Bug Summary

File:build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
Warning:line 2932, column 21
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SimpleLoopUnswitch.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/lib/Transforms/Scalar -I include -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-10-03-140002-15933-1 -x c++ /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp

/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp

1///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10#include "llvm/ADT/DenseMap.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/Sequence.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/Twine.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/BlockFrequencyInfo.h"
20#include "llvm/Analysis/CFG.h"
21#include "llvm/Analysis/CodeMetrics.h"
22#include "llvm/Analysis/GuardUtils.h"
23#include "llvm/Analysis/LoopAnalysisManager.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/LoopIterator.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/MustExecute.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Analysis/ScalarEvolution.h"
32#include "llvm/Analysis/TargetTransformInfo.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Dominators.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/IRBuilder.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/PatternMatch.h"
45#include "llvm/IR/Use.h"
46#include "llvm/IR/Value.h"
47#include "llvm/InitializePasses.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/GenericDomTree.h"
54#include "llvm/Support/InstructionCost.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Transforms/Scalar/LoopPassManager.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include "llvm/Transforms/Utils/Cloning.h"
59#include "llvm/Transforms/Utils/Local.h"
60#include "llvm/Transforms/Utils/LoopUtils.h"
61#include "llvm/Transforms/Utils/ValueMapper.h"
62#include <algorithm>
63#include <cassert>
64#include <iterator>
65#include <numeric>
66#include <utility>
67
68#define DEBUG_TYPE"simple-loop-unswitch" "simple-loop-unswitch"
69
70using namespace llvm;
71using namespace llvm::PatternMatch;
72
73STATISTIC(NumBranches, "Number of branches unswitched")static llvm::Statistic NumBranches = {"simple-loop-unswitch",
"NumBranches", "Number of branches unswitched"}
;
74STATISTIC(NumSwitches, "Number of switches unswitched")static llvm::Statistic NumSwitches = {"simple-loop-unswitch",
"NumSwitches", "Number of switches unswitched"}
;
75STATISTIC(NumGuards, "Number of guards turned into branches for unswitching")static llvm::Statistic NumGuards = {"simple-loop-unswitch", "NumGuards"
, "Number of guards turned into branches for unswitching"}
;
76STATISTIC(NumTrivial, "Number of unswitches that are trivial")static llvm::Statistic NumTrivial = {"simple-loop-unswitch", "NumTrivial"
, "Number of unswitches that are trivial"}
;
77STATISTIC(static llvm::Statistic NumCostMultiplierSkipped = {"simple-loop-unswitch"
, "NumCostMultiplierSkipped", "Number of unswitch candidates that had their cost multiplier skipped"
}
78 NumCostMultiplierSkipped,static llvm::Statistic NumCostMultiplierSkipped = {"simple-loop-unswitch"
, "NumCostMultiplierSkipped", "Number of unswitch candidates that had their cost multiplier skipped"
}
79 "Number of unswitch candidates that had their cost multiplier skipped")static llvm::Statistic NumCostMultiplierSkipped = {"simple-loop-unswitch"
, "NumCostMultiplierSkipped", "Number of unswitch candidates that had their cost multiplier skipped"
}
;
80
81static cl::opt<bool> EnableNonTrivialUnswitch(
82 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
83 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
84 "following the configuration passed into the pass."));
85
86static cl::opt<int>
87 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
88 cl::desc("The cost threshold for unswitching a loop."));
89
90static cl::opt<bool> EnableUnswitchCostMultiplier(
91 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
92 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
93 "explosion in nontrivial unswitch."));
94static cl::opt<int> UnswitchSiblingsToplevelDiv(
95 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
96 cl::desc("Toplevel siblings divisor for cost multiplier."));
97static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
98 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
99 cl::desc("Number of unswitch candidates that are ignored when calculating "
100 "cost multiplier."));
101static cl::opt<bool> UnswitchGuards(
102 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
103 cl::desc("If enabled, simple loop unswitching will also consider "
104 "llvm.experimental.guard intrinsics as unswitch candidates."));
105static cl::opt<bool> DropNonTrivialImplicitNullChecks(
106 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
107 cl::init(false), cl::Hidden,
108 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
109 "null checks to save time analyzing if we can keep it."));
110static cl::opt<unsigned>
111 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
112 cl::desc("Max number of memory uses to explore during "
113 "partial unswitching analysis"),
114 cl::init(100), cl::Hidden);
115static cl::opt<bool> FreezeLoopUnswitchCond(
116 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
117 cl::desc("If enabled, the freeze instruction will be added to condition "
118 "of loop unswitch to prevent miscompilation."));
119
120// Helper to skip (select x, true, false), which matches both a logical AND and
121// OR and can confuse code that tries to determine if \p Cond is either a
122// logical AND or OR but not both.
123static Value *skipTrivialSelect(Value *Cond) {
124 Value *CondNext;
125 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
126 Cond = CondNext;
127 return Cond;
128}
129
130/// Collect all of the loop invariant input values transitively used by the
131/// homogeneous instruction graph from a given root.
132///
133/// This essentially walks from a root recursively through loop variant operands
134/// which have perform the same logical operation (AND or OR) and finds all
135/// inputs which are loop invariant. For some operations these can be
136/// re-associated and unswitched out of the loop entirely.
137static TinyPtrVector<Value *>
138collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
139 LoopInfo &LI) {
140 assert(!L.isLoopInvariant(&Root) &&(static_cast <bool> (!L.isLoopInvariant(&Root) &&
"Only need to walk the graph if root itself is not invariant."
) ? void (0) : __assert_fail ("!L.isLoopInvariant(&Root) && \"Only need to walk the graph if root itself is not invariant.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 141, __extension__
__PRETTY_FUNCTION__))
141 "Only need to walk the graph if root itself is not invariant.")(static_cast <bool> (!L.isLoopInvariant(&Root) &&
"Only need to walk the graph if root itself is not invariant."
) ? void (0) : __assert_fail ("!L.isLoopInvariant(&Root) && \"Only need to walk the graph if root itself is not invariant.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 141, __extension__
__PRETTY_FUNCTION__))
;
142 TinyPtrVector<Value *> Invariants;
143
144 bool IsRootAnd = match(&Root, m_LogicalAnd());
145 bool IsRootOr = match(&Root, m_LogicalOr());
146
147 // Build a worklist and recurse through operators collecting invariants.
148 SmallVector<Instruction *, 4> Worklist;
149 SmallPtrSet<Instruction *, 8> Visited;
150 Worklist.push_back(&Root);
151 Visited.insert(&Root);
152 do {
153 Instruction &I = *Worklist.pop_back_val();
154 for (Value *OpV : I.operand_values()) {
155 // Skip constants as unswitching isn't interesting for them.
156 if (isa<Constant>(OpV))
157 continue;
158
159 // Add it to our result if loop invariant.
160 if (L.isLoopInvariant(OpV)) {
161 Invariants.push_back(OpV);
162 continue;
163 }
164
165 // If not an instruction with the same opcode, nothing we can do.
166 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
167
168 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
169 (IsRootOr && match(OpI, m_LogicalOr())))) {
170 // Visit this operand.
171 if (Visited.insert(OpI).second)
172 Worklist.push_back(OpI);
173 }
174 }
175 } while (!Worklist.empty());
176
177 return Invariants;
178}
179
180static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
181 Constant &Replacement) {
182 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?")(static_cast <bool> (!isa<Constant>(Invariant) &&
"Why are we unswitching on a constant?") ? void (0) : __assert_fail
("!isa<Constant>(Invariant) && \"Why are we unswitching on a constant?\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 182, __extension__
__PRETTY_FUNCTION__))
;
183
184 // Replace uses of LIC in the loop with the given constant.
185 // We use make_early_inc_range as set invalidates the iterator.
186 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
187 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
188
189 // Replace this use within the loop body.
190 if (UserI && L.contains(UserI))
191 U.set(&Replacement);
192 }
193}
194
195/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
196/// incoming values along this edge.
197static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
198 BasicBlock &ExitBB) {
199 for (Instruction &I : ExitBB) {
200 auto *PN = dyn_cast<PHINode>(&I);
201 if (!PN)
202 // No more PHIs to check.
203 return true;
204
205 // If the incoming value for this edge isn't loop invariant the unswitch
206 // won't be trivial.
207 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
208 return false;
209 }
210 llvm_unreachable("Basic blocks should never be empty!")::llvm::llvm_unreachable_internal("Basic blocks should never be empty!"
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 210)
;
211}
212
213/// Copy a set of loop invariant values \p ToDuplicate and insert them at the
214/// end of \p BB and conditionally branch on the copied condition. We only
215/// branch on a single value.
216static void buildPartialUnswitchConditionalBranch(
217 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
218 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
219 Instruction *I, AssumptionCache *AC, DominatorTree &DT) {
220 IRBuilder<> IRB(&BB);
221
222 SmallVector<Value *> FrozenInvariants;
223 for (Value *Inv : Invariants) {
224 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
225 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
226 FrozenInvariants.push_back(Inv);
227 }
228
229 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
230 : IRB.CreateAnd(FrozenInvariants);
231 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
232 Direction ? &NormalSucc : &UnswitchedSucc);
233}
234
235/// Copy a set of loop invariant values, and conditionally branch on them.
236static void buildPartialInvariantUnswitchConditionalBranch(
237 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
238 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
239 MemorySSAUpdater *MSSAU) {
240 ValueToValueMapTy VMap;
241 for (auto *Val : reverse(ToDuplicate)) {
242 Instruction *Inst = cast<Instruction>(Val);
243 Instruction *NewInst = Inst->clone();
244 BB.getInstList().insert(BB.end(), NewInst);
245 RemapInstruction(NewInst, VMap,
246 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
247 VMap[Val] = NewInst;
248
249 if (!MSSAU)
250 continue;
251
252 MemorySSA *MSSA = MSSAU->getMemorySSA();
253 if (auto *MemUse =
254 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
255 auto *DefiningAccess = MemUse->getDefiningAccess();
256 // Get the first defining access before the loop.
257 while (L.contains(DefiningAccess->getBlock())) {
258 // If the defining access is a MemoryPhi, get the incoming
259 // value for the pre-header as defining access.
260 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
261 DefiningAccess =
262 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
263 else
264 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
265 }
266 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
267 NewInst->getParent(),
268 MemorySSA::BeforeTerminator);
269 }
270 }
271
272 IRBuilder<> IRB(&BB);
273 Value *Cond = VMap[ToDuplicate[0]];
274 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
275 Direction ? &NormalSucc : &UnswitchedSucc);
276}
277
278/// Rewrite the PHI nodes in an unswitched loop exit basic block.
279///
280/// Requires that the loop exit and unswitched basic block are the same, and
281/// that the exiting block was a unique predecessor of that block. Rewrites the
282/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
283/// PHI nodes from the old preheader that now contains the unswitched
284/// terminator.
285static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
286 BasicBlock &OldExitingBB,
287 BasicBlock &OldPH) {
288 for (PHINode &PN : UnswitchedBB.phis()) {
289 // When the loop exit is directly unswitched we just need to update the
290 // incoming basic block. We loop to handle weird cases with repeated
291 // incoming blocks, but expect to typically only have one operand here.
292 for (auto i : seq<int>(0, PN.getNumOperands())) {
293 assert(PN.getIncomingBlock(i) == &OldExitingBB &&(static_cast <bool> (PN.getIncomingBlock(i) == &OldExitingBB
&& "Found incoming block different from unique predecessor!"
) ? void (0) : __assert_fail ("PN.getIncomingBlock(i) == &OldExitingBB && \"Found incoming block different from unique predecessor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 294, __extension__
__PRETTY_FUNCTION__))
294 "Found incoming block different from unique predecessor!")(static_cast <bool> (PN.getIncomingBlock(i) == &OldExitingBB
&& "Found incoming block different from unique predecessor!"
) ? void (0) : __assert_fail ("PN.getIncomingBlock(i) == &OldExitingBB && \"Found incoming block different from unique predecessor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 294, __extension__
__PRETTY_FUNCTION__))
;
295 PN.setIncomingBlock(i, &OldPH);
296 }
297 }
298}
299
300/// Rewrite the PHI nodes in the loop exit basic block and the split off
301/// unswitched block.
302///
303/// Because the exit block remains an exit from the loop, this rewrites the
304/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
305/// nodes into the unswitched basic block to select between the value in the
306/// old preheader and the loop exit.
307static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
308 BasicBlock &UnswitchedBB,
309 BasicBlock &OldExitingBB,
310 BasicBlock &OldPH,
311 bool FullUnswitch) {
312 assert(&ExitBB != &UnswitchedBB &&(static_cast <bool> (&ExitBB != &UnswitchedBB &&
"Must have different loop exit and unswitched blocks!") ? void
(0) : __assert_fail ("&ExitBB != &UnswitchedBB && \"Must have different loop exit and unswitched blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 313, __extension__
__PRETTY_FUNCTION__))
313 "Must have different loop exit and unswitched blocks!")(static_cast <bool> (&ExitBB != &UnswitchedBB &&
"Must have different loop exit and unswitched blocks!") ? void
(0) : __assert_fail ("&ExitBB != &UnswitchedBB && \"Must have different loop exit and unswitched blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 313, __extension__
__PRETTY_FUNCTION__))
;
314 Instruction *InsertPt = &*UnswitchedBB.begin();
315 for (PHINode &PN : ExitBB.phis()) {
316 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
317 PN.getName() + ".split", InsertPt);
318
319 // Walk backwards over the old PHI node's inputs to minimize the cost of
320 // removing each one. We have to do this weird loop manually so that we
321 // create the same number of new incoming edges in the new PHI as we expect
322 // each case-based edge to be included in the unswitched switch in some
323 // cases.
324 // FIXME: This is really, really gross. It would be much cleaner if LLVM
325 // allowed us to create a single entry for a predecessor block without
326 // having separate entries for each "edge" even though these edges are
327 // required to produce identical results.
328 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
329 if (PN.getIncomingBlock(i) != &OldExitingBB)
330 continue;
331
332 Value *Incoming = PN.getIncomingValue(i);
333 if (FullUnswitch)
334 // No more edge from the old exiting block to the exit block.
335 PN.removeIncomingValue(i);
336
337 NewPN->addIncoming(Incoming, &OldPH);
338 }
339
340 // Now replace the old PHI with the new one and wire the old one in as an
341 // input to the new one.
342 PN.replaceAllUsesWith(NewPN);
343 NewPN->addIncoming(&PN, &ExitBB);
344 }
345}
346
347/// Hoist the current loop up to the innermost loop containing a remaining exit.
348///
349/// Because we've removed an exit from the loop, we may have changed the set of
350/// loops reachable and need to move the current loop up the loop nest or even
351/// to an entirely separate nest.
352static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
353 DominatorTree &DT, LoopInfo &LI,
354 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
355 // If the loop is already at the top level, we can't hoist it anywhere.
356 Loop *OldParentL = L.getParentLoop();
357 if (!OldParentL)
358 return;
359
360 SmallVector<BasicBlock *, 4> Exits;
361 L.getExitBlocks(Exits);
362 Loop *NewParentL = nullptr;
363 for (auto *ExitBB : Exits)
364 if (Loop *ExitL = LI.getLoopFor(ExitBB))
365 if (!NewParentL || NewParentL->contains(ExitL))
366 NewParentL = ExitL;
367
368 if (NewParentL == OldParentL)
369 return;
370
371 // The new parent loop (if different) should always contain the old one.
372 if (NewParentL)
373 assert(NewParentL->contains(OldParentL) &&(static_cast <bool> (NewParentL->contains(OldParentL
) && "Can only hoist this loop up the nest!") ? void (
0) : __assert_fail ("NewParentL->contains(OldParentL) && \"Can only hoist this loop up the nest!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 374, __extension__
__PRETTY_FUNCTION__))
374 "Can only hoist this loop up the nest!")(static_cast <bool> (NewParentL->contains(OldParentL
) && "Can only hoist this loop up the nest!") ? void (
0) : __assert_fail ("NewParentL->contains(OldParentL) && \"Can only hoist this loop up the nest!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 374, __extension__
__PRETTY_FUNCTION__))
;
375
376 // The preheader will need to move with the body of this loop. However,
377 // because it isn't in this loop we also need to update the primary loop map.
378 assert(OldParentL == LI.getLoopFor(&Preheader) &&(static_cast <bool> (OldParentL == LI.getLoopFor(&Preheader
) && "Parent loop of this loop should contain this loop's preheader!"
) ? void (0) : __assert_fail ("OldParentL == LI.getLoopFor(&Preheader) && \"Parent loop of this loop should contain this loop's preheader!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 379, __extension__
__PRETTY_FUNCTION__))
379 "Parent loop of this loop should contain this loop's preheader!")(static_cast <bool> (OldParentL == LI.getLoopFor(&Preheader
) && "Parent loop of this loop should contain this loop's preheader!"
) ? void (0) : __assert_fail ("OldParentL == LI.getLoopFor(&Preheader) && \"Parent loop of this loop should contain this loop's preheader!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 379, __extension__
__PRETTY_FUNCTION__))
;
380 LI.changeLoopFor(&Preheader, NewParentL);
381
382 // Remove this loop from its old parent.
383 OldParentL->removeChildLoop(&L);
384
385 // Add the loop either to the new parent or as a top-level loop.
386 if (NewParentL)
387 NewParentL->addChildLoop(&L);
388 else
389 LI.addTopLevelLoop(&L);
390
391 // Remove this loops blocks from the old parent and every other loop up the
392 // nest until reaching the new parent. Also update all of these
393 // no-longer-containing loops to reflect the nesting change.
394 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
395 OldContainingL = OldContainingL->getParentLoop()) {
396 llvm::erase_if(OldContainingL->getBlocksVector(),
397 [&](const BasicBlock *BB) {
398 return BB == &Preheader || L.contains(BB);
399 });
400
401 OldContainingL->getBlocksSet().erase(&Preheader);
402 for (BasicBlock *BB : L.blocks())
403 OldContainingL->getBlocksSet().erase(BB);
404
405 // Because we just hoisted a loop out of this one, we have essentially
406 // created new exit paths from it. That means we need to form LCSSA PHI
407 // nodes for values used in the no-longer-nested loop.
408 formLCSSA(*OldContainingL, DT, &LI, SE);
409
410 // We shouldn't need to form dedicated exits because the exit introduced
411 // here is the (just split by unswitching) preheader. However, after trivial
412 // unswitching it is possible to get new non-dedicated exits out of parent
413 // loop so let's conservatively form dedicated exit blocks and figure out
414 // if we can optimize later.
415 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
416 /*PreserveLCSSA*/ true);
417 }
418}
419
420// Return the top-most loop containing ExitBB and having ExitBB as exiting block
421// or the loop containing ExitBB, if there is no parent loop containing ExitBB
422// as exiting block.
423static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
424 Loop *TopMost = LI.getLoopFor(ExitBB);
425 Loop *Current = TopMost;
426 while (Current) {
427 if (Current->isLoopExiting(ExitBB))
428 TopMost = Current;
429 Current = Current->getParentLoop();
430 }
431 return TopMost;
432}
433
434/// Unswitch a trivial branch if the condition is loop invariant.
435///
436/// This routine should only be called when loop code leading to the branch has
437/// been validated as trivial (no side effects). This routine checks if the
438/// condition is invariant and one of the successors is a loop exit. This
439/// allows us to unswitch without duplicating the loop, making it trivial.
440///
441/// If this routine fails to unswitch the branch it returns false.
442///
443/// If the branch can be unswitched, this routine splits the preheader and
444/// hoists the branch above that split. Preserves loop simplified form
445/// (splitting the exit block as necessary). It simplifies the branch within
446/// the loop to an unconditional branch but doesn't remove it entirely. Further
447/// cleanup can be done with some simplifycfg like pass.
448///
449/// If `SE` is not null, it will be updated based on the potential loop SCEVs
450/// invalidated by this.
451static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
452 LoopInfo &LI, ScalarEvolution *SE,
453 MemorySSAUpdater *MSSAU) {
454 assert(BI.isConditional() && "Can only unswitch a conditional branch!")(static_cast <bool> (BI.isConditional() && "Can only unswitch a conditional branch!"
) ? void (0) : __assert_fail ("BI.isConditional() && \"Can only unswitch a conditional branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 454, __extension__
__PRETTY_FUNCTION__))
;
455 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Trying to unswitch branch: "
<< BI << "\n"; } } while (false)
;
456
457 // The loop invariant values that we want to unswitch.
458 TinyPtrVector<Value *> Invariants;
459
460 // When true, we're fully unswitching the branch rather than just unswitching
461 // some input conditions to the branch.
462 bool FullUnswitch = false;
463
464 Value *Cond = skipTrivialSelect(BI.getCondition());
465 if (L.isLoopInvariant(Cond)) {
466 Invariants.push_back(Cond);
467 FullUnswitch = true;
468 } else {
469 if (auto *CondInst = dyn_cast<Instruction>(Cond))
470 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
471 if (Invariants.empty()) {
472 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Couldn't find invariant inputs!\n"
; } } while (false)
;
473 return false;
474 }
475 }
476
477 // Check that one of the branch's successors exits, and which one.
478 bool ExitDirection = true;
479 int LoopExitSuccIdx = 0;
480 auto *LoopExitBB = BI.getSuccessor(0);
481 if (L.contains(LoopExitBB)) {
482 ExitDirection = false;
483 LoopExitSuccIdx = 1;
484 LoopExitBB = BI.getSuccessor(1);
485 if (L.contains(LoopExitBB)) {
486 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Branch doesn't exit the loop!\n"
; } } while (false)
;
487 return false;
488 }
489 }
490 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
491 auto *ParentBB = BI.getParent();
492 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
493 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Loop exit PHI's aren't loop-invariant!\n"
; } } while (false)
;
494 return false;
495 }
496
497 // When unswitching only part of the branch's condition, we need the exit
498 // block to be reached directly from the partially unswitched input. This can
499 // be done when the exit block is along the true edge and the branch condition
500 // is a graph of `or` operations, or the exit block is along the false edge
501 // and the condition is a graph of `and` operations.
502 if (!FullUnswitch) {
503 if (ExitDirection ? !match(Cond, m_LogicalOr())
504 : !match(Cond, m_LogicalAnd())) {
505 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Branch condition is in improper form for "
"non-full unswitch!\n"; } } while (false)
506 "non-full unswitch!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Branch condition is in improper form for "
"non-full unswitch!\n"; } } while (false)
;
507 return false;
508 }
509 }
510
511 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
512 dbgs() << " unswitching trivial invariant conditions for: " << BIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
513 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
514 for (Value *Invariant : Invariants) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
515 dbgs() << " " << *Invariant << " == true";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
516 if (Invariant != Invariants.back())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
517 dbgs() << " ||";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
518 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
519 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
520 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
;
521
522 // If we have scalar evolutions, we need to invalidate them including this
523 // loop, the loop containing the exit block and the topmost parent loop
524 // exiting via LoopExitBB.
