Bug Summary

File:lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
Warning:line 2763, column 24
The left operand of '>=' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SimpleLoopUnswitch.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp

/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp

1///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10#include "llvm/ADT/DenseMap.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/Sequence.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/Twine.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CFG.h"
20#include "llvm/Analysis/CodeMetrics.h"
21#include "llvm/Analysis/GuardUtils.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopAnalysisManager.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/LoopIterator.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/Utils/Local.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GenericDomTree.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Cloning.h"
50#include "llvm/Transforms/Utils/LoopUtils.h"
51#include "llvm/Transforms/Utils/ValueMapper.h"
52#include <algorithm>
53#include <cassert>
54#include <iterator>
55#include <numeric>
56#include <utility>
57
58#define DEBUG_TYPE"simple-loop-unswitch" "simple-loop-unswitch"
59
60using namespace llvm;
61
62STATISTIC(NumBranches, "Number of branches unswitched")static llvm::Statistic NumBranches = {"simple-loop-unswitch",
"NumBranches", "Number of branches unswitched"}
;
63STATISTIC(NumSwitches, "Number of switches unswitched")static llvm::Statistic NumSwitches = {"simple-loop-unswitch",
"NumSwitches", "Number of switches unswitched"}
;
64STATISTIC(NumGuards, "Number of guards turned into branches for unswitching")static llvm::Statistic NumGuards = {"simple-loop-unswitch", "NumGuards"
, "Number of guards turned into branches for unswitching"}
;
65STATISTIC(NumTrivial, "Number of unswitches that are trivial")static llvm::Statistic NumTrivial = {"simple-loop-unswitch", "NumTrivial"
, "Number of unswitches that are trivial"}
;
66STATISTIC(static llvm::Statistic NumCostMultiplierSkipped = {"simple-loop-unswitch"
, "NumCostMultiplierSkipped", "Number of unswitch candidates that had their cost multiplier skipped"
}
67 NumCostMultiplierSkipped,static llvm::Statistic NumCostMultiplierSkipped = {"simple-loop-unswitch"
, "NumCostMultiplierSkipped", "Number of unswitch candidates that had their cost multiplier skipped"
}
68 "Number of unswitch candidates that had their cost multiplier skipped")static llvm::Statistic NumCostMultiplierSkipped = {"simple-loop-unswitch"
, "NumCostMultiplierSkipped", "Number of unswitch candidates that had their cost multiplier skipped"
}
;
69
70static cl::opt<bool> EnableNonTrivialUnswitch(
71 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
72 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
73 "following the configuration passed into the pass."));
74
75static cl::opt<int>
76 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
77 cl::desc("The cost threshold for unswitching a loop."));
78
79static cl::opt<bool> EnableUnswitchCostMultiplier(
80 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
81 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
82 "explosion in nontrivial unswitch."));
83static cl::opt<int> UnswitchSiblingsToplevelDiv(
84 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
85 cl::desc("Toplevel siblings divisor for cost multiplier."));
86static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
87 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
88 cl::desc("Number of unswitch candidates that are ignored when calculating "
89 "cost multiplier."));
90static cl::opt<bool> UnswitchGuards(
91 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
92 cl::desc("If enabled, simple loop unswitching will also consider "
93 "llvm.experimental.guard intrinsics as unswitch candidates."));
94
95/// Collect all of the loop invariant input values transitively used by the
96/// homogeneous instruction graph from a given root.
97///
98/// This essentially walks from a root recursively through loop variant operands
99/// which have the exact same opcode and finds all inputs which are loop
100/// invariant. For some operations these can be re-associated and unswitched out
101/// of the loop entirely.
102static TinyPtrVector<Value *>
103collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
104 LoopInfo &LI) {
105 assert(!L.isLoopInvariant(&Root) &&((!L.isLoopInvariant(&Root) && "Only need to walk the graph if root itself is not invariant."
) ? static_cast<void> (0) : __assert_fail ("!L.isLoopInvariant(&Root) && \"Only need to walk the graph if root itself is not invariant.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 106, __PRETTY_FUNCTION__))
106 "Only need to walk the graph if root itself is not invariant.")((!L.isLoopInvariant(&Root) && "Only need to walk the graph if root itself is not invariant."
) ? static_cast<void> (0) : __assert_fail ("!L.isLoopInvariant(&Root) && \"Only need to walk the graph if root itself is not invariant.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 106, __PRETTY_FUNCTION__))
;
107 TinyPtrVector<Value *> Invariants;
108
109 // Build a worklist and recurse through operators collecting invariants.
110 SmallVector<Instruction *, 4> Worklist;
111 SmallPtrSet<Instruction *, 8> Visited;
112 Worklist.push_back(&Root);
113 Visited.insert(&Root);
114 do {
115 Instruction &I = *Worklist.pop_back_val();
116 for (Value *OpV : I.operand_values()) {
117 // Skip constants as unswitching isn't interesting for them.
118 if (isa<Constant>(OpV))
119 continue;
120
121 // Add it to our result if loop invariant.
122 if (L.isLoopInvariant(OpV)) {
123 Invariants.push_back(OpV);
124 continue;
125 }
126
127 // If not an instruction with the same opcode, nothing we can do.
128 Instruction *OpI = dyn_cast<Instruction>(OpV);
129 if (!OpI || OpI->getOpcode() != Root.getOpcode())
130 continue;
131
132 // Visit this operand.
133 if (Visited.insert(OpI).second)
134 Worklist.push_back(OpI);
135 }
136 } while (!Worklist.empty());
137
138 return Invariants;
139}
140
141static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
142 Constant &Replacement) {
143 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?")((!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"
) ? static_cast<void> (0) : __assert_fail ("!isa<Constant>(Invariant) && \"Why are we unswitching on a constant?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 143, __PRETTY_FUNCTION__))
;
144
145 // Replace uses of LIC in the loop with the given constant.
146 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
147 // Grab the use and walk past it so we can clobber it in the use list.
148 Use *U = &*UI++;
149 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
150
151 // Replace this use within the loop body.
152 if (UserI && L.contains(UserI))
153 U->set(&Replacement);
154 }
155}
156
157/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
158/// incoming values along this edge.
159static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
160 BasicBlock &ExitBB) {
161 for (Instruction &I : ExitBB) {
162 auto *PN = dyn_cast<PHINode>(&I);
163 if (!PN)
164 // No more PHIs to check.
165 return true;
166
167 // If the incoming value for this edge isn't loop invariant the unswitch
168 // won't be trivial.
169 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
170 return false;
171 }
172 llvm_unreachable("Basic blocks should never be empty!")::llvm::llvm_unreachable_internal("Basic blocks should never be empty!"
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 172)
;
173}
174
175/// Insert code to test a set of loop invariant values, and conditionally branch
176/// on them.
177static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
178 ArrayRef<Value *> Invariants,
179 bool Direction,
180 BasicBlock &UnswitchedSucc,
181 BasicBlock &NormalSucc) {
182 IRBuilder<> IRB(&BB);
183
184 Value *Cond = Direction ? IRB.CreateOr(Invariants) :
185 IRB.CreateAnd(Invariants);
186 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
187 Direction ? &NormalSucc : &UnswitchedSucc);
188}
189
190/// Rewrite the PHI nodes in an unswitched loop exit basic block.
191///
192/// Requires that the loop exit and unswitched basic block are the same, and
193/// that the exiting block was a unique predecessor of that block. Rewrites the
194/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
195/// PHI nodes from the old preheader that now contains the unswitched
196/// terminator.
197static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
198 BasicBlock &OldExitingBB,
199 BasicBlock &OldPH) {
200 for (PHINode &PN : UnswitchedBB.phis()) {
201 // When the loop exit is directly unswitched we just need to update the
202 // incoming basic block. We loop to handle weird cases with repeated
203 // incoming blocks, but expect to typically only have one operand here.
204 for (auto i : seq<int>(0, PN.getNumOperands())) {
205 assert(PN.getIncomingBlock(i) == &OldExitingBB &&((PN.getIncomingBlock(i) == &OldExitingBB && "Found incoming block different from unique predecessor!"
) ? static_cast<void> (0) : __assert_fail ("PN.getIncomingBlock(i) == &OldExitingBB && \"Found incoming block different from unique predecessor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 206, __PRETTY_FUNCTION__))
206 "Found incoming block different from unique predecessor!")((PN.getIncomingBlock(i) == &OldExitingBB && "Found incoming block different from unique predecessor!"
) ? static_cast<void> (0) : __assert_fail ("PN.getIncomingBlock(i) == &OldExitingBB && \"Found incoming block different from unique predecessor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 206, __PRETTY_FUNCTION__))
;
207 PN.setIncomingBlock(i, &OldPH);
208 }
209 }
210}
211
212/// Rewrite the PHI nodes in the loop exit basic block and the split off
213/// unswitched block.
214///
215/// Because the exit block remains an exit from the loop, this rewrites the
216/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
217/// nodes into the unswitched basic block to select between the value in the
218/// old preheader and the loop exit.
219static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
220 BasicBlock &UnswitchedBB,
221 BasicBlock &OldExitingBB,
222 BasicBlock &OldPH,
223 bool FullUnswitch) {
224 assert(&ExitBB != &UnswitchedBB &&((&ExitBB != &UnswitchedBB && "Must have different loop exit and unswitched blocks!"
) ? static_cast<void> (0) : __assert_fail ("&ExitBB != &UnswitchedBB && \"Must have different loop exit and unswitched blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 225, __PRETTY_FUNCTION__))
225 "Must have different loop exit and unswitched blocks!")((&ExitBB != &UnswitchedBB && "Must have different loop exit and unswitched blocks!"
) ? static_cast<void> (0) : __assert_fail ("&ExitBB != &UnswitchedBB && \"Must have different loop exit and unswitched blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 225, __PRETTY_FUNCTION__))
;
226 Instruction *InsertPt = &*UnswitchedBB.begin();
227 for (PHINode &PN : ExitBB.phis()) {
228 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
229 PN.getName() + ".split", InsertPt);
230
231 // Walk backwards over the old PHI node's inputs to minimize the cost of
232 // removing each one. We have to do this weird loop manually so that we
233 // create the same number of new incoming edges in the new PHI as we expect
234 // each case-based edge to be included in the unswitched switch in some
235 // cases.
236 // FIXME: This is really, really gross. It would be much cleaner if LLVM
237 // allowed us to create a single entry for a predecessor block without
238 // having separate entries for each "edge" even though these edges are
239 // required to produce identical results.
240 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
241 if (PN.getIncomingBlock(i) != &OldExitingBB)
242 continue;
243
244 Value *Incoming = PN.getIncomingValue(i);
245 if (FullUnswitch)
246 // No more edge from the old exiting block to the exit block.
247 PN.removeIncomingValue(i);
248
249 NewPN->addIncoming(Incoming, &OldPH);
250 }
251
252 // Now replace the old PHI with the new one and wire the old one in as an
253 // input to the new one.
254 PN.replaceAllUsesWith(NewPN);
255 NewPN->addIncoming(&PN, &ExitBB);
256 }
257}
258
259/// Hoist the current loop up to the innermost loop containing a remaining exit.
260///
261/// Because we've removed an exit from the loop, we may have changed the set of
262/// loops reachable and need to move the current loop up the loop nest or even
263/// to an entirely separate nest.
264static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
265 DominatorTree &DT, LoopInfo &LI,
266 MemorySSAUpdater *MSSAU) {
267 // If the loop is already at the top level, we can't hoist it anywhere.
268 Loop *OldParentL = L.getParentLoop();
269 if (!OldParentL)
270 return;
271
272 SmallVector<BasicBlock *, 4> Exits;
273 L.getExitBlocks(Exits);
274 Loop *NewParentL = nullptr;
275 for (auto *ExitBB : Exits)
276 if (Loop *ExitL = LI.getLoopFor(ExitBB))
277 if (!NewParentL || NewParentL->contains(ExitL))
278 NewParentL = ExitL;
279
280 if (NewParentL == OldParentL)
281 return;
282
283 // The new parent loop (if different) should always contain the old one.
284 if (NewParentL)
285 assert(NewParentL->contains(OldParentL) &&((NewParentL->contains(OldParentL) && "Can only hoist this loop up the nest!"
) ? static_cast<void> (0) : __assert_fail ("NewParentL->contains(OldParentL) && \"Can only hoist this loop up the nest!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 286, __PRETTY_FUNCTION__))
286 "Can only hoist this loop up the nest!")((NewParentL->contains(OldParentL) && "Can only hoist this loop up the nest!"
) ? static_cast<void> (0) : __assert_fail ("NewParentL->contains(OldParentL) && \"Can only hoist this loop up the nest!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 286, __PRETTY_FUNCTION__))
;
287
288 // The preheader will need to move with the body of this loop. However,
289 // because it isn't in this loop we also need to update the primary loop map.
290 assert(OldParentL == LI.getLoopFor(&Preheader) &&((OldParentL == LI.getLoopFor(&Preheader) && "Parent loop of this loop should contain this loop's preheader!"
) ? static_cast<void> (0) : __assert_fail ("OldParentL == LI.getLoopFor(&Preheader) && \"Parent loop of this loop should contain this loop's preheader!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 291, __PRETTY_FUNCTION__))
291 "Parent loop of this loop should contain this loop's preheader!")((OldParentL == LI.getLoopFor(&Preheader) && "Parent loop of this loop should contain this loop's preheader!"
) ? static_cast<void> (0) : __assert_fail ("OldParentL == LI.getLoopFor(&Preheader) && \"Parent loop of this loop should contain this loop's preheader!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 291, __PRETTY_FUNCTION__))
;
292 LI.changeLoopFor(&Preheader, NewParentL);
293
294 // Remove this loop from its old parent.
295 OldParentL->removeChildLoop(&L);
296
297 // Add the loop either to the new parent or as a top-level loop.
298 if (NewParentL)
299 NewParentL->addChildLoop(&L);
300 else
301 LI.addTopLevelLoop(&L);
302
303 // Remove this loops blocks from the old parent and every other loop up the
304 // nest until reaching the new parent. Also update all of these
305 // no-longer-containing loops to reflect the nesting change.
306 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
307 OldContainingL = OldContainingL->getParentLoop()) {
308 llvm::erase_if(OldContainingL->getBlocksVector(),
309 [&](const BasicBlock *BB) {
310 return BB == &Preheader || L.contains(BB);
311 });
312
313 OldContainingL->getBlocksSet().erase(&Preheader);
314 for (BasicBlock *BB : L.blocks())
315 OldContainingL->getBlocksSet().erase(BB);
316
317 // Because we just hoisted a loop out of this one, we have essentially
318 // created new exit paths from it. That means we need to form LCSSA PHI
319 // nodes for values used in the no-longer-nested loop.
320 formLCSSA(*OldContainingL, DT, &LI, nullptr);
321
322 // We shouldn't need to form dedicated exits because the exit introduced
323 // here is the (just split by unswitching) preheader. However, after trivial
324 // unswitching it is possible to get new non-dedicated exits out of parent
325 // loop so let's conservatively form dedicated exit blocks and figure out
326 // if we can optimize later.
327 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
328 /*PreserveLCSSA*/ true);
329 }
330}
331
332/// Unswitch a trivial branch if the condition is loop invariant.
333///
334/// This routine should only be called when loop code leading to the branch has
335/// been validated as trivial (no side effects). This routine checks if the
336/// condition is invariant and one of the successors is a loop exit. This
337/// allows us to unswitch without duplicating the loop, making it trivial.
338///
339/// If this routine fails to unswitch the branch it returns false.
340///
341/// If the branch can be unswitched, this routine splits the preheader and
342/// hoists the branch above that split. Preserves loop simplified form
343/// (splitting the exit block as necessary). It simplifies the branch within
344/// the loop to an unconditional branch but doesn't remove it entirely. Further
345/// cleanup can be done with some simplify-cfg like pass.
346///
347/// If `SE` is not null, it will be updated based on the potential loop SCEVs
348/// invalidated by this.
349static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
350 LoopInfo &LI, ScalarEvolution *SE,
351 MemorySSAUpdater *MSSAU) {
352 assert(BI.isConditional() && "Can only unswitch a conditional branch!")((BI.isConditional() && "Can only unswitch a conditional branch!"
) ? static_cast<void> (0) : __assert_fail ("BI.isConditional() && \"Can only unswitch a conditional branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 352, __PRETTY_FUNCTION__))
;
353 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Trying to unswitch branch: "
<< BI << "\n"; } } while (false)
;
354
355 // The loop invariant values that we want to unswitch.
356 TinyPtrVector<Value *> Invariants;
357
358 // When true, we're fully unswitching the branch rather than just unswitching
359 // some input conditions to the branch.
360 bool FullUnswitch = false;
361
362 if (L.isLoopInvariant(BI.getCondition())) {
363 Invariants.push_back(BI.getCondition());
364 FullUnswitch = true;
365 } else {
366 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
367 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
368 if (Invariants.empty())
369 // Couldn't find invariant inputs!
370 return false;
371 }
372
373 // Check that one of the branch's successors exits, and which one.
374 bool ExitDirection = true;
375 int LoopExitSuccIdx = 0;
376 auto *LoopExitBB = BI.getSuccessor(0);
377 if (L.contains(LoopExitBB)) {
378 ExitDirection = false;
379 LoopExitSuccIdx = 1;
380 LoopExitBB = BI.getSuccessor(1);
381 if (L.contains(LoopExitBB))
382 return false;
383 }
384 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
385 auto *ParentBB = BI.getParent();
386 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
387 return false;
388
389 // When unswitching only part of the branch's condition, we need the exit
390 // block to be reached directly from the partially unswitched input. This can
391 // be done when the exit block is along the true edge and the branch condition
392 // is a graph of `or` operations, or the exit block is along the false edge
393 // and the condition is a graph of `and` operations.
394 if (!FullUnswitch) {
395 if (ExitDirection) {
396 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
397 return false;
398 } else {
399 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
400 return false;
401 }
402 }
403
404 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
405 dbgs() << " unswitching trivial invariant conditions for: " << BIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
406 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
407 for (Value *Invariant : Invariants) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
408 dbgs() << " " << *Invariant << " == true";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
409 if (Invariant != Invariants.back())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
410 dbgs() << " ||";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
411 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
412 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
413 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { { dbgs() << " unswitching trivial invariant conditions for: "
<< BI << "\n"; for (Value *Invariant : Invariants
) { dbgs() << " " << *Invariant << " == true"
; if (Invariant != Invariants.back()) dbgs() << " ||"; dbgs
() << "\n"; } }; } } while (false)
;
414
415 // If we have scalar evolutions, we need to invalidate them including this
416 // loop and the loop containing the exit block.
417 if (SE) {
418 if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
419 SE->forgetLoop(ExitL);
420 else
421 // Forget the entire nest as this exits the entire nest.
422 SE->forgetTopmostLoop(&L);
423 }
424
425 if (MSSAU && VerifyMemorySSA)
426 MSSAU->getMemorySSA()->verifyMemorySSA();
427
428 // Split the preheader, so that we know that there is a safe place to insert
429 // the conditional branch. We will change the preheader to have a conditional
430 // branch on LoopCond.
431 BasicBlock *OldPH = L.getLoopPreheader();
432 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
433
434 // Now that we have a place to insert the conditional branch, create a place
435 // to branch to: this is the exit block out of the loop that we are
436 // unswitching. We need to split this if there are other loop predecessors.
437 // Because the loop is in simplified form, *any* other predecessor is enough.
438 BasicBlock *UnswitchedBB;
439 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
440 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&((LoopExitBB->getUniquePredecessor() == BI.getParent() &&
"A branch's parent isn't a predecessor!") ? static_cast<void
> (0) : __assert_fail ("LoopExitBB->getUniquePredecessor() == BI.getParent() && \"A branch's parent isn't a predecessor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 441, __PRETTY_FUNCTION__))
441 "A branch's parent isn't a predecessor!")((LoopExitBB->getUniquePredecessor() == BI.getParent() &&
"A branch's parent isn't a predecessor!") ? static_cast<void
> (0) : __assert_fail ("LoopExitBB->getUniquePredecessor() == BI.getParent() && \"A branch's parent isn't a predecessor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 441, __PRETTY_FUNCTION__))
;
442 UnswitchedBB = LoopExitBB;
443 } else {
444 UnswitchedBB =
445 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
446 }
447
448 if (MSSAU && VerifyMemorySSA)
449 MSSAU->getMemorySSA()->verifyMemorySSA();
450
451 // Actually move the invariant uses into the unswitched position. If possible,
452 // we do this by moving the instructions, but when doing partial unswitching
453 // we do it by building a new merge of the values in the unswitched position.
454 OldPH->getTerminator()->eraseFromParent();
455 if (FullUnswitch) {
456 // If fully unswitching, we can use the existing branch instruction.
457 // Splice it into the old PH to gate reaching the new preheader and re-point
458 // its successors.
459 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
460 BI);
461 if (MSSAU) {
462 // Temporarily clone the terminator, to make MSSA update cheaper by
463 // separating "insert edge" updates from "remove edge" ones.
464 ParentBB->getInstList().push_back(BI.clone());
465 } else {
466 // Create a new unconditional branch that will continue the loop as a new
467 // terminator.
468 BranchInst::Create(ContinueBB, ParentBB);
469 }
470 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
471 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
472 } else {
473 // Only unswitching a subset of inputs to the condition, so we will need to
474 // build a new branch that merges the invariant inputs.
475 if (ExitDirection)
476 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Must have an `or` of `i1`s for the condition!"
) ? static_cast<void> (0) : __assert_fail ("cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Must have an `or` of `i1`s for the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 478, __PRETTY_FUNCTION__))
477 Instruction::Or &&((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Must have an `or` of `i1`s for the condition!"
) ? static_cast<void> (0) : __assert_fail ("cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Must have an `or` of `i1`s for the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 478, __PRETTY_FUNCTION__))
478 "Must have an `or` of `i1`s for the condition!")((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Must have an `or` of `i1`s for the condition!"
) ? static_cast<void> (0) : __assert_fail ("cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Must have an `or` of `i1`s for the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 478, __PRETTY_FUNCTION__))
;
479 else
480 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::And && "Must have an `and` of `i1`s for the condition!"
) ? static_cast<void> (0) : __assert_fail ("cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::And && \"Must have an `and` of `i1`s for the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 482, __PRETTY_FUNCTION__))
481 Instruction::And &&((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::And && "Must have an `and` of `i1`s for the condition!"
