Bug Summary

File:llvm/include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1114, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name StatepointLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/CodeGen/SelectionDAG -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/CodeGen/SelectionDAG -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp

1//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file includes support code use by SelectionDAGBuilder when lowering a
10// statepoint sequence in SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "StatepointLowering.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/FunctionLoweringInfo.h"
23#include "llvm/CodeGen/GCMetadata.h"
24#include "llvm/CodeGen/GCStrategy.h"
25#include "llvm/CodeGen/ISDOpcodes.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/RuntimeLibcalls.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/StackMaps.h"
32#include "llvm/CodeGen/TargetLowering.h"
33#include "llvm/CodeGen/TargetOpcodes.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Statepoint.h"
40#include "llvm/IR/Type.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/MachineValueType.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <iterator>
50#include <tuple>
51#include <utility>
52
53using namespace llvm;
54
55#define DEBUG_TYPE"statepoint-lowering" "statepoint-lowering"
56
57STATISTIC(NumSlotsAllocatedForStatepoints,static llvm::Statistic NumSlotsAllocatedForStatepoints = {"statepoint-lowering"
, "NumSlotsAllocatedForStatepoints", "Number of stack slots allocated for statepoints"
}
58 "Number of stack slots allocated for statepoints")static llvm::Statistic NumSlotsAllocatedForStatepoints = {"statepoint-lowering"
, "NumSlotsAllocatedForStatepoints", "Number of stack slots allocated for statepoints"
}
;
59STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered")static llvm::Statistic NumOfStatepoints = {"statepoint-lowering"
, "NumOfStatepoints", "Number of statepoint nodes encountered"
}
;
60STATISTIC(StatepointMaxSlotsRequired,static llvm::Statistic StatepointMaxSlotsRequired = {"statepoint-lowering"
, "StatepointMaxSlotsRequired", "Maximum number of stack slots required for a singe statepoint"
}
61 "Maximum number of stack slots required for a singe statepoint")static llvm::Statistic StatepointMaxSlotsRequired = {"statepoint-lowering"
, "StatepointMaxSlotsRequired", "Maximum number of stack slots required for a singe statepoint"
}
;
62
63cl::opt<bool> UseRegistersForDeoptValues(
64 "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
65 cl::desc("Allow using registers for non pointer deopt args"));
66
67cl::opt<bool> UseRegistersForGCPointersInLandingPad(
68 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
69 cl::desc("Allow using registers for gc pointer in landing pad"));
70
71cl::opt<unsigned> MaxRegistersForGCPointers(
72 "max-registers-for-gc-values", cl::Hidden, cl::init(0),
73 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
74
75cl::opt<bool> AlwaysSpillBase("statepoint-always-spill-base", cl::Hidden,
76 cl::init(true),
77 cl::desc("Force spilling of base GC pointers"));
78
79typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
80
81static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
82 SelectionDAGBuilder &Builder, uint64_t Value) {
83 SDLoc L = Builder.getCurSDLoc();
84 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
85 MVT::i64));
86 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
87}
88
89void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
90 // Consistency check
91 assert(PendingGCRelocateCalls.empty() &&((PendingGCRelocateCalls.empty() && "Trying to visit statepoint before finished processing previous one"
) ? static_cast<void> (0) : __assert_fail ("PendingGCRelocateCalls.empty() && \"Trying to visit statepoint before finished processing previous one\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 92, __PRETTY_FUNCTION__))
92 "Trying to visit statepoint before finished processing previous one")((PendingGCRelocateCalls.empty() && "Trying to visit statepoint before finished processing previous one"
) ? static_cast<void> (0) : __assert_fail ("PendingGCRelocateCalls.empty() && \"Trying to visit statepoint before finished processing previous one\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 92, __PRETTY_FUNCTION__))
;
93 Locations.clear();
94 NextSlotToAllocate = 0;
95 // Need to resize this on each safepoint - we need the two to stay in sync and
96 // the clear patterns of a SelectionDAGBuilder have no relation to
97 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
98 AllocatedStackSlots.clear();
99 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
100}
101
102void StatepointLoweringState::clear() {
103 Locations.clear();
104 AllocatedStackSlots.clear();
105 assert(PendingGCRelocateCalls.empty() &&((PendingGCRelocateCalls.empty() && "cleared before statepoint sequence completed"
) ? static_cast<void> (0) : __assert_fail ("PendingGCRelocateCalls.empty() && \"cleared before statepoint sequence completed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 106, __PRETTY_FUNCTION__))
106 "cleared before statepoint sequence completed")((PendingGCRelocateCalls.empty() && "cleared before statepoint sequence completed"
) ? static_cast<void> (0) : __assert_fail ("PendingGCRelocateCalls.empty() && \"cleared before statepoint sequence completed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 106, __PRETTY_FUNCTION__))
;
107}
108
109SDValue
110StatepointLoweringState::allocateStackSlot(EVT ValueType,
111 SelectionDAGBuilder &Builder) {
112 NumSlotsAllocatedForStatepoints++;
113 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
114
115 unsigned SpillSize = ValueType.getStoreSize();
116 assert((SpillSize * 8) ==(((SpillSize * 8) == (-8u & (7 + ValueType.getSizeInBits(
))) && "Size not in bytes?") ? static_cast<void>
(0) : __assert_fail ("(SpillSize * 8) == (-8u & (7 + ValueType.getSizeInBits())) && \"Size not in bytes?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 118, __PRETTY_FUNCTION__))
117 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.(((SpillSize * 8) == (-8u & (7 + ValueType.getSizeInBits(
))) && "Size not in bytes?") ? static_cast<void>
(0) : __assert_fail ("(SpillSize * 8) == (-8u & (7 + ValueType.getSizeInBits())) && \"Size not in bytes?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 118, __PRETTY_FUNCTION__))
118 "Size not in bytes?")(((SpillSize * 8) == (-8u & (7 + ValueType.getSizeInBits(
))) && "Size not in bytes?") ? static_cast<void>
(0) : __assert_fail ("(SpillSize * 8) == (-8u & (7 + ValueType.getSizeInBits())) && \"Size not in bytes?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 118, __PRETTY_FUNCTION__))
;
119
120 // First look for a previously created stack slot which is not in
121 // use (accounting for the fact arbitrary slots may already be
122 // reserved), or to create a new stack slot and use it.
123
124 const size_t NumSlots = AllocatedStackSlots.size();
125 assert(NextSlotToAllocate <= NumSlots && "Broken invariant")((NextSlotToAllocate <= NumSlots && "Broken invariant"
) ? static_cast<void> (0) : __assert_fail ("NextSlotToAllocate <= NumSlots && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 125, __PRETTY_FUNCTION__))
;
126
127 assert(AllocatedStackSlots.size() ==((AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots
.size() && "Broken invariant") ? static_cast<void>
(0) : __assert_fail ("AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots.size() && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 129, __PRETTY_FUNCTION__))
128 Builder.FuncInfo.StatepointStackSlots.size() &&((AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots
.size() && "Broken invariant") ? static_cast<void>
(0) : __assert_fail ("AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots.size() && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 129, __PRETTY_FUNCTION__))
129 "Broken invariant")((AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots
.size() && "Broken invariant") ? static_cast<void>
(0) : __assert_fail ("AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots.size() && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 129, __PRETTY_FUNCTION__))
;
130
131 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
132 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
133 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
134 if (MFI.getObjectSize(FI) == SpillSize) {
135 AllocatedStackSlots.set(NextSlotToAllocate);
136 // TODO: Is ValueType the right thing to use here?
137 return Builder.DAG.getFrameIndex(FI, ValueType);
138 }
139 }
140 }
141
142 // Couldn't find a free slot, so create a new one:
143
144 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
145 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
146 MFI.markAsStatepointSpillSlotObjectIndex(FI);
147
148 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
149 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
150 assert(AllocatedStackSlots.size() ==((AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots
.size() && "Broken invariant") ? static_cast<void>
(0) : __assert_fail ("AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots.size() && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 152, __PRETTY_FUNCTION__))
151 Builder.FuncInfo.StatepointStackSlots.size() &&((AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots
.size() && "Broken invariant") ? static_cast<void>
(0) : __assert_fail ("AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots.size() && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 152, __PRETTY_FUNCTION__))
152 "Broken invariant")((AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots
.size() && "Broken invariant") ? static_cast<void>
(0) : __assert_fail ("AllocatedStackSlots.size() == Builder.FuncInfo.StatepointStackSlots.size() && \"Broken invariant\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 152, __PRETTY_FUNCTION__))
;
153
154 StatepointMaxSlotsRequired.updateMax(
155 Builder.FuncInfo.StatepointStackSlots.size());
156
157 return SpillSlot;
158}
159
160/// Utility function for reservePreviousStackSlotForValue. Tries to find
161/// stack slot index to which we have spilled value for previous statepoints.
162/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
163static Optional<int> findPreviousSpillSlot(const Value *Val,
164 SelectionDAGBuilder &Builder,
165 int LookUpDepth) {
166 // Can not look any further - give up now
167 if (LookUpDepth <= 0)
168 return None;
169
170 // Spill location is known for gc relocates
171 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
172 const auto &RelocationMap =
173 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];
174
175 auto It = RelocationMap.find(Relocate->getDerivedPtr());
176 if (It == RelocationMap.end())
177 return None;
178
179 auto &Record = It->second;
180 if (Record.type != RecordType::Spill)
181 return None;
182
183 return Record.payload.FI;
184 }
185
186 // Look through bitcast instructions.
187 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
188 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
189
190 // Look through phi nodes
191 // All incoming values should have same known stack slot, otherwise result
192 // is unknown.
193 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
194 Optional<int> MergedResult = None;
195
196 for (auto &IncomingValue : Phi->incoming_values()) {
197 Optional<int> SpillSlot =
198 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
199 if (!SpillSlot.hasValue())
200 return None;
201
202 if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
203 return None;
204
205 MergedResult = SpillSlot;
206 }
207 return MergedResult;
208 }
209
210 // TODO: We can do better for PHI nodes. In cases like this:
211 // ptr = phi(relocated_pointer, not_relocated_pointer)
212 // statepoint(ptr)
213 // We will return that stack slot for ptr is unknown. And later we might
214 // assign different stack slots for ptr and relocated_pointer. This limits
215 // llvm's ability to remove redundant stores.
216 // Unfortunately it's hard to accomplish in current infrastructure.
217 // We use this function to eliminate spill store completely, while
218 // in example we still need to emit store, but instead of any location
219 // we need to use special "preferred" location.
220
221 // TODO: handle simple updates. If a value is modified and the original
222 // value is no longer live, it would be nice to put the modified value in the
223 // same slot. This allows folding of the memory accesses for some
224 // instructions types (like an increment).
225 // statepoint (i)
226 // i1 = i+1
227 // statepoint (i1)
228 // However we need to be careful for cases like this:
229 // statepoint(i)
230 // i1 = i+1
231 // statepoint(i, i1)
232 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
233 // put handling of simple modifications in this function like it's done
234 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
235 // which we visit values is unspecified.
236
237 // Don't know any information about this instruction
238 return None;
239}
240
241/// Return true if-and-only-if the given SDValue can be lowered as either a
242/// constant argument or a stack reference. The key point is that the value
243/// doesn't need to be spilled or tracked as a vreg use.
244static bool willLowerDirectly(SDValue Incoming) {
245 // We are making an unchecked assumption that the frame size <= 2^16 as that
246 // is the largest offset which can be encoded in the stackmap format.
247 if (isa<FrameIndexSDNode>(Incoming))
248 return true;
249
250 // The largest constant describeable in the StackMap format is 64 bits.
251 // Potential Optimization: Constants values are sign extended by consumer,
252 // and thus there are many constants of static type > 64 bits whose value
253 // happens to be sext(Con64) and could thus be lowered directly.
254 if (Incoming.getValueType().getSizeInBits() > 64)
255 return false;
256
257 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
258 Incoming.isUndef());
259}
260
261/// Try to find existing copies of the incoming values in stack slots used for
262/// statepoint spilling. If we can find a spill slot for the incoming value,
263/// mark that slot as allocated, and reuse the same slot for this safepoint.
264/// This helps to avoid series of loads and stores that only serve to reshuffle
265/// values on the stack between calls.
266static void reservePreviousStackSlotForValue(const Value *IncomingValue,
267 SelectionDAGBuilder &Builder) {
268 SDValue Incoming = Builder.getValue(IncomingValue);
269
270 // If we won't spill this, we don't need to check for previously allocated
271 // stack slots.
272 if (willLowerDirectly(Incoming))
273 return;
274
275 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
276 if (OldLocation.getNode())
277 // Duplicates in input
278 return;
279
280 const int LookUpDepth = 6;
281 Optional<int> Index =
282 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
283 if (!Index.hasValue())
284 return;
285
286 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
287
288 auto SlotIt = find(StatepointSlots, *Index);
289 assert(SlotIt != StatepointSlots.end() &&((SlotIt != StatepointSlots.end() && "Value spilled to the unknown stack slot"
) ? static_cast<void> (0) : __assert_fail ("SlotIt != StatepointSlots.end() && \"Value spilled to the unknown stack slot\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 290, __PRETTY_FUNCTION__))
290 "Value spilled to the unknown stack slot")((SlotIt != StatepointSlots.end() && "Value spilled to the unknown stack slot"
) ? static_cast<void> (0) : __assert_fail ("SlotIt != StatepointSlots.end() && \"Value spilled to the unknown stack slot\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 290, __PRETTY_FUNCTION__))
;
291
292 // This is one of our dedicated lowering slots
293 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
294 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
295 // stack slot already assigned to someone else, can't use it!
296 // TODO: currently we reserve space for gc arguments after doing
297 // normal allocation for deopt arguments. We should reserve for
298 // _all_ deopt and gc arguments, then start allocating. This
299 // will prevent some moves being inserted when vm state changes,
300 // but gc state doesn't between two calls.
301 return;
302 }
303 // Reserve this stack slot
304 Builder.StatepointLowering.reserveStackSlot(Offset);
305
306 // Cache this slot so we find it when going through the normal
307 // assignment loop.
308 SDValue Loc =
309 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
310 Builder.StatepointLowering.setLocation(Incoming, Loc);
311}
312
313/// Extract call from statepoint, lower it and return pointer to the
314/// call node. Also update NodeMap so that getValue(statepoint) will
315/// reference lowered call result
316static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
317 SelectionDAGBuilder::StatepointLoweringInfo &SI,
318 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
319 SDValue ReturnValue, CallEndVal;
320 std::tie(ReturnValue, CallEndVal) =
321 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
322 SDNode *CallEnd = CallEndVal.getNode();
323
324 // Get a call instruction from the call sequence chain. Tail calls are not
325 // allowed. The following code is essentially reverse engineering X86's
326 // LowerCallTo.
327 //
328 // We are expecting DAG to have the following form:
329 //
330 // ch = eh_label (only in case of invoke statepoint)
331 // ch, glue = callseq_start ch
332 // ch, glue = X86::Call ch, glue
333 // ch, glue = callseq_end ch, glue
334 // get_return_value ch, glue
335 //
336 // get_return_value can either be a sequence of CopyFromReg instructions
337 // to grab the return value from the return register(s), or it can be a LOAD
338 // to load a value returned by reference via a stack slot.
339
340 bool HasDef = !SI.CLI.RetTy->isVoidTy();
341 if (HasDef) {
342 if (CallEnd->getOpcode() == ISD::LOAD)
343 CallEnd = CallEnd->getOperand(0).getNode();
344 else
345 while (CallEnd->getOpcode() == ISD::CopyFromReg)
346 CallEnd = CallEnd->getOperand(0).getNode();
347 }
348
349 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!")((CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"
) ? static_cast<void> (0) : __assert_fail ("CallEnd->getOpcode() == ISD::CALLSEQ_END && \"expected!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 349, __PRETTY_FUNCTION__))
;
350 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
351}
352
353static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
354 FrameIndexSDNode &FI) {
355 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
356 auto MMOFlags = MachineMemOperand::MOStore |
357 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
358 auto &MFI = MF.getFrameInfo();
359 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
360 MFI.getObjectSize(FI.getIndex()),
361 MFI.getObjectAlign(FI.getIndex()));
362}
363
364/// Spill a value incoming to the statepoint. It might be either part of
365/// vmstate
366/// or gcstate. In both cases unconditionally spill it on the stack unless it
367/// is a null constant. Return pair with first element being frame index
368/// containing saved value and second element with outgoing chain from the
369/// emitted store
370static std::tuple<SDValue, SDValue, MachineMemOperand*>
371spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
372 SelectionDAGBuilder &Builder) {
373 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
374 MachineMemOperand* MMO = nullptr;
375
376 // Emit new store if we didn't do it for this ptr before
377 if (!Loc.getNode()) {
378 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
379 Builder);
380 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
381 // We use TargetFrameIndex so that isel will not select it into LEA
382 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
383
384 // Right now we always allocate spill slots that are of the same
385 // size as the value we're about to spill (the size of spillee can
386 // vary since we spill vectors of pointers too). At some point we
387 // can consider allowing spills of smaller values to larger slots
388 // (i.e. change the '==' in the assert below to a '>=').
389 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
390 assert((MFI.getObjectSize(Index) * 8) ==(((MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming
.getValueSizeInBits())) && "Bad spill: stack slot does not match!"
) ? static_cast<void> (0) : __assert_fail ("(MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming.getValueSizeInBits())) && \"Bad spill: stack slot does not match!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 393, __PRETTY_FUNCTION__))
391 (-8 & (7 + // Round up modulo 8.(((MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming
.getValueSizeInBits())) && "Bad spill: stack slot does not match!"
) ? static_cast<void> (0) : __assert_fail ("(MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming.getValueSizeInBits())) && \"Bad spill: stack slot does not match!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 393, __PRETTY_FUNCTION__))
392 (int64_t)Incoming.getValueSizeInBits())) &&(((MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming
.getValueSizeInBits())) && "Bad spill: stack slot does not match!"
) ? static_cast<void> (0) : __assert_fail ("(MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming.getValueSizeInBits())) && \"Bad spill: stack slot does not match!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 393, __PRETTY_FUNCTION__))
393 "Bad spill: stack slot does not match!")(((MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming
.getValueSizeInBits())) && "Bad spill: stack slot does not match!"
) ? static_cast<void> (0) : __assert_fail ("(MFI.getObjectSize(Index) * 8) == (-8 & (7 + (int64_t)Incoming.getValueSizeInBits())) && \"Bad spill: stack slot does not match!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 393, __PRETTY_FUNCTION__))
;
394
395 // Note: Using the alignment of the spill slot (rather than the abi or
396 // preferred alignment) is required for correctness when dealing with spill
397 // slots with preferred alignments larger than frame alignment..
398 auto &MF = Builder.DAG.getMachineFunction();
399 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
400 auto *StoreMMO = MF.getMachineMemOperand(
401 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
402 MFI.getObjectAlign(Index));
403 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
404 StoreMMO);
405
406 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
407
408 Builder.StatepointLowering.setLocation(Incoming, Loc);
409 }
410
411 assert(Loc.getNode())((Loc.getNode()) ? static_cast<void> (0) : __assert_fail
("Loc.getNode()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 411, __PRETTY_FUNCTION__))
;
412 return std::make_tuple(Loc, Chain, MMO);
413}
414
415/// Lower a single value incoming to a statepoint node. This value can be
416/// either a deopt value or a gc value, the handling is the same. We special
417/// case constants and allocas, then fall back to spilling if required.
