Bug Summary

File:build/source/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
Warning:line 1097, column 17
The left operand of '==' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SystemZAsmParser.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/SystemZ/AsmParser -I /build/source/llvm/lib/Target/SystemZ/AsmParser -I /build/source/llvm/lib/Target/SystemZ -I lib/Target/SystemZ -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
1//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "MCTargetDesc/SystemZInstPrinter.h"
10#include "MCTargetDesc/SystemZMCAsmInfo.h"
11#include "MCTargetDesc/SystemZMCTargetDesc.h"
12#include "SystemZTargetStreamer.h"
13#include "TargetInfo/SystemZTargetInfo.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/MC/MCAsmInfo.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstBuilder.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCParser/MCAsmLexer.h"
24#include "llvm/MC/MCParser/MCAsmParser.h"
25#include "llvm/MC/MCParser/MCAsmParserExtension.h"
26#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
27#include "llvm/MC/MCParser/MCTargetAsmParser.h"
28#include "llvm/MC/MCStreamer.h"
29#include "llvm/MC/MCSubtargetInfo.h"
30#include "llvm/MC/TargetRegistry.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/SMLoc.h"
34#include <algorithm>
35#include <cassert>
36#include <cstddef>
37#include <cstdint>
38#include <iterator>
39#include <memory>
40#include <string>
41
42using namespace llvm;
43
44// Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
45// is true any MCExpr is accepted (address displacement).
46static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
47 bool AllowSymbol = false) {
48 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
49 int64_t Value = CE->getValue();
50 return Value >= MinValue && Value <= MaxValue;
51 }
52 return AllowSymbol;
53}
54
55namespace {
56
57enum RegisterKind {
58 GR32Reg,
59 GRH32Reg,
60 GR64Reg,
61 GR128Reg,
62 FP32Reg,
63 FP64Reg,
64 FP128Reg,
65 VR32Reg,
66 VR64Reg,
67 VR128Reg,
68 AR32Reg,
69 CR64Reg,
70};
71
72enum MemoryKind {
73 BDMem,
74 BDXMem,
75 BDLMem,
76 BDRMem,
77 BDVMem
78};
79
80class SystemZOperand : public MCParsedAsmOperand {
81private:
82 enum OperandKind {
83 KindInvalid,
84 KindToken,
85 KindReg,
86 KindImm,
87 KindImmTLS,
88 KindMem
89 };
90
91 OperandKind Kind;
92 SMLoc StartLoc, EndLoc;
93
94 // A string of length Length, starting at Data.
95 struct TokenOp {
96 const char *Data;
97 unsigned Length;
98 };
99
100 // LLVM register Num, which has kind Kind. In some ways it might be
101 // easier for this class to have a register bank (general, floating-point
102 // or access) and a raw register number (0-15). This would postpone the
103 // interpretation of the operand to the add*() methods and avoid the need
104 // for context-dependent parsing. However, we do things the current way
105 // because of the virtual getReg() method, which needs to distinguish
106 // between (say) %r0 used as a single register and %r0 used as a pair.
107 // Context-dependent parsing can also give us slightly better error
108 // messages when invalid pairs like %r1 are used.
109 struct RegOp {
110 RegisterKind Kind;
111 unsigned Num;
112 };
113
114 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
115 // MemKind says what type of memory this is and RegKind says what type
116 // the base register has (GR32Reg or GR64Reg). Length is the operand
117 // length for D(L,B)-style operands, otherwise it is null.
118 struct MemOp {
119 unsigned Base : 12;
120 unsigned Index : 12;
121 unsigned MemKind : 4;
122 unsigned RegKind : 4;
123 const MCExpr *Disp;
124 union {
125 const MCExpr *Imm;
126 unsigned Reg;
127 } Length;
128 };
129
130 // Imm is an immediate operand, and Sym is an optional TLS symbol
131 // for use with a __tls_get_offset marker relocation.
132 struct ImmTLSOp {
133 const MCExpr *Imm;
134 const MCExpr *Sym;
135 };
136
137 union {
138 TokenOp Token;
139 RegOp Reg;
140 const MCExpr *Imm;
141 ImmTLSOp ImmTLS;
142 MemOp Mem;
143 };
144
145 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
146 // Add as immediates when possible. Null MCExpr = 0.
147 if (!Expr)
148 Inst.addOperand(MCOperand::createImm(0));
149 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
150 Inst.addOperand(MCOperand::createImm(CE->getValue()));
151 else
152 Inst.addOperand(MCOperand::createExpr(Expr));
153 }
154
155public:
156 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
157 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
158
159 // Create particular kinds of operand.
160 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
161 SMLoc EndLoc) {
162 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
163 }
164
165 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
166 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
167 Op->Token.Data = Str.data();
168 Op->Token.Length = Str.size();
169 return Op;
170 }
171
172 static std::unique_ptr<SystemZOperand>
173 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
174 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
175 Op->Reg.Kind = Kind;
176 Op->Reg.Num = Num;
177 return Op;
178 }
179
180 static std::unique_ptr<SystemZOperand>
181 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
182 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
183 Op->Imm = Expr;
184 return Op;
185 }
186
187 static std::unique_ptr<SystemZOperand>
188 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
189 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
190 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
191 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
192 Op->Mem.MemKind = MemKind;
193 Op->Mem.RegKind = RegKind;
194 Op->Mem.Base = Base;
195 Op->Mem.Index = Index;
196 Op->Mem.Disp = Disp;
197 if (MemKind == BDLMem)
198 Op->Mem.Length.Imm = LengthImm;
199 if (MemKind == BDRMem)
200 Op->Mem.Length.Reg = LengthReg;
201 return Op;
202 }
203
204 static std::unique_ptr<SystemZOperand>
205 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
206 SMLoc StartLoc, SMLoc EndLoc) {
207 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
208 Op->ImmTLS.Imm = Imm;
209 Op->ImmTLS.Sym = Sym;
210 return Op;
211 }
212
213 // Token operands
214 bool isToken() const override {
215 return Kind == KindToken;
216 }
217 StringRef getToken() const {
218 assert(Kind == KindToken && "Not a token")(static_cast <bool> (Kind == KindToken && "Not a token"
) ? void (0) : __assert_fail ("Kind == KindToken && \"Not a token\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 218
, __extension__ __PRETTY_FUNCTION__))
;
219 return StringRef(Token.Data, Token.Length);
220 }
221
222 // Register operands.
223 bool isReg() const override {
224 return Kind == KindReg;
225 }
226 bool isReg(RegisterKind RegKind) const {
227 return Kind == KindReg && Reg.Kind == RegKind;
228 }
229 unsigned getReg() const override {
230 assert(Kind == KindReg && "Not a register")(static_cast <bool> (Kind == KindReg && "Not a register"
) ? void (0) : __assert_fail ("Kind == KindReg && \"Not a register\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 230
, __extension__ __PRETTY_FUNCTION__))
;
231 return Reg.Num;
232 }
233
234 // Immediate operands.
235 bool isImm() const override {
236 return Kind == KindImm;
237 }
238 bool isImm(int64_t MinValue, int64_t MaxValue) const {
239 return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
240 }
241 const MCExpr *getImm() const {
242 assert(Kind == KindImm && "Not an immediate")(static_cast <bool> (Kind == KindImm && "Not an immediate"
) ? void (0) : __assert_fail ("Kind == KindImm && \"Not an immediate\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 242
, __extension__ __PRETTY_FUNCTION__))
;
243 return Imm;
244 }
245
246 // Immediate operands with optional TLS symbol.
247 bool isImmTLS() const {
248 return Kind == KindImmTLS;
249 }
250
251 const ImmTLSOp getImmTLS() const {
252 assert(Kind == KindImmTLS && "Not a TLS immediate")(static_cast <bool> (Kind == KindImmTLS && "Not a TLS immediate"
) ? void (0) : __assert_fail ("Kind == KindImmTLS && \"Not a TLS immediate\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 252
, __extension__ __PRETTY_FUNCTION__))
;
253 return ImmTLS;
254 }
255
256 // Memory operands.
