChunk::Reference:
3149 case DeclaratorChunk::Pointer:
3150 // Count the number of pointers. Treat references
3151 // interchangeably as pointers; if they're mis-ordered, normal
3152 // type building will discover that.
3153 outermostPointerIndex = chunkIndex;
3154 numPointers++;
3155 break;
3156
3157 case DeclaratorChunk::BlockPointer:
3158 // If we have a pointer to block pointer, that's an acceptable
3159 // indirect reference; anything else is not an application of
3160 // the rules.
3161 if (numPointers != 1) return;
3162 numPointers++;
3163 outermostPointerIndex = chunkIndex;
3164 isBlockPointer = true;
3165
3166 // We don't care about pointer structure in return values here.
3167 goto done;
3168
3169 case DeclaratorChunk::Array: // suppress if written (id[])?
3170 case DeclaratorChunk::Function:
3171 case DeclaratorChunk::MemberPointer:
3172 case DeclaratorChunk::Pipe:
3173 return;
3174 }
3175 }
3176 done:
3177
3178 // If we have *one* pointer, then we want to throw the qualifier on
3179 // the declaration-specifiers, which means that it needs to be a
3180 // retainable object type.
3181 if (numPointers == 1) {
3182 // If it's not a retainable object type, the rule doesn't apply.
3183 if (!declSpecType->isObjCRetainableType()) return;
3184
3185 // If it already has lifetime, don't do anything.
3186 if (declSpecType.getObjCLifetime()) return;
3187
3188 // Otherwise, modify the type in-place.
3189 Qualifiers qs;
3190
3191 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3192 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3193 else
3194 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3195 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3196
3197 // If we have *two* pointers, then we want to throw the qualifier on
3198 // the outermost pointer.
3199 } else if (numPointers == 2) {
3200 // If we don't have a block pointer, we need to check whether the
3201 // declaration-specifiers gave us something that will turn into a
3202 // retainable object pointer after we slap the first pointer on it.
3203 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3204 return;
3205
3206 // Look for an explicit lifetime attribute there.
3207 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3208 if (chunk.Kind != DeclaratorChunk::Pointer &&
3209 chunk.Kind != DeclaratorChunk::BlockPointer)
3210 return;
3211 for (const ParsedAttr &AL : chunk.getAttrs())
3212 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3213 return;
3214
3215 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3216 outermostPointerIndex);
3217
3218 // Any other number of pointers/references does not trigger the rule.
3219 } else return;
3220
3221 // TODO: mark whether we did this inference?
3222}
3223
3224void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3225 SourceLocation FallbackLoc,
3226 SourceLocation ConstQualLoc,
3227 SourceLocation VolatileQualLoc,
3228 SourceLocation RestrictQualLoc,
3229 SourceLocation AtomicQualLoc,
3230 SourceLocation UnalignedQualLoc) {
3231 if (!Quals)
3232 return;
3233
3234 struct Qual {
3235 const char *Name;
3236 unsigned Mask;
3237 SourceLocation Loc;
3238 } const QualKinds[5] = {
3239 { "const", DeclSpec::TQ_const, ConstQualLoc },
3240 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3241 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3242 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3243 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3244 };
3245
3246 SmallString<32> QualStr;
3247 unsigned NumQuals = 0;
3248 SourceLocation Loc;
3249 FixItHint FixIts[5];
3250
3251 // Build a string naming the redundant qualifiers.
3252 for (auto &E : QualKinds) {
3253 if (Quals & E.Mask) {
3254 if (!QualStr.empty()) QualStr += ' ';
3255 QualStr += E.Name;
3256
3257 // If we have a location for the qualifier, offer a fixit.
3258 SourceLocation QualLoc = E.Loc;
3259 if (QualLoc.isValid()) {
3260 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3261 if (Loc.isInvalid() ||
3262 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3263 Loc = QualLoc;
3264 }
3265
3266 ++NumQuals;
3267 }
3268 }
3269
3270 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3271 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3272}
3273
3274// Diagnose pointless type qualifiers on the return type of a function.
3275static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3276 Declarator &D,
3277 unsigned FunctionChunkIndex) {
3278 const DeclaratorChunk::FunctionTypeInfo &FTI =
3279 D.getTypeObject(FunctionChunkIndex).Fun;
3280 if (FTI.hasTrailingReturnType()) {
3281 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3282 RetTy.getLocalCVRQualifiers(),
3283 FTI.getTrailingReturnTypeLoc());
3284 return;
3285 }
3286
3287 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3288 End = D.getNumTypeObjects();
3289 OuterChunkIndex != End; ++OuterChunkIndex) {
3290 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3291 switch (OuterChunk.Kind) {
3292 case DeclaratorChunk::Paren:
3293 continue;
3294
3295 case DeclaratorChunk::Pointer: {
3296 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3297 S.diagnoseIgnoredQualifiers(
3298 diag::warn_qual_return_type,
3299 PTI.TypeQuals,
3300 SourceLocation(),
3301 PTI.ConstQualLoc,
3302 PTI.VolatileQualLoc,
3303 PTI.RestrictQualLoc,
3304 PTI.AtomicQualLoc,
3305 PTI.UnalignedQualLoc);
3306 return;
3307 }
3308
3309 case DeclaratorChunk::Function:
3310 case DeclaratorChunk::BlockPointer:
3311 case DeclaratorChunk::Reference:
3312 case DeclaratorChunk::Array:
3313 case DeclaratorChunk::MemberPointer:
3314 case DeclaratorChunk::Pipe:
3315 // FIXME: We can't currently provide an accurate source location and a
3316 // fix-it hint for these.
3317 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3318 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3319 RetTy.getCVRQualifiers() | AtomicQual,
3320 D.getIdentifierLoc());
3321 return;
3322 }
3323
3324 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "clang/lib/Sema/SemaType.cpp", 3324)
;
3325 }
3326
3327 // If the qualifiers come from a conversion function type, don't diagnose
3328 // them -- they're not necessarily redundant, since such a conversion
3329 // operator can be explicitly called as "x.operator const int()".
3330 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3331 return;
3332
3333 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3334 // which are present there.
3335 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3336 D.getDeclSpec().getTypeQualifiers(),
3337 D.getIdentifierLoc(),
3338 D.getDeclSpec().getConstSpecLoc(),
3339 D.getDeclSpec().getVolatileSpecLoc(),
3340 D.getDeclSpec().getRestrictSpecLoc(),
3341 D.getDeclSpec().getAtomicSpecLoc(),
3342 D.getDeclSpec().getUnalignedSpecLoc());
3343}
3344
3345static std::pair<QualType, TypeSourceInfo *>
3346InventTemplateParameter(TypeProcessingState &state, QualType T,
3347 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3348 InventedTemplateParameterInfo &Info) {
3349 Sema &S = state.getSema();
3350 Declarator &D = state.getDeclarator();
3351
3352 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3353 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3354 const bool IsParameterPack = D.hasEllipsis();
3355
3356 // If auto is mentioned in a lambda parameter or abbreviated function
3357 // template context, convert it to a template parameter type.
3358
3359 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3360 // template parameter type. Template parameters are temporarily added
3361 // to the TU until the associated TemplateDecl is created.
3362 TemplateTypeParmDecl *InventedTemplateParam =
3363 TemplateTypeParmDecl::Create(
3364 S.Context, S.Context.getTranslationUnitDecl(),
3365 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3366 /*NameLoc=*/D.getIdentifierLoc(),
3367 TemplateParameterDepth, AutoParameterPosition,
3368 S.InventAbbreviatedTemplateParameterTypeName(
3369 D.getIdentifier(), AutoParameterPosition), false,
3370 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3371 InventedTemplateParam->setImplicit();
3372 Info.TemplateParams.push_back(InventedTemplateParam);
3373
3374 // Attach type constraints to the new parameter.
3375 if (Auto->isConstrained()) {
3376 if (TrailingTSI) {
3377 // The 'auto' appears in a trailing return type we've already built;
3378 // extract its type constraints to attach to the template parameter.
3379 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3380 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3381 bool Invalid = false;
3382 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3383 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3384 S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3385 Sema::UPPC_TypeConstraint))
3386 Invalid = true;
3387 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3388 }
3389
3390 if (!Invalid) {
3391 S.AttachTypeConstraint(
3392 AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3393 AutoLoc.getNamedConcept(),
3394 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3395 InventedTemplateParam, D.getEllipsisLoc());
3396 }
3397 } else {
3398 // The 'auto' appears in the decl-specifiers; we've not finished forming
3399 // TypeSourceInfo for it yet.
3400 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3401 TemplateArgumentListInfo TemplateArgsInfo;
3402 bool Invalid = false;
3403 if (TemplateId->LAngleLoc.isValid()) {
3404 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3405 TemplateId->NumArgs);
3406 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3407
3408 if (D.getEllipsisLoc().isInvalid()) {
3409 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3410 if (S.DiagnoseUnexpandedParameterPack(Arg,
3411 Sema::UPPC_TypeConstraint)) {
3412 Invalid = true;
3413 break;
3414 }
3415 }
3416 }
3417 }
3418 if (!Invalid) {
3419 S.AttachTypeConstraint(
3420 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3421 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3422 TemplateId->TemplateNameLoc),
3423 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3424 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3425 InventedTemplateParam, D.getEllipsisLoc());
3426 }
3427 }
3428 }
3429
3430 // Replace the 'auto' in the function parameter with this invented
3431 // template type parameter.
3432 // FIXME: Retain some type sugar to indicate that this was written
3433 // as 'auto'?
3434 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3435 QualType NewT = state.ReplaceAutoType(T, Replacement);
3436 TypeSourceInfo *NewTSI =
3437 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3438 : nullptr;
3439 return {NewT, NewTSI};
3440}
3441
3442static TypeSourceInfo *
3443GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3444 QualType T, TypeSourceInfo *ReturnTypeInfo);
3445
3446static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3447 TypeSourceInfo *&ReturnTypeInfo) {
3448 Sema &SemaRef = state.getSema();
3449 Declarator &D = state.getDeclarator();
3450 QualType T;
3451 ReturnTypeInfo = nullptr;
3452
3453 // The TagDecl owned by the DeclSpec.
3454 TagDecl *OwnedTagDecl = nullptr;
3455
3456 switch (D.getName().getKind()) {
3457 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3458 case UnqualifiedIdKind::IK_OperatorFunctionId:
3459 case UnqualifiedIdKind::IK_Identifier:
3460 case UnqualifiedIdKind::IK_LiteralOperatorId:
3461 case UnqualifiedIdKind::IK_TemplateId:
3462 T = ConvertDeclSpecToType(state);
3463
3464 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3465 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3466 // Owned declaration is embedded in declarator.
3467 OwnedTagDecl->setEmbeddedInDeclarator(true);
3468 }
3469 break;
3470
3471 case UnqualifiedIdKind::IK_ConstructorName:
3472 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3473 case UnqualifiedIdKind::IK_DestructorName:
3474 // Constructors and destructors don't have return types. Use
3475 // "void" instead.
3476 T = SemaRef.Context.VoidTy;
3477 processTypeAttrs(state, T, TAL_DeclSpec,
3478 D.getMutableDeclSpec().getAttributes());
3479 break;
3480
3481 case UnqualifiedIdKind::IK_DeductionGuideName:
3482 // Deduction guides have a trailing return type and no type in their
3483 // decl-specifier sequence. Use a placeholder return type for now.
3484 T = SemaRef.Context.DependentTy;
3485 break;
3486
3487 case UnqualifiedIdKind::IK_ConversionFunctionId:
3488 // The result type of a conversion function is the type that it
3489 // converts to.
3490 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3491 &ReturnTypeInfo);
3492 break;
3493 }
3494
3495 // Note: We don't need to distribute declaration attributes (i.e.
3496 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3497 // and those don't get distributed.
3498 distributeTypeAttrsFromDeclarator(state, T);
3499
3500 // Find the deduced type in this type. Look in the trailing return type if we
3501 // have one, otherwise in the DeclSpec type.
3502 // FIXME: The standard wording doesn't currently describe this.
3503 DeducedType *Deduced = T->getContainedDeducedType();
3504 bool DeducedIsTrailingReturnType = false;
3505 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3506 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3507 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3508 DeducedIsTrailingReturnType = true;
3509 }
3510
3511 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3512 if (Deduced) {
3513 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3514 int Error = -1;
3515
3516 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3517 // class template argument deduction)?
3518 bool IsCXXAutoType =
3519 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3520 bool IsDeducedReturnType = false;
3521
3522 switch (D.getContext()) {
3523 case DeclaratorContext::LambdaExpr:
3524 // Declared return type of a lambda-declarator is implicit and is always
3525 // 'auto'.
3526 break;
3527 case DeclaratorContext::ObjCParameter:
3528 case DeclaratorContext::ObjCResult:
3529 Error = 0;
3530 break;
3531 case DeclaratorContext::RequiresExpr:
3532 Error = 22;
3533 break;
3534 case DeclaratorContext::Prototype:
3535 case DeclaratorContext::LambdaExprParameter: {
3536 InventedTemplateParameterInfo *Info = nullptr;
3537 if (D.getContext() == DeclaratorContext::Prototype) {
3538 // With concepts we allow 'auto' in function parameters.
3539 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3540 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3541 Error = 0;
3542 break;
3543 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3544 Error = 21;
3545 break;
3546 }
3547
3548 Info = &SemaRef.InventedParameterInfos.back();
3549 } else {
3550 // In C++14, generic lambdas allow 'auto' in their parameters.
3551 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3552 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3553 Error = 16;
3554 break;
3555 }
3556 Info = SemaRef.getCurLambda();
3557 assert(Info && "No LambdaScopeInfo on the stack!")(static_cast <bool> (Info && "No LambdaScopeInfo on the stack!"
) ? void (0) : __assert_fail ("Info && \"No LambdaScopeInfo on the stack!\""
, "clang/lib/Sema/SemaType.cpp", 3557, __extension__ __PRETTY_FUNCTION__
))
;
3558 }
3559
3560 // We'll deal with inventing template parameters for 'auto' in trailing
3561 // return types when we pick up the trailing return type when processing
3562 // the function chunk.
3563 if (!DeducedIsTrailingReturnType)
3564 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3565 break;
3566 }
3567 case DeclaratorContext::Member: {
3568 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3569 D.isFunctionDeclarator())
3570 break;
3571 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3572 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3573 Error = 6; // Interface member.
3574 } else {
3575 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3576 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "clang/lib/Sema/SemaType.cpp"
, 3576)
;
3577 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3578 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3579 case TTK_Class: Error = 5; /* Class member */ break;
3580 case TTK_Interface: Error = 6; /* Interface member */ break;
3581 }
3582 }
3583 if (D.getDeclSpec().isFriendSpecified())
3584 Error = 20; // Friend type
3585 break;
3586 }
3587 case DeclaratorContext::CXXCatch:
3588 case DeclaratorContext::ObjCCatch:
3589 Error = 7; // Exception declaration
3590 break;
3591 case DeclaratorContext::TemplateParam:
3592 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3593 !SemaRef.getLangOpts().CPlusPlus20)
3594 Error = 19; // Template parameter (until C++20)
3595 else if (!SemaRef.getLangOpts().CPlusPlus17)
3596 Error = 8; // Template parameter (until C++17)
3597 break;
3598 case DeclaratorContext::BlockLiteral:
3599 Error = 9; // Block literal
3600 break;
3601 case DeclaratorContext::TemplateArg:
3602 // Within a template argument list, a deduced template specialization
3603 // type will be reinterpreted as a template template argument.
3604 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3605 !D.getNumTypeObjects() &&
3606 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3607 break;
3608 [[fallthrough]];
3609 case DeclaratorContext::TemplateTypeArg:
3610 Error = 10; // Template type argument
3611 break;
3612 case DeclaratorContext::AliasDecl:
3613 case DeclaratorContext::AliasTemplate:
3614 Error = 12; // Type alias
3615 break;
3616 case DeclaratorContext::TrailingReturn:
3617 case DeclaratorContext::TrailingReturnVar:
3618 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3619 Error = 13; // Function return type
3620 IsDeducedReturnType = true;
3621 break;
3622 case DeclaratorContext::ConversionId:
3623 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3624 Error = 14; // conversion-type-id
3625 IsDeducedReturnType = true;
3626 break;
3627 case DeclaratorContext::FunctionalCast:
3628 if (isa<DeducedTemplateSpecializationType>(Deduced))
3629 break;
3630 if (SemaRef.getLangOpts().CPlusPlus2b && IsCXXAutoType &&
3631 !Auto->isDecltypeAuto())
3632 break; // auto(x)
3633 [[fallthrough]];
3634 case DeclaratorContext::TypeName:
3635 case DeclaratorContext::Association:
3636 Error = 15; // Generic
3637 break;
3638 case DeclaratorContext::File:
3639 case DeclaratorContext::Block:
3640 case DeclaratorContext::ForInit:
3641 case DeclaratorContext::SelectionInit:
3642 case DeclaratorContext::Condition:
3643 // FIXME: P0091R3 (erroneously) does not permit class template argument
3644 // deduction in conditions, for-init-statements, and other declarations
3645 // that are not simple-declarations.
3646 break;
3647 case DeclaratorContext::CXXNew:
3648 // FIXME: P0091R3 does not permit class template argument deduction here,
3649 // but we follow GCC and allow it anyway.
3650 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3651 Error = 17; // 'new' type
3652 break;
3653 case DeclaratorContext::KNRTypeList:
3654 Error = 18; // K&R function parameter
3655 break;
3656 }
3657
3658 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3659 Error = 11;
3660
3661 // In Objective-C it is an error to use 'auto' on a function declarator
3662 // (and everywhere for '__auto_type').
3663 if (D.isFunctionDeclarator() &&
3664 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3665 Error = 13;
3666
3667 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3668 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3669 AutoRange = D.getName().getSourceRange();
3670
3671 if (Error != -1) {
3672 unsigned Kind;
3673 if (Auto) {
3674 switch (Auto->getKeyword()) {
3675 case AutoTypeKeyword::Auto: Kind = 0; break;
3676 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3677 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3678 }
3679 } else {
3680 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&(static_cast <bool> (isa<DeducedTemplateSpecializationType
>(Deduced) && "unknown auto type") ? void (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "clang/lib/Sema/SemaType.cpp", 3681, __extension__ __PRETTY_FUNCTION__
))
3681 "unknown auto type")(static_cast <bool> (isa<DeducedTemplateSpecializationType
>(Deduced) && "unknown auto type") ? void (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "clang/lib/Sema/SemaType.cpp", 3681, __extension__ __PRETTY_FUNCTION__
))
;
3682 Kind = 3;
3683 }
3684
3685 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3686 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3687
3688 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3689 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3690 << QualType(Deduced, 0) << AutoRange;
3691 if (auto *TD = TN.getAsTemplateDecl())
3692 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3693
3694 T = SemaRef.Context.IntTy;
3695 D.setInvalidType(true);
3696 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3697 // If there was a trailing return type, we already got
3698 // warn_cxx98_compat_trailing_return_type in the parser.
3699 SemaRef.Diag(AutoRange.getBegin(),
3700 D.getContext() == DeclaratorContext::LambdaExprParameter
3701 ? diag::warn_cxx11_compat_generic_lambda
3702 : IsDeducedReturnType
3703 ? diag::warn_cxx11_compat_deduced_return_type
3704 : diag::warn_cxx98_compat_auto_type_specifier)
3705 << AutoRange;
3706 }
3707 }
3708
3709 if (SemaRef.getLangOpts().CPlusPlus &&
3710 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3711 // Check the contexts where C++ forbids the declaration of a new class
3712 // or enumeration in a type-specifier-seq.
3713 unsigned DiagID = 0;
3714 switch (D.getContext()) {
3715 case DeclaratorContext::TrailingReturn:
3716 case DeclaratorContext::TrailingReturnVar:
3717 // Class and enumeration definitions are syntactically not allowed in
3718 // trailing return types.
3719 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "clang/lib/Sema/SemaType.cpp", 3719)
;
3720 break;
3721 case DeclaratorContext::File:
3722 case DeclaratorContext::Member:
3723 case DeclaratorContext::Block:
3724 case DeclaratorContext::ForInit:
3725 case DeclaratorContext::SelectionInit:
3726 case DeclaratorContext::BlockLiteral:
3727 case DeclaratorContext::LambdaExpr:
3728 // C++11 [dcl.type]p3:
3729 // A type-specifier-seq shall not define a class or enumeration unless
3730 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3731 // the declaration of a template-declaration.
3732 case DeclaratorContext::AliasDecl:
3733 break;
3734 case DeclaratorContext::AliasTemplate:
3735 DiagID = diag::err_type_defined_in_alias_template;
3736 break;
3737 case DeclaratorContext::TypeName:
3738 case DeclaratorContext::FunctionalCast:
3739 case DeclaratorContext::ConversionId:
3740 case DeclaratorContext::TemplateParam:
3741 case DeclaratorContext::CXXNew:
3742 case DeclaratorContext::CXXCatch:
3743 case DeclaratorContext::ObjCCatch:
3744 case DeclaratorContext::TemplateArg:
3745 case DeclaratorContext::TemplateTypeArg:
3746 case DeclaratorContext::Association:
3747 DiagID = diag::err_type_defined_in_type_specifier;
3748 break;
3749 case DeclaratorContext::Prototype:
3750 case DeclaratorContext::LambdaExprParameter:
3751 case DeclaratorContext::ObjCParameter:
3752 case DeclaratorContext::ObjCResult:
3753 case DeclaratorContext::KNRTypeList:
3754 case DeclaratorContext::RequiresExpr:
3755 // C++ [dcl.fct]p6:
3756 // Types shall not be defined in return or parameter types.
3757 DiagID = diag::err_type_defined_in_param_type;
3758 break;
3759 case DeclaratorContext::Condition:
3760 // C++ 6.4p2:
3761 // The type-specifier-seq shall not contain typedef and shall not declare
3762 // a new class or enumeration.
3763 DiagID = diag::err_type_defined_in_condition;
3764 break;
3765 }
3766
3767 if (DiagID != 0) {
3768 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3769 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3770 D.setInvalidType(true);
3771 }
3772 }
3773
3774 assert(!T.isNull() && "This function should not return a null type")(static_cast <bool> (!T.isNull() && "This function should not return a null type"
) ? void (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "clang/lib/Sema/SemaType.cpp", 3774, __extension__ __PRETTY_FUNCTION__
))
;
3775 return T;
3776}
3777
3778/// Produce an appropriate diagnostic for an ambiguity between a function
3779/// declarator and a C++ direct-initializer.
3780static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3781 DeclaratorChunk &DeclType, QualType RT) {
3782 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3783 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")(static_cast <bool> (FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? void (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "clang/lib/Sema/SemaType.cpp", 3783, __extension__ __PRETTY_FUNCTION__
))
;
3784
3785 // If the return type is void there is no ambiguity.
3786 if (RT->isVoidType())
3787 return;
3788
3789 // An initializer for a non-class type can have at most one argument.
3790 if (!RT->isRecordType() && FTI.NumParams > 1)
3791 return;
3792
3793 // An initializer for a reference must have exactly one argument.
3794 if (RT->isReferenceType() && FTI.NumParams != 1)
3795 return;
3796
3797 // Only warn if this declarator is declaring a function at block scope, and
3798 // doesn't have a storage class (such as 'extern') specified.
3799 if (!D.isFunctionDeclarator() ||
3800 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3801 !S.CurContext->isFunctionOrMethod() ||
3802 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3803 return;
3804
3805 // Inside a condition, a direct initializer is not permitted. We allow one to
3806 // be parsed in order to give better diagnostics in condition parsing.
3807 if (D.getContext() == DeclaratorContext::Condition)
3808 return;
3809
3810 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3811
3812 S.Diag(DeclType.Loc,
3813 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3814 : diag::warn_empty_parens_are_function_decl)
3815 << ParenRange;
3816
3817 // If the declaration looks like:
3818 // T var1,
3819 // f();
3820 // and name lookup finds a function named 'f', then the ',' was
3821 // probably intended to be a ';'.
3822 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3823 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3824 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3825 if (Comma.getFileID() != Name.getFileID() ||
3826 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3827 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3828 Sema::LookupOrdinaryName);
3829 if (S.LookupName(Result, S.getCurScope()))
3830 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3831 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3832 << D.getIdentifier();
3833 Result.suppressDiagnostics();
3834 }
3835 }
3836
3837 if (FTI.NumParams > 0) {
3838 // For a declaration with parameters, eg. "T var(T());", suggest adding
3839 // parens around the first parameter to turn the declaration into a
3840 // variable declaration.
3841 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3842 SourceLocation B = Range.getBegin();
3843 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3844 // FIXME: Maybe we should suggest adding braces instead of parens
3845 // in C++11 for classes that don't have an initializer_list constructor.
3846 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3847 << FixItHint::CreateInsertion(B, "(")
3848 << FixItHint::CreateInsertion(E, ")");
3849 } else {
3850 // For a declaration without parameters, eg. "T var();", suggest replacing
3851 // the parens with an initializer to turn the declaration into a variable
3852 // declaration.
3853 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3854
3855 // Empty parens mean value-initialization, and no parens mean
3856 // default initialization. These are equivalent if the default
3857 // constructor is user-provided or if zero-initialization is a
3858 // no-op.
3859 if (RD && RD->hasDefinition() &&
3860 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3861 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3862 << FixItHint::CreateRemoval(ParenRange);
3863 else {
3864 std::string Init =
3865 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3866 if (Init.empty() && S.LangOpts.CPlusPlus11)
3867 Init = "{}";
3868 if (!Init.empty())
3869 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3870 << FixItHint::CreateReplacement(ParenRange, Init);
3871 }
3872 }
3873}
3874
3875/// Produce an appropriate diagnostic for a declarator with top-level
3876/// parentheses.
3877static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3878 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3879 assert(Paren.Kind == DeclaratorChunk::Paren &&(static_cast <bool> (Paren.Kind == DeclaratorChunk::Paren
&& "do not have redundant top-level parentheses") ? void
(0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "clang/lib/Sema/SemaType.cpp", 3880, __extension__ __PRETTY_FUNCTION__
))
3880 "do not have redundant top-level parentheses")(static_cast <bool> (Paren.Kind == DeclaratorChunk::Paren
&& "do not have redundant top-level parentheses") ? void
(0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "clang/lib/Sema/SemaType.cpp", 3880, __extension__ __PRETTY_FUNCTION__
))
;
3881
3882 // This is a syntactic check; we're not interested in cases that arise
3883 // during template instantiation.
3884 if (S.inTemplateInstantiation())
3885 return;
3886
3887 // Check whether this could be intended to be a construction of a temporary
3888 // object in C++ via a function-style cast.
3889 bool CouldBeTemporaryObject =
3890 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3891 !D.isInvalidType() && D.getIdentifier() &&
3892 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3893 (T->isRecordType() || T->isDependentType()) &&
3894 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3895
3896 bool StartsWithDeclaratorId = true;
3897 for (auto &C : D.type_objects()) {
3898 switch (C.Kind) {
3899 case DeclaratorChunk::Paren:
3900 if (&C == &Paren)
3901 continue;
3902 [[fallthrough]];
3903 case DeclaratorChunk::Pointer:
3904 StartsWithDeclaratorId = false;
3905 continue;
3906
3907 case DeclaratorChunk::Array:
3908 if (!C.Arr.NumElts)
3909 CouldBeTemporaryObject = false;
3910 continue;
3911
3912 case DeclaratorChunk::Reference:
3913 // FIXME: Suppress the warning here if there is no initializer; we're
3914 // going to give an error anyway.
3915 // We assume that something like 'T (&x) = y;' is highly likely to not
3916 // be intended to be a temporary object.
