Bug Summary

File:lib/Target/SystemZ/SystemZISelLowering.cpp
Warning:line 4567, column 41
The result of the left shift is undefined due to shifting by '18446744073709551615', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SystemZISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Target/SystemZ -I /build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/Target/SystemZ -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp

1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZISelLowering.h"
15#include "SystemZCallingConv.h"
16#include "SystemZConstantPoolValue.h"
17#include "SystemZMachineFunctionInfo.h"
18#include "SystemZTargetMachine.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23#include "llvm/IR/Intrinsics.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/KnownBits.h"
27#include <cctype>
28
29using namespace llvm;
30
31#define DEBUG_TYPE"systemz-lower" "systemz-lower"
32
33namespace {
34// Represents information about a comparison.
35struct Comparison {
36 Comparison(SDValue Op0In, SDValue Op1In)
37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38
39 // The operands to the comparison.
40 SDValue Op0, Op1;
41
42 // The opcode that should be used to compare Op0 and Op1.
43 unsigned Opcode;
44
45 // A SystemZICMP value. Only used for integer comparisons.
46 unsigned ICmpType;
47
48 // The mask of CC values that Opcode can produce.
49 unsigned CCValid;
50
51 // The mask of CC values for which the original condition is true.
52 unsigned CCMask;
53};
54} // end anonymous namespace
55
56// Classify VT as either 32 or 64 bit.
57static bool is32Bit(EVT VT) {
58 switch (VT.getSimpleVT().SimpleTy) {
59 case MVT::i32:
60 return true;
61 case MVT::i64:
62 return false;
63 default:
64 llvm_unreachable("Unsupported type")::llvm::llvm_unreachable_internal("Unsupported type", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 64)
;
65 }
66}
67
68// Return a version of MachineOperand that can be safely used before the
69// final use.
70static MachineOperand earlyUseOperand(MachineOperand Op) {
71 if (Op.isReg())
72 Op.setIsKill(false);
73 return Op;
74}
75
76SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77 const SystemZSubtarget &STI)
78 : TargetLowering(TM), Subtarget(STI) {
79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80
81 // Set up the register classes.
82 if (Subtarget.hasHighWord())
83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84 else
85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87 if (Subtarget.hasVector()) {
88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90 } else {
91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93 }
94 if (Subtarget.hasVectorEnhancements1())
95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96 else
97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98
99 if (Subtarget.hasVector()) {
100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106 }
107
108 // Compute derived properties from the register classes
109 computeRegisterProperties(Subtarget.getRegisterInfo());
110
111 // Set up special registers.
112 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113
114 // TODO: It may be better to default to latency-oriented scheduling, however
115 // LLVM's current latency-oriented scheduler can't handle physreg definitions
116 // such as SystemZ has with CC, so set this to the register-pressure
117 // scheduler, because it can.
118 setSchedulingPreference(Sched::RegPressure);
119
120 setBooleanContents(ZeroOrOneBooleanContent);
121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122
123 // Instructions are strings of 2-byte aligned 2-byte values.
124 setMinFunctionAlignment(2);
125 // For performance reasons we prefer 16-byte alignment.
126 setPrefFunctionAlignment(4);
127
128 // Handle operations that are handled in a similar way for all types.
129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
130 I <= MVT::LAST_FP_VALUETYPE;
131 ++I) {
132 MVT VT = MVT::SimpleValueType(I);
133 if (isTypeLegal(VT)) {
134 // Lower SET_CC into an IPM-based sequence.
135 setOperationAction(ISD::SETCC, VT, Custom);
136
137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
138 setOperationAction(ISD::SELECT, VT, Expand);
139
140 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
141 setOperationAction(ISD::SELECT_CC, VT, Custom);
142 setOperationAction(ISD::BR_CC, VT, Custom);
143 }
144 }
145
146 // Expand jump table branches as address arithmetic followed by an
147 // indirect jump.
148 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149
150 // Expand BRCOND into a BR_CC (see above).
151 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
152
153 // Handle integer types.
154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
155 I <= MVT::LAST_INTEGER_VALUETYPE;
156 ++I) {
157 MVT VT = MVT::SimpleValueType(I);
158 if (isTypeLegal(VT)) {
159 // Expand individual DIV and REMs into DIVREMs.
160 setOperationAction(ISD::SDIV, VT, Expand);
161 setOperationAction(ISD::UDIV, VT, Expand);
162 setOperationAction(ISD::SREM, VT, Expand);
163 setOperationAction(ISD::UREM, VT, Expand);
164 setOperationAction(ISD::SDIVREM, VT, Custom);
165 setOperationAction(ISD::UDIVREM, VT, Custom);
166
167 // Support addition/subtraction with overflow.
168 setOperationAction(ISD::SADDO, VT, Custom);
169 setOperationAction(ISD::SSUBO, VT, Custom);
170
171 // Support addition/subtraction with carry.
172 setOperationAction(ISD::UADDO, VT, Custom);
173 setOperationAction(ISD::USUBO, VT, Custom);
174
175 // Support carry in as value rather than glue.
176 setOperationAction(ISD::ADDCARRY, VT, Custom);
177 setOperationAction(ISD::SUBCARRY, VT, Custom);
178
179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
180 // stores, putting a serialization instruction after the stores.
181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
183
184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
185 // available, or if the operand is constant.
186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
187
188 // Use POPCNT on z196 and above.
189 if (Subtarget.hasPopulationCount())
190 setOperationAction(ISD::CTPOP, VT, Custom);
191 else
192 setOperationAction(ISD::CTPOP, VT, Expand);
193
194 // No special instructions for these.
195 setOperationAction(ISD::CTTZ, VT, Expand);
196 setOperationAction(ISD::ROTR, VT, Expand);
197
198 // Use *MUL_LOHI where possible instead of MULH*.
199 setOperationAction(ISD::MULHS, VT, Expand);
200 setOperationAction(ISD::MULHU, VT, Expand);
201 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
202 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
203
204 // Only z196 and above have native support for conversions to unsigned.
205 // On z10, promoting to i64 doesn't generate an inexact condition for
206 // values that are outside the i32 range but in the i64 range, so use
207 // the default expansion.
208 if (!Subtarget.hasFPExtension())
209 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
210 }
211 }
212
213 // Type legalization will convert 8- and 16-bit atomic operations into
214 // forms that operate on i32s (but still keeping the original memory VT).
215 // Lower them into full i32 operations.
216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
227
228 // Even though i128 is not a legal type, we still need to custom lower
229 // the atomic operations in order to exploit SystemZ instructions.
230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
232
233 // We can use the CC result of compare-and-swap to implement
234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
238
239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
240
241 // Traps are legal, as we will convert them to "j .+2".
242 setOperationAction(ISD::TRAP, MVT::Other, Legal);
243
244 // z10 has instructions for signed but not unsigned FP conversion.
245 // Handle unsigned 32-bit types as signed 64-bit types.
246 if (!Subtarget.hasFPExtension()) {
247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
249 }
250
251 // We have native support for a 64-bit CTLZ, via FLOGR.
252 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
253 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254
255 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256 setOperationAction(ISD::OR, MVT::i64, Custom);
257
258 // FIXME: Can we support these natively?
259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262
263 // We have native instructions for i8, i16 and i32 extensions, but not i1.
264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265 for (MVT VT : MVT::integer_valuetypes()) {
266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
269 }
270
271 // Handle the various types of symbolic address.
272 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
276 setOperationAction(ISD::JumpTable, PtrVT, Custom);
277
278 // We need to handle dynamic allocations specially because of the
279 // 160-byte area at the bottom of the stack.
280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282
283 // Use custom expanders so that we can force the function to use
284 // a frame pointer.
285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287
288 // Handle prefetches with PFD or PFDRL.
289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290
291 for (MVT VT : MVT::vector_valuetypes()) {
292 // Assume by default that all vector operations need to be expanded.
293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294 if (getOperationAction(Opcode, VT) == Legal)
295 setOperationAction(Opcode, VT, Expand);
296
297 // Likewise all truncating stores and extending loads.
298 for (MVT InnerVT : MVT::vector_valuetypes()) {
299 setTruncStoreAction(VT, InnerVT, Expand);
300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303 }
304
305 if (isTypeLegal(VT)) {
306 // These operations are legal for anything that can be stored in a
307 // vector register, even if there is no native support for the format
308 // as such. In particular, we can do these for v4f32 even though there
309 // are no specific instructions for that format.
310 setOperationAction(ISD::LOAD, VT, Legal);
311 setOperationAction(ISD::STORE, VT, Legal);
312 setOperationAction(ISD::VSELECT, VT, Legal);
313 setOperationAction(ISD::BITCAST, VT, Legal);
314 setOperationAction(ISD::UNDEF, VT, Legal);
315
316 // Likewise, except that we need to replace the nodes with something
317 // more specific.
318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320 }
321 }
322
323 // Handle integer vector types.
324 for (MVT VT : MVT::integer_vector_valuetypes()) {
325 if (isTypeLegal(VT)) {
326 // These operations have direct equivalents.
327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329 setOperationAction(ISD::ADD, VT, Legal);
330 setOperationAction(ISD::SUB, VT, Legal);
331 if (VT != MVT::v2i64)
332 setOperationAction(ISD::MUL, VT, Legal);
333 setOperationAction(ISD::AND, VT, Legal);
334 setOperationAction(ISD::OR, VT, Legal);
335 setOperationAction(ISD::XOR, VT, Legal);
336 if (Subtarget.hasVectorEnhancements1())
337 setOperationAction(ISD::CTPOP, VT, Legal);
338 else
339 setOperationAction(ISD::CTPOP, VT, Custom);
340 setOperationAction(ISD::CTTZ, VT, Legal);
341 setOperationAction(ISD::CTLZ, VT, Legal);
342
343 // Convert a GPR scalar to a vector by inserting it into element 0.
344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345
346 // Use a series of unpacks for extensions.
347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349
350 // Detect shifts by a scalar amount and convert them into
351 // V*_BY_SCALAR.
352 setOperationAction(ISD::SHL, VT, Custom);
353 setOperationAction(ISD::SRA, VT, Custom);
354 setOperationAction(ISD::SRL, VT, Custom);
355
356 // At present ROTL isn't matched by DAGCombiner. ROTR should be
357 // converted into ROTL.
358 setOperationAction(ISD::ROTL, VT, Expand);
359 setOperationAction(ISD::ROTR, VT, Expand);
360
361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362 // and inverting the result as necessary.
363 setOperationAction(ISD::SETCC, VT, Custom);
364 }
365 }
366
367 if (Subtarget.hasVector()) {
368 // There should be no need to check for float types other than v2f64
369 // since <2 x f32> isn't a legal type.
370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378 }
379
380 // Handle floating-point types.
381 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382 I <= MVT::LAST_FP_VALUETYPE;
383 ++I) {
384 MVT VT = MVT::SimpleValueType(I);
385 if (isTypeLegal(VT)) {
386 // We can use FI for FRINT.
387 setOperationAction(ISD::FRINT, VT, Legal);
388
389 // We can use the extended form of FI for other rounding operations.
390 if (Subtarget.hasFPExtension()) {
391 setOperationAction(ISD::FNEARBYINT, VT, Legal);
392 setOperationAction(ISD::FFLOOR, VT, Legal);
393 setOperationAction(ISD::FCEIL, VT, Legal);
394 setOperationAction(ISD::FTRUNC, VT, Legal);
395 setOperationAction(ISD::FROUND, VT, Legal);
396 }
397
398 // No special instructions for these.
399 setOperationAction(ISD::FSIN, VT, Expand);
400 setOperationAction(ISD::FCOS, VT, Expand);
401 setOperationAction(ISD::FSINCOS, VT, Expand);
402 setOperationAction(ISD::FREM, VT, Expand);
403 setOperationAction(ISD::FPOW, VT, Expand);
404 }
405 }
406
407 // Handle floating-point vector types.
408 if (Subtarget.hasVector()) {
409 // Scalar-to-vector conversion is just a subreg.
410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
412
413 // Some insertions and extractions can be done directly but others
414 // need to go via integers.
415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
419
420 // These operations have direct equivalents.
421 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
425 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
427 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
435 }
436
437 // The vector enhancements facility 1 has instructions for these.
438 if (Subtarget.hasVectorEnhancements1()) {
439 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
445 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
453
454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
455 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
457 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
458
459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
460 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
462 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
463
464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
465 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
467 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
468
469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
470 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
472 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
473
474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
475 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
477 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
478 }
479
480 // We have fused multiply-addition for f32 and f64 but not f128.
481 setOperationAction(ISD::FMA, MVT::f32, Legal);
482 setOperationAction(ISD::FMA, MVT::f64, Legal);
483 if (Subtarget.hasVectorEnhancements1())
484 setOperationAction(ISD::FMA, MVT::f128, Legal);
485 else
486 setOperationAction(ISD::FMA, MVT::f128, Expand);
487
488 // We don't have a copysign instruction on vector registers.
489 if (Subtarget.hasVectorEnhancements1())
490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
491
492 // Needed so that we don't try to implement f128 constant loads using
493 // a load-and-extend of a f80 constant (in cases where the constant
494 // would fit in an f80).
495 for (MVT VT : MVT::fp_valuetypes())
496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
497
498 // We don't have extending load instruction on vector registers.
499 if (Subtarget.hasVectorEnhancements1()) {
500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
502 }
503
504 // Floating-point truncation and stores need to be done separately.
505 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
506 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
507 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
508
509 // We have 64-bit FPR<->GPR moves, but need special handling for
510 // 32-bit forms.
511 if (!Subtarget.hasVector()) {
512 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
513 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
514 }
515
516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
517 // structure, but VAEND is a no-op.
518 setOperationAction(ISD::VASTART, MVT::Other, Custom);
519 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
520 setOperationAction(ISD::VAEND, MVT::Other, Expand);
521
522 // Codes for which we want to perform some z-specific combinations.
523 setTargetDAGCombine(ISD::ZERO_EXTEND);
524 setTargetDAGCombine(ISD::SIGN_EXTEND);
525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
526 setTargetDAGCombine(ISD::LOAD);
527 setTargetDAGCombine(ISD::STORE);
528 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
529 setTargetDAGCombine(ISD::FP_ROUND);
530 setTargetDAGCombine(ISD::FP_EXTEND);
531 setTargetDAGCombine(ISD::BSWAP);
532 setTargetDAGCombine(ISD::SDIV);
533 setTargetDAGCombine(ISD::UDIV);
534 setTargetDAGCombine(ISD::SREM);
535 setTargetDAGCombine(ISD::UREM);
536
537 // Handle intrinsics.
538 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
539 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
540
541 // We want to use MVC in preference to even a single load/store pair.
542 MaxStoresPerMemcpy = 0;
543 MaxStoresPerMemcpyOptSize = 0;
544
545 // The main memset sequence is a byte store followed by an MVC.
546 // Two STC or MV..I stores win over that, but the kind of fused stores
547 // generated by target-independent code don't when the byte value is
548 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
549 // than "STC;MVC". Handle the choice in target-specific code instead.
550 MaxStoresPerMemset = 0;
551 MaxStoresPerMemsetOptSize = 0;
552}
553
554EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
555 LLVMContext &, EVT VT) const {
556 if (!VT.isVector())
557 return MVT::i32;
558 return VT.changeVectorElementTypeToInteger();
559}
560
561bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
562 VT = VT.getScalarType();
563
564 if (!VT.isSimple())
565 return false;
566
567 switch (VT.getSimpleVT().SimpleTy) {
568 case MVT::f32:
569 case MVT::f64:
570 return true;
571 case MVT::f128:
572 return Subtarget.hasVectorEnhancements1();
573 default:
574 break;
575 }
576
577 return false;
578}
579
580bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
581 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
582 return Imm.isZero() || Imm.isNegZero();
583}
584
585bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
586 // We can use CGFI or CLGFI.
587 return isInt<32>(Imm) || isUInt<32>(Imm);
588}
589
590bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
591 // We can use ALGFI or SLGFI.
592 return isUInt<32>(Imm) || isUInt<32>(-Imm);
593}
594
595bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
596 unsigned,
597 unsigned,
598 bool *Fast) const {
599 // Unaligned accesses should never be slower than the expanded version.
600 // We check specifically for aligned accesses in the few cases where
601 // they are required.
602 if (Fast)
603 *Fast = true;
604 return true;
605}
606
607// Information about the addressing mode for a memory access.
608struct AddressingMode {
609 // True if a long displacement is supported.
610 bool LongDisplacement;
611
612 // True if use of index register is supported.
613 bool IndexReg;
614
615 AddressingMode(bool LongDispl, bool IdxReg) :
616 LongDisplacement(LongDispl), IndexReg(IdxReg) {}
617};
618
619// Return the desired addressing mode for a Load which has only one use (in
620// the same block) which is a Store.
621static AddressingMode getLoadStoreAddrMode(bool HasVector,
622 Type *Ty) {
623 // With vector support a Load->Store combination may be combined to either
624 // an MVC or vector operations and it seems to work best to allow the
625 // vector addressing mode.
626 if (HasVector)
627 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
628
629 // Otherwise only the MVC case is special.
630 bool MVC = Ty->isIntegerTy(8);
631 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
632}
633
634// Return the addressing mode which seems most desirable given an LLVM
635// Instruction pointer.
636static AddressingMode
637supportedAddressingMode(Instruction *I, bool HasVector) {
638 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
639 switch (II->getIntrinsicID()) {
640 default: break;
641 case Intrinsic::memset:
642 case Intrinsic::memmove:
643 case Intrinsic::memcpy:
644 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
645 }
646 }
647
648 if (isa<LoadInst>(I) && I->hasOneUse()) {
649 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
650 if (SingleUser->getParent() == I->getParent()) {
651 if (isa<ICmpInst>(SingleUser)) {
652 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
653 if (C->getBitWidth() <= 64 &&
654 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
655 // Comparison of memory with 16 bit signed / unsigned immediate
656 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
657 } else if (isa<StoreInst>(SingleUser))
658 // Load->Store
659 return getLoadStoreAddrMode(HasVector, I->getType());
660 }
661 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
662 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
663 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
664 // Load->Store
665 return getLoadStoreAddrMode(HasVector, LoadI->getType());
666 }
667
668 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
669
670 // * Use LDE instead of LE/LEY for z13 to avoid partial register
671 // dependencies (LDE only supports small offsets).
672 // * Utilize the vector registers to hold floating point
673 // values (vector load / store instructions only support small
674 // offsets).
675
676 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
677 I->getOperand(0)->getType());
678 bool IsFPAccess = MemAccessTy->isFloatingPointTy();
679 bool IsVectorAccess = MemAccessTy->isVectorTy();
680
681 // A store of an extracted vector element will be combined into a VSTE type
682 // instruction.
683 if (!IsVectorAccess && isa<StoreInst>(I)) {
684 Value *DataOp = I->getOperand(0);
685 if (isa<ExtractElementInst>(DataOp))
686 IsVectorAccess = true;
687 }
688
689 // A load which gets inserted into a vector element will be combined into a
690 // VLE type instruction.
691 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
692 User *LoadUser = *I->user_begin();
693 if (isa<InsertElementInst>(LoadUser))
694 IsVectorAccess = true;
695 }
696
697 if (IsFPAccess || IsVectorAccess)
698 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
699 }
700
701 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
702}
703
704bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
705 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
706 // Punt on globals for now, although they can be used in limited
707 // RELATIVE LONG cases.
708 if (AM.BaseGV)
709 return false;
710
711 // Require a 20-bit signed offset.
712 if (!isInt<20>(AM.BaseOffs))
713 return false;
714
715 AddressingMode SupportedAM(true, true);
716 if (I != nullptr)
717 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
718
719 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
720 return false;
721
722 if (!SupportedAM.IndexReg)
723 // No indexing allowed.
724 return AM.Scale == 0;
725 else
726 // Indexing is OK but no scale factor can be applied.
727 return AM.Scale == 0 || AM.Scale == 1;
728}
729
730bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
731 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
732 return false;
733 unsigned FromBits = FromType->getPrimitiveSizeInBits();
734 unsigned ToBits = ToType->getPrimitiveSizeInBits();
735 return FromBits > ToBits;
736}
737
738bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
739 if (!FromVT.isInteger() || !ToVT.isInteger())
740 return false;
741 unsigned FromBits = FromVT.getSizeInBits();
742 unsigned ToBits = ToVT.getSizeInBits();
743 return FromBits > ToBits;
744}
745
746//===----------------------------------------------------------------------===//
747// Inline asm support
748//===----------------------------------------------------------------------===//
749
750TargetLowering::ConstraintType
751SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
752 if (Constraint.size() == 1) {
753 switch (Constraint[0]) {
754 case 'a': // Address register
755 case 'd': // Data register (equivalent to 'r')
756 case 'f': // Floating-point register
757 case 'h': // High-part register
758 case 'r': // General-purpose register
759 case 'v': // Vector register
760 return C_RegisterClass;
761
762 case 'Q': // Memory with base and unsigned 12-bit displacement
763 case 'R': // Likewise, plus an index
764 case 'S': // Memory with base and signed 20-bit displacement
765 case 'T': // Likewise, plus an index
766 case 'm': // Equivalent to 'T'.
767 return C_Memory;
768
769 case 'I': // Unsigned 8-bit constant
770 case 'J': // Unsigned 12-bit constant
771 case 'K': // Signed 16-bit constant
772 case 'L': // Signed 20-bit displacement (on all targets we support)
773 case 'M': // 0x7fffffff
774 return C_Other;
775
776 default:
777 break;
778 }
779 }
780 return TargetLowering::getConstraintType(Constraint);
781}
782
783TargetLowering::ConstraintWeight SystemZTargetLowering::
784getSingleConstraintMatchWeight(AsmOperandInfo &info,
785 const char *constraint) const {
786 ConstraintWeight weight = CW_Invalid;
787 Value *CallOperandVal = info.CallOperandVal;
788 // If we don't have a value, we can't do a match,
789 // but allow it at the lowest weight.
790 if (!CallOperandVal)
791 return CW_Default;
792 Type *type = CallOperandVal->getType();
793 // Look at the constraint type.
794 switch (*constraint) {
795 default:
796 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
797 break;
798
799 case 'a': // Address register
800 case 'd': // Data register (equivalent to 'r')
801 case 'h': // High-part register
802 case 'r': // General-purpose register
803 if (CallOperandVal->getType()->isIntegerTy())
804 weight = CW_Register;
805 break;
806
807 case 'f': // Floating-point register
808 if (type->isFloatingPointTy())
809 weight = CW_Register;
810 break;
811
812 case 'v': // Vector register
813 if ((type->isVectorTy() || type->isFloatingPointTy()) &&
814 Subtarget.hasVector())
815 weight = CW_Register;
816 break;
817
818 case 'I': // Unsigned 8-bit constant
819 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
820 if (isUInt<8>(C->getZExtValue()))
821 weight = CW_Constant;
822 break;
823
824 case 'J': // Unsigned 12-bit constant
825 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
826 if (isUInt<12>(C->getZExtValue()))
827 weight = CW_Constant;
828 break;
829
830 case 'K': // Signed 16-bit constant
831 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
832 if (isInt<16>(C->getSExtValue()))
833 weight = CW_Constant;
834 break;
835
836 case 'L': // Signed 20-bit displacement (on all targets we support)
837 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
838 if (isInt<20>(C->getSExtValue()))
839 weight = CW_Constant;
840 break;
841
842 case 'M': // 0x7fffffff
843 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
844 if (C->getZExtValue() == 0x7fffffff)
845 weight = CW_Constant;
846 break;
847 }
848 return weight;
849}
850
851// Parse a "{tNNN}" register constraint for which the register type "t"
852// has already been verified. MC is the class associated with "t" and
853// Map maps 0-based register numbers to LLVM register numbers.
854static std::pair<unsigned, const TargetRegisterClass *>
855parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
856 const unsigned *Map, unsigned Size) {
857 assert(*(Constraint.end()-1) == '}' && "Missing '}'")((*(Constraint.end()-1) == '}' && "Missing '}'") ? static_cast
<void> (0) : __assert_fail ("*(Constraint.end()-1) == '}' && \"Missing '}'\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 857, __PRETTY_FUNCTION__))
;
858 if (isdigit(Constraint[2])) {
859 unsigned Index;
860 bool Failed =
861 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
862 if (!Failed && Index < Size && Map[Index])
863 return std::make_pair(Map[Index], RC);
864 }
865 return std::make_pair(0U, nullptr);
866}
867
868std::pair<unsigned, const TargetRegisterClass *>
869SystemZTargetLowering::getRegForInlineAsmConstraint(
870 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
871 if (Constraint.size() == 1) {
872 // GCC Constraint Letters
873 switch (Constraint[0]) {
874 default: break;
875 case 'd': // Data register (equivalent to 'r')
876 case 'r': // General-purpose register
877 if (VT == MVT::i64)
878 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
879 else if (VT == MVT::i128)
880 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
881 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
882
883 case 'a': // Address register
884 if (VT == MVT::i64)
885 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
886 else if (VT == MVT::i128)
887 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
888 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
889
890 case 'h': // High-part register (an LLVM extension)
891 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
892
893 case 'f': // Floating-point register
894 if (VT == MVT::f64)
895 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
896 else if (VT == MVT::f128)
897 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
898 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
899
900 case 'v': // Vector register
901 if (Subtarget.hasVector()) {
902 if (VT == MVT::f32)
903 return std::make_pair(0U, &SystemZ::VR32BitRegClass);
904 if (VT == MVT::f64)
905 return std::make_pair(0U, &SystemZ::VR64BitRegClass);
906 return std::make_pair(0U, &SystemZ::VR128BitRegClass);
907 }
908 break;
909 }
910 }
911 if (Constraint.size() > 0 && Constraint[0] == '{') {
912 // We need to override the default register parsing for GPRs and FPRs
913 // because the interpretation depends on VT. The internal names of
914 // the registers are also different from the external names
915 // (F0D and F0S instead of F0, etc.).
916 if (Constraint[1] == 'r') {
917 if (VT == MVT::i32)
918 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
919 SystemZMC::GR32Regs, 16);
920 if (VT == MVT::i128)
921 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
922 SystemZMC::GR128Regs, 16);
923 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
924 SystemZMC::GR64Regs, 16);
925 }
926 if (Constraint[1] == 'f') {
927 if (VT == MVT::f32)
928 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
929 SystemZMC::FP32Regs, 16);
930 if (VT == MVT::f128)
931 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
932 SystemZMC::FP128Regs, 16);
933 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
934 SystemZMC::FP64Regs, 16);
935 }
936 if (Constraint[1] == 'v') {
937 if (VT == MVT::f32)
938 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
939 SystemZMC::VR32Regs, 32);
940 if (VT == MVT::f64)
941 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
942 SystemZMC::VR64Regs, 32);
943 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
944 SystemZMC::VR128Regs, 32);
945 }
946 }
947 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
948}
949
950void SystemZTargetLowering::
951LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
952 std::vector<SDValue> &Ops,
953 SelectionDAG &DAG) const {
954 // Only support length 1 constraints for now.
955 if (Constraint.length() == 1) {
956 switch (Constraint[0]) {
957 case 'I': // Unsigned 8-bit constant
958 if (auto *C = dyn_cast<ConstantSDNode>(Op))
959 if (isUInt<8>(C->getZExtValue()))
960 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
961 Op.getValueType()));
962 return;
963
964 case 'J': // Unsigned 12-bit constant
965 if (auto *C = dyn_cast<ConstantSDNode>(Op))
966 if (isUInt<12>(C->getZExtValue()))
967 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
968 Op.getValueType()));
969 return;
970
971 case 'K': // Signed 16-bit constant
972 if (auto *C = dyn_cast<ConstantSDNode>(Op))
973 if (isInt<16>(C->getSExtValue()))
974 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
975 Op.getValueType()));
976 return;
977
978 case 'L': // Signed 20-bit displacement (on all targets we support)
979 if (auto *C = dyn_cast<ConstantSDNode>(Op))
980 if (isInt<20>(C->getSExtValue()))
981 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
982 Op.getValueType()));
983 return;
984
985 case 'M': // 0x7fffffff
986 if (auto *C = dyn_cast<ConstantSDNode>(Op))
987 if (C->getZExtValue() == 0x7fffffff)
988 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
989 Op.getValueType()));
990 return;
991 }
992 }
993 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
994}
995
996//===----------------------------------------------------------------------===//
997// Calling conventions
998//===----------------------------------------------------------------------===//
999
1000#include "SystemZGenCallingConv.inc"
1001
1002const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1003 CallingConv::ID) const {
1004 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1005 SystemZ::R14D, 0 };
1006 return ScratchRegs;
1007}
1008
1009bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1010 Type *ToType) const {
1011 return isTruncateFree(FromType, ToType);
1012}
1013
1014bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1015 return CI->isTailCall();
1016}
1017
1018// We do not yet support 128-bit single-element vector types. If the user
1019// attempts to use such types as function argument or return type, prefer
1020// to error out instead of emitting code violating the ABI.
1021static void VerifyVectorType(MVT VT, EVT ArgVT) {
1022 if (ArgVT.isVector() && !VT.isVector())
1023 report_fatal_error("Unsupported vector argument or return type");
1024}
1025
1026static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1027 for (unsigned i = 0; i < Ins.size(); ++i)
1028 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1029}
1030
1031static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1032 for (unsigned i = 0; i < Outs.size(); ++i)
1033 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1034}
1035
1036// Value is a value that has been passed to us in the location described by VA
1037// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1038// any loads onto Chain.
1039static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1040 CCValAssign &VA, SDValue Chain,
1041 SDValue Value) {
1042 // If the argument has been promoted from a smaller type, insert an
1043 // assertion to capture this.
1044 if (VA.getLocInfo() == CCValAssign::SExt)
1045 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1046 DAG.getValueType(VA.getValVT()));
1047 else if (VA.getLocInfo() == CCValAssign::ZExt)
1048 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1049 DAG.getValueType(VA.getValVT()));
1050
1051 if (VA.isExtInLoc())
1052 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1053 else if (VA.getLocInfo() == CCValAssign::BCvt) {
1054 // If this is a short vector argument loaded from the stack,
1055 // extend from i64 to full vector size and then bitcast.
1056 assert(VA.getLocVT() == MVT::i64)((VA.getLocVT() == MVT::i64) ? static_cast<void> (0) : __assert_fail
("VA.getLocVT() == MVT::i64", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1056, __PRETTY_FUNCTION__))
;
1057 assert(VA.getValVT().isVector())((VA.getValVT().isVector()) ? static_cast<void> (0) : __assert_fail
("VA.getValVT().isVector()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1057, __PRETTY_FUNCTION__))
;
1058 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1059 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1060 } else
1061 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo")((VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"
) ? static_cast<void> (0) : __assert_fail ("VA.getLocInfo() == CCValAssign::Full && \"Unsupported getLocInfo\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1061, __PRETTY_FUNCTION__))
;
1062 return Value;
1063}
1064
1065// Value is a value of type VA.getValVT() that we need to copy into
1066// the location described by VA. Return a copy of Value converted to
1067// VA.getValVT(). The caller is responsible for handling indirect values.
1068static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1069 CCValAssign &VA, SDValue Value) {
1070 switch (VA.getLocInfo()) {
1071 case CCValAssign::SExt:
1072 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1073 case CCValAssign::ZExt:
1074 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1075 case CCValAssign::AExt:
1076 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1077 case CCValAssign::BCvt:
1078 // If this is a short vector argument to be stored to the stack,
1079 // bitcast to v2i64 and then extract first element.
1080 assert(VA.getLocVT() == MVT::i64)((VA.getLocVT() == MVT::i64) ? static_cast<void> (0) : __assert_fail
("VA.getLocVT() == MVT::i64", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1080, __PRETTY_FUNCTION__))
;
1081 assert(VA.getValVT().isVector())((VA.getValVT().isVector()) ? static_cast<void> (0) : __assert_fail
("VA.getValVT().isVector()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1081, __PRETTY_FUNCTION__))
;
1082 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1083 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1084 DAG.getConstant(0, DL, MVT::i32));
1085 case CCValAssign::Full:
1086 return Value;
1087 default:
1088 llvm_unreachable("Unhandled getLocInfo()")::llvm::llvm_unreachable_internal("Unhandled getLocInfo()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1088)
;
1089 }
1090}
1091
1092SDValue SystemZTargetLowering::LowerFormalArguments(
1093 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1094 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1095 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1096 MachineFunction &MF = DAG.getMachineFunction();
1097 MachineFrameInfo &MFI = MF.getFrameInfo();
1098 MachineRegisterInfo &MRI = MF.getRegInfo();
1099 SystemZMachineFunctionInfo *FuncInfo =
1100 MF.getInfo<SystemZMachineFunctionInfo>();
1101 auto *TFL =
1102 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1103 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1104
1105 // Detect unsupported vector argument types.
1106 if (Subtarget.hasVector())
1107 VerifyVectorTypes(Ins);
1108
1109 // Assign locations to all of the incoming arguments.
1110 SmallVector<CCValAssign, 16> ArgLocs;
1111 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1112 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1113
1114 unsigned NumFixedGPRs = 0;
1115 unsigned NumFixedFPRs = 0;
1116 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1117 SDValue ArgValue;
1118 CCValAssign &VA = ArgLocs[I];
1119 EVT LocVT = VA.getLocVT();
1120 if (VA.isRegLoc()) {
1121 // Arguments passed in registers
1122 const TargetRegisterClass *RC;
1123 switch (LocVT.getSimpleVT().SimpleTy) {
1124 default:
1125 // Integers smaller than i64 should be promoted to i64.
1126 llvm_unreachable("Unexpected argument type")::llvm::llvm_unreachable_internal("Unexpected argument type",
"/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1126)
;
1127 case MVT::i32:
1128 NumFixedGPRs += 1;
1129 RC = &SystemZ::GR32BitRegClass;
1130 break;
1131 case MVT::i64:
1132 NumFixedGPRs += 1;
1133 RC = &SystemZ::GR64BitRegClass;
1134 break;
1135 case MVT::f32:
1136 NumFixedFPRs += 1;
1137 RC = &SystemZ::FP32BitRegClass;
1138 break;
1139 case MVT::f64:
1140 NumFixedFPRs += 1;
1141 RC = &SystemZ::FP64BitRegClass;
1142 break;
1143 case MVT::v16i8:
1144 case MVT::v8i16:
1145 case MVT::v4i32:
1146 case MVT::v2i64:
1147 case MVT::v4f32:
1148 case MVT::v2f64:
1149 RC = &SystemZ::VR128BitRegClass;
1150 break;
1151 }
1152
1153 unsigned VReg = MRI.createVirtualRegister(RC);
1154 MRI.addLiveIn(VA.getLocReg(), VReg);
1155 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1156 } else {
1157 assert(VA.isMemLoc() && "Argument not register or memory")((VA.isMemLoc() && "Argument not register or memory")
? static_cast<void> (0) : __assert_fail ("VA.isMemLoc() && \"Argument not register or memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1157, __PRETTY_FUNCTION__))
;
1158
1159 // Create the frame index object for this incoming parameter.
1160 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1161 VA.getLocMemOffset(), true);
1162
1163 // Create the SelectionDAG nodes corresponding to a load
1164 // from this parameter. Unpromoted ints and floats are
1165 // passed as right-justified 8-byte values.
1166 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1167 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1168 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1169 DAG.getIntPtrConstant(4, DL));
1170 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1171 MachinePointerInfo::getFixedStack(MF, FI));
1172 }
1173
1174 // Convert the value of the argument register into the value that's
1175 // being passed.
1176 if (VA.getLocInfo() == CCValAssign::Indirect) {
1177 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1178 MachinePointerInfo()));
1179 // If the original argument was split (e.g. i128), we need
1180 // to load all parts of it here (using the same address).
1181 unsigned ArgIndex = Ins[I].OrigArgIndex;
1182 assert (Ins[I].PartOffset == 0)((Ins[I].PartOffset == 0) ? static_cast<void> (0) : __assert_fail
("Ins[I].PartOffset == 0", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1182, __PRETTY_FUNCTION__))
;
1183 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1184 CCValAssign &PartVA = ArgLocs[I + 1];
1185 unsigned PartOffset = Ins[I + 1].PartOffset;
1186 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1187 DAG.getIntPtrConstant(PartOffset, DL));
1188 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1189 MachinePointerInfo()));
1190 ++I;
1191 }
1192 } else
1193 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1194 }
1195
1196 if (IsVarArg) {
1197 // Save the number of non-varargs registers for later use by va_start, etc.
1198 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1199 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1200
1201 // Likewise the address (in the form of a frame index) of where the
1202 // first stack vararg would be. The 1-byte size here is arbitrary.
1203 int64_t StackSize = CCInfo.getNextStackOffset();
1204 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1205
1206 // ...and a similar frame index for the caller-allocated save area
1207 // that will be used to store the incoming registers.
1208 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1209 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1210 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1211
1212 // Store the FPR varargs in the reserved frame slots. (We store the
1213 // GPRs as part of the prologue.)
1214 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1215 SDValue MemOps[SystemZ::NumArgFPRs];
1216 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1217 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1218 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1219 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1220 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1221 &SystemZ::FP64BitRegClass);
1222 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1223 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1224 MachinePointerInfo::getFixedStack(MF, FI));
1225 }
1226 // Join the stores, which are independent of one another.
1227 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1228 makeArrayRef(&MemOps[NumFixedFPRs],
1229 SystemZ::NumArgFPRs-NumFixedFPRs));
1230 }
1231 }
1232
1233 return Chain;
1234}
1235
1236static bool canUseSiblingCall(const CCState &ArgCCInfo,
1237 SmallVectorImpl<CCValAssign> &ArgLocs,
1238 SmallVectorImpl<ISD::OutputArg> &Outs) {
1239 // Punt if there are any indirect or stack arguments, or if the call
1240 // needs the callee-saved argument register R6, or if the call uses
1241 // the callee-saved register arguments SwiftSelf and SwiftError.
1242 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1243 CCValAssign &VA = ArgLocs[I];
1244 if (VA.getLocInfo() == CCValAssign::Indirect)
1245 return false;
1246 if (!VA.isRegLoc())
1247 return false;
1248 unsigned Reg = VA.getLocReg();
1249 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1250 return false;
1251 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1252 return false;
1253 }
1254 return true;
1255}
1256
1257SDValue
1258SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1259 SmallVectorImpl<SDValue> &InVals) const {
1260 SelectionDAG &DAG = CLI.DAG;
1261 SDLoc &DL = CLI.DL;
1262 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1263 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1264 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1265 SDValue Chain = CLI.Chain;
1266 SDValue Callee = CLI.Callee;
1267 bool &IsTailCall = CLI.IsTailCall;
1268 CallingConv::ID CallConv = CLI.CallConv;
1269 bool IsVarArg = CLI.IsVarArg;
1270 MachineFunction &MF = DAG.getMachineFunction();
1271 EVT PtrVT = getPointerTy(MF.getDataLayout());
1272
1273 // Detect unsupported vector argument and return types.
1274 if (Subtarget.hasVector()) {
1275 VerifyVectorTypes(Outs);
1276 VerifyVectorTypes(Ins);
1277 }
1278
1279 // Analyze the operands of the call, assigning locations to each operand.
1280 SmallVector<CCValAssign, 16> ArgLocs;
1281 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1282 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1283
1284 // We don't support GuaranteedTailCallOpt, only automatically-detected
1285 // sibling calls.
1286 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1287 IsTailCall = false;
1288
1289 // Get a count of how many bytes are to be pushed on the stack.
1290 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1291
1292 // Mark the start of the call.
1293 if (!IsTailCall)
1294 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1295
1296 // Copy argument values to their designated locations.
1297 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1298 SmallVector<SDValue, 8> MemOpChains;
1299 SDValue StackPtr;
1300 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1301 CCValAssign &VA = ArgLocs[I];
1302 SDValue ArgValue = OutVals[I];
1303
1304 if (VA.getLocInfo() == CCValAssign::Indirect) {
1305 // Store the argument in a stack slot and pass its address.
1306 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1307 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1308 MemOpChains.push_back(
1309 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1310 MachinePointerInfo::getFixedStack(MF, FI)));
1311 // If the original argument was split (e.g. i128), we need
1312 // to store all parts of it here (and pass just one address).
1313 unsigned ArgIndex = Outs[I].OrigArgIndex;
1314 assert (Outs[I].PartOffset == 0)((Outs[I].PartOffset == 0) ? static_cast<void> (0) : __assert_fail
("Outs[I].PartOffset == 0", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1314, __PRETTY_FUNCTION__))
;
1315 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1316 SDValue PartValue = OutVals[I + 1];
1317 unsigned PartOffset = Outs[I + 1].PartOffset;
1318 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1319 DAG.getIntPtrConstant(PartOffset, DL));
1320 MemOpChains.push_back(
1321 DAG.getStore(Chain, DL, PartValue, Address,
1322 MachinePointerInfo::getFixedStack(MF, FI)));
1323 ++I;
1324 }
1325 ArgValue = SpillSlot;
1326 } else
1327 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1328
1329 if (VA.isRegLoc())
1330 // Queue up the argument copies and emit them at the end.