257 bool isMem() const override {
258 return Kind == KindMem;
259 }
260 bool isMem(MemoryKind MemKind) const {
261 return (Kind == KindMem &&
262 (Mem.MemKind == MemKind ||
263 // A BDMem can be treated as a BDXMem in which the index
264 // register field is 0.
265 (Mem.MemKind == BDMem && MemKind == BDXMem)));
266 }
267 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
268 return isMem(MemKind) && Mem.RegKind == RegKind;
269 }
270 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
271 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
272 }
273 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
274 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
275 }
276 bool isMemDisp12Len4(RegisterKind RegKind) const {
277 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
278 }
279 bool isMemDisp12Len8(RegisterKind RegKind) const {
280 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
281 }
282
283 const MemOp& getMem() const {
284 assert(Kind == KindMem && "Not a Mem operand")(static_cast <bool> (Kind == KindMem && "Not a Mem operand"
) ? void (0) : __assert_fail ("Kind == KindMem && \"Not a Mem operand\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 284
, __extension__ __PRETTY_FUNCTION__))
;
285 return Mem;
286 }
287
288 // Override MCParsedAsmOperand.
289 SMLoc getStartLoc() const override { return StartLoc; }
290 SMLoc getEndLoc() const override { return EndLoc; }
291 void print(raw_ostream &OS) const override;
292
293 /// getLocRange - Get the range between the first and last token of this
294 /// operand.
295 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
296
297 // Used by the TableGen code to add particular types of operand
298 // to an instruction.
299 void addRegOperands(MCInst &Inst, unsigned N) const {
300 assert(N == 1 && "Invalid number of operands")(static_cast <bool> (N == 1 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 1 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 300
, __extension__ __PRETTY_FUNCTION__))
;
301 Inst.addOperand(MCOperand::createReg(getReg()));
302 }
303 void addImmOperands(MCInst &Inst, unsigned N) const {
304 assert(N == 1 && "Invalid number of operands")(static_cast <bool> (N == 1 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 1 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 304
, __extension__ __PRETTY_FUNCTION__))
;
305 addExpr(Inst, getImm());
306 }
307 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
308 assert(N == 2 && "Invalid number of operands")(static_cast <bool> (N == 2 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 2 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 308
, __extension__ __PRETTY_FUNCTION__))
;
309 assert(isMem(BDMem) && "Invalid operand type")(static_cast <bool> (isMem(BDMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDMem) && \"Invalid operand type\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 309
, __extension__ __PRETTY_FUNCTION__))
;
310 Inst.addOperand(MCOperand::createReg(Mem.Base));
311 addExpr(Inst, Mem.Disp);
312 }
313 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
314 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 314
, __extension__ __PRETTY_FUNCTION__))
;
315 assert(isMem(BDXMem) && "Invalid operand type")(static_cast <bool> (isMem(BDXMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDXMem) && \"Invalid operand type\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 315
, __extension__ __PRETTY_FUNCTION__))
;
316 Inst.addOperand(MCOperand::createReg(Mem.Base));
317 addExpr(Inst, Mem.Disp);
318 Inst.addOperand(MCOperand::createReg(Mem.Index));
319 }
320 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
321 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 321
, __extension__ __PRETTY_FUNCTION__))
;
322 assert(isMem(BDLMem) && "Invalid operand type")(static_cast <bool> (isMem(BDLMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDLMem) && \"Invalid operand type\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 322
, __extension__ __PRETTY_FUNCTION__))
;
323 Inst.addOperand(MCOperand::createReg(Mem.Base));
324 addExpr(Inst, Mem.Disp);
325 addExpr(Inst, Mem.Length.Imm);
326 }
327 void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
328 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 328
, __extension__ __PRETTY_FUNCTION__))
;
329 assert(isMem(BDRMem) && "Invalid operand type")(static_cast <bool> (isMem(BDRMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDRMem) && \"Invalid operand type\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 329
, __extension__ __PRETTY_FUNCTION__))
;
330 Inst.addOperand(MCOperand::createReg(Mem.Base));
331 addExpr(Inst, Mem.Disp);
332 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
333 }
334 void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
335 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 335
, __extension__ __PRETTY_FUNCTION__))
;
336 assert(isMem(BDVMem) && "Invalid operand type")(static_cast <bool> (isMem(BDVMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDVMem) && \"Invalid operand type\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 336
, __extension__ __PRETTY_FUNCTION__))
;
337 Inst.addOperand(MCOperand::createReg(Mem.Base));
338 addExpr(Inst, Mem.Disp);
339 Inst.addOperand(MCOperand::createReg(Mem.Index));
340 }
341 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
342 assert(N == 2 && "Invalid number of operands")(static_cast <bool> (N == 2 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 2 && \"Invalid number of operands\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 342
, __extension__ __PRETTY_FUNCTION__))
;
343 assert(Kind == KindImmTLS && "Invalid operand type")(static_cast <bool> (Kind == KindImmTLS && "Invalid operand type"
) ? void (0) : __assert_fail ("Kind == KindImmTLS && \"Invalid operand type\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 343
, __extension__ __PRETTY_FUNCTION__))
;
344 addExpr(Inst, ImmTLS.Imm);
345 if (ImmTLS.Sym)
346 addExpr(Inst, ImmTLS.Sym);
347 }
348
349 // Used by the TableGen code to check for particular operand types.
350 bool isGR32() const { return isReg(GR32Reg); }
351 bool isGRH32() const { return isReg(GRH32Reg); }
352 bool isGRX32() const { return false; }
353 bool isGR64() const { return isReg(GR64Reg); }
354 bool isGR128() const { return isReg(GR128Reg); }
355 bool isADDR32() const { return isReg(GR32Reg); }
356 bool isADDR64() const { return isReg(GR64Reg); }
357 bool isADDR128() const { return false; }
358 bool isFP32() const { return isReg(FP32Reg); }
359 bool isFP64() const { return isReg(FP64Reg); }
360 bool isFP128() const { return isReg(FP128Reg); }
361 bool isVR32() const { return isReg(VR32Reg); }
362 bool isVR64() const { return isReg(VR64Reg); }
363 bool isVF128() const { return false; }
364 bool isVR128() const { return isReg(VR128Reg); }
365 bool isAR32() const { return isReg(AR32Reg); }
366 bool isCR64() const { return isReg(CR64Reg); }
367 bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
368 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
369 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
370 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
371 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
372 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
373 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
374 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
375 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
376 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
377 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
378 bool isU1Imm() const { return isImm(0, 1); }
379 bool isU2Imm() const { return isImm(0, 3); }
380 bool isU3Imm() const { return isImm(0, 7); }
381 bool isU4Imm() const { return isImm(0, 15); }
382 bool isU8Imm() const { return isImm(0, 255); }
383 bool isS8Imm() const { return isImm(-128, 127); }
384 bool isU12Imm() const { return isImm(0, 4095); }
385 bool isU16Imm() const { return isImm(0, 65535); }
386 bool isS16Imm() const { return isImm(-32768, 32767); }
387 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
388 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
389 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
390};
391
392class SystemZAsmParser : public MCTargetAsmParser {
393#define GET_ASSEMBLER_HEADER
394#include "SystemZGenAsmMatcher.inc"
395
396private:
397 MCAsmParser &Parser;
398 enum RegisterGroup {
399 RegGR,
400 RegFP,
401 RegV,
402 RegAR,
403 RegCR
404 };
405 struct Register {
406 RegisterGroup Group;
407 unsigned Num;
408 SMLoc StartLoc, EndLoc;
409 };
410
411 SystemZTargetStreamer &getTargetStreamer() {
412 assert(getParser().getStreamer().getTargetStreamer() &&(static_cast <bool> (getParser().getStreamer().getTargetStreamer
() && "do not have a target streamer") ? void (0) : __assert_fail
("getParser().getStreamer().getTargetStreamer() && \"do not have a target streamer\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 413
, __extension__ __PRETTY_FUNCTION__))
413 "do not have a target streamer")(static_cast <bool> (getParser().getStreamer().getTargetStreamer
() && "do not have a target streamer") ? void (0) : __assert_fail
("getParser().getStreamer().getTargetStreamer() && \"do not have a target streamer\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 413
, __extension__ __PRETTY_FUNCTION__))
;
414 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
415 return static_cast<SystemZTargetStreamer &>(TS);
416 }
417
418 bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
419
420 bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
421
422 OperandMatchResultTy parseRegister(OperandVector &Operands,
423 RegisterKind Kind);
424
425 OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
426
427 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
428 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
429 bool HasLength = false, bool HasVectorIndex = false);
430 bool parseAddressRegister(Register &Reg);
431
432 bool ParseDirectiveInsn(SMLoc L);
433 bool ParseDirectiveMachine(SMLoc L);
434 bool ParseGNUAttribute(SMLoc L);
435
436 OperandMatchResultTy parseAddress(OperandVector &Operands,
437 MemoryKind MemKind,
438 RegisterKind RegKind);
439
440 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
441 int64_t MaxVal, bool AllowTLS);
442
443 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
444
445 // Both the hlasm and att variants still rely on the basic gnu asm
446 // format with respect to inputs, clobbers, outputs etc.
