File: | tools/clang/lib/CodeGen/TargetInfo.cpp |
Warning: | line 9441, column 12 Although the value stored to 'IsCandidate' is used in the enclosing expression, the value is never actually read from 'IsCandidate' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // These classes wrap the information about a call or function |
10 | // definition used to handle ABI compliancy. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "TargetInfo.h" |
15 | #include "ABIInfo.h" |
16 | #include "CGBlocks.h" |
17 | #include "CGCXXABI.h" |
18 | #include "CGValue.h" |
19 | #include "CodeGenFunction.h" |
20 | #include "clang/AST/RecordLayout.h" |
21 | #include "clang/Basic/CodeGenOptions.h" |
22 | #include "clang/CodeGen/CGFunctionInfo.h" |
23 | #include "clang/CodeGen/SwiftCallingConv.h" |
24 | #include "llvm/ADT/StringExtras.h" |
25 | #include "llvm/ADT/StringSwitch.h" |
26 | #include "llvm/ADT/Triple.h" |
27 | #include "llvm/ADT/Twine.h" |
28 | #include "llvm/IR/DataLayout.h" |
29 | #include "llvm/IR/Type.h" |
30 | #include "llvm/Support/raw_ostream.h" |
31 | #include <algorithm> // std::sort |
32 | |
33 | using namespace clang; |
34 | using namespace CodeGen; |
35 | |
36 | // Helper for coercing an aggregate argument or return value into an integer |
37 | // array of the same size (including padding) and alignment. This alternate |
38 | // coercion happens only for the RenderScript ABI and can be removed after |
39 | // runtimes that rely on it are no longer supported. |
40 | // |
41 | // RenderScript assumes that the size of the argument / return value in the IR |
42 | // is the same as the size of the corresponding qualified type. This helper |
43 | // coerces the aggregate type into an array of the same size (including |
44 | // padding). This coercion is used in lieu of expansion of struct members or |
45 | // other canonical coercions that return a coerced-type of larger size. |
46 | // |
47 | // Ty - The argument / return value type |
48 | // Context - The associated ASTContext |
49 | // LLVMContext - The associated LLVMContext |
50 | static ABIArgInfo coerceToIntArray(QualType Ty, |
51 | ASTContext &Context, |
52 | llvm::LLVMContext &LLVMContext) { |
53 | // Alignment and Size are measured in bits. |
54 | const uint64_t Size = Context.getTypeSize(Ty); |
55 | const uint64_t Alignment = Context.getTypeAlign(Ty); |
56 | llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); |
57 | const uint64_t NumElements = (Size + Alignment - 1) / Alignment; |
58 | return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); |
59 | } |
60 | |
61 | static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, |
62 | llvm::Value *Array, |
63 | llvm::Value *Value, |
64 | unsigned FirstIndex, |
65 | unsigned LastIndex) { |
66 | // Alternatively, we could emit this as a loop in the source. |
67 | for (unsigned I = FirstIndex; I <= LastIndex; ++I) { |
68 | llvm::Value *Cell = |
69 | Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); |
70 | Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); |
71 | } |
72 | } |
73 | |
74 | static bool isAggregateTypeForABI(QualType T) { |
75 | return !CodeGenFunction::hasScalarEvaluationKind(T) || |
76 | T->isMemberFunctionPointerType(); |
77 | } |
78 | |
79 | ABIArgInfo |
80 | ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, |
81 | llvm::Type *Padding) const { |
82 | return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), |
83 | ByRef, Realign, Padding); |
84 | } |
85 | |
86 | ABIArgInfo |
87 | ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { |
88 | return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), |
89 | /*ByRef*/ false, Realign); |
90 | } |
91 | |
92 | Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
93 | QualType Ty) const { |
94 | return Address::invalid(); |
95 | } |
96 | |
97 | ABIInfo::~ABIInfo() {} |
98 | |
99 | /// Does the given lowering require more than the given number of |
100 | /// registers when expanded? |
101 | /// |
102 | /// This is intended to be the basis of a reasonable basic implementation |
103 | /// of should{Pass,Return}IndirectlyForSwift. |
104 | /// |
105 | /// For most targets, a limit of four total registers is reasonable; this |
106 | /// limits the amount of code required in order to move around the value |
107 | /// in case it wasn't produced immediately prior to the call by the caller |
108 | /// (or wasn't produced in exactly the right registers) or isn't used |
109 | /// immediately within the callee. But some targets may need to further |
110 | /// limit the register count due to an inability to support that many |
111 | /// return registers. |
112 | static bool occupiesMoreThan(CodeGenTypes &cgt, |
113 | ArrayRef<llvm::Type*> scalarTypes, |
114 | unsigned maxAllRegisters) { |
115 | unsigned intCount = 0, fpCount = 0; |
116 | for (llvm::Type *type : scalarTypes) { |
117 | if (type->isPointerTy()) { |
118 | intCount++; |
119 | } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { |
120 | auto ptrWidth = cgt.getTarget().getPointerWidth(0); |
121 | intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; |
122 | } else { |
123 | assert(type->isVectorTy() || type->isFloatingPointTy())((type->isVectorTy() || type->isFloatingPointTy()) ? static_cast <void> (0) : __assert_fail ("type->isVectorTy() || type->isFloatingPointTy()" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 123, __PRETTY_FUNCTION__)); |
124 | fpCount++; |
125 | } |
126 | } |
127 | |
128 | return (intCount + fpCount > maxAllRegisters); |
129 | } |
130 | |
131 | bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, |
132 | llvm::Type *eltTy, |
133 | unsigned numElts) const { |
134 | // The default implementation of this assumes that the target guarantees |
135 | // 128-bit SIMD support but nothing more. |
136 | return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); |
137 | } |
138 | |
139 | static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, |
140 | CGCXXABI &CXXABI) { |
141 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
142 | if (!RD) { |
143 | if (!RT->getDecl()->canPassInRegisters()) |
144 | return CGCXXABI::RAA_Indirect; |
145 | return CGCXXABI::RAA_Default; |
146 | } |
147 | return CXXABI.getRecordArgABI(RD); |
148 | } |
149 | |
150 | static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, |
151 | CGCXXABI &CXXABI) { |
152 | const RecordType *RT = T->getAs<RecordType>(); |
153 | if (!RT) |
154 | return CGCXXABI::RAA_Default; |
155 | return getRecordArgABI(RT, CXXABI); |
156 | } |
157 | |
158 | static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, |
159 | const ABIInfo &Info) { |
160 | QualType Ty = FI.getReturnType(); |
161 | |
162 | if (const auto *RT = Ty->getAs<RecordType>()) |
163 | if (!isa<CXXRecordDecl>(RT->getDecl()) && |
164 | !RT->getDecl()->canPassInRegisters()) { |
165 | FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); |
166 | return true; |
167 | } |
168 | |
169 | return CXXABI.classifyReturnType(FI); |
170 | } |
171 | |
172 | /// Pass transparent unions as if they were the type of the first element. Sema |
173 | /// should ensure that all elements of the union have the same "machine type". |
174 | static QualType useFirstFieldIfTransparentUnion(QualType Ty) { |
175 | if (const RecordType *UT = Ty->getAsUnionType()) { |
176 | const RecordDecl *UD = UT->getDecl(); |
177 | if (UD->hasAttr<TransparentUnionAttr>()) { |
178 | assert(!UD->field_empty() && "sema created an empty transparent union")((!UD->field_empty() && "sema created an empty transparent union" ) ? static_cast<void> (0) : __assert_fail ("!UD->field_empty() && \"sema created an empty transparent union\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 178, __PRETTY_FUNCTION__)); |
179 | return UD->field_begin()->getType(); |
180 | } |
181 | } |
182 | return Ty; |
183 | } |
184 | |
185 | CGCXXABI &ABIInfo::getCXXABI() const { |
186 | return CGT.getCXXABI(); |
187 | } |
188 | |
189 | ASTContext &ABIInfo::getContext() const { |
190 | return CGT.getContext(); |
191 | } |
192 | |
193 | llvm::LLVMContext &ABIInfo::getVMContext() const { |
194 | return CGT.getLLVMContext(); |
195 | } |
196 | |
197 | const llvm::DataLayout &ABIInfo::getDataLayout() const { |
198 | return CGT.getDataLayout(); |
199 | } |
200 | |
201 | const TargetInfo &ABIInfo::getTarget() const { |
202 | return CGT.getTarget(); |
203 | } |
204 | |
205 | const CodeGenOptions &ABIInfo::getCodeGenOpts() const { |
206 | return CGT.getCodeGenOpts(); |
207 | } |
208 | |
209 | bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } |
210 | |
211 | bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
212 | return false; |
213 | } |
214 | |
215 | bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, |
216 | uint64_t Members) const { |
217 | return false; |
218 | } |
219 | |
220 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void ABIArgInfo::dump() const { |
221 | raw_ostream &OS = llvm::errs(); |
222 | OS << "(ABIArgInfo Kind="; |
223 | switch (TheKind) { |
224 | case Direct: |
225 | OS << "Direct Type="; |
226 | if (llvm::Type *Ty = getCoerceToType()) |
227 | Ty->print(OS); |
228 | else |
229 | OS << "null"; |
230 | break; |
231 | case Extend: |
232 | OS << "Extend"; |
233 | break; |
234 | case Ignore: |
235 | OS << "Ignore"; |
236 | break; |
237 | case InAlloca: |
238 | OS << "InAlloca Offset=" << getInAllocaFieldIndex(); |
239 | break; |
240 | case Indirect: |
241 | OS << "Indirect Align=" << getIndirectAlign().getQuantity() |
242 | << " ByVal=" << getIndirectByVal() |
243 | << " Realign=" << getIndirectRealign(); |
244 | break; |
245 | case Expand: |
246 | OS << "Expand"; |
247 | break; |
248 | case CoerceAndExpand: |
249 | OS << "CoerceAndExpand Type="; |
250 | getCoerceAndExpandType()->print(OS); |
251 | break; |
252 | } |
253 | OS << ")\n"; |
254 | } |
255 | |
256 | // Dynamically round a pointer up to a multiple of the given alignment. |
257 | static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, |
258 | llvm::Value *Ptr, |
259 | CharUnits Align) { |
260 | llvm::Value *PtrAsInt = Ptr; |
261 | // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; |
262 | PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); |
263 | PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, |
264 | llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); |
265 | PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, |
266 | llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); |
267 | PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, |
268 | Ptr->getType(), |
269 | Ptr->getName() + ".aligned"); |
270 | return PtrAsInt; |
271 | } |
272 | |
273 | /// Emit va_arg for a platform using the common void* representation, |
274 | /// where arguments are simply emitted in an array of slots on the stack. |
275 | /// |
276 | /// This version implements the core direct-value passing rules. |
277 | /// |
278 | /// \param SlotSize - The size and alignment of a stack slot. |
279 | /// Each argument will be allocated to a multiple of this number of |
280 | /// slots, and all the slots will be aligned to this value. |
281 | /// \param AllowHigherAlign - The slot alignment is not a cap; |
282 | /// an argument type with an alignment greater than the slot size |
283 | /// will be emitted on a higher-alignment address, potentially |
284 | /// leaving one or more empty slots behind as padding. If this |
285 | /// is false, the returned address might be less-aligned than |
286 | /// DirectAlign. |
287 | static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, |
288 | Address VAListAddr, |
289 | llvm::Type *DirectTy, |
290 | CharUnits DirectSize, |
291 | CharUnits DirectAlign, |
292 | CharUnits SlotSize, |
293 | bool AllowHigherAlign) { |
294 | // Cast the element type to i8* if necessary. Some platforms define |
295 | // va_list as a struct containing an i8* instead of just an i8*. |
296 | if (VAListAddr.getElementType() != CGF.Int8PtrTy) |
297 | VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); |
298 | |
299 | llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); |
300 | |
301 | // If the CC aligns values higher than the slot size, do so if needed. |
302 | Address Addr = Address::invalid(); |
303 | if (AllowHigherAlign && DirectAlign > SlotSize) { |
304 | Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), |
305 | DirectAlign); |
306 | } else { |
307 | Addr = Address(Ptr, SlotSize); |
308 | } |
309 | |
310 | // Advance the pointer past the argument, then store that back. |
311 | CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); |
312 | Address NextPtr = |
313 | CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); |
314 | CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); |
315 | |
316 | // If the argument is smaller than a slot, and this is a big-endian |
317 | // target, the argument will be right-adjusted in its slot. |
318 | if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && |
319 | !DirectTy->isStructTy()) { |
320 | Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); |
321 | } |
322 | |
323 | Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); |
324 | return Addr; |
325 | } |
326 | |
327 | /// Emit va_arg for a platform using the common void* representation, |
328 | /// where arguments are simply emitted in an array of slots on the stack. |
329 | /// |
330 | /// \param IsIndirect - Values of this type are passed indirectly. |
331 | /// \param ValueInfo - The size and alignment of this type, generally |
332 | /// computed with getContext().getTypeInfoInChars(ValueTy). |
333 | /// \param SlotSizeAndAlign - The size and alignment of a stack slot. |
334 | /// Each argument will be allocated to a multiple of this number of |
335 | /// slots, and all the slots will be aligned to this value. |
336 | /// \param AllowHigherAlign - The slot alignment is not a cap; |
337 | /// an argument type with an alignment greater than the slot size |
338 | /// will be emitted on a higher-alignment address, potentially |
339 | /// leaving one or more empty slots behind as padding. |
340 | static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, |
341 | QualType ValueTy, bool IsIndirect, |
342 | std::pair<CharUnits, CharUnits> ValueInfo, |
343 | CharUnits SlotSizeAndAlign, |
344 | bool AllowHigherAlign) { |
345 | // The size and alignment of the value that was passed directly. |
346 | CharUnits DirectSize, DirectAlign; |
347 | if (IsIndirect) { |
348 | DirectSize = CGF.getPointerSize(); |
349 | DirectAlign = CGF.getPointerAlign(); |
350 | } else { |
351 | DirectSize = ValueInfo.first; |
352 | DirectAlign = ValueInfo.second; |
353 | } |
354 | |
355 | // Cast the address we've calculated to the right type. |
356 | llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); |
357 | if (IsIndirect) |
358 | DirectTy = DirectTy->getPointerTo(0); |
359 | |
360 | Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, |
361 | DirectSize, DirectAlign, |
362 | SlotSizeAndAlign, |
363 | AllowHigherAlign); |
364 | |
365 | if (IsIndirect) { |
366 | Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); |
367 | } |
368 | |
369 | return Addr; |
370 | |
371 | } |
372 | |
373 | static Address emitMergePHI(CodeGenFunction &CGF, |
374 | Address Addr1, llvm::BasicBlock *Block1, |
375 | Address Addr2, llvm::BasicBlock *Block2, |
376 | const llvm::Twine &Name = "") { |
377 | assert(Addr1.getType() == Addr2.getType())((Addr1.getType() == Addr2.getType()) ? static_cast<void> (0) : __assert_fail ("Addr1.getType() == Addr2.getType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 377, __PRETTY_FUNCTION__)); |
378 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); |
379 | PHI->addIncoming(Addr1.getPointer(), Block1); |
380 | PHI->addIncoming(Addr2.getPointer(), Block2); |
381 | CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); |
382 | return Address(PHI, Align); |
383 | } |
384 | |
385 | TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } |
386 | |
387 | // If someone can figure out a general rule for this, that would be great. |
388 | // It's probably just doomed to be platform-dependent, though. |
389 | unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { |
390 | // Verified for: |
391 | // x86-64 FreeBSD, Linux, Darwin |
392 | // x86-32 FreeBSD, Linux, Darwin |
393 | // PowerPC Linux, Darwin |
394 | // ARM Darwin (*not* EABI) |
395 | // AArch64 Linux |
396 | return 32; |
397 | } |
398 | |
399 | bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, |
400 | const FunctionNoProtoType *fnType) const { |
401 | // The following conventions are known to require this to be false: |
402 | // x86_stdcall |
403 | // MIPS |
404 | // For everything else, we just prefer false unless we opt out. |
405 | return false; |
406 | } |
407 | |
408 | void |
409 | TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, |
410 | llvm::SmallString<24> &Opt) const { |
411 | // This assumes the user is passing a library name like "rt" instead of a |
412 | // filename like "librt.a/so", and that they don't care whether it's static or |
413 | // dynamic. |
414 | Opt = "-l"; |
415 | Opt += Lib; |
416 | } |
417 | |
418 | unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { |
419 | // OpenCL kernels are called via an explicit runtime API with arguments |
420 | // set with clSetKernelArg(), not as normal sub-functions. |
421 | // Return SPIR_KERNEL by default as the kernel calling convention to |
422 | // ensure the fingerprint is fixed such way that each OpenCL argument |
423 | // gets one matching argument in the produced kernel function argument |
424 | // list to enable feasible implementation of clSetKernelArg() with |
425 | // aggregates etc. In case we would use the default C calling conv here, |
426 | // clSetKernelArg() might break depending on the target-specific |
427 | // conventions; different targets might split structs passed as values |
428 | // to multiple function arguments etc. |
429 | return llvm::CallingConv::SPIR_KERNEL; |
430 | } |
431 | |
432 | llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, |
433 | llvm::PointerType *T, QualType QT) const { |
434 | return llvm::ConstantPointerNull::get(T); |
435 | } |
436 | |
437 | LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, |
438 | const VarDecl *D) const { |
439 | assert(!CGM.getLangOpts().OpenCL &&((!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only" ) ? static_cast<void> (0) : __assert_fail ("!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && \"Address space agnostic languages only\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 441, __PRETTY_FUNCTION__)) |
440 | !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&((!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only" ) ? static_cast<void> (0) : __assert_fail ("!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && \"Address space agnostic languages only\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 441, __PRETTY_FUNCTION__)) |
441 | "Address space agnostic languages only")((!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only" ) ? static_cast<void> (0) : __assert_fail ("!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && \"Address space agnostic languages only\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 441, __PRETTY_FUNCTION__)); |
442 | return D ? D->getType().getAddressSpace() : LangAS::Default; |
443 | } |
444 | |
445 | llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( |
446 | CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, |
447 | LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { |
448 | // Since target may map different address spaces in AST to the same address |
449 | // space, an address space conversion may end up as a bitcast. |
450 | if (auto *C = dyn_cast<llvm::Constant>(Src)) |
451 | return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); |
452 | // Try to preserve the source's name to make IR more readable. |
453 | return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
454 | Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); |
455 | } |
456 | |
457 | llvm::Constant * |
458 | TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, |
459 | LangAS SrcAddr, LangAS DestAddr, |
460 | llvm::Type *DestTy) const { |
461 | // Since target may map different address spaces in AST to the same address |
462 | // space, an address space conversion may end up as a bitcast. |
463 | return llvm::ConstantExpr::getPointerCast(Src, DestTy); |
464 | } |
465 | |
466 | llvm::SyncScope::ID |
467 | TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, |
468 | SyncScope Scope, |
469 | llvm::AtomicOrdering Ordering, |
470 | llvm::LLVMContext &Ctx) const { |
471 | return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ |
472 | } |
473 | |
474 | static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); |
475 | |
476 | /// isEmptyField - Return true iff a the field is "empty", that is it |
477 | /// is an unnamed bit-field or an (array of) empty record(s). |
478 | static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, |
479 | bool AllowArrays) { |
480 | if (FD->isUnnamedBitfield()) |
481 | return true; |
482 | |
483 | QualType FT = FD->getType(); |
484 | |
485 | // Constant arrays of empty records count as empty, strip them off. |
486 | // Constant arrays of zero length always count as empty. |
487 | if (AllowArrays) |
488 | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
489 | if (AT->getSize() == 0) |
490 | return true; |
491 | FT = AT->getElementType(); |
492 | } |
493 | |
494 | const RecordType *RT = FT->getAs<RecordType>(); |
495 | if (!RT) |
496 | return false; |
497 | |
498 | // C++ record fields are never empty, at least in the Itanium ABI. |
499 | // |
500 | // FIXME: We should use a predicate for whether this behavior is true in the |
501 | // current ABI. |
502 | if (isa<CXXRecordDecl>(RT->getDecl())) |
503 | return false; |
504 | |
505 | return isEmptyRecord(Context, FT, AllowArrays); |
506 | } |
507 | |
508 | /// isEmptyRecord - Return true iff a structure contains only empty |
509 | /// fields. Note that a structure with a flexible array member is not |
510 | /// considered empty. |
511 | static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { |
512 | const RecordType *RT = T->getAs<RecordType>(); |
513 | if (!RT) |
514 | return false; |
515 | const RecordDecl *RD = RT->getDecl(); |
516 | if (RD->hasFlexibleArrayMember()) |
517 | return false; |
518 | |
519 | // If this is a C++ record, check the bases first. |
520 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
521 | for (const auto &I : CXXRD->bases()) |
522 | if (!isEmptyRecord(Context, I.getType(), true)) |
523 | return false; |
524 | |
525 | for (const auto *I : RD->fields()) |
526 | if (!isEmptyField(Context, I, AllowArrays)) |
527 | return false; |
528 | return true; |
529 | } |
530 | |
531 | /// isSingleElementStruct - Determine if a structure is a "single |
532 | /// element struct", i.e. it has exactly one non-empty field or |
533 | /// exactly one field which is itself a single element |
534 | /// struct. Structures with flexible array members are never |
535 | /// considered single element structs. |
536 | /// |
537 | /// \return The field declaration for the single non-empty field, if |
538 | /// it exists. |
539 | static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { |
540 | const RecordType *RT = T->getAs<RecordType>(); |
541 | if (!RT) |
542 | return nullptr; |
543 | |
544 | const RecordDecl *RD = RT->getDecl(); |
545 | if (RD->hasFlexibleArrayMember()) |
546 | return nullptr; |
547 | |
548 | const Type *Found = nullptr; |
549 | |
550 | // If this is a C++ record, check the bases first. |
551 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
552 | for (const auto &I : CXXRD->bases()) { |
553 | // Ignore empty records. |
554 | if (isEmptyRecord(Context, I.getType(), true)) |
555 | continue; |
556 | |
557 | // If we already found an element then this isn't a single-element struct. |
558 | if (Found) |
559 | return nullptr; |
560 | |
561 | // If this is non-empty and not a single element struct, the composite |
562 | // cannot be a single element struct. |
563 | Found = isSingleElementStruct(I.getType(), Context); |
564 | if (!Found) |
565 | return nullptr; |
566 | } |
567 | } |
568 | |
569 | // Check for single element. |
570 | for (const auto *FD : RD->fields()) { |
571 | QualType FT = FD->getType(); |
572 | |
573 | // Ignore empty fields. |
574 | if (isEmptyField(Context, FD, true)) |
575 | continue; |
576 | |
577 | // If we already found an element then this isn't a single-element |
578 | // struct. |
579 | if (Found) |
580 | return nullptr; |
581 | |
582 | // Treat single element arrays as the element. |
583 | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
584 | if (AT->getSize().getZExtValue() != 1) |
585 | break; |
586 | FT = AT->getElementType(); |
587 | } |
588 | |
589 | if (!isAggregateTypeForABI(FT)) { |
590 | Found = FT.getTypePtr(); |
591 | } else { |
592 | Found = isSingleElementStruct(FT, Context); |
593 | if (!Found) |
594 | return nullptr; |
595 | } |
596 | } |
597 | |
598 | // We don't consider a struct a single-element struct if it has |
599 | // padding beyond the element type. |
600 | if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) |
601 | return nullptr; |
602 | |
603 | return Found; |
604 | } |
605 | |
606 | namespace { |
607 | Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
608 | const ABIArgInfo &AI) { |
609 | // This default implementation defers to the llvm backend's va_arg |
610 | // instruction. It can handle only passing arguments directly |
611 | // (typically only handled in the backend for primitive types), or |
612 | // aggregates passed indirectly by pointer (NOTE: if the "byval" |
613 | // flag has ABI impact in the callee, this implementation cannot |
614 | // work.) |
615 | |
616 | // Only a few cases are covered here at the moment -- those needed |
617 | // by the default abi. |
618 | llvm::Value *Val; |
619 | |
620 | if (AI.isIndirect()) { |
621 | assert(!AI.getPaddingType() &&((!AI.getPaddingType() && "Unexpected PaddingType seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getPaddingType() && \"Unexpected PaddingType seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 622, __PRETTY_FUNCTION__)) |
622 | "Unexpected PaddingType seen in arginfo in generic VAArg emitter!")((!AI.getPaddingType() && "Unexpected PaddingType seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getPaddingType() && \"Unexpected PaddingType seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 622, __PRETTY_FUNCTION__)); |
623 | assert(((!AI.getIndirectRealign() && "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getIndirectRealign() && \"Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 625, __PRETTY_FUNCTION__)) |
624 | !AI.getIndirectRealign() &&((!AI.getIndirectRealign() && "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getIndirectRealign() && \"Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 625, __PRETTY_FUNCTION__)) |
625 | "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!")((!AI.getIndirectRealign() && "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getIndirectRealign() && \"Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 625, __PRETTY_FUNCTION__)); |
626 | |
627 | auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); |
628 | CharUnits TyAlignForABI = TyInfo.second; |
629 | |
630 | llvm::Type *BaseTy = |
631 | llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); |
632 | llvm::Value *Addr = |
633 | CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); |
634 | return Address(Addr, TyAlignForABI); |
635 | } else { |
636 | assert((AI.isDirect() || AI.isExtend()) &&(((AI.isDirect() || AI.isExtend()) && "Unexpected ArgInfo Kind in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("(AI.isDirect() || AI.isExtend()) && \"Unexpected ArgInfo Kind in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 637, __PRETTY_FUNCTION__)) |
637 | "Unexpected ArgInfo Kind in generic VAArg emitter!")(((AI.isDirect() || AI.isExtend()) && "Unexpected ArgInfo Kind in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("(AI.isDirect() || AI.isExtend()) && \"Unexpected ArgInfo Kind in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 637, __PRETTY_FUNCTION__)); |
638 | |
639 | assert(!AI.getInReg() &&((!AI.getInReg() && "Unexpected InReg seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getInReg() && \"Unexpected InReg seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 640, __PRETTY_FUNCTION__)) |
640 | "Unexpected InReg seen in arginfo in generic VAArg emitter!")((!AI.getInReg() && "Unexpected InReg seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getInReg() && \"Unexpected InReg seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 640, __PRETTY_FUNCTION__)); |
641 | assert(!AI.getPaddingType() &&((!AI.getPaddingType() && "Unexpected PaddingType seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getPaddingType() && \"Unexpected PaddingType seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 642, __PRETTY_FUNCTION__)) |
642 | "Unexpected PaddingType seen in arginfo in generic VAArg emitter!")((!AI.getPaddingType() && "Unexpected PaddingType seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getPaddingType() && \"Unexpected PaddingType seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 642, __PRETTY_FUNCTION__)); |
643 | assert(!AI.getDirectOffset() &&((!AI.getDirectOffset() && "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getDirectOffset() && \"Unexpected DirectOffset seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 644, __PRETTY_FUNCTION__)) |
644 | "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!")((!AI.getDirectOffset() && "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getDirectOffset() && \"Unexpected DirectOffset seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 644, __PRETTY_FUNCTION__)); |
645 | assert(!AI.getCoerceToType() &&((!AI.getCoerceToType() && "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getCoerceToType() && \"Unexpected CoerceToType seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 646, __PRETTY_FUNCTION__)) |
646 | "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!")((!AI.getCoerceToType() && "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!" ) ? static_cast<void> (0) : __assert_fail ("!AI.getCoerceToType() && \"Unexpected CoerceToType seen in arginfo in generic VAArg emitter!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 646, __PRETTY_FUNCTION__)); |
647 | |
648 | Address Temp = CGF.CreateMemTemp(Ty, "varet"); |
649 | Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); |
650 | CGF.Builder.CreateStore(Val, Temp); |
651 | return Temp; |
652 | } |
653 | } |
654 | |
655 | /// DefaultABIInfo - The default implementation for ABI specific |
656 | /// details. This implementation provides information which results in |
657 | /// self-consistent and sensible LLVM IR generation, but does not |
658 | /// conform to any particular ABI. |
659 | class DefaultABIInfo : public ABIInfo { |
660 | public: |
661 | DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} |
662 | |
663 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
664 | ABIArgInfo classifyArgumentType(QualType RetTy) const; |
665 | |
666 | void computeInfo(CGFunctionInfo &FI) const override { |
667 | if (!getCXXABI().classifyReturnType(FI)) |
668 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
669 | for (auto &I : FI.arguments()) |
670 | I.info = classifyArgumentType(I.type); |
671 | } |
672 | |
673 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
674 | QualType Ty) const override { |
675 | return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); |
676 | } |
677 | }; |
678 | |
679 | class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { |
680 | public: |
681 | DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
682 | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
683 | }; |
684 | |
685 | ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { |
686 | Ty = useFirstFieldIfTransparentUnion(Ty); |
687 | |
688 | if (isAggregateTypeForABI(Ty)) { |
689 | // Records with non-trivial destructors/copy-constructors should not be |
690 | // passed by value. |
691 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
692 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
693 | |
694 | return getNaturalAlignIndirect(Ty); |
695 | } |
696 | |
697 | // Treat an enum type as its underlying type. |
698 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
699 | Ty = EnumTy->getDecl()->getIntegerType(); |
700 | |
701 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
702 | : ABIArgInfo::getDirect()); |
703 | } |
704 | |
705 | ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { |
706 | if (RetTy->isVoidType()) |
707 | return ABIArgInfo::getIgnore(); |
708 | |
709 | if (isAggregateTypeForABI(RetTy)) |
710 | return getNaturalAlignIndirect(RetTy); |
711 | |
712 | // Treat an enum type as its underlying type. |
713 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
714 | RetTy = EnumTy->getDecl()->getIntegerType(); |
715 | |
716 | return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
717 | : ABIArgInfo::getDirect()); |
718 | } |
719 | |
720 | //===----------------------------------------------------------------------===// |
721 | // WebAssembly ABI Implementation |
722 | // |
723 | // This is a very simple ABI that relies a lot on DefaultABIInfo. |
724 | //===----------------------------------------------------------------------===// |
725 | |
726 | class WebAssemblyABIInfo final : public SwiftABIInfo { |
727 | DefaultABIInfo defaultInfo; |
728 | |
729 | public: |
730 | explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) |
731 | : SwiftABIInfo(CGT), defaultInfo(CGT) {} |
732 | |
733 | private: |
734 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
735 | ABIArgInfo classifyArgumentType(QualType Ty) const; |
736 | |
737 | // DefaultABIInfo's classifyReturnType and classifyArgumentType are |
738 | // non-virtual, but computeInfo and EmitVAArg are virtual, so we |
739 | // overload them. |
740 | void computeInfo(CGFunctionInfo &FI) const override { |
741 | if (!getCXXABI().classifyReturnType(FI)) |
742 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
743 | for (auto &Arg : FI.arguments()) |
744 | Arg.info = classifyArgumentType(Arg.type); |
745 | } |
746 | |
747 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
748 | QualType Ty) const override; |
749 | |
750 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
751 | bool asReturnValue) const override { |
752 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
753 | } |
754 | |
755 | bool isSwiftErrorInRegister() const override { |
756 | return false; |
757 | } |
758 | }; |
759 | |
760 | class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { |
761 | public: |
762 | explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
763 | : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} |
764 | |
765 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
766 | CodeGen::CodeGenModule &CGM) const override { |
767 | TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
768 | if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
769 | if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { |
770 | llvm::Function *Fn = cast<llvm::Function>(GV); |
771 | llvm::AttrBuilder B; |
772 | B.addAttribute("wasm-import-module", Attr->getImportModule()); |
773 | Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); |
774 | } |
775 | if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { |
776 | llvm::Function *Fn = cast<llvm::Function>(GV); |
777 | llvm::AttrBuilder B; |
778 | B.addAttribute("wasm-import-name", Attr->getImportName()); |
779 | Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); |
780 | } |
781 | } |
782 | |
783 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
784 | llvm::Function *Fn = cast<llvm::Function>(GV); |
785 | if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) |
786 | Fn->addFnAttr("no-prototype"); |
787 | } |
788 | } |
789 | }; |
790 | |
791 | /// Classify argument of given type \p Ty. |
792 | ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { |
793 | Ty = useFirstFieldIfTransparentUnion(Ty); |
794 | |
795 | if (isAggregateTypeForABI(Ty)) { |
796 | // Records with non-trivial destructors/copy-constructors should not be |
797 | // passed by value. |
798 | if (auto RAA = getRecordArgABI(Ty, getCXXABI())) |
799 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
800 | // Ignore empty structs/unions. |
801 | if (isEmptyRecord(getContext(), Ty, true)) |
802 | return ABIArgInfo::getIgnore(); |
803 | // Lower single-element structs to just pass a regular value. TODO: We |
804 | // could do reasonable-size multiple-element structs too, using getExpand(), |
805 | // though watch out for things like bitfields. |
806 | if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) |
807 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
808 | } |
809 | |
810 | // Otherwise just do the default thing. |
811 | return defaultInfo.classifyArgumentType(Ty); |
812 | } |
813 | |
814 | ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { |
815 | if (isAggregateTypeForABI(RetTy)) { |
816 | // Records with non-trivial destructors/copy-constructors should not be |
817 | // returned by value. |
818 | if (!getRecordArgABI(RetTy, getCXXABI())) { |
819 | // Ignore empty structs/unions. |
820 | if (isEmptyRecord(getContext(), RetTy, true)) |
821 | return ABIArgInfo::getIgnore(); |
822 | // Lower single-element structs to just return a regular value. TODO: We |
823 | // could do reasonable-size multiple-element structs too, using |
824 | // ABIArgInfo::getDirect(). |
825 | if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
826 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
827 | } |
828 | } |
829 | |
830 | // Otherwise just do the default thing. |
831 | return defaultInfo.classifyReturnType(RetTy); |