) ? static_cast<void> (0) : __assert_fail ("cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::And && \"Must have an `and` of `i1`s for the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 482, __PRETTY_FUNCTION__))
482 "Must have an `and` of `i1`s for the condition!")((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::And && "Must have an `and` of `i1`s for the condition!"
) ? static_cast<void> (0) : __assert_fail ("cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::And && \"Must have an `and` of `i1`s for the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 482, __PRETTY_FUNCTION__))
;
483 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
484 *UnswitchedBB, *NewPH);
485 }
486
487 // Update the dominator tree with the added edge.
488 DT.insertEdge(OldPH, UnswitchedBB);
489
490 // After the dominator tree was updated with the added edge, update MemorySSA
491 // if available.
492 if (MSSAU) {
493 SmallVector<CFGUpdate, 1> Updates;
494 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
495 MSSAU->applyInsertUpdates(Updates, DT);
496 }
497
498 // Finish updating dominator tree and memory ssa for full unswitch.
499 if (FullUnswitch) {
500 if (MSSAU) {
501 // Remove the cloned branch instruction.
502 ParentBB->getTerminator()->eraseFromParent();
503 // Create unconditional branch now.
504 BranchInst::Create(ContinueBB, ParentBB);
505 MSSAU->removeEdge(ParentBB, LoopExitBB);
506 }
507 DT.deleteEdge(ParentBB, LoopExitBB);
508 }
509
510 if (MSSAU && VerifyMemorySSA)
511 MSSAU->getMemorySSA()->verifyMemorySSA();
512
513 // Rewrite the relevant PHI nodes.
514 if (UnswitchedBB == LoopExitBB)
515 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
516 else
517 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
518 *ParentBB, *OldPH, FullUnswitch);
519
520 // The constant we can replace all of our invariants with inside the loop
521 // body. If any of the invariants have a value other than this the loop won't
522 // be entered.
523 ConstantInt *Replacement = ExitDirection
524 ? ConstantInt::getFalse(BI.getContext())
525 : ConstantInt::getTrue(BI.getContext());
526
527 // Since this is an i1 condition we can also trivially replace uses of it
528 // within the loop with a constant.
529 for (Value *Invariant : Invariants)
530 replaceLoopInvariantUses(L, Invariant, *Replacement);
531
532 // If this was full unswitching, we may have changed the nesting relationship
533 // for this loop so hoist it to its correct parent if needed.
534 if (FullUnswitch)
535 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
536
537 if (MSSAU && VerifyMemorySSA)
538 MSSAU->getMemorySSA()->verifyMemorySSA();
539
540 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " done: unswitching trivial branch...\n"
; } } while (false)
;
541 ++NumTrivial;
542 ++NumBranches;
543 return true;
544}
545
546/// Unswitch a trivial switch if the condition is loop invariant.
547///
548/// This routine should only be called when loop code leading to the switch has
549/// been validated as trivial (no side effects). This routine checks if the
550/// condition is invariant and that at least one of the successors is a loop
551/// exit. This allows us to unswitch without duplicating the loop, making it
552/// trivial.
553///
554/// If this routine fails to unswitch the switch it returns false.
555///
556/// If the switch can be unswitched, this routine splits the preheader and
557/// copies the switch above that split. If the default case is one of the
558/// exiting cases, it copies the non-exiting cases and points them at the new
559/// preheader. If the default case is not exiting, it copies the exiting cases
560/// and points the default at the preheader. It preserves loop simplified form
561/// (splitting the exit blocks as necessary). It simplifies the switch within
562/// the loop by removing now-dead cases. If the default case is one of those
563/// unswitched, it replaces its destination with a new basic block containing
564/// only unreachable. Such basic blocks, while technically loop exits, are not
565/// considered for unswitching so this is a stable transform and the same
566/// switch will not be revisited. If after unswitching there is only a single
567/// in-loop successor, the switch is further simplified to an unconditional
568/// branch. Still more cleanup can be done with some simplify-cfg like pass.
569///
570/// If `SE` is not null, it will be updated based on the potential loop SCEVs
571/// invalidated by this.
572static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
573 LoopInfo &LI, ScalarEvolution *SE,
574 MemorySSAUpdater *MSSAU) {
575 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Trying to unswitch switch: "
<< SI << "\n"; } } while (false)
;
576 Value *LoopCond = SI.getCondition();
577
578 // If this isn't switching on an invariant condition, we can't unswitch it.
579 if (!L.isLoopInvariant(LoopCond))
580 return false;
581
582 auto *ParentBB = SI.getParent();
583
584 SmallVector<int, 4> ExitCaseIndices;
585 for (auto Case : SI.cases()) {
586 auto *SuccBB = Case.getCaseSuccessor();
587 if (!L.contains(SuccBB) &&
588 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
589 ExitCaseIndices.push_back(Case.getCaseIndex());
590 }
591 BasicBlock *DefaultExitBB = nullptr;
592 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
593 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
594 if (!L.contains(SI.getDefaultDest()) &&
595 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
596 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
597 DefaultExitBB = SI.getDefaultDest();
598 } else if (ExitCaseIndices.empty())
599 return false;
600
601 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " unswitching trivial switch...\n"
; } } while (false)
;
602
603 if (MSSAU && VerifyMemorySSA)
604 MSSAU->getMemorySSA()->verifyMemorySSA();
605
606 // We may need to invalidate SCEVs for the outermost loop reached by any of
607 // the exits.
608 Loop *OuterL = &L;
609
610 if (DefaultExitBB) {
611 // Clear out the default destination temporarily to allow accurate
612 // predecessor lists to be examined below.
613 SI.setDefaultDest(nullptr);
614 // Check the loop containing this exit.
615 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
616 if (!ExitL || ExitL->contains(OuterL))
617 OuterL = ExitL;
618 }
619
620 // Store the exit cases into a separate data structure and remove them from
621 // the switch.
622 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
623 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
624 4> ExitCases;
625 ExitCases.reserve(ExitCaseIndices.size());
626 SwitchInstProfUpdateWrapper SIW(SI);
627 // We walk the case indices backwards so that we remove the last case first
628 // and don't disrupt the earlier indices.
629 for (unsigned Index : reverse(ExitCaseIndices)) {
630 auto CaseI = SI.case_begin() + Index;
631 // Compute the outer loop from this exit.
632 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
633 if (!ExitL || ExitL->contains(OuterL))
634 OuterL = ExitL;
635 // Save the value of this case.
636 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
637 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
638 // Delete the unswitched cases.
639 SIW.removeCase(CaseI);
640 }
641
642 if (SE) {
643 if (OuterL)
644 SE->forgetLoop(OuterL);
645 else
646 SE->forgetTopmostLoop(&L);
647 }
648
649 // Check if after this all of the remaining cases point at the same
650 // successor.
651 BasicBlock *CommonSuccBB = nullptr;
652 if (SI.getNumCases() > 0 &&
653 std::all_of(std::next(SI.case_begin()), SI.case_end(),
654 [&SI](const SwitchInst::CaseHandle &Case) {
655 return Case.getCaseSuccessor() ==
656 SI.case_begin()->getCaseSuccessor();
657 }))
658 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
659 if (!DefaultExitBB) {
660 // If we're not unswitching the default, we need it to match any cases to
661 // have a common successor or if we have no cases it is the common
662 // successor.
663 if (SI.getNumCases() == 0)
664 CommonSuccBB = SI.getDefaultDest();
665 else if (SI.getDefaultDest() != CommonSuccBB)
666 CommonSuccBB = nullptr;
667 }
668
669 // Split the preheader, so that we know that there is a safe place to insert
670 // the switch.
671 BasicBlock *OldPH = L.getLoopPreheader();
672 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
673 OldPH->getTerminator()->eraseFromParent();
674
675 // Now add the unswitched switch.
676 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
677 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
678
679 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
680 // First, we split any exit blocks with remaining in-loop predecessors. Then
681 // we update the PHIs in one of two ways depending on if there was a split.
682 // We walk in reverse so that we split in the same order as the cases
683 // appeared. This is purely for convenience of reading the resulting IR, but
684 // it doesn't cost anything really.
685 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
686 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
687 // Handle the default exit if necessary.
688 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
689 // ranges aren't quite powerful enough yet.
690 if (DefaultExitBB) {
691 if (pred_empty(DefaultExitBB)) {
692 UnswitchedExitBBs.insert(DefaultExitBB);
693 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
694 } else {
695 auto *SplitBB =
696 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
697 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
698 *ParentBB, *OldPH,
699 /*FullUnswitch*/ true);
700 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
701 }
702 }
703 // Note that we must use a reference in the for loop so that we update the
704 // container.
705 for (auto &ExitCase : reverse(ExitCases)) {
706 // Grab a reference to the exit block in the pair so that we can update it.
707 BasicBlock *ExitBB = std::get<1>(ExitCase);
708
709 // If this case is the last edge into the exit block, we can simply reuse it
710 // as it will no longer be a loop exit. No mapping necessary.
711 if (pred_empty(ExitBB)) {
712 // Only rewrite once.
713 if (UnswitchedExitBBs.insert(ExitBB).second)
714 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
715 continue;
716 }
717
718 // Otherwise we need to split the exit block so that we retain an exit
719 // block from the loop and a target for the unswitched condition.
720 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
721 if (!SplitExitBB) {
722 // If this is the first time we see this, do the split and remember it.
723 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
724 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
725 *ParentBB, *OldPH,
726 /*FullUnswitch*/ true);
727 }
728 // Update the case pair to point to the split block.
729 std::get<1>(ExitCase) = SplitExitBB;
730 }
731
732 // Now add the unswitched cases. We do this in reverse order as we built them
733 // in reverse order.
734 for (auto &ExitCase : reverse(ExitCases)) {
735 ConstantInt *CaseVal = std::get<0>(ExitCase);
736 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
737
738 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
739 }
740
741 // If the default was unswitched, re-point it and add explicit cases for
742 // entering the loop.
743 if (DefaultExitBB) {
744 NewSIW->setDefaultDest(DefaultExitBB);
745 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
746
747 // We removed all the exit cases, so we just copy the cases to the
748 // unswitched switch.
749 for (const auto &Case : SI.cases())
750 NewSIW.addCase(Case.getCaseValue(), NewPH,
751 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
752 } else if (DefaultCaseWeight) {
753 // We have to set branch weight of the default case.
754 uint64_t SW = *DefaultCaseWeight;
755 for (const auto &Case : SI.cases()) {
756 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
757 assert(W &&((W && "case weight must be defined as default case weight is defined"
) ? static_cast<void> (0) : __assert_fail ("W && \"case weight must be defined as default case weight is defined\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 758, __PRETTY_FUNCTION__))
758 "case weight must be defined as default case weight is defined")((W && "case weight must be defined as default case weight is defined"
) ? static_cast<void> (0) : __assert_fail ("W && \"case weight must be defined as default case weight is defined\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 758, __PRETTY_FUNCTION__))
;
759 SW += *W;
760 }
761 NewSIW.setSuccessorWeight(0, SW);
762 }
763
764 // If we ended up with a common successor for every path through the switch
765 // after unswitching, rewrite it to an unconditional branch to make it easy
766 // to recognize. Otherwise we potentially have to recognize the default case
767 // pointing at unreachable and other complexity.
768 if (CommonSuccBB) {
769 BasicBlock *BB = SI.getParent();
770 // We may have had multiple edges to this common successor block, so remove
771 // them as predecessors. We skip the first one, either the default or the
772 // actual first case.
773 bool SkippedFirst = DefaultExitBB == nullptr;
774 for (auto Case : SI.cases()) {
775 assert(Case.getCaseSuccessor() == CommonSuccBB &&((Case.getCaseSuccessor() == CommonSuccBB && "Non-common successor!"
) ? static_cast<void> (0) : __assert_fail ("Case.getCaseSuccessor() == CommonSuccBB && \"Non-common successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 776, __PRETTY_FUNCTION__))
776 "Non-common successor!")((Case.getCaseSuccessor() == CommonSuccBB && "Non-common successor!"
) ? static_cast<void> (0) : __assert_fail ("Case.getCaseSuccessor() == CommonSuccBB && \"Non-common successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 776, __PRETTY_FUNCTION__))
;
777 (void)Case;
778 if (!SkippedFirst) {
779 SkippedFirst = true;
780 continue;
781 }
782 CommonSuccBB->removePredecessor(BB,
783 /*KeepOneInputPHIs*/ true);
784 }
785 // Now nuke the switch and replace it with a direct branch.
786 SIW.eraseFromParent();
787 BranchInst::Create(CommonSuccBB, BB);
788 } else if (DefaultExitBB) {
789 assert(SI.getNumCases() > 0 &&((SI.getNumCases() > 0 && "If we had no cases we'd have a common successor!"
) ? static_cast<void> (0) : __assert_fail ("SI.getNumCases() > 0 && \"If we had no cases we'd have a common successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 790, __PRETTY_FUNCTION__))
790 "If we had no cases we'd have a common successor!")((SI.getNumCases() > 0 && "If we had no cases we'd have a common successor!"
) ? static_cast<void> (0) : __assert_fail ("SI.getNumCases() > 0 && \"If we had no cases we'd have a common successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 790, __PRETTY_FUNCTION__))
;
791 // Move the last case to the default successor. This is valid as if the
792 // default got unswitched it cannot be reached. This has the advantage of
793 // being simple and keeping the number of edges from this switch to
794 // successors the same, and avoiding any PHI update complexity.
795 auto LastCaseI = std::prev(SI.case_end());
796
797 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
798 SIW.setSuccessorWeight(
799 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
800 SIW.removeCase(LastCaseI);
801 }
802
803 // Walk the unswitched exit blocks and the unswitched split blocks and update
804 // the dominator tree based on the CFG edits. While we are walking unordered
805 // containers here, the API for applyUpdates takes an unordered list of
806 // updates and requires them to not contain duplicates.
807 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
808 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
809 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
810 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
811 }
812 for (auto SplitUnswitchedPair : SplitExitBBMap) {
813 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
814 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
815 }
816 DT.applyUpdates(DTUpdates);
817
818 if (MSSAU) {
819 MSSAU->applyUpdates(DTUpdates, DT);
820 if (VerifyMemorySSA)
821 MSSAU->getMemorySSA()->verifyMemorySSA();
822 }
823
824 assert(DT.verify(DominatorTree::VerificationLevel::Fast))((DT.verify(DominatorTree::VerificationLevel::Fast)) ? static_cast
<void> (0) : __assert_fail ("DT.verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 824, __PRETTY_FUNCTION__))
;
825
826 // We may have changed the nesting relationship for this loop so hoist it to
827 // its correct parent if needed.
828 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
829
830 if (MSSAU && VerifyMemorySSA)
831 MSSAU->getMemorySSA()->verifyMemorySSA();
832
833 ++NumTrivial;
834 ++NumSwitches;
835 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " done: unswitching trivial switch...\n"
; } } while (false)
;
836 return true;
837}
838
839/// This routine scans the loop to find a branch or switch which occurs before
840/// any side effects occur. These can potentially be unswitched without
841/// duplicating the loop. If a branch or switch is successfully unswitched the
842/// scanning continues to see if subsequent branches or switches have become
843/// trivial. Once all trivial candidates have been unswitched, this routine
844/// returns.
845///
846/// The return value indicates whether anything was unswitched (and therefore
847/// changed).
848///
849/// If `SE` is not null, it will be updated based on the potential loop SCEVs
850/// invalidated by this.
851static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
852 LoopInfo &LI, ScalarEvolution *SE,
853 MemorySSAUpdater *MSSAU) {
854 bool Changed = false;
855
856 // If loop header has only one reachable successor we should keep looking for
857 // trivial condition candidates in the successor as well. An alternative is
858 // to constant fold conditions and merge successors into loop header (then we
859 // only need to check header's terminator). The reason for not doing this in
860 // LoopUnswitch pass is that it could potentially break LoopPassManager's
861 // invariants. Folding dead branches could either eliminate the current loop
862 // or make other loops unreachable. LCSSA form might also not be preserved
863 // after deleting branches. The following code keeps traversing loop header's
864 // successors until it finds the trivial condition candidate (condition that
865 // is not a constant). Since unswitching generates branches with constant
866 // conditions, this scenario could be very common in practice.
867 BasicBlock *CurrentBB = L.getHeader();
868 SmallPtrSet<BasicBlock *, 8> Visited;
869 Visited.insert(CurrentBB);
870 do {
871 // Check if there are any side-effecting instructions (e.g. stores, calls,
872 // volatile loads) in the part of the loop that the code *would* execute
873 // without unswitching.
874 if (MSSAU) // Possible early exit with MSSA
875 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
876 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
877 return Changed;
878 if (llvm::any_of(*CurrentBB,
879 [](Instruction &I) { return I.mayHaveSideEffects(); }))
880 return Changed;
881
882 Instruction *CurrentTerm = CurrentBB->getTerminator();
883
884 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
885 // Don't bother trying to unswitch past a switch with a constant
886 // condition. This should be removed prior to running this pass by
887 // simplify-cfg.
888 if (isa<Constant>(SI->getCondition()))
889 return Changed;
890
891 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
892 // Couldn't unswitch this one so we're done.
893 return Changed;
894
895 // Mark that we managed to unswitch something.
896 Changed = true;
897
898 // If unswitching turned the terminator into an unconditional branch then
899 // we can continue. The unswitching logic specifically works to fold any
900 // cases it can into an unconditional branch to make it easier to
901 // recognize here.
902 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
903 if (!BI || BI->isConditional())
904 return Changed;
905
906 CurrentBB = BI->getSuccessor(0);
907 continue;
908 }
909
910 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
911 if (!BI)
912 // We do not understand other terminator instructions.
913 return Changed;
914
915 // Don't bother trying to unswitch past an unconditional branch or a branch
916 // with a constant value. These should be removed by simplify-cfg prior to
917 // running this pass.
918 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
919 return Changed;
920
921 // Found a trivial condition candidate: non-foldable conditional branch. If
922 // we fail to unswitch this, we can't do anything else that is trivial.
923 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
924 return Changed;
925
926 // Mark that we managed to unswitch something.
927 Changed = true;
928
929 // If we only unswitched some of the conditions feeding the branch, we won't
930 // have collapsed it to a single successor.
931 BI = cast<BranchInst>(CurrentBB->getTerminator());
932 if (BI->isConditional())
933 return Changed;
934
935 // Follow the newly unconditional branch into its successor.
936 CurrentBB = BI->getSuccessor(0);
937
938 // When continuing, if we exit the loop or reach a previous visited block,
939 // then we can not reach any trivial condition candidates (unfoldable
940 // branch instructions or switch instructions) and no unswitch can happen.
941 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
942
943 return Changed;
944}
945
946/// Build the cloned blocks for an unswitched copy of the given loop.
947///
948/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
949/// after the split block (`SplitBB`) that will be used to select between the
950/// cloned and original loop.
951///
952/// This routine handles cloning all of the necessary loop blocks and exit
953/// blocks including rewriting their instructions and the relevant PHI nodes.
954/// Any loop blocks or exit blocks which are dominated by a different successor
955/// than the one for this clone of the loop blocks can be trivially skipped. We
956/// use the `DominatingSucc` map to determine whether a block satisfies that
957/// property with a simple map lookup.
958///
959/// It also correctly creates the unconditional branch in the cloned
960/// unswitched parent block to only point at the unswitched successor.
961///
962/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
963/// block splitting is correctly reflected in `LoopInfo`, essentially all of
964/// the cloned blocks (and their loops) are left without full `LoopInfo`
965/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
966/// blocks to them but doesn't create the cloned `DominatorTree` structure and
967/// instead the caller must recompute an accurate DT. It *does* correctly
968/// update the `AssumptionCache` provided in `AC`.
969static BasicBlock *buildClonedLoopBlocks(
970 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
971 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
972 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
973 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
974 ValueToValueMapTy &VMap,
975 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
976 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
977 SmallVector<BasicBlock *, 4> NewBlocks;
978 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
979
980 // We will need to clone a bunch of blocks, wrap up the clone operation in
981 // a helper.
982 auto CloneBlock = [&](BasicBlock *OldBB) {
983 // Clone the basic block and insert it before the new preheader.
984 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
985 NewBB->moveBefore(LoopPH);
986
987 // Record this block and the mapping.
988 NewBlocks.push_back(NewBB);
989 VMap[OldBB] = NewBB;
990
991 return NewBB;
992 };
993
994 // We skip cloning blocks when they have a dominating succ that is not the
995 // succ we are cloning for.
996 auto SkipBlock = [&](BasicBlock *BB) {
997 auto It = DominatingSucc.find(BB);
998 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
999 };
1000
1001 // First, clone the preheader.
1002 auto *ClonedPH = CloneBlock(LoopPH);
1003
1004 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1005 for (auto *LoopBB : L.blocks())
1006 if (!SkipBlock(LoopBB))
1007 CloneBlock(LoopBB);
1008
1009 // Split all the loop exit edges so that when we clone the exit blocks, if
1010 // any of the exit blocks are *also* a preheader for some other loop, we
1011 // don't create multiple predecessors entering the loop header.
1012 for (auto *ExitBB : ExitBlocks) {
1013 if (SkipBlock(ExitBB))
1014 continue;
1015
1016 // When we are going to clone an exit, we don't need to clone all the
1017 // instructions in the exit block and we want to ensure we have an easy
1018 // place to merge the CFG, so split the exit first. This is always safe to
1019 // do because there cannot be any non-loop predecessors of a loop exit in
1020 // loop simplified form.
1021 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1022
1023 // Rearrange the names to make it easier to write test cases by having the
1024 // exit block carry the suffix rather than the merge block carrying the
1025 // suffix.
1026 MergeBB->takeName(ExitBB);
1027 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1028
1029 // Now clone the original exit block.
1030 auto *ClonedExitBB = CloneBlock(ExitBB);
1031 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&((ClonedExitBB->getTerminator()->getNumSuccessors() == 1
&& "Exit block should have been split to have one successor!"
) ? static_cast<void> (0) : __assert_fail ("ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && \"Exit block should have been split to have one successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1032, __PRETTY_FUNCTION__))
1032 "Exit block should have been split to have one successor!")((ClonedExitBB->getTerminator()->getNumSuccessors() == 1
&& "Exit block should have been split to have one successor!"
) ? static_cast<void> (0) : __assert_fail ("ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && \"Exit block should have been split to have one successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1032, __PRETTY_FUNCTION__))
;
1033 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&((ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB
&& "Cloned exit block has the wrong successor!") ? static_cast
<void> (0) : __assert_fail ("ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && \"Cloned exit block has the wrong successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1034, __PRETTY_FUNCTION__))
1034 "Cloned exit block has the wrong successor!")((ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB
&& "Cloned exit block has the wrong successor!") ? static_cast
<void> (0) : __assert_fail ("ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && \"Cloned exit block has the wrong successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1034, __PRETTY_FUNCTION__))
;
1035
1036 // Remap any cloned instructions and create a merge phi node for them.
