Bug Summary

File:build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/mlir/lib/Analysis/Presburger/Simplex.cpp
Warning:line 1822, column 17
2nd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Simplex.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D MLIR_CUDA_CONVERSIONS_ENABLED=1 -D MLIR_ROCM_CONVERSIONS_ENABLED=1 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/mlir/lib/Analysis/Presburger -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/mlir/lib/Analysis/Presburger -I include -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/include -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/mlir/include -I tools/mlir/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-09-04-125545-48738-1 -x c++ /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/mlir/lib/Analysis/Presburger/Simplex.cpp
1//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "mlir/Analysis/Presburger/Simplex.h"
10#include "mlir/Analysis/Presburger/Matrix.h"
11#include "mlir/Support/MathExtras.h"
12#include "llvm/ADT/Optional.h"
13#include "llvm/Support/Compiler.h"
14#include <numeric>
15
16using namespace mlir;
17using namespace presburger;
18
19using Direction = Simplex::Direction;
20
21const int nullIndex = std::numeric_limits<int>::max();
22
23// Return a + scale*b;
24LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
25static SmallVector<int64_t, 8>
26scaleAndAddForAssert(ArrayRef<int64_t> a, int64_t scale, ArrayRef<int64_t> b) {
27 assert(a.size() == b.size())(static_cast <bool> (a.size() == b.size()) ? void (0) :
__assert_fail ("a.size() == b.size()", "mlir/lib/Analysis/Presburger/Simplex.cpp"
, 27, __extension__ __PRETTY_FUNCTION__))
;
28 SmallVector<int64_t, 8> res;
29 res.reserve(a.size());
30 for (unsigned i = 0, e = a.size(); i < e; ++i)
31 res.push_back(a[i] + scale * b[i]);
32 return res;
33}
34
35SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
36 : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0),
37 tableau(0, getNumFixedCols() + nVar), empty(false) {
38 colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
39 for (unsigned i = 0; i < nVar; ++i) {
40 var.emplace_back(Orientation::Column, /*restricted=*/false,
41 /*pos=*/getNumFixedCols() + i);
42 colUnknown.push_back(i);
43 }
44}
45
46SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM,
47 const llvm::SmallBitVector &isSymbol)
48 : SimplexBase(nVar, mustUseBigM) {
49 assert(isSymbol.size() == nVar && "invalid bitmask!")(static_cast <bool> (isSymbol.size() == nVar &&
"invalid bitmask!") ? void (0) : __assert_fail ("isSymbol.size() == nVar && \"invalid bitmask!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 49, __extension__
__PRETTY_FUNCTION__))
;
50 // Invariant: nSymbol is the number of symbols that have been marked
51 // already and these occupy the columns
52 // [getNumFixedCols(), getNumFixedCols() + nSymbol).
53 for (unsigned symbolIdx : isSymbol.set_bits()) {
54 var[symbolIdx].isSymbol = true;
55 swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol);
56 ++nSymbol;
57 }
58}
59
60const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
61 assert(index != nullIndex && "nullIndex passed to unknownFromIndex")(static_cast <bool> (index != nullIndex && "nullIndex passed to unknownFromIndex"
) ? void (0) : __assert_fail ("index != nullIndex && \"nullIndex passed to unknownFromIndex\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 61, __extension__
__PRETTY_FUNCTION__))
;
62 return index >= 0 ? var[index] : con[~index];
63}
64
65const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
66 assert(col < getNumColumns() && "Invalid column")(static_cast <bool> (col < getNumColumns() &&
"Invalid column") ? void (0) : __assert_fail ("col < getNumColumns() && \"Invalid column\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 66, __extension__
__PRETTY_FUNCTION__))
;
67 return unknownFromIndex(colUnknown[col]);
68}
69
70const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
71 assert(row < getNumRows() && "Invalid row")(static_cast <bool> (row < getNumRows() && "Invalid row"
) ? void (0) : __assert_fail ("row < getNumRows() && \"Invalid row\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 71, __extension__
__PRETTY_FUNCTION__))
;
72 return unknownFromIndex(rowUnknown[row]);
73}
74
75Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
76 assert(index != nullIndex && "nullIndex passed to unknownFromIndex")(static_cast <bool> (index != nullIndex && "nullIndex passed to unknownFromIndex"
) ? void (0) : __assert_fail ("index != nullIndex && \"nullIndex passed to unknownFromIndex\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 76, __extension__
__PRETTY_FUNCTION__))
;
77 return index >= 0 ? var[index] : con[~index];
78}
79
80Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
81 assert(col < getNumColumns() && "Invalid column")(static_cast <bool> (col < getNumColumns() &&
"Invalid column") ? void (0) : __assert_fail ("col < getNumColumns() && \"Invalid column\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 81, __extension__
__PRETTY_FUNCTION__))
;
82 return unknownFromIndex(colUnknown[col]);
83}
84
85Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
86 assert(row < getNumRows() && "Invalid row")(static_cast <bool> (row < getNumRows() && "Invalid row"
) ? void (0) : __assert_fail ("row < getNumRows() && \"Invalid row\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 86, __extension__
__PRETTY_FUNCTION__))
;
87 return unknownFromIndex(rowUnknown[row]);
88}
89
90unsigned SimplexBase::addZeroRow(bool makeRestricted) {
91 // Resize the tableau to accommodate the extra row.
92 unsigned newRow = tableau.appendExtraRow();
93 assert(getNumRows() == getNumRows() && "Inconsistent tableau size")(static_cast <bool> (getNumRows() == getNumRows() &&
"Inconsistent tableau size") ? void (0) : __assert_fail ("getNumRows() == getNumRows() && \"Inconsistent tableau size\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 93, __extension__
__PRETTY_FUNCTION__))
;
94 rowUnknown.push_back(~con.size());
95 con.emplace_back(Orientation::Row, makeRestricted, newRow);
96 undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
97 tableau(newRow, 0) = 1;
98 return newRow;
99}
100
101/// Add a new row to the tableau corresponding to the given constant term and
102/// list of coefficients. The coefficients are specified as a vector of
103/// (variable index, coefficient) pairs.
104unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
105 assert(coeffs.size() == var.size() + 1 &&(static_cast <bool> (coeffs.size() == var.size() + 1 &&
"Incorrect number of coefficients!") ? void (0) : __assert_fail
("coeffs.size() == var.size() + 1 && \"Incorrect number of coefficients!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 106, __extension__
__PRETTY_FUNCTION__))
106 "Incorrect number of coefficients!")(static_cast <bool> (coeffs.size() == var.size() + 1 &&
"Incorrect number of coefficients!") ? void (0) : __assert_fail
("coeffs.size() == var.size() + 1 && \"Incorrect number of coefficients!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 106, __extension__
__PRETTY_FUNCTION__))
;
107 assert(var.size() + getNumFixedCols() == getNumColumns() &&(static_cast <bool> (var.size() + getNumFixedCols() == getNumColumns
() && "inconsistent column count!") ? void (0) : __assert_fail
("var.size() + getNumFixedCols() == getNumColumns() && \"inconsistent column count!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 108, __extension__
__PRETTY_FUNCTION__))
108 "inconsistent column count!")(static_cast <bool> (var.size() + getNumFixedCols() == getNumColumns
() && "inconsistent column count!") ? void (0) : __assert_fail
("var.size() + getNumFixedCols() == getNumColumns() && \"inconsistent column count!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 108, __extension__
__PRETTY_FUNCTION__))
;
109
110 unsigned newRow = addZeroRow(makeRestricted);
111 tableau(newRow, 1) = coeffs.back();
112 if (usingBigM) {
113 // When the lexicographic pivot rule is used, instead of the variables
114 //
115 // x, y, z ...
116 //
117 // we internally use the variables
118 //
119 // M, M + x, M + y, M + z, ...
120 //
121 // where M is the big M parameter. As such, when the user tries to add
122 // a row ax + by + cz + d, we express it in terms of our internal variables
123 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
124 //
125 // Symbols don't use the big M parameter since they do not get lex
126 // optimized.
127 int64_t bigMCoeff = 0;
128 for (unsigned i = 0; i < coeffs.size() - 1; ++i)
129 if (!var[i].isSymbol)
130 bigMCoeff -= coeffs[i];
131 // The coefficient to the big M parameter is stored in column 2.
132 tableau(newRow, 2) = bigMCoeff;
133 }
134
135 // Process each given variable coefficient.
136 for (unsigned i = 0; i < var.size(); ++i) {
137 unsigned pos = var[i].pos;
138 if (coeffs[i] == 0)
139 continue;
140
141 if (var[i].orientation == Orientation::Column) {
142 // If a variable is in column position at column col, then we just add the
143 // coefficient for that variable (scaled by the common row denominator) to
144 // the corresponding entry in the new row.
145 tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0);
146 continue;
147 }
148
149 // If the variable is in row position, we need to add that row to the new
150 // row, scaled by the coefficient for the variable, accounting for the two
151 // rows potentially having different denominators. The new denominator is
152 // the lcm of the two.
153 int64_t lcm = std::lcm(tableau(newRow, 0), tableau(pos, 0));
154 int64_t nRowCoeff = lcm / tableau(newRow, 0);
155 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
156 tableau(newRow, 0) = lcm;
157 for (unsigned col = 1, e = getNumColumns(); col < e; ++col)
158 tableau(newRow, col) =
159 nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col);
160 }
161
162 tableau.normalizeRow(newRow);
163 // Push to undo log along with the index of the new constraint.
164 return con.size() - 1;
165}
166
167namespace {
168bool signMatchesDirection(int64_t elem, Direction direction) {
169 assert(elem != 0 && "elem should not be 0")(static_cast <bool> (elem != 0 && "elem should not be 0"
) ? void (0) : __assert_fail ("elem != 0 && \"elem should not be 0\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 169, __extension__
__PRETTY_FUNCTION__))
;
170 return direction == Direction::Up ? elem > 0 : elem < 0;
171}
172
173Direction flippedDirection(Direction direction) {
174 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
175}
176} // namespace
177
178/// We simply make the tableau consistent while maintaining a lexicopositive
179/// basis transform, and then return the sample value. If the tableau becomes
180/// empty, we return empty.
181///
182/// Let the variables be x = (x_1, ... x_n).
183/// Let the basis unknowns be y = (y_1, ... y_n).
184/// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
185///
186/// As we will show below, A*y is either zero or lexicopositive.
187/// Adding a lexicopositive vector to b will make it lexicographically
188/// greater, so A*y + b is always equal to or lexicographically greater than b.
189/// Thus, since we can attain x = b, that is the lexicographic minimum.
190///
191/// We have that that every column in A is lexicopositive, i.e., has at least
192/// one non-zero element, with the first such element being positive. Since for
193/// the tableau to be consistent we must have non-negative sample values not
194/// only for the constraints but also for the variables, we also have x >= 0 and
195/// y >= 0, by which we mean every element in these vectors is non-negative.
196///
197/// Proof that if every column in A is lexicopositive, and y >= 0, then
198/// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
199/// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
200/// row. If we run out of rows, A*y is zero and we are done; otherwise, we
201/// encounter some row A_i that has a non-zero element. Every column is
202/// lexicopositive and so has some positive element before any negative elements
203/// occur, so the element in this row for any column, if non-zero, must be
204/// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
205/// non-negative, so if this is non-zero then it must be positive. Then the
206/// first non-zero element of A*y is positive so A*y is lexicopositive.
207///
208/// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
209/// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
210/// and we can completely ignore these columns of A. We now continue downwards,
211/// looking for rows of A that have a non-zero element other than in the ignored
212/// columns. If we find one, say A_k, once again these elements must be positive
213/// since they are the first non-zero element in each of these columns, so if
214/// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
215/// add these to the set of ignored columns and continue to the next row. If we
216/// run out of rows, then A*y is zero and we are done.
217MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
218 if (restoreRationalConsistency().failed()) {
219 markEmpty();
220 return OptimumKind::Empty;
221 }
222 return getRationalSample();
223}
224
225/// Given a row that has a non-integer sample value, add an inequality such
226/// that this fractional sample value is cut away from the polytope. The added
227/// inequality will be such that no integer points are removed. i.e., the
228/// integer lexmin, if it exists, is the same with and without this constraint.
229///
230/// Let the row be
231/// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
232/// where s_1, ... s_m are the symbols and
233/// y_1, ... y_n are the other basis unknowns.
234///
235/// For this to be an integer, we want
236/// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
237/// Note that this constraint must always hold, independent of the basis,
238/// becuse the row unknown's value always equals this expression, even if *we*
239/// later compute the sample value from a different expression based on a
240/// different basis.
241///
242/// Let us assume that M has a factor of d in it. Imposing this constraint on M
243/// does not in any way hinder us from finding a value of M that is big enough.
244/// Moreover, this function is only called when the symbolic part of the sample,
245/// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
246///
247/// Also, we can safely reduce the coefficients modulo d, so we have:
248///
249/// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
250///
251/// Note that all coefficient modulos here are non-negative. Also, all the
252/// unknowns are non-negative here as both constraints and variables are
253/// non-negative in LexSimplexBase. (We used the big M trick to make the
254/// variables non-negative). Therefore, the LHS here is non-negative.