447 //
448 // However, calling the overriden getAssemblerDialect() method in
449 // AsmParser is problematic. It either returns the AssemblerDialect field
450 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
451 // unset, otherwise it returns the private AssemblerDialect field in
452 // AsmParser.
453 //
454 // The problematic part is because, we forcibly set the inline asm dialect
455 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
456 // to the overriden getAssemblerDialect function in AsmParser.cpp, will
457 // not return the assembler dialect set in the respective MCAsmInfo instance.
458 //
459 // For this purpose, we explicitly query the SystemZMCAsmInfo instance
460 // here, to get the "correct" assembler dialect, and use it in various
461 // functions.
462 unsigned getMAIAssemblerDialect() {
463 return Parser.getContext().getAsmInfo()->getAssemblerDialect();
464 }
465
466 // An alphabetic character in HLASM is a letter from 'A' through 'Z',
467 // or from 'a' through 'z', or '$', '_','#', or '@'.
468 inline bool isHLASMAlpha(char C) {
469 return isAlpha(C) || llvm::is_contained("_@#$", C);
470 }
471
472 // A digit in HLASM is a number from 0 to 9.
473 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
474
475 // Are we parsing using the AD_HLASM dialect?
476 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
477
478 // Are we parsing using the AD_ATT dialect?
479 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
480
481public:
482 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
483 const MCInstrInfo &MII,
484 const MCTargetOptions &Options)
485 : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
486 MCAsmParserExtension::Initialize(Parser);
487
488 // Alias the .word directive to .short.
489 parser.addAliasForDirective(".word", ".short");
490
491 // Initialize the set of available features.
492 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
493 }
494
495 // Override MCTargetAsmParser.
496 bool ParseDirective(AsmToken DirectiveID) override;
497 bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
498 SMLoc &EndLoc) override;
499 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
500 bool RestoreOnFailure);
501 OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
502 SMLoc &EndLoc) override;
503 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
504 SMLoc NameLoc, OperandVector &Operands) override;
505 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
506 OperandVector &Operands, MCStreamer &Out,
507 uint64_t &ErrorInfo,
508 bool MatchingInlineAsm) override;
509 bool isLabel(AsmToken &Token) override;
510
511 // Used by the TableGen code to parse particular operand types.
512 OperandMatchResultTy parseGR32(OperandVector &Operands) {
513 return parseRegister(Operands, GR32Reg);
514 }
515 OperandMatchResultTy parseGRH32(OperandVector &Operands) {
516 return parseRegister(Operands, GRH32Reg);
517 }
518 OperandMatchResultTy parseGRX32(OperandVector &Operands) {
519 llvm_unreachable("GRX32 should only be used for pseudo instructions")::llvm::llvm_unreachable_internal("GRX32 should only be used for pseudo instructions"
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 519
)
;
520 }
521 OperandMatchResultTy parseGR64(OperandVector &Operands) {
522 return parseRegister(Operands, GR64Reg);
523 }
524 OperandMatchResultTy parseGR128(OperandVector &Operands) {
525 return parseRegister(Operands, GR128Reg);
526 }
527 OperandMatchResultTy parseADDR32(OperandVector &Operands) {
528 // For the AsmParser, we will accept %r0 for ADDR32 as well.
529 return parseRegister(Operands, GR32Reg);
530 }
531 OperandMatchResultTy parseADDR64(OperandVector &Operands) {
532 // For the AsmParser, we will accept %r0 for ADDR64 as well.
533 return parseRegister(Operands, GR64Reg);
534 }
535 OperandMatchResultTy parseADDR128(OperandVector &Operands) {
536 llvm_unreachable("Shouldn't be used as an operand")::llvm::llvm_unreachable_internal("Shouldn't be used as an operand"
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 536
)
;
537 }
538 OperandMatchResultTy parseFP32(OperandVector &Operands) {
539 return parseRegister(Operands, FP32Reg);
540 }
541 OperandMatchResultTy parseFP64(OperandVector &Operands) {
542 return parseRegister(Operands, FP64Reg);
543 }
544 OperandMatchResultTy parseFP128(OperandVector &Operands) {
545 return parseRegister(Operands, FP128Reg);
546 }
547 OperandMatchResultTy parseVR32(OperandVector &Operands) {
548 return parseRegister(Operands, VR32Reg);
549 }
550 OperandMatchResultTy parseVR64(OperandVector &Operands) {
551 return parseRegister(Operands, VR64Reg);
552 }
553 OperandMatchResultTy parseVF128(OperandVector &Operands) {
554 llvm_unreachable("Shouldn't be used as an operand")::llvm::llvm_unreachable_internal("Shouldn't be used as an operand"
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 554
)
;
555 }
556 OperandMatchResultTy parseVR128(OperandVector &Operands) {
557 return parseRegister(Operands, VR128Reg);
558 }
559 OperandMatchResultTy parseAR32(OperandVector &Operands) {
560 return parseRegister(Operands, AR32Reg);
561 }
562 OperandMatchResultTy parseCR64(OperandVector &Operands) {
563 return parseRegister(Operands, CR64Reg);
564 }
565 OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
566 return parseAnyRegister(Operands);
567 }
568 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
569 return parseAddress(Operands, BDMem, GR32Reg);
570 }
571 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
572 return parseAddress(Operands, BDMem, GR64Reg);
573 }
574 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
575 return parseAddress(Operands, BDXMem, GR64Reg);
20
Calling 'SystemZAsmParser::parseAddress'
576 }
577 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
578 return parseAddress(Operands, BDLMem, GR64Reg);
579 }
580 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
581 return parseAddress(Operands, BDRMem, GR64Reg);
582 }
583 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
584 return parseAddress(Operands, BDVMem, GR64Reg);
585 }
586 OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
587 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
588 }
589 OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
590 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
591 }
592 OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
593 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
594 }
595 OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
596 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
597 }
598 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
599 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
600 }
601 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
602 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
603 }
604};
605
606} // end anonymous namespace
607
608#define GET_REGISTER_MATCHER
609#define GET_SUBTARGET_FEATURE_NAME
610#define GET_MATCHER_IMPLEMENTATION
611#define GET_MNEMONIC_SPELL_CHECKER
612#include "SystemZGenAsmMatcher.inc"
613
614// Used for the .insn directives; contains information needed to parse the
615// operands in the directive.
616struct InsnMatchEntry {
617 StringRef Format;
618 uint64_t Opcode;
619 int32_t NumOperands;
620 MatchClassKind OperandKinds[7];
621};
622
623// For equal_range comparison.
624struct CompareInsn {
625 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
626 return LHS.Format < RHS;
627 }
628 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
629 return LHS < RHS.Format;
630 }
631 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
632 return LHS.Format < RHS.Format;
633 }
634};
635
636// Table initializing information for parsing the .insn directive.