1037 for (auto ZippedInsts : llvm::zip_first(
1038 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1039 llvm::make_range(ClonedExitBB->begin(),
1040 std::prev(ClonedExitBB->end())))) {
1041 Instruction &I = std::get<0>(ZippedInsts);
1042 Instruction &ClonedI = std::get<1>(ZippedInsts);
1043
1044 // The only instructions in the exit block should be PHI nodes and
1045 // potentially a landing pad.
1046 assert((((isa<PHINode>(I) || isa<LandingPadInst>(I) || isa
<CatchPadInst>(I)) && "Bad instruction in exit block!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && \"Bad instruction in exit block!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1048, __PRETTY_FUNCTION__))
1047 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&(((isa<PHINode>(I) || isa<LandingPadInst>(I) || isa
<CatchPadInst>(I)) && "Bad instruction in exit block!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && \"Bad instruction in exit block!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1048, __PRETTY_FUNCTION__))
1048 "Bad instruction in exit block!")(((isa<PHINode>(I) || isa<LandingPadInst>(I) || isa
<CatchPadInst>(I)) && "Bad instruction in exit block!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && \"Bad instruction in exit block!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1048, __PRETTY_FUNCTION__))
;
1049 // We should have a value map between the instruction and its clone.
1050 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!")((VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"
) ? static_cast<void> (0) : __assert_fail ("VMap.lookup(&I) == &ClonedI && \"Mismatch in the value map!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1050, __PRETTY_FUNCTION__))
;
1051
1052 auto *MergePN =
1053 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1054 &*MergeBB->getFirstInsertionPt());
1055 I.replaceAllUsesWith(MergePN);
1056 MergePN->addIncoming(&I, ExitBB);
1057 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1058 }
1059 }
1060
1061 // Rewrite the instructions in the cloned blocks to refer to the instructions
1062 // in the cloned blocks. We have to do this as a second pass so that we have
1063 // everything available. Also, we have inserted new instructions which may
1064 // include assume intrinsics, so we update the assumption cache while
1065 // processing this.
1066 for (auto *ClonedBB : NewBlocks)
1067 for (Instruction &I : *ClonedBB) {
1068 RemapInstruction(&I, VMap,
1069 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1070 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1071 if (II->getIntrinsicID() == Intrinsic::assume)
1072 AC.registerAssumption(II);
1073 }
1074
1075 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1076 // have spurious incoming values.
1077 for (auto *LoopBB : L.blocks())
1078 if (SkipBlock(LoopBB))
1079 for (auto *SuccBB : successors(LoopBB))
1080 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1081 for (PHINode &PN : ClonedSuccBB->phis())
1082 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1083
1084 // Remove the cloned parent as a predecessor of any successor we ended up
1085 // cloning other than the unswitched one.
1086 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1087 for (auto *SuccBB : successors(ParentBB)) {
1088 if (SuccBB == UnswitchedSuccBB)
1089 continue;
1090
1091 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1092 if (!ClonedSuccBB)
1093 continue;
1094
1095 ClonedSuccBB->removePredecessor(ClonedParentBB,
1096 /*KeepOneInputPHIs*/ true);
1097 }
1098
1099 // Replace the cloned branch with an unconditional branch to the cloned
1100 // unswitched successor.
1101 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1102 ClonedParentBB->getTerminator()->eraseFromParent();
1103 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1104
1105 // If there are duplicate entries in the PHI nodes because of multiple edges
1106 // to the unswitched successor, we need to nuke all but one as we replaced it
1107 // with a direct branch.
1108 for (PHINode &PN : ClonedSuccBB->phis()) {
1109 bool Found = false;
1110 // Loop over the incoming operands backwards so we can easily delete as we
1111 // go without invalidating the index.
1112 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1113 if (PN.getIncomingBlock(i) != ClonedParentBB)
1114 continue;
1115 if (!Found) {
1116 Found = true;
1117 continue;
1118 }
1119 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1120 }
1121 }
1122
1123 // Record the domtree updates for the new blocks.
1124 SmallPtrSet<BasicBlock *, 4> SuccSet;
1125 for (auto *ClonedBB : NewBlocks) {
1126 for (auto *SuccBB : successors(ClonedBB))
1127 if (SuccSet.insert(SuccBB).second)
1128 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1129 SuccSet.clear();
1130 }
1131
1132 return ClonedPH;
1133}
1134
1135/// Recursively clone the specified loop and all of its children.
1136///
1137/// The target parent loop for the clone should be provided, or can be null if
1138/// the clone is a top-level loop. While cloning, all the blocks are mapped
1139/// with the provided value map. The entire original loop must be present in
1140/// the value map. The cloned loop is returned.
1141static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1142 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1143 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1144 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!")((ClonedL.getBlocks().empty() && "Must start with an empty loop!"
) ? static_cast<void> (0) : __assert_fail ("ClonedL.getBlocks().empty() && \"Must start with an empty loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1144, __PRETTY_FUNCTION__))
;
1145 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1146 for (auto *BB : OrigL.blocks()) {
1147 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1148 ClonedL.addBlockEntry(ClonedBB);
1149 if (LI.getLoopFor(BB) == &OrigL)
1150 LI.changeLoopFor(ClonedBB, &ClonedL);
1151 }
1152 };
1153
1154 // We specially handle the first loop because it may get cloned into
1155 // a different parent and because we most commonly are cloning leaf loops.
1156 Loop *ClonedRootL = LI.AllocateLoop();
1157 if (RootParentL)
1158 RootParentL->addChildLoop(ClonedRootL);
1159 else
1160 LI.addTopLevelLoop(ClonedRootL);
1161 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1162
1163 if (OrigRootL.empty())
1164 return ClonedRootL;
1165
1166 // If we have a nest, we can quickly clone the entire loop nest using an
1167 // iterative approach because it is a tree. We keep the cloned parent in the
1168 // data structure to avoid repeatedly querying through a map to find it.
1169 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1170 // Build up the loops to clone in reverse order as we'll clone them from the
1171 // back.
1172 for (Loop *ChildL : llvm::reverse(OrigRootL))
1173 LoopsToClone.push_back({ClonedRootL, ChildL});
1174 do {
1175 Loop *ClonedParentL, *L;
1176 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1177 Loop *ClonedL = LI.AllocateLoop();
1178 ClonedParentL->addChildLoop(ClonedL);
1179 AddClonedBlocksToLoop(*L, *ClonedL);
1180 for (Loop *ChildL : llvm::reverse(*L))
1181 LoopsToClone.push_back({ClonedL, ChildL});
1182 } while (!LoopsToClone.empty());
1183
1184 return ClonedRootL;
1185}
1186
1187/// Build the cloned loops of an original loop from unswitching.
1188///
1189/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1190/// operation. We need to re-verify that there even is a loop (as the backedge
1191/// may not have been cloned), and even if there are remaining backedges the
1192/// backedge set may be different. However, we know that each child loop is
1193/// undisturbed, we only need to find where to place each child loop within
1194/// either any parent loop or within a cloned version of the original loop.
1195///
1196/// Because child loops may end up cloned outside of any cloned version of the
1197/// original loop, multiple cloned sibling loops may be created. All of them
1198/// are returned so that the newly introduced loop nest roots can be
1199/// identified.
1200static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1201 const ValueToValueMapTy &VMap, LoopInfo &LI,
1202 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1203 Loop *ClonedL = nullptr;
1204
1205 auto *OrigPH = OrigL.getLoopPreheader();
1206 auto *OrigHeader = OrigL.getHeader();
1207
1208 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1209 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1210
1211 // We need to know the loops of the cloned exit blocks to even compute the
1212 // accurate parent loop. If we only clone exits to some parent of the
1213 // original parent, we want to clone into that outer loop. We also keep track
1214 // of the loops that our cloned exit blocks participate in.
1215 Loop *ParentL = nullptr;
1216 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1217 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1218 ClonedExitsInLoops.reserve(ExitBlocks.size());
1219 for (auto *ExitBB : ExitBlocks)
1220 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1221 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1222 ExitLoopMap[ClonedExitBB] = ExitL;
1223 ClonedExitsInLoops.push_back(ClonedExitBB);
1224 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1225 ParentL = ExitL;
1226 }
1227 assert((!ParentL || ParentL == OrigL.getParentLoop() ||(((!ParentL || ParentL == OrigL.getParentLoop() || ParentL->
contains(OrigL.getParentLoop())) && "The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? static_cast<void> (0) : __assert_fail
("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1230, __PRETTY_FUNCTION__))
1228 ParentL->contains(OrigL.getParentLoop())) &&(((!ParentL || ParentL == OrigL.getParentLoop() || ParentL->
contains(OrigL.getParentLoop())) && "The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? static_cast<void> (0) : __assert_fail
("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1230, __PRETTY_FUNCTION__))
1229 "The computed parent loop should always contain (or be) the parent of "(((!ParentL || ParentL == OrigL.getParentLoop() || ParentL->
contains(OrigL.getParentLoop())) && "The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? static_cast<void> (0) : __assert_fail
("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1230, __PRETTY_FUNCTION__))
1230 "the original loop.")(((!ParentL || ParentL == OrigL.getParentLoop() || ParentL->
contains(OrigL.getParentLoop())) && "The computed parent loop should always contain (or be) the parent of "
"the original loop.") ? static_cast<void> (0) : __assert_fail
("(!ParentL || ParentL == OrigL.getParentLoop() || ParentL->contains(OrigL.getParentLoop())) && \"The computed parent loop should always contain (or be) the parent of \" \"the original loop.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231
1232 // We build the set of blocks dominated by the cloned header from the set of
1233 // cloned blocks out of the original loop. While not all of these will
1234 // necessarily be in the cloned loop, it is enough to establish that they
1235 // aren't in unreachable cycles, etc.
1236 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1237 for (auto *BB : OrigL.blocks())
1238 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1239 ClonedLoopBlocks.insert(ClonedBB);
1240
1241 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1242 // skipped cloning some region of this loop which can in turn skip some of
1243 // the backedges so we have to rebuild the blocks in the loop based on the
1244 // backedges that remain after cloning.
1245 SmallVector<BasicBlock *, 16> Worklist;
1246 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1247 for (auto *Pred : predecessors(ClonedHeader)) {
1248 // The only possible non-loop header predecessor is the preheader because
1249 // we know we cloned the loop in simplified form.
1250 if (Pred == ClonedPH)
1251 continue;
1252
1253 // Because the loop was in simplified form, the only non-loop predecessor
1254 // should be the preheader.
1255 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "((ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
"header other than the preheader " "that is not part of the loop!"
) ? static_cast<void> (0) : __assert_fail ("ClonedLoopBlocks.count(Pred) && \"Found a predecessor of the loop \" \"header other than the preheader \" \"that is not part of the loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1257, __PRETTY_FUNCTION__))
1256 "header other than the preheader "((ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
"header other than the preheader " "that is not part of the loop!"
) ? static_cast<void> (0) : __assert_fail ("ClonedLoopBlocks.count(Pred) && \"Found a predecessor of the loop \" \"header other than the preheader \" \"that is not part of the loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1257, __PRETTY_FUNCTION__))
1257 "that is not part of the loop!")((ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
"header other than the preheader " "that is not part of the loop!"
) ? static_cast<void> (0) : __assert_fail ("ClonedLoopBlocks.count(Pred) && \"Found a predecessor of the loop \" \"header other than the preheader \" \"that is not part of the loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1257, __PRETTY_FUNCTION__))
;
1258
1259 // Insert this block into the loop set and on the first visit (and if it
1260 // isn't the header we're currently walking) put it into the worklist to
1261 // recurse through.
1262 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1263 Worklist.push_back(Pred);
1264 }
1265
1266 // If we had any backedges then there *is* a cloned loop. Put the header into
1267 // the loop set and then walk the worklist backwards to find all the blocks
1268 // that remain within the loop after cloning.
1269 if (!BlocksInClonedLoop.empty()) {
1270 BlocksInClonedLoop.insert(ClonedHeader);
1271
1272 while (!Worklist.empty()) {
1273 BasicBlock *BB = Worklist.pop_back_val();
1274 assert(BlocksInClonedLoop.count(BB) &&((BlocksInClonedLoop.count(BB) && "Didn't put block into the loop set!"
) ? static_cast<void> (0) : __assert_fail ("BlocksInClonedLoop.count(BB) && \"Didn't put block into the loop set!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1275, __PRETTY_FUNCTION__))
1275 "Didn't put block into the loop set!")((BlocksInClonedLoop.count(BB) && "Didn't put block into the loop set!"
) ? static_cast<void> (0) : __assert_fail ("BlocksInClonedLoop.count(BB) && \"Didn't put block into the loop set!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1275, __PRETTY_FUNCTION__))
;
1276
1277 // Insert any predecessors that are in the possible set into the cloned
1278 // set, and if the insert is successful, add them to the worklist. Note
1279 // that we filter on the blocks that are definitely reachable via the
1280 // backedge to the loop header so we may prune out dead code within the
1281 // cloned loop.
1282 for (auto *Pred : predecessors(BB))
1283 if (ClonedLoopBlocks.count(Pred) &&
1284 BlocksInClonedLoop.insert(Pred).second)
1285 Worklist.push_back(Pred);
1286 }
1287
1288 ClonedL = LI.AllocateLoop();
1289 if (ParentL) {
1290 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1291 ParentL->addChildLoop(ClonedL);
1292 } else {
1293 LI.addTopLevelLoop(ClonedL);
1294 }
1295 NonChildClonedLoops.push_back(ClonedL);
1296
1297 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1298 // We don't want to just add the cloned loop blocks based on how we
1299 // discovered them. The original order of blocks was carefully built in
1300 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1301 // that logic, we just re-walk the original blocks (and those of the child
1302 // loops) and filter them as we add them into the cloned loop.
1303 for (auto *BB : OrigL.blocks()) {
1304 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1305 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1306 continue;
1307
1308 // Directly add the blocks that are only in this loop.
1309 if (LI.getLoopFor(BB) == &OrigL) {
1310 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1311 continue;
1312 }
1313
1314 // We want to manually add it to this loop and parents.
1315 // Registering it with LoopInfo will happen when we clone the top
1316 // loop for this block.
1317 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1318 PL->addBlockEntry(ClonedBB);
1319 }
1320
1321 // Now add each child loop whose header remains within the cloned loop. All
1322 // of the blocks within the loop must satisfy the same constraints as the
1323 // header so once we pass the header checks we can just clone the entire
1324 // child loop nest.
1325 for (Loop *ChildL : OrigL) {
1326 auto *ClonedChildHeader =
1327 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1328 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1329 continue;
1330
1331#ifndef NDEBUG
1332 // We should never have a cloned child loop header but fail to have
1333 // all of the blocks for that child loop.
1334 for (auto *ChildLoopBB : ChildL->blocks())
1335 assert(BlocksInClonedLoop.count(((BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup
(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? static_cast<void>
(0) : __assert_fail ("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1338, __PRETTY_FUNCTION__))
1336 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&((BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup
(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? static_cast<void>
(0) : __assert_fail ("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1338, __PRETTY_FUNCTION__))
1337 "Child cloned loop has a header within the cloned outer "((BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup
(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? static_cast<void>
(0) : __assert_fail ("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1338, __PRETTY_FUNCTION__))
1338 "loop but not all of its blocks!")((BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup
(ChildLoopBB))) && "Child cloned loop has a header within the cloned outer "
"loop but not all of its blocks!") ? static_cast<void>
(0) : __assert_fail ("BlocksInClonedLoop.count( cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && \"Child cloned loop has a header within the cloned outer \" \"loop but not all of its blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1338, __PRETTY_FUNCTION__))
;
1339#endif
1340
1341 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1342 }
1343 }
1344
1345 // Now that we've handled all the components of the original loop that were
1346 // cloned into a new loop, we still need to handle anything from the original
1347 // loop that wasn't in a cloned loop.
1348
1349 // Figure out what blocks are left to place within any loop nest containing
1350 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1351 // them.
1352 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1353 if (BlocksInClonedLoop.empty())
1354 UnloopedBlockSet.insert(ClonedPH);
1355 for (auto *ClonedBB : ClonedLoopBlocks)
1356 if (!BlocksInClonedLoop.count(ClonedBB))
1357 UnloopedBlockSet.insert(ClonedBB);
1358
1359 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1360 // backwards across these to process them inside out. The order shouldn't
1361 // matter as we're just trying to build up the map from inside-out; we use
1362 // the map in a more stably ordered way below.
1363 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1364 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1365 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1366 ExitLoopMap.lookup(RHS)->getLoopDepth();
1367 });
1368
1369 // Populate the existing ExitLoopMap with everything reachable from each
1370 // exit, starting from the inner most exit.
1371 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1372 assert(Worklist.empty() && "Didn't clear worklist!")((Worklist.empty() && "Didn't clear worklist!") ? static_cast
<void> (0) : __assert_fail ("Worklist.empty() && \"Didn't clear worklist!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1372, __PRETTY_FUNCTION__))
;
1373
1374 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1375 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1376
1377 // Walk the CFG back until we hit the cloned PH adding everything reachable
1378 // and in the unlooped set to this exit block's loop.
1379 Worklist.push_back(ExitBB);
1380 do {
1381 BasicBlock *BB = Worklist.pop_back_val();
1382 // We can stop recursing at the cloned preheader (if we get there).
1383 if (BB == ClonedPH)
1384 continue;
1385
1386 for (BasicBlock *PredBB : predecessors(BB)) {
1387 // If this pred has already been moved to our set or is part of some
1388 // (inner) loop, no update needed.
1389 if (!UnloopedBlockSet.erase(PredBB)) {
1390 assert((((BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB
)) && "Predecessor not mapped to a loop!") ? static_cast
<void> (0) : __assert_fail ("(BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && \"Predecessor not mapped to a loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1392, __PRETTY_FUNCTION__))
1391 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&(((BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB
)) && "Predecessor not mapped to a loop!") ? static_cast
<void> (0) : __assert_fail ("(BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && \"Predecessor not mapped to a loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1392, __PRETTY_FUNCTION__))
1392 "Predecessor not mapped to a loop!")(((BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB
)) && "Predecessor not mapped to a loop!") ? static_cast
<void> (0) : __assert_fail ("(BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && \"Predecessor not mapped to a loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1392, __PRETTY_FUNCTION__))
;
1393 continue;
1394 }
1395
1396 // We just insert into the loop set here. We'll add these blocks to the
1397 // exit loop after we build up the set in an order that doesn't rely on
1398 // predecessor order (which in turn relies on use list order).
1399 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1400 (void)Inserted;
1401 assert(Inserted && "Should only visit an unlooped block once!")((Inserted && "Should only visit an unlooped block once!"
) ? static_cast<void> (0) : __assert_fail ("Inserted && \"Should only visit an unlooped block once!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1401, __PRETTY_FUNCTION__))
;
1402
1403 // And recurse through to its predecessors.
1404 Worklist.push_back(PredBB);
1405 }
1406 } while (!Worklist.empty());
1407 }
1408
1409 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1410 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1411 // in their original order adding them to the correct loop.
1412
1413 // We need a stable insertion order. We use the order of the original loop
1414 // order and map into the correct parent loop.
1415 for (auto *BB : llvm::concat<BasicBlock *const>(
1416 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1417 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1418 OuterL->addBasicBlockToLoop(BB, LI);
1419
1420#ifndef NDEBUG
1421 for (auto &BBAndL : ExitLoopMap) {
1422 auto *BB = BBAndL.first;
1423 auto *OuterL = BBAndL.second;
1424 assert(LI.getLoopFor(BB) == OuterL &&((LI.getLoopFor(BB) == OuterL && "Failed to put all blocks into outer loops!"
) ? static_cast<void> (0) : __assert_fail ("LI.getLoopFor(BB) == OuterL && \"Failed to put all blocks into outer loops!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1425, __PRETTY_FUNCTION__))
1425 "Failed to put all blocks into outer loops!")((LI.getLoopFor(BB) == OuterL && "Failed to put all blocks into outer loops!"
) ? static_cast<void> (0) : __assert_fail ("LI.getLoopFor(BB) == OuterL && \"Failed to put all blocks into outer loops!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1425, __PRETTY_FUNCTION__))
;
1426 }
1427#endif
1428
1429 // Now that all the blocks are placed into the correct containing loop in the
1430 // absence of child loops, find all the potentially cloned child loops and
1431 // clone them into whatever outer loop we placed their header into.
1432 for (Loop *ChildL : OrigL) {
1433 auto *ClonedChildHeader =
1434 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1435 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1436 continue;
1437
1438#ifndef NDEBUG
1439 for (auto *ChildLoopBB : ChildL->blocks())
1440 assert(VMap.count(ChildLoopBB) &&((VMap.count(ChildLoopBB) && "Cloned a child loop header but not all of that loops blocks!"
) ? static_cast<void> (0) : __assert_fail ("VMap.count(ChildLoopBB) && \"Cloned a child loop header but not all of that loops blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1441, __PRETTY_FUNCTION__))
1441 "Cloned a child loop header but not all of that loops blocks!")((VMap.count(ChildLoopBB) && "Cloned a child loop header but not all of that loops blocks!"
) ? static_cast<void> (0) : __assert_fail ("VMap.count(ChildLoopBB) && \"Cloned a child loop header but not all of that loops blocks!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1441, __PRETTY_FUNCTION__))
;
1442#endif
1443
1444 NonChildClonedLoops.push_back(cloneLoopNest(
1445 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1446 }
1447}
1448
1449static void
1450deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1451 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1452 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1453 // Find all the dead clones, and remove them from their successors.
1454 SmallVector<BasicBlock *, 16> DeadBlocks;
1455 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1456 for (auto &VMap : VMaps)
1457 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1458 if (!DT.isReachableFromEntry(ClonedBB)) {
1459 for (BasicBlock *SuccBB : successors(ClonedBB))
1460 SuccBB->removePredecessor(ClonedBB);
1461 DeadBlocks.push_back(ClonedBB);
1462 }
1463
1464 // Remove all MemorySSA in the dead blocks
1465 if (MSSAU) {
1466 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1467 DeadBlocks.end());
1468 MSSAU->removeBlocks(DeadBlockSet);
1469 }
1470
1471 // Drop any remaining references to break cycles.