255/// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
256/// is therefore non-negative as well.
257///
258/// So we have
259/// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
260///
261/// The constraint is violated when added (it would be useless otherwise)
262/// so we immediately try to move it to a column.
263LogicalResult LexSimplexBase::addCut(unsigned row) {
264 int64_t d = tableau(row, 0);
265 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
266 tableau(cutRow, 0) = d;
267 tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d.
268 tableau(cutRow, 2) = 0;
269 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
270 tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d.
271 return moveRowUnknownToColumn(cutRow);
272}
273
274Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
275 for (const Unknown &u : var) {
276 if (u.orientation == Orientation::Column)
277 continue;
278 // If the sample value is of the form (a/d)M + b/d, we need b to be
279 // divisible by d. We assume M contains all possible
280 // factors and is divisible by everything.
281 unsigned row = u.pos;
282 if (tableau(row, 1) % tableau(row, 0) != 0)
283 return row;
284 }
285 return {};
286}
287
288MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
289 // We first try to make the tableau consistent.
290 if (restoreRationalConsistency().failed())
291 return OptimumKind::Empty;
292
293 // Then, if the sample value is integral, we are done.
294 while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
295 // Otherwise, for the variable whose row has a non-integral sample value,
296 // we add a cut, a constraint that remove this rational point
297 // while preserving all integer points, thus keeping the lexmin the same.
298 // We then again try to make the tableau with the new constraint
299 // consistent. This continues until the tableau becomes empty, in which
300 // case there is no integer point, or until there are no variables with
301 // non-integral sample values.
302 //
303 // Failure indicates that the tableau became empty, which occurs when the
304 // polytope is integer empty.
305 if (addCut(*maybeRow).failed())
306 return OptimumKind::Empty;
307 if (restoreRationalConsistency().failed())
308 return OptimumKind::Empty;
309 }
310
311 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
312 assert(!sample.isEmpty() && "If we reached here the sample should exist!")(static_cast <bool> (!sample.isEmpty() && "If we reached here the sample should exist!"
) ? void (0) : __assert_fail ("!sample.isEmpty() && \"If we reached here the sample should exist!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 312, __extension__
__PRETTY_FUNCTION__))
;
313 if (sample.isUnbounded())
314 return OptimumKind::Unbounded;
315 return llvm::to_vector<8>(
316 llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
317}
318
319bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
320 SimplexRollbackScopeExit scopeExit(*this);
321 addInequality(coeffs);
322 return findIntegerLexMin().isEmpty();
323}
324
325bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
326 return isSeparateInequality(getComplementIneq(coeffs));
327}
328
329SmallVector<int64_t, 8>
330SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
331 SmallVector<int64_t, 8> sample;
332 sample.reserve(nSymbol + 1);
333 for (unsigned col = 3; col < 3 + nSymbol; ++col)
334 sample.push_back(tableau(row, col));
335 sample.push_back(tableau(row, 1));
336 return sample;
337}
338
339SmallVector<int64_t, 8>
340SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
341 SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(row);
342 // The inequality is equivalent to the GCD-normalized one.
343 normalizeRange(sample);
344 return sample;
345}
346
347void LexSimplexBase::appendSymbol() {
348 appendVariable();
349 swapColumns(3 + nSymbol, getNumColumns() - 1);
350 var.back().isSymbol = true;
351 nSymbol++;
352}
353
354static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) {
355 assert(divisor > 0 && "divisor must be positive!")(static_cast <bool> (divisor > 0 && "divisor must be positive!"
) ? void (0) : __assert_fail ("divisor > 0 && \"divisor must be positive!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 355, __extension__
__PRETTY_FUNCTION__))
;
356 return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; });
357}
358
359bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
360 int64_t denom = tableau(row, 0);
361 return tableau(row, 1) % denom == 0 &&
362 isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
363}
364
365/// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
366/// has a symbolic sample value with fractional coefficients.
367///
368/// Let the row be
369/// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
370/// where s_1, ... s_m are the symbols and
371/// y_1, ... y_n are the other basis unknowns.
372///
373/// As in LexSimplex::addCut, for this to be an integer, we want
374///
375/// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
376///
377/// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
378///
379/// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
380///
381/// where we take a modulo of the whole symbolic expression on the right to
382/// bring it into the range [0, d - 1]. Therefore, as in addCut(),
383/// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
384/// k >= 0 as well. If all the a_i are divisible by d, then we can add the
385/// constraint directly. Otherwise, we realize the modulo of the symbolic
386/// expression by adding a division variable
387///
388/// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
389///
390/// to the symbol domain, so the equality becomes
391///
392/// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
393///
394/// So the cut is
395/// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
396/// This constraint is violated when added so we immediately try to move it to a
397/// column.
398LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
399 int64_t d = tableau(row, 0);
400 if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) {
401 // The coefficients of symbols in the symbol numerator are divisible
402 // by the denominator, so we can add the constraint directly,
403 // i.e., ignore the symbols and add a regular cut as in addCut().
404 return addCut(row);
405 }
406
407 // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
408 SmallVector<int64_t, 8> divCoeffs;
409 divCoeffs.reserve(nSymbol + 1);
410 int64_t divDenom = d;
411 for (unsigned col = 3; col < 3 + nSymbol; ++col)
412 divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i
413 divCoeffs.push_back(mod(-tableau(row, 1), divDenom)); // -c%d.
414 normalizeDiv(divCoeffs, divDenom);
415
416 domainSimplex.addDivisionVariable(divCoeffs, divDenom);
417 domainPoly.addLocalFloorDiv(divCoeffs, divDenom);
418
419 // Update `this` to account for the additional symbol we just added.
420 appendSymbol();
421
422 // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
423 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
424 tableau(cutRow, 0) = d;
425 tableau(cutRow, 2) = 0;
426
427 tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
428 for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
429 tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
430 tableau(cutRow, 3 + nSymbol - 1) = d; // q*d.
431
432 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
433 tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
434 return moveRowUnknownToColumn(cutRow);
435}
436
437void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
438 Matrix output(0, domainPoly.getNumVars() + 1);
439 output.reserveRows(result.lexmin.getNumOutputs());
440 for (const Unknown &u : var) {
441 if (u.isSymbol)
442 continue;
443
444 if (u.orientation == Orientation::Column) {
445 // M + u has a sample value of zero so u has a sample value of -M, i.e,
446 // unbounded.
447 result.unboundedDomain.unionInPlace(domainPoly);
448 return;
449 }
450
451 int64_t denom = tableau(u.pos, 0);
452 if (tableau(u.pos, 2) < denom) {
453 // M + u has a sample value of fM + something, where f < 1, so
454 // u = (f - 1)M + something, which has a negative coefficient for M,
455 // and so is unbounded.
456 result.unboundedDomain.unionInPlace(domainPoly);
457 return;
458 }
459 assert(tableau(u.pos, 2) == denom &&(static_cast <bool> (tableau(u.pos, 2) == denom &&
"Coefficient of M should not be greater than 1!") ? void (0)
: __assert_fail ("tableau(u.pos, 2) == denom && \"Coefficient of M should not be greater than 1!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 460, __extension__
__PRETTY_FUNCTION__))
460 "Coefficient of M should not be greater than 1!")(static_cast <bool> (tableau(u.pos, 2) == denom &&
"Coefficient of M should not be greater than 1!") ? void (0)
: __assert_fail ("tableau(u.pos, 2) == denom && \"Coefficient of M should not be greater than 1!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 460, __extension__
__PRETTY_FUNCTION__))
;
461
462 SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos);
463 for (int64_t &elem : sample) {
464 assert(elem % denom == 0 && "coefficients must be integral!")(static_cast <bool> (elem % denom == 0 && "coefficients must be integral!"
) ? void (0) : __assert_fail ("elem % denom == 0 && \"coefficients must be integral!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 464, __extension__
__PRETTY_FUNCTION__))
;
465 elem /= denom;
466 }
467 output.appendExtraRow(sample);
468 }
469 result.lexmin.addPiece(domainPoly, output);
470}
471
472Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
473 // First look for rows that are clearly violated just from the big M
474 // coefficient, without needing to perform any simplex queries on the domain.
475 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
476 if (tableau(row, 2) < 0)
477 return row;
478
479 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
480 if (tableau(row, 2) > 0)
481 continue;
482 if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) {
483 // Sample numerator always takes negative values in the symbol domain.
484 return row;
485 }
486 }
487 return {};
488}
489
490Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
491 for (const Unknown &u : var) {
492 if (u.orientation == Orientation::Column)
493 continue;
494 assert(!u.isSymbol && "Symbol should not be in row orientation!")(static_cast <bool> (!u.isSymbol && "Symbol should not be in row orientation!"
) ? void (0) : __assert_fail ("!u.isSymbol && \"Symbol should not be in row orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 494, __extension__
__PRETTY_FUNCTION__))
;
495 if (!isSymbolicSampleIntegral(u.pos))
496 return u.pos;
497 }
498 return {};
499}
500
501/// The non-branching pivots are just the ones moving the rows
502/// that are always violated in the symbol domain.
503LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
504 while (Optional<unsigned> row = maybeGetAlwaysViolatedRow())
505 if (moveRowUnknownToColumn(*row).failed())
506 return failure();
507 return success();
508}
509
510SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
511 SymbolicLexMin result(domainPoly.getSpace(), var.size() - nSymbol);
512
513 /// The algorithm is more naturally expressed recursively, but we implement
514 /// it iteratively here to avoid potential issues with stack overflows in the
515 /// compiler. We explicitly maintain the stack frames in a vector.
516 ///
517 /// To "recurse", we store the current "stack frame", i.e., state variables
518 /// that we will need when we "return", into `stack`, increment `level`, and
519 /// `continue`. To "tail recurse", we just `continue`.
520 /// To "return", we decrement `level` and `continue`.
521 ///
522 /// When there is no stack frame for the current `level`, this indicates that
523 /// we have just "recursed" or "tail recursed". When there does exist one,
524 /// this indicates that we have just "returned" from recursing. There is only
525 /// one point at which non-tail calls occur so we always "return" there.
526 unsigned level = 1;
527 struct StackFrame {
528 int splitIndex;
529 unsigned snapshot;
530 unsigned domainSnapshot;
531 IntegerRelation::CountsSnapshot domainPolyCounts;
532 };
533 SmallVector<StackFrame, 8> stack;
534
535 while (level > 0) {
536 assert(level >= stack.size())(static_cast <bool> (level >= stack.size()) ? void (
0) : __assert_fail ("level >= stack.size()", "mlir/lib/Analysis/Presburger/Simplex.cpp"
, 536, __extension__ __PRETTY_FUNCTION__))
;
537 if (level > stack.size()) {
538 if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
539 // No integer points; return.
540 --level;
541 continue;
542 }
543
544 if (doNonBranchingPivots().failed()) {
545 // Could not find pivots for violated constraints; return.
546 --level;
547 continue;
548 }
549
550 SmallVector<int64_t, 8> symbolicSample;
551 unsigned splitRow = 0;
552 for (unsigned e = getNumRows(); splitRow < e; ++splitRow) {
553 if (tableau(splitRow, 2) > 0)
554 continue;
555 assert(tableau(splitRow, 2) == 0 &&(static_cast <bool> (tableau(splitRow, 2) == 0 &&
"Non-branching pivots should have been handled already!") ? void
(0) : __assert_fail ("tableau(splitRow, 2) == 0 && \"Non-branching pivots should have been handled already!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 556, __extension__
__PRETTY_FUNCTION__))
556 "Non-branching pivots should have been handled already!")(static_cast <bool> (tableau(splitRow, 2) == 0 &&
"Non-branching pivots should have been handled already!") ? void
(0) : __assert_fail ("tableau(splitRow, 2) == 0 && \"Non-branching pivots should have been handled already!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 556, __extension__
__PRETTY_FUNCTION__))
;
557
558 symbolicSample = getSymbolicSampleIneq(splitRow);
559 if (domainSimplex.isRedundantInequality(symbolicSample))
560 continue;
561
562 // It's neither redundant nor separate, so it takes both positive and
563 // negative values, and hence constitutes a row for which we need to
564 // split the domain and separately run each case.
565 assert(!domainSimplex.isSeparateInequality(symbolicSample) &&(static_cast <bool> (!domainSimplex.isSeparateInequality
(symbolicSample) && "Non-branching pivots should have been handled already!"
) ? void (0) : __assert_fail ("!domainSimplex.isSeparateInequality(symbolicSample) && \"Non-branching pivots should have been handled already!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 566, __extension__
__PRETTY_FUNCTION__))
566 "Non-branching pivots should have been handled already!")(static_cast <bool> (!domainSimplex.isSeparateInequality
(symbolicSample) && "Non-branching pivots should have been handled already!"