637static struct InsnMatchEntry InsnMatchTable[] = {
638 /* Format, Opcode, NumOperands, OperandKinds */
639 { "e", SystemZ::InsnE, 1,
640 { MCK_U16Imm } },
641 { "ri", SystemZ::InsnRI, 3,
642 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
643 { "rie", SystemZ::InsnRIE, 4,
644 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
645 { "ril", SystemZ::InsnRIL, 3,
646 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
647 { "rilu", SystemZ::InsnRILU, 3,
648 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
649 { "ris", SystemZ::InsnRIS, 5,
650 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
651 { "rr", SystemZ::InsnRR, 3,
652 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
653 { "rre", SystemZ::InsnRRE, 3,
654 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
655 { "rrf", SystemZ::InsnRRF, 5,
656 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
657 { "rrs", SystemZ::InsnRRS, 5,
658 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
659 { "rs", SystemZ::InsnRS, 4,
660 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
661 { "rse", SystemZ::InsnRSE, 4,
662 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
663 { "rsi", SystemZ::InsnRSI, 4,
664 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
665 { "rsy", SystemZ::InsnRSY, 4,
666 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
667 { "rx", SystemZ::InsnRX, 3,
668 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
669 { "rxe", SystemZ::InsnRXE, 3,
670 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
671 { "rxf", SystemZ::InsnRXF, 4,
672 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
673 { "rxy", SystemZ::InsnRXY, 3,
674 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
675 { "s", SystemZ::InsnS, 2,
676 { MCK_U32Imm, MCK_BDAddr64Disp12 } },
677 { "si", SystemZ::InsnSI, 3,
678 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
679 { "sil", SystemZ::InsnSIL, 3,
680 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
681 { "siy", SystemZ::InsnSIY, 3,
682 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
683 { "ss", SystemZ::InsnSS, 4,
684 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
685 { "sse", SystemZ::InsnSSE, 3,
686 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
687 { "ssf", SystemZ::InsnSSF, 4,
688 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
689 { "vri", SystemZ::InsnVRI, 6,
690 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
691 { "vrr", SystemZ::InsnVRR, 7,
692 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
693 MCK_U4Imm } },
694 { "vrs", SystemZ::InsnVRS, 5,
695 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
696 { "vrv", SystemZ::InsnVRV, 4,
697 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
698 { "vrx", SystemZ::InsnVRX, 4,
699 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
700 { "vsi", SystemZ::InsnVSI, 4,
701 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
702};
703
704static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
705 if (!E)
706 return;
707 if (auto *CE = dyn_cast<MCConstantExpr>(E))
708 OS << *CE;
709 else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
710 OS << *UE;
711 else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
712 OS << *BE;
713 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
714 OS << *SRE;
715 else
716 OS << *E;
717}
718
719void SystemZOperand::print(raw_ostream &OS) const {
720 switch (Kind) {
721 case KindToken:
722 OS << "Token:" << getToken();
723 break;
724 case KindReg:
725 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
726 break;
727 case KindImm:
728 OS << "Imm:";
729 printMCExpr(getImm(), OS);
730 break;
731 case KindImmTLS:
732 OS << "ImmTLS:";
733 printMCExpr(getImmTLS().Imm, OS);
734 if (getImmTLS().Sym) {
735 OS << ", ";
736 printMCExpr(getImmTLS().Sym, OS);
737 }
738 break;
739 case KindMem: {
740 const MemOp &Op = getMem();
741 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
742 if (Op.Base) {
743 OS << "(";
744 if (Op.MemKind == BDLMem)
745 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
746 else if (Op.MemKind == BDRMem)
747 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
748 if (Op.Index)
749 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
750 OS << SystemZInstPrinter::getRegisterName(Op.Base);
751 OS << ")";
752 }
753 break;
754 }
755 case KindInvalid:
756 break;
757 }
758}
759
760// Parse one register of the form %<prefix><number>.
761bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
762 Reg.StartLoc = Parser.getTok().getLoc();
763
764 // Eat the % prefix.
765 if (Parser.getTok().isNot(AsmToken::Percent))
766 return Error(Parser.getTok().getLoc(), "register expected");
767 const AsmToken &PercentTok = Parser.getTok();
768 Parser.Lex();
769
770 // Expect a register name.
771 if (Parser.getTok().isNot(AsmToken::Identifier)) {
772 if (RestoreOnFailure)
773 getLexer().UnLex(PercentTok);
774 return Error(Reg.StartLoc, "invalid register");
775 }
776
777 // Check that there's a prefix.
778 StringRef Name = Parser.getTok().getString();
779 if (Name.size() < 2) {
780 if (RestoreOnFailure)
781 getLexer().UnLex(PercentTok);
782 return Error(Reg.StartLoc, "invalid register");
783 }
784 char Prefix = Name[0];
785
786 // Treat the rest of the register name as a register number.
787 if (Name.substr(1).getAsInteger(10, Reg.Num)) {
788 if (RestoreOnFailure)
789 getLexer().UnLex(PercentTok);
790 return Error(Reg.StartLoc, "invalid register");
791 }
792
793 // Look for valid combinations of prefix and number.
794 if (Prefix == 'r' && Reg.Num < 16)
795 Reg.Group = RegGR;
796 else if (Prefix == 'f' && Reg.Num < 16)
797 Reg.Group = RegFP;
798 else if (Prefix == 'v' && Reg.Num < 32)
799 Reg.Group = RegV;
800 else if (Prefix == 'a' && Reg.Num < 16)
801 Reg.Group = RegAR;
802 else if (Prefix == 'c' && Reg.Num < 16)
803 Reg.Group = RegCR;
804 else {
805 if (RestoreOnFailure)
806 getLexer().UnLex(PercentTok);
807 return Error(Reg.StartLoc, "invalid register");
808 }
809
810 Reg.EndLoc = Parser.getTok().getLoc();
811 Parser.Lex();
812 return false;
813}
814
815// Parse a register of kind Kind and add it to Operands.
816OperandMatchResultTy
817SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
818 Register Reg;
819 RegisterGroup Group;
820 switch (Kind) {
821 case GR32Reg:
822 case GRH32Reg:
823 case GR64Reg:
824 case GR128Reg:
825 Group = RegGR;
826 break;
827 case FP32Reg:
828 case FP64Reg:
829 case FP128Reg:
830 Group = RegFP;
831 break;
832 case VR32Reg:
833 case VR64Reg:
834 case VR128Reg:
835 Group = RegV;
836 break;
837 case AR32Reg:
838 Group = RegAR;
839 break;
840 case CR64Reg:
841 Group = RegCR;
842 break;
843 }
844
845 // Handle register names of the form %<prefix><number>
846 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
847 if (parseRegister(Reg))
848 return MatchOperand_ParseFail;
849
850 // Check the parsed register group "Reg.Group" with the expected "Group"
851 // Have to error out if user specified wrong prefix.
852 switch (Group) {
853 case RegGR:
854 case RegFP:
855 case RegAR:
856 case RegCR:
857 if (Group != Reg.Group) {
858 Error(Reg.StartLoc, "invalid operand for instruction");
859 return MatchOperand_ParseFail;
860 }
861 break;
862 case RegV:
863 if (Reg.Group != RegV && Reg.Group != RegFP) {
864 Error(Reg.StartLoc, "invalid operand for instruction");
865 return MatchOperand_ParseFail;
866 }
867 break;
868 }
869 } else if (Parser.getTok().is(AsmToken::Integer)) {
870 if (parseIntegerRegister(Reg, Group))
871 return MatchOperand_ParseFail;
872 }
873 // Otherwise we didn't match a register operand.
874 else
875 return MatchOperand_NoMatch;
876
877 // Determine the LLVM register number according to Kind.