1472 for (BasicBlock *BB : DeadBlocks)
1473 BB->dropAllReferences();
1474 // Erase them from the IR.
1475 for (BasicBlock *BB : DeadBlocks)
1476 BB->eraseFromParent();
1477}
1478
1479static void deleteDeadBlocksFromLoop(Loop &L,
1480 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1481 DominatorTree &DT, LoopInfo &LI,
1482 MemorySSAUpdater *MSSAU) {
1483 // Find all the dead blocks tied to this loop, and remove them from their
1484 // successors.
1485 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1486
1487 // Start with loop/exit blocks and get a transitive closure of reachable dead
1488 // blocks.
1489 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1490 ExitBlocks.end());
1491 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1492 while (!DeathCandidates.empty()) {
1493 auto *BB = DeathCandidates.pop_back_val();
1494 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1495 for (BasicBlock *SuccBB : successors(BB)) {
1496 SuccBB->removePredecessor(BB);
1497 DeathCandidates.push_back(SuccBB);
1498 }
1499 DeadBlockSet.insert(BB);
1500 }
1501 }
1502
1503 // Remove all MemorySSA in the dead blocks
1504 if (MSSAU)
1505 MSSAU->removeBlocks(DeadBlockSet);
1506
1507 // Filter out the dead blocks from the exit blocks list so that it can be
1508 // used in the caller.
1509 llvm::erase_if(ExitBlocks,
1510 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1511
1512 // Walk from this loop up through its parents removing all of the dead blocks.
1513 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1514 for (auto *BB : DeadBlockSet)
1515 ParentL->getBlocksSet().erase(BB);
1516 llvm::erase_if(ParentL->getBlocksVector(),
1517 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1518 }
1519
1520 // Now delete the dead child loops. This raw delete will clear them
1521 // recursively.
1522 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1523 if (!DeadBlockSet.count(ChildL->getHeader()))
1524 return false;
1525
1526 assert(llvm::all_of(ChildL->blocks(),((llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB
) { return DeadBlockSet.count(ChildBB); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? static_cast<void> (0) : __assert_fail
("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1531, __PRETTY_FUNCTION__))
1527 [&](BasicBlock *ChildBB) {((llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB
) { return DeadBlockSet.count(ChildBB); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? static_cast<void> (0) : __assert_fail
("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1531, __PRETTY_FUNCTION__))
1528 return DeadBlockSet.count(ChildBB);((llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB
) { return DeadBlockSet.count(ChildBB); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? static_cast<void> (0) : __assert_fail
("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1531, __PRETTY_FUNCTION__))
1529 }) &&((llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB
) { return DeadBlockSet.count(ChildBB); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? static_cast<void> (0) : __assert_fail
("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1531, __PRETTY_FUNCTION__))
1530 "If the child loop header is dead all blocks in the child loop must "((llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB
) { return DeadBlockSet.count(ChildBB); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? static_cast<void> (0) : __assert_fail
("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1531, __PRETTY_FUNCTION__))
1531 "be dead as well!")((llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB
) { return DeadBlockSet.count(ChildBB); }) && "If the child loop header is dead all blocks in the child loop must "
"be dead as well!") ? static_cast<void> (0) : __assert_fail
("llvm::all_of(ChildL->blocks(), [&](BasicBlock *ChildBB) { return DeadBlockSet.count(ChildBB); }) && \"If the child loop header is dead all blocks in the child loop must \" \"be dead as well!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1531, __PRETTY_FUNCTION__))
;
1532 LI.destroy(ChildL);
1533 return true;
1534 });
1535
1536 // Remove the loop mappings for the dead blocks and drop all the references
1537 // from these blocks to others to handle cyclic references as we start
1538 // deleting the blocks themselves.
1539 for (auto *BB : DeadBlockSet) {
1540 // Check that the dominator tree has already been updated.
1541 assert(!DT.getNode(BB) && "Should already have cleared domtree!")((!DT.getNode(BB) && "Should already have cleared domtree!"
) ? static_cast<void> (0) : __assert_fail ("!DT.getNode(BB) && \"Should already have cleared domtree!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1541, __PRETTY_FUNCTION__))
;
1542 LI.changeLoopFor(BB, nullptr);
1543 BB->dropAllReferences();
1544 }
1545
1546 // Actually delete the blocks now that they've been fully unhooked from the
1547 // IR.
1548 for (auto *BB : DeadBlockSet)
1549 BB->eraseFromParent();
1550}
1551
1552/// Recompute the set of blocks in a loop after unswitching.
1553///
1554/// This walks from the original headers predecessors to rebuild the loop. We
1555/// take advantage of the fact that new blocks can't have been added, and so we
1556/// filter by the original loop's blocks. This also handles potentially
1557/// unreachable code that we don't want to explore but might be found examining
1558/// the predecessors of the header.
1559///
1560/// If the original loop is no longer a loop, this will return an empty set. If
1561/// it remains a loop, all the blocks within it will be added to the set
1562/// (including those blocks in inner loops).
1563static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1564 LoopInfo &LI) {
1565 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1566
1567 auto *PH = L.getLoopPreheader();
1568 auto *Header = L.getHeader();
1569
1570 // A worklist to use while walking backwards from the header.
1571 SmallVector<BasicBlock *, 16> Worklist;
1572
1573 // First walk the predecessors of the header to find the backedges. This will
1574 // form the basis of our walk.
1575 for (auto *Pred : predecessors(Header)) {
1576 // Skip the preheader.
1577 if (Pred == PH)
1578 continue;
1579
1580 // Because the loop was in simplified form, the only non-loop predecessor
1581 // is the preheader.
1582 assert(L.contains(Pred) && "Found a predecessor of the loop header other "((L.contains(Pred) && "Found a predecessor of the loop header other "
"than the preheader that is not part of the " "loop!") ? static_cast
<void> (0) : __assert_fail ("L.contains(Pred) && \"Found a predecessor of the loop header other \" \"than the preheader that is not part of the \" \"loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1584, __PRETTY_FUNCTION__))
1583 "than the preheader that is not part of the "((L.contains(Pred) && "Found a predecessor of the loop header other "
"than the preheader that is not part of the " "loop!") ? static_cast
<void> (0) : __assert_fail ("L.contains(Pred) && \"Found a predecessor of the loop header other \" \"than the preheader that is not part of the \" \"loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1584, __PRETTY_FUNCTION__))
1584 "loop!")((L.contains(Pred) && "Found a predecessor of the loop header other "
"than the preheader that is not part of the " "loop!") ? static_cast
<void> (0) : __assert_fail ("L.contains(Pred) && \"Found a predecessor of the loop header other \" \"than the preheader that is not part of the \" \"loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1584, __PRETTY_FUNCTION__))
;
1585
1586 // Insert this block into the loop set and on the first visit and, if it
1587 // isn't the header we're currently walking, put it into the worklist to
1588 // recurse through.
1589 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1590 Worklist.push_back(Pred);
1591 }
1592
1593 // If no backedges were found, we're done.
1594 if (LoopBlockSet.empty())
1595 return LoopBlockSet;
1596
1597 // We found backedges, recurse through them to identify the loop blocks.
1598 while (!Worklist.empty()) {
1599 BasicBlock *BB = Worklist.pop_back_val();
1600 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!")((LoopBlockSet.count(BB) && "Didn't put block into the loop set!"
) ? static_cast<void> (0) : __assert_fail ("LoopBlockSet.count(BB) && \"Didn't put block into the loop set!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1600, __PRETTY_FUNCTION__))
;
1601
1602 // No need to walk past the header.
1603 if (BB == Header)
1604 continue;
1605
1606 // Because we know the inner loop structure remains valid we can use the
1607 // loop structure to jump immediately across the entire nested loop.
1608 // Further, because it is in loop simplified form, we can directly jump
1609 // to its preheader afterward.
1610 if (Loop *InnerL = LI.getLoopFor(BB))
1611 if (InnerL != &L) {
1612 assert(L.contains(InnerL) &&((L.contains(InnerL) && "Should not reach a loop *outside* this loop!"
) ? static_cast<void> (0) : __assert_fail ("L.contains(InnerL) && \"Should not reach a loop *outside* this loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1613, __PRETTY_FUNCTION__))
1613 "Should not reach a loop *outside* this loop!")((L.contains(InnerL) && "Should not reach a loop *outside* this loop!"
) ? static_cast<void> (0) : __assert_fail ("L.contains(InnerL) && \"Should not reach a loop *outside* this loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1613, __PRETTY_FUNCTION__))
;
1614 // The preheader is the only possible predecessor of the loop so
1615 // insert it into the set and check whether it was already handled.
1616 auto *InnerPH = InnerL->getLoopPreheader();
1617 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "((L.contains(InnerPH) && "Cannot contain an inner loop block "
"but not contain the inner loop " "preheader!") ? static_cast
<void> (0) : __assert_fail ("L.contains(InnerPH) && \"Cannot contain an inner loop block \" \"but not contain the inner loop \" \"preheader!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1619, __PRETTY_FUNCTION__))
1618 "but not contain the inner loop "((L.contains(InnerPH) && "Cannot contain an inner loop block "
"but not contain the inner loop " "preheader!") ? static_cast
<void> (0) : __assert_fail ("L.contains(InnerPH) && \"Cannot contain an inner loop block \" \"but not contain the inner loop \" \"preheader!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1619, __PRETTY_FUNCTION__))
1619 "preheader!")((L.contains(InnerPH) && "Cannot contain an inner loop block "
"but not contain the inner loop " "preheader!") ? static_cast
<void> (0) : __assert_fail ("L.contains(InnerPH) && \"Cannot contain an inner loop block \" \"but not contain the inner loop \" \"preheader!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1619, __PRETTY_FUNCTION__))
;
1620 if (!LoopBlockSet.insert(InnerPH).second)
1621 // The only way to reach the preheader is through the loop body
1622 // itself so if it has been visited the loop is already handled.
1623 continue;
1624
1625 // Insert all of the blocks (other than those already present) into
1626 // the loop set. We expect at least the block that led us to find the
1627 // inner loop to be in the block set, but we may also have other loop
1628 // blocks if they were already enqueued as predecessors of some other
1629 // outer loop block.
1630 for (auto *InnerBB : InnerL->blocks()) {
1631 if (InnerBB == BB) {
1632 assert(LoopBlockSet.count(InnerBB) &&((LoopBlockSet.count(InnerBB) && "Block should already be in the set!"
) ? static_cast<void> (0) : __assert_fail ("LoopBlockSet.count(InnerBB) && \"Block should already be in the set!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1633, __PRETTY_FUNCTION__))
1633 "Block should already be in the set!")((LoopBlockSet.count(InnerBB) && "Block should already be in the set!"
) ? static_cast<void> (0) : __assert_fail ("LoopBlockSet.count(InnerBB) && \"Block should already be in the set!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1633, __PRETTY_FUNCTION__))
;
1634 continue;
1635 }
1636
1637 LoopBlockSet.insert(InnerBB);
1638 }
1639
1640 // Add the preheader to the worklist so we will continue past the
1641 // loop body.
1642 Worklist.push_back(InnerPH);
1643 continue;
1644 }
1645
1646 // Insert any predecessors that were in the original loop into the new
1647 // set, and if the insert is successful, add them to the worklist.
1648 for (auto *Pred : predecessors(BB))
1649 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1650 Worklist.push_back(Pred);
1651 }
1652
1653 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!")((LoopBlockSet.count(Header) && "Cannot fail to add the header!"
) ? static_cast<void> (0) : __assert_fail ("LoopBlockSet.count(Header) && \"Cannot fail to add the header!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1653, __PRETTY_FUNCTION__))
;
1654
1655 // We've found all the blocks participating in the loop, return our completed
1656 // set.
1657 return LoopBlockSet;
1658}
1659
1660/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1661///
1662/// The removal may have removed some child loops entirely but cannot have
1663/// disturbed any remaining child loops. However, they may need to be hoisted
1664/// to the parent loop (or to be top-level loops). The original loop may be
1665/// completely removed.
1666///
1667/// The sibling loops resulting from this update are returned. If the original
1668/// loop remains a valid loop, it will be the first entry in this list with all
1669/// of the newly sibling loops following it.
1670///
1671/// Returns true if the loop remains a loop after unswitching, and false if it
1672/// is no longer a loop after unswitching (and should not continue to be
1673/// referenced).
1674static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1675 LoopInfo &LI,
1676 SmallVectorImpl<Loop *> &HoistedLoops) {
1677 auto *PH = L.getLoopPreheader();
1678
1679 // Compute the actual parent loop from the exit blocks. Because we may have
1680 // pruned some exits the loop may be different from the original parent.
1681 Loop *ParentL = nullptr;
1682 SmallVector<Loop *, 4> ExitLoops;
1683 SmallVector<BasicBlock *, 4> ExitsInLoops;
1684 ExitsInLoops.reserve(ExitBlocks.size());
1685 for (auto *ExitBB : ExitBlocks)
1686 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1687 ExitLoops.push_back(ExitL);
1688 ExitsInLoops.push_back(ExitBB);
1689 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1690 ParentL = ExitL;
1691 }
1692
1693 // Recompute the blocks participating in this loop. This may be empty if it
1694 // is no longer a loop.
1695 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1696
1697 // If we still have a loop, we need to re-set the loop's parent as the exit
1698 // block set changing may have moved it within the loop nest. Note that this
1699 // can only happen when this loop has a parent as it can only hoist the loop
1700 // *up* the nest.
1701 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1702 // Remove this loop's (original) blocks from all of the intervening loops.
1703 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1704 IL = IL->getParentLoop()) {
1705 IL->getBlocksSet().erase(PH);
1706 for (auto *BB : L.blocks())
1707 IL->getBlocksSet().erase(BB);
1708 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1709 return BB == PH || L.contains(BB);
1710 });
1711 }
1712
1713 LI.changeLoopFor(PH, ParentL);
1714 L.getParentLoop()->removeChildLoop(&L);
1715 if (ParentL)
1716 ParentL->addChildLoop(&L);
1717 else
1718 LI.addTopLevelLoop(&L);
1719 }
1720
1721 // Now we update all the blocks which are no longer within the loop.
1722 auto &Blocks = L.getBlocksVector();
1723 auto BlocksSplitI =
1724 LoopBlockSet.empty()
1725 ? Blocks.begin()
1726 : std::stable_partition(
1727 Blocks.begin(), Blocks.end(),
1728 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1729
1730 // Before we erase the list of unlooped blocks, build a set of them.
1731 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1732 if (LoopBlockSet.empty())
1733 UnloopedBlocks.insert(PH);
1734
1735 // Now erase these blocks from the loop.
1736 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1737 L.getBlocksSet().erase(BB);
1738 Blocks.erase(BlocksSplitI, Blocks.end());
1739
1740 // Sort the exits in ascending loop depth, we'll work backwards across these
1741 // to process them inside out.
1742 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1743 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1744 });
1745
1746 // We'll build up a set for each exit loop.
1747 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1748 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1749
1750 auto RemoveUnloopedBlocksFromLoop =
1751 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1752 for (auto *BB : UnloopedBlocks)
1753 L.getBlocksSet().erase(BB);
1754 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1755 return UnloopedBlocks.count(BB);
1756 });
1757 };
1758
1759 SmallVector<BasicBlock *, 16> Worklist;
1760 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1761 assert(Worklist.empty() && "Didn't clear worklist!")((Worklist.empty() && "Didn't clear worklist!") ? static_cast
<void> (0) : __assert_fail ("Worklist.empty() && \"Didn't clear worklist!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1761, __PRETTY_FUNCTION__))
;
1762 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!")((NewExitLoopBlocks.empty() && "Didn't clear loop set!"
) ? static_cast<void> (0) : __assert_fail ("NewExitLoopBlocks.empty() && \"Didn't clear loop set!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1762, __PRETTY_FUNCTION__))
;
1763
1764 // Grab the next exit block, in decreasing loop depth order.
1765 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1766 Loop &ExitL = *LI.getLoopFor(ExitBB);
1767 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!")((ExitL.contains(&L) && "Exit loop must contain the inner loop!"
) ? static_cast<void> (0) : __assert_fail ("ExitL.contains(&L) && \"Exit loop must contain the inner loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1767, __PRETTY_FUNCTION__))
;
1768
1769 // Erase all of the unlooped blocks from the loops between the previous
1770 // exit loop and this exit loop. This works because the ExitInLoops list is
1771 // sorted in increasing order of loop depth and thus we visit loops in
1772 // decreasing order of loop depth.
1773 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1774 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1775
1776 // Walk the CFG back until we hit the cloned PH adding everything reachable
1777 // and in the unlooped set to this exit block's loop.
1778 Worklist.push_back(ExitBB);
1779 do {
1780 BasicBlock *BB = Worklist.pop_back_val();
1781 // We can stop recursing at the cloned preheader (if we get there).
1782 if (BB == PH)
1783 continue;
1784
1785 for (BasicBlock *PredBB : predecessors(BB)) {
1786 // If this pred has already been moved to our set or is part of some
1787 // (inner) loop, no update needed.
1788 if (!UnloopedBlocks.erase(PredBB)) {
1789 assert((NewExitLoopBlocks.count(PredBB) ||(((NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor
(PredBB))) && "Predecessor not in a nested loop (or already visited)!"
) ? static_cast<void> (0) : __assert_fail ("(NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor(PredBB))) && \"Predecessor not in a nested loop (or already visited)!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1791, __PRETTY_FUNCTION__))
1790 ExitL.contains(LI.getLoopFor(PredBB))) &&(((NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor
(PredBB))) && "Predecessor not in a nested loop (or already visited)!"
) ? static_cast<void> (0) : __assert_fail ("(NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor(PredBB))) && \"Predecessor not in a nested loop (or already visited)!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1791, __PRETTY_FUNCTION__))
1791 "Predecessor not in a nested loop (or already visited)!")(((NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor
(PredBB))) && "Predecessor not in a nested loop (or already visited)!"
) ? static_cast<void> (0) : __assert_fail ("(NewExitLoopBlocks.count(PredBB) || ExitL.contains(LI.getLoopFor(PredBB))) && \"Predecessor not in a nested loop (or already visited)!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1791, __PRETTY_FUNCTION__))
;
1792 continue;
1793 }
1794
1795 // We just insert into the loop set here. We'll add these blocks to the
1796 // exit loop after we build up the set in a deterministic order rather
1797 // than the predecessor-influenced visit order.
1798 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1799 (void)Inserted;
1800 assert(Inserted && "Should only visit an unlooped block once!")((Inserted && "Should only visit an unlooped block once!"
) ? static_cast<void> (0) : __assert_fail ("Inserted && \"Should only visit an unlooped block once!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1800, __PRETTY_FUNCTION__))
;
1801
1802 // And recurse through to its predecessors.
1803 Worklist.push_back(PredBB);
1804 }
1805 } while (!Worklist.empty());
1806
1807 // If blocks in this exit loop were directly part of the original loop (as
1808 // opposed to a child loop) update the map to point to this exit loop. This
1809 // just updates a map and so the fact that the order is unstable is fine.
1810 for (auto *BB : NewExitLoopBlocks)
1811 if (Loop *BBL = LI.getLoopFor(BB))
1812 if (BBL == &L || !L.contains(BBL))
1813 LI.changeLoopFor(BB, &ExitL);
1814
1815 // We will remove the remaining unlooped blocks from this loop in the next
1816 // iteration or below.
1817 NewExitLoopBlocks.clear();
1818 }
1819
1820 // Any remaining unlooped blocks are no longer part of any loop unless they
1821 // are part of some child loop.
1822 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1823 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1824 for (auto *BB : UnloopedBlocks)
1825 if (Loop *BBL = LI.getLoopFor(BB))
1826 if (BBL == &L || !L.contains(BBL))
1827 LI.changeLoopFor(BB, nullptr);
1828
1829 // Sink all the child loops whose headers are no longer in the loop set to
1830 // the parent (or to be top level loops). We reach into the loop and directly
1831 // update its subloop vector to make this batch update efficient.
1832 auto &SubLoops = L.getSubLoopsVector();
1833 auto SubLoopsSplitI =
1834 LoopBlockSet.empty()
1835 ? SubLoops.begin()
1836 : std::stable_partition(
1837 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1838 return LoopBlockSet.count(SubL->getHeader());
1839 });
1840 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1841 HoistedLoops.push_back(HoistedL);
1842 HoistedL->setParentLoop(nullptr);
1843
1844 // To compute the new parent of this hoisted loop we look at where we
1845 // placed the preheader above. We can't lookup the header itself because we
1846 // retained the mapping from the header to the hoisted loop. But the
1847 // preheader and header should have the exact same new parent computed
1848 // based on the set of exit blocks from the original loop as the preheader
1849 // is a predecessor of the header and so reached in the reverse walk. And
1850 // because the loops were all in simplified form the preheader of the
1851 // hoisted loop can't be part of some *other* loop.
1852 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1853 NewParentL->addChildLoop(HoistedL);
1854 else
1855 LI.addTopLevelLoop(HoistedL);
1856 }
1857 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1858
1859 // Actually delete the loop if nothing remained within it.
1860 if (Blocks.empty()) {
1861 assert(SubLoops.empty() &&((SubLoops.empty() && "Failed to remove all subloops from the original loop!"
) ? static_cast<void> (0) : __assert_fail ("SubLoops.empty() && \"Failed to remove all subloops from the original loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1862, __PRETTY_FUNCTION__))
1862 "Failed to remove all subloops from the original loop!")((SubLoops.empty() && "Failed to remove all subloops from the original loop!"
) ? static_cast<void> (0) : __assert_fail ("SubLoops.empty() && \"Failed to remove all subloops from the original loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1862, __PRETTY_FUNCTION__))
;
1863 if (Loop *ParentL = L.getParentLoop())
1864 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1865 else
1866 LI.removeLoop(llvm::find(LI, &L));
1867 LI.destroy(&L);
1868 return false;
1869 }
1870
1871 return true;
1872}
1873
1874/// Helper to visit a dominator subtree, invoking a callable on each node.
1875///
1876/// Returning false at any point will stop walking past that node of the tree.
1877template <typename CallableT>
1878void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1879 SmallVector<DomTreeNode *, 4> DomWorklist;
1880 DomWorklist.push_back(DT[BB]);
1881#ifndef NDEBUG
1882 SmallPtrSet<DomTreeNode *, 4> Visited;
1883 Visited.insert(DT[BB]);
1884#endif
1885 do {
1886 DomTreeNode *N = DomWorklist.pop_back_val();
1887
1888 // Visit this node.