1331 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1332 else {
1333 assert(VA.isMemLoc() && "Argument not register or memory")((VA.isMemLoc() && "Argument not register or memory")
? static_cast<void> (0) : __assert_fail ("VA.isMemLoc() && \"Argument not register or memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1333, __PRETTY_FUNCTION__))
;
1334
1335 // Work out the address of the stack slot. Unpromoted ints and
1336 // floats are passed as right-justified 8-byte values.
1337 if (!StackPtr.getNode())
1338 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1339 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1340 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1341 Offset += 4;
1342 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1343 DAG.getIntPtrConstant(Offset, DL));
1344
1345 // Emit the store.
1346 MemOpChains.push_back(
1347 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1348 }
1349 }
1350
1351 // Join the stores, which are independent of one another.
1352 if (!MemOpChains.empty())
1353 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1354
1355 // Accept direct calls by converting symbolic call addresses to the
1356 // associated Target* opcodes. Force %r1 to be used for indirect
1357 // tail calls.
1358 SDValue Glue;
1359 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1360 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1361 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1362 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1363 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1364 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1365 } else if (IsTailCall) {
1366 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1367 Glue = Chain.getValue(1);
1368 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1369 }
1370
1371 // Build a sequence of copy-to-reg nodes, chained and glued together.
1372 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1373 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1374 RegsToPass[I].second, Glue);
1375 Glue = Chain.getValue(1);
1376 }
1377
1378 // The first call operand is the chain and the second is the target address.
1379 SmallVector<SDValue, 8> Ops;
1380 Ops.push_back(Chain);
1381 Ops.push_back(Callee);
1382
1383 // Add argument registers to the end of the list so that they are
1384 // known live into the call.
1385 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1386 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1387 RegsToPass[I].second.getValueType()));
1388
1389 // Add a register mask operand representing the call-preserved registers.
1390 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1391 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1392 assert(Mask && "Missing call preserved mask for calling convention")((Mask && "Missing call preserved mask for calling convention"
) ? static_cast<void> (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1392, __PRETTY_FUNCTION__))
;
1393 Ops.push_back(DAG.getRegisterMask(Mask));
1394
1395 // Glue the call to the argument copies, if any.
1396 if (Glue.getNode())
1397 Ops.push_back(Glue);
1398
1399 // Emit the call.
1400 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1401 if (IsTailCall)
1402 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1403 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1404 Glue = Chain.getValue(1);
1405
1406 // Mark the end of the call, which is glued to the call itself.
1407 Chain = DAG.getCALLSEQ_END(Chain,
1408 DAG.getConstant(NumBytes, DL, PtrVT, true),
1409 DAG.getConstant(0, DL, PtrVT, true),
1410 Glue, DL);
1411 Glue = Chain.getValue(1);
1412
1413 // Assign locations to each value returned by this call.
1414 SmallVector<CCValAssign, 16> RetLocs;
1415 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1416 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1417
1418 // Copy all of the result registers out of their specified physreg.
1419 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1420 CCValAssign &VA = RetLocs[I];
1421
1422 // Copy the value out, gluing the copy to the end of the call sequence.
1423 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1424 VA.getLocVT(), Glue);
1425 Chain = RetValue.getValue(1);
1426 Glue = RetValue.getValue(2);
1427
1428 // Convert the value of the return register into the value that's
1429 // being returned.
1430 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1431 }
1432
1433 return Chain;
1434}
1435
1436bool SystemZTargetLowering::
1437CanLowerReturn(CallingConv::ID CallConv,
1438 MachineFunction &MF, bool isVarArg,
1439 const SmallVectorImpl<ISD::OutputArg> &Outs,
1440 LLVMContext &Context) const {
1441 // Detect unsupported vector return types.
1442 if (Subtarget.hasVector())
1443 VerifyVectorTypes(Outs);
1444
1445 // Special case that we cannot easily detect in RetCC_SystemZ since
1446 // i128 is not a legal type.
1447 for (auto &Out : Outs)
1448 if (Out.ArgVT == MVT::i128)
1449 return false;
1450
1451 SmallVector<CCValAssign, 16> RetLocs;
1452 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1453 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1454}
1455
1456SDValue
1457SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1458 bool IsVarArg,
1459 const SmallVectorImpl<ISD::OutputArg> &Outs,
1460 const SmallVectorImpl<SDValue> &OutVals,
1461 const SDLoc &DL, SelectionDAG &DAG) const {
1462 MachineFunction &MF = DAG.getMachineFunction();
1463
1464 // Detect unsupported vector return types.
1465 if (Subtarget.hasVector())
1466 VerifyVectorTypes(Outs);
1467
1468 // Assign locations to each returned value.
1469 SmallVector<CCValAssign, 16> RetLocs;
1470 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1471 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1472
1473 // Quick exit for void returns
1474 if (RetLocs.empty())
1475 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1476
1477 // Copy the result values into the output registers.
1478 SDValue Glue;
1479 SmallVector<SDValue, 4> RetOps;
1480 RetOps.push_back(Chain);
1481 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1482 CCValAssign &VA = RetLocs[I];
1483 SDValue RetValue = OutVals[I];
1484
1485 // Make the return register live on exit.
1486 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1486, __PRETTY_FUNCTION__))
;
1487
1488 // Promote the value as required.
1489 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1490
1491 // Chain and glue the copies together.
1492 unsigned Reg = VA.getLocReg();
1493 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1494 Glue = Chain.getValue(1);
1495 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1496 }
1497
1498 // Update chain and glue.
1499 RetOps[0] = Chain;
1500 if (Glue.getNode())
1501 RetOps.push_back(Glue);
1502
1503 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1504}
1505
1506// Return true if Op is an intrinsic node with chain that returns the CC value
1507// as its only (other) argument. Provide the associated SystemZISD opcode and
1508// the mask of valid CC values if so.
1509static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1510 unsigned &CCValid) {
1511 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1512 switch (Id) {
1513 case Intrinsic::s390_tbegin:
1514 Opcode = SystemZISD::TBEGIN;
1515 CCValid = SystemZ::CCMASK_TBEGIN;
1516 return true;
1517
1518 case Intrinsic::s390_tbegin_nofloat:
1519 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1520 CCValid = SystemZ::CCMASK_TBEGIN;
1521 return true;
1522
1523 case Intrinsic::s390_tend:
1524 Opcode = SystemZISD::TEND;
1525 CCValid = SystemZ::CCMASK_TEND;
1526 return true;
1527
1528 default:
1529 return false;
1530 }
1531}
1532
1533// Return true if Op is an intrinsic node without chain that returns the
1534// CC value as its final argument. Provide the associated SystemZISD
1535// opcode and the mask of valid CC values if so.
1536static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1537 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1538 switch (Id) {
1539 case Intrinsic::s390_vpkshs:
1540 case Intrinsic::s390_vpksfs:
1541 case Intrinsic::s390_vpksgs:
1542 Opcode = SystemZISD::PACKS_CC;
1543 CCValid = SystemZ::CCMASK_VCMP;
1544 return true;
1545
1546 case Intrinsic::s390_vpklshs:
1547 case Intrinsic::s390_vpklsfs:
1548 case Intrinsic::s390_vpklsgs:
1549 Opcode = SystemZISD::PACKLS_CC;
1550 CCValid = SystemZ::CCMASK_VCMP;
1551 return true;
1552
1553 case Intrinsic::s390_vceqbs:
1554 case Intrinsic::s390_vceqhs:
1555 case Intrinsic::s390_vceqfs:
1556 case Intrinsic::s390_vceqgs:
1557 Opcode = SystemZISD::VICMPES;
1558 CCValid = SystemZ::CCMASK_VCMP;
1559 return true;
1560
1561 case Intrinsic::s390_vchbs:
1562 case Intrinsic::s390_vchhs:
1563 case Intrinsic::s390_vchfs:
1564 case Intrinsic::s390_vchgs:
1565 Opcode = SystemZISD::VICMPHS;
1566 CCValid = SystemZ::CCMASK_VCMP;
1567 return true;
1568
1569 case Intrinsic::s390_vchlbs:
1570 case Intrinsic::s390_vchlhs:
1571 case Intrinsic::s390_vchlfs:
1572 case Intrinsic::s390_vchlgs:
1573 Opcode = SystemZISD::VICMPHLS;
1574 CCValid = SystemZ::CCMASK_VCMP;
1575 return true;
1576
1577 case Intrinsic::s390_vtm:
1578 Opcode = SystemZISD::VTM;
1579 CCValid = SystemZ::CCMASK_VCMP;
1580 return true;
1581
1582 case Intrinsic::s390_vfaebs:
1583 case Intrinsic::s390_vfaehs:
1584 case Intrinsic::s390_vfaefs:
1585 Opcode = SystemZISD::VFAE_CC;
1586 CCValid = SystemZ::CCMASK_ANY;
1587 return true;
1588
1589 case Intrinsic::s390_vfaezbs:
1590 case Intrinsic::s390_vfaezhs:
1591 case Intrinsic::s390_vfaezfs:
1592 Opcode = SystemZISD::VFAEZ_CC;
1593 CCValid = SystemZ::CCMASK_ANY;
1594 return true;
1595
1596 case Intrinsic::s390_vfeebs:
1597 case Intrinsic::s390_vfeehs:
1598 case Intrinsic::s390_vfeefs:
1599 Opcode = SystemZISD::VFEE_CC;
1600 CCValid = SystemZ::CCMASK_ANY;
1601 return true;
1602
1603 case Intrinsic::s390_vfeezbs:
1604 case Intrinsic::s390_vfeezhs:
1605 case Intrinsic::s390_vfeezfs:
1606 Opcode = SystemZISD::VFEEZ_CC;
1607 CCValid = SystemZ::CCMASK_ANY;
1608 return true;
1609
1610 case Intrinsic::s390_vfenebs:
1611 case Intrinsic::s390_vfenehs:
1612 case Intrinsic::s390_vfenefs:
1613 Opcode = SystemZISD::VFENE_CC;
1614 CCValid = SystemZ::CCMASK_ANY;
1615 return true;
1616
1617 case Intrinsic::s390_vfenezbs:
1618 case Intrinsic::s390_vfenezhs:
1619 case Intrinsic::s390_vfenezfs:
1620 Opcode = SystemZISD::VFENEZ_CC;
1621 CCValid = SystemZ::CCMASK_ANY;
1622 return true;
1623
1624 case Intrinsic::s390_vistrbs:
1625 case Intrinsic::s390_vistrhs:
1626 case Intrinsic::s390_vistrfs:
1627 Opcode = SystemZISD::VISTR_CC;
1628 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1629 return true;
1630
1631 case Intrinsic::s390_vstrcbs:
1632 case Intrinsic::s390_vstrchs:
1633 case Intrinsic::s390_vstrcfs:
1634 Opcode = SystemZISD::VSTRC_CC;
1635 CCValid = SystemZ::CCMASK_ANY;
1636 return true;
1637
1638 case Intrinsic::s390_vstrczbs:
1639 case Intrinsic::s390_vstrczhs:
1640 case Intrinsic::s390_vstrczfs:
1641 Opcode = SystemZISD::VSTRCZ_CC;
1642 CCValid = SystemZ::CCMASK_ANY;
1643 return true;
1644
1645 case Intrinsic::s390_vfcedbs:
1646 case Intrinsic::s390_vfcesbs:
1647 Opcode = SystemZISD::VFCMPES;
1648 CCValid = SystemZ::CCMASK_VCMP;
1649 return true;
1650
1651 case Intrinsic::s390_vfchdbs:
1652 case Intrinsic::s390_vfchsbs:
1653 Opcode = SystemZISD::VFCMPHS;
1654 CCValid = SystemZ::CCMASK_VCMP;
1655 return true;
1656
1657 case Intrinsic::s390_vfchedbs:
1658 case Intrinsic::s390_vfchesbs:
1659 Opcode = SystemZISD::VFCMPHES;
1660 CCValid = SystemZ::CCMASK_VCMP;
1661 return true;
1662
1663 case Intrinsic::s390_vftcidb:
1664 case Intrinsic::s390_vftcisb:
1665 Opcode = SystemZISD::VFTCI;
1666 CCValid = SystemZ::CCMASK_VCMP;
1667 return true;
1668
1669 case Intrinsic::s390_tdc:
1670 Opcode = SystemZISD::TDC;
1671 CCValid = SystemZ::CCMASK_TDC;
1672 return true;
1673
1674 default:
1675 return false;
1676 }
1677}
1678
1679// Emit an intrinsic with chain and an explicit CC register result.
1680static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1681 unsigned Opcode) {
1682 // Copy all operands except the intrinsic ID.
1683 unsigned NumOps = Op.getNumOperands();
1684 SmallVector<SDValue, 6> Ops;
1685 Ops.reserve(NumOps - 1);
1686 Ops.push_back(Op.getOperand(0));
1687 for (unsigned I = 2; I < NumOps; ++I)
1688 Ops.push_back(Op.getOperand(I));
1689
1690 assert(Op->getNumValues() == 2 && "Expected only CC result and chain")((Op->getNumValues() == 2 && "Expected only CC result and chain"
) ? static_cast<void> (0) : __assert_fail ("Op->getNumValues() == 2 && \"Expected only CC result and chain\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1690, __PRETTY_FUNCTION__))
;
1691 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1692 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1693 SDValue OldChain = SDValue(Op.getNode(), 1);
1694 SDValue NewChain = SDValue(Intr.getNode(), 1);
1695 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1696 return Intr.getNode();
1697}
1698
1699// Emit an intrinsic with an explicit CC register result.
1700static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1701 unsigned Opcode) {
1702 // Copy all operands except the intrinsic ID.
1703 unsigned NumOps = Op.getNumOperands();
1704 SmallVector<SDValue, 6> Ops;
1705 Ops.reserve(NumOps - 1);
1706 for (unsigned I = 1; I < NumOps; ++I)
1707 Ops.push_back(Op.getOperand(I));
1708
1709 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1710 return Intr.getNode();
1711}
1712
1713// CC is a comparison that will be implemented using an integer or
1714// floating-point comparison. Return the condition code mask for
1715// a branch on true. In the integer case, CCMASK_CMP_UO is set for
1716// unsigned comparisons and clear for signed ones. In the floating-point
1717// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1718static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1719#define CONV(X) \
1720 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1721 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1722 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1723
1724 switch (CC) {
1725 default:
1726 llvm_unreachable("Invalid integer condition!")::llvm::llvm_unreachable_internal("Invalid integer condition!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 1726)
;
1727
1728 CONV(EQ);
1729 CONV(NE);
1730 CONV(GT);
1731 CONV(GE);
1732 CONV(LT);
1733 CONV(LE);
1734
1735 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1736 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1737 }
1738#undef CONV
1739}
1740
1741// If C can be converted to a comparison against zero, adjust the operands
1742// as necessary.
1743static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1744 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1745 return;
1746
1747 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1748 if (!ConstOp1)
1749 return;
1750
1751 int64_t Value = ConstOp1->getSExtValue();
1752 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1753 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1754 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1755 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1756 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1757 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1758 }
1759}
1760
1761// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1762// adjust the operands as necessary.
1763static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1764 Comparison &C) {
1765 // For us to make any changes, it must a comparison between a single-use
1766 // load and a constant.
1767 if (!C.Op0.hasOneUse() ||
1768 C.Op0.getOpcode() != ISD::LOAD ||
1769 C.Op1.getOpcode() != ISD::Constant)
1770 return;
1771
1772 // We must have an 8- or 16-bit load.
1773 auto *Load = cast<LoadSDNode>(C.Op0);
1774 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1775 if (NumBits != 8 && NumBits != 16)
1776 return;
1777
1778 // The load must be an extending one and the constant must be within the
1779 // range of the unextended value.
1780 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1781 uint64_t Value = ConstOp1->getZExtValue();
1782 uint64_t Mask = (1 << NumBits) - 1;
1783 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1784 // Make sure that ConstOp1 is in range of C.Op0.
1785 int64_t SignedValue = ConstOp1->getSExtValue();
1786 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1787 return;
1788 if (C.ICmpType != SystemZICMP::SignedOnly) {
1789 // Unsigned comparison between two sign-extended values is equivalent
1790 // to unsigned comparison between two zero-extended values.
1791 Value &= Mask;
1792 } else if (NumBits == 8) {
1793 // Try to treat the comparison as unsigned, so that we can use CLI.
1794 // Adjust CCMask and Value as necessary.
1795 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1796 // Test whether the high bit of the byte is set.
1797 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1798 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1799 // Test whether the high bit of the byte is clear.
1800 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1801 else
1802 // No instruction exists for this combination.
1803 return;
1804 C.ICmpType = SystemZICMP::UnsignedOnly;
1805 }
1806 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1807 if (Value > Mask)
1808 return;
1809 // If the constant is in range, we can use any comparison.
1810 C.ICmpType = SystemZICMP::Any;
1811 } else
1812 return;
1813
1814 // Make sure that the first operand is an i32 of the right extension type.
1815 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1816 ISD::SEXTLOAD :
1817 ISD::ZEXTLOAD);
1818 if (C.Op0.getValueType() != MVT::i32 ||
1819 Load->getExtensionType() != ExtType) {
1820 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1821 Load->getBasePtr(), Load->getPointerInfo(),
1822 Load->getMemoryVT(), Load->getAlignment(),
1823 Load->getMemOperand()->getFlags());
1824 // Update the chain uses.
1825 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1826 }
1827
1828 // Make sure that the second operand is an i32 with the right value.
1829 if (C.Op1.getValueType() != MVT::i32 ||
1830 Value != ConstOp1->getZExtValue())
1831 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1832}
1833
1834// Return true if Op is either an unextended load, or a load suitable
1835// for integer register-memory comparisons of type ICmpType.
1836static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1837 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1838 if (Load) {
1839 // There are no instructions to compare a register with a memory byte.
1840 if (Load->getMemoryVT() == MVT::i8)
1841 return false;
1842 // Otherwise decide on extension type.
1843 switch (Load->getExtensionType()) {
1844 case ISD::NON_EXTLOAD:
1845 return true;
1846 case ISD::SEXTLOAD:
1847 return ICmpType != SystemZICMP::UnsignedOnly;
1848 case ISD::ZEXTLOAD:
1849 return ICmpType != SystemZICMP::SignedOnly;
1850 default:
1851 break;
1852 }
1853 }
1854 return false;
1855}
1856
1857// Return true if it is better to swap the operands of C.
1858static bool shouldSwapCmpOperands(const Comparison &C) {
1859 // Leave f128 comparisons alone, since they have no memory forms.
1860 if (C.Op0.getValueType() == MVT::f128)
1861 return false;
1862
1863 // Always keep a floating-point constant second, since comparisons with
1864 // zero can use LOAD TEST and comparisons with other constants make a
1865 // natural memory operand.
1866 if (isa<ConstantFPSDNode>(C.Op1))
1867 return false;
1868
1869 // Never swap comparisons with zero since there are many ways to optimize
1870 // those later.
1871 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1872 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1873 return false;
1874
1875 // Also keep natural memory operands second if the loaded value is
1876 // only used here. Several comparisons have memory forms.
1877 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1878 return false;
1879
1880 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1881 // In that case we generally prefer the memory to be second.
1882 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1883 // The only exceptions are when the second operand is a constant and
1884 // we can use things like CHHSI.
1885 if (!ConstOp1)
1886 return true;
1887 // The unsigned memory-immediate instructions can handle 16-bit
1888 // unsigned integers.
1889 if (C.ICmpType != SystemZICMP::SignedOnly &&
1890 isUInt<16>(ConstOp1->getZExtValue()))
1891 return false;
1892 // The signed memory-immediate instructions can handle 16-bit
1893 // signed integers.
1894 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1895 isInt<16>(ConstOp1->getSExtValue()))
1896 return false;
1897 return true;
1898 }
1899
1900 // Try to promote the use of CGFR and CLGFR.
1901 unsigned Opcode0 = C.Op0.getOpcode();
1902 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1903 return true;
1904 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1905 return true;
1906 if (C.ICmpType != SystemZICMP::SignedOnly &&
1907 Opcode0 == ISD::AND &&
1908 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1909 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1910 return true;
1911
1912 return false;
1913}
1914
1915// Return a version of comparison CC mask CCMask in which the LT and GT
1916// actions are swapped.
1917static unsigned reverseCCMask(unsigned CCMask) {
1918 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1919 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1920 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1921 (CCMask & SystemZ::CCMASK_CMP_UO));
1922}
1923
1924// Check whether C tests for equality between X and Y and whether X - Y
1925// or Y - X is also computed. In that case it's better to compare the
1926// result of the subtraction against zero.
1927static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1928 Comparison &C) {
1929 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1930 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1931 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1932 SDNode *N = *I;
1933 if (N->getOpcode() == ISD::SUB &&
1934 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1935 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1936 C.Op0 = SDValue(N, 0);
1937 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1938 return;
1939 }
1940 }
1941 }
1942}
1943
1944// Check whether C compares a floating-point value with zero and if that
1945// floating-point value is also negated. In this case we can use the
1946// negation to set CC, so avoiding separate LOAD AND TEST and
1947// LOAD (NEGATIVE/COMPLEMENT) instructions.
1948static void adjustForFNeg(Comparison &C) {
1949 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1950 if (C1 && C1->isZero()) {
1951 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1952 SDNode *N = *I;
1953 if (N->getOpcode() == ISD::FNEG) {
1954 C.Op0 = SDValue(N, 0);
1955 C.CCMask = reverseCCMask(C.CCMask);
1956 return;
1957 }
1958 }
1959 }
1960}
1961
1962// Check whether C compares (shl X, 32) with 0 and whether X is
1963// also sign-extended. In that case it is better to test the result
1964// of the sign extension using LTGFR.
1965//
1966// This case is important because InstCombine transforms a comparison
1967// with (sext (trunc X)) into a comparison with (shl X, 32).
1968static void adjustForLTGFR(Comparison &C) {
1969 // Check for a comparison between (shl X, 32) and 0.
1970 if (C.Op0.getOpcode() == ISD::SHL &&
1971 C.Op0.getValueType() == MVT::i64 &&
1972 C.Op1.getOpcode() == ISD::Constant &&
1973 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1974 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1975 if (C1 && C1->getZExtValue() == 32) {
1976 SDValue ShlOp0 = C.Op0.getOperand(0);
1977 // See whether X has any SIGN_EXTEND_INREG uses.
1978 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1979 SDNode *N = *I;
1980 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1981 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1982 C.Op0 = SDValue(N, 0);
1983 return;
1984 }
1985 }
1986 }
1987 }
1988}
1989
1990// If C compares the truncation of an extending load, try to compare
1991// the untruncated value instead. This exposes more opportunities to
1992// reuse CC.
1993static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1994 Comparison &C) {
1995 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1996 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1997 C.Op1.getOpcode() == ISD::Constant &&
1998 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1999 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2000 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2001 unsigned Type = L->getExtensionType();
2002 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2003 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2004 C.Op0 = C.Op0.getOperand(0);
2005 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2006 }
2007 }
2008 }
2009}
2010
2011// Return true if shift operation N has an in-range constant shift value.
2012// Store it in ShiftVal if so.
2013static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2014 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2015 if (!Shift)
2016 return false;
2017
2018 uint64_t Amount = Shift->getZExtValue();
2019 if (Amount >= N.getValueSizeInBits())
2020 return false;
2021
2022 ShiftVal = Amount;
2023 return true;
2024}
2025
2026// Check whether an AND with Mask is suitable for a TEST UNDER MASK
2027// instruction and whether the CC value is descriptive enough to handle
2028// a comparison of type Opcode between the AND result and CmpVal.
2029// CCMask says which comparison result is being tested and BitSize is
2030// the number of bits in the operands. If TEST UNDER MASK can be used,
2031// return the corresponding CC mask, otherwise return 0.
2032static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2033 uint64_t Mask, uint64_t CmpVal,
2034 unsigned ICmpType) {
2035 assert(Mask != 0 && "ANDs with zero should have been removed by now")((Mask != 0 && "ANDs with zero should have been removed by now"
) ? static_cast<void> (0) : __assert_fail ("Mask != 0 && \"ANDs with zero should have been removed by now\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2035, __PRETTY_FUNCTION__))
;
2036
2037 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2038 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2039 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2040 return 0;
2041
2042 // Work out the masks for the lowest and highest bits.
2043 unsigned HighShift = 63 - countLeadingZeros(Mask);
2044 uint64_t High = uint64_t(1) << HighShift;
2045 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2046
2047 // Signed ordered comparisons are effectively unsigned if the sign
2048 // bit is dropped.
2049 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2050
2051 // Check for equality comparisons with 0, or the equivalent.
2052 if (CmpVal == 0) {
2053 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2054 return SystemZ::CCMASK_TM_ALL_0;
2055 if (CCMask == SystemZ::CCMASK_CMP_NE)
2056 return SystemZ::CCMASK_TM_SOME_1;
2057 }
2058 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2059 if (CCMask == SystemZ::CCMASK_CMP_LT)
2060 return SystemZ::CCMASK_TM_ALL_0;
2061 if (CCMask == SystemZ::CCMASK_CMP_GE)
2062 return SystemZ::CCMASK_TM_SOME_1;
2063 }
2064 if (EffectivelyUnsigned && CmpVal < Low) {
2065 if (CCMask == SystemZ::CCMASK_CMP_LE)
2066 return SystemZ::CCMASK_TM_ALL_0;
2067 if (CCMask == SystemZ::CCMASK_CMP_GT)
2068 return SystemZ::CCMASK_TM_SOME_1;
2069 }
2070
2071 // Check for equality comparisons with the mask, or the equivalent.
2072 if (CmpVal == Mask) {
2073 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2074 return SystemZ::CCMASK_TM_ALL_1;
2075 if (CCMask == SystemZ::CCMASK_CMP_NE)
2076 return SystemZ::CCMASK_TM_SOME_0;
2077 }
2078 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2079 if (CCMask == SystemZ::CCMASK_CMP_GT)
2080 return SystemZ::CCMASK_TM_ALL_1;
2081 if (CCMask == SystemZ::CCMASK_CMP_LE)
2082 return SystemZ::CCMASK_TM_SOME_0;
2083 }
2084 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2085 if (CCMask == SystemZ::CCMASK_CMP_GE)
2086 return SystemZ::CCMASK_TM_ALL_1;
2087 if (CCMask == SystemZ::CCMASK_CMP_LT)
2088 return SystemZ::CCMASK_TM_SOME_0;
2089 }
2090
2091 // Check for ordered comparisons with the top bit.
2092 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2093 if (CCMask == SystemZ::CCMASK_CMP_LE)
2094 return SystemZ::CCMASK_TM_MSB_0;
2095 if (CCMask == SystemZ::CCMASK_CMP_GT)
2096 return SystemZ::CCMASK_TM_MSB_1;
2097 }
2098 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2099 if (CCMask == SystemZ::CCMASK_CMP_LT)
2100 return SystemZ::CCMASK_TM_MSB_0;
2101 if (CCMask == SystemZ::CCMASK_CMP_GE)
2102 return SystemZ::CCMASK_TM_MSB_1;
2103 }
2104
2105 // If there are just two bits, we can do equality checks for Low and High
2106 // as well.
2107 if (Mask == Low + High) {
2108 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2109 return SystemZ::CCMASK_TM_MIXED_MSB_0;
2110 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2111 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2112 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2113 return SystemZ::CCMASK_TM_MIXED_MSB_1;
2114 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2115 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2116 }
2117
2118 // Looks like we've exhausted our options.
2119 return 0;
2120}
2121
2122// See whether C can be implemented as a TEST UNDER MASK instruction.
2123// Update the arguments with the TM version if so.
2124static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2125 Comparison &C) {
2126 // Check that we have a comparison with a constant.
2127 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2128 if (!ConstOp1)
2129 return;
2130 uint64_t CmpVal = ConstOp1->getZExtValue();
2131
2132 // Check whether the nonconstant input is an AND with a constant mask.
2133 Comparison NewC(C);
2134 uint64_t MaskVal;
2135 ConstantSDNode *Mask = nullptr;
2136 if (C.Op0.getOpcode() == ISD::AND) {
2137 NewC.Op0 = C.Op0.getOperand(0);
2138 NewC.Op1 = C.Op0.getOperand(1);
2139 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2140 if (!Mask)
2141 return;
2142 MaskVal = Mask->getZExtValue();
2143 } else {
2144 // There is no instruction to compare with a 64-bit immediate
2145 // so use TMHH instead if possible. We need an unsigned ordered
2146 // comparison with an i64 immediate.
2147 if (NewC.Op0.getValueType() != MVT::i64 ||
2148 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2149 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2150 NewC.ICmpType == SystemZICMP::SignedOnly)
2151 return;
2152 // Convert LE and GT comparisons into LT and GE.
2153 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2154 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2155 if (CmpVal == uint64_t(-1))
2156 return;
2157 CmpVal += 1;
2158 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2159 }
2160 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2161 // be masked off without changing the result.
2162 MaskVal = -(CmpVal & -CmpVal);
2163 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2164 }
2165 if (!MaskVal)
2166 return;
2167
2168 // Check whether the combination of mask, comparison value and comparison
2169 // type are suitable.
2170 unsigned BitSize = NewC.Op0.getValueSizeInBits();
2171 unsigned NewCCMask, ShiftVal;
2172 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2173 NewC.Op0.getOpcode() == ISD::SHL &&
2174 isSimpleShift(NewC.Op0, ShiftVal) &&
2175 (MaskVal >> ShiftVal != 0) &&
2176 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2177 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2178 MaskVal >> ShiftVal,
2179 CmpVal >> ShiftVal,
2180 SystemZICMP::Any))) {
2181 NewC.Op0 = NewC.Op0.getOperand(0);
2182 MaskVal >>= ShiftVal;
2183 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2184 NewC.Op0.getOpcode() == ISD::SRL &&
2185 isSimpleShift(NewC.Op0, ShiftVal) &&
2186 (MaskVal << ShiftVal != 0) &&
2187 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2188 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2189 MaskVal << ShiftVal,
2190 CmpVal << ShiftVal,
2191 SystemZICMP::UnsignedOnly))) {
2192 NewC.Op0 = NewC.Op0.getOperand(0);
2193 MaskVal <<= ShiftVal;
2194 } else {
2195 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2196 NewC.ICmpType);
2197 if (!NewCCMask)
2198 return;
2199 }
2200
2201 // Go ahead and make the change.
2202 C.Opcode = SystemZISD::TM;
2203 C.Op0 = NewC.Op0;
2204 if (Mask && Mask->getZExtValue() == MaskVal)
2205 C.Op1 = SDValue(Mask, 0);
2206 else
2207 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2208 C.CCValid = SystemZ::CCMASK_TM;
2209 C.CCMask = NewCCMask;
2210}
2211
2212// See whether the comparison argument contains a redundant AND
2213// and remove it if so. This sometimes happens due to the generic
2214// BRCOND expansion.
2215static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2216 Comparison &C) {
2217 if (C.Op0.getOpcode() != ISD::AND)
2218 return;
2219 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2220 if (!Mask)
2221 return;
2222 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2223 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2224 return;
2225
2226 C.Op0 = C.Op0.getOperand(0);
2227}
2228
2229// Return a Comparison that tests the condition-code result of intrinsic
2230// node Call against constant integer CC using comparison code Cond.
2231// Opcode is the opcode of the SystemZISD operation for the intrinsic
2232// and CCValid is the set of possible condition-code results.
2233static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2234 SDValue Call, unsigned CCValid, uint64_t CC,
2235 ISD::CondCode Cond) {
2236 Comparison C(Call, SDValue());
2237 C.Opcode = Opcode;
2238 C.CCValid = CCValid;
2239 if (Cond == ISD::SETEQ)
2240 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2241 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2242 else if (Cond == ISD::SETNE)
2243 // ...and the inverse of that.
2244 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2245 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2246 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2247 // always true for CC>3.
2248 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2249 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2250 // ...and the inverse of that.
2251 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2252 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2253 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2254 // always true for CC>3.
2255 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2256 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2257 // ...and the inverse of that.
2258 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2259 else
2260 llvm_unreachable("Unexpected integer comparison type")::llvm::llvm_unreachable_internal("Unexpected integer comparison type"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2260)
;
2261 C.CCMask &= CCValid;
2262 return C;
2263}
2264
2265// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2266static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2267 ISD::CondCode Cond, const SDLoc &DL) {
2268 if (CmpOp1.getOpcode() == ISD::Constant) {
2269 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2270 unsigned Opcode, CCValid;
2271 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2272 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2273 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2274 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2275 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2276 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2277 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2278 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2279 }
2280 Comparison C(CmpOp0, CmpOp1);
2281 C.CCMask = CCMaskForCondCode(Cond);
2282 if (C.Op0.getValueType().isFloatingPoint()) {
2283 C.CCValid = SystemZ::CCMASK_FCMP;
2284 C.Opcode = SystemZISD::FCMP;
2285 adjustForFNeg(C);
2286 } else {
2287 C.CCValid = SystemZ::CCMASK_ICMP;
2288 C.Opcode = SystemZISD::ICMP;
2289 // Choose the type of comparison. Equality and inequality tests can
2290 // use either signed or unsigned comparisons. The choice also doesn't
2291 // matter if both sign bits are known to be clear. In those cases we
2292 // want to give the main isel code the freedom to choose whichever
2293 // form fits best.
2294 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2295 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2296 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2297 C.ICmpType = SystemZICMP::Any;
2298 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2299 C.ICmpType = SystemZICMP::UnsignedOnly;
2300 else
2301 C.ICmpType = SystemZICMP::SignedOnly;
2302 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2303 adjustForRedundantAnd(DAG, DL, C);
2304 adjustZeroCmp(DAG, DL, C);
2305 adjustSubwordCmp(DAG, DL, C);
2306 adjustForSubtraction(DAG, DL, C);
2307 adjustForLTGFR(C);
2308 adjustICmpTruncate(DAG, DL, C);
2309 }
2310
2311 if (shouldSwapCmpOperands(C)) {
2312 std::swap(C.Op0, C.Op1);
2313 C.CCMask = reverseCCMask(C.CCMask);
2314 }
2315
2316 adjustForTestUnderMask(DAG, DL, C);
2317 return C;
2318}
2319
2320// Emit the comparison instruction described by C.
2321static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2322 if (!C.Op1.getNode()) {
2323 SDNode *Node;
2324 switch (C.Op0.getOpcode()) {
2325 case ISD::INTRINSIC_W_CHAIN:
2326 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2327 return SDValue(Node, 0);
2328 case ISD::INTRINSIC_WO_CHAIN:
2329 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2330 return SDValue(Node, Node->getNumValues() - 1);
2331 default:
2332 llvm_unreachable("Invalid comparison operands")::llvm::llvm_unreachable_internal("Invalid comparison operands"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2332)
;
2333 }
2334 }
2335 if (C.Opcode == SystemZISD::ICMP)
2336 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2337 DAG.getConstant(C.ICmpType, DL, MVT::i32));
2338 if (C.Opcode == SystemZISD::TM) {
2339 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2340 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2341 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2342 DAG.getConstant(RegisterOnly, DL, MVT::i32));
2343 }
2344 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2345}
2346
2347// Implement a 32-bit *MUL_LOHI operation by extending both operands to
2348// 64 bits. Extend is the extension type to use. Store the high part
2349// in Hi and the low part in Lo.
2350static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2351 SDValue Op0, SDValue Op1, SDValue &Hi,
2352 SDValue &Lo) {
2353 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2354 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2355 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2356 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2357 DAG.getConstant(32, DL, MVT::i64));
2358 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2359 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2360}
2361
2362// Lower a binary operation that produces two VT results, one in each
2363// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2364// and Opcode performs the GR128 operation. Store the even register result
2365// in Even and the odd register result in Odd.
2366static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2367 unsigned Opcode, SDValue Op0, SDValue Op1,
2368 SDValue &Even, SDValue &Odd) {
2369 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2370 bool Is32Bit = is32Bit(VT);
2371 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2372 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2373}
2374
2375// Return an i32 value that is 1 if the CC value produced by CCReg is
2376// in the mask CCMask and 0 otherwise. CC is known to have a value
2377// in CCValid, so other values can be ignored.
2378static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2379 unsigned CCValid, unsigned CCMask) {
2380 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2381 DAG.getConstant(0, DL, MVT::i32),
2382 DAG.getConstant(CCValid, DL, MVT::i32),
2383 DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2384 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2385}
2386
2387// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2388// be done directly. IsFP is true if CC is for a floating-point rather than
2389// integer comparison.
2390static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2391 switch (CC) {
2392 case ISD::SETOEQ:
2393 case ISD::SETEQ:
2394 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2395
2396 case ISD::SETOGE:
2397 case ISD::SETGE:
2398 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2399
2400 case ISD::SETOGT:
2401 case ISD::SETGT:
2402 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2403
2404 case ISD::SETUGT:
2405 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2406
2407 default:
2408 return 0;
2409 }
2410}
2411
2412// Return the SystemZISD vector comparison operation for CC or its inverse,
2413// or 0 if neither can be done directly. Indicate in Invert whether the
2414// result is for the inverse of CC. IsFP is true if CC is for a
2415// floating-point rather than integer comparison.
2416static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2417 bool &Invert) {
2418 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2419 Invert = false;
2420 return Opcode;
2421 }
2422
2423 CC = ISD::getSetCCInverse(CC, !IsFP);
2424 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2425 Invert = true;
2426 return Opcode;
2427 }
2428
2429 return 0;
2430}
2431
2432// Return a v2f64 that contains the extended form of elements Start and Start+1
2433// of v4f32 value Op.
2434static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2435 SDValue Op) {
2436 int Mask[] = { Start, -1, Start + 1, -1 };
2437 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2438 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2439}
2440
2441// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2442// producing a result of type VT.
2443SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2444 const SDLoc &DL, EVT VT,
2445 SDValue CmpOp0,
2446 SDValue CmpOp1) const {
2447 // There is no hardware support for v4f32 (unless we have the vector
2448 // enhancements facility 1), so extend the vector into two v2f64s
2449 // and compare those.
2450 if (CmpOp0.getValueType() == MVT::v4f32 &&
2451 !Subtarget.hasVectorEnhancements1()) {
2452 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2453 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2454 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2455 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2456 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2457 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2458 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2459 }
2460 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2461}
2462
2463// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2464// an integer mask of type VT.
2465SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2466 const SDLoc &DL, EVT VT,
2467 ISD::CondCode CC,
2468 SDValue CmpOp0,
2469 SDValue CmpOp1) const {
2470 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2471 bool Invert = false;
2472 SDValue Cmp;
2473 switch (CC) {
2474 // Handle tests for order using (or (ogt y x) (oge x y)).
2475 case ISD::SETUO:
2476 Invert = true;
2477 LLVM_FALLTHROUGH[[clang::fallthrough]];
2478 case ISD::SETO: {
2479 assert(IsFP && "Unexpected integer comparison")((IsFP && "Unexpected integer comparison") ? static_cast
<void> (0) : __assert_fail ("IsFP && \"Unexpected integer comparison\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2479, __PRETTY_FUNCTION__))
;
2480 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2481 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2482 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2483 break;
2484 }
2485
2486 // Handle <> tests using (or (ogt y x) (ogt x y)).
2487 case ISD::SETUEQ:
2488 Invert = true;
2489 LLVM_FALLTHROUGH[[clang::fallthrough]];
2490 case ISD::SETONE: {
2491 assert(IsFP && "Unexpected integer comparison")((IsFP && "Unexpected integer comparison") ? static_cast
<void> (0) : __assert_fail ("IsFP && \"Unexpected integer comparison\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2491, __PRETTY_FUNCTION__))
;
2492 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2493 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2494 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2495 break;
2496 }
2497
2498 // Otherwise a single comparison is enough. It doesn't really
2499 // matter whether we try the inversion or the swap first, since
2500 // there are no cases where both work.