878 const unsigned *Regs;
879 switch (Kind) {
880 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
881 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
882 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
883 case GR128Reg: Regs = SystemZMC::GR128Regs; break;
884 case FP32Reg: Regs = SystemZMC::FP32Regs; break;
885 case FP64Reg: Regs = SystemZMC::FP64Regs; break;
886 case FP128Reg: Regs = SystemZMC::FP128Regs; break;
887 case VR32Reg: Regs = SystemZMC::VR32Regs; break;
888 case VR64Reg: Regs = SystemZMC::VR64Regs; break;
889 case VR128Reg: Regs = SystemZMC::VR128Regs; break;
890 case AR32Reg: Regs = SystemZMC::AR32Regs; break;
891 case CR64Reg: Regs = SystemZMC::CR64Regs; break;
892 }
893 if (Regs[Reg.Num] == 0) {
894 Error(Reg.StartLoc, "invalid register pair");
895 return MatchOperand_ParseFail;
896 }
897
898 Operands.push_back(
899 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
900 return MatchOperand_Success;
901}
902
903// Parse any type of register (including integers) and add it to Operands.
904OperandMatchResultTy
905SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
906 SMLoc StartLoc = Parser.getTok().getLoc();
907
908 // Handle integer values.
909 if (Parser.getTok().is(AsmToken::Integer)) {
910 const MCExpr *Register;
911 if (Parser.parseExpression(Register))
912 return MatchOperand_ParseFail;
913
914 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
915 int64_t Value = CE->getValue();
916 if (Value < 0 || Value > 15) {
917 Error(StartLoc, "invalid register");
918 return MatchOperand_ParseFail;
919 }
920 }
921
922 SMLoc EndLoc =
923 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
924
925 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
926 }
927 else {
928 if (isParsingHLASM())
929 return MatchOperand_NoMatch;
930
931 Register Reg;
932 if (parseRegister(Reg))
933 return MatchOperand_ParseFail;
934
935 if (Reg.Num > 15) {
936 Error(StartLoc, "invalid register");
937 return MatchOperand_ParseFail;
938 }
939
940 // Map to the correct register kind.
941 RegisterKind Kind;
942 unsigned RegNo;
943 if (Reg.Group == RegGR) {
944 Kind = GR64Reg;
945 RegNo = SystemZMC::GR64Regs[Reg.Num];
946 }
947 else if (Reg.Group == RegFP) {
948 Kind = FP64Reg;
949 RegNo = SystemZMC::FP64Regs[Reg.Num];
950 }
951 else if (Reg.Group == RegV) {
952 Kind = VR128Reg;
953 RegNo = SystemZMC::VR128Regs[Reg.Num];
954 }
955 else if (Reg.Group == RegAR) {
956 Kind = AR32Reg;
957 RegNo = SystemZMC::AR32Regs[Reg.Num];
958 }
959 else if (Reg.Group == RegCR) {
960 Kind = CR64Reg;
961 RegNo = SystemZMC::CR64Regs[Reg.Num];
962 }
963 else {
964 return MatchOperand_ParseFail;
965 }
966
967 Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
968 Reg.StartLoc, Reg.EndLoc));
969 }
970 return MatchOperand_Success;
971}
972
973bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
974 RegisterGroup Group) {
975 Reg.StartLoc = Parser.getTok().getLoc();
976 // We have an integer token
977 const MCExpr *Register;
978 if (Parser.parseExpression(Register))
979 return true;
980
981 const auto *CE = dyn_cast<MCConstantExpr>(Register);
982 if (!CE)
983 return true;
984
985 int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
986 int64_t Value = CE->getValue();
987 if (Value < 0 || Value > MaxRegNum) {
988 Error(Parser.getTok().getLoc(), "invalid register");
989 return true;
990 }
991
992 // Assign the Register Number
993 Reg.Num = (unsigned)Value;
994 Reg.Group = Group;
995 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
996
997 // At this point, successfully parsed an integer register.
998 return false;
999}
1000
1001// Parse a memory operand into Reg1, Reg2, Disp, and Length.
1002bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
1003 bool &HaveReg2, Register &Reg2,
1004 const MCExpr *&Disp, const MCExpr *&Length,
1005 bool HasLength, bool HasVectorIndex) {
1006 // Parse the displacement, which must always be present.
1007 if (getParser().parseExpression(Disp))
24
Assuming the condition is false
25
Taking false branch
1008 return true;
1009
1010 // Parse the optional base and index.
1011 HaveReg1 = false;
1012 HaveReg2 = false;
1013 Length = nullptr;
1014
1015 // If we have a scenario as below:
1016 // vgef %v0, 0(0), 0
1017 // This is an example of a "BDVMem" instruction type.
1018 //
1019 // So when we parse this as an integer register, the register group
1020 // needs to be tied to "RegV". Usually when the prefix is passed in
1021 // as %<prefix><reg-number> its easy to check which group it should belong to
1022 // However, if we're passing in just the integer there's no real way to
1023 // "check" what register group it should belong to.
1024 //
1025 // When the user passes in the register as an integer, the user assumes that
1026 // the compiler is responsible for substituting it as the right kind of
1027 // register. Whereas, when the user specifies a "prefix", the onus is on
1028 // the user to make sure they pass in the right kind of register.
1029 //
1030 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1031 // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1032 // (i.e. insn is of type BDVMem) is true.
1033 RegisterGroup RegGroup = HasVectorIndex
25.1
'HasVectorIndex' is false
? RegV : RegGR;
26
'?' condition is false
1034
1035 if (getLexer().is(AsmToken::LParen)) {
27
Taking true branch
1036 Parser.Lex();
1037
1038 if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1039 // Parse the first register.
1040 HaveReg1 = true;
1041 if (parseRegister(Reg1))
1042 return true;
1043 }
1044 // So if we have an integer as the first token in ([tok1], ..), it could:
1045 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1046 // instructions)
1047 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1048 else if (getLexer().is(AsmToken::Integer)) {
28
Taking false branch
1049 if (HasLength) {
1050 // Instruction has a "Length" field, safe to parse the first token as
1051 // the "Length" field
1052 if (getParser().parseExpression(Length))
1053 return true;
1054 } else {
1055 // Otherwise, if the instruction has no "Length" field, parse the
1056 // token as a "Register". We don't have to worry about whether the
1057 // instruction is invalid here, because the caller will take care of
1058 // error reporting.
1059 HaveReg1 = true;
1060 if (parseIntegerRegister(Reg1, RegGroup))
1061 return true;
1062 }
1063 } else {
1064 // If its not an integer or a percent token, then if the instruction
1065 // is reported to have a "Length" then, parse it as "Length".
1066 if (HasLength
28.1
'HasLength' is false
) {
29
Taking false branch
1067 if (getParser().parseExpression(Length))
1068 return true;
1069 }
1070 }
1071
1072 // Check whether there's a second register.
1073 if (getLexer().is(AsmToken::Comma)) {
30
Taking true branch
1074 Parser.Lex();
1075 HaveReg2 = true;
1076
1077 if (getLexer().is(AsmToken::Integer)) {
1078 if (parseIntegerRegister(Reg2, RegGR))
1079 return true;
1080 } else {
1081 if (isParsingATT() && parseRegister(Reg2))
1082 return true;
1083 }
1084 }
1085
1086 // Consume the closing bracket.
1087 if (getLexer().isNot(AsmToken::RParen))
31
Taking false branch
1088 return Error(Parser.getTok().getLoc(), "unexpected token in address");
1089 Parser.Lex();
1090 }
1091 return false;
32
Returning without writing to 'Reg2.Group'
1092}
1093
1094// Verify that Reg is a valid address register (base or index).
1095bool
1096SystemZAsmParser::parseAddressRegister(Register &Reg) {
1097 if (Reg.Group == RegV) {
41
The left operand of '==' is a garbage value
1098 Error(Reg.StartLoc, "invalid use of vector addressing");
1099 return true;
1100 } else if (Reg.Group != RegGR) {
1101 Error(Reg.StartLoc, "invalid address register");
1102 return true;
1103 }
1104 return false;
1105}
1106
1107// Parse a memory operand and add it to Operands. The other arguments
1108// are as above.