3917 CouldBeTemporaryObject = false;
3918 StartsWithDeclaratorId = false;
3919 continue;
3920
3921 case DeclaratorChunk::Function:
3922 // In a new-type-id, function chunks require parentheses.
3923 if (D.getContext() == DeclaratorContext::CXXNew)
3924 return;
3925 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3926 // redundant-parens warning, but we don't know whether the function
3927 // chunk was syntactically valid as an expression here.
3928 CouldBeTemporaryObject = false;
3929 continue;
3930
3931 case DeclaratorChunk::BlockPointer:
3932 case DeclaratorChunk::MemberPointer:
3933 case DeclaratorChunk::Pipe:
3934 // These cannot appear in expressions.
3935 CouldBeTemporaryObject = false;
3936 StartsWithDeclaratorId = false;
3937 continue;
3938 }
3939 }
3940
3941 // FIXME: If there is an initializer, assume that this is not intended to be
3942 // a construction of a temporary object.
3943
3944 // Check whether the name has already been declared; if not, this is not a
3945 // function-style cast.
3946 if (CouldBeTemporaryObject) {
3947 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3948 Sema::LookupOrdinaryName);
3949 if (!S.LookupName(Result, S.getCurScope()))
3950 CouldBeTemporaryObject = false;
3951 Result.suppressDiagnostics();
3952 }
3953
3954 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3955
3956 if (!CouldBeTemporaryObject) {
3957 // If we have A (::B), the parentheses affect the meaning of the program.
3958 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3959 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3960 // formally unambiguous.
3961 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3962 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3963 NNS = NNS->getPrefix()) {
3964 if (NNS->getKind() == NestedNameSpecifier::Global)
3965 return;
3966 }
3967 }
3968
3969 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3970 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3971 << FixItHint::CreateRemoval(Paren.EndLoc);
3972 return;
3973 }
3974
3975 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3976 << ParenRange << D.getIdentifier();
3977 auto *RD = T->getAsCXXRecordDecl();
3978 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3979 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3980 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3981 << D.getIdentifier();
3982 // FIXME: A cast to void is probably a better suggestion in cases where it's
3983 // valid (when there is no initializer and we're not in a condition).
3984 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3985 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3986 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3987 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3988 << FixItHint::CreateRemoval(Paren.Loc)
3989 << FixItHint::CreateRemoval(Paren.EndLoc);
3990}
3991
3992/// Helper for figuring out the default CC for a function declarator type. If
3993/// this is the outermost chunk, then we can determine the CC from the
3994/// declarator context. If not, then this could be either a member function
3995/// type or normal function type.
3996static CallingConv getCCForDeclaratorChunk(
3997 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3998 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3999 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)(static_cast <bool> (D.getTypeObject(ChunkIndex).Kind ==
DeclaratorChunk::Function) ? void (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "clang/lib/Sema/SemaType.cpp", 3999, __extension__ __PRETTY_FUNCTION__
))
;
4000
4001 // Check for an explicit CC attribute.
4002 for (const ParsedAttr &AL : AttrList) {
4003 switch (AL.getKind()) {
4004 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_AArch64SVEPcs
: case ParsedAttr::AT_AMDGPUKernelCall: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
: {
4005 // Ignore attributes that don't validate or can't apply to the
4006 // function type. We'll diagnose the failure to apply them in
4007 // handleFunctionTypeAttr.
4008 CallingConv CC;
4009 if (!S.CheckCallingConvAttr(AL, CC) &&
4010 (!FTI.isVariadic || supportsVariadicCall(CC))) {
4011 return CC;
4012 }
4013 break;
4014 }
4015
4016 default:
4017 break;
4018 }
4019 }
4020
4021 bool IsCXXInstanceMethod = false;
4022
4023 if (S.getLangOpts().CPlusPlus) {
4024 // Look inwards through parentheses to see if this chunk will form a
4025 // member pointer type or if we're the declarator. Any type attributes
4026 // between here and there will override the CC we choose here.
4027 unsigned I = ChunkIndex;
4028 bool FoundNonParen = false;
4029 while (I && !FoundNonParen) {
4030 --I;
4031 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
4032 FoundNonParen = true;
4033 }
4034
4035 if (FoundNonParen) {
4036 // If we're not the declarator, we're a regular function type unless we're
4037 // in a member pointer.
4038 IsCXXInstanceMethod =
4039 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
4040 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
4041 // This can only be a call operator for a lambda, which is an instance
4042 // method.
4043 IsCXXInstanceMethod = true;
4044 } else {
4045 // We're the innermost decl chunk, so must be a function declarator.
4046 assert(D.isFunctionDeclarator())(static_cast <bool> (D.isFunctionDeclarator()) ? void (
0) : __assert_fail ("D.isFunctionDeclarator()", "clang/lib/Sema/SemaType.cpp"
, 4046, __extension__ __PRETTY_FUNCTION__))
;
4047
4048 // If we're inside a record, we're declaring a method, but it could be
4049 // explicitly or implicitly static.
4050 IsCXXInstanceMethod =
4051 D.isFirstDeclarationOfMember() &&
4052 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
4053 !D.isStaticMember();
4054 }
4055 }
4056
4057 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
4058 IsCXXInstanceMethod);
4059
4060 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
4061 // and AMDGPU targets, hence it cannot be treated as a calling
4062 // convention attribute. This is the simplest place to infer
4063 // calling convention for OpenCL kernels.
4064 if (S.getLangOpts().OpenCL) {
4065 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4066 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
4067 CC = CC_OpenCLKernel;
4068 break;
4069 }
4070 }
4071 } else if (S.getLangOpts().CUDA) {
4072 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
4073 // sure the kernels will be marked with the right calling convention so that
4074 // they will be visible by the APIs that ingest SPIR-V.
4075 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
4076 if (Triple.getArch() == llvm::Triple::spirv32 ||
4077 Triple.getArch() == llvm::Triple::spirv64) {
4078 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4079 if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
4080 CC = CC_OpenCLKernel;
4081 break;
4082 }
4083 }
4084 }
4085 }
4086
4087 return CC;
4088}
4089
4090namespace {
4091 /// A simple notion of pointer kinds, which matches up with the various
4092 /// pointer declarators.
4093 enum class SimplePointerKind {
4094 Pointer,
4095 BlockPointer,
4096 MemberPointer,
4097 Array,
4098 };
4099} // end anonymous namespace
4100
4101IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
4102 switch (nullability) {
4103 case NullabilityKind::NonNull:
4104 if (!Ident__Nonnull)
4105 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
4106 return Ident__Nonnull;
4107
4108 case NullabilityKind::Nullable:
4109 if (!Ident__Nullable)
4110 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
4111 return Ident__Nullable;
4112
4113 case NullabilityKind::NullableResult:
4114 if (!Ident__Nullable_result)
4115 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
4116 return Ident__Nullable_result;
4117
4118 case NullabilityKind::Unspecified:
4119 if (!Ident__Null_unspecified)
4120 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
4121 return Ident__Null_unspecified;
4122 }
4123 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/lib/Sema/SemaType.cpp", 4123)
;
4124}
4125
4126/// Retrieve the identifier "NSError".
4127IdentifierInfo *Sema::getNSErrorIdent() {
4128 if (!Ident_NSError)
4129 Ident_NSError = PP.getIdentifierInfo("NSError");
4130
4131 return Ident_NSError;
4132}
4133
4134/// Check whether there is a nullability attribute of any kind in the given
4135/// attribute list.
4136static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
4137 for (const ParsedAttr &AL : attrs) {
4138 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
4139 AL.getKind() == ParsedAttr::AT_TypeNullable ||
4140 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
4141 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
4142 return true;
4143 }
4144
4145 return false;
4146}
4147
4148namespace {
4149 /// Describes the kind of a pointer a declarator describes.
4150 enum class PointerDeclaratorKind {
4151 // Not a pointer.
4152 NonPointer,
4153 // Single-level pointer.
4154 SingleLevelPointer,
4155 // Multi-level pointer (of any pointer kind).
4156 MultiLevelPointer,
4157 // CFFooRef*
4158 MaybePointerToCFRef,
4159 // CFErrorRef*
4160 CFErrorRefPointer,
4161 // NSError**
4162 NSErrorPointerPointer,
4163 };
4164
4165 /// Describes a declarator chunk wrapping a pointer that marks inference as
4166 /// unexpected.
4167 // These values must be kept in sync with diagnostics.
4168 enum class PointerWrappingDeclaratorKind {
4169 /// Pointer is top-level.
4170 None = -1,
4171 /// Pointer is an array element.
4172 Array = 0,
4173 /// Pointer is the referent type of a C++ reference.
4174 Reference = 1
4175 };
4176} // end anonymous namespace
4177
4178/// Classify the given declarator, whose type-specified is \c type, based on
4179/// what kind of pointer it refers to.
4180///
4181/// This is used to determine the default nullability.
4182static PointerDeclaratorKind
4183classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4184 PointerWrappingDeclaratorKind &wrappingKind) {
4185 unsigned numNormalPointers = 0;
4186
4187 // For any dependent type, we consider it a non-pointer.
4188 if (type->isDependentType())
4189 return PointerDeclaratorKind::NonPointer;
4190
4191 // Look through the declarator chunks to identify pointers.
4192 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4193 DeclaratorChunk &chunk = declarator.getTypeObject(i);
4194 switch (chunk.Kind) {
4195 case DeclaratorChunk::Array:
4196 if (numNormalPointers == 0)
4197 wrappingKind = PointerWrappingDeclaratorKind::Array;
4198 break;
4199
4200 case DeclaratorChunk::Function:
4201 case DeclaratorChunk::Pipe:
4202 break;
4203
4204 case DeclaratorChunk::BlockPointer:
4205 case DeclaratorChunk::MemberPointer:
4206 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4207 : PointerDeclaratorKind::SingleLevelPointer;
4208
4209 case DeclaratorChunk::Paren:
4210 break;
4211
4212 case DeclaratorChunk::Reference:
4213 if (numNormalPointers == 0)
4214 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4215 break;
4216
4217 case DeclaratorChunk::Pointer:
4218 ++numNormalPointers;
4219 if (numNormalPointers > 2)
4220 return PointerDeclaratorKind::MultiLevelPointer;
4221 break;
4222 }
4223 }
4224
4225 // Then, dig into the type specifier itself.
4226 unsigned numTypeSpecifierPointers = 0;
4227 do {
4228 // Decompose normal pointers.
4229 if (auto ptrType = type->getAs<PointerType>()) {
4230 ++numNormalPointers;
4231
4232 if (numNormalPointers > 2)
4233 return PointerDeclaratorKind::MultiLevelPointer;
4234
4235 type = ptrType->getPointeeType();
4236 ++numTypeSpecifierPointers;
4237 continue;
4238 }
4239
4240 // Decompose block pointers.
4241 if (type->getAs<BlockPointerType>()) {
4242 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4243 : PointerDeclaratorKind::SingleLevelPointer;
4244 }
4245
4246 // Decompose member pointers.
4247 if (type->getAs<MemberPointerType>()) {
4248 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4249 : PointerDeclaratorKind::SingleLevelPointer;
4250 }
4251
4252 // Look at Objective-C object pointers.
4253 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4254 ++numNormalPointers;
4255 ++numTypeSpecifierPointers;
4256
4257 // If this is NSError**, report that.
4258 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4259 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4260 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4261 return PointerDeclaratorKind::NSErrorPointerPointer;
4262 }
4263 }
4264
4265 break;
4266 }
4267
4268 // Look at Objective-C class types.
4269 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4270 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4271 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4272 return PointerDeclaratorKind::NSErrorPointerPointer;
4273 }
4274
4275 break;
4276 }
4277
4278 // If at this point we haven't seen a pointer, we won't see one.
4279 if (numNormalPointers == 0)
4280 return PointerDeclaratorKind::NonPointer;
4281
4282 if (auto recordType = type->getAs<RecordType>()) {
4283 RecordDecl *recordDecl = recordType->getDecl();
4284
4285 // If this is CFErrorRef*, report it as such.
4286 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4287 S.isCFError(recordDecl)) {
4288 return PointerDeclaratorKind::CFErrorRefPointer;
4289 }
4290 break;
4291 }
4292
4293 break;
4294 } while (true);
4295
4296 switch (numNormalPointers) {
4297 case 0:
4298 return PointerDeclaratorKind::NonPointer;
4299
4300 case 1:
4301 return PointerDeclaratorKind::SingleLevelPointer;
4302
4303 case 2:
4304 return PointerDeclaratorKind::MaybePointerToCFRef;
4305
4306 default:
4307 return PointerDeclaratorKind::MultiLevelPointer;
4308 }
4309}
4310
4311bool Sema::isCFError(RecordDecl *RD) {
4312 // If we already know about CFError, test it directly.
4313 if (CFError)
4314 return CFError == RD;
4315
4316 // Check whether this is CFError, which we identify based on its bridge to
4317 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4318 // declared with "objc_bridge_mutable", so look for either one of the two
4319 // attributes.
4320 if (RD->getTagKind() == TTK_Struct) {
4321 IdentifierInfo *bridgedType = nullptr;
4322 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4323 bridgedType = bridgeAttr->getBridgedType();
4324 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4325 bridgedType = bridgeAttr->getBridgedType();
4326
4327 if (bridgedType == getNSErrorIdent()) {
4328 CFError = RD;
4329 return true;
4330 }
4331 }
4332
4333 return false;
4334}
4335
4336static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4337 SourceLocation loc) {
4338 // If we're anywhere in a function, method, or closure context, don't perform
4339 // completeness checks.
4340 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4341 if (ctx->isFunctionOrMethod())
4342 return FileID();
4343
4344 if (ctx->isFileContext())
4345 break;
4346 }
4347
4348 // We only care about the expansion location.
4349 loc = S.SourceMgr.getExpansionLoc(loc);
4350 FileID file = S.SourceMgr.getFileID(loc);
4351 if (file.isInvalid())
4352 return FileID();
4353
4354 // Retrieve file information.
4355 bool invalid = false;
4356 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4357 if (invalid || !sloc.isFile())
4358 return FileID();
4359
4360 // We don't want to perform completeness checks on the main file or in
4361 // system headers.
4362 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4363 if (fileInfo.getIncludeLoc().isInvalid())
4364 return FileID();
4365 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4366 S.Diags.getSuppressSystemWarnings()) {
4367 return FileID();
4368 }
4369
4370 return file;
4371}
4372
4373/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4374/// taking into account whitespace before and after.
4375template <typename DiagBuilderT>
4376static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4377 SourceLocation PointerLoc,
4378 NullabilityKind Nullability) {
4379 assert(PointerLoc.isValid())(static_cast <bool> (PointerLoc.isValid()) ? void (0) :
__assert_fail ("PointerLoc.isValid()", "clang/lib/Sema/SemaType.cpp"
, 4379, __extension__ __PRETTY_FUNCTION__))
;
4380 if (PointerLoc.isMacroID())
4381 return;
4382
4383 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4384 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4385 return;
4386
4387 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4388 if (!NextChar)
4389 return;
4390
4391 SmallString<32> InsertionTextBuf{" "};
4392 InsertionTextBuf += getNullabilitySpelling(Nullability);
4393 InsertionTextBuf += " ";
4394 StringRef InsertionText = InsertionTextBuf.str();
4395
4396 if (isWhitespace(*NextChar)) {
4397 InsertionText = InsertionText.drop_back();
4398 } else if (NextChar[-1] == '[') {
4399 if (NextChar[0] == ']')
4400 InsertionText = InsertionText.drop_back().drop_front();
4401 else
4402 InsertionText = InsertionText.drop_front();
4403 } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4404 !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4405 InsertionText = InsertionText.drop_back().drop_front();
4406 }
4407
4408 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4409}
4410
4411static void emitNullabilityConsistencyWarning(Sema &S,
4412 SimplePointerKind PointerKind,
4413 SourceLocation PointerLoc,
4414 SourceLocation PointerEndLoc) {
4415 assert(PointerLoc.isValid())(static_cast <bool> (PointerLoc.isValid()) ? void (0) :
__assert_fail ("PointerLoc.isValid()", "clang/lib/Sema/SemaType.cpp"
, 4415, __extension__ __PRETTY_FUNCTION__))
;
4416
4417 if (PointerKind == SimplePointerKind::Array) {
4418 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4419 } else {
4420 S.Diag(PointerLoc, diag::warn_nullability_missing)
4421 << static_cast<unsigned>(PointerKind);
4422 }
4423
4424 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4425 if (FixItLoc.isMacroID())
4426 return;
4427
4428 auto addFixIt = [&](NullabilityKind Nullability) {
4429 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4430 Diag << static_cast<unsigned>(Nullability);
4431 Diag << static_cast<unsigned>(PointerKind);
4432 fixItNullability(S, Diag, FixItLoc, Nullability);
4433 };
4434 addFixIt(NullabilityKind::Nullable);
4435 addFixIt(NullabilityKind::NonNull);
4436}
4437
4438/// Complains about missing nullability if the file containing \p pointerLoc
4439/// has other uses of nullability (either the keywords or the \c assume_nonnull
4440/// pragma).
4441///
4442/// If the file has \e not seen other uses of nullability, this particular
4443/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4444static void
4445checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4446 SourceLocation pointerLoc,
4447 SourceLocation pointerEndLoc = SourceLocation()) {
4448 // Determine which file we're performing consistency checking for.
4449 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4450 if (file.isInvalid())
4451 return;
4452
4453 // If we haven't seen any type nullability in this file, we won't warn now
4454 // about anything.
4455 FileNullability &fileNullability = S.NullabilityMap[file];
4456 if (!fileNullability.SawTypeNullability) {
4457 // If this is the first pointer declarator in the file, and the appropriate
4458 // warning is on, record it in case we need to diagnose it retroactively.
4459 diag::kind diagKind;
4460 if (pointerKind == SimplePointerKind::Array)
4461 diagKind = diag::warn_nullability_missing_array;
4462 else
4463 diagKind = diag::warn_nullability_missing;
4464
4465 if (fileNullability.PointerLoc.isInvalid() &&
4466 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4467 fileNullability.PointerLoc = pointerLoc;
4468 fileNullability.PointerEndLoc = pointerEndLoc;
4469 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4470 }
4471
4472 return;
4473 }
4474
4475 // Complain about missing nullability.
4476 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4477}
4478
4479/// Marks that a nullability feature has been used in the file containing
4480/// \p loc.
4481///
4482/// If this file already had pointer types in it that were missing nullability,
4483/// the first such instance is retroactively diagnosed.
4484///
4485/// \sa checkNullabilityConsistency
4486static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4487 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4488 if (file.isInvalid())
4489 return;
4490
4491 FileNullability &fileNullability = S.NullabilityMap[file];
4492 if (fileNullability.SawTypeNullability)
4493 return;
4494 fileNullability.SawTypeNullability = true;
4495
4496 // If we haven't seen any type nullability before, now we have. Retroactively
4497 // diagnose the first unannotated pointer, if there was one.
4498 if (fileNullability.PointerLoc.isInvalid())
4499 return;
4500
4501 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4502 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4503 fileNullability.PointerEndLoc);
4504}
4505
4506/// Returns true if any of the declarator chunks before \p endIndex include a
4507/// level of indirection: array, pointer, reference, or pointer-to-member.
4508///
4509/// Because declarator chunks are stored in outer-to-inner order, testing
4510/// every chunk before \p endIndex is testing all chunks that embed the current
4511/// chunk as part of their type.
4512///
4513/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4514/// end index, in which case all chunks are tested.
4515static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4516 unsigned i = endIndex;
4517 while (i != 0) {
4518 // Walk outwards along the declarator chunks.
4519 --i;
4520 const DeclaratorChunk &DC = D.getTypeObject(i);
4521 switch (DC.Kind) {
4522 case DeclaratorChunk::Paren:
4523 break;
4524 case DeclaratorChunk::Array:
4525 case DeclaratorChunk::Pointer:
4526 case DeclaratorChunk::Reference:
4527 case DeclaratorChunk::MemberPointer:
4528 return true;
4529 case DeclaratorChunk::Function:
4530 case DeclaratorChunk::BlockPointer:
4531 case DeclaratorChunk::Pipe:
4532 // These are invalid anyway, so just ignore.
4533 break;
4534 }
4535 }
4536 return false;
4537}
4538
4539static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4540 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4541 Chunk.Kind == DeclaratorChunk::Array);
4542}
4543
4544template<typename AttrT>
4545static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4546 AL.setUsedAsTypeAttr();
4547 return ::new (Ctx) AttrT(Ctx, AL);
4548}
4549
4550static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4551 NullabilityKind NK) {
4552 switch (NK) {
4553 case NullabilityKind::NonNull:
4554 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4555
4556 case NullabilityKind::Nullable:
4557 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4558
4559 case NullabilityKind::NullableResult:
4560 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4561
4562 case NullabilityKind::Unspecified:
4563 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4564 }
4565 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "clang/lib/Sema/SemaType.cpp"
, 4565)
;
4566}
4567
4568// Diagnose whether this is a case with the multiple addr spaces.
4569// Returns true if this is an invalid case.
4570// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4571// by qualifiers for two or more different address spaces."
4572static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4573 LangAS ASNew,
4574 SourceLocation AttrLoc) {
4575 if (ASOld != LangAS::Default) {
4576 if (ASOld != ASNew) {
4577 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4578 return true;
4579 }
4580 // Emit a warning if they are identical; it's likely unintended.
4581 S.Diag(AttrLoc,
4582 diag::warn_attribute_address_multiple_identical_qualifiers);
4583 }
4584 return false;
4585}
4586
4587static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4588 QualType declSpecType,
4589 TypeSourceInfo *TInfo) {
4590 // The TypeSourceInfo that this function returns will not be a null type.
4591 // If there is an error, this function will fill in a dummy type as fallback.
4592 QualType T = declSpecType;
4593 Declarator &D = state.getDeclarator();
4594 Sema &S = state.getSema();
4595 ASTContext &Context = S.Context;
4596 const LangOptions &LangOpts = S.getLangOpts();
4597
4598 // The name we're declaring, if any.
4599 DeclarationName Name;
4600 if (D.getIdentifier())
4601 Name = D.getIdentifier();
4602
4603 // Does this declaration declare a typedef-name?
4604 bool IsTypedefName =
4605 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4606 D.getContext() == DeclaratorContext::AliasDecl ||
4607 D.getContext() == DeclaratorContext::AliasTemplate;
4608
4609 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4610 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4611 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4612 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4613
4614 // If T is 'decltype(auto)', the only declarators we can have are parens
4615 // and at most one function declarator if this is a function declaration.
4616 // If T is a deduced class template specialization type, we can have no
4617 // declarator chunks at all.
4618 if (auto *DT = T->getAs<DeducedType>()) {
4619 const AutoType *AT = T->getAs<AutoType>();
4620 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4621 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4622 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4623 unsigned Index = E - I - 1;
4624 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4625 unsigned DiagId = IsClassTemplateDeduction
4626 ? diag::err_deduced_class_template_compound_type
4627 : diag::err_decltype_auto_compound_type;
4628 unsigned DiagKind = 0;
4629 switch (DeclChunk.Kind) {
4630 case DeclaratorChunk::Paren:
4631 // FIXME: Rejecting this is a little silly.
4632 if (IsClassTemplateDeduction) {
4633 DiagKind = 4;
4634 break;
4635 }
4636 continue;
4637 case DeclaratorChunk::Function: {
4638 if (IsClassTemplateDeduction) {
4639 DiagKind = 3;
4640 break;
4641 }
4642 unsigned FnIndex;
4643 if (D.isFunctionDeclarationContext() &&
4644 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4645 continue;
4646 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4647 break;
4648 }
4649 case DeclaratorChunk::Pointer:
4650 case DeclaratorChunk::BlockPointer:
4651 case DeclaratorChunk::MemberPointer:
4652 DiagKind = 0;
4653 break;
4654 case DeclaratorChunk::Reference:
4655 DiagKind = 1;
4656 break;
4657 case DeclaratorChunk::Array:
4658 DiagKind = 2;
4659 break;
4660 case DeclaratorChunk::Pipe:
4661 break;
4662 }
4663
4664 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4665 D.setInvalidType(true);
4666 break;
4667 }
4668 }
4669 }
4670
4671 // Determine whether we should infer _Nonnull on pointer types.
4672 Optional<NullabilityKind> inferNullability;
4673 bool inferNullabilityCS = false;
4674 bool inferNullabilityInnerOnly = false;
4675 bool inferNullabilityInnerOnlyComplete = false;
4676
4677 // Are we in an assume-nonnull region?
4678 bool inAssumeNonNullRegion = false;
4679 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4680 if (assumeNonNullLoc.isValid()) {
4681 inAssumeNonNullRegion = true;
4682 recordNullabilitySeen(S, assumeNonNullLoc);
4683 }
4684
4685 // Whether to complain about missing nullability specifiers or not.
4686 enum {
4687 /// Never complain.
4688 CAMN_No,
4689 /// Complain on the inner pointers (but not the outermost
4690 /// pointer).
4691 CAMN_InnerPointers,
4692 /// Complain about any pointers that don't have nullability
4693 /// specified or inferred.
4694 CAMN_Yes
4695 } complainAboutMissingNullability = CAMN_No;
4696 unsigned NumPointersRemaining = 0;
4697 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4698
4699 if (IsTypedefName) {
4700 // For typedefs, we do not infer any nullability (the default),
4701 // and we only complain about missing nullability specifiers on
4702 // inner pointers.
4703 complainAboutMissingNullability = CAMN_InnerPointers;
4704
4705 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4706 !T->getNullability(S.Context)) {
4707 // Note that we allow but don't require nullability on dependent types.
4708 ++NumPointersRemaining;
4709 }
4710
4711 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4712 DeclaratorChunk &chunk = D.getTypeObject(i);
4713 switch (chunk.Kind) {
4714 case DeclaratorChunk::Array:
4715 case DeclaratorChunk::Function:
4716 case DeclaratorChunk::Pipe:
4717 break;
4718
4719 case DeclaratorChunk::BlockPointer:
4720 case DeclaratorChunk::MemberPointer:
4721 ++NumPointersRemaining;
4722 break;
4723
4724 case DeclaratorChunk::Paren:
4725 case DeclaratorChunk::Reference:
4726 continue;
4727
4728 case DeclaratorChunk::Pointer:
4729 ++NumPointersRemaining;
4730 continue;
4731 }
4732 }
4733 } else {
4734 bool isFunctionOrMethod = false;
4735 switch (auto context = state.getDeclarator().getContext()) {
4736 case DeclaratorContext::ObjCParameter:
4737 case DeclaratorContext::ObjCResult:
4738 case DeclaratorContext::Prototype:
4739 case DeclaratorContext::TrailingReturn:
4740 case DeclaratorContext::TrailingReturnVar:
4741 isFunctionOrMethod = true;
4742 [[fallthrough]];
4743
4744 case DeclaratorContext::Member:
4745 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4746 complainAboutMissingNullability = CAMN_No;
4747 break;
4748 }
4749
4750 // Weak properties are inferred to be nullable.
4751 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4752 inferNullability = NullabilityKind::Nullable;
4753 break;
4754 }
4755
4756 [[fallthrough]];
4757
4758 case DeclaratorContext::File:
4759 case DeclaratorContext::KNRTypeList: {
4760 complainAboutMissingNullability = CAMN_Yes;
4761
4762 // Nullability inference depends on the type and declarator.
4763 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4764 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4765 case PointerDeclaratorKind::NonPointer:
4766 case PointerDeclaratorKind::MultiLevelPointer:
4767 // Cannot infer nullability.