2501 default:
2502 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2503 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2504 else {
2505 CC = ISD::getSetCCSwappedOperands(CC);
2506 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2507 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2508 else
2509 llvm_unreachable("Unhandled comparison")::llvm::llvm_unreachable_internal("Unhandled comparison", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2509)
;
2510 }
2511 break;
2512 }
2513 if (Invert) {
2514 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2515 DAG.getConstant(65535, DL, MVT::i32));
2516 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2517 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2518 }
2519 return Cmp;
2520}
2521
2522SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2523 SelectionDAG &DAG) const {
2524 SDValue CmpOp0 = Op.getOperand(0);
2525 SDValue CmpOp1 = Op.getOperand(1);
2526 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2527 SDLoc DL(Op);
2528 EVT VT = Op.getValueType();
2529 if (VT.isVector())
2530 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2531
2532 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2533 SDValue CCReg = emitCmp(DAG, DL, C);
2534 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2535}
2536
2537SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2538 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2539 SDValue CmpOp0 = Op.getOperand(2);
2540 SDValue CmpOp1 = Op.getOperand(3);
2541 SDValue Dest = Op.getOperand(4);
2542 SDLoc DL(Op);
2543
2544 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2545 SDValue CCReg = emitCmp(DAG, DL, C);
2546 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2547 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2548 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2549}
2550
2551// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2552// allowing Pos and Neg to be wider than CmpOp.
2553static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2554 return (Neg.getOpcode() == ISD::SUB &&
2555 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2556 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2557 Neg.getOperand(1) == Pos &&
2558 (Pos == CmpOp ||
2559 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2560 Pos.getOperand(0) == CmpOp)));
2561}
2562
2563// Return the absolute or negative absolute of Op; IsNegative decides which.
2564static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2565 bool IsNegative) {
2566 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2567 if (IsNegative)
2568 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2569 DAG.getConstant(0, DL, Op.getValueType()), Op);
2570 return Op;
2571}
2572
2573SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2574 SelectionDAG &DAG) const {
2575 SDValue CmpOp0 = Op.getOperand(0);
2576 SDValue CmpOp1 = Op.getOperand(1);
2577 SDValue TrueOp = Op.getOperand(2);
2578 SDValue FalseOp = Op.getOperand(3);
2579 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2580 SDLoc DL(Op);
2581
2582 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2583
2584 // Check for absolute and negative-absolute selections, including those
2585 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2586 // This check supplements the one in DAGCombiner.
2587 if (C.Opcode == SystemZISD::ICMP &&
2588 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2589 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2590 C.Op1.getOpcode() == ISD::Constant &&
2591 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2592 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2593 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2594 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2595 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2596 }
2597
2598 SDValue CCReg = emitCmp(DAG, DL, C);
2599 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2600 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2601
2602 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2603}
2604
2605SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2606 SelectionDAG &DAG) const {
2607 SDLoc DL(Node);
2608 const GlobalValue *GV = Node->getGlobal();
2609 int64_t Offset = Node->getOffset();
2610 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2611 CodeModel::Model CM = DAG.getTarget().getCodeModel();
2612
2613 SDValue Result;
2614 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2615 // Assign anchors at 1<<12 byte boundaries.
2616 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2617 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2618 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2619
2620 // The offset can be folded into the address if it is aligned to a halfword.
2621 Offset -= Anchor;
2622 if (Offset != 0 && (Offset & 1) == 0) {
2623 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2624 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2625 Offset = 0;
2626 }
2627 } else {
2628 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2629 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2630 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2631 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2632 }
2633
2634 // If there was a non-zero offset that we didn't fold, create an explicit
2635 // addition for it.
2636 if (Offset != 0)
2637 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2638 DAG.getConstant(Offset, DL, PtrVT));
2639
2640 return Result;
2641}
2642
2643SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2644 SelectionDAG &DAG,
2645 unsigned Opcode,
2646 SDValue GOTOffset) const {
2647 SDLoc DL(Node);
2648 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2649 SDValue Chain = DAG.getEntryNode();
2650 SDValue Glue;
2651
2652 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2653 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2654 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2655 Glue = Chain.getValue(1);
2656 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2657 Glue = Chain.getValue(1);
2658
2659 // The first call operand is the chain and the second is the TLS symbol.
2660 SmallVector<SDValue, 8> Ops;
2661 Ops.push_back(Chain);
2662 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2663 Node->getValueType(0),
2664 0, 0));
2665
2666 // Add argument registers to the end of the list so that they are
2667 // known live into the call.
2668 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2669 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2670
2671 // Add a register mask operand representing the call-preserved registers.
2672 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2673 const uint32_t *Mask =
2674 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2675 assert(Mask && "Missing call preserved mask for calling convention")((Mask && "Missing call preserved mask for calling convention"
) ? static_cast<void> (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2675, __PRETTY_FUNCTION__))
;
2676 Ops.push_back(DAG.getRegisterMask(Mask));
2677
2678 // Glue the call to the argument copies.
2679 Ops.push_back(Glue);
2680
2681 // Emit the call.
2682 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2683 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2684 Glue = Chain.getValue(1);
2685
2686 // Copy the return value from %r2.
2687 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2688}
2689
2690SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2691 SelectionDAG &DAG) const {
2692 SDValue Chain = DAG.getEntryNode();
2693 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2694
2695 // The high part of the thread pointer is in access register 0.
2696 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2697 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2698
2699 // The low part of the thread pointer is in access register 1.
2700 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2701 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2702
2703 // Merge them into a single 64-bit address.
2704 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2705 DAG.getConstant(32, DL, PtrVT));
2706 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2707}
2708
2709SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2710 SelectionDAG &DAG) const {
2711 if (DAG.getTarget().useEmulatedTLS())
2712 return LowerToTLSEmulatedModel(Node, DAG);
2713 SDLoc DL(Node);
2714 const GlobalValue *GV = Node->getGlobal();
2715 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2716 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2717
2718 SDValue TP = lowerThreadPointer(DL, DAG);
2719
2720 // Get the offset of GA from the thread pointer, based on the TLS model.
2721 SDValue Offset;
2722 switch (model) {
2723 case TLSModel::GeneralDynamic: {
2724 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2725 SystemZConstantPoolValue *CPV =
2726 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2727
2728 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2729 Offset = DAG.getLoad(
2730 PtrVT, DL, DAG.getEntryNode(), Offset,
2731 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2732
2733 // Call __tls_get_offset to retrieve the offset.
2734 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2735 break;
2736 }
2737
2738 case TLSModel::LocalDynamic: {
2739 // Load the GOT offset of the module ID.
2740 SystemZConstantPoolValue *CPV =
2741 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2742
2743 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2744 Offset = DAG.getLoad(
2745 PtrVT, DL, DAG.getEntryNode(), Offset,
2746 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2747
2748 // Call __tls_get_offset to retrieve the module base offset.
2749 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2750
2751 // Note: The SystemZLDCleanupPass will remove redundant computations
2752 // of the module base offset. Count total number of local-dynamic
2753 // accesses to trigger execution of that pass.
2754 SystemZMachineFunctionInfo* MFI =
2755 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2756 MFI->incNumLocalDynamicTLSAccesses();
2757
2758 // Add the per-symbol offset.
2759 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2760
2761 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2762 DTPOffset = DAG.getLoad(
2763 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2764 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2765
2766 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2767 break;
2768 }
2769
2770 case TLSModel::InitialExec: {
2771 // Load the offset from the GOT.
2772 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2773 SystemZII::MO_INDNTPOFF);
2774 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2775 Offset =
2776 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2777 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2778 break;
2779 }
2780
2781 case TLSModel::LocalExec: {
2782 // Force the offset into the constant pool and load it from there.
2783 SystemZConstantPoolValue *CPV =
2784 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2785
2786 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2787 Offset = DAG.getLoad(
2788 PtrVT, DL, DAG.getEntryNode(), Offset,
2789 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2790 break;
2791 }
2792 }
2793
2794 // Add the base and offset together.
2795 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2796}
2797
2798SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2799 SelectionDAG &DAG) const {
2800 SDLoc DL(Node);
2801 const BlockAddress *BA = Node->getBlockAddress();
2802 int64_t Offset = Node->getOffset();
2803 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2804
2805 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2806 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2807 return Result;
2808}
2809
2810SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2811 SelectionDAG &DAG) const {
2812 SDLoc DL(JT);
2813 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2814 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2815
2816 // Use LARL to load the address of the table.
2817 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2818}
2819
2820SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2821 SelectionDAG &DAG) const {
2822 SDLoc DL(CP);
2823 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2824
2825 SDValue Result;
2826 if (CP->isMachineConstantPoolEntry())
2827 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2828 CP->getAlignment());
2829 else
2830 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2831 CP->getAlignment(), CP->getOffset());
2832
2833 // Use LARL to load the address of the constant pool entry.
2834 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2835}
2836
2837SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2838 SelectionDAG &DAG) const {
2839 MachineFunction &MF = DAG.getMachineFunction();
2840 MachineFrameInfo &MFI = MF.getFrameInfo();
2841 MFI.setFrameAddressIsTaken(true);
2842
2843 SDLoc DL(Op);
2844 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2845 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2846
2847 // If the back chain frame index has not been allocated yet, do so.
2848 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2849 int BackChainIdx = FI->getFramePointerSaveIndex();
2850 if (!BackChainIdx) {
2851 // By definition, the frame address is the address of the back chain.
2852 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2853 FI->setFramePointerSaveIndex(BackChainIdx);
2854 }
2855 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2856
2857 // FIXME The frontend should detect this case.
2858 if (Depth > 0) {
2859 report_fatal_error("Unsupported stack frame traversal count");
2860 }
2861
2862 return BackChain;
2863}
2864
2865SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2866 SelectionDAG &DAG) const {
2867 MachineFunction &MF = DAG.getMachineFunction();
2868 MachineFrameInfo &MFI = MF.getFrameInfo();
2869 MFI.setReturnAddressIsTaken(true);
2870
2871 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2872 return SDValue();
2873
2874 SDLoc DL(Op);
2875 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2876 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2877
2878 // FIXME The frontend should detect this case.
2879 if (Depth > 0) {
2880 report_fatal_error("Unsupported stack frame traversal count");
2881 }
2882
2883 // Return R14D, which has the return address. Mark it an implicit live-in.
2884 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2885 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2886}
2887
2888SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2889 SelectionDAG &DAG) const {
2890 SDLoc DL(Op);
2891 SDValue In = Op.getOperand(0);
2892 EVT InVT = In.getValueType();
2893 EVT ResVT = Op.getValueType();
2894
2895 // Convert loads directly. This is normally done by DAGCombiner,
2896 // but we need this case for bitcasts that are created during lowering
2897 // and which are then lowered themselves.
2898 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2899 if (ISD::isNormalLoad(LoadN)) {
2900 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2901 LoadN->getBasePtr(), LoadN->getMemOperand());
2902 // Update the chain uses.
2903 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2904 return NewLoad;
2905 }
2906
2907 if (InVT == MVT::i32 && ResVT == MVT::f32) {
2908 SDValue In64;
2909 if (Subtarget.hasHighWord()) {
2910 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2911 MVT::i64);
2912 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2913 MVT::i64, SDValue(U64, 0), In);
2914 } else {
2915 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2916 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2917 DAG.getConstant(32, DL, MVT::i64));
2918 }
2919 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2920 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
2921 DL, MVT::f32, Out64);
2922 }
2923 if (InVT == MVT::f32 && ResVT == MVT::i32) {
2924 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2925 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2926 MVT::f64, SDValue(U64, 0), In);
2927 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2928 if (Subtarget.hasHighWord())
2929 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2930 MVT::i32, Out64);
2931 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2932 DAG.getConstant(32, DL, MVT::i64));
2933 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2934 }
2935 llvm_unreachable("Unexpected bitcast combination")::llvm::llvm_unreachable_internal("Unexpected bitcast combination"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 2935)
;
2936}
2937
2938SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2939 SelectionDAG &DAG) const {
2940 MachineFunction &MF = DAG.getMachineFunction();
2941 SystemZMachineFunctionInfo *FuncInfo =
2942 MF.getInfo<SystemZMachineFunctionInfo>();
2943 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2944
2945 SDValue Chain = Op.getOperand(0);
2946 SDValue Addr = Op.getOperand(1);
2947 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2948 SDLoc DL(Op);
2949
2950 // The initial values of each field.
2951 const unsigned NumFields = 4;
2952 SDValue Fields[NumFields] = {
2953 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2954 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2955 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2956 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2957 };
2958
2959 // Store each field into its respective slot.
2960 SDValue MemOps[NumFields];
2961 unsigned Offset = 0;
2962 for (unsigned I = 0; I < NumFields; ++I) {
2963 SDValue FieldAddr = Addr;
2964 if (Offset != 0)
2965 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2966 DAG.getIntPtrConstant(Offset, DL));
2967 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2968 MachinePointerInfo(SV, Offset));
2969 Offset += 8;
2970 }
2971 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2972}
2973
2974SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2975 SelectionDAG &DAG) const {
2976 SDValue Chain = Op.getOperand(0);
2977 SDValue DstPtr = Op.getOperand(1);
2978 SDValue SrcPtr = Op.getOperand(2);
2979 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2980 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2981 SDLoc DL(Op);
2982
2983 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2984 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2985 /*isTailCall*/false,
2986 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2987}
2988
2989SDValue SystemZTargetLowering::
2990lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2991 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2992 MachineFunction &MF = DAG.getMachineFunction();
2993 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2994 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2995
2996 SDValue Chain = Op.getOperand(0);
2997 SDValue Size = Op.getOperand(1);
2998 SDValue Align = Op.getOperand(2);
2999 SDLoc DL(Op);
3000
3001 // If user has set the no alignment function attribute, ignore
3002 // alloca alignments.
3003 uint64_t AlignVal = (RealignOpt ?
3004 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3005
3006 uint64_t StackAlign = TFI->getStackAlignment();
3007 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3008 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3009
3010 unsigned SPReg = getStackPointerRegisterToSaveRestore();
3011 SDValue NeededSpace = Size;
3012
3013 // Get a reference to the stack pointer.
3014 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3015
3016 // If we need a backchain, save it now.
3017 SDValue Backchain;
3018 if (StoreBackchain)
3019 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3020
3021 // Add extra space for alignment if needed.
3022 if (ExtraAlignSpace)
3023 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3024 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3025
3026 // Get the new stack pointer value.
3027 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3028
3029 // Copy the new stack pointer back.
3030 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3031
3032 // The allocated data lives above the 160 bytes allocated for the standard
3033 // frame, plus any outgoing stack arguments. We don't know how much that
3034 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3035 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3036 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3037
3038 // Dynamically realign if needed.
3039 if (RequiredAlign > StackAlign) {
3040 Result =
3041 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3042 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3043 Result =
3044 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3045 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3046 }
3047
3048 if (StoreBackchain)
3049 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3050
3051 SDValue Ops[2] = { Result, Chain };
3052 return DAG.getMergeValues(Ops, DL);
3053}
3054
3055SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3056 SDValue Op, SelectionDAG &DAG) const {
3057 SDLoc DL(Op);
3058
3059 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3060}
3061
3062SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3063 SelectionDAG &DAG) const {
3064 EVT VT = Op.getValueType();
3065 SDLoc DL(Op);
3066 SDValue Ops[2];
3067 if (is32Bit(VT))
3068 // Just do a normal 64-bit multiplication and extract the results.
3069 // We define this so that it can be used for constant division.
3070 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3071 Op.getOperand(1), Ops[1], Ops[0]);
3072 else if (Subtarget.hasMiscellaneousExtensions2())
3073 // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3074 // the high result in the even register. ISD::SMUL_LOHI is defined to
3075 // return the low half first, so the results are in reverse order.
3076 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3077 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3078 else {
3079 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3080 //
3081 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3082 //
3083 // but using the fact that the upper halves are either all zeros
3084 // or all ones:
3085 //
3086 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3087 //
3088 // and grouping the right terms together since they are quicker than the
3089 // multiplication:
3090 //
3091 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3092 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3093 SDValue LL = Op.getOperand(0);
3094 SDValue RL = Op.getOperand(1);
3095 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3096 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3097 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3098 // the high result in the even register. ISD::SMUL_LOHI is defined to
3099 // return the low half first, so the results are in reverse order.
3100 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3101 LL, RL, Ops[1], Ops[0]);
3102 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3103 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3104 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3105 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3106 }
3107 return DAG.getMergeValues(Ops, DL);
3108}
3109
3110SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3111 SelectionDAG &DAG) const {
3112 EVT VT = Op.getValueType();
3113 SDLoc DL(Op);
3114 SDValue Ops[2];
3115 if (is32Bit(VT))
3116 // Just do a normal 64-bit multiplication and extract the results.
3117 // We define this so that it can be used for constant division.
3118 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3119 Op.getOperand(1), Ops[1], Ops[0]);
3120 else
3121 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3122 // the high result in the even register. ISD::UMUL_LOHI is defined to
3123 // return the low half first, so the results are in reverse order.
3124 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3125 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3126 return DAG.getMergeValues(Ops, DL);
3127}
3128
3129SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3130 SelectionDAG &DAG) const {
3131 SDValue Op0 = Op.getOperand(0);
3132 SDValue Op1 = Op.getOperand(1);
3133 EVT VT = Op.getValueType();
3134 SDLoc DL(Op);
3135
3136 // We use DSGF for 32-bit division. This means the first operand must
3137 // always be 64-bit, and the second operand should be 32-bit whenever
3138 // that is possible, to improve performance.
3139 if (is32Bit(VT))
3140 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3141 else if (DAG.ComputeNumSignBits(Op1) > 32)
3142 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3143
3144 // DSG(F) returns the remainder in the even register and the
3145 // quotient in the odd register.
3146 SDValue Ops[2];
3147 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3148 return DAG.getMergeValues(Ops, DL);
3149}
3150
3151SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3152 SelectionDAG &DAG) const {
3153 EVT VT = Op.getValueType();
3154 SDLoc DL(Op);
3155
3156 // DL(G) returns the remainder in the even register and the
3157 // quotient in the odd register.
3158 SDValue Ops[2];
3159 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3160 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3161 return DAG.getMergeValues(Ops, DL);
3162}
3163
3164SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3165 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation")((Op.getValueType() == MVT::i64 && "Should be 64-bit operation"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::i64 && \"Should be 64-bit operation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3165, __PRETTY_FUNCTION__))
;
3166
3167 // Get the known-zero masks for each operand.
3168 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3169 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3170 DAG.computeKnownBits(Ops[1])};
3171
3172 // See if the upper 32 bits of one operand and the lower 32 bits of the
3173 // other are known zero. They are the low and high operands respectively.
3174 uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3175 Known[1].Zero.getZExtValue() };
3176 unsigned High, Low;
3177 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3178 High = 1, Low = 0;
3179 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3180 High = 0, Low = 1;
3181 else
3182 return Op;
3183
3184 SDValue LowOp = Ops[Low];
3185 SDValue HighOp = Ops[High];
3186
3187 // If the high part is a constant, we're better off using IILH.
3188 if (HighOp.getOpcode() == ISD::Constant)
3189 return Op;
3190
3191 // If the low part is a constant that is outside the range of LHI,
3192 // then we're better off using IILF.
3193 if (LowOp.getOpcode() == ISD::Constant) {
3194 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3195 if (!isInt<16>(Value))
3196 return Op;
3197 }
3198
3199 // Check whether the high part is an AND that doesn't change the
3200 // high 32 bits and just masks out low bits. We can skip it if so.
3201 if (HighOp.getOpcode() == ISD::AND &&
3202 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3203 SDValue HighOp0 = HighOp.getOperand(0);
3204 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3205 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3206 HighOp = HighOp0;
3207 }
3208
3209 // Take advantage of the fact that all GR32 operations only change the
3210 // low 32 bits by truncating Low to an i32 and inserting it directly
3211 // using a subreg. The interesting cases are those where the truncation
3212 // can be folded.
3213 SDLoc DL(Op);
3214 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3215 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3216 MVT::i64, HighOp, Low32);
3217}
3218
3219// Lower SADDO/SSUBO/UADDO/USUBO nodes.
3220SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3221 SelectionDAG &DAG) const {
3222 SDNode *N = Op.getNode();
3223 SDValue LHS = N->getOperand(0);
3224 SDValue RHS = N->getOperand(1);
3225 SDLoc DL(N);
3226 unsigned BaseOp = 0;
3227 unsigned CCValid = 0;
3228 unsigned CCMask = 0;
3229
3230 switch (Op.getOpcode()) {
3231 default: llvm_unreachable("Unknown instruction!")::llvm::llvm_unreachable_internal("Unknown instruction!", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3231)
;
3232 case ISD::SADDO:
3233 BaseOp = SystemZISD::SADDO;
3234 CCValid = SystemZ::CCMASK_ARITH;
3235 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3236 break;
3237 case ISD::SSUBO:
3238 BaseOp = SystemZISD::SSUBO;
3239 CCValid = SystemZ::CCMASK_ARITH;
3240 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3241 break;
3242 case ISD::UADDO:
3243 BaseOp = SystemZISD::UADDO;
3244 CCValid = SystemZ::CCMASK_LOGICAL;
3245 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3246 break;
3247 case ISD::USUBO:
3248 BaseOp = SystemZISD::USUBO;
3249 CCValid = SystemZ::CCMASK_LOGICAL;
3250 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3251 break;
3252 }
3253
3254 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3255 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3256
3257 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3258 if (N->getValueType(1) == MVT::i1)
3259 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3260
3261 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3262}
3263
3264// Lower ADDCARRY/SUBCARRY nodes.
3265SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3266 SelectionDAG &DAG) const {
3267
3268 SDNode *N = Op.getNode();
3269 MVT VT = N->getSimpleValueType(0);
3270
3271 // Let legalize expand this if it isn't a legal type yet.
3272 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3273 return SDValue();
3274
3275 SDValue LHS = N->getOperand(0);
3276 SDValue RHS = N->getOperand(1);
3277 SDValue Carry = Op.getOperand(2);
3278 SDLoc DL(N);
3279 unsigned BaseOp = 0;
3280 unsigned CCValid = 0;
3281 unsigned CCMask = 0;
3282
3283 switch (Op.getOpcode()) {
3284 default: llvm_unreachable("Unknown instruction!")::llvm::llvm_unreachable_internal("Unknown instruction!", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3284)
;
3285 case ISD::ADDCARRY:
3286 BaseOp = SystemZISD::ADDCARRY;
3287 CCValid = SystemZ::CCMASK_LOGICAL;
3288 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3289 break;
3290 case ISD::SUBCARRY:
3291 BaseOp = SystemZISD::SUBCARRY;
3292 CCValid = SystemZ::CCMASK_LOGICAL;
3293 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3294 break;
3295 }
3296
3297 // Set the condition code from the carry flag.
3298 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3299 DAG.getConstant(CCValid, DL, MVT::i32),
3300 DAG.getConstant(CCMask, DL, MVT::i32));
3301
3302 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3303 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3304
3305 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3306 if (N->getValueType(1) == MVT::i1)
3307 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3308
3309 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3310}
3311
3312SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3313 SelectionDAG &DAG) const {
3314 EVT VT = Op.getValueType();
3315 SDLoc DL(Op);
3316 Op = Op.getOperand(0);
3317
3318 // Handle vector types via VPOPCT.
3319 if (VT.isVector()) {
3320 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3321 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3322 switch (VT.getScalarSizeInBits()) {
3323 case 8:
3324 break;
3325 case 16: {
3326 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3327 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3328 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3329 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3330 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3331 break;
3332 }
3333 case 32: {
3334 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3335 DAG.getConstant(0, DL, MVT::i32));
3336 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3337 break;
3338 }
3339 case 64: {
3340 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3341 DAG.getConstant(0, DL, MVT::i32));
3342 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3343 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3344 break;
3345 }
3346 default:
3347 llvm_unreachable("Unexpected type")::llvm::llvm_unreachable_internal("Unexpected type", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3347)
;
3348 }
3349 return Op;
3350 }
3351
3352 // Get the known-zero mask for the operand.
3353 KnownBits Known = DAG.computeKnownBits(Op);
3354 unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3355 if (NumSignificantBits == 0)
3356 return DAG.getConstant(0, DL, VT);
3357
3358 // Skip known-zero high parts of the operand.
3359 int64_t OrigBitSize = VT.getSizeInBits();
3360 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3361 BitSize = std::min(BitSize, OrigBitSize);
3362
3363 // The POPCNT instruction counts the number of bits in each byte.
3364 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3365 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3366 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3367
3368 // Add up per-byte counts in a binary tree. All bits of Op at
3369 // position larger than BitSize remain zero throughout.
3370 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3371 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3372 if (BitSize != OrigBitSize)
3373 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3374 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3375 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3376 }
3377
3378 // Extract overall result from high byte.
3379 if (BitSize > 8)
3380 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3381 DAG.getConstant(BitSize - 8, DL, VT));
3382
3383 return Op;
3384}
3385
3386SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3387 SelectionDAG &DAG) const {
3388 SDLoc DL(Op);
3389 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3390 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3391 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3392 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3393
3394 // The only fence that needs an instruction is a sequentially-consistent
3395 // cross-thread fence.
3396 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3397 FenceSSID == SyncScope::System) {
3398 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3399 Op.getOperand(0)),
3400 0);
3401 }
3402
3403 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3404 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3405}
3406
3407// Op is an atomic load. Lower it into a normal volatile load.
3408SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3409 SelectionDAG &DAG) const {
3410 auto *Node = cast<AtomicSDNode>(Op.getNode());
3411 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3412 Node->getChain(), Node->getBasePtr(),
3413 Node->getMemoryVT(), Node->getMemOperand());
3414}
3415
3416// Op is an atomic store. Lower it into a normal volatile store.
3417SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3418 SelectionDAG &DAG) const {
3419 auto *Node = cast<AtomicSDNode>(Op.getNode());
3420 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3421 Node->getBasePtr(), Node->getMemoryVT(),
3422 Node->getMemOperand());
3423 // We have to enforce sequential consistency by performing a
3424 // serialization operation after the store.
3425 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3426 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3427 MVT::Other, Chain), 0);
3428 return Chain;
3429}
3430
3431// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3432// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3433SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3434 SelectionDAG &DAG,
3435 unsigned Opcode) const {
3436 auto *Node = cast<AtomicSDNode>(Op.getNode());
3437
3438 // 32-bit operations need no code outside the main loop.
3439 EVT NarrowVT = Node->getMemoryVT();
3440 EVT WideVT = MVT::i32;
3441 if (NarrowVT == WideVT)
3442 return Op;
3443
3444 int64_t BitSize = NarrowVT.getSizeInBits();
3445 SDValue ChainIn = Node->getChain();
3446 SDValue Addr = Node->getBasePtr();
3447 SDValue Src2 = Node->getVal();
3448 MachineMemOperand *MMO = Node->getMemOperand();
3449 SDLoc DL(Node);
3450 EVT PtrVT = Addr.getValueType();
3451
3452 // Convert atomic subtracts of constants into additions.
3453 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3454 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3455 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3456 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3457 }
3458
3459 // Get the address of the containing word.
3460 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3461 DAG.getConstant(-4, DL, PtrVT));
3462
3463 // Get the number of bits that the word must be rotated left in order
3464 // to bring the field to the top bits of a GR32.
3465 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3466 DAG.getConstant(3, DL, PtrVT));
3467 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3468
3469 // Get the complementing shift amount, for rotating a field in the top
3470 // bits back to its proper position.
3471 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3472 DAG.getConstant(0, DL, WideVT), BitShift);
3473
3474 // Extend the source operand to 32 bits and prepare it for the inner loop.
3475 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3476 // operations require the source to be shifted in advance. (This shift
3477 // can be folded if the source is constant.) For AND and NAND, the lower
3478 // bits must be set, while for other opcodes they should be left clear.
3479 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3480 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3481 DAG.getConstant(32 - BitSize, DL, WideVT));
3482 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3483 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3484 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3485 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3486
3487 // Construct the ATOMIC_LOADW_* node.
3488 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3489 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3490 DAG.getConstant(BitSize, DL, WideVT) };
3491 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3492 NarrowVT, MMO);
3493
3494 // Rotate the result of the final CS so that the field is in the lower
3495 // bits of a GR32, then truncate it.
3496 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3497 DAG.getConstant(BitSize, DL, WideVT));
3498 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3499
3500 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3501 return DAG.getMergeValues(RetOps, DL);
3502}
3503
3504// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
3505// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3506// operations into additions.
3507SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3508 SelectionDAG &DAG) const {
3509 auto *Node = cast<AtomicSDNode>(Op.getNode());
3510 EVT MemVT = Node->getMemoryVT();
3511 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3512 // A full-width operation.
3513 assert(Op.getValueType() == MemVT && "Mismatched VTs")((Op.getValueType() == MemVT && "Mismatched VTs") ? static_cast
<void> (0) : __assert_fail ("Op.getValueType() == MemVT && \"Mismatched VTs\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3513, __PRETTY_FUNCTION__))
;
3514 SDValue Src2 = Node->getVal();
3515 SDValue NegSrc2;
3516 SDLoc DL(Src2);
3517
3518 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3519 // Use an addition if the operand is constant and either LAA(G) is
3520 // available or the negative value is in the range of A(G)FHI.
3521 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3522 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3523 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3524 } else if (Subtarget.hasInterlockedAccess1())
3525 // Use LAA(G) if available.
3526 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3527 Src2);
3528
3529 if (NegSrc2.getNode())
3530 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3531 Node->getChain(), Node->getBasePtr(), NegSrc2,
3532 Node->getMemOperand());
3533
3534 // Use the node as-is.
3535 return Op;
3536 }
3537
3538 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3539}
3540
3541// Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3542SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3543 SelectionDAG &DAG) const {
3544 auto *Node = cast<AtomicSDNode>(Op.getNode());
3545 SDValue ChainIn = Node->getOperand(0);
3546 SDValue Addr = Node->getOperand(1);
3547 SDValue CmpVal = Node->getOperand(2);
3548 SDValue SwapVal = Node->getOperand(3);
3549 MachineMemOperand *MMO = Node->getMemOperand();
3550 SDLoc DL(Node);
3551
3552 // We have native support for 32-bit and 64-bit compare and swap, but we
3553 // still need to expand extracting the "success" result from the CC.
3554 EVT NarrowVT = Node->getMemoryVT();
3555 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3556 if (NarrowVT == WideVT) {
3557 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3558 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3559 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3560 DL, Tys, Ops, NarrowVT, MMO);
3561 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3562 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3563
3564 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3565 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3566 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3567 return SDValue();
3568 }
3569
3570 // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3571 // via a fullword ATOMIC_CMP_SWAPW operation.
3572 int64_t BitSize = NarrowVT.getSizeInBits();
3573 EVT PtrVT = Addr.getValueType();
3574
3575 // Get the address of the containing word.
3576 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3577 DAG.getConstant(-4, DL, PtrVT));
3578
3579 // Get the number of bits that the word must be rotated left in order
3580 // to bring the field to the top bits of a GR32.
3581 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3582 DAG.getConstant(3, DL, PtrVT));
3583 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3584
3585 // Get the complementing shift amount, for rotating a field in the top
3586 // bits back to its proper position.
3587 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3588 DAG.getConstant(0, DL, WideVT), BitShift);
3589
3590 // Construct the ATOMIC_CMP_SWAPW node.
3591 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3592 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3593 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3594 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3595 VTList, Ops, NarrowVT, MMO);
3596 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3597 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3598
3599 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3600 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3601 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3602 return SDValue();
3603}
3604
3605SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3606 SelectionDAG &DAG) const {
3607 MachineFunction &MF = DAG.getMachineFunction();
3608 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3609 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3610 SystemZ::R15D, Op.getValueType());
3611}
3612
3613SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3614 SelectionDAG &DAG) const {
3615 MachineFunction &MF = DAG.getMachineFunction();
3616 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3617 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3618
3619 SDValue Chain = Op.getOperand(0);
3620 SDValue NewSP = Op.getOperand(1);
3621 SDValue Backchain;
3622 SDLoc DL(Op);
3623
3624 if (StoreBackchain) {
3625 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3626 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3627 }
3628
3629 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3630
3631 if (StoreBackchain)
3632 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3633
3634 return Chain;
3635}
3636
3637SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3638 SelectionDAG &DAG) const {
3639 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3640 if (!IsData)
3641 // Just preserve the chain.
3642 return Op.getOperand(0);
3643
3644 SDLoc DL(Op);
3645 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3646 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3647 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3648 SDValue Ops[] = {
3649 Op.getOperand(0),
3650 DAG.getConstant(Code, DL, MVT::i32),
3651 Op.getOperand(1)
3652 };
3653 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3654 Node->getVTList(), Ops,
3655 Node->getMemoryVT(), Node->getMemOperand());
3656}
3657
3658// Convert condition code in CCReg to an i32 value.
3659static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3660 SDLoc DL(CCReg);
3661 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3662 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3663 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3664}
3665
3666SDValue
3667SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3668 SelectionDAG &DAG) const {
3669 unsigned Opcode, CCValid;
3670 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3671 assert(Op->getNumValues() == 2 && "Expected only CC result and chain")((Op->getNumValues() == 2 && "Expected only CC result and chain"
) ? static_cast<void> (0) : __assert_fail ("Op->getNumValues() == 2 && \"Expected only CC result and chain\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3671, __PRETTY_FUNCTION__))
;
3672 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3673 SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3674 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3675 return SDValue();
3676 }
3677
3678 return SDValue();
3679}
3680
3681SDValue
3682SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3683 SelectionDAG &DAG) const {
3684 unsigned Opcode, CCValid;
3685 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3686 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3687 if (Op->getNumValues() == 1)
3688 return getCCResult(DAG, SDValue(Node, 0));
3689 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result")((Op->getNumValues() == 2 && "Expected a CC and non-CC result"
) ? static_cast<void> (0) : __assert_fail ("Op->getNumValues() == 2 && \"Expected a CC and non-CC result\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 3689, __PRETTY_FUNCTION__))
;
3690 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3691 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3692 }
3693
3694 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3695 switch (Id) {
3696 case Intrinsic::thread_pointer:
3697 return lowerThreadPointer(SDLoc(Op), DAG);
3698
3699 case Intrinsic::s390_vpdi:
3700 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3701 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3702
3703 case Intrinsic::s390_vperm:
3704 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3705 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3706
3707 case Intrinsic::s390_vuphb:
3708 case Intrinsic::s390_vuphh:
3709 case Intrinsic::s390_vuphf:
3710 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3711 Op.getOperand(1));
3712
3713 case Intrinsic::s390_vuplhb:
3714 case Intrinsic::s390_vuplhh:
3715 case Intrinsic::s390_vuplhf:
3716 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3717 Op.getOperand(1));
3718
3719 case Intrinsic::s390_vuplb:
3720 case Intrinsic::s390_vuplhw:
3721 case Intrinsic::s390_vuplf:
3722 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3723 Op.getOperand(1));
3724
3725 case Intrinsic::s390_vupllb:
3726 case Intrinsic::s390_vupllh:
3727 case Intrinsic::s390_vupllf:
3728 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3729 Op.getOperand(1));
3730
3731 case Intrinsic::s390_vsumb:
3732 case Intrinsic::s390_vsumh:
3733 case Intrinsic::s390_vsumgh:
3734 case Intrinsic::s390_vsumgf:
3735 case Intrinsic::s390_vsumqf:
3736 case Intrinsic::s390_vsumqg:
3737 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3738 Op.getOperand(1), Op.getOperand(2));
3739 }
3740
3741 return SDValue();
3742}
3743
3744namespace {
3745// Says that SystemZISD operation Opcode can be used to perform the equivalent
3746// of a VPERM with permute vector Bytes. If Opcode takes three operands,
3747// Operand is the constant third operand, otherwise it is the number of
3748// bytes in each element of the result.
3749struct Permute {
3750 unsigned Opcode;
3751 unsigned Operand;
3752 unsigned char Bytes[SystemZ::VectorBytes];
3753};
3754}
3755
3756static const Permute PermuteForms[] = {
3757 // VMRHG
3758 { SystemZISD::MERGE_HIGH, 8,
3759 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3760 // VMRHF
3761 { SystemZISD::MERGE_HIGH, 4,
3762 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3763 // VMRHH
3764 { SystemZISD::MERGE_HIGH, 2,
3765 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3766 // VMRHB
3767 { SystemZISD::MERGE_HIGH, 1,
3768 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3769 // VMRLG
3770 { SystemZISD::MERGE_LOW, 8,
3771 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3772 // VMRLF
3773 { SystemZISD::MERGE_LOW, 4,
3774 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3775 // VMRLH
3776 { SystemZISD::MERGE_LOW, 2,
3777 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3778 // VMRLB
3779 { SystemZISD::MERGE_LOW, 1,
3780 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3781 // VPKG
3782 { SystemZISD::PACK, 4,
3783 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3784 // VPKF
3785 { SystemZISD::PACK, 2,
3786 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3787 // VPKH
3788 { SystemZISD::PACK, 1,
3789 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3790 // VPDI V1, V2, 4 (low half of V1, high half of V2)
3791 { SystemZISD::PERMUTE_DWORDS, 4,
3792 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3793 // VPDI V1, V2, 1 (high half of V1, low half of V2)
3794 { SystemZISD::PERMUTE_DWORDS, 1,
3795 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3796};
3797
3798// Called after matching a vector shuffle against a particular pattern.
3799// Both the original shuffle and the pattern have two vector operands.
3800// OpNos[0] is the operand of the original shuffle that should be used for
3801// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3802// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
3803// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3804// for operands 0 and 1 of the pattern.
3805static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3806 if (OpNos[0] < 0) {
3807 if (OpNos[1] < 0)
3808 return false;
3809 OpNo0 = OpNo1 = OpNos[1];
3810 } else if (OpNos[1] < 0) {
3811 OpNo0 = OpNo1 = OpNos[0];
3812 } else {
3813 OpNo0 = OpNos[0];
3814 OpNo1 = OpNos[1];
3815 }
3816 return true;
3817}
3818
3819// Bytes is a VPERM-like permute vector, except that -1 is used for
3820// undefined bytes. Return true if the VPERM can be implemented using P.
3821// When returning true set OpNo0 to the VPERM operand that should be
3822// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3823//
3824// For example, if swapping the VPERM operands allows P to match, OpNo0
3825// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
3826// operand, but rewriting it to use two duplicated operands allows it to
3827// match P, then OpNo0 and OpNo1 will be the same.
3828static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3829 unsigned &OpNo0, unsigned &OpNo1) {
3830 int OpNos[] = { -1, -1 };
3831 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3832 int Elt = Bytes[I];
3833 if (Elt >= 0) {
3834 // Make sure that the two permute vectors use the same suboperand
3835 // byte number. Only the operand numbers (the high bits) are
3836 // allowed to differ.
3837 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3838 return false;
3839 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3840 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3841 // Make sure that the operand mappings are consistent with previous
3842 // elements.
3843 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3844 return false;
3845 OpNos[ModelOpNo] = RealOpNo;
3846 }
3847 }
3848 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3849}
3850
3851// As above, but search for a matching permute.
3852static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3853 unsigned &OpNo0, unsigned &OpNo1) {
3854 for (auto &P : PermuteForms)
3855 if (matchPermute(Bytes, P, OpNo0, OpNo1))
3856 return &P;
3857 return nullptr;
3858}
3859
3860// Bytes is a VPERM-like permute vector, except that -1 is used for
3861// undefined bytes. This permute is an operand of an outer permute.
3862// See whether redistributing the -1 bytes gives a shuffle that can be
3863// implemented using P. If so, set Transform to a VPERM-like permute vector
3864// that, when applied to the result of P, gives the original permute in Bytes.
3865static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3866 const Permute &P,
3867 SmallVectorImpl<int> &Transform) {
3868 unsigned To = 0;
3869 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3870 int Elt = Bytes[From];
3871 if (Elt < 0)
3872 // Byte number From of the result is undefined.
3873 Transform[From] = -1;
3874 else {
3875 while (P.Bytes[To] != Elt) {
3876 To += 1;
3877 if (To == SystemZ::VectorBytes)
3878 return false;
3879 }
3880 Transform[From] = To;
3881 }
3882 }
3883 return true;
3884}
3885
3886// As above, but search for a matching permute.
3887static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3888 SmallVectorImpl<int> &Transform) {
3889 for (auto &P : PermuteForms)
3890 if (matchDoublePermute(Bytes, P, Transform))
3891 return &P;
3892 return nullptr;
3893}
3894
3895// Convert the mask of the given shuffle op into a byte-level mask,
3896// as if it had type vNi8.
3897static bool getVPermMask(SDValue ShuffleOp,
3898 SmallVectorImpl<int> &Bytes) {
3899 EVT VT = ShuffleOp.getValueType();
3900 unsigned NumElements = VT.getVectorNumElements();
3901 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3902
3903 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
3904 Bytes.resize(NumElements * BytesPerElement, -1);
3905 for (unsigned I = 0; I < NumElements; ++I) {
3906 int Index = VSN->getMaskElt(I);
3907 if (Index >= 0)
3908 for (unsigned J = 0; J < BytesPerElement; ++J)
3909 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3910 }
3911 return true;
3912 }
3913 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
3914 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
3915 unsigned Index = ShuffleOp.getConstantOperandVal(1);
3916 Bytes.resize(NumElements * BytesPerElement, -1);
3917 for (unsigned I = 0; I < NumElements; ++I)
3918 for (unsigned J = 0; J < BytesPerElement; ++J)
3919 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3920 return true;
3921 }
3922 return false;
3923}
3924
3925// Bytes is a VPERM-like permute vector, except that -1 is used for
3926// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
3927// the result come from a contiguous sequence of bytes from one input.