1889 if (!Callable(N->getBlock()))
1890 continue;
1891
1892 // Accumulate the child nodes.
1893 for (DomTreeNode *ChildN : *N) {
1894 assert(Visited.insert(ChildN).second &&((Visited.insert(ChildN).second && "Cannot visit a node twice when walking a tree!"
) ? static_cast<void> (0) : __assert_fail ("Visited.insert(ChildN).second && \"Cannot visit a node twice when walking a tree!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1895, __PRETTY_FUNCTION__))
1895 "Cannot visit a node twice when walking a tree!")((Visited.insert(ChildN).second && "Cannot visit a node twice when walking a tree!"
) ? static_cast<void> (0) : __assert_fail ("Visited.insert(ChildN).second && \"Cannot visit a node twice when walking a tree!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1895, __PRETTY_FUNCTION__))
;
1896 DomWorklist.push_back(ChildN);
1897 }
1898 } while (!DomWorklist.empty());
1899}
1900
1901static void unswitchNontrivialInvariants(
1902 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1903 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1904 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1905 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1906 auto *ParentBB = TI.getParent();
1907 BranchInst *BI = dyn_cast<BranchInst>(&TI);
1908 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1909
1910 // We can only unswitch switches, conditional branches with an invariant
1911 // condition, or combining invariant conditions with an instruction.
1912 assert((SI || BI->isConditional()) &&(((SI || BI->isConditional()) && "Can only unswitch switches and conditional branch!"
) ? static_cast<void> (0) : __assert_fail ("(SI || BI->isConditional()) && \"Can only unswitch switches and conditional branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1913, __PRETTY_FUNCTION__))
1913 "Can only unswitch switches and conditional branch!")(((SI || BI->isConditional()) && "Can only unswitch switches and conditional branch!"
) ? static_cast<void> (0) : __assert_fail ("(SI || BI->isConditional()) && \"Can only unswitch switches and conditional branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1913, __PRETTY_FUNCTION__))
;
1914 bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1915 if (FullUnswitch)
1916 assert(Invariants.size() == 1 &&((Invariants.size() == 1 && "Cannot have other invariants with full unswitching!"
) ? static_cast<void> (0) : __assert_fail ("Invariants.size() == 1 && \"Cannot have other invariants with full unswitching!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1917, __PRETTY_FUNCTION__))
1917 "Cannot have other invariants with full unswitching!")((Invariants.size() == 1 && "Cannot have other invariants with full unswitching!"
) ? static_cast<void> (0) : __assert_fail ("Invariants.size() == 1 && \"Cannot have other invariants with full unswitching!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1917, __PRETTY_FUNCTION__))
;
1918 else
1919 assert(isa<Instruction>(BI->getCondition()) &&((isa<Instruction>(BI->getCondition()) && "Partial unswitching requires an instruction as the condition!"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(BI->getCondition()) && \"Partial unswitching requires an instruction as the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1920, __PRETTY_FUNCTION__))
1920 "Partial unswitching requires an instruction as the condition!")((isa<Instruction>(BI->getCondition()) && "Partial unswitching requires an instruction as the condition!"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(BI->getCondition()) && \"Partial unswitching requires an instruction as the condition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1920, __PRETTY_FUNCTION__))
;
1921
1922 if (MSSAU && VerifyMemorySSA)
1923 MSSAU->getMemorySSA()->verifyMemorySSA();
1924
1925 // Constant and BBs tracking the cloned and continuing successor. When we are
1926 // unswitching the entire condition, this can just be trivially chosen to
1927 // unswitch towards `true`. However, when we are unswitching a set of
1928 // invariants combined with `and` or `or`, the combining operation determines
1929 // the best direction to unswitch: we want to unswitch the direction that will
1930 // collapse the branch.
1931 bool Direction = true;
1932 int ClonedSucc = 0;
1933 if (!FullUnswitch) {
1934 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1935 assert(cast<Instruction>(BI->getCondition())->getOpcode() ==((cast<Instruction>(BI->getCondition())->getOpcode
() == Instruction::And && "Only `or` and `and` instructions can combine invariants being "
"unswitched.") ? static_cast<void> (0) : __assert_fail
("cast<Instruction>(BI->getCondition())->getOpcode() == Instruction::And && \"Only `or` and `and` instructions can combine invariants being \" \"unswitched.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1938, __PRETTY_FUNCTION__))
1936 Instruction::And &&((cast<Instruction>(BI->getCondition())->getOpcode
() == Instruction::And && "Only `or` and `and` instructions can combine invariants being "
"unswitched.") ? static_cast<void> (0) : __assert_fail
("cast<Instruction>(BI->getCondition())->getOpcode() == Instruction::And && \"Only `or` and `and` instructions can combine invariants being \" \"unswitched.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1938, __PRETTY_FUNCTION__))
1937 "Only `or` and `and` instructions can combine invariants being "((cast<Instruction>(BI->getCondition())->getOpcode
() == Instruction::And && "Only `or` and `and` instructions can combine invariants being "
"unswitched.") ? static_cast<void> (0) : __assert_fail
("cast<Instruction>(BI->getCondition())->getOpcode() == Instruction::And && \"Only `or` and `and` instructions can combine invariants being \" \"unswitched.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1938, __PRETTY_FUNCTION__))
1938 "unswitched.")((cast<Instruction>(BI->getCondition())->getOpcode
() == Instruction::And && "Only `or` and `and` instructions can combine invariants being "
"unswitched.") ? static_cast<void> (0) : __assert_fail
("cast<Instruction>(BI->getCondition())->getOpcode() == Instruction::And && \"Only `or` and `and` instructions can combine invariants being \" \"unswitched.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1938, __PRETTY_FUNCTION__))
;
1939 Direction = false;
1940 ClonedSucc = 1;
1941 }
1942 }
1943
1944 BasicBlock *RetainedSuccBB =
1945 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1946 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1947 if (BI)
1948 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1949 else
1950 for (auto Case : SI->cases())
1951 if (Case.getCaseSuccessor() != RetainedSuccBB)
1952 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1953
1954 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&((!UnswitchedSuccBBs.count(RetainedSuccBB) && "Should not unswitch the same successor we are retaining!"
) ? static_cast<void> (0) : __assert_fail ("!UnswitchedSuccBBs.count(RetainedSuccBB) && \"Should not unswitch the same successor we are retaining!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1955, __PRETTY_FUNCTION__))
1955 "Should not unswitch the same successor we are retaining!")((!UnswitchedSuccBBs.count(RetainedSuccBB) && "Should not unswitch the same successor we are retaining!"
) ? static_cast<void> (0) : __assert_fail ("!UnswitchedSuccBBs.count(RetainedSuccBB) && \"Should not unswitch the same successor we are retaining!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1955, __PRETTY_FUNCTION__))
;
1956
1957 // The branch should be in this exact loop. Any inner loop's invariant branch
1958 // should be handled by unswitching that inner loop. The caller of this
1959 // routine should filter out any candidates that remain (but were skipped for
1960 // whatever reason).
1961 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!")((LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"
) ? static_cast<void> (0) : __assert_fail ("LI.getLoopFor(ParentBB) == &L && \"Branch in an inner loop!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 1961, __PRETTY_FUNCTION__))
;
1962
1963 // Compute the parent loop now before we start hacking on things.
1964 Loop *ParentL = L.getParentLoop();
1965 // Get blocks in RPO order for MSSA update, before changing the CFG.
1966 LoopBlocksRPO LBRPO(&L);
1967 if (MSSAU)
1968 LBRPO.perform(&LI);
1969
1970 // Compute the outer-most loop containing one of our exit blocks. This is the
1971 // furthest up our loopnest which can be mutated, which we will use below to
1972 // update things.
1973 Loop *OuterExitL = &L;
1974 for (auto *ExitBB : ExitBlocks) {
1975 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1976 if (!NewOuterExitL) {
1977 // We exited the entire nest with this block, so we're done.
1978 OuterExitL = nullptr;
1979 break;
1980 }
1981 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1982 OuterExitL = NewOuterExitL;
1983 }
1984
1985 // At this point, we're definitely going to unswitch something so invalidate
1986 // any cached information in ScalarEvolution for the outer most loop
1987 // containing an exit block and all nested loops.
1988 if (SE) {
1989 if (OuterExitL)
1990 SE->forgetLoop(OuterExitL);
1991 else
1992 SE->forgetTopmostLoop(&L);
1993 }
1994
1995 // If the edge from this terminator to a successor dominates that successor,
1996 // store a map from each block in its dominator subtree to it. This lets us
1997 // tell when cloning for a particular successor if a block is dominated by
1998 // some *other* successor with a single data structure. We use this to
1999 // significantly reduce cloning.
2000 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2001 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2002 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2003 if (SuccBB->getUniquePredecessor() ||
2004 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2005 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2006 }))
2007 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2008 DominatingSucc[BB] = SuccBB;
2009 return true;
2010 });
2011
2012 // Split the preheader, so that we know that there is a safe place to insert
2013 // the conditional branch. We will change the preheader to have a conditional
2014 // branch on LoopCond. The original preheader will become the split point
2015 // between the unswitched versions, and we will have a new preheader for the
2016 // original loop.
2017 BasicBlock *SplitBB = L.getLoopPreheader();
2018 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2019
2020 // Keep track of the dominator tree updates needed.
2021 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2022
2023 // Clone the loop for each unswitched successor.
2024 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2025 VMaps.reserve(UnswitchedSuccBBs.size());
2026 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2027 for (auto *SuccBB : UnswitchedSuccBBs) {
2028 VMaps.emplace_back(new ValueToValueMapTy());
2029 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2030 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2031 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2032 }
2033
2034 // The stitching of the branched code back together depends on whether we're
2035 // doing full unswitching or not with the exception that we always want to
2036 // nuke the initial terminator placed in the split block.
2037 SplitBB->getTerminator()->eraseFromParent();
2038 if (FullUnswitch) {
2039 // Splice the terminator from the original loop and rewrite its
2040 // successors.
2041 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2042
2043 // Keep a clone of the terminator for MSSA updates.
2044 Instruction *NewTI = TI.clone();
2045 ParentBB->getInstList().push_back(NewTI);
2046
2047 // First wire up the moved terminator to the preheaders.
2048 if (BI) {
2049 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2050 BI->setSuccessor(ClonedSucc, ClonedPH);
2051 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2052 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2053 } else {
2054 assert(SI && "Must either be a branch or switch!")((SI && "Must either be a branch or switch!") ? static_cast
<void> (0) : __assert_fail ("SI && \"Must either be a branch or switch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2054, __PRETTY_FUNCTION__))
;
2055
2056 // Walk the cases and directly update their successors.
2057 assert(SI->getDefaultDest() == RetainedSuccBB &&((SI->getDefaultDest() == RetainedSuccBB && "Not retaining default successor!"
) ? static_cast<void> (0) : __assert_fail ("SI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2058, __PRETTY_FUNCTION__))
2058 "Not retaining default successor!")((SI->getDefaultDest() == RetainedSuccBB && "Not retaining default successor!"
) ? static_cast<void> (0) : __assert_fail ("SI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2058, __PRETTY_FUNCTION__))
;
2059 SI->setDefaultDest(LoopPH);
2060 for (auto &Case : SI->cases())
2061 if (Case.getCaseSuccessor() == RetainedSuccBB)
2062 Case.setSuccessor(LoopPH);
2063 else
2064 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2065
2066 // We need to use the set to populate domtree updates as even when there
2067 // are multiple cases pointing at the same successor we only want to
2068 // remove and insert one edge in the domtree.
2069 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2070 DTUpdates.push_back(
2071 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2072 }
2073
2074 if (MSSAU) {
2075 DT.applyUpdates(DTUpdates);
2076 DTUpdates.clear();
2077
2078 // Remove all but one edge to the retained block and all unswitched
2079 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2080 // when we know we only keep a single edge for each case.
2081 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2082 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2083 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2084
2085 for (auto &VMap : VMaps)
2086 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2087 /*IgnoreIncomingWithNoClones=*/true);
2088 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2089
2090 // Remove all edges to unswitched blocks.
2091 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2092 MSSAU->removeEdge(ParentBB, SuccBB);
2093 }
2094
2095 // Now unhook the successor relationship as we'll be replacing
2096 // the terminator with a direct branch. This is much simpler for branches
2097 // than switches so we handle those first.
2098 if (BI) {
2099 // Remove the parent as a predecessor of the unswitched successor.
2100 assert(UnswitchedSuccBBs.size() == 1 &&((UnswitchedSuccBBs.size() == 1 && "Only one possible unswitched block for a branch!"
) ? static_cast<void> (0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2101, __PRETTY_FUNCTION__))
2101 "Only one possible unswitched block for a branch!")((UnswitchedSuccBBs.size() == 1 && "Only one possible unswitched block for a branch!"
) ? static_cast<void> (0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2101, __PRETTY_FUNCTION__))
;
2102 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2103 UnswitchedSuccBB->removePredecessor(ParentBB,
2104 /*KeepOneInputPHIs*/ true);
2105 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2106 } else {
2107 // Note that we actually want to remove the parent block as a predecessor
2108 // of *every* case successor. The case successor is either unswitched,
2109 // completely eliminating an edge from the parent to that successor, or it
2110 // is a duplicate edge to the retained successor as the retained successor
2111 // is always the default successor and as we'll replace this with a direct
2112 // branch we no longer need the duplicate entries in the PHI nodes.
2113 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2114 assert(NewSI->getDefaultDest() == RetainedSuccBB &&((NewSI->getDefaultDest() == RetainedSuccBB && "Not retaining default successor!"
) ? static_cast<void> (0) : __assert_fail ("NewSI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2115, __PRETTY_FUNCTION__))
2115 "Not retaining default successor!")((NewSI->getDefaultDest() == RetainedSuccBB && "Not retaining default successor!"
) ? static_cast<void> (0) : __assert_fail ("NewSI->getDefaultDest() == RetainedSuccBB && \"Not retaining default successor!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2115, __PRETTY_FUNCTION__))
;
2116 for (auto &Case : NewSI->cases())
2117 Case.getCaseSuccessor()->removePredecessor(
2118 ParentBB,
2119 /*KeepOneInputPHIs*/ true);
2120
2121 // We need to use the set to populate domtree updates as even when there
2122 // are multiple cases pointing at the same successor we only want to
2123 // remove and insert one edge in the domtree.
2124 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2125 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2126 }
2127
2128 // After MSSAU update, remove the cloned terminator instruction NewTI.
2129 ParentBB->getTerminator()->eraseFromParent();
2130
2131 // Create a new unconditional branch to the continuing block (as opposed to
2132 // the one cloned).
2133 BranchInst::Create(RetainedSuccBB, ParentBB);
2134 } else {
2135 assert(BI && "Only branches have partial unswitching.")((BI && "Only branches have partial unswitching.") ? static_cast
<void> (0) : __assert_fail ("BI && \"Only branches have partial unswitching.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2135, __PRETTY_FUNCTION__))
;
2136 assert(UnswitchedSuccBBs.size() == 1 &&((UnswitchedSuccBBs.size() == 1 && "Only one possible unswitched block for a branch!"
) ? static_cast<void> (0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2137, __PRETTY_FUNCTION__))
2137 "Only one possible unswitched block for a branch!")((UnswitchedSuccBBs.size() == 1 && "Only one possible unswitched block for a branch!"
) ? static_cast<void> (0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2137, __PRETTY_FUNCTION__))
;
2138 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2139 // When doing a partial unswitch, we have to do a bit more work to build up
2140 // the branch in the split block.
2141 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2142 *ClonedPH, *LoopPH);
2143 if (MSSAU) {
2144 // Perform MSSA cloning updates.
2145 for (auto &VMap : VMaps)
2146 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2147 /*IgnoreIncomingWithNoClones=*/true);
2148 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2149 }
2150 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2151 }
2152
2153 // Apply the updates accumulated above to get an up-to-date dominator tree.
2154 DT.applyUpdates(DTUpdates);
2155 if (!FullUnswitch && MSSAU) {
2156 // Update MSSA for partial unswitch, after DT update.
2157 SmallVector<CFGUpdate, 1> Updates;
2158 Updates.push_back(
2159 {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second});
2160 MSSAU->applyInsertUpdates(Updates, DT);
2161 }
2162
2163 // Now that we have an accurate dominator tree, first delete the dead cloned
2164 // blocks so that we can accurately build any cloned loops. It is important to
2165 // not delete the blocks from the original loop yet because we still want to
2166 // reference the original loop to understand the cloned loop's structure.
2167 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2168
2169 // Build the cloned loop structure itself. This may be substantially
2170 // different from the original structure due to the simplified CFG. This also
2171 // handles inserting all the cloned blocks into the correct loops.
2172 SmallVector<Loop *, 4> NonChildClonedLoops;
2173 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2174 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2175
2176 // Now that our cloned loops have been built, we can update the original loop.
2177 // First we delete the dead blocks from it and then we rebuild the loop
2178 // structure taking these deletions into account.
2179 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2180
2181 if (MSSAU && VerifyMemorySSA)
2182 MSSAU->getMemorySSA()->verifyMemorySSA();
2183
2184 SmallVector<Loop *, 4> HoistedLoops;
2185 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2186
2187 if (MSSAU && VerifyMemorySSA)
2188 MSSAU->getMemorySSA()->verifyMemorySSA();
2189
2190 // This transformation has a high risk of corrupting the dominator tree, and
2191 // the below steps to rebuild loop structures will result in hard to debug
2192 // errors in that case so verify that the dominator tree is sane first.
2193 // FIXME: Remove this when the bugs stop showing up and rely on existing
2194 // verification steps.
2195 assert(DT.verify(DominatorTree::VerificationLevel::Fast))((DT.verify(DominatorTree::VerificationLevel::Fast)) ? static_cast
<void> (0) : __assert_fail ("DT.verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196
2197 if (BI) {
2198 // If we unswitched a branch which collapses the condition to a known
2199 // constant we want to replace all the uses of the invariants within both
2200 // the original and cloned blocks. We do this here so that we can use the
2201 // now updated dominator tree to identify which side the users are on.
2202 assert(UnswitchedSuccBBs.size() == 1 &&((UnswitchedSuccBBs.size() == 1 && "Only one possible unswitched block for a branch!"
) ? static_cast<void> (0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2203, __PRETTY_FUNCTION__))
2203 "Only one possible unswitched block for a branch!")((UnswitchedSuccBBs.size() == 1 && "Only one possible unswitched block for a branch!"
) ? static_cast<void> (0) : __assert_fail ("UnswitchedSuccBBs.size() == 1 && \"Only one possible unswitched block for a branch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2203, __PRETTY_FUNCTION__))
;
2204 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2205
2206 // When considering multiple partially-unswitched invariants
2207 // we cant just go replace them with constants in both branches.
2208 //
2209 // For 'AND' we infer that true branch ("continue") means true
2210 // for each invariant operand.
2211 // For 'OR' we can infer that false branch ("continue") means false
2212 // for each invariant operand.
2213 // So it happens that for multiple-partial case we dont replace
2214 // in the unswitched branch.
2215 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2216
2217 ConstantInt *UnswitchedReplacement =
2218 Direction ? ConstantInt::getTrue(BI->getContext())
2219 : ConstantInt::getFalse(BI->getContext());
2220 ConstantInt *ContinueReplacement =
2221 Direction ? ConstantInt::getFalse(BI->getContext())
2222 : ConstantInt::getTrue(BI->getContext());
2223 for (Value *Invariant : Invariants)
2224 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2225 UI != UE;) {
2226 // Grab the use and walk past it so we can clobber it in the use list.
2227 Use *U = &*UI++;
2228 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2229 if (!UserI)
2230 continue;
2231
2232 // Replace it with the 'continue' side if in the main loop body, and the
2233 // unswitched if in the cloned blocks.
2234 if (DT.dominates(LoopPH, UserI->getParent()))
2235 U->set(ContinueReplacement);
2236 else if (ReplaceUnswitched &&
2237 DT.dominates(ClonedPH, UserI->getParent()))
2238 U->set(UnswitchedReplacement);
2239 }
2240 }
2241
2242 // We can change which blocks are exit blocks of all the cloned sibling
2243 // loops, the current loop, and any parent loops which shared exit blocks
2244 // with the current loop. As a consequence, we need to re-form LCSSA for
2245 // them. But we shouldn't need to re-form LCSSA for any child loops.
2246 // FIXME: This could be made more efficient by tracking which exit blocks are
2247 // new, and focusing on them, but that isn't likely to be necessary.
2248 //
2249 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2250 // loop nest and update every loop that could have had its exits changed. We
2251 // also need to cover any intervening loops. We add all of these loops to
2252 // a list and sort them by loop depth to achieve this without updating
2253 // unnecessary loops.
2254 auto UpdateLoop = [&](Loop &UpdateL) {
2255#ifndef NDEBUG
2256 UpdateL.verifyLoop();
2257 for (Loop *ChildL : UpdateL) {
2258 ChildL->verifyLoop();
2259 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&((ChildL->isRecursivelyLCSSAForm(DT, LI) && "Perturbed a child loop's LCSSA form!"
) ? static_cast<void> (0) : __assert_fail ("ChildL->isRecursivelyLCSSAForm(DT, LI) && \"Perturbed a child loop's LCSSA form!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2260, __PRETTY_FUNCTION__))
2260 "Perturbed a child loop's LCSSA form!")((ChildL->isRecursivelyLCSSAForm(DT, LI) && "Perturbed a child loop's LCSSA form!"
) ? static_cast<void> (0) : __assert_fail ("ChildL->isRecursivelyLCSSAForm(DT, LI) && \"Perturbed a child loop's LCSSA form!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2260, __PRETTY_FUNCTION__))
;
2261 }
2262#endif
2263 // First build LCSSA for this loop so that we can preserve it when
2264 // forming dedicated exits. We don't want to perturb some other loop's
2265 // LCSSA while doing that CFG edit.
2266 formLCSSA(UpdateL, DT, &LI, nullptr);
2267
2268 // For loops reached by this loop's original exit blocks we may
2269 // introduced new, non-dedicated exits. At least try to re-form dedicated
2270 // exits for these loops. This may fail if they couldn't have dedicated
2271 // exits to start with.
2272 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2273 };
2274
2275 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2276 // and we can do it in any order as they don't nest relative to each other.
2277 //
2278 // Also check if any of the loops we have updated have become top-level loops
2279 // as that will necessitate widening the outer loop scope.