) ? void (0) : __assert_fail ("!domainSimplex.isSeparateInequality(symbolicSample) && \"Non-branching pivots should have been handled already!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 566, __extension__
__PRETTY_FUNCTION__))
;
567 break;
568 }
569
570 if (splitRow < getNumRows()) {
571 unsigned domainSnapshot = domainSimplex.getSnapshot();
572 IntegerRelation::CountsSnapshot domainPolyCounts =
573 domainPoly.getCounts();
574
575 // First, we consider the part of the domain where the row is not
576 // violated. We don't have to do any pivots for the row in this case,
577 // but we record the additional constraint that defines this part of
578 // the domain.
579 domainSimplex.addInequality(symbolicSample);
580 domainPoly.addInequality(symbolicSample);
581
582 // Recurse.
583 //
584 // On return, the basis as a set is preserved but not the internal
585 // ordering within rows or columns. Thus, we take note of the index of
586 // the Unknown that caused the split, which may be in a different
587 // row when we come back from recursing. We will need this to recurse
588 // on the other part of the split domain, where the row is violated.
589 //
590 // Note that we have to capture the index above and not a reference to
591 // the Unknown itself, since the array it lives in might get
592 // reallocated.
593 int splitIndex = rowUnknown[splitRow];
594 unsigned snapshot = getSnapshot();
595 stack.push_back(
596 {splitIndex, snapshot, domainSnapshot, domainPolyCounts});
597 ++level;
598 continue;
599 }
600
601 // The tableau is rationally consistent for the current domain.
602 // Now we look for non-integral sample values and add cuts for them.
603 if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) {
604 if (addSymbolicCut(*row).failed()) {
605 // No integral points; return.
606 --level;
607 continue;
608 }
609
610 // Rerun this level with the added cut constraint (tail recurse).
611 continue;
612 }
613
614 // Record output and return.
615 recordOutput(result);
616 --level;
617 continue;
618 }
619
620 if (level == stack.size()) {
621 // We have "returned" from "recursing".
622 const StackFrame &frame = stack.back();
623 domainPoly.truncate(frame.domainPolyCounts);
624 domainSimplex.rollback(frame.domainSnapshot);
625 rollback(frame.snapshot);
626 const Unknown &u = unknownFromIndex(frame.splitIndex);
627
628 // Drop the frame. We don't need it anymore.
629 stack.pop_back();
630
631 // Now we consider the part of the domain where the unknown `splitIndex`
632 // was negative.
633 assert(u.orientation == Orientation::Row &&(static_cast <bool> (u.orientation == Orientation::Row &&
"The split row should have been returned to row orientation!"
) ? void (0) : __assert_fail ("u.orientation == Orientation::Row && \"The split row should have been returned to row orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 634, __extension__
__PRETTY_FUNCTION__))
634 "The split row should have been returned to row orientation!")(static_cast <bool> (u.orientation == Orientation::Row &&
"The split row should have been returned to row orientation!"
) ? void (0) : __assert_fail ("u.orientation == Orientation::Row && \"The split row should have been returned to row orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 634, __extension__
__PRETTY_FUNCTION__))
;
635 SmallVector<int64_t, 8> splitIneq =
636 getComplementIneq(getSymbolicSampleIneq(u.pos));
637 normalizeRange(splitIneq);
638 if (moveRowUnknownToColumn(u.pos).failed()) {
639 // The unknown can't be made non-negative; return.
640 --level;
641 continue;
642 }
643
644 // The unknown can be made negative; recurse with the corresponding domain
645 // constraints.
646 domainSimplex.addInequality(splitIneq);
647 domainPoly.addInequality(splitIneq);
648
649 // We are now taking care of the second half of the domain and we don't
650 // need to do anything else here after returning, so it's a tail recurse.
651 continue;
652 }
653 }
654
655 return result;
656}
657
658bool LexSimplex::rowIsViolated(unsigned row) const {
659 if (tableau(row, 2) < 0)
660 return true;
661 if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
662 return true;
663 return false;
664}
665
666Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
667 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
668 if (rowIsViolated(row))
669 return row;
670 return {};
671}
672
673/// We simply look for violated rows and keep trying to move them to column
674/// orientation, which always succeeds unless the constraints have no solution
675/// in which case we just give up and return.
676LogicalResult LexSimplex::restoreRationalConsistency() {
677 if (empty)
678 return failure();
679 while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
680 if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
681 return failure();
682 return success();
683}
684
685// Move the row unknown to column orientation while preserving lexicopositivity
686// of the basis transform. The sample value of the row must be non-positive.
687//
688// We only consider pivots where the pivot element is positive. Suppose no such
689// pivot exists, i.e., some violated row has no positive coefficient for any
690// basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
691// where d is the denominator, s is the sample value and the c_i are the basis
692// coefficients. If s != 0, then since any feasible assignment of the basis
693// satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
694// any feasible assignment would violate this row and therefore the constraints
695// have no solution.
696//
697// We can preserve lexicopositivity by picking the pivot column with positive
698// pivot element that makes the lexicographically smallest change to the sample
699// point.
700//
701// Proof. Let
702// x = (x_1, ... x_n) be the variables,
703// z = (z_1, ... z_m) be the constraints,
704// y = (y_1, ... y_n) be the current basis, and
705// define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
706// B is basically the simplex tableau of our implementation except that instead
707// of only describing the transform to get back the non-basis unknowns, it
708// defines the values of all the unknowns in terms of the basis unknowns.
709// Similarly, s is the column for the sample value.
710//
711// Our goal is to show that each column in B, restricted to the first n
712// rows, is lexicopositive after the pivot if it is so before. This is
713// equivalent to saying the columns in the whole matrix are lexicopositive;
714// there must be some non-zero element in every column in the first n rows since
715// the n variables cannot be spanned without using all the n basis unknowns.
716//
717// Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
718// transform for the tableau derived for SimplexBase::pivot:
719//
720// pivot col other col pivot col other col
721// pivot row a b -> pivot row 1/a -b/a
722// other row c d other row c/a d - bc/a
723//
724// Similarly, a pivot results in B changing to B' and c to c'; the difference
725// between the tableau and these matrices B and B' is that there is no special
726// case for the pivot row, since it continues to represent the same unknown. The
727// same formula applies for all rows:
728//
729// B'.col(j) = B.col(j) / B(i,j)
730// B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
731// and similarly, s' = s - s_i * B.col(j) / B(i,j).
732//
733// If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
734// the change in sample value when pivoting with column a is lexicographically
735// smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
736// lexicographically smaller than B.col(b) / B(i, b).
737//
738// Since B(i, j) > 0, column j remains lexicopositive.
739//
740// For the other columns, suppose C.col(k) is not lexicopositive.
741// This means that for some p, for all t < p,
742// C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
743// C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
744// which is in contradiction to the fact that B.col(j) / B(i,j) must be
745// lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
746// minimizes the change in sample value.
747LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
748 Optional<unsigned> maybeColumn;
749 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) {
750 if (tableau(row, col) <= 0)
751 continue;
752 maybeColumn =
753 !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
754 }
755
756 if (!maybeColumn)
757 return failure();
758
759 pivot(row, *maybeColumn);
760 return success();
761}
762
763unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
764 unsigned colB) const {
765 // First, let's consider the non-symbolic case.
766 // A pivot causes the following change. (in the diagram the matrix elements
767 // are shown as rationals and there is no common denominator used)
768 //
769 // pivot col big M col const col
770 // pivot row a p b
771 // other row c q d
772 // |
773 // v
774 //
775 // pivot col big M col const col
776 // pivot row 1/a -p/a -b/a
777 // other row c/a q - pc/a d - bc/a
778 //
779 // Let the sample value of the pivot row be s = pM + b before the pivot. Since
780 // the pivot row represents a violated constraint we know that s < 0.
781 //
782 // If the variable is a non-pivot column, its sample value is zero before and
783 // after the pivot.
784 //
785 // If the variable is the pivot column, then its sample value goes from 0 to
786 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
787 // value is -s/a.
788 //
789 // If the variable is the pivot row, its sample value goes from s to 0, for a
790 // change of -s.
791 //
792 // If the variable is a non-pivot row, its sample value changes from
793 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
794 // is -(pM + b)(c/a) = -sc/a.
795 //
796 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
797 // fixed for all calls to this function since the row and tableau are fixed.
798 // The callee just wants to compare the return values with the return value of
799 // other invocations of the same function. So the -s is common for all
800 // comparisons involved and can be ignored, since -s is strictly positive.
801 //
802 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
803 // appropriate. This allows us to run the entire algorithm treating M
804 // symbolically, as the pivot to be performed does not depend on the value
805 // of M, so long as the sample value s is negative. Note that this is not
806 // because of any special feature of M; by the same argument, we ignore the
807 // symbols too. The caller ensure that the sample value s is negative for
808 // all possible values of the symbols.
809 auto getSampleChangeCoeffForVar = [this, row](unsigned col,
810 const Unknown &u) -> Fraction {
811 int64_t a = tableau(row, col);
812 if (u.orientation == Orientation::Column) {
813 // Pivot column case.
814 if (u.pos == col)
815 return {1, a};
816
817 // Non-pivot column case.
818 return {0, 1};
819 }
820
821 // Pivot row case.
822 if (u.pos == row)
823 return {1, 1};
824
825 // Non-pivot row case.
826 int64_t c = tableau(u.pos, col);
827 return {c, a};
828 };
829
830 for (const Unknown &u : var) {
831 Fraction changeA = getSampleChangeCoeffForVar(colA, u);
832 Fraction changeB = getSampleChangeCoeffForVar(colB, u);
833 if (changeA < changeB)
834 return colA;
835 if (changeA > changeB)
836 return colB;
837 }
838
839 // If we reached here, both result in exactly the same changes, so it
840 // doesn't matter which we return.
841 return colA;
842}
843
844/// Find a pivot to change the sample value of the row in the specified
845/// direction. The returned pivot row will involve `row` if and only if the
846/// unknown is unbounded in the specified direction.
847///
848/// To increase (resp. decrease) the value of a row, we need to find a live
849/// column with a non-zero coefficient. If the coefficient is positive, we need
850/// to increase (decrease) the value of the column, and if the coefficient is
851/// negative, we need to decrease (increase) the value of the column. Also,
852/// we cannot decrease the sample value of restricted columns.
853///
854/// If multiple columns are valid, we break ties by considering a lexicographic
855/// ordering where we prefer unknowns with lower index.
856Optional<SimplexBase::Pivot> Simplex::findPivot(int row,
857 Direction direction) const {
858 Optional<unsigned> col;
859 for (unsigned j = 2, e = getNumColumns(); j < e; ++j) {
860 int64_t elem = tableau(row, j);
861 if (elem == 0)
862 continue;
863
864 if (unknownFromColumn(j).restricted &&
865 !signMatchesDirection(elem, direction))
866 continue;
867 if (!col || colUnknown[j] < colUnknown[*col])
868 col = j;
869 }
870
871 if (!col)
872 return {};
873
874 Direction newDirection =
875 tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
876 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
877 return Pivot{maybePivotRow.value_or(row), *col};
878}
879
880/// Swap the associated unknowns for the row and the column.
881///
882/// First we swap the index associated with the row and column. Then we update
883/// the unknowns to reflect their new position and orientation.
884void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
885 std::swap(rowUnknown[row], colUnknown[col]);
886 Unknown &uCol = unknownFromColumn(col);
887 Unknown &uRow = unknownFromRow(row);
888 uCol.orientation = Orientation::Column;
889 uRow.orientation = Orientation::Row;
890 uCol.pos = col;
891 uRow.pos = row;
892}
893
894void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
895
896/// Pivot pivotRow and pivotCol.
897///
898/// Let R be the pivot row unknown and let C be the pivot col unknown.
899/// Since initially R = a*C + sum b_i * X_i
900/// (where the sum is over the other column's unknowns, x_i)
901/// C = (R - (sum b_i * X_i))/a
902///
903/// Let u be some other row unknown.
904/// u = c*C + sum d_i * X_i
905/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
906///
907/// This results in the following transform:
908/// pivot col other col pivot col other col
909/// pivot row a b -> pivot row 1/a -b/a
910/// other row c d other row c/a d - bc/a
911///
912/// Taking into account the common denominators p and q:
913///
914/// pivot col other col pivot col other col
915/// pivot row a/p b/p -> pivot row p/a -b/a
916/// other row c/q d/q other row cp/aq (da - bc)/aq
917///
918/// The pivot row transform is accomplished be swapping a with the pivot row's
919/// common denominator and negating the pivot row except for the pivot column
920/// element.
921void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
922 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column")(static_cast <bool> (pivotCol >= getNumFixedCols() &&
"Refusing to pivot invalid column") ? void (0) : __assert_fail
("pivotCol >= getNumFixedCols() && \"Refusing to pivot invalid column\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 922, __extension__
__PRETTY_FUNCTION__))
;
923 assert(!unknownFromColumn(pivotCol).isSymbol)(static_cast <bool> (!unknownFromColumn(pivotCol).isSymbol
) ? void (0) : __assert_fail ("!unknownFromColumn(pivotCol).isSymbol"
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 923, __extension__
__PRETTY_FUNCTION__))
;
924
925 swapRowWithCol(pivotRow, pivotCol);
926 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
927 // We need to negate the whole pivot row except for the pivot column.