525 if (SE) {
526 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
527 SE->forgetLoop(ExitL);
528 else
529 // Forget the entire nest as this exits the entire nest.
530 SE->forgetTopmostLoop(&L);
531 }
532
533 if (MSSAU && VerifyMemorySSA)
534 MSSAU->getMemorySSA()->verifyMemorySSA();
535
536 // Split the preheader, so that we know that there is a safe place to insert
537 // the conditional branch. We will change the preheader to have a conditional
538 // branch on LoopCond.
539 BasicBlock *OldPH = L.getLoopPreheader();
540 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
541
542 // Now that we have a place to insert the conditional branch, create a place
543 // to branch to: this is the exit block out of the loop that we are
544 // unswitching. We need to split this if there are other loop predecessors.
545 // Because the loop is in simplified form, *any* other predecessor is enough.
546 BasicBlock *UnswitchedBB;
547 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
548 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&(static_cast <bool> (LoopExitBB->getUniquePredecessor
() == BI.getParent() && "A branch's parent isn't a predecessor!"
) ? void (0) : __assert_fail ("LoopExitBB->getUniquePredecessor() == BI.getParent() && \"A branch's parent isn't a predecessor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 549, __extension__
__PRETTY_FUNCTION__))
549 "A branch's parent isn't a predecessor!")(static_cast <bool> (LoopExitBB->getUniquePredecessor
() == BI.getParent() && "A branch's parent isn't a predecessor!"
) ? void (0) : __assert_fail ("LoopExitBB->getUniquePredecessor() == BI.getParent() && \"A branch's parent isn't a predecessor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 549, __extension__
__PRETTY_FUNCTION__))
;
550 UnswitchedBB = LoopExitBB;
551 } else {
552 UnswitchedBB =
553 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
554 }
555
556 if (MSSAU && VerifyMemorySSA)
557 MSSAU->getMemorySSA()->verifyMemorySSA();
558
559 // Actually move the invariant uses into the unswitched position. If possible,
560 // we do this by moving the instructions, but when doing partial unswitching
561 // we do it by building a new merge of the values in the unswitched position.
562 OldPH->getTerminator()->eraseFromParent();
563 if (FullUnswitch) {
564 // If fully unswitching, we can use the existing branch instruction.
565 // Splice it into the old PH to gate reaching the new preheader and re-point
566 // its successors.
567 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
568 BI);
569 BI.setCondition(Cond);
570 if (MSSAU) {
571 // Temporarily clone the terminator, to make MSSA update cheaper by
572 // separating "insert edge" updates from "remove edge" ones.
573 ParentBB->getInstList().push_back(BI.clone());
574 } else {
575 // Create a new unconditional branch that will continue the loop as a new
576 // terminator.
577 BranchInst::Create(ContinueBB, ParentBB);
578 }
579 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
580 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
581 } else {
582 // Only unswitching a subset of inputs to the condition, so we will need to
583 // build a new branch that merges the invariant inputs.
584 if (ExitDirection)
585 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&(static_cast <bool> (match(skipTrivialSelect(BI.getCondition
()), m_LogicalOr()) && "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
"condition!") ? void (0) : __assert_fail ("match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && \"Must have an `or` of `i1`s or `select i1 X, true, Y`s for the \" \"condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 587, __extension__
__PRETTY_FUNCTION__))
586 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "(static_cast <bool> (match(skipTrivialSelect(BI.getCondition
()), m_LogicalOr()) && "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
"condition!") ? void (0) : __assert_fail ("match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && \"Must have an `or` of `i1`s or `select i1 X, true, Y`s for the \" \"condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 587, __extension__
__PRETTY_FUNCTION__))
587 "condition!")(static_cast <bool> (match(skipTrivialSelect(BI.getCondition
()), m_LogicalOr()) && "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
"condition!") ? void (0) : __assert_fail ("match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && \"Must have an `or` of `i1`s or `select i1 X, true, Y`s for the \" \"condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 587, __extension__
__PRETTY_FUNCTION__))
;
588 else
589 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&(static_cast <bool> (match(skipTrivialSelect(BI.getCondition
()), m_LogicalAnd()) && "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
" condition!") ? void (0) : __assert_fail ("match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && \"Must have an `and` of `i1`s or `select i1 X, Y, false`s for the\" \" condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 591, __extension__
__PRETTY_FUNCTION__))
590 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"(static_cast <bool> (match(skipTrivialSelect(BI.getCondition
()), m_LogicalAnd()) && "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
" condition!") ? void (0) : __assert_fail ("match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && \"Must have an `and` of `i1`s or `select i1 X, Y, false`s for the\" \" condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 591, __extension__
__PRETTY_FUNCTION__))
591 " condition!")(static_cast <bool> (match(skipTrivialSelect(BI.getCondition
()), m_LogicalAnd()) && "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
" condition!") ? void (0) : __assert_fail ("match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && \"Must have an `and` of `i1`s or `select i1 X, Y, false`s for the\" \" condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 591, __extension__
__PRETTY_FUNCTION__))
;
592 buildPartialUnswitchConditionalBranch(
593 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
594 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
595 }
596
597 // Update the dominator tree with the added edge.
598 DT.insertEdge(OldPH, UnswitchedBB);
599
600 // After the dominator tree was updated with the added edge, update MemorySSA
601 // if available.
602 if (MSSAU) {
603 SmallVector<CFGUpdate, 1> Updates;
604 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
605 MSSAU->applyInsertUpdates(Updates, DT);
606 }
607
608 // Finish updating dominator tree and memory ssa for full unswitch.
609 if (FullUnswitch) {
610 if (MSSAU) {
611 // Remove the cloned branch instruction.
612 ParentBB->getTerminator()->eraseFromParent();
613 // Create unconditional branch now.
614 BranchInst::Create(ContinueBB, ParentBB);
615 MSSAU->removeEdge(ParentBB, LoopExitBB);
616 }
617 DT.deleteEdge(ParentBB, LoopExitBB);
618 }
619
620 if (MSSAU && VerifyMemorySSA)
621 MSSAU->getMemorySSA()->verifyMemorySSA();
622
623 // Rewrite the relevant PHI nodes.
624 if (UnswitchedBB == LoopExitBB)
625 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
626 else
627 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
628 *ParentBB, *OldPH, FullUnswitch);
629
630 // The constant we can replace all of our invariants with inside the loop
631 // body. If any of the invariants have a value other than this the loop won't
632 // be entered.
633 ConstantInt *Replacement = ExitDirection
634 ? ConstantInt::getFalse(BI.getContext())
635 : ConstantInt::getTrue(BI.getContext());
636
637 // Since this is an i1 condition we can also trivially replace uses of it
638 // within the loop with a constant.
639 for (Value *Invariant : Invariants)
640 replaceLoopInvariantUses(L, Invariant, *Replacement);
641
642 // If this was full unswitching, we may have changed the nesting relationship
643 // for this loop so hoist it to its correct parent if needed.
644 if (FullUnswitch)
645 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
646
647 if (MSSAU && VerifyMemorySSA)
648 MSSAU->getMemorySSA()->verifyMemorySSA();
649
650 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " done: unswitching trivial branch...\n"
; } } while (false)
;
651 ++NumTrivial;
652 ++NumBranches;
653 return true;
654}
655
656/// Unswitch a trivial switch if the condition is loop invariant.
657///
658/// This routine should only be called when loop code leading to the switch has
659/// been validated as trivial (no side effects). This routine checks if the
660/// condition is invariant and that at least one of the successors is a loop
661/// exit. This allows us to unswitch without duplicating the loop, making it
662/// trivial.
663///
664/// If this routine fails to unswitch the switch it returns false.
665///
666/// If the switch can be unswitched, this routine splits the preheader and
667/// copies the switch above that split. If the default case is one of the
668/// exiting cases, it copies the non-exiting cases and points them at the new
669/// preheader. If the default case is not exiting, it copies the exiting cases
670/// and points the default at the preheader. It preserves loop simplified form
671/// (splitting the exit blocks as necessary). It simplifies the switch within
672/// the loop by removing now-dead cases. If the default case is one of those
673/// unswitched, it replaces its destination with a new basic block containing
674/// only unreachable. Such basic blocks, while technically loop exits, are not
675/// considered for unswitching so this is a stable transform and the same
676/// switch will not be revisited. If after unswitching there is only a single
677/// in-loop successor, the switch is further simplified to an unconditional
678/// branch. Still more cleanup can be done with some simplifycfg like pass.
679///
680/// If `SE` is not null, it will be updated based on the potential loop SCEVs
681/// invalidated by this.
682static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
683 LoopInfo &LI, ScalarEvolution *SE,
684 MemorySSAUpdater *MSSAU) {
685 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Trying to unswitch switch: "
<< SI << "\n"; } } while (false)
;
686 Value *LoopCond = SI.getCondition();
687
688 // If this isn't switching on an invariant condition, we can't unswitch it.
689 if (!L.isLoopInvariant(LoopCond))
690 return false;
691
692 auto *ParentBB = SI.getParent();
693
694 // The same check must be used both for the default and the exit cases. We
695 // should never leave edges from the switch instruction to a basic block that
696 // we are unswitching, hence the condition used to determine the default case
697 // needs to also be used to populate ExitCaseIndices, which is then used to
698 // remove cases from the switch.
699 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
700 // BBToCheck is not an exit block if it is inside loop L.
701 if (L.contains(&BBToCheck))
702 return false;
703 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
704 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
705 return false;
706 // We do not unswitch a block that only has an unreachable statement, as
707 // it's possible this is a previously unswitched block. Only unswitch if
708 // either the terminator is not unreachable, or, if it is, it's not the only
709 // instruction in the block.
710 auto *TI = BBToCheck.getTerminator();
711 bool isUnreachable = isa<UnreachableInst>(TI);
712 return !isUnreachable ||
713 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
714 };
715
716 SmallVector<int, 4> ExitCaseIndices;
717 for (auto Case : SI.cases())
718 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
719 ExitCaseIndices.push_back(Case.getCaseIndex());
720 BasicBlock *DefaultExitBB = nullptr;
721 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
722 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
723 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
724 DefaultExitBB = SI.getDefaultDest();
725 } else if (ExitCaseIndices.empty())
726 return false;
727
728 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " unswitching trivial switch...\n"
; } } while (false)
;
729
730 if (MSSAU && VerifyMemorySSA)
731 MSSAU->getMemorySSA()->verifyMemorySSA();
732
733 // We may need to invalidate SCEVs for the outermost loop reached by any of
734 // the exits.
735 Loop *OuterL = &L;
736
737 if (DefaultExitBB) {
738 // Clear out the default destination temporarily to allow accurate
739 // predecessor lists to be examined below.
740 SI.setDefaultDest(nullptr);
741 // Check the loop containing this exit.
742 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
743 if (!ExitL || ExitL->contains(OuterL))
744 OuterL = ExitL;
745 }
746
747 // Store the exit cases into a separate data structure and remove them from
748 // the switch.
749 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
750 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
751 4> ExitCases;
752 ExitCases.reserve(ExitCaseIndices.size());
753 SwitchInstProfUpdateWrapper SIW(SI);
754 // We walk the case indices backwards so that we remove the last case first
755 // and don't disrupt the earlier indices.
756 for (unsigned Index : reverse(ExitCaseIndices)) {
757 auto CaseI = SI.case_begin() + Index;
758 // Compute the outer loop from this exit.
759 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
760 if (!ExitL || ExitL->contains(OuterL))
761 OuterL = ExitL;
762 // Save the value of this case.
763 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
764 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
765 // Delete the unswitched cases.
766 SIW.removeCase(CaseI);
767 }
768
769 if (SE) {
770 if (OuterL)
771 SE->forgetLoop(OuterL);
772 else
773 SE->forgetTopmostLoop(&L);
774 }
775
776 // Check if after this all of the remaining cases point at the same
777 // successor.
778 BasicBlock *CommonSuccBB = nullptr;
779 if (SI.getNumCases() > 0 &&
780 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
781 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
782 }))
783 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
784 if (!DefaultExitBB) {
785 // If we're not unswitching the default, we need it to match any cases to
786 // have a common successor or if we have no cases it is the common
787 // successor.
788 if (SI.getNumCases() == 0)
789 CommonSuccBB = SI.getDefaultDest();
790 else if (SI.getDefaultDest() != CommonSuccBB)
791 CommonSuccBB = nullptr;
792 }
793
794 // Split the preheader, so that we know that there is a safe place to insert
795 // the switch.
796 BasicBlock *OldPH = L.getLoopPreheader();
797 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
798 OldPH->getTerminator()->eraseFromParent();
799
800 // Now add the unswitched switch.
801 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
802 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
803
804 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
805 // First, we split any exit blocks with remaining in-loop predecessors. Then
806 // we update the PHIs in one of two ways depending on if there was a split.
807 // We walk in reverse so that we split in the same order as the cases
808 // appeared. This is purely for convenience of reading the resulting IR, but
809 // it doesn't cost anything really.
810 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
811 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
812 // Handle the default exit if necessary.
813 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
814 // ranges aren't quite powerful enough yet.
815 if (DefaultExitBB) {
816 if (pred_empty(DefaultExitBB)) {
817 UnswitchedExitBBs.insert(DefaultExitBB);
818 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
819 } else {
820 auto *SplitBB =
821 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
822 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
823 *ParentBB, *OldPH,
824 /*FullUnswitch*/ true);
825 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
826 }
827 }
828 // Note that we must use a reference in the for loop so that we update the
829 // container.
830 for (auto &ExitCase : reverse(ExitCases)) {
831 // Grab a reference to the exit block in the pair so that we can update it.
832 BasicBlock *ExitBB = std::get<1>(ExitCase);
833
834 // If this case is the last edge into the exit block, we can simply reuse it
835 // as it will no longer be a loop exit. No mapping necessary.
836 if (pred_empty(ExitBB)) {
837 // Only rewrite once.
838 if (UnswitchedExitBBs.insert(ExitBB).second)
839 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
840 continue;
841 }
842
843 // Otherwise we need to split the exit block so that we retain an exit
844 // block from the loop and a target for the unswitched condition.
845 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
846 if (!SplitExitBB) {
847 // If this is the first time we see this, do the split and remember it.
848 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
849 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
850 *ParentBB, *OldPH,
851 /*FullUnswitch*/ true);
852 }
853 // Update the case pair to point to the split block.
854 std::get<1>(ExitCase) = SplitExitBB;
855 }
856
857 // Now add the unswitched cases. We do this in reverse order as we built them
858 // in reverse order.
859 for (auto &ExitCase : reverse(ExitCases)) {
860 ConstantInt *CaseVal = std::get<0>(ExitCase);
861 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
862
863 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
864 }
865
866 // If the default was unswitched, re-point it and add explicit cases for
867 // entering the loop.
868 if (DefaultExitBB) {
869 NewSIW->setDefaultDest(DefaultExitBB);
870 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
871
872 // We removed all the exit cases, so we just copy the cases to the
873 // unswitched switch.
874 for (const auto &Case : SI.cases())
875 NewSIW.addCase(Case.getCaseValue(), NewPH,
876 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
877 } else if (DefaultCaseWeight) {
878 // We have to set branch weight of the default case.
879 uint64_t SW = *DefaultCaseWeight;
880 for (const auto &Case : SI.cases()) {
881 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
882 assert(W &&(static_cast <bool> (W && "case weight must be defined as default case weight is defined"
) ? void (0) : __assert_fail ("W && \"case weight must be defined as default case weight is defined\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 883, __extension__
__PRETTY_FUNCTION__))
883 "case weight must be defined as default case weight is defined")(static_cast <bool> (W && "case weight must be defined as default case weight is defined"
) ? void (0) : __assert_fail ("W && \"case weight must be defined as default case weight is defined\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 883, __extension__
__PRETTY_FUNCTION__))
;
884 SW += *W;
885 }
886 NewSIW.setSuccessorWeight(0, SW);
887 }
888
889 // If we ended up with a common successor for every path through the switch
890 // after unswitching, rewrite it to an unconditional branch to make it easy
891 // to recognize. Otherwise we potentially have to recognize the default case
892 // pointing at unreachable and other complexity.
893 if (CommonSuccBB) {
894 BasicBlock *BB = SI.getParent();
895 // We may have had multiple edges to this common successor block, so remove
896 // them as predecessors. We skip the first one, either the default or the
897 // actual first case.
898 bool SkippedFirst = DefaultExitBB == nullptr;
899 for (auto Case : SI.cases()) {
900 assert(Case.getCaseSuccessor() == CommonSuccBB &&(static_cast <bool> (Case.getCaseSuccessor() == CommonSuccBB
&& "Non-common successor!") ? void (0) : __assert_fail
("Case.getCaseSuccessor() == CommonSuccBB && \"Non-common successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 901, __extension__
__PRETTY_FUNCTION__))
901 "Non-common successor!")(static_cast <bool> (Case.getCaseSuccessor() == CommonSuccBB
&& "Non-common successor!") ? void (0) : __assert_fail
("Case.getCaseSuccessor() == CommonSuccBB && \"Non-common successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 901, __extension__
__PRETTY_FUNCTION__))
;
902 (void)Case;
903 if (!SkippedFirst) {
904 SkippedFirst = true;
905 continue;
906 }
907 CommonSuccBB->removePredecessor(BB,
908 /*KeepOneInputPHIs*/ true);
909 }
910 // Now nuke the switch and replace it with a direct branch.
911 SIW.eraseFromParent();
912 BranchInst::Create(CommonSuccBB, BB);
913 } else if (DefaultExitBB) {
914 assert(SI.getNumCases() > 0 &&(static_cast <bool> (SI.getNumCases() > 0 &&
"If we had no cases we'd have a common successor!") ? void (
0) : __assert_fail ("SI.getNumCases() > 0 && \"If we had no cases we'd have a common successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 915, __extension__
__PRETTY_FUNCTION__))
915 "If we had no cases we'd have a common successor!")(static_cast <bool> (SI.getNumCases() > 0 &&
"If we had no cases we'd have a common successor!") ? void (
0) : __assert_fail ("SI.getNumCases() > 0 && \"If we had no cases we'd have a common successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 915, __extension__
__PRETTY_FUNCTION__))
;
916 // Move the last case to the default successor. This is valid as if the
917 // default got unswitched it cannot be reached. This has the advantage of
918 // being simple and keeping the number of edges from this switch to
919 // successors the same, and avoiding any PHI update complexity.
920 auto LastCaseI = std::prev(SI.case_end());
921
922 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
923 SIW.setSuccessorWeight(
924 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
925 SIW.removeCase(LastCaseI);
926 }
927
928 // Walk the unswitched exit blocks and the unswitched split blocks and update
929 // the dominator tree based on the CFG edits. While we are walking unordered
930 // containers here, the API for applyUpdates takes an unordered list of
931 // updates and requires them to not contain duplicates.
932 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
933 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
934 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
935 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
936 }
937 for (auto SplitUnswitchedPair : SplitExitBBMap) {
938 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
939 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
940 }
941
942 if (MSSAU) {
943 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
944 if (VerifyMemorySSA)
945 MSSAU->getMemorySSA()->verifyMemorySSA();
946 } else {
947 DT.applyUpdates(DTUpdates);
948 }
949
950 assert(DT.verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DT.verify(DominatorTree::VerificationLevel
::Fast)) ? void (0) : __assert_fail ("DT.verify(DominatorTree::VerificationLevel::Fast)"
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 950, __extension__
__PRETTY_FUNCTION__))
;
951
952 // We may have changed the nesting relationship for this loop so hoist it to
953 // its correct parent if needed.
954 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
955
956 if (MSSAU && VerifyMemorySSA)
957 MSSAU->getMemorySSA()->verifyMemorySSA();
958
959 ++NumTrivial;
960 ++NumSwitches;
961 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " done: unswitching trivial switch...\n"
; } } while (false)
;
962 return true;
963}
964
965/// This routine scans the loop to find a branch or switch which occurs before
966/// any side effects occur. These can potentially be unswitched without
967/// duplicating the loop. If a branch or switch is successfully unswitched the
968/// scanning continues to see if subsequent branches or switches have become
969/// trivial. Once all trivial candidates have been unswitched, this routine
970/// returns.
971///
972/// The return value indicates whether anything was unswitched (and therefore
973/// changed).
974///
975/// If `SE` is not null, it will be updated based on the potential loop SCEVs
976/// invalidated by this.
977static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
978 LoopInfo &LI, ScalarEvolution *SE,
979 MemorySSAUpdater *MSSAU) {
980 bool Changed = false;
981
982 // If loop header has only one reachable successor we should keep looking for
983 // trivial condition candidates in the successor as well. An alternative is
984 // to constant fold conditions and merge successors into loop header (then we
985 // only need to check header's terminator). The reason for not doing this in
986 // LoopUnswitch pass is that it could potentially break LoopPassManager's
987 // invariants. Folding dead branches could either eliminate the current loop
988 // or make other loops unreachable. LCSSA form might also not be preserved
989 // after deleting branches. The following code keeps traversing loop header's
990 // successors until it finds the trivial condition candidate (condition that
991 // is not a constant). Since unswitching generates branches with constant
992 // conditions, this scenario could be very common in practice.
993 BasicBlock *CurrentBB = L.getHeader();
994 SmallPtrSet<BasicBlock *, 8> Visited;
995 Visited.insert(CurrentBB);
996 do {
997 // Check if there are any side-effecting instructions (e.g. stores, calls,
998 // volatile loads) in the part of the loop that the code *would* execute
999 // without unswitching.
1000 if (MSSAU) // Possible early exit with MSSA
1001 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1002 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1003 return Changed;
1004 if (llvm::any_of(*CurrentBB,
1005 [](Instruction &I) { return I.mayHaveSideEffects(); }))
1006 return Changed;
1007
1008 Instruction *CurrentTerm = CurrentBB->getTerminator();
1009
1010 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1011 // Don't bother trying to unswitch past a switch with a constant
1012 // condition. This should be removed prior to running this pass by
1013 // simplifycfg.
1014 if (isa<Constant>(SI->getCondition()))
1015 return Changed;
1016
1017 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1018 // Couldn't unswitch this one so we're done.
1019 return Changed;
1020
1021 // Mark that we managed to unswitch something.
1022 Changed = true;
1023
1024 // If unswitching turned the terminator into an unconditional branch then
1025 // we can continue. The unswitching logic specifically works to fold any
1026 // cases it can into an unconditional branch to make it easier to
1027 // recognize here.
1028 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1029 if (!BI || BI->isConditional())
1030 return Changed;
1031
1032 CurrentBB = BI->getSuccessor(0);
1033 continue;
1034 }
1035
1036 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1037 if (!BI)
1038 // We do not understand other terminator instructions.
1039 return Changed;
1040
1041 // Don't bother trying to unswitch past an unconditional branch or a branch
1042 // with a constant value. These should be removed by simplifycfg prior to
1043 // running this pass.