832 | } |
833 | |
834 | Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
835 | QualType Ty) const { |
836 | bool IsIndirect = isAggregateTypeForABI(Ty) && |
837 | !isEmptyRecord(getContext(), Ty, true) && |
838 | !isSingleElementStruct(Ty, getContext()); |
839 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
840 | getContext().getTypeInfoInChars(Ty), |
841 | CharUnits::fromQuantity(4), |
842 | /*AllowHigherAlign=*/true); |
843 | } |
844 | |
845 | //===----------------------------------------------------------------------===// |
846 | // le32/PNaCl bitcode ABI Implementation |
847 | // |
848 | // This is a simplified version of the x86_32 ABI. Arguments and return values |
849 | // are always passed on the stack. |
850 | //===----------------------------------------------------------------------===// |
851 | |
852 | class PNaClABIInfo : public ABIInfo { |
853 | public: |
854 | PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} |
855 | |
856 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
857 | ABIArgInfo classifyArgumentType(QualType RetTy) const; |
858 | |
859 | void computeInfo(CGFunctionInfo &FI) const override; |
860 | Address EmitVAArg(CodeGenFunction &CGF, |
861 | Address VAListAddr, QualType Ty) const override; |
862 | }; |
863 | |
864 | class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { |
865 | public: |
866 | PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
867 | : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} |
868 | }; |
869 | |
870 | void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { |
871 | if (!getCXXABI().classifyReturnType(FI)) |
872 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
873 | |
874 | for (auto &I : FI.arguments()) |
875 | I.info = classifyArgumentType(I.type); |
876 | } |
877 | |
878 | Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
879 | QualType Ty) const { |
880 | // The PNaCL ABI is a bit odd, in that varargs don't use normal |
881 | // function classification. Structs get passed directly for varargs |
882 | // functions, through a rewriting transform in |
883 | // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows |
884 | // this target to actually support a va_arg instructions with an |
885 | // aggregate type, unlike other targets. |
886 | return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); |
887 | } |
888 | |
889 | /// Classify argument of given type \p Ty. |
890 | ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { |
891 | if (isAggregateTypeForABI(Ty)) { |
892 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
893 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
894 | return getNaturalAlignIndirect(Ty); |
895 | } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { |
896 | // Treat an enum type as its underlying type. |
897 | Ty = EnumTy->getDecl()->getIntegerType(); |
898 | } else if (Ty->isFloatingType()) { |
899 | // Floating-point types don't go inreg. |
900 | return ABIArgInfo::getDirect(); |
901 | } |
902 | |
903 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
904 | : ABIArgInfo::getDirect()); |
905 | } |
906 | |
907 | ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { |
908 | if (RetTy->isVoidType()) |
909 | return ABIArgInfo::getIgnore(); |
910 | |
911 | // In the PNaCl ABI we always return records/structures on the stack. |
912 | if (isAggregateTypeForABI(RetTy)) |
913 | return getNaturalAlignIndirect(RetTy); |
914 | |
915 | // Treat an enum type as its underlying type. |
916 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
917 | RetTy = EnumTy->getDecl()->getIntegerType(); |
918 | |
919 | return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
920 | : ABIArgInfo::getDirect()); |
921 | } |
922 | |
923 | /// IsX86_MMXType - Return true if this is an MMX type. |
924 | bool IsX86_MMXType(llvm::Type *IRType) { |
925 | // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. |
926 | return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && |
927 | cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && |
928 | IRType->getScalarSizeInBits() != 64; |
929 | } |
930 | |
931 | static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
932 | StringRef Constraint, |
933 | llvm::Type* Ty) { |
934 | bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) |
935 | .Cases("y", "&y", "^Ym", true) |
936 | .Default(false); |
937 | if (IsMMXCons && Ty->isVectorTy()) { |
938 | if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { |
939 | // Invalid MMX constraint |
940 | return nullptr; |
941 | } |
942 | |
943 | return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); |
944 | } |
945 | |
946 | // No operation needed |
947 | return Ty; |
948 | } |
949 | |
950 | /// Returns true if this type can be passed in SSE registers with the |
951 | /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. |
952 | static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { |
953 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
954 | if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { |
955 | if (BT->getKind() == BuiltinType::LongDouble) { |
956 | if (&Context.getTargetInfo().getLongDoubleFormat() == |
957 | &llvm::APFloat::x87DoubleExtended()) |
958 | return false; |
959 | } |
960 | return true; |
961 | } |
962 | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
963 | // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX |
964 | // registers specially. |
965 | unsigned VecSize = Context.getTypeSize(VT); |
966 | if (VecSize == 128 || VecSize == 256 || VecSize == 512) |
967 | return true; |
968 | } |
969 | return false; |
970 | } |
971 | |
972 | /// Returns true if this aggregate is small enough to be passed in SSE registers |
973 | /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. |
974 | static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { |
975 | return NumMembers <= 4; |
976 | } |
977 | |
978 | /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. |
979 | static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { |
980 | auto AI = ABIArgInfo::getDirect(T); |
981 | AI.setInReg(true); |
982 | AI.setCanBeFlattened(false); |
983 | return AI; |
984 | } |
985 | |
986 | //===----------------------------------------------------------------------===// |
987 | // X86-32 ABI Implementation |
988 | //===----------------------------------------------------------------------===// |
989 | |
990 | /// Similar to llvm::CCState, but for Clang. |
991 | struct CCState { |
992 | CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} |
993 | |
994 | unsigned CC; |
995 | unsigned FreeRegs; |
996 | unsigned FreeSSERegs; |
997 | }; |
998 | |
999 | enum { |
1000 | // Vectorcall only allows the first 6 parameters to be passed in registers. |
1001 | VectorcallMaxParamNumAsReg = 6 |
1002 | }; |
1003 | |
1004 | /// X86_32ABIInfo - The X86-32 ABI information. |
1005 | class X86_32ABIInfo : public SwiftABIInfo { |
1006 | enum Class { |
1007 | Integer, |
1008 | Float |
1009 | }; |
1010 | |
1011 | static const unsigned MinABIStackAlignInBytes = 4; |
1012 | |
1013 | bool IsDarwinVectorABI; |
1014 | bool IsRetSmallStructInRegABI; |
1015 | bool IsWin32StructABI; |
1016 | bool IsSoftFloatABI; |
1017 | bool IsMCUABI; |
1018 | unsigned DefaultNumRegisterParameters; |
1019 | |
1020 | static bool isRegisterSize(unsigned Size) { |
1021 | return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
1022 | } |
1023 | |
1024 | bool isHomogeneousAggregateBaseType(QualType Ty) const override { |
1025 | // FIXME: Assumes vectorcall is in use. |
1026 | return isX86VectorTypeForVectorCall(getContext(), Ty); |
1027 | } |
1028 | |
1029 | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
1030 | uint64_t NumMembers) const override { |
1031 | // FIXME: Assumes vectorcall is in use. |
1032 | return isX86VectorCallAggregateSmallEnough(NumMembers); |
1033 | } |
1034 | |
1035 | bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; |
1036 | |
1037 | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
1038 | /// such that the argument will be passed in memory. |
1039 | ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; |
1040 | |
1041 | ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; |
1042 | |
1043 | /// Return the alignment to use for the given type on the stack. |
1044 | unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; |
1045 | |
1046 | Class classify(QualType Ty) const; |
1047 | ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; |
1048 | ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; |
1049 | |
1050 | /// Updates the number of available free registers, returns |
1051 | /// true if any registers were allocated. |
1052 | bool updateFreeRegs(QualType Ty, CCState &State) const; |
1053 | |
1054 | bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, |
1055 | bool &NeedsPadding) const; |
1056 | bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; |
1057 | |
1058 | bool canExpandIndirectArgument(QualType Ty) const; |
1059 | |
1060 | /// Rewrite the function info so that all memory arguments use |
1061 | /// inalloca. |
1062 | void rewriteWithInAlloca(CGFunctionInfo &FI) const; |
1063 | |
1064 | void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, |
1065 | CharUnits &StackOffset, ABIArgInfo &Info, |
1066 | QualType Type) const; |
1067 | void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, |
1068 | bool &UsedInAlloca) const; |
1069 | |
1070 | public: |
1071 | |
1072 | void computeInfo(CGFunctionInfo &FI) const override; |
1073 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
1074 | QualType Ty) const override; |
1075 | |
1076 | X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, |
1077 | bool RetSmallStructInRegABI, bool Win32StructABI, |
1078 | unsigned NumRegisterParameters, bool SoftFloatABI) |
1079 | : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), |
1080 | IsRetSmallStructInRegABI(RetSmallStructInRegABI), |
1081 | IsWin32StructABI(Win32StructABI), |
1082 | IsSoftFloatABI(SoftFloatABI), |
1083 | IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), |
1084 | DefaultNumRegisterParameters(NumRegisterParameters) {} |
1085 | |
1086 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
1087 | bool asReturnValue) const override { |
1088 | // LLVM's x86-32 lowering currently only assigns up to three |
1089 | // integer registers and three fp registers. Oddly, it'll use up to |
1090 | // four vector registers for vectors, but those can overlap with the |
1091 | // scalar registers. |
1092 | return occupiesMoreThan(CGT, scalars, /*total*/ 3); |
1093 | } |
1094 | |
1095 | bool isSwiftErrorInRegister() const override { |
1096 | // x86-32 lowering does not support passing swifterror in a register. |
1097 | return false; |
1098 | } |
1099 | }; |
1100 | |
1101 | class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { |
1102 | public: |
1103 | X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, |
1104 | bool RetSmallStructInRegABI, bool Win32StructABI, |
1105 | unsigned NumRegisterParameters, bool SoftFloatABI) |
1106 | : TargetCodeGenInfo(new X86_32ABIInfo( |
1107 | CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, |
1108 | NumRegisterParameters, SoftFloatABI)) {} |
1109 | |
1110 | static bool isStructReturnInRegABI( |
1111 | const llvm::Triple &Triple, const CodeGenOptions &Opts); |
1112 | |
1113 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
1114 | CodeGen::CodeGenModule &CGM) const override; |
1115 | |
1116 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
1117 | // Darwin uses different dwarf register numbers for EH. |
1118 | if (CGM.getTarget().getTriple().isOSDarwin()) return 5; |
1119 | return 4; |
1120 | } |
1121 | |
1122 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
1123 | llvm::Value *Address) const override; |
1124 | |
1125 | llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
1126 | StringRef Constraint, |
1127 | llvm::Type* Ty) const override { |
1128 | return X86AdjustInlineAsmType(CGF, Constraint, Ty); |
1129 | } |
1130 | |
1131 | void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, |
1132 | std::string &Constraints, |
1133 | std::vector<llvm::Type *> &ResultRegTypes, |
1134 | std::vector<llvm::Type *> &ResultTruncRegTypes, |
1135 | std::vector<LValue> &ResultRegDests, |
1136 | std::string &AsmString, |
1137 | unsigned NumOutputs) const override; |
1138 | |
1139 | llvm::Constant * |
1140 | getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { |
1141 | unsigned Sig = (0xeb << 0) | // jmp rel8 |
1142 | (0x06 << 8) | // .+0x08 |
1143 | ('v' << 16) | |
1144 | ('2' << 24); |
1145 | return llvm::ConstantInt::get(CGM.Int32Ty, Sig); |
1146 | } |
1147 | |
1148 | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
1149 | return "movl\t%ebp, %ebp" |
1150 | "\t\t// marker for objc_retainAutoreleaseReturnValue"; |
1151 | } |
1152 | }; |
1153 | |
1154 | } |
1155 | |
1156 | /// Rewrite input constraint references after adding some output constraints. |
1157 | /// In the case where there is one output and one input and we add one output, |
1158 | /// we need to replace all operand references greater than or equal to 1: |
1159 | /// mov $0, $1 |
1160 | /// mov eax, $1 |
1161 | /// The result will be: |
1162 | /// mov $0, $2 |
1163 | /// mov eax, $2 |
1164 | static void rewriteInputConstraintReferences(unsigned FirstIn, |
1165 | unsigned NumNewOuts, |
1166 | std::string &AsmString) { |
1167 | std::string Buf; |
1168 | llvm::raw_string_ostream OS(Buf); |
1169 | size_t Pos = 0; |
1170 | while (Pos < AsmString.size()) { |
1171 | size_t DollarStart = AsmString.find('$', Pos); |
1172 | if (DollarStart == std::string::npos) |
1173 | DollarStart = AsmString.size(); |
1174 | size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); |
1175 | if (DollarEnd == std::string::npos) |
1176 | DollarEnd = AsmString.size(); |
1177 | OS << StringRef(&AsmString[Pos], DollarEnd - Pos); |
1178 | Pos = DollarEnd; |
1179 | size_t NumDollars = DollarEnd - DollarStart; |
1180 | if (NumDollars % 2 != 0 && Pos < AsmString.size()) { |
1181 | // We have an operand reference. |
1182 | size_t DigitStart = Pos; |
1183 | size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); |
1184 | if (DigitEnd == std::string::npos) |
1185 | DigitEnd = AsmString.size(); |
1186 | StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); |
1187 | unsigned OperandIndex; |
1188 | if (!OperandStr.getAsInteger(10, OperandIndex)) { |
1189 | if (OperandIndex >= FirstIn) |
1190 | OperandIndex += NumNewOuts; |
1191 | OS << OperandIndex; |
1192 | } else { |
1193 | OS << OperandStr; |
1194 | } |
1195 | Pos = DigitEnd; |
1196 | } |
1197 | } |
1198 | AsmString = std::move(OS.str()); |
1199 | } |
1200 | |
1201 | /// Add output constraints for EAX:EDX because they are return registers. |
1202 | void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( |
1203 | CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, |
1204 | std::vector<llvm::Type *> &ResultRegTypes, |
1205 | std::vector<llvm::Type *> &ResultTruncRegTypes, |
1206 | std::vector<LValue> &ResultRegDests, std::string &AsmString, |
1207 | unsigned NumOutputs) const { |
1208 | uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); |
1209 | |
1210 | // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is |
1211 | // larger. |
1212 | if (!Constraints.empty()) |
1213 | Constraints += ','; |
1214 | if (RetWidth <= 32) { |
1215 | Constraints += "={eax}"; |
1216 | ResultRegTypes.push_back(CGF.Int32Ty); |
1217 | } else { |
1218 | // Use the 'A' constraint for EAX:EDX. |
1219 | Constraints += "=A"; |
1220 | ResultRegTypes.push_back(CGF.Int64Ty); |
1221 | } |
1222 | |
1223 | // Truncate EAX or EAX:EDX to an integer of the appropriate size. |
1224 | llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); |
1225 | ResultTruncRegTypes.push_back(CoerceTy); |
1226 | |
1227 | // Coerce the integer by bitcasting the return slot pointer. |
1228 | ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), |
1229 | CoerceTy->getPointerTo())); |
1230 | ResultRegDests.push_back(ReturnSlot); |
1231 | |
1232 | rewriteInputConstraintReferences(NumOutputs, 1, AsmString); |
1233 | } |
1234 | |
1235 | /// shouldReturnTypeInRegister - Determine if the given type should be |
1236 | /// returned in a register (for the Darwin and MCU ABI). |
1237 | bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
1238 | ASTContext &Context) const { |
1239 | uint64_t Size = Context.getTypeSize(Ty); |
1240 | |
1241 | // For i386, type must be register sized. |
1242 | // For the MCU ABI, it only needs to be <= 8-byte |
1243 | if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) |
1244 | return false; |
1245 | |
1246 | if (Ty->isVectorType()) { |
1247 | // 64- and 128- bit vectors inside structures are not returned in |
1248 | // registers. |
1249 | if (Size == 64 || Size == 128) |
1250 | return false; |
1251 | |
1252 | return true; |
1253 | } |
1254 | |
1255 | // If this is a builtin, pointer, enum, complex type, member pointer, or |
1256 | // member function pointer it is ok. |
1257 | if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || |
1258 | Ty->isAnyComplexType() || Ty->isEnumeralType() || |
1259 | Ty->isBlockPointerType() || Ty->isMemberPointerType()) |
1260 | return true; |
1261 | |
1262 | // Arrays are treated like records. |
1263 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
1264 | return shouldReturnTypeInRegister(AT->getElementType(), Context); |
1265 | |
1266 | // Otherwise, it must be a record type. |
1267 | const RecordType *RT = Ty->getAs<RecordType>(); |
1268 | if (!RT) return false; |
1269 | |
1270 | // FIXME: Traverse bases here too. |
1271 | |
1272 | // Structure types are passed in register if all fields would be |
1273 | // passed in a register. |
1274 | for (const auto *FD : RT->getDecl()->fields()) { |
1275 | // Empty fields are ignored. |
1276 | if (isEmptyField(Context, FD, true)) |
1277 | continue; |
1278 | |
1279 | // Check fields recursively. |
1280 | if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
1281 | return false; |
1282 | } |
1283 | return true; |
1284 | } |
1285 | |
1286 | static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
1287 | // Treat complex types as the element type. |
1288 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
1289 | Ty = CTy->getElementType(); |
1290 | |
1291 | // Check for a type which we know has a simple scalar argument-passing |
1292 | // convention without any padding. (We're specifically looking for 32 |
1293 | // and 64-bit integer and integer-equivalents, float, and double.) |
1294 | if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && |
1295 | !Ty->isEnumeralType() && !Ty->isBlockPointerType()) |
1296 | return false; |
1297 | |
1298 | uint64_t Size = Context.getTypeSize(Ty); |
1299 | return Size == 32 || Size == 64; |
1300 | } |
1301 | |
1302 | static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, |
1303 | uint64_t &Size) { |
1304 | for (const auto *FD : RD->fields()) { |
1305 | // Scalar arguments on the stack get 4 byte alignment on x86. If the |
1306 | // argument is smaller than 32-bits, expanding the struct will create |
1307 | // alignment padding. |
1308 | if (!is32Or64BitBasicType(FD->getType(), Context)) |
1309 | return false; |
1310 | |
1311 | // FIXME: Reject bit-fields wholesale; there are two problems, we don't know |
1312 | // how to expand them yet, and the predicate for telling if a bitfield still |
1313 | // counts as "basic" is more complicated than what we were doing previously. |
1314 | if (FD->isBitField()) |
1315 | return false; |
1316 | |
1317 | Size += Context.getTypeSize(FD->getType()); |
1318 | } |
1319 | return true; |
1320 | } |
1321 | |
1322 | static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, |
1323 | uint64_t &Size) { |
1324 | // Don't do this if there are any non-empty bases. |
1325 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
1326 | if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), |
1327 | Size)) |
1328 | return false; |
1329 | } |
1330 | if (!addFieldSizes(Context, RD, Size)) |
1331 | return false; |
1332 | return true; |
1333 | } |
1334 | |
1335 | /// Test whether an argument type which is to be passed indirectly (on the |
1336 | /// stack) would have the equivalent layout if it was expanded into separate |
1337 | /// arguments. If so, we prefer to do the latter to avoid inhibiting |
1338 | /// optimizations. |
1339 | bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { |
1340 | // We can only expand structure types. |
1341 | const RecordType *RT = Ty->getAs<RecordType>(); |
1342 | if (!RT) |
1343 | return false; |
1344 | const RecordDecl *RD = RT->getDecl(); |
1345 | uint64_t Size = 0; |
1346 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
1347 | if (!IsWin32StructABI) { |
1348 | // On non-Windows, we have to conservatively match our old bitcode |
1349 | // prototypes in order to be ABI-compatible at the bitcode level. |
1350 | if (!CXXRD->isCLike()) |
1351 | return false; |
1352 | } else { |
1353 | // Don't do this for dynamic classes. |
1354 | if (CXXRD->isDynamicClass()) |
1355 | return false; |
1356 | } |
1357 | if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) |
1358 | return false; |
1359 | } else { |
1360 | if (!addFieldSizes(getContext(), RD, Size)) |
1361 | return false; |
1362 | } |
1363 | |
1364 | // We can do this if there was no alignment padding. |
1365 | return Size == getContext().getTypeSize(Ty); |
1366 | } |
1367 | |
1368 | ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { |
1369 | // If the return value is indirect, then the hidden argument is consuming one |
1370 | // integer register. |
1371 | if (State.FreeRegs) { |
1372 | --State.FreeRegs; |
1373 | if (!IsMCUABI) |
1374 | return getNaturalAlignIndirectInReg(RetTy); |
1375 | } |
1376 | return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); |
1377 | } |
1378 | |
1379 | ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, |
1380 | CCState &State) const { |
1381 | if (RetTy->isVoidType()) |
1382 | return ABIArgInfo::getIgnore(); |
1383 | |
1384 | const Type *Base = nullptr; |
1385 | uint64_t NumElts = 0; |
1386 | if ((State.CC == llvm::CallingConv::X86_VectorCall || |
1387 | State.CC == llvm::CallingConv::X86_RegCall) && |
1388 | isHomogeneousAggregate(RetTy, Base, NumElts)) { |
1389 | // The LLVM struct type for such an aggregate should lower properly. |
1390 | return ABIArgInfo::getDirect(); |
1391 | } |
1392 | |
1393 | if (const VectorType *VT = RetTy->getAs<VectorType>()) { |
1394 | // On Darwin, some vectors are returned in registers. |
1395 | if (IsDarwinVectorABI) { |
1396 | uint64_t Size = getContext().getTypeSize(RetTy); |
1397 | |
1398 | // 128-bit vectors are a special case; they are returned in |
1399 | // registers and we need to make sure to pick a type the LLVM |
1400 | // backend will like. |
1401 | if (Size == 128) |
1402 | return ABIArgInfo::getDirect(llvm::VectorType::get( |
1403 | llvm::Type::getInt64Ty(getVMContext()), 2)); |
1404 | |
1405 | // Always return in register if it fits in a general purpose |
1406 | // register, or if it is 64 bits and has a single element. |
1407 | if ((Size == 8 || Size == 16 || Size == 32) || |
1408 | (Size == 64 && VT->getNumElements() == 1)) |
1409 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
1410 | Size)); |
1411 | |
1412 | return getIndirectReturnResult(RetTy, State); |
1413 | } |
1414 | |
1415 | return ABIArgInfo::getDirect(); |
1416 | } |
1417 | |
1418 | if (isAggregateTypeForABI(RetTy)) { |
1419 | if (const RecordType *RT = RetTy->getAs<RecordType>()) { |
1420 | // Structures with flexible arrays are always indirect. |
1421 | if (RT->getDecl()->hasFlexibleArrayMember()) |
1422 | return getIndirectReturnResult(RetTy, State); |
1423 | } |
1424 | |
1425 | // If specified, structs and unions are always indirect. |
1426 | if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) |
1427 | return getIndirectReturnResult(RetTy, State); |
1428 | |
1429 | // Ignore empty structs/unions. |
1430 | if (isEmptyRecord(getContext(), RetTy, true)) |
1431 | return ABIArgInfo::getIgnore(); |
1432 | |
1433 | // Small structures which are register sized are generally returned |
1434 | // in a register. |
1435 | if (shouldReturnTypeInRegister(RetTy, getContext())) { |
1436 | uint64_t Size = getContext().getTypeSize(RetTy); |
1437 | |
1438 | // As a special-case, if the struct is a "single-element" struct, and |
1439 | // the field is of type "float" or "double", return it in a |
1440 | // floating-point register. (MSVC does not apply this special case.) |
1441 | // We apply a similar transformation for pointer types to improve the |
1442 | // quality of the generated IR. |
1443 | if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
1444 | if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) |
1445 | || SeltTy->hasPointerRepresentation()) |
1446 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
1447 | |
1448 | // FIXME: We should be able to narrow this integer in cases with dead |
1449 | // padding. |
1450 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); |
1451 | } |
1452 | |
1453 | return getIndirectReturnResult(RetTy, State); |
1454 | } |
1455 | |
1456 | // Treat an enum type as its underlying type. |
1457 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
1458 | RetTy = EnumTy->getDecl()->getIntegerType(); |
1459 | |
1460 | return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
1461 | : ABIArgInfo::getDirect()); |
1462 | } |
1463 | |
1464 | static bool isSSEVectorType(ASTContext &Context, QualType Ty) { |
1465 | return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; |
1466 | } |
1467 | |
1468 | static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { |
1469 | const RecordType *RT = Ty->getAs<RecordType>(); |
1470 | if (!RT) |
1471 | return 0; |
1472 | const RecordDecl *RD = RT->getDecl(); |
1473 | |
1474 | // If this is a C++ record, check the bases first. |
1475 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
1476 | for (const auto &I : CXXRD->bases()) |
1477 | if (!isRecordWithSSEVectorType(Context, I.getType())) |
1478 | return false; |
1479 | |
1480 | for (const auto *i : RD->fields()) { |
1481 | QualType FT = i->getType(); |
1482 | |
1483 | if (isSSEVectorType(Context, FT)) |
1484 | return true; |
1485 | |
1486 | if (isRecordWithSSEVectorType(Context, FT)) |
1487 | return true; |
1488 | } |
1489 | |
1490 | return false; |
1491 | } |
1492 | |
1493 | unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, |
1494 | unsigned Align) const { |
1495 | // Otherwise, if the alignment is less than or equal to the minimum ABI |
1496 | // alignment, just use the default; the backend will handle this. |
1497 | if (Align <= MinABIStackAlignInBytes) |
1498 | return 0; // Use default alignment. |
1499 | |
1500 | // On non-Darwin, the stack type alignment is always 4. |
1501 | if (!IsDarwinVectorABI) { |
1502 | // Set explicit alignment, since we may need to realign the top. |
1503 | return MinABIStackAlignInBytes; |
1504 | } |
1505 | |
1506 | // Otherwise, if the type contains an SSE vector type, the alignment is 16. |
1507 | if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || |
1508 | isRecordWithSSEVectorType(getContext(), Ty))) |
1509 | return 16; |
1510 | |
1511 | return MinABIStackAlignInBytes; |
1512 | } |
1513 | |
1514 | ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, |
1515 | CCState &State) const { |
1516 | if (!ByVal) { |
1517 | if (State.FreeRegs) { |
1518 | --State.FreeRegs; // Non-byval indirects just use one pointer. |
1519 | if (!IsMCUABI) |
1520 | return getNaturalAlignIndirectInReg(Ty); |
1521 | } |
1522 | return getNaturalAlignIndirect(Ty, false); |
1523 | } |
1524 | |
1525 | // Compute the byval alignment. |
1526 | unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
1527 | unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); |
1528 | if (StackAlign == 0) |
1529 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); |
1530 | |
1531 | // If the stack alignment is less than the type alignment, realign the |
1532 | // argument. |
1533 | bool Realign = TypeAlign > StackAlign; |
1534 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), |
1535 | /*ByVal=*/true, Realign); |
1536 | } |
1537 | |
1538 | X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { |
1539 | const Type *T = isSingleElementStruct(Ty, getContext()); |
1540 | if (!T) |
1541 | T = Ty.getTypePtr(); |
1542 | |
1543 | if (const BuiltinType *BT = T->getAs<BuiltinType>()) { |
1544 | BuiltinType::Kind K = BT->getKind(); |
1545 | if (K == BuiltinType::Float || K == BuiltinType::Double) |
1546 | return Float; |
1547 | } |
1548 | return Integer; |
1549 | } |
1550 | |
1551 | bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { |
1552 | if (!IsSoftFloatABI) { |
1553 | Class C = classify(Ty); |
1554 | if (C == Float) |
1555 | return false; |
1556 | } |
1557 | |
1558 | unsigned Size = getContext().getTypeSize(Ty); |
1559 | unsigned SizeInRegs = (Size + 31) / 32; |
1560 | |
1561 | if (SizeInRegs == 0) |
1562 | return false; |
1563 | |
1564 | if (!IsMCUABI) { |
1565 | if (SizeInRegs > State.FreeRegs) { |
1566 | State.FreeRegs = 0; |
1567 | return false; |
1568 | } |
1569 | } else { |
1570 | // The MCU psABI allows passing parameters in-reg even if there are |
1571 | // earlier parameters that are passed on the stack. Also, |
1572 | // it does not allow passing >8-byte structs in-register, |
1573 | // even if there are 3 free registers available. |
1574 | if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) |
1575 | return false; |
1576 | } |
1577 | |
1578 | State.FreeRegs -= SizeInRegs; |
1579 | return true; |
1580 | } |
1581 | |
1582 | bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, |
1583 | bool &InReg, |
1584 | bool &NeedsPadding) const { |
1585 | // On Windows, aggregates other than HFAs are never passed in registers, and |
1586 | // they do not consume register slots. Homogenous floating-point aggregates |
1587 | // (HFAs) have already been dealt with at this point. |
1588 | if (IsWin32StructABI && isAggregateTypeForABI(Ty)) |
1589 | return false; |
1590 | |
1591 | NeedsPadding = false; |
1592 | InReg = !IsMCUABI; |
1593 | |
1594 | if (!updateFreeRegs(Ty, State)) |
1595 | return false; |
1596 | |
1597 | if (IsMCUABI) |
1598 | return true; |
1599 | |
1600 | if (State.CC == llvm::CallingConv::X86_FastCall || |
1601 | State.CC == llvm::CallingConv::X86_VectorCall || |
1602 | State.CC == llvm::CallingConv::X86_RegCall) { |
1603 | if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) |
1604 | NeedsPadding = true; |
1605 | |
1606 | return false; |
1607 | } |
1608 | |
1609 | return true; |
1610 | } |
1611 | |
1612 | bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { |
1613 | if (!updateFreeRegs(Ty, State)) |
1614 | return false; |
1615 | |
1616 | if (IsMCUABI) |
1617 | return false; |
1618 | |
1619 | if (State.CC == llvm::CallingConv::X86_FastCall || |
1620 | State.CC == llvm::CallingConv::X86_VectorCall || |
1621 | State.CC == llvm::CallingConv::X86_RegCall) { |
1622 | if (getContext().getTypeSize(Ty) > 32) |
1623 | return false; |
1624 | |
1625 | return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || |
1626 | Ty->isReferenceType()); |
1627 | } |
1628 | |
1629 | return true; |
1630 | } |
1631 | |
1632 | ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, |
1633 | CCState &State) const { |
1634 | // FIXME: Set alignment on indirect arguments. |
1635 | |
1636 | Ty = useFirstFieldIfTransparentUnion(Ty); |
1637 | |
1638 | // Check with the C++ ABI first. |
1639 | const RecordType *RT = Ty->getAs<RecordType>(); |
1640 | if (RT) { |
1641 | CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); |
1642 | if (RAA == CGCXXABI::RAA_Indirect) { |
1643 | return getIndirectResult(Ty, false, State); |
1644 | } else if (RAA == CGCXXABI::RAA_DirectInMemory) { |
1645 | // The field index doesn't matter, we'll fix it up later. |
1646 | return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); |
1647 | } |
1648 | } |
1649 | |
1650 | // Regcall uses the concept of a homogenous vector aggregate, similar |
1651 | // to other targets. |
1652 | const Type *Base = nullptr; |
1653 | uint64_t NumElts = 0; |
1654 | if (State.CC == llvm::CallingConv::X86_RegCall && |
1655 | isHomogeneousAggregate(Ty, Base, NumElts)) { |
1656 | |
1657 | if (State.FreeSSERegs >= NumElts) { |
1658 | State.FreeSSERegs -= NumElts; |
1659 | if (Ty->isBuiltinType() || Ty->isVectorType()) |
1660 | return ABIArgInfo::getDirect(); |
1661 | return ABIArgInfo::getExpand(); |
1662 | } |
1663 | return getIndirectResult(Ty, /*ByVal=*/false, State); |
1664 | } |
1665 | |
1666 | if (isAggregateTypeForABI(Ty)) { |
1667 | // Structures with flexible arrays are always indirect. |
1668 | // FIXME: This should not be byval! |
1669 | if (RT && RT->getDecl()->hasFlexibleArrayMember()) |
1670 | return getIndirectResult(Ty, true, State); |
1671 | |
1672 | // Ignore empty structs/unions on non-Windows. |
1673 | if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) |
1674 | return ABIArgInfo::getIgnore(); |
1675 | |
1676 | llvm::LLVMContext &LLVMContext = getVMContext(); |
1677 | llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); |
1678 | bool NeedsPadding = false; |
1679 | bool InReg; |
1680 | if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { |
1681 | unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
1682 | SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); |
1683 | llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); |
1684 | if (InReg) |
1685 | return ABIArgInfo::getDirectInReg(Result); |
1686 | else |
1687 | return ABIArgInfo::getDirect(Result); |
1688 | } |
1689 | llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; |
1690 | |
1691 | // Expand small (<= 128-bit) record types when we know that the stack layout |
1692 | // of those arguments will match the struct. This is important because the |
1693 | // LLVM backend isn't smart enough to remove byval, which inhibits many |
1694 | // optimizations. |
1695 | // Don't do this for the MCU if there are still free integer registers |
1696 | // (see X86_64 ABI for full explanation). |
1697 | if (getContext().getTypeSize(Ty) <= 4 * 32 && |
1698 | (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) |
1699 | return ABIArgInfo::getExpandWithPadding( |
1700 | State.CC == llvm::CallingConv::X86_FastCall || |
1701 | State.CC == llvm::CallingConv::X86_VectorCall || |
1702 | State.CC == llvm::CallingConv::X86_RegCall, |
1703 | PaddingType); |
1704 | |
1705 | return getIndirectResult(Ty, true, State); |
1706 | } |
1707 | |
1708 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
1709 | // On Darwin, some vectors are passed in memory, we handle this by passing |
1710 | // it as an i8/i16/i32/i64. |
1711 | if (IsDarwinVectorABI) { |
1712 | uint64_t Size = getContext().getTypeSize(Ty); |
1713 | if ((Size == 8 || Size == 16 || Size == 32) || |
1714 | (Size == 64 && VT->getNumElements() == 1)) |
1715 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
1716 | Size)); |
1717 | } |
1718 | |
1719 | if (IsX86_MMXType(CGT.ConvertType(Ty))) |
1720 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); |
1721 | |
1722 | return ABIArgInfo::getDirect(); |
1723 | } |
1724 | |
1725 | |
1726 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
1727 | Ty = EnumTy->getDecl()->getIntegerType(); |
1728 | |
1729 | bool InReg = shouldPrimitiveUseInReg(Ty, State); |
1730 | |
1731 | if (Ty->isPromotableIntegerType()) { |
1732 | if (InReg) |
1733 | return ABIArgInfo::getExtendInReg(Ty); |
1734 | return ABIArgInfo::getExtend(Ty); |
1735 | } |
1736 | |
1737 | if (InReg) |
1738 | return ABIArgInfo::getDirectInReg(); |
1739 | return ABIArgInfo::getDirect(); |
1740 | } |
1741 | |
1742 | void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, |
1743 | bool &UsedInAlloca) const { |
1744 | // Vectorcall x86 works subtly different than in x64, so the format is |
1745 | // a bit different than the x64 version. First, all vector types (not HVAs) |
1746 | // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. |
1747 | // This differs from the x64 implementation, where the first 6 by INDEX get |
1748 | // registers. |
1749 | // After that, integers AND HVAs are assigned Left to Right in the same pass. |
1750 | // Integers are passed as ECX/EDX if one is available (in order). HVAs will |
1751 | // first take up the remaining YMM/XMM registers. If insufficient registers |
1752 | // remain but an integer register (ECX/EDX) is available, it will be passed |
1753 | // in that, else, on the stack. |
1754 | for (auto &I : FI.arguments()) { |
1755 | // First pass do all the vector types. |
1756 | const Type *Base = nullptr; |
1757 | uint64_t NumElts = 0; |
1758 | const QualType& Ty = I.type; |
1759 | if ((Ty->isVectorType() || Ty->isBuiltinType()) && |
1760 | isHomogeneousAggregate(Ty, Base, NumElts)) { |
1761 | if (State.FreeSSERegs >= NumElts) { |
1762 | State.FreeSSERegs -= NumElts; |
1763 | I.info = ABIArgInfo::getDirect(); |
1764 | } else { |
1765 | I.info = classifyArgumentType(Ty, State); |
1766 | } |
1767 | UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); |
1768 | } |
1769 | } |
1770 | |
1771 | for (auto &I : FI.arguments()) { |
1772 | // Second pass, do the rest! |
1773 | const Type *Base = nullptr; |
1774 | uint64_t NumElts = 0; |
1775 | const QualType& Ty = I.type; |
1776 | bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); |
1777 | |
1778 | if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { |
1779 | // Assign true HVAs (non vector/native FP types). |
1780 | if (State.FreeSSERegs >= NumElts) { |
1781 | State.FreeSSERegs -= NumElts; |
1782 | I.info = getDirectX86Hva(); |
1783 | } else { |
1784 | I.info = getIndirectResult(Ty, /*ByVal=*/false, State); |
1785 | } |
1786 | } else if (!IsHva) { |
1787 | // Assign all Non-HVAs, so this will exclude Vector/FP args. |
1788 | I.info = classifyArgumentType(Ty, State); |