418static void
419lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
420 SmallVectorImpl<SDValue> &Ops,
421 SmallVectorImpl<MachineMemOperand *> &MemRefs,
422 SelectionDAGBuilder &Builder) {
423
424 if (willLowerDirectly(Incoming)) {
26
Taking true branch
425 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
27
Calling 'dyn_cast<llvm::FrameIndexSDNode, llvm::SDValue>'
42
Returning from 'dyn_cast<llvm::FrameIndexSDNode, llvm::SDValue>'
43
Assuming 'FI' is null
44
Taking false branch
426 // This handles allocas as arguments to the statepoint (this is only
427 // really meaningful for a deopt value. For GC, we'd be trying to
428 // relocate the address of the alloca itself?)
429 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&((Incoming.getValueType() == Builder.getFrameIndexTy() &&
"Incoming value is a frame index!") ? static_cast<void>
(0) : __assert_fail ("Incoming.getValueType() == Builder.getFrameIndexTy() && \"Incoming value is a frame index!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 430, __PRETTY_FUNCTION__))
430 "Incoming value is a frame index!")((Incoming.getValueType() == Builder.getFrameIndexTy() &&
"Incoming value is a frame index!") ? static_cast<void>
(0) : __assert_fail ("Incoming.getValueType() == Builder.getFrameIndexTy() && \"Incoming value is a frame index!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 430, __PRETTY_FUNCTION__))
;
431 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
432 Builder.getFrameIndexTy()));
433
434 auto &MF = Builder.DAG.getMachineFunction();
435 auto *MMO = getMachineMemOperand(MF, *FI);
436 MemRefs.push_back(MMO);
437 return;
438 }
439
440 assert(Incoming.getValueType().getSizeInBits() <= 64)((Incoming.getValueType().getSizeInBits() <= 64) ? static_cast
<void> (0) : __assert_fail ("Incoming.getValueType().getSizeInBits() <= 64"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 440, __PRETTY_FUNCTION__))
;
45
Calling 'SDValue::getValueType'
441
442 if (Incoming.isUndef()) {
443 // Put an easily recognized constant that's unlikely to be a valid
444 // value so that uses of undef by the consumer of the stackmap is
445 // easily recognized. This is legal since the compiler is always
446 // allowed to chose an arbitrary value for undef.
447 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
448 return;
449 }
450
451 // If the original value was a constant, make sure it gets recorded as
452 // such in the stackmap. This is required so that the consumer can
453 // parse any internal format to the deopt state. It also handles null
454 // pointers and other constant pointers in GC states.
455 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
456 pushStackMapConstant(Ops, Builder, C->getSExtValue());
457 return;
458 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
459 pushStackMapConstant(Ops, Builder,
460 C->getValueAPF().bitcastToAPInt().getZExtValue());
461 return;
462 }
463
464 llvm_unreachable("unhandled direct lowering case")::llvm::llvm_unreachable_internal("unhandled direct lowering case"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 464)
;
465 }
466
467
468
469 if (!RequireSpillSlot) {
470 // If this value is live in (not live-on-return, or live-through), we can
471 // treat it the same way patchpoint treats it's "live in" values. We'll
472 // end up folding some of these into stack references, but they'll be
473 // handled by the register allocator. Note that we do not have the notion
474 // of a late use so these values might be placed in registers which are
475 // clobbered by the call. This is fine for live-in. For live-through
476 // fix-up pass should be executed to force spilling of such registers.
477 Ops.push_back(Incoming);
478 } else {
479 // Otherwise, locate a spill slot and explicitly spill it so it can be
480 // found by the runtime later. Note: We know all of these spills are
481 // independent, but don't bother to exploit that chain wise. DAGCombine
482 // will happily do so as needed, so doing it here would be a small compile
483 // time win at most.
484 SDValue Chain = Builder.getRoot();
485 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
486 Ops.push_back(std::get<0>(Res));
487 if (auto *MMO = std::get<2>(Res))
488 MemRefs.push_back(MMO);
489 Chain = std::get<1>(Res);;
490 Builder.DAG.setRoot(Chain);
491 }
492
493}
494
495/// Return true if value V represents the GC value. The behavior is conservative
496/// in case it is not sure that value is not GC the function returns true.
497static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
498 auto *Ty = V->getType();
499 if (!Ty->isPtrOrPtrVectorTy())
500 return false;
501 if (auto *GFI = Builder.GFI)
502 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
503 return *IsManaged;
504 return true; // conservative
505}
506
507/// Lower deopt state and gc pointer arguments of the statepoint. The actual
508/// lowering is described in lowerIncomingStatepointValue. This function is
509/// responsible for lowering everything in the right position and playing some
510/// tricks to avoid redundant stack manipulation where possible. On
511/// completion, 'Ops' will contain ready to use operands for machine code
512/// statepoint. The chain nodes will have already been created and the DAG root
513/// will be set to the last value spilled (if any were).
514static void
515lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
516 SmallVectorImpl<MachineMemOperand *> &MemRefs,
517 SmallVectorImpl<SDValue> &GCPtrs,
518 DenseMap<SDValue, int> &LowerAsVReg,
519 SelectionDAGBuilder::StatepointLoweringInfo &SI,
520 SelectionDAGBuilder &Builder) {
521 // Lower the deopt and gc arguments for this statepoint. Layout will be:
522 // deopt argument length, deopt arguments.., gc arguments...
523#ifndef NDEBUG
524 if (auto *GFI = Builder.GFI) {
1
Assuming 'GFI' is null
2
Taking false branch
525 // Check that each of the gc pointer and bases we've gotten out of the
526 // safepoint is something the strategy thinks might be a pointer (or vector
527 // of pointers) into the GC heap. This is basically just here to help catch
528 // errors during statepoint insertion. TODO: This should actually be in the
529 // Verifier, but we can't get to the GCStrategy from there (yet).
530 GCStrategy &S = GFI->getStrategy();
531 for (const Value *V : SI.Bases) {
532 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
533 if (Opt.hasValue()) {
534 assert(Opt.getValue() &&((Opt.getValue() && "non gc managed base pointer found in statepoint"
) ? static_cast<void> (0) : __assert_fail ("Opt.getValue() && \"non gc managed base pointer found in statepoint\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 535, __PRETTY_FUNCTION__))
535 "non gc managed base pointer found in statepoint")((Opt.getValue() && "non gc managed base pointer found in statepoint"
) ? static_cast<void> (0) : __assert_fail ("Opt.getValue() && \"non gc managed base pointer found in statepoint\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 535, __PRETTY_FUNCTION__))
;
536 }
537 }
538 for (const Value *V : SI.Ptrs) {
539 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
540 if (Opt.hasValue()) {
541 assert(Opt.getValue() &&((Opt.getValue() && "non gc managed derived pointer found in statepoint"
) ? static_cast<void> (0) : __assert_fail ("Opt.getValue() && \"non gc managed derived pointer found in statepoint\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 542, __PRETTY_FUNCTION__))
542 "non gc managed derived pointer found in statepoint")((Opt.getValue() && "non gc managed derived pointer found in statepoint"
) ? static_cast<void> (0) : __assert_fail ("Opt.getValue() && \"non gc managed derived pointer found in statepoint\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 542, __PRETTY_FUNCTION__))
;
543 }
544 }
545 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!")((SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"
) ? static_cast<void> (0) : __assert_fail ("SI.Bases.size() == SI.Ptrs.size() && \"Pointer without base!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 545, __PRETTY_FUNCTION__))
;
546 } else {
547 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!")((SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"
) ? static_cast<void> (0) : __assert_fail ("SI.Bases.empty() && \"No gc specified, so cannot relocate pointers!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 547, __PRETTY_FUNCTION__))
;
3
'?' condition is true
548 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!")((SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"
) ? static_cast<void> (0) : __assert_fail ("SI.Ptrs.empty() && \"No gc specified, so cannot relocate pointers!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 548, __PRETTY_FUNCTION__))
;
4
'?' condition is true
549 }
550#endif
551
552 // Figure out what lowering strategy we're going to use for each part
553 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
554 // as "live-through". A "live-through" variable is one which is "live-in",
555 // "live-out", and live throughout the lifetime of the call (i.e. we can find
556 // it from any PC within the transitive callee of the statepoint). In
557 // particular, if the callee spills callee preserved registers we may not
558 // be able to find a value placed in that register during the call. This is
559 // fine for live-out, but not for live-through. If we were willing to make
560 // assumptions about the code generator producing the callee, we could
561 // potentially allow live-through values in callee saved registers.
562 const bool LiveInDeopt =
563 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
564
565 // Decide which deriver pointers will go on VRegs
566 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
567
568 // Pointers used on exceptional path of invoke statepoint.
569 // We cannot assing them to VRegs.
570 SmallSet<SDValue, 8> LPadPointers;
571 if (!UseRegistersForGCPointersInLandingPad)
5
Assuming the condition is false
6
Taking false branch
572 if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
573 LandingPadInst *LPI = StInvoke->getLandingPadInst();
574 for (auto *Relocate : SI.GCRelocates)
575 if (Relocate->getOperand(0) == LPI) {
576 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
577 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
578 }
579 }
580
581 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "Deciding how to lower GC Pointers:\n"
; } } while (false)
;
7
Assuming 'DebugFlag' is false
8
Loop condition is false. Exiting loop
582
583 // List of unique lowered GC Pointer values.
584 SmallSetVector<SDValue, 16> LoweredGCPtrs;
585 // Map lowered GC Pointer value to the index in above vector
586 DenseMap<SDValue, unsigned> GCPtrIndexMap;
587
588 unsigned CurNumVRegs = 0;
589
590 auto canPassGCPtrOnVReg = [&](SDValue SD) {
591 if (SD.getValueType().isVector())
592 return false;
593 if (LPadPointers.count(SD))
594 return false;
595 return !willLowerDirectly(SD);
596 };
597
598 auto processGCPtr = [&](const Value *V) {
599 SDValue PtrSD = Builder.getValue(V);
600 if (!LoweredGCPtrs.insert(PtrSD))
601 return; // skip duplicates
602 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
603
604 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen")((!LowerAsVReg.count(PtrSD) && "must not have been seen"
) ? static_cast<void> (0) : __assert_fail ("!LowerAsVReg.count(PtrSD) && \"must not have been seen\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 604, __PRETTY_FUNCTION__))
;
605 if (LowerAsVReg.size() == MaxVRegPtrs)
606 return;
607 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&((V->getType()->isVectorTy() == PtrSD.getValueType().isVector
() && "IR and SD types disagree") ? static_cast<void
> (0) : __assert_fail ("V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && \"IR and SD types disagree\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 608, __PRETTY_FUNCTION__))
608 "IR and SD types disagree")((V->getType()->isVectorTy() == PtrSD.getValueType().isVector
() && "IR and SD types disagree") ? static_cast<void
> (0) : __assert_fail ("V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && \"IR and SD types disagree\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 608, __PRETTY_FUNCTION__))
;
609 if (!canPassGCPtrOnVReg(PtrSD)) {
610 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "direct/spill "; PtrSD
.dump(&Builder.DAG); } } while (false)
;
611 return;
612 }
613 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "vreg "; PtrSD.dump
(&Builder.DAG); } } while (false)
;
614 LowerAsVReg[PtrSD] = CurNumVRegs++;
615 };
616
617 // Process derived pointers first to give them more chance to go on VReg.
618 for (const Value *V : SI.Ptrs)
9
Assuming '__begin1' is equal to '__end1'
619 processGCPtr(V);
620 for (const Value *V : SI.Bases)
10
Assuming '__begin1' is equal to '__end1'
621 processGCPtr(V);
622
623 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << LowerAsVReg.size()
<< " pointers will go in vregs\n"; } } while (false)
;
11
Assuming 'DebugFlag' is false
12
Loop condition is false. Exiting loop
624
625 auto requireSpillSlot = [&](const Value *V) {
626 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
627 Builder.getValue(V).getValueType()))
628 return true;
629 if (isGCValue(V, Builder))
630 return !LowerAsVReg.count(Builder.getValue(V));
631 return !(LiveInDeopt || UseRegistersForDeoptValues);
632 };
633
634 // Before we actually start lowering (and allocating spill slots for values),
635 // reserve any stack slots which we judge to be profitable to reuse for a
636 // particular value. This is purely an optimization over the code below and
637 // doesn't change semantics at all. It is important for performance that we
638 // reserve slots for both deopt and gc values before lowering either.
639 for (const Value *V : SI.DeoptState) {
13
Assuming '__begin1' is equal to '__end1'
640 if (requireSpillSlot(V))
641 reservePreviousStackSlotForValue(V, Builder);
642 }
643
644 for (const Value *V : SI.Ptrs) {
14
Assuming '__begin1' is equal to '__end1'
645 SDValue SDV = Builder.getValue(V);
646 if (!LowerAsVReg.count(SDV))
647 reservePreviousStackSlotForValue(V, Builder);
648 }
649
650 for (const Value *V : SI.Bases) {
15
Assuming '__begin1' is equal to '__end1'
651 SDValue SDV = Builder.getValue(V);
652 if (!LowerAsVReg.count(SDV))
653 reservePreviousStackSlotForValue(V, Builder);
654 }
655
656 // First, prefix the list with the number of unique values to be
657 // lowered. Note that this is the number of *Values* not the
658 // number of SDValues required to lower them.
659 const int NumVMSArgs = SI.DeoptState.size();
660 pushStackMapConstant(Ops, Builder, NumVMSArgs);
661
662 // The vm state arguments are lowered in an opaque manner. We do not know
663 // what type of values are contained within.
664 LLVM_DEBUG(dbgs() << "Lowering deopt state\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "Lowering deopt state\n"
; } } while (false)
;
16
Assuming 'DebugFlag' is false
17
Loop condition is false. Exiting loop
665 for (const Value *V : SI.DeoptState) {
18
Assuming '__begin1' is not equal to '__end1'
666 SDValue Incoming;
667 // If this is a function argument at a static frame index, generate it as
668 // the frame index.
669 if (const Argument *Arg
19.1
'Arg' is null
19.1
'Arg' is null
19.1
'Arg' is null
= dyn_cast<Argument>(V)) {
19
Assuming 'V' is not a 'Argument'
20
Taking false branch
670 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
671 if (FI != INT_MAX2147483647)
672 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
673 }
674 if (!Incoming.getNode())
21
Taking true branch
675 Incoming = Builder.getValue(V);
676 LLVM_DEBUG(dbgs() << "Value " << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "Value " << *
V << " requireSpillSlot = " << requireSpillSlot(V
) << "\n"; } } while (false)
22
Assuming 'DebugFlag' is false
23
Loop condition is false. Exiting loop
677 << " requireSpillSlot = " << requireSpillSlot(V) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "Value " << *
V << " requireSpillSlot = " << requireSpillSlot(V
) << "\n"; } } while (false)
;
678 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
24
Value assigned to 'Incoming.Node'
25
Calling 'lowerIncomingStatepointValue'
679 Builder);
680 }
681
682 // Finally, go ahead and lower all the gc arguments.
683 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
684 for (SDValue SDV : LoweredGCPtrs)
685 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
686 Builder);
687
688 // Copy to out vector. LoweredGCPtrs will be empty after this point.
689 GCPtrs = LoweredGCPtrs.takeVector();
690
691 // If there are any explicit spill slots passed to the statepoint, record
692 // them, but otherwise do not do anything special. These are user provided
693 // allocas and give control over placement to the consumer. In this case,
694 // it is the contents of the slot which may get updated, not the pointer to
695 // the alloca
696 SmallVector<SDValue, 4> Allocas;
697 for (Value *V : SI.GCArgs) {
698 SDValue Incoming = Builder.getValue(V);
699 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
700 // This handles allocas as arguments to the statepoint
701 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&((Incoming.getValueType() == Builder.getFrameIndexTy() &&
"Incoming value is a frame index!") ? static_cast<void>
(0) : __assert_fail ("Incoming.getValueType() == Builder.getFrameIndexTy() && \"Incoming value is a frame index!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 702, __PRETTY_FUNCTION__))
702 "Incoming value is a frame index!")((Incoming.getValueType() == Builder.getFrameIndexTy() &&
"Incoming value is a frame index!") ? static_cast<void>
(0) : __assert_fail ("Incoming.getValueType() == Builder.getFrameIndexTy() && \"Incoming value is a frame index!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 702, __PRETTY_FUNCTION__))
;
703 Allocas.push_back(Builder.DAG.getTargetFrameIndex(
704 FI->getIndex(), Builder.getFrameIndexTy()));
705
706 auto &MF = Builder.DAG.getMachineFunction();
707 auto *MMO = getMachineMemOperand(MF, *FI);
708 MemRefs.push_back(MMO);
709 }
710 }
711 pushStackMapConstant(Ops, Builder, Allocas.size());
712 Ops.append(Allocas.begin(), Allocas.end());
713
714 // Now construct GC base/derived map;
715 pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
716 SDLoc L = Builder.getCurSDLoc();
717 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
718 SDValue Base = Builder.getValue(SI.Bases[i]);
719 assert(GCPtrIndexMap.count(Base) && "base not found in index map")((GCPtrIndexMap.count(Base) && "base not found in index map"
) ? static_cast<void> (0) : __assert_fail ("GCPtrIndexMap.count(Base) && \"base not found in index map\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 719, __PRETTY_FUNCTION__))
;
720 Ops.push_back(
721 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
722 SDValue Derived = Builder.getValue(SI.Ptrs[i]);
723 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map")((GCPtrIndexMap.count(Derived) && "derived not found in index map"
) ? static_cast<void> (0) : __assert_fail ("GCPtrIndexMap.count(Derived) && \"derived not found in index map\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 723, __PRETTY_FUNCTION__))
;
724 Ops.push_back(
725 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
726 }
727}
728
729SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
730 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
731 // The basic scheme here is that information about both the original call and
732 // the safepoint is encoded in the CallInst. We create a temporary call and
733 // lower it, then reverse engineer the calling sequence.
734
735 NumOfStatepoints++;
736 // Clear state
737 StatepointLowering.startNewStatepoint(*this);
738 assert(SI.Bases.size() == SI.Ptrs.size())((SI.Bases.size() == SI.Ptrs.size()) ? static_cast<void>
(0) : __assert_fail ("SI.Bases.size() == SI.Ptrs.size()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 738, __PRETTY_FUNCTION__))
;
739
740 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "Lowering statepoint "
<< *SI.StatepointInstr << "\n"; } } while (false
)
;
741#ifndef NDEBUG
742 for (auto *Reloc : SI.GCRelocates)
743 if (Reloc->getParent() == SI.StatepointInstr->getParent())
744 StatepointLowering.scheduleRelocCall(*Reloc);
745#endif
746
747 // Lower statepoint vmstate and gcstate arguments
748
749 // All lowered meta args.
750 SmallVector<SDValue, 10> LoweredMetaArgs;
751 // Lowered GC pointers (subset of above).