1044 if (!BI->isConditional() ||
1045 isa<Constant>(skipTrivialSelect(BI->getCondition())))
1046 return Changed;
1047
1048 // Found a trivial condition candidate: non-foldable conditional branch. If
1049 // we fail to unswitch this, we can't do anything else that is trivial.
1050 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1051 return Changed;
1052
1053 // Mark that we managed to unswitch something.
1054 Changed = true;
1055
1056 // If we only unswitched some of the conditions feeding the branch, we won't
1057 // have collapsed it to a single successor.
1058 BI = cast<BranchInst>(CurrentBB->getTerminator());
1059 if (BI->isConditional())
1060 return Changed;
1061
1062 // Follow the newly unconditional branch into its successor.
1063 CurrentBB = BI->getSuccessor(0);
1064
1065 // When continuing, if we exit the loop or reach a previous visited block,
1066 // then we can not reach any trivial condition candidates (unfoldable
1067 // branch instructions or switch instructions) and no unswitch can happen.
1068 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1069
1070 return Changed;
1071}
1072
1073/// Build the cloned blocks for an unswitched copy of the given loop.
1074///
1075/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1076/// after the split block (`SplitBB`) that will be used to select between the
1077/// cloned and original loop.
1078///
1079/// This routine handles cloning all of the necessary loop blocks and exit
1080/// blocks including rewriting their instructions and the relevant PHI nodes.
1081/// Any loop blocks or exit blocks which are dominated by a different successor
1082/// than the one for this clone of the loop blocks can be trivially skipped. We
1083/// use the `DominatingSucc` map to determine whether a block satisfies that
1084/// property with a simple map lookup.
1085///
1086/// It also correctly creates the unconditional branch in the cloned
1087/// unswitched parent block to only point at the unswitched successor.
1088///
1089/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1090/// block splitting is correctly reflected in `LoopInfo`, essentially all of
1091/// the cloned blocks (and their loops) are left without full `LoopInfo`
1092/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1093/// blocks to them but doesn't create the cloned `DominatorTree` structure and
1094/// instead the caller must recompute an accurate DT. It *does* correctly
1095/// update the `AssumptionCache` provided in `AC`.
1096static BasicBlock *buildClonedLoopBlocks(
1097 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1098 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1099 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1100 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1101 ValueToValueMapTy &VMap,
1102 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1103 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1104 SmallVector<BasicBlock *, 4> NewBlocks;
1105 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1106
1107 // We will need to clone a bunch of blocks, wrap up the clone operation in
1108 // a helper.
1109 auto CloneBlock = [&](BasicBlock *OldBB) {
1110 // Clone the basic block and insert it before the new preheader.
1111 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1112 NewBB->moveBefore(LoopPH);
1113
1114 // Record this block and the mapping.
1115 NewBlocks.push_back(NewBB);
1116 VMap[OldBB] = NewBB;
1117
1118 return NewBB;
1119 };
1120
1121 // We skip cloning blocks when they have a dominating succ that is not the
1122 // succ we are cloning for.
1123 auto SkipBlock = [&](BasicBlock *BB) {
1124 auto It = DominatingSucc.find(BB);
1125 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1126 };
1127
1128 // First, clone the preheader.
1129 auto *ClonedPH = CloneBlock(LoopPH);
1130
1131 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1132 for (auto *LoopBB : L.blocks())
1133 if (!SkipBlock(LoopBB))
1134 CloneBlock(LoopBB);
1135
1136 // Split all the loop exit edges so that when we clone the exit blocks, if
1137 // any of the exit blocks are *also* a preheader for some other loop, we
1138 // don't create multiple predecessors entering the loop header.
1139 for (auto *ExitBB : ExitBlocks) {
1140 if (SkipBlock(ExitBB))
1141 continue;
1142
1143 // When we are going to clone an exit, we don't need to clone all the
1144 // instructions in the exit block and we want to ensure we have an easy
1145 // place to merge the CFG, so split the exit first. This is always safe to
1146 // do because there cannot be any non-loop predecessors of a loop exit in
1147 // loop simplified form.
1148 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1149
1150 // Rearrange the names to make it easier to write test cases by having the
1151 // exit block carry the suffix rather than the merge block carrying the
1152 // suffix.
1153 MergeBB->takeName(ExitBB);
1154 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1155
1156 // Now clone the original exit block.
1157 auto *ClonedExitBB = CloneBlock(ExitBB);
1158 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&(static_cast <bool> (ClonedExitBB->getTerminator()->
getNumSuccessors() == 1 && "Exit block should have been split to have one successor!"
) ? void (0) : __assert_fail ("ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && \"Exit block should have been split to have one successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1159, __extension__
__PRETTY_FUNCTION__))
1159 "Exit block should have been split to have one successor!")(static_cast <bool> (ClonedExitBB->getTerminator()->
getNumSuccessors() == 1 && "Exit block should have been split to have one successor!"
) ? void (0) : __assert_fail ("ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && \"Exit block should have been split to have one successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1159, __extension__
__PRETTY_FUNCTION__))
;
1160 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&(static_cast <bool> (ClonedExitBB->getTerminator()->
getSuccessor(0) == MergeBB && "Cloned exit block has the wrong successor!"
) ? void (0) : __assert_fail ("ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && \"Cloned exit block has the wrong successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1161, __extension__
__PRETTY_FUNCTION__))
1161 "Cloned exit block has the wrong successor!")(static_cast <bool> (ClonedExitBB->getTerminator()->
getSuccessor(0) == MergeBB && "Cloned exit block has the wrong successor!"
) ? void (0) : __assert_fail ("ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && \"Cloned exit block has the wrong successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1161, __extension__
__PRETTY_FUNCTION__))
;
1162
1163 // Remap any cloned instructions and create a merge phi node for them.
1164 for (auto ZippedInsts : llvm::zip_first(
1165 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1166 llvm::make_range(ClonedExitBB->begin(),
1167 std::prev(ClonedExitBB->end())))) {
1168 Instruction &I = std::get<0>(ZippedInsts);
1169 Instruction &ClonedI = std::get<1>(ZippedInsts);
1170
1171 // The only instructions in the exit block should be PHI nodes and
1172 // potentially a landing pad.
1173 assert((static_cast <bool> ((isa<PHINode>(I) || isa<LandingPadInst
>(I) || isa<CatchPadInst>(I)) && "Bad instruction in exit block!"
) ? void (0) : __assert_fail ("(isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && \"Bad instruction in exit block!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1175, __extension__
__PRETTY_FUNCTION__))
1174 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&(static_cast <bool> ((isa<PHINode>(I) || isa<LandingPadInst
>(I) || isa<CatchPadInst>(I)) && "Bad instruction in exit block!"
) ? void (0) : __assert_fail ("(isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && \"Bad instruction in exit block!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1175, __extension__
__PRETTY_FUNCTION__))
1175 "Bad instruction in exit block!")(static_cast <bool> ((isa<PHINode>(I) || isa<LandingPadInst
>(I) || isa<CatchPadInst>(I)) && "Bad instruction in exit block!"
) ? void (0) : __assert_fail ("(isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && \"Bad instruction in exit block!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1175, __extension__
__PRETTY_FUNCTION__))
;
1176 // We should have a value map between the instruction and its clone.
1177 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!")(static_cast <bool> (VMap.lookup(&I) == &ClonedI
&& "Mismatch in the value map!") ? void (0) : __assert_fail
("VMap.lookup(&I) == &ClonedI && \"Mismatch in the value map!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1177, __extension__
__PRETTY_FUNCTION__))
;
1178
1179 auto *MergePN =
1180 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1181 &*MergeBB->getFirstInsertionPt());
1182 I.replaceAllUsesWith(MergePN);
1183 MergePN->addIncoming(&I, ExitBB);
1184 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1185 }
1186 }
1187
1188 // Rewrite the instructions in the cloned blocks to refer to the instructions
1189 // in the cloned blocks. We have to do this as a second pass so that we have
1190 // everything available. Also, we have inserted new instructions which may
1191 // include assume intrinsics, so we update the assumption cache while
1192 // processing this.
1193 for (auto *ClonedBB : NewBlocks)
1194 for (Instruction &I : *ClonedBB) {
1195 RemapInstruction(&I, VMap,
1196 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1197 if (auto *II = dyn_cast<AssumeInst>(&I))
1198 AC.registerAssumption(II);
1199 }
1200
1201 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1202 // have spurious incoming values.
1203 for (auto *LoopBB : L.blocks())
1204 if (SkipBlock(LoopBB))
1205 for (auto *SuccBB : successors(LoopBB))
1206 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1207 for (PHINode &PN : ClonedSuccBB->phis())
1208 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1209
1210 // Remove the cloned parent as a predecessor of any successor we ended up
1211 // cloning other than the unswitched one.
1212 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1213 for (auto *SuccBB : successors(ParentBB)) {
1214 if (SuccBB == UnswitchedSuccBB)
1215 continue;
1216
1217 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1218 if (!ClonedSuccBB)
1219 continue;
1220
1221 ClonedSuccBB->removePredecessor(ClonedParentBB,
1222 /*KeepOneInputPHIs*/ true);
1223 }
1224
1225 // Replace the cloned branch with an unconditional branch to the cloned
1226 // unswitched successor.
1227 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1228 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1229 // Trivial Simplification. If Terminator is a conditional branch and
1230 // condition becomes dead - erase it.
1231 Value *ClonedConditionToErase = nullptr;
1232 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1233 ClonedConditionToErase = BI->getCondition();
1234 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1235 ClonedConditionToErase = SI->getCondition();
1236
1237 ClonedTerminator->eraseFromParent();
1238 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1239
1240 if (ClonedConditionToErase)
1241 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1242 MSSAU);
1243
1244 // If there are duplicate entries in the PHI nodes because of multiple edges
1245 // to the unswitched successor, we need to nuke all but one as we replaced it
1246 // with a direct branch.
1247 for (PHINode &PN : ClonedSuccBB->phis()) {
1248 bool Found = false;
1249 // Loop over the incoming operands backwards so we can easily delete as we
1250 // go without invalidating the index.
1251 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1252 if (PN.getIncomingBlock(i) != ClonedParentBB)
1253 continue;
1254 if (!Found) {
1255 Found = true;
1256 continue;
1257 }
1258 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1259 }
1260 }
1261
1262 // Record the domtree updates for the new blocks.
1263 SmallPtrSet<BasicBlock *, 4> SuccSet;
1264 for (auto *ClonedBB : NewBlocks) {
1265 for (auto *SuccBB : successors(ClonedBB))
1266 if (SuccSet.insert(SuccBB).second)
1267 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1268 SuccSet.clear();
1269 }
1270
1271 return ClonedPH;
1272}
1273
1274/// Recursively clone the specified loop and all of its children.
1275///
1276/// The target parent loop for the clone should be provided, or can be null if
1277/// the clone is a top-level loop. While cloning, all the blocks are mapped
1278/// with the provided value map. The entire original loop must be present in
1279/// the value map. The cloned loop is returned.
1280static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1281 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1282 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1283 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!")(static_cast <bool> (ClonedL.getBlocks().empty() &&
"Must start with an empty loop!") ? void (0) : __assert_fail
("ClonedL.getBlocks().empty() && \"Must start with an empty loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1283, __extension__
__PRETTY_FUNCTION__))
;
1284 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1285 for (auto *BB : OrigL.blocks()) {
1286 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1287 ClonedL.addBlockEntry(ClonedBB);
1288 if (LI.getLoopFor(BB) == &OrigL)
1289 LI.changeLoopFor(ClonedBB, &ClonedL);
1290 }
1291 };
1292
1293 // We specially handle the first loop because it may get cloned into
1294 // a different parent and because we most commonly are cloning leaf loops.
1295 Loop *ClonedRootL = LI.AllocateLoop();
1296 if (RootParentL)
1297 RootParentL->addChildLoop(ClonedRootL);
1298 else
1299 LI.addTopLevelLoop(ClonedRootL);
1300 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1301
1302 if (OrigRootL.isInnermost())
1303 return ClonedRootL;
1304
1305 // If we have a nest, we can quickly clone the entire loop nest using an
1306 // iterative approach because it is a tree. We keep the cloned parent in the
1307 // data structure to avoid repeatedly querying through a map to find it.
1308 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1309 // Build up the loops to clone in reverse order as we'll clone them from the
1310 // back.
1311 for (Loop *ChildL : llvm::reverse(OrigRootL))
1312 LoopsToClone.push_back({ClonedRootL, ChildL});
1313 do {
1314 Loop *ClonedParentL, *L;
1315 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1316 Loop *ClonedL = LI.AllocateLoop();
1317 ClonedParentL->addChildLoop(ClonedL);
1318 AddClonedBlocksToLoop(*L, *ClonedL);
1319 for (Loop *ChildL : llvm::reverse(*L))
1320 LoopsToClone.push_back({ClonedL, ChildL});
1321 } while (!LoopsToClone.empty());
1322
1323 return ClonedRootL;
1324}
1325
1326/// Build the cloned loops of an original loop from unswitching.
1327///
1328/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1329/// operation. We need to re-verify that there even is a loop (as the backedge
1330/// may not have been cloned), and even if there are remaining backedges the
1331/// backedge set may be different. However, we know that each child loop is
1332/// undisturbed, we only need to find where to place each child loop within
1333/// either any parent loop or within a cloned version of the original loop.
1334///
1335/// Because child loops may end up cloned outside of any cloned version of the
1336/// original loop, multiple cloned sibling loops may be created. All of them
1337/// are returned so that the newly introduced loop nest roots can be
1338/// identified.
1339static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1340 const ValueToValueMapTy &VMap, LoopInfo &LI,
1341 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1342 Loop *ClonedL = nullptr;
1343
1344 auto *OrigPH = OrigL.getLoopPreheader();
1345 auto *OrigHeader = OrigL.getHeader();
1346
1347 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1348 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1349
1350 // We need to know the loops of the cloned exit blocks to even compute the
1351 // accurate parent loop. If we only clone exits to some parent of the
1352 // original parent, we want to clone into that outer loop. We also keep track
1353 // of the loops that our cloned exit blocks participate in.
1354 Loop *ParentL = nullptr;
1355 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1356 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1357 ClonedExitsInLoops.reserve(ExitBlocks.size());
1358 for (auto *ExitBB : ExitBlocks)
1359 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1360 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1361 ExitLoopMap[ClonedExitBB] = ExitL;
1362 ClonedExitsInLoops.push_back(ClonedExitBB);
1363 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1364 ParentL = ExitL;
1365 }
1366 assert((!ParentL || ParentL == OrigL.getParentLoop() ||(static_cast <bool> ((!ParentL || ParentL == OrigL.getParentLoop
() || ParentL->contains(OrigL.getParentLoop())) &&
"The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? void (0) : __assert_fail ("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1369, __extension__
__PRETTY_FUNCTION__))
1367 ParentL->contains(OrigL.getParentLoop())) &&(static_cast <bool> ((!ParentL || ParentL == OrigL.getParentLoop
() || ParentL->contains(OrigL.getParentLoop())) &&
"The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? void (0) : __assert_fail ("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1369, __extension__
__PRETTY_FUNCTION__))
1368 "The computed parent loop should always contain (or be) the parent of "(static_cast <bool> ((!ParentL || ParentL == OrigL.getParentLoop
() || ParentL->contains(OrigL.getParentLoop())) &&
"The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? void (0) : __assert_fail ("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1369, __extension__
__PRETTY_FUNCTION__))
1369 "the original loop.")(static_cast <bool> ((!ParentL || ParentL == OrigL.getParentLoop
() || ParentL->contains(OrigL.getParentLoop())) &&
"The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? void (0) : __assert_fail ("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1369, __extension__
__PRETTY_FUNCTION__))
;
1370
1371 // We build the set of blocks dominated by the cloned header from the set of
1372 // cloned blocks out of the original loop. While not all of these will
1373 // necessarily be in the cloned loop, it is enough to establish that they
1374 // aren't in unreachable cycles, etc.
1375 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1376 for (auto *BB : OrigL.blocks())
1377 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1378 ClonedLoopBlocks.insert(ClonedBB);
1379
1380 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1381 // skipped cloning some region of this loop which can in turn skip some of
1382 // the backedges so we have to rebuild the blocks in the loop based on the
1383 // backedges that remain after cloning.
1384 SmallVector<BasicBlock *, 16> Worklist;
1385 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1386 for (auto *Pred : predecessors(ClonedHeader)) {
1387 // The only possible non-loop header predecessor is the preheader because
1388 // we know we cloned the loop in simplified form.
1389 if (Pred == ClonedPH)
1390 continue;
1391
1392 // Because the loop was in simplified form, the only non-loop predecessor
1393 // should be the preheader.
1394 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "(static_cast <bool> (ClonedLoopBlocks.count(Pred) &&
"Found a predecessor of the loop " "header other than the preheader "
"that is not part of the loop!") ? void (0) : __assert_fail (
"ClonedLoopBlocks.count(Pred) && \"Found a predecessor of the loop \" \"header other than the preheader \" \"that is not part of the loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1396, __extension__
__PRETTY_FUNCTION__))
1395 "header other than the preheader "(static_cast <bool> (ClonedLoopBlocks.count(Pred) &&
"Found a predecessor of the loop " "header other than the preheader "
"that is not part of the loop!") ? void (0) : __assert_fail (
"ClonedLoopBlocks.count(Pred) && \"Found a predecessor of the loop \" \"header other than the preheader \" \"that is not part of the loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1396, __extension__
__PRETTY_FUNCTION__))
1396 "that is not part of the loop!")(static_cast <bool> (ClonedLoopBlocks.count(Pred) &&
"Found a predecessor of the loop " "header other than the preheader "
"that is not part of the loop!") ? void (0) : __assert_fail (
"ClonedLoopBlocks.count(Pred) && \"Found a predecessor of the loop \" \"header other than the preheader \" \"that is not part of the loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1396, __extension__
__PRETTY_FUNCTION__))
;
1397
1398 // Insert this block into the loop set and on the first visit (and if it
1399 // isn't the header we're currently walking) put it into the worklist to
1400 // recurse through.
1401 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1402 Worklist.push_back(Pred);
1403 }
1404
1405 // If we had any backedges then there *is* a cloned loop. Put the header into
1406 // the loop set and then walk the worklist backwards to find all the blocks
1407 // that remain within the loop after cloning.
1408 if (!BlocksInClonedLoop.empty()) {
1409 BlocksInClonedLoop.insert(ClonedHeader);
1410
1411 while (!Worklist.empty()) {
1412 BasicBlock *BB = Worklist.pop_back_val();
1413 assert(BlocksInClonedLoop.count(BB) &&(static_cast <bool> (BlocksInClonedLoop.count(BB) &&
"Didn't put block into the loop set!") ? void (0) : __assert_fail
("BlocksInClonedLoop.count(BB) && \"Didn't put block into the loop set!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1414, __extension__
__PRETTY_FUNCTION__))
1414 "Didn't put block into the loop set!")(static_cast <bool> (BlocksInClonedLoop.count(BB) &&
"Didn't put block into the loop set!") ? void (0) : __assert_fail
("BlocksInClonedLoop.count(BB) && \"Didn't put block into the loop set!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1414, __extension__
__PRETTY_FUNCTION__))
;
1415
1416 // Insert any predecessors that are in the possible set into the cloned
1417 // set, and if the insert is successful, add them to the worklist. Note
1418 // that we filter on the blocks that are definitely reachable via the
1419 // backedge to the loop header so we may prune out dead code within the
1420 // cloned loop.
1421 for (auto *Pred : predecessors(BB))
1422 if (ClonedLoopBlocks.count(Pred) &&
1423 BlocksInClonedLoop.insert(Pred).second)
1424 Worklist.push_back(Pred);
1425 }
1426
1427 ClonedL = LI.AllocateLoop();
1428 if (ParentL) {
1429 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1430 ParentL->addChildLoop(ClonedL);
1431 } else {
1432 LI.addTopLevelLoop(ClonedL);
1433 }
1434 NonChildClonedLoops.push_back(ClonedL);
1435
1436 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1437 // We don't want to just add the cloned loop blocks based on how we
1438 // discovered them. The original order of blocks was carefully built in
1439 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1440 // that logic, we just re-walk the original blocks (and those of the child
1441 // loops) and filter them as we add them into the cloned loop.
1442 for (auto *BB : OrigL.blocks()) {
1443 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1444 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1445 continue;
1446
1447 // Directly add the blocks that are only in this loop.
1448 if (LI.getLoopFor(BB) == &OrigL) {
1449 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1450 continue;
1451 }
1452
1453 // We want to manually add it to this loop and parents.
1454 // Registering it with LoopInfo will happen when we clone the top
1455 // loop for this block.
1456 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1457 PL->addBlockEntry(ClonedBB);
1458 }
1459
1460 // Now add each child loop whose header remains within the cloned loop. All
1461 // of the blocks within the loop must satisfy the same constraints as the
1462 // header so once we pass the header checks we can just clone the entire
1463 // child loop nest.
1464 for (Loop *ChildL : OrigL) {
1465 auto *ClonedChildHeader =
1466 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1467 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1468 continue;
1469
1470#ifndef NDEBUG
1471 // We should never have a cloned child loop header but fail to have
1472 // all of the blocks for that child loop.
1473 for (auto *ChildLoopBB : ChildL->blocks())
1474 assert(BlocksInClonedLoop.count((static_cast <bool> (BlocksInClonedLoop.count( cast<
BasicBlock>(VMap.lookup(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? void (0) : __assert_fail
("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1477, __extension__
__PRETTY_FUNCTION__))
1475 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&(static_cast <bool> (BlocksInClonedLoop.count( cast<
BasicBlock>(VMap.lookup(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? void (0) : __assert_fail
("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1477, __extension__
__PRETTY_FUNCTION__))
1476 "Child cloned loop has a header within the cloned outer "(static_cast <bool> (BlocksInClonedLoop.count( cast<
BasicBlock>(VMap.lookup(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? void (0) : __assert_fail
("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1477, __extension__
__PRETTY_FUNCTION__))
1477 "loop but not all of its blocks!")(static_cast <bool> (BlocksInClonedLoop.count( cast<
BasicBlock>(VMap.lookup(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? void (0) : __assert_fail
("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1477, __extension__
__PRETTY_FUNCTION__))
;
1478#endif
1479
1480 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1481 }
1482 }
1483
1484 // Now that we've handled all the components of the original loop that were
1485 // cloned into a new loop, we still need to handle anything from the original
1486 // loop that wasn't in a cloned loop.
1487
1488 // Figure out what blocks are left to place within any loop nest containing
1489 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1490 // them.
1491 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1492 if (BlocksInClonedLoop.empty())
1493 UnloopedBlockSet.insert(ClonedPH);
1494 for (auto *ClonedBB : ClonedLoopBlocks)
1495 if (!BlocksInClonedLoop.count(ClonedBB))
1496 UnloopedBlockSet.insert(ClonedBB);
1497
1498 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1499 // backwards across these to process them inside out. The order shouldn't
1500 // matter as we're just trying to build up the map from inside-out; we use
1501 // the map in a more stably ordered way below.