1789 | UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); |
1790 | } |
1791 | } |
1792 | } |
1793 | |
1794 | void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
1795 | CCState State(FI.getCallingConvention()); |
1796 | if (IsMCUABI) |
1797 | State.FreeRegs = 3; |
1798 | else if (State.CC == llvm::CallingConv::X86_FastCall) |
1799 | State.FreeRegs = 2; |
1800 | else if (State.CC == llvm::CallingConv::X86_VectorCall) { |
1801 | State.FreeRegs = 2; |
1802 | State.FreeSSERegs = 6; |
1803 | } else if (FI.getHasRegParm()) |
1804 | State.FreeRegs = FI.getRegParm(); |
1805 | else if (State.CC == llvm::CallingConv::X86_RegCall) { |
1806 | State.FreeRegs = 5; |
1807 | State.FreeSSERegs = 8; |
1808 | } else |
1809 | State.FreeRegs = DefaultNumRegisterParameters; |
1810 | |
1811 | if (!::classifyReturnType(getCXXABI(), FI, *this)) { |
1812 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); |
1813 | } else if (FI.getReturnInfo().isIndirect()) { |
1814 | // The C++ ABI is not aware of register usage, so we have to check if the |
1815 | // return value was sret and put it in a register ourselves if appropriate. |
1816 | if (State.FreeRegs) { |
1817 | --State.FreeRegs; // The sret parameter consumes a register. |
1818 | if (!IsMCUABI) |
1819 | FI.getReturnInfo().setInReg(true); |
1820 | } |
1821 | } |
1822 | |
1823 | // The chain argument effectively gives us another free register. |
1824 | if (FI.isChainCall()) |
1825 | ++State.FreeRegs; |
1826 | |
1827 | bool UsedInAlloca = false; |
1828 | if (State.CC == llvm::CallingConv::X86_VectorCall) { |
1829 | computeVectorCallArgs(FI, State, UsedInAlloca); |
1830 | } else { |
1831 | // If not vectorcall, revert to normal behavior. |
1832 | for (auto &I : FI.arguments()) { |
1833 | I.info = classifyArgumentType(I.type, State); |
1834 | UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); |
1835 | } |
1836 | } |
1837 | |
1838 | // If we needed to use inalloca for any argument, do a second pass and rewrite |
1839 | // all the memory arguments to use inalloca. |
1840 | if (UsedInAlloca) |
1841 | rewriteWithInAlloca(FI); |
1842 | } |
1843 | |
1844 | void |
1845 | X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, |
1846 | CharUnits &StackOffset, ABIArgInfo &Info, |
1847 | QualType Type) const { |
1848 | // Arguments are always 4-byte-aligned. |
1849 | CharUnits FieldAlign = CharUnits::fromQuantity(4); |
1850 | |
1851 | assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct")((StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct" ) ? static_cast<void> (0) : __assert_fail ("StackOffset.isMultipleOf(FieldAlign) && \"unaligned inalloca struct\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 1851, __PRETTY_FUNCTION__)); |
1852 | Info = ABIArgInfo::getInAlloca(FrameFields.size()); |
1853 | FrameFields.push_back(CGT.ConvertTypeForMem(Type)); |
1854 | StackOffset += getContext().getTypeSizeInChars(Type); |
1855 | |
1856 | // Insert padding bytes to respect alignment. |
1857 | CharUnits FieldEnd = StackOffset; |
1858 | StackOffset = FieldEnd.alignTo(FieldAlign); |
1859 | if (StackOffset != FieldEnd) { |
1860 | CharUnits NumBytes = StackOffset - FieldEnd; |
1861 | llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); |
1862 | Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); |
1863 | FrameFields.push_back(Ty); |
1864 | } |
1865 | } |
1866 | |
1867 | static bool isArgInAlloca(const ABIArgInfo &Info) { |
1868 | // Leave ignored and inreg arguments alone. |
1869 | switch (Info.getKind()) { |
1870 | case ABIArgInfo::InAlloca: |
1871 | return true; |
1872 | case ABIArgInfo::Indirect: |
1873 | assert(Info.getIndirectByVal())((Info.getIndirectByVal()) ? static_cast<void> (0) : __assert_fail ("Info.getIndirectByVal()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 1873, __PRETTY_FUNCTION__)); |
1874 | return true; |
1875 | case ABIArgInfo::Ignore: |
1876 | return false; |
1877 | case ABIArgInfo::Direct: |
1878 | case ABIArgInfo::Extend: |
1879 | if (Info.getInReg()) |
1880 | return false; |
1881 | return true; |
1882 | case ABIArgInfo::Expand: |
1883 | case ABIArgInfo::CoerceAndExpand: |
1884 | // These are aggregate types which are never passed in registers when |
1885 | // inalloca is involved. |
1886 | return true; |
1887 | } |
1888 | llvm_unreachable("invalid enum")::llvm::llvm_unreachable_internal("invalid enum", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 1888); |
1889 | } |
1890 | |
1891 | void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { |
1892 | assert(IsWin32StructABI && "inalloca only supported on win32")((IsWin32StructABI && "inalloca only supported on win32" ) ? static_cast<void> (0) : __assert_fail ("IsWin32StructABI && \"inalloca only supported on win32\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 1892, __PRETTY_FUNCTION__)); |
1893 | |
1894 | // Build a packed struct type for all of the arguments in memory. |
1895 | SmallVector<llvm::Type *, 6> FrameFields; |
1896 | |
1897 | // The stack alignment is always 4. |
1898 | CharUnits StackAlign = CharUnits::fromQuantity(4); |
1899 | |
1900 | CharUnits StackOffset; |
1901 | CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); |
1902 | |
1903 | // Put 'this' into the struct before 'sret', if necessary. |
1904 | bool IsThisCall = |
1905 | FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; |
1906 | ABIArgInfo &Ret = FI.getReturnInfo(); |
1907 | if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && |
1908 | isArgInAlloca(I->info)) { |
1909 | addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); |
1910 | ++I; |
1911 | } |
1912 | |
1913 | // Put the sret parameter into the inalloca struct if it's in memory. |
1914 | if (Ret.isIndirect() && !Ret.getInReg()) { |
1915 | CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); |
1916 | addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); |
1917 | // On Windows, the hidden sret parameter is always returned in eax. |
1918 | Ret.setInAllocaSRet(IsWin32StructABI); |
1919 | } |
1920 | |
1921 | // Skip the 'this' parameter in ecx. |
1922 | if (IsThisCall) |
1923 | ++I; |
1924 | |
1925 | // Put arguments passed in memory into the struct. |
1926 | for (; I != E; ++I) { |
1927 | if (isArgInAlloca(I->info)) |
1928 | addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); |
1929 | } |
1930 | |
1931 | FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, |
1932 | /*isPacked=*/true), |
1933 | StackAlign); |
1934 | } |
1935 | |
1936 | Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, |
1937 | Address VAListAddr, QualType Ty) const { |
1938 | |
1939 | auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
1940 | |
1941 | // x86-32 changes the alignment of certain arguments on the stack. |
1942 | // |
1943 | // Just messing with TypeInfo like this works because we never pass |
1944 | // anything indirectly. |
1945 | TypeInfo.second = CharUnits::fromQuantity( |
1946 | getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); |
1947 | |
1948 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, |
1949 | TypeInfo, CharUnits::fromQuantity(4), |
1950 | /*AllowHigherAlign*/ true); |
1951 | } |
1952 | |
1953 | bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( |
1954 | const llvm::Triple &Triple, const CodeGenOptions &Opts) { |
1955 | assert(Triple.getArch() == llvm::Triple::x86)((Triple.getArch() == llvm::Triple::x86) ? static_cast<void > (0) : __assert_fail ("Triple.getArch() == llvm::Triple::x86" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 1955, __PRETTY_FUNCTION__)); |
1956 | |
1957 | switch (Opts.getStructReturnConvention()) { |
1958 | case CodeGenOptions::SRCK_Default: |
1959 | break; |
1960 | case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return |
1961 | return false; |
1962 | case CodeGenOptions::SRCK_InRegs: // -freg-struct-return |
1963 | return true; |
1964 | } |
1965 | |
1966 | if (Triple.isOSDarwin() || Triple.isOSIAMCU()) |
1967 | return true; |
1968 | |
1969 | switch (Triple.getOS()) { |
1970 | case llvm::Triple::DragonFly: |
1971 | case llvm::Triple::FreeBSD: |
1972 | case llvm::Triple::OpenBSD: |
1973 | case llvm::Triple::Win32: |
1974 | return true; |
1975 | default: |
1976 | return false; |
1977 | } |
1978 | } |
1979 | |
1980 | void X86_32TargetCodeGenInfo::setTargetAttributes( |
1981 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
1982 | if (GV->isDeclaration()) |
1983 | return; |
1984 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
1985 | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
1986 | llvm::Function *Fn = cast<llvm::Function>(GV); |
1987 | Fn->addFnAttr("stackrealign"); |
1988 | } |
1989 | if (FD->hasAttr<AnyX86InterruptAttr>()) { |
1990 | llvm::Function *Fn = cast<llvm::Function>(GV); |
1991 | Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
1992 | } |
1993 | } |
1994 | } |
1995 | |
1996 | bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( |
1997 | CodeGen::CodeGenFunction &CGF, |
1998 | llvm::Value *Address) const { |
1999 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
2000 | |
2001 | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
2002 | |
2003 | // 0-7 are the eight integer registers; the order is different |
2004 | // on Darwin (for EH), but the range is the same. |
2005 | // 8 is %eip. |
2006 | AssignToArrayRange(Builder, Address, Four8, 0, 8); |
2007 | |
2008 | if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { |
2009 | // 12-16 are st(0..4). Not sure why we stop at 4. |
2010 | // These have size 16, which is sizeof(long double) on |
2011 | // platforms with 8-byte alignment for that type. |
2012 | llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); |
2013 | AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); |
2014 | |
2015 | } else { |
2016 | // 9 is %eflags, which doesn't get a size on Darwin for some |
2017 | // reason. |
2018 | Builder.CreateAlignedStore( |
2019 | Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), |
2020 | CharUnits::One()); |
2021 | |
2022 | // 11-16 are st(0..5). Not sure why we stop at 5. |
2023 | // These have size 12, which is sizeof(long double) on |
2024 | // platforms with 4-byte alignment for that type. |
2025 | llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); |
2026 | AssignToArrayRange(Builder, Address, Twelve8, 11, 16); |
2027 | } |
2028 | |
2029 | return false; |
2030 | } |
2031 | |
2032 | //===----------------------------------------------------------------------===// |
2033 | // X86-64 ABI Implementation |
2034 | //===----------------------------------------------------------------------===// |
2035 | |
2036 | |
2037 | namespace { |
2038 | /// The AVX ABI level for X86 targets. |
2039 | enum class X86AVXABILevel { |
2040 | None, |
2041 | AVX, |
2042 | AVX512 |
2043 | }; |
2044 | |
2045 | /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. |
2046 | static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { |
2047 | switch (AVXLevel) { |
2048 | case X86AVXABILevel::AVX512: |
2049 | return 512; |
2050 | case X86AVXABILevel::AVX: |
2051 | return 256; |
2052 | case X86AVXABILevel::None: |
2053 | return 128; |
2054 | } |
2055 | llvm_unreachable("Unknown AVXLevel")::llvm::llvm_unreachable_internal("Unknown AVXLevel", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2055); |
2056 | } |
2057 | |
2058 | /// X86_64ABIInfo - The X86_64 ABI information. |
2059 | class X86_64ABIInfo : public SwiftABIInfo { |
2060 | enum Class { |
2061 | Integer = 0, |
2062 | SSE, |
2063 | SSEUp, |
2064 | X87, |
2065 | X87Up, |
2066 | ComplexX87, |
2067 | NoClass, |
2068 | Memory |
2069 | }; |
2070 | |
2071 | /// merge - Implement the X86_64 ABI merging algorithm. |
2072 | /// |
2073 | /// Merge an accumulating classification \arg Accum with a field |
2074 | /// classification \arg Field. |
2075 | /// |
2076 | /// \param Accum - The accumulating classification. This should |
2077 | /// always be either NoClass or the result of a previous merge |
2078 | /// call. In addition, this should never be Memory (the caller |
2079 | /// should just return Memory for the aggregate). |
2080 | static Class merge(Class Accum, Class Field); |
2081 | |
2082 | /// postMerge - Implement the X86_64 ABI post merging algorithm. |
2083 | /// |
2084 | /// Post merger cleanup, reduces a malformed Hi and Lo pair to |
2085 | /// final MEMORY or SSE classes when necessary. |
2086 | /// |
2087 | /// \param AggregateSize - The size of the current aggregate in |
2088 | /// the classification process. |
2089 | /// |
2090 | /// \param Lo - The classification for the parts of the type |
2091 | /// residing in the low word of the containing object. |
2092 | /// |
2093 | /// \param Hi - The classification for the parts of the type |
2094 | /// residing in the higher words of the containing object. |
2095 | /// |
2096 | void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; |
2097 | |
2098 | /// classify - Determine the x86_64 register classes in which the |
2099 | /// given type T should be passed. |
2100 | /// |
2101 | /// \param Lo - The classification for the parts of the type |
2102 | /// residing in the low word of the containing object. |
2103 | /// |
2104 | /// \param Hi - The classification for the parts of the type |
2105 | /// residing in the high word of the containing object. |
2106 | /// |
2107 | /// \param OffsetBase - The bit offset of this type in the |
2108 | /// containing object. Some parameters are classified different |
2109 | /// depending on whether they straddle an eightbyte boundary. |
2110 | /// |
2111 | /// \param isNamedArg - Whether the argument in question is a "named" |
2112 | /// argument, as used in AMD64-ABI 3.5.7. |
2113 | /// |
2114 | /// If a word is unused its result will be NoClass; if a type should |
2115 | /// be passed in Memory then at least the classification of \arg Lo |
2116 | /// will be Memory. |
2117 | /// |
2118 | /// The \arg Lo class will be NoClass iff the argument is ignored. |
2119 | /// |
2120 | /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
2121 | /// also be ComplexX87. |
2122 | void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, |
2123 | bool isNamedArg) const; |
2124 | |
2125 | llvm::Type *GetByteVectorType(QualType Ty) const; |
2126 | llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, |
2127 | unsigned IROffset, QualType SourceTy, |
2128 | unsigned SourceOffset) const; |
2129 | llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, |
2130 | unsigned IROffset, QualType SourceTy, |
2131 | unsigned SourceOffset) const; |
2132 | |
2133 | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
2134 | /// such that the argument will be returned in memory. |
2135 | ABIArgInfo getIndirectReturnResult(QualType Ty) const; |
2136 | |
2137 | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
2138 | /// such that the argument will be passed in memory. |
2139 | /// |
2140 | /// \param freeIntRegs - The number of free integer registers remaining |
2141 | /// available. |
2142 | ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; |
2143 | |
2144 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
2145 | |
2146 | ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, |
2147 | unsigned &neededInt, unsigned &neededSSE, |
2148 | bool isNamedArg) const; |
2149 | |
2150 | ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, |
2151 | unsigned &NeededSSE) const; |
2152 | |
2153 | ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, |
2154 | unsigned &NeededSSE) const; |
2155 | |
2156 | bool IsIllegalVectorType(QualType Ty) const; |
2157 | |
2158 | /// The 0.98 ABI revision clarified a lot of ambiguities, |
2159 | /// unfortunately in ways that were not always consistent with |
2160 | /// certain previous compilers. In particular, platforms which |
2161 | /// required strict binary compatibility with older versions of GCC |
2162 | /// may need to exempt themselves. |
2163 | bool honorsRevision0_98() const { |
2164 | return !getTarget().getTriple().isOSDarwin(); |
2165 | } |
2166 | |
2167 | /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to |
2168 | /// classify it as INTEGER (for compatibility with older clang compilers). |
2169 | bool classifyIntegerMMXAsSSE() const { |
2170 | // Clang <= 3.8 did not do this. |
2171 | if (getContext().getLangOpts().getClangABICompat() <= |
2172 | LangOptions::ClangABI::Ver3_8) |
2173 | return false; |
2174 | |
2175 | const llvm::Triple &Triple = getTarget().getTriple(); |
2176 | if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) |
2177 | return false; |
2178 | if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) |
2179 | return false; |
2180 | return true; |
2181 | } |
2182 | |
2183 | // GCC classifies vectors of __int128 as memory. |
2184 | bool passInt128VectorsInMem() const { |
2185 | // Clang <= 9.0 did not do this. |
2186 | if (getContext().getLangOpts().getClangABICompat() <= |
2187 | LangOptions::ClangABI::Ver9) |
2188 | return false; |
2189 | |
2190 | const llvm::Triple &T = getTarget().getTriple(); |
2191 | return T.isOSLinux() || T.isOSNetBSD(); |
2192 | } |
2193 | |
2194 | X86AVXABILevel AVXLevel; |
2195 | // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on |
2196 | // 64-bit hardware. |
2197 | bool Has64BitPointers; |
2198 | |
2199 | public: |
2200 | X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : |
2201 | SwiftABIInfo(CGT), AVXLevel(AVXLevel), |
2202 | Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { |
2203 | } |
2204 | |
2205 | bool isPassedUsingAVXType(QualType type) const { |
2206 | unsigned neededInt, neededSSE; |
2207 | // The freeIntRegs argument doesn't matter here. |
2208 | ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, |
2209 | /*isNamedArg*/true); |
2210 | if (info.isDirect()) { |
2211 | llvm::Type *ty = info.getCoerceToType(); |
2212 | if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) |
2213 | return (vectorTy->getBitWidth() > 128); |
2214 | } |
2215 | return false; |
2216 | } |
2217 | |
2218 | void computeInfo(CGFunctionInfo &FI) const override; |
2219 | |
2220 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
2221 | QualType Ty) const override; |
2222 | Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
2223 | QualType Ty) const override; |
2224 | |
2225 | bool has64BitPointers() const { |
2226 | return Has64BitPointers; |
2227 | } |
2228 | |
2229 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
2230 | bool asReturnValue) const override { |
2231 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
2232 | } |
2233 | bool isSwiftErrorInRegister() const override { |
2234 | return true; |
2235 | } |
2236 | }; |
2237 | |
2238 | /// WinX86_64ABIInfo - The Windows X86_64 ABI information. |
2239 | class WinX86_64ABIInfo : public SwiftABIInfo { |
2240 | public: |
2241 | WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
2242 | : SwiftABIInfo(CGT), AVXLevel(AVXLevel), |
2243 | IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} |
2244 | |
2245 | void computeInfo(CGFunctionInfo &FI) const override; |
2246 | |
2247 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
2248 | QualType Ty) const override; |
2249 | |
2250 | bool isHomogeneousAggregateBaseType(QualType Ty) const override { |
2251 | // FIXME: Assumes vectorcall is in use. |
2252 | return isX86VectorTypeForVectorCall(getContext(), Ty); |
2253 | } |
2254 | |
2255 | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
2256 | uint64_t NumMembers) const override { |
2257 | // FIXME: Assumes vectorcall is in use. |
2258 | return isX86VectorCallAggregateSmallEnough(NumMembers); |
2259 | } |
2260 | |
2261 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, |
2262 | bool asReturnValue) const override { |
2263 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
2264 | } |
2265 | |
2266 | bool isSwiftErrorInRegister() const override { |
2267 | return true; |
2268 | } |
2269 | |
2270 | private: |
2271 | ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, |
2272 | bool IsVectorCall, bool IsRegCall) const; |
2273 | ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, |
2274 | const ABIArgInfo ¤t) const; |
2275 | void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, |
2276 | bool IsVectorCall, bool IsRegCall) const; |
2277 | |
2278 | X86AVXABILevel AVXLevel; |
2279 | |
2280 | bool IsMingw64; |
2281 | }; |
2282 | |
2283 | class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
2284 | public: |
2285 | X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
2286 | : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} |
2287 | |
2288 | const X86_64ABIInfo &getABIInfo() const { |
2289 | return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); |
2290 | } |
2291 | |
2292 | /// Disable tail call on x86-64. The epilogue code before the tail jump blocks |
2293 | /// the autoreleaseRV/retainRV optimization. |
2294 | bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { |
2295 | return true; |
2296 | } |
2297 | |
2298 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
2299 | return 7; |
2300 | } |
2301 | |
2302 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
2303 | llvm::Value *Address) const override { |
2304 | llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); |
2305 | |
2306 | // 0-15 are the 16 integer registers. |
2307 | // 16 is %rip. |
2308 | AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); |
2309 | return false; |
2310 | } |
2311 | |
2312 | llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
2313 | StringRef Constraint, |
2314 | llvm::Type* Ty) const override { |
2315 | return X86AdjustInlineAsmType(CGF, Constraint, Ty); |
2316 | } |
2317 | |
2318 | bool isNoProtoCallVariadic(const CallArgList &args, |
2319 | const FunctionNoProtoType *fnType) const override { |
2320 | // The default CC on x86-64 sets %al to the number of SSA |
2321 | // registers used, and GCC sets this when calling an unprototyped |
2322 | // function, so we override the default behavior. However, don't do |
2323 | // that when AVX types are involved: the ABI explicitly states it is |
2324 | // undefined, and it doesn't work in practice because of how the ABI |
2325 | // defines varargs anyway. |
2326 | if (fnType->getCallConv() == CC_C) { |
2327 | bool HasAVXType = false; |
2328 | for (CallArgList::const_iterator |
2329 | it = args.begin(), ie = args.end(); it != ie; ++it) { |
2330 | if (getABIInfo().isPassedUsingAVXType(it->Ty)) { |
2331 | HasAVXType = true; |
2332 | break; |
2333 | } |
2334 | } |
2335 | |
2336 | if (!HasAVXType) |
2337 | return true; |
2338 | } |
2339 | |
2340 | return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); |
2341 | } |
2342 | |
2343 | llvm::Constant * |
2344 | getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { |
2345 | unsigned Sig = (0xeb << 0) | // jmp rel8 |
2346 | (0x06 << 8) | // .+0x08 |
2347 | ('v' << 16) | |
2348 | ('2' << 24); |
2349 | return llvm::ConstantInt::get(CGM.Int32Ty, Sig); |
2350 | } |
2351 | |
2352 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
2353 | CodeGen::CodeGenModule &CGM) const override { |
2354 | if (GV->isDeclaration()) |
2355 | return; |
2356 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
2357 | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
2358 | llvm::Function *Fn = cast<llvm::Function>(GV); |
2359 | Fn->addFnAttr("stackrealign"); |
2360 | } |
2361 | if (FD->hasAttr<AnyX86InterruptAttr>()) { |
2362 | llvm::Function *Fn = cast<llvm::Function>(GV); |
2363 | Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
2364 | } |
2365 | } |
2366 | } |
2367 | }; |
2368 | |
2369 | static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { |
2370 | // If the argument does not end in .lib, automatically add the suffix. |
2371 | // If the argument contains a space, enclose it in quotes. |
2372 | // This matches the behavior of MSVC. |
2373 | bool Quote = (Lib.find(" ") != StringRef::npos); |
2374 | std::string ArgStr = Quote ? "\"" : ""; |
2375 | ArgStr += Lib; |
2376 | if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) |
2377 | ArgStr += ".lib"; |
2378 | ArgStr += Quote ? "\"" : ""; |
2379 | return ArgStr; |
2380 | } |
2381 | |
2382 | class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { |
2383 | public: |
2384 | WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, |
2385 | bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, |
2386 | unsigned NumRegisterParameters) |
2387 | : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, |
2388 | Win32StructABI, NumRegisterParameters, false) {} |
2389 | |
2390 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
2391 | CodeGen::CodeGenModule &CGM) const override; |
2392 | |
2393 | void getDependentLibraryOption(llvm::StringRef Lib, |
2394 | llvm::SmallString<24> &Opt) const override { |
2395 | Opt = "/DEFAULTLIB:"; |
2396 | Opt += qualifyWindowsLibrary(Lib); |
2397 | } |
2398 | |
2399 | void getDetectMismatchOption(llvm::StringRef Name, |
2400 | llvm::StringRef Value, |
2401 | llvm::SmallString<32> &Opt) const override { |
2402 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
2403 | } |
2404 | }; |
2405 | |
2406 | static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
2407 | CodeGen::CodeGenModule &CGM) { |
2408 | if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { |
2409 | |
2410 | if (CGM.getCodeGenOpts().StackProbeSize != 4096) |
2411 | Fn->addFnAttr("stack-probe-size", |
2412 | llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); |
2413 | if (CGM.getCodeGenOpts().NoStackArgProbe) |
2414 | Fn->addFnAttr("no-stack-arg-probe"); |
2415 | } |
2416 | } |
2417 | |
2418 | void WinX86_32TargetCodeGenInfo::setTargetAttributes( |
2419 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
2420 | X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
2421 | if (GV->isDeclaration()) |
2422 | return; |
2423 | addStackProbeTargetAttributes(D, GV, CGM); |
2424 | } |
2425 | |
2426 | class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
2427 | public: |
2428 | WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, |
2429 | X86AVXABILevel AVXLevel) |
2430 | : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} |
2431 | |
2432 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
2433 | CodeGen::CodeGenModule &CGM) const override; |
2434 | |
2435 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
2436 | return 7; |
2437 | } |
2438 | |
2439 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
2440 | llvm::Value *Address) const override { |
2441 | llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); |
2442 | |
2443 | // 0-15 are the 16 integer registers. |
2444 | // 16 is %rip. |
2445 | AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); |
2446 | return false; |
2447 | } |
2448 | |
2449 | void getDependentLibraryOption(llvm::StringRef Lib, |
2450 | llvm::SmallString<24> &Opt) const override { |
2451 | Opt = "/DEFAULTLIB:"; |
2452 | Opt += qualifyWindowsLibrary(Lib); |
2453 | } |
2454 | |
2455 | void getDetectMismatchOption(llvm::StringRef Name, |
2456 | llvm::StringRef Value, |
2457 | llvm::SmallString<32> &Opt) const override { |
2458 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
2459 | } |
2460 | }; |
2461 | |
2462 | void WinX86_64TargetCodeGenInfo::setTargetAttributes( |
2463 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
2464 | TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
2465 | if (GV->isDeclaration()) |
2466 | return; |
2467 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
2468 | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
2469 | llvm::Function *Fn = cast<llvm::Function>(GV); |
2470 | Fn->addFnAttr("stackrealign"); |
2471 | } |
2472 | if (FD->hasAttr<AnyX86InterruptAttr>()) { |
2473 | llvm::Function *Fn = cast<llvm::Function>(GV); |
2474 | Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
2475 | } |
2476 | } |
2477 | |
2478 | addStackProbeTargetAttributes(D, GV, CGM); |
2479 | } |
2480 | } |
2481 | |
2482 | void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, |
2483 | Class &Hi) const { |
2484 | // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
2485 | // |
2486 | // (a) If one of the classes is Memory, the whole argument is passed in |
2487 | // memory. |
2488 | // |
2489 | // (b) If X87UP is not preceded by X87, the whole argument is passed in |
2490 | // memory. |
2491 | // |
2492 | // (c) If the size of the aggregate exceeds two eightbytes and the first |
2493 | // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole |
2494 | // argument is passed in memory. NOTE: This is necessary to keep the |
2495 | // ABI working for processors that don't support the __m256 type. |
2496 | // |
2497 | // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. |
2498 | // |
2499 | // Some of these are enforced by the merging logic. Others can arise |
2500 | // only with unions; for example: |
2501 | // union { _Complex double; unsigned; } |
2502 | // |
2503 | // Note that clauses (b) and (c) were added in 0.98. |
2504 | // |
2505 | if (Hi == Memory) |
2506 | Lo = Memory; |
2507 | if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) |
2508 | Lo = Memory; |
2509 | if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) |
2510 | Lo = Memory; |
2511 | if (Hi == SSEUp && Lo != SSE) |
2512 | Hi = SSE; |
2513 | } |
2514 | |
2515 | X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { |
2516 | // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
2517 | // classified recursively so that always two fields are |
2518 | // considered. The resulting class is calculated according to |
2519 | // the classes of the fields in the eightbyte: |
2520 | // |
2521 | // (a) If both classes are equal, this is the resulting class. |
2522 | // |
2523 | // (b) If one of the classes is NO_CLASS, the resulting class is |
2524 | // the other class. |
2525 | // |
2526 | // (c) If one of the classes is MEMORY, the result is the MEMORY |
2527 | // class. |
2528 | // |
2529 | // (d) If one of the classes is INTEGER, the result is the |
2530 | // INTEGER. |
2531 | // |
2532 | // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
2533 | // MEMORY is used as class. |
2534 | // |
2535 | // (f) Otherwise class SSE is used. |
2536 | |
2537 | // Accum should never be memory (we should have returned) or |
2538 | // ComplexX87 (because this cannot be passed in a structure). |
2539 | assert((Accum != Memory && Accum != ComplexX87) &&(((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge.") ? static_cast <void> (0) : __assert_fail ("(Accum != Memory && Accum != ComplexX87) && \"Invalid accumulated classification during merge.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2540, __PRETTY_FUNCTION__)) |
2540 | "Invalid accumulated classification during merge.")(((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge.") ? static_cast <void> (0) : __assert_fail ("(Accum != Memory && Accum != ComplexX87) && \"Invalid accumulated classification during merge.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2540, __PRETTY_FUNCTION__)); |
2541 | if (Accum == Field || Field == NoClass) |
2542 | return Accum; |
2543 | if (Field == Memory) |
2544 | return Memory; |
2545 | if (Accum == NoClass) |
2546 | return Field; |
2547 | if (Accum == Integer || Field == Integer) |
2548 | return Integer; |
2549 | if (Field == X87 || Field == X87Up || Field == ComplexX87 || |
2550 | Accum == X87 || Accum == X87Up) |
2551 | return Memory; |
2552 | return SSE; |
2553 | } |
2554 | |
2555 | void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, |
2556 | Class &Lo, Class &Hi, bool isNamedArg) const { |
2557 | // FIXME: This code can be simplified by introducing a simple value class for |
2558 | // Class pairs with appropriate constructor methods for the various |
2559 | // situations. |
2560 | |
2561 | // FIXME: Some of the split computations are wrong; unaligned vectors |
2562 | // shouldn't be passed in registers for example, so there is no chance they |
2563 | // can straddle an eightbyte. Verify & simplify. |
2564 | |
2565 | Lo = Hi = NoClass; |
2566 | |
2567 | Class &Current = OffsetBase < 64 ? Lo : Hi; |
2568 | Current = Memory; |
2569 | |
2570 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
2571 | BuiltinType::Kind k = BT->getKind(); |
2572 | |
2573 | if (k == BuiltinType::Void) { |
2574 | Current = NoClass; |
2575 | } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { |
2576 | Lo = Integer; |
2577 | Hi = Integer; |
2578 | } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
2579 | Current = Integer; |
2580 | } else if (k == BuiltinType::Float || k == BuiltinType::Double) { |
2581 | Current = SSE; |
2582 | } else if (k == BuiltinType::LongDouble) { |
2583 | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
2584 | if (LDF == &llvm::APFloat::IEEEquad()) { |
2585 | Lo = SSE; |
2586 | Hi = SSEUp; |
2587 | } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { |
2588 | Lo = X87; |
2589 | Hi = X87Up; |
2590 | } else if (LDF == &llvm::APFloat::IEEEdouble()) { |
2591 | Current = SSE; |
2592 | } else |
2593 | llvm_unreachable("unexpected long double representation!")::llvm::llvm_unreachable_internal("unexpected long double representation!" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2593); |
2594 | } |
2595 | // FIXME: _Decimal32 and _Decimal64 are SSE. |
2596 | // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
2597 | return; |
2598 | } |
2599 | |
2600 | if (const EnumType *ET = Ty->getAs<EnumType>()) { |
2601 | // Classify the underlying integer type. |
2602 | classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); |
2603 | return; |
2604 | } |
2605 | |
2606 | if (Ty->hasPointerRepresentation()) { |
2607 | Current = Integer; |
2608 | return; |
2609 | } |
2610 | |
2611 | if (Ty->isMemberPointerType()) { |
2612 | if (Ty->isMemberFunctionPointerType()) { |
2613 | if (Has64BitPointers) { |
2614 | // If Has64BitPointers, this is an {i64, i64}, so classify both |
2615 | // Lo and Hi now. |
2616 | Lo = Hi = Integer; |
2617 | } else { |
2618 | // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that |
2619 | // straddles an eightbyte boundary, Hi should be classified as well. |
2620 | uint64_t EB_FuncPtr = (OffsetBase) / 64; |
2621 | uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; |
2622 | if (EB_FuncPtr != EB_ThisAdj) { |
2623 | Lo = Hi = Integer; |
2624 | } else { |
2625 | Current = Integer; |
2626 | } |
2627 | } |
2628 | } else { |
2629 | Current = Integer; |
2630 | } |
2631 | return; |
2632 | } |
2633 | |
2634 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
2635 | uint64_t Size = getContext().getTypeSize(VT); |
2636 | if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { |
2637 | // gcc passes the following as integer: |
2638 | // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> |
2639 | // 2 bytes - <2 x char>, <1 x short> |
2640 | // 1 byte - <1 x char> |
2641 | Current = Integer; |
2642 | |
2643 | // If this type crosses an eightbyte boundary, it should be |
2644 | // split. |
2645 | uint64_t EB_Lo = (OffsetBase) / 64; |
2646 | uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; |
2647 | if (EB_Lo != EB_Hi) |
2648 | Hi = Lo; |
2649 | } else if (Size == 64) { |
2650 | QualType ElementType = VT->getElementType(); |
2651 | |
2652 | // gcc passes <1 x double> in memory. :( |
2653 | if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) |
2654 | return; |
2655 | |
2656 | // gcc passes <1 x long long> as SSE but clang used to unconditionally |
2657 | // pass them as integer. For platforms where clang is the de facto |
2658 | // platform compiler, we must continue to use integer. |
2659 | if (!classifyIntegerMMXAsSSE() && |
2660 | (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || |
2661 | ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || |
2662 | ElementType->isSpecificBuiltinType(BuiltinType::Long) || |
2663 | ElementType->isSpecificBuiltinType(BuiltinType::ULong))) |
2664 | Current = Integer; |
2665 | else |
2666 | Current = SSE; |
2667 | |
2668 | // If this type crosses an eightbyte boundary, it should be |
2669 | // split. |
2670 | if (OffsetBase && OffsetBase != 64) |
2671 | Hi = Lo; |
2672 | } else if (Size == 128 || |
2673 | (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { |
2674 | QualType ElementType = VT->getElementType(); |
2675 | |
2676 | // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( |
2677 | if (passInt128VectorsInMem() && Size != 128 && |
2678 | (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || |
2679 | ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) |
2680 | return; |
2681 | |
2682 | // Arguments of 256-bits are split into four eightbyte chunks. The |
2683 | // least significant one belongs to class SSE and all the others to class |
2684 | // SSEUP. The original Lo and Hi design considers that types can't be |
2685 | // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. |
2686 | // This design isn't correct for 256-bits, but since there're no cases |
2687 | // where the upper parts would need to be inspected, avoid adding |
2688 | // complexity and just consider Hi to match the 64-256 part. |
2689 | // |
2690 | // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in |
2691 | // registers if they are "named", i.e. not part of the "..." of a |
2692 | // variadic function. |
2693 | // |
2694 | // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are |
2695 | // split into eight eightbyte chunks, one SSE and seven SSEUP. |
2696 | Lo = SSE; |
2697 | Hi = SSEUp; |
2698 | } |
2699 | return; |
2700 | } |
2701 | |
2702 | if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
2703 | QualType ET = getContext().getCanonicalType(CT->getElementType()); |
2704 | |
2705 | uint64_t Size = getContext().getTypeSize(Ty); |
2706 | if (ET->isIntegralOrEnumerationType()) { |
2707 | if (Size <= 64) |
2708 | Current = Integer; |
2709 | else if (Size <= 128) |
2710 | Lo = Hi = Integer; |
2711 | } else if (ET == getContext().FloatTy) { |
2712 | Current = SSE; |
2713 | } else if (ET == getContext().DoubleTy) { |
2714 | Lo = Hi = SSE; |
2715 | } else if (ET == getContext().LongDoubleTy) { |