2280 for (Loop *UpdatedL :
2281 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2282 UpdateLoop(*UpdatedL);
2283 if (!UpdatedL->getParentLoop())
2284 OuterExitL = nullptr;
2285 }
2286 if (IsStillLoop) {
2287 UpdateLoop(L);
2288 if (!L.getParentLoop())
2289 OuterExitL = nullptr;
2290 }
2291
2292 // If the original loop had exit blocks, walk up through the outer most loop
2293 // of those exit blocks to update LCSSA and form updated dedicated exits.
2294 if (OuterExitL != &L)
2295 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2296 OuterL = OuterL->getParentLoop())
2297 UpdateLoop(*OuterL);
2298
2299#ifndef NDEBUG
2300 // Verify the entire loop structure to catch any incorrect updates before we
2301 // progress in the pass pipeline.
2302 LI.verify(DT);
2303#endif
2304
2305 // Now that we've unswitched something, make callbacks to report the changes.
2306 // For that we need to merge together the updated loops and the cloned loops
2307 // and check whether the original loop survived.
2308 SmallVector<Loop *, 4> SibLoops;
2309 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2310 if (UpdatedL->getParentLoop() == ParentL)
2311 SibLoops.push_back(UpdatedL);
2312 UnswitchCB(IsStillLoop, SibLoops);
2313
2314 if (MSSAU && VerifyMemorySSA)
2315 MSSAU->getMemorySSA()->verifyMemorySSA();
2316
2317 if (BI)
2318 ++NumBranches;
2319 else
2320 ++NumSwitches;
2321}
2322
2323/// Recursively compute the cost of a dominator subtree based on the per-block
2324/// cost map provided.
2325///
2326/// The recursive computation is memozied into the provided DT-indexed cost map
2327/// to allow querying it for most nodes in the domtree without it becoming
2328/// quadratic.
2329static int
2330computeDomSubtreeCost(DomTreeNode &N,
2331 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2332 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2333 // Don't accumulate cost (or recurse through) blocks not in our block cost
2334 // map and thus not part of the duplication cost being considered.
2335 auto BBCostIt = BBCostMap.find(N.getBlock());
2336 if (BBCostIt == BBCostMap.end())
2337 return 0;
2338
2339 // Lookup this node to see if we already computed its cost.
2340 auto DTCostIt = DTCostMap.find(&N);
2341 if (DTCostIt != DTCostMap.end())
2342 return DTCostIt->second;
2343
2344 // If not, we have to compute it. We can't use insert above and update
2345 // because computing the cost may insert more things into the map.
2346 int Cost = std::accumulate(
2347 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2348 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2349 });
2350 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2351 (void)Inserted;
2352 assert(Inserted && "Should not insert a node while visiting children!")((Inserted && "Should not insert a node while visiting children!"
) ? static_cast<void> (0) : __assert_fail ("Inserted && \"Should not insert a node while visiting children!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2352, __PRETTY_FUNCTION__))
;
2353 return Cost;
2354}
2355
2356/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2357/// making the following replacement:
2358///
2359/// --code before guard--
2360/// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2361/// --code after guard--
2362///
2363/// into
2364///
2365/// --code before guard--
2366/// br i1 %cond, label %guarded, label %deopt
2367///
2368/// guarded:
2369/// --code after guard--
2370///
2371/// deopt:
2372/// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2373/// unreachable
2374///
2375/// It also makes all relevant DT and LI updates, so that all structures are in
2376/// valid state after this transform.
2377static BranchInst *
2378turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2379 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2380 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2381 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2382 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Turning " <<
*GI << " into a branch.\n"; } } while (false)
;
2383 BasicBlock *CheckBB = GI->getParent();
2384
2385 if (MSSAU && VerifyMemorySSA)
2386 MSSAU->getMemorySSA()->verifyMemorySSA();
2387
2388 // Remove all CheckBB's successors from DomTree. A block can be seen among
2389 // successors more than once, but for DomTree it should be added only once.
2390 SmallPtrSet<BasicBlock *, 4> Successors;
2391 for (auto *Succ : successors(CheckBB))
2392 if (Successors.insert(Succ).second)
2393 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2394
2395 Instruction *DeoptBlockTerm =
2396 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2397 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2398 // SplitBlockAndInsertIfThen inserts control flow that branches to
2399 // DeoptBlockTerm if the condition is true. We want the opposite.
2400 CheckBI->swapSuccessors();
2401
2402 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2403 GuardedBlock->setName("guarded");
2404 CheckBI->getSuccessor(1)->setName("deopt");
2405 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2406
2407 // We now have a new exit block.
2408 ExitBlocks.push_back(CheckBI->getSuccessor(1));
2409
2410 if (MSSAU)
2411 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2412
2413 GI->moveBefore(DeoptBlockTerm);
2414 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2415
2416 // Add new successors of CheckBB into DomTree.
2417 for (auto *Succ : successors(CheckBB))
2418 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2419
2420 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2421 // successors.
2422 for (auto *Succ : Successors)
2423 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2424
2425 // Make proper changes to DT.
2426 DT.applyUpdates(DTUpdates);
2427 // Inform LI of a new loop block.
2428 L.addBasicBlockToLoop(GuardedBlock, LI);
2429
2430 if (MSSAU) {
2431 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2432 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
2433 if (VerifyMemorySSA)
2434 MSSAU->getMemorySSA()->verifyMemorySSA();
2435 }
2436
2437 ++NumGuards;
2438 return CheckBI;
2439}
2440
2441/// Cost multiplier is a way to limit potentially exponential behavior
2442/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2443/// candidates available. Also accounting for the number of "sibling" loops with
2444/// the idea to account for previous unswitches that already happened on this
2445/// cluster of loops. There was an attempt to keep this formula simple,
2446/// just enough to limit the worst case behavior. Even if it is not that simple
2447/// now it is still not an attempt to provide a detailed heuristic size
2448/// prediction.
2449///
2450/// TODO: Make a proper accounting of "explosion" effect for all kinds of
2451/// unswitch candidates, making adequate predictions instead of wild guesses.
2452/// That requires knowing not just the number of "remaining" candidates but
2453/// also costs of unswitching for each of these candidates.
2454static int calculateUnswitchCostMultiplier(
2455 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2456 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2457 UnswitchCandidates) {
2458
2459 // Guards and other exiting conditions do not contribute to exponential
2460 // explosion as soon as they dominate the latch (otherwise there might be
2461 // another path to the latch remaining that does not allow to eliminate the
2462 // loop copy on unswitch).
2463 BasicBlock *Latch = L.getLoopLatch();
2464 BasicBlock *CondBlock = TI.getParent();
2465 if (DT.dominates(CondBlock, Latch) &&
2466 (isGuard(&TI) ||
2467 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2468 return L.contains(SuccBB);
2469 }) <= 1)) {
2470 NumCostMultiplierSkipped++;
2471 return 1;
2472 }
2473
2474 auto *ParentL = L.getParentLoop();
2475 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2476 : std::distance(LI.begin(), LI.end()));
2477 // Count amount of clones that all the candidates might cause during
2478 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2479 int UnswitchedClones = 0;
2480 for (auto Candidate : UnswitchCandidates) {
2481 Instruction *CI = Candidate.first;
2482 BasicBlock *CondBlock = CI->getParent();
2483 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2484 if (isGuard(CI)) {
2485 if (!SkipExitingSuccessors)
2486 UnswitchedClones++;
2487 continue;
2488 }
2489 int NonExitingSuccessors = llvm::count_if(
2490 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2491 return !SkipExitingSuccessors || L.contains(SuccBB);
2492 });
2493 UnswitchedClones += Log2_32(NonExitingSuccessors);
2494 }
2495
2496 // Ignore up to the "unscaled candidates" number of unswitch candidates
2497 // when calculating the power-of-two scaling of the cost. The main idea
2498 // with this control is to allow a small number of unswitches to happen
2499 // and rely more on siblings multiplier (see below) when the number
2500 // of candidates is small.
2501 unsigned ClonesPower =
2502 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2503
2504 // Allowing top-level loops to spread a bit more than nested ones.
2505 int SiblingsMultiplier =
2506 std::max((ParentL ? SiblingsCount
2507 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2508 1);
2509 // Compute the cost multiplier in a way that won't overflow by saturating
2510 // at an upper bound.
2511 int CostMultiplier;
2512 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2513 SiblingsMultiplier > UnswitchThreshold)
2514 CostMultiplier = UnswitchThreshold;
2515 else
2516 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2517 (int)UnswitchThreshold);
2518
2519 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplierdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
2520 << " (siblings " << SiblingsMultiplier << " * clones "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
2521 << (1 << ClonesPower) << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
2522 << " for unswitch candidate: " << TI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed multiplier "
<< CostMultiplier << " (siblings " << SiblingsMultiplier
<< " * clones " << (1 << ClonesPower) <<
")" << " for unswitch candidate: " << TI <<
"\n"; } } while (false)
;
2523 return CostMultiplier;
2524}
2525
2526static bool
2527unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2528 AssumptionCache &AC, TargetTransformInfo &TTI,
2529 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2530 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2531 // Collect all invariant conditions within this loop (as opposed to an inner
2532 // loop which would be handled when visiting that inner loop).
2533 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2534 UnswitchCandidates;
2535
2536 // Whether or not we should also collect guards in the loop.
2537 bool CollectGuards = false;
2538 if (UnswitchGuards) {
1
Assuming the condition is false
2
Taking false branch
2539 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2540 Intrinsic::getName(Intrinsic::experimental_guard));
2541 if (GuardDecl && !GuardDecl->use_empty())
2542 CollectGuards = true;
2543 }
2544
2545 for (auto *BB : L.blocks()) {
3
Assuming '__begin1' is equal to '__end1'
2546 if (LI.getLoopFor(BB) != &L)
2547 continue;
2548
2549 if (CollectGuards)
2550 for (auto &I : *BB)
2551 if (isGuard(&I)) {
2552 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2553 // TODO: Support AND, OR conditions and partial unswitching.
2554 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2555 UnswitchCandidates.push_back({&I, {Cond}});
2556 }
2557
2558 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2559 // We can only consider fully loop-invariant switch conditions as we need
2560 // to completely eliminate the switch after unswitching.
2561 if (!isa<Constant>(SI->getCondition()) &&
2562 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2563 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2564 continue;
2565 }
2566
2567 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2568 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2569 BI->getSuccessor(0) == BI->getSuccessor(1))
2570 continue;
2571
2572 if (L.isLoopInvariant(BI->getCondition())) {
2573 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2574 continue;
2575 }
2576
2577 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2578 if (CondI.getOpcode() != Instruction::And &&
2579 CondI.getOpcode() != Instruction::Or)
2580 continue;
2581
2582 TinyPtrVector<Value *> Invariants =
2583 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2584 if (Invariants.empty())
2585 continue;
2586
2587 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2588 }
2589
2590 // If we didn't find any candidates, we're done.
2591 if (UnswitchCandidates.empty())
4
Calling 'SmallVectorBase::empty'
7
Returning from 'SmallVectorBase::empty'
8
Taking false branch
2592 return false;
2593
2594 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2595 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2596 // irreducible control flow into reducible control flow and introduce new
2597 // loops "out of thin air". If we ever discover important use cases for doing
2598 // this, we can add support to loop unswitch, but it is a lot of complexity
2599 // for what seems little or no real world benefit.
2600 LoopBlocksRPO RPOT(&L);
2601 RPOT.perform(&LI);
2602 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
9
Calling 'containsIrreducibleCFG<const llvm::BasicBlock *, llvm::LoopBlocksRPO, llvm::LoopInfo, llvm::GraphTraits<const llvm::BasicBlock *>>'
11
Returning from 'containsIrreducibleCFG<const llvm::BasicBlock *, llvm::LoopBlocksRPO, llvm::LoopInfo, llvm::GraphTraits<const llvm::BasicBlock *>>'
12
Taking false branch
2603 return false;
2604
2605 SmallVector<BasicBlock *, 4> ExitBlocks;
2606 L.getUniqueExitBlocks(ExitBlocks);
2607
2608 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2609 // don't know how to split those exit blocks.
2610 // FIXME: We should teach SplitBlock to handle this and remove this
2611 // restriction.
2612 for (auto *ExitBB : ExitBlocks)
13
Assuming '__begin1' is equal to '__end1'
2613 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2614 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2615 return false;
2616 }
2617
2618 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Considering " <<
UnswitchCandidates.size() << " non-trivial loop invariant conditions for unswitching.\n"
; } } while (false)
14
Assuming 'DebugFlag' is false
15
Loop condition is false. Exiting loop
2619 dbgs() << "Considering " << UnswitchCandidates.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Considering " <<
UnswitchCandidates.size() << " non-trivial loop invariant conditions for unswitching.\n"
; } } while (false)
2620 << " non-trivial loop invariant conditions for unswitching.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Considering " <<
UnswitchCandidates.size() << " non-trivial loop invariant conditions for unswitching.\n"
; } } while (false)
;
2621
2622 // Given that unswitching these terminators will require duplicating parts of
2623 // the loop, so we need to be able to model that cost. Compute the ephemeral
2624 // values and set up a data structure to hold per-BB costs. We cache each
2625 // block's cost so that we don't recompute this when considering different
2626 // subsets of the loop for duplication during unswitching.
2627 SmallPtrSet<const Value *, 4> EphValues;
2628 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2629 SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2630
2631 // Compute the cost of each block, as well as the total loop cost. Also, bail
2632 // out if we see instructions which are incompatible with loop unswitching
2633 // (convergent, noduplicate, or cross-basic-block tokens).
2634 // FIXME: We might be able to safely handle some of these in non-duplicated
2635 // regions.
2636 int LoopCost = 0;
2637 for (auto *BB : L.blocks()) {
16
Assuming '__begin1' is equal to '__end1'
2638 int Cost = 0;
2639 for (auto &I : *BB) {
2640 if (EphValues.count(&I))
2641 continue;
2642
2643 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2644 return false;
2645 if (auto CS = CallSite(&I))
2646 if (CS.isConvergent() || CS.cannotDuplicate())
2647 return false;
2648
2649 Cost += TTI.getUserCost(&I);
2650 }
2651 assert(Cost >= 0 && "Must not have negative costs!")((Cost >= 0 && "Must not have negative costs!") ? static_cast
<void> (0) : __assert_fail ("Cost >= 0 && \"Must not have negative costs!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2651, __PRETTY_FUNCTION__))
;
2652 LoopCost += Cost;
2653 assert(LoopCost >= 0 && "Must not have negative loop costs!")((LoopCost >= 0 && "Must not have negative loop costs!"
) ? static_cast<void> (0) : __assert_fail ("LoopCost >= 0 && \"Must not have negative loop costs!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2653, __PRETTY_FUNCTION__))
;
2654 BBCostMap[BB] = Cost;
2655 }
2656 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Total loop cost: "
<< LoopCost << "\n"; } } while (false)
;
17
Assuming 'DebugFlag' is false
18
Loop condition is false. Exiting loop
2657
2658 // Now we find the best candidate by searching for the one with the following
2659 // properties in order:
2660 //
2661 // 1) An unswitching cost below the threshold
2662 // 2) The smallest number of duplicated unswitch candidates (to avoid
2663 // creating redundant subsequent unswitching)
2664 // 3) The smallest cost after unswitching.
2665 //
2666 // We prioritize reducing fanout of unswitch candidates provided the cost
2667 // remains below the threshold because this has a multiplicative effect.
2668 //
2669 // This requires memoizing each dominator subtree to avoid redundant work.
2670 //
2671 // FIXME: Need to actually do the number of candidates part above.
2672 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2673 // Given a terminator which might be unswitched, computes the non-duplicated
2674 // cost for that terminator.
2675 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2676 BasicBlock &BB = *TI.getParent();
2677 SmallPtrSet<BasicBlock *, 4> Visited;
2678
2679 int Cost = LoopCost;
2680 for (BasicBlock *SuccBB : successors(&BB)) {
2681 // Don't count successors more than once.
2682 if (!Visited.insert(SuccBB).second)
2683 continue;
2684
2685 // If this is a partial unswitch candidate, then it must be a conditional
2686 // branch with a condition of either `or` or `and`. In that case, one of
2687 // the successors is necessarily duplicated, so don't even try to remove
2688 // its cost.
2689 if (!FullUnswitch) {
2690 auto &BI = cast<BranchInst>(TI);
2691 if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2692 Instruction::And) {
2693 if (SuccBB == BI.getSuccessor(1))
2694 continue;
2695 } else {
2696 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Only `and` and `or` conditions can result in a partial "
"unswitch!") ? static_cast<void> (0) : __assert_fail (
"cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Only `and` and `or` conditions can result in a partial \" \"unswitch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2699, __PRETTY_FUNCTION__))
2697 Instruction::Or &&((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Only `and` and `or` conditions can result in a partial "
"unswitch!") ? static_cast<void> (0) : __assert_fail (
"cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Only `and` and `or` conditions can result in a partial \" \"unswitch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2699, __PRETTY_FUNCTION__))
2698 "Only `and` and `or` conditions can result in a partial "((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Only `and` and `or` conditions can result in a partial "
"unswitch!") ? static_cast<void> (0) : __assert_fail (
"cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Only `and` and `or` conditions can result in a partial \" \"unswitch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2699, __PRETTY_FUNCTION__))
2699 "unswitch!")((cast<Instruction>(BI.getCondition())->getOpcode() ==
Instruction::Or && "Only `and` and `or` conditions can result in a partial "
"unswitch!") ? static_cast<void> (0) : __assert_fail (
"cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::Or && \"Only `and` and `or` conditions can result in a partial \" \"unswitch!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2699, __PRETTY_FUNCTION__))
;
2700 if (SuccBB == BI.getSuccessor(0))
2701 continue;
2702 }
2703 }
2704
2705 // This successor's domtree will not need to be duplicated after
2706 // unswitching if the edge to the successor dominates it (and thus the
2707 // entire tree). This essentially means there is no other path into this
2708 // subtree and so it will end up live in only one clone of the loop.
2709 if (SuccBB->getUniquePredecessor() ||
2710 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2711 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2712 })) {
2713 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2714 assert(Cost >= 0 &&((Cost >= 0 && "Non-duplicated cost should never exceed total loop cost!"
) ? static_cast<void> (0) : __assert_fail ("Cost >= 0 && \"Non-duplicated cost should never exceed total loop cost!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2715, __PRETTY_FUNCTION__))
2715 "Non-duplicated cost should never exceed total loop cost!")((Cost >= 0 && "Non-duplicated cost should never exceed total loop cost!"
) ? static_cast<void> (0) : __assert_fail ("Cost >= 0 && \"Non-duplicated cost should never exceed total loop cost!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2715, __PRETTY_FUNCTION__))
;
2716 }
2717 }
2718
2719 // Now scale the cost by the number of unique successors minus one. We
2720 // subtract one because there is already at least one copy of the entire
2721 // loop. This is computing the new cost of unswitching a condition.
2722 // Note that guards always have 2 unique successors that are implicit and
2723 // will be materialized if we decide to unswitch it.
2724 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2725 assert(SuccessorsCount > 1 &&((SuccessorsCount > 1 && "Cannot unswitch a condition without multiple distinct successors!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorsCount > 1 && \"Cannot unswitch a condition without multiple distinct successors!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2726, __PRETTY_FUNCTION__))
2726 "Cannot unswitch a condition without multiple distinct successors!")((SuccessorsCount > 1 && "Cannot unswitch a condition without multiple distinct successors!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorsCount > 1 && \"Cannot unswitch a condition without multiple distinct successors!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2726, __PRETTY_FUNCTION__))
;
2727 return Cost * (SuccessorsCount - 1);
2728 };
2729 Instruction *BestUnswitchTI = nullptr;
2730 int BestUnswitchCost;
19
'BestUnswitchCost' declared without an initial value
2731 ArrayRef<Value *> BestUnswitchInvariants;
2732 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
20
Assuming '__begin1' is equal to '__end1'
2733 Instruction &TI = *TerminatorAndInvariants.first;
2734 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2735 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2736 int CandidateCost = ComputeUnswitchedCost(
2737 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2738 Invariants[0] == BI->getCondition()));
2739 // Calculate cost multiplier which is a tool to limit potentially
2740 // exponential behavior of loop-unswitch.
2741 if (EnableUnswitchCostMultiplier) {
2742 int CostMultiplier =
2743 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2744 assert((((CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold
) && "cost multiplier needs to be in the range of 1..UnswitchThreshold"
) ? static_cast<void> (0) : __assert_fail ("(CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && \"cost multiplier needs to be in the range of 1..UnswitchThreshold\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2746, __PRETTY_FUNCTION__))
2745 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&(((CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold
) && "cost multiplier needs to be in the range of 1..UnswitchThreshold"
) ? static_cast<void> (0) : __assert_fail ("(CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && \"cost multiplier needs to be in the range of 1..UnswitchThreshold\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2746, __PRETTY_FUNCTION__))
2746 "cost multiplier needs to be in the range of 1..UnswitchThreshold")(((CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold
) && "cost multiplier needs to be in the range of 1..UnswitchThreshold"
) ? static_cast<void> (0) : __assert_fail ("(CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && \"cost multiplier needs to be in the range of 1..UnswitchThreshold\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2746, __PRETTY_FUNCTION__))
;
2747 CandidateCost *= CostMultiplier;
2748 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " (multiplier: " << CostMultiplier
<< ")" << " for unswitch candidate: " << TI
<< "\n"; } } while (false)
2749 << " (multiplier: " << CostMultiplier << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " (multiplier: " << CostMultiplier
<< ")" << " for unswitch candidate: " << TI
<< "\n"; } } while (false)
2750 << " for unswitch candidate: " << TI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " (multiplier: " << CostMultiplier
<< ")" << " for unswitch candidate: " << TI
<< "\n"; } } while (false)
;
2751 } else {
2752 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " for unswitch candidate: " <<
TI << "\n"; } } while (false)
2753 << " for unswitch candidate: " << TI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Computed cost of "
<< CandidateCost << " for unswitch candidate: " <<
TI << "\n"; } } while (false)
;
2754 }
2755
2756 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2757 BestUnswitchTI = &TI;
2758 BestUnswitchCost = CandidateCost;
2759 BestUnswitchInvariants = Invariants;
2760 }
2761 }
2762
2763 if (BestUnswitchCost >= UnswitchThreshold) {
21
The left operand of '>=' is a garbage value
2764 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Cannot unswitch, lowest cost found: "
<< BestUnswitchCost << "\n"; } } while (false)
2765 << BestUnswitchCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Cannot unswitch, lowest cost found: "
<< BestUnswitchCost << "\n"; } } while (false)
;
2766 return false;
2767 }
2768
2769 // If the best candidate is a guard, turn it into a branch.