928 if (tableau(pivotRow, 0) < 0) {
929 // If the denominator is negative, we negate the row by simply negating the
930 // denominator.
931 tableau(pivotRow, 0) = -tableau(pivotRow, 0);
932 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
933 } else {
934 for (unsigned col = 1, e = getNumColumns(); col < e; ++col) {
935 if (col == pivotCol)
936 continue;
937 tableau(pivotRow, col) = -tableau(pivotRow, col);
938 }
939 }
940 tableau.normalizeRow(pivotRow);
941
942 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
943 if (row == pivotRow)
944 continue;
945 if (tableau(row, pivotCol) == 0) // Nothing to do.
946 continue;
947 tableau(row, 0) *= tableau(pivotRow, 0);
948 for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) {
949 if (col == pivotCol)
950 continue;
951 // Add rather than subtract because the pivot row has been negated.
952 tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) +
953 tableau(row, pivotCol) * tableau(pivotRow, col);
954 }
955 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
956 tableau.normalizeRow(row);
957 }
958}
959
960/// Perform pivots until the unknown has a non-negative sample value or until
961/// no more upward pivots can be performed. Return success if we were able to
962/// bring the row to a non-negative sample value, and failure otherwise.
963LogicalResult Simplex::restoreRow(Unknown &u) {
964 assert(u.orientation == Orientation::Row &&(static_cast <bool> (u.orientation == Orientation::Row &&
"unknown should be in row position") ? void (0) : __assert_fail
("u.orientation == Orientation::Row && \"unknown should be in row position\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 965, __extension__
__PRETTY_FUNCTION__))
965 "unknown should be in row position")(static_cast <bool> (u.orientation == Orientation::Row &&
"unknown should be in row position") ? void (0) : __assert_fail
("u.orientation == Orientation::Row && \"unknown should be in row position\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 965, __extension__
__PRETTY_FUNCTION__))
;
966
967 while (tableau(u.pos, 1) < 0) {
968 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
969 if (!maybePivot)
970 break;
971
972 pivot(*maybePivot);
973 if (u.orientation == Orientation::Column)
974 return success(); // the unknown is unbounded above.
975 }
976 return success(tableau(u.pos, 1) >= 0);
977}
978
979/// Find a row that can be used to pivot the column in the specified direction.
980/// This returns an empty optional if and only if the column is unbounded in the
981/// specified direction (ignoring skipRow, if skipRow is set).
982///
983/// If skipRow is set, this row is not considered, and (if it is restricted) its
984/// restriction may be violated by the returned pivot. Usually, skipRow is set
985/// because we don't want to move it to column position unless it is unbounded,
986/// and we are either trying to increase the value of skipRow or explicitly
987/// trying to make skipRow negative, so we are not concerned about this.
988///
989/// If the direction is up (resp. down) and a restricted row has a negative
990/// (positive) coefficient for the column, then this row imposes a bound on how
991/// much the sample value of the column can change. Such a row with constant
992/// term c and coefficient f for the column imposes a bound of c/|f| on the
993/// change in sample value (in the specified direction). (note that c is
994/// non-negative here since the row is restricted and the tableau is consistent)
995///
996/// We iterate through the rows and pick the row which imposes the most
997/// stringent bound, since pivoting with a row changes the row's sample value to
998/// 0 and hence saturates the bound it imposes. We break ties between rows that
999/// impose the same bound by considering a lexicographic ordering where we
1000/// prefer unknowns with lower index value.
1001Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
1002 Direction direction,
1003 unsigned col) const {
1004 Optional<unsigned> retRow;
1005 // Initialize these to zero in order to silence a warning about retElem and
1006 // retConst being used uninitialized in the initialization of `diff` below. In
1007 // reality, these are always initialized when that line is reached since these
1008 // are set whenever retRow is set.
1009 int64_t retElem = 0, retConst = 0;
1010 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) {
1011 if (skipRow && row == *skipRow)
1012 continue;
1013 int64_t elem = tableau(row, col);
1014 if (elem == 0)
1015 continue;
1016 if (!unknownFromRow(row).restricted)
1017 continue;
1018 if (signMatchesDirection(elem, direction))
1019 continue;
1020 int64_t constTerm = tableau(row, 1);
1021
1022 if (!retRow) {
1023 retRow = row;
1024 retElem = elem;
1025 retConst = constTerm;
1026 continue;
1027 }
1028
1029 int64_t diff = retConst * elem - constTerm * retElem;
1030 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1031 (diff != 0 && !signMatchesDirection(diff, direction))) {
1032 retRow = row;
1033 retElem = elem;
1034 retConst = constTerm;
1035 }
1036 }
1037 return retRow;
1038}
1039
1040bool SimplexBase::isEmpty() const { return empty; }
1041
1042void SimplexBase::swapRows(unsigned i, unsigned j) {
1043 if (i == j)
1044 return;
1045 tableau.swapRows(i, j);
1046 std::swap(rowUnknown[i], rowUnknown[j]);
1047 unknownFromRow(i).pos = i;
1048 unknownFromRow(j).pos = j;
1049}
1050
1051void SimplexBase::swapColumns(unsigned i, unsigned j) {
1052 assert(i < getNumColumns() && j < getNumColumns() &&(static_cast <bool> (i < getNumColumns() && j
< getNumColumns() && "Invalid columns provided!")
? void (0) : __assert_fail ("i < getNumColumns() && j < getNumColumns() && \"Invalid columns provided!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1053, __extension__
__PRETTY_FUNCTION__))
1053 "Invalid columns provided!")(static_cast <bool> (i < getNumColumns() && j
< getNumColumns() && "Invalid columns provided!")
? void (0) : __assert_fail ("i < getNumColumns() && j < getNumColumns() && \"Invalid columns provided!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1053, __extension__
__PRETTY_FUNCTION__))
;
1054 if (i == j)
1055 return;
1056 tableau.swapColumns(i, j);
1057 std::swap(colUnknown[i], colUnknown[j]);
1058 unknownFromColumn(i).pos = i;
1059 unknownFromColumn(j).pos = j;
1060}
1061
1062/// Mark this tableau empty and push an entry to the undo stack.
1063void SimplexBase::markEmpty() {
1064 // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1065 // entry, since in that case the Simplex will be erroneously marked as
1066 // non-empty when rolling back past this point.
1067 if (empty)
1068 return;
1069 undoLog.push_back(UndoLogEntry::UnmarkEmpty);
1070 empty = true;
1071}
1072
1073/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1074/// is the current number of variables, then the corresponding inequality is
1075/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1076///
1077/// We add the inequality and mark it as restricted. We then try to make its
1078/// sample value non-negative. If this is not possible, the tableau has become
1079/// empty and we mark it as such.
1080void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
1081 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1082 LogicalResult result = restoreRow(con[conIndex]);
1083 if (failed(result))
1084 markEmpty();
1085}
1086
1087/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1088/// is the current number of variables, then the corresponding equality is
1089/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1090///
1091/// We simply add two opposing inequalities, which force the expression to
1092/// be zero.
1093void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
1094 addInequality(coeffs);
1095 SmallVector<int64_t, 8> negatedCoeffs;
1096 for (int64_t coeff : coeffs)
1097 negatedCoeffs.emplace_back(-coeff);
1098 addInequality(negatedCoeffs);
1099}
1100
1101unsigned SimplexBase::getNumVariables() const { return var.size(); }
1102unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1103
1104/// Return a snapshot of the current state. This is just the current size of the
1105/// undo log.
1106unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1107
1108unsigned SimplexBase::getSnapshotBasis() {
1109 SmallVector<int, 8> basis;
1110 for (int index : colUnknown) {
1111 if (index != nullIndex)
1112 basis.push_back(index);
1113 }
1114 savedBases.push_back(std::move(basis));
1115
1116 undoLog.emplace_back(UndoLogEntry::RestoreBasis);
1117 return undoLog.size() - 1;
1118}
1119
1120void SimplexBase::removeLastConstraintRowOrientation() {
1121 assert(con.back().orientation == Orientation::Row)(static_cast <bool> (con.back().orientation == Orientation
::Row) ? void (0) : __assert_fail ("con.back().orientation == Orientation::Row"
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1121, __extension__
__PRETTY_FUNCTION__))
;
1122
1123 // Move this unknown to the last row and remove the last row from the
1124 // tableau.
1125 swapRows(con.back().pos, getNumRows() - 1);
1126 // It is not strictly necessary to shrink the tableau, but for now we
1127 // maintain the invariant that the tableau has exactly getNumRows()
1128 // rows.
1129 tableau.resizeVertically(getNumRows() - 1);
1130 rowUnknown.pop_back();
1131 con.pop_back();
1132}
1133
1134// This doesn't find a pivot row only if the column has zero
1135// coefficients for every row.
1136//
1137// If the unknown is a constraint, this can't happen, since it was added
1138// initially as a row. Such a row could never have been pivoted to a column. So
1139// a pivot row will always be found if we have a constraint.
1140//
1141// If we have a variable, then the column has zero coefficients for every row
1142// iff no constraints have been added with a non-zero coefficient for this row.
1143Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1144 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row)
1145 if (tableau(row, col) != 0)
1146 return row;
1147 return {};
1148}
1149
1150// It's not valid to remove the constraint by deleting the column since this
1151// would result in an invalid basis.
1152void Simplex::undoLastConstraint() {
1153 if (con.back().orientation == Orientation::Column) {
1154 // We try to find any pivot row for this column that preserves tableau
1155 // consistency (except possibly the column itself, which is going to be
1156 // deallocated anyway).
1157 //
1158 // If no pivot row is found in either direction, then the unknown is
1159 // unbounded in both directions and we are free to perform any pivot at
1160 // all. To do this, we just need to find any row with a non-zero
1161 // coefficient for the column. findAnyPivotRow will always be able to
1162 // find such a row for a constraint.
1163 unsigned column = con.back().pos;
1164 if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) {
1165 pivot(*maybeRow, column);
1166 } else if (Optional<unsigned> maybeRow =
1167 findPivotRow({}, Direction::Down, column)) {
1168 pivot(*maybeRow, column);
1169 } else {
1170 Optional<unsigned> row = findAnyPivotRow(column);
1171 assert(row && "Pivot should always exist for a constraint!")(static_cast <bool> (row && "Pivot should always exist for a constraint!"
) ? void (0) : __assert_fail ("row && \"Pivot should always exist for a constraint!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1171, __extension__
__PRETTY_FUNCTION__))
;
1172 pivot(*row, column);
1173 }
1174 }
1175 removeLastConstraintRowOrientation();
1176}
1177
1178// It's not valid to remove the constraint by deleting the column since this
1179// would result in an invalid basis.
1180void LexSimplexBase::undoLastConstraint() {
1181 if (con.back().orientation == Orientation::Column) {
1182 // When removing the last constraint during a rollback, we just need to find
1183 // any pivot at all, i.e., any row with non-zero coefficient for the
1184 // column, because when rolling back a lexicographic simplex, we always
1185 // end by restoring the exact basis that was present at the time of the
1186 // snapshot, so what pivots we perform while undoing doesn't matter as
1187 // long as we get the unknown to row orientation and remove it.
1188 unsigned column = con.back().pos;
1189 Optional<unsigned> row = findAnyPivotRow(column);
1190 assert(row && "Pivot should always exist for a constraint!")(static_cast <bool> (row && "Pivot should always exist for a constraint!"
) ? void (0) : __assert_fail ("row && \"Pivot should always exist for a constraint!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1190, __extension__
__PRETTY_FUNCTION__))
;
1191 pivot(*row, column);
1192 }
1193 removeLastConstraintRowOrientation();
1194}
1195
1196void SimplexBase::undo(UndoLogEntry entry) {
1197 if (entry == UndoLogEntry::RemoveLastConstraint) {
1198 // Simplex and LexSimplex handle this differently, so we call out to a
1199 // virtual function to handle this.
1200 undoLastConstraint();
1201 } else if (entry == UndoLogEntry::RemoveLastVariable) {
1202 // Whenever we are rolling back the addition of a variable, it is guaranteed
1203 // that the variable will be in column position.
1204 //
1205 // We can see this as follows: any constraint that depends on this variable
1206 // was added after this variable was added, so the addition of such
1207 // constraints should already have been rolled back by the time we get to
1208 // rolling back the addition of the variable. Therefore, no constraint
1209 // currently has a component along the variable, so the variable itself must
1210 // be part of the basis.
1211 assert(var.back().orientation == Orientation::Column &&(static_cast <bool> (var.back().orientation == Orientation
::Column && "Variable to be removed must be in column orientation!"
) ? void (0) : __assert_fail ("var.back().orientation == Orientation::Column && \"Variable to be removed must be in column orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1212, __extension__
__PRETTY_FUNCTION__))
1212 "Variable to be removed must be in column orientation!")(static_cast <bool> (var.back().orientation == Orientation
::Column && "Variable to be removed must be in column orientation!"