2716 | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
2717 | if (LDF == &llvm::APFloat::IEEEquad()) |
2718 | Current = Memory; |
2719 | else if (LDF == &llvm::APFloat::x87DoubleExtended()) |
2720 | Current = ComplexX87; |
2721 | else if (LDF == &llvm::APFloat::IEEEdouble()) |
2722 | Lo = Hi = SSE; |
2723 | else |
2724 | llvm_unreachable("unexpected long double representation!")::llvm::llvm_unreachable_internal("unexpected long double representation!" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2724); |
2725 | } |
2726 | |
2727 | // If this complex type crosses an eightbyte boundary then it |
2728 | // should be split. |
2729 | uint64_t EB_Real = (OffsetBase) / 64; |
2730 | uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; |
2731 | if (Hi == NoClass && EB_Real != EB_Imag) |
2732 | Hi = Lo; |
2733 | |
2734 | return; |
2735 | } |
2736 | |
2737 | if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
2738 | // Arrays are treated like structures. |
2739 | |
2740 | uint64_t Size = getContext().getTypeSize(Ty); |
2741 | |
2742 | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
2743 | // than eight eightbytes, ..., it has class MEMORY. |
2744 | if (Size > 512) |
2745 | return; |
2746 | |
2747 | // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
2748 | // fields, it has class MEMORY. |
2749 | // |
2750 | // Only need to check alignment of array base. |
2751 | if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) |
2752 | return; |
2753 | |
2754 | // Otherwise implement simplified merge. We could be smarter about |
2755 | // this, but it isn't worth it and would be harder to verify. |
2756 | Current = NoClass; |
2757 | uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); |
2758 | uint64_t ArraySize = AT->getSize().getZExtValue(); |
2759 | |
2760 | // The only case a 256-bit wide vector could be used is when the array |
2761 | // contains a single 256-bit element. Since Lo and Hi logic isn't extended |
2762 | // to work for sizes wider than 128, early check and fallback to memory. |
2763 | // |
2764 | if (Size > 128 && |
2765 | (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) |
2766 | return; |
2767 | |
2768 | for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
2769 | Class FieldLo, FieldHi; |
2770 | classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); |
2771 | Lo = merge(Lo, FieldLo); |
2772 | Hi = merge(Hi, FieldHi); |
2773 | if (Lo == Memory || Hi == Memory) |
2774 | break; |
2775 | } |
2776 | |
2777 | postMerge(Size, Lo, Hi); |
2778 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.")(((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification." ) ? static_cast<void> (0) : __assert_fail ("(Hi != SSEUp || Lo == SSE) && \"Invalid SSEUp array classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2778, __PRETTY_FUNCTION__)); |
2779 | return; |
2780 | } |
2781 | |
2782 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2783 | uint64_t Size = getContext().getTypeSize(Ty); |
2784 | |
2785 | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
2786 | // than eight eightbytes, ..., it has class MEMORY. |
2787 | if (Size > 512) |
2788 | return; |
2789 | |
2790 | // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial |
2791 | // copy constructor or a non-trivial destructor, it is passed by invisible |
2792 | // reference. |
2793 | if (getRecordArgABI(RT, getCXXABI())) |
2794 | return; |
2795 | |
2796 | const RecordDecl *RD = RT->getDecl(); |
2797 | |
2798 | // Assume variable sized types are passed in memory. |
2799 | if (RD->hasFlexibleArrayMember()) |
2800 | return; |
2801 | |
2802 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
2803 | |
2804 | // Reset Lo class, this will be recomputed. |
2805 | Current = NoClass; |
2806 | |
2807 | // If this is a C++ record, classify the bases first. |
2808 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
2809 | for (const auto &I : CXXRD->bases()) { |
2810 | assert(!I.isVirtual() && !I.getType()->isDependentType() &&((!I.isVirtual() && !I.getType()->isDependentType( ) && "Unexpected base class!") ? static_cast<void> (0) : __assert_fail ("!I.isVirtual() && !I.getType()->isDependentType() && \"Unexpected base class!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2811, __PRETTY_FUNCTION__)) |
2811 | "Unexpected base class!")((!I.isVirtual() && !I.getType()->isDependentType( ) && "Unexpected base class!") ? static_cast<void> (0) : __assert_fail ("!I.isVirtual() && !I.getType()->isDependentType() && \"Unexpected base class!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2811, __PRETTY_FUNCTION__)); |
2812 | const CXXRecordDecl *Base = |
2813 | cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); |
2814 | |
2815 | // Classify this field. |
2816 | // |
2817 | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a |
2818 | // single eightbyte, each is classified separately. Each eightbyte gets |
2819 | // initialized to class NO_CLASS. |
2820 | Class FieldLo, FieldHi; |
2821 | uint64_t Offset = |
2822 | OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); |
2823 | classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); |
2824 | Lo = merge(Lo, FieldLo); |
2825 | Hi = merge(Hi, FieldHi); |
2826 | if (Lo == Memory || Hi == Memory) { |
2827 | postMerge(Size, Lo, Hi); |
2828 | return; |
2829 | } |
2830 | } |
2831 | } |
2832 | |
2833 | // Classify the fields one at a time, merging the results. |
2834 | unsigned idx = 0; |
2835 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
2836 | i != e; ++i, ++idx) { |
2837 | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
2838 | bool BitField = i->isBitField(); |
2839 | |
2840 | // Ignore padding bit-fields. |
2841 | if (BitField && i->isUnnamedBitfield()) |
2842 | continue; |
2843 | |
2844 | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than |
2845 | // four eightbytes, or it contains unaligned fields, it has class MEMORY. |
2846 | // |
2847 | // The only case a 256-bit wide vector could be used is when the struct |
2848 | // contains a single 256-bit element. Since Lo and Hi logic isn't extended |
2849 | // to work for sizes wider than 128, early check and fallback to memory. |
2850 | // |
2851 | if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || |
2852 | Size > getNativeVectorSizeForAVXABI(AVXLevel))) { |
2853 | Lo = Memory; |
2854 | postMerge(Size, Lo, Hi); |
2855 | return; |
2856 | } |
2857 | // Note, skip this test for bit-fields, see below. |
2858 | if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { |
2859 | Lo = Memory; |
2860 | postMerge(Size, Lo, Hi); |
2861 | return; |
2862 | } |
2863 | |
2864 | // Classify this field. |
2865 | // |
2866 | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
2867 | // exceeds a single eightbyte, each is classified |
2868 | // separately. Each eightbyte gets initialized to class |
2869 | // NO_CLASS. |
2870 | Class FieldLo, FieldHi; |
2871 | |
2872 | // Bit-fields require special handling, they do not force the |
2873 | // structure to be passed in memory even if unaligned, and |
2874 | // therefore they can straddle an eightbyte. |
2875 | if (BitField) { |
2876 | assert(!i->isUnnamedBitfield())((!i->isUnnamedBitfield()) ? static_cast<void> (0) : __assert_fail ("!i->isUnnamedBitfield()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2876, __PRETTY_FUNCTION__)); |
2877 | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
2878 | uint64_t Size = i->getBitWidthValue(getContext()); |
2879 | |
2880 | uint64_t EB_Lo = Offset / 64; |
2881 | uint64_t EB_Hi = (Offset + Size - 1) / 64; |
2882 | |
2883 | if (EB_Lo) { |
2884 | assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.")((EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes." ) ? static_cast<void> (0) : __assert_fail ("EB_Hi == EB_Lo && \"Invalid classification, type > 16 bytes.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 2884, __PRETTY_FUNCTION__)); |
2885 | FieldLo = NoClass; |
2886 | FieldHi = Integer; |
2887 | } else { |
2888 | FieldLo = Integer; |
2889 | FieldHi = EB_Hi ? Integer : NoClass; |
2890 | } |
2891 | } else |
2892 | classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); |
2893 | Lo = merge(Lo, FieldLo); |
2894 | Hi = merge(Hi, FieldHi); |
2895 | if (Lo == Memory || Hi == Memory) |
2896 | break; |
2897 | } |
2898 | |
2899 | postMerge(Size, Lo, Hi); |
2900 | } |
2901 | } |
2902 | |
2903 | ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { |
2904 | // If this is a scalar LLVM value then assume LLVM will pass it in the right |
2905 | // place naturally. |
2906 | if (!isAggregateTypeForABI(Ty)) { |
2907 | // Treat an enum type as its underlying type. |
2908 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
2909 | Ty = EnumTy->getDecl()->getIntegerType(); |
2910 | |
2911 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
2912 | : ABIArgInfo::getDirect()); |
2913 | } |
2914 | |
2915 | return getNaturalAlignIndirect(Ty); |
2916 | } |
2917 | |
2918 | bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { |
2919 | if (const VectorType *VecTy = Ty->getAs<VectorType>()) { |
2920 | uint64_t Size = getContext().getTypeSize(VecTy); |
2921 | unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); |
2922 | if (Size <= 64 || Size > LargestVector) |
2923 | return true; |
2924 | QualType EltTy = VecTy->getElementType(); |
2925 | if (passInt128VectorsInMem() && |
2926 | (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || |
2927 | EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) |
2928 | return true; |
2929 | } |
2930 | |
2931 | return false; |
2932 | } |
2933 | |
2934 | ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, |
2935 | unsigned freeIntRegs) const { |
2936 | // If this is a scalar LLVM value then assume LLVM will pass it in the right |
2937 | // place naturally. |
2938 | // |
2939 | // This assumption is optimistic, as there could be free registers available |
2940 | // when we need to pass this argument in memory, and LLVM could try to pass |
2941 | // the argument in the free register. This does not seem to happen currently, |
2942 | // but this code would be much safer if we could mark the argument with |
2943 | // 'onstack'. See PR12193. |
2944 | if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { |
2945 | // Treat an enum type as its underlying type. |
2946 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
2947 | Ty = EnumTy->getDecl()->getIntegerType(); |
2948 | |
2949 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
2950 | : ABIArgInfo::getDirect()); |
2951 | } |
2952 | |
2953 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
2954 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
2955 | |
2956 | // Compute the byval alignment. We specify the alignment of the byval in all |
2957 | // cases so that the mid-level optimizer knows the alignment of the byval. |
2958 | unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); |
2959 | |
2960 | // Attempt to avoid passing indirect results using byval when possible. This |
2961 | // is important for good codegen. |
2962 | // |
2963 | // We do this by coercing the value into a scalar type which the backend can |
2964 | // handle naturally (i.e., without using byval). |
2965 | // |
2966 | // For simplicity, we currently only do this when we have exhausted all of the |
2967 | // free integer registers. Doing this when there are free integer registers |
2968 | // would require more care, as we would have to ensure that the coerced value |
2969 | // did not claim the unused register. That would require either reording the |
2970 | // arguments to the function (so that any subsequent inreg values came first), |
2971 | // or only doing this optimization when there were no following arguments that |
2972 | // might be inreg. |
2973 | // |
2974 | // We currently expect it to be rare (particularly in well written code) for |
2975 | // arguments to be passed on the stack when there are still free integer |
2976 | // registers available (this would typically imply large structs being passed |
2977 | // by value), so this seems like a fair tradeoff for now. |
2978 | // |
2979 | // We can revisit this if the backend grows support for 'onstack' parameter |
2980 | // attributes. See PR12193. |
2981 | if (freeIntRegs == 0) { |
2982 | uint64_t Size = getContext().getTypeSize(Ty); |
2983 | |
2984 | // If this type fits in an eightbyte, coerce it into the matching integral |
2985 | // type, which will end up on the stack (with alignment 8). |
2986 | if (Align == 8 && Size <= 64) |
2987 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
2988 | Size)); |
2989 | } |
2990 | |
2991 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); |
2992 | } |
2993 | |
2994 | /// The ABI specifies that a value should be passed in a full vector XMM/YMM |
2995 | /// register. Pick an LLVM IR type that will be passed as a vector register. |
2996 | llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { |
2997 | // Wrapper structs/arrays that only contain vectors are passed just like |
2998 | // vectors; strip them off if present. |
2999 | if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) |
3000 | Ty = QualType(InnerTy, 0); |
3001 | |
3002 | llvm::Type *IRType = CGT.ConvertType(Ty); |
3003 | if (isa<llvm::VectorType>(IRType)) { |
3004 | // Don't pass vXi128 vectors in their native type, the backend can't |
3005 | // legalize them. |
3006 | if (passInt128VectorsInMem() && |
3007 | IRType->getVectorElementType()->isIntegerTy(128)) { |
3008 | // Use a vXi64 vector. |
3009 | uint64_t Size = getContext().getTypeSize(Ty); |
3010 | return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), |
3011 | Size / 64); |
3012 | } |
3013 | |
3014 | return IRType; |
3015 | } |
3016 | |
3017 | if (IRType->getTypeID() == llvm::Type::FP128TyID) |
3018 | return IRType; |
3019 | |
3020 | // We couldn't find the preferred IR vector type for 'Ty'. |
3021 | uint64_t Size = getContext().getTypeSize(Ty); |
3022 | assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!")(((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!" ) ? static_cast<void> (0) : __assert_fail ("(Size == 128 || Size == 256 || Size == 512) && \"Invalid type found!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3022, __PRETTY_FUNCTION__)); |
3023 | |
3024 | |
3025 | // Return a LLVM IR vector type based on the size of 'Ty'. |
3026 | return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), |
3027 | Size / 64); |
3028 | } |
3029 | |
3030 | /// BitsContainNoUserData - Return true if the specified [start,end) bit range |
3031 | /// is known to either be off the end of the specified type or being in |
3032 | /// alignment padding. The user type specified is known to be at most 128 bits |
3033 | /// in size, and have passed through X86_64ABIInfo::classify with a successful |
3034 | /// classification that put one of the two halves in the INTEGER class. |
3035 | /// |
3036 | /// It is conservatively correct to return false. |
3037 | static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, |
3038 | unsigned EndBit, ASTContext &Context) { |
3039 | // If the bytes being queried are off the end of the type, there is no user |
3040 | // data hiding here. This handles analysis of builtins, vectors and other |
3041 | // types that don't contain interesting padding. |
3042 | unsigned TySize = (unsigned)Context.getTypeSize(Ty); |
3043 | if (TySize <= StartBit) |
3044 | return true; |
3045 | |
3046 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
3047 | unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); |
3048 | unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); |
3049 | |
3050 | // Check each element to see if the element overlaps with the queried range. |
3051 | for (unsigned i = 0; i != NumElts; ++i) { |
3052 | // If the element is after the span we care about, then we're done.. |
3053 | unsigned EltOffset = i*EltSize; |
3054 | if (EltOffset >= EndBit) break; |
3055 | |
3056 | unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; |
3057 | if (!BitsContainNoUserData(AT->getElementType(), EltStart, |
3058 | EndBit-EltOffset, Context)) |
3059 | return false; |
3060 | } |
3061 | // If it overlaps no elements, then it is safe to process as padding. |
3062 | return true; |
3063 | } |
3064 | |
3065 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
3066 | const RecordDecl *RD = RT->getDecl(); |
3067 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
3068 | |
3069 | // If this is a C++ record, check the bases first. |
3070 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
3071 | for (const auto &I : CXXRD->bases()) { |
3072 | assert(!I.isVirtual() && !I.getType()->isDependentType() &&((!I.isVirtual() && !I.getType()->isDependentType( ) && "Unexpected base class!") ? static_cast<void> (0) : __assert_fail ("!I.isVirtual() && !I.getType()->isDependentType() && \"Unexpected base class!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3073, __PRETTY_FUNCTION__)) |
3073 | "Unexpected base class!")((!I.isVirtual() && !I.getType()->isDependentType( ) && "Unexpected base class!") ? static_cast<void> (0) : __assert_fail ("!I.isVirtual() && !I.getType()->isDependentType() && \"Unexpected base class!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3073, __PRETTY_FUNCTION__)); |
3074 | const CXXRecordDecl *Base = |
3075 | cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); |
3076 | |
3077 | // If the base is after the span we care about, ignore it. |
3078 | unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); |
3079 | if (BaseOffset >= EndBit) continue; |
3080 | |
3081 | unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; |
3082 | if (!BitsContainNoUserData(I.getType(), BaseStart, |
3083 | EndBit-BaseOffset, Context)) |
3084 | return false; |
3085 | } |
3086 | } |
3087 | |
3088 | // Verify that no field has data that overlaps the region of interest. Yes |
3089 | // this could be sped up a lot by being smarter about queried fields, |
3090 | // however we're only looking at structs up to 16 bytes, so we don't care |
3091 | // much. |
3092 | unsigned idx = 0; |
3093 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
3094 | i != e; ++i, ++idx) { |
3095 | unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); |
3096 | |
3097 | // If we found a field after the region we care about, then we're done. |
3098 | if (FieldOffset >= EndBit) break; |
3099 | |
3100 | unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; |
3101 | if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, |
3102 | Context)) |
3103 | return false; |
3104 | } |
3105 | |
3106 | // If nothing in this record overlapped the area of interest, then we're |
3107 | // clean. |
3108 | return true; |
3109 | } |
3110 | |
3111 | return false; |
3112 | } |
3113 | |
3114 | /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a |
3115 | /// float member at the specified offset. For example, {int,{float}} has a |
3116 | /// float at offset 4. It is conservatively correct for this routine to return |
3117 | /// false. |
3118 | static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, |
3119 | const llvm::DataLayout &TD) { |
3120 | // Base case if we find a float. |
3121 | if (IROffset == 0 && IRType->isFloatTy()) |
3122 | return true; |
3123 | |
3124 | // If this is a struct, recurse into the field at the specified offset. |
3125 | if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
3126 | const llvm::StructLayout *SL = TD.getStructLayout(STy); |
3127 | unsigned Elt = SL->getElementContainingOffset(IROffset); |
3128 | IROffset -= SL->getElementOffset(Elt); |
3129 | return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); |
3130 | } |
3131 | |
3132 | // If this is an array, recurse into the field at the specified offset. |
3133 | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
3134 | llvm::Type *EltTy = ATy->getElementType(); |
3135 | unsigned EltSize = TD.getTypeAllocSize(EltTy); |
3136 | IROffset -= IROffset/EltSize*EltSize; |
3137 | return ContainsFloatAtOffset(EltTy, IROffset, TD); |
3138 | } |
3139 | |
3140 | return false; |
3141 | } |
3142 | |
3143 | |
3144 | /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the |
3145 | /// low 8 bytes of an XMM register, corresponding to the SSE class. |
3146 | llvm::Type *X86_64ABIInfo:: |
3147 | GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
3148 | QualType SourceTy, unsigned SourceOffset) const { |
3149 | // The only three choices we have are either double, <2 x float>, or float. We |
3150 | // pass as float if the last 4 bytes is just padding. This happens for |
3151 | // structs that contain 3 floats. |
3152 | if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, |
3153 | SourceOffset*8+64, getContext())) |
3154 | return llvm::Type::getFloatTy(getVMContext()); |
3155 | |
3156 | // We want to pass as <2 x float> if the LLVM IR type contains a float at |
3157 | // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the |
3158 | // case. |
3159 | if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && |
3160 | ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) |
3161 | return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); |
3162 | |
3163 | return llvm::Type::getDoubleTy(getVMContext()); |
3164 | } |
3165 | |
3166 | |
3167 | /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in |
3168 | /// an 8-byte GPR. This means that we either have a scalar or we are talking |
3169 | /// about the high or low part of an up-to-16-byte struct. This routine picks |
3170 | /// the best LLVM IR type to represent this, which may be i64 or may be anything |
3171 | /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, |
3172 | /// etc). |
3173 | /// |
3174 | /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for |
3175 | /// the source type. IROffset is an offset in bytes into the LLVM IR type that |
3176 | /// the 8-byte value references. PrefType may be null. |
3177 | /// |
3178 | /// SourceTy is the source-level type for the entire argument. SourceOffset is |
3179 | /// an offset into this that we're processing (which is always either 0 or 8). |
3180 | /// |
3181 | llvm::Type *X86_64ABIInfo:: |
3182 | GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
3183 | QualType SourceTy, unsigned SourceOffset) const { |
3184 | // If we're dealing with an un-offset LLVM IR type, then it means that we're |
3185 | // returning an 8-byte unit starting with it. See if we can safely use it. |
3186 | if (IROffset == 0) { |
3187 | // Pointers and int64's always fill the 8-byte unit. |
3188 | if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || |
3189 | IRType->isIntegerTy(64)) |
3190 | return IRType; |
3191 | |
3192 | // If we have a 1/2/4-byte integer, we can use it only if the rest of the |
3193 | // goodness in the source type is just tail padding. This is allowed to |
3194 | // kick in for struct {double,int} on the int, but not on |
3195 | // struct{double,int,int} because we wouldn't return the second int. We |
3196 | // have to do this analysis on the source type because we can't depend on |
3197 | // unions being lowered a specific way etc. |
3198 | if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || |
3199 | IRType->isIntegerTy(32) || |
3200 | (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { |
3201 | unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : |
3202 | cast<llvm::IntegerType>(IRType)->getBitWidth(); |
3203 | |
3204 | if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, |
3205 | SourceOffset*8+64, getContext())) |
3206 | return IRType; |
3207 | } |
3208 | } |
3209 | |
3210 | if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
3211 | // If this is a struct, recurse into the field at the specified offset. |
3212 | const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); |
3213 | if (IROffset < SL->getSizeInBytes()) { |
3214 | unsigned FieldIdx = SL->getElementContainingOffset(IROffset); |
3215 | IROffset -= SL->getElementOffset(FieldIdx); |
3216 | |
3217 | return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, |
3218 | SourceTy, SourceOffset); |
3219 | } |
3220 | } |
3221 | |
3222 | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
3223 | llvm::Type *EltTy = ATy->getElementType(); |
3224 | unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); |
3225 | unsigned EltOffset = IROffset/EltSize*EltSize; |
3226 | return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, |
3227 | SourceOffset); |
3228 | } |
3229 | |
3230 | // Okay, we don't have any better idea of what to pass, so we pass this in an |
3231 | // integer register that isn't too big to fit the rest of the struct. |
3232 | unsigned TySizeInBytes = |
3233 | (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); |
3234 | |
3235 | assert(TySizeInBytes != SourceOffset && "Empty field?")((TySizeInBytes != SourceOffset && "Empty field?") ? static_cast <void> (0) : __assert_fail ("TySizeInBytes != SourceOffset && \"Empty field?\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3235, __PRETTY_FUNCTION__)); |
3236 | |
3237 | // It is always safe to classify this as an integer type up to i64 that |
3238 | // isn't larger than the structure. |
3239 | return llvm::IntegerType::get(getVMContext(), |
3240 | std::min(TySizeInBytes-SourceOffset, 8U)*8); |
3241 | } |
3242 | |
3243 | |
3244 | /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally |
3245 | /// be used as elements of a two register pair to pass or return, return a |
3246 | /// first class aggregate to represent them. For example, if the low part of |
3247 | /// a by-value argument should be passed as i32* and the high part as float, |
3248 | /// return {i32*, float}. |
3249 | static llvm::Type * |
3250 | GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, |
3251 | const llvm::DataLayout &TD) { |
3252 | // In order to correctly satisfy the ABI, we need to the high part to start |
3253 | // at offset 8. If the high and low parts we inferred are both 4-byte types |
3254 | // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have |
3255 | // the second element at offset 8. Check for this: |
3256 | unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); |
3257 | unsigned HiAlign = TD.getABITypeAlignment(Hi); |
3258 | unsigned HiStart = llvm::alignTo(LoSize, HiAlign); |
3259 | assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!")((HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!" ) ? static_cast<void> (0) : __assert_fail ("HiStart != 0 && HiStart <= 8 && \"Invalid x86-64 argument pair!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3259, __PRETTY_FUNCTION__)); |
3260 | |
3261 | // To handle this, we have to increase the size of the low part so that the |
3262 | // second element will start at an 8 byte offset. We can't increase the size |
3263 | // of the second element because it might make us access off the end of the |
3264 | // struct. |
3265 | if (HiStart != 8) { |
3266 | // There are usually two sorts of types the ABI generation code can produce |
3267 | // for the low part of a pair that aren't 8 bytes in size: float or |
3268 | // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and |
3269 | // NaCl). |
3270 | // Promote these to a larger type. |
3271 | if (Lo->isFloatTy()) |
3272 | Lo = llvm::Type::getDoubleTy(Lo->getContext()); |
3273 | else { |
3274 | assert((Lo->isIntegerTy() || Lo->isPointerTy())(((Lo->isIntegerTy() || Lo->isPointerTy()) && "Invalid/unknown lo type" ) ? static_cast<void> (0) : __assert_fail ("(Lo->isIntegerTy() || Lo->isPointerTy()) && \"Invalid/unknown lo type\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3275, __PRETTY_FUNCTION__)) |
3275 | && "Invalid/unknown lo type")(((Lo->isIntegerTy() || Lo->isPointerTy()) && "Invalid/unknown lo type" ) ? static_cast<void> (0) : __assert_fail ("(Lo->isIntegerTy() || Lo->isPointerTy()) && \"Invalid/unknown lo type\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3275, __PRETTY_FUNCTION__)); |
3276 | Lo = llvm::Type::getInt64Ty(Lo->getContext()); |
3277 | } |
3278 | } |
3279 | |
3280 | llvm::StructType *Result = llvm::StructType::get(Lo, Hi); |
3281 | |
3282 | // Verify that the second element is at an 8-byte offset. |
3283 | assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&((TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!") ? static_cast<void> ( 0) : __assert_fail ("TD.getStructLayout(Result)->getElementOffset(1) == 8 && \"Invalid x86-64 argument pair!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3284, __PRETTY_FUNCTION__)) |
3284 | "Invalid x86-64 argument pair!")((TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!") ? static_cast<void> ( 0) : __assert_fail ("TD.getStructLayout(Result)->getElementOffset(1) == 8 && \"Invalid x86-64 argument pair!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3284, __PRETTY_FUNCTION__)); |
3285 | return Result; |
3286 | } |
3287 | |
3288 | ABIArgInfo X86_64ABIInfo:: |
3289 | classifyReturnType(QualType RetTy) const { |
3290 | // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
3291 | // classification algorithm. |
3292 | X86_64ABIInfo::Class Lo, Hi; |
3293 | classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); |
3294 | |
3295 | // Check some invariants. |
3296 | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.")(((Hi != Memory || Lo == Memory) && "Invalid memory classification." ) ? static_cast<void> (0) : __assert_fail ("(Hi != Memory || Lo == Memory) && \"Invalid memory classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3296, __PRETTY_FUNCTION__)); |
3297 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.")(((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification." ) ? static_cast<void> (0) : __assert_fail ("(Hi != SSEUp || Lo == SSE) && \"Invalid SSEUp classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3297, __PRETTY_FUNCTION__)); |
3298 | |
3299 | llvm::Type *ResType = nullptr; |
3300 | switch (Lo) { |
3301 | case NoClass: |
3302 | if (Hi == NoClass) |
3303 | return ABIArgInfo::getIgnore(); |
3304 | // If the low part is just padding, it takes no register, leave ResType |
3305 | // null. |
3306 | assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&(((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part" ) ? static_cast<void> (0) : __assert_fail ("(Hi == SSE || Hi == Integer || Hi == X87Up) && \"Unknown missing lo part\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3307, __PRETTY_FUNCTION__)) |
3307 | "Unknown missing lo part")(((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part" ) ? static_cast<void> (0) : __assert_fail ("(Hi == SSE || Hi == Integer || Hi == X87Up) && \"Unknown missing lo part\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3307, __PRETTY_FUNCTION__)); |
3308 | break; |
3309 | |
3310 | case SSEUp: |
3311 | case X87Up: |
3312 | llvm_unreachable("Invalid classification for lo word.")::llvm::llvm_unreachable_internal("Invalid classification for lo word." , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3312); |
3313 | |
3314 | // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
3315 | // hidden argument. |
3316 | case Memory: |
3317 | return getIndirectReturnResult(RetTy); |
3318 | |
3319 | // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
3320 | // available register of the sequence %rax, %rdx is used. |
3321 | case Integer: |
3322 | ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); |
3323 | |
3324 | // If we have a sign or zero extended integer, make sure to return Extend |
3325 | // so that the parameter gets the right LLVM IR attributes. |
3326 | if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
3327 | // Treat an enum type as its underlying type. |
3328 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
3329 | RetTy = EnumTy->getDecl()->getIntegerType(); |
3330 | |
3331 | if (RetTy->isIntegralOrEnumerationType() && |
3332 | RetTy->isPromotableIntegerType()) |
3333 | return ABIArgInfo::getExtend(RetTy); |
3334 | } |
3335 | break; |
3336 | |
3337 | // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
3338 | // available SSE register of the sequence %xmm0, %xmm1 is used. |
3339 | case SSE: |
3340 | ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); |
3341 | break; |
3342 | |
3343 | // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
3344 | // returned on the X87 stack in %st0 as 80-bit x87 number. |
3345 | case X87: |
3346 | ResType = llvm::Type::getX86_FP80Ty(getVMContext()); |
3347 | break; |
3348 | |
3349 | // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
3350 | // part of the value is returned in %st0 and the imaginary part in |
3351 | // %st1. |
3352 | case ComplexX87: |
3353 | assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.")((Hi == ComplexX87 && "Unexpected ComplexX87 classification." ) ? static_cast<void> (0) : __assert_fail ("Hi == ComplexX87 && \"Unexpected ComplexX87 classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3353, __PRETTY_FUNCTION__)); |
3354 | ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), |
3355 | llvm::Type::getX86_FP80Ty(getVMContext())); |
3356 | break; |
3357 | } |
3358 | |
3359 | llvm::Type *HighPart = nullptr; |
3360 | switch (Hi) { |
3361 | // Memory was handled previously and X87 should |
3362 | // never occur as a hi class. |
3363 | case Memory: |
3364 | case X87: |
3365 | llvm_unreachable("Invalid classification for hi word.")::llvm::llvm_unreachable_internal("Invalid classification for hi word." , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3365); |
3366 | |
3367 | case ComplexX87: // Previously handled. |
3368 | case NoClass: |
3369 | break; |
3370 | |
3371 | case Integer: |
3372 | HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
3373 | if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
3374 | return ABIArgInfo::getDirect(HighPart, 8); |
3375 | break; |
3376 | case SSE: |
3377 | HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
3378 | if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
3379 | return ABIArgInfo::getDirect(HighPart, 8); |
3380 | break; |
3381 | |
3382 | // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
3383 | // is passed in the next available eightbyte chunk if the last used |
3384 | // vector register. |
3385 | // |
3386 | // SSEUP should always be preceded by SSE, just widen. |
3387 | case SSEUp: |
3388 | assert(Lo == SSE && "Unexpected SSEUp classification.")((Lo == SSE && "Unexpected SSEUp classification.") ? static_cast <void> (0) : __assert_fail ("Lo == SSE && \"Unexpected SSEUp classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3388, __PRETTY_FUNCTION__)); |
3389 | ResType = GetByteVectorType(RetTy); |
3390 | break; |
3391 | |
3392 | // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
3393 | // returned together with the previous X87 value in %st0. |
3394 | case X87Up: |
3395 | // If X87Up is preceded by X87, we don't need to do |
3396 | // anything. However, in some cases with unions it may not be |
3397 | // preceded by X87. In such situations we follow gcc and pass the |
3398 | // extra bits in an SSE reg. |
3399 | if (Lo != X87) { |
3400 | HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
3401 | if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
3402 | return ABIArgInfo::getDirect(HighPart, 8); |
3403 | } |
3404 | break; |
3405 | } |
3406 | |
3407 | // If a high part was specified, merge it together with the low part. It is |
3408 | // known to pass in the high eightbyte of the result. We do this by forming a |
3409 | // first class struct aggregate with the high and low part: {low, high} |
3410 | if (HighPart) |
3411 | ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); |
3412 | |
3413 | return ABIArgInfo::getDirect(ResType); |
3414 | } |
3415 | |
3416 | ABIArgInfo X86_64ABIInfo::classifyArgumentType( |
3417 | QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, |
3418 | bool isNamedArg) |
3419 | const |
3420 | { |
3421 | Ty = useFirstFieldIfTransparentUnion(Ty); |
3422 | |
3423 | X86_64ABIInfo::Class Lo, Hi; |
3424 | classify(Ty, 0, Lo, Hi, isNamedArg); |
3425 | |
3426 | // Check some invariants. |
3427 | // FIXME: Enforce these by construction. |
3428 | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.")(((Hi != Memory || Lo == Memory) && "Invalid memory classification." ) ? static_cast<void> (0) : __assert_fail ("(Hi != Memory || Lo == Memory) && \"Invalid memory classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3428, __PRETTY_FUNCTION__)); |
3429 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.")(((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification." ) ? static_cast<void> (0) : __assert_fail ("(Hi != SSEUp || Lo == SSE) && \"Invalid SSEUp classification.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3429, __PRETTY_FUNCTION__)); |
3430 | |
3431 | neededInt = 0; |
3432 | neededSSE = 0; |
3433 | llvm::Type *ResType = nullptr; |
3434 | switch (Lo) { |
3435 | case NoClass: |
3436 | if (Hi == NoClass) |
3437 | return ABIArgInfo::getIgnore(); |
3438 | // If the low part is just padding, it takes no register, leave ResType |
3439 | // null. |
3440 | assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&(((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part" ) ? static_cast<void> (0) : __assert_fail ("(Hi == SSE || Hi == Integer || Hi == X87Up) && \"Unknown missing lo part\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3441, __PRETTY_FUNCTION__)) |
3441 | "Unknown missing lo part")(((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part" ) ? static_cast<void> (0) : __assert_fail ("(Hi == SSE || Hi == Integer || Hi == X87Up) && \"Unknown missing lo part\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3441, __PRETTY_FUNCTION__)); |
3442 | break; |
3443 | |
3444 | // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
3445 | // on the stack. |
3446 | case Memory: |
3447 | |
3448 | // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
3449 | // COMPLEX_X87, it is passed in memory. |
3450 | case X87: |
3451 | case ComplexX87: |
3452 | if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) |