3928// Set Base to the selector for the first byte if so.
3929static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3930 unsigned BytesPerElement, int &Base) {
3931 Base = -1;
3932 for (unsigned I = 0; I < BytesPerElement; ++I) {
3933 if (Bytes[Start + I] >= 0) {
3934 unsigned Elem = Bytes[Start + I];
3935 if (Base < 0) {
3936 Base = Elem - I;
3937 // Make sure the bytes would come from one input operand.
3938 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3939 return false;
3940 } else if (unsigned(Base) != Elem - I)
3941 return false;
3942 }
3943 }
3944 return true;
3945}
3946
3947// Bytes is a VPERM-like permute vector, except that -1 is used for
3948// undefined bytes. Return true if it can be performed using VSLDI.
3949// When returning true, set StartIndex to the shift amount and OpNo0
3950// and OpNo1 to the VPERM operands that should be used as the first
3951// and second shift operand respectively.
3952static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3953 unsigned &StartIndex, unsigned &OpNo0,
3954 unsigned &OpNo1) {
3955 int OpNos[] = { -1, -1 };
3956 int Shift = -1;
3957 for (unsigned I = 0; I < 16; ++I) {
3958 int Index = Bytes[I];
3959 if (Index >= 0) {
3960 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3961 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3962 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3963 if (Shift < 0)
3964 Shift = ExpectedShift;
3965 else if (Shift != ExpectedShift)
3966 return false;
3967 // Make sure that the operand mappings are consistent with previous
3968 // elements.
3969 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3970 return false;
3971 OpNos[ModelOpNo] = RealOpNo;
3972 }
3973 }
3974 StartIndex = Shift;
3975 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3976}
3977
3978// Create a node that performs P on operands Op0 and Op1, casting the
3979// operands to the appropriate type. The type of the result is determined by P.
3980static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3981 const Permute &P, SDValue Op0, SDValue Op1) {
3982 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
3983 // elements of a PACK are twice as wide as the outputs.
3984 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3985 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3986 P.Operand);
3987 // Cast both operands to the appropriate type.
3988 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3989 SystemZ::VectorBytes / InBytes);
3990 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3991 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3992 SDValue Op;
3993 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3994 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3995 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3996 } else if (P.Opcode == SystemZISD::PACK) {
3997 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3998 SystemZ::VectorBytes / P.Operand);
3999 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4000 } else {
4001 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4002 }
4003 return Op;
4004}
4005
4006// Bytes is a VPERM-like permute vector, except that -1 is used for
4007// undefined bytes. Implement it on operands Ops[0] and Ops[1] using
4008// VSLDI or VPERM.
4009static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4010 SDValue *Ops,
4011 const SmallVectorImpl<int> &Bytes) {
4012 for (unsigned I = 0; I < 2; ++I)
4013 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4014
4015 // First see whether VSLDI can be used.
4016 unsigned StartIndex, OpNo0, OpNo1;
4017 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4018 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4019 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4020
4021 // Fall back on VPERM. Construct an SDNode for the permute vector.
4022 SDValue IndexNodes[SystemZ::VectorBytes];
4023 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4024 if (Bytes[I] >= 0)
4025 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4026 else
4027 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4028 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4029 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4030}
4031
4032namespace {
4033// Describes a general N-operand vector shuffle.
4034struct GeneralShuffle {
4035 GeneralShuffle(EVT vt) : VT(vt) {}
4036 void addUndef();
4037 bool add(SDValue, unsigned);
4038 SDValue getNode(SelectionDAG &, const SDLoc &);
4039
4040 // The operands of the shuffle.
4041 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4042
4043 // Index I is -1 if byte I of the result is undefined. Otherwise the
4044 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4045 // Bytes[I] / SystemZ::VectorBytes.
4046 SmallVector<int, SystemZ::VectorBytes> Bytes;
4047
4048 // The type of the shuffle result.
4049 EVT VT;
4050};
4051}
4052
4053// Add an extra undefined element to the shuffle.
4054void GeneralShuffle::addUndef() {
4055 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4056 for (unsigned I = 0; I < BytesPerElement; ++I)
4057 Bytes.push_back(-1);
4058}
4059
4060// Add an extra element to the shuffle, taking it from element Elem of Op.
4061// A null Op indicates a vector input whose value will be calculated later;
4062// there is at most one such input per shuffle and it always has the same
4063// type as the result. Aborts and returns false if the source vector elements
4064// of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4065// LLVM they become implicitly extended, but this is rare and not optimized.
4066bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4067 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4068
4069 // The source vector can have wider elements than the result,
4070 // either through an explicit TRUNCATE or because of type legalization.
4071 // We want the least significant part.
4072 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4073 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4074
4075 // Return false if the source elements are smaller than their destination
4076 // elements.
4077 if (FromBytesPerElement < BytesPerElement)
4078 return false;
4079
4080 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4081 (FromBytesPerElement - BytesPerElement));
4082
4083 // Look through things like shuffles and bitcasts.
4084 while (Op.getNode()) {
4085 if (Op.getOpcode() == ISD::BITCAST)
4086 Op = Op.getOperand(0);
4087 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4088 // See whether the bytes we need come from a contiguous part of one
4089 // operand.
4090 SmallVector<int, SystemZ::VectorBytes> OpBytes;
4091 if (!getVPermMask(Op, OpBytes))
4092 break;
4093 int NewByte;
4094 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4095 break;
4096 if (NewByte < 0) {
4097 addUndef();
4098 return true;
4099 }
4100 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4101 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4102 } else if (Op.isUndef()) {
4103 addUndef();
4104 return true;
4105 } else
4106 break;
4107 }
4108
4109 // Make sure that the source of the extraction is in Ops.
4110 unsigned OpNo = 0;
4111 for (; OpNo < Ops.size(); ++OpNo)
4112 if (Ops[OpNo] == Op)
4113 break;
4114 if (OpNo == Ops.size())
4115 Ops.push_back(Op);
4116
4117 // Add the element to Bytes.
4118 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4119 for (unsigned I = 0; I < BytesPerElement; ++I)
4120 Bytes.push_back(Base + I);
4121
4122 return true;
4123}
4124
4125// Return SDNodes for the completed shuffle.
4126SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4127 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector")((Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"
) ? static_cast<void> (0) : __assert_fail ("Bytes.size() == SystemZ::VectorBytes && \"Incomplete vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4127, __PRETTY_FUNCTION__))
;
4128
4129 if (Ops.size() == 0)
4130 return DAG.getUNDEF(VT);
4131
4132 // Make sure that there are at least two shuffle operands.
4133 if (Ops.size() == 1)
4134 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4135
4136 // Create a tree of shuffles, deferring root node until after the loop.
4137 // Try to redistribute the undefined elements of non-root nodes so that
4138 // the non-root shuffles match something like a pack or merge, then adjust
4139 // the parent node's permute vector to compensate for the new order.
4140 // Among other things, this copes with vectors like <2 x i16> that were
4141 // padded with undefined elements during type legalization.
4142 //
4143 // In the best case this redistribution will lead to the whole tree
4144 // using packs and merges. It should rarely be a loss in other cases.
4145 unsigned Stride = 1;
4146 for (; Stride * 2 < Ops.size(); Stride *= 2) {
4147 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4148 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4149
4150 // Create a mask for just these two operands.
4151 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4152 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4153 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4154 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4155 if (OpNo == I)
4156 NewBytes[J] = Byte;
4157 else if (OpNo == I + Stride)
4158 NewBytes[J] = SystemZ::VectorBytes + Byte;
4159 else
4160 NewBytes[J] = -1;
4161 }
4162 // See if it would be better to reorganize NewMask to avoid using VPERM.
4163 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4164 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4165 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4166 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4167 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4168 if (NewBytes[J] >= 0) {
4169 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&((unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
"Invalid double permute") ? static_cast<void> (0) : __assert_fail
("unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && \"Invalid double permute\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4170, __PRETTY_FUNCTION__))
4170 "Invalid double permute")((unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
"Invalid double permute") ? static_cast<void> (0) : __assert_fail
("unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && \"Invalid double permute\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4170, __PRETTY_FUNCTION__))
;
4171 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4172 } else
4173 assert(NewBytesMap[J] < 0 && "Invalid double permute")((NewBytesMap[J] < 0 && "Invalid double permute") ?
static_cast<void> (0) : __assert_fail ("NewBytesMap[J] < 0 && \"Invalid double permute\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4173, __PRETTY_FUNCTION__))
;
4174 }
4175 } else {
4176 // Just use NewBytes on the operands.
4177 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4178 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4179 if (NewBytes[J] >= 0)
4180 Bytes[J] = I * SystemZ::VectorBytes + J;
4181 }
4182 }
4183 }
4184
4185 // Now we just have 2 inputs. Put the second operand in Ops[1].
4186 if (Stride > 1) {
4187 Ops[1] = Ops[Stride];
4188 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4189 if (Bytes[I] >= int(SystemZ::VectorBytes))
4190 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4191 }
4192
4193 // Look for an instruction that can do the permute without resorting
4194 // to VPERM.
4195 unsigned OpNo0, OpNo1;
4196 SDValue Op;
4197 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4198 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4199 else
4200 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4201 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4202}
4203
4204// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4205static bool isScalarToVector(SDValue Op) {
4206 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4207 if (!Op.getOperand(I).isUndef())
4208 return false;
4209 return true;
4210}
4211
4212// Return a vector of type VT that contains Value in the first element.
4213// The other elements don't matter.
4214static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4215 SDValue Value) {
4216 // If we have a constant, replicate it to all elements and let the
4217 // BUILD_VECTOR lowering take care of it.
4218 if (Value.getOpcode() == ISD::Constant ||
4219 Value.getOpcode() == ISD::ConstantFP) {
4220 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4221 return DAG.getBuildVector(VT, DL, Ops);
4222 }
4223 if (Value.isUndef())
4224 return DAG.getUNDEF(VT);
4225 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4226}
4227
4228// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4229// element 1. Used for cases in which replication is cheap.
4230static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4231 SDValue Op0, SDValue Op1) {
4232 if (Op0.isUndef()) {
4233 if (Op1.isUndef())
4234 return DAG.getUNDEF(VT);
4235 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4236 }
4237 if (Op1.isUndef())
4238 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4239 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4240 buildScalarToVector(DAG, DL, VT, Op0),
4241 buildScalarToVector(DAG, DL, VT, Op1));
4242}
4243
4244// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4245// vector for them.
4246static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4247 SDValue Op1) {
4248 if (Op0.isUndef() && Op1.isUndef())
4249 return DAG.getUNDEF(MVT::v2i64);
4250 // If one of the two inputs is undefined then replicate the other one,
4251 // in order to avoid using another register unnecessarily.
4252 if (Op0.isUndef())
4253 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4254 else if (Op1.isUndef())
4255 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4256 else {
4257 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4258 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4259 }
4260 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4261}
4262
4263// Try to represent constant BUILD_VECTOR node BVN using a
4264// SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
4265// on success.
4266static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4267 EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4268 unsigned BytesPerElement = ElemVT.getStoreSize();
4269 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4270 SDValue Op = BVN->getOperand(I);
4271 if (!Op.isUndef()) {
4272 uint64_t Value;
4273 if (Op.getOpcode() == ISD::Constant)
4274 Value = cast<ConstantSDNode>(Op)->getZExtValue();
4275 else if (Op.getOpcode() == ISD::ConstantFP)
4276 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4277 .getZExtValue());
4278 else
4279 return false;
4280 for (unsigned J = 0; J < BytesPerElement; ++J) {
4281 uint64_t Byte = (Value >> (J * 8)) & 0xff;
4282 if (Byte == 0xff)
4283 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4284 else if (Byte != 0)
4285 return false;
4286 }
4287 }
4288 }
4289 return true;
4290}
4291
4292// Try to load a vector constant in which BitsPerElement-bit value Value
4293// is replicated to fill the vector. VT is the type of the resulting
4294// constant, which may have elements of a different size from BitsPerElement.
4295// Return the SDValue of the constant on success, otherwise return
4296// an empty value.
4297static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4298 const SystemZInstrInfo *TII,
4299 const SDLoc &DL, EVT VT, uint64_t Value,
4300 unsigned BitsPerElement) {
4301 // Signed 16-bit values can be replicated using VREPI.
4302 // Mark the constants as opaque or DAGCombiner will convert back to
4303 // BUILD_VECTOR.
4304 int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4305 if (isInt<16>(SignedValue)) {
4306 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4307 SystemZ::VectorBits / BitsPerElement);
4308 SDValue Op = DAG.getNode(
4309 SystemZISD::REPLICATE, DL, VecVT,
4310 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/));
4311 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4312 }
4313 // See whether rotating the constant left some N places gives a value that
4314 // is one less than a power of 2 (i.e. all zeros followed by all ones).
4315 // If so we can use VGM.
4316 unsigned Start, End;
4317 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4318 // isRxSBGMask returns the bit numbers for a full 64-bit value,
4319 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
4320 // bit numbers for an BitsPerElement value, so that 0 denotes
4321 // 1 << (BitsPerElement-1).
4322 Start -= 64 - BitsPerElement;
4323 End -= 64 - BitsPerElement;
4324 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4325 SystemZ::VectorBits / BitsPerElement);
4326 SDValue Op = DAG.getNode(
4327 SystemZISD::ROTATE_MASK, DL, VecVT,
4328 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/),
4329 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/));
4330 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4331 }
4332 return SDValue();
4333}
4334
4335// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4336// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4337// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4338// would benefit from this representation and return it if so.
4339static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4340 BuildVectorSDNode *BVN) {
4341 EVT VT = BVN->getValueType(0);
4342 unsigned NumElements = VT.getVectorNumElements();
4343
4344 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4345 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4346 // need a BUILD_VECTOR, add an additional placeholder operand for that
4347 // BUILD_VECTOR and store its operands in ResidueOps.
4348 GeneralShuffle GS(VT);
4349 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4350 bool FoundOne = false;
4351 for (unsigned I = 0; I < NumElements; ++I) {
4352 SDValue Op = BVN->getOperand(I);
4353 if (Op.getOpcode() == ISD::TRUNCATE)
4354 Op = Op.getOperand(0);
4355 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4356 Op.getOperand(1).getOpcode() == ISD::Constant) {
4357 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4358 if (!GS.add(Op.getOperand(0), Elem))
4359 return SDValue();
4360 FoundOne = true;
4361 } else if (Op.isUndef()) {
4362 GS.addUndef();
4363 } else {
4364 if (!GS.add(SDValue(), ResidueOps.size()))
4365 return SDValue();
4366 ResidueOps.push_back(BVN->getOperand(I));
4367 }
4368 }
4369
4370 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4371 if (!FoundOne)
4372 return SDValue();
4373
4374 // Create the BUILD_VECTOR for the remaining elements, if any.
4375 if (!ResidueOps.empty()) {
4376 while (ResidueOps.size() < NumElements)
4377 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4378 for (auto &Op : GS.Ops) {
4379 if (!Op.getNode()) {
4380 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4381 break;
4382 }
4383 }
4384 }
4385 return GS.getNode(DAG, SDLoc(BVN));
4386}
4387
4388// Combine GPR scalar values Elems into a vector of type VT.
4389static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4390 SmallVectorImpl<SDValue> &Elems) {
4391 // See whether there is a single replicated value.
4392 SDValue Single;
4393 unsigned int NumElements = Elems.size();
4394 unsigned int Count = 0;
4395 for (auto Elem : Elems) {
4396 if (!Elem.isUndef()) {
4397 if (!Single.getNode())
4398 Single = Elem;
4399 else if (Elem != Single) {
4400 Single = SDValue();
4401 break;
4402 }
4403 Count += 1;
4404 }
4405 }
4406 // There are three cases here:
4407 //
4408 // - if the only defined element is a loaded one, the best sequence
4409 // is a replicating load.
4410 //
4411 // - otherwise, if the only defined element is an i64 value, we will
4412 // end up with the same VLVGP sequence regardless of whether we short-cut
4413 // for replication or fall through to the later code.
4414 //
4415 // - otherwise, if the only defined element is an i32 or smaller value,
4416 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4417 // This is only a win if the single defined element is used more than once.
4418 // In other cases we're better off using a single VLVGx.
4419 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4420 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4421
4422 // If all elements are loads, use VLREP/VLEs (below).
4423 bool AllLoads = true;
4424 for (auto Elem : Elems)
4425 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4426 AllLoads = false;
4427 break;
4428 }
4429
4430 // The best way of building a v2i64 from two i64s is to use VLVGP.
4431 if (VT == MVT::v2i64 && !AllLoads)
4432 return joinDwords(DAG, DL, Elems[0], Elems[1]);
4433
4434 // Use a 64-bit merge high to combine two doubles.
4435 if (VT == MVT::v2f64 && !AllLoads)
4436 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4437
4438 // Build v4f32 values directly from the FPRs:
4439 //
4440 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4441 // V V VMRHF
4442 // <ABxx> <CDxx>
4443 // V VMRHG
4444 // <ABCD>
4445 if (VT == MVT::v4f32 && !AllLoads) {
4446 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4447 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4448 // Avoid unnecessary undefs by reusing the other operand.
4449 if (Op01.isUndef())
4450 Op01 = Op23;
4451 else if (Op23.isUndef())
4452 Op23 = Op01;
4453 // Merging identical replications is a no-op.
4454 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4455 return Op01;
4456 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4457 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4458 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4459 DL, MVT::v2i64, Op01, Op23);
4460 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4461 }
4462
4463 // Collect the constant terms.
4464 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4465 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4466
4467 unsigned NumConstants = 0;
4468 for (unsigned I = 0; I < NumElements; ++I) {
4469 SDValue Elem = Elems[I];
4470 if (Elem.getOpcode() == ISD::Constant ||
4471 Elem.getOpcode() == ISD::ConstantFP) {
4472 NumConstants += 1;
4473 Constants[I] = Elem;
4474 Done[I] = true;
4475 }
4476 }
4477 // If there was at least one constant, fill in the other elements of
4478 // Constants with undefs to get a full vector constant and use that
4479 // as the starting point.
4480 SDValue Result;
4481 SDValue ReplicatedVal;
4482 if (NumConstants > 0) {
4483 for (unsigned I = 0; I < NumElements; ++I)
4484 if (!Constants[I].getNode())
4485 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4486 Result = DAG.getBuildVector(VT, DL, Constants);
4487 } else {
4488 // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4489 // avoid a false dependency on any previous contents of the vector
4490 // register.
4491
4492 // Use a VLREP if at least one element is a load. Make sure to replicate
4493 // the load with the most elements having its value.
4494 std::map<const SDNode*, unsigned> UseCounts;
4495 SDNode *LoadMaxUses = nullptr;
4496 for (unsigned I = 0; I < NumElements; ++I)
4497 if (Elems[I].getOpcode() == ISD::LOAD &&
4498 cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4499 SDNode *Ld = Elems[I].getNode();
4500 UseCounts[Ld]++;
4501 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4502 LoadMaxUses = Ld;
4503 }
4504 if (LoadMaxUses != nullptr) {
4505 ReplicatedVal = SDValue(LoadMaxUses, 0);
4506 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4507 } else {
4508 // Try to use VLVGP.
4509 unsigned I1 = NumElements / 2 - 1;
4510 unsigned I2 = NumElements - 1;
4511 bool Def1 = !Elems[I1].isUndef();
4512 bool Def2 = !Elems[I2].isUndef();
4513 if (Def1 || Def2) {
4514 SDValue Elem1 = Elems[Def1 ? I1 : I2];
4515 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4516 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4517 joinDwords(DAG, DL, Elem1, Elem2));
4518 Done[I1] = true;
4519 Done[I2] = true;
4520 } else
4521 Result = DAG.getUNDEF(VT);
4522 }
4523 }
4524
4525 // Use VLVGx to insert the other elements.
4526 for (unsigned I = 0; I < NumElements; ++I)
4527 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4528 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4529 DAG.getConstant(I, DL, MVT::i32));
4530 return Result;
4531}
4532
4533SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4534 SelectionDAG &DAG) const {
4535 const SystemZInstrInfo *TII =
4536 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4537 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4538 SDLoc DL(Op);
4539 EVT VT = Op.getValueType();
4540
4541 if (BVN->isConstant()) {
3
Assuming the condition is true
4
Taking true branch
4542 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
4543 // preferred way of creating all-zero and all-one vectors so give it
4544 // priority over other methods below.
4545 uint64_t Mask = 0;
4546 if (tryBuildVectorByteMask(BVN, Mask)) {
5
Taking false branch
4547 SDValue Op = DAG.getNode(
4548 SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4549 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/));
4550 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4551 }
4552
4553 // Try using some form of replication.
4554 APInt SplatBits, SplatUndef;
4555 unsigned SplatBitSize;
4556 bool HasAnyUndefs;
4557 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6
Assuming the condition is true
8
Taking true branch
4558 8, true) &&
4559 SplatBitSize <= 64) {
7
Assuming 'SplatBitSize' is <= 64
4560 // First try assuming that any undefined bits above the highest set bit
4561 // and below the lowest set bit are 1s. This increases the likelihood of
4562 // being able to use a sign-extended element value in VECTOR REPLICATE
4563 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4564 uint64_t SplatBitsZ = SplatBits.getZExtValue();
4565 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4566 uint64_t Lower = (SplatUndefZ
4567 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
9
Calling 'findFirstSet<unsigned long>'
16
Returning from 'findFirstSet<unsigned long>'
17
The result of the left shift is undefined due to shifting by '18446744073709551615', which is greater or equal to the width of type 'uint64_t'
4568 uint64_t Upper = (SplatUndefZ
4569 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4570 uint64_t Value = SplatBitsZ | Upper | Lower;
4571 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4572 SplatBitSize);
4573 if (Op.getNode())
4574 return Op;
4575
4576 // Now try assuming that any undefined bits between the first and
4577 // last defined set bits are set. This increases the chances of
4578 // using a non-wraparound mask.
4579 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4580 Value = SplatBitsZ | Middle;
4581 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4582 if (Op.getNode())
4583 return Op;
4584 }
4585
4586 // Fall back to loading it from memory.
4587 return SDValue();
4588 }
4589
4590 // See if we should use shuffles to construct the vector from other vectors.
4591 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4592 return Res;
4593
4594 // Detect SCALAR_TO_VECTOR conversions.
4595 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4596 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4597
4598 // Otherwise use buildVector to build the vector up from GPRs.
4599 unsigned NumElements = Op.getNumOperands();
4600 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4601 for (unsigned I = 0; I < NumElements; ++I)
4602 Ops[I] = Op.getOperand(I);
4603 return buildVector(DAG, DL, VT, Ops);
4604}
4605
4606SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4607 SelectionDAG &DAG) const {
4608 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4609 SDLoc DL(Op);
4610 EVT VT = Op.getValueType();
4611 unsigned NumElements = VT.getVectorNumElements();
4612
4613 if (VSN->isSplat()) {
4614 SDValue Op0 = Op.getOperand(0);
4615 unsigned Index = VSN->getSplatIndex();
4616 assert(Index < VT.getVectorNumElements() &&((Index < VT.getVectorNumElements() && "Splat index should be defined and in first operand"
) ? static_cast<void> (0) : __assert_fail ("Index < VT.getVectorNumElements() && \"Splat index should be defined and in first operand\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4617, __PRETTY_FUNCTION__))
4617 "Splat index should be defined and in first operand")((Index < VT.getVectorNumElements() && "Splat index should be defined and in first operand"
) ? static_cast<void> (0) : __assert_fail ("Index < VT.getVectorNumElements() && \"Splat index should be defined and in first operand\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4617, __PRETTY_FUNCTION__))
;
4618 // See whether the value we're splatting is directly available as a scalar.
4619 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4620 Op0.getOpcode() == ISD::BUILD_VECTOR)
4621 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4622 // Otherwise keep it as a vector-to-vector operation.
4623 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4624 DAG.getConstant(Index, DL, MVT::i32));
4625 }
4626
4627 GeneralShuffle GS(VT);
4628 for (unsigned I = 0; I < NumElements; ++I) {
4629 int Elt = VSN->getMaskElt(I);
4630 if (Elt < 0)
4631 GS.addUndef();
4632 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4633 unsigned(Elt) % NumElements))
4634 return SDValue();
4635 }
4636 return GS.getNode(DAG, SDLoc(VSN));
4637}
4638
4639SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4640 SelectionDAG &DAG) const {
4641 SDLoc DL(Op);
4642 // Just insert the scalar into element 0 of an undefined vector.
4643 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4644 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4645 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4646}
4647
4648SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4649 SelectionDAG &DAG) const {
4650 // Handle insertions of floating-point values.
4651 SDLoc DL(Op);
4652 SDValue Op0 = Op.getOperand(0);
4653 SDValue Op1 = Op.getOperand(1);
4654 SDValue Op2 = Op.getOperand(2);
4655 EVT VT = Op.getValueType();
4656
4657 // Insertions into constant indices of a v2f64 can be done using VPDI.
4658 // However, if the inserted value is a bitcast or a constant then it's
4659 // better to use GPRs, as below.
4660 if (VT == MVT::v2f64 &&
4661 Op1.getOpcode() != ISD::BITCAST &&
4662 Op1.getOpcode() != ISD::ConstantFP &&
4663 Op2.getOpcode() == ISD::Constant) {
4664 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4665 unsigned Mask = VT.getVectorNumElements() - 1;
4666 if (Index <= Mask)
4667 return Op;
4668 }
4669
4670 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4671 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4672 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4673 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4674 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4675 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4676 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4677}
4678
4679SDValue
4680SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4681 SelectionDAG &DAG) const {
4682 // Handle extractions of floating-point values.
4683 SDLoc DL(Op);
4684 SDValue Op0 = Op.getOperand(0);
4685 SDValue Op1 = Op.getOperand(1);
4686 EVT VT = Op.getValueType();
4687 EVT VecVT = Op0.getValueType();
4688
4689 // Extractions of constant indices can be done directly.
4690 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4691 uint64_t Index = CIndexN->getZExtValue();
4692 unsigned Mask = VecVT.getVectorNumElements() - 1;
4693 if (Index <= Mask)
4694 return Op;
4695 }
4696
4697 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4698 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4699 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4700 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4701 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4702 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4703}
4704
4705SDValue
4706SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4707 unsigned UnpackHigh) const {
4708 SDValue PackedOp = Op.getOperand(0);
4709 EVT OutVT = Op.getValueType();
4710 EVT InVT = PackedOp.getValueType();
4711 unsigned ToBits = OutVT.getScalarSizeInBits();
4712 unsigned FromBits = InVT.getScalarSizeInBits();
4713 do {
4714 FromBits *= 2;
4715 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4716 SystemZ::VectorBits / FromBits);
4717 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4718 } while (FromBits != ToBits);
4719 return PackedOp;
4720}
4721
4722SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4723 unsigned ByScalar) const {
4724 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4725 SDValue Op0 = Op.getOperand(0);
4726 SDValue Op1 = Op.getOperand(1);
4727 SDLoc DL(Op);
4728 EVT VT = Op.getValueType();
4729 unsigned ElemBitSize = VT.getScalarSizeInBits();
4730
4731 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4732 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4733 APInt SplatBits, SplatUndef;
4734 unsigned SplatBitSize;
4735 bool HasAnyUndefs;
4736 // Check for constant splats. Use ElemBitSize as the minimum element
4737 // width and reject splats that need wider elements.
4738 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4739 ElemBitSize, true) &&
4740 SplatBitSize == ElemBitSize) {
4741 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4742 DL, MVT::i32);
4743 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4744 }
4745 // Check for variable splats.
4746 BitVector UndefElements;
4747 SDValue Splat = BVN->getSplatValue(&UndefElements);
4748 if (Splat) {
4749 // Since i32 is the smallest legal type, we either need a no-op
4750 // or a truncation.
4751 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4752 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4753 }
4754 }
4755
4756 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4757 // and the shift amount is directly available in a GPR.
4758 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4759 if (VSN->isSplat()) {
4760 SDValue VSNOp0 = VSN->getOperand(0);
4761 unsigned Index = VSN->getSplatIndex();
4762 assert(Index < VT.getVectorNumElements() &&((Index < VT.getVectorNumElements() && "Splat index should be defined and in first operand"
) ? static_cast<void> (0) : __assert_fail ("Index < VT.getVectorNumElements() && \"Splat index should be defined and in first operand\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4763, __PRETTY_FUNCTION__))
4763 "Splat index should be defined and in first operand")((Index < VT.getVectorNumElements() && "Splat index should be defined and in first operand"
) ? static_cast<void> (0) : __assert_fail ("Index < VT.getVectorNumElements() && \"Splat index should be defined and in first operand\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4763, __PRETTY_FUNCTION__))
;
4764 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4765 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4766 // Since i32 is the smallest legal type, we either need a no-op
4767 // or a truncation.
4768 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4769 VSNOp0.getOperand(Index));
4770 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4771 }
4772 }
4773 }
4774
4775 // Otherwise just treat the current form as legal.
4776 return Op;
4777}
4778
4779SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4780 SelectionDAG &DAG) const {
4781 switch (Op.getOpcode()) {
1
Control jumps to 'case BUILD_VECTOR:' at line 4872
4782 case ISD::FRAMEADDR:
4783 return lowerFRAMEADDR(Op, DAG);
4784 case ISD::RETURNADDR:
4785 return lowerRETURNADDR(Op, DAG);
4786 case ISD::BR_CC:
4787 return lowerBR_CC(Op, DAG);
4788 case ISD::SELECT_CC:
4789 return lowerSELECT_CC(Op, DAG);
4790 case ISD::SETCC:
4791 return lowerSETCC(Op, DAG);
4792 case ISD::GlobalAddress:
4793 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4794 case ISD::GlobalTLSAddress:
4795 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4796 case ISD::BlockAddress:
4797 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4798 case ISD::JumpTable:
4799 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4800 case ISD::ConstantPool:
4801 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4802 case ISD::BITCAST:
4803 return lowerBITCAST(Op, DAG);
4804 case ISD::VASTART:
4805 return lowerVASTART(Op, DAG);
4806 case ISD::VACOPY:
4807 return lowerVACOPY(Op, DAG);
4808 case ISD::DYNAMIC_STACKALLOC:
4809 return lowerDYNAMIC_STACKALLOC(Op, DAG);
4810 case ISD::GET_DYNAMIC_AREA_OFFSET:
4811 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4812 case ISD::SMUL_LOHI:
4813 return lowerSMUL_LOHI(Op, DAG);
4814 case ISD::UMUL_LOHI:
4815 return lowerUMUL_LOHI(Op, DAG);
4816 case ISD::SDIVREM:
4817 return lowerSDIVREM(Op, DAG);
4818 case ISD::UDIVREM:
4819 return lowerUDIVREM(Op, DAG);
4820 case ISD::SADDO:
4821 case ISD::SSUBO:
4822 case ISD::UADDO:
4823 case ISD::USUBO:
4824 return lowerXALUO(Op, DAG);
4825 case ISD::ADDCARRY:
4826 case ISD::SUBCARRY:
4827 return lowerADDSUBCARRY(Op, DAG);
4828 case ISD::OR:
4829 return lowerOR(Op, DAG);
4830 case ISD::CTPOP:
4831 return lowerCTPOP(Op, DAG);
4832 case ISD::ATOMIC_FENCE:
4833 return lowerATOMIC_FENCE(Op, DAG);
4834 case ISD::ATOMIC_SWAP:
4835 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4836 case ISD::ATOMIC_STORE:
4837 return lowerATOMIC_STORE(Op, DAG);
4838 case ISD::ATOMIC_LOAD:
4839 return lowerATOMIC_LOAD(Op, DAG);
4840 case ISD::ATOMIC_LOAD_ADD:
4841 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4842 case ISD::ATOMIC_LOAD_SUB:
4843 return lowerATOMIC_LOAD_SUB(Op, DAG);
4844 case ISD::ATOMIC_LOAD_AND:
4845 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4846 case ISD::ATOMIC_LOAD_OR:
4847 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4848 case ISD::ATOMIC_LOAD_XOR:
4849 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4850 case ISD::ATOMIC_LOAD_NAND:
4851 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4852 case ISD::ATOMIC_LOAD_MIN:
4853 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4854 case ISD::ATOMIC_LOAD_MAX:
4855 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4856 case ISD::ATOMIC_LOAD_UMIN:
4857 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4858 case ISD::ATOMIC_LOAD_UMAX:
4859 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4860 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4861 return lowerATOMIC_CMP_SWAP(Op, DAG);
4862 case ISD::STACKSAVE:
4863 return lowerSTACKSAVE(Op, DAG);
4864 case ISD::STACKRESTORE:
4865 return lowerSTACKRESTORE(Op, DAG);
4866 case ISD::PREFETCH:
4867 return lowerPREFETCH(Op, DAG);
4868 case ISD::INTRINSIC_W_CHAIN:
4869 return lowerINTRINSIC_W_CHAIN(Op, DAG);
4870 case ISD::INTRINSIC_WO_CHAIN:
4871 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4872 case ISD::BUILD_VECTOR:
4873 return lowerBUILD_VECTOR(Op, DAG);
2
Calling 'SystemZTargetLowering::lowerBUILD_VECTOR'
4874 case ISD::VECTOR_SHUFFLE:
4875 return lowerVECTOR_SHUFFLE(Op, DAG);
4876 case ISD::SCALAR_TO_VECTOR:
4877 return lowerSCALAR_TO_VECTOR(Op, DAG);
4878 case ISD::INSERT_VECTOR_ELT:
4879 return lowerINSERT_VECTOR_ELT(Op, DAG);
4880 case ISD::EXTRACT_VECTOR_ELT:
4881 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4882 case ISD::SIGN_EXTEND_VECTOR_INREG:
4883 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4884 case ISD::ZERO_EXTEND_VECTOR_INREG:
4885 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4886 case ISD::SHL:
4887 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4888 case ISD::SRL:
4889 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4890 case ISD::SRA:
4891 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4892 default:
4893 llvm_unreachable("Unexpected node to lower")::llvm::llvm_unreachable_internal("Unexpected node to lower",
"/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4893)
;
4894 }
4895}
4896
4897// Lower operations with invalid operand or result types (currently used
4898// only for 128-bit integer types).
4899
4900static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4901 SDLoc DL(In);
4902 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4903 DAG.getIntPtrConstant(0, DL));
4904 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4905 DAG.getIntPtrConstant(1, DL));
4906 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4907 MVT::Untyped, Hi, Lo);
4908 return SDValue(Pair, 0);
4909}
4910
4911static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4912 SDLoc DL(In);
4913 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4914 DL, MVT::i64, In);
4915 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4916 DL, MVT::i64, In);
4917 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4918}
4919
4920void
4921SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4922 SmallVectorImpl<SDValue> &Results,
4923 SelectionDAG &DAG) const {
4924 switch (N->getOpcode()) {
4925 case ISD::ATOMIC_LOAD: {
4926 SDLoc DL(N);
4927 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4928 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4929 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4930 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4931 DL, Tys, Ops, MVT::i128, MMO);
4932 Results.push_back(lowerGR128ToI128(DAG, Res));
4933 Results.push_back(Res.getValue(1));
4934 break;
4935 }
4936 case ISD::ATOMIC_STORE: {
4937 SDLoc DL(N);
4938 SDVTList Tys = DAG.getVTList(MVT::Other);
4939 SDValue Ops[] = { N->getOperand(0),
4940 lowerI128ToGR128(DAG, N->getOperand(2)),
4941 N->getOperand(1) };
4942 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4943 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4944 DL, Tys, Ops, MVT::i128, MMO);
4945 // We have to enforce sequential consistency by performing a
4946 // serialization operation after the store.
4947 if (cast<AtomicSDNode>(N)->getOrdering() ==
4948 AtomicOrdering::SequentiallyConsistent)
4949 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4950 MVT::Other, Res), 0);
4951 Results.push_back(Res);
4952 break;
4953 }
4954 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4955 SDLoc DL(N);
4956 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
4957 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4958 lowerI128ToGR128(DAG, N->getOperand(2)),
4959 lowerI128ToGR128(DAG, N->getOperand(3)) };
4960 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4961 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4962 DL, Tys, Ops, MVT::i128, MMO);
4963 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
4964 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4965 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4966 Results.push_back(lowerGR128ToI128(DAG, Res));
4967 Results.push_back(Success);
4968 Results.push_back(Res.getValue(2));
4969 break;
4970 }
4971 default:
4972 llvm_unreachable("Unexpected node to lower")::llvm::llvm_unreachable_internal("Unexpected node to lower",
"/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 4972)
;
4973 }
4974}
4975
4976void
4977SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4978 SmallVectorImpl<SDValue> &Results,
4979 SelectionDAG &DAG) const {
4980 return LowerOperationWrapper(N, Results, DAG);
4981}
4982
4983const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4984#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4985 switch ((SystemZISD::NodeType)Opcode) {
4986 case SystemZISD::FIRST_NUMBER: break;
4987 OPCODE(RET_FLAG);
4988 OPCODE(CALL);
4989 OPCODE(SIBCALL);
4990 OPCODE(TLS_GDCALL);
4991 OPCODE(TLS_LDCALL);
4992 OPCODE(PCREL_WRAPPER);
4993 OPCODE(PCREL_OFFSET);
4994 OPCODE(IABS);
4995 OPCODE(ICMP);
4996 OPCODE(FCMP);
4997 OPCODE(TM);
4998 OPCODE(BR_CCMASK);
4999 OPCODE(SELECT_CCMASK);
5000 OPCODE(ADJDYNALLOC);
5001 OPCODE(POPCNT);
5002 OPCODE(SMUL_LOHI);
5003 OPCODE(UMUL_LOHI);
5004 OPCODE(SDIVREM);
5005 OPCODE(UDIVREM);
5006 OPCODE(SADDO);
5007 OPCODE(SSUBO);
5008 OPCODE(UADDO);
5009 OPCODE(USUBO);
5010 OPCODE(ADDCARRY);
5011 OPCODE(SUBCARRY);
5012 OPCODE(GET_CCMASK);
5013 OPCODE(MVC);
5014 OPCODE(MVC_LOOP);
5015 OPCODE(NC);
5016 OPCODE(NC_LOOP);
5017 OPCODE(OC);
5018 OPCODE(OC_LOOP);
5019 OPCODE(XC);
5020 OPCODE(XC_LOOP);
5021 OPCODE(CLC);
5022 OPCODE(CLC_LOOP);
5023 OPCODE(STPCPY);
5024 OPCODE(STRCMP);
5025 OPCODE(SEARCH_STRING);
5026 OPCODE(IPM);
5027 OPCODE(MEMBARRIER);
5028 OPCODE(TBEGIN);
5029 OPCODE(TBEGIN_NOFLOAT);
5030 OPCODE(TEND);
5031 OPCODE(BYTE_MASK);
5032 OPCODE(ROTATE_MASK);
5033 OPCODE(REPLICATE);
5034 OPCODE(JOIN_DWORDS);
5035 OPCODE(SPLAT);
5036 OPCODE(MERGE_HIGH);
5037 OPCODE(MERGE_LOW);
5038 OPCODE(SHL_DOUBLE);
5039 OPCODE(PERMUTE_DWORDS);
5040 OPCODE(PERMUTE);
5041 OPCODE(PACK);
5042 OPCODE(PACKS_CC);
5043 OPCODE(PACKLS_CC);
5044 OPCODE(UNPACK_HIGH);
5045 OPCODE(UNPACKL_HIGH);
5046 OPCODE(UNPACK_LOW);
5047 OPCODE(UNPACKL_LOW);
5048 OPCODE(VSHL_BY_SCALAR);
5049 OPCODE(VSRL_BY_SCALAR);
5050 OPCODE(VSRA_BY_SCALAR);
5051 OPCODE(VSUM);
5052 OPCODE(VICMPE);
5053 OPCODE(VICMPH);
5054 OPCODE(VICMPHL);
5055 OPCODE(VICMPES);
5056 OPCODE(VICMPHS);
5057 OPCODE(VICMPHLS);
5058 OPCODE(VFCMPE);
5059 OPCODE(VFCMPH);
5060 OPCODE(VFCMPHE);
5061 OPCODE(VFCMPES);
5062 OPCODE(VFCMPHS);
5063 OPCODE(VFCMPHES);
5064 OPCODE(VFTCI);
5065 OPCODE(VEXTEND);
5066 OPCODE(VROUND);
5067 OPCODE(VTM);
5068 OPCODE(VFAE_CC);
5069 OPCODE(VFAEZ_CC);
5070 OPCODE(VFEE_CC);
5071 OPCODE(VFEEZ_CC);
5072 OPCODE(VFENE_CC);
5073 OPCODE(VFENEZ_CC);
5074 OPCODE(VISTR_CC);
5075 OPCODE(VSTRC_CC);
5076 OPCODE(VSTRCZ_CC);
5077 OPCODE(TDC);
5078 OPCODE(ATOMIC_SWAPW);
5079 OPCODE(ATOMIC_LOADW_ADD);
5080 OPCODE(ATOMIC_LOADW_SUB);
5081 OPCODE(ATOMIC_LOADW_AND);
5082 OPCODE(ATOMIC_LOADW_OR);
5083 OPCODE(ATOMIC_LOADW_XOR);
5084 OPCODE(ATOMIC_LOADW_NAND);
5085 OPCODE(ATOMIC_LOADW_MIN);
5086 OPCODE(ATOMIC_LOADW_MAX);
5087 OPCODE(ATOMIC_LOADW_UMIN);
5088 OPCODE(ATOMIC_LOADW_UMAX);
5089 OPCODE(ATOMIC_CMP_SWAPW);
5090 OPCODE(ATOMIC_CMP_SWAP);
5091 OPCODE(ATOMIC_LOAD_128);
5092 OPCODE(ATOMIC_STORE_128);
5093 OPCODE(ATOMIC_CMP_SWAP_128);
5094 OPCODE(LRV);
5095 OPCODE(STRV);
5096 OPCODE(PREFETCH);
5097 }
5098 return nullptr;
5099#undef OPCODE
5100}
5101
5102// Return true if VT is a vector whose elements are a whole number of bytes
5103// in width. Also check for presence of vector support.