) ? void (0) : __assert_fail ("var.back().orientation == Orientation::Column && \"Variable to be removed must be in column orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1212, __extension__
__PRETTY_FUNCTION__))
;
1213
1214 if (var.back().isSymbol)
1215 nSymbol--;
1216
1217 // Move this variable to the last column and remove the column from the
1218 // tableau.
1219 swapColumns(var.back().pos, getNumColumns() - 1);
1220 tableau.resizeHorizontally(getNumColumns() - 1);
1221 var.pop_back();
1222 colUnknown.pop_back();
1223 } else if (entry == UndoLogEntry::UnmarkEmpty) {
1224 empty = false;
1225 } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1226 nRedundant--;
1227 } else if (entry == UndoLogEntry::RestoreBasis) {
1228 assert(!savedBases.empty() && "No bases saved!")(static_cast <bool> (!savedBases.empty() && "No bases saved!"
) ? void (0) : __assert_fail ("!savedBases.empty() && \"No bases saved!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1228, __extension__
__PRETTY_FUNCTION__))
;
1229
1230 SmallVector<int, 8> basis = std::move(savedBases.back());
1231 savedBases.pop_back();
1232
1233 for (int index : basis) {
1234 Unknown &u = unknownFromIndex(index);
1235 if (u.orientation == Orientation::Column)
1236 continue;
1237 for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e;
1238 col++) {
1239 assert(colUnknown[col] != nullIndex &&(static_cast <bool> (colUnknown[col] != nullIndex &&
"Column should not be a fixed column!") ? void (0) : __assert_fail
("colUnknown[col] != nullIndex && \"Column should not be a fixed column!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1240, __extension__
__PRETTY_FUNCTION__))
1240 "Column should not be a fixed column!")(static_cast <bool> (colUnknown[col] != nullIndex &&
"Column should not be a fixed column!") ? void (0) : __assert_fail
("colUnknown[col] != nullIndex && \"Column should not be a fixed column!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1240, __extension__
__PRETTY_FUNCTION__))
;
1241 if (llvm::is_contained(basis, colUnknown[col]))
1242 continue;
1243 if (tableau(u.pos, col) == 0)
1244 continue;
1245 pivot(u.pos, col);
1246 break;
1247 }
1248
1249 assert(u.orientation == Orientation::Column && "No pivot found!")(static_cast <bool> (u.orientation == Orientation::Column
&& "No pivot found!") ? void (0) : __assert_fail ("u.orientation == Orientation::Column && \"No pivot found!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1249, __extension__
__PRETTY_FUNCTION__))
;
1250 }
1251 }
1252}
1253
1254/// Rollback to the specified snapshot.
1255///
1256/// We undo all the log entries until the log size when the snapshot was taken
1257/// is reached.
1258void SimplexBase::rollback(unsigned snapshot) {
1259 while (undoLog.size() > snapshot) {
1260 undo(undoLog.back());
1261 undoLog.pop_back();
1262 }
1263}
1264
1265/// We add the usual floor division constraints:
1266/// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1267/// variable.
1268///
1269/// This constrains the remainder `coeffs - denom*q` to be in the
1270/// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
1271void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) {
1272 assert(denom != 0 && "Cannot divide by zero!\n")(static_cast <bool> (denom != 0 && "Cannot divide by zero!\n"
) ? void (0) : __assert_fail ("denom != 0 && \"Cannot divide by zero!\\n\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1272, __extension__
__PRETTY_FUNCTION__))
;
1273 appendVariable();
1274
1275 SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end());
1276 int64_t constTerm = ineq.back();
1277 ineq.back() = -denom;
1278 ineq.push_back(constTerm);
1279 addInequality(ineq);
1280
1281 for (int64_t &coeff : ineq)
1282 coeff = -coeff;
1283 ineq.back() += denom - 1;
1284 addInequality(ineq);
1285}
1286
1287void SimplexBase::appendVariable(unsigned count) {
1288 if (count == 0)
1289 return;
1290 var.reserve(var.size() + count);
1291 colUnknown.reserve(colUnknown.size() + count);
1292 for (unsigned i = 0; i < count; ++i) {
1293 var.emplace_back(Orientation::Column, /*restricted=*/false,
1294 /*pos=*/getNumColumns() + i);
1295 colUnknown.push_back(var.size() - 1);
1296 }
1297 tableau.resizeHorizontally(getNumColumns() + count);
1298 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
1299}
1300
1301/// Add all the constraints from the given IntegerRelation.
1302void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1303 assert(rel.getNumVars() == getNumVariables() &&(static_cast <bool> (rel.getNumVars() == getNumVariables
() && "IntegerRelation must have same dimensionality as simplex"
) ? void (0) : __assert_fail ("rel.getNumVars() == getNumVariables() && \"IntegerRelation must have same dimensionality as simplex\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1304, __extension__
__PRETTY_FUNCTION__))
1304 "IntegerRelation must have same dimensionality as simplex")(static_cast <bool> (rel.getNumVars() == getNumVariables
() && "IntegerRelation must have same dimensionality as simplex"
) ? void (0) : __assert_fail ("rel.getNumVars() == getNumVariables() && \"IntegerRelation must have same dimensionality as simplex\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1304, __extension__
__PRETTY_FUNCTION__))
;
1305 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1306 addInequality(rel.getInequality(i));
1307 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1308 addEquality(rel.getEquality(i));
1309}
1310
1311MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1312 unsigned row) {
1313 // Keep trying to find a pivot for the row in the specified direction.
1314 while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
1315 // If findPivot returns a pivot involving the row itself, then the optimum
1316 // is unbounded, so we return None.
1317 if (maybePivot->row == row)
1318 return OptimumKind::Unbounded;
1319 pivot(*maybePivot);
1320 }
1321
1322 // The row has reached its optimal sample value, which we return.
1323 // The sample value is the entry in the constant column divided by the common
1324 // denominator for this row.
1325 return Fraction(tableau(row, 1), tableau(row, 0));
1326}
1327
1328/// Compute the optimum of the specified expression in the specified direction,
1329/// or None if it is unbounded.
1330MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1331 ArrayRef<int64_t> coeffs) {
1332 if (empty)
1333 return OptimumKind::Empty;
1334
1335 SimplexRollbackScopeExit scopeExit(*this);
1336 unsigned conIndex = addRow(coeffs);
1337 unsigned row = con[conIndex].pos;
1338 return computeRowOptimum(direction, row);
1339}
1340
1341MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1342 Unknown &u) {
1343 if (empty)
1344 return OptimumKind::Empty;
1345 if (u.orientation == Orientation::Column) {
1346 unsigned column = u.pos;
1347 Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
1348 // If no pivot is returned, the constraint is unbounded in the specified
1349 // direction.
1350 if (!pivotRow)
1351 return OptimumKind::Unbounded;
1352 pivot(*pivotRow, column);
1353 }
1354
1355 unsigned row = u.pos;
1356 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1357 if (u.restricted && direction == Direction::Down &&
1358 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1359 if (failed(restoreRow(u)))
1360 llvm_unreachable("Could not restore row!")::llvm::llvm_unreachable_internal("Could not restore row!", "mlir/lib/Analysis/Presburger/Simplex.cpp"
, 1360)
;
1361 }
1362 return optimum;
1363}
1364
1365bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1366 assert(!empty && "It is not meaningful to ask whether a direction is bounded "(static_cast <bool> (!empty && "It is not meaningful to ask whether a direction is bounded "
"in an empty set.") ? void (0) : __assert_fail ("!empty && \"It is not meaningful to ask whether a direction is bounded \" \"in an empty set.\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1367, __extension__
__PRETTY_FUNCTION__))
1367 "in an empty set.")(static_cast <bool> (!empty && "It is not meaningful to ask whether a direction is bounded "
"in an empty set.") ? void (0) : __assert_fail ("!empty && \"It is not meaningful to ask whether a direction is bounded \" \"in an empty set.\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1367, __extension__
__PRETTY_FUNCTION__))
;
1368 // The constraint's perpendicular is already bounded below, since it is a
1369 // constraint. If it is also bounded above, we can return true.
1370 return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
1371}
1372
1373/// Redundant constraints are those that are in row orientation and lie in
1374/// rows 0 to nRedundant - 1.
1375bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1376 const Unknown &u = con[constraintIndex];
1377 return u.orientation == Orientation::Row && u.pos < nRedundant;
1378}
1379
1380/// Mark the specified row redundant.
1381///
1382/// This is done by moving the unknown to the end of the block of redundant
1383/// rows (namely, to row nRedundant) and incrementing nRedundant to
1384/// accomodate the new redundant row.
1385void Simplex::markRowRedundant(Unknown &u) {
1386 assert(u.orientation == Orientation::Row &&(static_cast <bool> (u.orientation == Orientation::Row &&
"Unknown should be in row position!") ? void (0) : __assert_fail
("u.orientation == Orientation::Row && \"Unknown should be in row position!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1387, __extension__
__PRETTY_FUNCTION__))
1387 "Unknown should be in row position!")(static_cast <bool> (u.orientation == Orientation::Row &&
"Unknown should be in row position!") ? void (0) : __assert_fail
("u.orientation == Orientation::Row && \"Unknown should be in row position!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1387, __extension__
__PRETTY_FUNCTION__))
;
1388 assert(u.pos >= nRedundant && "Unknown is already marked redundant!")(static_cast <bool> (u.pos >= nRedundant && "Unknown is already marked redundant!"
) ? void (0) : __assert_fail ("u.pos >= nRedundant && \"Unknown is already marked redundant!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1388, __extension__
__PRETTY_FUNCTION__))
;
1389 swapRows(u.pos, nRedundant);
1390 ++nRedundant;
1391 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
1392}
1393
1394/// Find a subset of constraints that is redundant and mark them redundant.
1395void Simplex::detectRedundant(unsigned offset, unsigned count) {
1396 assert(offset + count <= con.size() && "invalid range!")(static_cast <bool> (offset + count <= con.size() &&
"invalid range!") ? void (0) : __assert_fail ("offset + count <= con.size() && \"invalid range!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1396, __extension__
__PRETTY_FUNCTION__))
;
1397 // It is not meaningful to talk about redundancy for empty sets.
1398 if (empty)
1399 return;
1400
1401 // Iterate through the constraints and check for each one if it can attain
1402 // negative sample values. If it can, it's not redundant. Otherwise, it is.
1403 // We mark redundant constraints redundant.
1404 //
1405 // Constraints that get marked redundant in one iteration are not respected
1406 // when checking constraints in later iterations. This prevents, for example,
1407 // two identical constraints both being marked redundant since each is
1408 // redundant given the other one. In this example, only the first of the
1409 // constraints that is processed will get marked redundant, as it should be.
1410 for (unsigned i = 0; i < count; ++i) {
1411 Unknown &u = con[offset + i];
1412 if (u.orientation == Orientation::Column) {
1413 unsigned column = u.pos;
1414 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
1415 // If no downward pivot is returned, the constraint is unbounded below
1416 // and hence not redundant.
1417 if (!pivotRow)
1418 continue;
1419 pivot(*pivotRow, column);
1420 }
1421
1422 unsigned row = u.pos;
1423 MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
1424 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1425 // Constraint is unbounded below or can attain negative sample values and
1426 // hence is not redundant.
1427 if (failed(restoreRow(u)))
1428 llvm_unreachable("Could not restore non-redundant row!")::llvm::llvm_unreachable_internal("Could not restore non-redundant row!"
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1428)
;
1429 continue;
1430 }
1431
1432 markRowRedundant(u);
1433 }
1434}
1435
1436bool Simplex::isUnbounded() {
1437 if (empty)
1438 return false;
1439
1440 SmallVector<int64_t, 8> dir(var.size() + 1);
1441 for (unsigned i = 0; i < var.size(); ++i) {
1442 dir[i] = 1;
1443
1444 if (computeOptimum(Direction::Up, dir).isUnbounded())
1445 return true;
1446
1447 if (computeOptimum(Direction::Down, dir).isUnbounded())
1448 return true;
1449
1450 dir[i] = 0;
1451 }
1452 return false;
1453}
1454
1455/// Make a tableau to represent a pair of points in the original tableau.
1456///
1457/// The product constraints and variables are stored as: first A's, then B's.
1458///
1459/// The product tableau has row layout:
1460/// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1461///
1462/// It has column layout:
1463/// denominator, constant, A's columns, B's columns.