4768 break;
4769
4770 case PointerDeclaratorKind::SingleLevelPointer:
4771 // Infer _Nonnull if we are in an assumes-nonnull region.
4772 if (inAssumeNonNullRegion) {
4773 complainAboutInferringWithinChunk = wrappingKind;
4774 inferNullability = NullabilityKind::NonNull;
4775 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4776 context == DeclaratorContext::ObjCResult);
4777 }
4778 break;
4779
4780 case PointerDeclaratorKind::CFErrorRefPointer:
4781 case PointerDeclaratorKind::NSErrorPointerPointer:
4782 // Within a function or method signature, infer _Nullable at both
4783 // levels.
4784 if (isFunctionOrMethod && inAssumeNonNullRegion)
4785 inferNullability = NullabilityKind::Nullable;
4786 break;
4787
4788 case PointerDeclaratorKind::MaybePointerToCFRef:
4789 if (isFunctionOrMethod) {
4790 // On pointer-to-pointer parameters marked cf_returns_retained or
4791 // cf_returns_not_retained, if the outer pointer is explicit then
4792 // infer the inner pointer as _Nullable.
4793 auto hasCFReturnsAttr =
4794 [](const ParsedAttributesView &AttrList) -> bool {
4795 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4796 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4797 };
4798 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4799 if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4800 hasCFReturnsAttr(D.getAttributes()) ||
4801 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4802 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4803 inferNullability = NullabilityKind::Nullable;
4804 inferNullabilityInnerOnly = true;
4805 }
4806 }
4807 }
4808 break;
4809 }
4810 break;
4811 }
4812
4813 case DeclaratorContext::ConversionId:
4814 complainAboutMissingNullability = CAMN_Yes;
4815 break;
4816
4817 case DeclaratorContext::AliasDecl:
4818 case DeclaratorContext::AliasTemplate:
4819 case DeclaratorContext::Block:
4820 case DeclaratorContext::BlockLiteral:
4821 case DeclaratorContext::Condition:
4822 case DeclaratorContext::CXXCatch:
4823 case DeclaratorContext::CXXNew:
4824 case DeclaratorContext::ForInit:
4825 case DeclaratorContext::SelectionInit:
4826 case DeclaratorContext::LambdaExpr:
4827 case DeclaratorContext::LambdaExprParameter:
4828 case DeclaratorContext::ObjCCatch:
4829 case DeclaratorContext::TemplateParam:
4830 case DeclaratorContext::TemplateArg:
4831 case DeclaratorContext::TemplateTypeArg:
4832 case DeclaratorContext::TypeName:
4833 case DeclaratorContext::FunctionalCast:
4834 case DeclaratorContext::RequiresExpr:
4835 case DeclaratorContext::Association:
4836 // Don't infer in these contexts.
4837 break;
4838 }
4839 }
4840
4841 // Local function that returns true if its argument looks like a va_list.
4842 auto isVaList = [&S](QualType T) -> bool {
4843 auto *typedefTy = T->getAs<TypedefType>();
4844 if (!typedefTy)
4845 return false;
4846 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4847 do {
4848 if (typedefTy->getDecl() == vaListTypedef)
4849 return true;
4850 if (auto *name = typedefTy->getDecl()->getIdentifier())
4851 if (name->isStr("va_list"))
4852 return true;
4853 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4854 } while (typedefTy);
4855 return false;
4856 };
4857
4858 // Local function that checks the nullability for a given pointer declarator.
4859 // Returns true if _Nonnull was inferred.
4860 auto inferPointerNullability =
4861 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4862 SourceLocation pointerEndLoc,
4863 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4864 // We've seen a pointer.
4865 if (NumPointersRemaining > 0)
4866 --NumPointersRemaining;
4867
4868 // If a nullability attribute is present, there's nothing to do.
4869 if (hasNullabilityAttr(attrs))
4870 return nullptr;
4871
4872 // If we're supposed to infer nullability, do so now.
4873 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4874 ParsedAttr::Syntax syntax = inferNullabilityCS
4875 ? ParsedAttr::AS_ContextSensitiveKeyword
4876 : ParsedAttr::AS_Keyword;
4877 ParsedAttr *nullabilityAttr = Pool.create(
4878 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4879 nullptr, SourceLocation(), nullptr, 0, syntax);
4880
4881 attrs.addAtEnd(nullabilityAttr);
4882
4883 if (inferNullabilityCS) {
4884 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4885 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4886 }
4887
4888 if (pointerLoc.isValid() &&
4889 complainAboutInferringWithinChunk !=
4890 PointerWrappingDeclaratorKind::None) {
4891 auto Diag =
4892 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4893 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4894 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4895 }
4896
4897 if (inferNullabilityInnerOnly)
4898 inferNullabilityInnerOnlyComplete = true;
4899 return nullabilityAttr;
4900 }
4901
4902 // If we're supposed to complain about missing nullability, do so
4903 // now if it's truly missing.
4904 switch (complainAboutMissingNullability) {
4905 case CAMN_No:
4906 break;
4907
4908 case CAMN_InnerPointers:
4909 if (NumPointersRemaining == 0)
4910 break;
4911 [[fallthrough]];
4912
4913 case CAMN_Yes:
4914 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4915 }
4916 return nullptr;
4917 };
4918
4919 // If the type itself could have nullability but does not, infer pointer
4920 // nullability and perform consistency checking.
4921 if (S.CodeSynthesisContexts.empty()) {
4922 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4923 !T->getNullability(S.Context)) {
4924 if (isVaList(T)) {
4925 // Record that we've seen a pointer, but do nothing else.
4926 if (NumPointersRemaining > 0)
4927 --NumPointersRemaining;
4928 } else {
4929 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4930 if (T->isBlockPointerType())
4931 pointerKind = SimplePointerKind::BlockPointer;
4932 else if (T->isMemberPointerType())
4933 pointerKind = SimplePointerKind::MemberPointer;
4934
4935 if (auto *attr = inferPointerNullability(
4936 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4937 D.getDeclSpec().getEndLoc(),
4938 D.getMutableDeclSpec().getAttributes(),
4939 D.getMutableDeclSpec().getAttributePool())) {
4940 T = state.getAttributedType(
4941 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4942 }
4943 }
4944 }
4945
4946 if (complainAboutMissingNullability == CAMN_Yes &&
4947 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4948 D.isPrototypeContext() &&
4949 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4950 checkNullabilityConsistency(S, SimplePointerKind::Array,
4951 D.getDeclSpec().getTypeSpecTypeLoc());
4952 }
4953 }
4954
4955 bool ExpectNoDerefChunk =
4956 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4957
4958 // Walk the DeclTypeInfo, building the recursive type as we go.
4959 // DeclTypeInfos are ordered from the identifier out, which is
4960 // opposite of what we want :).
4961 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4962 unsigned chunkIndex = e - i - 1;
4963 state.setCurrentChunkIndex(chunkIndex);
4964 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4965 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4966 switch (DeclType.Kind) {
4967 case DeclaratorChunk::Paren:
4968 if (i == 0)
4969 warnAboutRedundantParens(S, D, T);
4970 T = S.BuildParenType(T);
4971 break;
4972 case DeclaratorChunk::BlockPointer:
4973 // If blocks are disabled, emit an error.
4974 if (!LangOpts.Blocks)
4975 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4976
4977 // Handle pointer nullability.
4978 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4979 DeclType.EndLoc, DeclType.getAttrs(),
4980 state.getDeclarator().getAttributePool());
4981
4982 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4983 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4984 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4985 // qualified with const.
4986 if (LangOpts.OpenCL)
4987 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4988 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4989 }
4990 break;
4991 case DeclaratorChunk::Pointer:
4992 // Verify that we're not building a pointer to pointer to function with
4993 // exception specification.
4994 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4995 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4996 D.setInvalidType(true);
4997 // Build the type anyway.
4998 }
4999
5000 // Handle pointer nullability
5001 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
5002 DeclType.EndLoc, DeclType.getAttrs(),
5003 state.getDeclarator().getAttributePool());
5004
5005 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
5006 T = Context.getObjCObjectPointerType(T);
5007 if (DeclType.Ptr.TypeQuals)
5008 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
5009 break;
5010 }
5011
5012 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
5013 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
5014 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
5015 if (LangOpts.OpenCL) {
5016 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
5017 T->isBlockPointerType()) {
5018 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
5019 D.setInvalidType(true);
5020 }
5021 }
5022
5023 T = S.BuildPointerType(T, DeclType.Loc, Name);
5024 if (DeclType.Ptr.TypeQuals)
5025 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
5026 break;
5027 case DeclaratorChunk::Reference: {
5028 // Verify that we're not building a reference to pointer to function with
5029 // exception specification.
5030 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5031 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5032 D.setInvalidType(true);
5033 // Build the type anyway.
5034 }
5035 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
5036
5037 if (DeclType.Ref.HasRestrict)
5038 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
5039 break;
5040 }
5041 case DeclaratorChunk::Array: {
5042 // Verify that we're not building an array of pointers to function with
5043 // exception specification.
5044 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5045 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5046 D.setInvalidType(true);
5047 // Build the type anyway.
5048 }
5049 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
5050 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
5051 ArrayType::ArraySizeModifier ASM;
5052 if (ATI.isStar)
5053 ASM = ArrayType::Star;
5054 else if (ATI.hasStatic)
5055 ASM = ArrayType::Static;
5056 else
5057 ASM = ArrayType::Normal;
5058 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
5059 // FIXME: This check isn't quite right: it allows star in prototypes
5060 // for function definitions, and disallows some edge cases detailed
5061 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
5062 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
5063 ASM = ArrayType::Normal;
5064 D.setInvalidType(true);
5065 }
5066
5067 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
5068 // shall appear only in a declaration of a function parameter with an
5069 // array type, ...
5070 if (ASM == ArrayType::Static || ATI.TypeQuals) {
5071 if (!(D.isPrototypeContext() ||
5072 D.getContext() == DeclaratorContext::KNRTypeList)) {
5073 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
5074 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
5075 // Remove the 'static' and the type qualifiers.
5076 if (ASM == ArrayType::Static)
5077 ASM = ArrayType::Normal;
5078 ATI.TypeQuals = 0;
5079 D.setInvalidType(true);
5080 }
5081
5082 // C99 6.7.5.2p1: ... and then only in the outermost array type
5083 // derivation.
5084 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
5085 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
5086 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
5087 if (ASM == ArrayType::Static)
5088 ASM = ArrayType::Normal;
5089 ATI.TypeQuals = 0;
5090 D.setInvalidType(true);
5091 }
5092 }
5093 const AutoType *AT = T->getContainedAutoType();
5094 // Allow arrays of auto if we are a generic lambda parameter.
5095 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
5096 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
5097 // We've already diagnosed this for decltype(auto).
5098 if (!AT->isDecltypeAuto())
5099 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
5100 << getPrintableNameForEntity(Name) << T;
5101 T = QualType();
5102 break;
5103 }
5104
5105 // Array parameters can be marked nullable as well, although it's not
5106 // necessary if they're marked 'static'.
5107 if (complainAboutMissingNullability == CAMN_Yes &&
5108 !hasNullabilityAttr(DeclType.getAttrs()) &&
5109 ASM != ArrayType::Static &&
5110 D.isPrototypeContext() &&
5111 !hasOuterPointerLikeChunk(D, chunkIndex)) {
5112 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
5113 }
5114
5115 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
5116 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
5117 break;
5118 }
5119 case DeclaratorChunk::Function: {
5120 // If the function declarator has a prototype (i.e. it is not () and
5121 // does not have a K&R-style identifier list), then the arguments are part
5122 // of the type, otherwise the argument list is ().
5123 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5124 IsQualifiedFunction =
5125 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
5126
5127 // Check for auto functions and trailing return type and adjust the
5128 // return type accordingly.
5129 if (!D.isInvalidType()) {
5130 // trailing-return-type is only required if we're declaring a function,
5131 // and not, for instance, a pointer to a function.
5132 if (D.getDeclSpec().hasAutoTypeSpec() &&
5133 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
5134 if (!S.getLangOpts().CPlusPlus14) {
5135 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5136 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5137 ? diag::err_auto_missing_trailing_return
5138 : diag::err_deduced_return_type);
5139 T = Context.IntTy;
5140 D.setInvalidType(true);
5141 } else {
5142 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5143 diag::warn_cxx11_compat_deduced_return_type);
5144 }
5145 } else if (FTI.hasTrailingReturnType()) {
5146 // T must be exactly 'auto' at this point. See CWG issue 681.
5147 if (isa<ParenType>(T)) {
5148 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5149 << T << D.getSourceRange();
5150 D.setInvalidType(true);
5151 } else if (D.getName().getKind() ==
5152 UnqualifiedIdKind::IK_DeductionGuideName) {
5153 if (T != Context.DependentTy) {
5154 S.Diag(D.getDeclSpec().getBeginLoc(),
5155 diag::err_deduction_guide_with_complex_decl)
5156 << D.getSourceRange();
5157 D.setInvalidType(true);
5158 }
5159 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5160 (T.hasQualifiers() || !isa<AutoType>(T) ||
5161 cast<AutoType>(T)->getKeyword() !=
5162 AutoTypeKeyword::Auto ||
5163 cast<AutoType>(T)->isConstrained())) {
5164 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5165 diag::err_trailing_return_without_auto)
5166 << T << D.getDeclSpec().getSourceRange();
5167 D.setInvalidType(true);
5168 }
5169 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
5170 if (T.isNull()) {
5171 // An error occurred parsing the trailing return type.
5172 T = Context.IntTy;
5173 D.setInvalidType(true);
5174 } else if (AutoType *Auto = T->getContainedAutoType()) {
5175 // If the trailing return type contains an `auto`, we may need to
5176 // invent a template parameter for it, for cases like
5177 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5178 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5179 if (D.getContext() == DeclaratorContext::Prototype)
5180 InventedParamInfo = &S.InventedParameterInfos.back();
5181 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5182 InventedParamInfo = S.getCurLambda();
5183 if (InventedParamInfo) {
5184 std::tie(T, TInfo) = InventTemplateParameter(
5185 state, T, TInfo, Auto, *InventedParamInfo);
5186 }
5187 }
5188 } else {
5189 // This function type is not the type of the entity being declared,
5190 // so checking the 'auto' is not the responsibility of this chunk.
5191 }
5192 }
5193
5194 // C99 6.7.5.3p1: The return type may not be a function or array type.
5195 // For conversion functions, we'll diagnose this particular error later.
5196 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5197 (D.getName().getKind() !=
5198 UnqualifiedIdKind::IK_ConversionFunctionId)) {
5199 unsigned diagID = diag::err_func_returning_array_function;
5200 // Last processing chunk in block context means this function chunk
5201 // represents the block.
5202 if (chunkIndex == 0 &&
5203 D.getContext() == DeclaratorContext::BlockLiteral)
5204 diagID = diag::err_block_returning_array_function;
5205 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
5206 T = Context.IntTy;
5207 D.setInvalidType(true);
5208 }
5209
5210 // Do not allow returning half FP value.
5211 // FIXME: This really should be in BuildFunctionType.
5212 if (T->isHalfType()) {
5213 if (S.getLangOpts().OpenCL) {
5214 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5215 S.getLangOpts())) {
5216 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5217 << T << 0 /*pointer hint*/;
5218 D.setInvalidType(true);
5219 }
5220 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5221 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5222 S.Diag(D.getIdentifierLoc(),
5223 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5224 D.setInvalidType(true);
5225 }
5226 }
5227
5228 if (LangOpts.OpenCL) {
5229 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5230 // function.
5231 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5232 T->isPipeType()) {
5233 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5234 << T << 1 /*hint off*/;
5235 D.setInvalidType(true);
5236 }
5237 // OpenCL doesn't support variadic functions and blocks
5238 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5239 // We also allow here any toolchain reserved identifiers.
5240 if (FTI.isVariadic &&
5241 !S.getOpenCLOptions().isAvailableOption(
5242 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5243 !(D.getIdentifier() &&
5244 ((D.getIdentifier()->getName() == "printf" &&
5245 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
5246 D.getIdentifier()->getName().startswith("__")))) {
5247 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5248 D.setInvalidType(true);
5249 }
5250 }
5251
5252 // Methods cannot return interface types. All ObjC objects are
5253 // passed by reference.
5254 if (T->isObjCObjectType()) {
5255 SourceLocation DiagLoc, FixitLoc;
5256 if (TInfo) {
5257 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5258 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5259 } else {
5260 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5261 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5262 }
5263 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5264 << 0 << T
5265 << FixItHint::CreateInsertion(FixitLoc, "*");
5266
5267 T = Context.getObjCObjectPointerType(T);
5268 if (TInfo) {
5269 TypeLocBuilder TLB;
5270 TLB.pushFullCopy(TInfo->getTypeLoc());
5271 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5272 TLoc.setStarLoc(FixitLoc);
5273 TInfo = TLB.getTypeSourceInfo(Context, T);
5274 }
5275
5276 D.setInvalidType(true);
5277 }
5278
5279 // cv-qualifiers on return types are pointless except when the type is a
5280 // class type in C++.
5281 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5282 !(S.getLangOpts().CPlusPlus &&
5283 (T->isDependentType() || T->isRecordType()))) {
5284 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5285 D.getFunctionDefinitionKind() ==
5286 FunctionDefinitionKind::Definition) {
5287 // [6.9.1/3] qualified void return is invalid on a C
5288 // function definition. Apparently ok on declarations and
5289 // in C++ though (!)
5290 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5291 } else
5292 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5293
5294 // C++2a [dcl.fct]p12:
5295 // A volatile-qualified return type is deprecated
5296 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5297 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5298 }
5299
5300 // Objective-C ARC ownership qualifiers are ignored on the function
5301 // return type (by type canonicalization). Complain if this attribute
5302 // was written here.
5303 if (T.getQualifiers().hasObjCLifetime()) {
5304 SourceLocation AttrLoc;
5305 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5306 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5307 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5308 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5309 AttrLoc = AL.getLoc();
5310 break;
5311 }
5312 }
5313 }
5314 if (AttrLoc.isInvalid()) {
5315 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5316 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5317 AttrLoc = AL.getLoc();
5318 break;
5319 }
5320 }
5321 }
5322
5323 if (AttrLoc.isValid()) {
5324 // The ownership attributes are almost always written via
5325 // the predefined
5326 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5327 if (AttrLoc.isMacroID())
5328 AttrLoc =
5329 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5330
5331 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5332 << T.getQualifiers().getObjCLifetime();
5333 }
5334 }
5335
5336 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5337 // C++ [dcl.fct]p6:
5338 // Types shall not be defined in return or parameter types.
5339 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5340 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5341 << Context.getTypeDeclType(Tag);
5342 }
5343
5344 // Exception specs are not allowed in typedefs. Complain, but add it
5345 // anyway.
5346 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5347 S.Diag(FTI.getExceptionSpecLocBeg(),
5348 diag::err_exception_spec_in_typedef)
5349 << (D.getContext() == DeclaratorContext::AliasDecl ||
5350 D.getContext() == DeclaratorContext::AliasTemplate);
5351
5352 // If we see "T var();" or "T var(T());" at block scope, it is probably
5353 // an attempt to initialize a variable, not a function declaration.
5354 if (FTI.isAmbiguous)
5355 warnAboutAmbiguousFunction(S, D, DeclType, T);
5356
5357 FunctionType::ExtInfo EI(
5358 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5359
5360 // OpenCL disallows functions without a prototype, but it doesn't enforce
5361 // strict prototypes as in C2x because it allows a function definition to
5362 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5363 if (!FTI.NumParams && !FTI.isVariadic &&
5364 !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5365 // Simple void foo(), where the incoming T is the result type.
5366 T = Context.getFunctionNoProtoType(T, EI);
5367 } else {
5368 // We allow a zero-parameter variadic function in C if the
5369 // function is marked with the "overloadable" attribute. Scan
5370 // for this attribute now.
5371 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5372 if (!D.getDeclarationAttributes().hasAttribute(
5373 ParsedAttr::AT_Overloadable) &&
5374 !D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable) &&
5375 !D.getDeclSpec().getAttributes().hasAttribute(
5376 ParsedAttr::AT_Overloadable))
5377 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5378
5379 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5380 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5381 // definition.
5382 S.Diag(FTI.Params[0].IdentLoc,
5383 diag::err_ident_list_in_fn_declaration);
5384 D.setInvalidType(true);
5385 // Recover by creating a K&R-style function type, if possible.
5386 T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5387 ? Context.getFunctionNoProtoType(T, EI)
5388 : Context.IntTy;
5389 break;
5390 }
5391
5392 FunctionProtoType::ExtProtoInfo EPI;
5393 EPI.ExtInfo = EI;
5394 EPI.Variadic = FTI.isVariadic;
5395 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5396 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5397 EPI.TypeQuals.addCVRUQualifiers(
5398 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5399 : 0);
5400 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5401 : FTI.RefQualifierIsLValueRef? RQ_LValue
5402 : RQ_RValue;
5403
5404 // Otherwise, we have a function with a parameter list that is
5405 // potentially variadic.
5406 SmallVector<QualType, 16> ParamTys;
5407 ParamTys.reserve(FTI.NumParams);
5408
5409 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5410 ExtParameterInfos(FTI.NumParams);
5411 bool HasAnyInterestingExtParameterInfos = false;
5412
5413 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5414 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5415 QualType ParamTy = Param->getType();
5416 assert(!ParamTy.isNull() && "Couldn't parse type?")(static_cast <bool> (!ParamTy.isNull() && "Couldn't parse type?"
) ? void (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "clang/lib/Sema/SemaType.cpp", 5416, __extension__ __PRETTY_FUNCTION__
))
;
5417
5418 // Look for 'void'. void is allowed only as a single parameter to a
5419 // function with no other parameters (C99 6.7.5.3p10). We record
5420 // int(void) as a FunctionProtoType with an empty parameter list.
5421 if (ParamTy->isVoidType()) {
5422 // If this is something like 'float(int, void)', reject it. 'void'
5423 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5424 // have parameters of incomplete type.
5425 if (FTI.NumParams != 1 || FTI.isVariadic) {
5426 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5427 ParamTy = Context.IntTy;
5428 Param->setType(ParamTy);
5429 } else if (FTI.Params[i].Ident) {
5430 // Reject, but continue to parse 'int(void abc)'.
5431 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5432 ParamTy = Context.IntTy;
5433 Param->setType(ParamTy);
5434 } else {
5435 // Reject, but continue to parse 'float(const void)'.
5436 if (ParamTy.hasQualifiers())
5437 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5438
5439 // Do not add 'void' to the list.
5440 break;
5441 }
5442 } else if (ParamTy->isHalfType()) {
5443 // Disallow half FP parameters.
5444 // FIXME: This really should be in BuildFunctionType.
5445 if (S.getLangOpts().OpenCL) {
5446 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5447 S.getLangOpts())) {
5448 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5449 << ParamTy << 0;
5450 D.setInvalidType();
5451 Param->setInvalidDecl();
5452 }
5453 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5454 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5455 S.Diag(Param->getLocation(),
5456 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5457 D.setInvalidType();
5458 }
5459 } else if (!FTI.hasPrototype) {
5460 if (ParamTy->isPromotableIntegerType()) {
5461 ParamTy = Context.getPromotedIntegerType(ParamTy);
5462 Param->setKNRPromoted(true);
5463 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5464 if (BTy->getKind() == BuiltinType::Float) {
5465 ParamTy = Context.DoubleTy;
5466 Param->setKNRPromoted(true);
5467 }
5468 }
5469 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5470 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5471 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5472 << ParamTy << 1 /*hint off*/;
5473 D.setInvalidType();
5474 }
5475
5476 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5477 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5478 HasAnyInterestingExtParameterInfos = true;
5479 }
5480
5481 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5482 ExtParameterInfos[i] =
5483 ExtParameterInfos[i].withABI(attr->getABI());
5484 HasAnyInterestingExtParameterInfos = true;
5485 }
5486
5487 if (Param->hasAttr<PassObjectSizeAttr>()) {
5488 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5489 HasAnyInterestingExtParameterInfos = true;
5490 }
5491
5492 if (Param->hasAttr<NoEscapeAttr>()) {
5493 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5494 HasAnyInterestingExtParameterInfos = true;
5495 }
5496
5497 ParamTys.push_back(ParamTy);
5498 }
5499
5500 if (HasAnyInterestingExtParameterInfos) {
5501 EPI.ExtParameterInfos = ExtParameterInfos.data();
5502 checkExtParameterInfos(S, ParamTys, EPI,
5503 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5504 }
5505
5506 SmallVector<QualType, 4> Exceptions;
5507 SmallVector<ParsedType, 2> DynamicExceptions;
5508 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5509 Expr *NoexceptExpr = nullptr;
5510
5511 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5512 // FIXME: It's rather inefficient to have to split into two vectors
5513 // here.
5514 unsigned N = FTI.getNumExceptions();
5515 DynamicExceptions.reserve(N);
5516 DynamicExceptionRanges.reserve(N);
5517 for (unsigned I = 0; I != N; ++I) {
5518 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5519 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5520 }
5521 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5522 NoexceptExpr = FTI.NoexceptExpr;
5523 }
5524
5525 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5526 FTI.getExceptionSpecType(),
5527 DynamicExceptions,
5528 DynamicExceptionRanges,
5529 NoexceptExpr,
5530 Exceptions,
5531 EPI.ExceptionSpec);
5532
5533 // FIXME: Set address space from attrs for C++ mode here.
5534 // OpenCLCPlusPlus: A class member function has an address space.
5535 auto IsClassMember = [&]() {
5536 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5537 state.getDeclarator()
5538 .getCXXScopeSpec()
5539 .getScopeRep()
5540 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5541 state.getDeclarator().getContext() ==
5542 DeclaratorContext::Member ||
5543 state.getDeclarator().getContext() ==
5544 DeclaratorContext::LambdaExpr;
5545 };
5546
5547 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5548 LangAS ASIdx = LangAS::Default;
5549 // Take address space attr if any and mark as invalid to avoid adding
5550 // them later while creating QualType.
5551 if (FTI.MethodQualifiers)
5552 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5553 LangAS ASIdxNew = attr.asOpenCLLangAS();
5554 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5555 attr.getLoc()))
5556 D.setInvalidType(true);
5557 else
5558 ASIdx = ASIdxNew;
5559 }
5560 // If a class member function's address space is not set, set it to
5561 // __generic.
5562 LangAS AS =
5563 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5564 : ASIdx);
5565 EPI.TypeQuals.addAddressSpace(AS);
5566 }
5567 T = Context.getFunctionType(T, ParamTys, EPI);
5568 }
5569 break;
5570 }
5571 case DeclaratorChunk::MemberPointer: {
5572 // The scope spec must refer to a class, or be dependent.
5573 CXXScopeSpec &SS = DeclType.Mem.Scope();
5574 QualType ClsType;
5575
5576 // Handle pointer nullability.
5577 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5578 DeclType.EndLoc, DeclType.getAttrs(),
5579 state.getDeclarator().getAttributePool());
5580
5581 if (SS.isInvalid()) {
5582 // Avoid emitting extra errors if we already errored on the scope.
5583 D.setInvalidType(true);
5584 } else if (S.isDependentScopeSpecifier(SS) ||
5585 isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5586 NestedNameSpecifier *NNS = SS.getScopeRep();
5587 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5588 switch (NNS->getKind()) {
5589 case NestedNameSpecifier::Identifier:
5590 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5591 NNS->getAsIdentifier());
5592 break;
5593
5594 case NestedNameSpecifier::Namespace:
5595 case NestedNameSpecifier::NamespaceAlias:
5596 case NestedNameSpecifier::Global:
5597 case NestedNameSpecifier::Super:
5598 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "clang/lib/Sema/SemaType.cpp", 5598)
;
5599
5600 case NestedNameSpecifier::TypeSpec:
5601 case NestedNameSpecifier::TypeSpecWithTemplate:
5602 ClsType = QualType(NNS->getAsType(), 0);
5603 // Note: if the NNS has a prefix and ClsType is a nondependent
5604 // TemplateSpecializationType, then the NNS prefix is NOT included
5605 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5606 // NOTE: in particular, no wrap occurs if ClsType already is an
5607 // Elaborated, DependentName, or DependentTemplateSpecialization.