5104bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5105 if (!Subtarget.hasVector())
5106 return false;
5107
5108 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5109}
5110
5111// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5112// producing a result of type ResVT. Op is a possibly bitcast version
5113// of the input vector and Index is the index (based on type VecVT) that
5114// should be extracted. Return the new extraction if a simplification
5115// was possible or if Force is true.
5116SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5117 EVT VecVT, SDValue Op,
5118 unsigned Index,
5119 DAGCombinerInfo &DCI,
5120 bool Force) const {
5121 SelectionDAG &DAG = DCI.DAG;
5122
5123 // The number of bytes being extracted.
5124 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5125
5126 for (;;) {
5127 unsigned Opcode = Op.getOpcode();
5128 if (Opcode == ISD::BITCAST)
5129 // Look through bitcasts.
5130 Op = Op.getOperand(0);
5131 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5132 canTreatAsByteVector(Op.getValueType())) {
5133 // Get a VPERM-like permute mask and see whether the bytes covered
5134 // by the extracted element are a contiguous sequence from one
5135 // source operand.
5136 SmallVector<int, SystemZ::VectorBytes> Bytes;
5137 if (!getVPermMask(Op, Bytes))
5138 break;
5139 int First;
5140 if (!getShuffleInput(Bytes, Index * BytesPerElement,
5141 BytesPerElement, First))
5142 break;
5143 if (First < 0)
5144 return DAG.getUNDEF(ResVT);
5145 // Make sure the contiguous sequence starts at a multiple of the
5146 // original element size.
5147 unsigned Byte = unsigned(First) % Bytes.size();
5148 if (Byte % BytesPerElement != 0)
5149 break;
5150 // We can get the extracted value directly from an input.
5151 Index = Byte / BytesPerElement;
5152 Op = Op.getOperand(unsigned(First) / Bytes.size());
5153 Force = true;
5154 } else if (Opcode == ISD::BUILD_VECTOR &&
5155 canTreatAsByteVector(Op.getValueType())) {
5156 // We can only optimize this case if the BUILD_VECTOR elements are
5157 // at least as wide as the extracted value.
5158 EVT OpVT = Op.getValueType();
5159 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5160 if (OpBytesPerElement < BytesPerElement)
5161 break;
5162 // Make sure that the least-significant bit of the extracted value
5163 // is the least significant bit of an input.
5164 unsigned End = (Index + 1) * BytesPerElement;
5165 if (End % OpBytesPerElement != 0)
5166 break;
5167 // We're extracting the low part of one operand of the BUILD_VECTOR.
5168 Op = Op.getOperand(End / OpBytesPerElement - 1);
5169 if (!Op.getValueType().isInteger()) {
5170 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5171 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5172 DCI.AddToWorklist(Op.getNode());
5173 }
5174 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5175 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5176 if (VT != ResVT) {
5177 DCI.AddToWorklist(Op.getNode());
5178 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5179 }
5180 return Op;
5181 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5182 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5183 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5184 canTreatAsByteVector(Op.getValueType()) &&
5185 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5186 // Make sure that only the unextended bits are significant.
5187 EVT ExtVT = Op.getValueType();
5188 EVT OpVT = Op.getOperand(0).getValueType();
5189 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5190 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5191 unsigned Byte = Index * BytesPerElement;
5192 unsigned SubByte = Byte % ExtBytesPerElement;
5193 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5194 if (SubByte < MinSubByte ||
5195 SubByte + BytesPerElement > ExtBytesPerElement)
5196 break;
5197 // Get the byte offset of the unextended element
5198 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5199 // ...then add the byte offset relative to that element.
5200 Byte += SubByte - MinSubByte;
5201 if (Byte % BytesPerElement != 0)
5202 break;
5203 Op = Op.getOperand(0);
5204 Index = Byte / BytesPerElement;
5205 Force = true;
5206 } else
5207 break;
5208 }
5209 if (Force) {
5210 if (Op.getValueType() != VecVT) {
5211 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5212 DCI.AddToWorklist(Op.getNode());
5213 }
5214 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5215 DAG.getConstant(Index, DL, MVT::i32));
5216 }
5217 return SDValue();
5218}
5219
5220// Optimize vector operations in scalar value Op on the basis that Op
5221// is truncated to TruncVT.
5222SDValue SystemZTargetLowering::combineTruncateExtract(
5223 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5224 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5225 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5226 // of type TruncVT.
5227 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5228 TruncVT.getSizeInBits() % 8 == 0) {
5229 SDValue Vec = Op.getOperand(0);
5230 EVT VecVT = Vec.getValueType();
5231 if (canTreatAsByteVector(VecVT)) {
5232 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5233 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5234 unsigned TruncBytes = TruncVT.getStoreSize();
5235 if (BytesPerElement % TruncBytes == 0) {
5236 // Calculate the value of Y' in the above description. We are
5237 // splitting the original elements into Scale equal-sized pieces
5238 // and for truncation purposes want the last (least-significant)
5239 // of these pieces for IndexN. This is easiest to do by calculating
5240 // the start index of the following element and then subtracting 1.
5241 unsigned Scale = BytesPerElement / TruncBytes;
5242 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5243
5244 // Defer the creation of the bitcast from X to combineExtract,
5245 // which might be able to optimize the extraction.
5246 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5247 VecVT.getStoreSize() / TruncBytes);
5248 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5249 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5250 }
5251 }
5252 }
5253 }
5254 return SDValue();
5255}
5256
5257SDValue SystemZTargetLowering::combineZERO_EXTEND(
5258 SDNode *N, DAGCombinerInfo &DCI) const {
5259 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5260 SelectionDAG &DAG = DCI.DAG;
5261 SDValue N0 = N->getOperand(0);
5262 EVT VT = N->getValueType(0);
5263 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5264 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5265 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5266 if (TrueOp && FalseOp) {
5267 SDLoc DL(N0);
5268 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5269 DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5270 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5271 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5272 // If N0 has multiple uses, change other uses as well.
5273 if (!N0.hasOneUse()) {
5274 SDValue TruncSelect =
5275 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5276 DCI.CombineTo(N0.getNode(), TruncSelect);
5277 }
5278 return NewSelect;
5279 }
5280 }
5281 return SDValue();
5282}
5283
5284SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5285 SDNode *N, DAGCombinerInfo &DCI) const {
5286 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5287 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5288 // into (select_cc LHS, RHS, -1, 0, COND)
5289 SelectionDAG &DAG = DCI.DAG;
5290 SDValue N0 = N->getOperand(0);
5291 EVT VT = N->getValueType(0);
5292 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5293 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5294 N0 = N0.getOperand(0);
5295 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5296 SDLoc DL(N0);
5297 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5298 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5299 N0.getOperand(2) };
5300 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5301 }
5302 return SDValue();
5303}
5304
5305SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5306 SDNode *N, DAGCombinerInfo &DCI) const {
5307 // Convert (sext (ashr (shl X, C1), C2)) to
5308 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5309 // cheap as narrower ones.
5310 SelectionDAG &DAG = DCI.DAG;
5311 SDValue N0 = N->getOperand(0);
5312 EVT VT = N->getValueType(0);
5313 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5314 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5315 SDValue Inner = N0.getOperand(0);
5316 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5317 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5318 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5319 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5320 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5321 EVT ShiftVT = N0.getOperand(1).getValueType();
5322 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5323 Inner.getOperand(0));
5324 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5325 DAG.getConstant(NewShlAmt, SDLoc(Inner),
5326 ShiftVT));
5327 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5328 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5329 }
5330 }
5331 }
5332 return SDValue();
5333}
5334
5335SDValue SystemZTargetLowering::combineMERGE(
5336 SDNode *N, DAGCombinerInfo &DCI) const {
5337 SelectionDAG &DAG = DCI.DAG;
5338 unsigned Opcode = N->getOpcode();
5339 SDValue Op0 = N->getOperand(0);
5340 SDValue Op1 = N->getOperand(1);
5341 if (Op0.getOpcode() == ISD::BITCAST)
5342 Op0 = Op0.getOperand(0);
5343 if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5344 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5345 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
5346 // for v4f32.
5347 if (Op1 == N->getOperand(0))
5348 return Op1;
5349 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5350 EVT VT = Op1.getValueType();
5351 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5352 if (ElemBytes <= 4) {
5353 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5354 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5355 EVT InVT = VT.changeVectorElementTypeToInteger();
5356 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5357 SystemZ::VectorBytes / ElemBytes / 2);
5358 if (VT != InVT) {
5359 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5360 DCI.AddToWorklist(Op1.getNode());
5361 }
5362 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5363 DCI.AddToWorklist(Op.getNode());
5364 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5365 }
5366 }
5367 return SDValue();
5368}
5369
5370SDValue SystemZTargetLowering::combineLOAD(
5371 SDNode *N, DAGCombinerInfo &DCI) const {
5372 SelectionDAG &DAG = DCI.DAG;
5373 EVT LdVT = N->getValueType(0);
5374 if (LdVT.isVector() || LdVT.isInteger())
5375 return SDValue();
5376 // Transform a scalar load that is REPLICATEd as well as having other
5377 // use(s) to the form where the other use(s) use the first element of the
5378 // REPLICATE instead of the load. Otherwise instruction selection will not
5379 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5380 // point loads.
5381
5382 SDValue Replicate;
5383 SmallVector<SDNode*, 8> OtherUses;
5384 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5385 UI != UE; ++UI) {
5386 if (UI->getOpcode() == SystemZISD::REPLICATE) {
5387 if (Replicate)
5388 return SDValue(); // Should never happen
5389 Replicate = SDValue(*UI, 0);
5390 }
5391 else if (UI.getUse().getResNo() == 0)
5392 OtherUses.push_back(*UI);
5393 }
5394 if (!Replicate || OtherUses.empty())
5395 return SDValue();
5396
5397 SDLoc DL(N);
5398 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5399 Replicate, DAG.getConstant(0, DL, MVT::i32));
5400 // Update uses of the loaded Value while preserving old chains.
5401 for (SDNode *U : OtherUses) {
5402 SmallVector<SDValue, 8> Ops;
5403 for (SDValue Op : U->ops())
5404 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5405 DAG.UpdateNodeOperands(U, Ops);
5406 }
5407 return SDValue(N, 0);
5408}
5409
5410SDValue SystemZTargetLowering::combineSTORE(
5411 SDNode *N, DAGCombinerInfo &DCI) const {
5412 SelectionDAG &DAG = DCI.DAG;
5413 auto *SN = cast<StoreSDNode>(N);
5414 auto &Op1 = N->getOperand(1);
5415 EVT MemVT = SN->getMemoryVT();
5416 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5417 // for the extraction to be done on a vMiN value, so that we can use VSTE.
5418 // If X has wider elements then convert it to:
5419 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5420 if (MemVT.isInteger() && SN->isTruncatingStore()) {
5421 if (SDValue Value =
5422 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5423 DCI.AddToWorklist(Value.getNode());
5424
5425 // Rewrite the store with the new form of stored value.
5426 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5427 SN->getBasePtr(), SN->getMemoryVT(),
5428 SN->getMemOperand());
5429 }
5430 }
5431 // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5432 if (!SN->isTruncatingStore() &&
5433 Op1.getOpcode() == ISD::BSWAP &&
5434 Op1.getNode()->hasOneUse() &&
5435 (Op1.getValueType() == MVT::i16 ||
5436 Op1.getValueType() == MVT::i32 ||
5437 Op1.getValueType() == MVT::i64)) {
5438
5439 SDValue BSwapOp = Op1.getOperand(0);
5440
5441 if (BSwapOp.getValueType() == MVT::i16)
5442 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5443
5444 SDValue Ops[] = {
5445 N->getOperand(0), BSwapOp, N->getOperand(2)
5446 };
5447
5448 return
5449 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5450 Ops, MemVT, SN->getMemOperand());
5451 }
5452 return SDValue();
5453}
5454
5455SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5456 SDNode *N, DAGCombinerInfo &DCI) const {
5457
5458 if (!Subtarget.hasVector())
5459 return SDValue();
5460
5461 // Try to simplify a vector extraction.
5462 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5463 SDValue Op0 = N->getOperand(0);
5464 EVT VecVT = Op0.getValueType();
5465 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5466 IndexN->getZExtValue(), DCI, false);
5467 }
5468 return SDValue();
5469}
5470
5471SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5472 SDNode *N, DAGCombinerInfo &DCI) const {
5473 SelectionDAG &DAG = DCI.DAG;
5474 // (join_dwords X, X) == (replicate X)
5475 if (N->getOperand(0) == N->getOperand(1))
5476 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5477 N->getOperand(0));
5478 return SDValue();
5479}
5480
5481SDValue SystemZTargetLowering::combineFP_ROUND(
5482 SDNode *N, DAGCombinerInfo &DCI) const {
5483 // (fpround (extract_vector_elt X 0))
5484 // (fpround (extract_vector_elt X 1)) ->
5485 // (extract_vector_elt (VROUND X) 0)
5486 // (extract_vector_elt (VROUND X) 2)
5487 //
5488 // This is a special case since the target doesn't really support v2f32s.
5489 SelectionDAG &DAG = DCI.DAG;
5490 SDValue Op0 = N->getOperand(0);
5491 if (N->getValueType(0) == MVT::f32 &&
5492 Op0.hasOneUse() &&
5493 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5494 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5495 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5496 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5497 SDValue Vec = Op0.getOperand(0);
5498 for (auto *U : Vec->uses()) {
5499 if (U != Op0.getNode() &&
5500 U->hasOneUse() &&
5501 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5502 U->getOperand(0) == Vec &&
5503 U->getOperand(1).getOpcode() == ISD::Constant &&
5504 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5505 SDValue OtherRound = SDValue(*U->use_begin(), 0);
5506 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5507 OtherRound.getOperand(0) == SDValue(U, 0) &&
5508 OtherRound.getValueType() == MVT::f32) {
5509 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5510 MVT::v4f32, Vec);
5511 DCI.AddToWorklist(VRound.getNode());
5512 SDValue Extract1 =
5513 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5514 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5515 DCI.AddToWorklist(Extract1.getNode());
5516 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5517 SDValue Extract0 =
5518 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5519 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5520 return Extract0;
5521 }
5522 }
5523 }
5524 }
5525 return SDValue();
5526}
5527
5528SDValue SystemZTargetLowering::combineFP_EXTEND(
5529 SDNode *N, DAGCombinerInfo &DCI) const {
5530 // (fpextend (extract_vector_elt X 0))
5531 // (fpextend (extract_vector_elt X 2)) ->
5532 // (extract_vector_elt (VEXTEND X) 0)
5533 // (extract_vector_elt (VEXTEND X) 1)
5534 //
5535 // This is a special case since the target doesn't really support v2f32s.
5536 SelectionDAG &DAG = DCI.DAG;
5537 SDValue Op0 = N->getOperand(0);
5538 if (N->getValueType(0) == MVT::f64 &&
5539 Op0.hasOneUse() &&
5540 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5541 Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5542 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5543 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5544 SDValue Vec = Op0.getOperand(0);
5545 for (auto *U : Vec->uses()) {
5546 if (U != Op0.getNode() &&
5547 U->hasOneUse() &&
5548 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5549 U->getOperand(0) == Vec &&
5550 U->getOperand(1).getOpcode() == ISD::Constant &&
5551 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5552 SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5553 if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5554 OtherExtend.getOperand(0) == SDValue(U, 0) &&
5555 OtherExtend.getValueType() == MVT::f64) {
5556 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5557 MVT::v2f64, Vec);
5558 DCI.AddToWorklist(VExtend.getNode());
5559 SDValue Extract1 =
5560 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5561 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5562 DCI.AddToWorklist(Extract1.getNode());
5563 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5564 SDValue Extract0 =
5565 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5566 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5567 return Extract0;
5568 }
5569 }
5570 }
5571 }
5572 return SDValue();
5573}
5574
5575SDValue SystemZTargetLowering::combineBSWAP(
5576 SDNode *N, DAGCombinerInfo &DCI) const {
5577 SelectionDAG &DAG = DCI.DAG;
5578 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5579 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5580 N->getOperand(0).hasOneUse() &&
5581 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5582 N->getValueType(0) == MVT::i64)) {
5583 SDValue Load = N->getOperand(0);
5584 LoadSDNode *LD = cast<LoadSDNode>(Load);
5585
5586 // Create the byte-swapping load.
5587 SDValue Ops[] = {
5588 LD->getChain(), // Chain
5589 LD->getBasePtr() // Ptr
5590 };
5591 EVT LoadVT = N->getValueType(0);
5592 if (LoadVT == MVT::i16)
5593 LoadVT = MVT::i32;
5594 SDValue BSLoad =
5595 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5596 DAG.getVTList(LoadVT, MVT::Other),
5597 Ops, LD->getMemoryVT(), LD->getMemOperand());
5598
5599 // If this is an i16 load, insert the truncate.
5600 SDValue ResVal = BSLoad;
5601 if (N->getValueType(0) == MVT::i16)
5602 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5603
5604 // First, combine the bswap away. This makes the value produced by the
5605 // load dead.
5606 DCI.CombineTo(N, ResVal);
5607
5608 // Next, combine the load away, we give it a bogus result value but a real
5609 // chain result. The result value is dead because the bswap is dead.
5610 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5611
5612 // Return N so it doesn't get rechecked!
5613 return SDValue(N, 0);
5614 }
5615 return SDValue();
5616}
5617
5618static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5619 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5620 // set by the CCReg instruction using the CCValid / CCMask masks,
5621 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing
5622 // the condition code set by some other instruction, see whether we
5623 // can directly use that condition code.
5624 bool Invert = false;
5625
5626 // Verify that we have an appropriate mask for a EQ or NE comparison.
5627 if (CCValid != SystemZ::CCMASK_ICMP)
5628 return false;
5629 if (CCMask == SystemZ::CCMASK_CMP_NE)
5630 Invert = !Invert;
5631 else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5632 return false;
5633
5634 // Verify that we have an ICMP that is the user of a SELECT_CCMASK.
5635 SDNode *ICmp = CCReg.getNode();
5636 if (ICmp->getOpcode() != SystemZISD::ICMP)
5637 return false;
5638 SDNode *Select = ICmp->getOperand(0).getNode();
5639 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5640 return false;
5641
5642 // Verify that the ICMP compares against one of select values.
5643 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5644 if (!CompareVal)
5645 return false;
5646 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5647 if (!TrueVal)
5648 return false;
5649 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5650 if (!FalseVal)
5651 return false;
5652 if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5653 Invert = !Invert;
5654 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5655 return false;
5656
5657 // Compute the effective CC mask for the new branch or select.
5658 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5659 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5660 if (!NewCCValid || !NewCCMask)
5661 return false;
5662 CCValid = NewCCValid->getZExtValue();
5663 CCMask = NewCCMask->getZExtValue();
5664 if (Invert)
5665 CCMask ^= CCValid;
5666
5667 // Return the updated CCReg link.
5668 CCReg = Select->getOperand(4);
5669 return true;
5670}
5671
5672SDValue SystemZTargetLowering::combineBR_CCMASK(
5673 SDNode *N, DAGCombinerInfo &DCI) const {
5674 SelectionDAG &DAG = DCI.DAG;
5675
5676 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5677 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5678 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5679 if (!CCValid || !CCMask)
5680 return SDValue();
5681
5682 int CCValidVal = CCValid->getZExtValue();
5683 int CCMaskVal = CCMask->getZExtValue();
5684 SDValue Chain = N->getOperand(0);
5685 SDValue CCReg = N->getOperand(4);
5686
5687 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5688 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5689 Chain,
5690 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5691 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5692 N->getOperand(3), CCReg);
5693 return SDValue();
5694}
5695
5696SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5697 SDNode *N, DAGCombinerInfo &DCI) const {
5698 SelectionDAG &DAG = DCI.DAG;
5699
5700 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5701 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5702 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5703 if (!CCValid || !CCMask)
5704 return SDValue();
5705
5706 int CCValidVal = CCValid->getZExtValue();
5707 int CCMaskVal = CCMask->getZExtValue();
5708 SDValue CCReg = N->getOperand(4);
5709
5710 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5711 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5712 N->getOperand(0),
5713 N->getOperand(1),
5714 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5715 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5716 CCReg);
5717 return SDValue();
5718}
5719
5720
5721SDValue SystemZTargetLowering::combineGET_CCMASK(
5722 SDNode *N, DAGCombinerInfo &DCI) const {
5723
5724 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5725 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5726 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5727 if (!CCValid || !CCMask)
5728 return SDValue();
5729 int CCValidVal = CCValid->getZExtValue();
5730 int CCMaskVal = CCMask->getZExtValue();
5731
5732 SDValue Select = N->getOperand(0);
5733 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5734 return SDValue();
5735
5736 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5737 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5738 if (!SelectCCValid || !SelectCCMask)
5739 return SDValue();
5740 int SelectCCValidVal = SelectCCValid->getZExtValue();
5741 int SelectCCMaskVal = SelectCCMask->getZExtValue();
5742
5743 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5744 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5745 if (!TrueVal || !FalseVal)
5746 return SDValue();
5747 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5748 ;
5749 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5750 SelectCCMaskVal ^= SelectCCValidVal;
5751 else
5752 return SDValue();
5753
5754 if (SelectCCValidVal & ~CCValidVal)
5755 return SDValue();
5756 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5757 return SDValue();
5758
5759 return Select->getOperand(4);
5760}
5761
5762SDValue SystemZTargetLowering::combineIntDIVREM(
5763 SDNode *N, DAGCombinerInfo &DCI) const {
5764 SelectionDAG &DAG = DCI.DAG;
5765 EVT VT = N->getValueType(0);
5766 // In the case where the divisor is a vector of constants a cheaper
5767 // sequence of instructions can replace the divide. BuildSDIV is called to
5768 // do this during DAG combining, but it only succeeds when it can build a
5769 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
5770 // since it is not Legal but Custom it can only happen before
5771 // legalization. Therefore we must scalarize this early before Combine
5772 // 1. For widened vectors, this is already the result of type legalization.
5773 if (VT.isVector() && isTypeLegal(VT) &&
5774 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
5775 return DAG.UnrollVectorOp(N);
5776 return SDValue();
5777}
5778
5779SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5780 DAGCombinerInfo &DCI) const {
5781 switch(N->getOpcode()) {
5782 default: break;
5783 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
5784 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
5785 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
5786 case SystemZISD::MERGE_HIGH:
5787 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
5788 case ISD::LOAD: return combineLOAD(N, DCI);
5789 case ISD::STORE: return combineSTORE(N, DCI);
5790 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5791 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5792 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
5793 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
5794 case ISD::BSWAP: return combineBSWAP(N, DCI);
5795 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
5796 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5797 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
5798 case ISD::SDIV:
5799 case ISD::UDIV:
5800 case ISD::SREM:
5801 case ISD::UREM: return combineIntDIVREM(N, DCI);
5802 }
5803
5804 return SDValue();
5805}
5806
5807// Return the demanded elements for the OpNo source operand of Op. DemandedElts
5808// are for Op.
5809static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5810 unsigned OpNo) {
5811 EVT VT = Op.getValueType();
5812 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5813 APInt SrcDemE;
5814 unsigned Opcode = Op.getOpcode();
5815 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5816 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5817 switch (Id) {
5818 case Intrinsic::s390_vpksh: // PACKS
5819 case Intrinsic::s390_vpksf:
5820 case Intrinsic::s390_vpksg:
5821 case Intrinsic::s390_vpkshs: // PACKS_CC
5822 case Intrinsic::s390_vpksfs:
5823 case Intrinsic::s390_vpksgs:
5824 case Intrinsic::s390_vpklsh: // PACKLS
5825 case Intrinsic::s390_vpklsf:
5826 case Intrinsic::s390_vpklsg:
5827 case Intrinsic::s390_vpklshs: // PACKLS_CC
5828 case Intrinsic::s390_vpklsfs:
5829 case Intrinsic::s390_vpklsgs:
5830 // VECTOR PACK truncates the elements of two source vectors into one.
5831 SrcDemE = DemandedElts;
5832 if (OpNo == 2)
5833 SrcDemE.lshrInPlace(NumElts / 2);
5834 SrcDemE = SrcDemE.trunc(NumElts / 2);
5835 break;
5836 // VECTOR UNPACK extends half the elements of the source vector.
5837 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
5838 case Intrinsic::s390_vuphh:
5839 case Intrinsic::s390_vuphf:
5840 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5841 case Intrinsic::s390_vuplhh:
5842 case Intrinsic::s390_vuplhf:
5843 SrcDemE = APInt(NumElts * 2, 0);
5844 SrcDemE.insertBits(DemandedElts, 0);
5845 break;
5846 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
5847 case Intrinsic::s390_vuplhw:
5848 case Intrinsic::s390_vuplf:
5849 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5850 case Intrinsic::s390_vupllh:
5851 case Intrinsic::s390_vupllf:
5852 SrcDemE = APInt(NumElts * 2, 0);
5853 SrcDemE.insertBits(DemandedElts, NumElts);
5854 break;
5855 case Intrinsic::s390_vpdi: {
5856 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5857 SrcDemE = APInt(NumElts, 0);
5858 if (!DemandedElts[OpNo - 1])
5859 break;
5860 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5861 unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5862 // Demand input element 0 or 1, given by the mask bit value.
5863 SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5864 break;
5865 }
5866 case Intrinsic::s390_vsldb: {
5867 // VECTOR SHIFT LEFT DOUBLE BY BYTE
5868 assert(VT == MVT::v16i8 && "Unexpected type.")((VT == MVT::v16i8 && "Unexpected type.") ? static_cast
<void> (0) : __assert_fail ("VT == MVT::v16i8 && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5868, __PRETTY_FUNCTION__))
;
5869 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5870 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.")((FirstIdx > 0 && FirstIdx < 16 && "Unused operand."
) ? static_cast<void> (0) : __assert_fail ("FirstIdx > 0 && FirstIdx < 16 && \"Unused operand.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5870, __PRETTY_FUNCTION__))
;
5871 unsigned NumSrc0Els = 16 - FirstIdx;
5872 SrcDemE = APInt(NumElts, 0);
5873 if (OpNo == 1) {
5874 APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5875 SrcDemE.insertBits(DemEls, FirstIdx);
5876 } else {
5877 APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5878 SrcDemE.insertBits(DemEls, 0);
5879 }
5880 break;
5881 }
5882 case Intrinsic::s390_vperm:
5883 SrcDemE = APInt(NumElts, 1);
5884 break;
5885 default:
5886 llvm_unreachable("Unhandled intrinsic.")::llvm::llvm_unreachable_internal("Unhandled intrinsic.", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5886)
;
5887 break;
5888 }
5889 } else {
5890 switch (Opcode) {
5891 case SystemZISD::JOIN_DWORDS:
5892 // Scalar operand.
5893 SrcDemE = APInt(1, 1);
5894 break;
5895 case SystemZISD::SELECT_CCMASK:
5896 SrcDemE = DemandedElts;
5897 break;
5898 default:
5899 llvm_unreachable("Unhandled opcode.")::llvm::llvm_unreachable_internal("Unhandled opcode.", "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5899)
;
5900 break;
5901 }
5902 }
5903 return SrcDemE;
5904}
5905
5906static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5907 const APInt &DemandedElts,
5908 const SelectionDAG &DAG, unsigned Depth,
5909 unsigned OpNo) {
5910 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5911 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5912 KnownBits LHSKnown =
5913 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5914 KnownBits RHSKnown =
5915 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5916 Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5917 Known.One = LHSKnown.One & RHSKnown.One;
5918}
5919
5920void
5921SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5922 KnownBits &Known,
5923 const APInt &DemandedElts,
5924 const SelectionDAG &DAG,
5925 unsigned Depth) const {
5926 Known.resetAll();
5927
5928 // Intrinsic CC result is returned in the two low bits.
5929 unsigned tmp0, tmp1; // not used
5930 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
5931 Known.Zero.setBitsFrom(2);
5932 return;
5933 }
5934 EVT VT = Op.getValueType();
5935 if (Op.getResNo() != 0 || VT == MVT::Untyped)
5936 return;
5937 assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&((Known.getBitWidth() == VT.getScalarSizeInBits() && "KnownBits does not match VT in bitwidth"
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == VT.getScalarSizeInBits() && \"KnownBits does not match VT in bitwidth\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5938, __PRETTY_FUNCTION__))
5938 "KnownBits does not match VT in bitwidth")((Known.getBitWidth() == VT.getScalarSizeInBits() && "KnownBits does not match VT in bitwidth"
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == VT.getScalarSizeInBits() && \"KnownBits does not match VT in bitwidth\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5938, __PRETTY_FUNCTION__))
;
5939 assert ((!VT.isVector() ||(((!VT.isVector() || (DemandedElts.getBitWidth() == VT.getVectorNumElements
())) && "DemandedElts does not match VT number of elements"
) ? static_cast<void> (0) : __assert_fail ("(!VT.isVector() || (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && \"DemandedElts does not match VT number of elements\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5941, __PRETTY_FUNCTION__))
5940 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&(((!VT.isVector() || (DemandedElts.getBitWidth() == VT.getVectorNumElements
())) && "DemandedElts does not match VT number of elements"
) ? static_cast<void> (0) : __assert_fail ("(!VT.isVector() || (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && \"DemandedElts does not match VT number of elements\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5941, __PRETTY_FUNCTION__))
5941 "DemandedElts does not match VT number of elements")(((!VT.isVector() || (DemandedElts.getBitWidth() == VT.getVectorNumElements
())) && "DemandedElts does not match VT number of elements"
) ? static_cast<void> (0) : __assert_fail ("(!VT.isVector() || (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && \"DemandedElts does not match VT number of elements\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 5941, __PRETTY_FUNCTION__))
;
5942 unsigned BitWidth = Known.getBitWidth();
5943 unsigned Opcode = Op.getOpcode();
5944 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5945 bool IsLogical = false;
5946 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5947 switch (Id) {
5948 case Intrinsic::s390_vpksh: // PACKS
5949 case Intrinsic::s390_vpksf:
5950 case Intrinsic::s390_vpksg:
5951 case Intrinsic::s390_vpkshs: // PACKS_CC
5952 case Intrinsic::s390_vpksfs:
5953 case Intrinsic::s390_vpksgs:
5954 case Intrinsic::s390_vpklsh: // PACKLS
5955 case Intrinsic::s390_vpklsf:
5956 case Intrinsic::s390_vpklsg:
5957 case Intrinsic::s390_vpklshs: // PACKLS_CC
5958 case Intrinsic::s390_vpklsfs:
5959 case Intrinsic::s390_vpklsgs:
5960 case Intrinsic::s390_vpdi:
5961 case Intrinsic::s390_vsldb:
5962 case Intrinsic::s390_vperm:
5963 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
5964 break;
5965 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5966 case Intrinsic::s390_vuplhh:
5967 case Intrinsic::s390_vuplhf:
5968 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5969 case Intrinsic::s390_vupllh:
5970 case Intrinsic::s390_vupllf:
5971 IsLogical = true;
5972 LLVM_FALLTHROUGH[[clang::fallthrough]];
5973 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
5974 case Intrinsic::s390_vuphh:
5975 case Intrinsic::s390_vuphf:
5976 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
5977 case Intrinsic::s390_vuplhw:
5978 case Intrinsic::s390_vuplf: {
5979 SDValue SrcOp = Op.getOperand(1);
5980 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits();
5981 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
5982 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
5983 if (IsLogical) {
5984 Known = Known.zext(BitWidth);
5985 Known.Zero.setBitsFrom(SrcBitWidth);
5986 } else
5987 Known = Known.sext(BitWidth);
5988 break;
5989 }
5990 default:
5991 break;
5992 }
5993 } else {
5994 switch (Opcode) {
5995 case SystemZISD::JOIN_DWORDS:
5996 case SystemZISD::SELECT_CCMASK:
5997 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
5998 break;
5999 case SystemZISD::REPLICATE: {
6000 SDValue SrcOp = Op.getOperand(0);
6001 Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6002 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6003 Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6004 break;
6005 }
6006 default:
6007 break;
6008 }
6009 }
6010
6011 // Known has the width of the source operand(s). Adjust if needed to match
6012 // the passed bitwidth.
6013 if (Known.getBitWidth() != BitWidth)
6014 Known = Known.zextOrTrunc(BitWidth);
6015}
6016
6017static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6018 const SelectionDAG &DAG, unsigned Depth,
6019 unsigned OpNo) {
6020 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6021 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6022 if (LHS == 1) return 1; // Early out.
6023 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6024 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6025 if (RHS == 1) return 1; // Early out.
6026 unsigned Common = std::min(LHS, RHS);
6027 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6028 EVT VT = Op.getValueType();
6029 unsigned VTBits = VT.getScalarSizeInBits();
6030 if (SrcBitWidth > VTBits) { // PACK
6031 unsigned SrcExtraBits = SrcBitWidth - VTBits;
6032 if (Common > SrcExtraBits)
6033 return (Common - SrcExtraBits);
6034 return 1;
6035 }
6036 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.")((SrcBitWidth == VTBits && "Expected operands of same bitwidth."
) ? static_cast<void> (0) : __assert_fail ("SrcBitWidth == VTBits && \"Expected operands of same bitwidth.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 6036, __PRETTY_FUNCTION__))
;
6037 return Common;
6038}
6039
6040unsigned
6041SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6042 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6043 unsigned Depth) const {
6044 if (Op.getResNo() != 0)
6045 return 1;
6046 unsigned Opcode = Op.getOpcode();
6047 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6048 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6049 switch (Id) {
6050 case Intrinsic::s390_vpksh: // PACKS
6051 case Intrinsic::s390_vpksf:
6052 case Intrinsic::s390_vpksg:
6053 case Intrinsic::s390_vpkshs: // PACKS_CC
6054 case Intrinsic::s390_vpksfs:
6055 case Intrinsic::s390_vpksgs:
6056 case Intrinsic::s390_vpklsh: // PACKLS
6057 case Intrinsic::s390_vpklsf:
6058 case Intrinsic::s390_vpklsg:
6059 case Intrinsic::s390_vpklshs: // PACKLS_CC
6060 case Intrinsic::s390_vpklsfs:
6061 case Intrinsic::s390_vpklsgs:
6062 case Intrinsic::s390_vpdi:
6063 case Intrinsic::s390_vsldb:
6064 case Intrinsic::s390_vperm:
6065 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6066 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6067 case Intrinsic::s390_vuphh:
6068 case Intrinsic::s390_vuphf:
6069 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6070 case Intrinsic::s390_vuplhw:
6071 case Intrinsic::s390_vuplf: {
6072 SDValue PackedOp = Op.getOperand(1);
6073 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6074 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6075 EVT VT = Op.getValueType();
6076 unsigned VTBits = VT.getScalarSizeInBits();
6077 Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6078 return Tmp;
6079 }
6080 default:
6081 break;
6082 }
6083 } else {
6084 switch (Opcode) {
6085 case SystemZISD::SELECT_CCMASK:
6086 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6087 default:
6088 break;
6089 }
6090 }
6091
6092 return 1;
6093}
6094
6095//===----------------------------------------------------------------------===//
6096// Custom insertion
6097//===----------------------------------------------------------------------===//
6098
6099// Create a new basic block after MBB.
6100static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6101 MachineFunction &MF = *MBB->getParent();
6102 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6103 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6104 return NewMBB;
6105}
6106
6107// Split MBB after MI and return the new block (the one that contains
6108// instructions after MI).
6109static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6110 MachineBasicBlock *MBB) {
6111 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6112 NewMBB->splice(NewMBB->begin(), MBB,
6113 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6114 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6115 return NewMBB;
6116}
6117
6118// Split MBB before MI and return the new block (the one that contains MI).
6119static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6120 MachineBasicBlock *MBB) {
6121 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6122 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6123 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6124 return NewMBB;
6125}
6126
6127// Force base value Base into a register before MI. Return the register.
6128static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
6129 const SystemZInstrInfo *TII) {
6130 if (Base.isReg())
6131 return Base.getReg();
6132
6133 MachineBasicBlock *MBB = MI.getParent();
6134 MachineFunction &MF = *MBB->getParent();
6135 MachineRegisterInfo &MRI = MF.getRegInfo();
6136
6137 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6138 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6139 .add(Base)
6140 .addImm(0)
6141 .addReg(0);
6142 return Reg;
6143}
6144
6145// The CC operand of MI might be missing a kill marker because there
6146// were multiple uses of CC, and ISel didn't know which to mark.
6147// Figure out whether MI should have had a kill marker.
6148static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6149 // Scan forward through BB for a use/def of CC.
6150 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6151 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6152 const MachineInstr& mi = *miI;
6153 if (mi.readsRegister(SystemZ::CC))
6154 return false;
6155 if (mi.definesRegister(SystemZ::CC))
6156 break; // Should have kill-flag - update below.
6157 }
6158
6159 // If we hit the end of the block, check whether CC is live into a
6160 // successor.
6161 if (miI == MBB->end()) {
6162 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6163 if ((*SI)->isLiveIn(SystemZ::CC))
6164 return false;
6165 }
6166
6167 return true;
6168}
6169
6170// Return true if it is OK for this Select pseudo-opcode to be cascaded
6171// together with other Select pseudo-opcodes into a single basic-block with
6172// a conditional jump around it.
6173static bool isSelectPseudo(MachineInstr &MI) {
6174 switch (MI.getOpcode()) {
6175 case SystemZ::Select32:
6176 case SystemZ::Select64:
6177 case SystemZ::SelectF32:
6178 case SystemZ::SelectF64:
6179 case SystemZ::SelectF128:
6180 case SystemZ::SelectVR32:
6181 case SystemZ::SelectVR64:
6182 case SystemZ::SelectVR128:
6183 return true;
6184
6185 default:
6186 return false;
6187 }
6188}
6189
6190// Helper function, which inserts PHI functions into SinkMBB:
6191// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6192// where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6193// in [MIItBegin, MIItEnd) range.
6194static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6195 MachineBasicBlock::iterator MIItEnd,
6196 MachineBasicBlock *TrueMBB,
6197 MachineBasicBlock *FalseMBB,
6198 MachineBasicBlock *SinkMBB) {
6199 MachineFunction *MF = TrueMBB->getParent();
6200 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6201
6202 unsigned CCValid = MIItBegin->getOperand(3).getImm();
6203 unsigned CCMask = MIItBegin->getOperand(4).getImm();
6204 DebugLoc DL = MIItBegin->getDebugLoc();
6205
6206 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6207
6208 // As we are creating the PHIs, we have to be careful if there is more than
6209 // one. Later Selects may reference the results of earlier Selects, but later
6210 // PHIs have to reference the individual true/false inputs from earlier PHIs.
6211 // That also means that PHI construction must work forward from earlier to
6212 // later, and that the code must maintain a mapping from earlier PHI's
6213 // destination registers, and the registers that went into the PHI.
6214 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6215
6216 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
6217 unsigned DestReg = MIIt->getOperand(0).getReg();
6218 unsigned TrueReg = MIIt->getOperand(1).getReg();
6219 unsigned FalseReg = MIIt->getOperand(2).getReg();
6220
6221 // If this Select we are generating is the opposite condition from
6222 // the jump we generated, then we have to swap the operands for the
6223 // PHI that is going to be generated.