1464Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1465 unsigned numVar = a.getNumVariables() + b.getNumVariables();
1466 unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1467 Simplex result(numVar);
1468
1469 result.tableau.reserveRows(numCon);
1470 result.empty = a.empty || b.empty;
1471
1472 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1473 SmallVector<Unknown, 8> result;
1474 result.reserve(v.size() + w.size());
1475 result.insert(result.end(), v.begin(), v.end());
1476 result.insert(result.end(), w.begin(), w.end());
1477 return result;
1478 };
1479 result.con = concat(a.con, b.con);
1480 result.var = concat(a.var, b.var);
1481
1482 auto indexFromBIndex = [&](int index) {
1483 return index >= 0 ? a.getNumVariables() + index
1484 : ~(a.getNumConstraints() + ~index);
1485 };
1486
1487 result.colUnknown.assign(2, nullIndex);
1488 for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) {
1489 result.colUnknown.push_back(a.colUnknown[i]);
1490 result.unknownFromIndex(result.colUnknown.back()).pos =
1491 result.colUnknown.size() - 1;
1492 }
1493 for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) {
1494 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
1495 result.unknownFromIndex(result.colUnknown.back()).pos =
1496 result.colUnknown.size() - 1;
1497 }
1498
1499 auto appendRowFromA = [&](unsigned row) {
1500 unsigned resultRow = result.tableau.appendExtraRow();
1501 for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col)
1502 result.tableau(resultRow, col) = a.tableau(row, col);
1503 result.rowUnknown.push_back(a.rowUnknown[row]);
1504 result.unknownFromIndex(result.rowUnknown.back()).pos =
1505 result.rowUnknown.size() - 1;
1506 };
1507
1508 // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1509 // may be).
1510 auto appendRowFromB = [&](unsigned row) {
1511 unsigned resultRow = result.tableau.appendExtraRow();
1512 result.tableau(resultRow, 0) = b.tableau(row, 0);
1513 result.tableau(resultRow, 1) = b.tableau(row, 1);
1514
1515 unsigned offset = a.getNumColumns() - 2;
1516 for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col)
1517 result.tableau(resultRow, offset + col) = b.tableau(row, col);
1518 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
1519 result.unknownFromIndex(result.rowUnknown.back()).pos =
1520 result.rowUnknown.size() - 1;
1521 };
1522
1523 result.nRedundant = a.nRedundant + b.nRedundant;
1524 for (unsigned row = 0; row < a.nRedundant; ++row)
1525 appendRowFromA(row);
1526 for (unsigned row = 0; row < b.nRedundant; ++row)
1527 appendRowFromB(row);
1528 for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row)
1529 appendRowFromA(row);
1530 for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row)
1531 appendRowFromB(row);
1532
1533 return result;
1534}
1535
1536Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1537 if (empty)
1538 return {};
1539
1540 SmallVector<Fraction, 8> sample;
1541 sample.reserve(var.size());
1542 // Push the sample value for each variable into the vector.
1543 for (const Unknown &u : var) {
1544 if (u.orientation == Orientation::Column) {
1545 // If the variable is in column position, its sample value is zero.
1546 sample.emplace_back(0, 1);
1547 } else {
1548 // If the variable is in row position, its sample value is the
1549 // entry in the constant column divided by the denominator.
1550 int64_t denom = tableau(u.pos, 0);
1551 sample.emplace_back(tableau(u.pos, 1), denom);
1552 }
1553 }
1554 return sample;
1555}
1556
1557void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) {
1558 addRow(coeffs, /*makeRestricted=*/true);
1559}
1560
1561MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1562 if (empty)
1563 return OptimumKind::Empty;
1564
1565 SmallVector<Fraction, 8> sample;
1566 sample.reserve(var.size());
1567 // Push the sample value for each variable into the vector.
1568 for (const Unknown &u : var) {
1569 // When the big M parameter is being used, each variable x is represented
1570 // as M + x, so its sample value is finite if and only if it is of the
1571 // form 1*M + c. If the coefficient of M is not one then the sample value
1572 // is infinite, and we return an empty optional.
1573
1574 if (u.orientation == Orientation::Column) {
1575 // If the variable is in column position, the sample value of M + x is
1576 // zero, so x = -M which is unbounded.
1577 return OptimumKind::Unbounded;
1578 }
1579
1580 // If the variable is in row position, its sample value is the
1581 // entry in the constant column divided by the denominator.
1582 int64_t denom = tableau(u.pos, 0);
1583 if (usingBigM)
1584 if (tableau(u.pos, 2) != denom)
1585 return OptimumKind::Unbounded;
1586 sample.emplace_back(tableau(u.pos, 1), denom);
1587 }
1588 return sample;
1589}
1590
1591Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
1592 // If the tableau is empty, no sample point exists.
1593 if (empty)
1594 return {};
1595
1596 // The value will always exist since the Simplex is non-empty.
1597 SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1598 SmallVector<int64_t, 8> integerSample;
1599 integerSample.reserve(var.size());
1600 for (const Fraction &coord : rationalSample) {
1601 // If the sample is non-integral, return None.
1602 if (coord.num % coord.den != 0)
1603 return {};
1604 integerSample.push_back(coord.num / coord.den);
1605 }
1606 return integerSample;
1607}
1608
1609/// Given a simplex for a polytope, construct a new simplex whose variables are
1610/// identified with a pair of points (x, y) in the original polytope. Supports
1611/// some operations needed for generalized basis reduction. In what follows,
1612/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1613/// dimension of the original polytope.
1614///
1615/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1616/// also supports rolling back this addition, by maintaining a snapshot stack
1617/// that contains a snapshot of the Simplex's state for each equality, just
1618/// before that equality was added.
1619class presburger::GBRSimplex {
1620 using Orientation = Simplex::Orientation;
1621
1622public:
1623 GBRSimplex(const Simplex &originalSimplex)
1624 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
1625 simplexConstraintOffset(simplex.getNumConstraints()) {}
1626
1627 /// Add an equality dotProduct(dir, x - y) == 0.
1628 /// First pushes a snapshot for the current simplex state to the stack so
1629 /// that this can be rolled back later.
1630 void addEqualityForDirection(ArrayRef<int64_t> dir) {
1631 assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) &&(static_cast <bool> (llvm::any_of(dir, [](int64_t x) { return
x != 0; }) && "Direction passed is the zero vector!"
) ? void (0) : __assert_fail ("llvm::any_of(dir, [](int64_t x) { return x != 0; }) && \"Direction passed is the zero vector!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1632, __extension__
__PRETTY_FUNCTION__))
1632 "Direction passed is the zero vector!")(static_cast <bool> (llvm::any_of(dir, [](int64_t x) { return
x != 0; }) && "Direction passed is the zero vector!"
) ? void (0) : __assert_fail ("llvm::any_of(dir, [](int64_t x) { return x != 0; }) && \"Direction passed is the zero vector!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1632, __extension__
__PRETTY_FUNCTION__))
;
1633 snapshotStack.push_back(simplex.getSnapshot());
1634 simplex.addEquality(getCoeffsForDirection(dir));
1635 }
1636 /// Compute max(dotProduct(dir, x - y)).
1637 Fraction computeWidth(ArrayRef<int64_t> dir) {
1638 MaybeOptimum<Fraction> maybeWidth =
1639 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
1640 assert(maybeWidth.isBounded() && "Width should be bounded!")(static_cast <bool> (maybeWidth.isBounded() && "Width should be bounded!"
) ? void (0) : __assert_fail ("maybeWidth.isBounded() && \"Width should be bounded!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1640, __extension__
__PRETTY_FUNCTION__))
;
1641 return *maybeWidth;
1642 }
1643
1644 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1645 /// the direction equalities to `dual`.
1646 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
1647 SmallVectorImpl<int64_t> &dual,
1648 int64_t &dualDenom) {
1649 // We can't just call into computeWidth or computeOptimum since we need to
1650 // access the state of the tableau after computing the optimum, and these
1651 // functions rollback the insertion of the objective function into the
1652 // tableau before returning. We instead add a row for the objective function
1653 // ourselves, call into computeOptimum, compute the duals from the tableau
1654 // state, and finally rollback the addition of the row before returning.
1655 SimplexRollbackScopeExit scopeExit(simplex);
1656 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
1657 unsigned row = simplex.con[conIndex].pos;
1658 MaybeOptimum<Fraction> maybeWidth =
1659 simplex.computeRowOptimum(Simplex::Direction::Up, row);
1660 assert(maybeWidth.isBounded() && "Width should be bounded!")(static_cast <bool> (maybeWidth.isBounded() && "Width should be bounded!"
) ? void (0) : __assert_fail ("maybeWidth.isBounded() && \"Width should be bounded!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1660, __extension__
__PRETTY_FUNCTION__))
;
1661 dualDenom = simplex.tableau(row, 0);
1662 dual.clear();
1663
1664 // The increment is i += 2 because equalities are added as two inequalities,
1665 // one positive and one negative. Each iteration processes one equality.
1666 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1667 // The dual variable for an inequality in column orientation is the
1668 // negative of its coefficient at the objective row. If the inequality is
1669 // in row orientation, the corresponding dual variable is zero.
1670 //
1671 // We want the dual for the original equality, which corresponds to two
1672 // inequalities: a positive inequality, which has the same coefficients as
1673 // the equality, and a negative equality, which has negated coefficients.
1674 //
1675 // Note that at most one of these inequalities can be in column
1676 // orientation because the column unknowns should form a basis and hence
1677 // must be linearly independent. If the positive inequality is in column
1678 // position, its dual is the dual corresponding to the equality. If the
1679 // negative inequality is in column position, the negation of its dual is
1680 // the dual corresponding to the equality. If neither is in column
1681 // position, then that means that this equality is redundant, and its dual
1682 // is zero.
1683 //
1684 // Note that it is NOT valid to perform pivots during the computation of
1685 // the duals. This entire dual computation must be performed on the same
1686 // tableau configuration.
1687 assert(!(simplex.con[i].orientation == Orientation::Column &&(static_cast <bool> (!(simplex.con[i].orientation == Orientation
::Column && simplex.con[i + 1].orientation == Orientation
::Column) && "Both inequalities for the equality cannot be in column "
"orientation!") ? void (0) : __assert_fail ("!(simplex.con[i].orientation == Orientation::Column && simplex.con[i + 1].orientation == Orientation::Column) && \"Both inequalities for the equality cannot be in column \" \"orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1690, __extension__
__PRETTY_FUNCTION__))
1688 simplex.con[i + 1].orientation == Orientation::Column) &&(static_cast <bool> (!(simplex.con[i].orientation == Orientation
::Column && simplex.con[i + 1].orientation == Orientation
::Column) && "Both inequalities for the equality cannot be in column "
"orientation!") ? void (0) : __assert_fail ("!(simplex.con[i].orientation == Orientation::Column && simplex.con[i + 1].orientation == Orientation::Column) && \"Both inequalities for the equality cannot be in column \" \"orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1690, __extension__
__PRETTY_FUNCTION__))
1689 "Both inequalities for the equality cannot be in column "(static_cast <bool> (!(simplex.con[i].orientation == Orientation
::Column && simplex.con[i + 1].orientation == Orientation
::Column) && "Both inequalities for the equality cannot be in column "
"orientation!") ? void (0) : __assert_fail ("!(simplex.con[i].orientation == Orientation::Column && simplex.con[i + 1].orientation == Orientation::Column) && \"Both inequalities for the equality cannot be in column \" \"orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1690, __extension__
__PRETTY_FUNCTION__))
1690 "orientation!")(static_cast <bool> (!(simplex.con[i].orientation == Orientation
::Column && simplex.con[i + 1].orientation == Orientation
::Column) && "Both inequalities for the equality cannot be in column "
"orientation!") ? void (0) : __assert_fail ("!(simplex.con[i].orientation == Orientation::Column && simplex.con[i + 1].orientation == Orientation::Column) && \"Both inequalities for the equality cannot be in column \" \"orientation!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1690, __extension__
__PRETTY_FUNCTION__))
;
1691 if (simplex.con[i].orientation == Orientation::Column)
1692 dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
1693 else if (simplex.con[i + 1].orientation == Orientation::Column)
1694 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
1695 else
1696 dual.emplace_back(0);
1697 }
1698 return *maybeWidth;
1699 }
1700
1701 /// Remove the last equality that was added through addEqualityForDirection.
1702 ///
1703 /// We do this by rolling back to the snapshot at the top of the stack, which
1704 /// should be a snapshot taken just before the last equality was added.
1705 void removeLastEquality() {
1706 assert(!snapshotStack.empty() && "Snapshot stack is empty!")(static_cast <bool> (!snapshotStack.empty() && "Snapshot stack is empty!"
) ? void (0) : __assert_fail ("!snapshotStack.empty() && \"Snapshot stack is empty!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1706, __extension__
__PRETTY_FUNCTION__))
;
1707 simplex.rollback(snapshotStack.back());
1708 snapshotStack.pop_back();
1709 }
1710
1711private:
1712 /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1713 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1714 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1715 /// where n is the dimension of the original polytope.
1716 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
1717 assert(2 * dir.size() == simplex.getNumVariables() &&(static_cast <bool> (2 * dir.size() == simplex.getNumVariables
() && "Direction vector has wrong dimensionality") ? void
(0) : __assert_fail ("2 * dir.size() == simplex.getNumVariables() && \"Direction vector has wrong dimensionality\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1718, __extension__
__PRETTY_FUNCTION__))
1718 "Direction vector has wrong dimensionality")(static_cast <bool> (2 * dir.size() == simplex.getNumVariables
() && "Direction vector has wrong dimensionality") ? void
(0) : __assert_fail ("2 * dir.size() == simplex.getNumVariables() && \"Direction vector has wrong dimensionality\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1718, __extension__
__PRETTY_FUNCTION__))
;
1719 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
1720 coeffs.reserve(2 * dir.size());
1721 for (int64_t coeff : dir)
1722 coeffs.push_back(-coeff);
1723 coeffs.emplace_back(0); // constant term
1724 return coeffs;
1725 }
1726
1727 Simplex simplex;
1728 /// The first index of the equality constraints, the index immediately after
1729 /// the last constraint in the initial product simplex.