1109OperandMatchResultTy
1110SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
1111 RegisterKind RegKind) {
1112 SMLoc StartLoc = Parser.getTok().getLoc();
1113 unsigned Base = 0, Index = 0, LengthReg = 0;
1114 Register Reg1, Reg2;
1115 bool HaveReg1, HaveReg2;
1116 const MCExpr *Disp;
1117 const MCExpr *Length;
1118
1119 bool HasLength = (MemKind
20.1
'MemKind' is not equal to BDLMem
== BDLMem) ? true : false;
21
'?' condition is false
1120 bool HasVectorIndex = (MemKind
21.1
'MemKind' is not equal to BDVMem
== BDVMem) ? true : false;
22
'?' condition is false
1121 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
23
Calling 'SystemZAsmParser::parseAddress'
33
Returning from 'SystemZAsmParser::parseAddress'
34
Taking false branch
1122 HasVectorIndex))
1123 return MatchOperand_ParseFail;
1124
1125 const unsigned *Regs;
1126 switch (RegKind) {
35
Control jumps to 'case GR64Reg:' at line 1128
1127 case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1128 case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1129 default: llvm_unreachable("invalid RegKind")::llvm::llvm_unreachable_internal("invalid RegKind", "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1129)
;
1130 }
1131
1132 switch (MemKind) {
37
Control jumps to 'case BDXMem:' at line 1146
1133 case BDMem:
1134 // If we have Reg1, it must be an address register.
1135 if (HaveReg1) {
1136 if (parseAddressRegister(Reg1))
1137 return MatchOperand_ParseFail;
1138 Base = Regs[Reg1.Num];
1139 }
1140 // There must be no Reg2.
1141 if (HaveReg2) {
1142 Error(StartLoc, "invalid use of indexed addressing");
1143 return MatchOperand_ParseFail;
1144 }
1145 break;
1146 case BDXMem:
1147 // If we have Reg1, it must be an address register.
1148 if (HaveReg1
37.1
'HaveReg1' is false
) {
36
Execution continues on line 1132
38
Taking false branch
1149 if (parseAddressRegister(Reg1))
1150 return MatchOperand_ParseFail;
1151 // If the are two registers, the first one is the index and the
1152 // second is the base.
1153 if (HaveReg2)
1154 Index = Regs[Reg1.Num];
1155 else
1156 Base = Regs[Reg1.Num];
1157 }
1158 // If we have Reg2, it must be an address register.
1159 if (HaveReg2
38.1
'HaveReg2' is true
) {
39
Taking true branch
1160 if (parseAddressRegister(Reg2))
40
Calling 'SystemZAsmParser::parseAddressRegister'
1161 return MatchOperand_ParseFail;
1162 Base = Regs[Reg2.Num];
1163 }
1164 break;
1165 case BDLMem:
1166 // If we have Reg2, it must be an address register.
1167 if (HaveReg2) {
1168 if (parseAddressRegister(Reg2))
1169 return MatchOperand_ParseFail;
1170 Base = Regs[Reg2.Num];
1171 }
1172 // We cannot support base+index addressing.
1173 if (HaveReg1 && HaveReg2) {
1174 Error(StartLoc, "invalid use of indexed addressing");
1175 return MatchOperand_ParseFail;
1176 }
1177 // We must have a length.
1178 if (!Length) {
1179 Error(StartLoc, "missing length in address");
1180 return MatchOperand_ParseFail;
1181 }
1182 break;
1183 case BDRMem:
1184 // We must have Reg1, and it must be a GPR.
1185 if (!HaveReg1 || Reg1.Group != RegGR) {
1186 Error(StartLoc, "invalid operand for instruction");
1187 return MatchOperand_ParseFail;
1188 }
1189 LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1190 // If we have Reg2, it must be an address register.
1191 if (HaveReg2) {
1192 if (parseAddressRegister(Reg2))
1193 return MatchOperand_ParseFail;
1194 Base = Regs[Reg2.Num];
1195 }
1196 break;
1197 case BDVMem:
1198 // We must have Reg1, and it must be a vector register.
1199 if (!HaveReg1 || Reg1.Group != RegV) {
1200 Error(StartLoc, "vector index required in address");
1201 return MatchOperand_ParseFail;
1202 }
1203 Index = SystemZMC::VR128Regs[Reg1.Num];
1204 // If we have Reg2, it must be an address register.
1205 if (HaveReg2) {
1206 if (parseAddressRegister(Reg2))
1207 return MatchOperand_ParseFail;
1208 Base = Regs[Reg2.Num];
1209 }
1210 break;
1211 }
1212
1213 SMLoc EndLoc =
1214 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1215 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1216 Index, Length, LengthReg,
1217 StartLoc, EndLoc));
1218 return MatchOperand_Success;
1219}
1220
1221bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1222 StringRef IDVal = DirectiveID.getIdentifier();
1223
1224 if (IDVal == ".insn")
1
Assuming the condition is true
2
Taking true branch
1225 return ParseDirectiveInsn(DirectiveID.getLoc());
3
Calling 'SystemZAsmParser::ParseDirectiveInsn'
1226 if (IDVal == ".machine")
1227 return ParseDirectiveMachine(DirectiveID.getLoc());
1228 if (IDVal.startswith(".gnu_attribute"))
1229 return ParseGNUAttribute(DirectiveID.getLoc());
1230
1231 return true;
1232}
1233
1234/// ParseDirectiveInsn
1235/// ::= .insn [ format, encoding, (operands (, operands)*) ]
1236bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1237 MCAsmParser &Parser = getParser();
1238
1239 // Expect instruction format as identifier.
1240 StringRef Format;
1241 SMLoc ErrorLoc = Parser.getTok().getLoc();
1242 if (Parser.parseIdentifier(Format))
4
Assuming the condition is false
5
Taking false branch
1243 return Error(ErrorLoc, "expected instruction format");
1244
1245 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1246
1247 // Find entry for this format in InsnMatchTable.
1248 auto EntryRange =
1249 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1250 Format, CompareInsn());
1251
1252 // If first == second, couldn't find a match in the table.
1253 if (EntryRange.first == EntryRange.second)
6
Assuming field 'first' is not equal to field 'second'
7
Taking false branch
1254 return Error(ErrorLoc, "unrecognized format");
1255
1256 struct InsnMatchEntry *Entry = EntryRange.first;
1257
1258 // Format should match from equal_range.
1259 assert(Entry->Format == Format)(static_cast <bool> (Entry->Format == Format) ? void
(0) : __assert_fail ("Entry->Format == Format", "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1259, __extension__ __PRETTY_FUNCTION__))
;
8
Assuming the condition is true
9
'?' condition is true
1260
1261 // Parse the following operands using the table's information.
1262 for (int i = 0; i < Entry->NumOperands; i++) {
10
Assuming 'i' is < field 'NumOperands'
11
Loop condition is true. Entering loop body
1263 MatchClassKind Kind = Entry->OperandKinds[i];
1264
1265 SMLoc StartLoc = Parser.getTok().getLoc();
1266
1267 // Always expect commas as separators for operands.
1268 if (getLexer().isNot(AsmToken::Comma))
12
Taking false branch
1269 return Error(StartLoc, "unexpected token in directive");
1270 Lex();
1271
1272 // Parse operands.
1273 OperandMatchResultTy ResTy;
1274 if (Kind == MCK_AnyReg)
13
Assuming 'Kind' is not equal to MCK_AnyReg
14
Taking false branch
1275 ResTy = parseAnyReg(Operands);
1276 else if (Kind == MCK_VR128)
15
Assuming 'Kind' is not equal to MCK_VR128
1277 ResTy = parseVR128(Operands);
1278 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
16
Assuming 'Kind' is not equal to MCK_BDXAddr64Disp12
17
Assuming 'Kind' is equal to MCK_BDXAddr64Disp20
18
Taking true branch
1279 ResTy = parseBDXAddr64(Operands);
19
Calling 'SystemZAsmParser::parseBDXAddr64'
1280 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1281 ResTy = parseBDAddr64(Operands);
1282 else if (Kind == MCK_BDVAddr64Disp12)
1283 ResTy = parseBDVAddr64(Operands);
1284 else if (Kind == MCK_PCRel32)
1285 ResTy = parsePCRel32(Operands);
1286 else if (Kind == MCK_PCRel16)
1287 ResTy = parsePCRel16(Operands);
1288 else {
1289 // Only remaining operand kind is an immediate.