752 SmallVector<SDValue, 16> LoweredGCArgs;
753 SmallVector<MachineMemOperand*, 16> MemRefs;
754 // Maps derived pointer SDValue to statepoint result of relocated pointer.
755 DenseMap<SDValue, int> LowerAsVReg;
756 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
757 SI, *this);
758
759 // Now that we've emitted the spills, we need to update the root so that the
760 // call sequence is ordered correctly.
761 SI.CLI.setChain(getRoot());
762
763 // Get call node, we will replace it later with statepoint
764 SDValue ReturnVal;
765 SDNode *CallNode;
766 std::tie(ReturnVal, CallNode) =
767 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
768
769 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
770 // nodes with all the appropriate arguments and return values.
771
772 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
773 SDValue Chain = CallNode->getOperand(0);
774
775 SDValue Glue;
776 bool CallHasIncomingGlue = CallNode->getGluedNode();
777 if (CallHasIncomingGlue) {
778 // Glue is always last operand
779 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
780 }
781
782 // Build the GC_TRANSITION_START node if necessary.
783 //
784 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
785 // order in which they appear in the call to the statepoint intrinsic. If
786 // any of the operands is a pointer-typed, that operand is immediately
787 // followed by a SRCVALUE for the pointer that may be used during lowering
788 // (e.g. to form MachinePointerInfo values for loads/stores).
789 const bool IsGCTransition =
790 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
791 (uint64_t)StatepointFlags::GCTransition;
792 if (IsGCTransition) {
793 SmallVector<SDValue, 8> TSOps;
794
795 // Add chain
796 TSOps.push_back(Chain);
797
798 // Add GC transition arguments
799 for (const Value *V : SI.GCTransitionArgs) {
800 TSOps.push_back(getValue(V));
801 if (V->getType()->isPointerTy())
802 TSOps.push_back(DAG.getSrcValue(V));
803 }
804
805 // Add glue if necessary
806 if (CallHasIncomingGlue)
807 TSOps.push_back(Glue);
808
809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
810
811 SDValue GCTransitionStart =
812 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
813
814 Chain = GCTransitionStart.getValue(0);
815 Glue = GCTransitionStart.getValue(1);
816 }
817
818 // TODO: Currently, all of these operands are being marked as read/write in
819 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
820 // and flags to be read-only.
821 SmallVector<SDValue, 40> Ops;
822
823 // Add the <id> and <numBytes> constants.
824 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
825 Ops.push_back(
826 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
827
828 // Calculate and push starting position of vmstate arguments
829 // Get number of arguments incoming directly into call node
830 unsigned NumCallRegArgs =
831 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
832 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
833
834 // Add call target
835 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
836 Ops.push_back(CallTarget);
837
838 // Add call arguments
839 // Get position of register mask in the call
840 SDNode::op_iterator RegMaskIt;
841 if (CallHasIncomingGlue)
842 RegMaskIt = CallNode->op_end() - 2;
843 else
844 RegMaskIt = CallNode->op_end() - 1;
845 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
846
847 // Add a constant argument for the calling convention
848 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
849
850 // Add a constant argument for the flags
851 uint64_t Flags = SI.StatepointFlags;
852 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&((((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
"Unknown flag used") ? static_cast<void> (0) : __assert_fail
("((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && \"Unknown flag used\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 853, __PRETTY_FUNCTION__))
853 "Unknown flag used")((((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
"Unknown flag used") ? static_cast<void> (0) : __assert_fail
("((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && \"Unknown flag used\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 853, __PRETTY_FUNCTION__))
;
854 pushStackMapConstant(Ops, *this, Flags);
855
856 // Insert all vmstate and gcstate arguments
857 llvm::append_range(Ops, LoweredMetaArgs);
858
859 // Add register mask from call node
860 Ops.push_back(*RegMaskIt);
861
862 // Add chain
863 Ops.push_back(Chain);
864
865 // Same for the glue, but we add it only if original call had it
866 if (Glue.getNode())
867 Ops.push_back(Glue);
868
869 // Compute return values. Provide a glue output since we consume one as
870 // input. This allows someone else to chain off us as needed.
871 SmallVector<EVT, 8> NodeTys;
872 for (auto SD : LoweredGCArgs) {
873 if (!LowerAsVReg.count(SD))
874 continue;
875 NodeTys.push_back(SD.getValueType());
876 }
877 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("statepoint-lowering")) { dbgs() << "Statepoint has " <<
NodeTys.size() << " results\n"; } } while (false)
;
878 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering")((NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"
) ? static_cast<void> (0) : __assert_fail ("NodeTys.size() == LowerAsVReg.size() && \"Inconsistent GC Ptr lowering\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 878, __PRETTY_FUNCTION__))
;
879 NodeTys.push_back(MVT::Other);
880 NodeTys.push_back(MVT::Glue);
881
882 unsigned NumResults = NodeTys.size();
883 MachineSDNode *StatepointMCNode =
884 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
885 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
886
887 // For values lowered to tied-defs, create the virtual registers. Note that
888 // for simplicity, we *always* create a vreg even within a single block.
889 DenseMap<SDValue, Register> VirtRegs;
890 for (const auto *Relocate : SI.GCRelocates) {
891 Value *Derived = Relocate->getDerivedPtr();
892 SDValue SD = getValue(Derived);
893 if (!LowerAsVReg.count(SD))
894 continue;
895
896 // Handle multiple gc.relocates of the same input efficiently.
897 if (VirtRegs.count(SD))
898 continue;
899
900 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
901
902 auto *RetTy = Relocate->getType();
903 Register Reg = FuncInfo.CreateRegs(RetTy);
904 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
905 DAG.getDataLayout(), Reg, RetTy, None);
906 SDValue Chain = DAG.getRoot();
907 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
908 PendingExports.push_back(Chain);
909
910 VirtRegs[SD] = Reg;
911 }
912
913 // Record for later use how each relocation was lowered. This is needed to
914 // allow later gc.relocates to mirror the lowering chosen.
915 const Instruction *StatepointInstr = SI.StatepointInstr;
916 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
917 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
918 const Value *V = Relocate->getDerivedPtr();
919 SDValue SDV = getValue(V);
920 SDValue Loc = StatepointLowering.getLocation(SDV);
921
922 RecordType Record;
923 if (LowerAsVReg.count(SDV)) {
924 Record.type = RecordType::VReg;
925 assert(VirtRegs.count(SDV))((VirtRegs.count(SDV)) ? static_cast<void> (0) : __assert_fail
("VirtRegs.count(SDV)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 925, __PRETTY_FUNCTION__))
;
926 Record.payload.Reg = VirtRegs[SDV];
927 } else if (Loc.getNode()) {
928 Record.type = RecordType::Spill;
929 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
930 } else {
931 Record.type = RecordType::NoRelocate;
932 // If we didn't relocate a value, we'll essentialy end up inserting an
933 // additional use of the original value when lowering the gc.relocate.
934 // We need to make sure the value is available at the new use, which
935 // might be in another block.
936 if (Relocate->getParent() != StatepointInstr->getParent())
937 ExportFromCurrentBlock(V);
938 }
939 RelocationMap[V] = Record;
940 }
941
942
943
944 SDNode *SinkNode = StatepointMCNode;
945
946 // Build the GC_TRANSITION_END node if necessary.
947 //
948 // See the comment above regarding GC_TRANSITION_START for the layout of
949 // the operands to the GC_TRANSITION_END node.
950 if (IsGCTransition) {
951 SmallVector<SDValue, 8> TEOps;
952
953 // Add chain
954 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
955
956 // Add GC transition arguments
957 for (const Value *V : SI.GCTransitionArgs) {
958 TEOps.push_back(getValue(V));
959 if (V->getType()->isPointerTy())
960 TEOps.push_back(DAG.getSrcValue(V));
961 }
962
963 // Add glue
964 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
965
966 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
967
968 SDValue GCTransitionStart =
969 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
970
971 SinkNode = GCTransitionStart.getNode();
972 }
973
974 // Replace original call
975 // Call: ch,glue = CALL ...
976 // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
977 unsigned NumSinkValues = SinkNode->getNumValues();
978 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
979 SDValue(SinkNode, NumSinkValues - 1)};
980 DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
981 // Remove original call node
982 DAG.DeleteNode(CallNode);
983
984 // Since we always emit CopyToRegs (even for local relocates), we must
985 // update root, so that they are emitted before any local uses.
986 (void)getControlRoot();
987
988 // TODO: A better future implementation would be to emit a single variable
989 // argument, variable return value STATEPOINT node here and then hookup the
990 // return value of each gc.relocate to the respective output of the
991 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
992 // to actually be possible today.
993
994 return ReturnVal;
995}
996
997void
998SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
999 const BasicBlock *EHPadBB /*= nullptr*/) {
1000 assert(I.getCallingConv() != CallingConv::AnyReg &&((I.getCallingConv() != CallingConv::AnyReg && "anyregcc is not supported on statepoints!"
) ? static_cast<void> (0) : __assert_fail ("I.getCallingConv() != CallingConv::AnyReg && \"anyregcc is not supported on statepoints!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1001, __PRETTY_FUNCTION__))
1001 "anyregcc is not supported on statepoints!")((I.getCallingConv() != CallingConv::AnyReg && "anyregcc is not supported on statepoints!"
) ? static_cast<void> (0) : __assert_fail ("I.getCallingConv() != CallingConv::AnyReg && \"anyregcc is not supported on statepoints!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1001, __PRETTY_FUNCTION__))
;
1002
1003#ifndef NDEBUG
1004 // Check that the associated GCStrategy expects to encounter statepoints.
1005 assert(GFI->getStrategy().useStatepoints() &&((GFI->getStrategy().useStatepoints() && "GCStrategy does not expect to encounter statepoints"
) ? static_cast<void> (0) : __assert_fail ("GFI->getStrategy().useStatepoints() && \"GCStrategy does not expect to encounter statepoints\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1006, __PRETTY_FUNCTION__))
1006 "GCStrategy does not expect to encounter statepoints")((GFI->getStrategy().useStatepoints() && "GCStrategy does not expect to encounter statepoints"
) ? static_cast<void> (0) : __assert_fail ("GFI->getStrategy().useStatepoints() && \"GCStrategy does not expect to encounter statepoints\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1006, __PRETTY_FUNCTION__))
;
1007#endif
1008
1009 SDValue ActualCallee;
1010 SDValue Callee = getValue(I.getActualCalledOperand());
1011
1012 if (I.getNumPatchBytes() > 0) {
1013 // If we've been asked to emit a nop sequence instead of a call instruction
1014 // for this statepoint then don't lower the call target, but use a constant
1015 // `undef` instead. Not lowering the call target lets statepoint clients
1016 // get away without providing a physical address for the symbolic call
1017 // target at link time.
1018 ActualCallee = DAG.getUNDEF(Callee.getValueType());
1019 } else {
1020 ActualCallee = Callee;
1021 }
1022
1023 StatepointLoweringInfo SI(DAG);
1024 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1025 I.getNumCallArgs(), ActualCallee,
1026 I.getActualReturnType(), false /* IsPatchPoint */);
1027
1028 // There may be duplication in the gc.relocate list; such as two copies of
1029 // each relocation on normal and exceptional path for an invoke. We only
1030 // need to spill once and record one copy in the stackmap, but we need to
1031 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
1032 // handled as a CSE problem elsewhere.)
1033 // TODO: There a couple of major stackmap size optimizations we could do
1034 // here if we wished.
1035 // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1036 // record {B,B} if it's seen later.
1037 // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1038 // given that, we could change the format to record base pointer relocations
1039 // separately with half the space. This would require a format rev and a
1040 // fairly major rework of the STATEPOINT node though.
1041 SmallSet<SDValue, 8> Seen;
1042 for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1043 SI.GCRelocates.push_back(Relocate);
1044
1045 SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1046 if (Seen.insert(DerivedSD).second) {
1047 SI.Bases.push_back(Relocate->getBasePtr());
1048 SI.Ptrs.push_back(Relocate->getDerivedPtr());
1049 }
1050 }
1051
1052 // If we find a deopt value which isn't explicitly added, we need to
1053 // ensure it gets lowered such that gc cycles occurring before the
1054 // deoptimization event during the lifetime of the call don't invalidate
1055 // the pointer we're deopting with. Note that we assume that all
1056 // pointers passed to deopt are base pointers; relaxing that assumption
1057 // would require relatively large changes to how we represent relocations.
1058 for (Value *V : I.deopt_operands()) {
1059 if (!isGCValue(V, *this))
1060 continue;
1061 if (Seen.insert(getValue(V)).second) {
1062 SI.Bases.push_back(V);
1063 SI.Ptrs.push_back(V);
1064 }
1065 }
1066
1067 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1068 SI.StatepointInstr = &I;
1069 SI.ID = I.getID();
1070
1071 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1072 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1073 I.gc_transition_args_end());
1074
1075 SI.StatepointFlags = I.getFlags();
1076 SI.NumPatchBytes = I.getNumPatchBytes();
1077 SI.EHPadBB = EHPadBB;
1078
1079 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1080
1081 // Export the result value if needed
1082 const std::pair<bool, bool> GCResultLocality = I.getGCResultLocality();
1083 Type *RetTy = I.getActualReturnType();
1084
1085 if (RetTy->isVoidTy() ||
1086 (!GCResultLocality.first && !GCResultLocality.second)) {
1087 // The return value is not needed, just generate a poison value.
1088 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1089 return;
1090 }
1091
1092 if (GCResultLocality.first) {
1093 // Result value will be used in a same basic block. Don't export it or
1094 // perform any explicit register copies. The gc_result will simply grab
1095 // this value.
1096 setValue(&I, ReturnValue);
1097 }
1098
1099 if (!GCResultLocality.second)
1100 return;
1101 // Result value will be used in a different basic block so we need to export
1102 // it now. Default exporting mechanism will not work here because statepoint
1103 // call has a different type than the actual call. It means that by default
1104 // llvm will create export register of the wrong type (always i32 in our
1105 // case). So instead we need to create export register with correct type
1106 // manually.
1107 // TODO: To eliminate this problem we can remove gc.result intrinsics
1108 // completely and make statepoint call to return a tuple.
1109 unsigned Reg = FuncInfo.CreateRegs(RetTy);
1110 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1111 DAG.getDataLayout(), Reg, RetTy,
1112 I.getCallingConv());
1113 SDValue Chain = DAG.getEntryNode();
1114
1115 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1116 PendingExports.push_back(Chain);
1117 FuncInfo.ValueMap[&I] = Reg;
1118}
1119
1120void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1121 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1122 bool VarArgDisallowed, bool ForceVoidReturnTy) {
1123 StatepointLoweringInfo SI(DAG);
1124 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1125 populateCallLoweringInfo(
1126 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
1127 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1128 false);
1129 if (!VarArgDisallowed)
1130 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1131
1132 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1133
1134 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1135
1136 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1137 SI.ID = SD.StatepointID.getValueOr(DefaultID);
1138 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
1139
1140 SI.DeoptState =
1141 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1142 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1143 SI.EHPadBB = EHPadBB;
1144
1145 // NB! The GC arguments are deliberately left empty.
1146
1147 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1148 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1149 setValue(Call, ReturnVal);
1150 }
1151}
1152
1153void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1154 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1155 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1156 /* VarArgDisallowed = */ false,
1157 /* ForceVoidReturnTy = */ false);
1158}
1159
1160void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1161 // The result value of the gc_result is simply the result of the actual
1162 // call. We've already emitted this, so just grab the value.
1163 const GCStatepointInst *SI = CI.getStatepoint();
1164
1165 if (SI->getParent() == CI.getParent()) {
1166 setValue(&CI, getValue(SI));
1167 return;
1168 }
1169 // Statepoint is in different basic block so we should have stored call
1170 // result in a virtual register.
1171 // We can not use default getValue() functionality to copy value from this
1172 // register because statepoint and actual call return types can be
1173 // different, and getValue() will use CopyFromReg of the wrong type,
1174 // which is always i32 in our case.
1175 Type *RetTy = SI->getActualReturnType();
1176 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1177
1178 assert(CopyFromReg.getNode())((CopyFromReg.getNode()) ? static_cast<void> (0) : __assert_fail
("CopyFromReg.getNode()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1178, __PRETTY_FUNCTION__))
;
1179 setValue(&CI, CopyFromReg);
1180}
1181
1182void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1183#ifndef NDEBUG
1184 // Consistency check
1185 // We skip this check for relocates not in the same basic block as their
1186 // statepoint. It would be too expensive to preserve validation info through
1187 // different basic blocks.
1188 if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
1189 StatepointLowering.relocCallVisited(Relocate);
1190
1191 auto *Ty = Relocate.getType()->getScalarType();
1192 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1193 assert(*IsManaged && "Non gc managed pointer relocated!")((*IsManaged && "Non gc managed pointer relocated!") ?
static_cast<void> (0) : __assert_fail ("*IsManaged && \"Non gc managed pointer relocated!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1193, __PRETTY_FUNCTION__))
;
1194#endif
1195
1196 const Value *DerivedPtr = Relocate.getDerivedPtr();
1197 auto &RelocationMap =
1198 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
1199 auto SlotIt = RelocationMap.find(DerivedPtr);
1200 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value")((SlotIt != RelocationMap.end() && "Relocating not lowered gc value"
) ? static_cast<void> (0) : __assert_fail ("SlotIt != RelocationMap.end() && \"Relocating not lowered gc value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1200, __PRETTY_FUNCTION__))
;
1201 const RecordType &Record = SlotIt->second;
1202
1203 // If relocation was done via virtual register..
1204 if (Record.type == RecordType::VReg) {
1205 Register InReg = Record.payload.Reg;
1206 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1207 DAG.getDataLayout(), InReg, Relocate.getType(),
1208 None); // This is not an ABI copy.
1209 // We generate copy to/from regs even for local uses, hence we must
1210 // chain with current root to ensure proper ordering of copies w.r.t.
1211 // statepoint.
1212 SDValue Chain = DAG.getRoot();
1213 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1214 Chain, nullptr, nullptr);
1215 setValue(&Relocate, Relocation);
1216 return;
1217 }
1218
1219 if (Record.type == RecordType::Spill) {
1220 unsigned Index = Record.payload.FI;
1221 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1222
1223 // All the reloads are independent and are reading memory only modified by
1224 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1225 // this this let's CSE kick in for free and allows reordering of
1226 // instructions if possible. The lowering for statepoint sets the root,
1227 // so this is ordering all reloads with the either
1228 // a) the statepoint node itself, or
1229 // b) the entry of the current block for an invoke statepoint.
1230 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1231
1232 auto &MF = DAG.getMachineFunction();
1233 auto &MFI = MF.getFrameInfo();
1234 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1235 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1236 MFI.getObjectSize(Index),
1237 MFI.getObjectAlign(Index));
1238
1239 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1240 Relocate.getType());
1241
1242 SDValue SpillLoad =
1243 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1244 PendingLoads.push_back(SpillLoad.getValue(1));
1245
1246 assert(SpillLoad.getNode())((SpillLoad.getNode()) ? static_cast<void> (0) : __assert_fail
("SpillLoad.getNode()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1246, __PRETTY_FUNCTION__))
;
1247 setValue(&Relocate, SpillLoad);
1248 return;
1249 }
1250
1251 assert(Record.type == RecordType::NoRelocate)((Record.type == RecordType::NoRelocate) ? static_cast<void
> (0) : __assert_fail ("Record.type == RecordType::NoRelocate"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp"
, 1251, __PRETTY_FUNCTION__))
;
1252 SDValue SD = getValue(DerivedPtr);
1253
1254 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1255 // Lowering relocate(undef) as arbitrary constant. Current constant value
1256 // is chosen such that it's unlikely to be a valid pointer.