1730 unsigned simplexConstraintOffset;
1731 /// A stack of snapshots, used for rolling back.
1732 SmallVector<unsigned, 8> snapshotStack;
1733};
1734
1735/// Reduce the basis to try and find a direction in which the polytope is
1736/// "thin". This only works for bounded polytopes.
1737///
1738/// This is an implementation of the algorithm described in the paper
1739/// "An Implementation of Generalized Basis Reduction for Integer Programming"
1740/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1741///
1742/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1743/// Let width_i(v) = max <v, x - y> where x and y are points in the original
1744/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1745///
1746/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1747/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1748/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1749/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1750/// minimizing value of u, if it were allowed to be fractional. Due to
1751/// convexity, the minimizing integer value is either floor(dual_i) or
1752/// ceil(dual_i), so we just need to check which of these gives a lower
1753/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1754///
1755/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1756/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1757/// same i). Otherwise, we increment i.
1758///
1759/// We keep f values and duals cached and invalidate them when necessary.
1760/// Whenever possible, we use them instead of recomputing them. We implement the
1761/// algorithm as follows.
1762///
1763/// In an iteration at i we need to compute:
1764/// a) width_i(b_{i + 1})
1765/// b) width_i(b_i)
1766/// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1767///
1768/// If width_i(b_i) is not already cached, we compute it.
1769///
1770/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1771/// store the duals from this computation.
1772///
1773/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1774/// of u as explained before, caches the duals from this computation, sets
1775/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1776///
1777/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1778/// decrement i, resulting in the basis
1779/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1780/// with corresponding f values
1781/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1782/// The values up to i - 1 remain unchanged. We have just gotten the middle
1783/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1784/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1785/// the cache. The iteration after decrementing needs exactly the duals from the
1786/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1787///
1788/// When incrementing i, no cached f values get invalidated. However, the cached
1789/// duals do get invalidated as the duals for the higher levels are different.
1790void Simplex::reduceBasis(Matrix &basis, unsigned level) {
1791 const Fraction epsilon(3, 4);
1792
1793 if (level == basis.getNumRows() - 1)
15
Assuming the condition is false
16
Taking false branch
1794 return;
1795
1796 GBRSimplex gbrSimplex(*this);
1797 SmallVector<Fraction, 8> width;
1798 SmallVector<int64_t, 8> dual;
1799 int64_t dualDenom;
17
'dualDenom' declared without an initial value
1800
1801 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1802 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1803 // the new value of width_i(b_{i+1}).
1804 //
1805 // If dual_i is not an integer, the minimizing value must be either
1806 // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1807 // choose the minimizing value.
1808 //
1809 // If dual_i is an integer, we don't need to perform these computations. We
1810 // know that in this case,
1811 // a) u = dual_i.
1812 // b) one can show that dual_j for j < i are the same duals we would have
1813 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1814 // are the ones already in the cache.
1815 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1816 // which
1817 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1818 // be in the cache, so we get it from there and return it.
1819 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1820 assert(i < level + dual.size() && "dual_i is not known!")(static_cast <bool> (i < level + dual.size() &&
"dual_i is not known!") ? void (0) : __assert_fail ("i < level + dual.size() && \"dual_i is not known!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1820, __extension__
__PRETTY_FUNCTION__))
;
24
'?' condition is true
1821
1822 int64_t u = floorDiv(dual[i - level], dualDenom);
25
2nd function call argument is an uninitialized value
1823 basis.addToRow(i, i + 1, u);
1824 if (dual[i - level] % dualDenom != 0) {
1825 SmallVector<int64_t, 8> candidateDual[2];
1826 int64_t candidateDualDenom[2];
1827 Fraction widthI[2];
1828
1829 // Initially u is floor(dual) and basis reflects this.
1830 widthI[0] = gbrSimplex.computeWidthAndDuals(
1831 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
1832
1833 // Now try ceil(dual), i.e. floor(dual) + 1.
1834 ++u;
1835 basis.addToRow(i, i + 1, 1);
1836 widthI[1] = gbrSimplex.computeWidthAndDuals(
1837 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
1838
1839 unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1840 if (j == 0)
1841 // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1842 basis.addToRow(i, i + 1, -1);
1843
1844 // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1845 // We assert that this holds by checking that the values of width_i at
1846 // u - 1 and u + 1 are greater than or equal to the value at u. If the
1847 // width is lesser at either of the adjacent values, then our computed
1848 // value of u is clearly not the minimizer. Otherwise by convexity the
1849 // computed value of u is really the minimizer.
1850
1851 // Check the value at u - 1.
1852 assert(gbrSimplex.computeWidth(scaleAndAddForAssert((static_cast <bool> (gbrSimplex.computeWidth(scaleAndAddForAssert
( basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
"Computed u value does not minimize the width!") ? void (0) :
__assert_fail ("gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && \"Computed u value does not minimize the width!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1854, __extension__
__PRETTY_FUNCTION__))
1853 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&(static_cast <bool> (gbrSimplex.computeWidth(scaleAndAddForAssert
( basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
"Computed u value does not minimize the width!") ? void (0) :
__assert_fail ("gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && \"Computed u value does not minimize the width!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1854, __extension__
__PRETTY_FUNCTION__))
1854 "Computed u value does not minimize the width!")(static_cast <bool> (gbrSimplex.computeWidth(scaleAndAddForAssert
( basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
"Computed u value does not minimize the width!") ? void (0) :
__assert_fail ("gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && \"Computed u value does not minimize the width!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1854, __extension__
__PRETTY_FUNCTION__))
;
1855 // Check the value at u + 1.
1856 assert(gbrSimplex.computeWidth(scaleAndAddForAssert((static_cast <bool> (gbrSimplex.computeWidth(scaleAndAddForAssert
( basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
"Computed u value does not minimize the width!") ? void (0) :
__assert_fail ("gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && \"Computed u value does not minimize the width!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1858, __extension__
__PRETTY_FUNCTION__))
1857 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&(static_cast <bool> (gbrSimplex.computeWidth(scaleAndAddForAssert
( basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
"Computed u value does not minimize the width!") ? void (0) :
__assert_fail ("gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && \"Computed u value does not minimize the width!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1858, __extension__
__PRETTY_FUNCTION__))
1858 "Computed u value does not minimize the width!")(static_cast <bool> (gbrSimplex.computeWidth(scaleAndAddForAssert
( basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
"Computed u value does not minimize the width!") ? void (0) :
__assert_fail ("gbrSimplex.computeWidth(scaleAndAddForAssert( basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && \"Computed u value does not minimize the width!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1858, __extension__
__PRETTY_FUNCTION__))
;
1859
1860 dual = std::move(candidateDual[j]);
1861 dualDenom = candidateDualDenom[j];
1862 return widthI[j];
1863 }
1864
1865 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved")(static_cast <bool> (i + 1 - level < width.size() &&
"width_{i+1} wasn't saved") ? void (0) : __assert_fail ("i + 1 - level < width.size() && \"width_{i+1} wasn't saved\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1865, __extension__
__PRETTY_FUNCTION__))
;
1866 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1867 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1868 // the above expression is equal to basis.getRow(i+1) below.)
1869 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==(static_cast <bool> (gbrSimplex.computeWidth(basis.getRow
(i + 1)) == width[i + 1 - level]) ? void (0) : __assert_fail (
"gbrSimplex.computeWidth(basis.getRow(i + 1)) == width[i + 1 - level]"
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1870, __extension__
__PRETTY_FUNCTION__))
1870 width[i + 1 - level])(static_cast <bool> (gbrSimplex.computeWidth(basis.getRow
(i + 1)) == width[i + 1 - level]) ? void (0) : __assert_fail (
"gbrSimplex.computeWidth(basis.getRow(i + 1)) == width[i + 1 - level]"
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1870, __extension__
__PRETTY_FUNCTION__))
;
1871 return width[i + 1 - level];
1872 };
1873
1874 // In the ith iteration of the loop, gbrSimplex has constraints for directions
1875 // from `level` to i - 1.
1876 unsigned i = level;
1877 while (i < basis.getNumRows() - 1) {
18
Loop condition is true. Entering loop body
1878 if (i >= level + width.size()) {
19
Assuming the condition is false
20
Taking false branch
1879 // We don't even know the value of f_i(b_i), so let's find that first.
1880 // We have to do this first since later we assume that width already
1881 // contains values up to and including i.
1882
1883 assert((i == 0 || i - 1 < level + width.size()) &&(static_cast <bool> ((i == 0 || i - 1 < level + width
.size()) && "We are at level i but we don't know the value of width_{i-1}"
) ? void (0) : __assert_fail ("(i == 0 || i - 1 < level + width.size()) && \"We are at level i but we don't know the value of width_{i-1}\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1884, __extension__
__PRETTY_FUNCTION__))
1884 "We are at level i but we don't know the value of width_{i-1}")(static_cast <bool> ((i == 0 || i - 1 < level + width
.size()) && "We are at level i but we don't know the value of width_{i-1}"
) ? void (0) : __assert_fail ("(i == 0 || i - 1 < level + width.size()) && \"We are at level i but we don't know the value of width_{i-1}\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1884, __extension__
__PRETTY_FUNCTION__))
;
1885
1886 // We don't actually use these duals at all, but it doesn't matter
1887 // because this case should only occur when i is level, and there are no
1888 // duals in that case anyway.
1889 assert(i == level && "This case should only occur when i == level")(static_cast <bool> (i == level && "This case should only occur when i == level"
) ? void (0) : __assert_fail ("i == level && \"This case should only occur when i == level\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1889, __extension__
__PRETTY_FUNCTION__))
;
1890 width.push_back(
1891 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1892 }
1893
1894 if (i >= level + dual.size()) {
21
Assuming the condition is false
22
Taking false branch
1895 assert(i + 1 >= level + width.size() &&(static_cast <bool> (i + 1 >= level + width.size() &&
"We don't know dual_i but we know width_{i+1}") ? void (0) :
__assert_fail ("i + 1 >= level + width.size() && \"We don't know dual_i but we know width_{i+1}\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1896, __extension__
__PRETTY_FUNCTION__))
1896 "We don't know dual_i but we know width_{i+1}")(static_cast <bool> (i + 1 >= level + width.size() &&
"We don't know dual_i but we know width_{i+1}") ? void (0) :
__assert_fail ("i + 1 >= level + width.size() && \"We don't know dual_i but we know width_{i+1}\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 1896, __extension__
__PRETTY_FUNCTION__))
;
1897 // We don't know dual for our level, so let's find it.
1898 gbrSimplex.addEqualityForDirection(basis.getRow(i));
1899 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1900 dualDenom));
1901 gbrSimplex.removeLastEquality();
1902 }
1903
1904 // This variable stores width_i(b_{i+1} + u*b_i).
1905 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
23
Calling 'operator()'
1906 if (widthICandidate < epsilon * width[i - level]) {
1907 basis.swapRows(i, i + 1);
1908 width[i - level] = widthICandidate;
1909 // The values of width_{i+1}(b_{i+1}) and higher may change after the
1910 // swap, so we remove the cached values here.
1911 width.resize(i - level + 1);
1912 if (i == level) {
1913 dual.clear();
1914 continue;
1915 }
1916
1917 gbrSimplex.removeLastEquality();
1918 i--;
1919 continue;
1920 }
1921
1922 // Invalidate duals since the higher level needs to recompute its own duals.
1923 dual.clear();
1924 gbrSimplex.addEqualityForDirection(basis.getRow(i));
1925 i++;
1926 }
1927}
1928
1929/// Search for an integer sample point using a branch and bound algorithm.
1930///
1931/// Each row in the basis matrix is a vector, and the set of basis vectors
1932/// should span the space. Initially this is the identity matrix,
1933/// i.e., the basis vectors are just the variables.
1934///
1935/// In every level, a value is assigned to the level-th basis vector, as
1936/// follows. Compute the minimum and maximum rational values of this direction.
1937/// If only one integer point lies in this range, constrain the variable to
1938/// have this value and recurse to the next variable.
1939///
1940/// If the range has multiple values, perform generalized basis reduction via
1941/// reduceBasis and then compute the bounds again. Now we try constraining
1942/// this direction in the first value in this range and "recurse" to the next
1943/// level. If we fail to find a sample, we try assigning the direction the next
1944/// value in this range, and so on.
1945///
1946/// If no integer sample is found from any of the assignments, or if the range
1947/// contains no integer value, then of course the polytope is empty for the
1948/// current assignment of the values in previous levels, so we return to
1949/// the previous level.