2770 if (isGuard(BestUnswitchTI))
2771 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2772 ExitBlocks, DT, LI, MSSAU);
2773
2774 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Unswitching non-trivial (cost = "
<< BestUnswitchCost << ") terminator: " <<
*BestUnswitchTI << "\n"; } } while (false)
2775 << BestUnswitchCost << ") terminator: " << *BestUnswitchTIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Unswitching non-trivial (cost = "
<< BestUnswitchCost << ") terminator: " <<
*BestUnswitchTI << "\n"; } } while (false)
2776 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << " Unswitching non-trivial (cost = "
<< BestUnswitchCost << ") terminator: " <<
*BestUnswitchTI << "\n"; } } while (false)
;
2777 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2778 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2779 return true;
2780}
2781
2782/// Unswitch control flow predicated on loop invariant conditions.
2783///
2784/// This first hoists all branches or switches which are trivial (IE, do not
2785/// require duplicating any part of the loop) out of the loop body. It then
2786/// looks at other loop invariant control flows and tries to unswitch those as
2787/// well by cloning the loop if the result is small enough.
2788///
2789/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2790/// updated based on the unswitch.
2791/// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2792///
2793/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2794/// true, we will attempt to do non-trivial unswitching as well as trivial
2795/// unswitching.
2796///
2797/// The `UnswitchCB` callback provided will be run after unswitching is
2798/// complete, with the first parameter set to `true` if the provided loop
2799/// remains a loop, and a list of new sibling loops created.
2800///
2801/// If `SE` is non-null, we will update that analysis based on the unswitching
2802/// done.
2803static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2804 AssumptionCache &AC, TargetTransformInfo &TTI,
2805 bool NonTrivial,
2806 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2807 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2808 assert(L.isRecursivelyLCSSAForm(DT, LI) &&((L.isRecursivelyLCSSAForm(DT, LI) && "Loops must be in LCSSA form before unswitching."
) ? static_cast<void> (0) : __assert_fail ("L.isRecursivelyLCSSAForm(DT, LI) && \"Loops must be in LCSSA form before unswitching.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2809, __PRETTY_FUNCTION__))
2809 "Loops must be in LCSSA form before unswitching.")((L.isRecursivelyLCSSAForm(DT, LI) && "Loops must be in LCSSA form before unswitching."
) ? static_cast<void> (0) : __assert_fail ("L.isRecursivelyLCSSAForm(DT, LI) && \"Loops must be in LCSSA form before unswitching.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2809, __PRETTY_FUNCTION__))
;
2810 bool Changed = false;
2811
2812 // Must be in loop simplified form: we need a preheader and dedicated exits.
2813 if (!L.isLoopSimplifyForm())
2814 return false;
2815
2816 // Try trivial unswitch first before loop over other basic blocks in the loop.
2817 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2818 // If we unswitched successfully we will want to clean up the loop before
2819 // processing it further so just mark it as unswitched and return.
2820 UnswitchCB(/*CurrentLoopValid*/ true, {});
2821 return true;
2822 }
2823
2824 // If we're not doing non-trivial unswitching, we're done. We both accept
2825 // a parameter but also check a local flag that can be used for testing
2826 // a debugging.
2827 if (!NonTrivial && !EnableNonTrivialUnswitch)
2828 return false;
2829
2830 // For non-trivial unswitching, because it often creates new loops, we rely on
2831 // the pass manager to iterate on the loops rather than trying to immediately
2832 // reach a fixed point. There is no substantial advantage to iterating
2833 // internally, and if any of the new loops are simplified enough to contain
2834 // trivial unswitching we want to prefer those.
2835
2836 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2837 // a partial unswitch when possible below the threshold.
2838 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2839 return true;
2840
2841 // No other opportunities to unswitch.
2842 return Changed;
2843}
2844
2845PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2846 LoopStandardAnalysisResults &AR,
2847 LPMUpdater &U) {
2848 Function &F = *L.getHeader()->getParent();
2849 (void)F;
2850
2851 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << Ldo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << L << "\n";
} } while (false)
2852 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << L << "\n";
} } while (false)
;
2853
2854 // Save the current loop name in a variable so that we can report it even
2855 // after it has been deleted.
2856 std::string LoopName = L.getName();
2857
2858 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2859 ArrayRef<Loop *> NewLoops) {
2860 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2861 if (!NewLoops.empty())
2862 U.addSiblingLoops(NewLoops);
2863
2864 // If the current loop remains valid, we should revisit it to catch any
2865 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2866 if (CurrentLoopValid)
2867 U.revisitCurrentLoop();
2868 else
2869 U.markLoopAsDeleted(L, LoopName);
2870 };
2871
2872 Optional<MemorySSAUpdater> MSSAU;
2873 if (AR.MSSA) {
2874 MSSAU = MemorySSAUpdater(AR.MSSA);
2875 if (VerifyMemorySSA)
2876 AR.MSSA->verifyMemorySSA();
2877 }
2878 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2879 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2880 return PreservedAnalyses::all();
2881
2882 if (AR.MSSA && VerifyMemorySSA)
2883 AR.MSSA->verifyMemorySSA();
2884
2885 // Historically this pass has had issues with the dominator tree so verify it
2886 // in asserts builds.
2887 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast))((AR.DT.verify(DominatorTree::VerificationLevel::Fast)) ? static_cast
<void> (0) : __assert_fail ("AR.DT.verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2887, __PRETTY_FUNCTION__))
;
2888
2889 auto PA = getLoopPassPreservedAnalyses();
2890 if (AR.MSSA)
2891 PA.preserve<MemorySSAAnalysis>();
2892 return PA;
2893}
2894
2895namespace {
2896
2897class SimpleLoopUnswitchLegacyPass : public LoopPass {
2898 bool NonTrivial;
2899
2900public:
2901 static char ID; // Pass ID, replacement for typeid
2902
2903 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2904 : LoopPass(ID), NonTrivial(NonTrivial) {
2905 initializeSimpleLoopUnswitchLegacyPassPass(
2906 *PassRegistry::getPassRegistry());
2907 }
2908
2909 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2910
2911 void getAnalysisUsage(AnalysisUsage &AU) const override {
2912 AU.addRequired<AssumptionCacheTracker>();
2913 AU.addRequired<TargetTransformInfoWrapperPass>();
2914 if (EnableMSSALoopDependency) {
2915 AU.addRequired<MemorySSAWrapperPass>();
2916 AU.addPreserved<MemorySSAWrapperPass>();
2917 }
2918 getLoopAnalysisUsage(AU);
2919 }
2920};
2921
2922} // end anonymous namespace
2923
2924bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2925 if (skipLoop(L))
2926 return false;
2927
2928 Function &F = *L->getHeader()->getParent();
2929
2930 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *Ldo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << *L << "\n"
; } } while (false)
2931 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("simple-loop-unswitch")) { dbgs() << "Unswitching loop in "
<< F.getName() << ": " << *L << "\n"
; } } while (false)
;
2932
2933 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2934 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2935 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2936 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2937 MemorySSA *MSSA = nullptr;
2938 Optional<MemorySSAUpdater> MSSAU;
2939 if (EnableMSSALoopDependency) {
2940 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2941 MSSAU = MemorySSAUpdater(MSSA);
2942 }
2943
2944 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2945 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2946
2947 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2948 ArrayRef<Loop *> NewLoops) {
2949 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2950 for (auto *NewL : NewLoops)
2951 LPM.addLoop(*NewL);
2952
2953 // If the current loop remains valid, re-add it to the queue. This is
2954 // a little wasteful as we'll finish processing the current loop as well,
2955 // but it is the best we can do in the old PM.
2956 if (CurrentLoopValid)
2957 LPM.addLoop(*L);
2958 else
2959 LPM.markLoopAsDeleted(*L);
2960 };
2961
2962 if (MSSA && VerifyMemorySSA)
2963 MSSA->verifyMemorySSA();
2964
2965 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2966 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2967
2968 if (MSSA && VerifyMemorySSA)
2969 MSSA->verifyMemorySSA();
2970
2971 // If anything was unswitched, also clear any cached information about this
2972 // loop.
2973 LPM.deleteSimpleAnalysisLoop(L);
2974
2975 // Historically this pass has had issues with the dominator tree so verify it
2976 // in asserts builds.
2977 assert(DT.verify(DominatorTree::VerificationLevel::Fast))((DT.verify(DominatorTree::VerificationLevel::Fast)) ? static_cast
<void> (0) : __assert_fail ("DT.verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp"
, 2977, __PRETTY_FUNCTION__))
;
2978
2979 return Changed;
2980}
2981
2982char SimpleLoopUnswitchLegacyPass::ID = 0;
2983INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",static void *initializeSimpleLoopUnswitchLegacyPassPassOnce(PassRegistry
&Registry) {
2984 "Simple unswitch loops", false, false)static void *initializeSimpleLoopUnswitchLegacyPassPassOnce(PassRegistry
&Registry) {
2985INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
2986INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
2987INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
2988INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
2989INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
2990INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
2991INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",PassInfo *PI = new PassInfo( "Simple unswitch loops", "simple-loop-unswitch"
, &SimpleLoopUnswitchLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<SimpleLoopUnswitchLegacyPass>), false,
false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeSimpleLoopUnswitchLegacyPassPassFlag
; void llvm::initializeSimpleLoopUnswitchLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeSimpleLoopUnswitchLegacyPassPassFlag
, initializeSimpleLoopUnswitchLegacyPassPassOnce, std::ref(Registry
)); }
2992 "Simple unswitch loops", false, false)PassInfo *PI = new PassInfo( "Simple unswitch loops", "simple-loop-unswitch"
, &SimpleLoopUnswitchLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<SimpleLoopUnswitchLegacyPass>), false,
false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeSimpleLoopUnswitchLegacyPassPassFlag
; void llvm::initializeSimpleLoopUnswitchLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeSimpleLoopUnswitchLegacyPassPassFlag
, initializeSimpleLoopUnswitchLegacyPassPassOnce, std::ref(Registry
)); }
2993
2994Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2995 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2996}

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/MemAlloc.h"
21#include "llvm/Support/type_traits.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdlib>
27#include <cstring>
28#include <initializer_list>
29#include <iterator>
30#include <memory>
31#include <new>
32#include <type_traits>
33#include <utility>
34
35namespace llvm {
36
37/// This is all the non-templated stuff common to all SmallVectors.
38class SmallVectorBase {
39protected:
40 void *BeginX;
41 unsigned Size = 0, Capacity;
42
43 SmallVectorBase() = delete;
44 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
45 : BeginX(FirstEl), Capacity(TotalCapacity) {}
46
47 /// This is an implementation of the grow() method which only works
48 /// on POD-like data types and is out of line to reduce code duplication.
49 void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
50
51public:
52 size_t size() const { return Size; }
53 size_t capacity() const { return Capacity; }
54
55 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; }
5
Assuming field 'Size' is not equal to 0, which participates in a condition later
6
Returning zero, which participates in a condition later
56
57 /// Set the array size to \p N, which the current array must have enough
58 /// capacity for.
59 ///
60 /// This does not construct or destroy any elements in the vector.
61 ///
62 /// Clients can use this in conjunction with capacity() to write past the end
63 /// of the buffer when they know that more elements are available, and only
64 /// update the size later. This avoids the cost of value initializing elements
65 /// which will only be overwritten.
66 void set_size(size_t N) {
67 assert(N <= capacity())((N <= capacity()) ? static_cast<void> (0) : __assert_fail
("N <= capacity()", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 67, __PRETTY_FUNCTION__))
;
68 Size = N;
69 }
70};
71
72/// Figure out the offset of the first element.
73template <class T, typename = void> struct SmallVectorAlignmentAndSize {
74 AlignedCharArrayUnion<SmallVectorBase> Base;
75 AlignedCharArrayUnion<T> FirstEl;
76};
77
78/// This is the part of SmallVectorTemplateBase which does not depend on whether
79/// the type T is a POD. The extra dummy template argument is used by ArrayRef
80/// to avoid unnecessarily requiring T to be complete.
81template <typename T, typename = void>
82class SmallVectorTemplateCommon : public SmallVectorBase {
83 /// Find the address of the first element. For this pointer math to be valid
84 /// with small-size of 0 for T with lots of alignment, it's important that
85 /// SmallVectorStorage is properly-aligned even for small-size of 0.
86 void *getFirstEl() const {
87 return const_cast<void *>(reinterpret_cast<const void *>(
88 reinterpret_cast<const char *>(this) +
89 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
90 }
91 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
92
93protected:
94 SmallVectorTemplateCommon(size_t Size)
95 : SmallVectorBase(getFirstEl(), Size) {}
96
97 void grow_pod(size_t MinCapacity, size_t TSize) {
98 SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
99 }
100
101 /// Return true if this is a smallvector which has not had dynamic
102 /// memory allocated for it.
103 bool isSmall() const { return BeginX == getFirstEl(); }
104
105 /// Put this vector in a state of being small.
106 void resetToSmall() {
107 BeginX = getFirstEl();
108 Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
109 }
110
111public:
112 using size_type = size_t;
113 using difference_type = ptrdiff_t;
114 using value_type = T;
115 using iterator = T *;
116 using const_iterator = const T *;
117
118 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
119 using reverse_iterator = std::reverse_iterator<iterator>;
120
121 using reference = T &;
122 using const_reference = const T &;
123 using pointer = T *;
124 using const_pointer = const T *;
125
126 // forward iterator creation methods.
127 iterator begin() { return (iterator)this->BeginX; }
128 const_iterator begin() const { return (const_iterator)this->BeginX; }
129 iterator end() { return begin() + size(); }
130 const_iterator end() const { return begin() + size(); }
131
132 // reverse iterator creation methods.
133 reverse_iterator rbegin() { return reverse_iterator(end()); }
134 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
135 reverse_iterator rend() { return reverse_iterator(begin()); }
136 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
137
138 size_type size_in_bytes() const { return size() * sizeof(T); }
139 size_type max_size() const { return size_type(-1) / sizeof(T); }
140
141 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
142
143 /// Return a pointer to the vector's buffer, even if empty().
144 pointer data() { return pointer(begin()); }
145 /// Return a pointer to the vector's buffer, even if empty().
146 const_pointer data() const { return const_pointer(begin()); }
147
148 reference operator[](size_type idx) {
149 assert(idx < size())((idx < size()) ? static_cast<void> (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 149, __PRETTY_FUNCTION__))
;
150 return begin()[idx];
151 }
152 const_reference operator[](size_type idx) const {
153 assert(idx < size())((idx < size()) ? static_cast<void> (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 153, __PRETTY_FUNCTION__))
;
154 return begin()[idx];
155 }
156
157 reference front() {
158 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 158, __PRETTY_FUNCTION__))
;
159 return begin()[0];
160 }
161 const_reference front() const {
162 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 162, __PRETTY_FUNCTION__))
;
163 return begin()[0];
164 }
165
166 reference back() {
167 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 167, __PRETTY_FUNCTION__))
;
168 return end()[-1];
169 }
170 const_reference back() const {
171 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 171, __PRETTY_FUNCTION__))
;
172 return end()[-1];
173 }
174};
175
176/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
177/// implementations that are designed to work with non-POD-like T's.
178template <typename T, bool = is_trivially_copyable<T>::value>
179class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
180protected:
181 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
182
183 static void destroy_range(T *S, T *E) {
184 while (S != E) {
185 --E;
186 E->~T();
187 }
188 }
189
190 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
191 /// constructing elements as needed.
192 template<typename It1, typename It2>
193 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
194 std::uninitialized_copy(std::make_move_iterator(I),
195 std::make_move_iterator(E), Dest);
196 }
197
198 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
199 /// constructing elements as needed.
200 template<typename It1, typename It2>
201 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
202 std::uninitialized_copy(I, E, Dest);
203 }
204
205 /// Grow the allocated memory (without initializing new elements), doubling
206 /// the size of the allocated memory. Guarantees space for at least one more
207 /// element, or MinSize more elements if specified.
208 void grow(size_t MinSize = 0);
209
210public:
211 void push_back(const T &Elt) {
212 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
213 this->grow();
214 ::new ((void*) this->end()) T(Elt);
215 this->set_size(this->size() + 1);
216 }
217
218 void push_back(T &&Elt) {
219 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
220 this->grow();
221 ::new ((void*) this->end()) T(::std::move(Elt));
222 this->set_size(this->size() + 1);
223 }
224
225 void pop_back() {
226 this->set_size(this->size() - 1);
227 this->end()->~T();
228 }
229};
230
231// Define this out-of-line to dissuade the C++ compiler from inlining it.
232template <typename T, bool TriviallyCopyable>
233void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
234 if (MinSize > UINT32_MAX(4294967295U))
235 report_bad_alloc_error("SmallVector capacity overflow during allocation");
236
237 // Always grow, even from zero.
238 size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
239 NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX(4294967295U)));
240 T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
241
242 // Move the elements over.
243 this->uninitialized_move(this->begin(), this->end(), NewElts);
244
245 // Destroy the original elements.
246 destroy_range(this->begin(), this->end());
247
248 // If this wasn't grown from the inline copy, deallocate the old space.
249 if (!this->isSmall())
250 free(this->begin());
251
252 this->BeginX = NewElts;
253 this->Capacity = NewCapacity;
254}
255
256/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
257/// method implementations that are designed to work with POD-like T's.
258template <typename T>
259class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
260protected:
261 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
262
263 // No need to do a destroy loop for POD's.
264 static void destroy_range(T *, T *) {}
265
266 /// Move the range [I, E) onto the uninitialized memory
267 /// starting with "Dest", constructing elements into it as needed.
268 template<typename It1, typename It2>
269 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
270 // Just do a copy.
271 uninitialized_copy(I, E, Dest);
272 }
273
274 /// Copy the range [I, E) onto the uninitialized memory
275 /// starting with "Dest", constructing elements into it as needed.
276 template<typename It1, typename It2>
277 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
278 // Arbitrary iterator types; just use the basic implementation.
279 std::uninitialized_copy(I, E, Dest);
280 }
281
282 /// Copy the range [I, E) onto the uninitialized memory
283 /// starting with "Dest", constructing elements into it as needed.
284 template <typename T1, typename T2>
285 static void uninitialized_copy(
286 T1 *I, T1 *E, T2 *Dest,
287 typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
288 T2>::value>::type * = nullptr) {
289 // Use memcpy for PODs iterated by pointers (which includes SmallVector
290 // iterators): std::uninitialized_copy optimizes to memmove, but we can
291 // use memcpy here. Note that I and E are iterators and thus might be
292 // invalid for memcpy if they are equal.
293 if (I != E)
294 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
295 }
296
297 /// Double the size of the allocated memory, guaranteeing space for at
298 /// least one more element or MinSize if specified.
299 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
300
301public:
302 void push_back(const T &Elt) {
303 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
304 this->grow();
305 memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
306 this->set_size(this->size() + 1);
307 }
308
309 void pop_back() { this->set_size(this->size() - 1); }
310};
311
312/// This class consists of common code factored out of the SmallVector class to
313/// reduce code duplication based on the SmallVector 'N' template parameter.
314template <typename T>
315class SmallVectorImpl : public SmallVectorTemplateBase<T> {
316 using SuperClass = SmallVectorTemplateBase<T>;
317
318public:
319 using iterator = typename SuperClass::iterator;
320 using const_iterator = typename SuperClass::const_iterator;
321 using reference = typename SuperClass::reference;
322 using size_type = typename SuperClass::size_type;
323
324protected:
325 // Default ctor - Initialize to empty.
326 explicit SmallVectorImpl(unsigned N)
327 : SmallVectorTemplateBase<T>(N) {}
328
329public:
330 SmallVectorImpl(const SmallVectorImpl &) = delete;
331
332 ~SmallVectorImpl() {
333 // Subclass has already destructed this vector's elements.
334 // If this wasn't grown from the inline copy, deallocate the old space.
335 if (!this->isSmall())
336 free(this->begin());
337 }
338
339 void clear() {
340 this->destroy_range(this->begin(), this->end());
341 this->Size = 0;
342 }
343
344 void resize(size_type N) {
345 if (N < this->size()) {
346 this->destroy_range(this->begin()+N, this->end());
347 this->set_size(N);
348 } else if (N > this->size()) {
349 if (this->capacity() < N)
350 this->grow(N);
351 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
352 new (&*I) T();
353 this->set_size(N);
354 }
355 }
356
357 void resize(size_type N, const T &NV) {
358 if (N < this->size()) {
359 this->destroy_range(this->begin()+N, this->end());
360 this->set_size(N);
361 } else if (N > this->size()) {
362 if (this->capacity() < N)
363 this->grow(N);
364 std::uninitialized_fill(this->end(), this->begin()+N, NV);
365 this->set_size(N);
366 }
367 }
368
369 void reserve(size_type N) {
370 if (this->capacity() < N)
371 this->grow(N);
372 }
373
374 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
375 T Result = ::std::move(this->back());
376 this->pop_back();
377 return Result;
378 }
379
380 void swap(SmallVectorImpl &RHS);
381
382 /// Add the specified range to the end of the SmallVector.
383 template <typename in_iter,
384 typename = typename std::enable_if<std::is_convertible<
385 typename std::iterator_traits<in_iter>::iterator_category,
386 std::input_iterator_tag>::value>::type>
387 void append(in_iter in_start, in_iter in_end) {
388 size_type NumInputs = std::distance(in_start, in_end);
389 if (NumInputs > this->capacity() - this->size())
390 this->grow(this->size()+NumInputs);
391
392 this->uninitialized_copy(in_start, in_end, this->end());
393 this->set_size(this->size() + NumInputs);
394 }
395
396 /// Append \p NumInputs copies of \p Elt to the end.
397 void append(size_type NumInputs, const T &Elt) {
398 if (NumInputs > this->capacity() - this->size())
399 this->grow(this->size()+NumInputs);
400
401 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
402 this->set_size(this->size() + NumInputs);
403 }
404
405 void append(std::initializer_list<T> IL) {
406 append(IL.begin(), IL.end());
407 }
408
409 // FIXME: Consider assigning over existing elements, rather than clearing &
410 // re-initializing them - for all assign(...) variants.