1257 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1258 return;
1259 }
1260
1261 // We didn't need to spill these special cases (constants and allocas).
1262 // See the handling in spillIncomingValueForStatepoint for detail.
1263 setValue(&Relocate, SD);
1264}
1265
1266void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1267 const auto &TLI = DAG.getTargetLoweringInfo();
1268 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1269 TLI.getPointerTy(DAG.getDataLayout()));
1270
1271 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1272 // call. We also do not lower the return value to any virtual register, and
1273 // change the immediately following return to a trap instruction.
1274 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1275 /* VarArgDisallowed = */ true,
1276 /* ForceVoidReturnTy = */ true);
1277}
1278
1279void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1280 // We do not lower the return value from llvm.deoptimize to any virtual
1281 // register, and change the immediately following return to a trap
1282 // instruction.
1283 if (DAG.getTarget().Options.TrapUnreachable)
1284 DAG.setRoot(
1285 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1286}

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 83, __PRETTY_FUNCTION__))
;
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 90, __PRETTY_FUNCTION__))
;
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 97, __PRETTY_FUNCTION__))
;
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 104, __PRETTY_FUNCTION__))
;
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 111, __PRETTY_FUNCTION__))
;
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
37
Returning without writing to 'Val.Node'
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
34
Calling 'simplify_type::getSimplifiedValue'
36
Returning from 'simplify_type::getSimplifiedValue'
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 255, __PRETTY_FUNCTION__))
;
256 return cast_convert_val<
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 262, __PRETTY_FUNCTION__))
;
31
Assuming 'Val' is a 'FrameIndexSDNode'
32
'?' condition is true
263 return cast_convert_val<X, Y,
33
Calling 'cast_convert_val::doit'
38
Returning from 'cast_convert_val::doit'
39
Returning without writing to 'Val.Node'
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 269, __PRETTY_FUNCTION__))
;
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 277, __PRETTY_FUNCTION__))
;
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 293, __PRETTY_FUNCTION__))
;
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 303, __PRETTY_FUNCTION__))
;
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Support/Casting.h"
, 311, __PRETTY_FUNCTION__))
;
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
28
Assuming 'Val' is a 'FrameIndexSDNode'
29
'?' condition is true
30
Calling 'cast<llvm::FrameIndexSDNode, llvm::SDValue>'
40
Returning from 'cast<llvm::FrameIndexSDNode, llvm::SDValue>'
41
Returning without writing to 'Val.Node'
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h

1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/Register.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/TypeSize.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56
57namespace llvm {
58
59class APInt;
60class Constant;
61template <typename T> struct DenseMapInfo;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
96bool isConstantSplatVectorAllOnes(const SDNode *N,
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
102bool isConstantSplatVectorAllZeros(const SDNode *N,
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
115bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
119bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120
121/// Return true if the node has at least one operand and all operands of the
122/// specified node are ISD::UNDEF.
123bool allOperandsUndef(const SDNode *N);
124
125} // end namespace ISD
126
127//===----------------------------------------------------------------------===//
128/// Unlike LLVM values, Selection DAG nodes may return multiple
129/// values as the result of a computation. Many nodes return multiple values,
130/// from loads (which define a token and a return value) to ADDC (which returns
131/// a result and a carry value), to calls (which may return an arbitrary number
132/// of values).
133///
134/// As such, each use of a SelectionDAG computation must indicate the node that
135/// computes it as well as which return value to use from that node. This pair
136/// of information is represented with the SDValue value type.
137///
138class SDValue {
139 friend struct DenseMapInfo<SDValue>;
140
141 SDNode *Node = nullptr; // The node defining the value we are using.
142 unsigned ResNo = 0; // Which return value of the node we are using.
143
144public:
145 SDValue() = default;
146 SDValue(SDNode *node, unsigned resno);
147
148 /// get the index which selects a specific result in the SDNode
149 unsigned getResNo() const { return ResNo; }
150
151 /// get the SDNode which holds the desired result
152 SDNode *getNode() const { return Node; }
153
154 /// set the SDNode
155 void setNode(SDNode *N) { Node = N; }
156
157 inline SDNode *operator->() const { return Node; }
158
159 bool operator==(const SDValue &O) const {
160 return Node == O.Node && ResNo == O.ResNo;
161 }
162 bool operator!=(const SDValue &O) const {
163 return !operator==(O);
164 }
165 bool operator<(const SDValue &O) const {
166 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167 }
168 explicit operator bool() const {
169 return Node != nullptr;
170 }
171
172 SDValue getValue(unsigned R) const {
173 return SDValue(Node, R);
174 }
175
176 /// Return true if this node is an operand of N.
177 bool isOperandOf(const SDNode *N) const;
178
179 /// Return the ValueType of the referenced return value.
180 inline EVT getValueType() const;
181
182 /// Return the simple ValueType of the referenced return value.
183 MVT getSimpleValueType() const {
184 return getValueType().getSimpleVT();
185 }
186
187 /// Returns the size of the value in bits.
188 ///
189 /// If the value type is a scalable vector type, the scalable property will
190 /// be set and the runtime size will be a positive integer multiple of the
191 /// base size.
192 TypeSize getValueSizeInBits() const {
193 return getValueType().getSizeInBits();
194 }
195
196 uint64_t getScalarValueSizeInBits() const {
197 return getValueType().getScalarType().getFixedSizeInBits();
198 }
199
200 // Forwarding methods - These forward to the corresponding methods in SDNode.
201 inline unsigned getOpcode() const;
202 inline unsigned getNumOperands() const;
203 inline const SDValue &getOperand(unsigned i) const;
204 inline uint64_t getConstantOperandVal(unsigned i) const;
205 inline const APInt &getConstantOperandAPInt(unsigned i) const;
206 inline bool isTargetMemoryOpcode() const;
207 inline bool isTargetOpcode() const;
208 inline bool isMachineOpcode() const;
209 inline bool isUndef() const;
210 inline unsigned getMachineOpcode() const;
211 inline const DebugLoc &getDebugLoc() const;
212 inline void dump() const;
213 inline void dump(const SelectionDAG *G) const;
214 inline void dumpr() const;
215 inline void dumpr(const SelectionDAG *G) const;
216
217 /// Return true if this operand (which must be a chain) reaches the
218 /// specified operand without crossing any side-effecting instructions.
219 /// In practice, this looks through token factors and non-volatile loads.
220 /// In order to remain efficient, this only
221 /// looks a couple of nodes in, it does not do an exhaustive search.
222 bool reachesChainWithoutSideEffects(SDValue Dest,
223 unsigned Depth = 2) const;
224
225 /// Return true if there are no nodes using value ResNo of Node.
226 inline bool use_empty() const;
227
228 /// Return true if there is exactly one node using value ResNo of Node.
229 inline bool hasOneUse() const;
230};
231
232template<> struct DenseMapInfo<SDValue> {
233 static inline SDValue getEmptyKey() {
234 SDValue V;
235 V.ResNo = -1U;
236 return V;
237 }
238
239 static inline SDValue getTombstoneKey() {
240 SDValue V;
241 V.ResNo = -2U;
242 return V;
243 }
244
245 static unsigned getHashValue(const SDValue &Val) {
246 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248 }
249
250 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251 return LHS == RHS;
252 }
253};
254
255/// Allow casting operators to work directly on
256/// SDValues as if they were SDNode*'s.
257template<> struct simplify_type<SDValue> {
258 using SimpleType = SDNode *;
259
260 static SimpleType getSimplifiedValue(SDValue &Val) {
261 return Val.getNode();
35
Returning without writing to 'Val.Node'
262 }
263};
264template<> struct simplify_type<const SDValue> {
265 using SimpleType = /*const*/ SDNode *;
266
267 static SimpleType getSimplifiedValue(const SDValue &Val) {
268 return Val.getNode();
269 }
270};
271
272/// Represents a use of a SDNode. This class holds an SDValue,
273/// which records the SDNode being used and the result number, a
274/// pointer to the SDNode using the value, and Next and Prev pointers,
275/// which link together all the uses of an SDNode.
276///
277class SDUse {
278 /// Val - The value being used.
279 SDValue Val;
280 /// User - The user of this value.
281 SDNode *User = nullptr;
282 /// Prev, Next - Pointers to the uses list of the SDNode referred by
283 /// this operand.
284 SDUse **Prev = nullptr;
285 SDUse *Next = nullptr;
286
287public:
288 SDUse() = default;
289 SDUse(const SDUse &U) = delete;
290 SDUse &operator=(const SDUse &) = delete;
291
292 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293 operator const SDValue&() const { return Val; }
294
295 /// If implicit conversion to SDValue doesn't work, the get() method returns
296 /// the SDValue.
297 const SDValue &get() const { return Val; }
298
299 /// This returns the SDNode that contains this Use.
300 SDNode *getUser() { return User; }
301
302 /// Get the next SDUse in the use list.
303 SDUse *getNext() const { return Next; }
304
305 /// Convenience function for get().getNode().
306 SDNode *getNode() const { return Val.getNode(); }
307 /// Convenience function for get().getResNo().
308 unsigned getResNo() const { return Val.getResNo(); }
309 /// Convenience function for get().getValueType().
310 EVT getValueType() const { return Val.getValueType(); }
311
312 /// Convenience function for get().operator==
313 bool operator==(const SDValue &V) const {
314 return Val == V;
315 }
316
317 /// Convenience function for get().operator!=
318 bool operator!=(const SDValue &V) const {
319 return Val != V;
320 }
321
322 /// Convenience function for get().operator<
323 bool operator<(const SDValue &V) const {
324 return Val < V;
325 }
326
327private:
328 friend class SelectionDAG;
329 friend class SDNode;
330 // TODO: unfriend HandleSDNode once we fix its operand handling.
331 friend class HandleSDNode;
332
333 void setUser(SDNode *p) { User = p; }
334
335 /// Remove this use from its existing use list, assign it the
336 /// given value, and add it to the new value's node's use list.
337 inline void set(const SDValue &V);
338 /// Like set, but only supports initializing a newly-allocated
339 /// SDUse with a non-null value.
340 inline void setInitial(const SDValue &V);
341 /// Like set, but only sets the Node portion of the value,
342 /// leaving the ResNo portion unmodified.
343 inline void setNode(SDNode *N);
344
345 void addToList(SDUse **List) {
346 Next = *List;
347 if (Next) Next->Prev = &Next;
348 Prev = List;
349 *List = this;
350 }
351
352 void removeFromList() {
353 *Prev = Next;
354 if (Next) Next->Prev = Prev;
355 }
356};
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDValues as if they were SDNode*'s.
360template<> struct simplify_type<SDUse> {
361 using SimpleType = SDNode *;
362
363 static SimpleType getSimplifiedValue(SDUse &Val) {
364 return Val.getNode();
365 }
366};
367
368/// These are IR-level optimization flags that may be propagated to SDNodes.
369/// TODO: This data structure should be shared by the IR optimizer and the
370/// the backend.
371struct SDNodeFlags {
372private:
373 bool NoUnsignedWrap : 1;
374 bool NoSignedWrap : 1;
375 bool Exact : 1;
376 bool NoNaNs : 1;
377 bool NoInfs : 1;
378 bool NoSignedZeros : 1;
379 bool AllowReciprocal : 1;
380 bool AllowContract : 1;
381 bool ApproximateFuncs : 1;
382 bool AllowReassociation : 1;
383
384 // We assume instructions do not raise floating-point exceptions by default,
385 // and only those marked explicitly may do so. We could choose to represent
386 // this via a positive "FPExcept" flags like on the MI level, but having a
387 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388 // intersection logic more straightforward.
389 bool NoFPExcept : 1;
390
391public:
392 /// Default constructor turns off all optimization flags.
393 SDNodeFlags()
394 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396 AllowContract(false), ApproximateFuncs(false),
397 AllowReassociation(false), NoFPExcept(false) {}
398
399 /// Propagate the fast-math-flags from an IR FPMathOperator.
400 void copyFMF(const FPMathOperator &FPMO) {
401 setNoNaNs(FPMO.hasNoNaNs());
402 setNoInfs(FPMO.hasNoInfs());
403 setNoSignedZeros(FPMO.hasNoSignedZeros());
404 setAllowReciprocal(FPMO.hasAllowReciprocal());
405 setAllowContract(FPMO.hasAllowContract());
406 setApproximateFuncs(FPMO.hasApproxFunc());
407 setAllowReassociation(FPMO.hasAllowReassoc());
408 }
409
410 // These are mutators for each flag.
411 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413 void setExact(bool b) { Exact = b; }
414 void setNoNaNs(bool b) { NoNaNs = b; }
415 void setNoInfs(bool b) { NoInfs = b; }
416 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418 void setAllowContract(bool b) { AllowContract = b; }
419 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420 void setAllowReassociation(bool b) { AllowReassociation = b; }
421 void setNoFPExcept(bool b) { NoFPExcept = b; }
422
423 // These are accessors for each flag.
424 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425 bool hasNoSignedWrap() const { return NoSignedWrap; }
426 bool hasExact() const { return Exact; }
427 bool hasNoNaNs() const { return NoNaNs; }
428 bool hasNoInfs() const { return NoInfs; }
429 bool hasNoSignedZeros() const { return NoSignedZeros; }
430 bool hasAllowReciprocal() const { return AllowReciprocal; }
431 bool hasAllowContract() const { return AllowContract; }
432 bool hasApproximateFuncs() const { return ApproximateFuncs; }
433 bool hasAllowReassociation() const { return AllowReassociation; }
434 bool hasNoFPExcept() const { return NoFPExcept; }
435
436 /// Clear any flags in this flag set that aren't also set in Flags. All
437 /// flags will be cleared if Flags are undefined.
438 void intersectWith(const SDNodeFlags Flags) {
439 NoUnsignedWrap &= Flags.NoUnsignedWrap;
440 NoSignedWrap &= Flags.NoSignedWrap;
441 Exact &= Flags.Exact;
442 NoNaNs &= Flags.NoNaNs;
443 NoInfs &= Flags.NoInfs;
444 NoSignedZeros &= Flags.NoSignedZeros;
445 AllowReciprocal &= Flags.AllowReciprocal;
446 AllowContract &= Flags.AllowContract;
447 ApproximateFuncs &= Flags.ApproximateFuncs;
448 AllowReassociation &= Flags.AllowReassociation;
449 NoFPExcept &= Flags.NoFPExcept;
450 }
451};
452
453/// Represents one node in the SelectionDAG.
454///
455class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456private:
457 /// The operation that this node performs.
458 int16_t NodeType;
459
460protected:
461 // We define a set of mini-helper classes to help us interpret the bits in our
462 // SubclassData. These are designed to fit within a uint16_t so they pack
463 // with NodeType.
464
465#if defined(_AIX) && (!defined(__GNUC__4) || defined(__ibmxl__))
466// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467// and give the `pack` pragma push semantics.
468#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")pack(2)
469#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")pack(pop)
470#else
471#define BEGIN_TWO_BYTE_PACK()
472#define END_TWO_BYTE_PACK()
473#endif
474
475BEGIN_TWO_BYTE_PACK()
476 class SDNodeBitfields {
477 friend class SDNode;
478 friend class MemIntrinsicSDNode;
479 friend class MemSDNode;
480 friend class SelectionDAG;
481
482 uint16_t HasDebugValue : 1;
483 uint16_t IsMemIntrinsic : 1;
484 uint16_t IsDivergent : 1;
485 };
486 enum { NumSDNodeBits = 3 };
487
488 class ConstantSDNodeBitfields {
489 friend class ConstantSDNode;
490
491 uint16_t : NumSDNodeBits;
492
493 uint16_t IsOpaque : 1;
494 };
495
496 class MemSDNodeBitfields {
497 friend class MemSDNode;
498 friend class MemIntrinsicSDNode;
499 friend class AtomicSDNode;
500
501 uint16_t : NumSDNodeBits;
502
503 uint16_t IsVolatile : 1;
504 uint16_t IsNonTemporal : 1;
505 uint16_t IsDereferenceable : 1;
506 uint16_t IsInvariant : 1;
507 };
508 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509
510 class LSBaseSDNodeBitfields {
511 friend class LSBaseSDNode;
512 friend class MaskedLoadStoreSDNode;
513 friend class MaskedGatherScatterSDNode;
514
515 uint16_t : NumMemSDNodeBits;
516
517 // This storage is shared between disparate class hierarchies to hold an
518 // enumeration specific to the class hierarchy in use.
519 // LSBaseSDNode => enum ISD::MemIndexedMode
520 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
522 uint16_t AddressingMode : 3;
523 };
524 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525
526 class LoadSDNodeBitfields {
527 friend class LoadSDNode;
528 friend class MaskedLoadSDNode;
529 friend class MaskedGatherSDNode;
530
531 uint16_t : NumLSBaseSDNodeBits;
532
533 uint16_t ExtTy : 2; // enum ISD::LoadExtType
534 uint16_t IsExpanding : 1;
535 };
536
537 class StoreSDNodeBitfields {
538 friend class StoreSDNode;
539 friend class MaskedStoreSDNode;
540 friend class MaskedScatterSDNode;
541
542 uint16_t : NumLSBaseSDNodeBits;
543
544 uint16_t IsTruncating : 1;
545 uint16_t IsCompressing : 1;
546 };
547
548 union {
549 char RawSDNodeBits[sizeof(uint16_t)];
550 SDNodeBitfields SDNodeBits;
551 ConstantSDNodeBitfields ConstantSDNodeBits;
552 MemSDNodeBitfields MemSDNodeBits;
553 LSBaseSDNodeBitfields LSBaseSDNodeBits;
554 LoadSDNodeBitfields LoadSDNodeBits;
555 StoreSDNodeBitfields StoreSDNodeBits;
556 };
557END_TWO_BYTE_PACK()
558#undef BEGIN_TWO_BYTE_PACK
559#undef END_TWO_BYTE_PACK
560
561 // RawSDNodeBits must cover the entirety of the union. This means that all of
562 // the union's members must have size <= RawSDNodeBits. We write the RHS as
563 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570
571private:
572 friend class SelectionDAG;
573 // TODO: unfriend HandleSDNode once we fix its operand handling.
574 friend class HandleSDNode;
575
576 /// Unique id per SDNode in the DAG.
577 int NodeId = -1;
578
579 /// The values that are used by this operation.
580 SDUse *OperandList = nullptr;
581
582 /// The types of the values this node defines. SDNode's may
583 /// define multiple values simultaneously.
584 const EVT *ValueList;
585
586 /// List of uses for this SDNode.
587 SDUse *UseList = nullptr;
588
589 /// The number of entries in the Operand/Value list.
590 unsigned short NumOperands = 0;
591 unsigned short NumValues;
592
593 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594 // original LLVM instructions.