5608 if (isa<TemplateSpecializationType>(NNS->getAsType()))
5609 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5610 break;
5611 }
5612 } else {
5613 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5614 diag::err_illegal_decl_mempointer_in_nonclass)
5615 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5616 << DeclType.Mem.Scope().getRange();
5617 D.setInvalidType(true);
5618 }
5619
5620 if (!ClsType.isNull())
5621 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5622 D.getIdentifier());
5623 if (T.isNull()) {
5624 T = Context.IntTy;
5625 D.setInvalidType(true);
5626 } else if (DeclType.Mem.TypeQuals) {
5627 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5628 }
5629 break;
5630 }
5631
5632 case DeclaratorChunk::Pipe: {
5633 T = S.BuildReadPipeType(T, DeclType.Loc);
5634 processTypeAttrs(state, T, TAL_DeclSpec,
5635 D.getMutableDeclSpec().getAttributes());
5636 break;
5637 }
5638 }
5639
5640 if (T.isNull()) {
5641 D.setInvalidType(true);
5642 T = Context.IntTy;
5643 }
5644
5645 // See if there are any attributes on this declarator chunk.
5646 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5647
5648 if (DeclType.Kind != DeclaratorChunk::Paren) {
5649 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5650 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5651
5652 ExpectNoDerefChunk = state.didParseNoDeref();
5653 }
5654 }
5655
5656 if (ExpectNoDerefChunk)
5657 S.Diag(state.getDeclarator().getBeginLoc(),
5658 diag::warn_noderef_on_non_pointer_or_array);
5659
5660 // GNU warning -Wstrict-prototypes
5661 // Warn if a function declaration or definition is without a prototype.
5662 // This warning is issued for all kinds of unprototyped function
5663 // declarations (i.e. function type typedef, function pointer etc.)
5664 // C99 6.7.5.3p14:
5665 // The empty list in a function declarator that is not part of a definition
5666 // of that function specifies that no information about the number or types
5667 // of the parameters is supplied.
5668 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5669 // function declarations whose behavior changes in C2x.
5670 if (!LangOpts.requiresStrictPrototypes()) {
5671 bool IsBlock = false;
5672 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5673 switch (DeclType.Kind) {
5674 case DeclaratorChunk::BlockPointer:
5675 IsBlock = true;
5676 break;
5677 case DeclaratorChunk::Function: {
5678 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5679 // We suppress the warning when there's no LParen location, as this
5680 // indicates the declaration was an implicit declaration, which gets
5681 // warned about separately via -Wimplicit-function-declaration. We also
5682 // suppress the warning when we know the function has a prototype.
5683 if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5684 FTI.getLParenLoc().isValid())
5685 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5686 << IsBlock
5687 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5688 IsBlock = false;
5689 break;
5690 }
5691 default:
5692 break;
5693 }
5694 }
5695 }
5696
5697 assert(!T.isNull() && "T must not be null after this point")(static_cast <bool> (!T.isNull() && "T must not be null after this point"
) ? void (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "clang/lib/Sema/SemaType.cpp", 5697, __extension__ __PRETTY_FUNCTION__
))
;
5698
5699 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5700 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5701 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")(static_cast <bool> (FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? void (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "clang/lib/Sema/SemaType.cpp", 5701, __extension__ __PRETTY_FUNCTION__
))
;
5702
5703 // C++ 8.3.5p4:
5704 // A cv-qualifier-seq shall only be part of the function type
5705 // for a nonstatic member function, the function type to which a pointer
5706 // to member refers, or the top-level function type of a function typedef
5707 // declaration.
5708 //
5709 // Core issue 547 also allows cv-qualifiers on function types that are
5710 // top-level template type arguments.
5711 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5712 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5713 Kind = DeductionGuide;
5714 else if (!D.getCXXScopeSpec().isSet()) {
5715 if ((D.getContext() == DeclaratorContext::Member ||
5716 D.getContext() == DeclaratorContext::LambdaExpr) &&
5717 !D.getDeclSpec().isFriendSpecified())
5718 Kind = Member;
5719 } else {
5720 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5721 if (!DC || DC->isRecord())
5722 Kind = Member;
5723 }
5724
5725 // C++11 [dcl.fct]p6 (w/DR1417):
5726 // An attempt to specify a function type with a cv-qualifier-seq or a
5727 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5728 // - the function type for a non-static member function,
5729 // - the function type to which a pointer to member refers,
5730 // - the top-level function type of a function typedef declaration or
5731 // alias-declaration,
5732 // - the type-id in the default argument of a type-parameter, or
5733 // - the type-id of a template-argument for a type-parameter
5734 //
5735 // FIXME: Checking this here is insufficient. We accept-invalid on:
5736 //
5737 // template<typename T> struct S { void f(T); };
5738 // S<int() const> s;
5739 //
5740 // ... for instance.
5741 if (IsQualifiedFunction &&
5742 !(Kind == Member &&
5743 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5744 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5745 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5746 SourceLocation Loc = D.getBeginLoc();
5747 SourceRange RemovalRange;
5748 unsigned I;
5749 if (D.isFunctionDeclarator(I)) {
5750 SmallVector<SourceLocation, 4> RemovalLocs;
5751 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5752 assert(Chunk.Kind == DeclaratorChunk::Function)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Function
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "clang/lib/Sema/SemaType.cpp", 5752, __extension__ __PRETTY_FUNCTION__
))
;
5753
5754 if (Chunk.Fun.hasRefQualifier())
5755 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5756
5757 if (Chunk.Fun.hasMethodTypeQualifiers())
5758 Chunk.Fun.MethodQualifiers->forEachQualifier(
5759 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5760 SourceLocation SL) { RemovalLocs.push_back(SL); });
5761
5762 if (!RemovalLocs.empty()) {
5763 llvm::sort(RemovalLocs,
5764 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5765 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5766 Loc = RemovalLocs.front();
5767 }
5768 }
5769
5770 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5771 << Kind << D.isFunctionDeclarator() << T
5772 << getFunctionQualifiersAsString(FnTy)
5773 << FixItHint::CreateRemoval(RemovalRange);
5774
5775 // Strip the cv-qualifiers and ref-qualifiers from the type.
5776 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5777 EPI.TypeQuals.removeCVRQualifiers();
5778 EPI.RefQualifier = RQ_None;
5779
5780 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5781 EPI);
5782 // Rebuild any parens around the identifier in the function type.
5783 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5784 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5785 break;
5786 T = S.BuildParenType(T);
5787 }
5788 }
5789 }
5790
5791 // Apply any undistributed attributes from the declaration or declarator.
5792 ParsedAttributesView NonSlidingAttrs;
5793 for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5794 if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5795 NonSlidingAttrs.addAtEnd(&AL);
5796 }
5797 }
5798 processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5799 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5800
5801 // Diagnose any ignored type attributes.
5802 state.diagnoseIgnoredTypeAttrs(T);
5803
5804 // C++0x [dcl.constexpr]p9:
5805 // A constexpr specifier used in an object declaration declares the object
5806 // as const.
5807 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5808 T->isObjectType())
5809 T.addConst();
5810
5811 // C++2a [dcl.fct]p4:
5812 // A parameter with volatile-qualified type is deprecated
5813 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5814 (D.getContext() == DeclaratorContext::Prototype ||
5815 D.getContext() == DeclaratorContext::LambdaExprParameter))
5816 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5817
5818 // If there was an ellipsis in the declarator, the declaration declares a
5819 // parameter pack whose type may be a pack expansion type.
5820 if (D.hasEllipsis()) {
5821 // C++0x [dcl.fct]p13:
5822 // A declarator-id or abstract-declarator containing an ellipsis shall
5823 // only be used in a parameter-declaration. Such a parameter-declaration
5824 // is a parameter pack (14.5.3). [...]
5825 switch (D.getContext()) {
5826 case DeclaratorContext::Prototype:
5827 case DeclaratorContext::LambdaExprParameter:
5828 case DeclaratorContext::RequiresExpr:
5829 // C++0x [dcl.fct]p13:
5830 // [...] When it is part of a parameter-declaration-clause, the
5831 // parameter pack is a function parameter pack (14.5.3). The type T
5832 // of the declarator-id of the function parameter pack shall contain
5833 // a template parameter pack; each template parameter pack in T is
5834 // expanded by the function parameter pack.
5835 //
5836 // We represent function parameter packs as function parameters whose
5837 // type is a pack expansion.
5838 if (!T->containsUnexpandedParameterPack() &&
5839 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5840 S.Diag(D.getEllipsisLoc(),
5841 diag::err_function_parameter_pack_without_parameter_packs)
5842 << T << D.getSourceRange();
5843 D.setEllipsisLoc(SourceLocation());
5844 } else {
5845 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5846 }
5847 break;
5848 case DeclaratorContext::TemplateParam:
5849 // C++0x [temp.param]p15:
5850 // If a template-parameter is a [...] is a parameter-declaration that
5851 // declares a parameter pack (8.3.5), then the template-parameter is a
5852 // template parameter pack (14.5.3).
5853 //
5854 // Note: core issue 778 clarifies that, if there are any unexpanded
5855 // parameter packs in the type of the non-type template parameter, then
5856 // it expands those parameter packs.
5857 if (T->containsUnexpandedParameterPack())
5858 T = Context.getPackExpansionType(T, None);
5859 else
5860 S.Diag(D.getEllipsisLoc(),
5861 LangOpts.CPlusPlus11
5862 ? diag::warn_cxx98_compat_variadic_templates
5863 : diag::ext_variadic_templates);
5864 break;
5865
5866 case DeclaratorContext::File:
5867 case DeclaratorContext::KNRTypeList:
5868 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5869 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5870 case DeclaratorContext::TypeName:
5871 case DeclaratorContext::FunctionalCast:
5872 case DeclaratorContext::CXXNew:
5873 case DeclaratorContext::AliasDecl:
5874 case DeclaratorContext::AliasTemplate:
5875 case DeclaratorContext::Member:
5876 case DeclaratorContext::Block:
5877 case DeclaratorContext::ForInit:
5878 case DeclaratorContext::SelectionInit:
5879 case DeclaratorContext::Condition:
5880 case DeclaratorContext::CXXCatch:
5881 case DeclaratorContext::ObjCCatch:
5882 case DeclaratorContext::BlockLiteral:
5883 case DeclaratorContext::LambdaExpr:
5884 case DeclaratorContext::ConversionId:
5885 case DeclaratorContext::TrailingReturn:
5886 case DeclaratorContext::TrailingReturnVar:
5887 case DeclaratorContext::TemplateArg:
5888 case DeclaratorContext::TemplateTypeArg:
5889 case DeclaratorContext::Association:
5890 // FIXME: We may want to allow parameter packs in block-literal contexts
5891 // in the future.
5892 S.Diag(D.getEllipsisLoc(),
5893 diag::err_ellipsis_in_declarator_not_parameter);
5894 D.setEllipsisLoc(SourceLocation());
5895 break;
5896 }
5897 }
5898
5899 assert(!T.isNull() && "T must not be null at the end of this function")(static_cast <bool> (!T.isNull() && "T must not be null at the end of this function"
) ? void (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "clang/lib/Sema/SemaType.cpp", 5899, __extension__ __PRETTY_FUNCTION__
))
;
5900 if (D.isInvalidType())
5901 return Context.getTrivialTypeSourceInfo(T);
5902
5903 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5904}
5905
5906/// GetTypeForDeclarator - Convert the type for the specified
5907/// declarator to Type instances.
5908///
5909/// The result of this call will never be null, but the associated
5910/// type may be a null type if there's an unrecoverable error.
5911TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5912 // Determine the type of the declarator. Not all forms of declarator
5913 // have a type.
5914
5915 TypeProcessingState state(*this, D);
5916
5917 TypeSourceInfo *ReturnTypeInfo = nullptr;
5918 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5919 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5920 inferARCWriteback(state, T);
5921
5922 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5923}
5924
5925static void transferARCOwnershipToDeclSpec(Sema &S,
5926 QualType &declSpecTy,
5927 Qualifiers::ObjCLifetime ownership) {
5928 if (declSpecTy->isObjCRetainableType() &&
5929 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5930 Qualifiers qs;
5931 qs.addObjCLifetime(ownership);
5932 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5933 }
5934}
5935
5936static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5937 Qualifiers::ObjCLifetime ownership,
5938 unsigned chunkIndex) {
5939 Sema &S = state.getSema();
5940 Declarator &D = state.getDeclarator();
5941
5942 // Look for an explicit lifetime attribute.
5943 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5944 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5945 return;
5946
5947 const char *attrStr = nullptr;
5948 switch (ownership) {
5949 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "clang/lib/Sema/SemaType.cpp"
, 5949)
;
5950 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5951 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5952 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5953 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5954 }
5955
5956 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5957 Arg->Ident = &S.Context.Idents.get(attrStr);
5958 Arg->Loc = SourceLocation();
5959
5960 ArgsUnion Args(Arg);
5961
5962 // If there wasn't one, add one (with an invalid source location
5963 // so that we don't make an AttributedType for it).
5964 ParsedAttr *attr = D.getAttributePool().create(
5965 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5966 /*scope*/ nullptr, SourceLocation(),
5967 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5968 chunk.getAttrs().addAtEnd(attr);
5969 // TODO: mark whether we did this inference?
5970}
5971
5972/// Used for transferring ownership in casts resulting in l-values.
5973static void transferARCOwnership(TypeProcessingState &state,
5974 QualType &declSpecTy,
5975 Qualifiers::ObjCLifetime ownership) {
5976 Sema &S = state.getSema();
5977 Declarator &D = state.getDeclarator();
5978
5979 int inner = -1;
5980 bool hasIndirection = false;
5981 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5982 DeclaratorChunk &chunk = D.getTypeObject(i);
5983 switch (chunk.Kind) {
5984 case DeclaratorChunk::Paren:
5985 // Ignore parens.
5986 break;
5987
5988 case DeclaratorChunk::Array:
5989 case DeclaratorChunk::Reference:
5990 case DeclaratorChunk::Pointer:
5991 if (inner != -1)
5992 hasIndirection = true;
5993 inner = i;
5994 break;
5995
5996 case DeclaratorChunk::BlockPointer:
5997 if (inner != -1)
5998 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5999 return;
6000
6001 case DeclaratorChunk::Function:
6002 case DeclaratorChunk::MemberPointer:
6003 case DeclaratorChunk::Pipe:
6004 return;
6005 }
6006 }
6007
6008 if (inner == -1)
6009 return;
6010
6011 DeclaratorChunk &chunk = D.getTypeObject(inner);
6012 if (chunk.Kind == DeclaratorChunk::Pointer) {
6013 if (declSpecTy->isObjCRetainableType())
6014 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
6015 if (declSpecTy->isObjCObjectType() && hasIndirection)
6016 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
6017 } else {
6018 assert(chunk.Kind == DeclaratorChunk::Array ||(static_cast <bool> (chunk.Kind == DeclaratorChunk::Array
|| chunk.Kind == DeclaratorChunk::Reference) ? void (0) : __assert_fail
("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 6019, __extension__ __PRETTY_FUNCTION__
))
6019 chunk.Kind == DeclaratorChunk::Reference)(static_cast <bool> (chunk.Kind == DeclaratorChunk::Array
|| chunk.Kind == DeclaratorChunk::Reference) ? void (0) : __assert_fail
("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 6019, __extension__ __PRETTY_FUNCTION__
))
;
6020 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
6021 }
6022}
6023
6024TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
6025 TypeProcessingState state(*this, D);
6026
6027 TypeSourceInfo *ReturnTypeInfo = nullptr;
6028 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
6029
6030 if (getLangOpts().ObjC) {
6031 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
6032 if (ownership != Qualifiers::OCL_None)
6033 transferARCOwnership(state, declSpecTy, ownership);
6034 }
6035
6036 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
6037}
6038
6039static void fillAttributedTypeLoc(AttributedTypeLoc TL,
6040 TypeProcessingState &State) {
6041 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
6042}
6043
6044namespace {
6045 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
6046 Sema &SemaRef;
6047 ASTContext &Context;
6048 TypeProcessingState &State;
6049 const DeclSpec &DS;
6050
6051 public:
6052 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
6053 const DeclSpec &DS)
6054 : SemaRef(S), Context(Context), State(State), DS(DS) {}
6055
6056 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6057 Visit(TL.getModifiedLoc());
6058 fillAttributedTypeLoc(TL, State);
6059 }
6060 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6061 Visit(TL.getWrappedLoc());
6062 }
6063 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6064 Visit(TL.getInnerLoc());
6065 TL.setExpansionLoc(
6066 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6067 }
6068 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6069 Visit(TL.getUnqualifiedLoc());
6070 }
6071 // Allow to fill pointee's type locations, e.g.,
6072 // int __attr * __attr * __attr *p;
6073 void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
6074 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
6075 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6076 }
6077 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
6078 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6079 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
6080 // addition field. What we have is good enough for display of location
6081 // of 'fixit' on interface name.
6082 TL.setNameEndLoc(DS.getEndLoc());
6083 }
6084 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
6085 TypeSourceInfo *RepTInfo = nullptr;
6086 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
6087 TL.copy(RepTInfo->getTypeLoc());
6088 }
6089 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6090 TypeSourceInfo *RepTInfo = nullptr;
6091 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
6092 TL.copy(RepTInfo->getTypeLoc());
6093 }
6094 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
6095 TypeSourceInfo *TInfo = nullptr;
6096 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6097
6098 // If we got no declarator info from previous Sema routines,
6099 // just fill with the typespec loc.
6100 if (!TInfo) {
6101 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
6102 return;
6103 }
6104
6105 TypeLoc OldTL = TInfo->getTypeLoc();
6106 if (TInfo->getType()->getAs<ElaboratedType>()) {
6107 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
6108 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
6109 .castAs<TemplateSpecializationTypeLoc>();
6110 TL.copy(NamedTL);
6111 } else {
6112 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
6113 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())(static_cast <bool> (TL.getRAngleLoc() == OldTL.castAs<
TemplateSpecializationTypeLoc>().getRAngleLoc()) ? void (0
) : __assert_fail ("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "clang/lib/Sema/SemaType.cpp", 6113, __extension__ __PRETTY_FUNCTION__
))
;
6114 }
6115
6116 }
6117 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
6118 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_typeofExpr || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr"
, "clang/lib/Sema/SemaType.cpp", 6119, __extension__ __PRETTY_FUNCTION__
))
6119 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_typeofExpr || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr"
, "clang/lib/Sema/SemaType.cpp", 6119, __extension__ __PRETTY_FUNCTION__
))
;
6120 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6121 TL.setParensRange(DS.getTypeofParensRange());
6122 }
6123 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
6124 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_typeofType || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType"
, "clang/lib/Sema/SemaType.cpp", 6125, __extension__ __PRETTY_FUNCTION__
))
6125 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_typeofType || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType || DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType"
, "clang/lib/Sema/SemaType.cpp", 6125, __extension__ __PRETTY_FUNCTION__
))
;
6126 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6127 TL.setParensRange(DS.getTypeofParensRange());
6128 assert(DS.getRepAsType())(static_cast <bool> (DS.getRepAsType()) ? void (0) : __assert_fail
("DS.getRepAsType()", "clang/lib/Sema/SemaType.cpp", 6128, __extension__
__PRETTY_FUNCTION__))
;
6129 TypeSourceInfo *TInfo = nullptr;
6130 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6131 TL.setUnmodifiedTInfo(TInfo);
6132 }
6133 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
6134 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype)(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype"
, "clang/lib/Sema/SemaType.cpp", 6134, __extension__ __PRETTY_FUNCTION__
))
;
6135 TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
6136 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6137 }
6138 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
6139 assert(DS.isTransformTypeTrait(DS.getTypeSpecType()))(static_cast <bool> (DS.isTransformTypeTrait(DS.getTypeSpecType
())) ? void (0) : __assert_fail ("DS.isTransformTypeTrait(DS.getTypeSpecType())"
, "clang/lib/Sema/SemaType.cpp", 6139, __extension__ __PRETTY_FUNCTION__
))
;
6140 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6141 TL.setParensRange(DS.getTypeofParensRange());
6142 assert(DS.getRepAsType())(static_cast <bool> (DS.getRepAsType()) ? void (0) : __assert_fail
("DS.getRepAsType()", "clang/lib/Sema/SemaType.cpp", 6142, __extension__
__PRETTY_FUNCTION__))
;
6143 TypeSourceInfo *TInfo = nullptr;
6144 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6145 TL.setUnderlyingTInfo(TInfo);
6146 }
6147 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
6148 // By default, use the source location of the type specifier.
6149 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
6150 if (TL.needsExtraLocalData()) {
6151 // Set info for the written builtin specifiers.
6152 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
6153 // Try to have a meaningful source location.
6154 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
6155 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
6156 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
6157 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
6158 }
6159 }
6160 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
6161 if (DS.getTypeSpecType() == TST_typename) {
6162 TypeSourceInfo *TInfo = nullptr;
6163 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6164 if (TInfo)
6165 if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
6166 TL.copy(ETL);
6167 return;
6168 }
6169 }
6170 const ElaboratedType *T = TL.getTypePtr();
6171 TL.setElaboratedKeywordLoc(T->getKeyword() != ETK_None
6172 ? DS.getTypeSpecTypeLoc()
6173 : SourceLocation());
6174 const CXXScopeSpec& SS = DS.getTypeSpecScope();
6175 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6176 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6177 }
6178 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6179 assert(DS.getTypeSpecType() == TST_typename)(static_cast <bool> (DS.getTypeSpecType() == TST_typename
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "clang/lib/Sema/SemaType.cpp", 6179, __extension__ __PRETTY_FUNCTION__
))
;
6180 TypeSourceInfo *TInfo = nullptr;
6181 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6182 assert(TInfo)(static_cast <bool> (TInfo) ? void (0) : __assert_fail (
"TInfo", "clang/lib/Sema/SemaType.cpp", 6182, __extension__ __PRETTY_FUNCTION__
))
;
6183 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6184 }
6185 void VisitDependentTemplateSpecializationTypeLoc(
6186 DependentTemplateSpecializationTypeLoc TL) {
6187 assert(DS.getTypeSpecType() == TST_typename)(static_cast <bool> (DS.getTypeSpecType() == TST_typename
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "clang/lib/Sema/SemaType.cpp", 6187, __extension__ __PRETTY_FUNCTION__
))
;
6188 TypeSourceInfo *TInfo = nullptr;
6189 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6190 assert(TInfo)(static_cast <bool> (TInfo) ? void (0) : __assert_fail (
"TInfo", "clang/lib/Sema/SemaType.cpp", 6190, __extension__ __PRETTY_FUNCTION__
))
;
6191 TL.copy(
6192 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6193 }
6194 void VisitAutoTypeLoc(AutoTypeLoc TL) {
6195 assert(DS.getTypeSpecType() == TST_auto ||(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6198, __extension__ __PRETTY_FUNCTION__
))
6196 DS.getTypeSpecType() == TST_decltype_auto ||(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6198, __extension__ __PRETTY_FUNCTION__
))
6197 DS.getTypeSpecType() == TST_auto_type ||(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6198, __extension__ __PRETTY_FUNCTION__
))
6198 DS.getTypeSpecType() == TST_unspecified)(static_cast <bool> (DS.getTypeSpecType() == TST_auto ||
DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType
() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == TST_auto || DS.getTypeSpecType() == TST_decltype_auto || DS.getTypeSpecType() == TST_auto_type || DS.getTypeSpecType() == TST_unspecified"
, "clang/lib/Sema/SemaType.cpp", 6198, __extension__ __PRETTY_FUNCTION__
))
;
6199 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6200 if (DS.getTypeSpecType() == TST_decltype_auto)
6201 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6202 if (!DS.isConstrainedAuto())
6203 return;
6204 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6205 if (!TemplateId)
6206 return;
6207 if (DS.getTypeSpecScope().isNotEmpty())
6208 TL.setNestedNameSpecifierLoc(
6209 DS.getTypeSpecScope().getWithLocInContext(Context));
6210 else
6211 TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6212 TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
6213 TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
6214 TL.setFoundDecl(nullptr);
6215 TL.setLAngleLoc(TemplateId->LAngleLoc);
6216 TL.setRAngleLoc(TemplateId->RAngleLoc);
6217 if (TemplateId->NumArgs == 0)
6218 return;
6219 TemplateArgumentListInfo TemplateArgsInfo;
6220 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6221 TemplateId->NumArgs);
6222 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6223 for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
6224 TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
6225 }
6226 void VisitTagTypeLoc(TagTypeLoc TL) {
6227 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6228 }
6229 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6230 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6231 // or an _Atomic qualifier.
6232 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6233 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6234 TL.setParensRange(DS.getTypeofParensRange());
6235
6236 TypeSourceInfo *TInfo = nullptr;
6237 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6238 assert(TInfo)(static_cast <bool> (TInfo) ? void (0) : __assert_fail (
"TInfo", "clang/lib/Sema/SemaType.cpp", 6238, __extension__ __PRETTY_FUNCTION__
))
;
6239 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6240 } else {
6241 TL.setKWLoc(DS.getAtomicSpecLoc());
6242 // No parens, to indicate this was spelled as an _Atomic qualifier.
6243 TL.setParensRange(SourceRange());
6244 Visit(TL.getValueLoc());
6245 }
6246 }
6247
6248 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6249 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6250
6251 TypeSourceInfo *TInfo = nullptr;
6252 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6253 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6254 }
6255
6256 void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6257 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6258 }
6259
6260 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6261 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6262 }
6263
6264 void VisitTypeLoc(TypeLoc TL) {
6265 // FIXME: add other typespec types and change this to an assert.
6266 TL.initialize(Context, DS.getTypeSpecTypeLoc());
6267 }
6268 };
6269
6270 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6271 ASTContext &Context;
6272 TypeProcessingState &State;
6273 const DeclaratorChunk &Chunk;
6274
6275 public:
6276 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6277 const DeclaratorChunk &Chunk)
6278 : Context(Context), State(State), Chunk(Chunk) {}
6279
6280 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6281 llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!"
, "clang/lib/Sema/SemaType.cpp", 6281)
;
6282 }
6283 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6284 llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!"
, "clang/lib/Sema/SemaType.cpp", 6284)
;
6285 }
6286
6287 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6288 fillAttributedTypeLoc(TL, State);
6289 }
6290 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6291 // nothing
6292 }
6293 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6294 // nothing
6295 }
6296 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6297 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::BlockPointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer"
, "clang/lib/Sema/SemaType.cpp", 6297, __extension__ __PRETTY_FUNCTION__
))
;
6298 TL.setCaretLoc(Chunk.Loc);
6299 }
6300 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6301 assert(Chunk.Kind == DeclaratorChunk::Pointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Pointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "clang/lib/Sema/SemaType.cpp", 6301, __extension__ __PRETTY_FUNCTION__
))
;
6302 TL.setStarLoc(Chunk.Loc);
6303 }
6304 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6305 assert(Chunk.Kind == DeclaratorChunk::Pointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Pointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "clang/lib/Sema/SemaType.cpp", 6305, __extension__ __PRETTY_FUNCTION__
))
;
6306 TL.setStarLoc(Chunk.Loc);
6307 }
6308 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6309 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::MemberPointer
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer"
, "clang/lib/Sema/SemaType.cpp", 6309, __extension__ __PRETTY_FUNCTION__
))
;
6310 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6311 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6312
6313 const Type* ClsTy = TL.getClass();
6314 QualType ClsQT = QualType(ClsTy, 0);
6315 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6316 // Now copy source location info into the type loc component.