411
412 void assign(size_type NumElts, const T &Elt) {
413 clear();
414 if (this->capacity() < NumElts)
415 this->grow(NumElts);
416 this->set_size(NumElts);
417 std::uninitialized_fill(this->begin(), this->end(), Elt);
418 }
419
420 template <typename in_iter,
421 typename = typename std::enable_if<std::is_convertible<
422 typename std::iterator_traits<in_iter>::iterator_category,
423 std::input_iterator_tag>::value>::type>
424 void assign(in_iter in_start, in_iter in_end) {
425 clear();
426 append(in_start, in_end);
427 }
428
429 void assign(std::initializer_list<T> IL) {
430 clear();
431 append(IL);
432 }
433
434 iterator erase(const_iterator CI) {
435 // Just cast away constness because this is a non-const member function.
436 iterator I = const_cast<iterator>(CI);
437
438 assert(I >= this->begin() && "Iterator to erase is out of bounds.")((I >= this->begin() && "Iterator to erase is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Iterator to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 438, __PRETTY_FUNCTION__))
;
439 assert(I < this->end() && "Erasing at past-the-end iterator.")((I < this->end() && "Erasing at past-the-end iterator."
) ? static_cast<void> (0) : __assert_fail ("I < this->end() && \"Erasing at past-the-end iterator.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 439, __PRETTY_FUNCTION__))
;
440
441 iterator N = I;
442 // Shift all elts down one.
443 std::move(I+1, this->end(), I);
444 // Drop the last elt.
445 this->pop_back();
446 return(N);
447 }
448
449 iterator erase(const_iterator CS, const_iterator CE) {
450 // Just cast away constness because this is a non-const member function.
451 iterator S = const_cast<iterator>(CS);
452 iterator E = const_cast<iterator>(CE);
453
454 assert(S >= this->begin() && "Range to erase is out of bounds.")((S >= this->begin() && "Range to erase is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("S >= this->begin() && \"Range to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 454, __PRETTY_FUNCTION__))
;
455 assert(S <= E && "Trying to erase invalid range.")((S <= E && "Trying to erase invalid range.") ? static_cast
<void> (0) : __assert_fail ("S <= E && \"Trying to erase invalid range.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(E <= this->end() && "Trying to erase past the end.")((E <= this->end() && "Trying to erase past the end."
) ? static_cast<void> (0) : __assert_fail ("E <= this->end() && \"Trying to erase past the end.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 456, __PRETTY_FUNCTION__))
;
457
458 iterator N = S;
459 // Shift all elts down.
460 iterator I = std::move(E, this->end(), S);
461 // Drop the last elts.
462 this->destroy_range(I, this->end());
463 this->set_size(I - this->begin());
464 return(N);
465 }
466
467 iterator insert(iterator I, T &&Elt) {
468 if (I == this->end()) { // Important special case for empty vector.
469 this->push_back(::std::move(Elt));
470 return this->end()-1;
471 }
472
473 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 473, __PRETTY_FUNCTION__))
;
474 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 474, __PRETTY_FUNCTION__))
;
475
476 if (this->size() >= this->capacity()) {
477 size_t EltNo = I-this->begin();
478 this->grow();
479 I = this->begin()+EltNo;
480 }
481
482 ::new ((void*) this->end()) T(::std::move(this->back()));
483 // Push everything else over.
484 std::move_backward(I, this->end()-1, this->end());
485 this->set_size(this->size() + 1);
486
487 // If we just moved the element we're inserting, be sure to update
488 // the reference.
489 T *EltPtr = &Elt;
490 if (I <= EltPtr && EltPtr < this->end())
491 ++EltPtr;
492
493 *I = ::std::move(*EltPtr);
494 return I;
495 }
496
497 iterator insert(iterator I, const T &Elt) {
498 if (I == this->end()) { // Important special case for empty vector.
499 this->push_back(Elt);
500 return this->end()-1;
501 }
502
503 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 503, __PRETTY_FUNCTION__))
;
504 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 504, __PRETTY_FUNCTION__))
;
505
506 if (this->size() >= this->capacity()) {
507 size_t EltNo = I-this->begin();
508 this->grow();
509 I = this->begin()+EltNo;
510 }
511 ::new ((void*) this->end()) T(std::move(this->back()));
512 // Push everything else over.
513 std::move_backward(I, this->end()-1, this->end());
514 this->set_size(this->size() + 1);
515
516 // If we just moved the element we're inserting, be sure to update
517 // the reference.
518 const T *EltPtr = &Elt;
519 if (I <= EltPtr && EltPtr < this->end())
520 ++EltPtr;
521
522 *I = *EltPtr;
523 return I;
524 }
525
526 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
527 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
528 size_t InsertElt = I - this->begin();
529
530 if (I == this->end()) { // Important special case for empty vector.
531 append(NumToInsert, Elt);
532 return this->begin()+InsertElt;
533 }
534
535 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 535, __PRETTY_FUNCTION__))
;
536 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 536, __PRETTY_FUNCTION__))
;
537
538 // Ensure there is enough space.
539 reserve(this->size() + NumToInsert);
540
541 // Uninvalidate the iterator.
542 I = this->begin()+InsertElt;
543
544 // If there are more elements between the insertion point and the end of the
545 // range than there are being inserted, we can use a simple approach to
546 // insertion. Since we already reserved space, we know that this won't
547 // reallocate the vector.
548 if (size_t(this->end()-I) >= NumToInsert) {
549 T *OldEnd = this->end();
550 append(std::move_iterator<iterator>(this->end() - NumToInsert),
551 std::move_iterator<iterator>(this->end()));
552
553 // Copy the existing elements that get replaced.
554 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
555
556 std::fill_n(I, NumToInsert, Elt);
557 return I;
558 }
559
560 // Otherwise, we're inserting more elements than exist already, and we're
561 // not inserting at the end.
562
563 // Move over the elements that we're about to overwrite.
564 T *OldEnd = this->end();
565 this->set_size(this->size() + NumToInsert);
566 size_t NumOverwritten = OldEnd-I;
567 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
568
569 // Replace the overwritten part.
570 std::fill_n(I, NumOverwritten, Elt);
571
572 // Insert the non-overwritten middle part.
573 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
574 return I;
575 }
576
577 template <typename ItTy,
578 typename = typename std::enable_if<std::is_convertible<
579 typename std::iterator_traits<ItTy>::iterator_category,
580 std::input_iterator_tag>::value>::type>
581 iterator insert(iterator I, ItTy From, ItTy To) {
582 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
583 size_t InsertElt = I - this->begin();
584
585 if (I == this->end()) { // Important special case for empty vector.
586 append(From, To);
587 return this->begin()+InsertElt;
588 }
589
590 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 590, __PRETTY_FUNCTION__))
;
591 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 591, __PRETTY_FUNCTION__))
;
592
593 size_t NumToInsert = std::distance(From, To);
594
595 // Ensure there is enough space.
596 reserve(this->size() + NumToInsert);
597
598 // Uninvalidate the iterator.
599 I = this->begin()+InsertElt;
600
601 // If there are more elements between the insertion point and the end of the
602 // range than there are being inserted, we can use a simple approach to
603 // insertion. Since we already reserved space, we know that this won't
604 // reallocate the vector.
605 if (size_t(this->end()-I) >= NumToInsert) {
606 T *OldEnd = this->end();
607 append(std::move_iterator<iterator>(this->end() - NumToInsert),
608 std::move_iterator<iterator>(this->end()));
609
610 // Copy the existing elements that get replaced.
611 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
612
613 std::copy(From, To, I);
614 return I;
615 }
616
617 // Otherwise, we're inserting more elements than exist already, and we're
618 // not inserting at the end.
619
620 // Move over the elements that we're about to overwrite.
621 T *OldEnd = this->end();
622 this->set_size(this->size() + NumToInsert);
623 size_t NumOverwritten = OldEnd-I;
624 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
625
626 // Replace the overwritten part.
627 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
628 *J = *From;
629 ++J; ++From;
630 }
631
632 // Insert the non-overwritten middle part.
633 this->uninitialized_copy(From, To, OldEnd);
634 return I;
635 }
636
637 void insert(iterator I, std::initializer_list<T> IL) {
638 insert(I, IL.begin(), IL.end());
639 }
640
641 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
642 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
643 this->grow();
644 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
645 this->set_size(this->size() + 1);
646 return this->back();
647 }
648
649 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
650
651 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
652
653 bool operator==(const SmallVectorImpl &RHS) const {
654 if (this->size() != RHS.size()) return false;
655 return std::equal(this->begin(), this->end(), RHS.begin());
656 }
657 bool operator!=(const SmallVectorImpl &RHS) const {
658 return !(*this == RHS);
659 }
660
661 bool operator<(const SmallVectorImpl &RHS) const {
662 return std::lexicographical_compare(this->begin(), this->end(),
663 RHS.begin(), RHS.end());
664 }
665};
666
667template <typename T>
668void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
669 if (this == &RHS) return;
670
671 // We can only avoid copying elements if neither vector is small.
672 if (!this->isSmall() && !RHS.isSmall()) {
673 std::swap(this->BeginX, RHS.BeginX);
674 std::swap(this->Size, RHS.Size);
675 std::swap(this->Capacity, RHS.Capacity);
676 return;
677 }
678 if (RHS.size() > this->capacity())
679 this->grow(RHS.size());
680 if (this->size() > RHS.capacity())
681 RHS.grow(this->size());
682
683 // Swap the shared elements.
684 size_t NumShared = this->size();
685 if (NumShared > RHS.size()) NumShared = RHS.size();
686 for (size_type i = 0; i != NumShared; ++i)
687 std::swap((*this)[i], RHS[i]);
688
689 // Copy over the extra elts.
690 if (this->size() > RHS.size()) {
691 size_t EltDiff = this->size() - RHS.size();
692 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
693 RHS.set_size(RHS.size() + EltDiff);
694 this->destroy_range(this->begin()+NumShared, this->end());
695 this->set_size(NumShared);
696 } else if (RHS.size() > this->size()) {
697 size_t EltDiff = RHS.size() - this->size();
698 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
699 this->set_size(this->size() + EltDiff);
700 this->destroy_range(RHS.begin()+NumShared, RHS.end());
701 RHS.set_size(NumShared);
702 }
703}
704
705template <typename T>
706SmallVectorImpl<T> &SmallVectorImpl<T>::
707 operator=(const SmallVectorImpl<T> &RHS) {
708 // Avoid self-assignment.
709 if (this == &RHS) return *this;
710
711 // If we already have sufficient space, assign the common elements, then
712 // destroy any excess.
713 size_t RHSSize = RHS.size();
714 size_t CurSize = this->size();
715 if (CurSize >= RHSSize) {
716 // Assign common elements.
717 iterator NewEnd;
718 if (RHSSize)
719 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
720 else
721 NewEnd = this->begin();
722
723 // Destroy excess elements.
724 this->destroy_range(NewEnd, this->end());
725
726 // Trim.
727 this->set_size(RHSSize);
728 return *this;
729 }
730
731 // If we have to grow to have enough elements, destroy the current elements.
732 // This allows us to avoid copying them during the grow.
733 // FIXME: don't do this if they're efficiently moveable.
734 if (this->capacity() < RHSSize) {
735 // Destroy current elements.
736 this->destroy_range(this->begin(), this->end());
737 this->set_size(0);
738 CurSize = 0;
739 this->grow(RHSSize);
740 } else if (CurSize) {
741 // Otherwise, use assignment for the already-constructed elements.
742 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
743 }
744
745 // Copy construct the new elements in place.
746 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
747 this->begin()+CurSize);
748
749 // Set end.
750 this->set_size(RHSSize);
751 return *this;
752}
753
754template <typename T>
755SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
756 // Avoid self-assignment.
757 if (this == &RHS) return *this;
758
759 // If the RHS isn't small, clear this vector and then steal its buffer.
760 if (!RHS.isSmall()) {
761 this->destroy_range(this->begin(), this->end());
762 if (!this->isSmall()) free(this->begin());
763 this->BeginX = RHS.BeginX;
764 this->Size = RHS.Size;
765 this->Capacity = RHS.Capacity;
766 RHS.resetToSmall();
767 return *this;
768 }
769
770 // If we already have sufficient space, assign the common elements, then
771 // destroy any excess.
772 size_t RHSSize = RHS.size();
773 size_t CurSize = this->size();
774 if (CurSize >= RHSSize) {
775 // Assign common elements.
776 iterator NewEnd = this->begin();
777 if (RHSSize)
778 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
779
780 // Destroy excess elements and trim the bounds.
781 this->destroy_range(NewEnd, this->end());
782 this->set_size(RHSSize);
783
784 // Clear the RHS.
785 RHS.clear();
786
787 return *this;
788 }
789
790 // If we have to grow to have enough elements, destroy the current elements.
791 // This allows us to avoid copying them during the grow.
792 // FIXME: this may not actually make any sense if we can efficiently move
793 // elements.
794 if (this->capacity() < RHSSize) {
795 // Destroy current elements.
796 this->destroy_range(this->begin(), this->end());
797 this->set_size(0);
798 CurSize = 0;
799 this->grow(RHSSize);
800 } else if (CurSize) {
801 // Otherwise, use assignment for the already-constructed elements.
802 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
803 }
804
805 // Move-construct the new elements in place.
806 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
807 this->begin()+CurSize);
808
809 // Set end.
810 this->set_size(RHSSize);
811
812 RHS.clear();
813 return *this;
814}
815
816/// Storage for the SmallVector elements. This is specialized for the N=0 case
817/// to avoid allocating unnecessary storage.
818template <typename T, unsigned N>
819struct SmallVectorStorage {
820 AlignedCharArrayUnion<T> InlineElts[N];
821};
822
823/// We need the storage to be properly aligned even for small-size of 0 so that
824/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
825/// well-defined.
826template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
827
828/// This is a 'vector' (really, a variable-sized array), optimized
829/// for the case when the array is small. It contains some number of elements
830/// in-place, which allows it to avoid heap allocation when the actual number of
831/// elements is below that threshold. This allows normal "small" cases to be
832/// fast without losing generality for large inputs.
833///
834/// Note that this does not attempt to be exception safe.
835///
836template <typename T, unsigned N>
837class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
838public:
839 SmallVector() : SmallVectorImpl<T>(N) {}
840
841 ~SmallVector() {
842 // Destroy the constructed elements in the vector.
843 this->destroy_range(this->begin(), this->end());
844 }
845
846 explicit SmallVector(size_t Size, const T &Value = T())
847 : SmallVectorImpl<T>(N) {
848 this->assign(Size, Value);
849 }
850
851 template <typename ItTy,
852 typename = typename std::enable_if<std::is_convertible<
853 typename std::iterator_traits<ItTy>::iterator_category,
854 std::input_iterator_tag>::value>::type>
855 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
856 this->append(S, E);
857 }
858
859 template <typename RangeTy>
860 explicit SmallVector(const iterator_range<RangeTy> &R)
861 : SmallVectorImpl<T>(N) {
862 this->append(R.begin(), R.end());
863 }
864
865 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
866 this->assign(IL);
867 }
868
869 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
870 if (!RHS.empty())
871 SmallVectorImpl<T>::operator=(RHS);
872 }
873
874 const SmallVector &operator=(const SmallVector &RHS) {
875 SmallVectorImpl<T>::operator=(RHS);
876 return *this;
877 }
878
879 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
880 if (!RHS.empty())
881 SmallVectorImpl<T>::operator=(::std::move(RHS));
882 }
883
884 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
885 if (!RHS.empty())
886 SmallVectorImpl<T>::operator=(::std::move(RHS));
887 }
888
889 const SmallVector &operator=(SmallVector &&RHS) {
890 SmallVectorImpl<T>::operator=(::std::move(RHS));
891 return *this;
892 }
893
894 const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
895 SmallVectorImpl<T>::operator=(::std::move(RHS));
896 return *this;
897 }
898
899 const SmallVector &operator=(std::initializer_list<T> IL) {
900 this->assign(IL);
901 return *this;
902 }
903};
904
905template <typename T, unsigned N>
906inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
907 return X.capacity_in_bytes();
908}
909
910} // end namespace llvm
911
912namespace std {
913
914 /// Implement std::swap in terms of SmallVector swap.
915 template<typename T>
916 inline void
917 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
918 LHS.swap(RHS);
919 }
920
921 /// Implement std::swap in terms of SmallVector swap.
922 template<typename T, unsigned N>
923 inline void
924 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
925 LHS.swap(RHS);
926 }
927
928} // end namespace std
929
930#endif // LLVM_ADT_SMALLVECTOR_H

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/Analysis/CFG.h

1//===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions performs analyses on basic blocks, and instructions
10// contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_CFG_H
15#define LLVM_ANALYSIS_CFG_H
16
17#include "llvm/IR/BasicBlock.h"
18#include "llvm/IR/CFG.h"
19
20namespace llvm {
21
22class BasicBlock;
23class DominatorTree;
24class Function;
25class Instruction;
26class LoopInfo;
27
28/// Analyze the specified function to find all of the loop backedges in the
29/// function and return them. This is a relatively cheap (compared to
30/// computing dominators and loop info) analysis.
31///
32/// The output is added to Result, as pairs of <from,to> edge info.
33void FindFunctionBackedges(
34 const Function &F,
35 SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
36 Result);
37
38/// Search for the specified successor of basic block BB and return its position
39/// in the terminator instruction's list of successors. It is an error to call
40/// this with a block that is not a successor.
41unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ);
42
43/// Return true if the specified edge is a critical edge. Critical edges are
44/// edges from a block with multiple successors to a block with multiple
45/// predecessors.
46///
47bool isCriticalEdge(const Instruction *TI, unsigned SuccNum,
48 bool AllowIdenticalEdges = false);
49bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ,
50 bool AllowIdenticalEdges = false);
51
52/// Determine whether instruction 'To' is reachable from 'From', without passing
53/// through any blocks in ExclusionSet, returning true if uncertain.
54///
55/// Determine whether there is a path from From to To within a single function.
56/// Returns false only if we can prove that once 'From' has been executed then
57/// 'To' can not be executed. Conservatively returns true.
58///
59/// This function is linear with respect to the number of blocks in the CFG,
60/// walking down successors from From to reach To, with a fixed threshold.
61/// Using DT or LI allows us to answer more quickly. LI reduces the cost of
62/// an entire loop of any number of blocks to be the same as the cost of a
63/// single block. DT reduces the cost by allowing the search to terminate when
64/// we find a block that dominates the block containing 'To'. DT is most useful
65/// on branchy code but not loops, and LI is most useful on code with loops but
66/// does not help on branchy code outside loops.
67bool isPotentiallyReachable(
68 const Instruction *From, const Instruction *To,
69 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
70 const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
71
72/// Determine whether block 'To' is reachable from 'From', returning
73/// true if uncertain.
74///
75/// Determine whether there is a path from From to To within a single function.
76/// Returns false only if we can prove that once 'From' has been reached then
77/// 'To' can not be executed. Conservatively returns true.
78bool isPotentiallyReachable(const BasicBlock *From, const BasicBlock *To,
79 const DominatorTree *DT = nullptr,
80 const LoopInfo *LI = nullptr);
81
82/// Determine whether there is at least one path from a block in
83/// 'Worklist' to 'StopBB', returning true if uncertain.
84///
85/// Determine whether there is a path from at least one block in Worklist to
86/// StopBB within a single function. Returns false only if we can prove that
87/// once any block in 'Worklist' has been reached then 'StopBB' can not be
88/// executed. Conservatively returns true.
89bool isPotentiallyReachableFromMany(SmallVectorImpl<BasicBlock *> &Worklist,
90 BasicBlock *StopBB,
91 const DominatorTree *DT = nullptr,
92 const LoopInfo *LI = nullptr);
93
94/// Determine whether there is at least one path from a block in
95/// 'Worklist' to 'StopBB' without passing through any blocks in
96/// 'ExclusionSet', returning true if uncertain.
97///
98/// Determine whether there is a path from at least one block in Worklist to
99/// StopBB within a single function without passing through any of the blocks
100/// in 'ExclusionSet'. Returns false only if we can prove that once any block
101/// in 'Worklist' has been reached then 'StopBB' can not be executed.
102/// Conservatively returns true.
103bool isPotentiallyReachableFromMany(
104 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
105 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
106 const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
107
108/// Return true if the control flow in \p RPOTraversal is irreducible.
109///
110/// This is a generic implementation to detect CFG irreducibility based on loop
111/// info analysis. It can be used for any kind of CFG (Loop, MachineLoop,
112/// Function, MachineFunction, etc.) by providing an RPO traversal (\p
113/// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility
114/// function is only recommended when loop info analysis is available. If loop
115/// info analysis isn't available, please, don't compute it explicitly for this
116/// purpose. There are more efficient ways to detect CFG irreducibility that
117/// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's
118/// algorithm).
119///
120/// Requirements:
121/// 1) GraphTraits must be implemented for NodeT type. It is used to access
122/// NodeT successors.
123// 2) \p RPOTraversal must be a valid reverse post-order traversal of the
124/// target CFG with begin()/end() iterator interfaces.
125/// 3) \p LI must be a valid LoopInfoBase that contains up-to-date loop
126/// analysis information of the CFG.
127///
128/// This algorithm uses the information about reducible loop back-edges already
129/// computed in \p LI. When a back-edge is found during the RPO traversal, the
130/// algorithm checks whether the back-edge is one of the reducible back-edges in
131/// loop info. If it isn't, the CFG is irreducible. For example, for the CFG
132/// below (canonical irreducible graph) loop info won't contain any loop, so the
133/// algorithm will return that the CFG is irreducible when checking the B <-
134/// -> C back-edge.
135///
136/// (A->B, A->C, B->C, C->B, C->D)
137/// A
138/// / \
139/// B<- ->C
140/// |
141/// D
142///
143template <class NodeT, class RPOTraversalT, class LoopInfoT,
144 class GT = GraphTraits<NodeT>>
145bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) {
146 /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge
147 /// according to LI. I.e., check if there exists a loop that contains Src and
148 /// where Dst is the loop header.
149 auto isProperBackedge = [&](NodeT Src, NodeT Dst) {
150 for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) {
151 if (Lp->getHeader() == Dst)
152 return true;
153 }
154 return false;
155 };
156
157 SmallPtrSet<NodeT, 32> Visited;
158 for (NodeT Node : RPOTraversal) {
159 Visited.insert(Node);
160 for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) {
161 // Succ hasn't been visited yet
162 if (!Visited.count(Succ))
163 continue;
164 // We already visited Succ, thus Node->Succ must be a backedge. Check that
165 // the head matches what we have in the loop information. Otherwise, we
166 // have an irreducible graph.
167 if (!isProperBackedge(Node, Succ))
168 return true;
169 }
170 }
171
172 return false;
10
Returning zero, which participates in a condition later
173}
174} // End llvm namespace
175
176#endif