595 // This is used for turning off scheduling, because we'll forgo
596 // the normal scheduling algorithms and output the instructions according to
597 // this ordering.
598 unsigned IROrder;
599
600 /// Source line information.
601 DebugLoc debugLoc;
602
603 /// Return a pointer to the specified value type.
604 static const EVT *getValueTypeList(EVT VT);
605
606 SDNodeFlags Flags;
607
608public:
609 /// Unique and persistent id per SDNode in the DAG.
610 /// Used for debug printing.
611 uint16_t PersistentId;
612
613 //===--------------------------------------------------------------------===//
614 // Accessors
615 //
616
617 /// Return the SelectionDAG opcode value for this node. For
618 /// pre-isel nodes (those for which isMachineOpcode returns false), these
619 /// are the opcode values in the ISD and <target>ISD namespaces. For
620 /// post-isel opcodes, see getMachineOpcode.
621 unsigned getOpcode() const { return (unsigned short)NodeType; }
622
623 /// Test if this node has a target-specific opcode (in the
624 /// \<target\>ISD namespace).
625 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626
627 /// Test if this node has a target-specific opcode that may raise
628 /// FP exceptions (in the \<target\>ISD namespace and greater than
629 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
630 /// opcode are currently automatically considered to possibly raise
631 /// FP exceptions as well.
632 bool isTargetStrictFPOpcode() const {
633 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634 }
635
636 /// Test if this node has a target-specific
637 /// memory-referencing opcode (in the \<target\>ISD namespace and
638 /// greater than FIRST_TARGET_MEMORY_OPCODE).
639 bool isTargetMemoryOpcode() const {
640 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641 }
642
643 /// Return true if the type of the node type undefined.
644 bool isUndef() const { return NodeType == ISD::UNDEF; }
645
646 /// Test if this node is a memory intrinsic (with valid pointer information).
647 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648 /// non-memory intrinsics (with chains) that are not really instances of
649 /// MemSDNode. For such nodes, we need some extra state to determine the
650 /// proper classof relationship.
651 bool isMemIntrinsic() const {
652 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653 NodeType == ISD::INTRINSIC_VOID) &&
654 SDNodeBits.IsMemIntrinsic;
655 }
656
657 /// Test if this node is a strict floating point pseudo-op.
658 bool isStrictFPOpcode() {
659 switch (NodeType) {
660 default:
661 return false;
662 case ISD::STRICT_FP16_TO_FP:
663 case ISD::STRICT_FP_TO_FP16:
664#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
665 case ISD::STRICT_##DAGN:
666#include "llvm/IR/ConstrainedOps.def"
667 return true;
668 }
669 }
670
671 /// Test if this node has a post-isel opcode, directly
672 /// corresponding to a MachineInstr opcode.
673 bool isMachineOpcode() const { return NodeType < 0; }
674
675 /// This may only be called if isMachineOpcode returns
676 /// true. It returns the MachineInstr opcode value that the node's opcode
677 /// corresponds to.
678 unsigned getMachineOpcode() const {
679 assert(isMachineOpcode() && "Not a MachineInstr opcode!")((isMachineOpcode() && "Not a MachineInstr opcode!") ?
static_cast<void> (0) : __assert_fail ("isMachineOpcode() && \"Not a MachineInstr opcode!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 679, __PRETTY_FUNCTION__))
;
680 return ~NodeType;
681 }
682
683 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685
686 bool isDivergent() const { return SDNodeBits.IsDivergent; }
687
688 /// Return true if there are no uses of this node.
689 bool use_empty() const { return UseList == nullptr; }
690
691 /// Return true if there is exactly one use of this node.
692 bool hasOneUse() const { return hasSingleElement(uses()); }
693
694 /// Return the number of uses of this node. This method takes
695 /// time proportional to the number of uses.
696 size_t use_size() const { return std::distance(use_begin(), use_end()); }
697
698 /// Return the unique node id.
699 int getNodeId() const { return NodeId; }
700
701 /// Set unique node id.
702 void setNodeId(int Id) { NodeId = Id; }
703
704 /// Return the node ordering.
705 unsigned getIROrder() const { return IROrder; }
706
707 /// Set the node ordering.
708 void setIROrder(unsigned Order) { IROrder = Order; }
709
710 /// Return the source location info.
711 const DebugLoc &getDebugLoc() const { return debugLoc; }
712
713 /// Set source location info. Try to avoid this, putting
714 /// it in the constructor is preferable.
715 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716
717 /// This class provides iterator support for SDUse
718 /// operands that use a specific SDNode.
719 class use_iterator {
720 friend class SDNode;
721
722 SDUse *Op = nullptr;
723
724 explicit use_iterator(SDUse *op) : Op(op) {}
725
726 public:
727 using iterator_category = std::forward_iterator_tag;
728 using value_type = SDUse;
729 using difference_type = std::ptrdiff_t;
730 using pointer = value_type *;
731 using reference = value_type &;
732
733 use_iterator() = default;
734 use_iterator(const use_iterator &I) : Op(I.Op) {}
735
736 bool operator==(const use_iterator &x) const {
737 return Op == x.Op;
738 }
739 bool operator!=(const use_iterator &x) const {
740 return !operator==(x);
741 }
742
743 /// Return true if this iterator is at the end of uses list.
744 bool atEnd() const { return Op == nullptr; }
745
746 // Iterator traversal: forward iteration only.
747 use_iterator &operator++() { // Preincrement
748 assert(Op && "Cannot increment end iterator!")((Op && "Cannot increment end iterator!") ? static_cast
<void> (0) : __assert_fail ("Op && \"Cannot increment end iterator!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 748, __PRETTY_FUNCTION__))
;
749 Op = Op->getNext();
750 return *this;
751 }
752
753 use_iterator operator++(int) { // Postincrement
754 use_iterator tmp = *this; ++*this; return tmp;
755 }
756
757 /// Retrieve a pointer to the current user node.
758 SDNode *operator*() const {
759 assert(Op && "Cannot dereference end iterator!")((Op && "Cannot dereference end iterator!") ? static_cast
<void> (0) : __assert_fail ("Op && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 759, __PRETTY_FUNCTION__))
;
760 return Op->getUser();
761 }
762
763 SDNode *operator->() const { return operator*(); }
764
765 SDUse &getUse() const { return *Op; }
766
767 /// Retrieve the operand # of this use in its user.
768 unsigned getOperandNo() const {
769 assert(Op && "Cannot dereference end iterator!")((Op && "Cannot dereference end iterator!") ? static_cast
<void> (0) : __assert_fail ("Op && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 769, __PRETTY_FUNCTION__))
;
770 return (unsigned)(Op - Op->getUser()->OperandList);
771 }
772 };
773
774 /// Provide iteration support to walk over all uses of an SDNode.
775 use_iterator use_begin() const {
776 return use_iterator(UseList);
777 }
778
779 static use_iterator use_end() { return use_iterator(nullptr); }
780
781 inline iterator_range<use_iterator> uses() {
782 return make_range(use_begin(), use_end());
783 }
784 inline iterator_range<use_iterator> uses() const {
785 return make_range(use_begin(), use_end());
786 }
787
788 /// Return true if there are exactly NUSES uses of the indicated value.
789 /// This method ignores uses of other values defined by this operation.
790 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791
792 /// Return true if there are any use of the indicated value.
793 /// This method ignores uses of other values defined by this operation.
794 bool hasAnyUseOfValue(unsigned Value) const;
795
796 /// Return true if this node is the only use of N.
797 bool isOnlyUserOf(const SDNode *N) const;
798
799 /// Return true if this node is an operand of N.
800 bool isOperandOf(const SDNode *N) const;
801
802 /// Return true if this node is a predecessor of N.
803 /// NOTE: Implemented on top of hasPredecessor and every bit as
804 /// expensive. Use carefully.
805 bool isPredecessorOf(const SDNode *N) const {
806 return N->hasPredecessor(this);
807 }
808
809 /// Return true if N is a predecessor of this node.
810 /// N is either an operand of this node, or can be reached by recursively
811 /// traversing up the operands.
812 /// NOTE: This is an expensive method. Use it carefully.
813 bool hasPredecessor(const SDNode *N) const;
814
815 /// Returns true if N is a predecessor of any node in Worklist. This
816 /// helper keeps Visited and Worklist sets externally to allow unions
817 /// searches to be performed in parallel, caching of results across
818 /// queries and incremental addition to Worklist. Stops early if N is
819 /// found but will resume. Remember to clear Visited and Worklists
820 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822 /// topologically ordered (Operands have strictly smaller node id) and search
823 /// can be pruned leveraging this.
824 static bool hasPredecessorHelper(const SDNode *N,
825 SmallPtrSetImpl<const SDNode *> &Visited,
826 SmallVectorImpl<const SDNode *> &Worklist,
827 unsigned int MaxSteps = 0,
828 bool TopologicalPrune = false) {
829 SmallVector<const SDNode *, 8> DeferredNodes;
830 if (Visited.count(N))
831 return true;
832
833 // Node Id's are assigned in three places: As a topological
834 // ordering (> 0), during legalization (results in values set to
835 // 0), new nodes (set to -1). If N has a topolgical id then we
836 // know that all nodes with ids smaller than it cannot be
837 // successors and we need not check them. Filter out all node
838 // that can't be matches. We add them to the worklist before exit
839 // in case of multiple calls. Note that during selection the topological id
840 // may be violated if a node's predecessor is selected before it. We mark
841 // this at selection negating the id of unselected successors and
842 // restricting topological pruning to positive ids.
843
844 int NId = N->getNodeId();
845 // If we Invalidated the Id, reconstruct original NId.
846 if (NId < -1)
847 NId = -(NId + 1);
848
849 bool Found = false;
850 while (!Worklist.empty()) {
851 const SDNode *M = Worklist.pop_back_val();
852 int MId = M->getNodeId();
853 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854 (MId > 0) && (MId < NId)) {
855 DeferredNodes.push_back(M);
856 continue;
857 }
858 for (const SDValue &OpV : M->op_values()) {
859 SDNode *Op = OpV.getNode();
860 if (Visited.insert(Op).second)
861 Worklist.push_back(Op);
862 if (Op == N)
863 Found = true;
864 }
865 if (Found)
866 break;
867 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868 break;
869 }
870 // Push deferred nodes back on worklist.
871 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872 // If we bailed early, conservatively return found.
873 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874 return true;
875 return Found;
876 }
877
878 /// Return true if all the users of N are contained in Nodes.
879 /// NOTE: Requires at least one match, but doesn't require them all.
880 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881
882 /// Return the number of values used by this operation.
883 unsigned getNumOperands() const { return NumOperands; }
884
885 /// Return the maximum number of operands that a SDNode can hold.
886 static constexpr size_t getMaxNumOperands() {
887 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888 }
889
890 /// Helper method returns the integer value of a ConstantSDNode operand.
891 inline uint64_t getConstantOperandVal(unsigned Num) const;
892
893 /// Helper method returns the APInt of a ConstantSDNode operand.
894 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895
896 const SDValue &getOperand(unsigned Num) const {
897 assert(Num < NumOperands && "Invalid child # of SDNode!")((Num < NumOperands && "Invalid child # of SDNode!"
) ? static_cast<void> (0) : __assert_fail ("Num < NumOperands && \"Invalid child # of SDNode!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 897, __PRETTY_FUNCTION__))
;
898 return OperandList[Num];
899 }
900
901 using op_iterator = SDUse *;
902
903 op_iterator op_begin() const { return OperandList; }
904 op_iterator op_end() const { return OperandList+NumOperands; }
905 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906
907 /// Iterator for directly iterating over the operand SDValue's.
908 struct value_op_iterator
909 : iterator_adaptor_base<value_op_iterator, op_iterator,
910 std::random_access_iterator_tag, SDValue,
911 ptrdiff_t, value_op_iterator *,
912 value_op_iterator *> {
913 explicit value_op_iterator(SDUse *U = nullptr)
914 : iterator_adaptor_base(U) {}
915
916 const SDValue &operator*() const { return I->get(); }
917 };
918
919 iterator_range<value_op_iterator> op_values() const {
920 return make_range(value_op_iterator(op_begin()),
921 value_op_iterator(op_end()));
922 }
923
924 SDVTList getVTList() const {
925 SDVTList X = { ValueList, NumValues };
926 return X;
927 }
928
929 /// If this node has a glue operand, return the node
930 /// to which the glue operand points. Otherwise return NULL.
931 SDNode *getGluedNode() const {
932 if (getNumOperands() != 0 &&
933 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934 return getOperand(getNumOperands()-1).getNode();
935 return nullptr;
936 }
937
938 /// If this node has a glue value with a user, return
939 /// the user (there is at most one). Otherwise return NULL.
940 SDNode *getGluedUser() const {
941 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942 if (UI.getUse().get().getValueType() == MVT::Glue)
943 return *UI;
944 return nullptr;
945 }
946
947 SDNodeFlags getFlags() const { return Flags; }
948 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949
950 /// Clear any flags in this node that aren't also set in Flags.
951 /// If Flags is not in a defined state then this has no effect.
952 void intersectFlagsWith(const SDNodeFlags Flags);
953
954 /// Return the number of values defined/returned by this operator.
955 unsigned getNumValues() const { return NumValues; }
956
957 /// Return the type of a specified result.
958 EVT getValueType(unsigned ResNo) const {
959 assert(ResNo < NumValues && "Illegal result number!")((ResNo < NumValues && "Illegal result number!") ?
static_cast<void> (0) : __assert_fail ("ResNo < NumValues && \"Illegal result number!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 959, __PRETTY_FUNCTION__))
;
960 return ValueList[ResNo];
961 }
962
963 /// Return the type of a specified result as a simple type.
964 MVT getSimpleValueType(unsigned ResNo) const {
965 return getValueType(ResNo).getSimpleVT();
966 }
967
968 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969 ///
970 /// If the value type is a scalable vector type, the scalable property will
971 /// be set and the runtime size will be a positive integer multiple of the
972 /// base size.
973 TypeSize getValueSizeInBits(unsigned ResNo) const {
974 return getValueType(ResNo).getSizeInBits();
975 }
976
977 using value_iterator = const EVT *;
978
979 value_iterator value_begin() const { return ValueList; }
980 value_iterator value_end() const { return ValueList+NumValues; }
981 iterator_range<value_iterator> values() const {
982 return llvm::make_range(value_begin(), value_end());
983 }
984
985 /// Return the opcode of this operation for printing.
986 std::string getOperationName(const SelectionDAG *G = nullptr) const;
987 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992
993 /// Print a SelectionDAG node and all children down to
994 /// the leaves. The given SelectionDAG allows target-specific nodes
995 /// to be printed in human-readable form. Unlike printr, this will
996 /// print the whole DAG, including children that appear multiple
997 /// times.
998 ///
999 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000
1001 /// Print a SelectionDAG node and children up to
1002 /// depth "depth." The given SelectionDAG allows target-specific
1003 /// nodes to be printed in human-readable form. Unlike printr, this
1004 /// will print children that appear multiple times wherever they are
1005 /// used.
1006 ///
1007 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008 unsigned depth = 100) const;
1009
1010 /// Dump this node, for debugging.
1011 void dump() const;
1012
1013 /// Dump (recursively) this node and its use-def subgraph.
1014 void dumpr() const;
1015
1016 /// Dump this node, for debugging.
1017 /// The given SelectionDAG allows target-specific nodes to be printed
1018 /// in human-readable form.
1019 void dump(const SelectionDAG *G) const;
1020
1021 /// Dump (recursively) this node and its use-def subgraph.
1022 /// The given SelectionDAG allows target-specific nodes to be printed
1023 /// in human-readable form.
1024 void dumpr(const SelectionDAG *G) const;
1025
1026 /// printrFull to dbgs(). The given SelectionDAG allows
1027 /// target-specific nodes to be printed in human-readable form.
1028 /// Unlike dumpr, this will print the whole DAG, including children
1029 /// that appear multiple times.
1030 void dumprFull(const SelectionDAG *G = nullptr) const;
1031
1032 /// printrWithDepth to dbgs(). The given
1033 /// SelectionDAG allows target-specific nodes to be printed in
1034 /// human-readable form. Unlike dumpr, this will print children
1035 /// that appear multiple times wherever they are used.
1036 ///
1037 void dumprWithDepth(const SelectionDAG *G = nullptr,
1038 unsigned depth = 100) const;
1039
1040 /// Gather unique data for the node.
1041 void Profile(FoldingSetNodeID &ID) const;
1042
1043 /// This method should only be used by the SDUse class.
1044 void addUse(SDUse &U) { U.addToList(&UseList); }
1045
1046protected:
1047 static SDVTList getSDVTList(EVT VT) {
1048 SDVTList Ret = { getValueTypeList(VT), 1 };
1049 return Ret;
1050 }
1051
1052 /// Create an SDNode.
1053 ///
1054 /// SDNodes are created without any operands, and never own the operand
1055 /// storage. To add operands, see SelectionDAG::createOperands.
1056 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058 IROrder(Order), debugLoc(std::move(dl)) {
1059 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")((debugLoc.hasTrivialDestructor() && "Expected trivial destructor"
) ? static_cast<void> (0) : __assert_fail ("debugLoc.hasTrivialDestructor() && \"Expected trivial destructor\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1060, __PRETTY_FUNCTION__))
;
1061 assert(NumValues == VTs.NumVTs &&((NumValues == VTs.NumVTs && "NumValues wasn't wide enough for its operands!"
) ? static_cast<void> (0) : __assert_fail ("NumValues == VTs.NumVTs && \"NumValues wasn't wide enough for its operands!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1062, __PRETTY_FUNCTION__))
1062 "NumValues wasn't wide enough for its operands!")((NumValues == VTs.NumVTs && "NumValues wasn't wide enough for its operands!"
) ? static_cast<void> (0) : __assert_fail ("NumValues == VTs.NumVTs && \"NumValues wasn't wide enough for its operands!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1062, __PRETTY_FUNCTION__))
;
1063 }
1064
1065 /// Release the operands and set this node to have zero operands.
1066 void DropOperands();
1067};
1068
1069/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070/// into SDNode creation functions.
1071/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072/// from the original Instruction, and IROrder is the ordinal position of
1073/// the instruction.
1074/// When an SDNode is created after the DAG is being built, both DebugLoc and
1075/// the IROrder are propagated from the original SDNode.
1076/// So SDLoc class provides two constructors besides the default one, one to
1077/// be used by the DAGBuilder, the other to be used by others.
1078class SDLoc {
1079private:
1080 DebugLoc DL;
1081 int IROrder = 0;
1082
1083public:
1084 SDLoc() = default;
1085 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088 assert(Order >= 0 && "bad IROrder")((Order >= 0 && "bad IROrder") ? static_cast<void
> (0) : __assert_fail ("Order >= 0 && \"bad IROrder\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1088, __PRETTY_FUNCTION__))
;
1089 if (I)
1090 DL = I->getDebugLoc();
1091 }
1092
1093 unsigned getIROrder() const { return IROrder; }
1094 const DebugLoc &getDebugLoc() const { return DL; }
1095};
1096
1097// Define inline functions from the SDValue class.