1502 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1503 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1504 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1505 ExitLoopMap.lookup(RHS)->getLoopDepth();
1506 });
1507
1508 // Populate the existing ExitLoopMap with everything reachable from each
1509 // exit, starting from the inner most exit.
1510 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1511 assert(Worklist.empty() && "Didn't clear worklist!")(static_cast <bool> (Worklist.empty() && "Didn't clear worklist!"
) ? void (0) : __assert_fail ("Worklist.empty() && \"Didn't clear worklist!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1511, __extension__
__PRETTY_FUNCTION__))
;
1512
1513 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1514 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1515
1516 // Walk the CFG back until we hit the cloned PH adding everything reachable
1517 // and in the unlooped set to this exit block's loop.
1518 Worklist.push_back(ExitBB);
1519 do {
1520 BasicBlock *BB = Worklist.pop_back_val();
1521 // We can stop recursing at the cloned preheader (if we get there).
1522 if (BB == ClonedPH)
1523 continue;
1524
1525 for (BasicBlock *PredBB : predecessors(BB)) {
1526 // If this pred has already been moved to our set or is part of some
1527 // (inner) loop, no update needed.
1528 if (!UnloopedBlockSet.erase(PredBB)) {
1529 assert((static_cast <bool> ((BlocksInClonedLoop.count(PredBB) ||
ExitLoopMap.count(PredBB)) && "Predecessor not mapped to a loop!"
) ? void (0) : __assert_fail ("(BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && \"Predecessor not mapped to a loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1531, __extension__
__PRETTY_FUNCTION__))
1530 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&(static_cast <bool> ((BlocksInClonedLoop.count(PredBB) ||
ExitLoopMap.count(PredBB)) && "Predecessor not mapped to a loop!"
) ? void (0) : __assert_fail ("(BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && \"Predecessor not mapped to a loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1531, __extension__
__PRETTY_FUNCTION__))
1531 "Predecessor not mapped to a loop!")(static_cast <bool> ((BlocksInClonedLoop.count(PredBB) ||
ExitLoopMap.count(PredBB)) && "Predecessor not mapped to a loop!"
) ? void (0) : __assert_fail ("(BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && \"Predecessor not mapped to a loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1531, __extension__
__PRETTY_FUNCTION__))
;
1532 continue;
1533 }
1534
1535 // We just insert into the loop set here. We'll add these blocks to the
1536 // exit loop after we build up the set in an order that doesn't rely on
1537 // predecessor order (which in turn relies on use list order).
1538 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1539 (void)Inserted;
1540 assert(Inserted && "Should only visit an unlooped block once!")(static_cast <bool> (Inserted && "Should only visit an unlooped block once!"
) ? void (0) : __assert_fail ("Inserted && \"Should only visit an unlooped block once!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1540, __extension__
__PRETTY_FUNCTION__))
;
1541
1542 // And recurse through to its predecessors.
1543 Worklist.push_back(PredBB);
1544 }
1545 } while (!Worklist.empty());
1546 }
1547
1548 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1549 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1550 // in their original order adding them to the correct loop.
1551
1552 // We need a stable insertion order. We use the order of the original loop
1553 // order and map into the correct parent loop.
1554 for (auto *BB : llvm::concat<BasicBlock *const>(
1555 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1556 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1557 OuterL->addBasicBlockToLoop(BB, LI);
1558
1559#ifndef NDEBUG
1560 for (auto &BBAndL : ExitLoopMap) {
1561 auto *BB = BBAndL.first;
1562 auto *OuterL = BBAndL.second;
1563 assert(LI.getLoopFor(BB) == OuterL &&(static_cast <bool> (LI.getLoopFor(BB) == OuterL &&
"Failed to put all blocks into outer loops!") ? void (0) : __assert_fail
("LI.getLoopFor(BB) == OuterL && \"Failed to put all blocks into outer loops!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1564, __extension__
__PRETTY_FUNCTION__))
1564 "Failed to put all blocks into outer loops!")(static_cast <bool> (LI.getLoopFor(BB) == OuterL &&
"Failed to put all blocks into outer loops!") ? void (0) : __assert_fail
("LI.getLoopFor(BB) == OuterL && \"Failed to put all blocks into outer loops!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1564, __extension__
__PRETTY_FUNCTION__))
;
1565 }
1566#endif
1567
1568 // Now that all the blocks are placed into the correct containing loop in the
1569 // absence of child loops, find all the potentially cloned child loops and
1570 // clone them into whatever outer loop we placed their header into.
1571 for (Loop *ChildL : OrigL) {
1572 auto *ClonedChildHeader =
1573 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1574 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1575 continue;
1576
1577#ifndef NDEBUG
1578 for (auto *ChildLoopBB : ChildL->blocks())
1579 assert(VMap.count(ChildLoopBB) &&(static_cast <bool> (VMap.count(ChildLoopBB) &&
"Cloned a child loop header but not all of that loops blocks!"
) ? void (0) : __assert_fail ("VMap.count(ChildLoopBB) && \"Cloned a child loop header but not all of that loops blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1580, __extension__
__PRETTY_FUNCTION__))
1580 "Cloned a child loop header but not all of that loops blocks!")(static_cast <bool> (VMap.count(ChildLoopBB) &&
"Cloned a child loop header but not all of that loops blocks!"
) ? void (0) : __assert_fail ("VMap.count(ChildLoopBB) && \"Cloned a child loop header but not all of that loops blocks!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1580, __extension__
__PRETTY_FUNCTION__))
;
1581#endif
1582
1583 NonChildClonedLoops.push_back(cloneLoopNest(
1584 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1585 }
1586}
1587
1588static void
1589deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1590 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1591 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1592 // Find all the dead clones, and remove them from their successors.
1593 SmallVector<BasicBlock *, 16> DeadBlocks;
1594 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1595 for (const auto &VMap : VMaps)
1596 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1597 if (!DT.isReachableFromEntry(ClonedBB)) {
1598 for (BasicBlock *SuccBB : successors(ClonedBB))
1599 SuccBB->removePredecessor(ClonedBB);
1600 DeadBlocks.push_back(ClonedBB);
1601 }
1602
1603 // Remove all MemorySSA in the dead blocks
1604 if (MSSAU) {
1605 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1606 DeadBlocks.end());
1607 MSSAU->removeBlocks(DeadBlockSet);
1608 }
1609
1610 // Drop any remaining references to break cycles.
1611 for (BasicBlock *BB : DeadBlocks)
1612 BB->dropAllReferences();
1613 // Erase them from the IR.
1614 for (BasicBlock *BB : DeadBlocks)
1615 BB->eraseFromParent();
1616}
1617
1618static void
1619deleteDeadBlocksFromLoop(Loop &L,
1620 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1621 DominatorTree &DT, LoopInfo &LI,
1622 MemorySSAUpdater *MSSAU,
1623 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1624 // Find all the dead blocks tied to this loop, and remove them from their
1625 // successors.
1626 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1627
1628 // Start with loop/exit blocks and get a transitive closure of reachable dead
1629 // blocks.
1630 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1631 ExitBlocks.end());
1632 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1633 while (!DeathCandidates.empty()) {
1634 auto *BB = DeathCandidates.pop_back_val();
1635 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1636 for (BasicBlock *SuccBB : successors(BB)) {
1637 SuccBB->removePredecessor(BB);
1638 DeathCandidates.push_back(SuccBB);
1639 }
1640 DeadBlockSet.insert(BB);
1641 }
1642 }
1643
1644 // Remove all MemorySSA in the dead blocks
1645 if (MSSAU)
1646 MSSAU->removeBlocks(DeadBlockSet);
1647
1648 // Filter out the dead blocks from the exit blocks list so that it can be
1649 // used in the caller.
1650 llvm::erase_if(ExitBlocks,
1651 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1652
1653 // Walk from this loop up through its parents removing all of the dead blocks.
1654 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1655 for (auto *BB : DeadBlockSet)
1656 ParentL->getBlocksSet().erase(BB);
1657 llvm::erase_if(ParentL->getBlocksVector(),
1658 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1659 }
1660
1661 // Now delete the dead child loops. This raw delete will clear them
1662 // recursively.
1663 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1664 if (!DeadBlockSet.count(ChildL->getHeader()))
1665 return false;
1666
1667 assert(llvm::all_of(ChildL->blocks(),(static_cast <bool> (llvm::all_of(ChildL->blocks(), [
&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB
); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? void (0) : __assert_fail ("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1672, __extension__
__PRETTY_FUNCTION__))
1668 [&](BasicBlock *ChildBB) {(static_cast <bool> (llvm::all_of(ChildL->blocks(), [
&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB
); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? void (0) : __assert_fail ("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1672, __extension__
__PRETTY_FUNCTION__))
1669 return DeadBlockSet.count(ChildBB);(static_cast <bool> (llvm::all_of(ChildL->blocks(), [
&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB
); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? void (0) : __assert_fail ("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1672, __extension__
__PRETTY_FUNCTION__))
1670 }) &&(static_cast <bool> (llvm::all_of(ChildL->blocks(), [
&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB
); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? void (0) : __assert_fail ("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1672, __extension__
__PRETTY_FUNCTION__))
1671 "If the child loop header is dead all blocks in the child loop must "(static_cast <bool> (llvm::all_of(ChildL->blocks(), [
&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB
); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? void (0) : __assert_fail ("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1672, __extension__
__PRETTY_FUNCTION__))
1672 "be dead as well!")(static_cast <bool> (llvm::all_of(ChildL->blocks(), [
&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB
); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? void (0) : __assert_fail ("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1672, __extension__
__PRETTY_FUNCTION__))
;
1673 DestroyLoopCB(*ChildL, ChildL->getName());
1674 LI.destroy(ChildL);
1675 return true;
1676 });
1677
1678 // Remove the loop mappings for the dead blocks and drop all the references
1679 // from these blocks to others to handle cyclic references as we start
1680 // deleting the blocks themselves.
1681 for (auto *BB : DeadBlockSet) {
1682 // Check that the dominator tree has already been updated.
1683 assert(!DT.getNode(BB) && "Should already have cleared domtree!")(static_cast <bool> (!DT.getNode(BB) && "Should already have cleared domtree!"
) ? void (0) : __assert_fail ("!DT.getNode(BB) && \"Should already have cleared domtree!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1683, __extension__
__PRETTY_FUNCTION__))
;
1684 LI.changeLoopFor(BB, nullptr);
1685 // Drop all uses of the instructions to make sure we won't have dangling
1686 // uses in other blocks.
1687 for (auto &I : *BB)
1688 if (!I.use_empty())
1689 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1690 BB->dropAllReferences();
1691 }
1692
1693 // Actually delete the blocks now that they've been fully unhooked from the
1694 // IR.
1695 for (auto *BB : DeadBlockSet)
1696 BB->eraseFromParent();
1697}
1698
1699/// Recompute the set of blocks in a loop after unswitching.
1700///
1701/// This walks from the original headers predecessors to rebuild the loop. We
1702/// take advantage of the fact that new blocks can't have been added, and so we
1703/// filter by the original loop's blocks. This also handles potentially
1704/// unreachable code that we don't want to explore but might be found examining
1705/// the predecessors of the header.
1706///
1707/// If the original loop is no longer a loop, this will return an empty set. If
1708/// it remains a loop, all the blocks within it will be added to the set
1709/// (including those blocks in inner loops).
1710static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1711 LoopInfo &LI) {
1712 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1713
1714 auto *PH = L.getLoopPreheader();
1715 auto *Header = L.getHeader();
1716
1717 // A worklist to use while walking backwards from the header.
1718 SmallVector<BasicBlock *, 16> Worklist;
1719
1720 // First walk the predecessors of the header to find the backedges. This will
1721 // form the basis of our walk.
1722 for (auto *Pred : predecessors(Header)) {
1723 // Skip the preheader.
1724 if (Pred == PH)
1725 continue;
1726
1727 // Because the loop was in simplified form, the only non-loop predecessor
1728 // is the preheader.
1729 assert(L.contains(Pred) && "Found a predecessor of the loop header other "(static_cast <bool> (L.contains(Pred) && "Found a predecessor of the loop header other "
"than the preheader that is not part of the " "loop!") ? void
(0) : __assert_fail ("L.contains(Pred) && \"Found a predecessor of the loop header other \" \"than the preheader that is not part of the \" \"loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1731, __extension__
__PRETTY_FUNCTION__))
1730 "than the preheader that is not part of the "(static_cast <bool> (L.contains(Pred) && "Found a predecessor of the loop header other "
"than the preheader that is not part of the " "loop!") ? void
(0) : __assert_fail ("L.contains(Pred) && \"Found a predecessor of the loop header other \" \"than the preheader that is not part of the \" \"loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1731, __extension__
__PRETTY_FUNCTION__))
1731 "loop!")(static_cast <bool> (L.contains(Pred) && "Found a predecessor of the loop header other "
"than the preheader that is not part of the " "loop!") ? void
(0) : __assert_fail ("L.contains(Pred) && \"Found a predecessor of the loop header other \" \"than the preheader that is not part of the \" \"loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1731, __extension__
__PRETTY_FUNCTION__))
;
1732
1733 // Insert this block into the loop set and on the first visit and, if it
1734 // isn't the header we're currently walking, put it into the worklist to
1735 // recurse through.
1736 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1737 Worklist.push_back(Pred);
1738 }
1739
1740 // If no backedges were found, we're done.
1741 if (LoopBlockSet.empty())
1742 return LoopBlockSet;
1743
1744 // We found backedges, recurse through them to identify the loop blocks.
1745 while (!Worklist.empty()) {
1746 BasicBlock *BB = Worklist.pop_back_val();
1747 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!")(static_cast <bool> (LoopBlockSet.count(BB) && "Didn't put block into the loop set!"
) ? void (0) : __assert_fail ("LoopBlockSet.count(BB) && \"Didn't put block into the loop set!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1747, __extension__
__PRETTY_FUNCTION__))
;
1748
1749 // No need to walk past the header.
1750 if (BB == Header)
1751 continue;
1752
1753 // Because we know the inner loop structure remains valid we can use the
1754 // loop structure to jump immediately across the entire nested loop.
1755 // Further, because it is in loop simplified form, we can directly jump
1756 // to its preheader afterward.
1757 if (Loop *InnerL = LI.getLoopFor(BB))
1758 if (InnerL != &L) {
1759 assert(L.contains(InnerL) &&(static_cast <bool> (L.contains(InnerL) && "Should not reach a loop *outside* this loop!"
) ? void (0) : __assert_fail ("L.contains(InnerL) && \"Should not reach a loop *outside* this loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1760, __extension__
__PRETTY_FUNCTION__))
1760 "Should not reach a loop *outside* this loop!")(static_cast <bool> (L.contains(InnerL) && "Should not reach a loop *outside* this loop!"
) ? void (0) : __assert_fail ("L.contains(InnerL) && \"Should not reach a loop *outside* this loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1760, __extension__
__PRETTY_FUNCTION__))
;
1761 // The preheader is the only possible predecessor of the loop so
1762 // insert it into the set and check whether it was already handled.
1763 auto *InnerPH = InnerL->getLoopPreheader();
1764 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "(static_cast <bool> (L.contains(InnerPH) && "Cannot contain an inner loop block "
"but not contain the inner loop " "preheader!") ? void (0) :
__assert_fail ("L.contains(InnerPH) && \"Cannot contain an inner loop block \" \"but not contain the inner loop \" \"preheader!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1766, __extension__
__PRETTY_FUNCTION__))
1765 "but not contain the inner loop "(static_cast <bool> (L.contains(InnerPH) && "Cannot contain an inner loop block "
"but not contain the inner loop " "preheader!") ? void (0) :
__assert_fail ("L.contains(InnerPH) && \"Cannot contain an inner loop block \" \"but not contain the inner loop \" \"preheader!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1766, __extension__
__PRETTY_FUNCTION__))
1766 "preheader!")(static_cast <bool> (L.contains(InnerPH) && "Cannot contain an inner loop block "
"but not contain the inner loop " "preheader!") ? void (0) :
__assert_fail ("L.contains(InnerPH) && \"Cannot contain an inner loop block \" \"but not contain the inner loop \" \"preheader!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1766, __extension__
__PRETTY_FUNCTION__))
;
1767 if (!LoopBlockSet.insert(InnerPH).second)
1768 // The only way to reach the preheader is through the loop body
1769 // itself so if it has been visited the loop is already handled.
1770 continue;
1771
1772 // Insert all of the blocks (other than those already present) into
1773 // the loop set. We expect at least the block that led us to find the
1774 // inner loop to be in the block set, but we may also have other loop
1775 // blocks if they were already enqueued as predecessors of some other
1776 // outer loop block.
1777 for (auto *InnerBB : InnerL->blocks()) {
1778 if (InnerBB == BB) {
1779 assert(LoopBlockSet.count(InnerBB) &&(static_cast <bool> (LoopBlockSet.count(InnerBB) &&
"Block should already be in the set!") ? void (0) : __assert_fail
("LoopBlockSet.count(InnerBB) && \"Block should already be in the set!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1780, __extension__
__PRETTY_FUNCTION__))
1780 "Block should already be in the set!")(static_cast <bool> (LoopBlockSet.count(InnerBB) &&
"Block should already be in the set!") ? void (0) : __assert_fail
("LoopBlockSet.count(InnerBB) && \"Block should already be in the set!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1780, __extension__
__PRETTY_FUNCTION__))
;
1781 continue;
1782 }
1783
1784 LoopBlockSet.insert(InnerBB);
1785 }
1786
1787 // Add the preheader to the worklist so we will continue past the
1788 // loop body.
1789 Worklist.push_back(InnerPH);
1790 continue;
1791 }
1792
1793 // Insert any predecessors that were in the original loop into the new
1794 // set, and if the insert is successful, add them to the worklist.
1795 for (auto *Pred : predecessors(BB))
1796 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1797 Worklist.push_back(Pred);
1798 }
1799
1800 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!")(static_cast <bool> (LoopBlockSet.count(Header) &&
"Cannot fail to add the header!") ? void (0) : __assert_fail
("LoopBlockSet.count(Header) && \"Cannot fail to add the header!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1800, __extension__
__PRETTY_FUNCTION__))
;
1801
1802 // We've found all the blocks participating in the loop, return our completed
1803 // set.
1804 return LoopBlockSet;
1805}
1806
1807/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1808///
1809/// The removal may have removed some child loops entirely but cannot have
1810/// disturbed any remaining child loops. However, they may need to be hoisted
1811/// to the parent loop (or to be top-level loops). The original loop may be
1812/// completely removed.
1813///
1814/// The sibling loops resulting from this update are returned. If the original
1815/// loop remains a valid loop, it will be the first entry in this list with all
1816/// of the newly sibling loops following it.
1817///
1818/// Returns true if the loop remains a loop after unswitching, and false if it
1819/// is no longer a loop after unswitching (and should not continue to be
1820/// referenced).
1821static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1822 LoopInfo &LI,
1823 SmallVectorImpl<Loop *> &HoistedLoops) {
1824 auto *PH = L.getLoopPreheader();
1825
1826 // Compute the actual parent loop from the exit blocks. Because we may have
1827 // pruned some exits the loop may be different from the original parent.
1828 Loop *ParentL = nullptr;
1829 SmallVector<Loop *, 4> ExitLoops;
1830 SmallVector<BasicBlock *, 4> ExitsInLoops;
1831 ExitsInLoops.reserve(ExitBlocks.size());
1832 for (auto *ExitBB : ExitBlocks)
1833 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1834 ExitLoops.push_back(ExitL);
1835 ExitsInLoops.push_back(ExitBB);
1836 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1837 ParentL = ExitL;
1838 }
1839
1840 // Recompute the blocks participating in this loop. This may be empty if it
1841 // is no longer a loop.
1842 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1843
1844 // If we still have a loop, we need to re-set the loop's parent as the exit
1845 // block set changing may have moved it within the loop nest. Note that this
1846 // can only happen when this loop has a parent as it can only hoist the loop
1847 // *up* the nest.
1848 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1849 // Remove this loop's (original) blocks from all of the intervening loops.
1850 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1851 IL = IL->getParentLoop()) {
1852 IL->getBlocksSet().erase(PH);
1853 for (auto *BB : L.blocks())
1854 IL->getBlocksSet().erase(BB);
1855 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1856 return BB == PH || L.contains(BB);
1857 });
1858 }
1859
1860 LI.changeLoopFor(PH, ParentL);
1861 L.getParentLoop()->removeChildLoop(&L);
1862 if (ParentL)
1863 ParentL->addChildLoop(&L);
1864 else
1865 LI.addTopLevelLoop(&L);
1866 }
1867
1868 // Now we update all the blocks which are no longer within the loop.
1869 auto &Blocks = L.getBlocksVector();
1870 auto BlocksSplitI =
1871 LoopBlockSet.empty()
1872 ? Blocks.begin()
1873 : std::stable_partition(
1874 Blocks.begin(), Blocks.end(),
1875 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1876
1877 // Before we erase the list of unlooped blocks, build a set of them.
1878 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1879 if (LoopBlockSet.empty())
1880 UnloopedBlocks.insert(PH);
1881
1882 // Now erase these blocks from the loop.
1883 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1884 L.getBlocksSet().erase(BB);
1885 Blocks.erase(BlocksSplitI, Blocks.end());
1886
1887 // Sort the exits in ascending loop depth, we'll work backwards across these
1888 // to process them inside out.
1889 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1890 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1891 });
1892
1893 // We'll build up a set for each exit loop.
1894 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1895 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1896
1897 auto RemoveUnloopedBlocksFromLoop =
1898 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1899 for (auto *BB : UnloopedBlocks)
1900 L.getBlocksSet().erase(BB);
1901 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1902 return UnloopedBlocks.count(BB);
1903 });
1904 };
1905
1906 SmallVector<BasicBlock *, 16> Worklist;
1907 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1908 assert(Worklist.empty() && "Didn't clear worklist!")(static_cast <bool> (Worklist.empty() && "Didn't clear worklist!"
) ? void (0) : __assert_fail ("Worklist.empty() && \"Didn't clear worklist!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1908, __extension__
__PRETTY_FUNCTION__))
;
1909 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!")(static_cast <bool> (NewExitLoopBlocks.empty() &&
"Didn't clear loop set!") ? void (0) : __assert_fail ("NewExitLoopBlocks.empty() && \"Didn't clear loop set!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1909, __extension__
__PRETTY_FUNCTION__))
;
1910
1911 // Grab the next exit block, in decreasing loop depth order.
1912 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1913 Loop &ExitL = *LI.getLoopFor(ExitBB);
1914 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!")(static_cast <bool> (ExitL.contains(&L) && "Exit loop must contain the inner loop!"