3453 | ++neededInt; |
3454 | return getIndirectResult(Ty, freeIntRegs); |
3455 | |
3456 | case SSEUp: |
3457 | case X87Up: |
3458 | llvm_unreachable("Invalid classification for lo word.")::llvm::llvm_unreachable_internal("Invalid classification for lo word." , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3458); |
3459 | |
3460 | // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
3461 | // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
3462 | // and %r9 is used. |
3463 | case Integer: |
3464 | ++neededInt; |
3465 | |
3466 | // Pick an 8-byte type based on the preferred type. |
3467 | ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); |
3468 | |
3469 | // If we have a sign or zero extended integer, make sure to return Extend |
3470 | // so that the parameter gets the right LLVM IR attributes. |
3471 | if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
3472 | // Treat an enum type as its underlying type. |
3473 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
3474 | Ty = EnumTy->getDecl()->getIntegerType(); |
3475 | |
3476 | if (Ty->isIntegralOrEnumerationType() && |
3477 | Ty->isPromotableIntegerType()) |
3478 | return ABIArgInfo::getExtend(Ty); |
3479 | } |
3480 | |
3481 | break; |
3482 | |
3483 | // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
3484 | // available SSE register is used, the registers are taken in the |
3485 | // order from %xmm0 to %xmm7. |
3486 | case SSE: { |
3487 | llvm::Type *IRType = CGT.ConvertType(Ty); |
3488 | ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); |
3489 | ++neededSSE; |
3490 | break; |
3491 | } |
3492 | } |
3493 | |
3494 | llvm::Type *HighPart = nullptr; |
3495 | switch (Hi) { |
3496 | // Memory was handled previously, ComplexX87 and X87 should |
3497 | // never occur as hi classes, and X87Up must be preceded by X87, |
3498 | // which is passed in memory. |
3499 | case Memory: |
3500 | case X87: |
3501 | case ComplexX87: |
3502 | llvm_unreachable("Invalid classification for hi word.")::llvm::llvm_unreachable_internal("Invalid classification for hi word." , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3502); |
3503 | |
3504 | case NoClass: break; |
3505 | |
3506 | case Integer: |
3507 | ++neededInt; |
3508 | // Pick an 8-byte type based on the preferred type. |
3509 | HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); |
3510 | |
3511 | if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
3512 | return ABIArgInfo::getDirect(HighPart, 8); |
3513 | break; |
3514 | |
3515 | // X87Up generally doesn't occur here (long double is passed in |
3516 | // memory), except in situations involving unions. |
3517 | case X87Up: |
3518 | case SSE: |
3519 | HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); |
3520 | |
3521 | if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
3522 | return ABIArgInfo::getDirect(HighPart, 8); |
3523 | |
3524 | ++neededSSE; |
3525 | break; |
3526 | |
3527 | // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
3528 | // eightbyte is passed in the upper half of the last used SSE |
3529 | // register. This only happens when 128-bit vectors are passed. |
3530 | case SSEUp: |
3531 | assert(Lo == SSE && "Unexpected SSEUp classification")((Lo == SSE && "Unexpected SSEUp classification") ? static_cast <void> (0) : __assert_fail ("Lo == SSE && \"Unexpected SSEUp classification\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3531, __PRETTY_FUNCTION__)); |
3532 | ResType = GetByteVectorType(Ty); |
3533 | break; |
3534 | } |
3535 | |
3536 | // If a high part was specified, merge it together with the low part. It is |
3537 | // known to pass in the high eightbyte of the result. We do this by forming a |
3538 | // first class struct aggregate with the high and low part: {low, high} |
3539 | if (HighPart) |
3540 | ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); |
3541 | |
3542 | return ABIArgInfo::getDirect(ResType); |
3543 | } |
3544 | |
3545 | ABIArgInfo |
3546 | X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, |
3547 | unsigned &NeededSSE) const { |
3548 | auto RT = Ty->getAs<RecordType>(); |
3549 | assert(RT && "classifyRegCallStructType only valid with struct types")((RT && "classifyRegCallStructType only valid with struct types" ) ? static_cast<void> (0) : __assert_fail ("RT && \"classifyRegCallStructType only valid with struct types\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3549, __PRETTY_FUNCTION__)); |
3550 | |
3551 | if (RT->getDecl()->hasFlexibleArrayMember()) |
3552 | return getIndirectReturnResult(Ty); |
3553 | |
3554 | // Sum up bases |
3555 | if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
3556 | if (CXXRD->isDynamicClass()) { |
3557 | NeededInt = NeededSSE = 0; |
3558 | return getIndirectReturnResult(Ty); |
3559 | } |
3560 | |
3561 | for (const auto &I : CXXRD->bases()) |
3562 | if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) |
3563 | .isIndirect()) { |
3564 | NeededInt = NeededSSE = 0; |
3565 | return getIndirectReturnResult(Ty); |
3566 | } |
3567 | } |
3568 | |
3569 | // Sum up members |
3570 | for (const auto *FD : RT->getDecl()->fields()) { |
3571 | if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { |
3572 | if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) |
3573 | .isIndirect()) { |
3574 | NeededInt = NeededSSE = 0; |
3575 | return getIndirectReturnResult(Ty); |
3576 | } |
3577 | } else { |
3578 | unsigned LocalNeededInt, LocalNeededSSE; |
3579 | if (classifyArgumentType(FD->getType(), UINT_MAX(2147483647 *2U +1U), LocalNeededInt, |
3580 | LocalNeededSSE, true) |
3581 | .isIndirect()) { |
3582 | NeededInt = NeededSSE = 0; |
3583 | return getIndirectReturnResult(Ty); |
3584 | } |
3585 | NeededInt += LocalNeededInt; |
3586 | NeededSSE += LocalNeededSSE; |
3587 | } |
3588 | } |
3589 | |
3590 | return ABIArgInfo::getDirect(); |
3591 | } |
3592 | |
3593 | ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, |
3594 | unsigned &NeededInt, |
3595 | unsigned &NeededSSE) const { |
3596 | |
3597 | NeededInt = 0; |
3598 | NeededSSE = 0; |
3599 | |
3600 | return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); |
3601 | } |
3602 | |
3603 | void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
3604 | |
3605 | const unsigned CallingConv = FI.getCallingConvention(); |
3606 | // It is possible to force Win64 calling convention on any x86_64 target by |
3607 | // using __attribute__((ms_abi)). In such case to correctly emit Win64 |
3608 | // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. |
3609 | if (CallingConv == llvm::CallingConv::Win64) { |
3610 | WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); |
3611 | Win64ABIInfo.computeInfo(FI); |
3612 | return; |
3613 | } |
3614 | |
3615 | bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; |
3616 | |
3617 | // Keep track of the number of assigned registers. |
3618 | unsigned FreeIntRegs = IsRegCall ? 11 : 6; |
3619 | unsigned FreeSSERegs = IsRegCall ? 16 : 8; |
3620 | unsigned NeededInt, NeededSSE; |
3621 | |
3622 | if (!::classifyReturnType(getCXXABI(), FI, *this)) { |
3623 | if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && |
3624 | !FI.getReturnType()->getTypePtr()->isUnionType()) { |
3625 | FI.getReturnInfo() = |
3626 | classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); |
3627 | if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { |
3628 | FreeIntRegs -= NeededInt; |
3629 | FreeSSERegs -= NeededSSE; |
3630 | } else { |
3631 | FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); |
3632 | } |
3633 | } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { |
3634 | // Complex Long Double Type is passed in Memory when Regcall |
3635 | // calling convention is used. |
3636 | const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); |
3637 | if (getContext().getCanonicalType(CT->getElementType()) == |
3638 | getContext().LongDoubleTy) |
3639 | FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); |
3640 | } else |
3641 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
3642 | } |
3643 | |
3644 | // If the return value is indirect, then the hidden argument is consuming one |
3645 | // integer register. |
3646 | if (FI.getReturnInfo().isIndirect()) |
3647 | --FreeIntRegs; |
3648 | |
3649 | // The chain argument effectively gives us another free register. |
3650 | if (FI.isChainCall()) |
3651 | ++FreeIntRegs; |
3652 | |
3653 | unsigned NumRequiredArgs = FI.getNumRequiredArgs(); |
3654 | // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
3655 | // get assigned (in left-to-right order) for passing as follows... |
3656 | unsigned ArgNo = 0; |
3657 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
3658 | it != ie; ++it, ++ArgNo) { |
3659 | bool IsNamedArg = ArgNo < NumRequiredArgs; |
3660 | |
3661 | if (IsRegCall && it->type->isStructureOrClassType()) |
3662 | it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); |
3663 | else |
3664 | it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, |
3665 | NeededSSE, IsNamedArg); |
3666 | |
3667 | // AMD64-ABI 3.2.3p3: If there are no registers available for any |
3668 | // eightbyte of an argument, the whole argument is passed on the |
3669 | // stack. If registers have already been assigned for some |
3670 | // eightbytes of such an argument, the assignments get reverted. |
3671 | if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { |
3672 | FreeIntRegs -= NeededInt; |
3673 | FreeSSERegs -= NeededSSE; |
3674 | } else { |
3675 | it->info = getIndirectResult(it->type, FreeIntRegs); |
3676 | } |
3677 | } |
3678 | } |
3679 | |
3680 | static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, |
3681 | Address VAListAddr, QualType Ty) { |
3682 | Address overflow_arg_area_p = |
3683 | CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); |
3684 | llvm::Value *overflow_arg_area = |
3685 | CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
3686 | |
3687 | // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
3688 | // byte boundary if alignment needed by type exceeds 8 byte boundary. |
3689 | // It isn't stated explicitly in the standard, but in practice we use |
3690 | // alignment greater than 16 where necessary. |
3691 | CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); |
3692 | if (Align > CharUnits::fromQuantity(8)) { |
3693 | overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, |
3694 | Align); |
3695 | } |
3696 | |
3697 | // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
3698 | llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
3699 | llvm::Value *Res = |
3700 | CGF.Builder.CreateBitCast(overflow_arg_area, |
3701 | llvm::PointerType::getUnqual(LTy)); |
3702 | |
3703 | // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
3704 | // l->overflow_arg_area + sizeof(type). |
3705 | // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
3706 | // an 8 byte boundary. |
3707 | |
3708 | uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
3709 | llvm::Value *Offset = |
3710 | llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); |
3711 | overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, |
3712 | "overflow_arg_area.next"); |
3713 | CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
3714 | |
3715 | // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
3716 | return Address(Res, Align); |
3717 | } |
3718 | |
3719 | Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
3720 | QualType Ty) const { |
3721 | // Assume that va_list type is correct; should be pointer to LLVM type: |
3722 | // struct { |
3723 | // i32 gp_offset; |
3724 | // i32 fp_offset; |
3725 | // i8* overflow_arg_area; |
3726 | // i8* reg_save_area; |
3727 | // }; |
3728 | unsigned neededInt, neededSSE; |
3729 | |
3730 | Ty = getContext().getCanonicalType(Ty); |
3731 | ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, |
3732 | /*isNamedArg*/false); |
3733 | |
3734 | // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
3735 | // in the registers. If not go to step 7. |
3736 | if (!neededInt && !neededSSE) |
3737 | return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); |
3738 | |
3739 | // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
3740 | // general purpose registers needed to pass type and num_fp to hold |
3741 | // the number of floating point registers needed. |
3742 | |
3743 | // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
3744 | // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
3745 | // l->fp_offset > 304 - num_fp * 16 go to step 7. |
3746 | // |
3747 | // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
3748 | // register save space). |
3749 | |
3750 | llvm::Value *InRegs = nullptr; |
3751 | Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); |
3752 | llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; |
3753 | if (neededInt) { |
3754 | gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); |
3755 | gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
3756 | InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); |
3757 | InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); |
3758 | } |
3759 | |
3760 | if (neededSSE) { |
3761 | fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); |
3762 | fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
3763 | llvm::Value *FitsInFP = |
3764 | llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); |
3765 | FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); |
3766 | InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
3767 | } |
3768 | |
3769 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
3770 | llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
3771 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
3772 | CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
3773 | |
3774 | // Emit code to load the value if it was passed in registers. |
3775 | |
3776 | CGF.EmitBlock(InRegBlock); |
3777 | |
3778 | // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
3779 | // an offset of l->gp_offset and/or l->fp_offset. This may require |
3780 | // copying to a temporary location in case the parameter is passed |
3781 | // in different register classes or requires an alignment greater |
3782 | // than 8 for general purpose registers and 16 for XMM registers. |
3783 | // |
3784 | // FIXME: This really results in shameful code when we end up needing to |
3785 | // collect arguments from different places; often what should result in a |
3786 | // simple assembling of a structure from scattered addresses has many more |
3787 | // loads than necessary. Can we clean this up? |
3788 | llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
3789 | llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( |
3790 | CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); |
3791 | |
3792 | Address RegAddr = Address::invalid(); |
3793 | if (neededInt && neededSSE) { |
3794 | // FIXME: Cleanup. |
3795 | assert(AI.isDirect() && "Unexpected ABI info for mixed regs")((AI.isDirect() && "Unexpected ABI info for mixed regs" ) ? static_cast<void> (0) : __assert_fail ("AI.isDirect() && \"Unexpected ABI info for mixed regs\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3795, __PRETTY_FUNCTION__)); |
3796 | llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
3797 | Address Tmp = CGF.CreateMemTemp(Ty); |
3798 | Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); |
3799 | assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs")((ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs" ) ? static_cast<void> (0) : __assert_fail ("ST->getNumElements() == 2 && \"Unexpected ABI info for mixed regs\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3799, __PRETTY_FUNCTION__)); |
3800 | llvm::Type *TyLo = ST->getElementType(0); |
3801 | llvm::Type *TyHi = ST->getElementType(1); |
3802 | assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&(((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs") ? static_cast <void> (0) : __assert_fail ("(TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && \"Unexpected ABI info for mixed regs\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3803, __PRETTY_FUNCTION__)) |
3803 | "Unexpected ABI info for mixed regs")(((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs") ? static_cast <void> (0) : __assert_fail ("(TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && \"Unexpected ABI info for mixed regs\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3803, __PRETTY_FUNCTION__)); |
3804 | llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); |
3805 | llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); |
3806 | llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); |
3807 | llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); |
3808 | llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; |
3809 | llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; |
3810 | |
3811 | // Copy the first element. |
3812 | // FIXME: Our choice of alignment here and below is probably pessimistic. |
3813 | llvm::Value *V = CGF.Builder.CreateAlignedLoad( |
3814 | TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), |
3815 | CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); |
3816 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
3817 | |
3818 | // Copy the second element. |
3819 | V = CGF.Builder.CreateAlignedLoad( |
3820 | TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), |
3821 | CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); |
3822 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
3823 | |
3824 | RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); |
3825 | } else if (neededInt) { |
3826 | RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), |
3827 | CharUnits::fromQuantity(8)); |
3828 | RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); |
3829 | |
3830 | // Copy to a temporary if necessary to ensure the appropriate alignment. |
3831 | std::pair<CharUnits, CharUnits> SizeAlign = |
3832 | getContext().getTypeInfoInChars(Ty); |
3833 | uint64_t TySize = SizeAlign.first.getQuantity(); |
3834 | CharUnits TyAlign = SizeAlign.second; |
3835 | |
3836 | // Copy into a temporary if the type is more aligned than the |
3837 | // register save area. |
3838 | if (TyAlign.getQuantity() > 8) { |
3839 | Address Tmp = CGF.CreateMemTemp(Ty); |
3840 | CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); |
3841 | RegAddr = Tmp; |
3842 | } |
3843 | |
3844 | } else if (neededSSE == 1) { |
3845 | RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), |
3846 | CharUnits::fromQuantity(16)); |
3847 | RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); |
3848 | } else { |
3849 | assert(neededSSE == 2 && "Invalid number of needed registers!")((neededSSE == 2 && "Invalid number of needed registers!" ) ? static_cast<void> (0) : __assert_fail ("neededSSE == 2 && \"Invalid number of needed registers!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 3849, __PRETTY_FUNCTION__)); |
3850 | // SSE registers are spaced 16 bytes apart in the register save |
3851 | // area, we need to collect the two eightbytes together. |
3852 | // The ABI isn't explicit about this, but it seems reasonable |
3853 | // to assume that the slots are 16-byte aligned, since the stack is |
3854 | // naturally 16-byte aligned and the prologue is expected to store |
3855 | // all the SSE registers to the RSA. |
3856 | Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), |
3857 | CharUnits::fromQuantity(16)); |
3858 | Address RegAddrHi = |
3859 | CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, |
3860 | CharUnits::fromQuantity(16)); |
3861 | llvm::Type *ST = AI.canHaveCoerceToType() |
3862 | ? AI.getCoerceToType() |
3863 | : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); |
3864 | llvm::Value *V; |
3865 | Address Tmp = CGF.CreateMemTemp(Ty); |
3866 | Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); |
3867 | V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( |
3868 | RegAddrLo, ST->getStructElementType(0))); |
3869 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
3870 | V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( |
3871 | RegAddrHi, ST->getStructElementType(1))); |
3872 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
3873 | |
3874 | RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); |
3875 | } |
3876 | |
3877 | // AMD64-ABI 3.5.7p5: Step 5. Set: |
3878 | // l->gp_offset = l->gp_offset + num_gp * 8 |
3879 | // l->fp_offset = l->fp_offset + num_fp * 16. |
3880 | if (neededInt) { |
3881 | llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); |
3882 | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
3883 | gp_offset_p); |
3884 | } |
3885 | if (neededSSE) { |
3886 | llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); |
3887 | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
3888 | fp_offset_p); |
3889 | } |
3890 | CGF.EmitBranch(ContBlock); |
3891 | |
3892 | // Emit code to load the value if it was passed in memory. |
3893 | |
3894 | CGF.EmitBlock(InMemBlock); |
3895 | Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); |
3896 | |
3897 | // Return the appropriate result. |
3898 | |
3899 | CGF.EmitBlock(ContBlock); |
3900 | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, |
3901 | "vaarg.addr"); |
3902 | return ResAddr; |
3903 | } |
3904 | |
3905 | Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
3906 | QualType Ty) const { |
3907 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
3908 | CGF.getContext().getTypeInfoInChars(Ty), |
3909 | CharUnits::fromQuantity(8), |
3910 | /*allowHigherAlign*/ false); |
3911 | } |
3912 | |
3913 | ABIArgInfo |
3914 | WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, |
3915 | const ABIArgInfo ¤t) const { |
3916 | // Assumes vectorCall calling convention. |
3917 | const Type *Base = nullptr; |
3918 | uint64_t NumElts = 0; |
3919 | |
3920 | if (!Ty->isBuiltinType() && !Ty->isVectorType() && |
3921 | isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { |
3922 | FreeSSERegs -= NumElts; |
3923 | return getDirectX86Hva(); |
3924 | } |
3925 | return current; |
3926 | } |
3927 | |
3928 | ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, |
3929 | bool IsReturnType, bool IsVectorCall, |
3930 | bool IsRegCall) const { |
3931 | |
3932 | if (Ty->isVoidType()) |
3933 | return ABIArgInfo::getIgnore(); |
3934 | |
3935 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
3936 | Ty = EnumTy->getDecl()->getIntegerType(); |
3937 | |
3938 | TypeInfo Info = getContext().getTypeInfo(Ty); |
3939 | uint64_t Width = Info.Width; |
3940 | CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); |
3941 | |
3942 | const RecordType *RT = Ty->getAs<RecordType>(); |
3943 | if (RT) { |
3944 | if (!IsReturnType) { |
3945 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) |
3946 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
3947 | } |
3948 | |
3949 | if (RT->getDecl()->hasFlexibleArrayMember()) |
3950 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
3951 | |
3952 | } |
3953 | |
3954 | const Type *Base = nullptr; |
3955 | uint64_t NumElts = 0; |
3956 | // vectorcall adds the concept of a homogenous vector aggregate, similar to |
3957 | // other targets. |
3958 | if ((IsVectorCall || IsRegCall) && |
3959 | isHomogeneousAggregate(Ty, Base, NumElts)) { |
3960 | if (IsRegCall) { |
3961 | if (FreeSSERegs >= NumElts) { |
3962 | FreeSSERegs -= NumElts; |
3963 | if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) |
3964 | return ABIArgInfo::getDirect(); |
3965 | return ABIArgInfo::getExpand(); |
3966 | } |
3967 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3968 | } else if (IsVectorCall) { |
3969 | if (FreeSSERegs >= NumElts && |
3970 | (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { |
3971 | FreeSSERegs -= NumElts; |
3972 | return ABIArgInfo::getDirect(); |
3973 | } else if (IsReturnType) { |
3974 | return ABIArgInfo::getExpand(); |
3975 | } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { |
3976 | // HVAs are delayed and reclassified in the 2nd step. |
3977 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3978 | } |
3979 | } |
3980 | } |
3981 | |
3982 | if (Ty->isMemberPointerType()) { |
3983 | // If the member pointer is represented by an LLVM int or ptr, pass it |
3984 | // directly. |
3985 | llvm::Type *LLTy = CGT.ConvertType(Ty); |
3986 | if (LLTy->isPointerTy() || LLTy->isIntegerTy()) |
3987 | return ABIArgInfo::getDirect(); |
3988 | } |
3989 | |
3990 | if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { |
3991 | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
3992 | // not 1, 2, 4, or 8 bytes, must be passed by reference." |
3993 | if (Width > 64 || !llvm::isPowerOf2_64(Width)) |
3994 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
3995 | |
3996 | // Otherwise, coerce it to a small integer. |
3997 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); |
3998 | } |
3999 | |
4000 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
4001 | switch (BT->getKind()) { |
4002 | case BuiltinType::Bool: |
4003 | // Bool type is always extended to the ABI, other builtin types are not |
4004 | // extended. |
4005 | return ABIArgInfo::getExtend(Ty); |
4006 | |
4007 | case BuiltinType::LongDouble: |
4008 | // Mingw64 GCC uses the old 80 bit extended precision floating point |
4009 | // unit. It passes them indirectly through memory. |
4010 | if (IsMingw64) { |
4011 | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
4012 | if (LDF == &llvm::APFloat::x87DoubleExtended()) |
4013 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
4014 | } |
4015 | break; |
4016 | |
4017 | case BuiltinType::Int128: |
4018 | case BuiltinType::UInt128: |
4019 | // If it's a parameter type, the normal ABI rule is that arguments larger |
4020 | // than 8 bytes are passed indirectly. GCC follows it. We follow it too, |
4021 | // even though it isn't particularly efficient. |
4022 | if (!IsReturnType) |
4023 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
4024 | |
4025 | // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. |
4026 | // Clang matches them for compatibility. |
4027 | return ABIArgInfo::getDirect( |
4028 | llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); |
4029 | |
4030 | default: |
4031 | break; |
4032 | } |
4033 | } |
4034 | |
4035 | return ABIArgInfo::getDirect(); |
4036 | } |
4037 | |
4038 | void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, |
4039 | unsigned FreeSSERegs, |
4040 | bool IsVectorCall, |
4041 | bool IsRegCall) const { |
4042 | unsigned Count = 0; |
4043 | for (auto &I : FI.arguments()) { |
4044 | // Vectorcall in x64 only permits the first 6 arguments to be passed |
4045 | // as XMM/YMM registers. |
4046 | if (Count < VectorcallMaxParamNumAsReg) |
4047 | I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); |
4048 | else { |
4049 | // Since these cannot be passed in registers, pretend no registers |
4050 | // are left. |
4051 | unsigned ZeroSSERegsAvail = 0; |
4052 | I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, |
4053 | IsVectorCall, IsRegCall); |
4054 | } |
4055 | ++Count; |
4056 | } |
4057 | |
4058 | for (auto &I : FI.arguments()) { |
4059 | I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); |
4060 | } |
4061 | } |
4062 | |
4063 | void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
4064 | const unsigned CC = FI.getCallingConvention(); |
4065 | bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; |
4066 | bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; |
4067 | |
4068 | // If __attribute__((sysv_abi)) is in use, use the SysV argument |
4069 | // classification rules. |
4070 | if (CC == llvm::CallingConv::X86_64_SysV) { |
4071 | X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); |
4072 | SysVABIInfo.computeInfo(FI); |
4073 | return; |
4074 | } |
4075 | |
4076 | unsigned FreeSSERegs = 0; |
4077 | if (IsVectorCall) { |
4078 | // We can use up to 4 SSE return registers with vectorcall. |
4079 | FreeSSERegs = 4; |
4080 | } else if (IsRegCall) { |
4081 | // RegCall gives us 16 SSE registers. |
4082 | FreeSSERegs = 16; |
4083 | } |
4084 | |
4085 | if (!getCXXABI().classifyReturnType(FI)) |
4086 | FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, |
4087 | IsVectorCall, IsRegCall); |
4088 | |
4089 | if (IsVectorCall) { |
4090 | // We can use up to 6 SSE register parameters with vectorcall. |
4091 | FreeSSERegs = 6; |
4092 | } else if (IsRegCall) { |
4093 | // RegCall gives us 16 SSE registers, we can reuse the return registers. |
4094 | FreeSSERegs = 16; |
4095 | } |
4096 | |
4097 | if (IsVectorCall) { |
4098 | computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); |
4099 | } else { |
4100 | for (auto &I : FI.arguments()) |
4101 | I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); |
4102 | } |
4103 | |
4104 | } |
4105 | |
4106 | Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
4107 | QualType Ty) const { |
4108 | |
4109 | bool IsIndirect = false; |
4110 | |
4111 | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
4112 | // not 1, 2, 4, or 8 bytes, must be passed by reference." |
4113 | if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { |
4114 | uint64_t Width = getContext().getTypeSize(Ty); |
4115 | IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); |
4116 | } |
4117 | |
4118 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
4119 | CGF.getContext().getTypeInfoInChars(Ty), |
4120 | CharUnits::fromQuantity(8), |
4121 | /*allowHigherAlign*/ false); |
4122 | } |
4123 | |
4124 | // PowerPC-32 |
4125 | namespace { |
4126 | /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. |
4127 | class PPC32_SVR4_ABIInfo : public DefaultABIInfo { |
4128 | bool IsSoftFloatABI; |
4129 | |
4130 | CharUnits getParamTypeAlignment(QualType Ty) const; |
4131 | |
4132 | public: |
4133 | PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) |
4134 | : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} |
4135 | |
4136 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
4137 | QualType Ty) const override; |
4138 | }; |
4139 | |
4140 | class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { |
4141 | public: |
4142 | PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) |
4143 | : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} |
4144 | |
4145 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
4146 | // This is recovered from gcc output. |
4147 | return 1; // r1 is the dedicated stack pointer |
4148 | } |
4149 | |
4150 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
4151 | llvm::Value *Address) const override; |
4152 | }; |
4153 | } |
4154 | |
4155 | CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { |
4156 | // Complex types are passed just like their elements |
4157 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
4158 | Ty = CTy->getElementType(); |
4159 | |
4160 | if (Ty->isVectorType()) |
4161 | return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 |
4162 | : 4); |
4163 | |
4164 | // For single-element float/vector structs, we consider the whole type |
4165 | // to have the same alignment requirements as its single element. |
4166 | const Type *AlignTy = nullptr; |
4167 | if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { |
4168 | const BuiltinType *BT = EltType->getAs<BuiltinType>(); |
4169 | if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || |
4170 | (BT && BT->isFloatingPoint())) |
4171 | AlignTy = EltType; |
4172 | } |
4173 | |
4174 | if (AlignTy) |
4175 | return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); |
4176 | return CharUnits::fromQuantity(4); |
4177 | } |
4178 | |
4179 | // TODO: this implementation is now likely redundant with |
4180 | // DefaultABIInfo::EmitVAArg. |
4181 | Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, |
4182 | QualType Ty) const { |
4183 | if (getTarget().getTriple().isOSDarwin()) { |
4184 | auto TI = getContext().getTypeInfoInChars(Ty); |
4185 | TI.second = getParamTypeAlignment(Ty); |
4186 | |
4187 | CharUnits SlotSize = CharUnits::fromQuantity(4); |
4188 | return emitVoidPtrVAArg(CGF, VAList, Ty, |
4189 | classifyArgumentType(Ty).isIndirect(), TI, SlotSize, |
4190 | /*AllowHigherAlign=*/true); |
4191 | } |
4192 | |
4193 | const unsigned OverflowLimit = 8; |
4194 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
4195 | // TODO: Implement this. For now ignore. |
4196 | (void)CTy; |
4197 | return Address::invalid(); // FIXME? |
4198 | } |
4199 | |
4200 | // struct __va_list_tag { |
4201 | // unsigned char gpr; |
4202 | // unsigned char fpr; |
4203 | // unsigned short reserved; |
4204 | // void *overflow_arg_area; |
4205 | // void *reg_save_area; |
4206 | // }; |
4207 | |
4208 | bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; |
4209 | bool isInt = |
4210 | Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); |
4211 | bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; |
4212 | |
4213 | // All aggregates are passed indirectly? That doesn't seem consistent |
4214 | // with the argument-lowering code. |
4215 | bool isIndirect = Ty->isAggregateType(); |
4216 | |
4217 | CGBuilderTy &Builder = CGF.Builder; |
4218 | |
4219 | // The calling convention either uses 1-2 GPRs or 1 FPR. |
4220 | Address NumRegsAddr = Address::invalid(); |
4221 | if (isInt || IsSoftFloatABI) { |
4222 | NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); |
4223 | } else { |
4224 | NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); |
4225 | } |
4226 | |
4227 | llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); |
4228 | |
4229 | // "Align" the register count when TY is i64. |
4230 | if (isI64 || (isF64 && IsSoftFloatABI)) { |
4231 | NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); |
4232 | NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); |
4233 | } |
4234 | |
4235 | llvm::Value *CC = |
4236 | Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); |
4237 | |
4238 | llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); |
4239 | llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); |
4240 | llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); |
4241 | |
4242 | Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); |
4243 | |
4244 | llvm::Type *DirectTy = CGF.ConvertType(Ty); |
4245 | if (isIndirect) DirectTy = DirectTy->getPointerTo(0); |
4246 | |
4247 | // Case 1: consume registers. |
4248 | Address RegAddr = Address::invalid(); |
4249 | { |
4250 | CGF.EmitBlock(UsingRegs); |
4251 | |
4252 | Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); |
4253 | RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), |
4254 | CharUnits::fromQuantity(8)); |
4255 | assert(RegAddr.getElementType() == CGF.Int8Ty)((RegAddr.getElementType() == CGF.Int8Ty) ? static_cast<void > (0) : __assert_fail ("RegAddr.getElementType() == CGF.Int8Ty" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 4255, __PRETTY_FUNCTION__)); |
4256 | |
4257 | // Floating-point registers start after the general-purpose registers. |
4258 | if (!(isInt || IsSoftFloatABI)) { |
4259 | RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, |
4260 | CharUnits::fromQuantity(32)); |
4261 | } |
4262 | |
4263 | // Get the address of the saved value by scaling the number of |
4264 | // registers we've used by the number of |
4265 | CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); |
4266 | llvm::Value *RegOffset = |
4267 | Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); |
4268 | RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, |
4269 | RegAddr.getPointer(), RegOffset), |
4270 | RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); |
4271 | RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); |
4272 | |
4273 | // Increase the used-register count. |
4274 | NumRegs = |
4275 | Builder.CreateAdd(NumRegs, |
4276 | Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); |
4277 | Builder.CreateStore(NumRegs, NumRegsAddr); |
4278 | |
4279 | CGF.EmitBranch(Cont); |
4280 | } |
4281 | |
4282 | // Case 2: consume space in the overflow area. |
4283 | Address MemAddr = Address::invalid(); |
4284 | { |
4285 | CGF.EmitBlock(UsingOverflow); |
4286 | |
4287 | Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); |
4288 | |
4289 | // Everything in the overflow area is rounded up to a size of at least 4. |
4290 | CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); |
4291 | |
4292 | CharUnits Size; |
4293 | if (!isIndirect) { |
4294 | auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); |
4295 | Size = TypeInfo.first.alignTo(OverflowAreaAlign); |
4296 | } else { |
4297 | Size = CGF.getPointerSize(); |
4298 | } |
4299 | |
4300 | Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); |
4301 | Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), |
4302 | OverflowAreaAlign); |
4303 | // Round up address of argument to alignment |
4304 | CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); |
4305 | if (Align > OverflowAreaAlign) { |
4306 | llvm::Value *Ptr = OverflowArea.getPointer(); |
4307 | OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), |
4308 | Align); |
4309 | } |
4310 | |
4311 | MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); |
4312 | |
4313 | // Increase the overflow area. |
4314 | OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); |
4315 | Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); |
4316 | CGF.EmitBranch(Cont); |
4317 | } |
4318 | |
4319 | CGF.EmitBlock(Cont); |
4320 | |
4321 | // Merge the cases with a phi. |
4322 | Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, |
4323 | "vaarg.addr"); |
4324 | |
4325 | // Load the pointer if the argument was passed indirectly. |
4326 | if (isIndirect) { |
4327 | Result = Address(Builder.CreateLoad(Result, "aggr"), |
4328 | getContext().getTypeAlignInChars(Ty)); |
4329 | } |
4330 | |
4331 | return Result; |
4332 | } |
4333 | |
4334 | bool |
4335 | PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
4336 | llvm::Value *Address) const { |
4337 | // This is calculated from the LLVM and GCC tables and verified |
4338 | // against gcc output. AFAIK all ABIs use the same encoding. |