1098
1099inline SDValue::SDValue(SDNode *node, unsigned resno)
1100 : Node(node), ResNo(resno) {
1101 // Explicitly check for !ResNo to avoid use-after-free, because there are
1102 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103 // combines.
1104 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&(((!Node || !ResNo || ResNo < Node->getNumValues()) &&
"Invalid result number for the given node!") ? static_cast<
void> (0) : __assert_fail ("(!Node || !ResNo || ResNo < Node->getNumValues()) && \"Invalid result number for the given node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1105, __PRETTY_FUNCTION__))
1105 "Invalid result number for the given node!")(((!Node || !ResNo || ResNo < Node->getNumValues()) &&
"Invalid result number for the given node!") ? static_cast<
void> (0) : __assert_fail ("(!Node || !ResNo || ResNo < Node->getNumValues()) && \"Invalid result number for the given node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1105, __PRETTY_FUNCTION__))
;
1106 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.")((ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."
) ? static_cast<void> (0) : __assert_fail ("ResNo < -2U && \"Cannot use result numbers reserved for DenseMaps.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1106, __PRETTY_FUNCTION__))
;
1107}
1108
1109inline unsigned SDValue::getOpcode() const {
1110 return Node->getOpcode();
1111}
1112
1113inline EVT SDValue::getValueType() const {
1114 return Node->getValueType(ResNo);
46
Called C++ object pointer is null
1115}
1116
1117inline unsigned SDValue::getNumOperands() const {
1118 return Node->getNumOperands();
1119}
1120
1121inline const SDValue &SDValue::getOperand(unsigned i) const {
1122 return Node->getOperand(i);
1123}
1124
1125inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126 return Node->getConstantOperandVal(i);
1127}
1128
1129inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130 return Node->getConstantOperandAPInt(i);
1131}
1132
1133inline bool SDValue::isTargetOpcode() const {
1134 return Node->isTargetOpcode();
1135}
1136
1137inline bool SDValue::isTargetMemoryOpcode() const {
1138 return Node->isTargetMemoryOpcode();
1139}
1140
1141inline bool SDValue::isMachineOpcode() const {
1142 return Node->isMachineOpcode();
1143}
1144
1145inline unsigned SDValue::getMachineOpcode() const {
1146 return Node->getMachineOpcode();
1147}
1148
1149inline bool SDValue::isUndef() const {
1150 return Node->isUndef();
1151}
1152
1153inline bool SDValue::use_empty() const {
1154 return !Node->hasAnyUseOfValue(ResNo);
1155}
1156
1157inline bool SDValue::hasOneUse() const {
1158 return Node->hasNUsesOfValue(1, ResNo);
1159}
1160
1161inline const DebugLoc &SDValue::getDebugLoc() const {
1162 return Node->getDebugLoc();
1163}
1164
1165inline void SDValue::dump() const {
1166 return Node->dump();
1167}
1168
1169inline void SDValue::dump(const SelectionDAG *G) const {
1170 return Node->dump(G);
1171}
1172
1173inline void SDValue::dumpr() const {
1174 return Node->dumpr();
1175}
1176
1177inline void SDValue::dumpr(const SelectionDAG *G) const {
1178 return Node->dumpr(G);
1179}
1180
1181// Define inline functions from the SDUse class.
1182
1183inline void SDUse::set(const SDValue &V) {
1184 if (Val.getNode()) removeFromList();
1185 Val = V;
1186 if (V.getNode()) V.getNode()->addUse(*this);
1187}
1188
1189inline void SDUse::setInitial(const SDValue &V) {
1190 Val = V;
1191 V.getNode()->addUse(*this);
1192}
1193
1194inline void SDUse::setNode(SDNode *N) {
1195 if (Val.getNode()) removeFromList();
1196 Val.setNode(N);
1197 if (N) N->addUse(*this);
1198}
1199
1200/// This class is used to form a handle around another node that
1201/// is persistent and is updated across invocations of replaceAllUsesWith on its
1202/// operand. This node should be directly created by end-users and not added to
1203/// the AllNodes list.
1204class HandleSDNode : public SDNode {
1205 SDUse Op;
1206
1207public:
1208 explicit HandleSDNode(SDValue X)
1209 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210 // HandleSDNodes are never inserted into the DAG, so they won't be
1211 // auto-numbered. Use ID 65535 as a sentinel.
1212 PersistentId = 0xffff;
1213
1214 // Manually set up the operand list. This node type is special in that it's
1215 // always stack allocated and SelectionDAG does not manage its operands.
1216 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217 // be so special.
1218 Op.setUser(this);
1219 Op.setInitial(X);
1220 NumOperands = 1;
1221 OperandList = &Op;
1222 }
1223 ~HandleSDNode();
1224
1225 const SDValue &getValue() const { return Op; }
1226};
1227
1228class AddrSpaceCastSDNode : public SDNode {
1229private:
1230 unsigned SrcAddrSpace;
1231 unsigned DestAddrSpace;
1232
1233public:
1234 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235 unsigned SrcAS, unsigned DestAS);
1236
1237 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239
1240 static bool classof(const SDNode *N) {
1241 return N->getOpcode() == ISD::ADDRSPACECAST;
1242 }
1243};
1244
1245/// This is an abstract virtual class for memory operations.
1246class MemSDNode : public SDNode {
1247private:
1248 // VT of in-memory value.
1249 EVT MemoryVT;
1250
1251protected:
1252 /// Memory reference information.
1253 MachineMemOperand *MMO;
1254
1255public:
1256 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257 EVT memvt, MachineMemOperand *MMO);
1258
1259 bool readMem() const { return MMO->isLoad(); }
1260 bool writeMem() const { return MMO->isStore(); }
1261
1262 /// Returns alignment and volatility of the memory access
1263 Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264 Align getAlign() const { return MMO->getAlign(); }
1265 LLVM_ATTRIBUTE_DEPRECATED(unsigned getOriginalAlignment() const,[[deprecated("Use getOriginalAlign() instead")]] unsigned getOriginalAlignment
() const
1266 "Use getOriginalAlign() instead")[[deprecated("Use getOriginalAlign() instead")]] unsigned getOriginalAlignment
() const
{
1267 return MMO->getBaseAlign().value();
1268 }
1269 // FIXME: Remove once transition to getAlign is over.
1270 unsigned getAlignment() const { return MMO->getAlign().value(); }
1271
1272 /// Return the SubclassData value, without HasDebugValue. This contains an
1273 /// encoding of the volatile flag, as well as bits used by subclasses. This
1274 /// function should only be used to compute a FoldingSetNodeID value.
1275 /// The HasDebugValue bit is masked out because CSE map needs to match
1276 /// nodes with debug info with nodes without debug info. Same is about
1277 /// isDivergent bit.
1278 unsigned getRawSubclassData() const {
1279 uint16_t Data;
1280 union {
1281 char RawSDNodeBits[sizeof(uint16_t)];
1282 SDNodeBitfields SDNodeBits;
1283 };
1284 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1285 SDNodeBits.HasDebugValue = 0;
1286 SDNodeBits.IsDivergent = false;
1287 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1288 return Data;
1289 }
1290
1291 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1292 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1293 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1294 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1295
1296 // Returns the offset from the location of the access.
1297 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1298
1299 /// Returns the AA info that describes the dereference.
1300 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1301
1302 /// Returns the Ranges that describes the dereference.
1303 const MDNode *getRanges() const { return MMO->getRanges(); }
1304
1305 /// Returns the synchronization scope ID for this memory operation.
1306 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1307
1308 /// Return the atomic ordering requirements for this memory operation. For
1309 /// cmpxchg atomic operations, return the atomic ordering requirements when
1310 /// store occurs.
1311 AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1312
1313 /// Return true if the memory operation ordering is Unordered or higher.
1314 bool isAtomic() const { return MMO->isAtomic(); }
1315
1316 /// Returns true if the memory operation doesn't imply any ordering
1317 /// constraints on surrounding memory operations beyond the normal memory
1318 /// aliasing rules.
1319 bool isUnordered() const { return MMO->isUnordered(); }
1320
1321 /// Returns true if the memory operation is neither atomic or volatile.
1322 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1323
1324 /// Return the type of the in-memory value.
1325 EVT getMemoryVT() const { return MemoryVT; }
1326
1327 /// Return a MachineMemOperand object describing the memory
1328 /// reference performed by operation.
1329 MachineMemOperand *getMemOperand() const { return MMO; }
1330
1331 const MachinePointerInfo &getPointerInfo() const {
1332 return MMO->getPointerInfo();
1333 }
1334
1335 /// Return the address space for the associated pointer
1336 unsigned getAddressSpace() const {
1337 return getPointerInfo().getAddrSpace();
1338 }
1339
1340 /// Update this MemSDNode's MachineMemOperand information
1341 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1342 /// This must only be used when the new alignment applies to all users of
1343 /// this MachineMemOperand.
1344 void refineAlignment(const MachineMemOperand *NewMMO) {
1345 MMO->refineAlignment(NewMMO);
1346 }
1347
1348 const SDValue &getChain() const { return getOperand(0); }
1349
1350 const SDValue &getBasePtr() const {
1351 switch (getOpcode()) {
1352 case ISD::STORE:
1353 case ISD::MSTORE:
1354 return getOperand(2);
1355 case ISD::MGATHER:
1356 case ISD::MSCATTER:
1357 return getOperand(3);
1358 default:
1359 return getOperand(1);
1360 }
1361 }
1362
1363 // Methods to support isa and dyn_cast
1364 static bool classof(const SDNode *N) {
1365 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1366 // with either an intrinsic or a target opcode.
1367 return N->getOpcode() == ISD::LOAD ||
1368 N->getOpcode() == ISD::STORE ||
1369 N->getOpcode() == ISD::PREFETCH ||
1370 N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1371 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1372 N->getOpcode() == ISD::ATOMIC_SWAP ||
1373 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1374 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1375 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1376 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1377 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1378 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1379 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1380 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1381 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1382 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1383 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1384 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1385 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1386 N->getOpcode() == ISD::ATOMIC_LOAD ||
1387 N->getOpcode() == ISD::ATOMIC_STORE ||
1388 N->getOpcode() == ISD::MLOAD ||
1389 N->getOpcode() == ISD::MSTORE ||
1390 N->getOpcode() == ISD::MGATHER ||
1391 N->getOpcode() == ISD::MSCATTER ||
1392 N->isMemIntrinsic() ||
1393 N->isTargetMemoryOpcode();
1394 }
1395};
1396
1397/// This is an SDNode representing atomic operations.
1398class AtomicSDNode : public MemSDNode {
1399public:
1400 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1401 EVT MemVT, MachineMemOperand *MMO)
1402 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1403 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||((((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE
) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"
) ? static_cast<void> (0) : __assert_fail ("((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && \"then why are we using an AtomicSDNode?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1404, __PRETTY_FUNCTION__))
1404 MMO->isAtomic()) && "then why are we using an AtomicSDNode?")((((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE
) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"
) ? static_cast<void> (0) : __assert_fail ("((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && \"then why are we using an AtomicSDNode?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 }
1406
1407 const SDValue &getBasePtr() const { return getOperand(1); }
1408 const SDValue &getVal() const { return getOperand(2); }
1409
1410 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1411 /// otherwise.
1412 bool isCompareAndSwap() const {
1413 unsigned Op = getOpcode();
1414 return Op == ISD::ATOMIC_CMP_SWAP ||
1415 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1416 }
1417
1418 /// For cmpxchg atomic operations, return the atomic ordering requirements
1419 /// when store does not occur.
1420 AtomicOrdering getFailureOrdering() const {
1421 assert(isCompareAndSwap() && "Must be cmpxchg operation")((isCompareAndSwap() && "Must be cmpxchg operation") ?
static_cast<void> (0) : __assert_fail ("isCompareAndSwap() && \"Must be cmpxchg operation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1421, __PRETTY_FUNCTION__))
;
1422 return MMO->getFailureOrdering();
1423 }
1424
1425 // Methods to support isa and dyn_cast
1426 static bool classof(const SDNode *N) {
1427 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1428 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1429 N->getOpcode() == ISD::ATOMIC_SWAP ||
1430 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1431 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1432 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1433 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1434 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1435 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1436 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1437 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1438 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1439 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1440 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1441 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1442 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1443 N->getOpcode() == ISD::ATOMIC_LOAD ||
1444 N->getOpcode() == ISD::ATOMIC_STORE;
1445 }
1446};
1447
1448/// This SDNode is used for target intrinsics that touch
1449/// memory and need an associated MachineMemOperand. Its opcode may be
1450/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1451/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1452class MemIntrinsicSDNode : public MemSDNode {
1453public:
1454 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1455 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1456 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1457 SDNodeBits.IsMemIntrinsic = true;
1458 }
1459
1460 // Methods to support isa and dyn_cast
1461 static bool classof(const SDNode *N) {
1462 // We lower some target intrinsics to their target opcode
1463 // early a node with a target opcode can be of this class
1464 return N->isMemIntrinsic() ||
1465 N->getOpcode() == ISD::PREFETCH ||
1466 N->isTargetMemoryOpcode();
1467 }
1468};
1469
1470/// This SDNode is used to implement the code generator
1471/// support for the llvm IR shufflevector instruction. It combines elements
1472/// from two input vectors into a new input vector, with the selection and
1473/// ordering of elements determined by an array of integers, referred to as
1474/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1475/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1476/// An index of -1 is treated as undef, such that the code generator may put
1477/// any value in the corresponding element of the result.
1478class ShuffleVectorSDNode : public SDNode {
1479 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1480 // is freed when the SelectionDAG object is destroyed.
1481 const int *Mask;
1482
1483protected:
1484 friend class SelectionDAG;
1485
1486 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1487 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1488
1489public:
1490 ArrayRef<int> getMask() const {
1491 EVT VT = getValueType(0);
1492 return makeArrayRef(Mask, VT.getVectorNumElements());
1493 }
1494
1495 int getMaskElt(unsigned Idx) const {
1496 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!")((Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getValueType(0).getVectorNumElements() && \"Idx out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1496, __PRETTY_FUNCTION__))
;
1497 return Mask[Idx];
1498 }
1499
1500 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1501
1502 int getSplatIndex() const {
1503 assert(isSplat() && "Cannot get splat index for non-splat!")((isSplat() && "Cannot get splat index for non-splat!"
) ? static_cast<void> (0) : __assert_fail ("isSplat() && \"Cannot get splat index for non-splat!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1503, __PRETTY_FUNCTION__))
;
1504 EVT VT = getValueType(0);
1505 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1506 if (Mask[i] >= 0)
1507 return Mask[i];
1508
1509 // We can choose any index value here and be correct because all elements
1510 // are undefined. Return 0 for better potential for callers to simplify.
1511 return 0;
1512 }
1513
1514 static bool isSplatMask(const int *Mask, EVT VT);
1515
1516 /// Change values in a shuffle permute mask assuming
1517 /// the two vector operands have swapped position.
1518 static void commuteMask(MutableArrayRef<int> Mask) {
1519 unsigned NumElems = Mask.size();
1520 for (unsigned i = 0; i != NumElems; ++i) {
1521 int idx = Mask[i];
1522 if (idx < 0)
1523 continue;
1524 else if (idx < (int)NumElems)
1525 Mask[i] = idx + NumElems;
1526 else
1527 Mask[i] = idx - NumElems;
1528 }
1529 }
1530
1531 static bool classof(const SDNode *N) {
1532 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1533 }
1534};
1535
1536class ConstantSDNode : public SDNode {
1537 friend class SelectionDAG;
1538
1539 const ConstantInt *Value;
1540
1541 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1542 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1543 getSDVTList(VT)),
1544 Value(val) {
1545 ConstantSDNodeBits.IsOpaque = isOpaque;
1546 }
1547
1548public:
1549 const ConstantInt *getConstantIntValue() const { return Value; }
1550 const APInt &getAPIntValue() const { return Value->getValue(); }
1551 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1552 int64_t getSExtValue() const { return Value->getSExtValue(); }
1553 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) {
1554 return Value->getLimitedValue(Limit);
1555 }
1556 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1557 Align getAlignValue() const { return Value->getAlignValue(); }
1558
1559 bool isOne() const { return Value->isOne(); }
1560 bool isNullValue() const { return Value->isZero(); }
1561 bool isAllOnesValue() const { return Value->isMinusOne(); }
1562
1563 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1564
1565 static bool classof(const SDNode *N) {
1566 return N->getOpcode() == ISD::Constant ||
1567 N->getOpcode() == ISD::TargetConstant;
1568 }
1569};
1570
1571uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1572 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1573}
1574
1575const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1576 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1577}
1578
1579class ConstantFPSDNode : public SDNode {
1580 friend class SelectionDAG;
1581
1582 const ConstantFP *Value;
1583
1584 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1585 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1586 DebugLoc(), getSDVTList(VT)),
1587 Value(val) {}
1588
1589public:
1590 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1591 const ConstantFP *getConstantFPValue() const { return Value; }
1592
1593 /// Return true if the value is positive or negative zero.
1594 bool isZero() const { return Value->isZero(); }
1595
1596 /// Return true if the value is a NaN.
1597 bool isNaN() const { return Value->isNaN(); }
1598
1599 /// Return true if the value is an infinity
1600 bool isInfinity() const { return Value->isInfinity(); }
1601
1602 /// Return true if the value is negative.
1603 bool isNegative() const { return Value->isNegative(); }
1604
1605 /// We don't rely on operator== working on double values, as
1606 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1607 /// As such, this method can be used to do an exact bit-for-bit comparison of
1608 /// two floating point values.
1609
1610 /// We leave the version with the double argument here because it's just so
1611 /// convenient to write "2.0" and the like. Without this function we'd
1612 /// have to duplicate its logic everywhere it's called.
1613 bool isExactlyValue(double V) const {
1614 return Value->getValueAPF().isExactlyValue(V);
1615 }
1616 bool isExactlyValue(const APFloat& V) const;
1617
1618 static bool isValueValidForType(EVT VT, const APFloat& Val);
1619
1620 static bool classof(const SDNode *N) {
1621 return N->getOpcode() == ISD::ConstantFP ||
1622 N->getOpcode() == ISD::TargetConstantFP;
1623 }
1624};
1625
1626/// Returns true if \p V is a constant integer zero.
1627bool isNullConstant(SDValue V);
1628
1629/// Returns true if \p V is an FP constant with a value of positive zero.
1630bool isNullFPConstant(SDValue V);
1631
1632/// Returns true if \p V is an integer constant with all bits set.
1633bool isAllOnesConstant(SDValue V);
1634
1635/// Returns true if \p V is a constant integer one.
1636bool isOneConstant(SDValue V);
1637
1638/// Return the non-bitcasted source operand of \p V if it exists.
1639/// If \p V is not a bitcasted value, it is returned as-is.
1640SDValue peekThroughBitcasts(SDValue V);
1641
1642/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1643/// If \p V is not a bitcasted one-use value, it is returned as-is.
1644SDValue peekThroughOneUseBitcasts(SDValue V);
1645
1646/// Return the non-extracted vector source operand of \p V if it exists.
1647/// If \p V is not an extracted subvector, it is returned as-is.
1648SDValue peekThroughExtractSubvectors(SDValue V);
1649
1650/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1651/// constant is canonicalized to be operand 1.