6317 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6318 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6319 case NestedNameSpecifier::Identifier:
6320 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")(static_cast <bool> (isa<DependentNameType>(ClsTy
) && "Unexpected TypeLoc") ? void (0) : __assert_fail
("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\""
, "clang/lib/Sema/SemaType.cpp", 6320, __extension__ __PRETTY_FUNCTION__
))
;
6321 {
6322 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6323 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6324 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6325 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6326 }
6327 break;
6328
6329 case NestedNameSpecifier::TypeSpec:
6330 case NestedNameSpecifier::TypeSpecWithTemplate:
6331 if (isa<ElaboratedType>(ClsTy)) {
6332 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6333 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6334 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6335 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6336 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6337 } else {
6338 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6339 }
6340 break;
6341
6342 case NestedNameSpecifier::Namespace:
6343 case NestedNameSpecifier::NamespaceAlias:
6344 case NestedNameSpecifier::Global:
6345 case NestedNameSpecifier::Super:
6346 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "clang/lib/Sema/SemaType.cpp", 6346)
;
6347 }
6348
6349 // Finally fill in MemberPointerLocInfo fields.
6350 TL.setStarLoc(Chunk.Mem.StarLoc);
6351 TL.setClassTInfo(ClsTInfo);
6352 }
6353 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6354 assert(Chunk.Kind == DeclaratorChunk::Reference)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Reference
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 6354, __extension__ __PRETTY_FUNCTION__
))
;
6355 // 'Amp' is misleading: this might have been originally
6356 /// spelled with AmpAmp.
6357 TL.setAmpLoc(Chunk.Loc);
6358 }
6359 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6360 assert(Chunk.Kind == DeclaratorChunk::Reference)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Reference
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "clang/lib/Sema/SemaType.cpp", 6360, __extension__ __PRETTY_FUNCTION__
))
;
6361 assert(!Chunk.Ref.LValueRef)(static_cast <bool> (!Chunk.Ref.LValueRef) ? void (0) :
__assert_fail ("!Chunk.Ref.LValueRef", "clang/lib/Sema/SemaType.cpp"
, 6361, __extension__ __PRETTY_FUNCTION__))
;
6362 TL.setAmpAmpLoc(Chunk.Loc);
6363 }
6364 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6365 assert(Chunk.Kind == DeclaratorChunk::Array)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Array
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array"
, "clang/lib/Sema/SemaType.cpp", 6365, __extension__ __PRETTY_FUNCTION__
))
;
6366 TL.setLBracketLoc(Chunk.Loc);
6367 TL.setRBracketLoc(Chunk.EndLoc);
6368 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6369 }
6370 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6371 assert(Chunk.Kind == DeclaratorChunk::Function)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Function
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "clang/lib/Sema/SemaType.cpp", 6371, __extension__ __PRETTY_FUNCTION__
))
;
6372 TL.setLocalRangeBegin(Chunk.Loc);
6373 TL.setLocalRangeEnd(Chunk.EndLoc);
6374
6375 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6376 TL.setLParenLoc(FTI.getLParenLoc());
6377 TL.setRParenLoc(FTI.getRParenLoc());
6378 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6379 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6380 TL.setParam(tpi++, Param);
6381 }
6382 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6383 }
6384 void VisitParenTypeLoc(ParenTypeLoc TL) {
6385 assert(Chunk.Kind == DeclaratorChunk::Paren)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Paren
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren"
, "clang/lib/Sema/SemaType.cpp", 6385, __extension__ __PRETTY_FUNCTION__
))
;
6386 TL.setLParenLoc(Chunk.Loc);
6387 TL.setRParenLoc(Chunk.EndLoc);
6388 }
6389 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6390 assert(Chunk.Kind == DeclaratorChunk::Pipe)(static_cast <bool> (Chunk.Kind == DeclaratorChunk::Pipe
) ? void (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe"
, "clang/lib/Sema/SemaType.cpp", 6390, __extension__ __PRETTY_FUNCTION__
))
;
6391 TL.setKWLoc(Chunk.Loc);
6392 }
6393 void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6394 TL.setNameLoc(Chunk.Loc);
6395 }
6396 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6397 TL.setExpansionLoc(Chunk.Loc);
6398 }
6399 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6400 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6401 TL.setNameLoc(Chunk.Loc);
6402 }
6403 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6404 TL.setNameLoc(Chunk.Loc);
6405 }
6406 void
6407 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6408 TL.setNameLoc(Chunk.Loc);
6409 }
6410
6411 void VisitTypeLoc(TypeLoc TL) {
6412 llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!"
, "clang/lib/Sema/SemaType.cpp", 6412)
;
6413 }
6414 };
6415} // end anonymous namespace
6416
6417static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6418 SourceLocation Loc;
6419 switch (Chunk.Kind) {
6420 case DeclaratorChunk::Function:
6421 case DeclaratorChunk::Array:
6422 case DeclaratorChunk::Paren:
6423 case DeclaratorChunk::Pipe:
6424 llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified"
, "clang/lib/Sema/SemaType.cpp", 6424)
;
6425
6426 case DeclaratorChunk::Pointer:
6427 Loc = Chunk.Ptr.AtomicQualLoc;
6428 break;
6429
6430 case DeclaratorChunk::BlockPointer:
6431 case DeclaratorChunk::Reference:
6432 case DeclaratorChunk::MemberPointer:
6433 // FIXME: Provide a source location for the _Atomic keyword.
6434 break;
6435 }
6436
6437 ATL.setKWLoc(Loc);
6438 ATL.setParensRange(SourceRange());
6439}
6440
6441static void
6442fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6443 const ParsedAttributesView &Attrs) {
6444 for (const ParsedAttr &AL : Attrs) {
6445 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6446 DASTL.setAttrNameLoc(AL.getLoc());
6447 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6448 DASTL.setAttrOperandParensRange(SourceRange());
6449 return;
6450 }
6451 }
6452
6453 llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "clang/lib/Sema/SemaType.cpp", 6454)
6454 "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "clang/lib/Sema/SemaType.cpp", 6454)
;
6455}
6456
6457static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6458 const ParsedAttributesView &Attrs) {
6459 for (const ParsedAttr &AL : Attrs) {
6460 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6461 MTL.setAttrNameLoc(AL.getLoc());
6462 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6463 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6464 MTL.setAttrOperandParensRange(SourceRange());
6465 return;
6466 }
6467 }
6468
6469 llvm_unreachable("no matrix_type attribute found at the expected location!")::llvm::llvm_unreachable_internal("no matrix_type attribute found at the expected location!"
, "clang/lib/Sema/SemaType.cpp", 6469)
;
6470}
6471
6472/// Create and instantiate a TypeSourceInfo with type source information.
6473///
6474/// \param T QualType referring to the type as written in source code.
6475///
6476/// \param ReturnTypeInfo For declarators whose return type does not show
6477/// up in the normal place in the declaration specifiers (such as a C++
6478/// conversion function), this pointer will refer to a type source information
6479/// for that return type.
6480static TypeSourceInfo *
6481GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6482 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6483 Sema &S = State.getSema();
6484 Declarator &D = State.getDeclarator();
6485
6486 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6487 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6488
6489 // Handle parameter packs whose type is a pack expansion.
6490 if (isa<PackExpansionType>(T)) {
6491 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6492 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6493 }
6494
6495 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6496 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6497 // declarator chunk.
6498 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6499 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6500 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6501 }
6502
6503 while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
6504 TL.setExpansionLoc(
6505 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6506 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6507 }
6508
6509 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
6510 fillAttributedTypeLoc(TL, State);
6511 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6512 }
6513
6514 while (DependentAddressSpaceTypeLoc TL =
6515 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
6516 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6517 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6518 }
6519
6520 if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>())
6521 fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs());
6522
6523 // FIXME: Ordering here?
6524 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
6525 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6526
6527 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6528 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6529 }
6530
6531 // If we have different source information for the return type, use
6532 // that. This really only applies to C++ conversion functions.
6533 if (ReturnTypeInfo) {
6534 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6535 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())(static_cast <bool> (TL.getFullDataSize() == CurrTL.getFullDataSize
()) ? void (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()"
, "clang/lib/Sema/SemaType.cpp", 6535, __extension__ __PRETTY_FUNCTION__
))
;
6536 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6537 } else {
6538 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6539 }
6540
6541 return TInfo;
6542}
6543
6544/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6545ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6546 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6547 // and Sema during declaration parsing. Try deallocating/caching them when
6548 // it's appropriate, instead of allocating them and keeping them around.
6549 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6550 TypeAlignment);
6551 new (LocT) LocInfoType(T, TInfo);
6552 assert(LocT->getTypeClass() != T->getTypeClass() &&(static_cast <bool> (LocT->getTypeClass() != T->getTypeClass
() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? void (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "clang/lib/Sema/SemaType.cpp", 6553, __extension__ __PRETTY_FUNCTION__
))
6553 "LocInfoType's TypeClass conflicts with an existing Type class")(static_cast <bool> (LocT->getTypeClass() != T->getTypeClass
() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? void (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "clang/lib/Sema/SemaType.cpp", 6553, __extension__ __PRETTY_FUNCTION__
))
;
6554 return ParsedType::make(QualType(LocT, 0));
6555}
6556
6557void LocInfoType::getAsStringInternal(std::string &Str,
6558 const PrintingPolicy &Policy) const {
6559 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "clang/lib/Sema/SemaType.cpp", 6561)
6560 " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "clang/lib/Sema/SemaType.cpp", 6561)
6561 " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "clang/lib/Sema/SemaType.cpp", 6561)
;
6562}
6563
6564TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6565 // C99 6.7.6: Type names have no identifier. This is already validated by
6566 // the parser.
6567 assert(D.getIdentifier() == nullptr &&(static_cast <bool> (D.getIdentifier() == nullptr &&
"Type name should have no identifier!") ? void (0) : __assert_fail
("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "clang/lib/Sema/SemaType.cpp", 6568, __extension__ __PRETTY_FUNCTION__
))
6568 "Type name should have no identifier!")(static_cast <bool> (D.getIdentifier() == nullptr &&
"Type name should have no identifier!") ? void (0) : __assert_fail
("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "clang/lib/Sema/SemaType.cpp", 6568, __extension__ __PRETTY_FUNCTION__
))
;
6569
6570 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6571 QualType T = TInfo->getType();
6572 if (D.isInvalidType())
6573 return true;
6574
6575 // Make sure there are no unused decl attributes on the declarator.
6576 // We don't want to do this for ObjC parameters because we're going
6577 // to apply them to the actual parameter declaration.
6578 // Likewise, we don't want to do this for alias declarations, because
6579 // we are actually going to build a declaration from this eventually.
6580 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6581 D.getContext() != DeclaratorContext::AliasDecl &&
6582 D.getContext() != DeclaratorContext::AliasTemplate)
6583 checkUnusedDeclAttributes(D);
6584
6585 if (getLangOpts().CPlusPlus) {
6586 // Check that there are no default arguments (C++ only).
6587 CheckExtraCXXDefaultArguments(D);
6588 }
6589
6590 return CreateParsedType(T, TInfo);
6591}
6592
6593ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6594 QualType T = Context.getObjCInstanceType();
6595 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6596 return CreateParsedType(T, TInfo);
6597}
6598
6599//===----------------------------------------------------------------------===//
6600// Type Attribute Processing
6601//===----------------------------------------------------------------------===//
6602
6603/// Build an AddressSpace index from a constant expression and diagnose any
6604/// errors related to invalid address_spaces. Returns true on successfully
6605/// building an AddressSpace index.
6606static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6607 const Expr *AddrSpace,
6608 SourceLocation AttrLoc) {
6609 if (!AddrSpace->isValueDependent()) {
6610 Optional<llvm::APSInt> OptAddrSpace =
6611 AddrSpace->getIntegerConstantExpr(S.Context);
6612 if (!OptAddrSpace) {
6613 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6614 << "'address_space'" << AANT_ArgumentIntegerConstant
6615 << AddrSpace->getSourceRange();
6616 return false;
6617 }
6618 llvm::APSInt &addrSpace = *OptAddrSpace;
6619
6620 // Bounds checking.
6621 if (addrSpace.isSigned()) {
6622 if (addrSpace.isNegative()) {
6623 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6624 << AddrSpace->getSourceRange();
6625 return false;
6626 }
6627 addrSpace.setIsSigned(false);
6628 }
6629
6630 llvm::APSInt max(addrSpace.getBitWidth());
6631 max =
6632 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6633
6634 if (addrSpace > max) {
6635 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6636 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6637 return false;
6638 }
6639
6640 ASIdx =
6641 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6642 return true;
6643 }
6644
6645 // Default value for DependentAddressSpaceTypes
6646 ASIdx = LangAS::Default;
6647 return true;
6648}
6649
6650/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6651/// is uninstantiated. If instantiated it will apply the appropriate address
6652/// space to the type. This function allows dependent template variables to be
6653/// used in conjunction with the address_space attribute
6654QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6655 SourceLocation AttrLoc) {
6656 if (!AddrSpace->isValueDependent()) {
6657 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6658 AttrLoc))
6659 return QualType();
6660
6661 return Context.getAddrSpaceQualType(T, ASIdx);
6662 }
6663
6664 // A check with similar intentions as checking if a type already has an
6665 // address space except for on a dependent types, basically if the
6666 // current type is already a DependentAddressSpaceType then its already
6667 // lined up to have another address space on it and we can't have
6668 // multiple address spaces on the one pointer indirection
6669 if (T->getAs<DependentAddressSpaceType>()) {
6670 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6671 return QualType();
6672 }
6673
6674 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6675}
6676
6677QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6678 SourceLocation AttrLoc) {
6679 LangAS ASIdx;
6680 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6681 return QualType();
6682 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6683}
6684
6685static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6686 TypeProcessingState &State) {
6687 Sema &S = State.getSema();
6688
6689 // Check the number of attribute arguments.
6690 if (Attr.getNumArgs() != 1) {
6691 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6692 << Attr << 1;
6693 Attr.setInvalid();
6694 return;
6695 }
6696
6697 // Ensure the argument is a string.
6698 auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6699 if (!StrLiteral) {
6700 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6701 << Attr << AANT_ArgumentString;
6702 Attr.setInvalid();
6703 return;
6704 }
6705
6706 ASTContext &Ctx = S.Context;
6707 StringRef BTFTypeTag = StrLiteral->getString();
6708 Type = State.getBTFTagAttributedType(
6709 ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6710}
6711
6712/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6713/// specified type. The attribute contains 1 argument, the id of the address
6714/// space for the type.
6715static void HandleAddressSpaceTypeAttribute(QualType &Type,
6716 const ParsedAttr &Attr,
6717 TypeProcessingState &State) {
6718 Sema &S = State.getSema();
6719
6720 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6721 // qualified by an address-space qualifier."
6722 if (Type->isFunctionType()) {
6723 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6724 Attr.setInvalid();
6725 return;
6726 }
6727
6728 LangAS ASIdx;
6729 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6730
6731 // Check the attribute arguments.
6732 if (Attr.getNumArgs() != 1) {
6733 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6734 << 1;
6735 Attr.setInvalid();
6736 return;
6737 }
6738
6739 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6740 LangAS ASIdx;
6741 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6742 Attr.setInvalid();
6743 return;
6744 }
6745
6746 ASTContext &Ctx = S.Context;
6747 auto *ASAttr =
6748 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6749
6750 // If the expression is not value dependent (not templated), then we can
6751 // apply the address space qualifiers just to the equivalent type.
6752 // Otherwise, we make an AttributedType with the modified and equivalent
6753 // type the same, and wrap it in a DependentAddressSpaceType. When this
6754 // dependent type is resolved, the qualifier is added to the equivalent type
6755 // later.
6756 QualType T;
6757 if (!ASArgExpr->isValueDependent()) {
6758 QualType EquivType =
6759 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6760 if (EquivType.isNull()) {
6761 Attr.setInvalid();
6762 return;
6763 }
6764 T = State.getAttributedType(ASAttr, Type, EquivType);
6765 } else {
6766 T = State.getAttributedType(ASAttr, Type, Type);
6767 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6768 }
6769
6770 if (!T.isNull())
6771 Type = T;
6772 else
6773 Attr.setInvalid();
6774 } else {
6775 // The keyword-based type attributes imply which address space to use.
6776 ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6777 : Attr.asOpenCLLangAS();
6778
6779 if (ASIdx == LangAS::Default)
6780 llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "clang/lib/Sema/SemaType.cpp"
, 6780)
;
6781
6782 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6783 Attr.getLoc())) {
6784 Attr.setInvalid();
6785 return;
6786 }
6787
6788 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6789 }
6790}
6791
6792/// handleObjCOwnershipTypeAttr - Process an objc_ownership
6793/// attribute on the specified type.
6794///
6795/// Returns 'true' if the attribute was handled.
6796static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6797 ParsedAttr &attr, QualType &type) {
6798 bool NonObjCPointer = false;
6799
6800 if (!type->isDependentType() && !type->isUndeducedType()) {
6801 if (const PointerType *ptr = type->getAs<PointerType>()) {
6802 QualType pointee = ptr->getPointeeType();
6803 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6804 return false;
6805 // It is important not to lose the source info that there was an attribute
6806 // applied to non-objc pointer. We will create an attributed type but
6807 // its type will be the same as the original type.
6808 NonObjCPointer = true;
6809 } else if (!type->isObjCRetainableType()) {
6810 return false;
6811 }
6812
6813 // Don't accept an ownership attribute in the declspec if it would
6814 // just be the return type of a block pointer.
6815 if (state.isProcessingDeclSpec()) {
6816 Declarator &D = state.getDeclarator();
6817 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6818 /*onlyBlockPointers=*/true))
6819 return false;
6820 }
6821 }
6822
6823 Sema &S = state.getSema();
6824 SourceLocation AttrLoc = attr.getLoc();
6825 if (AttrLoc.isMacroID())
6826 AttrLoc =
6827 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6828
6829 if (!attr.isArgIdent(0)) {
6830 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6831 << AANT_ArgumentString;
6832 attr.setInvalid();
6833 return true;
6834 }
6835
6836 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6837 Qualifiers::ObjCLifetime lifetime;
6838 if (II->isStr("none"))
6839 lifetime = Qualifiers::OCL_ExplicitNone;
6840 else if (II->isStr("strong"))
6841 lifetime = Qualifiers::OCL_Strong;
6842 else if (II->isStr("weak"))
6843 lifetime = Qualifiers::OCL_Weak;
6844 else if (II->isStr("autoreleasing"))
6845 lifetime = Qualifiers::OCL_Autoreleasing;
6846 else {
6847 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6848 attr.setInvalid();
6849 return true;
6850 }
6851
6852 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6853 // outside of ARC mode.
6854 if (!S.getLangOpts().ObjCAutoRefCount &&
6855 lifetime != Qualifiers::OCL_Weak &&
6856 lifetime != Qualifiers::OCL_ExplicitNone) {
6857 return true;
6858 }
6859
6860 SplitQualType underlyingType = type.split();
6861
6862 // Check for redundant/conflicting ownership qualifiers.
6863 if (Qualifiers::ObjCLifetime previousLifetime
6864 = type.getQualifiers().getObjCLifetime()) {
6865 // If it's written directly, that's an error.
6866 if (S.Context.hasDirectOwnershipQualifier(type)) {
6867 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6868 << type;
6869 return true;
6870 }
6871
6872 // Otherwise, if the qualifiers actually conflict, pull sugar off
6873 // and remove the ObjCLifetime qualifiers.
6874 if (previousLifetime != lifetime) {
6875 // It's possible to have multiple local ObjCLifetime qualifiers. We
6876 // can't stop after we reach a type that is directly qualified.
6877 const Type *prevTy = nullptr;
6878 while (!prevTy || prevTy != underlyingType.Ty) {
6879 prevTy = underlyingType.Ty;
6880 underlyingType = underlyingType.getSingleStepDesugaredType();
6881 }
6882 underlyingType.Quals.removeObjCLifetime();
6883 }
6884 }
6885
6886 underlyingType.Quals.addObjCLifetime(lifetime);
6887
6888 if (NonObjCPointer) {
6889 StringRef name = attr.getAttrName()->getName();
6890 switch (lifetime) {
6891 case Qualifiers::OCL_None:
6892 case Qualifiers::OCL_ExplicitNone:
6893 break;
6894 case Qualifiers::OCL_Strong: name = "__strong"; break;
6895 case Qualifiers::OCL_Weak: name = "__weak"; break;
6896 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6897 }
6898 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6899 << TDS_ObjCObjOrBlock << type;
6900 }
6901
6902 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6903 // because having both 'T' and '__unsafe_unretained T' exist in the type
6904 // system causes unfortunate widespread consistency problems. (For example,
6905 // they're not considered compatible types, and we mangle them identicially
6906 // as template arguments.) These problems are all individually fixable,
6907 // but it's easier to just not add the qualifier and instead sniff it out
6908 // in specific places using isObjCInertUnsafeUnretainedType().
6909 //
6910 // Doing this does means we miss some trivial consistency checks that
6911 // would've triggered in ARC, but that's better than trying to solve all
6912 // the coexistence problems with __unsafe_unretained.
6913 if (!S.getLangOpts().ObjCAutoRefCount &&
6914 lifetime == Qualifiers::OCL_ExplicitNone) {
6915 type = state.getAttributedType(
6916 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6917 type, type);
6918 return true;
6919 }
6920
6921 QualType origType = type;
6922 if (!NonObjCPointer)
6923 type = S.Context.getQualifiedType(underlyingType);
6924
6925 // If we have a valid source location for the attribute, use an
6926 // AttributedType instead.
6927 if (AttrLoc.isValid()) {
6928 type = state.getAttributedType(::new (S.Context)
6929 ObjCOwnershipAttr(S.Context, attr, II),
6930 origType, type);
6931 }
6932
6933 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6934 unsigned diagnostic, QualType type) {
6935 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6936 S.DelayedDiagnostics.add(
6937 sema::DelayedDiagnostic::makeForbiddenType(
6938 S.getSourceManager().getExpansionLoc(loc),
6939 diagnostic, type, /*ignored*/ 0));
6940 } else {
6941 S.Diag(loc, diagnostic);
6942 }
6943 };
6944
6945 // Sometimes, __weak isn't allowed.
6946 if (lifetime == Qualifiers::OCL_Weak &&
6947 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6948
6949 // Use a specialized diagnostic if the runtime just doesn't support them.
6950 unsigned diagnostic =
6951 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6952 : diag::err_arc_weak_no_runtime);
6953
6954 // In any case, delay the diagnostic until we know what we're parsing.
6955 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6956
6957 attr.setInvalid();
6958 return true;
6959 }
6960
6961 // Forbid __weak for class objects marked as
6962 // objc_arc_weak_reference_unavailable
6963 if (lifetime == Qualifiers::OCL_Weak) {
6964 if (const ObjCObjectPointerType *ObjT =
6965 type->getAs<ObjCObjectPointerType>()) {
6966 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6967 if (Class->isArcWeakrefUnavailable()) {
6968 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6969 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6970 diag::note_class_declared);
6971 }
6972 }
6973 }
6974 }
6975
6976 return true;
6977}
6978
6979/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6980/// attribute on the specified type. Returns true to indicate that
6981/// the attribute was handled, false to indicate that the type does
6982/// not permit the attribute.
6983static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6984 QualType &type) {
6985 Sema &S = state.getSema();
6986
6987 // Delay if this isn't some kind of pointer.
6988 if (!type->isPointerType() &&
6989 !type->isObjCObjectPointerType() &&
6990 !type->isBlockPointerType())
6991 return false;
6992
6993 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6994 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6995 attr.setInvalid();
6996 return true;
6997 }
6998
6999 // Check the attribute arguments.
7000 if (!attr.isArgIdent(0)) {
7001 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
7002 << attr << AANT_ArgumentString;
7003 attr.setInvalid();
7004 return true;
7005 }
7006 Qualifiers::GC GCAttr;
7007 if (attr.getNumArgs() > 1) {
7008 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
7009 << 1;
7010 attr.setInvalid();
7011 return true;
7012 }
7013
7014 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
7015 if (II->isStr("weak"))
7016 GCAttr = Qualifiers::Weak;
7017 else if (II->isStr("strong"))
7018 GCAttr = Qualifiers::Strong;
7019 else {
7020 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
7021 << attr << II;
7022 attr.setInvalid();
7023 return true;
7024 }
7025
7026 QualType origType = type;
7027 type = S.Context.getObjCGCQualType(origType, GCAttr);
7028
7029 // Make an attributed type to preserve the source information.
7030 if (attr.getLoc().isValid())
7031 type = state.getAttributedType(
7032 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
7033
7034 return true;
7035}
7036
7037namespace {
7038 /// A helper class to unwrap a type down to a function for the
7039 /// purposes of applying attributes there.
7040 ///
7041 /// Use:
7042 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
7043 /// if (unwrapped.isFunctionType()) {
7044 /// const FunctionType *fn = unwrapped.get();
7045 /// // change fn somehow
7046 /// T = unwrapped.wrap(fn);
7047 /// }
7048 struct FunctionTypeUnwrapper {
7049 enum WrapKind {
7050 Desugar,
7051 Attributed,
7052 Parens,
7053 Array,
7054 Pointer,
7055 BlockPointer,
7056 Reference,
7057 MemberPointer,
7058 MacroQualified,
7059 };
7060
7061 QualType Original;
7062 const FunctionType *Fn;
7063 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
7064
7065 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
7066 while (true) {
7067 const Type *Ty = T.getTypePtr();
7068 if (isa<FunctionType>(Ty)) {
7069 Fn = cast<FunctionType>(Ty);
7070 return;
7071 } else if (isa<ParenType>(Ty)) {
7072 T = cast<ParenType>(Ty)->getInnerType();
7073 Stack.push_back(Parens);
7074 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
7075 isa<IncompleteArrayType>(Ty)) {
7076 T = cast<ArrayType>(Ty)->getElementType();
7077 Stack.push_back(Array);
7078 } else if (isa<PointerType>(Ty)) {
7079 T = cast<PointerType>(Ty)->getPointeeType();
7080 Stack.push_back(Pointer);
7081 } else if (isa<BlockPointerType>(Ty)) {
7082 T = cast<BlockPointerType>(Ty)->getPointeeType();
7083 Stack.push_back(BlockPointer);
7084 } else if (isa<MemberPointerType>(Ty)) {
7085 T = cast<MemberPointerType>(Ty)->getPointeeType();
7086 Stack.push_back(MemberPointer);
7087 } else if (isa<ReferenceType>(Ty)) {
7088 T = cast<ReferenceType>(Ty)->getPointeeType();
7089 Stack.push_back(Reference);
7090 } else if (isa<AttributedType>(Ty)) {
7091 T = cast<AttributedType>(Ty)->getEquivalentType();
7092 Stack.push_back(Attributed);
7093 } else if (isa<MacroQualifiedType>(Ty)) {
7094 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
7095 Stack.push_back(MacroQualified);
7096 } else {
7097 const Type *DTy = Ty->getUnqualifiedDesugaredType();
7098 if (Ty == DTy) {
7099 Fn = nullptr;
7100 return;
7101 }
7102
7103 T = QualType(DTy, 0);
7104 Stack.push_back(Desugar);
7105 }
7106 }
7107 }
7108
7109 bool isFunctionType() const { return (Fn != nullptr); }
7110 const FunctionType *get() const { return Fn; }
7111
7112 QualType wrap(Sema &S, const FunctionType *New) {
7113 // If T wasn't modified from the unwrapped type, do nothing.