) ? void (0) : __assert_fail ("ExitL.contains(&L) && \"Exit loop must contain the inner loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1914, __extension__
__PRETTY_FUNCTION__))
;
1915
1916 // Erase all of the unlooped blocks from the loops between the previous
1917 // exit loop and this exit loop. This works because the ExitInLoops list is
1918 // sorted in increasing order of loop depth and thus we visit loops in
1919 // decreasing order of loop depth.
1920 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1921 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1922
1923 // Walk the CFG back until we hit the cloned PH adding everything reachable
1924 // and in the unlooped set to this exit block's loop.
1925 Worklist.push_back(ExitBB);
1926 do {
1927 BasicBlock *BB = Worklist.pop_back_val();
1928 // We can stop recursing at the cloned preheader (if we get there).
1929 if (BB == PH)
1930 continue;
1931
1932 for (BasicBlock *PredBB : predecessors(BB)) {
1933 // If this pred has already been moved to our set or is part of some
1934 // (inner) loop, no update needed.
1935 if (!UnloopedBlocks.erase(PredBB)) {
1936 assert((NewExitLoopBlocks.count(PredBB) ||(static_cast <bool> ((NewExitLoopBlocks.count(PredBB) ||
ExitL.contains(LI.getLoopFor(PredBB))) && "Predecessor not in a nested loop (or already visited)!"
) ? void (0) : __assert_fail ("(NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor(PredBB))) && \"Predecessor not in a nested loop (or already visited)!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1938, __extension__
__PRETTY_FUNCTION__))
1937 ExitL.contains(LI.getLoopFor(PredBB))) &&(static_cast <bool> ((NewExitLoopBlocks.count(PredBB) ||
ExitL.contains(LI.getLoopFor(PredBB))) && "Predecessor not in a nested loop (or already visited)!"
) ? void (0) : __assert_fail ("(NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor(PredBB))) && \"Predecessor not in a nested loop (or already visited)!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1938, __extension__
__PRETTY_FUNCTION__))
1938 "Predecessor not in a nested loop (or already visited)!")(static_cast <bool> ((NewExitLoopBlocks.count(PredBB) ||
ExitL.contains(LI.getLoopFor(PredBB))) && "Predecessor not in a nested loop (or already visited)!"
) ? void (0) : __assert_fail ("(NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor(PredBB))) && \"Predecessor not in a nested loop (or already visited)!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1938, __extension__
__PRETTY_FUNCTION__))
;
1939 continue;
1940 }
1941
1942 // We just insert into the loop set here. We'll add these blocks to the
1943 // exit loop after we build up the set in a deterministic order rather
1944 // than the predecessor-influenced visit order.
1945 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1946 (void)Inserted;
1947 assert(Inserted && "Should only visit an unlooped block once!")(static_cast <bool> (Inserted && "Should only visit an unlooped block once!"
) ? void (0) : __assert_fail ("Inserted && \"Should only visit an unlooped block once!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 1947, __extension__
__PRETTY_FUNCTION__))
;
1948
1949 // And recurse through to its predecessors.
1950 Worklist.push_back(PredBB);
1951 }
1952 } while (!Worklist.empty());
1953
1954 // If blocks in this exit loop were directly part of the original loop (as
1955 // opposed to a child loop) update the map to point to this exit loop. This
1956 // just updates a map and so the fact that the order is unstable is fine.
1957 for (auto *BB : NewExitLoopBlocks)
1958 if (Loop *BBL = LI.getLoopFor(BB))
1959 if (BBL == &L || !L.contains(BBL))
1960 LI.changeLoopFor(BB, &ExitL);
1961
1962 // We will remove the remaining unlooped blocks from this loop in the next
1963 // iteration or below.
1964 NewExitLoopBlocks.clear();
1965 }
1966
1967 // Any remaining unlooped blocks are no longer part of any loop unless they
1968 // are part of some child loop.
1969 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1970 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1971 for (auto *BB : UnloopedBlocks)
1972 if (Loop *BBL = LI.getLoopFor(BB))
1973 if (BBL == &L || !L.contains(BBL))
1974 LI.changeLoopFor(BB, nullptr);
1975
1976 // Sink all the child loops whose headers are no longer in the loop set to
1977 // the parent (or to be top level loops). We reach into the loop and directly
1978 // update its subloop vector to make this batch update efficient.
1979 auto &SubLoops = L.getSubLoopsVector();
1980 auto SubLoopsSplitI =
1981 LoopBlockSet.empty()
1982 ? SubLoops.begin()
1983 : std::stable_partition(
1984 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1985 return LoopBlockSet.count(SubL->getHeader());
1986 });
1987 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1988 HoistedLoops.push_back(HoistedL);
1989 HoistedL->setParentLoop(nullptr);
1990
1991 // To compute the new parent of this hoisted loop we look at where we
1992 // placed the preheader above. We can't lookup the header itself because we
1993 // retained the mapping from the header to the hoisted loop. But the
1994 // preheader and header should have the exact same new parent computed
1995 // based on the set of exit blocks from the original loop as the preheader
1996 // is a predecessor of the header and so reached in the reverse walk. And
1997 // because the loops were all in simplified form the preheader of the
1998 // hoisted loop can't be part of some *other* loop.
1999 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2000 NewParentL->addChildLoop(HoistedL);
2001 else
2002 LI.addTopLevelLoop(HoistedL);
2003 }
2004 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2005
2006 // Actually delete the loop if nothing remained within it.
2007 if (Blocks.empty()) {
2008 assert(SubLoops.empty() &&(static_cast <bool> (SubLoops.empty() && "Failed to remove all subloops from the original loop!"
) ? void (0) : __assert_fail ("SubLoops.empty() && \"Failed to remove all subloops from the original loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2009, __extension__
__PRETTY_FUNCTION__))
2009 "Failed to remove all subloops from the original loop!")(static_cast <bool> (SubLoops.empty() && "Failed to remove all subloops from the original loop!"
) ? void (0) : __assert_fail ("SubLoops.empty() && \"Failed to remove all subloops from the original loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2009, __extension__
__PRETTY_FUNCTION__))
;
2010 if (Loop *ParentL = L.getParentLoop())
2011 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2012 else
2013 LI.removeLoop(llvm::find(LI, &L));
2014 // markLoopAsDeleted for L should be triggered by the caller (it is typically
2015 // done by using the UnswitchCB callback).
2016 LI.destroy(&L);
2017 return false;
2018 }
2019
2020 return true;
2021}
2022
2023/// Helper to visit a dominator subtree, invoking a callable on each node.
2024///
2025/// Returning false at any point will stop walking past that node of the tree.
2026template <typename CallableT>
2027void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2028 SmallVector<DomTreeNode *, 4> DomWorklist;
2029 DomWorklist.push_back(DT[BB]);
2030#ifndef NDEBUG
2031 SmallPtrSet<DomTreeNode *, 4> Visited;
2032 Visited.insert(DT[BB]);
2033#endif
2034 do {
2035 DomTreeNode *N = DomWorklist.pop_back_val();
2036
2037 // Visit this node.
2038 if (!Callable(N->getBlock()))
2039 continue;
2040
2041 // Accumulate the child nodes.
2042 for (DomTreeNode *ChildN : *N) {
2043 assert(Visited.insert(ChildN).second &&(static_cast <bool> (Visited.insert(ChildN).second &&
"Cannot visit a node twice when walking a tree!") ? void (0)
: __assert_fail ("Visited.insert(ChildN).second && \"Cannot visit a node twice when walking a tree!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2044, __extension__
__PRETTY_FUNCTION__))
2044 "Cannot visit a node twice when walking a tree!")(static_cast <bool> (Visited.insert(ChildN).second &&
"Cannot visit a node twice when walking a tree!") ? void (0)
: __assert_fail ("Visited.insert(ChildN).second && \"Cannot visit a node twice when walking a tree!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2044, __extension__
__PRETTY_FUNCTION__))
;
2045 DomWorklist.push_back(ChildN);
2046 }
2047 } while (!DomWorklist.empty());
2048}
2049
2050static void unswitchNontrivialInvariants(
2051 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2052 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2053 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2054 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2055 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2056 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2057 auto *ParentBB = TI.getParent();
2058 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2059 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2060
2061 // We can only unswitch switches, conditional branches with an invariant
2062 // condition, or combining invariant conditions with an instruction or
2063 // partially invariant instructions.
2064 assert((SI || (BI && BI->isConditional())) &&(static_cast <bool> ((SI || (BI && BI->isConditional
())) && "Can only unswitch switches and conditional branch!"
) ? void (0) : __assert_fail ("(SI || (BI && BI->isConditional())) && \"Can only unswitch switches and conditional branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2065, __extension__
__PRETTY_FUNCTION__))
2065 "Can only unswitch switches and conditional branch!")(static_cast <bool> ((SI || (BI && BI->isConditional
())) && "Can only unswitch switches and conditional branch!"
) ? void (0) : __assert_fail ("(SI || (BI && BI->isConditional())) && \"Can only unswitch switches and conditional branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2065, __extension__
__PRETTY_FUNCTION__))
;
2066 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2067 bool FullUnswitch =
2068 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2069 !PartiallyInvariant);
2070 if (FullUnswitch)
2071 assert(Invariants.size() == 1 &&(static_cast <bool> (Invariants.size() == 1 && "Cannot have other invariants with full unswitching!"
) ? void (0) : __assert_fail ("Invariants.size() == 1 && \"Cannot have other invariants with full unswitching!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2072, __extension__
__PRETTY_FUNCTION__))
2072 "Cannot have other invariants with full unswitching!")(static_cast <bool> (Invariants.size() == 1 && "Cannot have other invariants with full unswitching!"
) ? void (0) : __assert_fail ("Invariants.size() == 1 && \"Cannot have other invariants with full unswitching!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2072, __extension__
__PRETTY_FUNCTION__))
;
2073 else
2074 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&(static_cast <bool> (isa<Instruction>(skipTrivialSelect
(BI->getCondition())) && "Partial unswitching requires an instruction as the condition!"
) ? void (0) : __assert_fail ("isa<Instruction>(skipTrivialSelect(BI->getCondition())) && \"Partial unswitching requires an instruction as the condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2075, __extension__
__PRETTY_FUNCTION__))
2075 "Partial unswitching requires an instruction as the condition!")(static_cast <bool> (isa<Instruction>(skipTrivialSelect
(BI->getCondition())) && "Partial unswitching requires an instruction as the condition!"
) ? void (0) : __assert_fail ("isa<Instruction>(skipTrivialSelect(BI->getCondition())) && \"Partial unswitching requires an instruction as the condition!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2075, __extension__
__PRETTY_FUNCTION__))
;
2076
2077 if (MSSAU && VerifyMemorySSA)
2078 MSSAU->getMemorySSA()->verifyMemorySSA();
2079
2080 // Constant and BBs tracking the cloned and continuing successor. When we are
2081 // unswitching the entire condition, this can just be trivially chosen to
2082 // unswitch towards `true`. However, when we are unswitching a set of
2083 // invariants combined with `and` or `or` or partially invariant instructions,
2084 // the combining operation determines the best direction to unswitch: we want
2085 // to unswitch the direction that will collapse the branch.
2086 bool Direction = true;
2087 int ClonedSucc = 0;
2088 if (!FullUnswitch) {
2089 Value *Cond = skipTrivialSelect(BI->getCondition());
2090 (void)Cond;
2091 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||(static_cast <bool> (((match(Cond, m_LogicalAnd()) ^ match
(Cond, m_LogicalOr())) || PartiallyInvariant) && "Only `or`, `and`, an `select`, partially invariant instructions "
"can combine invariants being unswitched.") ? void (0) : __assert_fail
("((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || PartiallyInvariant) && \"Only `or`, `and`, an `select`, partially invariant instructions \" \"can combine invariants being unswitched.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2094, __extension__
__PRETTY_FUNCTION__))
2092 PartiallyInvariant) &&(static_cast <bool> (((match(Cond, m_LogicalAnd()) ^ match
(Cond, m_LogicalOr())) || PartiallyInvariant) && "Only `or`, `and`, an `select`, partially invariant instructions "
"can combine invariants being unswitched.") ? void (0) : __assert_fail
("((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || PartiallyInvariant) && \"Only `or`, `and`, an `select`, partially invariant instructions \" \"can combine invariants being unswitched.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2094, __extension__
__PRETTY_FUNCTION__))
2093 "Only `or`, `and`, an `select`, partially invariant instructions "(static_cast <bool> (((match(Cond, m_LogicalAnd()) ^ match
(Cond, m_LogicalOr())) || PartiallyInvariant) && "Only `or`, `and`, an `select`, partially invariant instructions "
"can combine invariants being unswitched.") ? void (0) : __assert_fail
("((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || PartiallyInvariant) && \"Only `or`, `and`, an `select`, partially invariant instructions \" \"can combine invariants being unswitched.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2094, __extension__
__PRETTY_FUNCTION__))
2094 "can combine invariants being unswitched.")(static_cast <bool> (((match(Cond, m_LogicalAnd()) ^ match
(Cond, m_LogicalOr())) || PartiallyInvariant) && "Only `or`, `and`, an `select`, partially invariant instructions "
"can combine invariants being unswitched.") ? void (0) : __assert_fail
("((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || PartiallyInvariant) && \"Only `or`, `and`, an `select`, partially invariant instructions \" \"can combine invariants being unswitched.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2094, __extension__
__PRETTY_FUNCTION__))
;
2095 if (!match(Cond, m_LogicalOr())) {
2096 if (match(Cond, m_LogicalAnd()) ||
2097 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2098 Direction = false;
2099 ClonedSucc = 1;
2100 }
2101 }
2102 }
2103
2104 BasicBlock *RetainedSuccBB =
2105 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2106 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2107 if (BI)
2108 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2109 else
2110 for (auto Case : SI->cases())
2111 if (Case.getCaseSuccessor() != RetainedSuccBB)
2112 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2113
2114 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&(static_cast <bool> (!UnswitchedSuccBBs.count(RetainedSuccBB
) && "Should not unswitch the same successor we are retaining!"
) ? void (0) : __assert_fail ("!UnswitchedSuccBBs.count(RetainedSuccBB) && \"Should not unswitch the same successor we are retaining!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2115, __extension__
__PRETTY_FUNCTION__))
2115 "Should not unswitch the same successor we are retaining!")(static_cast <bool> (!UnswitchedSuccBBs.count(RetainedSuccBB
) && "Should not unswitch the same successor we are retaining!"
) ? void (0) : __assert_fail ("!UnswitchedSuccBBs.count(RetainedSuccBB) && \"Should not unswitch the same successor we are retaining!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2115, __extension__
__PRETTY_FUNCTION__))
;
2116
2117 // The branch should be in this exact loop. Any inner loop's invariant branch
2118 // should be handled by unswitching that inner loop. The caller of this
2119 // routine should filter out any candidates that remain (but were skipped for
2120 // whatever reason).
2121 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!")(static_cast <bool> (LI.getLoopFor(ParentBB) == &L &&
"Branch in an inner loop!") ? void (0) : __assert_fail ("LI.getLoopFor(ParentBB) == &L && \"Branch in an inner loop!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2121, __extension__
__PRETTY_FUNCTION__))
;
2122
2123 // Compute the parent loop now before we start hacking on things.
2124 Loop *ParentL = L.getParentLoop();
2125 // Get blocks in RPO order for MSSA update, before changing the CFG.
2126 LoopBlocksRPO LBRPO(&L);
2127 if (MSSAU)
2128 LBRPO.perform(&LI);
2129
2130 // Compute the outer-most loop containing one of our exit blocks. This is the
2131 // furthest up our loopnest which can be mutated, which we will use below to
2132 // update things.
2133 Loop *OuterExitL = &L;
2134 for (auto *ExitBB : ExitBlocks) {
2135 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2136 if (!NewOuterExitL) {
2137 // We exited the entire nest with this block, so we're done.
2138 OuterExitL = nullptr;
2139 break;
2140 }
2141 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2142 OuterExitL = NewOuterExitL;
2143 }
2144
2145 // At this point, we're definitely going to unswitch something so invalidate
2146 // any cached information in ScalarEvolution for the outer most loop
2147 // containing an exit block and all nested loops.
2148 if (SE) {
2149 if (OuterExitL)
2150 SE->forgetLoop(OuterExitL);
2151 else
2152 SE->forgetTopmostLoop(&L);
2153 }
2154
2155 bool InsertFreeze = false;
2156 if (FreezeLoopUnswitchCond) {
2157 ICFLoopSafetyInfo SafetyInfo;
2158 SafetyInfo.computeLoopSafetyInfo(&L);
2159 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2160 }
2161
2162 // If the edge from this terminator to a successor dominates that successor,
2163 // store a map from each block in its dominator subtree to it. This lets us
2164 // tell when cloning for a particular successor if a block is dominated by
2165 // some *other* successor with a single data structure. We use this to
2166 // significantly reduce cloning.
2167 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2168 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2169 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2170 if (SuccBB->getUniquePredecessor() ||
2171 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2172 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2173 }))
2174 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2175 DominatingSucc[BB] = SuccBB;
2176 return true;
2177 });
2178
2179 // Split the preheader, so that we know that there is a safe place to insert
2180 // the conditional branch. We will change the preheader to have a conditional
2181 // branch on LoopCond. The original preheader will become the split point
2182 // between the unswitched versions, and we will have a new preheader for the
2183 // original loop.
2184 BasicBlock *SplitBB = L.getLoopPreheader();
2185 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2186
2187 // Keep track of the dominator tree updates needed.
2188 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2189
2190 // Clone the loop for each unswitched successor.
2191 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2192 VMaps.reserve(UnswitchedSuccBBs.size());
2193 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2194 for (auto *SuccBB : UnswitchedSuccBBs) {
2195 VMaps.emplace_back(new ValueToValueMapTy());
2196 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2197 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2198 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2199 }
2200
2201 // Drop metadata if we may break its semantics by moving this instr into the
2202 // split block.
2203 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2204 if (DropNonTrivialImplicitNullChecks)
2205 // Do not spend time trying to understand if we can keep it, just drop it
2206 // to save compile time.
2207 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2208 else {
2209 // It is only legal to preserve make.implicit metadata if we are
2210 // guaranteed no reach implicit null check after following this branch.
2211 ICFLoopSafetyInfo SafetyInfo;
2212 SafetyInfo.computeLoopSafetyInfo(&L);
2213 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2214 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2215 }
2216 }
2217
2218 // The stitching of the branched code back together depends on whether we're
2219 // doing full unswitching or not with the exception that we always want to
2220 // nuke the initial terminator placed in the split block.
2221 SplitBB->getTerminator()->eraseFromParent();
2222 if (FullUnswitch) {
2223 // Splice the terminator from the original loop and rewrite its
2224 // successors.
2225 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2226
2227 // Keep a clone of the terminator for MSSA updates.
2228 Instruction *NewTI = TI.clone();
2229 ParentBB->getInstList().push_back(NewTI);
2230
2231 // First wire up the moved terminator to the preheaders.
2232 if (BI) {
2233 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2234 BI->setSuccessor(ClonedSucc, ClonedPH);
2235 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2236 Value *Cond = skipTrivialSelect(BI->getCondition());
2237 if (InsertFreeze) {
2238 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2239 Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI);
2240 }
2241 BI->setCondition(Cond);
2242 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2243 } else {
2244 assert(SI && "Must either be a branch or switch!")(static_cast <bool> (SI && "Must either be a branch or switch!"
) ? void (0) : __assert_fail ("SI && \"Must either be a branch or switch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2244, __extension__
__PRETTY_FUNCTION__))
;
2245
2246 // Walk the cases and directly update their successors.
2247 assert(SI->getDefaultDest() == RetainedSuccBB &&(static_cast <bool> (SI->getDefaultDest() == RetainedSuccBB
&& "Not retaining default successor!") ? void (0) : __assert_fail
("SI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2248, __extension__
__PRETTY_FUNCTION__))
2248 "Not retaining default successor!")(static_cast <bool> (SI->getDefaultDest() == RetainedSuccBB
&& "Not retaining default successor!") ? void (0) : __assert_fail
("SI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2248, __extension__
__PRETTY_FUNCTION__))
;
2249 SI->setDefaultDest(LoopPH);
2250 for (const auto &Case : SI->cases())
2251 if (Case.getCaseSuccessor() == RetainedSuccBB)
2252 Case.setSuccessor(LoopPH);
2253 else
2254 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2255
2256 if (InsertFreeze) {
2257 auto Cond = SI->getCondition();
2258 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2259 SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2260 }
2261 // We need to use the set to populate domtree updates as even when there
2262 // are multiple cases pointing at the same successor we only want to
2263 // remove and insert one edge in the domtree.
2264 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2265 DTUpdates.push_back(
2266 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2267 }
2268
2269 if (MSSAU) {
2270 DT.applyUpdates(DTUpdates);
2271 DTUpdates.clear();
2272
2273 // Remove all but one edge to the retained block and all unswitched
2274 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2275 // when we know we only keep a single edge for each case.
2276 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2277 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2278 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2279
2280 for (auto &VMap : VMaps)
2281 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2282 /*IgnoreIncomingWithNoClones=*/true);
2283 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2284
2285 // Remove all edges to unswitched blocks.
2286 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2287 MSSAU->removeEdge(ParentBB, SuccBB);
2288 }
2289
2290 // Now unhook the successor relationship as we'll be replacing
2291 // the terminator with a direct branch. This is much simpler for branches
2292 // than switches so we handle those first.
2293 if (BI) {
2294 // Remove the parent as a predecessor of the unswitched successor.
2295 assert(UnswitchedSuccBBs.size() == 1 &&(static_cast <bool> (UnswitchedSuccBBs.size() == 1 &&
"Only one possible unswitched block for a branch!") ? void (
0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2296, __extension__
__PRETTY_FUNCTION__))
2296 "Only one possible unswitched block for a branch!")(static_cast <bool> (UnswitchedSuccBBs.size() == 1 &&
"Only one possible unswitched block for a branch!") ? void (
0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2296, __extension__
__PRETTY_FUNCTION__))
;
2297 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2298 UnswitchedSuccBB->removePredecessor(ParentBB,
2299 /*KeepOneInputPHIs*/ true);
2300 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2301 } else {
2302 // Note that we actually want to remove the parent block as a predecessor
2303 // of *every* case successor. The case successor is either unswitched,
2304 // completely eliminating an edge from the parent to that successor, or it
2305 // is a duplicate edge to the retained successor as the retained successor
2306 // is always the default successor and as we'll replace this with a direct
2307 // branch we no longer need the duplicate entries in the PHI nodes.
2308 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2309 assert(NewSI->getDefaultDest() == RetainedSuccBB &&(static_cast <bool> (NewSI->getDefaultDest() == RetainedSuccBB
&& "Not retaining default successor!") ? void (0) : __assert_fail
("NewSI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2310, __extension__
__PRETTY_FUNCTION__))
2310 "Not retaining default successor!")(static_cast <bool> (NewSI->getDefaultDest() == RetainedSuccBB
&& "Not retaining default successor!") ? void (0) : __assert_fail
("NewSI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2310, __extension__
__PRETTY_FUNCTION__))
;
2311 for (const auto &Case : NewSI->cases())
2312 Case.getCaseSuccessor()->removePredecessor(
2313 ParentBB,
2314 /*KeepOneInputPHIs*/ true);
2315
2316 // We need to use the set to populate domtree updates as even when there
2317 // are multiple cases pointing at the same successor we only want to
2318 // remove and insert one edge in the domtree.