6224 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6225 std::swap(TrueReg, FalseReg);
6226
6227 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6228 TrueReg = RegRewriteTable[TrueReg].first;
6229
6230 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6231 FalseReg = RegRewriteTable[FalseReg].second;
6232
6233 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6234 .addReg(TrueReg).addMBB(TrueMBB)
6235 .addReg(FalseReg).addMBB(FalseMBB);
6236
6237 // Add this PHI to the rewrite table.
6238 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6239 }
6240}
6241
6242// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6243MachineBasicBlock *
6244SystemZTargetLowering::emitSelect(MachineInstr &MI,
6245 MachineBasicBlock *MBB) const {
6246 const SystemZInstrInfo *TII =
6247 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6248
6249 unsigned CCValid = MI.getOperand(3).getImm();
6250 unsigned CCMask = MI.getOperand(4).getImm();
6251 DebugLoc DL = MI.getDebugLoc();
6252
6253 // If we have a sequence of Select* pseudo instructions using the
6254 // same condition code value, we want to expand all of them into
6255 // a single pair of basic blocks using the same condition.
6256 MachineInstr *LastMI = &MI;
6257 MachineBasicBlock::iterator NextMIIt =
6258 std::next(MachineBasicBlock::iterator(MI));
6259
6260 if (isSelectPseudo(MI))
6261 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6262 NextMIIt->getOperand(3).getImm() == CCValid &&
6263 (NextMIIt->getOperand(4).getImm() == CCMask ||
6264 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6265 LastMI = &*NextMIIt;
6266 ++NextMIIt;
6267 }
6268
6269 MachineBasicBlock *StartMBB = MBB;
6270 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6271 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6272
6273 // Unless CC was killed in the last Select instruction, mark it as
6274 // live-in to both FalseMBB and JoinMBB.
6275 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6276 FalseMBB->addLiveIn(SystemZ::CC);
6277 JoinMBB->addLiveIn(SystemZ::CC);
6278 }
6279
6280 // StartMBB:
6281 // BRC CCMask, JoinMBB
6282 // # fallthrough to FalseMBB
6283 MBB = StartMBB;
6284 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6285 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6286 MBB->addSuccessor(JoinMBB);
6287 MBB->addSuccessor(FalseMBB);
6288
6289 // FalseMBB:
6290 // # fallthrough to JoinMBB
6291 MBB = FalseMBB;
6292 MBB->addSuccessor(JoinMBB);
6293
6294 // JoinMBB:
6295 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6296 // ...
6297 MBB = JoinMBB;
6298 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6299 MachineBasicBlock::iterator MIItEnd =
6300 std::next(MachineBasicBlock::iterator(LastMI));
6301 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6302
6303 StartMBB->erase(MIItBegin, MIItEnd);
6304 return JoinMBB;
6305}
6306
6307// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6308// StoreOpcode is the store to use and Invert says whether the store should
6309// happen when the condition is false rather than true. If a STORE ON
6310// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6311MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6312 MachineBasicBlock *MBB,
6313 unsigned StoreOpcode,
6314 unsigned STOCOpcode,
6315 bool Invert) const {
6316 const SystemZInstrInfo *TII =
6317 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6318
6319 unsigned SrcReg = MI.getOperand(0).getReg();
6320 MachineOperand Base = MI.getOperand(1);
6321 int64_t Disp = MI.getOperand(2).getImm();
6322 unsigned IndexReg = MI.getOperand(3).getReg();
6323 unsigned CCValid = MI.getOperand(4).getImm();
6324 unsigned CCMask = MI.getOperand(5).getImm();
6325 DebugLoc DL = MI.getDebugLoc();
6326
6327 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6328
6329 // Use STOCOpcode if possible. We could use different store patterns in
6330 // order to avoid matching the index register, but the performance trade-offs
6331 // might be more complicated in that case.
6332 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6333 if (Invert)
6334 CCMask ^= CCValid;
6335
6336 // ISel pattern matching also adds a load memory operand of the same
6337 // address, so take special care to find the storing memory operand.
6338 MachineMemOperand *MMO = nullptr;
6339 for (auto *I : MI.memoperands())
6340 if (I->isStore()) {
6341 MMO = I;
6342 break;
6343 }
6344
6345 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6346 .addReg(SrcReg)
6347 .add(Base)
6348 .addImm(Disp)
6349 .addImm(CCValid)
6350 .addImm(CCMask)
6351 .addMemOperand(MMO);
6352
6353 MI.eraseFromParent();
6354 return MBB;
6355 }
6356
6357 // Get the condition needed to branch around the store.
6358 if (!Invert)
6359 CCMask ^= CCValid;
6360
6361 MachineBasicBlock *StartMBB = MBB;
6362 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6363 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6364
6365 // Unless CC was killed in the CondStore instruction, mark it as
6366 // live-in to both FalseMBB and JoinMBB.
6367 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6368 FalseMBB->addLiveIn(SystemZ::CC);
6369 JoinMBB->addLiveIn(SystemZ::CC);
6370 }
6371
6372 // StartMBB:
6373 // BRC CCMask, JoinMBB
6374 // # fallthrough to FalseMBB
6375 MBB = StartMBB;
6376 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6377 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6378 MBB->addSuccessor(JoinMBB);
6379 MBB->addSuccessor(FalseMBB);
6380
6381 // FalseMBB:
6382 // store %SrcReg, %Disp(%Index,%Base)
6383 // # fallthrough to JoinMBB
6384 MBB = FalseMBB;
6385 BuildMI(MBB, DL, TII->get(StoreOpcode))
6386 .addReg(SrcReg)
6387 .add(Base)
6388 .addImm(Disp)
6389 .addReg(IndexReg);
6390 MBB->addSuccessor(JoinMBB);
6391
6392 MI.eraseFromParent();
6393 return JoinMBB;
6394}
6395
6396// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6397// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
6398// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6399// BitSize is the width of the field in bits, or 0 if this is a partword
6400// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6401// is one of the operands. Invert says whether the field should be
6402// inverted after performing BinOpcode (e.g. for NAND).
6403MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6404 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6405 unsigned BitSize, bool Invert) const {
6406 MachineFunction &MF = *MBB->getParent();
6407 const SystemZInstrInfo *TII =
6408 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6409 MachineRegisterInfo &MRI = MF.getRegInfo();
6410 bool IsSubWord = (BitSize < 32);
6411
6412 // Extract the operands. Base can be a register or a frame index.
6413 // Src2 can be a register or immediate.
6414 unsigned Dest = MI.getOperand(0).getReg();
6415 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6416 int64_t Disp = MI.getOperand(2).getImm();
6417 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6418 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6419 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6420 DebugLoc DL = MI.getDebugLoc();
6421 if (IsSubWord)
6422 BitSize = MI.getOperand(6).getImm();
6423
6424 // Subword operations use 32-bit registers.
6425 const TargetRegisterClass *RC = (BitSize <= 32 ?
6426 &SystemZ::GR32BitRegClass :
6427 &SystemZ::GR64BitRegClass);
6428 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6429 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6430
6431 // Get the right opcodes for the displacement.
6432 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6433 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6434 assert(LOpcode && CSOpcode && "Displacement out of range")((LOpcode && CSOpcode && "Displacement out of range"
) ? static_cast<void> (0) : __assert_fail ("LOpcode && CSOpcode && \"Displacement out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 6434, __PRETTY_FUNCTION__))
;
6435
6436 // Create virtual registers for temporary results.
6437 unsigned OrigVal = MRI.createVirtualRegister(RC);
6438 unsigned OldVal = MRI.createVirtualRegister(RC);
6439 unsigned NewVal = (BinOpcode || IsSubWord ?
6440 MRI.createVirtualRegister(RC) : Src2.getReg());
6441 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6442 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6443
6444 // Insert a basic block for the main loop.
6445 MachineBasicBlock *StartMBB = MBB;
6446 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6447 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6448
6449 // StartMBB:
6450 // ...
6451 // %OrigVal = L Disp(%Base)
6452 // # fall through to LoopMMB
6453 MBB = StartMBB;
6454 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6455 MBB->addSuccessor(LoopMBB);
6456
6457 // LoopMBB:
6458 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6459 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6460 // %RotatedNewVal = OP %RotatedOldVal, %Src2
6461 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6462 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6463 // JNE LoopMBB
6464 // # fall through to DoneMMB
6465 MBB = LoopMBB;
6466 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6467 .addReg(OrigVal).addMBB(StartMBB)
6468 .addReg(Dest).addMBB(LoopMBB);
6469 if (IsSubWord)
6470 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6471 .addReg(OldVal).addReg(BitShift).addImm(0);
6472 if (Invert) {
6473 // Perform the operation normally and then invert every bit of the field.
6474 unsigned Tmp = MRI.createVirtualRegister(RC);
6475 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6476 if (BitSize <= 32)
6477 // XILF with the upper BitSize bits set.
6478 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6479 .addReg(Tmp).addImm(-1U << (32 - BitSize));
6480 else {
6481 // Use LCGR and add -1 to the result, which is more compact than
6482 // an XILF, XILH pair.
6483 unsigned Tmp2 = MRI.createVirtualRegister(RC);
6484 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6485 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6486 .addReg(Tmp2).addImm(-1);
6487 }
6488 } else if (BinOpcode)
6489 // A simply binary operation.
6490 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6491 .addReg(RotatedOldVal)
6492 .add(Src2);
6493 else if (IsSubWord)
6494 // Use RISBG to rotate Src2 into position and use it to replace the
6495 // field in RotatedOldVal.
6496 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6497 .addReg(RotatedOldVal).addReg(Src2.getReg())
6498 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6499 if (IsSubWord)
6500 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6501 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6502 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6503 .addReg(OldVal)
6504 .addReg(NewVal)
6505 .add(Base)
6506 .addImm(Disp);
6507 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6508 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6509 MBB->addSuccessor(LoopMBB);
6510 MBB->addSuccessor(DoneMBB);
6511
6512 MI.eraseFromParent();
6513 return DoneMBB;
6514}
6515
6516// Implement EmitInstrWithCustomInserter for pseudo
6517// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
6518// instruction that should be used to compare the current field with the
6519// minimum or maximum value. KeepOldMask is the BRC condition-code mask
6520// for when the current field should be kept. BitSize is the width of
6521// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6522MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6523 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6524 unsigned KeepOldMask, unsigned BitSize) const {
6525 MachineFunction &MF = *MBB->getParent();
6526 const SystemZInstrInfo *TII =
6527 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6528 MachineRegisterInfo &MRI = MF.getRegInfo();
6529 bool IsSubWord = (BitSize < 32);
6530
6531 // Extract the operands. Base can be a register or a frame index.
6532 unsigned Dest = MI.getOperand(0).getReg();
6533 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6534 int64_t Disp = MI.getOperand(2).getImm();
6535 unsigned Src2 = MI.getOperand(3).getReg();
6536 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6537 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6538 DebugLoc DL = MI.getDebugLoc();
6539 if (IsSubWord)
6540 BitSize = MI.getOperand(6).getImm();
6541
6542 // Subword operations use 32-bit registers.
6543 const TargetRegisterClass *RC = (BitSize <= 32 ?
6544 &SystemZ::GR32BitRegClass :
6545 &SystemZ::GR64BitRegClass);
6546 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6547 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6548
6549 // Get the right opcodes for the displacement.
6550 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6551 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6552 assert(LOpcode && CSOpcode && "Displacement out of range")((LOpcode && CSOpcode && "Displacement out of range"
) ? static_cast<void> (0) : __assert_fail ("LOpcode && CSOpcode && \"Displacement out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 6552, __PRETTY_FUNCTION__))
;
6553
6554 // Create virtual registers for temporary results.
6555 unsigned OrigVal = MRI.createVirtualRegister(RC);
6556 unsigned OldVal = MRI.createVirtualRegister(RC);
6557 unsigned NewVal = MRI.createVirtualRegister(RC);
6558 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6559 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6560 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6561
6562 // Insert 3 basic blocks for the loop.
6563 MachineBasicBlock *StartMBB = MBB;
6564 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6565 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6566 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6567 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6568
6569 // StartMBB:
6570 // ...
6571 // %OrigVal = L Disp(%Base)
6572 // # fall through to LoopMMB
6573 MBB = StartMBB;
6574 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6575 MBB->addSuccessor(LoopMBB);
6576
6577 // LoopMBB:
6578 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6579 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6580 // CompareOpcode %RotatedOldVal, %Src2
6581 // BRC KeepOldMask, UpdateMBB
6582 MBB = LoopMBB;
6583 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6584 .addReg(OrigVal).addMBB(StartMBB)
6585 .addReg(Dest).addMBB(UpdateMBB);
6586 if (IsSubWord)
6587 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6588 .addReg(OldVal).addReg(BitShift).addImm(0);
6589 BuildMI(MBB, DL, TII->get(CompareOpcode))
6590 .addReg(RotatedOldVal).addReg(Src2);
6591 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6592 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6593 MBB->addSuccessor(UpdateMBB);
6594 MBB->addSuccessor(UseAltMBB);
6595
6596 // UseAltMBB:
6597 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6598 // # fall through to UpdateMMB
6599 MBB = UseAltMBB;
6600 if (IsSubWord)
6601 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6602 .addReg(RotatedOldVal).addReg(Src2)
6603 .addImm(32).addImm(31 + BitSize).addImm(0);
6604 MBB->addSuccessor(UpdateMBB);
6605
6606 // UpdateMBB:
6607 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6608 // [ %RotatedAltVal, UseAltMBB ]
6609 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6610 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6611 // JNE LoopMBB
6612 // # fall through to DoneMMB
6613 MBB = UpdateMBB;
6614 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6615 .addReg(RotatedOldVal).addMBB(LoopMBB)
6616 .addReg(RotatedAltVal).addMBB(UseAltMBB);
6617 if (IsSubWord)
6618 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6619 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6620 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6621 .addReg(OldVal)
6622 .addReg(NewVal)
6623 .add(Base)
6624 .addImm(Disp);
6625 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6626 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6627 MBB->addSuccessor(LoopMBB);
6628 MBB->addSuccessor(DoneMBB);
6629
6630 MI.eraseFromParent();
6631 return DoneMBB;
6632}
6633
6634// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6635// instruction MI.
6636MachineBasicBlock *
6637SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6638 MachineBasicBlock *MBB) const {
6639
6640 MachineFunction &MF = *MBB->getParent();
6641 const SystemZInstrInfo *TII =
6642 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6643 MachineRegisterInfo &MRI = MF.getRegInfo();
6644
6645 // Extract the operands. Base can be a register or a frame index.
6646 unsigned Dest = MI.getOperand(0).getReg();
6647 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6648 int64_t Disp = MI.getOperand(2).getImm();
6649 unsigned OrigCmpVal = MI.getOperand(3).getReg();
6650 unsigned OrigSwapVal = MI.getOperand(4).getReg();
6651 unsigned BitShift = MI.getOperand(5).getReg();
6652 unsigned NegBitShift = MI.getOperand(6).getReg();
6653 int64_t BitSize = MI.getOperand(7).getImm();
6654 DebugLoc DL = MI.getDebugLoc();
6655
6656 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6657
6658 // Get the right opcodes for the displacement.
6659 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
6660 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6661 assert(LOpcode && CSOpcode && "Displacement out of range")((LOpcode && CSOpcode && "Displacement out of range"
) ? static_cast<void> (0) : __assert_fail ("LOpcode && CSOpcode && \"Displacement out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 6661, __PRETTY_FUNCTION__))
;
6662
6663 // Create virtual registers for temporary results.
6664 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
6665 unsigned OldVal = MRI.createVirtualRegister(RC);
6666 unsigned CmpVal = MRI.createVirtualRegister(RC);
6667 unsigned SwapVal = MRI.createVirtualRegister(RC);
6668 unsigned StoreVal = MRI.createVirtualRegister(RC);
6669 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
6670 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
6671 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6672
6673 // Insert 2 basic blocks for the loop.
6674 MachineBasicBlock *StartMBB = MBB;
6675 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6676 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6677 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
6678
6679 // StartMBB:
6680 // ...
6681 // %OrigOldVal = L Disp(%Base)
6682 // # fall through to LoopMMB
6683 MBB = StartMBB;
6684 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6685 .add(Base)
6686 .addImm(Disp)
6687 .addReg(0);
6688 MBB->addSuccessor(LoopMBB);
6689
6690 // LoopMBB:
6691 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6692 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6693 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6694 // %Dest = RLL %OldVal, BitSize(%BitShift)
6695 // ^^ The low BitSize bits contain the field
6696 // of interest.
6697 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6698 // ^^ Replace the upper 32-BitSize bits of the
6699 // comparison value with those that we loaded,
6700 // so that we can use a full word comparison.
6701 // CR %Dest, %RetryCmpVal
6702 // JNE DoneMBB
6703 // # Fall through to SetMBB
6704 MBB = LoopMBB;
6705 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6706 .addReg(OrigOldVal).addMBB(StartMBB)
6707 .addReg(RetryOldVal).addMBB(SetMBB);
6708 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6709 .addReg(OrigCmpVal).addMBB(StartMBB)
6710 .addReg(RetryCmpVal).addMBB(SetMBB);
6711 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6712 .addReg(OrigSwapVal).addMBB(StartMBB)
6713 .addReg(RetrySwapVal).addMBB(SetMBB);
6714 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6715 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6716 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6717 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6718 BuildMI(MBB, DL, TII->get(SystemZ::CR))
6719 .addReg(Dest).addReg(RetryCmpVal);
6720 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6721 .addImm(SystemZ::CCMASK_ICMP)
6722 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6723 MBB->addSuccessor(DoneMBB);
6724 MBB->addSuccessor(SetMBB);
6725
6726 // SetMBB:
6727 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6728 // ^^ Replace the upper 32-BitSize bits of the new
6729 // value with those that we loaded.
6730 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6731 // ^^ Rotate the new field to its proper position.
6732 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6733 // JNE LoopMBB
6734 // # fall through to ExitMMB
6735 MBB = SetMBB;
6736 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6737 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6738 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6739 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6740 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6741 .addReg(OldVal)
6742 .addReg(StoreVal)
6743 .add(Base)
6744 .addImm(Disp);
6745 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6746 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6747 MBB->addSuccessor(LoopMBB);
6748 MBB->addSuccessor(DoneMBB);
6749
6750 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6751 // to the block after the loop. At this point, CC may have been defined
6752 // either by the CR in LoopMBB or by the CS in SetMBB.
6753 if (!MI.registerDefIsDead(SystemZ::CC))
6754 DoneMBB->addLiveIn(SystemZ::CC);
6755
6756 MI.eraseFromParent();
6757 return DoneMBB;
6758}
6759
6760// Emit a move from two GR64s to a GR128.
6761MachineBasicBlock *
6762SystemZTargetLowering::emitPair128(MachineInstr &MI,
6763 MachineBasicBlock *MBB) const {
6764 MachineFunction &MF = *MBB->getParent();
6765 const SystemZInstrInfo *TII =
6766 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6767 MachineRegisterInfo &MRI = MF.getRegInfo();
6768 DebugLoc DL = MI.getDebugLoc();
6769
6770 unsigned Dest = MI.getOperand(0).getReg();
6771 unsigned Hi = MI.getOperand(1).getReg();
6772 unsigned Lo = MI.getOperand(2).getReg();
6773 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6774 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6775
6776 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6777 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6778 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6779 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6780 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6781
6782 MI.eraseFromParent();
6783 return MBB;
6784}
6785
6786// Emit an extension from a GR64 to a GR128. ClearEven is true
6787// if the high register of the GR128 value must be cleared or false if
6788// it's "don't care".
6789MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6790 MachineBasicBlock *MBB,
6791 bool ClearEven) const {
6792 MachineFunction &MF = *MBB->getParent();
6793 const SystemZInstrInfo *TII =
6794 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6795 MachineRegisterInfo &MRI = MF.getRegInfo();
6796 DebugLoc DL = MI.getDebugLoc();
6797
6798 unsigned Dest = MI.getOperand(0).getReg();
6799 unsigned Src = MI.getOperand(1).getReg();
6800 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6801
6802 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6803 if (ClearEven) {
6804 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6805 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6806
6807 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6808 .addImm(0);
6809 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6810 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6811 In128 = NewIn128;
6812 }
6813 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6814 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6815
6816 MI.eraseFromParent();
6817 return MBB;
6818}
6819
6820MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6821 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6822 MachineFunction &MF = *MBB->getParent();
6823 const SystemZInstrInfo *TII =
6824 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6825 MachineRegisterInfo &MRI = MF.getRegInfo();
6826 DebugLoc DL = MI.getDebugLoc();
6827
6828 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6829 uint64_t DestDisp = MI.getOperand(1).getImm();
6830 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6831 uint64_t SrcDisp = MI.getOperand(3).getImm();
6832 uint64_t Length = MI.getOperand(4).getImm();
6833
6834 // When generating more than one CLC, all but the last will need to
6835 // branch to the end when a difference is found.
6836 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6837 splitBlockAfter(MI, MBB) : nullptr);
6838
6839 // Check for the loop form, in which operand 5 is the trip count.
6840 if (MI.getNumExplicitOperands() > 5) {
6841 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6842
6843 uint64_t StartCountReg = MI.getOperand(5).getReg();
6844 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
6845 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
6846 forceReg(MI, DestBase, TII));
6847
6848 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6849 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
6850 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6851 MRI.createVirtualRegister(RC));
6852 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
6853 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6854 MRI.createVirtualRegister(RC));
6855
6856 RC = &SystemZ::GR64BitRegClass;
6857 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6858 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6859
6860 MachineBasicBlock *StartMBB = MBB;
6861 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6862 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6863 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6864
6865 // StartMBB:
6866 // # fall through to LoopMMB
6867 MBB->addSuccessor(LoopMBB);
6868
6869 // LoopMBB:
6870 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6871 // [ %NextDestReg, NextMBB ]
6872 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6873 // [ %NextSrcReg, NextMBB ]
6874 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6875 // [ %NextCountReg, NextMBB ]
6876 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
6877 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6878 // ( JLH EndMBB )
6879 //
6880 // The prefetch is used only for MVC. The JLH is used only for CLC.
6881 MBB = LoopMBB;
6882
6883 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6884 .addReg(StartDestReg).addMBB(StartMBB)
6885 .addReg(NextDestReg).addMBB(NextMBB);
6886 if (!HaveSingleBase)
6887 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6888 .addReg(StartSrcReg).addMBB(StartMBB)
6889 .addReg(NextSrcReg).addMBB(NextMBB);
6890 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6891 .addReg(StartCountReg).addMBB(StartMBB)
6892 .addReg(NextCountReg).addMBB(NextMBB);
6893 if (Opcode == SystemZ::MVC)
6894 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6895 .addImm(SystemZ::PFD_WRITE)
6896 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6897 BuildMI(MBB, DL, TII->get(Opcode))
6898 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6899 .addReg(ThisSrcReg).addImm(SrcDisp);
6900 if (EndMBB) {
6901 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6902 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6903 .addMBB(EndMBB);
6904 MBB->addSuccessor(EndMBB);
6905 MBB->addSuccessor(NextMBB);
6906 }
6907
6908 // NextMBB:
6909 // %NextDestReg = LA 256(%ThisDestReg)
6910 // %NextSrcReg = LA 256(%ThisSrcReg)
6911 // %NextCountReg = AGHI %ThisCountReg, -1
6912 // CGHI %NextCountReg, 0
6913 // JLH LoopMBB
6914 // # fall through to DoneMMB
6915 //
6916 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6917 MBB = NextMBB;
6918
6919 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6920 .addReg(ThisDestReg).addImm(256).addReg(0);
6921 if (!HaveSingleBase)
6922 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6923 .addReg(ThisSrcReg).addImm(256).addReg(0);
6924 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6925 .addReg(ThisCountReg).addImm(-1);
6926 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6927 .addReg(NextCountReg).addImm(0);
6928 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6929 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6930 .addMBB(LoopMBB);
6931 MBB->addSuccessor(LoopMBB);
6932 MBB->addSuccessor(DoneMBB);
6933
6934 DestBase = MachineOperand::CreateReg(NextDestReg, false);
6935 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6936 Length &= 255;
6937 if (EndMBB && !Length)
6938 // If the loop handled the whole CLC range, DoneMBB will be empty with
6939 // CC live-through into EndMBB, so add it as live-in.
6940 DoneMBB->addLiveIn(SystemZ::CC);
6941 MBB = DoneMBB;
6942 }
6943 // Handle any remaining bytes with straight-line code.
6944 while (Length > 0) {
6945 uint64_t ThisLength = std::min(Length, uint64_t(256));
6946 // The previous iteration might have created out-of-range displacements.
6947 // Apply them using LAY if so.
6948 if (!isUInt<12>(DestDisp)) {
6949 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6950 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6951 .add(DestBase)
6952 .addImm(DestDisp)
6953 .addReg(0);
6954 DestBase = MachineOperand::CreateReg(Reg, false);
6955 DestDisp = 0;
6956 }
6957 if (!isUInt<12>(SrcDisp)) {
6958 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6959 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6960 .add(SrcBase)
6961 .addImm(SrcDisp)
6962 .addReg(0);
6963 SrcBase = MachineOperand::CreateReg(Reg, false);
6964 SrcDisp = 0;
6965 }
6966 BuildMI(*MBB, MI, DL, TII->get(Opcode))
6967 .add(DestBase)
6968 .addImm(DestDisp)
6969 .addImm(ThisLength)
6970 .add(SrcBase)
6971 .addImm(SrcDisp)
6972 .setMemRefs(MI.memoperands());
6973 DestDisp += ThisLength;
6974 SrcDisp += ThisLength;
6975 Length -= ThisLength;
6976 // If there's another CLC to go, branch to the end if a difference
6977 // was found.
6978 if (EndMBB && Length > 0) {
6979 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6980 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6981 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6982 .addMBB(EndMBB);
6983 MBB->addSuccessor(EndMBB);
6984 MBB->addSuccessor(NextMBB);
6985 MBB = NextMBB;
6986 }
6987 }
6988 if (EndMBB) {
6989 MBB->addSuccessor(EndMBB);
6990 MBB = EndMBB;
6991 MBB->addLiveIn(SystemZ::CC);
6992 }
6993
6994 MI.eraseFromParent();
6995 return MBB;
6996}
6997
6998// Decompose string pseudo-instruction MI into a loop that continually performs
6999// Opcode until CC != 3.
7000MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7001 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7002 MachineFunction &MF = *MBB->getParent();
7003 const SystemZInstrInfo *TII =
7004 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7005 MachineRegisterInfo &MRI = MF.getRegInfo();
7006 DebugLoc DL = MI.getDebugLoc();
7007
7008 uint64_t End1Reg = MI.getOperand(0).getReg();
7009 uint64_t Start1Reg = MI.getOperand(1).getReg();
7010 uint64_t Start2Reg = MI.getOperand(2).getReg();
7011 uint64_t CharReg = MI.getOperand(3).getReg();
7012
7013 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7014 uint64_t This1Reg = MRI.createVirtualRegister(RC);
7015 uint64_t This2Reg = MRI.createVirtualRegister(RC);
7016 uint64_t End2Reg = MRI.createVirtualRegister(RC);
7017
7018 MachineBasicBlock *StartMBB = MBB;
7019 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7020 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7021
7022 // StartMBB:
7023 // # fall through to LoopMMB
7024 MBB->addSuccessor(LoopMBB);
7025
7026 // LoopMBB:
7027 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7028 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7029 // R0L = %CharReg
7030 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7031 // JO LoopMBB
7032 // # fall through to DoneMMB
7033 //
7034 // The load of R0L can be hoisted by post-RA LICM.
7035 MBB = LoopMBB;
7036
7037 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7038 .addReg(Start1Reg).addMBB(StartMBB)
7039 .addReg(End1Reg).addMBB(LoopMBB);
7040 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7041 .addReg(Start2Reg).addMBB(StartMBB)
7042 .addReg(End2Reg).addMBB(LoopMBB);
7043 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7044 BuildMI(MBB, DL, TII->get(Opcode))
7045 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7046 .addReg(This1Reg).addReg(This2Reg);
7047 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7048 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7049 MBB->addSuccessor(LoopMBB);
7050 MBB->addSuccessor(DoneMBB);
7051
7052 DoneMBB->addLiveIn(SystemZ::CC);
7053
7054 MI.eraseFromParent();
7055 return DoneMBB;
7056}
7057
7058// Update TBEGIN instruction with final opcode and register clobbers.
7059MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7060 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7061 bool NoFloat) const {
7062 MachineFunction &MF = *MBB->getParent();
7063 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7064 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7065
7066 // Update opcode.
7067 MI.setDesc(TII->get(Opcode));
7068
7069 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7070 // Make sure to add the corresponding GRSM bits if they are missing.
7071 uint64_t Control = MI.getOperand(2).getImm();
7072 static const unsigned GPRControlBit[16] = {
7073 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7074 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7075 };
7076 Control |= GPRControlBit[15];
7077 if (TFI->hasFP(MF))
7078 Control |= GPRControlBit[11];
7079 MI.getOperand(2).setImm(Control);
7080
7081 // Add GPR clobbers.
7082 for (int I = 0; I < 16; I++) {
7083 if ((Control & GPRControlBit[I]) == 0) {
7084 unsigned Reg = SystemZMC::GR64Regs[I];
7085 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7086 }
7087 }
7088
7089 // Add FPR/VR clobbers.
7090 if (!NoFloat && (Control & 4) != 0) {
7091 if (Subtarget.hasVector()) {
7092 for (int I = 0; I < 32; I++) {
7093 unsigned Reg = SystemZMC::VR128Regs[I];
7094 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7095 }
7096 } else {
7097 for (int I = 0; I < 16; I++) {
7098 unsigned Reg = SystemZMC::FP64Regs[I];
7099 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7100 }
7101 }
7102 }
7103
7104 return MBB;
7105}
7106
7107MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7108 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7109 MachineFunction &MF = *MBB->getParent();
7110 MachineRegisterInfo *MRI = &MF.getRegInfo();
7111 const SystemZInstrInfo *TII =
7112 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7113 DebugLoc DL = MI.getDebugLoc();
7114
7115 unsigned SrcReg = MI.getOperand(0).getReg();
7116
7117 // Create new virtual register of the same class as source.
7118 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7119 unsigned DstReg = MRI->createVirtualRegister(RC);
7120
7121 // Replace pseudo with a normal load-and-test that models the def as
7122 // well.
7123 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7124 .addReg(SrcReg);
7125 MI.eraseFromParent();
7126
7127 return MBB;
7128}
7129
7130MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7131 MachineInstr &MI, MachineBasicBlock *MBB) const {
7132 switch (MI.getOpcode()) {
7133 case SystemZ::Select32:
7134 case SystemZ::Select64:
7135 case SystemZ::SelectF32:
7136 case SystemZ::SelectF64:
7137 case SystemZ::SelectF128:
7138 case SystemZ::SelectVR32:
7139 case SystemZ::SelectVR64:
7140 case SystemZ::SelectVR128:
7141 return emitSelect(MI, MBB);
7142
7143 case SystemZ::CondStore8Mux:
7144 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7145 case SystemZ::CondStore8MuxInv:
7146 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7147 case SystemZ::CondStore16Mux:
7148 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7149 case SystemZ::CondStore16MuxInv:
7150 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7151 case SystemZ::CondStore32Mux:
7152 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7153 case SystemZ::CondStore32MuxInv:
7154 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7155 case SystemZ::CondStore8:
7156 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7157 case SystemZ::CondStore8Inv:
7158 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7159 case SystemZ::CondStore16:
7160 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7161 case SystemZ::CondStore16Inv:
7162 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7163 case SystemZ::CondStore32:
7164 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7165 case SystemZ::CondStore32Inv:
7166 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7167 case SystemZ::CondStore64:
7168 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7169 case SystemZ::CondStore64Inv:
7170 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7171 case SystemZ::CondStoreF32:
7172 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7173 case SystemZ::CondStoreF32Inv:
7174 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7175 case SystemZ::CondStoreF64:
7176 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7177 case SystemZ::CondStoreF64Inv:
7178 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7179
7180 case SystemZ::PAIR128:
7181 return emitPair128(MI, MBB);
7182 case SystemZ::AEXT128:
7183 return emitExt128(MI, MBB, false);
7184 case SystemZ::ZEXT128:
7185 return emitExt128(MI, MBB, true);
7186
7187 case SystemZ::ATOMIC_SWAPW:
7188 return emitAtomicLoadBinary(MI, MBB, 0, 0);
7189 case SystemZ::ATOMIC_SWAP_32:
7190 return emitAtomicLoadBinary(MI, MBB, 0, 32);
7191 case SystemZ::ATOMIC_SWAP_64:
7192 return emitAtomicLoadBinary(MI, MBB, 0, 64);
7193
7194 case SystemZ::ATOMIC_LOADW_AR:
7195 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7196 case SystemZ::ATOMIC_LOADW_AFI:
7197 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7198 case SystemZ::ATOMIC_LOAD_AR:
7199 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7200 case SystemZ::ATOMIC_LOAD_AHI:
7201 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7202 case SystemZ::ATOMIC_LOAD_AFI:
7203 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7204 case SystemZ::ATOMIC_LOAD_AGR:
7205 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7206 case SystemZ::ATOMIC_LOAD_AGHI:
7207 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7208 case SystemZ::ATOMIC_LOAD_AGFI:
7209 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7210
7211 case SystemZ::ATOMIC_LOADW_SR:
7212 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7213 case SystemZ::ATOMIC_LOAD_SR:
7214 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7215 case SystemZ::ATOMIC_LOAD_SGR:
7216 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7217
7218 case SystemZ::ATOMIC_LOADW_NR:
7219 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7220 case SystemZ::ATOMIC_LOADW_NILH:
7221 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7222 case SystemZ::ATOMIC_LOAD_NR:
7223 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7224 case SystemZ::ATOMIC_LOAD_NILL:
7225 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7226 case SystemZ::ATOMIC_LOAD_NILH:
7227 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7228 case SystemZ::ATOMIC_LOAD_NILF:
7229 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7230 case SystemZ::ATOMIC_LOAD_NGR:
7231 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7232 case SystemZ::ATOMIC_LOAD_NILL64:
7233 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7234 case SystemZ::ATOMIC_LOAD_NILH64:
7235 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7236 case SystemZ::ATOMIC_LOAD_NIHL64:
7237 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7238 case SystemZ::ATOMIC_LOAD_NIHH64:
7239 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7240 case SystemZ::ATOMIC_LOAD_NILF64:
7241 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7242 case SystemZ::ATOMIC_LOAD_NIHF64:
7243 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7244
7245 case SystemZ::ATOMIC_LOADW_OR:
7246 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7247 case SystemZ::ATOMIC_LOADW_OILH:
7248 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7249 case SystemZ::ATOMIC_LOAD_OR:
7250 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7251 case SystemZ::ATOMIC_LOAD_OILL:
7252 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7253 case SystemZ::ATOMIC_LOAD_OILH:
7254 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7255 case SystemZ::ATOMIC_LOAD_OILF:
7256 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7257 case SystemZ::ATOMIC_LOAD_OGR:
7258 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7259 case SystemZ::ATOMIC_LOAD_OILL64:
7260 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7261 case SystemZ::ATOMIC_LOAD_OILH64:
7262 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7263 case SystemZ::ATOMIC_LOAD_OIHL64:
7264 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7265 case SystemZ::ATOMIC_LOAD_OIHH64:
7266 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7267 case SystemZ::ATOMIC_LOAD_OILF64:
7268 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7269 case SystemZ::ATOMIC_LOAD_OIHF64:
7270 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7271
7272 case SystemZ::ATOMIC_LOADW_XR:
7273 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7274 case SystemZ::ATOMIC_LOADW_XILF:
7275 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7276 case SystemZ::ATOMIC_LOAD_XR:
7277 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7278 case SystemZ::ATOMIC_LOAD_XILF:
7279 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7280 case SystemZ::ATOMIC_LOAD_XGR:
7281 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7282 case SystemZ::ATOMIC_LOAD_XILF64:
7283 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7284 case SystemZ::ATOMIC_LOAD_XIHF64:
7285 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7286
7287 case SystemZ::ATOMIC_LOADW_NRi:
7288 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7289 case SystemZ::ATOMIC_LOADW_NILHi:
7290 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7291 case SystemZ::ATOMIC_LOAD_NRi:
7292 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7293 case SystemZ::ATOMIC_LOAD_NILLi:
7294 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7295 case SystemZ::ATOMIC_LOAD_NILHi:
7296 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7297 case SystemZ::ATOMIC_LOAD_NILFi:
7298 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7299 case SystemZ::ATOMIC_LOAD_NGRi:
7300 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7301 case SystemZ::ATOMIC_LOAD_NILL64i:
7302 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7303 case SystemZ::ATOMIC_LOAD_NILH64i:
7304 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7305 case SystemZ::ATOMIC_LOAD_NIHL64i:
7306 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7307 case SystemZ::ATOMIC_LOAD_NIHH64i:
7308 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7309 case SystemZ::ATOMIC_LOAD_NILF64i:
7310 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7311 case SystemZ::ATOMIC_LOAD_NIHF64i:
7312 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7313
7314 case SystemZ::ATOMIC_LOADW_MIN:
7315 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7316 SystemZ::CCMASK_CMP_LE, 0);
7317 case SystemZ::ATOMIC_LOAD_MIN_32:
7318 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7319 SystemZ::CCMASK_CMP_LE, 32);
7320 case SystemZ::ATOMIC_LOAD_MIN_64:
7321 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7322 SystemZ::CCMASK_CMP_LE, 64);
7323
7324 case SystemZ::ATOMIC_LOADW_MAX:
7325 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7326 SystemZ::CCMASK_CMP_GE, 0);
7327 case SystemZ::ATOMIC_LOAD_MAX_32:
7328 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7329 SystemZ::CCMASK_CMP_GE, 32);
7330 case SystemZ::ATOMIC_LOAD_MAX_64:
7331 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7332 SystemZ::CCMASK_CMP_GE, 64);
7333
7334 case SystemZ::ATOMIC_LOADW_UMIN:
7335 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7336 SystemZ::CCMASK_CMP_LE, 0);
7337 case SystemZ::ATOMIC_LOAD_UMIN_32:
7338 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7339 SystemZ::CCMASK_CMP_LE, 32);
7340 case SystemZ::ATOMIC_LOAD_UMIN_64:
7341 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7342 SystemZ::CCMASK_CMP_LE, 64);
7343
7344 case SystemZ::ATOMIC_LOADW_UMAX:
7345 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7346 SystemZ::CCMASK_CMP_GE, 0);
7347 case SystemZ::ATOMIC_LOAD_UMAX_32:
7348 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7349 SystemZ::CCMASK_CMP_GE, 32);
7350 case SystemZ::ATOMIC_LOAD_UMAX_64:
7351 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7352 SystemZ::CCMASK_CMP_GE, 64);
7353
7354 case SystemZ::ATOMIC_CMP_SWAPW:
7355 return emitAtomicCmpSwapW(MI, MBB);
7356 case SystemZ::MVCSequence:
7357 case SystemZ::MVCLoop:
7358 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7359 case SystemZ::NCSequence:
7360 case SystemZ::NCLoop:
7361 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7362 case SystemZ::OCSequence:
7363 case SystemZ::OCLoop:
7364 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7365 case SystemZ::XCSequence:
7366 case SystemZ::XCLoop:
7367 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7368 case SystemZ::CLCSequence:
7369 case SystemZ::CLCLoop:
7370 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7371 case SystemZ::CLSTLoop:
7372 return emitStringWrapper(MI, MBB, SystemZ::CLST);
7373 case SystemZ::MVSTLoop:
7374 return emitStringWrapper(MI, MBB, SystemZ::MVST);
7375 case SystemZ::SRSTLoop:
7376 return emitStringWrapper(MI, MBB, SystemZ::SRST);
7377 case SystemZ::TBEGIN:
7378 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7379 case SystemZ::TBEGIN_nofloat:
7380 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7381 case SystemZ::TBEGINC:
7382 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7383 case SystemZ::LTEBRCompare_VecPseudo:
7384 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7385 case SystemZ::LTDBRCompare_VecPseudo:
7386 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7387 case SystemZ::LTXBRCompare_VecPseudo:
7388 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7389
7390 case TargetOpcode::STACKMAP:
7391 case TargetOpcode::PATCHPOINT:
7392 return emitPatchPoint(MI, MBB);
7393
7394 default:
7395 llvm_unreachable("Unexpected instr type to insert")::llvm::llvm_unreachable_internal("Unexpected instr type to insert"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/Target/SystemZ/SystemZISelLowering.cpp"
, 7395)
;
7396 }
7397}
7398
7399// This is only used by the isel schedulers, and is needed only to prevent
7400// compiler from crashing when list-ilp is used.