7114 if (New == get()) return Original;
7115
7116 Fn = New;
7117 return wrap(S.Context, Original, 0);
7118 }
7119
7120 private:
7121 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
7122 if (I == Stack.size())
7123 return C.getQualifiedType(Fn, Old.getQualifiers());
7124
7125 // Build up the inner type, applying the qualifiers from the old
7126 // type to the new type.
7127 SplitQualType SplitOld = Old.split();
7128
7129 // As a special case, tail-recurse if there are no qualifiers.
7130 if (SplitOld.Quals.empty())
7131 return wrap(C, SplitOld.Ty, I);
7132 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
7133 }
7134
7135 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
7136 if (I == Stack.size()) return QualType(Fn, 0);
7137
7138 switch (static_cast<WrapKind>(Stack[I++])) {
7139 case Desugar:
7140 // This is the point at which we potentially lose source
7141 // information.
7142 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
7143
7144 case Attributed:
7145 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
7146
7147 case Parens: {
7148 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
7149 return C.getParenType(New);
7150 }
7151
7152 case MacroQualified:
7153 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
7154
7155 case Array: {
7156 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
7157 QualType New = wrap(C, CAT->getElementType(), I);
7158 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
7159 CAT->getSizeModifier(),
7160 CAT->getIndexTypeCVRQualifiers());
7161 }
7162
7163 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
7164 QualType New = wrap(C, VAT->getElementType(), I);
7165 return C.getVariableArrayType(
7166 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
7167 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7168 }
7169
7170 const auto *IAT = cast<IncompleteArrayType>(Old);
7171 QualType New = wrap(C, IAT->getElementType(), I);
7172 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7173 IAT->getIndexTypeCVRQualifiers());
7174 }
7175
7176 case Pointer: {
7177 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7178 return C.getPointerType(New);
7179 }
7180
7181 case BlockPointer: {
7182 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7183 return C.getBlockPointerType(New);
7184 }
7185
7186 case MemberPointer: {
7187 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7188 QualType New = wrap(C, OldMPT->getPointeeType(), I);
7189 return C.getMemberPointerType(New, OldMPT->getClass());
7190 }
7191
7192 case Reference: {
7193 const ReferenceType *OldRef = cast<ReferenceType>(Old);
7194 QualType New = wrap(C, OldRef->getPointeeType(), I);
7195 if (isa<LValueReferenceType>(OldRef))
7196 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7197 else
7198 return C.getRValueReferenceType(New);
7199 }
7200 }
7201
7202 llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "clang/lib/Sema/SemaType.cpp"
, 7202)
;
7203 }
7204 };
7205} // end anonymous namespace
7206
7207static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7208 ParsedAttr &PAttr, QualType &Type) {
7209 Sema &S = State.getSema();
7210
7211 Attr *A;
7212 switch (PAttr.getKind()) {
7213 default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "clang/lib/Sema/SemaType.cpp"
, 7213)
;
7214 case ParsedAttr::AT_Ptr32:
7215 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7216 break;
7217 case ParsedAttr::AT_Ptr64:
7218 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7219 break;
7220 case ParsedAttr::AT_SPtr:
7221 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7222 break;
7223 case ParsedAttr::AT_UPtr:
7224 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7225 break;
7226 }
7227
7228 std::bitset<attr::LastAttr> Attrs;
7229 QualType Desugared = Type;
7230 for (;;) {
7231 if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7232 Desugared = TT->desugar();
7233 continue;
7234 } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7235 Desugared = ET->desugar();
7236 continue;
7237 }
7238 const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7239 if (!AT)
7240 break;
7241 Attrs[AT->getAttrKind()] = true;
7242 Desugared = AT->getModifiedType();
7243 }
7244
7245 // You cannot specify duplicate type attributes, so if the attribute has
7246 // already been applied, flag it.
7247 attr::Kind NewAttrKind = A->getKind();
7248 if (Attrs[NewAttrKind]) {
7249 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7250 return true;
7251 }
7252 Attrs[NewAttrKind] = true;
7253
7254 // You cannot have both __sptr and __uptr on the same type, nor can you
7255 // have __ptr32 and __ptr64.
7256 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7257 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7258 << "'__ptr32'"
7259 << "'__ptr64'";
7260 return true;
7261 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7262 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7263 << "'__sptr'"
7264 << "'__uptr'";
7265 return true;
7266 }
7267
7268 // Check the raw (i.e., desugared) Canonical type to see if it
7269 // is a pointer type.
7270 if (!isa<PointerType>(Desugared)) {
7271 // Pointer type qualifiers can only operate on pointer types, but not
7272 // pointer-to-member types.
7273 if (Type->isMemberPointerType())
7274 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7275 else
7276 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7277 return true;
7278 }
7279
7280 // Add address space to type based on its attributes.
7281 LangAS ASIdx = LangAS::Default;
7282 uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
7283 if (PtrWidth == 32) {
7284 if (Attrs[attr::Ptr64])
7285 ASIdx = LangAS::ptr64;
7286 else if (Attrs[attr::UPtr])
7287 ASIdx = LangAS::ptr32_uptr;
7288 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7289 if (Attrs[attr::UPtr])
7290 ASIdx = LangAS::ptr32_uptr;
7291 else
7292 ASIdx = LangAS::ptr32_sptr;
7293 }
7294
7295 QualType Pointee = Type->getPointeeType();
7296 if (ASIdx != LangAS::Default)
7297 Pointee = S.Context.getAddrSpaceQualType(
7298 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7299 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7300 return false;
7301}
7302
7303/// Map a nullability attribute kind to a nullability kind.
7304static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7305 switch (kind) {
7306 case ParsedAttr::AT_TypeNonNull:
7307 return NullabilityKind::NonNull;
7308
7309 case ParsedAttr::AT_TypeNullable:
7310 return NullabilityKind::Nullable;
7311
7312 case ParsedAttr::AT_TypeNullableResult:
7313 return NullabilityKind::NullableResult;
7314
7315 case ParsedAttr::AT_TypeNullUnspecified:
7316 return NullabilityKind::Unspecified;
7317
7318 default:
7319 llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind"
, "clang/lib/Sema/SemaType.cpp", 7319)
;
7320 }
7321}
7322
7323/// Applies a nullability type specifier to the given type, if possible.
7324///
7325/// \param state The type processing state.
7326///
7327/// \param type The type to which the nullability specifier will be
7328/// added. On success, this type will be updated appropriately.
7329///
7330/// \param attr The attribute as written on the type.
7331///
7332/// \param allowOnArrayType Whether to accept nullability specifiers on an
7333/// array type (e.g., because it will decay to a pointer).
7334///
7335/// \returns true if a problem has been diagnosed, false on success.
7336static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7337 QualType &type,
7338 ParsedAttr &attr,
7339 bool allowOnArrayType) {
7340 Sema &S = state.getSema();
7341
7342 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7343 SourceLocation nullabilityLoc = attr.getLoc();
7344 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7345
7346 recordNullabilitySeen(S, nullabilityLoc);
7347
7348 // Check for existing nullability attributes on the type.
7349 QualType desugared = type;
7350 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7351 // Check whether there is already a null
7352 if (auto existingNullability = attributed->getImmediateNullability()) {
7353 // Duplicated nullability.
7354 if (nullability == *existingNullability) {
7355 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7356 << DiagNullabilityKind(nullability, isContextSensitive)
7357 << FixItHint::CreateRemoval(nullabilityLoc);
7358
7359 break;
7360 }
7361
7362 // Conflicting nullability.
7363 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7364 << DiagNullabilityKind(nullability, isContextSensitive)
7365 << DiagNullabilityKind(*existingNullability, false);
7366 return true;
7367 }
7368
7369 desugared = attributed->getModifiedType();
7370 }
7371
7372 // If there is already a different nullability specifier, complain.
7373 // This (unlike the code above) looks through typedefs that might
7374 // have nullability specifiers on them, which means we cannot
7375 // provide a useful Fix-It.
7376 if (auto existingNullability = desugared->getNullability(S.Context)) {
7377 if (nullability != *existingNullability) {
7378 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7379 << DiagNullabilityKind(nullability, isContextSensitive)
7380 << DiagNullabilityKind(*existingNullability, false);
7381
7382 // Try to find the typedef with the existing nullability specifier.
7383 if (auto typedefType = desugared->getAs<TypedefType>()) {
7384 TypedefNameDecl *typedefDecl = typedefType->getDecl();
7385 QualType underlyingType = typedefDecl->getUnderlyingType();
7386 if (auto typedefNullability
7387 = AttributedType::stripOuterNullability(underlyingType)) {
7388 if (*typedefNullability == *existingNullability) {
7389 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7390 << DiagNullabilityKind(*existingNullability, false);
7391 }
7392 }
7393 }
7394
7395 return true;
7396 }
7397 }
7398
7399 // If this definitely isn't a pointer type, reject the specifier.
7400 if (!desugared->canHaveNullability() &&
7401 !(allowOnArrayType && desugared->isArrayType())) {
7402 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7403 << DiagNullabilityKind(nullability, isContextSensitive) << type;
7404 return true;
7405 }
7406
7407 // For the context-sensitive keywords/Objective-C property
7408 // attributes, require that the type be a single-level pointer.
7409 if (isContextSensitive) {
7410 // Make sure that the pointee isn't itself a pointer type.
7411 const Type *pointeeType = nullptr;
7412 if (desugared->isArrayType())
7413 pointeeType = desugared->getArrayElementTypeNoTypeQual();
7414 else if (desugared->isAnyPointerType())
7415 pointeeType = desugared->getPointeeType().getTypePtr();
7416
7417 if (pointeeType && (pointeeType->isAnyPointerType() ||
7418 pointeeType->isObjCObjectPointerType() ||
7419 pointeeType->isMemberPointerType())) {
7420 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7421 << DiagNullabilityKind(nullability, true)
7422 << type;
7423 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7424 << DiagNullabilityKind(nullability, false)
7425 << type
7426 << FixItHint::CreateReplacement(nullabilityLoc,
7427 getNullabilitySpelling(nullability));
7428 return true;
7429 }
7430 }
7431
7432 // Form the attributed type.
7433 type = state.getAttributedType(
7434 createNullabilityAttr(S.Context, attr, nullability), type, type);
7435 return false;
7436}
7437
7438/// Check the application of the Objective-C '__kindof' qualifier to
7439/// the given type.
7440static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7441 ParsedAttr &attr) {
7442 Sema &S = state.getSema();
7443
7444 if (isa<ObjCTypeParamType>(type)) {
7445 // Build the attributed type to record where __kindof occurred.
7446 type = state.getAttributedType(
7447 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7448 return false;
7449 }
7450
7451 // Find out if it's an Objective-C object or object pointer type;
7452 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7453 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7454 : type->getAs<ObjCObjectType>();
7455
7456 // If not, we can't apply __kindof.
7457 if (!objType) {
7458 // FIXME: Handle dependent types that aren't yet object types.
7459 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7460 << type;
7461 return true;
7462 }
7463
7464 // Rebuild the "equivalent" type, which pushes __kindof down into
7465 // the object type.
7466 // There is no need to apply kindof on an unqualified id type.
7467 QualType equivType = S.Context.getObjCObjectType(
7468 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7469 objType->getProtocols(),
7470 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7471
7472 // If we started with an object pointer type, rebuild it.
7473 if (ptrType) {
7474 equivType = S.Context.getObjCObjectPointerType(equivType);
7475 if (auto nullability = type->getNullability(S.Context)) {
7476 // We create a nullability attribute from the __kindof attribute.
7477 // Make sure that will make sense.
7478 assert(attr.getAttributeSpellingListIndex() == 0 &&(static_cast <bool> (attr.getAttributeSpellingListIndex
() == 0 && "multiple spellings for __kindof?") ? void
(0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "clang/lib/Sema/SemaType.cpp", 7479, __extension__ __PRETTY_FUNCTION__
))
7479 "multiple spellings for __kindof?")(static_cast <bool> (attr.getAttributeSpellingListIndex
() == 0 && "multiple spellings for __kindof?") ? void
(0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "clang/lib/Sema/SemaType.cpp", 7479, __extension__ __PRETTY_FUNCTION__
))
;
7480 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7481 A->setImplicit(true);
7482 equivType = state.getAttributedType(A, equivType, equivType);
7483 }
7484 }
7485
7486 // Build the attributed type to record where __kindof occurred.
7487 type = state.getAttributedType(
7488 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7489 return false;
7490}
7491
7492/// Distribute a nullability type attribute that cannot be applied to
7493/// the type specifier to a pointer, block pointer, or member pointer
7494/// declarator, complaining if necessary.
7495///
7496/// \returns true if the nullability annotation was distributed, false
7497/// otherwise.
7498static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7499 QualType type, ParsedAttr &attr) {
7500 Declarator &declarator = state.getDeclarator();
7501
7502 /// Attempt to move the attribute to the specified chunk.
7503 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7504 // If there is already a nullability attribute there, don't add
7505 // one.
7506 if (hasNullabilityAttr(chunk.getAttrs()))
7507 return false;
7508
7509 // Complain about the nullability qualifier being in the wrong
7510 // place.
7511 enum {
7512 PK_Pointer,
7513 PK_BlockPointer,
7514 PK_MemberPointer,
7515 PK_FunctionPointer,
7516 PK_MemberFunctionPointer,
7517 } pointerKind
7518 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7519 : PK_Pointer)
7520 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7521 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7522
7523 auto diag = state.getSema().Diag(attr.getLoc(),
7524 diag::warn_nullability_declspec)
7525 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7526 attr.isContextSensitiveKeywordAttribute())
7527 << type
7528 << static_cast<unsigned>(pointerKind);
7529
7530 // FIXME: MemberPointer chunks don't carry the location of the *.
7531 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7532 diag << FixItHint::CreateRemoval(attr.getLoc())
7533 << FixItHint::CreateInsertion(
7534 state.getSema().getPreprocessor().getLocForEndOfToken(
7535 chunk.Loc),
7536 " " + attr.getAttrName()->getName().str() + " ");
7537 }
7538
7539 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7540 chunk.getAttrs());
7541 return true;
7542 };
7543
7544 // Move it to the outermost pointer, member pointer, or block
7545 // pointer declarator.
7546 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7547 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7548 switch (chunk.Kind) {
7549 case DeclaratorChunk::Pointer:
7550 case DeclaratorChunk::BlockPointer:
7551 case DeclaratorChunk::MemberPointer:
7552 return moveToChunk(chunk, false);
7553
7554 case DeclaratorChunk::Paren:
7555 case DeclaratorChunk::Array:
7556 continue;
7557
7558 case DeclaratorChunk::Function:
7559 // Try to move past the return type to a function/block/member
7560 // function pointer.
7561 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7562 declarator, i,
7563 /*onlyBlockPointers=*/false)) {
7564 return moveToChunk(*dest, true);
7565 }
7566
7567 return false;
7568
7569 // Don't walk through these.
7570 case DeclaratorChunk::Reference:
7571 case DeclaratorChunk::Pipe:
7572 return false;
7573 }
7574 }
7575
7576 return false;
7577}
7578
7579static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7580 assert(!Attr.isInvalid())(static_cast <bool> (!Attr.isInvalid()) ? void (0) : __assert_fail
("!Attr.isInvalid()", "clang/lib/Sema/SemaType.cpp", 7580, __extension__
__PRETTY_FUNCTION__))
;
7581 switch (Attr.getKind()) {
7582 default:
7583 llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute"
, "clang/lib/Sema/SemaType.cpp", 7583)
;
7584 case ParsedAttr::AT_CDecl:
7585 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7586 case ParsedAttr::AT_FastCall:
7587 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7588 case ParsedAttr::AT_StdCall:
7589 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7590 case ParsedAttr::AT_ThisCall:
7591 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7592 case ParsedAttr::AT_RegCall:
7593 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7594 case ParsedAttr::AT_Pascal:
7595 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7596 case ParsedAttr::AT_SwiftCall:
7597 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7598 case ParsedAttr::AT_SwiftAsyncCall:
7599 return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7600 case ParsedAttr::AT_VectorCall:
7601 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7602 case ParsedAttr::AT_AArch64VectorPcs:
7603 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7604 case ParsedAttr::AT_AArch64SVEPcs:
7605 return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7606 case ParsedAttr::AT_AMDGPUKernelCall:
7607 return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7608 case ParsedAttr::AT_Pcs: {
7609 // The attribute may have had a fixit applied where we treated an
7610 // identifier as a string literal. The contents of the string are valid,
7611 // but the form may not be.
7612 StringRef Str;
7613 if (Attr.isArgExpr(0))
7614 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7615 else
7616 Str = Attr.getArgAsIdent(0)->Ident->getName();
7617 PcsAttr::PCSType Type;
7618 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7619 llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute"
, "clang/lib/Sema/SemaType.cpp", 7619)
;
7620 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7621 }
7622 case ParsedAttr::AT_IntelOclBicc:
7623 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7624 case ParsedAttr::AT_MSABI:
7625 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7626 case ParsedAttr::AT_SysVABI:
7627 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7628 case ParsedAttr::AT_PreserveMost:
7629 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7630 case ParsedAttr::AT_PreserveAll:
7631 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7632 }
7633 llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!"
, "clang/lib/Sema/SemaType.cpp", 7633)
;
7634}
7635
7636/// Process an individual function attribute. Returns true to
7637/// indicate that the attribute was handled, false if it wasn't.
7638static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7639 QualType &type) {
7640 Sema &S = state.getSema();
7641
7642 FunctionTypeUnwrapper unwrapped(S, type);
7643
7644 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7645 if (S.CheckAttrNoArgs(attr))
7646 return true;
7647
7648 // Delay if this is not a function type.
7649 if (!unwrapped.isFunctionType())
7650 return false;
7651
7652 // Otherwise we can process right away.
7653 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7654 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7655 return true;
7656 }
7657
7658 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7659 // Delay if this is not a function type.
7660 if (!unwrapped.isFunctionType())
7661 return false;
7662
7663 // Ignore if we don't have CMSE enabled.
7664 if (!S.getLangOpts().Cmse) {
7665 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7666 attr.setInvalid();
7667 return true;
7668 }
7669
7670 // Otherwise we can process right away.
7671 FunctionType::ExtInfo EI =
7672 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7673 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7674 return true;
7675 }
7676
7677 // ns_returns_retained is not always a type attribute, but if we got
7678 // here, we're treating it as one right now.
7679 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7680 if (attr.getNumArgs()) return true;
7681
7682 // Delay if this is not a function type.
7683 if (!unwrapped.isFunctionType())
7684 return false;
7685
7686 // Check whether the return type is reasonable.
7687 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7688 unwrapped.get()->getReturnType()))
7689 return true;
7690
7691 // Only actually change the underlying type in ARC builds.
7692 QualType origType = type;
7693 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7694 FunctionType::ExtInfo EI
7695 = unwrapped.get()->getExtInfo().withProducesResult(true);
7696 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7697 }
7698 type = state.getAttributedType(
7699 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7700 origType, type);
7701 return true;
7702 }
7703
7704 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7705 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7706 return true;
7707
7708 // Delay if this is not a function type.
7709 if (!unwrapped.isFunctionType())
7710 return false;
7711
7712 FunctionType::ExtInfo EI =
7713 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7714 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7715 return true;
7716 }
7717
7718 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7719 if (!S.getLangOpts().CFProtectionBranch) {
7720 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7721 attr.setInvalid();
7722 return true;
7723 }
7724
7725 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7726 return true;
7727
7728 // If this is not a function type, warning will be asserted by subject
7729 // check.
7730 if (!unwrapped.isFunctionType())
7731 return true;
7732
7733 FunctionType::ExtInfo EI =
7734 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7735 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7736 return true;
7737 }
7738
7739 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7740 unsigned value;
7741 if (S.CheckRegparmAttr(attr, value))
7742 return true;
7743
7744 // Delay if this is not a function type.
7745 if (!unwrapped.isFunctionType())
7746 return false;
7747
7748 // Diagnose regparm with fastcall.
7749 const FunctionType *fn = unwrapped.get();
7750 CallingConv CC = fn->getCallConv();
7751 if (CC == CC_X86FastCall) {
7752 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7753 << FunctionType::getNameForCallConv(CC)
7754 << "regparm";
7755 attr.setInvalid();
7756 return true;
7757 }
7758
7759 FunctionType::ExtInfo EI =
7760 unwrapped.get()->getExtInfo().withRegParm(value);
7761 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7762 return true;
7763 }
7764
7765 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7766 // Delay if this is not a function type.
7767 if (!unwrapped.isFunctionType())
7768 return false;
7769
7770 if (S.CheckAttrNoArgs(attr)) {
7771 attr.setInvalid();
7772 return true;
7773 }
7774
7775 // Otherwise we can process right away.
7776 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7777
7778 // MSVC ignores nothrow if it is in conflict with an explicit exception
7779 // specification.
7780 if (Proto->hasExceptionSpec()) {
7781 switch (Proto->getExceptionSpecType()) {
7782 case EST_None:
7783 llvm_unreachable("This doesn't have an exception spec!")::llvm::llvm_unreachable_internal("This doesn't have an exception spec!"
, "clang/lib/Sema/SemaType.cpp", 7783)
;
7784
7785 case EST_DynamicNone:
7786 case EST_BasicNoexcept:
7787 case EST_NoexceptTrue:
7788 case EST_NoThrow:
7789 // Exception spec doesn't conflict with nothrow, so don't warn.
7790 [[fallthrough]];
7791 case EST_Unparsed:
7792 case EST_Uninstantiated:
7793 case EST_DependentNoexcept:
7794 case EST_Unevaluated:
7795 // We don't have enough information to properly determine if there is a
7796 // conflict, so suppress the warning.
7797 break;
7798 case EST_Dynamic:
7799 case EST_MSAny:
7800 case EST_NoexceptFalse:
7801 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7802 break;
7803 }
7804 return true;
7805 }
7806
7807 type = unwrapped.wrap(
7808 S, S.Context
7809 .getFunctionTypeWithExceptionSpec(
7810 QualType{Proto, 0},
7811 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7812 ->getAs<FunctionType>());
7813 return true;
7814 }
7815
7816 // Delay if the type didn't work out to a function.
7817 if (!unwrapped.isFunctionType()) return false;
7818
7819 // Otherwise, a calling convention.
7820 CallingConv CC;
7821 if (S.CheckCallingConvAttr(attr, CC))
7822 return true;
7823
7824 const FunctionType *fn = unwrapped.get();
7825 CallingConv CCOld = fn->getCallConv();
7826 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7827
7828 if (CCOld != CC) {
7829 // Error out on when there's already an attribute on the type
7830 // and the CCs don't match.
7831 if (S.getCallingConvAttributedType(type)) {
7832 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7833 << FunctionType::getNameForCallConv(CC)
7834 << FunctionType::getNameForCallConv(CCOld);
7835 attr.setInvalid();
7836 return true;
7837 }
7838 }
7839
7840 // Diagnose use of variadic functions with calling conventions that
7841 // don't support them (e.g. because they're callee-cleanup).
7842 // We delay warning about this on unprototyped function declarations
7843 // until after redeclaration checking, just in case we pick up a
7844 // prototype that way. And apparently we also "delay" warning about
7845 // unprototyped function types in general, despite not necessarily having
7846 // much ability to diagnose it later.
7847 if (!supportsVariadicCall(CC)) {
7848 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7849 if (FnP && FnP->isVariadic()) {
7850 // stdcall and fastcall are ignored with a warning for GCC and MS
7851 // compatibility.
7852 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7853 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7854 << FunctionType::getNameForCallConv(CC)
7855 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7856
7857 attr.setInvalid();
7858 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7859 << FunctionType::getNameForCallConv(CC);
7860 }
7861 }
7862
7863 // Also diagnose fastcall with regparm.
7864 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7865 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7866 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7867 attr.setInvalid();
7868 return true;
7869 }
7870
7871 // Modify the CC from the wrapped function type, wrap it all back, and then
7872 // wrap the whole thing in an AttributedType as written. The modified type
7873 // might have a different CC if we ignored the attribute.
7874 QualType Equivalent;
7875 if (CCOld == CC) {
7876 Equivalent = type;
7877 } else {
7878 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7879 Equivalent =
7880 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7881 }
7882 type = state.getAttributedType(CCAttr, type, Equivalent);
7883 return true;
7884}
7885
7886bool Sema::hasExplicitCallingConv(QualType T) {
7887 const AttributedType *AT;
7888
7889 // Stop if we'd be stripping off a typedef sugar node to reach the
7890 // AttributedType.
7891 while ((AT = T->getAs<AttributedType>()) &&
7892 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7893 if (AT->isCallingConv())
7894 return true;
7895 T = AT->getModifiedType();
7896 }
7897 return false;
7898}
7899
7900void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7901 SourceLocation Loc) {
7902 FunctionTypeUnwrapper Unwrapped(*this, T);
7903 const FunctionType *FT = Unwrapped.get();
7904 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7905 cast<FunctionProtoType>(FT)->isVariadic());
7906 CallingConv CurCC = FT->getCallConv();
7907 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7908
7909 if (CurCC == ToCC)
7910 return;
7911
7912 // MS compiler ignores explicit calling convention attributes on structors. We
7913 // should do the same.
7914 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7915 // Issue a warning on ignored calling convention -- except of __stdcall.
7916 // Again, this is what MS compiler does.
7917 if (CurCC != CC_X86StdCall)
7918 Diag(Loc, diag::warn_cconv_unsupported)
7919 << FunctionType::getNameForCallConv(CurCC)
7920 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7921 // Default adjustment.
7922 } else {
7923 // Only adjust types with the default convention. For example, on Windows
7924 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7925 // __thiscall type to __cdecl for static methods.
7926 CallingConv DefaultCC =
7927 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7928
7929 if (CurCC != DefaultCC || DefaultCC == ToCC)
7930 return;
7931
7932 if (hasExplicitCallingConv(T))
7933 return;
7934 }
7935
7936 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7937 QualType Wrapped = Unwrapped.wrap(*this, FT);
7938 T = Context.getAdjustedType(T, Wrapped);
7939}
7940
7941/// HandleVectorSizeAttribute - this attribute is only applicable to integral
7942/// and float scalars, although arrays, pointers, and function return values are
7943/// allowed in conjunction with this construct. Aggregates with this attribute
7944/// are invalid, even if they are of the same size as a corresponding scalar.
7945/// The raw attribute should contain precisely 1 argument, the vector size for
7946/// the variable, measured in bytes. If curType and rawAttr are well formed,
7947/// this routine will return a new vector type.
7948static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7949 Sema &S) {
7950 // Check the attribute arguments.
7951 if (Attr.getNumArgs() != 1) {
7952 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7953 << 1;
7954 Attr.setInvalid();
7955 return;
7956 }
7957
7958 Expr *SizeExpr = Attr.getArgAsExpr(0);
7959 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7960 if (!T.isNull())
7961 CurType = T;
7962 else
7963 Attr.setInvalid();
7964}
7965
7966/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7967/// a type.
7968static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7969 Sema &S) {
7970 // check the attribute arguments.
7971 if (Attr.getNumArgs() != 1) {
7972 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7973 << 1;
7974 return;
7975 }
7976
7977 Expr *SizeExpr = Attr.getArgAsExpr(0);
7978 QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
7979 if (!T.isNull())
7980 CurType = T;
7981}
7982
7983static bool isPermittedNeonBaseType(QualType &Ty,
7984 VectorType::VectorKind VecKind, Sema &S) {
7985 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7986 if (!BTy)
7987 return false;
7988
7989 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7990
7991 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7992 // now.