2319 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2320 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2321 }
2322
2323 // After MSSAU update, remove the cloned terminator instruction NewTI.
2324 ParentBB->getTerminator()->eraseFromParent();
2325
2326 // Create a new unconditional branch to the continuing block (as opposed to
2327 // the one cloned).
2328 BranchInst::Create(RetainedSuccBB, ParentBB);
2329 } else {
2330 assert(BI && "Only branches have partial unswitching.")(static_cast <bool> (BI && "Only branches have partial unswitching."
) ? void (0) : __assert_fail ("BI && \"Only branches have partial unswitching.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2330, __extension__
__PRETTY_FUNCTION__))
;
2331 assert(UnswitchedSuccBBs.size() == 1 &&(static_cast <bool> (UnswitchedSuccBBs.size() == 1 &&
"Only one possible unswitched block for a branch!") ? void (
0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2332, __extension__
__PRETTY_FUNCTION__))
2332 "Only one possible unswitched block for a branch!")(static_cast <bool> (UnswitchedSuccBBs.size() == 1 &&
"Only one possible unswitched block for a branch!") ? void (
0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2332, __extension__
__PRETTY_FUNCTION__))
;
2333 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2334 // When doing a partial unswitch, we have to do a bit more work to build up
2335 // the branch in the split block.
2336 if (PartiallyInvariant)
2337 buildPartialInvariantUnswitchConditionalBranch(
2338 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2339 else {
2340 buildPartialUnswitchConditionalBranch(
2341 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2342 FreezeLoopUnswitchCond, BI, &AC, DT);
2343 }
2344 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2345
2346 if (MSSAU) {
2347 DT.applyUpdates(DTUpdates);
2348 DTUpdates.clear();
2349
2350 // Perform MSSA cloning updates.
2351 for (auto &VMap : VMaps)
2352 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2353 /*IgnoreIncomingWithNoClones=*/true);
2354 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2355 }
2356 }
2357
2358 // Apply the updates accumulated above to get an up-to-date dominator tree.
2359 DT.applyUpdates(DTUpdates);
2360
2361 // Now that we have an accurate dominator tree, first delete the dead cloned
2362 // blocks so that we can accurately build any cloned loops. It is important to
2363 // not delete the blocks from the original loop yet because we still want to
2364 // reference the original loop to understand the cloned loop's structure.
2365 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2366
2367 // Build the cloned loop structure itself. This may be substantially
2368 // different from the original structure due to the simplified CFG. This also
2369 // handles inserting all the cloned blocks into the correct loops.
2370 SmallVector<Loop *, 4> NonChildClonedLoops;
2371 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2372 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2373
2374 // Now that our cloned loops have been built, we can update the original loop.
2375 // First we delete the dead blocks from it and then we rebuild the loop
2376 // structure taking these deletions into account.
2377 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2378
2379 if (MSSAU && VerifyMemorySSA)
2380 MSSAU->getMemorySSA()->verifyMemorySSA();
2381
2382 SmallVector<Loop *, 4> HoistedLoops;
2383 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2384
2385 if (MSSAU && VerifyMemorySSA)
2386 MSSAU->getMemorySSA()->verifyMemorySSA();
2387
2388 // This transformation has a high risk of corrupting the dominator tree, and
2389 // the below steps to rebuild loop structures will result in hard to debug
2390 // errors in that case so verify that the dominator tree is sane first.
2391 // FIXME: Remove this when the bugs stop showing up and rely on existing
2392 // verification steps.
2393 assert(DT.verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DT.verify(DominatorTree::VerificationLevel
::Fast)) ? void (0) : __assert_fail ("DT.verify(DominatorTree::VerificationLevel::Fast)"
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2393, __extension__
__PRETTY_FUNCTION__))
;
2394
2395 if (BI && !PartiallyInvariant) {
2396 // If we unswitched a branch which collapses the condition to a known
2397 // constant we want to replace all the uses of the invariants within both
2398 // the original and cloned blocks. We do this here so that we can use the
2399 // now updated dominator tree to identify which side the users are on.
2400 assert(UnswitchedSuccBBs.size() == 1 &&(static_cast <bool> (UnswitchedSuccBBs.size() == 1 &&
"Only one possible unswitched block for a branch!") ? void (
0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2401, __extension__
__PRETTY_FUNCTION__))
2401 "Only one possible unswitched block for a branch!")(static_cast <bool> (UnswitchedSuccBBs.size() == 1 &&
"Only one possible unswitched block for a branch!") ? void (
0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2401, __extension__
__PRETTY_FUNCTION__))
;
2402 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2403
2404 // When considering multiple partially-unswitched invariants
2405 // we cant just go replace them with constants in both branches.
2406 //
2407 // For 'AND' we infer that true branch ("continue") means true
2408 // for each invariant operand.
2409 // For 'OR' we can infer that false branch ("continue") means false
2410 // for each invariant operand.
2411 // So it happens that for multiple-partial case we dont replace
2412 // in the unswitched branch.
2413 bool ReplaceUnswitched =
2414 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2415
2416 ConstantInt *UnswitchedReplacement =
2417 Direction ? ConstantInt::getTrue(BI->getContext())
2418 : ConstantInt::getFalse(BI->getContext());
2419 ConstantInt *ContinueReplacement =
2420 Direction ? ConstantInt::getFalse(BI->getContext())
2421 : ConstantInt::getTrue(BI->getContext());
2422 for (Value *Invariant : Invariants) {
2423 assert(!isa<Constant>(Invariant) &&(static_cast <bool> (!isa<Constant>(Invariant) &&
"Should not be replacing constant values!") ? void (0) : __assert_fail
("!isa<Constant>(Invariant) && \"Should not be replacing constant values!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2424, __extension__
__PRETTY_FUNCTION__))
2424 "Should not be replacing constant values!")(static_cast <bool> (!isa<Constant>(Invariant) &&
"Should not be replacing constant values!") ? void (0) : __assert_fail
("!isa<Constant>(Invariant) && \"Should not be replacing constant values!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2424, __extension__
__PRETTY_FUNCTION__))
;
2425 // Use make_early_inc_range here as set invalidates the iterator.
2426 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2427 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2428 if (!UserI)
2429 continue;
2430
2431 // Replace it with the 'continue' side if in the main loop body, and the
2432 // unswitched if in the cloned blocks.
2433 if (DT.dominates(LoopPH, UserI->getParent()))
2434 U.set(ContinueReplacement);
2435 else if (ReplaceUnswitched &&
2436 DT.dominates(ClonedPH, UserI->getParent()))
2437 U.set(UnswitchedReplacement);
2438 }
2439 }
2440 }
2441
2442 // We can change which blocks are exit blocks of all the cloned sibling
2443 // loops, the current loop, and any parent loops which shared exit blocks
2444 // with the current loop. As a consequence, we need to re-form LCSSA for
2445 // them. But we shouldn't need to re-form LCSSA for any child loops.
2446 // FIXME: This could be made more efficient by tracking which exit blocks are
2447 // new, and focusing on them, but that isn't likely to be necessary.
2448 //
2449 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2450 // loop nest and update every loop that could have had its exits changed. We
2451 // also need to cover any intervening loops. We add all of these loops to
2452 // a list and sort them by loop depth to achieve this without updating
2453 // unnecessary loops.
2454 auto UpdateLoop = [&](Loop &UpdateL) {
2455#ifndef NDEBUG
2456 UpdateL.verifyLoop();
2457 for (Loop *ChildL : UpdateL) {
2458 ChildL->verifyLoop();
2459 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&(static_cast <bool> (ChildL->isRecursivelyLCSSAForm(
DT, LI) && "Perturbed a child loop's LCSSA form!") ? void
(0) : __assert_fail ("ChildL->isRecursivelyLCSSAForm(DT, LI) && \"Perturbed a child loop's LCSSA form!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2460, __extension__
__PRETTY_FUNCTION__))
2460 "Perturbed a child loop's LCSSA form!")(static_cast <bool> (ChildL->isRecursivelyLCSSAForm(
DT, LI) && "Perturbed a child loop's LCSSA form!") ? void
(0) : __assert_fail ("ChildL->isRecursivelyLCSSAForm(DT, LI) && \"Perturbed a child loop's LCSSA form!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2460, __extension__
__PRETTY_FUNCTION__))
;
2461 }
2462#endif
2463 // First build LCSSA for this loop so that we can preserve it when
2464 // forming dedicated exits. We don't want to perturb some other loop's
2465 // LCSSA while doing that CFG edit.
2466 formLCSSA(UpdateL, DT, &LI, SE);
2467
2468 // For loops reached by this loop's original exit blocks we may
2469 // introduced new, non-dedicated exits. At least try to re-form dedicated
2470 // exits for these loops. This may fail if they couldn't have dedicated
2471 // exits to start with.
2472 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2473 };
2474
2475 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2476 // and we can do it in any order as they don't nest relative to each other.
2477 //
2478 // Also check if any of the loops we have updated have become top-level loops
2479 // as that will necessitate widening the outer loop scope.
2480 for (Loop *UpdatedL :
2481 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2482 UpdateLoop(*UpdatedL);
2483 if (UpdatedL->isOutermost())
2484 OuterExitL = nullptr;
2485 }
2486 if (IsStillLoop) {
2487 UpdateLoop(L);
2488 if (L.isOutermost())
2489 OuterExitL = nullptr;
2490 }
2491
2492 // If the original loop had exit blocks, walk up through the outer most loop
2493 // of those exit blocks to update LCSSA and form updated dedicated exits.
2494 if (OuterExitL != &L)
2495 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2496 OuterL = OuterL->getParentLoop())
2497 UpdateLoop(*OuterL);
2498
2499#ifndef NDEBUG
2500 // Verify the entire loop structure to catch any incorrect updates before we
2501 // progress in the pass pipeline.
2502 LI.verify(DT);
2503#endif
2504
2505 // Now that we've unswitched something, make callbacks to report the changes.
2506 // For that we need to merge together the updated loops and the cloned loops
2507 // and check whether the original loop survived.
2508 SmallVector<Loop *, 4> SibLoops;
2509 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2510 if (UpdatedL->getParentLoop() == ParentL)
2511 SibLoops.push_back(UpdatedL);
2512 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2513
2514 if (MSSAU && VerifyMemorySSA)
2515 MSSAU->getMemorySSA()->verifyMemorySSA();
2516
2517 if (BI)
2518 ++NumBranches;
2519 else
2520 ++NumSwitches;
2521}
2522
2523/// Recursively compute the cost of a dominator subtree based on the per-block
2524/// cost map provided.
2525///
2526/// The recursive computation is memozied into the provided DT-indexed cost map
2527/// to allow querying it for most nodes in the domtree without it becoming
2528/// quadratic.
2529static InstructionCost computeDomSubtreeCost(
2530 DomTreeNode &N,
2531 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2532 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2533 // Don't accumulate cost (or recurse through) blocks not in our block cost
2534 // map and thus not part of the duplication cost being considered.
2535 auto BBCostIt = BBCostMap.find(N.getBlock());
2536 if (BBCostIt == BBCostMap.end())
2537 return 0;
2538
2539 // Lookup this node to see if we already computed its cost.
2540 auto DTCostIt = DTCostMap.find(&N);
2541 if (DTCostIt != DTCostMap.end())
2542 return DTCostIt->second;
2543
2544 // If not, we have to compute it. We can't use insert above and update
2545 // because computing the cost may insert more things into the map.
2546 InstructionCost Cost = std::accumulate(
2547 N.begin(), N.end(), BBCostIt->second,
2548 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2549 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2550 });
2551 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2552 (void)Inserted;
2553 assert(Inserted && "Should not insert a node while visiting children!")(static_cast <bool> (Inserted && "Should not insert a node while visiting children!"
) ? void (0) : __assert_fail ("Inserted && \"Should not insert a node while visiting children!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2553, __extension__
__PRETTY_FUNCTION__))
;
2554 return Cost;
2555}
2556
2557/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2558/// making the following replacement:
2559///
2560/// --code before guard--
2561/// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2562/// --code after guard--
2563///
2564/// into
2565///
2566/// --code before guard--
2567/// br i1 %cond, label %guarded, label %deopt
2568///
2569/// guarded:
2570/// --code after guard--
2571///
2572/// deopt:
2573/// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2574/// unreachable
2575///
2576/// It also makes all relevant DT and LI updates, so that all structures are in
2577/// valid state after this transform.
2578static BranchInst *
2579turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2580 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2581 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2582 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2583 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Turning " <<
*GI << " into a branch.\n"; } } while (false)
;
2584 BasicBlock *CheckBB = GI->getParent();
2585
2586 if (MSSAU && VerifyMemorySSA)
2587 MSSAU->getMemorySSA()->verifyMemorySSA();
2588
2589 // Remove all CheckBB's successors from DomTree. A block can be seen among
2590 // successors more than once, but for DomTree it should be added only once.
2591 SmallPtrSet<BasicBlock *, 4> Successors;
2592 for (auto *Succ : successors(CheckBB))
2593 if (Successors.insert(Succ).second)
2594 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2595
2596 Instruction *DeoptBlockTerm =
2597 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2598 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2599 // SplitBlockAndInsertIfThen inserts control flow that branches to
2600 // DeoptBlockTerm if the condition is true. We want the opposite.
2601 CheckBI->swapSuccessors();
2602
2603 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2604 GuardedBlock->setName("guarded");
2605 CheckBI->getSuccessor(1)->setName("deopt");
2606 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2607
2608 // We now have a new exit block.
2609 ExitBlocks.push_back(CheckBI->getSuccessor(1));
2610
2611 if (MSSAU)
2612 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2613
2614 GI->moveBefore(DeoptBlockTerm);
2615 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2616
2617 // Add new successors of CheckBB into DomTree.
2618 for (auto *Succ : successors(CheckBB))
2619 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2620
2621 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2622 // successors.
2623 for (auto *Succ : Successors)
2624 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2625
2626 // Make proper changes to DT.
2627 DT.applyUpdates(DTUpdates);
2628 // Inform LI of a new loop block.
2629 L.addBasicBlockToLoop(GuardedBlock, LI);
2630
2631 if (MSSAU) {
2632 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2633 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2634 if (VerifyMemorySSA)
2635 MSSAU->getMemorySSA()->verifyMemorySSA();
2636 }
2637
2638 ++NumGuards;
2639 return CheckBI;
2640}
2641
2642/// Cost multiplier is a way to limit potentially exponential behavior
2643/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2644/// candidates available. Also accounting for the number of "sibling" loops with
2645/// the idea to account for previous unswitches that already happened on this
2646/// cluster of loops. There was an attempt to keep this formula simple,
2647/// just enough to limit the worst case behavior. Even if it is not that simple
2648/// now it is still not an attempt to provide a detailed heuristic size
2649/// prediction.
2650///
2651/// TODO: Make a proper accounting of "explosion" effect for all kinds of
2652/// unswitch candidates, making adequate predictions instead of wild guesses.
2653/// That requires knowing not just the number of "remaining" candidates but
2654/// also costs of unswitching for each of these candidates.
2655static int CalculateUnswitchCostMultiplier(
2656 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2657 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2658 UnswitchCandidates) {
2659
2660 // Guards and other exiting conditions do not contribute to exponential
2661 // explosion as soon as they dominate the latch (otherwise there might be
2662 // another path to the latch remaining that does not allow to eliminate the
2663 // loop copy on unswitch).
2664 BasicBlock *Latch = L.getLoopLatch();
2665 BasicBlock *CondBlock = TI.getParent();
2666 if (DT.dominates(CondBlock, Latch) &&
2667 (isGuard(&TI) ||
2668 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2669 return L.contains(SuccBB);
2670 }) <= 1)) {
2671 NumCostMultiplierSkipped++;
2672 return 1;
2673 }
2674
2675 auto *ParentL = L.getParentLoop();
2676 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2677 : std::distance(LI.begin(), LI.end()));
2678 // Count amount of clones that all the candidates might cause during
2679 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2680 int UnswitchedClones = 0;
2681 for (auto Candidate : UnswitchCandidates) {
2682 Instruction *CI = Candidate.first;
2683 BasicBlock *CondBlock = CI->getParent();
2684 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2685 if (isGuard(CI)) {
2686 if (!SkipExitingSuccessors)
2687 UnswitchedClones++;
2688 continue;
2689 }
2690 int NonExitingSuccessors = llvm::count_if(
2691 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2692 return !SkipExitingSuccessors || L.contains(SuccBB);
2693 });
2694 UnswitchedClones += Log2_32(NonExitingSuccessors);
2695 }
2696
2697 // Ignore up to the "unscaled candidates" number of unswitch candidates
2698 // when calculating the power-of-two scaling of the cost. The main idea
2699 // with this control is to allow a small number of unswitches to happen
2700 // and rely more on siblings multiplier (see below) when the number
2701 // of candidates is small.
2702 unsigned ClonesPower =
2703 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2704
2705 // Allowing top-level loops to spread a bit more than nested ones.
2706 int SiblingsMultiplier =
2707 std::max((ParentL ? SiblingsCount
2708 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2709 1);
2710 // Compute the cost multiplier in a way that won't overflow by saturating
2711 // at an upper bound.
2712 int CostMultiplier;
2713 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2714 SiblingsMultiplier > UnswitchThreshold)
2715 CostMultiplier = UnswitchThreshold;
2716 else
2717 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2718 (int)UnswitchThreshold);
2719
2720 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplierdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
2721 << " (siblings " << SiblingsMultiplier << " * clones "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
2722 << (1 << ClonesPower) << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
2723 << " for unswitch candidate: " << TI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
;
2724 return CostMultiplier;
2725}
2726
2727static bool unswitchBestCondition(
2728 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2729 AAResults &AA, TargetTransformInfo &TTI,
2730 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2731 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2732 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2733 // Collect all invariant conditions within this loop (as opposed to an inner
2734 // loop which would be handled when visiting that inner loop).
2735 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2736 UnswitchCandidates;
2737
2738 // Whether or not we should also collect guards in the loop.
2739 bool CollectGuards = false;
2740 if (UnswitchGuards) {
1
Assuming the condition is false
2
Taking false branch
2741 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2742 Intrinsic::getName(Intrinsic::experimental_guard));
2743 if (GuardDecl && !GuardDecl->use_empty())
2744 CollectGuards = true;
2745 }
2746
2747 IVConditionInfo PartialIVInfo;
3
Calling implicit default constructor for 'IVConditionInfo'
5
Returning from default constructor for 'IVConditionInfo'
2748 for (auto *BB : L.blocks()) {
6
Assuming '__begin1' is equal to '__end1'
2749 if (LI.getLoopFor(BB) != &L)
2750 continue;
2751
2752 if (CollectGuards)
2753 for (auto &I : *BB)
2754 if (isGuard(&I)) {
2755 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2756 // TODO: Support AND, OR conditions and partial unswitching.
2757 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2758 UnswitchCandidates.push_back({&I, {Cond}});
2759 }
2760
2761 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2762 // We can only consider fully loop-invariant switch conditions as we need
2763 // to completely eliminate the switch after unswitching.
2764 if (!isa<Constant>(SI->getCondition()) &&
2765 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2766 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2767 continue;
2768 }
2769
2770 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2771 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2772 BI->getSuccessor(0) == BI->getSuccessor(1))
2773 continue;
2774
2775 Value *Cond = skipTrivialSelect(BI->getCondition());
2776 if (isa<Constant>(Cond))
2777 continue;
2778
2779 if (L.isLoopInvariant(Cond)) {
2780 UnswitchCandidates.push_back({BI, {Cond}});
2781 continue;
2782 }
2783
2784 Instruction &CondI = *cast<Instruction>(Cond);
2785 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2786 TinyPtrVector<Value *> Invariants =
2787 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2788 if (Invariants.empty())
2789 continue;
2790
2791 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2792 continue;
2793 }
2794 }
2795
2796 Instruction *PartialIVCondBranch = nullptr;
2797 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
7
Assuming 'MSSAU' is null
2798 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2799 return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2800 })) {
2801 MemorySSA *MSSA = MSSAU->getMemorySSA();
2802 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2803 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "simple-loop-unswitch: Found partially invariant condition "
<< *Info->InstToDuplicate[0] << "\n"; } } while
(false)
2804 dbgs() << "simple-loop-unswitch: Found partially invariant condition "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "simple-loop-unswitch: Found partially invariant condition "
<< *Info->InstToDuplicate[0] << "\n"; } } while
(false)
2805 << *Info->InstToDuplicate[0] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "simple-loop-unswitch: Found partially invariant condition "
<< *Info->InstToDuplicate[0] << "\n"; } } while
(false)
;
2806 PartialIVInfo = *Info;
2807 PartialIVCondBranch = L.getHeader()->getTerminator();
2808 TinyPtrVector<Value *> ValsToDuplicate;
2809 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2810 UnswitchCandidates.push_back(
2811 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2812 }
2813 }
2814
2815 // If we didn't find any candidates, we're done.
2816 if (UnswitchCandidates.empty())
8
Taking false branch
2817 return false;
2818
2819 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2820 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2821 // irreducible control flow into reducible control flow and introduce new
2822 // loops "out of thin air". If we ever discover important use cases for doing
2823 // this, we can add support to loop unswitch, but it is a lot of complexity
2824 // for what seems little or no real world benefit.
2825 LoopBlocksRPO RPOT(&L);
2826 RPOT.perform(&LI);
2827 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
9
Taking false branch
2828 return false;
2829
2830 SmallVector<BasicBlock *, 4> ExitBlocks;
2831 L.getUniqueExitBlocks(ExitBlocks);
2832
2833 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2834 // instruction as we don't know how to split those exit blocks.
2835 // FIXME: We should teach SplitBlock to handle this and remove this
2836 // restriction.
2837 for (auto *ExitBB : ExitBlocks) {
10
Assuming '__begin1' is equal to '__end1'
2838 auto *I = ExitBB->getFirstNonPHI();
2839 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2840 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
"in exit block\n"; } } while (false)
2841 "in exit block\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
"in exit block\n"; } } while (false)
;
2842 return false;
2843 }
2844 }
2845
2846 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Considering " <<
UnswitchCandidates.size() << " non-trivial loop invariant conditions for unswitching.\n"
; } } while (false)
11
Assuming 'DebugFlag' is false
12
Loop condition is false. Exiting loop
2847 dbgs() << "Considering " << UnswitchCandidates.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Considering " <<
UnswitchCandidates.size() << " non-trivial loop invariant conditions for unswitching.\n"
; } } while (false)
2848 << " non-trivial loop invariant conditions for unswitching.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Considering " <<
UnswitchCandidates.size() << " non-trivial loop invariant conditions for unswitching.\n"
; } } while (false)
;
2849
2850 // Given that unswitching these terminators will require duplicating parts of
2851 // the loop, so we need to be able to model that cost. Compute the ephemeral
2852 // values and set up a data structure to hold per-BB costs. We cache each
2853 // block's cost so that we don't recompute this when considering different
2854 // subsets of the loop for duplication during unswitching.