1652bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1653
1654/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1655ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1656 bool AllowTruncation = false);
1657
1658/// Returns the SDNode if it is a demanded constant splat BuildVector or
1659/// constant int.
1660ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1661 bool AllowUndefs = false,
1662 bool AllowTruncation = false);
1663
1664/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1665ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1666
1667/// Returns the SDNode if it is a demanded constant splat BuildVector or
1668/// constant float.
1669ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1670 bool AllowUndefs = false);
1671
1672/// Return true if the value is a constant 0 integer or a splatted vector of
1673/// a constant 0 integer (with no undefs by default).
1674/// Build vector implicit truncation is not an issue for null values.
1675bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1676
1677/// Return true if the value is a constant 1 integer or a splatted vector of a
1678/// constant 1 integer (with no undefs).
1679/// Does not permit build vector implicit truncation.
1680bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1681
1682/// Return true if the value is a constant -1 integer or a splatted vector of a
1683/// constant -1 integer (with no undefs).
1684/// Does not permit build vector implicit truncation.
1685bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1686
1687/// Return true if \p V is either a integer or FP constant.
1688inline bool isIntOrFPConstant(SDValue V) {
1689 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1690}
1691
1692class GlobalAddressSDNode : public SDNode {
1693 friend class SelectionDAG;
1694
1695 const GlobalValue *TheGlobal;
1696 int64_t Offset;
1697 unsigned TargetFlags;
1698
1699 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1700 const GlobalValue *GA, EVT VT, int64_t o,
1701 unsigned TF);
1702
1703public:
1704 const GlobalValue *getGlobal() const { return TheGlobal; }
1705 int64_t getOffset() const { return Offset; }
1706 unsigned getTargetFlags() const { return TargetFlags; }
1707 // Return the address space this GlobalAddress belongs to.
1708 unsigned getAddressSpace() const;
1709
1710 static bool classof(const SDNode *N) {
1711 return N->getOpcode() == ISD::GlobalAddress ||
1712 N->getOpcode() == ISD::TargetGlobalAddress ||
1713 N->getOpcode() == ISD::GlobalTLSAddress ||
1714 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1715 }
1716};
1717
1718class FrameIndexSDNode : public SDNode {
1719 friend class SelectionDAG;
1720
1721 int FI;
1722
1723 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1724 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1725 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1726 }
1727
1728public:
1729 int getIndex() const { return FI; }
1730
1731 static bool classof(const SDNode *N) {
1732 return N->getOpcode() == ISD::FrameIndex ||
1733 N->getOpcode() == ISD::TargetFrameIndex;
1734 }
1735};
1736
1737/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1738/// the offet and size that are started/ended in the underlying FrameIndex.
1739class LifetimeSDNode : public SDNode {
1740 friend class SelectionDAG;
1741 int64_t Size;
1742 int64_t Offset; // -1 if offset is unknown.
1743
1744 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1745 SDVTList VTs, int64_t Size, int64_t Offset)
1746 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1747public:
1748 int64_t getFrameIndex() const {
1749 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1750 }
1751
1752 bool hasOffset() const { return Offset >= 0; }
1753 int64_t getOffset() const {
1754 assert(hasOffset() && "offset is unknown")((hasOffset() && "offset is unknown") ? static_cast<
void> (0) : __assert_fail ("hasOffset() && \"offset is unknown\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1754, __PRETTY_FUNCTION__))
;
1755 return Offset;
1756 }
1757 int64_t getSize() const {
1758 assert(hasOffset() && "offset is unknown")((hasOffset() && "offset is unknown") ? static_cast<
void> (0) : __assert_fail ("hasOffset() && \"offset is unknown\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1758, __PRETTY_FUNCTION__))
;
1759 return Size;
1760 }
1761
1762 // Methods to support isa and dyn_cast
1763 static bool classof(const SDNode *N) {
1764 return N->getOpcode() == ISD::LIFETIME_START ||
1765 N->getOpcode() == ISD::LIFETIME_END;
1766 }
1767};
1768
1769/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1770/// the index of the basic block being probed. A pseudo probe serves as a place
1771/// holder and will be removed at the end of compilation. It does not have any
1772/// operand because we do not want the instruction selection to deal with any.
1773class PseudoProbeSDNode : public SDNode {
1774 friend class SelectionDAG;
1775 uint64_t Guid;
1776 uint64_t Index;
1777 uint32_t Attributes;
1778
1779 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1780 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1781 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1782 Attributes(Attr) {}
1783
1784public:
1785 uint64_t getGuid() const { return Guid; }
1786 uint64_t getIndex() const { return Index; }
1787 uint32_t getAttributes() const { return Attributes; }
1788
1789 // Methods to support isa and dyn_cast
1790 static bool classof(const SDNode *N) {
1791 return N->getOpcode() == ISD::PSEUDO_PROBE;
1792 }
1793};
1794
1795class JumpTableSDNode : public SDNode {
1796 friend class SelectionDAG;
1797
1798 int JTI;
1799 unsigned TargetFlags;
1800
1801 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1802 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1803 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1804 }
1805
1806public:
1807 int getIndex() const { return JTI; }
1808 unsigned getTargetFlags() const { return TargetFlags; }
1809
1810 static bool classof(const SDNode *N) {
1811 return N->getOpcode() == ISD::JumpTable ||
1812 N->getOpcode() == ISD::TargetJumpTable;
1813 }
1814};
1815
1816class ConstantPoolSDNode : public SDNode {
1817 friend class SelectionDAG;
1818
1819 union {
1820 const Constant *ConstVal;
1821 MachineConstantPoolValue *MachineCPVal;
1822 } Val;
1823 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1824 Align Alignment; // Minimum alignment requirement of CP.
1825 unsigned TargetFlags;
1826
1827 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1828 Align Alignment, unsigned TF)
1829 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1830 DebugLoc(), getSDVTList(VT)),
1831 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1832 assert(Offset >= 0 && "Offset is too large")((Offset >= 0 && "Offset is too large") ? static_cast
<void> (0) : __assert_fail ("Offset >= 0 && \"Offset is too large\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1832, __PRETTY_FUNCTION__))
;
1833 Val.ConstVal = c;
1834 }
1835
1836 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1837 Align Alignment, unsigned TF)
1838 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1839 DebugLoc(), getSDVTList(VT)),
1840 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1841 assert(Offset >= 0 && "Offset is too large")((Offset >= 0 && "Offset is too large") ? static_cast
<void> (0) : __assert_fail ("Offset >= 0 && \"Offset is too large\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1841, __PRETTY_FUNCTION__))
;
1842 Val.MachineCPVal = v;
1843 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT8-1);
1844 }
1845
1846public:
1847 bool isMachineConstantPoolEntry() const {
1848 return Offset < 0;
1849 }
1850
1851 const Constant *getConstVal() const {
1852 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type")((!isMachineConstantPoolEntry() && "Wrong constantpool type"
) ? static_cast<void> (0) : __assert_fail ("!isMachineConstantPoolEntry() && \"Wrong constantpool type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1852, __PRETTY_FUNCTION__))
;
1853 return Val.ConstVal;
1854 }
1855
1856 MachineConstantPoolValue *getMachineCPVal() const {
1857 assert(isMachineConstantPoolEntry() && "Wrong constantpool type")((isMachineConstantPoolEntry() && "Wrong constantpool type"
) ? static_cast<void> (0) : __assert_fail ("isMachineConstantPoolEntry() && \"Wrong constantpool type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1857, __PRETTY_FUNCTION__))
;
1858 return Val.MachineCPVal;
1859 }
1860
1861 int getOffset() const {
1862 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT8-1));
1863 }
1864
1865 // Return the alignment of this constant pool object, which is either 0 (for
1866 // default alignment) or the desired value.
1867 Align getAlign() const { return Alignment; }
1868 unsigned getTargetFlags() const { return TargetFlags; }
1869
1870 Type *getType() const;
1871
1872 static bool classof(const SDNode *N) {
1873 return N->getOpcode() == ISD::ConstantPool ||
1874 N->getOpcode() == ISD::TargetConstantPool;
1875 }
1876};
1877
1878/// Completely target-dependent object reference.
1879class TargetIndexSDNode : public SDNode {
1880 friend class SelectionDAG;
1881
1882 unsigned TargetFlags;
1883 int Index;
1884 int64_t Offset;
1885
1886public:
1887 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1888 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1889 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1890
1891 unsigned getTargetFlags() const { return TargetFlags; }
1892 int getIndex() const { return Index; }
1893 int64_t getOffset() const { return Offset; }
1894
1895 static bool classof(const SDNode *N) {
1896 return N->getOpcode() == ISD::TargetIndex;
1897 }
1898};
1899
1900class BasicBlockSDNode : public SDNode {
1901 friend class SelectionDAG;
1902
1903 MachineBasicBlock *MBB;
1904
1905 /// Debug info is meaningful and potentially useful here, but we create
1906 /// blocks out of order when they're jumped to, which makes it a bit
1907 /// harder. Let's see if we need it first.
1908 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1909 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1910 {}
1911
1912public:
1913 MachineBasicBlock *getBasicBlock() const { return MBB; }
1914
1915 static bool classof(const SDNode *N) {
1916 return N->getOpcode() == ISD::BasicBlock;
1917 }
1918};
1919
1920/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1921class BuildVectorSDNode : public SDNode {
1922public:
1923 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1924 explicit BuildVectorSDNode() = delete;
1925
1926 /// Check if this is a constant splat, and if so, find the
1927 /// smallest element size that splats the vector. If MinSplatBits is
1928 /// nonzero, the element size must be at least that large. Note that the
1929 /// splat element may be the entire vector (i.e., a one element vector).
1930 /// Returns the splat element value in SplatValue. Any undefined bits in
1931 /// that value are zero, and the corresponding bits in the SplatUndef mask
1932 /// are set. The SplatBitSize value is set to the splat element size in
1933 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1934 /// undefined. isBigEndian describes the endianness of the target.
1935 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1936 unsigned &SplatBitSize, bool &HasAnyUndefs,
1937 unsigned MinSplatBits = 0,
1938 bool isBigEndian = false) const;
1939
1940 /// Returns the demanded splatted value or a null value if this is not a
1941 /// splat.
1942 ///
1943 /// The DemandedElts mask indicates the elements that must be in the splat.
1944 /// If passed a non-null UndefElements bitvector, it will resize it to match
1945 /// the vector width and set the bits where elements are undef.
1946 SDValue getSplatValue(const APInt &DemandedElts,
1947 BitVector *UndefElements = nullptr) const;
1948
1949 /// Returns the splatted value or a null value if this is not a splat.
1950 ///
1951 /// If passed a non-null UndefElements bitvector, it will resize it to match
1952 /// the vector width and set the bits where elements are undef.
1953 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1954
1955 /// Find the shortest repeating sequence of values in the build vector.
1956 ///
1957 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1958 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1959 ///
1960 /// Currently this must be a power-of-2 build vector.
1961 /// The DemandedElts mask indicates the elements that must be present,
1962 /// undemanded elements in Sequence may be null (SDValue()). If passed a
1963 /// non-null UndefElements bitvector, it will resize it to match the original
1964 /// vector width and set the bits where elements are undef. If result is
1965 /// false, Sequence will be empty.
1966 bool getRepeatedSequence(const APInt &DemandedElts,
1967 SmallVectorImpl<SDValue> &Sequence,
1968 BitVector *UndefElements = nullptr) const;
1969
1970 /// Find the shortest repeating sequence of values in the build vector.
1971 ///
1972 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1973 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1974 ///
1975 /// Currently this must be a power-of-2 build vector.
1976 /// If passed a non-null UndefElements bitvector, it will resize it to match
1977 /// the original vector width and set the bits where elements are undef.
1978 /// If result is false, Sequence will be empty.
1979 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1980 BitVector *UndefElements = nullptr) const;
1981
1982 /// Returns the demanded splatted constant or null if this is not a constant
1983 /// splat.
1984 ///
1985 /// The DemandedElts mask indicates the elements that must be in the splat.
1986 /// If passed a non-null UndefElements bitvector, it will resize it to match
1987 /// the vector width and set the bits where elements are undef.
1988 ConstantSDNode *
1989 getConstantSplatNode(const APInt &DemandedElts,
1990 BitVector *UndefElements = nullptr) const;
1991
1992 /// Returns the splatted constant or null if this is not a constant
1993 /// splat.
1994 ///
1995 /// If passed a non-null UndefElements bitvector, it will resize it to match
1996 /// the vector width and set the bits where elements are undef.
1997 ConstantSDNode *
1998 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1999
2000 /// Returns the demanded splatted constant FP or null if this is not a
2001 /// constant FP splat.
2002 ///
2003 /// The DemandedElts mask indicates the elements that must be in the splat.
2004 /// If passed a non-null UndefElements bitvector, it will resize it to match
2005 /// the vector width and set the bits where elements are undef.
2006 ConstantFPSDNode *
2007 getConstantFPSplatNode(const APInt &DemandedElts,
2008 BitVector *UndefElements = nullptr) const;
2009
2010 /// Returns the splatted constant FP or null if this is not a constant
2011 /// FP splat.
2012 ///
2013 /// If passed a non-null UndefElements bitvector, it will resize it to match
2014 /// the vector width and set the bits where elements are undef.
2015 ConstantFPSDNode *
2016 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2017
2018 /// If this is a constant FP splat and the splatted constant FP is an
2019 /// exact power or 2, return the log base 2 integer value. Otherwise,
2020 /// return -1.
2021 ///
2022 /// The BitWidth specifies the necessary bit precision.
2023 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2024 uint32_t BitWidth) const;
2025
2026 bool isConstant() const;
2027
2028 static bool classof(const SDNode *N) {
2029 return N->getOpcode() == ISD::BUILD_VECTOR;
2030 }
2031};
2032
2033/// An SDNode that holds an arbitrary LLVM IR Value. This is
2034/// used when the SelectionDAG needs to make a simple reference to something
2035/// in the LLVM IR representation.
2036///
2037class SrcValueSDNode : public SDNode {
2038 friend class SelectionDAG;
2039
2040 const Value *V;
2041
2042 /// Create a SrcValue for a general value.
2043 explicit SrcValueSDNode(const Value *v)
2044 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2045
2046public:
2047 /// Return the contained Value.
2048 const Value *getValue() const { return V; }
2049
2050 static bool classof(const SDNode *N) {
2051 return N->getOpcode() == ISD::SRCVALUE;
2052 }
2053};
2054
2055class MDNodeSDNode : public SDNode {
2056 friend class SelectionDAG;
2057
2058 const MDNode *MD;
2059
2060 explicit MDNodeSDNode(const MDNode *md)
2061 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2062 {}
2063
2064public:
2065 const MDNode *getMD() const { return MD; }
2066
2067 static bool classof(const SDNode *N) {
2068 return N->getOpcode() == ISD::MDNODE_SDNODE;
2069 }
2070};
2071
2072class RegisterSDNode : public SDNode {
2073 friend class SelectionDAG;
2074
2075 Register Reg;
2076
2077 RegisterSDNode(Register reg, EVT VT)
2078 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2079
2080public:
2081 Register getReg() const { return Reg; }
2082
2083 static bool classof(const SDNode *N) {
2084 return N->getOpcode() == ISD::Register;
2085 }
2086};
2087
2088class RegisterMaskSDNode : public SDNode {
2089 friend class SelectionDAG;
2090
2091 // The memory for RegMask is not owned by the node.
2092 const uint32_t *RegMask;
2093
2094 RegisterMaskSDNode(const uint32_t *mask)
2095 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2096 RegMask(mask) {}
2097
2098public:
2099 const uint32_t *getRegMask() const { return RegMask; }
2100
2101 static bool classof(const SDNode *N) {
2102 return N->getOpcode() == ISD::RegisterMask;
2103 }
2104};
2105
2106class BlockAddressSDNode : public SDNode {
2107 friend class SelectionDAG;
2108
2109 const BlockAddress *BA;
2110 int64_t Offset;
2111 unsigned TargetFlags;
2112
2113 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2114 int64_t o, unsigned Flags)
2115 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2116 BA(ba), Offset(o), TargetFlags(Flags) {}
2117
2118public:
2119 const BlockAddress *getBlockAddress() const { return BA; }
2120 int64_t getOffset() const { return Offset; }
2121 unsigned getTargetFlags() const { return TargetFlags; }
2122
2123 static bool classof(const SDNode *N) {
2124 return N->getOpcode() == ISD::BlockAddress ||
2125 N->getOpcode() == ISD::TargetBlockAddress;
2126 }
2127};
2128
2129class LabelSDNode : public SDNode {
2130 friend class SelectionDAG;
2131
2132 MCSymbol *Label;
2133
2134 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2135 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2136 assert(LabelSDNode::classof(this) && "not a label opcode")((LabelSDNode::classof(this) && "not a label opcode")
? static_cast<void> (0) : __assert_fail ("LabelSDNode::classof(this) && \"not a label opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2136, __PRETTY_FUNCTION__))
;
2137 }
2138
2139public:
2140 MCSymbol *getLabel() const { return Label; }
2141
2142 static bool classof(const SDNode *N) {
2143 return N->getOpcode() == ISD::EH_LABEL ||
2144 N->getOpcode() == ISD::ANNOTATION_LABEL;
2145 }
2146};
2147
2148class ExternalSymbolSDNode : public SDNode {
2149 friend class SelectionDAG;
2150
2151 const char *Symbol;
2152 unsigned TargetFlags;
2153
2154 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2155 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2156 DebugLoc(), getSDVTList(VT)),
2157 Symbol(Sym), TargetFlags(TF) {}
2158
2159public:
2160 const char *getSymbol() const { return Symbol; }
2161 unsigned getTargetFlags() const { return TargetFlags; }
2162
2163 static bool classof(const SDNode *N) {
2164 return N->getOpcode() == ISD::ExternalSymbol ||
2165 N->getOpcode() == ISD::TargetExternalSymbol;
2166 }
2167};
2168
2169class MCSymbolSDNode : public SDNode {
2170 friend class SelectionDAG;
2171
2172 MCSymbol *Symbol;
2173
2174 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2175 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2176
2177public:
2178 MCSymbol *getMCSymbol() const { return Symbol; }
2179
2180 static bool classof(const SDNode *N) {
2181 return N->getOpcode() == ISD::MCSymbol;
2182 }
2183};
2184
2185class CondCodeSDNode : public SDNode {
2186 friend class SelectionDAG;
2187
2188 ISD::CondCode Condition;
2189
2190 explicit CondCodeSDNode(ISD::CondCode Cond)
2191 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2192 Condition(Cond) {}
2193
2194public:
2195 ISD::CondCode get() const { return Condition; }
2196
2197 static bool classof(const SDNode *N) {
2198 return N->getOpcode() == ISD::CONDCODE;
2199 }
2200};
2201
2202/// This class is used to represent EVT's, which are used
2203/// to parameterize some operations.