7993 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7994 Triple.getArch() == llvm::Triple::aarch64_32 ||
7995 Triple.getArch() == llvm::Triple::aarch64_be;
7996 if (VecKind == VectorType::NeonPolyVector) {
7997 if (IsPolyUnsigned) {
7998 // AArch64 polynomial vectors are unsigned.
7999 return BTy->getKind() == BuiltinType::UChar ||
8000 BTy->getKind() == BuiltinType::UShort ||
8001 BTy->getKind() == BuiltinType::ULong ||
8002 BTy->getKind() == BuiltinType::ULongLong;
8003 } else {
8004 // AArch32 polynomial vectors are signed.
8005 return BTy->getKind() == BuiltinType::SChar ||
8006 BTy->getKind() == BuiltinType::Short ||
8007 BTy->getKind() == BuiltinType::LongLong;
8008 }
8009 }
8010
8011 // Non-polynomial vector types: the usual suspects are allowed, as well as
8012 // float64_t on AArch64.
8013 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8014 BTy->getKind() == BuiltinType::Double)
8015 return true;
8016
8017 return BTy->getKind() == BuiltinType::SChar ||
8018 BTy->getKind() == BuiltinType::UChar ||
8019 BTy->getKind() == BuiltinType::Short ||
8020 BTy->getKind() == BuiltinType::UShort ||
8021 BTy->getKind() == BuiltinType::Int ||
8022 BTy->getKind() == BuiltinType::UInt ||
8023 BTy->getKind() == BuiltinType::Long ||
8024 BTy->getKind() == BuiltinType::ULong ||
8025 BTy->getKind() == BuiltinType::LongLong ||
8026 BTy->getKind() == BuiltinType::ULongLong ||
8027 BTy->getKind() == BuiltinType::Float ||
8028 BTy->getKind() == BuiltinType::Half ||
8029 BTy->getKind() == BuiltinType::BFloat16;
8030}
8031
8032static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8033 llvm::APSInt &Result) {
8034 const auto *AttrExpr = Attr.getArgAsExpr(0);
8035 if (!AttrExpr->isTypeDependent()) {
8036 if (Optional<llvm::APSInt> Res =
8037 AttrExpr->getIntegerConstantExpr(S.Context)) {
8038 Result = *Res;
8039 return true;
8040 }
8041 }
8042 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8043 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8044 Attr.setInvalid();
8045 return false;
8046}
8047
8048/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8049/// "neon_polyvector_type" attributes are used to create vector types that
8050/// are mangled according to ARM's ABI. Otherwise, these types are identical
8051/// to those created with the "vector_size" attribute. Unlike "vector_size"
8052/// the argument to these Neon attributes is the number of vector elements,
8053/// not the vector size in bytes. The vector width and element type must
8054/// match one of the standard Neon vector types.
8055static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8056 Sema &S, VectorType::VectorKind VecKind) {
8057 // Target must have NEON (or MVE, whose vectors are similar enough
8058 // not to need a separate attribute)
8059 if (!S.Context.getTargetInfo().hasFeature("neon") &&
8060 !S.Context.getTargetInfo().hasFeature("mve")) {
8061 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8062 << Attr << "'neon' or 'mve'";
8063 Attr.setInvalid();
8064 return;
8065 }
8066 // Check the attribute arguments.
8067 if (Attr.getNumArgs() != 1) {
8068 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8069 << 1;
8070 Attr.setInvalid();
8071 return;
8072 }
8073 // The number of elements must be an ICE.
8074 llvm::APSInt numEltsInt(32);
8075 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8076 return;
8077
8078 // Only certain element types are supported for Neon vectors.
8079 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
8080 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8081 Attr.setInvalid();
8082 return;
8083 }
8084
8085 // The total size of the vector must be 64 or 128 bits.
8086 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8087 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8088 unsigned vecSize = typeSize * numElts;
8089 if (vecSize != 64 && vecSize != 128) {
8090 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8091 Attr.setInvalid();
8092 return;
8093 }
8094
8095 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8096}
8097
8098/// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8099/// used to create fixed-length versions of sizeless SVE types defined by
8100/// the ACLE, such as svint32_t and svbool_t.
8101static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8102 Sema &S) {
8103 // Target must have SVE.
8104 if (!S.Context.getTargetInfo().hasFeature("sve")) {
8105 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8106 Attr.setInvalid();
8107 return;
8108 }
8109
8110 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8111 // if <bits>+ syntax is used.
8112 if (!S.getLangOpts().VScaleMin ||
8113 S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8114 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8115 << Attr;
8116 Attr.setInvalid();
8117 return;
8118 }
8119
8120 // Check the attribute arguments.
8121 if (Attr.getNumArgs() != 1) {
8122 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8123 << Attr << 1;
8124 Attr.setInvalid();
8125 return;
8126 }
8127
8128 // The vector size must be an integer constant expression.
8129 llvm::APSInt SveVectorSizeInBits(32);
8130 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8131 return;
8132
8133 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8134
8135 // The attribute vector size must match -msve-vector-bits.
8136 if (VecSize != S.getLangOpts().VScaleMin * 128) {
8137 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8138 << VecSize << S.getLangOpts().VScaleMin * 128;
8139 Attr.setInvalid();
8140 return;
8141 }
8142
8143 // Attribute can only be attached to a single SVE vector or predicate type.
8144 if (!CurType->isVLSTBuiltinType()) {
8145 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8146 << Attr << CurType;
8147 Attr.setInvalid();
8148 return;
8149 }
8150
8151 const auto *BT = CurType->castAs<BuiltinType>();
8152
8153 QualType EltType = CurType->getSveEltType(S.Context);
8154 unsigned TypeSize = S.Context.getTypeSize(EltType);
8155 VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
8156 if (BT->getKind() == BuiltinType::SveBool) {
8157 // Predicates are represented as i8.
8158 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8159 VecKind = VectorType::SveFixedLengthPredicateVector;
8160 } else
8161 VecSize /= TypeSize;
8162 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8163}
8164
8165static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8166 QualType &CurType,
8167 ParsedAttr &Attr) {
8168 const VectorType *VT = dyn_cast<VectorType>(CurType);
8169 if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
8170 State.getSema().Diag(Attr.getLoc(),
8171 diag::err_attribute_arm_mve_polymorphism);
8172 Attr.setInvalid();
8173 return;
8174 }
8175
8176 CurType =
8177 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8178 State.getSema().Context, Attr),
8179 CurType, CurType);
8180}
8181
8182/// Handle OpenCL Access Qualifier Attribute.
8183static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8184 Sema &S) {
8185 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8186 if (!(CurType->isImageType() || CurType->isPipeType())) {
8187 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8188 Attr.setInvalid();
8189 return;
8190 }
8191
8192 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8193 QualType BaseTy = TypedefTy->desugar();
8194
8195 std::string PrevAccessQual;
8196 if (BaseTy->isPipeType()) {
8197 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8198 OpenCLAccessAttr *Attr =
8199 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8200 PrevAccessQual = Attr->getSpelling();
8201 } else {
8202 PrevAccessQual = "read_only";
8203 }
8204 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8205
8206 switch (ImgType->getKind()) {
8207 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8208 case BuiltinType::Id: \
8209 PrevAccessQual = #Access; \
8210 break;
8211 #include "clang/Basic/OpenCLImageTypes.def"
8212 default:
8213 llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type."
, "clang/lib/Sema/SemaType.cpp", 8213)
;
8214 }
8215 } else {
8216 llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "clang/lib/Sema/SemaType.cpp"
, 8216)
;
8217 }
8218 StringRef AttrName = Attr.getAttrName()->getName();
8219 if (PrevAccessQual == AttrName.ltrim("_")) {
8220 // Duplicated qualifiers
8221 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8222 << AttrName << Attr.getRange();
8223 } else {
8224 // Contradicting qualifiers
8225 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8226 }
8227
8228 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8229 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8230 } else if (CurType->isPipeType()) {
8231 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8232 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8233 CurType = S.Context.getWritePipeType(ElemType);
8234 }
8235 }
8236}
8237
8238/// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8239static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8240 Sema &S) {
8241 if (!S.getLangOpts().MatrixTypes) {
8242 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8243 return;
8244 }
8245
8246 if (Attr.getNumArgs() != 2) {
8247 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8248 << Attr << 2;
8249 return;
8250 }
8251
8252 Expr *RowsExpr = Attr.getArgAsExpr(0);
8253 Expr *ColsExpr = Attr.getArgAsExpr(1);
8254 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8255 if (!T.isNull())
8256 CurType = T;
8257}
8258
8259static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8260 QualType &CurType, const ParsedAttr &PA) {
8261 Sema &S = State.getSema();
8262
8263 if (PA.getNumArgs() < 1) {
8264 S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8265 return;
8266 }
8267
8268 // Make sure that there is a string literal as the annotation's first
8269 // argument.
8270 StringRef Str;
8271 if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8272 return;
8273
8274 llvm::SmallVector<Expr *, 4> Args;
8275 Args.reserve(PA.getNumArgs() - 1);
8276 for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8277 assert(!PA.isArgIdent(Idx))(static_cast <bool> (!PA.isArgIdent(Idx)) ? void (0) : __assert_fail
("!PA.isArgIdent(Idx)", "clang/lib/Sema/SemaType.cpp", 8277,
__extension__ __PRETTY_FUNCTION__))
;
8278 Args.push_back(PA.getArgAsExpr(Idx));
8279 }
8280 if (!S.ConstantFoldAttrArgs(PA, Args))
8281 return;
8282 auto *AnnotateTypeAttr =
8283 AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8284 CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8285}
8286
8287static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8288 QualType &CurType,
8289 ParsedAttr &Attr) {
8290 if (State.getDeclarator().isDeclarationOfFunction()) {
8291 CurType = State.getAttributedType(
8292 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8293 CurType, CurType);
8294 }
8295}
8296
8297static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8298 TypeAttrLocation TAL,
8299 const ParsedAttributesView &attrs) {
8300
8301 state.setParsedNoDeref(false);
8302 if (attrs.empty())
8303 return;
8304
8305 // Scan through and apply attributes to this type where it makes sense. Some
8306 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8307 // type, but others can be present in the type specifiers even though they
8308 // apply to the decl. Here we apply type attributes and ignore the rest.
8309
8310 // This loop modifies the list pretty frequently, but we still need to make
8311 // sure we visit every element once. Copy the attributes list, and iterate
8312 // over that.
8313 ParsedAttributesView AttrsCopy{attrs};
8314 for (ParsedAttr &attr : AttrsCopy) {
8315
8316 // Skip attributes that were marked to be invalid.
8317 if (attr.isInvalid())
8318 continue;
8319
8320 if (attr.isStandardAttributeSyntax()) {
8321 // [[gnu::...]] attributes are treated as declaration attributes, so may
8322 // not appertain to a DeclaratorChunk. If we handle them as type
8323 // attributes, accept them in that position and diagnose the GCC
8324 // incompatibility.
8325 if (attr.isGNUScope()) {
8326 bool IsTypeAttr = attr.isTypeAttr();
8327 if (TAL == TAL_DeclChunk) {
8328 state.getSema().Diag(attr.getLoc(),
8329 IsTypeAttr
8330 ? diag::warn_gcc_ignores_type_attr
8331 : diag::warn_cxx11_gnu_attribute_on_type)
8332 << attr;
8333 if (!IsTypeAttr)
8334 continue;
8335 }
8336 } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8337 !attr.isTypeAttr()) {
8338 // Otherwise, only consider type processing for a C++11 attribute if
8339 // - it has actually been applied to a type (decl-specifier-seq or
8340 // declarator chunk), or
8341 // - it is a type attribute, irrespective of where it was applied (so
8342 // that we can support the legacy behavior of some type attributes
8343 // that can be applied to the declaration name).
8344 continue;
8345 }
8346 }
8347
8348 // If this is an attribute we can handle, do so now,
8349 // otherwise, add it to the FnAttrs list for rechaining.
8350 switch (attr.getKind()) {
8351 default:
8352 // A [[]] attribute on a declarator chunk must appertain to a type.
8353 if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) {
8354 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8355 << attr;
8356 attr.setUsedAsTypeAttr();
8357 }
8358 break;
8359
8360 case ParsedAttr::UnknownAttribute:
8361 if (attr.isStandardAttributeSyntax()) {
8362 state.getSema().Diag(attr.getLoc(),
8363 diag::warn_unknown_attribute_ignored)
8364 << attr << attr.getRange();
8365 // Mark the attribute as invalid so we don't emit the same diagnostic
8366 // multiple times.
8367 attr.setInvalid();
8368 }
8369 break;
8370
8371 case ParsedAttr::IgnoredAttribute:
8372 break;
8373
8374 case ParsedAttr::AT_BTFTypeTag:
8375 HandleBTFTypeTagAttribute(type, attr, state);
8376 attr.setUsedAsTypeAttr();
8377 break;
8378
8379 case ParsedAttr::AT_MayAlias:
8380 // FIXME: This attribute needs to actually be handled, but if we ignore
8381 // it it breaks large amounts of Linux software.
8382 attr.setUsedAsTypeAttr();
8383 break;
8384 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8385 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8386 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8387 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8388 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8389 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8390 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8391 case ParsedAttr::AT_AddressSpace:
8392 HandleAddressSpaceTypeAttribute(type, attr, state);
8393 attr.setUsedAsTypeAttr();
8394 break;
8395 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
8396 if (!handleObjCPointerTypeAttr(state, attr, type))
8397 distributeObjCPointerTypeAttr(state, attr, type);
8398 attr.setUsedAsTypeAttr();
8399 break;
8400 case ParsedAttr::AT_VectorSize:
8401 HandleVectorSizeAttr(type, attr, state.getSema());
8402 attr.setUsedAsTypeAttr();
8403 break;
8404 case ParsedAttr::AT_ExtVectorType:
8405 HandleExtVectorTypeAttr(type, attr, state.getSema());
8406 attr.setUsedAsTypeAttr();
8407 break;
8408 case ParsedAttr::AT_NeonVectorType:
8409 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8410 VectorType::NeonVector);
8411 attr.setUsedAsTypeAttr();
8412 break;
8413 case ParsedAttr::AT_NeonPolyVectorType:
8414 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8415 VectorType::NeonPolyVector);
8416 attr.setUsedAsTypeAttr();
8417 break;
8418 case ParsedAttr::AT_ArmSveVectorBits:
8419 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8420 attr.setUsedAsTypeAttr();
8421 break;
8422 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8423 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8424 attr.setUsedAsTypeAttr();
8425 break;
8426 }
8427 case ParsedAttr::AT_OpenCLAccess:
8428 HandleOpenCLAccessAttr(type, attr, state.getSema());
8429 attr.setUsedAsTypeAttr();
8430 break;
8431 case ParsedAttr::AT_LifetimeBound:
8432 if (TAL == TAL_DeclChunk)
8433 HandleLifetimeBoundAttr(state, type, attr);
8434 break;
8435
8436 case ParsedAttr::AT_NoDeref: {
8437 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8438 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8439 // For the time being, we simply emit a warning that the attribute is
8440 // ignored.
8441 if (attr.isStandardAttributeSyntax()) {
8442 state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8443 << attr;
8444 break;
8445 }
8446 ASTContext &Ctx = state.getSema().Context;
8447 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8448 type, type);
8449 attr.setUsedAsTypeAttr();
8450 state.setParsedNoDeref(true);
8451 break;
8452 }
8453
8454 case ParsedAttr::AT_MatrixType:
8455 HandleMatrixTypeAttr(type, attr, state.getSema());
8456 attr.setUsedAsTypeAttr();
8457 break;
8458
8459 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
8460 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8461 attr.setUsedAsTypeAttr();
8462 break;
8463
8464
8465 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
8466 // Either add nullability here or try to distribute it. We
8467 // don't want to distribute the nullability specifier past any
8468 // dependent type, because that complicates the user model.
8469 if (type->canHaveNullability() || type->isDependentType() ||
8470 type->isArrayType() ||
8471 !distributeNullabilityTypeAttr(state, type, attr)) {
8472 unsigned endIndex;
8473 if (TAL == TAL_DeclChunk)
8474 endIndex = state.getCurrentChunkIndex();
8475 else
8476 endIndex = state.getDeclarator().getNumTypeObjects();
8477 bool allowOnArrayType =
8478 state.getDeclarator().isPrototypeContext() &&
8479 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8480 if (checkNullabilityTypeSpecifier(
8481 state,
8482 type,
8483 attr,
8484 allowOnArrayType)) {
8485 attr.setInvalid();
8486 }
8487
8488 attr.setUsedAsTypeAttr();
8489 }
8490 break;
8491
8492 case ParsedAttr::AT_ObjCKindOf:
8493 // '__kindof' must be part of the decl-specifiers.
8494 switch (TAL) {
8495 case TAL_DeclSpec:
8496 break;
8497
8498 case TAL_DeclChunk:
8499 case TAL_DeclName:
8500 state.getSema().Diag(attr.getLoc(),
8501 diag::err_objc_kindof_wrong_position)
8502 << FixItHint::CreateRemoval(attr.getLoc())
8503 << FixItHint::CreateInsertion(
8504 state.getDeclarator().getDeclSpec().getBeginLoc(),
8505 "__kindof ");
8506 break;
8507 }
8508
8509 // Apply it regardless.
8510 if (checkObjCKindOfType(state, type, attr))
8511 attr.setInvalid();
8512 break;
8513
8514 case ParsedAttr::AT_NoThrow:
8515 // Exception Specifications aren't generally supported in C mode throughout
8516 // clang, so revert to attribute-based handling for C.
8517 if (!state.getSema().getLangOpts().CPlusPlus)
8518 break;
8519 [[fallthrough]];
8520 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_AArch64SVEPcs: case ParsedAttr::AT_AMDGPUKernelCall
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
8521 attr.setUsedAsTypeAttr();
8522
8523 // Attributes with standard syntax have strict rules for what they
8524 // appertain to and hence should not use the "distribution" logic below.
8525 if (attr.isStandardAttributeSyntax()) {
8526 if (!handleFunctionTypeAttr(state, attr, type)) {
8527 diagnoseBadTypeAttribute(state.getSema(), attr, type);
8528 attr.setInvalid();
8529 }
8530 break;
8531 }
8532
8533 // Never process function type attributes as part of the
8534 // declaration-specifiers.
8535 if (TAL == TAL_DeclSpec)
8536 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8537
8538 // Otherwise, handle the possible delays.
8539 else if (!handleFunctionTypeAttr(state, attr, type))
8540 distributeFunctionTypeAttr(state, attr, type);
8541 break;
8542 case ParsedAttr::AT_AcquireHandle: {
8543 if (!type->isFunctionType())
8544 return;
8545
8546 if (attr.getNumArgs() != 1) {
8547 state.getSema().Diag(attr.getLoc(),
8548 diag::err_attribute_wrong_number_arguments)
8549 << attr << 1;
8550 attr.setInvalid();
8551 return;
8552 }
8553
8554 StringRef HandleType;
8555 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8556 return;
8557 type = state.getAttributedType(
8558 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8559 type, type);
8560 attr.setUsedAsTypeAttr();
8561 break;
8562 }
8563 case ParsedAttr::AT_AnnotateType: {
8564 HandleAnnotateTypeAttr(state, type, attr);
8565 attr.setUsedAsTypeAttr();
8566 break;
8567 }
8568 }
8569
8570 // Handle attributes that are defined in a macro. We do not want this to be
8571 // applied to ObjC builtin attributes.
8572 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8573 !type.getQualifiers().hasObjCLifetime() &&
8574 !type.getQualifiers().hasObjCGCAttr() &&
8575 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8576 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8577 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8578 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8579 state.setExpansionLocForMacroQualifiedType(
8580 cast<MacroQualifiedType>(type.getTypePtr()),
8581 attr.getMacroExpansionLoc());
8582 }
8583 }
8584}
8585
8586void Sema::completeExprArrayBound(Expr *E) {
8587 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8588 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8589 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8590 auto *Def = Var->getDefinition();
8591 if (!Def) {
8592 SourceLocation PointOfInstantiation = E->getExprLoc();
8593 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8594 InstantiateVariableDefinition(PointOfInstantiation, Var);
8595 });
8596 Def = Var->getDefinition();
8597
8598 // If we don't already have a point of instantiation, and we managed
8599 // to instantiate a definition, this is the point of instantiation.
8600 // Otherwise, we don't request an end-of-TU instantiation, so this is
8601 // not a point of instantiation.
8602 // FIXME: Is this really the right behavior?
8603 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8604 assert(Var->getTemplateSpecializationKind() ==(static_cast <bool> (Var->getTemplateSpecializationKind
() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation"
) ? void (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "clang/lib/Sema/SemaType.cpp", 8606, __extension__ __PRETTY_FUNCTION__
))
8605 TSK_ImplicitInstantiation &&(static_cast <bool> (Var->getTemplateSpecializationKind
() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation"
) ? void (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "clang/lib/Sema/SemaType.cpp", 8606, __extension__ __PRETTY_FUNCTION__
))
8606 "explicit instantiation with no point of instantiation")(static_cast <bool> (Var->getTemplateSpecializationKind
() == TSK_ImplicitInstantiation && "explicit instantiation with no point of instantiation"
) ? void (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "clang/lib/Sema/SemaType.cpp", 8606, __extension__ __PRETTY_FUNCTION__
))
;
8607 Var->setTemplateSpecializationKind(
8608 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8609 }
8610 }
8611
8612 // Update the type to the definition's type both here and within the
8613 // expression.
8614 if (Def) {
8615 DRE->setDecl(Def);
8616 QualType T = Def->getType();
8617 DRE->setType(T);
8618 // FIXME: Update the type on all intervening expressions.
8619 E->setType(T);
8620 }
8621
8622 // We still go on to try to complete the type independently, as it
8623 // may also require instantiations or diagnostics if it remains
8624 // incomplete.
8625 }
8626 }
8627 }
8628}
8629
8630QualType Sema::getCompletedType(Expr *E) {
8631 // Incomplete array types may be completed by the initializer attached to
8632 // their definitions. For static data members of class templates and for
8633 // variable templates, we need to instantiate the definition to get this
8634 // initializer and complete the type.
8635 if (E->getType()->isIncompleteArrayType())
8636 completeExprArrayBound(E);
8637
8638 // FIXME: Are there other cases which require instantiating something other
8639 // than the type to complete the type of an expression?
8640
8641 return E->getType();
8642}
8643
8644/// Ensure that the type of the given expression is complete.
8645///
8646/// This routine checks whether the expression \p E has a complete type. If the
8647/// expression refers to an instantiable construct, that instantiation is
8648/// performed as needed to complete its type. Furthermore
8649/// Sema::RequireCompleteType is called for the expression's type (or in the
8650/// case of a reference type, the referred-to type).
8651///
8652/// \param E The expression whose type is required to be complete.
8653/// \param Kind Selects which completeness rules should be applied.
8654/// \param Diagnoser The object that will emit a diagnostic if the type is
8655/// incomplete.
8656///
8657/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8658/// otherwise.
8659bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8660 TypeDiagnoser &Diagnoser) {
8661 return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8662 Diagnoser);
8663}
8664
8665bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8666 BoundTypeDiagnoser<> Diagnoser(DiagID);
8667 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8668}
8669
8670/// Ensure that the type T is a complete type.
8671///
8672/// This routine checks whether the type @p T is complete in any
8673/// context where a complete type is required. If @p T is a complete
8674/// type, returns false. If @p T is a class template specialization,
8675/// this routine then attempts to perform class template
8676/// instantiation. If instantiation fails, or if @p T is incomplete
8677/// and cannot be completed, issues the diagnostic @p diag (giving it
8678/// the type @p T) and returns true.
8679///
8680/// @param Loc The location in the source that the incomplete type
8681/// diagnostic should refer to.
8682///
8683/// @param T The type that this routine is examining for completeness.
8684///
8685/// @param Kind Selects which completeness rules should be applied.
8686///
8687/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8688/// @c false otherwise.
8689bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8690 CompleteTypeKind Kind,
8691 TypeDiagnoser &Diagnoser) {
8692 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8693 return true;
8694 if (const TagType *Tag = T->getAs<TagType>()) {
8695 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8696 Tag->getDecl()->setCompleteDefinitionRequired();
8697 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8698 }
8699 }
8700 return false;
8701}
8702
8703bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8704 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8705 if (!Suggested)
8706 return false;
8707
8708 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8709 // and isolate from other C++ specific checks.
8710 StructuralEquivalenceContext Ctx(
8711 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8712 StructuralEquivalenceKind::Default,
8713 false /*StrictTypeSpelling*/, true /*Complain*/,
8714 true /*ErrorOnTagTypeMismatch*/);
8715 return Ctx.IsEquivalent(D, Suggested);
8716}
8717
8718bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
8719 AcceptableKind Kind, bool OnlyNeedComplete) {
8720 // Easy case: if we don't have modules, all declarations are visible.
8721 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8722 return true;
8723
8724 // If this definition was instantiated from a template, map back to the
8725 // pattern from which it was instantiated.
8726 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8727 // We're in the middle of defining it; this definition should be treated
8728 // as visible.
8729 return true;
8730 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8731 if (auto *Pattern = RD->getTemplateInstantiationPattern())
8732 RD = Pattern;
8733 D = RD->getDefinition();
8734 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8735 if (auto *Pattern = ED->getTemplateInstantiationPattern())
8736 ED = Pattern;
8737 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8738 // If the enum has a fixed underlying type, it may have been forward
8739 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8740 // the enum and assign it the underlying type of `int`. Since we're only
8741 // looking for a complete type (not a definition), any visible declaration
8742 // of it will do.
8743 *Suggested = nullptr;
8744 for (auto *Redecl : ED->redecls()) {
8745 if (isAcceptable(Redecl, Kind))
8746 return true;
8747 if (Redecl->isThisDeclarationADefinition() ||
8748 (Redecl->isCanonicalDecl() && !*Suggested))
8749 *Suggested = Redecl;
8750 }
8751
8752 return false;
8753 }
8754 D = ED->getDefinition();
8755 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8756 if (auto *Pattern = FD->getTemplateInstantiationPattern())
8757 FD = Pattern;
8758 D = FD->getDefinition();
8759 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8760 if (auto *Pattern = VD->getTemplateInstantiationPattern())
8761 VD = Pattern;
8762 D = VD->getDefinition();
8763 }
8764
8765 assert(D && "missing definition for pattern of instantiated definition")(static_cast <bool> (D && "missing definition for pattern of instantiated definition"
) ? void (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\""
, "clang/lib/Sema/SemaType.cpp", 8765, __extension__ __PRETTY_FUNCTION__
))
;
8766
8767 *Suggested = D;
8768
8769 auto DefinitionIsAcceptable = [&] {
8770 // The (primary) definition might be in a visible module.
8771 if (isAcceptable(D, Kind))
8772 return true;
8773
8774 // A visible module might have a merged definition instead.
8775 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8776 : hasVisibleMergedDefinition(D)) {
8777 if (CodeSynthesisContexts.empty() &&
8778 !getLangOpts().ModulesLocalVisibility) {
8779 // Cache the fact that this definition is implicitly visible because
8780 // there is a visible merged definition.
8781 D->setVisibleDespiteOwningModule();
8782 }
8783 return true;
8784 }
8785
8786 return false;
8787 };
8788
8789 if (DefinitionIsAcceptable())
8790 return true;
8791
8792 // The external source may have additional definitions of this entity that are
8793 // visible, so complete the redeclaration chain now and ask again.