1950///
1951/// If we reach the last level where all the variables have been assigned values
1952/// already, then we simply return the current sample point if it is integral,
1953/// and go back to the previous level otherwise.
1954///
1955/// To avoid potentially arbitrarily large recursion depths leading to stack
1956/// overflows, this algorithm is implemented iteratively.
1957Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1958 if (empty)
1
Assuming field 'empty' is false
2
Taking false branch
1959 return {};
1960
1961 unsigned nDims = var.size();
1962 Matrix basis = Matrix::identity(nDims);
1963
1964 unsigned level = 0;
1965 // The snapshot just before constraining a direction to a value at each level.
1966 SmallVector<unsigned, 8> snapshotStack;
1967 // The maximum value in the range of the direction for each level.
1968 SmallVector<int64_t, 8> upperBoundStack;
1969 // The next value to try constraining the basis vector to at each level.
1970 SmallVector<int64_t, 8> nextValueStack;
1971
1972 snapshotStack.reserve(basis.getNumRows());
1973 upperBoundStack.reserve(basis.getNumRows());
1974 nextValueStack.reserve(basis.getNumRows());
1975 while (level != -1u) {
3
Loop condition is true. Entering loop body
1976 if (level == basis.getNumRows()) {
4
Assuming the condition is false
5
Taking false branch
1977 // We've assigned values to all variables. Return if we have a sample,
1978 // or go back up to the previous level otherwise.
1979 if (auto maybeSample = getSamplePointIfIntegral())
1980 return maybeSample;
1981 level--;
1982 continue;
1983 }
1984
1985 if (level >= upperBoundStack.size()) {
6
Assuming the condition is true
7
Taking true branch
1986 // We haven't populated the stack values for this level yet, so we have
1987 // just come down a level ("recursed"). Find the lower and upper bounds.
1988 // If there is more than one integer point in the range, perform
1989 // generalized basis reduction.
1990 SmallVector<int64_t, 8> basisCoeffs =
1991 llvm::to_vector<8>(basis.getRow(level));
1992 basisCoeffs.emplace_back(0);
1993
1994 auto [minRoundedUp, maxRoundedDown] = computeIntegerBounds(basisCoeffs);
1995
1996 // We don't have any integer values in the range.
1997 // Pop the stack and return up a level.
1998 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
1999 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&(static_cast <bool> ((minRoundedUp.isEmpty() &&
maxRoundedDown.isEmpty()) && "If one bound is empty, both should be."
) ? void (0) : __assert_fail ("(minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && \"If one bound is empty, both should be.\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2000, __extension__
__PRETTY_FUNCTION__))
2000 "If one bound is empty, both should be.")(static_cast <bool> ((minRoundedUp.isEmpty() &&
maxRoundedDown.isEmpty()) && "If one bound is empty, both should be."
) ? void (0) : __assert_fail ("(minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && \"If one bound is empty, both should be.\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2000, __extension__
__PRETTY_FUNCTION__))
;
2001 snapshotStack.pop_back();
2002 nextValueStack.pop_back();
2003 upperBoundStack.pop_back();
2004 level--;
2005 continue;
2006 }
2007
2008 // We already checked the empty case above.
2009 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&(static_cast <bool> ((minRoundedUp.isBounded() &&
maxRoundedDown.isBounded()) && "Polyhedron should be bounded!"
) ? void (0) : __assert_fail ("(minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && \"Polyhedron should be bounded!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2010, __extension__
__PRETTY_FUNCTION__))
8
Taking false branch
9
'?' condition is true
2010 "Polyhedron should be bounded!")(static_cast <bool> ((minRoundedUp.isBounded() &&
maxRoundedDown.isBounded()) && "Polyhedron should be bounded!"
) ? void (0) : __assert_fail ("(minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && \"Polyhedron should be bounded!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2010, __extension__
__PRETTY_FUNCTION__))
;
2011
2012 // Heuristic: if the sample point is integral at this point, just return
2013 // it.
2014 if (auto maybeSample = getSamplePointIfIntegral())
10
Assuming the condition is false
11
Taking false branch
2015 return *maybeSample;
2016
2017 if (*minRoundedUp < *maxRoundedDown) {
12
Assuming the condition is true
13
Taking true branch
2018 reduceBasis(basis, level);
14
Calling 'Simplex::reduceBasis'
2019 basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
2020 basisCoeffs.emplace_back(0);
2021 std::tie(minRoundedUp, maxRoundedDown) =
2022 computeIntegerBounds(basisCoeffs);
2023 }
2024
2025 snapshotStack.push_back(getSnapshot());
2026 // The smallest value in the range is the next value to try.
2027 // The values in the optionals are guaranteed to exist since we know the
2028 // polytope is bounded.
2029 nextValueStack.push_back(*minRoundedUp);
2030 upperBoundStack.push_back(*maxRoundedDown);
2031 }
2032
2033 assert((snapshotStack.size() - 1 == level &&(static_cast <bool> ((snapshotStack.size() - 1 == level
&& nextValueStack.size() - 1 == level && upperBoundStack
.size() - 1 == level) && "Mismatched variable stack sizes!"
) ? void (0) : __assert_fail ("(snapshotStack.size() - 1 == level && nextValueStack.size() - 1 == level && upperBoundStack.size() - 1 == level) && \"Mismatched variable stack sizes!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2036, __extension__
__PRETTY_FUNCTION__))
2034 nextValueStack.size() - 1 == level &&(static_cast <bool> ((snapshotStack.size() - 1 == level
&& nextValueStack.size() - 1 == level && upperBoundStack
.size() - 1 == level) && "Mismatched variable stack sizes!"
) ? void (0) : __assert_fail ("(snapshotStack.size() - 1 == level && nextValueStack.size() - 1 == level && upperBoundStack.size() - 1 == level) && \"Mismatched variable stack sizes!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2036, __extension__
__PRETTY_FUNCTION__))
2035 upperBoundStack.size() - 1 == level) &&(static_cast <bool> ((snapshotStack.size() - 1 == level
&& nextValueStack.size() - 1 == level && upperBoundStack
.size() - 1 == level) && "Mismatched variable stack sizes!"
) ? void (0) : __assert_fail ("(snapshotStack.size() - 1 == level && nextValueStack.size() - 1 == level && upperBoundStack.size() - 1 == level) && \"Mismatched variable stack sizes!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2036, __extension__
__PRETTY_FUNCTION__))
2036 "Mismatched variable stack sizes!")(static_cast <bool> ((snapshotStack.size() - 1 == level
&& nextValueStack.size() - 1 == level && upperBoundStack
.size() - 1 == level) && "Mismatched variable stack sizes!"
) ? void (0) : __assert_fail ("(snapshotStack.size() - 1 == level && nextValueStack.size() - 1 == level && upperBoundStack.size() - 1 == level) && \"Mismatched variable stack sizes!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2036, __extension__
__PRETTY_FUNCTION__))
;
2037
2038 // Whether we "recursed" or "returned" from a lower level, we rollback
2039 // to the snapshot of the starting state at this level. (in the "recursed"
2040 // case this has no effect)
2041 rollback(snapshotStack.back());
2042 int64_t nextValue = nextValueStack.back();
2043 ++nextValueStack.back();
2044 if (nextValue > upperBoundStack.back()) {
2045 // We have exhausted the range and found no solution. Pop the stack and
2046 // return up a level.
2047 snapshotStack.pop_back();
2048 nextValueStack.pop_back();
2049 upperBoundStack.pop_back();
2050 level--;
2051 continue;
2052 }
2053
2054 // Try the next value in the range and "recurse" into the next level.
2055 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
2056 basis.getRow(level).end());
2057 basisCoeffs.push_back(-nextValue);
2058 addEquality(basisCoeffs);
2059 level++;
2060 }
2061
2062 return {};
2063}
2064
2065/// Compute the minimum and maximum integer values the expression can take. We
2066/// compute each separately.
2067std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>>
2068Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
2069 MaybeOptimum<int64_t> minRoundedUp(
2070 computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
2071 MaybeOptimum<int64_t> maxRoundedDown(
2072 computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
2073 return {minRoundedUp, maxRoundedDown};
2074}
2075
2076void SimplexBase::print(raw_ostream &os) const {
2077 os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n";
2078 if (empty)
2079 os << "Simplex marked empty!\n";
2080 os << "var: ";
2081 for (unsigned i = 0; i < var.size(); ++i) {
2082 if (i > 0)
2083 os << ", ";
2084 var[i].print(os);
2085 }
2086 os << "\ncon: ";
2087 for (unsigned i = 0; i < con.size(); ++i) {
2088 if (i > 0)
2089 os << ", ";
2090 con[i].print(os);
2091 }
2092 os << '\n';
2093 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
2094 if (row > 0)
2095 os << ", ";
2096 os << "r" << row << ": " << rowUnknown[row];
2097 }
2098 os << '\n';
2099 os << "c0: denom, c1: const";
2100 for (unsigned col = 2, e = getNumColumns(); col < e; ++col)
2101 os << ", c" << col << ": " << colUnknown[col];
2102 os << '\n';
2103 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
2104 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col)
2105 os << tableau(row, col) << '\t';
2106 os << '\n';
2107 }
2108 os << '\n';
2109}
2110
2111void SimplexBase::dump() const { print(llvm::errs()); }
2112
2113bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2114 if (isEmpty())
2115 return true;
2116
2117 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2118 if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
2119 return false;
2120
2121 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2122 if (!isRedundantEquality(rel.getEquality(i)))
2123 return false;
2124
2125 return true;
2126}
2127
2128/// Returns the type of the inequality with coefficients `coeffs`.
2129/// Possible types are:
2130/// Redundant The inequality is satisfied by all points in the polytope
2131/// Cut The inequality is satisfied by some points, but not by others
2132/// Separate The inequality is not satisfied by any point
2133///
2134/// Internally, this computes the minimum and the maximum the inequality with
2135/// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2136/// for all points in the polytope, so it is redundant. If the minimum is <= 0
2137/// and the maximum is >= 0, the points in between the minimum and the
2138/// inequality do not satisfy it, the points in between the inequality and the
2139/// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2140/// points of the polytope satisfy the inequality, which means it is a separate
2141/// inequality.
2142Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) {
2143 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2144 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2145 return IneqType::Redundant;
2146 }
2147 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2148 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2149 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2150 return IneqType::Cut;
2151 }
2152 return IneqType::Separate;
2153}
2154
2155/// Checks whether the type of the inequality with coefficients `coeffs`
2156/// is Redundant.
2157bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
2158 assert(!empty &&(static_cast <bool> (!empty && "It is not meaningful to ask about redundancy in an empty set!"
) ? void (0) : __assert_fail ("!empty && \"It is not meaningful to ask about redundancy in an empty set!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2159, __extension__
__PRETTY_FUNCTION__))
2159 "It is not meaningful to ask about redundancy in an empty set!")(static_cast <bool> (!empty && "It is not meaningful to ask about redundancy in an empty set!"
) ? void (0) : __assert_fail ("!empty && \"It is not meaningful to ask about redundancy in an empty set!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2159, __extension__
__PRETTY_FUNCTION__))
;
2160 return findIneqType(coeffs) == IneqType::Redundant;
2161}
2162
2163/// Check whether the equality given by `coeffs == 0` is redundant given
2164/// the existing constraints. This is redundant when `coeffs` is already
2165/// always zero under the existing constraints. `coeffs` is always zero
2166/// when the minimum and maximum value that `coeffs` can take are both zero.
2167bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
2168 assert(!empty &&(static_cast <bool> (!empty && "It is not meaningful to ask about redundancy in an empty set!"
) ? void (0) : __assert_fail ("!empty && \"It is not meaningful to ask about redundancy in an empty set!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2169, __extension__
__PRETTY_FUNCTION__))
2169 "It is not meaningful to ask about redundancy in an empty set!")(static_cast <bool> (!empty && "It is not meaningful to ask about redundancy in an empty set!"
) ? void (0) : __assert_fail ("!empty && \"It is not meaningful to ask about redundancy in an empty set!\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2169, __extension__
__PRETTY_FUNCTION__))
;
2170 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2171 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2172 assert((!minimum.isEmpty() && !maximum.isEmpty()) &&(static_cast <bool> ((!minimum.isEmpty() && !maximum
.isEmpty()) && "Optima should be non-empty for a non-empty set"
) ? void (0) : __assert_fail ("(!minimum.isEmpty() && !maximum.isEmpty()) && \"Optima should be non-empty for a non-empty set\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2173, __extension__
__PRETTY_FUNCTION__))
2173 "Optima should be non-empty for a non-empty set")(static_cast <bool> ((!minimum.isEmpty() && !maximum
.isEmpty()) && "Optima should be non-empty for a non-empty set"
) ? void (0) : __assert_fail ("(!minimum.isEmpty() && !maximum.isEmpty()) && \"Optima should be non-empty for a non-empty set\""
, "mlir/lib/Analysis/Presburger/Simplex.cpp", 2173, __extension__
__PRETTY_FUNCTION__))
;
2174 return minimum.isBounded() && maximum.isBounded() &&
2175 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2176}