2855 SmallPtrSet<const Value *, 4> EphValues;
2856 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2857 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2858
2859 // Compute the cost of each block, as well as the total loop cost. Also, bail
2860 // out if we see instructions which are incompatible with loop unswitching
2861 // (convergent, noduplicate, or cross-basic-block tokens).
2862 // FIXME: We might be able to safely handle some of these in non-duplicated
2863 // regions.
2864 TargetTransformInfo::TargetCostKind CostKind =
2865 L.getHeader()->getParent()->hasMinSize()
13
Assuming the condition is false
14
'?' condition is false
2866 ? TargetTransformInfo::TCK_CodeSize
2867 : TargetTransformInfo::TCK_SizeAndLatency;
2868 InstructionCost LoopCost = 0;
2869 for (auto *BB : L.blocks()) {
15
Assuming '__begin1' is equal to '__end1'
2870 InstructionCost Cost = 0;
2871 for (auto &I : *BB) {
2872 if (EphValues.count(&I))
2873 continue;
2874
2875 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2876 return false;
2877 if (auto *CB = dyn_cast<CallBase>(&I))
2878 if (CB->isConvergent() || CB->cannotDuplicate())
2879 return false;
2880
2881 Cost += TTI.getInstructionCost(&I, CostKind);
2882 }
2883 assert(Cost >= 0 && "Must not have negative costs!")(static_cast <bool> (Cost >= 0 && "Must not have negative costs!"
) ? void (0) : __assert_fail ("Cost >= 0 && \"Must not have negative costs!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2883, __extension__
__PRETTY_FUNCTION__))
;
2884 LoopCost += Cost;
2885 assert(LoopCost >= 0 && "Must not have negative loop costs!")(static_cast <bool> (LoopCost >= 0 && "Must not have negative loop costs!"
) ? void (0) : __assert_fail ("LoopCost >= 0 && \"Must not have negative loop costs!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2885, __extension__
__PRETTY_FUNCTION__))
;
2886 BBCostMap[BB] = Cost;
2887 }
2888 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Total loop cost: "
<< LoopCost << "\n"; } } while (false)
;
16
Assuming 'DebugFlag' is false
17
Loop condition is false. Exiting loop
2889
2890 // Now we find the best candidate by searching for the one with the following
2891 // properties in order:
2892 //
2893 // 1) An unswitching cost below the threshold
2894 // 2) The smallest number of duplicated unswitch candidates (to avoid
2895 // creating redundant subsequent unswitching)
2896 // 3) The smallest cost after unswitching.
2897 //
2898 // We prioritize reducing fanout of unswitch candidates provided the cost
2899 // remains below the threshold because this has a multiplicative effect.
2900 //
2901 // This requires memoizing each dominator subtree to avoid redundant work.
2902 //
2903 // FIXME: Need to actually do the number of candidates part above.
2904 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2905 // Given a terminator which might be unswitched, computes the non-duplicated
2906 // cost for that terminator.
2907 auto ComputeUnswitchedCost = [&](Instruction &TI,
2908 bool FullUnswitch) -> InstructionCost {
2909 BasicBlock &BB = *TI.getParent();
2910 SmallPtrSet<BasicBlock *, 4> Visited;
2911
2912 InstructionCost Cost = 0;
2913 for (BasicBlock *SuccBB : successors(&BB)) {
2914 // Don't count successors more than once.
2915 if (!Visited.insert(SuccBB).second)
22
Assuming field 'second' is true
23
Taking false branch
2916 continue;
2917
2918 // If this is a partial unswitch candidate, then it must be a conditional
2919 // branch with a condition of either `or`, `and`, their corresponding
2920 // select forms or partially invariant instructions. In that case, one of
2921 // the successors is necessarily duplicated, so don't even try to remove
2922 // its cost.
2923 if (!FullUnswitch
23.1
'FullUnswitch' is false
23.1
'FullUnswitch' is false
) {
24
Taking true branch
2924 auto &BI = cast<BranchInst>(TI);
25
'TI' is a 'BranchInst'
2925 Value *Cond = skipTrivialSelect(BI.getCondition());
2926 if (match(Cond, m_LogicalAnd())) {
26
Taking false branch
2927 if (SuccBB == BI.getSuccessor(1))
2928 continue;
2929 } else if (match(Cond, m_LogicalOr())) {
2930 if (SuccBB == BI.getSuccessor(0))
2931 continue;
2932 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
27
Called C++ object pointer is null
2933 SuccBB == BI.getSuccessor(0)) ||
2934 (!PartialIVInfo.KnownValue->isOneValue() &&
2935 SuccBB == BI.getSuccessor(1)))
2936 continue;
2937 }
2938
2939 // This successor's domtree will not need to be duplicated after
2940 // unswitching if the edge to the successor dominates it (and thus the
2941 // entire tree). This essentially means there is no other path into this
2942 // subtree and so it will end up live in only one clone of the loop.
2943 if (SuccBB->getUniquePredecessor() ||
2944 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2945 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2946 })) {
2947 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2948 assert(Cost <= LoopCost &&(static_cast <bool> (Cost <= LoopCost && "Non-duplicated cost should never exceed total loop cost!"
) ? void (0) : __assert_fail ("Cost <= LoopCost && \"Non-duplicated cost should never exceed total loop cost!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2949, __extension__
__PRETTY_FUNCTION__))
2949 "Non-duplicated cost should never exceed total loop cost!")(static_cast <bool> (Cost <= LoopCost && "Non-duplicated cost should never exceed total loop cost!"
) ? void (0) : __assert_fail ("Cost <= LoopCost && \"Non-duplicated cost should never exceed total loop cost!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2949, __extension__
__PRETTY_FUNCTION__))
;
2950 }
2951 }
2952
2953 // Now scale the cost by the number of unique successors minus one. We
2954 // subtract one because there is already at least one copy of the entire
2955 // loop. This is computing the new cost of unswitching a condition.
2956 // Note that guards always have 2 unique successors that are implicit and
2957 // will be materialized if we decide to unswitch it.
2958 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2959 assert(SuccessorsCount > 1 &&(static_cast <bool> (SuccessorsCount > 1 && "Cannot unswitch a condition without multiple distinct successors!"
) ? void (0) : __assert_fail ("SuccessorsCount > 1 && \"Cannot unswitch a condition without multiple distinct successors!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2960, __extension__
__PRETTY_FUNCTION__))
2960 "Cannot unswitch a condition without multiple distinct successors!")(static_cast <bool> (SuccessorsCount > 1 && "Cannot unswitch a condition without multiple distinct successors!"
) ? void (0) : __assert_fail ("SuccessorsCount > 1 && \"Cannot unswitch a condition without multiple distinct successors!\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2960, __extension__
__PRETTY_FUNCTION__))
;
2961 return (LoopCost - Cost) * (SuccessorsCount - 1);
2962 };
2963 Instruction *BestUnswitchTI = nullptr;
2964 InstructionCost BestUnswitchCost = 0;
2965 ArrayRef<Value *> BestUnswitchInvariants;
2966 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
18
Assuming '__begin1' is not equal to '__end1'
2967 Instruction &TI = *TerminatorAndInvariants.first;
2968 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2969 BranchInst *BI = dyn_cast<BranchInst>(&TI);
19
Assuming the object is a 'CastReturnType'
2970 InstructionCost CandidateCost = ComputeUnswitchedCost(
21
Calling 'operator()'
2971 TI, /*FullUnswitch*/ !BI
19.1
'BI' is non-null
19.1
'BI' is non-null
||
2972 (Invariants.size() == 1 &&
20
Assuming the condition is false
2973 Invariants[0] == skipTrivialSelect(BI->getCondition())));
2974 // Calculate cost multiplier which is a tool to limit potentially
2975 // exponential behavior of loop-unswitch.
2976 if (EnableUnswitchCostMultiplier) {
2977 int CostMultiplier =
2978 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2979 assert((static_cast <bool> ((CostMultiplier > 0 && CostMultiplier
<= UnswitchThreshold) && "cost multiplier needs to be in the range of 1..UnswitchThreshold"
) ? void (0) : __assert_fail ("(CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && \"cost multiplier needs to be in the range of 1..UnswitchThreshold\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2981, __extension__
__PRETTY_FUNCTION__))
2980 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&(static_cast <bool> ((CostMultiplier > 0 && CostMultiplier
<= UnswitchThreshold) && "cost multiplier needs to be in the range of 1..UnswitchThreshold"
) ? void (0) : __assert_fail ("(CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && \"cost multiplier needs to be in the range of 1..UnswitchThreshold\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2981, __extension__
__PRETTY_FUNCTION__))
2981 "cost multiplier needs to be in the range of 1..UnswitchThreshold")(static_cast <bool> ((CostMultiplier > 0 && CostMultiplier
<= UnswitchThreshold) && "cost multiplier needs to be in the range of 1..UnswitchThreshold"
) ? void (0) : __assert_fail ("(CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && \"cost multiplier needs to be in the range of 1..UnswitchThreshold\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2981, __extension__
__PRETTY_FUNCTION__))
;
2982 CandidateCost *= CostMultiplier;
2983 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " (multiplier: " << CostMultiplier
<< ")" << " for unswitch candidate: " << TI
<< "\n"; } } while (false)
2984 << " (multiplier: " << CostMultiplier << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " (multiplier: " << CostMultiplier
<< ")" << " for unswitch candidate: " << TI
<< "\n"; } } while (false)
2985 << " for unswitch candidate: " << TI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " (multiplier: " << CostMultiplier
<< ")" << " for unswitch candidate: " << TI
<< "\n"; } } while (false)
;
2986 } else {
2987 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " for unswitch candidate: " <<
TI << "\n"; } } while (false)
2988 << " for unswitch candidate: " << TI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " for unswitch candidate: " <<
TI << "\n"; } } while (false)
;
2989 }
2990
2991 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2992 BestUnswitchTI = &TI;
2993 BestUnswitchCost = CandidateCost;
2994 BestUnswitchInvariants = Invariants;
2995 }
2996 }
2997 assert(BestUnswitchTI && "Failed to find loop unswitch candidate")(static_cast <bool> (BestUnswitchTI && "Failed to find loop unswitch candidate"
) ? void (0) : __assert_fail ("BestUnswitchTI && \"Failed to find loop unswitch candidate\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 2997, __extension__
__PRETTY_FUNCTION__))
;
2998
2999 if (BestUnswitchCost >= UnswitchThreshold) {
3000 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Cannot unswitch, lowest cost found: "
<< BestUnswitchCost << "\n"; } } while (false)
3001 << BestUnswitchCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Cannot unswitch, lowest cost found: "
<< BestUnswitchCost << "\n"; } } while (false)
;
3002 return false;
3003 }
3004
3005 if (BestUnswitchTI != PartialIVCondBranch)
3006 PartialIVInfo.InstToDuplicate.clear();
3007
3008 // If the best candidate is a guard, turn it into a branch.
3009 if (isGuard(BestUnswitchTI))
3010 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
3011 ExitBlocks, DT, LI, MSSAU);
3012
3013 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Unswitching non-trivial (cost = "
<< BestUnswitchCost << ") terminator: " <<
*BestUnswitchTI << "\n"; } } while (false)
3014 << BestUnswitchCost << ") terminator: " << *BestUnswitchTIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Unswitching non-trivial (cost = "
<< BestUnswitchCost << ") terminator: " <<
*BestUnswitchTI << "\n"; } } while (false)
3015 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Unswitching non-trivial (cost = "
<< BestUnswitchCost << ") terminator: " <<
*BestUnswitchTI << "\n"; } } while (false)
;
3016 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
3017 ExitBlocks, PartialIVInfo, DT, LI, AC,
3018 UnswitchCB, SE, MSSAU, DestroyLoopCB);
3019 return true;
3020}
3021
3022/// Unswitch control flow predicated on loop invariant conditions.
3023///
3024/// This first hoists all branches or switches which are trivial (IE, do not
3025/// require duplicating any part of the loop) out of the loop body. It then
3026/// looks at other loop invariant control flows and tries to unswitch those as
3027/// well by cloning the loop if the result is small enough.
3028///
3029/// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3030/// also updated based on the unswitch. The `MSSA` analysis is also updated if
3031/// valid (i.e. its use is enabled).
3032///
3033/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3034/// true, we will attempt to do non-trivial unswitching as well as trivial
3035/// unswitching.
3036///
3037/// The `UnswitchCB` callback provided will be run after unswitching is
3038/// complete, with the first parameter set to `true` if the provided loop
3039/// remains a loop, and a list of new sibling loops created.
3040///
3041/// If `SE` is non-null, we will update that analysis based on the unswitching
3042/// done.
3043static bool
3044unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3045 AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3046 bool NonTrivial,
3047 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3048 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3049 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
3050 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3051 assert(L.isRecursivelyLCSSAForm(DT, LI) &&(static_cast <bool> (L.isRecursivelyLCSSAForm(DT, LI) &&
"Loops must be in LCSSA form before unswitching.") ? void (0
) : __assert_fail ("L.isRecursivelyLCSSAForm(DT, LI) && \"Loops must be in LCSSA form before unswitching.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 3052, __extension__
__PRETTY_FUNCTION__))
3052 "Loops must be in LCSSA form before unswitching.")(static_cast <bool> (L.isRecursivelyLCSSAForm(DT, LI) &&
"Loops must be in LCSSA form before unswitching.") ? void (0
) : __assert_fail ("L.isRecursivelyLCSSAForm(DT, LI) && \"Loops must be in LCSSA form before unswitching.\""
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 3052, __extension__
__PRETTY_FUNCTION__))
;
3053
3054 // Must be in loop simplified form: we need a preheader and dedicated exits.
3055 if (!L.isLoopSimplifyForm())
3056 return false;
3057
3058 // Try trivial unswitch first before loop over other basic blocks in the loop.
3059 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3060 // If we unswitched successfully we will want to clean up the loop before
3061 // processing it further so just mark it as unswitched and return.
3062 UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3063 return true;
3064 }
3065
3066 // Check whether we should continue with non-trivial conditions.
3067 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3068 // unswitching for testing and debugging.
3069 // NonTrivial: Parameter that enables non-trivial unswitching for this
3070 // invocation of the transform. But this should be allowed only
3071 // for targets without branch divergence.
3072 //
3073 // FIXME: If divergence analysis becomes available to a loop
3074 // transform, we should allow unswitching for non-trivial uniform
3075 // branches even on targets that have divergence.
3076 // https://bugs.llvm.org/show_bug.cgi?id=48819
3077 bool ContinueWithNonTrivial =
3078 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3079 if (!ContinueWithNonTrivial)
3080 return false;
3081
3082 // Skip non-trivial unswitching for optsize functions.
3083 if (L.getHeader()->getParent()->hasOptSize())
3084 return false;
3085
3086 // Skip cold loops, as unswitching them brings little benefit
3087 // but increases the code size
3088 if (PSI && PSI->hasProfileSummary() && BFI &&
3089 PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) {
3090 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Skip cold loop: "
<< L << "\n"; } } while (false)
;
3091 return false;
3092 }
3093
3094 // Skip non-trivial unswitching for loops that cannot be cloned.
3095 if (!L.isSafeToClone())
3096 return false;
3097
3098 // For non-trivial unswitching, because it often creates new loops, we rely on
3099 // the pass manager to iterate on the loops rather than trying to immediately
3100 // reach a fixed point. There is no substantial advantage to iterating
3101 // internally, and if any of the new loops are simplified enough to contain
3102 // trivial unswitching we want to prefer those.
3103
3104 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3105 // a partial unswitch when possible below the threshold.
3106 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3107 DestroyLoopCB))
3108 return true;
3109
3110 // No other opportunities to unswitch.
3111 return false;
3112}
3113
3114PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3115 LoopStandardAnalysisResults &AR,
3116 LPMUpdater &U) {
3117 Function &F = *L.getHeader()->getParent();
3118 (void)F;
3119 ProfileSummaryInfo *PSI = nullptr;
3120 if (auto OuterProxy =
3121 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3122 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3123 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3124 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << Ldo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << L << "\n";
} } while (false)
3125 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << L << "\n";
} } while (false)
;
3126
3127 // Save the current loop name in a variable so that we can report it even
3128 // after it has been deleted.
3129 std::string LoopName = std::string(L.getName());
3130
3131 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3132 bool PartiallyInvariant,
3133 ArrayRef<Loop *> NewLoops) {
3134 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3135 if (!NewLoops.empty())
3136 U.addSiblingLoops(NewLoops);
3137
3138 // If the current loop remains valid, we should revisit it to catch any
3139 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3140 if (CurrentLoopValid) {
3141 if (PartiallyInvariant) {
3142 // Mark the new loop as partially unswitched, to avoid unswitching on
3143 // the same condition again.
3144 auto &Context = L.getHeader()->getContext();
3145 MDNode *DisableUnswitchMD = MDNode::get(
3146 Context,
3147 MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3148 MDNode *NewLoopID = makePostTransformationMetadata(
3149 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3150 {DisableUnswitchMD});
3151 L.setLoopID(NewLoopID);
3152 } else
3153 U.revisitCurrentLoop();
3154 } else
3155 U.markLoopAsDeleted(L, LoopName);
3156 };
3157
3158 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3159 U.markLoopAsDeleted(L, Name);
3160 };
3161
3162 Optional<MemorySSAUpdater> MSSAU;
3163 if (AR.MSSA) {
3164 MSSAU = MemorySSAUpdater(AR.MSSA);
3165 if (VerifyMemorySSA)
3166 AR.MSSA->verifyMemorySSA();
3167 }
3168 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3169 UnswitchCB, &AR.SE, MSSAU ? MSSAU.getPointer() : nullptr,
3170 PSI, AR.BFI, DestroyLoopCB))
3171 return PreservedAnalyses::all();
3172
3173 if (AR.MSSA && VerifyMemorySSA)
3174 AR.MSSA->verifyMemorySSA();
3175
3176 // Historically this pass has had issues with the dominator tree so verify it
3177 // in asserts builds.
3178 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (AR.DT.verify(DominatorTree::VerificationLevel
::Fast)) ? void (0) : __assert_fail ("AR.DT.verify(DominatorTree::VerificationLevel::Fast)"
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 3178, __extension__
__PRETTY_FUNCTION__))
;
3179
3180 auto PA = getLoopPassPreservedAnalyses();
3181 if (AR.MSSA)
3182 PA.preserve<MemorySSAAnalysis>();
3183 return PA;
3184}
3185
3186void SimpleLoopUnswitchPass::printPipeline(
3187 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3188 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3189 OS, MapClassName2PassName);
3190
3191 OS << "<";
3192 OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3193 OS << (Trivial ? "" : "no-") << "trivial";
3194 OS << ">";
3195}
3196
3197namespace {
3198
3199class SimpleLoopUnswitchLegacyPass : public LoopPass {
3200 bool NonTrivial;
3201
3202public:
3203 static char ID; // Pass ID, replacement for typeid
3204
3205 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3206 : LoopPass(ID), NonTrivial(NonTrivial) {
3207 initializeSimpleLoopUnswitchLegacyPassPass(
3208 *PassRegistry::getPassRegistry());
3209 }
3210
3211 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3212
3213 void getAnalysisUsage(AnalysisUsage &AU) const override {
3214 AU.addRequired<AssumptionCacheTracker>();
3215 AU.addRequired<TargetTransformInfoWrapperPass>();
3216 AU.addRequired<MemorySSAWrapperPass>();
3217 AU.addPreserved<MemorySSAWrapperPass>();
3218 getLoopAnalysisUsage(AU);
3219 }
3220};
3221
3222} // end anonymous namespace
3223
3224bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3225 if (skipLoop(L))
3226 return false;
3227
3228 Function &F = *L->getHeader()->getParent();
3229
3230 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *Ldo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << *L << "\n"
; } } while (false)
3231 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << *L << "\n"
; } } while (false)
;
3232 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3233 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3234 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3235 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3236 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3237 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3238 MemorySSAUpdater MSSAU(MSSA);
3239
3240 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3241 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3242
3243 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3244 ArrayRef<Loop *> NewLoops) {
3245 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3246 for (auto *NewL : NewLoops)
3247 LPM.addLoop(*NewL);
3248
3249 // If the current loop remains valid, re-add it to the queue. This is
3250 // a little wasteful as we'll finish processing the current loop as well,
3251 // but it is the best we can do in the old PM.
3252 if (CurrentLoopValid) {
3253 // If the current loop has been unswitched using a partially invariant
3254 // condition, we should not re-add the current loop to avoid unswitching
3255 // on the same condition again.
3256 if (!PartiallyInvariant)
3257 LPM.addLoop(*L);
3258 } else
3259 LPM.markLoopAsDeleted(*L);
3260 };
3261
3262 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3263 LPM.markLoopAsDeleted(L);
3264 };
3265
3266 if (VerifyMemorySSA)
3267 MSSA->verifyMemorySSA();
3268 bool Changed =
3269 unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
3270 &MSSAU, nullptr, nullptr, DestroyLoopCB);
3271
3272 if (VerifyMemorySSA)
3273 MSSA->verifyMemorySSA();
3274
3275 // Historically this pass has had issues with the dominator tree so verify it
3276 // in asserts builds.