4339 | |
4340 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
4341 | |
4342 | llvm::IntegerType *i8 = CGF.Int8Ty; |
4343 | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
4344 | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
4345 | llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
4346 | |
4347 | // 0-31: r0-31, the 4-byte general-purpose registers |
4348 | AssignToArrayRange(Builder, Address, Four8, 0, 31); |
4349 | |
4350 | // 32-63: fp0-31, the 8-byte floating-point registers |
4351 | AssignToArrayRange(Builder, Address, Eight8, 32, 63); |
4352 | |
4353 | // 64-76 are various 4-byte special-purpose registers: |
4354 | // 64: mq |
4355 | // 65: lr |
4356 | // 66: ctr |
4357 | // 67: ap |
4358 | // 68-75 cr0-7 |
4359 | // 76: xer |
4360 | AssignToArrayRange(Builder, Address, Four8, 64, 76); |
4361 | |
4362 | // 77-108: v0-31, the 16-byte vector registers |
4363 | AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); |
4364 | |
4365 | // 109: vrsave |
4366 | // 110: vscr |
4367 | // 111: spe_acc |
4368 | // 112: spefscr |
4369 | // 113: sfp |
4370 | AssignToArrayRange(Builder, Address, Four8, 109, 113); |
4371 | |
4372 | return false; |
4373 | } |
4374 | |
4375 | // PowerPC-64 |
4376 | |
4377 | namespace { |
4378 | /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. |
4379 | class PPC64_SVR4_ABIInfo : public SwiftABIInfo { |
4380 | public: |
4381 | enum ABIKind { |
4382 | ELFv1 = 0, |
4383 | ELFv2 |
4384 | }; |
4385 | |
4386 | private: |
4387 | static const unsigned GPRBits = 64; |
4388 | ABIKind Kind; |
4389 | bool HasQPX; |
4390 | bool IsSoftFloatABI; |
4391 | |
4392 | // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and |
4393 | // will be passed in a QPX register. |
4394 | bool IsQPXVectorTy(const Type *Ty) const { |
4395 | if (!HasQPX) |
4396 | return false; |
4397 | |
4398 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
4399 | unsigned NumElements = VT->getNumElements(); |
4400 | if (NumElements == 1) |
4401 | return false; |
4402 | |
4403 | if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { |
4404 | if (getContext().getTypeSize(Ty) <= 256) |
4405 | return true; |
4406 | } else if (VT->getElementType()-> |
4407 | isSpecificBuiltinType(BuiltinType::Float)) { |
4408 | if (getContext().getTypeSize(Ty) <= 128) |
4409 | return true; |
4410 | } |
4411 | } |
4412 | |
4413 | return false; |
4414 | } |
4415 | |
4416 | bool IsQPXVectorTy(QualType Ty) const { |
4417 | return IsQPXVectorTy(Ty.getTypePtr()); |
4418 | } |
4419 | |
4420 | public: |
4421 | PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, |
4422 | bool SoftFloatABI) |
4423 | : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), |
4424 | IsSoftFloatABI(SoftFloatABI) {} |
4425 | |
4426 | bool isPromotableTypeForABI(QualType Ty) const; |
4427 | CharUnits getParamTypeAlignment(QualType Ty) const; |
4428 | |
4429 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
4430 | ABIArgInfo classifyArgumentType(QualType Ty) const; |
4431 | |
4432 | bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
4433 | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
4434 | uint64_t Members) const override; |
4435 | |
4436 | // TODO: We can add more logic to computeInfo to improve performance. |
4437 | // Example: For aggregate arguments that fit in a register, we could |
4438 | // use getDirectInReg (as is done below for structs containing a single |
4439 | // floating-point value) to avoid pushing them to memory on function |
4440 | // entry. This would require changing the logic in PPCISelLowering |
4441 | // when lowering the parameters in the caller and args in the callee. |
4442 | void computeInfo(CGFunctionInfo &FI) const override { |
4443 | if (!getCXXABI().classifyReturnType(FI)) |
4444 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
4445 | for (auto &I : FI.arguments()) { |
4446 | // We rely on the default argument classification for the most part. |
4447 | // One exception: An aggregate containing a single floating-point |
4448 | // or vector item must be passed in a register if one is available. |
4449 | const Type *T = isSingleElementStruct(I.type, getContext()); |
4450 | if (T) { |
4451 | const BuiltinType *BT = T->getAs<BuiltinType>(); |
4452 | if (IsQPXVectorTy(T) || |
4453 | (T->isVectorType() && getContext().getTypeSize(T) == 128) || |
4454 | (BT && BT->isFloatingPoint())) { |
4455 | QualType QT(T, 0); |
4456 | I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); |
4457 | continue; |
4458 | } |
4459 | } |
4460 | I.info = classifyArgumentType(I.type); |
4461 | } |
4462 | } |
4463 | |
4464 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
4465 | QualType Ty) const override; |
4466 | |
4467 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
4468 | bool asReturnValue) const override { |
4469 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
4470 | } |
4471 | |
4472 | bool isSwiftErrorInRegister() const override { |
4473 | return false; |
4474 | } |
4475 | }; |
4476 | |
4477 | class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { |
4478 | |
4479 | public: |
4480 | PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, |
4481 | PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, |
4482 | bool SoftFloatABI) |
4483 | : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, |
4484 | SoftFloatABI)) {} |
4485 | |
4486 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
4487 | // This is recovered from gcc output. |
4488 | return 1; // r1 is the dedicated stack pointer |
4489 | } |
4490 | |
4491 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
4492 | llvm::Value *Address) const override; |
4493 | }; |
4494 | |
4495 | class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { |
4496 | public: |
4497 | PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} |
4498 | |
4499 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
4500 | // This is recovered from gcc output. |
4501 | return 1; // r1 is the dedicated stack pointer |
4502 | } |
4503 | |
4504 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
4505 | llvm::Value *Address) const override; |
4506 | }; |
4507 | |
4508 | } |
4509 | |
4510 | // Return true if the ABI requires Ty to be passed sign- or zero- |
4511 | // extended to 64 bits. |
4512 | bool |
4513 | PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { |
4514 | // Treat an enum type as its underlying type. |
4515 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
4516 | Ty = EnumTy->getDecl()->getIntegerType(); |
4517 | |
4518 | // Promotable integer types are required to be promoted by the ABI. |
4519 | if (Ty->isPromotableIntegerType()) |
4520 | return true; |
4521 | |
4522 | // In addition to the usual promotable integer types, we also need to |
4523 | // extend all 32-bit types, since the ABI requires promotion to 64 bits. |
4524 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
4525 | switch (BT->getKind()) { |
4526 | case BuiltinType::Int: |
4527 | case BuiltinType::UInt: |
4528 | return true; |
4529 | default: |
4530 | break; |
4531 | } |
4532 | |
4533 | return false; |
4534 | } |
4535 | |
4536 | /// isAlignedParamType - Determine whether a type requires 16-byte or |
4537 | /// higher alignment in the parameter area. Always returns at least 8. |
4538 | CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { |
4539 | // Complex types are passed just like their elements. |
4540 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
4541 | Ty = CTy->getElementType(); |
4542 | |
4543 | // Only vector types of size 16 bytes need alignment (larger types are |
4544 | // passed via reference, smaller types are not aligned). |
4545 | if (IsQPXVectorTy(Ty)) { |
4546 | if (getContext().getTypeSize(Ty) > 128) |
4547 | return CharUnits::fromQuantity(32); |
4548 | |
4549 | return CharUnits::fromQuantity(16); |
4550 | } else if (Ty->isVectorType()) { |
4551 | return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); |
4552 | } |
4553 | |
4554 | // For single-element float/vector structs, we consider the whole type |
4555 | // to have the same alignment requirements as its single element. |
4556 | const Type *AlignAsType = nullptr; |
4557 | const Type *EltType = isSingleElementStruct(Ty, getContext()); |
4558 | if (EltType) { |
4559 | const BuiltinType *BT = EltType->getAs<BuiltinType>(); |
4560 | if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && |
4561 | getContext().getTypeSize(EltType) == 128) || |
4562 | (BT && BT->isFloatingPoint())) |
4563 | AlignAsType = EltType; |
4564 | } |
4565 | |
4566 | // Likewise for ELFv2 homogeneous aggregates. |
4567 | const Type *Base = nullptr; |
4568 | uint64_t Members = 0; |
4569 | if (!AlignAsType && Kind == ELFv2 && |
4570 | isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) |
4571 | AlignAsType = Base; |
4572 | |
4573 | // With special case aggregates, only vector base types need alignment. |
4574 | if (AlignAsType && IsQPXVectorTy(AlignAsType)) { |
4575 | if (getContext().getTypeSize(AlignAsType) > 128) |
4576 | return CharUnits::fromQuantity(32); |
4577 | |
4578 | return CharUnits::fromQuantity(16); |
4579 | } else if (AlignAsType) { |
4580 | return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); |
4581 | } |
4582 | |
4583 | // Otherwise, we only need alignment for any aggregate type that |
4584 | // has an alignment requirement of >= 16 bytes. |
4585 | if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { |
4586 | if (HasQPX && getContext().getTypeAlign(Ty) >= 256) |
4587 | return CharUnits::fromQuantity(32); |
4588 | return CharUnits::fromQuantity(16); |
4589 | } |
4590 | |
4591 | return CharUnits::fromQuantity(8); |
4592 | } |
4593 | |
4594 | /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous |
4595 | /// aggregate. Base is set to the base element type, and Members is set |
4596 | /// to the number of base elements. |
4597 | bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, |
4598 | uint64_t &Members) const { |
4599 | if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
4600 | uint64_t NElements = AT->getSize().getZExtValue(); |
4601 | if (NElements == 0) |
4602 | return false; |
4603 | if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) |
4604 | return false; |
4605 | Members *= NElements; |
4606 | } else if (const RecordType *RT = Ty->getAs<RecordType>()) { |
4607 | const RecordDecl *RD = RT->getDecl(); |
4608 | if (RD->hasFlexibleArrayMember()) |
4609 | return false; |
4610 | |
4611 | Members = 0; |
4612 | |
4613 | // If this is a C++ record, check the bases first. |
4614 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
4615 | for (const auto &I : CXXRD->bases()) { |
4616 | // Ignore empty records. |
4617 | if (isEmptyRecord(getContext(), I.getType(), true)) |
4618 | continue; |
4619 | |
4620 | uint64_t FldMembers; |
4621 | if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) |
4622 | return false; |
4623 | |
4624 | Members += FldMembers; |
4625 | } |
4626 | } |
4627 | |
4628 | for (const auto *FD : RD->fields()) { |
4629 | // Ignore (non-zero arrays of) empty records. |
4630 | QualType FT = FD->getType(); |
4631 | while (const ConstantArrayType *AT = |
4632 | getContext().getAsConstantArrayType(FT)) { |
4633 | if (AT->getSize().getZExtValue() == 0) |
4634 | return false; |
4635 | FT = AT->getElementType(); |
4636 | } |
4637 | if (isEmptyRecord(getContext(), FT, true)) |
4638 | continue; |
4639 | |
4640 | // For compatibility with GCC, ignore empty bitfields in C++ mode. |
4641 | if (getContext().getLangOpts().CPlusPlus && |
4642 | FD->isZeroLengthBitField(getContext())) |
4643 | continue; |
4644 | |
4645 | uint64_t FldMembers; |
4646 | if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) |
4647 | return false; |
4648 | |
4649 | Members = (RD->isUnion() ? |
4650 | std::max(Members, FldMembers) : Members + FldMembers); |
4651 | } |
4652 | |
4653 | if (!Base) |
4654 | return false; |
4655 | |
4656 | // Ensure there is no padding. |
4657 | if (getContext().getTypeSize(Base) * Members != |
4658 | getContext().getTypeSize(Ty)) |
4659 | return false; |
4660 | } else { |
4661 | Members = 1; |
4662 | if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
4663 | Members = 2; |
4664 | Ty = CT->getElementType(); |
4665 | } |
4666 | |
4667 | // Most ABIs only support float, double, and some vector type widths. |
4668 | if (!isHomogeneousAggregateBaseType(Ty)) |
4669 | return false; |
4670 | |
4671 | // The base type must be the same for all members. Types that |
4672 | // agree in both total size and mode (float vs. vector) are |
4673 | // treated as being equivalent here. |
4674 | const Type *TyPtr = Ty.getTypePtr(); |
4675 | if (!Base) { |
4676 | Base = TyPtr; |
4677 | // If it's a non-power-of-2 vector, its size is already a power-of-2, |
4678 | // so make sure to widen it explicitly. |
4679 | if (const VectorType *VT = Base->getAs<VectorType>()) { |
4680 | QualType EltTy = VT->getElementType(); |
4681 | unsigned NumElements = |
4682 | getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); |
4683 | Base = getContext() |
4684 | .getVectorType(EltTy, NumElements, VT->getVectorKind()) |
4685 | .getTypePtr(); |
4686 | } |
4687 | } |
4688 | |
4689 | if (Base->isVectorType() != TyPtr->isVectorType() || |
4690 | getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) |
4691 | return false; |
4692 | } |
4693 | return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); |
4694 | } |
4695 | |
4696 | bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
4697 | // Homogeneous aggregates for ELFv2 must have base types of float, |
4698 | // double, long double, or 128-bit vectors. |
4699 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
4700 | if (BT->getKind() == BuiltinType::Float || |
4701 | BT->getKind() == BuiltinType::Double || |
4702 | BT->getKind() == BuiltinType::LongDouble || |
4703 | (getContext().getTargetInfo().hasFloat128Type() && |
4704 | (BT->getKind() == BuiltinType::Float128))) { |
4705 | if (IsSoftFloatABI) |
4706 | return false; |
4707 | return true; |
4708 | } |
4709 | } |
4710 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
4711 | if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) |
4712 | return true; |
4713 | } |
4714 | return false; |
4715 | } |
4716 | |
4717 | bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( |
4718 | const Type *Base, uint64_t Members) const { |
4719 | // Vector and fp128 types require one register, other floating point types |
4720 | // require one or two registers depending on their size. |
4721 | uint32_t NumRegs = |
4722 | ((getContext().getTargetInfo().hasFloat128Type() && |
4723 | Base->isFloat128Type()) || |
4724 | Base->isVectorType()) ? 1 |
4725 | : (getContext().getTypeSize(Base) + 63) / 64; |
4726 | |
4727 | // Homogeneous Aggregates may occupy at most 8 registers. |
4728 | return Members * NumRegs <= 8; |
4729 | } |
4730 | |
4731 | ABIArgInfo |
4732 | PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { |
4733 | Ty = useFirstFieldIfTransparentUnion(Ty); |
4734 | |
4735 | if (Ty->isAnyComplexType()) |
4736 | return ABIArgInfo::getDirect(); |
4737 | |
4738 | // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) |
4739 | // or via reference (larger than 16 bytes). |
4740 | if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { |
4741 | uint64_t Size = getContext().getTypeSize(Ty); |
4742 | if (Size > 128) |
4743 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
4744 | else if (Size < 128) { |
4745 | llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); |
4746 | return ABIArgInfo::getDirect(CoerceTy); |
4747 | } |
4748 | } |
4749 | |
4750 | if (isAggregateTypeForABI(Ty)) { |
4751 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
4752 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
4753 | |
4754 | uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); |
4755 | uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); |
4756 | |
4757 | // ELFv2 homogeneous aggregates are passed as array types. |
4758 | const Type *Base = nullptr; |
4759 | uint64_t Members = 0; |
4760 | if (Kind == ELFv2 && |
4761 | isHomogeneousAggregate(Ty, Base, Members)) { |
4762 | llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); |
4763 | llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); |
4764 | return ABIArgInfo::getDirect(CoerceTy); |
4765 | } |
4766 | |
4767 | // If an aggregate may end up fully in registers, we do not |
4768 | // use the ByVal method, but pass the aggregate as array. |
4769 | // This is usually beneficial since we avoid forcing the |
4770 | // back-end to store the argument to memory. |
4771 | uint64_t Bits = getContext().getTypeSize(Ty); |
4772 | if (Bits > 0 && Bits <= 8 * GPRBits) { |
4773 | llvm::Type *CoerceTy; |
4774 | |
4775 | // Types up to 8 bytes are passed as integer type (which will be |
4776 | // properly aligned in the argument save area doubleword). |
4777 | if (Bits <= GPRBits) |
4778 | CoerceTy = |
4779 | llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); |
4780 | // Larger types are passed as arrays, with the base type selected |
4781 | // according to the required alignment in the save area. |
4782 | else { |
4783 | uint64_t RegBits = ABIAlign * 8; |
4784 | uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; |
4785 | llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); |
4786 | CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); |
4787 | } |
4788 | |
4789 | return ABIArgInfo::getDirect(CoerceTy); |
4790 | } |
4791 | |
4792 | // All other aggregates are passed ByVal. |
4793 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), |
4794 | /*ByVal=*/true, |
4795 | /*Realign=*/TyAlign > ABIAlign); |
4796 | } |
4797 | |
4798 | return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
4799 | : ABIArgInfo::getDirect()); |
4800 | } |
4801 | |
4802 | ABIArgInfo |
4803 | PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { |
4804 | if (RetTy->isVoidType()) |
4805 | return ABIArgInfo::getIgnore(); |
4806 | |
4807 | if (RetTy->isAnyComplexType()) |
4808 | return ABIArgInfo::getDirect(); |
4809 | |
4810 | // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) |
4811 | // or via reference (larger than 16 bytes). |
4812 | if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { |
4813 | uint64_t Size = getContext().getTypeSize(RetTy); |
4814 | if (Size > 128) |
4815 | return getNaturalAlignIndirect(RetTy); |
4816 | else if (Size < 128) { |
4817 | llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); |
4818 | return ABIArgInfo::getDirect(CoerceTy); |
4819 | } |
4820 | } |
4821 | |
4822 | if (isAggregateTypeForABI(RetTy)) { |
4823 | // ELFv2 homogeneous aggregates are returned as array types. |
4824 | const Type *Base = nullptr; |
4825 | uint64_t Members = 0; |
4826 | if (Kind == ELFv2 && |
4827 | isHomogeneousAggregate(RetTy, Base, Members)) { |
4828 | llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); |
4829 | llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); |
4830 | return ABIArgInfo::getDirect(CoerceTy); |
4831 | } |
4832 | |
4833 | // ELFv2 small aggregates are returned in up to two registers. |
4834 | uint64_t Bits = getContext().getTypeSize(RetTy); |
4835 | if (Kind == ELFv2 && Bits <= 2 * GPRBits) { |
4836 | if (Bits == 0) |
4837 | return ABIArgInfo::getIgnore(); |
4838 | |
4839 | llvm::Type *CoerceTy; |
4840 | if (Bits > GPRBits) { |
4841 | CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); |
4842 | CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); |
4843 | } else |
4844 | CoerceTy = |
4845 | llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); |
4846 | return ABIArgInfo::getDirect(CoerceTy); |
4847 | } |
4848 | |
4849 | // All other aggregates are returned indirectly. |
4850 | return getNaturalAlignIndirect(RetTy); |
4851 | } |
4852 | |
4853 | return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) |
4854 | : ABIArgInfo::getDirect()); |
4855 | } |
4856 | |
4857 | // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. |
4858 | Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
4859 | QualType Ty) const { |
4860 | auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
4861 | TypeInfo.second = getParamTypeAlignment(Ty); |
4862 | |
4863 | CharUnits SlotSize = CharUnits::fromQuantity(8); |
4864 | |
4865 | // If we have a complex type and the base type is smaller than 8 bytes, |
4866 | // the ABI calls for the real and imaginary parts to be right-adjusted |
4867 | // in separate doublewords. However, Clang expects us to produce a |
4868 | // pointer to a structure with the two parts packed tightly. So generate |
4869 | // loads of the real and imaginary parts relative to the va_list pointer, |
4870 | // and store them to a temporary structure. |
4871 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
4872 | CharUnits EltSize = TypeInfo.first / 2; |
4873 | if (EltSize < SlotSize) { |
4874 | Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, |
4875 | SlotSize * 2, SlotSize, |
4876 | SlotSize, /*AllowHigher*/ true); |
4877 | |
4878 | Address RealAddr = Addr; |
4879 | Address ImagAddr = RealAddr; |
4880 | if (CGF.CGM.getDataLayout().isBigEndian()) { |
4881 | RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, |
4882 | SlotSize - EltSize); |
4883 | ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, |
4884 | 2 * SlotSize - EltSize); |
4885 | } else { |
4886 | ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); |
4887 | } |
4888 | |
4889 | llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); |
4890 | RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); |
4891 | ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); |
4892 | llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); |
4893 | llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); |
4894 | |
4895 | Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); |
4896 | CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), |
4897 | /*init*/ true); |
4898 | return Temp; |
4899 | } |
4900 | } |
4901 | |
4902 | // Otherwise, just use the general rule. |
4903 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, |
4904 | TypeInfo, SlotSize, /*AllowHigher*/ true); |
4905 | } |
4906 | |
4907 | static bool |
4908 | PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
4909 | llvm::Value *Address) { |
4910 | // This is calculated from the LLVM and GCC tables and verified |
4911 | // against gcc output. AFAIK all ABIs use the same encoding. |
4912 | |
4913 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
4914 | |
4915 | llvm::IntegerType *i8 = CGF.Int8Ty; |
4916 | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
4917 | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
4918 | llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
4919 | |
4920 | // 0-31: r0-31, the 8-byte general-purpose registers |
4921 | AssignToArrayRange(Builder, Address, Eight8, 0, 31); |
4922 | |
4923 | // 32-63: fp0-31, the 8-byte floating-point registers |
4924 | AssignToArrayRange(Builder, Address, Eight8, 32, 63); |
4925 | |
4926 | // 64-67 are various 8-byte special-purpose registers: |
4927 | // 64: mq |
4928 | // 65: lr |
4929 | // 66: ctr |
4930 | // 67: ap |
4931 | AssignToArrayRange(Builder, Address, Eight8, 64, 67); |
4932 | |
4933 | // 68-76 are various 4-byte special-purpose registers: |
4934 | // 68-75 cr0-7 |
4935 | // 76: xer |
4936 | AssignToArrayRange(Builder, Address, Four8, 68, 76); |
4937 | |
4938 | // 77-108: v0-31, the 16-byte vector registers |
4939 | AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); |
4940 | |
4941 | // 109: vrsave |
4942 | // 110: vscr |
4943 | // 111: spe_acc |
4944 | // 112: spefscr |
4945 | // 113: sfp |
4946 | // 114: tfhar |
4947 | // 115: tfiar |
4948 | // 116: texasr |
4949 | AssignToArrayRange(Builder, Address, Eight8, 109, 116); |
4950 | |
4951 | return false; |
4952 | } |
4953 | |
4954 | bool |
4955 | PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( |
4956 | CodeGen::CodeGenFunction &CGF, |
4957 | llvm::Value *Address) const { |
4958 | |
4959 | return PPC64_initDwarfEHRegSizeTable(CGF, Address); |
4960 | } |
4961 | |
4962 | bool |
4963 | PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
4964 | llvm::Value *Address) const { |
4965 | |
4966 | return PPC64_initDwarfEHRegSizeTable(CGF, Address); |
4967 | } |
4968 | |
4969 | //===----------------------------------------------------------------------===// |
4970 | // AArch64 ABI Implementation |
4971 | //===----------------------------------------------------------------------===// |
4972 | |
4973 | namespace { |
4974 | |
4975 | class AArch64ABIInfo : public SwiftABIInfo { |
4976 | public: |
4977 | enum ABIKind { |
4978 | AAPCS = 0, |
4979 | DarwinPCS, |
4980 | Win64 |
4981 | }; |
4982 | |
4983 | private: |
4984 | ABIKind Kind; |
4985 | |
4986 | public: |
4987 | AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) |
4988 | : SwiftABIInfo(CGT), Kind(Kind) {} |
4989 | |
4990 | private: |
4991 | ABIKind getABIKind() const { return Kind; } |
4992 | bool isDarwinPCS() const { return Kind == DarwinPCS; } |
4993 | |
4994 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
4995 | ABIArgInfo classifyArgumentType(QualType RetTy) const; |
4996 | bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
4997 | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
4998 | uint64_t Members) const override; |
4999 | |
5000 | bool isIllegalVectorType(QualType Ty) const; |
5001 | |
5002 | void computeInfo(CGFunctionInfo &FI) const override { |
5003 | if (!::classifyReturnType(getCXXABI(), FI, *this)) |
5004 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
5005 | |
5006 | for (auto &it : FI.arguments()) |
5007 | it.info = classifyArgumentType(it.type); |
5008 | } |
5009 | |
5010 | Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, |
5011 | CodeGenFunction &CGF) const; |
5012 | |
5013 | Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, |
5014 | CodeGenFunction &CGF) const; |
5015 | |
5016 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
5017 | QualType Ty) const override { |
5018 | return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) |
5019 | : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) |
5020 | : EmitAAPCSVAArg(VAListAddr, Ty, CGF); |
5021 | } |
5022 | |
5023 | Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
5024 | QualType Ty) const override; |
5025 | |
5026 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
5027 | bool asReturnValue) const override { |
5028 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
5029 | } |
5030 | bool isSwiftErrorInRegister() const override { |
5031 | return true; |
5032 | } |
5033 | |
5034 | bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, |
5035 | unsigned elts) const override; |
5036 | }; |
5037 | |
5038 | class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { |
5039 | public: |
5040 | AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) |
5041 | : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} |
5042 | |
5043 | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
5044 | return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; |
5045 | } |
5046 | |
5047 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
5048 | return 31; |
5049 | } |
5050 | |
5051 | bool doesReturnSlotInterfereWithArgs() const override { return false; } |
5052 | |
5053 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
5054 | CodeGen::CodeGenModule &CGM) const override { |
5055 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
5056 | if (!FD) |
5057 | return; |
5058 | llvm::Function *Fn = cast<llvm::Function>(GV); |
5059 | |
5060 | auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); |
5061 | if (Kind != CodeGenOptions::SignReturnAddressScope::None) { |
5062 | Fn->addFnAttr("sign-return-address", |
5063 | Kind == CodeGenOptions::SignReturnAddressScope::All |
5064 | ? "all" |
5065 | : "non-leaf"); |
5066 | |
5067 | auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); |
5068 | Fn->addFnAttr("sign-return-address-key", |
5069 | Key == CodeGenOptions::SignReturnAddressKeyValue::AKey |
5070 | ? "a_key" |
5071 | : "b_key"); |
5072 | } |
5073 | |
5074 | if (CGM.getCodeGenOpts().BranchTargetEnforcement) |
5075 | Fn->addFnAttr("branch-target-enforcement"); |
5076 | } |
5077 | }; |
5078 | |
5079 | class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { |
5080 | public: |
5081 | WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) |
5082 | : AArch64TargetCodeGenInfo(CGT, K) {} |
5083 | |
5084 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
5085 | CodeGen::CodeGenModule &CGM) const override; |
5086 | |
5087 | void getDependentLibraryOption(llvm::StringRef Lib, |
5088 | llvm::SmallString<24> &Opt) const override { |
5089 | Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); |
5090 | } |
5091 | |
5092 | void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, |
5093 | llvm::SmallString<32> &Opt) const override { |
5094 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
5095 | } |
5096 | }; |
5097 | |
5098 | void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( |
5099 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
5100 | AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
5101 | if (GV->isDeclaration()) |
5102 | return; |
5103 | addStackProbeTargetAttributes(D, GV, CGM); |
5104 | } |
5105 | } |
5106 | |
5107 | ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { |
5108 | Ty = useFirstFieldIfTransparentUnion(Ty); |
5109 | |
5110 | // Handle illegal vector types here. |
5111 | if (isIllegalVectorType(Ty)) { |
5112 | uint64_t Size = getContext().getTypeSize(Ty); |
5113 | // Android promotes <2 x i8> to i16, not i32 |
5114 | if (isAndroid() && (Size <= 16)) { |
5115 | llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); |
5116 | return ABIArgInfo::getDirect(ResType); |
5117 | } |
5118 | if (Size <= 32) { |
5119 | llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); |
5120 | return ABIArgInfo::getDirect(ResType); |
5121 | } |
5122 | if (Size == 64) { |
5123 | llvm::Type *ResType = |
5124 | llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); |
5125 | return ABIArgInfo::getDirect(ResType); |
5126 | } |
5127 | if (Size == 128) { |
5128 | llvm::Type *ResType = |
5129 | llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); |
5130 | return ABIArgInfo::getDirect(ResType); |
5131 | } |
5132 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
5133 | } |
5134 | |
5135 | if (!isAggregateTypeForABI(Ty)) { |
5136 | // Treat an enum type as its underlying type. |
5137 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
5138 | Ty = EnumTy->getDecl()->getIntegerType(); |
5139 | |
5140 | return (Ty->isPromotableIntegerType() && isDarwinPCS() |
5141 | ? ABIArgInfo::getExtend(Ty) |
5142 | : ABIArgInfo::getDirect()); |
5143 | } |
5144 | |
5145 | // Structures with either a non-trivial destructor or a non-trivial |
5146 | // copy constructor are always indirect. |
5147 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
5148 | return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == |
5149 | CGCXXABI::RAA_DirectInMemory); |
5150 | } |
5151 | |
5152 | // Empty records are always ignored on Darwin, but actually passed in C++ mode |
5153 | // elsewhere for GNU compatibility. |
5154 | uint64_t Size = getContext().getTypeSize(Ty); |
5155 | bool IsEmpty = isEmptyRecord(getContext(), Ty, true); |
5156 | if (IsEmpty || Size == 0) { |
5157 | if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) |
5158 | return ABIArgInfo::getIgnore(); |
5159 | |
5160 | // GNU C mode. The only argument that gets ignored is an empty one with size |
5161 | // 0. |
5162 | if (IsEmpty && Size == 0) |
5163 | return ABIArgInfo::getIgnore(); |
5164 | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
5165 | } |
5166 | |
5167 | // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. |
5168 | const Type *Base = nullptr; |
5169 | uint64_t Members = 0; |
5170 | if (isHomogeneousAggregate(Ty, Base, Members)) { |
5171 | return ABIArgInfo::getDirect( |
5172 | llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); |
5173 | } |
5174 | |
5175 | // Aggregates <= 16 bytes are passed directly in registers or on the stack. |
5176 | if (Size <= 128) { |
5177 | // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of |
5178 | // same size and alignment. |
5179 | if (getTarget().isRenderScriptTarget()) { |
5180 | return coerceToIntArray(Ty, getContext(), getVMContext()); |
5181 | } |
5182 | unsigned Alignment; |
5183 | if (Kind == AArch64ABIInfo::AAPCS) { |
5184 | Alignment = getContext().getTypeUnadjustedAlign(Ty); |
5185 | Alignment = Alignment < 128 ? 64 : 128; |
5186 | } else { |
5187 | Alignment = getContext().getTypeAlign(Ty); |
5188 | } |
5189 | Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes |
5190 | |
5191 | // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. |
5192 | // For aggregates with 16-byte alignment, we use i128. |
5193 | if (Alignment < 128 && Size == 128) { |
5194 | llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); |
5195 | return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); |
5196 | } |
5197 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); |
5198 | } |
5199 | |
5200 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
5201 | } |
5202 | |
5203 | ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { |
5204 | if (RetTy->isVoidType()) |
5205 | return ABIArgInfo::getIgnore(); |
5206 | |
5207 | // Large vector types should be returned via memory. |
5208 | if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) |
5209 | return getNaturalAlignIndirect(RetTy); |
5210 | |
5211 | if (!isAggregateTypeForABI(RetTy)) { |
5212 | // Treat an enum type as its underlying type. |
5213 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
5214 | RetTy = EnumTy->getDecl()->getIntegerType(); |
5215 | |
5216 | return (RetTy->isPromotableIntegerType() && isDarwinPCS() |
5217 | ? ABIArgInfo::getExtend(RetTy) |
5218 | : ABIArgInfo::getDirect()); |
5219 | } |
5220 | |
5221 | uint64_t Size = getContext().getTypeSize(RetTy); |
5222 | if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) |
5223 | return ABIArgInfo::getIgnore(); |
5224 | |
5225 | const Type *Base = nullptr; |
5226 | uint64_t Members = 0; |
5227 | if (isHomogeneousAggregate(RetTy, Base, Members)) |
5228 | // Homogeneous Floating-point Aggregates (HFAs) are returned directly. |
5229 | return ABIArgInfo::getDirect(); |
5230 | |
5231 | // Aggregates <= 16 bytes are returned directly in registers or on the stack. |
5232 | if (Size <= 128) { |
5233 | // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of |
5234 | // same size and alignment. |
5235 | if (getTarget().isRenderScriptTarget()) { |
5236 | return coerceToIntArray(RetTy, getContext(), getVMContext()); |
5237 | } |
5238 | unsigned Alignment = getContext().getTypeAlign(RetTy); |
5239 | Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes |
5240 | |
5241 | // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. |
5242 | // For aggregates with 16-byte alignment, we use i128. |
5243 | if (Alignment < 128 && Size == 128) { |
5244 | llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); |
5245 | return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); |
5246 | } |
5247 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); |
5248 | } |
5249 | |
5250 | return getNaturalAlignIndirect(RetTy); |
5251 | } |
5252 | |
5253 | /// isIllegalVectorType - check whether the vector type is legal for AArch64. |
5254 | bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { |
5255 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
5256 | // Check whether VT is legal. |
5257 | unsigned NumElements = VT->getNumElements(); |
5258 | uint64_t Size = getContext().getTypeSize(VT); |
5259 | // NumElements should be power of 2. |
5260 | if (!llvm::isPowerOf2_32(NumElements)) |
5261 | return true; |
5262 | return Size != 64 && (Size != 128 || NumElements == 1); |
5263 | } |
5264 | return false; |
5265 | } |
5266 | |
5267 | bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, |
5268 | llvm::Type *eltTy, |
5269 | unsigned elts) const { |
5270 | if (!llvm::isPowerOf2_32(elts)) |
5271 | return false; |
5272 | if (totalSize.getQuantity() != 8 && |
5273 | (totalSize.getQuantity() != 16 || elts == 1)) |
5274 | return false; |
5275 | return true; |
5276 | } |
5277 | |
5278 | bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
5279 | // Homogeneous aggregates for AAPCS64 must have base types of a floating |
5280 | // point type or a short-vector type. This is the same as the 32-bit ABI, |
5281 | // but with the difference that any floating-point type is allowed, |
5282 | // including __fp16. |
5283 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
5284 | if (BT->isFloatingPoint()) |
5285 | return true; |
5286 | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
5287 | unsigned VecSize = getContext().getTypeSize(VT); |
5288 | if (VecSize == 64 || VecSize == 128) |
5289 | return true; |
5290 | } |
5291 | return false; |
5292 | } |
5293 | |
5294 | bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, |
5295 | uint64_t Members) const { |
5296 | return Members <= 4; |
5297 | } |
5298 | |
5299 | Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, |
5300 | QualType Ty, |
5301 | CodeGenFunction &CGF) const { |
5302 | ABIArgInfo AI = classifyArgumentType(Ty); |
5303 | bool IsIndirect = AI.isIndirect(); |
5304 | |
5305 | llvm::Type *BaseTy = CGF.ConvertType(Ty); |
5306 | if (IsIndirect) |
5307 | BaseTy = llvm::PointerType::getUnqual(BaseTy); |
5308 | else if (AI.getCoerceToType()) |
5309 | BaseTy = AI.getCoerceToType(); |
5310 | |
5311 | unsigned NumRegs = 1; |
5312 | if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { |
5313 | BaseTy = ArrTy->getElementType(); |
5314 | NumRegs = ArrTy->getNumElements(); |
5315 | } |
5316 | bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); |
5317 | |
5318 | // The AArch64 va_list type and handling is specified in the Procedure Call |