7401const TargetRegisterClass *
7402SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7403 if (VT == MVT::Untyped)
7404 return &SystemZ::ADDR128BitRegClass;
7405 return TargetLowering::getRepRegClassFor(VT);
7406}

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some functions that are useful for math stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MATHEXTRAS_H
15#define LLVM_SUPPORT_MATHEXTRAS_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/SwapByteOrder.h"
19#include <algorithm>
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <limits>
24#include <type_traits>
25
26#ifdef __ANDROID_NDK__
27#include <android/api-level.h>
28#endif
29
30#ifdef _MSC_VER
31// Declare these intrinsics manually rather including intrin.h. It's very
32// expensive, and MathExtras.h is popular.
33// #include <intrin.h>
34extern "C" {
35unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
36unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
37unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
38unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
39}
40#endif
41
42namespace llvm {
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53namespace detail {
54template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
55 static std::size_t count(T Val, ZeroBehavior) {
56 if (!Val)
57 return std::numeric_limits<T>::digits;
58 if (Val & 0x1)
59 return 0;
60
61 // Bisection method.
62 std::size_t ZeroBits = 0;
63 T Shift = std::numeric_limits<T>::digits >> 1;
64 T Mask = std::numeric_limits<T>::max() >> Shift;
65 while (Shift) {
66 if ((Val & Mask) == 0) {
67 Val >>= Shift;
68 ZeroBits |= Shift;
69 }
70 Shift >>= 1;
71 Mask >>= Shift;
72 }
73 return ZeroBits;
74 }
75};
76
77#if __GNUC__4 >= 4 || defined(_MSC_VER)
78template <typename T> struct TrailingZerosCounter<T, 4> {
79 static std::size_t count(T Val, ZeroBehavior ZB) {
80 if (ZB != ZB_Undefined && Val == 0)
81 return 32;
82
83#if __has_builtin(__builtin_ctz)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
84 return __builtin_ctz(Val);
85#elif defined(_MSC_VER)
86 unsigned long Index;
87 _BitScanForward(&Index, Val);
88 return Index;
89#endif
90 }
91};
92
93#if !defined(_MSC_VER) || defined(_M_X64)
94template <typename T> struct TrailingZerosCounter<T, 8> {
95 static std::size_t count(T Val, ZeroBehavior ZB) {
96 if (ZB != ZB_Undefined && Val == 0)
97 return 64;
98
99#if __has_builtin(__builtin_ctzll)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
100 return __builtin_ctzll(Val);
101#elif defined(_MSC_VER)
102 unsigned long Index;
103 _BitScanForward64(&Index, Val);
104 return Index;
105#endif
106 }
107};
108#endif
109#endif
110} // namespace detail
111
112/// Count number of 0's from the least significant bit to the most
113/// stopping at the first 1.
114///
115/// Only unsigned integral types are allowed.
116///
117/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
118/// valid arguments.
119template <typename T>
120std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
121 static_assert(std::numeric_limits<T>::is_integer &&
122 !std::numeric_limits<T>::is_signed,
123 "Only unsigned integral types are allowed.");
124 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
125}
126
127namespace detail {
128template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
129 static std::size_t count(T Val, ZeroBehavior) {
130 if (!Val)
131 return std::numeric_limits<T>::digits;
132
133 // Bisection method.
134 std::size_t ZeroBits = 0;
135 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
136 T Tmp = Val >> Shift;
137 if (Tmp)
138 Val = Tmp;
139 else
140 ZeroBits |= Shift;
141 }
142 return ZeroBits;
143 }
144};
145
146#if __GNUC__4 >= 4 || defined(_MSC_VER)
147template <typename T> struct LeadingZerosCounter<T, 4> {
148 static std::size_t count(T Val, ZeroBehavior ZB) {
149 if (ZB != ZB_Undefined && Val == 0)
150 return 32;
151
152#if __has_builtin(__builtin_clz)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
153 return __builtin_clz(Val);
154#elif defined(_MSC_VER)
155 unsigned long Index;
156 _BitScanReverse(&Index, Val);
157 return Index ^ 31;
158#endif
159 }
160};
161
162#if !defined(_MSC_VER) || defined(_M_X64)
163template <typename T> struct LeadingZerosCounter<T, 8> {
164 static std::size_t count(T Val, ZeroBehavior ZB) {
165 if (ZB != ZB_Undefined && Val == 0)
166 return 64;
167
168#if __has_builtin(__builtin_clzll)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
169 return __builtin_clzll(Val);
170#elif defined(_MSC_VER)
171 unsigned long Index;
172 _BitScanReverse64(&Index, Val);
173 return Index ^ 63;
174#endif
175 }
176};
177#endif
178#endif
179} // namespace detail
180
181/// Count number of 0's from the most significant bit to the least
182/// stopping at the first 1.
183///
184/// Only unsigned integral types are allowed.
185///
186/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
187/// valid arguments.
188template <typename T>
189std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
190 static_assert(std::numeric_limits<T>::is_integer &&
191 !std::numeric_limits<T>::is_signed,
192 "Only unsigned integral types are allowed.");
193 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
194}
195
196/// Get the index of the first set bit starting from the least
197/// significant bit.
198///
199/// Only unsigned integral types are allowed.
200///
201/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
202/// valid arguments.
203template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
204 if (ZB == ZB_Max && Val == 0)
10
Assuming 'Val' is equal to 0
11
Taking true branch
205 return std::numeric_limits<T>::max();
12
Calling 'numeric_limits::max'
14
Returning from 'numeric_limits::max'
15
Returning the value 18446744073709551615
206
207 return countTrailingZeros(Val, ZB_Undefined);
208}
209
210/// Create a bitmask with the N right-most bits set to 1, and all other
211/// bits set to 0. Only unsigned types are allowed.
212template <typename T> T maskTrailingOnes(unsigned N) {
213 static_assert(std::is_unsigned<T>::value, "Invalid type!");
214 const unsigned Bits = CHAR_BIT8 * sizeof(T);
215 assert(N <= Bits && "Invalid bit index")((N <= Bits && "Invalid bit index") ? static_cast<
void> (0) : __assert_fail ("N <= Bits && \"Invalid bit index\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 215, __PRETTY_FUNCTION__))
;
216 return N == 0 ? 0 : (T(-1) >> (Bits - N));
217}
218
219/// Create a bitmask with the N left-most bits set to 1, and all other
220/// bits set to 0. Only unsigned types are allowed.
221template <typename T> T maskLeadingOnes(unsigned N) {
222 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
223}
224
225/// Create a bitmask with the N right-most bits set to 0, and all other
226/// bits set to 1. Only unsigned types are allowed.
227template <typename T> T maskTrailingZeros(unsigned N) {
228 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
229}
230
231/// Create a bitmask with the N left-most bits set to 0, and all other
232/// bits set to 1. Only unsigned types are allowed.
233template <typename T> T maskLeadingZeros(unsigned N) {
234 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
235}
236
237/// Get the index of the last set bit starting from the least
238/// significant bit.
239///
240/// Only unsigned integral types are allowed.
241///
242/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
243/// valid arguments.
244template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
245 if (ZB == ZB_Max && Val == 0)
246 return std::numeric_limits<T>::max();
247
248 // Use ^ instead of - because both gcc and llvm can remove the associated ^
249 // in the __builtin_clz intrinsic on x86.
250 return countLeadingZeros(Val, ZB_Undefined) ^
251 (std::numeric_limits<T>::digits - 1);
252}
253
254/// Macro compressed bit reversal table for 256 bits.
255///
256/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
257static const unsigned char BitReverseTable256[256] = {
258#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
259#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
260#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
261 R6(0), R6(2), R6(1), R6(3)
262#undef R2
263#undef R4
264#undef R6
265};
266
267/// Reverse the bits in \p Val.
268template <typename T>
269T reverseBits(T Val) {
270 unsigned char in[sizeof(Val)];
271 unsigned char out[sizeof(Val)];
272 std::memcpy(in, &Val, sizeof(Val));
273 for (unsigned i = 0; i < sizeof(Val); ++i)
274 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
275 std::memcpy(&Val, out, sizeof(Val));
276 return Val;
277}
278
279// NOTE: The following support functions use the _32/_64 extensions instead of
280// type overloading so that signed and unsigned integers can be used without
281// ambiguity.
282
283/// Return the high 32 bits of a 64 bit value.
284constexpr inline uint32_t Hi_32(uint64_t Value) {
285 return static_cast<uint32_t>(Value >> 32);
286}
287
288/// Return the low 32 bits of a 64 bit value.
289constexpr inline uint32_t Lo_32(uint64_t Value) {
290 return static_cast<uint32_t>(Value);
291}
292
293/// Make a 64-bit integer from a high / low pair of 32-bit integers.
294constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
295 return ((uint64_t)High << 32) | (uint64_t)Low;
296}
297
298/// Checks if an integer fits into the given bit width.
299template <unsigned N> constexpr inline bool isInt(int64_t x) {
300 return N >= 64 || (-(INT64_C(1)1L<<(N-1)) <= x && x < (INT64_C(1)1L<<(N-1)));
301}
302// Template specializations to get better code for common cases.
303template <> constexpr inline bool isInt<8>(int64_t x) {
304 return static_cast<int8_t>(x) == x;
305}
306template <> constexpr inline bool isInt<16>(int64_t x) {
307 return static_cast<int16_t>(x) == x;
308}
309template <> constexpr inline bool isInt<32>(int64_t x) {
310 return static_cast<int32_t>(x) == x;
311}
312
313/// Checks if a signed integer is an N bit number shifted left by S.
314template <unsigned N, unsigned S>
315constexpr inline bool isShiftedInt(int64_t x) {
316 static_assert(
317 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
318 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
319 return isInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
320}
321
322/// Checks if an unsigned integer fits into the given bit width.
323///
324/// This is written as two functions rather than as simply
325///
326/// return N >= 64 || X < (UINT64_C(1) << N);
327///
328/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
329/// left too many places.
330template <unsigned N>
331constexpr inline typename std::enable_if<(N < 64), bool>::type
332isUInt(uint64_t X) {
333 static_assert(N > 0, "isUInt<0> doesn't make sense");
334 return X < (UINT64_C(1)1UL << (N));
335}
336template <unsigned N>
337constexpr inline typename std::enable_if<N >= 64, bool>::type
338isUInt(uint64_t X) {
339 return true;
340}
341
342// Template specializations to get better code for common cases.
343template <> constexpr inline bool isUInt<8>(uint64_t x) {
344 return static_cast<uint8_t>(x) == x;
345}
346template <> constexpr inline bool isUInt<16>(uint64_t x) {
347 return static_cast<uint16_t>(x) == x;
348}
349template <> constexpr inline bool isUInt<32>(uint64_t x) {
350 return static_cast<uint32_t>(x) == x;
351}
352
353/// Checks if a unsigned integer is an N bit number shifted left by S.
354template <unsigned N, unsigned S>
355constexpr inline bool isShiftedUInt(uint64_t x) {
356 static_assert(
357 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
358 static_assert(N + S <= 64,
359 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
360 // Per the two static_asserts above, S must be strictly less than 64. So
361 // 1 << S is not undefined behavior.
362 return isUInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
363}
364
365/// Gets the maximum value for a N-bit unsigned integer.
366inline uint64_t maxUIntN(uint64_t N) {
367 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 367, __PRETTY_FUNCTION__))
;
368
369 // uint64_t(1) << 64 is undefined behavior, so we can't do
370 // (uint64_t(1) << N) - 1
371 // without checking first that N != 64. But this works and doesn't have a
372 // branch.
373 return UINT64_MAX(18446744073709551615UL) >> (64 - N);
374}
375
376/// Gets the minimum value for a N-bit signed integer.
377inline int64_t minIntN(int64_t N) {
378 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 378, __PRETTY_FUNCTION__))
;
379
380 return -(UINT64_C(1)1UL<<(N-1));
381}
382
383/// Gets the maximum value for a N-bit signed integer.
384inline int64_t maxIntN(int64_t N) {
385 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 385, __PRETTY_FUNCTION__))
;
386
387 // This relies on two's complement wraparound when N == 64, so we convert to
388 // int64_t only at the very end to avoid UB.
389 return (UINT64_C(1)1UL << (N - 1)) - 1;
390}
391
392/// Checks if an unsigned integer fits into the given (dynamic) bit width.
393inline bool isUIntN(unsigned N, uint64_t x) {
394 return N >= 64 || x <= maxUIntN(N);
395}
396
397/// Checks if an signed integer fits into the given (dynamic) bit width.
398inline bool isIntN(unsigned N, int64_t x) {
399 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
400}
401
402/// Return true if the argument is a non-empty sequence of ones starting at the
403/// least significant bit with the remainder zero (32 bit version).
404/// Ex. isMask_32(0x0000FFFFU) == true.
405constexpr inline bool isMask_32(uint32_t Value) {
406 return Value && ((Value + 1) & Value) == 0;
407}
408
409/// Return true if the argument is a non-empty sequence of ones starting at the
410/// least significant bit with the remainder zero (64 bit version).
411constexpr inline bool isMask_64(uint64_t Value) {
412 return Value && ((Value + 1) & Value) == 0;
413}
414
415/// Return true if the argument contains a non-empty sequence of ones with the
416/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
417constexpr inline bool isShiftedMask_32(uint32_t Value) {
418 return Value && isMask_32((Value - 1) | Value);
419}
420
421/// Return true if the argument contains a non-empty sequence of ones with the
422/// remainder zero (64 bit version.)
423constexpr inline bool isShiftedMask_64(uint64_t Value) {
424 return Value && isMask_64((Value - 1) | Value);
425}
426
427/// Return true if the argument is a power of two > 0.
428/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
429constexpr inline bool isPowerOf2_32(uint32_t Value) {
430 return Value && !(Value & (Value - 1));
431}
432
433/// Return true if the argument is a power of two > 0 (64 bit edition.)
434constexpr inline bool isPowerOf2_64(uint64_t Value) {
435 return Value && !(Value & (Value - 1));
436}
437
438/// Return a byte-swapped representation of the 16-bit argument.
439inline uint16_t ByteSwap_16(uint16_t Value) {
440 return sys::SwapByteOrder_16(Value);
441}
442
443/// Return a byte-swapped representation of the 32-bit argument.
444inline uint32_t ByteSwap_32(uint32_t Value) {
445 return sys::SwapByteOrder_32(Value);
446}
447
448/// Return a byte-swapped representation of the 64-bit argument.
449inline uint64_t ByteSwap_64(uint64_t Value) {
450 return sys::SwapByteOrder_64(Value);
451}
452
453/// Count the number of ones from the most significant bit to the first
454/// zero bit.
455///
456/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
457/// Only unsigned integral types are allowed.
458///
459/// \param ZB the behavior on an input of all ones. Only ZB_Width and
460/// ZB_Undefined are valid arguments.
461template <typename T>
462std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
463 static_assert(std::numeric_limits<T>::is_integer &&
464 !std::numeric_limits<T>::is_signed,
465 "Only unsigned integral types are allowed.");
466 return countLeadingZeros<T>(~Value, ZB);
467}
468
469/// Count the number of ones from the least significant bit to the first
470/// zero bit.
471///
472/// Ex. countTrailingOnes(0x00FF00FF) == 8.
473/// Only unsigned integral types are allowed.
474///
475/// \param ZB the behavior on an input of all ones. Only ZB_Width and
476/// ZB_Undefined are valid arguments.
477template <typename T>
478std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
479 static_assert(std::numeric_limits<T>::is_integer &&
480 !std::numeric_limits<T>::is_signed,
481 "Only unsigned integral types are allowed.");
482 return countTrailingZeros<T>(~Value, ZB);
483}
484
485namespace detail {
486template <typename T, std::size_t SizeOfT> struct PopulationCounter {
487 static unsigned count(T Value) {
488 // Generic version, forward to 32 bits.
489 static_assert(SizeOfT <= 4, "Not implemented!");
490#if __GNUC__4 >= 4
491 return __builtin_popcount(Value);
492#else
493 uint32_t v = Value;
494 v = v - ((v >> 1) & 0x55555555);
495 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
496 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
497#endif
498 }
499};
500
501template <typename T> struct PopulationCounter<T, 8> {
502 static unsigned count(T Value) {
503#if __GNUC__4 >= 4
504 return __builtin_popcountll(Value);
505#else
506 uint64_t v = Value;
507 v = v - ((v >> 1) & 0x5555555555555555ULL);
508 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
509 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
510 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
511#endif
512 }
513};
514} // namespace detail
515
516/// Count the number of set bits in a value.
517/// Ex. countPopulation(0xF000F000) = 8
518/// Returns 0 if the word is zero.
519template <typename T>
520inline unsigned countPopulation(T Value) {
521 static_assert(std::numeric_limits<T>::is_integer &&
522 !std::numeric_limits<T>::is_signed,
523 "Only unsigned integral types are allowed.");
524 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
525}
526
527/// Return the log base 2 of the specified value.
528inline double Log2(double Value) {
529#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
530 return __builtin_log(Value) / __builtin_log(2.0);
531#else
532 return log2(Value);
533#endif
534}
535
536/// Return the floor log base 2 of the specified value, -1 if the value is zero.
537/// (32 bit edition.)
538/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
539inline unsigned Log2_32(uint32_t Value) {
540 return 31 - countLeadingZeros(Value);
541}
542
543/// Return the floor log base 2 of the specified value, -1 if the value is zero.
544/// (64 bit edition.)
545inline unsigned Log2_64(uint64_t Value) {
546 return 63 - countLeadingZeros(Value);
547}
548
549/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
550/// (32 bit edition).
551/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
552inline unsigned Log2_32_Ceil(uint32_t Value) {
553 return 32 - countLeadingZeros(Value - 1);
554}
555
556/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
557/// (64 bit edition.)
558inline unsigned Log2_64_Ceil(uint64_t Value) {
559 return 64 - countLeadingZeros(Value - 1);
560}
561
562/// Return the greatest common divisor of the values using Euclid's algorithm.
563inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
564 while (B) {
565 uint64_t T = B;
566 B = A % B;
567 A = T;
568 }
569 return A;
570}
571
572/// This function takes a 64-bit integer and returns the bit equivalent double.
573inline double BitsToDouble(uint64_t Bits) {
574 double D;
575 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
576 memcpy(&D, &Bits, sizeof(Bits));
577 return D;
578}
579
580/// This function takes a 32-bit integer and returns the bit equivalent float.
581inline float BitsToFloat(uint32_t Bits) {
582 float F;
583 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
584 memcpy(&F, &Bits, sizeof(Bits));
585 return F;
586}
587
588/// This function takes a double and returns the bit equivalent 64-bit integer.
589/// Note that copying doubles around changes the bits of NaNs on some hosts,
590/// notably x86, so this routine cannot be used if these bits are needed.
591inline uint64_t DoubleToBits(double Double) {
592 uint64_t Bits;
593 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
594 memcpy(&Bits, &Double, sizeof(Double));
595 return Bits;
596}
597
598/// This function takes a float and returns the bit equivalent 32-bit integer.
599/// Note that copying floats around changes the bits of NaNs on some hosts,
600/// notably x86, so this routine cannot be used if these bits are needed.
601inline uint32_t FloatToBits(float Float) {
602 uint32_t Bits;
603 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
604 memcpy(&Bits, &Float, sizeof(Float));
605 return Bits;
606}
607
608/// A and B are either alignments or offsets. Return the minimum alignment that
609/// may be assumed after adding the two together.
610constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
611 // The largest power of 2 that divides both A and B.
612 //
613 // Replace "-Value" by "1+~Value" in the following commented code to avoid
614 // MSVC warning C4146
615 // return (A | B) & -(A | B);
616 return (A | B) & (1 + ~(A | B));
617}
618
619/// Aligns \c Addr to \c Alignment bytes, rounding up.
620///
621/// Alignment should be a power of two. This method rounds up, so
622/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
623inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
624 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&((Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!") ? static_cast<void>
(0) : __assert_fail ("Alignment && isPowerOf2_64((uint64_t)Alignment) && \"Alignment is not a power of two!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 625, __PRETTY_FUNCTION__))
625 "Alignment is not a power of two!")((Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!") ? static_cast<void>
(0) : __assert_fail ("Alignment && isPowerOf2_64((uint64_t)Alignment) && \"Alignment is not a power of two!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 625, __PRETTY_FUNCTION__))
;
626
627 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr)(((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr) ? static_cast
<void> (0) : __assert_fail ("(uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 627, __PRETTY_FUNCTION__))
;
628
629 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
630}
631
632/// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
633/// bytes, rounding up.
634inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
635 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
636}
637
638/// Returns the next power of two (in 64-bits) that is strictly greater than A.
639/// Returns zero on overflow.
640inline uint64_t NextPowerOf2(uint64_t A) {
641 A |= (A >> 1);
642 A |= (A >> 2);
643 A |= (A >> 4);
644 A |= (A >> 8);
645 A |= (A >> 16);
646 A |= (A >> 32);
647 return A + 1;
648}
649
650/// Returns the power of two which is less than or equal to the given value.
651/// Essentially, it is a floor operation across the domain of powers of two.
652inline uint64_t PowerOf2Floor(uint64_t A) {
653 if (!A) return 0;
654 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
655}
656
657/// Returns the power of two which is greater than or equal to the given value.
658/// Essentially, it is a ceil operation across the domain of powers of two.
659inline uint64_t PowerOf2Ceil(uint64_t A) {
660 if (!A)
661 return 0;
662 return NextPowerOf2(A - 1);
663}
664
665/// Returns the next integer (mod 2**64) that is greater than or equal to
666/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
667///
668/// If non-zero \p Skew is specified, the return value will be a minimal
669/// integer that is greater than or equal to \p Value and equal to
670/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
671/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
672///
673/// Examples:
674/// \code
675/// alignTo(5, 8) = 8
676/// alignTo(17, 8) = 24
677/// alignTo(~0LL, 8) = 0
678/// alignTo(321, 255) = 510
679///
680/// alignTo(5, 8, 7) = 7
681/// alignTo(17, 8, 1) = 17
682/// alignTo(~0LL, 8, 3) = 3
683/// alignTo(321, 255, 42) = 552
684/// \endcode
685inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
686 assert(Align != 0u && "Align can't be 0.")((Align != 0u && "Align can't be 0.") ? static_cast<
void> (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 686, __PRETTY_FUNCTION__))
;
687 Skew %= Align;
688 return (Value + Align - 1 - Skew) / Align * Align + Skew;
689}
690
691/// Returns the next integer (mod 2**64) that is greater than or equal to
692/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
693template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
694 static_assert(Align != 0u, "Align must be non-zero");
695 return (Value + Align - 1) / Align * Align;
696}
697
698/// Returns the integer ceil(Numerator / Denominator).
699inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
700 return alignTo(Numerator, Denominator) / Denominator;
701}
702
703/// \c alignTo for contexts where a constant expression is required.
704/// \sa alignTo
705///
706/// \todo FIXME: remove when \c constexpr becomes really \c constexpr
707template <uint64_t Align>
708struct AlignTo {
709 static_assert(Align != 0u, "Align must be non-zero");
710 template <uint64_t Value>
711 struct from_value {
712 static const uint64_t value = (Value + Align - 1) / Align * Align;
713 };
714};
715
716/// Returns the largest uint64_t less than or equal to \p Value and is
717/// \p Skew mod \p Align. \p Align must be non-zero
718inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
719 assert(Align != 0u && "Align can't be 0.")((Align != 0u && "Align can't be 0.") ? static_cast<
void> (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 719, __PRETTY_FUNCTION__))
;
720 Skew %= Align;
721 return (Value - Skew) / Align * Align + Skew;
722}
723
724/// Returns the offset to the next integer (mod 2**64) that is greater than
725/// or equal to \p Value and is a multiple of \p Align. \p Align must be
726/// non-zero.
727inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
728 return alignTo(Value, Align) - Value;
729}
730
731/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
732/// Requires 0 < B <= 32.
733template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
734 static_assert(B > 0, "Bit width can't be 0.");
735 static_assert(B <= 32, "Bit width out of range.");
736 return int32_t(X << (32 - B)) >> (32 - B);
737}
738
739/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
740/// Requires 0 < B < 32.
741inline int32_t SignExtend32(uint32_t X, unsigned B) {
742 assert(B > 0 && "Bit width can't be 0.")((B > 0 && "Bit width can't be 0.") ? static_cast<
void> (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 742, __PRETTY_FUNCTION__))
;
743 assert(B <= 32 && "Bit width out of range.")((B <= 32 && "Bit width out of range.") ? static_cast
<void> (0) : __assert_fail ("B <= 32 && \"Bit width out of range.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 743, __PRETTY_FUNCTION__))
;
744 return int32_t(X << (32 - B)) >> (32 - B);
745}
746
747/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
748/// Requires 0 < B < 64.
749template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
750 static_assert(B > 0, "Bit width can't be 0.");
751 static_assert(B <= 64, "Bit width out of range.");
752 return int64_t(x << (64 - B)) >> (64 - B);
753}
754
755/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
756/// Requires 0 < B < 64.
757inline int64_t SignExtend64(uint64_t X, unsigned B) {
758 assert(B > 0 && "Bit width can't be 0.")((B > 0 && "Bit width can't be 0.") ? static_cast<
void> (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 758, __PRETTY_FUNCTION__))
;
759 assert(B <= 64 && "Bit width out of range.")((B <= 64 && "Bit width out of range.") ? static_cast
<void> (0) : __assert_fail ("B <= 64 && \"Bit width out of range.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/MathExtras.h"
, 759, __PRETTY_FUNCTION__))
;
760 return int64_t(X << (64 - B)) >> (64 - B);
761}
762
763/// Subtract two unsigned integers, X and Y, of type T and return the absolute
764/// value of the result.
765template <typename T>
766typename std::enable_if<std::is_unsigned<T>::value, T>::type
767AbsoluteDifference(T X, T Y) {
768 return std::max(X, Y) - std::min(X, Y);
769}
770
771/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
772/// maximum representable value of T on overflow. ResultOverflowed indicates if
773/// the result is larger than the maximum representable value of type T.
774template <typename T>
775typename std::enable_if<std::is_unsigned<T>::value, T>::type
776SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
777 bool Dummy;
778 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
779 // Hacker's Delight, p. 29
780 T Z = X + Y;
781 Overflowed = (Z < X || Z < Y);
782 if (Overflowed)
783 return std::numeric_limits<T>::max();
784 else
785 return Z;
786}
787
788/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
789/// maximum representable value of T on overflow. ResultOverflowed indicates if
790/// the result is larger than the maximum representable value of type T.
791template <typename T>
792typename std::enable_if<std::is_unsigned<T>::value, T>::type
793SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
794 bool Dummy;
795 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
796
797 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
798 // because it fails for uint16_t (where multiplication can have undefined
799 // behavior due to promotion to int), and requires a division in addition
800 // to the multiplication.
801
802 Overflowed = false;
803
804 // Log2(Z) would be either Log2Z or Log2Z + 1.
805 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
806 // will necessarily be less than Log2Max as desired.
807 int Log2Z = Log2_64(X) + Log2_64(Y);
808 const T Max = std::numeric_limits<T>::max();
809 int Log2Max = Log2_64(Max);
810 if (Log2Z < Log2Max) {
811 return X * Y;
812 }
813 if (Log2Z > Log2Max) {
814 Overflowed = true;
815 return Max;
816 }
817
818 // We're going to use the top bit, and maybe overflow one
819 // bit past it. Multiply all but the bottom bit then add
820 // that on at the end.
821 T Z = (X >> 1) * Y;
822 if (Z & ~(Max >> 1)) {
823 Overflowed = true;
824 return Max;
825 }
826 Z <<= 1;
827 if (X & 1)
828 return SaturatingAdd(Z, Y, ResultOverflowed);
829
830 return Z;
831}
832
833/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
834/// the product. Clamp the result to the maximum representable value of T on
835/// overflow. ResultOverflowed indicates if the result is larger than the
836/// maximum representable value of type T.
837template <typename T>
838typename std::enable_if<std::is_unsigned<T>::value, T>::type
839SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
840 bool Dummy;
841 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
842
843 T Product = SaturatingMultiply(X, Y, &Overflowed);
844 if (Overflowed)
845 return Product;
846
847 return SaturatingAdd(A, Product, &Overflowed);
848}
849
850/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
851extern const float huge_valf;
852} // End llvm namespace
853
854#endif

/usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/limits

1// The template and inlines for the numeric_limits classes. -*- C++ -*-
2
3// Copyright (C) 1999-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/limits
26 * This is a Standard C++ Library header.
27 */
28
29// Note: this is not a conforming implementation.
30// Written by Gabriel Dos Reis <gdr@codesourcery.com>
31
32//
33// ISO 14882:1998
34// 18.2.1
35//
36
37#ifndef _GLIBCXX_NUMERIC_LIMITS1
38#define _GLIBCXX_NUMERIC_LIMITS1 1
39
40#pragma GCC system_header
41
42#include <bits/c++config.h>
43
44//
45// The numeric_limits<> traits document implementation-defined aspects
46// of fundamental arithmetic data types (integers and floating points).
47// From Standard C++ point of view, there are 14 such types:
48// * integers
49// bool (1)
50// char, signed char, unsigned char, wchar_t (4)
51// short, unsigned short (2)
52// int, unsigned (2)
53// long, unsigned long (2)
54//
55// * floating points
56// float (1)
57// double (1)
58// long double (1)
59//
60// GNU C++ understands (where supported by the host C-library)
61// * integer
62// long long, unsigned long long (2)
63//
64// which brings us to 16 fundamental arithmetic data types in GNU C++.
65//
66//
67// Since a numeric_limits<> is a bit tricky to get right, we rely on
68// an interface composed of macros which should be defined in config/os
69// or config/cpu when they differ from the generic (read arbitrary)
70// definitions given here.
71//
72
73// These values can be overridden in the target configuration file.
74// The default values are appropriate for many 32-bit targets.
75
76// GCC only intrinsically supports modulo integral types. The only remaining
77// integral exceptional values is division by zero. Only targets that do not
78// signal division by zero in some "hard to ignore" way should use false.
79#ifndef __glibcxx_integral_trapstrue
80# define __glibcxx_integral_trapstrue true
81#endif
82
83// float
84//
85
86// Default values. Should be overridden in configuration files if necessary.
87
88#ifndef __glibcxx_float_has_denorm_loss
89# define __glibcxx_float_has_denorm_loss false
90#endif
91#ifndef __glibcxx_float_traps
92# define __glibcxx_float_traps false
93#endif
94#ifndef __glibcxx_float_tinyness_before
95# define __glibcxx_float_tinyness_before false
96#endif
97
98// double
99
100// Default values. Should be overridden in configuration files if necessary.
101
102#ifndef __glibcxx_double_has_denorm_loss
103# define __glibcxx_double_has_denorm_loss false
104#endif
105#ifndef __glibcxx_double_traps
106# define __glibcxx_double_traps false
107#endif
108#ifndef __glibcxx_double_tinyness_before
109# define __glibcxx_double_tinyness_before false
110#endif
111
112// long double
113
114// Default values. Should be overridden in configuration files if necessary.
115
116#ifndef __glibcxx_long_double_has_denorm_loss
117# define __glibcxx_long_double_has_denorm_loss false
118#endif
119#ifndef __glibcxx_long_double_traps
120# define __glibcxx_long_double_traps false
121#endif
122#ifndef __glibcxx_long_double_tinyness_before
123# define __glibcxx_long_double_tinyness_before false
124#endif
125
126// You should not need to define any macros below this point.
127
128#define __glibcxx_signed_b(T,B)((T)(-1) < 0) ((T)(-1) < 0)
129
130#define __glibcxx_min_b(T,B)(((T)(-1) < 0) ? -(((T)(-1) < 0) ? (((((T)1 << ((
B - ((T)(-1) < 0)) - 1)) - 1) << 1) + 1) : ~(T)0) - 1
: (T)0)
\
131 (__glibcxx_signed_b (T,B)((T)(-1) < 0) ? -__glibcxx_max_b (T,B)(((T)(-1) < 0) ? (((((T)1 << ((B - ((T)(-1) < 0))
- 1)) - 1) << 1) + 1) : ~(T)0)
- 1 : (T)0)
132
133#define __glibcxx_max_b(T,B)(((T)(-1) < 0) ? (((((T)1 << ((B - ((T)(-1) < 0))
- 1)) - 1) << 1) + 1) : ~(T)0)
\
134 (__glibcxx_signed_b (T,B)((T)(-1) < 0) ? \
135 (((((T)1 << (__glibcxx_digits_b (T,B)(B - ((T)(-1) < 0)) - 1)) - 1) << 1) + 1) : ~(T)0)
136
137#define __glibcxx_digits_b(T,B)(B - ((T)(-1) < 0)) \
138 (B - __glibcxx_signed_b (T,B)((T)(-1) < 0))
139
140// The fraction 643/2136 approximates log10(2) to 7 significant digits.
141#define __glibcxx_digits10_b(T,B)((B - ((T)(-1) < 0)) * 643L / 2136) \
142 (__glibcxx_digits_b (T,B)(B - ((T)(-1) < 0)) * 643L / 2136)
143
144#define __glibcxx_signed(T) \
145 __glibcxx_signed_b (T, sizeof(T) * __CHAR_BIT__)((T)(-1) < 0)
146#define __glibcxx_min(T) \
147 __glibcxx_min_b (T, sizeof(T) * __CHAR_BIT__)(((T)(-1) < 0) ? -(((T)(-1) < 0) ? (((((T)1 << ((
sizeof(T) * 8 - ((T)(-1) < 0)) - 1)) - 1) << 1) + 1)
: ~(T)0) - 1 : (T)0)
148#define __glibcxx_max(T) \
149 __glibcxx_max_b (T, sizeof(T) * __CHAR_BIT__)(((T)(-1) < 0) ? (((((T)1 << ((sizeof(T) * 8 - ((T)(
-1) < 0)) - 1)) - 1) << 1) + 1) : ~(T)0)
150#define __glibcxx_digits(T) \
151 __glibcxx_digits_b (T, sizeof(T) * __CHAR_BIT__)(sizeof(T) * 8 - ((T)(-1) < 0))
152#define __glibcxx_digits10(T) \
153 __glibcxx_digits10_b (T, sizeof(T) * __CHAR_BIT__)((sizeof(T) * 8 - ((T)(-1) < 0)) * 643L / 2136)
154
155#define __glibcxx_max_digits10(T) \
156 (2 + (T) * 643L / 2136)
157
158namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
159{
160_GLIBCXX_BEGIN_NAMESPACE_VERSION
161
162 /**
163 * @brief Describes the rounding style for floating-point types.
164 *
165 * This is used in the std::numeric_limits class.
166 */
167 enum float_round_style
168 {
169 round_indeterminate = -1, /// Intermediate.
170 round_toward_zero = 0, /// To zero.
171 round_to_nearest = 1, /// To the nearest representable value.
172 round_toward_infinity = 2, /// To infinity.
173 round_toward_neg_infinity = 3 /// To negative infinity.
174 };
175
176 /**
177 * @brief Describes the denormalization for floating-point types.
178 *
179 * These values represent the presence or absence of a variable number
180 * of exponent bits. This type is used in the std::numeric_limits class.
181 */
182 enum float_denorm_style
183 {
184 /// Indeterminate at compile time whether denormalized values are allowed.
185 denorm_indeterminate = -1,
186 /// The type does not allow denormalized values.
187 denorm_absent = 0,
188 /// The type allows denormalized values.
189 denorm_present = 1
190 };
191
192 /**
193 * @brief Part of std::numeric_limits.
194 *
195 * The @c static @c const members are usable as integral constant
196 * expressions.
197 *
198 * @note This is a separate class for purposes of efficiency; you
199 * should only access these members as part of an instantiation
200 * of the std::numeric_limits class.
201 */
202 struct __numeric_limits_base
203 {
204 /** This will be true for all fundamental types (which have
205 specializations), and false for everything else. */
206 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = false;
207
208 /** The number of @c radix digits that be represented without change: for
209 integer types, the number of non-sign bits in the mantissa; for
210 floating types, the number of @c radix digits in the mantissa. */
211 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = 0;
212
213 /** The number of base 10 digits that can be represented without change. */
214 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = 0;
215
216#if __cplusplus201103L >= 201103L
217 /** The number of base 10 digits required to ensure that values which
218 differ are always differentiated. */
219 static constexpr int max_digits10 = 0;
220#endif
221
222 /** True if the type is signed. */
223 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
224
225 /** True if the type is integer. */
226 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = false;
227
228 /** True if the type uses an exact representation. All integer types are
229 exact, but not all exact types are integer. For example, rational and
230 fixed-exponent representations are exact but not integer. */
231 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = false;
232
233 /** For integer types, specifies the base of the representation. For
234 floating types, specifies the base of the exponent representation. */
235 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 0;
236
237 /** The minimum negative integer such that @c radix raised to the power of
238 (one less than that integer) is a normalized floating point number. */
239 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
240
241 /** The minimum negative integer such that 10 raised to that power is in
242 the range of normalized floating point numbers. */
243 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
244
245 /** The maximum positive integer such that @c radix raised to the power of
246 (one less than that integer) is a representable finite floating point
247 number. */
248 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
249
250 /** The maximum positive integer such that 10 raised to that power is in
251 the range of representable finite floating point numbers. */
252 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
253
254 /** True if the type has a representation for positive infinity. */
255 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
256
257 /** True if the type has a representation for a quiet (non-signaling)
258 Not a Number. */
259 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
260
261 /** True if the type has a representation for a signaling
262 Not a Number. */
263 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
264
265 /** See std::float_denorm_style for more information. */
266 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm = denorm_absent;
267
268 /** True if loss of accuracy is detected as a denormalization loss,
269 rather than as an inexact result. */
270 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
271
272 /** True if-and-only-if the type adheres to the IEC 559 standard, also
273 known as IEEE 754. (Only makes sense for floating point types.) */
274 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
275
276 /** True if the set of values representable by the type is
277 finite. All built-in types are bounded, this member would be
278 false for arbitrary precision types. */
279 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = false;
280
281 /** True if the type is @e modulo. A type is modulo if, for any
282 operation involving +, -, or * on values of that type whose
283 result would fall outside the range [min(),max()], the value
284 returned differs from the true value by an integer multiple of
285 max() - min() + 1. On most machines, this is false for floating
286 types, true for unsigned integers, and true for signed integers.
287 See PR22200 about signed integers. */
288 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
289
290 /** True if trapping is implemented for this type. */
291 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = false;
292
293 /** True if tininess is detected before rounding. (see IEC 559) */
294 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
295
296 /** See std::float_round_style for more information. This is only
297 meaningful for floating types; integer types will all be
298 round_toward_zero. */
299 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style =
300 round_toward_zero;
301 };
302
303 /**
304 * @brief Properties of fundamental types.
305 *
306 * This class allows a program to obtain information about the
307 * representation of a fundamental type on a given platform. For
308 * non-fundamental types, the functions will return 0 and the data
309 * members will all be @c false.
310 *
311 * _GLIBCXX_RESOLVE_LIB_DEFECTS: DRs 201 and 184 (hi Gaby!) are
312 * noted, but not incorporated in this documented (yet).
313 */
314 template<typename _Tp>
315 struct numeric_limits : public __numeric_limits_base
316 {
317 /** The minimum finite value, or for floating types with
318 denormalization, the minimum positive normalized value. */
319 static _GLIBCXX_CONSTEXPRconstexpr _Tp
320 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
321
322 /** The maximum finite value. */
323 static _GLIBCXX_CONSTEXPRconstexpr _Tp
324 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
325
326#if __cplusplus201103L >= 201103L
327 /** A finite value x such that there is no other finite value y
328 * where y < x. */
329 static constexpr _Tp
330 lowest() noexcept { return _Tp(); }
331#endif
332
333 /** The @e machine @e epsilon: the difference between 1 and the least
334 value greater than 1 that is representable. */
335 static _GLIBCXX_CONSTEXPRconstexpr _Tp
336 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
337
338 /** The maximum rounding error measurement (see LIA-1). */
339 static _GLIBCXX_CONSTEXPRconstexpr _Tp
340 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
341
342 /** The representation of positive infinity, if @c has_infinity. */
343 static _GLIBCXX_CONSTEXPRconstexpr _Tp
344 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
345
346 /** The representation of a quiet Not a Number,
347 if @c has_quiet_NaN. */
348 static _GLIBCXX_CONSTEXPRconstexpr _Tp
349 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
350
351 /** The representation of a signaling Not a Number, if
352 @c has_signaling_NaN. */
353 static _GLIBCXX_CONSTEXPRconstexpr _Tp
354 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
355
356 /** The minimum positive denormalized value. For types where
357 @c has_denorm is false, this is the minimum positive normalized
358 value. */
359 static _GLIBCXX_CONSTEXPRconstexpr _Tp
360 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return _Tp(); }
361 };
362
363#if __cplusplus201103L >= 201103L
364 template<typename _Tp>
365 struct numeric_limits<const _Tp>
366 : public numeric_limits<_Tp> { };
367
368 template<typename _Tp>
369 struct numeric_limits<volatile _Tp>
370 : public numeric_limits<_Tp> { };
371
372 template<typename _Tp>
373 struct numeric_limits<const volatile _Tp>
374 : public numeric_limits<_Tp> { };
375#endif
376
377 // Now there follow 16 explicit specializations. Yes, 16. Make sure
378 // you get the count right. (18 in c++0x mode)
379
380 /// numeric_limits<bool> specialization.