3277 assert(DT.verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DT.verify(DominatorTree::VerificationLevel
::Fast)) ? void (0) : __assert_fail ("DT.verify(DominatorTree::VerificationLevel::Fast)"
, "llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp", 3277, __extension__
__PRETTY_FUNCTION__))
;
3278
3279 return Changed;
3280}
3281
3282char SimpleLoopUnswitchLegacyPass::ID = 0;
3283INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",static void *initializeSimpleLoopUnswitchLegacyPassPassOnce(PassRegistry
&Registry) {
3284 "Simple unswitch loops", false, false)static void *initializeSimpleLoopUnswitchLegacyPassPassOnce(PassRegistry
&Registry) {
3285INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
3286INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
3287INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
3288INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
3289INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
3290INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
3291INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",PassInfo *PI = new PassInfo( "Simple unswitch loops", "simple-loop-unswitch"
, &SimpleLoopUnswitchLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<SimpleLoopUnswitchLegacyPass>), false,
false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeSimpleLoopUnswitchLegacyPassPassFlag
; void llvm::initializeSimpleLoopUnswitchLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeSimpleLoopUnswitchLegacyPassPassFlag
, initializeSimpleLoopUnswitchLegacyPassPassOnce, std::ref(Registry
)); }
3292 "Simple unswitch loops", false, false)PassInfo *PI = new PassInfo( "Simple unswitch loops", "simple-loop-unswitch"
, &SimpleLoopUnswitchLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<SimpleLoopUnswitchLegacyPass>), false,
false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeSimpleLoopUnswitchLegacyPassPassFlag
; void llvm::initializeSimpleLoopUnswitchLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeSimpleLoopUnswitchLegacyPassPassFlag
, initializeSimpleLoopUnswitchLegacyPassPassOnce, std::ref(Registry
)); }
3293
3294Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3295 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3296}

/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/include/llvm/Transforms/Utils/LoopUtils.h

1//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines some loop transformation utilities.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
14#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
15
16#include "llvm/Analysis/IVDescriptors.h"
17#include "llvm/Analysis/LoopAccessAnalysis.h"
18#include "llvm/Transforms/Utils/ValueMapper.h"
19
20namespace llvm {
21
22template <typename T> class DomTreeNodeBase;
23using DomTreeNode = DomTreeNodeBase<BasicBlock>;
24class AssumptionCache;
25class StringRef;
26class AnalysisUsage;
27class TargetTransformInfo;
28class AAResults;
29class BasicBlock;
30class ICFLoopSafetyInfo;
31class IRBuilderBase;
32class Loop;
33class LoopInfo;
34class MemoryAccess;
35class MemorySSA;
36class MemorySSAUpdater;
37class OptimizationRemarkEmitter;
38class PredIteratorCache;
39class ScalarEvolution;
40class SCEV;
41class SCEVExpander;
42class TargetLibraryInfo;
43class LPPassManager;
44class Instruction;
45struct RuntimeCheckingPtrGroup;
46typedef std::pair<const RuntimeCheckingPtrGroup *,
47 const RuntimeCheckingPtrGroup *>
48 RuntimePointerCheck;
49
50template <typename T> class Optional;
51template <typename T, unsigned N> class SmallSetVector;
52template <typename T, unsigned N> class SmallPriorityWorklist;
53
54BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
55 MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
56
57/// Ensure that all exit blocks of the loop are dedicated exits.
58///
59/// For any loop exit block with non-loop predecessors, we split the loop
60/// predecessors to use a dedicated loop exit block. We update the dominator
61/// tree and loop info if provided, and will preserve LCSSA if requested.
62bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
63 MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
64
65/// Ensures LCSSA form for every instruction from the Worklist in the scope of
66/// innermost containing loop.
67///
68/// For the given instruction which have uses outside of the loop, an LCSSA PHI
69/// node is inserted and the uses outside the loop are rewritten to use this
70/// node.
71///
72/// LoopInfo and DominatorTree are required and, since the routine makes no
73/// changes to CFG, preserved.
74///
75/// Returns true if any modifications are made.
76///
77/// This function may introduce unused PHI nodes. If \p PHIsToRemove is not
78/// nullptr, those are added to it (before removing, the caller has to check if
79/// they still do not have any uses). Otherwise the PHIs are directly removed.
80bool formLCSSAForInstructions(
81 SmallVectorImpl<Instruction *> &Worklist, const DominatorTree &DT,
82 const LoopInfo &LI, ScalarEvolution *SE, IRBuilderBase &Builder,
83 SmallVectorImpl<PHINode *> *PHIsToRemove = nullptr);
84
85/// Put loop into LCSSA form.
86///
87/// Looks at all instructions in the loop which have uses outside of the
88/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
89/// the loop are rewritten to use this node. Sub-loops must be in LCSSA form
90/// already.
91///
92/// LoopInfo and DominatorTree are required and preserved.
93///
94/// If ScalarEvolution is passed in, it will be preserved.
95///
96/// Returns true if any modifications are made to the loop.
97bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
98 ScalarEvolution *SE);
99
100/// Put a loop nest into LCSSA form.
101///
102/// This recursively forms LCSSA for a loop nest.
103///
104/// LoopInfo and DominatorTree are required and preserved.
105///
106/// If ScalarEvolution is passed in, it will be preserved.
107///
108/// Returns true if any modifications are made to the loop.
109bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
110 ScalarEvolution *SE);
111
112/// Flags controlling how much is checked when sinking or hoisting
113/// instructions. The number of memory access in the loop (and whether there
114/// are too many) is determined in the constructors when using MemorySSA.
115class SinkAndHoistLICMFlags {
116public:
117 // Explicitly set limits.
118 SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,
119 unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
120 Loop *L = nullptr, MemorySSA *MSSA = nullptr);
121 // Use default limits.
122 SinkAndHoistLICMFlags(bool IsSink, Loop *L = nullptr,
123 MemorySSA *MSSA = nullptr);
124
125 void setIsSink(bool B) { IsSink = B; }
126 bool getIsSink() { return IsSink; }
127 bool tooManyMemoryAccesses() { return NoOfMemAccTooLarge; }
128 bool tooManyClobberingCalls() { return LicmMssaOptCounter >= LicmMssaOptCap; }
129 void incrementClobberingCalls() { ++LicmMssaOptCounter; }
130
131protected:
132 bool NoOfMemAccTooLarge = false;
133 unsigned LicmMssaOptCounter = 0;
134 unsigned LicmMssaOptCap;
135 unsigned LicmMssaNoAccForPromotionCap;
136 bool IsSink;
137};
138
139/// Walk the specified region of the CFG (defined by all blocks
140/// dominated by the specified block, and that are in the current loop) in
141/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
142/// uses before definitions, allowing us to sink a loop body in one pass without
143/// iteration. Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
144/// TargetLibraryInfo, Loop, AliasSet information for all
145/// instructions of the loop and loop safety information as
146/// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
147/// \p CurLoop is a loop to do sinking on. \p OutermostLoop is used only when
148/// this function is called by \p sinkRegionForLoopNest.
149bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
150 TargetLibraryInfo *, TargetTransformInfo *, Loop *CurLoop,
151 MemorySSAUpdater &, ICFLoopSafetyInfo *,
152 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *,
153 Loop *OutermostLoop = nullptr);
154
155/// Call sinkRegion on loops contained within the specified loop
156/// in order from innermost to outermost.
157bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *,
158 DominatorTree *, TargetLibraryInfo *,
159 TargetTransformInfo *, Loop *, MemorySSAUpdater &,
160 ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &,
161 OptimizationRemarkEmitter *);
162
163/// Walk the specified region of the CFG (defined by all blocks
164/// dominated by the specified block, and that are in the current loop) in depth
165/// first order w.r.t the DominatorTree. This allows us to visit definitions
166/// before uses, allowing us to hoist a loop body in one pass without iteration.
167/// Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
168/// TargetLibraryInfo, Loop, AliasSet information for all
169/// instructions of the loop and loop safety information as arguments.
170/// Diagnostics is emitted via \p ORE. It returns changed status.
171/// \p AllowSpeculation is whether values should be hoisted even if they are not
172/// guaranteed to execute in the loop, but are safe to speculatively execute.
173bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
174 AssumptionCache *, TargetLibraryInfo *, Loop *,
175 MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *,
176 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool,
177 bool AllowSpeculation);
178
179/// This function deletes dead loops. The caller of this function needs to
180/// guarantee that the loop is infact dead.
181/// The function requires a bunch or prerequisites to be present:
182/// - The loop needs to be in LCSSA form
183/// - The loop needs to have a Preheader
184/// - A unique dedicated exit block must exist
185///
186/// This also updates the relevant analysis information in \p DT, \p SE, \p LI
187/// and \p MSSA if pointers to those are provided.
188/// It also updates the loop PM if an updater struct is provided.
189
190void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
191 LoopInfo *LI, MemorySSA *MSSA = nullptr);
192
193/// Remove the backedge of the specified loop. Handles loop nests and general
194/// loop structures subject to the precondition that the loop has no parent
195/// loop and has a single latch block. Preserves all listed analyses.
196void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
197 LoopInfo &LI, MemorySSA *MSSA);
198
199/// Try to promote memory values to scalars by sinking stores out of
200/// the loop and moving loads to before the loop. We do this by looping over
201/// the stores in the loop, looking for stores to Must pointers which are
202/// loop invariant. It takes a set of must-alias values, Loop exit blocks
203/// vector, loop exit blocks insertion point vector, PredIteratorCache,
204/// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
205/// of the loop and loop safety information as arguments.
206/// Diagnostics is emitted via \p ORE. It returns changed status.
207/// \p AllowSpeculation is whether values should be hoisted even if they are not
208/// guaranteed to execute in the loop, but are safe to speculatively execute.
209bool promoteLoopAccessesToScalars(
210 const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &,
211 SmallVectorImpl<Instruction *> &, SmallVectorImpl<MemoryAccess *> &,
212 PredIteratorCache &, LoopInfo *, DominatorTree *, AssumptionCache *AC,
213 const TargetLibraryInfo *, Loop *, MemorySSAUpdater &, ICFLoopSafetyInfo *,
214 OptimizationRemarkEmitter *, bool AllowSpeculation);
215
216/// Does a BFS from a given node to all of its children inside a given loop.
217/// The returned vector of nodes includes the starting point.
218SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
219 const Loop *CurLoop);
220
221/// Returns the instructions that use values defined in the loop.
222SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
223
224/// Find a combination of metadata ("llvm.loop.vectorize.width" and
225/// "llvm.loop.vectorize.scalable.enable") for a loop and use it to construct a
226/// ElementCount. If the metadata "llvm.loop.vectorize.width" cannot be found
227/// then None is returned.
228Optional<ElementCount>
229getOptionalElementCountLoopAttribute(const Loop *TheLoop);
230
231/// Create a new loop identifier for a loop created from a loop transformation.
232///
233/// @param OrigLoopID The loop ID of the loop before the transformation.
234/// @param FollowupAttrs List of attribute names that contain attributes to be
235/// added to the new loop ID.
236/// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited
237/// from the original loop. The following values
238/// are considered:
239/// nullptr : Inherit all attributes from @p OrigLoopID.
240/// "" : Do not inherit any attribute from @p OrigLoopID; only use
241/// those specified by a followup attribute.
242/// "<prefix>": Inherit all attributes except those which start with
243/// <prefix>; commonly used to remove metadata for the
244/// applied transformation.
245/// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return
246/// None.
247///
248/// @return The loop ID for the after-transformation loop. The following values
249/// can be returned:
250/// None : No followup attribute was found; it is up to the
251/// transformation to choose attributes that make sense.
252/// @p OrigLoopID: The original identifier can be reused.
253/// nullptr : The new loop has no attributes.
254/// MDNode* : A new unique loop identifier.
255Optional<MDNode *>
256makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs,
257 const char *InheritOptionsAttrsPrefix = "",
258 bool AlwaysNew = false);
259
260/// Look for the loop attribute that disables all transformation heuristic.
261bool hasDisableAllTransformsHint(const Loop *L);
262
263/// Look for the loop attribute that disables the LICM transformation heuristics.
264bool hasDisableLICMTransformsHint(const Loop *L);
265
266/// The mode sets how eager a transformation should be applied.
267enum TransformationMode {
268 /// The pass can use heuristics to determine whether a transformation should
269 /// be applied.
270 TM_Unspecified,
271
272 /// The transformation should be applied without considering a cost model.
273 TM_Enable,
274
275 /// The transformation should not be applied.
276 TM_Disable,
277
278 /// Force is a flag and should not be used alone.
279 TM_Force = 0x04,
280
281 /// The transformation was directed by the user, e.g. by a #pragma in
282 /// the source code. If the transformation could not be applied, a
283 /// warning should be emitted.
284 TM_ForcedByUser = TM_Enable | TM_Force,
285
286 /// The transformation must not be applied. For instance, `#pragma clang loop
287 /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike
288 /// general loop metadata, it must not be dropped. Most passes should not
289 /// behave differently under TM_Disable and TM_SuppressedByUser.
290 TM_SuppressedByUser = TM_Disable | TM_Force
291};
292
293/// @{
294/// Get the mode for LLVM's supported loop transformations.
295TransformationMode hasUnrollTransformation(const Loop *L);
296TransformationMode hasUnrollAndJamTransformation(const Loop *L);
297TransformationMode hasVectorizeTransformation(const Loop *L);
298TransformationMode hasDistributeTransformation(const Loop *L);
299TransformationMode hasLICMVersioningTransformation(const Loop *L);
300/// @}
301
302/// Set input string into loop metadata by keeping other values intact.
303/// If the string is already in loop metadata update value if it is
304/// different.
305void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
306 unsigned V = 0);
307
308/// Returns a loop's estimated trip count based on branch weight metadata.
309/// In addition if \p EstimatedLoopInvocationWeight is not null it is
310/// initialized with weight of loop's latch leading to the exit.
311/// Returns 0 when the count is estimated to be 0, or None when a meaningful
312/// estimate can not be made.
313Optional<unsigned>
314getLoopEstimatedTripCount(Loop *L,
315 unsigned *EstimatedLoopInvocationWeight = nullptr);
316
317/// Set a loop's branch weight metadata to reflect that loop has \p
318/// EstimatedTripCount iterations and \p EstimatedLoopInvocationWeight exits
319/// through latch. Returns true if metadata is successfully updated, false
320/// otherwise. Note that loop must have a latch block which controls loop exit
321/// in order to succeed.
322bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
323 unsigned EstimatedLoopInvocationWeight);
324
325/// Check inner loop (L) backedge count is known to be invariant on all
326/// iterations of its outer loop. If the loop has no parent, this is trivially
327/// true.
328bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);
329
330/// Helper to consistently add the set of standard passes to a loop pass's \c
331/// AnalysisUsage.
332///
333/// All loop passes should call this as part of implementing their \c
334/// getAnalysisUsage.
335void getLoopAnalysisUsage(AnalysisUsage &AU);
336
337/// Returns true if is legal to hoist or sink this instruction disregarding the
338/// possible introduction of faults. Reasoning about potential faulting
339/// instructions is the responsibility of the caller since it is challenging to
340/// do efficiently from within this routine.
341/// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
342/// target executes at most once per execution of the loop body. This is used
343/// to assess the legality of duplicating atomic loads. Generally, this is
344/// true when moving out of loop and not true when moving into loops.
345/// If \p ORE is set use it to emit optimization remarks.
346bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
347 Loop *CurLoop, MemorySSAUpdater &MSSAU,
348 bool TargetExecutesOncePerLoop,
349 SinkAndHoistLICMFlags &LICMFlags,
350 OptimizationRemarkEmitter *ORE = nullptr);
351
352/// Returns the comparison predicate used when expanding a min/max reduction.
353CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK);
354
355/// See RecurrenceDescriptor::isSelectCmpPattern for a description of the
356/// pattern we are trying to match. In this pattern we are only ever selecting
357/// between two values: 1) an initial PHI start value, and 2) a loop invariant
358/// value. This function uses \p LoopExitInst to determine 2), which we then use
359/// to select between \p Left and \p Right. Any lane value in \p Left that
360/// matches 2) will be merged into \p Right.
361Value *createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, RecurKind RK,
362 Value *Left, Value *Right);
363
364/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
365/// The Builder's fast-math-flags must be set to propagate the expected values.
366Value *createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
367 Value *Right);
368
369/// Generates an ordered vector reduction using extracts to reduce the value.
370Value *getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
371 unsigned Op, RecurKind MinMaxKind = RecurKind::None);
372
373/// Generates a vector reduction using shufflevectors to reduce the value.
374/// Fast-math-flags are propagated using the IRBuilder's setting.
375Value *getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
376 RecurKind MinMaxKind = RecurKind::None);
377
378/// Create a target reduction of the given vector. The reduction operation
379/// is described by the \p Opcode parameter. min/max reductions require
380/// additional information supplied in \p RdxKind.
381/// The target is queried to determine if intrinsics or shuffle sequences are
382/// required to implement the reduction.
383/// Fast-math-flags are propagated using the IRBuilder's setting.
384Value *createSimpleTargetReduction(IRBuilderBase &B,
385 const TargetTransformInfo *TTI, Value *Src,
386 RecurKind RdxKind);
387
388/// Create a target reduction of the given vector \p Src for a reduction of the
389/// kind RecurKind::SelectICmp or RecurKind::SelectFCmp. The reduction operation
390/// is described by \p Desc.
391Value *createSelectCmpTargetReduction(IRBuilderBase &B,
392 const TargetTransformInfo *TTI,
393 Value *Src,
394 const RecurrenceDescriptor &Desc,
395 PHINode *OrigPhi);
396
397/// Create a generic target reduction using a recurrence descriptor \p Desc
398/// The target is queried to determine if intrinsics or shuffle sequences are
399/// required to implement the reduction.
400/// Fast-math-flags are propagated using the RecurrenceDescriptor.
401Value *createTargetReduction(IRBuilderBase &B, const TargetTransformInfo *TTI,
402 const RecurrenceDescriptor &Desc, Value *Src,
403 PHINode *OrigPhi = nullptr);
404
405/// Create an ordered reduction intrinsic using the given recurrence
406/// descriptor \p Desc.
407Value *createOrderedReduction(IRBuilderBase &B,
408 const RecurrenceDescriptor &Desc, Value *Src,
409 Value *Start);
410
411/// Get the intersection (logical and) of all of the potential IR flags
412/// of each scalar operation (VL) that will be converted into a vector (I).
413/// If OpValue is non-null, we only consider operations similar to OpValue
414/// when intersecting.
415/// Flag set: NSW, NUW (if IncludeWrapFlags is true), exact, and all of
416/// fast-math.
417void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr,
418 bool IncludeWrapFlags = true);
419
420/// Returns true if we can prove that \p S is defined and always negative in
421/// loop \p L.
422bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE);
423
424/// Returns true if we can prove that \p S is defined and always non-negative in
425/// loop \p L.
426bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
427 ScalarEvolution &SE);
428
429/// Returns true if \p S is defined and never is equal to signed/unsigned max.
430bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
431 bool Signed);
432
433/// Returns true if \p S is defined and never is equal to signed/unsigned min.
434bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
435 bool Signed);
436
437enum ReplaceExitVal {
438 NeverRepl,
439 OnlyCheapRepl,
440 NoHardUse,
441 UnusedIndVarInLoop,
442 AlwaysRepl
443};
444
445/// If the final value of any expressions that are recurrent in the loop can
446/// be computed, substitute the exit values from the loop into any instructions
447/// outside of the loop that use the final values of the current expressions.
448/// Return the number of loop exit values that have been replaced, and the
449/// corresponding phi node will be added to DeadInsts.
450int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
451 ScalarEvolution *SE, const TargetTransformInfo *TTI,
452 SCEVExpander &Rewriter, DominatorTree *DT,
453 ReplaceExitVal ReplaceExitValue,
454 SmallVector<WeakTrackingVH, 16> &DeadInsts);
455
456/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
457/// \p OrigLoop and the following distribution of \p OrigLoop iteration among \p
458/// UnrolledLoop and \p RemainderLoop. \p UnrolledLoop receives weights that
459/// reflect TC/UF iterations, and \p RemainderLoop receives weights that reflect
460/// the remaining TC%UF iterations.
461///
462/// Note that \p OrigLoop may be equal to either \p UnrolledLoop or \p
463/// RemainderLoop in which case weights for \p OrigLoop are updated accordingly.
464/// Note also behavior is undefined if \p UnrolledLoop and \p RemainderLoop are
465/// equal. \p UF must be greater than zero.
466/// If \p OrigLoop has no profile info associated nothing happens.
467///
468/// This utility may be useful for such optimizations as unroller and
469/// vectorizer as it's typical transformation for them.
470void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
471 Loop *RemainderLoop, uint64_t UF);
472
473/// Utility that implements appending of loops onto a worklist given a range.
474/// We want to process loops in postorder, but the worklist is a LIFO data
475/// structure, so we append to it in *reverse* postorder.
476/// For trees, a preorder traversal is a viable reverse postorder, so we
477/// actually append using a preorder walk algorithm.
478template <typename RangeT>
479void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist<Loop *, 4> &);
480/// Utility that implements appending of loops onto a worklist given a range.
481/// It has the same behavior as appendLoopsToWorklist, but assumes the range of
482/// loops has already been reversed, so it processes loops in the given order.
483template <typename RangeT>
484void appendReversedLoopsToWorklist(RangeT &&,
485 SmallPriorityWorklist<Loop *, 4> &);
486
487/// Utility that implements appending of loops onto a worklist given LoopInfo.
488/// Calls the templated utility taking a Range of loops, handing it the Loops
489/// in LoopInfo, iterated in reverse. This is because the loops are stored in
490/// RPO w.r.t. the control flow graph in LoopInfo. For the purpose of unrolling,
491/// loop deletion, and LICM, we largely want to work forward across the CFG so
492/// that we visit defs before uses and can propagate simplifications from one
493/// loop nest into the next. Calls appendReversedLoopsToWorklist with the
494/// already reversed loops in LI.
495/// FIXME: Consider changing the order in LoopInfo.
496void appendLoopsToWorklist(LoopInfo &, SmallPriorityWorklist<Loop *, 4> &);
497
498/// Recursively clone the specified loop and all of its children,
499/// mapping the blocks with the specified map.
500Loop *cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
501 LoopInfo *LI, LPPassManager *LPM);
502
503/// Add code that checks at runtime if the accessed arrays in \p PointerChecks
504/// overlap. Returns the final comparator value or NULL if no check is needed.
505Value *
506addRuntimeChecks(Instruction *Loc, Loop *TheLoop,
507 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
508 SCEVExpander &Expander);
509
510Value *addDiffRuntimeChecks(
511 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
512 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC);
513
514/// Struct to hold information about a partially invariant condition.
515struct IVConditionInfo {
516 /// Instructions that need to be duplicated and checked for the unswitching
517 /// condition.
518 SmallVector<Instruction *> InstToDuplicate;
519
520 /// Constant to indicate for which value the condition is invariant.
521 Constant *KnownValue = nullptr;
4
Null pointer value stored to 'PartialIVInfo.KnownValue'
522
523 /// True if the partially invariant path is no-op (=does not have any
524 /// side-effects and no loop value is used outside the loop).
525 bool PathIsNoop = true;
526
527 /// If the partially invariant path reaches a single exit block, ExitForPath
528 /// is set to that block. Otherwise it is nullptr.
529 BasicBlock *ExitForPath = nullptr;
530};
531
532/// Check if the loop header has a conditional branch that is not
533/// loop-invariant, because it involves load instructions. If all paths from
534/// either the true or false successor to the header or loop exists do not
535/// modify the memory feeding the condition, perform 'partial unswitching'. That
536/// is, duplicate the instructions feeding the condition in the pre-header. Then
537/// unswitch on the duplicated condition. The condition is now known in the
538/// unswitched version for the 'invariant' path through the original loop.
539///
540/// If the branch condition of the header is partially invariant, return a pair
541/// containing the instructions to duplicate and a boolean Constant to update
542/// the condition in the loops created for the true or false successors.
543Optional<IVConditionInfo> hasPartialIVCondition(Loop &L, unsigned MSSAThreshold,
544 MemorySSA &MSSA, AAResults &AA);
545
546} // end namespace llvm
547
548#endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H