1290 const MCExpr *Expr;
1291 SMLoc StartLoc = Parser.getTok().getLoc();
1292
1293 // Expect immediate expression.
1294 if (Parser.parseExpression(Expr))
1295 return Error(StartLoc, "unexpected token in directive");
1296
1297 SMLoc EndLoc =
1298 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1299
1300 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1301 ResTy = MatchOperand_Success;
1302 }
1303
1304 if (ResTy != MatchOperand_Success)
1305 return true;
1306 }
1307
1308 // Build the instruction with the parsed operands.
1309 MCInst Inst = MCInstBuilder(Entry->Opcode);
1310
1311 for (size_t i = 0; i < Operands.size(); i++) {
1312 MCParsedAsmOperand &Operand = *Operands[i];
1313 MatchClassKind Kind = Entry->OperandKinds[i];
1314
1315 // Verify operand.
1316 unsigned Res = validateOperandClass(Operand, Kind);
1317 if (Res != Match_Success)
1318 return Error(Operand.getStartLoc(), "unexpected operand type");
1319
1320 // Add operands to instruction.
1321 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1322 if (ZOperand.isReg())
1323 ZOperand.addRegOperands(Inst, 1);
1324 else if (ZOperand.isMem(BDMem))
1325 ZOperand.addBDAddrOperands(Inst, 2);
1326 else if (ZOperand.isMem(BDXMem))
1327 ZOperand.addBDXAddrOperands(Inst, 3);
1328 else if (ZOperand.isMem(BDVMem))
1329 ZOperand.addBDVAddrOperands(Inst, 3);
1330 else if (ZOperand.isImm())
1331 ZOperand.addImmOperands(Inst, 1);
1332 else
1333 llvm_unreachable("unexpected operand type")::llvm::llvm_unreachable_internal("unexpected operand type", "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1333)
;
1334 }
1335
1336 // Emit as a regular instruction.
1337 Parser.getStreamer().emitInstruction(Inst, getSTI());
1338
1339 return false;
1340}
1341
1342/// ParseDirectiveMachine
1343/// ::= .machine [ mcpu ]
1344bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1345 MCAsmParser &Parser = getParser();
1346 if (Parser.getTok().isNot(AsmToken::Identifier) &&
1347 Parser.getTok().isNot(AsmToken::String))
1348 return Error(L, "unexpected token in '.machine' directive");
1349
1350 StringRef CPU = Parser.getTok().getIdentifier();
1351 Parser.Lex();
1352 if (parseToken(AsmToken::EndOfStatement))
1353 return addErrorSuffix(" in '.machine' directive");
1354
1355 MCSubtargetInfo &STI = copySTI();
1356 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1357 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1358
1359 getTargetStreamer().emitMachine(CPU);
1360
1361 return false;
1362}
1363
1364bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
1365 int64_t Tag;
1366 int64_t IntegerValue;
1367 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
1368 return false;
1369
1370 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
1371 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) {
1372 Error(Parser.getTok().getLoc(),
1373 "Unrecognized .gnu_attribute tag/value pair.");
1374 return false;
1375 }
1376
1377 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
1378
1379 return true;
1380}
1381
1382bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1383 SMLoc &EndLoc, bool RestoreOnFailure) {
1384 Register Reg;
1385 if (parseRegister(Reg, RestoreOnFailure))
1386 return true;
1387 if (Reg.Group == RegGR)
1388 RegNo = SystemZMC::GR64Regs[Reg.Num];
1389 else if (Reg.Group == RegFP)
1390 RegNo = SystemZMC::FP64Regs[Reg.Num];
1391 else if (Reg.Group == RegV)
1392 RegNo = SystemZMC::VR128Regs[Reg.Num];
1393 else if (Reg.Group == RegAR)
1394 RegNo = SystemZMC::AR32Regs[Reg.Num];
1395 else if (Reg.Group == RegCR)
1396 RegNo = SystemZMC::CR64Regs[Reg.Num];
1397 StartLoc = Reg.StartLoc;
1398 EndLoc = Reg.EndLoc;
1399 return false;
1400}
1401
1402bool SystemZAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1403 SMLoc &EndLoc) {
1404 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1405}
1406
1407OperandMatchResultTy SystemZAsmParser::tryParseRegister(MCRegister &RegNo,
1408 SMLoc &StartLoc,
1409 SMLoc &EndLoc) {
1410 bool Result =
1411 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1412 bool PendingErrors = getParser().hasPendingError();
1413 getParser().clearPendingErrors();
1414 if (PendingErrors)
1415 return MatchOperand_ParseFail;
1416 if (Result)
1417 return MatchOperand_NoMatch;
1418 return MatchOperand_Success;
1419}
1420
1421bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1422 StringRef Name, SMLoc NameLoc,
1423 OperandVector &Operands) {
1424
1425 // Apply mnemonic aliases first, before doing anything else, in
1426 // case the target uses it.
1427 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1428
1429 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1430
1431 // Read the remaining operands.
1432 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1433 // Read the first operand.
1434 if (parseOperand(Operands, Name)) {
1435 return true;
1436 }
1437
1438 // Read any subsequent operands.
1439 while (getLexer().is(AsmToken::Comma)) {
1440 Parser.Lex();
1441
1442 if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1443 return Error(
1444 Parser.getTok().getLoc(),
1445 "No space allowed between comma that separates operand entries");
1446
1447 if (parseOperand(Operands, Name)) {
1448 return true;
1449 }
1450 }
1451
1452 // Under the HLASM variant, we could have the remark field
1453 // The remark field occurs after the operation entries
1454 // There is a space that separates the operation entries and the
1455 // remark field.
1456 if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1457 // We've confirmed that there is a Remark field.
1458 StringRef Remark(getLexer().LexUntilEndOfStatement());
1459 Parser.Lex();
1460
1461 // If there is nothing after the space, then there is nothing to emit
1462 // We could have a situation as this:
1463 // " \n"
1464 // After lexing above, we will have
1465 // "\n"
1466 // This isn't an explicit remark field, so we don't have to output
1467 // this as a comment.
1468 if (Remark.size())
1469 // Output the entire Remarks Field as a comment
1470 getStreamer().AddComment(Remark);
1471 }
1472
1473 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1474 SMLoc Loc = getLexer().getLoc();
1475 return Error(Loc, "unexpected token in argument list");
1476 }
1477 }
1478
1479 // Consume the EndOfStatement.
1480 Parser.Lex();
1481 return false;
1482}
1483
1484bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1485 StringRef Mnemonic) {
1486 // Check if the current operand has a custom associated parser, if so, try to
1487 // custom parse the operand, or fallback to the general approach. Force all
1488 // features to be available during the operand check, or else we will fail to
1489 // find the custom parser, and then we will later get an InvalidOperand error
1490 // instead of a MissingFeature errror.
1491 FeatureBitset AvailableFeatures = getAvailableFeatures();
1492 FeatureBitset All;
1493 All.set();
1494 setAvailableFeatures(All);
1495 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1496 setAvailableFeatures(AvailableFeatures);
1497 if (ResTy == MatchOperand_Success)
1498 return false;
1499
1500 // If there wasn't a custom match, try the generic matcher below. Otherwise,
1501 // there was a match, but an error occurred, in which case, just return that
1502 // the operand parsing failed.
1503 if (ResTy == MatchOperand_ParseFail)
1504 return true;
1505
1506 // Check for a register. All real register operands should have used
1507 // a context-dependent parse routine, which gives the required register
1508 // class. The code is here to mop up other cases, like those where
1509 // the instruction isn't recognized.
1510 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1511 Register Reg;
1512 if (parseRegister(Reg))
1513 return true;
1514 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1515 return false;
1516 }
1517
1518 // The only other type of operand is an immediate or address. As above,
1519 // real address operands should have used a context-dependent parse routine,
1520 // so we treat any plain expression as an immediate.
1521 SMLoc StartLoc = Parser.getTok().getLoc();
1522 Register Reg1, Reg2;
1523 bool HaveReg1, HaveReg2;
1524 const MCExpr *Expr;
1525 const MCExpr *Length;
1526 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1527 /*HasLength*/ true, /*HasVectorIndex*/ true))
1528 return true;
1529 // If the register combination is not valid for any instruction, reject it.