2204class VTSDNode : public SDNode {
2205 friend class SelectionDAG;
2206
2207 EVT ValueType;
2208
2209 explicit VTSDNode(EVT VT)
2210 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2211 ValueType(VT) {}
2212
2213public:
2214 EVT getVT() const { return ValueType; }
2215
2216 static bool classof(const SDNode *N) {
2217 return N->getOpcode() == ISD::VALUETYPE;
2218 }
2219};
2220
2221/// Base class for LoadSDNode and StoreSDNode
2222class LSBaseSDNode : public MemSDNode {
2223public:
2224 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2225 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2226 MachineMemOperand *MMO)
2227 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2228 LSBaseSDNodeBits.AddressingMode = AM;
2229 assert(getAddressingMode() == AM && "Value truncated")((getAddressingMode() == AM && "Value truncated") ? static_cast
<void> (0) : __assert_fail ("getAddressingMode() == AM && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2229, __PRETTY_FUNCTION__))
;
2230 }
2231
2232 const SDValue &getOffset() const {
2233 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2234 }
2235
2236 /// Return the addressing mode for this load or store:
2237 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2238 ISD::MemIndexedMode getAddressingMode() const {
2239 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2240 }
2241
2242 /// Return true if this is a pre/post inc/dec load/store.
2243 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2244
2245 /// Return true if this is NOT a pre/post inc/dec load/store.
2246 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2247
2248 static bool classof(const SDNode *N) {
2249 return N->getOpcode() == ISD::LOAD ||
2250 N->getOpcode() == ISD::STORE;
2251 }
2252};
2253
2254/// This class is used to represent ISD::LOAD nodes.
2255class LoadSDNode : public LSBaseSDNode {
2256 friend class SelectionDAG;
2257
2258 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2259 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2260 MachineMemOperand *MMO)
2261 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2262 LoadSDNodeBits.ExtTy = ETy;
2263 assert(readMem() && "Load MachineMemOperand is not a load!")((readMem() && "Load MachineMemOperand is not a load!"
) ? static_cast<void> (0) : __assert_fail ("readMem() && \"Load MachineMemOperand is not a load!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2263, __PRETTY_FUNCTION__))
;
2264 assert(!writeMem() && "Load MachineMemOperand is a store!")((!writeMem() && "Load MachineMemOperand is a store!"
) ? static_cast<void> (0) : __assert_fail ("!writeMem() && \"Load MachineMemOperand is a store!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2264, __PRETTY_FUNCTION__))
;
2265 }
2266
2267public:
2268 /// Return whether this is a plain node,
2269 /// or one of the varieties of value-extending loads.
2270 ISD::LoadExtType getExtensionType() const {
2271 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2272 }
2273
2274 const SDValue &getBasePtr() const { return getOperand(1); }
2275 const SDValue &getOffset() const { return getOperand(2); }
2276
2277 static bool classof(const SDNode *N) {
2278 return N->getOpcode() == ISD::LOAD;
2279 }
2280};
2281
2282/// This class is used to represent ISD::STORE nodes.
2283class StoreSDNode : public LSBaseSDNode {
2284 friend class SelectionDAG;
2285
2286 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2287 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2288 MachineMemOperand *MMO)
2289 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2290 StoreSDNodeBits.IsTruncating = isTrunc;
2291 assert(!readMem() && "Store MachineMemOperand is a load!")((!readMem() && "Store MachineMemOperand is a load!")
? static_cast<void> (0) : __assert_fail ("!readMem() && \"Store MachineMemOperand is a load!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2291, __PRETTY_FUNCTION__))
;
2292 assert(writeMem() && "Store MachineMemOperand is not a store!")((writeMem() && "Store MachineMemOperand is not a store!"
) ? static_cast<void> (0) : __assert_fail ("writeMem() && \"Store MachineMemOperand is not a store!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2292, __PRETTY_FUNCTION__))
;
2293 }
2294
2295public:
2296 /// Return true if the op does a truncation before store.
2297 /// For integers this is the same as doing a TRUNCATE and storing the result.
2298 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2299 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2300 void setTruncatingStore(bool Truncating) {
2301 StoreSDNodeBits.IsTruncating = Truncating;
2302 }
2303
2304 const SDValue &getValue() const { return getOperand(1); }
2305 const SDValue &getBasePtr() const { return getOperand(2); }
2306 const SDValue &getOffset() const { return getOperand(3); }
2307
2308 static bool classof(const SDNode *N) {
2309 return N->getOpcode() == ISD::STORE;
2310 }
2311};
2312
2313/// This base class is used to represent MLOAD and MSTORE nodes
2314class MaskedLoadStoreSDNode : public MemSDNode {
2315public:
2316 friend class SelectionDAG;
2317
2318 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2319 const DebugLoc &dl, SDVTList VTs,
2320 ISD::MemIndexedMode AM, EVT MemVT,
2321 MachineMemOperand *MMO)
2322 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2323 LSBaseSDNodeBits.AddressingMode = AM;
2324 assert(getAddressingMode() == AM && "Value truncated")((getAddressingMode() == AM && "Value truncated") ? static_cast
<void> (0) : __assert_fail ("getAddressingMode() == AM && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2324, __PRETTY_FUNCTION__))
;
2325 }
2326
2327 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2328 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2329 // Mask is a vector of i1 elements
2330 const SDValue &getOffset() const {
2331 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2332 }
2333 const SDValue &getMask() const {
2334 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2335 }
2336
2337 /// Return the addressing mode for this load or store:
2338 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2339 ISD::MemIndexedMode getAddressingMode() const {
2340 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2341 }
2342
2343 /// Return true if this is a pre/post inc/dec load/store.
2344 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2345
2346 /// Return true if this is NOT a pre/post inc/dec load/store.
2347 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2348
2349 static bool classof(const SDNode *N) {
2350 return N->getOpcode() == ISD::MLOAD ||
2351 N->getOpcode() == ISD::MSTORE;
2352 }
2353};
2354
2355/// This class is used to represent an MLOAD node
2356class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2357public:
2358 friend class SelectionDAG;
2359
2360 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2361 ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2362 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2363 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2364 LoadSDNodeBits.ExtTy = ETy;
2365 LoadSDNodeBits.IsExpanding = IsExpanding;
2366 }
2367
2368 ISD::LoadExtType getExtensionType() const {
2369 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2370 }
2371
2372 const SDValue &getBasePtr() const { return getOperand(1); }
2373 const SDValue &getOffset() const { return getOperand(2); }
2374 const SDValue &getMask() const { return getOperand(3); }
2375 const SDValue &getPassThru() const { return getOperand(4); }
2376
2377 static bool classof(const SDNode *N) {
2378 return N->getOpcode() == ISD::MLOAD;
2379 }
2380
2381 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2382};
2383
2384/// This class is used to represent an MSTORE node
2385class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2386public:
2387 friend class SelectionDAG;
2388
2389 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2390 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2391 EVT MemVT, MachineMemOperand *MMO)
2392 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2393 StoreSDNodeBits.IsTruncating = isTrunc;
2394 StoreSDNodeBits.IsCompressing = isCompressing;
2395 }
2396
2397 /// Return true if the op does a truncation before store.
2398 /// For integers this is the same as doing a TRUNCATE and storing the result.
2399 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2400 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2401
2402 /// Returns true if the op does a compression to the vector before storing.
2403 /// The node contiguously stores the active elements (integers or floats)
2404 /// in src (those with their respective bit set in writemask k) to unaligned
2405 /// memory at base_addr.
2406 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2407
2408 const SDValue &getValue() const { return getOperand(1); }
2409 const SDValue &getBasePtr() const { return getOperand(2); }
2410 const SDValue &getOffset() const { return getOperand(3); }
2411 const SDValue &getMask() const { return getOperand(4); }
2412
2413 static bool classof(const SDNode *N) {
2414 return N->getOpcode() == ISD::MSTORE;
2415 }
2416};
2417
2418/// This is a base class used to represent
2419/// MGATHER and MSCATTER nodes
2420///
2421class MaskedGatherScatterSDNode : public MemSDNode {
2422public:
2423 friend class SelectionDAG;
2424
2425 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2426 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2427 MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2428 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2429 LSBaseSDNodeBits.AddressingMode = IndexType;
2430 assert(getIndexType() == IndexType && "Value truncated")((getIndexType() == IndexType && "Value truncated") ?
static_cast<void> (0) : __assert_fail ("getIndexType() == IndexType && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2430, __PRETTY_FUNCTION__))
;
2431 }
2432
2433 /// How is Index applied to BasePtr when computing addresses.
2434 ISD::MemIndexType getIndexType() const {
2435 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2436 }
2437 void setIndexType(ISD::MemIndexType IndexType) {
2438 LSBaseSDNodeBits.AddressingMode = IndexType;
2439 }
2440 bool isIndexScaled() const {
2441 return (getIndexType() == ISD::SIGNED_SCALED) ||
2442 (getIndexType() == ISD::UNSIGNED_SCALED);
2443 }
2444 bool isIndexSigned() const {
2445 return (getIndexType() == ISD::SIGNED_SCALED) ||
2446 (getIndexType() == ISD::SIGNED_UNSCALED);
2447 }
2448
2449 // In the both nodes address is Op1, mask is Op2:
2450 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2451 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2452 // Mask is a vector of i1 elements
2453 const SDValue &getBasePtr() const { return getOperand(3); }
2454 const SDValue &getIndex() const { return getOperand(4); }
2455 const SDValue &getMask() const { return getOperand(2); }
2456 const SDValue &getScale() const { return getOperand(5); }
2457
2458 static bool classof(const SDNode *N) {
2459 return N->getOpcode() == ISD::MGATHER ||
2460 N->getOpcode() == ISD::MSCATTER;
2461 }
2462};
2463
2464/// This class is used to represent an MGATHER node
2465///
2466class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2467public:
2468 friend class SelectionDAG;
2469
2470 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2471 EVT MemVT, MachineMemOperand *MMO,
2472 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2473 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2474 IndexType) {
2475 LoadSDNodeBits.ExtTy = ETy;
2476 }
2477
2478 const SDValue &getPassThru() const { return getOperand(1); }
2479
2480 ISD::LoadExtType getExtensionType() const {
2481 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2482 }
2483
2484 static bool classof(const SDNode *N) {
2485 return N->getOpcode() == ISD::MGATHER;
2486 }
2487};
2488
2489/// This class is used to represent an MSCATTER node
2490///
2491class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2492public:
2493 friend class SelectionDAG;
2494
2495 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2496 EVT MemVT, MachineMemOperand *MMO,
2497 ISD::MemIndexType IndexType, bool IsTrunc)
2498 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2499 IndexType) {
2500 StoreSDNodeBits.IsTruncating = IsTrunc;
2501 }
2502
2503 /// Return true if the op does a truncation before store.
2504 /// For integers this is the same as doing a TRUNCATE and storing the result.
2505 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2506 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2507
2508 const SDValue &getValue() const { return getOperand(1); }
2509
2510 static bool classof(const SDNode *N) {
2511 return N->getOpcode() == ISD::MSCATTER;
2512 }
2513};
2514
2515/// An SDNode that represents everything that will be needed
2516/// to construct a MachineInstr. These nodes are created during the
2517/// instruction selection proper phase.
2518///
2519/// Note that the only supported way to set the `memoperands` is by calling the
2520/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2521/// inside the DAG rather than in the node.
2522class MachineSDNode : public SDNode {
2523private:
2524 friend class SelectionDAG;
2525
2526 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2527 : SDNode(Opc, Order, DL, VTs) {}
2528
2529 // We use a pointer union between a single `MachineMemOperand` pointer and
2530 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2531 // the number of these is zero, the single pointer variant used when the
2532 // number is one, and the array is used for larger numbers.
2533 //
2534 // The array is allocated via the `SelectionDAG`'s allocator and so will
2535 // always live until the DAG is cleaned up and doesn't require ownership here.
2536 //
2537 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2538 // subclasses aren't managed in a conforming C++ manner. See the comments on
2539 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2540 // constraint here is that these don't manage memory with their constructor or
2541 // destructor and can be initialized to a good state even if they start off
2542 // uninitialized.
2543 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2544
2545 // Note that this could be folded into the above `MemRefs` member if doing so
2546 // is advantageous at some point. We don't need to store this in most cases.
2547 // However, at the moment this doesn't appear to make the allocation any
2548 // smaller and makes the code somewhat simpler to read.
2549 int NumMemRefs = 0;
2550
2551public:
2552 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2553
2554 ArrayRef<MachineMemOperand *> memoperands() const {
2555 // Special case the common cases.
2556 if (NumMemRefs == 0)
2557 return {};
2558 if (NumMemRefs == 1)
2559 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2560
2561 // Otherwise we have an actual array.
2562 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2563 }
2564 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2565 mmo_iterator memoperands_end() const { return memoperands().end(); }
2566 bool memoperands_empty() const { return memoperands().empty(); }
2567
2568 /// Clear out the memory reference descriptor list.
2569 void clearMemRefs() {
2570 MemRefs = nullptr;
2571 NumMemRefs = 0;
2572 }
2573
2574 static bool classof(const SDNode *N) {
2575 return N->isMachineOpcode();
2576 }
2577};
2578
2579/// An SDNode that records if a register contains a value that is guaranteed to
2580/// be aligned accordingly.
2581class AssertAlignSDNode : public SDNode {
2582 Align Alignment;
2583
2584public:
2585 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2586 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2587
2588 Align getAlign() const { return Alignment; }
2589
2590 static bool classof(const SDNode *N) {
2591 return N->getOpcode() == ISD::AssertAlign;
2592 }
2593};
2594
2595class SDNodeIterator {
2596 const SDNode *Node;
2597 unsigned Operand;
2598
2599 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2600
2601public:
2602 using iterator_category = std::forward_iterator_tag;
2603 using value_type = SDNode;
2604 using difference_type = std::ptrdiff_t;
2605 using pointer = value_type *;
2606 using reference = value_type &;
2607
2608 bool operator==(const SDNodeIterator& x) const {
2609 return Operand == x.Operand;
2610 }
2611 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2612
2613 pointer operator*() const {
2614 return Node->getOperand(Operand).getNode();
2615 }
2616 pointer operator->() const { return operator*(); }
2617
2618 SDNodeIterator& operator++() { // Preincrement
2619 ++Operand;
2620 return *this;
2621 }
2622 SDNodeIterator operator++(int) { // Postincrement
2623 SDNodeIterator tmp = *this; ++*this; return tmp;
2624 }
2625 size_t operator-(SDNodeIterator Other) const {
2626 assert(Node == Other.Node &&((Node == Other.Node && "Cannot compare iterators of two different nodes!"
) ? static_cast<void> (0) : __assert_fail ("Node == Other.Node && \"Cannot compare iterators of two different nodes!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2627, __PRETTY_FUNCTION__))
2627 "Cannot compare iterators of two different nodes!")((Node == Other.Node && "Cannot compare iterators of two different nodes!"
) ? static_cast<void> (0) : __assert_fail ("Node == Other.Node && \"Cannot compare iterators of two different nodes!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2627, __PRETTY_FUNCTION__))
;
2628 return Operand - Other.Operand;
2629 }
2630
2631 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2632 static SDNodeIterator end (const SDNode *N) {
2633 return SDNodeIterator(N, N->getNumOperands());
2634 }
2635
2636 unsigned getOperand() const { return Operand; }
2637 const SDNode *getNode() const { return Node; }
2638};
2639
2640template <> struct GraphTraits<SDNode*> {
2641 using NodeRef = SDNode *;
2642 using ChildIteratorType = SDNodeIterator;
2643
2644 static NodeRef getEntryNode(SDNode *N) { return N; }
2645
2646 static ChildIteratorType child_begin(NodeRef N) {
2647 return SDNodeIterator::begin(N);
2648 }
2649
2650 static ChildIteratorType child_end(NodeRef N) {
2651 return SDNodeIterator::end(N);
2652 }
2653};
2654
2655/// A representation of the largest SDNode, for use in sizeof().
2656///
2657/// This needs to be a union because the largest node differs on 32 bit systems
2658/// with 4 and 8 byte pointer alignment, respectively.
2659using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2660 BlockAddressSDNode,
2661 GlobalAddressSDNode,
2662 PseudoProbeSDNode>;
2663
2664/// The SDNode class with the greatest alignment requirement.
2665using MostAlignedSDNode = GlobalAddressSDNode;
2666
2667namespace ISD {
2668
2669 /// Returns true if the specified node is a non-extending and unindexed load.
2670 inline bool isNormalLoad(const SDNode *N) {
2671 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2672 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2673 Ld->getAddressingMode() == ISD::UNINDEXED;
2674 }
2675
2676 /// Returns true if the specified node is a non-extending load.
2677 inline bool isNON_EXTLoad(const SDNode *N) {
2678 return isa<LoadSDNode>(N) &&
2679 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2680 }
2681
2682 /// Returns true if the specified node is a EXTLOAD.
2683 inline bool isEXTLoad(const SDNode *N) {
2684 return isa<LoadSDNode>(N) &&
2685 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2686 }
2687
2688 /// Returns true if the specified node is a SEXTLOAD.
2689 inline bool isSEXTLoad(const SDNode *N) {
2690 return isa<LoadSDNode>(N) &&
2691 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2692 }
2693
2694 /// Returns true if the specified node is a ZEXTLOAD.
2695 inline bool isZEXTLoad(const SDNode *N) {
2696 return isa<LoadSDNode>(N) &&
2697 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2698 }
2699
2700 /// Returns true if the specified node is an unindexed load.
2701 inline bool isUNINDEXEDLoad(const SDNode *N) {
2702 return isa<LoadSDNode>(N) &&
2703 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2704 }
2705
2706 /// Returns true if the specified node is a non-truncating
2707 /// and unindexed store.
2708 inline bool isNormalStore(const SDNode *N) {
2709 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2710 return St && !St->isTruncatingStore() &&
2711 St->getAddressingMode() == ISD::UNINDEXED;
2712 }
2713
2714 /// Returns true if the specified node is a non-truncating store.
2715 inline bool isNON_TRUNCStore(const SDNode *N) {
2716 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2717 }
2718
2719 /// Returns true if the specified node is a truncating store.
2720 inline bool isTRUNCStore(const SDNode *N) {
2721 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2722 }
2723
2724 /// Returns true if the specified node is an unindexed store.
2725 inline bool isUNINDEXEDStore(const SDNode *N) {
2726 return isa<StoreSDNode>(N) &&
2727 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2728 }
2729
2730 /// Attempt to match a unary predicate against a scalar/splat constant or
2731 /// every element of a constant BUILD_VECTOR.
2732 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2733 bool matchUnaryPredicate(SDValue Op,
2734 std::function<bool(ConstantSDNode *)> Match,
2735 bool AllowUndefs = false);
2736
2737 /// Attempt to match a binary predicate against a pair of scalar/splat
2738 /// constants or every element of a pair of constant BUILD_VECTORs.
2739 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2740 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2741 bool matchBinaryPredicate(
2742 SDValue LHS, SDValue RHS,
2743 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2744 bool AllowUndefs = false, bool AllowTypeMismatch = false);
2745
2746 /// Returns true if the specified value is the overflow result from one
2747 /// of the overflow intrinsic nodes.
2748 inline bool isOverflowIntrOpRes(SDValue Op) {
2749 unsigned Opc = Op.getOpcode();
2750 return (Op.getResNo() == 1 &&
2751 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2752 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2753 }
2754
2755} // end namespace ISD
2756
2757} // end namespace llvm
2758
2759#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H