8794 if (auto *Source = Context.getExternalSource()) {
8795 Source->CompleteRedeclChain(D);
8796 return DefinitionIsAcceptable();
8797 }
8798
8799 return false;
8800}
8801
8802/// Determine whether there is any declaration of \p D that was ever a
8803/// definition (perhaps before module merging) and is currently visible.
8804/// \param D The definition of the entity.
8805/// \param Suggested Filled in with the declaration that should be made visible
8806/// in order to provide a definition of this entity.
8807/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8808/// not defined. This only matters for enums with a fixed underlying
8809/// type, since in all other cases, a type is complete if and only if it
8810/// is defined.
8811bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8812 bool OnlyNeedComplete) {
8813 return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
8814 OnlyNeedComplete);
8815}
8816
8817/// Determine whether there is any declaration of \p D that was ever a
8818/// definition (perhaps before module merging) and is currently
8819/// reachable.
8820/// \param D The definition of the entity.
8821/// \param Suggested Filled in with the declaration that should be made
8822/// reachable
8823/// in order to provide a definition of this entity.
8824/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8825/// not defined. This only matters for enums with a fixed underlying
8826/// type, since in all other cases, a type is complete if and only if it
8827/// is defined.
8828bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
8829 bool OnlyNeedComplete) {
8830 return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
8831 OnlyNeedComplete);
8832}
8833
8834/// Locks in the inheritance model for the given class and all of its bases.
8835static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8836 RD = RD->getMostRecentNonInjectedDecl();
8837 if (!RD->hasAttr<MSInheritanceAttr>()) {
8838 MSInheritanceModel IM;
8839 bool BestCase = false;
8840 switch (S.MSPointerToMemberRepresentationMethod) {
8841 case LangOptions::PPTMK_BestCase:
8842 BestCase = true;
8843 IM = RD->calculateInheritanceModel();
8844 break;
8845 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8846 IM = MSInheritanceModel::Single;
8847 break;
8848 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8849 IM = MSInheritanceModel::Multiple;
8850 break;
8851 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8852 IM = MSInheritanceModel::Unspecified;
8853 break;
8854 }
8855
8856 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8857 ? S.ImplicitMSInheritanceAttrLoc
8858 : RD->getSourceRange();
8859 RD->addAttr(MSInheritanceAttr::CreateImplicit(
8860 S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8861 MSInheritanceAttr::Spelling(IM)));
8862 S.Consumer.AssignInheritanceModel(RD);
8863 }
8864}
8865
8866/// The implementation of RequireCompleteType
8867bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8868 CompleteTypeKind Kind,
8869 TypeDiagnoser *Diagnoser) {
8870 // FIXME: Add this assertion to make sure we always get instantiation points.
8871 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8872 // FIXME: Add this assertion to help us flush out problems with
8873 // checking for dependent types and type-dependent expressions.
8874 //
8875 // assert(!T->isDependentType() &&
8876 // "Can't ask whether a dependent type is complete");
8877
8878 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8879 if (!MPTy->getClass()->isDependentType()) {
8880 if (getLangOpts().CompleteMemberPointers &&
8881 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8882 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8883 diag::err_memptr_incomplete))
8884 return true;
8885
8886 // We lock in the inheritance model once somebody has asked us to ensure
8887 // that a pointer-to-member type is complete.
8888 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8889 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8890 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8891 }
8892 }
8893 }
8894
8895 NamedDecl *Def = nullptr;
8896 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8897 bool Incomplete = (T->isIncompleteType(&Def) ||
8898 (!AcceptSizeless && T->isSizelessBuiltinType()));
8899
8900 // Check that any necessary explicit specializations are visible. For an
8901 // enum, we just need the declaration, so don't check this.
8902 if (Def && !isa<EnumDecl>(Def))
8903 checkSpecializationReachability(Loc, Def);
8904
8905 // If we have a complete type, we're done.
8906 if (!Incomplete) {
8907 NamedDecl *Suggested = nullptr;
8908 if (Def &&
8909 !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
8910 // If the user is going to see an error here, recover by making the
8911 // definition visible.
8912 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8913 if (Diagnoser && Suggested)
8914 diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
8915 /*Recover*/ TreatAsComplete);
8916 return !TreatAsComplete;
8917 } else if (Def && !TemplateInstCallbacks.empty()) {
8918 CodeSynthesisContext TempInst;
8919 TempInst.Kind = CodeSynthesisContext::Memoization;
8920 TempInst.Template = Def;
8921 TempInst.Entity = Def;
8922 TempInst.PointOfInstantiation = Loc;
8923 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8924 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8925 }
8926
8927 return false;
8928 }
8929
8930 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8931 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8932
8933 // Give the external source a chance to provide a definition of the type.
8934 // This is kept separate from completing the redeclaration chain so that
8935 // external sources such as LLDB can avoid synthesizing a type definition
8936 // unless it's actually needed.
8937 if (Tag || IFace) {
8938 // Avoid diagnosing invalid decls as incomplete.
8939 if (Def->isInvalidDecl())
8940 return true;
8941
8942 // Give the external AST source a chance to complete the type.
8943 if (auto *Source = Context.getExternalSource()) {
8944 if (Tag && Tag->hasExternalLexicalStorage())
8945 Source->CompleteType(Tag);
8946 if (IFace && IFace->hasExternalLexicalStorage())
8947 Source->CompleteType(IFace);
8948 // If the external source completed the type, go through the motions
8949 // again to ensure we're allowed to use the completed type.
8950 if (!T->isIncompleteType())
8951 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8952 }
8953 }
8954
8955 // If we have a class template specialization or a class member of a
8956 // class template specialization, or an array with known size of such,
8957 // try to instantiate it.
8958 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8959 bool Instantiated = false;
8960 bool Diagnosed = false;
8961 if (RD->isDependentContext()) {
8962 // Don't try to instantiate a dependent class (eg, a member template of
8963 // an instantiated class template specialization).
8964 // FIXME: Can this ever happen?
8965 } else if (auto *ClassTemplateSpec =
8966 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8967 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8968 runWithSufficientStackSpace(Loc, [&] {
8969 Diagnosed = InstantiateClassTemplateSpecialization(
8970 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8971 /*Complain=*/Diagnoser);
8972 });
8973 Instantiated = true;
8974 }
8975 } else {
8976 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8977 if (!RD->isBeingDefined() && Pattern) {
8978 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8979 assert(MSI && "Missing member specialization information?")(static_cast <bool> (MSI && "Missing member specialization information?"
) ? void (0) : __assert_fail ("MSI && \"Missing member specialization information?\""
, "clang/lib/Sema/SemaType.cpp", 8979, __extension__ __PRETTY_FUNCTION__
))
;
8980 // This record was instantiated from a class within a template.
8981 if (MSI->getTemplateSpecializationKind() !=
8982 TSK_ExplicitSpecialization) {
8983 runWithSufficientStackSpace(Loc, [&] {
8984 Diagnosed = InstantiateClass(Loc, RD, Pattern,
8985 getTemplateInstantiationArgs(RD),
8986 TSK_ImplicitInstantiation,
8987 /*Complain=*/Diagnoser);
8988 });
8989 Instantiated = true;
8990 }
8991 }
8992 }
8993
8994 if (Instantiated) {
8995 // Instantiate* might have already complained that the template is not
8996 // defined, if we asked it to.
8997 if (Diagnoser && Diagnosed)
8998 return true;
8999 // If we instantiated a definition, check that it's usable, even if
9000 // instantiation produced an error, so that repeated calls to this
9001 // function give consistent answers.
9002 if (!T->isIncompleteType())
9003 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9004 }
9005 }
9006
9007 // FIXME: If we didn't instantiate a definition because of an explicit
9008 // specialization declaration, check that it's visible.
9009
9010 if (!Diagnoser)
9011 return true;
9012
9013 Diagnoser->diagnose(*this, Loc, T);
9014
9015 // If the type was a forward declaration of a class/struct/union
9016 // type, produce a note.
9017 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9018 Diag(Tag->getLocation(),
9019 Tag->isBeingDefined() ? diag::note_type_being_defined
9020 : diag::note_forward_declaration)
9021 << Context.getTagDeclType(Tag);
9022
9023 // If the Objective-C class was a forward declaration, produce a note.
9024 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9025 Diag(IFace->getLocation(), diag::note_forward_class);
9026
9027 // If we have external information that we can use to suggest a fix,
9028 // produce a note.
9029 if (ExternalSource)
9030 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9031
9032 return true;
9033}
9034
9035bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9036 CompleteTypeKind Kind, unsigned DiagID) {
9037 BoundTypeDiagnoser<> Diagnoser(DiagID);
9038 return RequireCompleteType(Loc, T, Kind, Diagnoser);
9039}
9040
9041/// Get diagnostic %select index for tag kind for
9042/// literal type diagnostic message.
9043/// WARNING: Indexes apply to particular diagnostics only!
9044///
9045/// \returns diagnostic %select index.
9046static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9047 switch (Tag) {
9048 case TTK_Struct: return 0;
9049 case TTK_Interface: return 1;
9050 case TTK_Class: return 2;
9051 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!"
, "clang/lib/Sema/SemaType.cpp", 9051)
;
9052 }
9053}
9054
9055/// Ensure that the type T is a literal type.
9056///
9057/// This routine checks whether the type @p T is a literal type. If @p T is an
9058/// incomplete type, an attempt is made to complete it. If @p T is a literal
9059/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
9060/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
9061/// it the type @p T), along with notes explaining why the type is not a
9062/// literal type, and returns true.
9063///
9064/// @param Loc The location in the source that the non-literal type
9065/// diagnostic should refer to.
9066///
9067/// @param T The type that this routine is examining for literalness.
9068///
9069/// @param Diagnoser Emits a diagnostic if T is not a literal type.
9070///
9071/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
9072/// @c false otherwise.
9073bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9074 TypeDiagnoser &Diagnoser) {
9075 assert(!T->isDependentType() && "type should not be dependent")(static_cast <bool> (!T->isDependentType() &&
"type should not be dependent") ? void (0) : __assert_fail (
"!T->isDependentType() && \"type should not be dependent\""
, "clang/lib/Sema/SemaType.cpp", 9075, __extension__ __PRETTY_FUNCTION__
))
;
9076
9077 QualType ElemType = Context.getBaseElementType(T);
9078 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9079 T->isLiteralType(Context))
9080 return false;
9081
9082 Diagnoser.diagnose(*this, Loc, T);
9083
9084 if (T->isVariableArrayType())
9085 return true;
9086
9087 const RecordType *RT = ElemType->getAs<RecordType>();
9088 if (!RT)
9089 return true;
9090
9091 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9092
9093 // A partially-defined class type can't be a literal type, because a literal
9094 // class type must have a trivial destructor (which can't be checked until
9095 // the class definition is complete).
9096 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9097 return true;
9098
9099 // [expr.prim.lambda]p3:
9100 // This class type is [not] a literal type.
9101 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9102 Diag(RD->getLocation(), diag::note_non_literal_lambda);
9103 return true;
9104 }
9105
9106 // If the class has virtual base classes, then it's not an aggregate, and
9107 // cannot have any constexpr constructors or a trivial default constructor,
9108 // so is non-literal. This is better to diagnose than the resulting absence
9109 // of constexpr constructors.
9110 if (RD->getNumVBases()) {
9111 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9112 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9113 for (const auto &I : RD->vbases())
9114 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9115 << I.getSourceRange();
9116 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9117 !RD->hasTrivialDefaultConstructor()) {
9118 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9119 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9120 for (const auto &I : RD->bases()) {
9121 if (!I.getType()->isLiteralType(Context)) {
9122 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9123 << RD << I.getType() << I.getSourceRange();
9124 return true;
9125 }
9126 }
9127 for (const auto *I : RD->fields()) {
9128 if (!I->getType()->isLiteralType(Context) ||
9129 I->getType().isVolatileQualified()) {
9130 Diag(I->getLocation(), diag::note_non_literal_field)
9131 << RD << I << I->getType()
9132 << I->getType().isVolatileQualified();
9133 return true;
9134 }
9135 }
9136 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9137 : !RD->hasTrivialDestructor()) {
9138 // All fields and bases are of literal types, so have trivial or constexpr
9139 // destructors. If this class's destructor is non-trivial / non-constexpr,
9140 // it must be user-declared.
9141 CXXDestructorDecl *Dtor = RD->getDestructor();
9142 assert(Dtor && "class has literal fields and bases but no dtor?")(static_cast <bool> (Dtor && "class has literal fields and bases but no dtor?"
) ? void (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\""
, "clang/lib/Sema/SemaType.cpp", 9142, __extension__ __PRETTY_FUNCTION__
))
;
9143 if (!Dtor)
9144 return true;
9145
9146 if (getLangOpts().CPlusPlus20) {
9147 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9148 << RD;
9149 } else {
9150 Diag(Dtor->getLocation(), Dtor->isUserProvided()
9151 ? diag::note_non_literal_user_provided_dtor
9152 : diag::note_non_literal_nontrivial_dtor)
9153 << RD;
9154 if (!Dtor->isUserProvided())
9155 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
9156 /*Diagnose*/ true);
9157 }
9158 }
9159
9160 return true;
9161}
9162
9163bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9164 BoundTypeDiagnoser<> Diagnoser(DiagID);
9165 return RequireLiteralType(Loc, T, Diagnoser);
9166}
9167
9168/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
9169/// by the nested-name-specifier contained in SS, and that is (re)declared by
9170/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
9171QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9172 const CXXScopeSpec &SS, QualType T,
9173 TagDecl *OwnedTagDecl) {
9174 if (T.isNull())
9175 return T;
9176 return Context.getElaboratedType(
9177 Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9178}
9179
9180QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9181 assert(!E->hasPlaceholderType() && "unexpected placeholder")(static_cast <bool> (!E->hasPlaceholderType() &&
"unexpected placeholder") ? void (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "clang/lib/Sema/SemaType.cpp", 9181, __extension__ __PRETTY_FUNCTION__
))
;
9182
9183 if (!getLangOpts().CPlusPlus && E->refersToBitField())
9184 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9185 << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9186
9187 if (!E->isTypeDependent()) {
9188 QualType T = E->getType();
9189 if (const TagType *TT = T->getAs<TagType>())
9190 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9191 }
9192 return Context.getTypeOfExprType(E, Kind);
9193}
9194
9195/// getDecltypeForExpr - Given an expr, will return the decltype for
9196/// that expression, according to the rules in C++11
9197/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9198QualType Sema::getDecltypeForExpr(Expr *E) {
9199 if (E->isTypeDependent())
9200 return Context.DependentTy;
9201
9202 Expr *IDExpr = E;
9203 if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9204 IDExpr = ImplCastExpr->getSubExpr();
9205
9206 // C++11 [dcl.type.simple]p4:
9207 // The type denoted by decltype(e) is defined as follows:
9208
9209 // C++20:
9210 // - if E is an unparenthesized id-expression naming a non-type
9211 // template-parameter (13.2), decltype(E) is the type of the
9212 // template-parameter after performing any necessary type deduction
9213 // Note that this does not pick up the implicit 'const' for a template
9214 // parameter object. This rule makes no difference before C++20 so we apply
9215 // it unconditionally.
9216 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9217 return SNTTPE->getParameterType(Context);
9218
9219 // - if e is an unparenthesized id-expression or an unparenthesized class
9220 // member access (5.2.5), decltype(e) is the type of the entity named
9221 // by e. If there is no such entity, or if e names a set of overloaded
9222 // functions, the program is ill-formed;
9223 //
9224 // We apply the same rules for Objective-C ivar and property references.
9225 if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9226 const ValueDecl *VD = DRE->getDecl();
9227 QualType T = VD->getType();
9228 return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9229 }
9230 if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9231 if (const auto *VD = ME->getMemberDecl())
9232 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9233 return VD->getType();
9234 } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9235 return IR->getDecl()->getType();
9236 } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9237 if (PR->isExplicitProperty())
9238 return PR->getExplicitProperty()->getType();
9239 } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9240 return PE->getType();
9241 }
9242
9243 // C++11 [expr.lambda.prim]p18:
9244 // Every occurrence of decltype((x)) where x is a possibly
9245 // parenthesized id-expression that names an entity of automatic
9246 // storage duration is treated as if x were transformed into an
9247 // access to a corresponding data member of the closure type that
9248 // would have been declared if x were an odr-use of the denoted
9249 // entity.
9250 if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9251 if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9252 if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9253 QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9254 if (!T.isNull())
9255 return Context.getLValueReferenceType(T);
9256 }
9257 }
9258 }
9259
9260 return Context.getReferenceQualifiedType(E);
9261}
9262
9263QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9264 assert(!E->hasPlaceholderType() && "unexpected placeholder")(static_cast <bool> (!E->hasPlaceholderType() &&
"unexpected placeholder") ? void (0) : __assert_fail ("!E->hasPlaceholderType() && \"unexpected placeholder\""
, "clang/lib/Sema/SemaType.cpp", 9264, __extension__ __PRETTY_FUNCTION__
))
;
9265
9266 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9267 !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9268 // The expression operand for decltype is in an unevaluated expression
9269 // context, so side effects could result in unintended consequences.
9270 // Exclude instantiation-dependent expressions, because 'decltype' is often
9271 // used to build SFINAE gadgets.
9272 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9273 }
9274 return Context.getDecltypeType(E, getDecltypeForExpr(E));
9275}
9276
9277static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9278 SourceLocation Loc) {
9279 assert(BaseType->isEnumeralType())(static_cast <bool> (BaseType->isEnumeralType()) ? void
(0) : __assert_fail ("BaseType->isEnumeralType()", "clang/lib/Sema/SemaType.cpp"
, 9279, __extension__ __PRETTY_FUNCTION__))
;
9280 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9281 assert(ED && "EnumType has no EnumDecl")(static_cast <bool> (ED && "EnumType has no EnumDecl"
) ? void (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\""
, "clang/lib/Sema/SemaType.cpp", 9281, __extension__ __PRETTY_FUNCTION__
))
;
9282
9283 S.DiagnoseUseOfDecl(ED, Loc);
9284
9285 QualType Underlying = ED->getIntegerType();
9286 assert(!Underlying.isNull())(static_cast <bool> (!Underlying.isNull()) ? void (0) :
__assert_fail ("!Underlying.isNull()", "clang/lib/Sema/SemaType.cpp"
, 9286, __extension__ __PRETTY_FUNCTION__))
;
9287
9288 return Underlying;
9289}
9290
9291QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9292 SourceLocation Loc) {
9293 if (!BaseType->isEnumeralType()) {
9294 Diag(Loc, diag::err_only_enums_have_underlying_types);
9295 return QualType();
9296 }
9297
9298 // The enum could be incomplete if we're parsing its definition or
9299 // recovering from an error.
9300 NamedDecl *FwdDecl = nullptr;
9301 if (BaseType->isIncompleteType(&FwdDecl)) {
9302 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9303 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9304 return QualType();
9305 }
9306
9307 return GetEnumUnderlyingType(*this, BaseType, Loc);
9308}
9309
9310QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9311 QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9312 ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9313 DeclarationName())
9314 : BaseType;
9315
9316 return Pointer.isNull() ? QualType() : Pointer;
9317}
9318
9319QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9320 // We don't want block pointers or ObjectiveC's id type.
9321 if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9322 return BaseType;
9323
9324 return BaseType->getPointeeType();
9325}
9326
9327QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9328 QualType Underlying = BaseType.getNonReferenceType();
9329 if (Underlying->isArrayType())
9330 return Context.getDecayedType(Underlying);
9331
9332 if (Underlying->isFunctionType())
9333 return BuiltinAddPointer(BaseType, Loc);
9334
9335 SplitQualType Split = Underlying.getSplitUnqualifiedType();
9336 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9337 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9338 // '__decay(T)' so that it removes all qualifiers.
9339 Split.Quals.removeCVRQualifiers();
9340 return Context.getQualifiedType(Split);
9341}
9342
9343QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9344 SourceLocation Loc) {
9345 assert(LangOpts.CPlusPlus)(static_cast <bool> (LangOpts.CPlusPlus) ? void (0) : __assert_fail
("LangOpts.CPlusPlus", "clang/lib/Sema/SemaType.cpp", 9345, __extension__
__PRETTY_FUNCTION__))
;
9346 QualType Reference =
9347 BaseType.isReferenceable()
9348 ? BuildReferenceType(BaseType,
9349 UKind == UnaryTransformType::AddLvalueReference,
9350 Loc, DeclarationName())
9351 : BaseType;
9352 return Reference.isNull() ? QualType() : Reference;
9353}
9354
9355QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9356 SourceLocation Loc) {
9357 if (UKind == UnaryTransformType::RemoveAllExtents)
9358 return Context.getBaseElementType(BaseType);
9359
9360 if (const auto *AT = Context.getAsArrayType(BaseType))
9361 return AT->getElementType();
9362
9363 return BaseType;
9364}
9365
9366QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9367 SourceLocation Loc) {
9368 assert(LangOpts.CPlusPlus)(static_cast <bool> (LangOpts.CPlusPlus) ? void (0) : __assert_fail
("LangOpts.CPlusPlus", "clang/lib/Sema/SemaType.cpp", 9368, __extension__
__PRETTY_FUNCTION__))
;
9369 QualType T = BaseType.getNonReferenceType();
9370 if (UKind == UTTKind::RemoveCVRef &&
9371 (T.isConstQualified() || T.isVolatileQualified())) {
9372 Qualifiers Quals;
9373 QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9374 Quals.removeConst();
9375 Quals.removeVolatile();
9376 T = Context.getQualifiedType(Unqual, Quals);
9377 }
9378 return T;
9379}
9380
9381QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9382 SourceLocation Loc) {
9383 if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9384 BaseType->isFunctionType())
9385 return BaseType;
9386
9387 Qualifiers Quals;
9388 QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9389
9390 if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9391 Quals.removeConst();
9392 if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9393 Quals.removeVolatile();
9394 if (UKind == UTTKind::RemoveRestrict)
9395 Quals.removeRestrict();
9396
9397 return Context.getQualifiedType(Unqual, Quals);
9398}
9399
9400static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9401 bool IsMakeSigned,
9402 SourceLocation Loc) {
9403 if (BaseType->isEnumeralType()) {
9404 QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9405 if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9406 unsigned int Bits = BitInt->getNumBits();
9407 if (Bits > 1)
9408 return S.Context.getBitIntType(!IsMakeSigned, Bits);
9409
9410 S.Diag(Loc, diag::err_make_signed_integral_only)
9411 << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9412 return QualType();
9413 }
9414 if (Underlying->isBooleanType()) {
9415 S.Diag(Loc, diag::err_make_signed_integral_only)
9416 << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9417 << Underlying;
9418 return QualType();
9419 }
9420 }
9421
9422 bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9423 std::array<CanQualType *, 6> AllSignedIntegers = {
9424 &S.Context.SignedCharTy, &S.Context.ShortTy, &S.Context.IntTy,
9425 &S.Context.LongTy, &S.Context.LongLongTy, &S.Context.Int128Ty};
9426 ArrayRef<CanQualType *> AvailableSignedIntegers(
9427 AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9428 std::array<CanQualType *, 6> AllUnsignedIntegers = {
9429 &S.Context.UnsignedCharTy, &S.Context.UnsignedShortTy,
9430 &S.Context.UnsignedIntTy, &S.Context.UnsignedLongTy,
9431 &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9432 ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9433 AllUnsignedIntegers.size() -
9434 Int128Unsupported);
9435 ArrayRef<CanQualType *> *Consider =
9436 IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9437
9438 uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9439 auto *Result =
9440 llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9441 return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9442 });
9443
9444 assert(Result != Consider->end())(static_cast <bool> (Result != Consider->end()) ? void
(0) : __assert_fail ("Result != Consider->end()", "clang/lib/Sema/SemaType.cpp"
, 9444, __extension__ __PRETTY_FUNCTION__))
;
9445 return QualType((*Result)->getTypePtr(), 0);
9446}
9447
9448QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9449 SourceLocation Loc) {
9450 bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9451 if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9452 BaseType->isBooleanType() ||
9453 (BaseType->isBitIntType() &&
9454 BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9455 Diag(Loc, diag::err_make_signed_integral_only)
9456 << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9457 return QualType();
9458 }
9459
9460 bool IsNonIntIntegral =
9461 BaseType->isChar16Type() || BaseType->isChar32Type() ||
9462 BaseType->isWideCharType() || BaseType->isEnumeralType();
9463
9464 QualType Underlying =
9465 IsNonIntIntegral
9466 ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9467 : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9468 : Context.getCorrespondingUnsignedType(BaseType);
9469 if (Underlying.isNull())
9470 return Underlying;
9471 return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9472}
9473
9474QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9475 SourceLocation Loc) {
9476 if (BaseType->isDependentType())
9477 return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9478 QualType Result;
9479 switch (UKind) {
9480 case UnaryTransformType::EnumUnderlyingType: {
9481 Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9482 break;
9483 }
9484 case UnaryTransformType::AddPointer: {
9485 Result = BuiltinAddPointer(BaseType, Loc);
9486 break;
9487 }
9488 case UnaryTransformType::RemovePointer: {
9489 Result = BuiltinRemovePointer(BaseType, Loc);
9490 break;
9491 }
9492 case UnaryTransformType::Decay: {
9493 Result = BuiltinDecay(BaseType, Loc);
9494 break;
9495 }
9496 case UnaryTransformType::AddLvalueReference:
9497 case UnaryTransformType::AddRvalueReference: {
9498 Result = BuiltinAddReference(BaseType, UKind, Loc);
9499 break;
9500 }
9501 case UnaryTransformType::RemoveAllExtents:
9502 case UnaryTransformType::RemoveExtent: {
9503 Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9504 break;
9505 }
9506 case UnaryTransformType::RemoveCVRef:
9507 case UnaryTransformType::RemoveReference: {
9508 Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9509 break;
9510 }
9511 case UnaryTransformType::RemoveConst:
9512 case UnaryTransformType::RemoveCV:
9513 case UnaryTransformType::RemoveRestrict:
9514 case UnaryTransformType::RemoveVolatile: {
9515 Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9516 break;
9517 }
9518 case UnaryTransformType::MakeSigned:
9519 case UnaryTransformType::MakeUnsigned: {
9520 Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9521 break;
9522 }
9523 }
9524
9525 return !Result.isNull()
9526 ? Context.getUnaryTransformType(BaseType, Result, UKind)
9527 : Result;
9528}
9529
9530QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9531 if (!isDependentOrGNUAutoType(T)) {
9532 // FIXME: It isn't entirely clear whether incomplete atomic types
9533 // are allowed or not; for simplicity, ban them for the moment.
9534 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9535 return QualType();
9536
9537 int DisallowedKind = -1;
9538 if (T->isArrayType())
9539 DisallowedKind = 1;
9540 else if (T->isFunctionType())
9541 DisallowedKind = 2;
9542 else if (T->isReferenceType())
9543 DisallowedKind = 3;
9544 else if (T->isAtomicType())
9545 DisallowedKind = 4;
9546 else if (T.hasQualifiers())
9547 DisallowedKind = 5;
9548 else if (T->isSizelessType())
9549 DisallowedKind = 6;
9550 else if (!T.isTriviallyCopyableType(Context))
9551 // Some other non-trivially-copyable type (probably a C++ class)
9552 DisallowedKind = 7;
9553 else if (T->isBitIntType())
9554 DisallowedKind = 8;
9555
9556 if (DisallowedKind != -1) {
9557 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9558 return QualType();
9559 }
9560
9561 // FIXME: Do we need any handling for ARC here?
9562 }
9563
9564 // Build the pointer type.
9565 return Context.getAtomicType(T);
9566}