5319 | // Standard, section B.4: |
5320 | // |
5321 | // struct { |
5322 | // void *__stack; |
5323 | // void *__gr_top; |
5324 | // void *__vr_top; |
5325 | // int __gr_offs; |
5326 | // int __vr_offs; |
5327 | // }; |
5328 | |
5329 | llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); |
5330 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
5331 | llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); |
5332 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
5333 | |
5334 | CharUnits TySize = getContext().getTypeSizeInChars(Ty); |
5335 | CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); |
5336 | |
5337 | Address reg_offs_p = Address::invalid(); |
5338 | llvm::Value *reg_offs = nullptr; |
5339 | int reg_top_index; |
5340 | int RegSize = IsIndirect ? 8 : TySize.getQuantity(); |
5341 | if (!IsFPR) { |
5342 | // 3 is the field number of __gr_offs |
5343 | reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); |
5344 | reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); |
5345 | reg_top_index = 1; // field number for __gr_top |
5346 | RegSize = llvm::alignTo(RegSize, 8); |
5347 | } else { |
5348 | // 4 is the field number of __vr_offs. |
5349 | reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); |
5350 | reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); |
5351 | reg_top_index = 2; // field number for __vr_top |
5352 | RegSize = 16 * NumRegs; |
5353 | } |
5354 | |
5355 | //======================================= |
5356 | // Find out where argument was passed |
5357 | //======================================= |
5358 | |
5359 | // If reg_offs >= 0 we're already using the stack for this type of |
5360 | // argument. We don't want to keep updating reg_offs (in case it overflows, |
5361 | // though anyone passing 2GB of arguments, each at most 16 bytes, deserves |
5362 | // whatever they get). |
5363 | llvm::Value *UsingStack = nullptr; |
5364 | UsingStack = CGF.Builder.CreateICmpSGE( |
5365 | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
5366 | |
5367 | CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); |
5368 | |
5369 | // Otherwise, at least some kind of argument could go in these registers, the |
5370 | // question is whether this particular type is too big. |
5371 | CGF.EmitBlock(MaybeRegBlock); |
5372 | |
5373 | // Integer arguments may need to correct register alignment (for example a |
5374 | // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we |
5375 | // align __gr_offs to calculate the potential address. |
5376 | if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { |
5377 | int Align = TyAlign.getQuantity(); |
5378 | |
5379 | reg_offs = CGF.Builder.CreateAdd( |
5380 | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), |
5381 | "align_regoffs"); |
5382 | reg_offs = CGF.Builder.CreateAnd( |
5383 | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), |
5384 | "aligned_regoffs"); |
5385 | } |
5386 | |
5387 | // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. |
5388 | // The fact that this is done unconditionally reflects the fact that |
5389 | // allocating an argument to the stack also uses up all the remaining |
5390 | // registers of the appropriate kind. |
5391 | llvm::Value *NewOffset = nullptr; |
5392 | NewOffset = CGF.Builder.CreateAdd( |
5393 | reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); |
5394 | CGF.Builder.CreateStore(NewOffset, reg_offs_p); |
5395 | |
5396 | // Now we're in a position to decide whether this argument really was in |
5397 | // registers or not. |
5398 | llvm::Value *InRegs = nullptr; |
5399 | InRegs = CGF.Builder.CreateICmpSLE( |
5400 | NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); |
5401 | |
5402 | CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); |
5403 | |
5404 | //======================================= |
5405 | // Argument was in registers |
5406 | //======================================= |
5407 | |
5408 | // Now we emit the code for if the argument was originally passed in |
5409 | // registers. First start the appropriate block: |
5410 | CGF.EmitBlock(InRegBlock); |
5411 | |
5412 | llvm::Value *reg_top = nullptr; |
5413 | Address reg_top_p = |
5414 | CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); |
5415 | reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); |
5416 | Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), |
5417 | CharUnits::fromQuantity(IsFPR ? 16 : 8)); |
5418 | Address RegAddr = Address::invalid(); |
5419 | llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); |
5420 | |
5421 | if (IsIndirect) { |
5422 | // If it's been passed indirectly (actually a struct), whatever we find from |
5423 | // stored registers or on the stack will actually be a struct **. |
5424 | MemTy = llvm::PointerType::getUnqual(MemTy); |
5425 | } |
5426 | |
5427 | const Type *Base = nullptr; |
5428 | uint64_t NumMembers = 0; |
5429 | bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); |
5430 | if (IsHFA && NumMembers > 1) { |
5431 | // Homogeneous aggregates passed in registers will have their elements split |
5432 | // and stored 16-bytes apart regardless of size (they're notionally in qN, |
5433 | // qN+1, ...). We reload and store into a temporary local variable |
5434 | // contiguously. |
5435 | assert(!IsIndirect && "Homogeneous aggregates should be passed directly")((!IsIndirect && "Homogeneous aggregates should be passed directly" ) ? static_cast<void> (0) : __assert_fail ("!IsIndirect && \"Homogeneous aggregates should be passed directly\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 5435, __PRETTY_FUNCTION__)); |
5436 | auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); |
5437 | llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); |
5438 | llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); |
5439 | Address Tmp = CGF.CreateTempAlloca(HFATy, |
5440 | std::max(TyAlign, BaseTyInfo.second)); |
5441 | |
5442 | // On big-endian platforms, the value will be right-aligned in its slot. |
5443 | int Offset = 0; |
5444 | if (CGF.CGM.getDataLayout().isBigEndian() && |
5445 | BaseTyInfo.first.getQuantity() < 16) |
5446 | Offset = 16 - BaseTyInfo.first.getQuantity(); |
5447 | |
5448 | for (unsigned i = 0; i < NumMembers; ++i) { |
5449 | CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); |
5450 | Address LoadAddr = |
5451 | CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); |
5452 | LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); |
5453 | |
5454 | Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); |
5455 | |
5456 | llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); |
5457 | CGF.Builder.CreateStore(Elem, StoreAddr); |
5458 | } |
5459 | |
5460 | RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); |
5461 | } else { |
5462 | // Otherwise the object is contiguous in memory. |
5463 | |
5464 | // It might be right-aligned in its slot. |
5465 | CharUnits SlotSize = BaseAddr.getAlignment(); |
5466 | if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && |
5467 | (IsHFA || !isAggregateTypeForABI(Ty)) && |
5468 | TySize < SlotSize) { |
5469 | CharUnits Offset = SlotSize - TySize; |
5470 | BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); |
5471 | } |
5472 | |
5473 | RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); |
5474 | } |
5475 | |
5476 | CGF.EmitBranch(ContBlock); |
5477 | |
5478 | //======================================= |
5479 | // Argument was on the stack |
5480 | //======================================= |
5481 | CGF.EmitBlock(OnStackBlock); |
5482 | |
5483 | Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); |
5484 | llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); |
5485 | |
5486 | // Again, stack arguments may need realignment. In this case both integer and |
5487 | // floating-point ones might be affected. |
5488 | if (!IsIndirect && TyAlign.getQuantity() > 8) { |
5489 | int Align = TyAlign.getQuantity(); |
5490 | |
5491 | OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); |
5492 | |
5493 | OnStackPtr = CGF.Builder.CreateAdd( |
5494 | OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), |
5495 | "align_stack"); |
5496 | OnStackPtr = CGF.Builder.CreateAnd( |
5497 | OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), |
5498 | "align_stack"); |
5499 | |
5500 | OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); |
5501 | } |
5502 | Address OnStackAddr(OnStackPtr, |
5503 | std::max(CharUnits::fromQuantity(8), TyAlign)); |
5504 | |
5505 | // All stack slots are multiples of 8 bytes. |
5506 | CharUnits StackSlotSize = CharUnits::fromQuantity(8); |
5507 | CharUnits StackSize; |
5508 | if (IsIndirect) |
5509 | StackSize = StackSlotSize; |
5510 | else |
5511 | StackSize = TySize.alignTo(StackSlotSize); |
5512 | |
5513 | llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); |
5514 | llvm::Value *NewStack = |
5515 | CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); |
5516 | |
5517 | // Write the new value of __stack for the next call to va_arg |
5518 | CGF.Builder.CreateStore(NewStack, stack_p); |
5519 | |
5520 | if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && |
5521 | TySize < StackSlotSize) { |
5522 | CharUnits Offset = StackSlotSize - TySize; |
5523 | OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); |
5524 | } |
5525 | |
5526 | OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); |
5527 | |
5528 | CGF.EmitBranch(ContBlock); |
5529 | |
5530 | //======================================= |
5531 | // Tidy up |
5532 | //======================================= |
5533 | CGF.EmitBlock(ContBlock); |
5534 | |
5535 | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, |
5536 | OnStackAddr, OnStackBlock, "vaargs.addr"); |
5537 | |
5538 | if (IsIndirect) |
5539 | return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), |
5540 | TyAlign); |
5541 | |
5542 | return ResAddr; |
5543 | } |
5544 | |
5545 | Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, |
5546 | CodeGenFunction &CGF) const { |
5547 | // The backend's lowering doesn't support va_arg for aggregates or |
5548 | // illegal vector types. Lower VAArg here for these cases and use |
5549 | // the LLVM va_arg instruction for everything else. |
5550 | if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) |
5551 | return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); |
5552 | |
5553 | CharUnits SlotSize = CharUnits::fromQuantity(8); |
5554 | |
5555 | // Empty records are ignored for parameter passing purposes. |
5556 | if (isEmptyRecord(getContext(), Ty, true)) { |
5557 | Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); |
5558 | Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); |
5559 | return Addr; |
5560 | } |
5561 | |
5562 | // The size of the actual thing passed, which might end up just |
5563 | // being a pointer for indirect types. |
5564 | auto TyInfo = getContext().getTypeInfoInChars(Ty); |
5565 | |
5566 | // Arguments bigger than 16 bytes which aren't homogeneous |
5567 | // aggregates should be passed indirectly. |
5568 | bool IsIndirect = false; |
5569 | if (TyInfo.first.getQuantity() > 16) { |
5570 | const Type *Base = nullptr; |
5571 | uint64_t Members = 0; |
5572 | IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); |
5573 | } |
5574 | |
5575 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
5576 | TyInfo, SlotSize, /*AllowHigherAlign*/ true); |
5577 | } |
5578 | |
5579 | Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
5580 | QualType Ty) const { |
5581 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
5582 | CGF.getContext().getTypeInfoInChars(Ty), |
5583 | CharUnits::fromQuantity(8), |
5584 | /*allowHigherAlign*/ false); |
5585 | } |
5586 | |
5587 | //===----------------------------------------------------------------------===// |
5588 | // ARM ABI Implementation |
5589 | //===----------------------------------------------------------------------===// |
5590 | |
5591 | namespace { |
5592 | |
5593 | class ARMABIInfo : public SwiftABIInfo { |
5594 | public: |
5595 | enum ABIKind { |
5596 | APCS = 0, |
5597 | AAPCS = 1, |
5598 | AAPCS_VFP = 2, |
5599 | AAPCS16_VFP = 3, |
5600 | }; |
5601 | |
5602 | private: |
5603 | ABIKind Kind; |
5604 | |
5605 | public: |
5606 | ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) |
5607 | : SwiftABIInfo(CGT), Kind(_Kind) { |
5608 | setCCs(); |
5609 | } |
5610 | |
5611 | bool isEABI() const { |
5612 | switch (getTarget().getTriple().getEnvironment()) { |
5613 | case llvm::Triple::Android: |
5614 | case llvm::Triple::EABI: |
5615 | case llvm::Triple::EABIHF: |
5616 | case llvm::Triple::GNUEABI: |
5617 | case llvm::Triple::GNUEABIHF: |
5618 | case llvm::Triple::MuslEABI: |
5619 | case llvm::Triple::MuslEABIHF: |
5620 | return true; |
5621 | default: |
5622 | return false; |
5623 | } |
5624 | } |
5625 | |
5626 | bool isEABIHF() const { |
5627 | switch (getTarget().getTriple().getEnvironment()) { |
5628 | case llvm::Triple::EABIHF: |
5629 | case llvm::Triple::GNUEABIHF: |
5630 | case llvm::Triple::MuslEABIHF: |
5631 | return true; |
5632 | default: |
5633 | return false; |
5634 | } |
5635 | } |
5636 | |
5637 | ABIKind getABIKind() const { return Kind; } |
5638 | |
5639 | private: |
5640 | ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, |
5641 | unsigned functionCallConv) const; |
5642 | ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, |
5643 | unsigned functionCallConv) const; |
5644 | ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, |
5645 | uint64_t Members) const; |
5646 | ABIArgInfo coerceIllegalVector(QualType Ty) const; |
5647 | bool isIllegalVectorType(QualType Ty) const; |
5648 | bool containsAnyFP16Vectors(QualType Ty) const; |
5649 | |
5650 | bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
5651 | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
5652 | uint64_t Members) const override; |
5653 | |
5654 | bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; |
5655 | |
5656 | void computeInfo(CGFunctionInfo &FI) const override; |
5657 | |
5658 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
5659 | QualType Ty) const override; |
5660 | |
5661 | llvm::CallingConv::ID getLLVMDefaultCC() const; |
5662 | llvm::CallingConv::ID getABIDefaultCC() const; |
5663 | void setCCs(); |
5664 | |
5665 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
5666 | bool asReturnValue) const override { |
5667 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
5668 | } |
5669 | bool isSwiftErrorInRegister() const override { |
5670 | return true; |
5671 | } |
5672 | bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, |
5673 | unsigned elts) const override; |
5674 | }; |
5675 | |
5676 | class ARMTargetCodeGenInfo : public TargetCodeGenInfo { |
5677 | public: |
5678 | ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) |
5679 | :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} |
5680 | |
5681 | const ARMABIInfo &getABIInfo() const { |
5682 | return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); |
5683 | } |
5684 | |
5685 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
5686 | return 13; |
5687 | } |
5688 | |
5689 | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
5690 | return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; |
5691 | } |
5692 | |
5693 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
5694 | llvm::Value *Address) const override { |
5695 | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
5696 | |
5697 | // 0-15 are the 16 integer registers. |
5698 | AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); |
5699 | return false; |
5700 | } |
5701 | |
5702 | unsigned getSizeOfUnwindException() const override { |
5703 | if (getABIInfo().isEABI()) return 88; |
5704 | return TargetCodeGenInfo::getSizeOfUnwindException(); |
5705 | } |
5706 | |
5707 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
5708 | CodeGen::CodeGenModule &CGM) const override { |
5709 | if (GV->isDeclaration()) |
5710 | return; |
5711 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
5712 | if (!FD) |
5713 | return; |
5714 | |
5715 | const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); |
5716 | if (!Attr) |
5717 | return; |
5718 | |
5719 | const char *Kind; |
5720 | switch (Attr->getInterrupt()) { |
5721 | case ARMInterruptAttr::Generic: Kind = ""; break; |
5722 | case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; |
5723 | case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; |
5724 | case ARMInterruptAttr::SWI: Kind = "SWI"; break; |
5725 | case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; |
5726 | case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; |
5727 | } |
5728 | |
5729 | llvm::Function *Fn = cast<llvm::Function>(GV); |
5730 | |
5731 | Fn->addFnAttr("interrupt", Kind); |
5732 | |
5733 | ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); |
5734 | if (ABI == ARMABIInfo::APCS) |
5735 | return; |
5736 | |
5737 | // AAPCS guarantees that sp will be 8-byte aligned on any public interface, |
5738 | // however this is not necessarily true on taking any interrupt. Instruct |
5739 | // the backend to perform a realignment as part of the function prologue. |
5740 | llvm::AttrBuilder B; |
5741 | B.addStackAlignmentAttr(8); |
5742 | Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); |
5743 | } |
5744 | }; |
5745 | |
5746 | class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { |
5747 | public: |
5748 | WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) |
5749 | : ARMTargetCodeGenInfo(CGT, K) {} |
5750 | |
5751 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
5752 | CodeGen::CodeGenModule &CGM) const override; |
5753 | |
5754 | void getDependentLibraryOption(llvm::StringRef Lib, |
5755 | llvm::SmallString<24> &Opt) const override { |
5756 | Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); |
5757 | } |
5758 | |
5759 | void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, |
5760 | llvm::SmallString<32> &Opt) const override { |
5761 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
5762 | } |
5763 | }; |
5764 | |
5765 | void WindowsARMTargetCodeGenInfo::setTargetAttributes( |
5766 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
5767 | ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
5768 | if (GV->isDeclaration()) |
5769 | return; |
5770 | addStackProbeTargetAttributes(D, GV, CGM); |
5771 | } |
5772 | } |
5773 | |
5774 | void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { |
5775 | if (!::classifyReturnType(getCXXABI(), FI, *this)) |
5776 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), |
5777 | FI.getCallingConvention()); |
5778 | |
5779 | for (auto &I : FI.arguments()) |
5780 | I.info = classifyArgumentType(I.type, FI.isVariadic(), |
5781 | FI.getCallingConvention()); |
5782 | |
5783 | |
5784 | // Always honor user-specified calling convention. |
5785 | if (FI.getCallingConvention() != llvm::CallingConv::C) |
5786 | return; |
5787 | |
5788 | llvm::CallingConv::ID cc = getRuntimeCC(); |
5789 | if (cc != llvm::CallingConv::C) |
5790 | FI.setEffectiveCallingConvention(cc); |
5791 | } |
5792 | |
5793 | /// Return the default calling convention that LLVM will use. |
5794 | llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { |
5795 | // The default calling convention that LLVM will infer. |
5796 | if (isEABIHF() || getTarget().getTriple().isWatchABI()) |
5797 | return llvm::CallingConv::ARM_AAPCS_VFP; |
5798 | else if (isEABI()) |
5799 | return llvm::CallingConv::ARM_AAPCS; |
5800 | else |
5801 | return llvm::CallingConv::ARM_APCS; |
5802 | } |
5803 | |
5804 | /// Return the calling convention that our ABI would like us to use |
5805 | /// as the C calling convention. |
5806 | llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { |
5807 | switch (getABIKind()) { |
5808 | case APCS: return llvm::CallingConv::ARM_APCS; |
5809 | case AAPCS: return llvm::CallingConv::ARM_AAPCS; |
5810 | case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; |
5811 | case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; |
5812 | } |
5813 | llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 5813); |
5814 | } |
5815 | |
5816 | void ARMABIInfo::setCCs() { |
5817 | assert(getRuntimeCC() == llvm::CallingConv::C)((getRuntimeCC() == llvm::CallingConv::C) ? static_cast<void > (0) : __assert_fail ("getRuntimeCC() == llvm::CallingConv::C" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 5817, __PRETTY_FUNCTION__)); |
5818 | |
5819 | // Don't muddy up the IR with a ton of explicit annotations if |
5820 | // they'd just match what LLVM will infer from the triple. |
5821 | llvm::CallingConv::ID abiCC = getABIDefaultCC(); |
5822 | if (abiCC != getLLVMDefaultCC()) |
5823 | RuntimeCC = abiCC; |
5824 | } |
5825 | |
5826 | ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { |
5827 | uint64_t Size = getContext().getTypeSize(Ty); |
5828 | if (Size <= 32) { |
5829 | llvm::Type *ResType = |
5830 | llvm::Type::getInt32Ty(getVMContext()); |
5831 | return ABIArgInfo::getDirect(ResType); |
5832 | } |
5833 | if (Size == 64 || Size == 128) { |
5834 | llvm::Type *ResType = llvm::VectorType::get( |
5835 | llvm::Type::getInt32Ty(getVMContext()), Size / 32); |
5836 | return ABIArgInfo::getDirect(ResType); |
5837 | } |
5838 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
5839 | } |
5840 | |
5841 | ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, |
5842 | const Type *Base, |
5843 | uint64_t Members) const { |
5844 | assert(Base && "Base class should be set for homogeneous aggregate")((Base && "Base class should be set for homogeneous aggregate" ) ? static_cast<void> (0) : __assert_fail ("Base && \"Base class should be set for homogeneous aggregate\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 5844, __PRETTY_FUNCTION__)); |
5845 | // Base can be a floating-point or a vector. |
5846 | if (const VectorType *VT = Base->getAs<VectorType>()) { |
5847 | // FP16 vectors should be converted to integer vectors |
5848 | if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { |
5849 | uint64_t Size = getContext().getTypeSize(VT); |
5850 | llvm::Type *NewVecTy = llvm::VectorType::get( |
5851 | llvm::Type::getInt32Ty(getVMContext()), Size / 32); |
5852 | llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); |
5853 | return ABIArgInfo::getDirect(Ty, 0, nullptr, false); |
5854 | } |
5855 | } |
5856 | return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); |
5857 | } |
5858 | |
5859 | ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, |
5860 | unsigned functionCallConv) const { |
5861 | // 6.1.2.1 The following argument types are VFP CPRCs: |
5862 | // A single-precision floating-point type (including promoted |
5863 | // half-precision types); A double-precision floating-point type; |
5864 | // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate |
5865 | // with a Base Type of a single- or double-precision floating-point type, |
5866 | // 64-bit containerized vectors or 128-bit containerized vectors with one |
5867 | // to four Elements. |
5868 | // Variadic functions should always marshal to the base standard. |
5869 | bool IsAAPCS_VFP = |
5870 | !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); |
5871 | |
5872 | Ty = useFirstFieldIfTransparentUnion(Ty); |
5873 | |
5874 | // Handle illegal vector types here. |
5875 | if (isIllegalVectorType(Ty)) |
5876 | return coerceIllegalVector(Ty); |
5877 | |
5878 | // _Float16 and __fp16 get passed as if it were an int or float, but with |
5879 | // the top 16 bits unspecified. This is not done for OpenCL as it handles the |
5880 | // half type natively, and does not need to interwork with AAPCS code. |
5881 | if ((Ty->isFloat16Type() || Ty->isHalfType()) && |
5882 | !getContext().getLangOpts().NativeHalfArgsAndReturns) { |
5883 | llvm::Type *ResType = IsAAPCS_VFP ? |
5884 | llvm::Type::getFloatTy(getVMContext()) : |
5885 | llvm::Type::getInt32Ty(getVMContext()); |
5886 | return ABIArgInfo::getDirect(ResType); |
5887 | } |
5888 | |
5889 | if (!isAggregateTypeForABI(Ty)) { |
5890 | // Treat an enum type as its underlying type. |
5891 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { |
5892 | Ty = EnumTy->getDecl()->getIntegerType(); |
5893 | } |
5894 | |
5895 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
5896 | : ABIArgInfo::getDirect()); |
5897 | } |
5898 | |
5899 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
5900 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
5901 | } |
5902 | |
5903 | // Ignore empty records. |
5904 | if (isEmptyRecord(getContext(), Ty, true)) |
5905 | return ABIArgInfo::getIgnore(); |
5906 | |
5907 | if (IsAAPCS_VFP) { |
5908 | // Homogeneous Aggregates need to be expanded when we can fit the aggregate |
5909 | // into VFP registers. |
5910 | const Type *Base = nullptr; |
5911 | uint64_t Members = 0; |
5912 | if (isHomogeneousAggregate(Ty, Base, Members)) |
5913 | return classifyHomogeneousAggregate(Ty, Base, Members); |
5914 | } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { |
5915 | // WatchOS does have homogeneous aggregates. Note that we intentionally use |
5916 | // this convention even for a variadic function: the backend will use GPRs |
5917 | // if needed. |
5918 | const Type *Base = nullptr; |
5919 | uint64_t Members = 0; |
5920 | if (isHomogeneousAggregate(Ty, Base, Members)) { |
5921 | assert(Base && Members <= 4 && "unexpected homogeneous aggregate")((Base && Members <= 4 && "unexpected homogeneous aggregate" ) ? static_cast<void> (0) : __assert_fail ("Base && Members <= 4 && \"unexpected homogeneous aggregate\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 5921, __PRETTY_FUNCTION__)); |
5922 | llvm::Type *Ty = |
5923 | llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); |
5924 | return ABIArgInfo::getDirect(Ty, 0, nullptr, false); |
5925 | } |
5926 | } |
5927 | |
5928 | if (getABIKind() == ARMABIInfo::AAPCS16_VFP && |
5929 | getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { |
5930 | // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're |
5931 | // bigger than 128-bits, they get placed in space allocated by the caller, |
5932 | // and a pointer is passed. |
5933 | return ABIArgInfo::getIndirect( |
5934 | CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); |
5935 | } |
5936 | |
5937 | // Support byval for ARM. |
5938 | // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at |
5939 | // most 8-byte. We realign the indirect argument if type alignment is bigger |
5940 | // than ABI alignment. |
5941 | uint64_t ABIAlign = 4; |
5942 | uint64_t TyAlign; |
5943 | if (getABIKind() == ARMABIInfo::AAPCS_VFP || |
5944 | getABIKind() == ARMABIInfo::AAPCS) { |
5945 | TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); |
5946 | ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); |
5947 | } else { |
5948 | TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); |
5949 | } |
5950 | if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { |
5951 | assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval")((getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval" ) ? static_cast<void> (0) : __assert_fail ("getABIKind() != ARMABIInfo::AAPCS16_VFP && \"unexpected byval\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 5951, __PRETTY_FUNCTION__)); |
5952 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), |
5953 | /*ByVal=*/true, |
5954 | /*Realign=*/TyAlign > ABIAlign); |
5955 | } |
5956 | |
5957 | // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of |
5958 | // same size and alignment. |
5959 | if (getTarget().isRenderScriptTarget()) { |
5960 | return coerceToIntArray(Ty, getContext(), getVMContext()); |
5961 | } |
5962 | |
5963 | // Otherwise, pass by coercing to a structure of the appropriate size. |
5964 | llvm::Type* ElemTy; |
5965 | unsigned SizeRegs; |
5966 | // FIXME: Try to match the types of the arguments more accurately where |
5967 | // we can. |
5968 | if (TyAlign <= 4) { |
5969 | ElemTy = llvm::Type::getInt32Ty(getVMContext()); |
5970 | SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
5971 | } else { |
5972 | ElemTy = llvm::Type::getInt64Ty(getVMContext()); |
5973 | SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; |
5974 | } |
5975 | |
5976 | return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); |
5977 | } |
5978 | |
5979 | static bool isIntegerLikeType(QualType Ty, ASTContext &Context, |
5980 | llvm::LLVMContext &VMContext) { |
5981 | // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure |
5982 | // is called integer-like if its size is less than or equal to one word, and |
5983 | // the offset of each of its addressable sub-fields is zero. |
5984 | |
5985 | uint64_t Size = Context.getTypeSize(Ty); |
5986 | |
5987 | // Check that the type fits in a word. |
5988 | if (Size > 32) |
5989 | return false; |
5990 | |
5991 | // FIXME: Handle vector types! |
5992 | if (Ty->isVectorType()) |
5993 | return false; |
5994 | |
5995 | // Float types are never treated as "integer like". |
5996 | if (Ty->isRealFloatingType()) |
5997 | return false; |
5998 | |
5999 | // If this is a builtin or pointer type then it is ok. |
6000 | if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) |
6001 | return true; |
6002 | |
6003 | // Small complex integer types are "integer like". |
6004 | if (const ComplexType *CT = Ty->getAs<ComplexType>()) |
6005 | return isIntegerLikeType(CT->getElementType(), Context, VMContext); |
6006 | |
6007 | // Single element and zero sized arrays should be allowed, by the definition |
6008 | // above, but they are not. |
6009 | |
6010 | // Otherwise, it must be a record type. |
6011 | const RecordType *RT = Ty->getAs<RecordType>(); |
6012 | if (!RT) return false; |
6013 | |
6014 | // Ignore records with flexible arrays. |
6015 | const RecordDecl *RD = RT->getDecl(); |
6016 | if (RD->hasFlexibleArrayMember()) |
6017 | return false; |
6018 | |
6019 | // Check that all sub-fields are at offset 0, and are themselves "integer |
6020 | // like". |
6021 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
6022 | |
6023 | bool HadField = false; |
6024 | unsigned idx = 0; |
6025 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
6026 | i != e; ++i, ++idx) { |
6027 | const FieldDecl *FD = *i; |
6028 | |
6029 | // Bit-fields are not addressable, we only need to verify they are "integer |
6030 | // like". We still have to disallow a subsequent non-bitfield, for example: |
6031 | // struct { int : 0; int x } |
6032 | // is non-integer like according to gcc. |
6033 | if (FD->isBitField()) { |
6034 | if (!RD->isUnion()) |
6035 | HadField = true; |
6036 | |
6037 | if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
6038 | return false; |
6039 | |
6040 | continue; |
6041 | } |
6042 | |
6043 | // Check if this field is at offset 0. |
6044 | if (Layout.getFieldOffset(idx) != 0) |
6045 | return false; |
6046 | |
6047 | if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
6048 | return false; |
6049 | |
6050 | // Only allow at most one field in a structure. This doesn't match the |
6051 | // wording above, but follows gcc in situations with a field following an |
6052 | // empty structure. |
6053 | if (!RD->isUnion()) { |
6054 | if (HadField) |
6055 | return false; |
6056 | |
6057 | HadField = true; |
6058 | } |
6059 | } |
6060 | |
6061 | return true; |
6062 | } |
6063 | |
6064 | ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, |
6065 | unsigned functionCallConv) const { |
6066 | |
6067 | // Variadic functions should always marshal to the base standard. |
6068 | bool IsAAPCS_VFP = |
6069 | !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); |
6070 | |
6071 | if (RetTy->isVoidType()) |
6072 | return ABIArgInfo::getIgnore(); |
6073 | |
6074 | if (const VectorType *VT = RetTy->getAs<VectorType>()) { |
6075 | // Large vector types should be returned via memory. |
6076 | if (getContext().getTypeSize(RetTy) > 128) |
6077 | return getNaturalAlignIndirect(RetTy); |
6078 | // FP16 vectors should be converted to integer vectors |
6079 | if (!getTarget().hasLegalHalfType() && |
6080 | (VT->getElementType()->isFloat16Type() || |
6081 | VT->getElementType()->isHalfType())) |
6082 | return coerceIllegalVector(RetTy); |
6083 | } |
6084 | |
6085 | // _Float16 and __fp16 get returned as if it were an int or float, but with |
6086 | // the top 16 bits unspecified. This is not done for OpenCL as it handles the |
6087 | // half type natively, and does not need to interwork with AAPCS code. |
6088 | if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && |
6089 | !getContext().getLangOpts().NativeHalfArgsAndReturns) { |
6090 | llvm::Type *ResType = IsAAPCS_VFP ? |
6091 | llvm::Type::getFloatTy(getVMContext()) : |
6092 | llvm::Type::getInt32Ty(getVMContext()); |
6093 | return ABIArgInfo::getDirect(ResType); |
6094 | } |
6095 | |
6096 | if (!isAggregateTypeForABI(RetTy)) { |
6097 | // Treat an enum type as its underlying type. |
6098 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
6099 | RetTy = EnumTy->getDecl()->getIntegerType(); |
6100 | |
6101 | return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
6102 | : ABIArgInfo::getDirect(); |
6103 | } |
6104 | |
6105 | // Are we following APCS? |
6106 | if (getABIKind() == APCS) { |
6107 | if (isEmptyRecord(getContext(), RetTy, false)) |
6108 | return ABIArgInfo::getIgnore(); |
6109 | |
6110 | // Complex types are all returned as packed integers. |
6111 | // |
6112 | // FIXME: Consider using 2 x vector types if the back end handles them |
6113 | // correctly. |
6114 | if (RetTy->isAnyComplexType()) |
6115 | return ABIArgInfo::getDirect(llvm::IntegerType::get( |
6116 | getVMContext(), getContext().getTypeSize(RetTy))); |
6117 | |
6118 | // Integer like structures are returned in r0. |
6119 | if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { |
6120 | // Return in the smallest viable integer type. |
6121 | uint64_t Size = getContext().getTypeSize(RetTy); |
6122 | if (Size <= 8) |
6123 | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
6124 | if (Size <= 16) |
6125 | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
6126 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
6127 | } |
6128 | |
6129 | // Otherwise return in memory. |
6130 | return getNaturalAlignIndirect(RetTy); |
6131 | } |
6132 | |
6133 | // Otherwise this is an AAPCS variant. |
6134 | |
6135 | if (isEmptyRecord(getContext(), RetTy, true)) |
6136 | return ABIArgInfo::getIgnore(); |
6137 | |
6138 | // Check for homogeneous aggregates with AAPCS-VFP. |
6139 | if (IsAAPCS_VFP) { |
6140 | const Type *Base = nullptr; |
6141 | uint64_t Members = 0; |
6142 | if (isHomogeneousAggregate(RetTy, Base, Members)) |
6143 | return classifyHomogeneousAggregate(RetTy, Base, Members); |
6144 | } |
6145 | |
6146 | // Aggregates <= 4 bytes are returned in r0; other aggregates |
6147 | // are returned indirectly. |
6148 | uint64_t Size = getContext().getTypeSize(RetTy); |
6149 | if (Size <= 32) { |
6150 | // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of |
6151 | // same size and alignment. |
6152 | if (getTarget().isRenderScriptTarget()) { |
6153 | return coerceToIntArray(RetTy, getContext(), getVMContext()); |
6154 | } |
6155 | if (getDataLayout().isBigEndian()) |
6156 | // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) |
6157 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
6158 | |
6159 | // Return in the smallest viable integer type. |
6160 | if (Size <= 8) |
6161 | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
6162 | if (Size <= 16) |
6163 | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
6164 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
6165 | } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { |
6166 | llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); |
6167 | llvm::Type *CoerceTy = |
6168 | llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); |
6169 | return ABIArgInfo::getDirect(CoerceTy); |
6170 | } |
6171 | |
6172 | return getNaturalAlignIndirect(RetTy); |
6173 | } |
6174 | |
6175 | /// isIllegalVector - check whether Ty is an illegal vector type. |
6176 | bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { |
6177 | if (const VectorType *VT = Ty->getAs<VectorType> ()) { |
6178 | // On targets that don't support FP16, FP16 is expanded into float, and we |
6179 | // don't want the ABI to depend on whether or not FP16 is supported in |
6180 | // hardware. Thus return false to coerce FP16 vectors into integer vectors. |
6181 | if (!getTarget().hasLegalHalfType() && |
6182 | (VT->getElementType()->isFloat16Type() || |
6183 | VT->getElementType()->isHalfType())) |
6184 | return true; |
6185 | if (isAndroid()) { |
6186 | // Android shipped using Clang 3.1, which supported a slightly different |
6187 | // vector ABI. The primary differences were that 3-element vector types |
6188 | // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path |
6189 | // accepts that legacy behavior for Android only. |
6190 | // Check whether VT is legal. |
6191 | unsigned NumElements = VT->getNumElements(); |
6192 | // NumElements should be power of 2 or equal to 3. |
6193 | if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) |
6194 | return true; |
6195 | } else { |
6196 | // Check whether VT is legal. |
6197 | unsigned NumElements = VT->getNumElements(); |
6198 | uint64_t Size = getContext().getTypeSize(VT); |
6199 | // NumElements should be power of 2. |
6200 | if (!llvm::isPowerOf2_32(NumElements)) |
6201 | return true; |
6202 | // Size should be greater than 32 bits. |
6203 | return Size <= 32; |
6204 | } |
6205 | } |
6206 | return false; |
6207 | } |
6208 | |
6209 | /// Return true if a type contains any 16-bit floating point vectors |
6210 | bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { |
6211 | if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
6212 | uint64_t NElements = AT->getSize().getZExtValue(); |
6213 | if (NElements == 0) |
6214 | return false; |
6215 | return containsAnyFP16Vectors(AT->getElementType()); |
6216 | } else if (const RecordType *RT = Ty->getAs<RecordType>()) { |