1530 // Otherwise, fall back to reporting an unrecognized instruction.
1531 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1532 && parseAddressRegister(Reg1))
1533 return true;
1534 if (HaveReg2 && parseAddressRegister(Reg2))
1535 return true;
1536
1537 SMLoc EndLoc =
1538 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1539 if (HaveReg1 || HaveReg2 || Length)
1540 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1541 else
1542 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1543 return false;
1544}
1545
1546bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1547 OperandVector &Operands,
1548 MCStreamer &Out,
1549 uint64_t &ErrorInfo,
1550 bool MatchingInlineAsm) {
1551 MCInst Inst;
1552 unsigned MatchResult;
1553
1554 unsigned Dialect = getMAIAssemblerDialect();
1555
1556 FeatureBitset MissingFeatures;
1557 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1558 MatchingInlineAsm, Dialect);
1559 switch (MatchResult) {
1560 case Match_Success:
1561 Inst.setLoc(IDLoc);
1562 Out.emitInstruction(Inst, getSTI());
1563 return false;
1564
1565 case Match_MissingFeature: {
1566 assert(MissingFeatures.any() && "Unknown missing feature!")(static_cast <bool> (MissingFeatures.any() && "Unknown missing feature!"
) ? void (0) : __assert_fail ("MissingFeatures.any() && \"Unknown missing feature!\""
, "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp", 1566
, __extension__ __PRETTY_FUNCTION__))
;
1567 // Special case the error message for the very common case where only
1568 // a single subtarget feature is missing
1569 std::string Msg = "instruction requires:";
1570 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1571 if (MissingFeatures[I]) {
1572 Msg += " ";
1573 Msg += getSubtargetFeatureName(I);
1574 }
1575 }
1576 return Error(IDLoc, Msg);
1577 }
1578
1579 case Match_InvalidOperand: {
1580 SMLoc ErrorLoc = IDLoc;
1581 if (ErrorInfo != ~0ULL) {
1582 if (ErrorInfo >= Operands.size())
1583 return Error(IDLoc, "too few operands for instruction");
1584
1585 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1586 if (ErrorLoc == SMLoc())
1587 ErrorLoc = IDLoc;
1588 }
1589 return Error(ErrorLoc, "invalid operand for instruction");
1590 }
1591
1592 case Match_MnemonicFail: {
1593 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1594 std::string Suggestion = SystemZMnemonicSpellCheck(
1595 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1596 return Error(IDLoc, "invalid instruction" + Suggestion,
1597 ((SystemZOperand &)*Operands[0]).getLocRange());
1598 }
1599 }
1600
1601 llvm_unreachable("Unexpected match type")::llvm::llvm_unreachable_internal("Unexpected match type", "llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1601)
;
1602}
1603
1604OperandMatchResultTy
1605SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1606 int64_t MaxVal, bool AllowTLS) {
1607 MCContext &Ctx = getContext();
1608 MCStreamer &Out = getStreamer();
1609 const MCExpr *Expr;
1610 SMLoc StartLoc = Parser.getTok().getLoc();
1611 if (getParser().parseExpression(Expr))
1612 return MatchOperand_NoMatch;
1613
1614 auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
1615 if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1616 int64_t Value = CE->getValue();
1617 if (Negate)
1618 Value = -Value;
1619 if ((Value & 1) || Value < MinVal || Value > MaxVal)
1620 return true;
1621 }
1622 return false;
1623 };
1624
1625 // For consistency with the GNU assembler, treat immediates as offsets
1626 // from ".".
1627 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1628 if (isParsingHLASM()) {
1629 Error(StartLoc, "Expected PC-relative expression");
1630 return MatchOperand_ParseFail;
1631 }
1632 if (isOutOfRangeConstant(CE, false)) {
1633 Error(StartLoc, "offset out of range");
1634 return MatchOperand_ParseFail;
1635 }
1636 int64_t Value = CE->getValue();
1637 MCSymbol *Sym = Ctx.createTempSymbol();
1638 Out.emitLabel(Sym);
1639 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1640 Ctx);
1641 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1642 }
1643
1644 // For consistency with the GNU assembler, conservatively assume that a
1645 // constant offset must by itself be within the given size range.
1646 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1647 if (isOutOfRangeConstant(BE->getLHS(), false) ||
1648 isOutOfRangeConstant(BE->getRHS(),
1649 BE->getOpcode() == MCBinaryExpr::Sub)) {
1650 Error(StartLoc, "offset out of range");
1651 return MatchOperand_ParseFail;
1652 }
1653
1654 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1655 const MCExpr *Sym = nullptr;
1656 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1657 Parser.Lex();
1658
1659 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1660 Error(Parser.getTok().getLoc(), "unexpected token");
1661 return MatchOperand_ParseFail;
1662 }
1663
1664 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1665 StringRef Name = Parser.getTok().getString();
1666 if (Name == "tls_gdcall")
1667 Kind = MCSymbolRefExpr::VK_TLSGD;
1668 else if (Name == "tls_ldcall")
1669 Kind = MCSymbolRefExpr::VK_TLSLDM;
1670 else {
1671 Error(Parser.getTok().getLoc(), "unknown TLS tag");
1672 return MatchOperand_ParseFail;
1673 }
1674 Parser.Lex();
1675
1676 if (Parser.getTok().isNot(AsmToken::Colon)) {
1677 Error(Parser.getTok().getLoc(), "unexpected token");
1678 return MatchOperand_ParseFail;
1679 }
1680 Parser.Lex();
1681
1682 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1683 Error(Parser.getTok().getLoc(), "unexpected token");
1684 return MatchOperand_ParseFail;
1685 }
1686
1687 StringRef Identifier = Parser.getTok().getString();
1688 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1689 Kind, Ctx);
1690 Parser.Lex();
1691 }
1692
1693 SMLoc EndLoc =
1694 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1695
1696 if (AllowTLS)
1697 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1698 StartLoc, EndLoc));
1699 else
1700 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1701
1702 return MatchOperand_Success;
1703}
1704
1705bool SystemZAsmParser::isLabel(AsmToken &Token) {
1706 if (isParsingATT())
1707 return true;
1708
1709 // HLASM labels are ordinary symbols.
1710 // An HLASM label always starts at column 1.
1711 // An ordinary symbol syntax is laid out as follows:
1712 // Rules:
1713 // 1. Has to start with an "alphabetic character". Can be followed by up to
1714 // 62 alphanumeric characters. An "alphabetic character", in this scenario,
1715 // is a letter from 'A' through 'Z', or from 'a' through 'z',
1716 // or '$', '_', '#', or '@'
1717 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1718 // are all treated as the same symbol. However, the processing for the case
1719 // folding will not be done in this function.
1720 StringRef RawLabel = Token.getString();
1721 SMLoc Loc = Token.getLoc();
1722
1723 // An HLASM label cannot be empty.
1724 if (!RawLabel.size())
1725 return !Error(Loc, "HLASM Label cannot be empty");
1726
1727 // An HLASM label cannot exceed greater than 63 characters.
1728 if (RawLabel.size() > 63)
1729 return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1730
1731 // A label must start with an "alphabetic character".
1732 if (!isHLASMAlpha(RawLabel[0]))
1733 return !Error(Loc, "HLASM Label has to start with an alphabetic "
1734 "character or the underscore character");
1735
1736 // Now, we've established that the length is valid
1737 // and the first character is alphabetic.
1738 // Check whether remaining string is alphanumeric.
1739 for (unsigned I = 1; I < RawLabel.size(); ++I)
1740 if (!isHLASMAlnum(RawLabel[I]))
1741 return !Error(Loc, "HLASM Label has to be alphanumeric");
1742
1743 return true;
1744}
1745
1746// Force static initialization.
1747extern "C" LLVM_EXTERNAL_VISIBILITY__attribute__((visibility("default"))) void LLVMInitializeSystemZAsmParser() {
1748 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1749}