381 template<>
382 struct numeric_limits<bool>
383 {
384 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
385
386 static _GLIBCXX_CONSTEXPRconstexpr bool
387 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
388
389 static _GLIBCXX_CONSTEXPRconstexpr bool
390 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return true; }
391
392#if __cplusplus201103L >= 201103L
393 static constexpr bool
394 lowest() noexcept { return min(); }
395#endif
396 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = 1;
397 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = 0;
398#if __cplusplus201103L >= 201103L
399 static constexpr int max_digits10 = 0;
400#endif
401 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
402 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
403 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
404 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
405
406 static _GLIBCXX_CONSTEXPRconstexpr bool
407 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
408
409 static _GLIBCXX_CONSTEXPRconstexpr bool
410 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
411
412 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
413 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
414 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
415 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
416
417 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
418 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
419 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
420 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
421 = denorm_absent;
422 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
423
424 static _GLIBCXX_CONSTEXPRconstexpr bool
425 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
426
427 static _GLIBCXX_CONSTEXPRconstexpr bool
428 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
429
430 static _GLIBCXX_CONSTEXPRconstexpr bool
431 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
432
433 static _GLIBCXX_CONSTEXPRconstexpr bool
434 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return false; }
435
436 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
437 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
438 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
439
440 // It is not clear what it means for a boolean type to trap.
441 // This is a DR on the LWG issue list. Here, I use integer
442 // promotion semantics.
443 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
444 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
445 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
446 = round_toward_zero;
447 };
448
449 /// numeric_limits<char> specialization.
450 template<>
451 struct numeric_limits<char>
452 {
453 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
454
455 static _GLIBCXX_CONSTEXPRconstexpr char
456 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __glibcxx_min(char); }
457
458 static _GLIBCXX_CONSTEXPRconstexpr char
459 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __glibcxx_max(char); }
460
461#if __cplusplus201103L >= 201103L
462 static constexpr char
463 lowest() noexcept { return min(); }
464#endif
465
466 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __glibcxx_digits (char);
467 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __glibcxx_digits10 (char);
468#if __cplusplus201103L >= 201103L
469 static constexpr int max_digits10 = 0;
470#endif
471 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = __glibcxx_signed (char);
472 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
473 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
474 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
475
476 static _GLIBCXX_CONSTEXPRconstexpr char
477 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
478
479 static _GLIBCXX_CONSTEXPRconstexpr char
480 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
481
482 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
483 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
484 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
485 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
486
487 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
488 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
489 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
490 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
491 = denorm_absent;
492 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
493
494 static _GLIBCXX_CONSTEXPRconstexpr
495 char infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return char(); }
496
497 static _GLIBCXX_CONSTEXPRconstexpr char
498 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return char(); }
499
500 static _GLIBCXX_CONSTEXPRconstexpr char
501 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return char(); }
502
503 static _GLIBCXX_CONSTEXPRconstexpr char
504 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<char>(0); }
505
506 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
507 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
508 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = !is_signed;
509
510 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
511 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
512 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
513 = round_toward_zero;
514 };
515
516 /// numeric_limits<signed char> specialization.
517 template<>
518 struct numeric_limits<signed char>
519 {
520 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
521
522 static _GLIBCXX_CONSTEXPRconstexpr signed char
523 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return -__SCHAR_MAX__127 - 1; }
524
525 static _GLIBCXX_CONSTEXPRconstexpr signed char
526 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __SCHAR_MAX__127; }
527
528#if __cplusplus201103L >= 201103L
529 static constexpr signed char
530 lowest() noexcept { return min(); }
531#endif
532
533 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __glibcxx_digits (signed char);
534 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
535 = __glibcxx_digits10 (signed char);
536#if __cplusplus201103L >= 201103L
537 static constexpr int max_digits10 = 0;
538#endif
539 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
540 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
541 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
542 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
543
544 static _GLIBCXX_CONSTEXPRconstexpr signed char
545 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
546
547 static _GLIBCXX_CONSTEXPRconstexpr signed char
548 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
549
550 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
551 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
552 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
553 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
554
555 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
556 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
557 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
558 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
559 = denorm_absent;
560 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
561
562 static _GLIBCXX_CONSTEXPRconstexpr signed char
563 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<signed char>(0); }
564
565 static _GLIBCXX_CONSTEXPRconstexpr signed char
566 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<signed char>(0); }
567
568 static _GLIBCXX_CONSTEXPRconstexpr signed char
569 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
570 { return static_cast<signed char>(0); }
571
572 static _GLIBCXX_CONSTEXPRconstexpr signed char
573 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept
574 { return static_cast<signed char>(0); }
575
576 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
577 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
578 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
579
580 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
581 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
582 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
583 = round_toward_zero;
584 };
585
586 /// numeric_limits<unsigned char> specialization.
587 template<>
588 struct numeric_limits<unsigned char>
589 {
590 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
591
592 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
593 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
594
595 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
596 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __SCHAR_MAX__127 * 2U + 1; }
597
598#if __cplusplus201103L >= 201103L
599 static constexpr unsigned char
600 lowest() noexcept { return min(); }
601#endif
602
603 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits
604 = __glibcxx_digits (unsigned char);
605 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
606 = __glibcxx_digits10 (unsigned char);
607#if __cplusplus201103L >= 201103L
608 static constexpr int max_digits10 = 0;
609#endif
610 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
611 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
612 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
613 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
614
615 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
616 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
617
618 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
619 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
620
621 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
622 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
623 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
624 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
625
626 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
627 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
628 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
629 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
630 = denorm_absent;
631 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
632
633 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
634 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept
635 { return static_cast<unsigned char>(0); }
636
637 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
638 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
639 { return static_cast<unsigned char>(0); }
640
641 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
642 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
643 { return static_cast<unsigned char>(0); }
644
645 static _GLIBCXX_CONSTEXPRconstexpr unsigned char
646 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept
647 { return static_cast<unsigned char>(0); }
648
649 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
650 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
651 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = true;
652
653 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
654 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
655 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
656 = round_toward_zero;
657 };
658
659 /// numeric_limits<wchar_t> specialization.
660 template<>
661 struct numeric_limits<wchar_t>
662 {
663 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
664
665 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
666 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __glibcxx_min (wchar_t); }
667
668 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
669 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __glibcxx_max (wchar_t); }
670
671#if __cplusplus201103L >= 201103L
672 static constexpr wchar_t
673 lowest() noexcept { return min(); }
674#endif
675
676 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __glibcxx_digits (wchar_t);
677 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
678 = __glibcxx_digits10 (wchar_t);
679#if __cplusplus201103L >= 201103L
680 static constexpr int max_digits10 = 0;
681#endif
682 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = __glibcxx_signed (wchar_t);
683 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
684 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
685 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
686
687 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
688 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
689
690 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
691 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
692
693 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
694 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
695 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
696 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
697
698 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
699 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
700 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
701 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
702 = denorm_absent;
703 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
704
705 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
706 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return wchar_t(); }
707
708 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
709 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return wchar_t(); }
710
711 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
712 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return wchar_t(); }
713
714 static _GLIBCXX_CONSTEXPRconstexpr wchar_t
715 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return wchar_t(); }
716
717 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
718 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
719 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = !is_signed;
720
721 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
722 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
723 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
724 = round_toward_zero;
725 };
726
727#if __cplusplus201103L >= 201103L
728 /// numeric_limits<char16_t> specialization.
729 template<>
730 struct numeric_limits<char16_t>
731 {
732 static constexpr bool is_specialized = true;
733
734 static constexpr char16_t
735 min() noexcept { return __glibcxx_min (char16_t); }
736
737 static constexpr char16_t
738 max() noexcept { return __glibcxx_max (char16_t); }
739
740 static constexpr char16_t
741 lowest() noexcept { return min(); }
742
743 static constexpr int digits = __glibcxx_digits (char16_t);
744 static constexpr int digits10 = __glibcxx_digits10 (char16_t);
745 static constexpr int max_digits10 = 0;
746 static constexpr bool is_signed = __glibcxx_signed (char16_t);
747 static constexpr bool is_integer = true;
748 static constexpr bool is_exact = true;
749 static constexpr int radix = 2;
750
751 static constexpr char16_t
752 epsilon() noexcept { return 0; }
753
754 static constexpr char16_t
755 round_error() noexcept { return 0; }
756
757 static constexpr int min_exponent = 0;
758 static constexpr int min_exponent10 = 0;
759 static constexpr int max_exponent = 0;
760 static constexpr int max_exponent10 = 0;
761
762 static constexpr bool has_infinity = false;
763 static constexpr bool has_quiet_NaN = false;
764 static constexpr bool has_signaling_NaN = false;
765 static constexpr float_denorm_style has_denorm = denorm_absent;
766 static constexpr bool has_denorm_loss = false;
767
768 static constexpr char16_t
769 infinity() noexcept { return char16_t(); }
770
771 static constexpr char16_t
772 quiet_NaN() noexcept { return char16_t(); }
773
774 static constexpr char16_t
775 signaling_NaN() noexcept { return char16_t(); }
776
777 static constexpr char16_t
778 denorm_min() noexcept { return char16_t(); }
779
780 static constexpr bool is_iec559 = false;
781 static constexpr bool is_bounded = true;
782 static constexpr bool is_modulo = !is_signed;
783
784 static constexpr bool traps = __glibcxx_integral_trapstrue;
785 static constexpr bool tinyness_before = false;
786 static constexpr float_round_style round_style = round_toward_zero;
787 };
788
789 /// numeric_limits<char32_t> specialization.
790 template<>
791 struct numeric_limits<char32_t>
792 {
793 static constexpr bool is_specialized = true;
794
795 static constexpr char32_t
796 min() noexcept { return __glibcxx_min (char32_t); }
797
798 static constexpr char32_t
799 max() noexcept { return __glibcxx_max (char32_t); }
800
801 static constexpr char32_t
802 lowest() noexcept { return min(); }
803
804 static constexpr int digits = __glibcxx_digits (char32_t);
805 static constexpr int digits10 = __glibcxx_digits10 (char32_t);
806 static constexpr int max_digits10 = 0;
807 static constexpr bool is_signed = __glibcxx_signed (char32_t);
808 static constexpr bool is_integer = true;
809 static constexpr bool is_exact = true;
810 static constexpr int radix = 2;
811
812 static constexpr char32_t
813 epsilon() noexcept { return 0; }
814
815 static constexpr char32_t
816 round_error() noexcept { return 0; }
817
818 static constexpr int min_exponent = 0;
819 static constexpr int min_exponent10 = 0;
820 static constexpr int max_exponent = 0;
821 static constexpr int max_exponent10 = 0;
822
823 static constexpr bool has_infinity = false;
824 static constexpr bool has_quiet_NaN = false;
825 static constexpr bool has_signaling_NaN = false;
826 static constexpr float_denorm_style has_denorm = denorm_absent;
827 static constexpr bool has_denorm_loss = false;
828
829 static constexpr char32_t
830 infinity() noexcept { return char32_t(); }
831
832 static constexpr char32_t
833 quiet_NaN() noexcept { return char32_t(); }
834
835 static constexpr char32_t
836 signaling_NaN() noexcept { return char32_t(); }
837
838 static constexpr char32_t
839 denorm_min() noexcept { return char32_t(); }
840
841 static constexpr bool is_iec559 = false;
842 static constexpr bool is_bounded = true;
843 static constexpr bool is_modulo = !is_signed;
844
845 static constexpr bool traps = __glibcxx_integral_trapstrue;
846 static constexpr bool tinyness_before = false;
847 static constexpr float_round_style round_style = round_toward_zero;
848 };
849#endif
850
851 /// numeric_limits<short> specialization.
852 template<>
853 struct numeric_limits<short>
854 {
855 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
856
857 static _GLIBCXX_CONSTEXPRconstexpr short
858 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return -__SHRT_MAX__32767 - 1; }
859
860 static _GLIBCXX_CONSTEXPRconstexpr short
861 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __SHRT_MAX__32767; }
862
863#if __cplusplus201103L >= 201103L
864 static constexpr short
865 lowest() noexcept { return min(); }
866#endif
867
868 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __glibcxx_digits (short);
869 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __glibcxx_digits10 (short);
870#if __cplusplus201103L >= 201103L
871 static constexpr int max_digits10 = 0;
872#endif
873 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
874 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
875 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
876 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
877
878 static _GLIBCXX_CONSTEXPRconstexpr short
879 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
880
881 static _GLIBCXX_CONSTEXPRconstexpr short
882 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
883
884 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
885 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
886 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
887 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
888
889 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
890 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
891 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
892 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
893 = denorm_absent;
894 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
895
896 static _GLIBCXX_CONSTEXPRconstexpr short
897 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return short(); }
898
899 static _GLIBCXX_CONSTEXPRconstexpr short
900 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return short(); }
901
902 static _GLIBCXX_CONSTEXPRconstexpr short
903 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return short(); }
904
905 static _GLIBCXX_CONSTEXPRconstexpr short
906 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return short(); }
907
908 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
909 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
910 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
911
912 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
913 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
914 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
915 = round_toward_zero;
916 };
917
918 /// numeric_limits<unsigned short> specialization.
919 template<>
920 struct numeric_limits<unsigned short>
921 {
922 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
923
924 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
925 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
926
927 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
928 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __SHRT_MAX__32767 * 2U + 1; }
929
930#if __cplusplus201103L >= 201103L
931 static constexpr unsigned short
932 lowest() noexcept { return min(); }
933#endif
934
935 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits
936 = __glibcxx_digits (unsigned short);
937 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
938 = __glibcxx_digits10 (unsigned short);
939#if __cplusplus201103L >= 201103L
940 static constexpr int max_digits10 = 0;
941#endif
942 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
943 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
944 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
945 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
946
947 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
948 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
949
950 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
951 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
952
953 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
954 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
955 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
956 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
957
958 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
959 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
960 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
961 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
962 = denorm_absent;
963 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
964
965 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
966 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept
967 { return static_cast<unsigned short>(0); }
968
969 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
970 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
971 { return static_cast<unsigned short>(0); }
972
973 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
974 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
975 { return static_cast<unsigned short>(0); }
976
977 static _GLIBCXX_CONSTEXPRconstexpr unsigned short
978 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept
979 { return static_cast<unsigned short>(0); }
980
981 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
982 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
983 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = true;
984
985 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
986 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
987 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
988 = round_toward_zero;
989 };
990
991 /// numeric_limits<int> specialization.
992 template<>
993 struct numeric_limits<int>
994 {
995 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
996
997 static _GLIBCXX_CONSTEXPRconstexpr int
998 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return -__INT_MAX__2147483647 - 1; }
999
1000 static _GLIBCXX_CONSTEXPRconstexpr int
1001 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __INT_MAX__2147483647; }
1002
1003#if __cplusplus201103L >= 201103L
1004 static constexpr int
1005 lowest() noexcept { return min(); }
1006#endif
1007
1008 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __glibcxx_digits (int);
1009 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __glibcxx_digits10 (int);
1010#if __cplusplus201103L >= 201103L
1011 static constexpr int max_digits10 = 0;
1012#endif
1013 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
1014 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
1015 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
1016 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
1017
1018 static _GLIBCXX_CONSTEXPRconstexpr int
1019 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1020
1021 static _GLIBCXX_CONSTEXPRconstexpr int
1022 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1023
1024 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
1025 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
1026 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
1027 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
1028
1029 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
1030 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
1031 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
1032 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1033 = denorm_absent;
1034 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
1035
1036 static _GLIBCXX_CONSTEXPRconstexpr int
1037 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<int>(0); }
1038
1039 static _GLIBCXX_CONSTEXPRconstexpr int
1040 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<int>(0); }
1041
1042 static _GLIBCXX_CONSTEXPRconstexpr int
1043 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<int>(0); }
1044
1045 static _GLIBCXX_CONSTEXPRconstexpr int
1046 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<int>(0); }
1047
1048 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
1049 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1050 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
1051
1052 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
1053 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
1054 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1055 = round_toward_zero;
1056 };
1057
1058 /// numeric_limits<unsigned int> specialization.
1059 template<>
1060 struct numeric_limits<unsigned int>
1061 {
1062 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1063
1064 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1065 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1066
1067 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1068 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __INT_MAX__2147483647 * 2U + 1; }
1069
1070#if __cplusplus201103L >= 201103L
1071 static constexpr unsigned int
1072 lowest() noexcept { return min(); }
1073#endif
1074
1075 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits
1076 = __glibcxx_digits (unsigned int);
1077 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
1078 = __glibcxx_digits10 (unsigned int);
1079#if __cplusplus201103L >= 201103L
1080 static constexpr int max_digits10 = 0;
1081#endif
1082 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
1083 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
1084 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
1085 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
1086
1087 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1088 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1089
1090 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1091 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1092
1093 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
1094 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
1095 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
1096 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
1097
1098 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
1099 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
1100 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
1101 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1102 = denorm_absent;
1103 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
1104
1105 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1106 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<unsigned int>(0); }
1107
1108 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1109 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1110 { return static_cast<unsigned int>(0); }
1111
1112 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1113 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1114 { return static_cast<unsigned int>(0); }
1115
1116 static _GLIBCXX_CONSTEXPRconstexpr unsigned int
1117 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept
1118 { return static_cast<unsigned int>(0); }
1119
1120 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
1121 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1122 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = true;
1123
1124 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
1125 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
1126 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1127 = round_toward_zero;
1128 };
1129
1130 /// numeric_limits<long> specialization.
1131 template<>
1132 struct numeric_limits<long>
1133 {
1134 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1135
1136 static _GLIBCXX_CONSTEXPRconstexpr long
1137 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return -__LONG_MAX__9223372036854775807L - 1; }
1138
1139 static _GLIBCXX_CONSTEXPRconstexpr long
1140 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LONG_MAX__9223372036854775807L; }
1141
1142#if __cplusplus201103L >= 201103L
1143 static constexpr long
1144 lowest() noexcept { return min(); }
1145#endif
1146
1147 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __glibcxx_digits (long);
1148 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __glibcxx_digits10 (long);
1149#if __cplusplus201103L >= 201103L
1150 static constexpr int max_digits10 = 0;
1151#endif
1152 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
1153 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
1154 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
1155 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
1156
1157 static _GLIBCXX_CONSTEXPRconstexpr long
1158 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1159
1160 static _GLIBCXX_CONSTEXPRconstexpr long
1161 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1162
1163 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
1164 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
1165 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
1166 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
1167
1168 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
1169 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
1170 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
1171 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1172 = denorm_absent;
1173 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
1174
1175 static _GLIBCXX_CONSTEXPRconstexpr long
1176 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long>(0); }
1177
1178 static _GLIBCXX_CONSTEXPRconstexpr long
1179 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long>(0); }
1180
1181 static _GLIBCXX_CONSTEXPRconstexpr long
1182 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long>(0); }
1183
1184 static _GLIBCXX_CONSTEXPRconstexpr long
1185 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long>(0); }
1186
1187 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
1188 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1189 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
1190
1191 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
1192 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
1193 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1194 = round_toward_zero;
1195 };
1196
1197 /// numeric_limits<unsigned long> specialization.
1198 template<>
1199 struct numeric_limits<unsigned long>
1200 {
1201 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1202
1203 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1204 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1205
1206 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1207 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LONG_MAX__9223372036854775807L * 2UL + 1; }
13
Returning the value 18446744073709551615
1208
1209#if __cplusplus201103L >= 201103L
1210 static constexpr unsigned long
1211 lowest() noexcept { return min(); }
1212#endif
1213
1214 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits
1215 = __glibcxx_digits (unsigned long);
1216 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
1217 = __glibcxx_digits10 (unsigned long);
1218#if __cplusplus201103L >= 201103L
1219 static constexpr int max_digits10 = 0;
1220#endif
1221 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
1222 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
1223 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
1224 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
1225
1226 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1227 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1228
1229 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1230 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1231
1232 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
1233 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
1234 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
1235 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
1236
1237 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
1238 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
1239 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
1240 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1241 = denorm_absent;
1242 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
1243
1244 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1245 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept
1246 { return static_cast<unsigned long>(0); }
1247
1248 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1249 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1250 { return static_cast<unsigned long>(0); }
1251
1252 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1253 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1254 { return static_cast<unsigned long>(0); }
1255
1256 static _GLIBCXX_CONSTEXPRconstexpr unsigned long
1257 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept
1258 { return static_cast<unsigned long>(0); }
1259
1260 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
1261 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1262 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = true;
1263
1264 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
1265 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
1266 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1267 = round_toward_zero;
1268 };
1269
1270 /// numeric_limits<long long> specialization.
1271 template<>
1272 struct numeric_limits<long long>
1273 {
1274 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1275
1276 static _GLIBCXX_CONSTEXPRconstexpr long long
1277 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return -__LONG_LONG_MAX__9223372036854775807LL - 1; }
1278
1279 static _GLIBCXX_CONSTEXPRconstexpr long long
1280 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LONG_LONG_MAX__9223372036854775807LL; }
1281
1282#if __cplusplus201103L >= 201103L
1283 static constexpr long long
1284 lowest() noexcept { return min(); }
1285#endif
1286
1287 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits
1288 = __glibcxx_digits (long long);
1289 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
1290 = __glibcxx_digits10 (long long);
1291#if __cplusplus201103L >= 201103L
1292 static constexpr int max_digits10 = 0;
1293#endif
1294 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
1295 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
1296 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
1297 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
1298
1299 static _GLIBCXX_CONSTEXPRconstexpr long long
1300 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1301
1302 static _GLIBCXX_CONSTEXPRconstexpr long long
1303 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1304
1305 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
1306 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
1307 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
1308 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
1309
1310 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
1311 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
1312 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
1313 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1314 = denorm_absent;
1315 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
1316
1317 static _GLIBCXX_CONSTEXPRconstexpr long long
1318 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long long>(0); }
1319
1320 static _GLIBCXX_CONSTEXPRconstexpr long long
1321 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long long>(0); }
1322
1323 static _GLIBCXX_CONSTEXPRconstexpr long long
1324 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1325 { return static_cast<long long>(0); }
1326
1327 static _GLIBCXX_CONSTEXPRconstexpr long long
1328 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return static_cast<long long>(0); }
1329
1330 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
1331 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1332 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
1333
1334 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
1335 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
1336 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1337 = round_toward_zero;
1338 };
1339
1340 /// numeric_limits<unsigned long long> specialization.
1341 template<>
1342 struct numeric_limits<unsigned long long>
1343 {
1344 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1345
1346 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1347 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1348
1349 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1350 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LONG_LONG_MAX__9223372036854775807LL * 2ULL + 1; }
1351
1352#if __cplusplus201103L >= 201103L
1353 static constexpr unsigned long long
1354 lowest() noexcept { return min(); }
1355#endif
1356
1357 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits
1358 = __glibcxx_digits (unsigned long long);
1359 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10
1360 = __glibcxx_digits10 (unsigned long long);
1361#if __cplusplus201103L >= 201103L
1362 static constexpr int max_digits10 = 0;
1363#endif
1364 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false;
1365 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true;
1366 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true;
1367 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2;
1368
1369 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1370 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1371
1372 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1373 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; }
1374
1375 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0;
1376 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0;
1377 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0;
1378 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0;
1379
1380 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false;
1381 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false;
1382 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false;
1383 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1384 = denorm_absent;
1385 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false;
1386
1387 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1388 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept
1389 { return static_cast<unsigned long long>(0); }
1390
1391 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1392 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1393 { return static_cast<unsigned long long>(0); }
1394
1395 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1396 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept
1397 { return static_cast<unsigned long long>(0); }
1398
1399 static _GLIBCXX_CONSTEXPRconstexpr unsigned long long
1400 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept
1401 { return static_cast<unsigned long long>(0); }
1402
1403 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false;
1404 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1405 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = true;
1406
1407 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue;
1408 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false;
1409 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1410 = round_toward_zero;
1411 };
1412
1413#if !defined(__STRICT_ANSI__1)
1414
1415#define __INT_N(TYPE, BITSIZE, EXT, UEXT) \
1416 template<> \
1417 struct numeric_limits<TYPE> \
1418 { \
1419 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true; \
1420 \
1421 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1422 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __glibcxx_min_b (TYPE, BITSIZE)(((TYPE)(-1) < 0) ? -(((TYPE)(-1) < 0) ? (((((TYPE)1 <<
((BITSIZE - ((TYPE)(-1) < 0)) - 1)) - 1) << 1) + 1)
: ~(TYPE)0) - 1 : (TYPE)0)
; } \
1423 \
1424 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1425 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __glibcxx_max_b (TYPE, BITSIZE)(((TYPE)(-1) < 0) ? (((((TYPE)1 << ((BITSIZE - ((TYPE
)(-1) < 0)) - 1)) - 1) << 1) + 1) : ~(TYPE)0)
; } \
1426 \
1427 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits \
1428 = BITSIZE - 1; \
1429 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 \
1430 = (BITSIZE - 1) * 643L / 2136; \
1431 \
1432 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true; \
1433 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true; \
1434 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true; \
1435 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2; \
1436 \
1437 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1438 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; } \
1439 \
1440 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1441 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; } \
1442 \
1443 EXT \
1444 \
1445 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0; \
1446 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0; \
1447 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0; \
1448 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0; \
1449 \
1450 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false; \
1451 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false; \
1452 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false; \
1453 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm \
1454 = denorm_absent; \
1455 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false; \
1456 \
1457 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1458 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept \
1459 { return static_cast<TYPE>(0); } \
1460 \
1461 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1462 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept \
1463 { return static_cast<TYPE>(0); } \
1464 \
1465 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1466 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept \
1467 { return static_cast<TYPE>(0); } \
1468 \
1469 static _GLIBCXX_CONSTEXPRconstexpr TYPE \
1470 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept \
1471 { return static_cast<TYPE>(0); } \
1472 \
1473 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false; \
1474 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true; \
1475 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false; \
1476 \
1477 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps \
1478 = __glibcxx_integral_trapstrue; \
1479 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false; \
1480 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style \
1481 = round_toward_zero; \
1482 }; \
1483 \
1484 template<> \
1485 struct numeric_limits<unsigned TYPE> \
1486 { \
1487 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true; \
1488 \
1489 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1490 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; } \
1491 \
1492 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1493 max() _GLIBCXX_USE_NOEXCEPTnoexcept \
1494 { return __glibcxx_max_b (unsigned TYPE, BITSIZE)(((unsigned TYPE)(-1) < 0) ? (((((unsigned TYPE)1 <<
((BITSIZE - ((unsigned TYPE)(-1) < 0)) - 1)) - 1) <<
1) + 1) : ~(unsigned TYPE)0)
; } \
1495 \
1496 UEXT \
1497 \
1498 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits \
1499 = BITSIZE; \
1500 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 \
1501 = BITSIZE * 643L / 2136; \
1502 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = false; \
1503 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = true; \
1504 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = true; \
1505 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = 2; \
1506 \
1507 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1508 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; } \
1509 \
1510 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1511 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0; } \
1512 \
1513 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = 0; \
1514 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = 0; \
1515 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = 0; \
1516 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = 0; \
1517 \
1518 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = false; \
1519 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = false; \
1520 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = false; \
1521 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm \
1522 = denorm_absent; \
1523 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss = false; \
1524 \
1525 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1526 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept \
1527 { return static_cast<unsigned TYPE>(0); } \
1528 \
1529 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1530 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept \
1531 { return static_cast<unsigned TYPE>(0); } \
1532 \
1533 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1534 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept \
1535 { return static_cast<unsigned TYPE>(0); } \
1536 \
1537 static _GLIBCXX_CONSTEXPRconstexpr unsigned TYPE \
1538 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept \
1539 { return static_cast<unsigned TYPE>(0); } \
1540 \
1541 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559 = false; \
1542 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true; \
1543 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = true; \
1544 \
1545 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_integral_trapstrue; \
1546 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before = false; \
1547 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style \
1548 = round_toward_zero; \
1549 };
1550
1551#if __cplusplus201103L >= 201103L
1552
1553#define __INT_N_201103(TYPE) \
1554 static constexpr TYPE \
1555 lowest() noexcept { return min(); } \
1556 static constexpr int max_digits10 = 0;
1557
1558#define __INT_N_U201103(TYPE) \
1559 static constexpr unsigned TYPE \
1560 lowest() noexcept { return min(); } \
1561 static constexpr int max_digits10 = 0;
1562
1563#else
1564#define __INT_N_201103(TYPE)
1565#define __INT_N_U201103(TYPE)
1566#endif
1567
1568#ifdef __GLIBCXX_TYPE_INT_N_0
1569 __INT_N(__GLIBCXX_TYPE_INT_N_0, __GLIBCXX_BITSIZE_INT_N_0,
1570 __INT_N_201103 (__GLIBCXX_TYPE_INT_N_0), __INT_N_U201103 (__GLIBCXX_TYPE_INT_N_0))
1571#endif
1572#ifdef __GLIBCXX_TYPE_INT_N_1
1573 __INT_N (__GLIBCXX_TYPE_INT_N_1, __GLIBCXX_BITSIZE_INT_N_1,
1574 __INT_N_201103 (__GLIBCXX_TYPE_INT_N_1), __INT_N_U201103 (__GLIBCXX_TYPE_INT_N_1))
1575#endif
1576#ifdef __GLIBCXX_TYPE_INT_N_2
1577 __INT_N (__GLIBCXX_TYPE_INT_N_2, __GLIBCXX_BITSIZE_INT_N_2,
1578 __INT_N_201103 (__GLIBCXX_TYPE_INT_N_2), __INT_N_U201103 (__GLIBCXX_TYPE_INT_N_2))
1579#endif
1580#ifdef __GLIBCXX_TYPE_INT_N_3
1581 __INT_N (__GLIBCXX_TYPE_INT_N_3, __GLIBCXX_BITSIZE_INT_N_3,
1582 __INT_N_201103 (__GLIBCXX_TYPE_INT_N_3), __INT_N_U201103 (__GLIBCXX_TYPE_INT_N_3))
1583#endif
1584
1585#undef __INT_N
1586#undef __INT_N_201103
1587#undef __INT_N_U201103
1588
1589#endif
1590
1591 /// numeric_limits<float> specialization.
1592 template<>
1593 struct numeric_limits<float>
1594 {
1595 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1596
1597 static _GLIBCXX_CONSTEXPRconstexpr float
1598 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __FLT_MIN__1.17549435e-38F; }
1599
1600 static _GLIBCXX_CONSTEXPRconstexpr float
1601 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __FLT_MAX__3.40282347e+38F; }
1602
1603#if __cplusplus201103L >= 201103L
1604 static constexpr float
1605 lowest() noexcept { return -__FLT_MAX__3.40282347e+38F; }
1606#endif
1607
1608 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __FLT_MANT_DIG__24;
1609 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __FLT_DIG__6;
1610#if __cplusplus201103L >= 201103L
1611 static constexpr int max_digits10
1612 = __glibcxx_max_digits10 (__FLT_MANT_DIG__24);
1613#endif
1614 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
1615 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = false;
1616 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = false;
1617 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = __FLT_RADIX__2;
1618
1619 static _GLIBCXX_CONSTEXPRconstexpr float
1620 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return __FLT_EPSILON__1.19209290e-7F; }
1621
1622 static _GLIBCXX_CONSTEXPRconstexpr float
1623 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0.5F; }
1624
1625 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = __FLT_MIN_EXP__(-125);
1626 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = __FLT_MIN_10_EXP__(-37);
1627 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = __FLT_MAX_EXP__128;
1628 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = __FLT_MAX_10_EXP__38;
1629
1630 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = __FLT_HAS_INFINITY__1;
1631 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = __FLT_HAS_QUIET_NAN__1;
1632 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = has_quiet_NaN;
1633 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1634 = bool(__FLT_HAS_DENORM__1) ? denorm_present : denorm_absent;
1635 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss
1636 = __glibcxx_float_has_denorm_loss;
1637
1638 static _GLIBCXX_CONSTEXPRconstexpr float
1639 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_huge_valf(); }
1640
1641 static _GLIBCXX_CONSTEXPRconstexpr float
1642 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_nanf(""); }
1643
1644 static _GLIBCXX_CONSTEXPRconstexpr float
1645 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_nansf(""); }
1646
1647 static _GLIBCXX_CONSTEXPRconstexpr float
1648 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __FLT_DENORM_MIN__1.40129846e-45F; }
1649
1650 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559
1651 = has_infinity && has_quiet_NaN && has_denorm == denorm_present;
1652 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1653 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
1654
1655 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_float_traps;
1656 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before
1657 = __glibcxx_float_tinyness_before;
1658 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1659 = round_to_nearest;
1660 };
1661
1662#undef __glibcxx_float_has_denorm_loss
1663#undef __glibcxx_float_traps
1664#undef __glibcxx_float_tinyness_before
1665
1666 /// numeric_limits<double> specialization.
1667 template<>
1668 struct numeric_limits<double>
1669 {
1670 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1671
1672 static _GLIBCXX_CONSTEXPRconstexpr double
1673 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __DBL_MIN__2.2250738585072014e-308; }
1674
1675 static _GLIBCXX_CONSTEXPRconstexpr double
1676 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __DBL_MAX__1.7976931348623157e+308; }
1677
1678#if __cplusplus201103L >= 201103L
1679 static constexpr double
1680 lowest() noexcept { return -__DBL_MAX__1.7976931348623157e+308; }
1681#endif
1682
1683 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __DBL_MANT_DIG__53;
1684 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __DBL_DIG__15;
1685#if __cplusplus201103L >= 201103L
1686 static constexpr int max_digits10
1687 = __glibcxx_max_digits10 (__DBL_MANT_DIG__53);
1688#endif
1689 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
1690 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = false;
1691 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = false;
1692 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = __FLT_RADIX__2;
1693
1694 static _GLIBCXX_CONSTEXPRconstexpr double
1695 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return __DBL_EPSILON__2.2204460492503131e-16; }
1696
1697 static _GLIBCXX_CONSTEXPRconstexpr double
1698 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0.5; }
1699
1700 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = __DBL_MIN_EXP__(-1021);
1701 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = __DBL_MIN_10_EXP__(-307);
1702 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = __DBL_MAX_EXP__1024;
1703 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = __DBL_MAX_10_EXP__308;
1704
1705 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = __DBL_HAS_INFINITY__1;
1706 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = __DBL_HAS_QUIET_NAN__1;
1707 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = has_quiet_NaN;
1708 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1709 = bool(__DBL_HAS_DENORM__1) ? denorm_present : denorm_absent;
1710 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss
1711 = __glibcxx_double_has_denorm_loss;
1712
1713 static _GLIBCXX_CONSTEXPRconstexpr double
1714 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_huge_val(); }
1715
1716 static _GLIBCXX_CONSTEXPRconstexpr double
1717 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_nan(""); }
1718
1719 static _GLIBCXX_CONSTEXPRconstexpr double
1720 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_nans(""); }
1721
1722 static _GLIBCXX_CONSTEXPRconstexpr double
1723 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __DBL_DENORM_MIN__4.9406564584124654e-324; }
1724
1725 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559
1726 = has_infinity && has_quiet_NaN && has_denorm == denorm_present;
1727 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1728 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
1729
1730 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_double_traps;
1731 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before
1732 = __glibcxx_double_tinyness_before;
1733 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style
1734 = round_to_nearest;
1735 };
1736
1737#undef __glibcxx_double_has_denorm_loss
1738#undef __glibcxx_double_traps
1739#undef __glibcxx_double_tinyness_before
1740
1741 /// numeric_limits<long double> specialization.
1742 template<>
1743 struct numeric_limits<long double>
1744 {
1745 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_specialized = true;
1746
1747 static _GLIBCXX_CONSTEXPRconstexpr long double
1748 min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LDBL_MIN__3.36210314311209350626e-4932L; }
1749
1750 static _GLIBCXX_CONSTEXPRconstexpr long double
1751 max() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LDBL_MAX__1.18973149535723176502e+4932L; }
1752
1753#if __cplusplus201103L >= 201103L
1754 static constexpr long double
1755 lowest() noexcept { return -__LDBL_MAX__1.18973149535723176502e+4932L; }
1756#endif
1757
1758 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits = __LDBL_MANT_DIG__64;
1759 static _GLIBCXX_USE_CONSTEXPRconstexpr int digits10 = __LDBL_DIG__18;
1760#if __cplusplus201103L >= 201103L
1761 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_digits10
1762 = __glibcxx_max_digits10 (__LDBL_MANT_DIG__64);
1763#endif
1764 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_signed = true;
1765 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_integer = false;
1766 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_exact = false;
1767 static _GLIBCXX_USE_CONSTEXPRconstexpr int radix = __FLT_RADIX__2;
1768
1769 static _GLIBCXX_CONSTEXPRconstexpr long double
1770 epsilon() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LDBL_EPSILON__1.08420217248550443401e-19L; }
1771
1772 static _GLIBCXX_CONSTEXPRconstexpr long double
1773 round_error() _GLIBCXX_USE_NOEXCEPTnoexcept { return 0.5L; }
1774
1775 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent = __LDBL_MIN_EXP__(-16381);
1776 static _GLIBCXX_USE_CONSTEXPRconstexpr int min_exponent10 = __LDBL_MIN_10_EXP__(-4931);
1777 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent = __LDBL_MAX_EXP__16384;
1778 static _GLIBCXX_USE_CONSTEXPRconstexpr int max_exponent10 = __LDBL_MAX_10_EXP__4932;
1779
1780 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_infinity = __LDBL_HAS_INFINITY__1;
1781 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_quiet_NaN = __LDBL_HAS_QUIET_NAN__1;
1782 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_signaling_NaN = has_quiet_NaN;
1783 static _GLIBCXX_USE_CONSTEXPRconstexpr float_denorm_style has_denorm
1784 = bool(__LDBL_HAS_DENORM__1) ? denorm_present : denorm_absent;
1785 static _GLIBCXX_USE_CONSTEXPRconstexpr bool has_denorm_loss
1786 = __glibcxx_long_double_has_denorm_loss;
1787
1788 static _GLIBCXX_CONSTEXPRconstexpr long double
1789 infinity() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_huge_vall(); }
1790
1791 static _GLIBCXX_CONSTEXPRconstexpr long double
1792 quiet_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_nanl(""); }
1793
1794 static _GLIBCXX_CONSTEXPRconstexpr long double
1795 signaling_NaN() _GLIBCXX_USE_NOEXCEPTnoexcept { return __builtin_nansl(""); }
1796
1797 static _GLIBCXX_CONSTEXPRconstexpr long double
1798 denorm_min() _GLIBCXX_USE_NOEXCEPTnoexcept { return __LDBL_DENORM_MIN__3.64519953188247460253e-4951L; }
1799
1800 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_iec559
1801 = has_infinity && has_quiet_NaN && has_denorm == denorm_present;
1802 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_bounded = true;
1803 static _GLIBCXX_USE_CONSTEXPRconstexpr bool is_modulo = false;
1804
1805 static _GLIBCXX_USE_CONSTEXPRconstexpr bool traps = __glibcxx_long_double_traps;
1806 static _GLIBCXX_USE_CONSTEXPRconstexpr bool tinyness_before =
1807 __glibcxx_long_double_tinyness_before;
1808 static _GLIBCXX_USE_CONSTEXPRconstexpr float_round_style round_style =
1809 round_to_nearest;
1810 };
1811
1812#undef __glibcxx_long_double_has_denorm_loss
1813#undef __glibcxx_long_double_traps
1814#undef __glibcxx_long_double_tinyness_before
1815
1816_GLIBCXX_END_NAMESPACE_VERSION
1817} // namespace
1818
1819#undef __glibcxx_signed
1820#undef __glibcxx_min
1821#undef __glibcxx_max
1822#undef __glibcxx_digits
1823#undef __glibcxx_digits10
1824#undef __glibcxx_max_digits10
1825
1826#endif // _GLIBCXX_NUMERIC_LIMITS