6217 | const RecordDecl *RD = RT->getDecl(); |
6218 | |
6219 | // If this is a C++ record, check the bases first. |
6220 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
6221 | if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { |
6222 | return containsAnyFP16Vectors(B.getType()); |
6223 | })) |
6224 | return true; |
6225 | |
6226 | if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { |
6227 | return FD && containsAnyFP16Vectors(FD->getType()); |
6228 | })) |
6229 | return true; |
6230 | |
6231 | return false; |
6232 | } else { |
6233 | if (const VectorType *VT = Ty->getAs<VectorType>()) |
6234 | return (VT->getElementType()->isFloat16Type() || |
6235 | VT->getElementType()->isHalfType()); |
6236 | return false; |
6237 | } |
6238 | } |
6239 | |
6240 | bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, |
6241 | llvm::Type *eltTy, |
6242 | unsigned numElts) const { |
6243 | if (!llvm::isPowerOf2_32(numElts)) |
6244 | return false; |
6245 | unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); |
6246 | if (size > 64) |
6247 | return false; |
6248 | if (vectorSize.getQuantity() != 8 && |
6249 | (vectorSize.getQuantity() != 16 || numElts == 1)) |
6250 | return false; |
6251 | return true; |
6252 | } |
6253 | |
6254 | bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
6255 | // Homogeneous aggregates for AAPCS-VFP must have base types of float, |
6256 | // double, or 64-bit or 128-bit vectors. |
6257 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
6258 | if (BT->getKind() == BuiltinType::Float || |
6259 | BT->getKind() == BuiltinType::Double || |
6260 | BT->getKind() == BuiltinType::LongDouble) |
6261 | return true; |
6262 | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
6263 | unsigned VecSize = getContext().getTypeSize(VT); |
6264 | if (VecSize == 64 || VecSize == 128) |
6265 | return true; |
6266 | } |
6267 | return false; |
6268 | } |
6269 | |
6270 | bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, |
6271 | uint64_t Members) const { |
6272 | return Members <= 4; |
6273 | } |
6274 | |
6275 | bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, |
6276 | bool acceptHalf) const { |
6277 | // Give precedence to user-specified calling conventions. |
6278 | if (callConvention != llvm::CallingConv::C) |
6279 | return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); |
6280 | else |
6281 | return (getABIKind() == AAPCS_VFP) || |
6282 | (acceptHalf && (getABIKind() == AAPCS16_VFP)); |
6283 | } |
6284 | |
6285 | Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
6286 | QualType Ty) const { |
6287 | CharUnits SlotSize = CharUnits::fromQuantity(4); |
6288 | |
6289 | // Empty records are ignored for parameter passing purposes. |
6290 | if (isEmptyRecord(getContext(), Ty, true)) { |
6291 | Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); |
6292 | Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); |
6293 | return Addr; |
6294 | } |
6295 | |
6296 | CharUnits TySize = getContext().getTypeSizeInChars(Ty); |
6297 | CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); |
6298 | |
6299 | // Use indirect if size of the illegal vector is bigger than 16 bytes. |
6300 | bool IsIndirect = false; |
6301 | const Type *Base = nullptr; |
6302 | uint64_t Members = 0; |
6303 | if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { |
6304 | IsIndirect = true; |
6305 | |
6306 | // ARMv7k passes structs bigger than 16 bytes indirectly, in space |
6307 | // allocated by the caller. |
6308 | } else if (TySize > CharUnits::fromQuantity(16) && |
6309 | getABIKind() == ARMABIInfo::AAPCS16_VFP && |
6310 | !isHomogeneousAggregate(Ty, Base, Members)) { |
6311 | IsIndirect = true; |
6312 | |
6313 | // Otherwise, bound the type's ABI alignment. |
6314 | // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for |
6315 | // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. |
6316 | // Our callers should be prepared to handle an under-aligned address. |
6317 | } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || |
6318 | getABIKind() == ARMABIInfo::AAPCS) { |
6319 | TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); |
6320 | TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); |
6321 | } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { |
6322 | // ARMv7k allows type alignment up to 16 bytes. |
6323 | TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); |
6324 | TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); |
6325 | } else { |
6326 | TyAlignForABI = CharUnits::fromQuantity(4); |
6327 | } |
6328 | |
6329 | std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; |
6330 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, |
6331 | SlotSize, /*AllowHigherAlign*/ true); |
6332 | } |
6333 | |
6334 | //===----------------------------------------------------------------------===// |
6335 | // NVPTX ABI Implementation |
6336 | //===----------------------------------------------------------------------===// |
6337 | |
6338 | namespace { |
6339 | |
6340 | class NVPTXABIInfo : public ABIInfo { |
6341 | public: |
6342 | NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
6343 | |
6344 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
6345 | ABIArgInfo classifyArgumentType(QualType Ty) const; |
6346 | |
6347 | void computeInfo(CGFunctionInfo &FI) const override; |
6348 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
6349 | QualType Ty) const override; |
6350 | }; |
6351 | |
6352 | class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { |
6353 | public: |
6354 | NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) |
6355 | : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} |
6356 | |
6357 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
6358 | CodeGen::CodeGenModule &M) const override; |
6359 | bool shouldEmitStaticExternCAliases() const override; |
6360 | |
6361 | private: |
6362 | // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the |
6363 | // resulting MDNode to the nvvm.annotations MDNode. |
6364 | static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); |
6365 | }; |
6366 | |
6367 | /// Checks if the type is unsupported directly by the current target. |
6368 | static bool isUnsupportedType(ASTContext &Context, QualType T) { |
6369 | if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) |
6370 | return true; |
6371 | if (!Context.getTargetInfo().hasFloat128Type() && |
6372 | (T->isFloat128Type() || |
6373 | (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) |
6374 | return true; |
6375 | if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && |
6376 | Context.getTypeSize(T) > 64) |
6377 | return true; |
6378 | if (const auto *AT = T->getAsArrayTypeUnsafe()) |
6379 | return isUnsupportedType(Context, AT->getElementType()); |
6380 | const auto *RT = T->getAs<RecordType>(); |
6381 | if (!RT) |
6382 | return false; |
6383 | const RecordDecl *RD = RT->getDecl(); |
6384 | |
6385 | // If this is a C++ record, check the bases first. |
6386 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
6387 | for (const CXXBaseSpecifier &I : CXXRD->bases()) |
6388 | if (isUnsupportedType(Context, I.getType())) |
6389 | return true; |
6390 | |
6391 | for (const FieldDecl *I : RD->fields()) |
6392 | if (isUnsupportedType(Context, I->getType())) |
6393 | return true; |
6394 | return false; |
6395 | } |
6396 | |
6397 | /// Coerce the given type into an array with maximum allowed size of elements. |
6398 | static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, |
6399 | llvm::LLVMContext &LLVMContext, |
6400 | unsigned MaxSize) { |
6401 | // Alignment and Size are measured in bits. |
6402 | const uint64_t Size = Context.getTypeSize(Ty); |
6403 | const uint64_t Alignment = Context.getTypeAlign(Ty); |
6404 | const unsigned Div = std::min<unsigned>(MaxSize, Alignment); |
6405 | llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); |
6406 | const uint64_t NumElements = (Size + Div - 1) / Div; |
6407 | return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); |
6408 | } |
6409 | |
6410 | ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { |
6411 | if (RetTy->isVoidType()) |
6412 | return ABIArgInfo::getIgnore(); |
6413 | |
6414 | if (getContext().getLangOpts().OpenMP && |
6415 | getContext().getLangOpts().OpenMPIsDevice && |
6416 | isUnsupportedType(getContext(), RetTy)) |
6417 | return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); |
6418 | |
6419 | // note: this is different from default ABI |
6420 | if (!RetTy->isScalarType()) |
6421 | return ABIArgInfo::getDirect(); |
6422 | |
6423 | // Treat an enum type as its underlying type. |
6424 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
6425 | RetTy = EnumTy->getDecl()->getIntegerType(); |
6426 | |
6427 | return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
6428 | : ABIArgInfo::getDirect()); |
6429 | } |
6430 | |
6431 | ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { |
6432 | // Treat an enum type as its underlying type. |
6433 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
6434 | Ty = EnumTy->getDecl()->getIntegerType(); |
6435 | |
6436 | // Return aggregates type as indirect by value |
6437 | if (isAggregateTypeForABI(Ty)) |
6438 | return getNaturalAlignIndirect(Ty, /* byval */ true); |
6439 | |
6440 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
6441 | : ABIArgInfo::getDirect()); |
6442 | } |
6443 | |
6444 | void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { |
6445 | if (!getCXXABI().classifyReturnType(FI)) |
6446 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
6447 | for (auto &I : FI.arguments()) |
6448 | I.info = classifyArgumentType(I.type); |
6449 | |
6450 | // Always honor user-specified calling convention. |
6451 | if (FI.getCallingConvention() != llvm::CallingConv::C) |
6452 | return; |
6453 | |
6454 | FI.setEffectiveCallingConvention(getRuntimeCC()); |
6455 | } |
6456 | |
6457 | Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
6458 | QualType Ty) const { |
6459 | llvm_unreachable("NVPTX does not support varargs")::llvm::llvm_unreachable_internal("NVPTX does not support varargs" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 6459); |
6460 | } |
6461 | |
6462 | void NVPTXTargetCodeGenInfo::setTargetAttributes( |
6463 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
6464 | if (GV->isDeclaration()) |
6465 | return; |
6466 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
6467 | if (!FD) return; |
6468 | |
6469 | llvm::Function *F = cast<llvm::Function>(GV); |
6470 | |
6471 | // Perform special handling in OpenCL mode |
6472 | if (M.getLangOpts().OpenCL) { |
6473 | // Use OpenCL function attributes to check for kernel functions |
6474 | // By default, all functions are device functions |
6475 | if (FD->hasAttr<OpenCLKernelAttr>()) { |
6476 | // OpenCL __kernel functions get kernel metadata |
6477 | // Create !{<func-ref>, metadata !"kernel", i32 1} node |
6478 | addNVVMMetadata(F, "kernel", 1); |
6479 | // And kernel functions are not subject to inlining |
6480 | F->addFnAttr(llvm::Attribute::NoInline); |
6481 | } |
6482 | } |
6483 | |
6484 | // Perform special handling in CUDA mode. |
6485 | if (M.getLangOpts().CUDA) { |
6486 | // CUDA __global__ functions get a kernel metadata entry. Since |
6487 | // __global__ functions cannot be called from the device, we do not |
6488 | // need to set the noinline attribute. |
6489 | if (FD->hasAttr<CUDAGlobalAttr>()) { |
6490 | // Create !{<func-ref>, metadata !"kernel", i32 1} node |
6491 | addNVVMMetadata(F, "kernel", 1); |
6492 | } |
6493 | if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { |
6494 | // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node |
6495 | llvm::APSInt MaxThreads(32); |
6496 | MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); |
6497 | if (MaxThreads > 0) |
6498 | addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); |
6499 | |
6500 | // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was |
6501 | // not specified in __launch_bounds__ or if the user specified a 0 value, |
6502 | // we don't have to add a PTX directive. |
6503 | if (Attr->getMinBlocks()) { |
6504 | llvm::APSInt MinBlocks(32); |
6505 | MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); |
6506 | if (MinBlocks > 0) |
6507 | // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node |
6508 | addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); |
6509 | } |
6510 | } |
6511 | } |
6512 | } |
6513 | |
6514 | void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, |
6515 | int Operand) { |
6516 | llvm::Module *M = F->getParent(); |
6517 | llvm::LLVMContext &Ctx = M->getContext(); |
6518 | |
6519 | // Get "nvvm.annotations" metadata node |
6520 | llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); |
6521 | |
6522 | llvm::Metadata *MDVals[] = { |
6523 | llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), |
6524 | llvm::ConstantAsMetadata::get( |
6525 | llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; |
6526 | // Append metadata to nvvm.annotations |
6527 | MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
6528 | } |
6529 | |
6530 | bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { |
6531 | return false; |
6532 | } |
6533 | } |
6534 | |
6535 | //===----------------------------------------------------------------------===// |
6536 | // SystemZ ABI Implementation |
6537 | //===----------------------------------------------------------------------===// |
6538 | |
6539 | namespace { |
6540 | |
6541 | class SystemZABIInfo : public SwiftABIInfo { |
6542 | bool HasVector; |
6543 | |
6544 | public: |
6545 | SystemZABIInfo(CodeGenTypes &CGT, bool HV) |
6546 | : SwiftABIInfo(CGT), HasVector(HV) {} |
6547 | |
6548 | bool isPromotableIntegerType(QualType Ty) const; |
6549 | bool isCompoundType(QualType Ty) const; |
6550 | bool isVectorArgumentType(QualType Ty) const; |
6551 | bool isFPArgumentType(QualType Ty) const; |
6552 | QualType GetSingleElementType(QualType Ty) const; |
6553 | |
6554 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
6555 | ABIArgInfo classifyArgumentType(QualType ArgTy) const; |
6556 | |
6557 | void computeInfo(CGFunctionInfo &FI) const override { |
6558 | if (!getCXXABI().classifyReturnType(FI)) |
6559 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
6560 | for (auto &I : FI.arguments()) |
6561 | I.info = classifyArgumentType(I.type); |
6562 | } |
6563 | |
6564 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
6565 | QualType Ty) const override; |
6566 | |
6567 | bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
6568 | bool asReturnValue) const override { |
6569 | return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
6570 | } |
6571 | bool isSwiftErrorInRegister() const override { |
6572 | return false; |
6573 | } |
6574 | }; |
6575 | |
6576 | class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { |
6577 | public: |
6578 | SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) |
6579 | : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} |
6580 | }; |
6581 | |
6582 | } |
6583 | |
6584 | bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { |
6585 | // Treat an enum type as its underlying type. |
6586 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
6587 | Ty = EnumTy->getDecl()->getIntegerType(); |
6588 | |
6589 | // Promotable integer types are required to be promoted by the ABI. |
6590 | if (Ty->isPromotableIntegerType()) |
6591 | return true; |
6592 | |
6593 | // 32-bit values must also be promoted. |
6594 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
6595 | switch (BT->getKind()) { |
6596 | case BuiltinType::Int: |
6597 | case BuiltinType::UInt: |
6598 | return true; |
6599 | default: |
6600 | return false; |
6601 | } |
6602 | return false; |
6603 | } |
6604 | |
6605 | bool SystemZABIInfo::isCompoundType(QualType Ty) const { |
6606 | return (Ty->isAnyComplexType() || |
6607 | Ty->isVectorType() || |
6608 | isAggregateTypeForABI(Ty)); |
6609 | } |
6610 | |
6611 | bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { |
6612 | return (HasVector && |
6613 | Ty->isVectorType() && |
6614 | getContext().getTypeSize(Ty) <= 128); |
6615 | } |
6616 | |
6617 | bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { |
6618 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
6619 | switch (BT->getKind()) { |
6620 | case BuiltinType::Float: |
6621 | case BuiltinType::Double: |
6622 | return true; |
6623 | default: |
6624 | return false; |
6625 | } |
6626 | |
6627 | return false; |
6628 | } |
6629 | |
6630 | QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { |
6631 | if (const RecordType *RT = Ty->getAsStructureType()) { |
6632 | const RecordDecl *RD = RT->getDecl(); |
6633 | QualType Found; |
6634 | |
6635 | // If this is a C++ record, check the bases first. |
6636 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
6637 | for (const auto &I : CXXRD->bases()) { |
6638 | QualType Base = I.getType(); |
6639 | |
6640 | // Empty bases don't affect things either way. |
6641 | if (isEmptyRecord(getContext(), Base, true)) |
6642 | continue; |
6643 | |
6644 | if (!Found.isNull()) |
6645 | return Ty; |
6646 | Found = GetSingleElementType(Base); |
6647 | } |
6648 | |
6649 | // Check the fields. |
6650 | for (const auto *FD : RD->fields()) { |
6651 | // For compatibility with GCC, ignore empty bitfields in C++ mode. |
6652 | // Unlike isSingleElementStruct(), empty structure and array fields |
6653 | // do count. So do anonymous bitfields that aren't zero-sized. |
6654 | if (getContext().getLangOpts().CPlusPlus && |
6655 | FD->isZeroLengthBitField(getContext())) |
6656 | continue; |
6657 | |
6658 | // Unlike isSingleElementStruct(), arrays do not count. |
6659 | // Nested structures still do though. |
6660 | if (!Found.isNull()) |
6661 | return Ty; |
6662 | Found = GetSingleElementType(FD->getType()); |
6663 | } |
6664 | |
6665 | // Unlike isSingleElementStruct(), trailing padding is allowed. |
6666 | // An 8-byte aligned struct s { float f; } is passed as a double. |
6667 | if (!Found.isNull()) |
6668 | return Found; |
6669 | } |
6670 | |
6671 | return Ty; |
6672 | } |
6673 | |
6674 | Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
6675 | QualType Ty) const { |
6676 | // Assume that va_list type is correct; should be pointer to LLVM type: |
6677 | // struct { |
6678 | // i64 __gpr; |
6679 | // i64 __fpr; |
6680 | // i8 *__overflow_arg_area; |
6681 | // i8 *__reg_save_area; |
6682 | // }; |
6683 | |
6684 | // Every non-vector argument occupies 8 bytes and is passed by preference |
6685 | // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are |
6686 | // always passed on the stack. |
6687 | Ty = getContext().getCanonicalType(Ty); |
6688 | auto TyInfo = getContext().getTypeInfoInChars(Ty); |
6689 | llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); |
6690 | llvm::Type *DirectTy = ArgTy; |
6691 | ABIArgInfo AI = classifyArgumentType(Ty); |
6692 | bool IsIndirect = AI.isIndirect(); |
6693 | bool InFPRs = false; |
6694 | bool IsVector = false; |
6695 | CharUnits UnpaddedSize; |
6696 | CharUnits DirectAlign; |
6697 | if (IsIndirect) { |
6698 | DirectTy = llvm::PointerType::getUnqual(DirectTy); |
6699 | UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); |
6700 | } else { |
6701 | if (AI.getCoerceToType()) |
6702 | ArgTy = AI.getCoerceToType(); |
6703 | InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); |
6704 | IsVector = ArgTy->isVectorTy(); |
6705 | UnpaddedSize = TyInfo.first; |
6706 | DirectAlign = TyInfo.second; |
6707 | } |
6708 | CharUnits PaddedSize = CharUnits::fromQuantity(8); |
6709 | if (IsVector && UnpaddedSize > PaddedSize) |
6710 | PaddedSize = CharUnits::fromQuantity(16); |
6711 | assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.")(((UnpaddedSize <= PaddedSize) && "Invalid argument size." ) ? static_cast<void> (0) : __assert_fail ("(UnpaddedSize <= PaddedSize) && \"Invalid argument size.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 6711, __PRETTY_FUNCTION__)); |
6712 | |
6713 | CharUnits Padding = (PaddedSize - UnpaddedSize); |
6714 | |
6715 | llvm::Type *IndexTy = CGF.Int64Ty; |
6716 | llvm::Value *PaddedSizeV = |
6717 | llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); |
6718 | |
6719 | if (IsVector) { |
6720 | // Work out the address of a vector argument on the stack. |
6721 | // Vector arguments are always passed in the high bits of a |
6722 | // single (8 byte) or double (16 byte) stack slot. |
6723 | Address OverflowArgAreaPtr = |
6724 | CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); |
6725 | Address OverflowArgArea = |
6726 | Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), |
6727 | TyInfo.second); |
6728 | Address MemAddr = |
6729 | CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); |
6730 | |
6731 | // Update overflow_arg_area_ptr pointer |
6732 | llvm::Value *NewOverflowArgArea = |
6733 | CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, |
6734 | "overflow_arg_area"); |
6735 | CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); |
6736 | |
6737 | return MemAddr; |
6738 | } |
6739 | |
6740 | assert(PaddedSize.getQuantity() == 8)((PaddedSize.getQuantity() == 8) ? static_cast<void> (0 ) : __assert_fail ("PaddedSize.getQuantity() == 8", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 6740, __PRETTY_FUNCTION__)); |
6741 | |
6742 | unsigned MaxRegs, RegCountField, RegSaveIndex; |
6743 | CharUnits RegPadding; |
6744 | if (InFPRs) { |
6745 | MaxRegs = 4; // Maximum of 4 FPR arguments |
6746 | RegCountField = 1; // __fpr |
6747 | RegSaveIndex = 16; // save offset for f0 |
6748 | RegPadding = CharUnits(); // floats are passed in the high bits of an FPR |
6749 | } else { |
6750 | MaxRegs = 5; // Maximum of 5 GPR arguments |
6751 | RegCountField = 0; // __gpr |
6752 | RegSaveIndex = 2; // save offset for r2 |
6753 | RegPadding = Padding; // values are passed in the low bits of a GPR |
6754 | } |
6755 | |
6756 | Address RegCountPtr = |
6757 | CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); |
6758 | llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); |
6759 | llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); |
6760 | llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, |
6761 | "fits_in_regs"); |
6762 | |
6763 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
6764 | llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
6765 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
6766 | CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
6767 | |
6768 | // Emit code to load the value if it was passed in registers. |
6769 | CGF.EmitBlock(InRegBlock); |
6770 | |
6771 | // Work out the address of an argument register. |
6772 | llvm::Value *ScaledRegCount = |
6773 | CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); |
6774 | llvm::Value *RegBase = |
6775 | llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() |
6776 | + RegPadding.getQuantity()); |
6777 | llvm::Value *RegOffset = |
6778 | CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); |
6779 | Address RegSaveAreaPtr = |
6780 | CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); |
6781 | llvm::Value *RegSaveArea = |
6782 | CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); |
6783 | Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, |
6784 | "raw_reg_addr"), |
6785 | PaddedSize); |
6786 | Address RegAddr = |
6787 | CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); |
6788 | |
6789 | // Update the register count |
6790 | llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); |
6791 | llvm::Value *NewRegCount = |
6792 | CGF.Builder.CreateAdd(RegCount, One, "reg_count"); |
6793 | CGF.Builder.CreateStore(NewRegCount, RegCountPtr); |
6794 | CGF.EmitBranch(ContBlock); |
6795 | |
6796 | // Emit code to load the value if it was passed in memory. |
6797 | CGF.EmitBlock(InMemBlock); |
6798 | |
6799 | // Work out the address of a stack argument. |
6800 | Address OverflowArgAreaPtr = |
6801 | CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); |
6802 | Address OverflowArgArea = |
6803 | Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), |
6804 | PaddedSize); |
6805 | Address RawMemAddr = |
6806 | CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); |
6807 | Address MemAddr = |
6808 | CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); |
6809 | |
6810 | // Update overflow_arg_area_ptr pointer |
6811 | llvm::Value *NewOverflowArgArea = |
6812 | CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, |
6813 | "overflow_arg_area"); |
6814 | CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); |
6815 | CGF.EmitBranch(ContBlock); |
6816 | |
6817 | // Return the appropriate result. |
6818 | CGF.EmitBlock(ContBlock); |
6819 | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, |
6820 | MemAddr, InMemBlock, "va_arg.addr"); |
6821 | |
6822 | if (IsIndirect) |
6823 | ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), |
6824 | TyInfo.second); |
6825 | |
6826 | return ResAddr; |
6827 | } |
6828 | |
6829 | ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { |
6830 | if (RetTy->isVoidType()) |
6831 | return ABIArgInfo::getIgnore(); |
6832 | if (isVectorArgumentType(RetTy)) |
6833 | return ABIArgInfo::getDirect(); |
6834 | if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) |
6835 | return getNaturalAlignIndirect(RetTy); |
6836 | return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) |
6837 | : ABIArgInfo::getDirect()); |
6838 | } |
6839 | |
6840 | ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { |
6841 | // Handle the generic C++ ABI. |
6842 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
6843 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
6844 | |
6845 | // Integers and enums are extended to full register width. |
6846 | if (isPromotableIntegerType(Ty)) |
6847 | return ABIArgInfo::getExtend(Ty); |
6848 | |
6849 | // Handle vector types and vector-like structure types. Note that |
6850 | // as opposed to float-like structure types, we do not allow any |
6851 | // padding for vector-like structures, so verify the sizes match. |
6852 | uint64_t Size = getContext().getTypeSize(Ty); |
6853 | QualType SingleElementTy = GetSingleElementType(Ty); |
6854 | if (isVectorArgumentType(SingleElementTy) && |
6855 | getContext().getTypeSize(SingleElementTy) == Size) |
6856 | return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); |
6857 | |
6858 | // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. |
6859 | if (Size != 8 && Size != 16 && Size != 32 && Size != 64) |
6860 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
6861 | |
6862 | // Handle small structures. |
6863 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
6864 | // Structures with flexible arrays have variable length, so really |
6865 | // fail the size test above. |
6866 | const RecordDecl *RD = RT->getDecl(); |
6867 | if (RD->hasFlexibleArrayMember()) |
6868 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
6869 | |
6870 | // The structure is passed as an unextended integer, a float, or a double. |
6871 | llvm::Type *PassTy; |
6872 | if (isFPArgumentType(SingleElementTy)) { |
6873 | assert(Size == 32 || Size == 64)((Size == 32 || Size == 64) ? static_cast<void> (0) : __assert_fail ("Size == 32 || Size == 64", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 6873, __PRETTY_FUNCTION__)); |
6874 | if (Size == 32) |
6875 | PassTy = llvm::Type::getFloatTy(getVMContext()); |
6876 | else |
6877 | PassTy = llvm::Type::getDoubleTy(getVMContext()); |
6878 | } else |
6879 | PassTy = llvm::IntegerType::get(getVMContext(), Size); |
6880 | return ABIArgInfo::getDirect(PassTy); |
6881 | } |
6882 | |
6883 | // Non-structure compounds are passed indirectly. |
6884 | if (isCompoundType(Ty)) |
6885 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
6886 | |
6887 | return ABIArgInfo::getDirect(nullptr); |
6888 | } |
6889 | |
6890 | //===----------------------------------------------------------------------===// |
6891 | // MSP430 ABI Implementation |
6892 | //===----------------------------------------------------------------------===// |
6893 | |
6894 | namespace { |
6895 | |
6896 | class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { |
6897 | public: |
6898 | MSP430TargetCodeGenInfo(CodeGenTypes &CGT) |
6899 | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
6900 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
6901 | CodeGen::CodeGenModule &M) const override; |
6902 | }; |
6903 | |
6904 | } |
6905 | |
6906 | void MSP430TargetCodeGenInfo::setTargetAttributes( |
6907 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
6908 | if (GV->isDeclaration()) |
6909 | return; |
6910 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
6911 | const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); |
6912 | if (!InterruptAttr) |
6913 | return; |
6914 | |
6915 | // Handle 'interrupt' attribute: |
6916 | llvm::Function *F = cast<llvm::Function>(GV); |
6917 | |
6918 | // Step 1: Set ISR calling convention. |
6919 | F->setCallingConv(llvm::CallingConv::MSP430_INTR); |
6920 | |
6921 | // Step 2: Add attributes goodness. |
6922 | F->addFnAttr(llvm::Attribute::NoInline); |
6923 | F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); |
6924 | } |
6925 | } |
6926 | |
6927 | //===----------------------------------------------------------------------===// |
6928 | // MIPS ABI Implementation. This works for both little-endian and |
6929 | // big-endian variants. |
6930 | //===----------------------------------------------------------------------===// |
6931 | |
6932 | namespace { |
6933 | class MipsABIInfo : public ABIInfo { |
6934 | bool IsO32; |
6935 | unsigned MinABIStackAlignInBytes, StackAlignInBytes; |
6936 | void CoerceToIntArgs(uint64_t TySize, |
6937 | SmallVectorImpl<llvm::Type *> &ArgList) const; |
6938 | llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; |
6939 | llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; |
6940 | llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; |
6941 | public: |
6942 | MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : |
6943 | ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), |
6944 | StackAlignInBytes(IsO32 ? 8 : 16) {} |
6945 | |
6946 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
6947 | ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; |
6948 | void computeInfo(CGFunctionInfo &FI) const override; |
6949 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
6950 | QualType Ty) const override; |
6951 | ABIArgInfo extendType(QualType Ty) const; |
6952 | }; |
6953 | |
6954 | class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { |
6955 | unsigned SizeOfUnwindException; |
6956 | public: |
6957 | MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) |
6958 | : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), |
6959 | SizeOfUnwindException(IsO32 ? 24 : 32) {} |
6960 | |
6961 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
6962 | return 29; |
6963 | } |
6964 | |
6965 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
6966 | CodeGen::CodeGenModule &CGM) const override { |
6967 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
6968 | if (!FD) return; |
6969 | llvm::Function *Fn = cast<llvm::Function>(GV); |
6970 | |
6971 | if (FD->hasAttr<MipsLongCallAttr>()) |
6972 | Fn->addFnAttr("long-call"); |
6973 | else if (FD->hasAttr<MipsShortCallAttr>()) |
6974 | Fn->addFnAttr("short-call"); |
6975 | |
6976 | // Other attributes do not have a meaning for declarations. |
6977 | if (GV->isDeclaration()) |
6978 | return; |
6979 | |
6980 | if (FD->hasAttr<Mips16Attr>()) { |
6981 | Fn->addFnAttr("mips16"); |
6982 | } |
6983 | else if (FD->hasAttr<NoMips16Attr>()) { |
6984 | Fn->addFnAttr("nomips16"); |
6985 | } |
6986 | |
6987 | if (FD->hasAttr<MicroMipsAttr>()) |
6988 | Fn->addFnAttr("micromips"); |
6989 | else if (FD->hasAttr<NoMicroMipsAttr>()) |
6990 | Fn->addFnAttr("nomicromips"); |
6991 | |
6992 | const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); |
6993 | if (!Attr) |
6994 | return; |
6995 | |
6996 | const char *Kind; |
6997 | switch (Attr->getInterrupt()) { |
6998 | case MipsInterruptAttr::eic: Kind = "eic"; break; |
6999 | case MipsInterruptAttr::sw0: Kind = "sw0"; break; |
7000 | case MipsInterruptAttr::sw1: Kind = "sw1"; break; |
7001 | case MipsInterruptAttr::hw0: Kind = "hw0"; break; |
7002 | case MipsInterruptAttr::hw1: Kind = "hw1"; break; |
7003 | case MipsInterruptAttr::hw2: Kind = "hw2"; break; |
7004 | case MipsInterruptAttr::hw3: Kind = "hw3"; break; |
7005 | case MipsInterruptAttr::hw4: Kind = "hw4"; break; |
7006 | case MipsInterruptAttr::hw5: Kind = "hw5"; break; |
7007 | } |
7008 | |
7009 | Fn->addFnAttr("interrupt", Kind); |
7010 | |
7011 | } |
7012 | |
7013 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
7014 | llvm::Value *Address) const override; |
7015 | |
7016 | unsigned getSizeOfUnwindException() const override { |
7017 | return SizeOfUnwindException; |
7018 | } |
7019 | }; |
7020 | } |
7021 | |
7022 | void MipsABIInfo::CoerceToIntArgs( |
7023 | uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { |
7024 | llvm::IntegerType *IntTy = |
7025 | llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); |
7026 | |
7027 | // Add (TySize / MinABIStackAlignInBytes) args of IntTy. |
7028 | for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) |
7029 | ArgList.push_back(IntTy); |
7030 | |
7031 | // If necessary, add one more integer type to ArgList. |
7032 | unsigned R = TySize % (MinABIStackAlignInBytes * 8); |
7033 | |
7034 | if (R) |
7035 | ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); |
7036 | } |
7037 | |
7038 | // In N32/64, an aligned double precision floating point field is passed in |
7039 | // a register. |
7040 | llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { |
7041 | SmallVector<llvm::Type*, 8> ArgList, IntArgList; |
7042 | |
7043 | if (IsO32) { |
7044 | CoerceToIntArgs(TySize, ArgList); |
7045 | return llvm::StructType::get(getVMContext(), ArgList); |
7046 | } |
7047 | |
7048 | if (Ty->isComplexType()) |
7049 | return CGT.ConvertType(Ty); |
7050 | |
7051 | const RecordType *RT = Ty->getAs<RecordType>(); |
7052 | |
7053 | // Unions/vectors are passed in integer registers. |
7054 | if (!RT || !RT->isStructureOrClassType()) { |
7055 | CoerceToIntArgs(TySize, ArgList); |
7056 | return llvm::StructType::get(getVMContext(), ArgList); |
7057 | } |
7058 | |
7059 | const RecordDecl *RD = RT->getDecl(); |
7060 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
7061 | assert(!(TySize % 8) && "Size of structure must be multiple of 8.")((!(TySize % 8) && "Size of structure must be multiple of 8." ) ? static_cast<void> (0) : __assert_fail ("!(TySize % 8) && \"Size of structure must be multiple of 8.\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 7061, __PRETTY_FUNCTION__)); |
7062 | |
7063 | uint64_t LastOffset = 0; |
7064 | unsigned idx = 0; |
7065 | llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); |
7066 | |
7067 | // Iterate over fields in the struct/class and check if there are any aligned |
7068 | // double fields. |
7069 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
7070 | i != e; ++i, ++idx) { |
7071 | const QualType Ty = i->getType(); |
7072 | const BuiltinType *BT = Ty->getAs<BuiltinType>(); |
7073 | |
7074 | if (!BT || BT->getKind() != BuiltinType::Double) |
7075 | continue; |
7076 | |
7077 | uint64_t Offset = Layout.getFieldOffset(idx); |
7078 | if (Offset % 64) // Ignore doubles that are not aligned. |
7079 | continue; |
7080 | |
7081 | // Add ((Offset - LastOffset) / 64) args of type i64. |
7082 | for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) |
7083 | ArgList.push_back(I64); |
7084 | |
7085 | // Add double type. |
7086 | ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); |
7087 | LastOffset = Offset + 64; |
7088 | } |
7089 | |
7090 | CoerceToIntArgs(TySize - LastOffset, IntArgList); |
7091 | ArgList.append(IntArgList.begin(), IntArgList.end()); |
7092 | |
7093 | return llvm::StructType::get(getVMContext(), ArgList); |
7094 | } |
7095 | |
7096 | llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, |
7097 | uint64_t Offset) const { |
7098 | if (OrigOffset + MinABIStackAlignInBytes > Offset) |
7099 | return nullptr; |
7100 | |
7101 | return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); |
7102 | } |
7103 | |
7104 | ABIArgInfo |
7105 | MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { |
7106 | Ty = useFirstFieldIfTransparentUnion(Ty); |
7107 | |
7108 | uint64_t OrigOffset = Offset; |
7109 | uint64_t TySize = getContext().getTypeSize(Ty); |
7110 | uint64_t Align = getContext().getTypeAlign(Ty) / 8; |
7111 | |
7112 | Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), |
7113 | (uint64_t)StackAlignInBytes); |
7114 | unsigned CurrOffset = llvm::alignTo(Offset, Align); |
7115 | Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; |
7116 | |
7117 | if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { |
7118 | // Ignore empty aggregates. |
7119 | if (TySize == 0) |
7120 | return ABIArgInfo::getIgnore(); |
7121 | |
7122 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
7123 | Offset = OrigOffset + MinABIStackAlignInBytes; |
7124 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
7125 | } |
7126 | |
7127 | // If we have reached here, aggregates are passed directly by coercing to |
7128 | // another structure type. Padding is inserted if the offset of the |
7129 | // aggregate is unaligned. |
7130 | ABIArgInfo ArgInfo = |
7131 | ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, |
7132 | getPaddingType(OrigOffset, CurrOffset)); |
7133 | ArgInfo.setInReg(true); |
7134 | return ArgInfo; |
7135 | } |
7136 | |
7137 | // Treat an enum type as its underlying type. |
7138 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
7139 | Ty = EnumTy->getDecl()->getIntegerType(); |
7140 | |
7141 | // All integral types are promoted to the GPR width. |
7142 | if (Ty->isIntegralOrEnumerationType()) |
7143 | return extendType(Ty); |
7144 | |
7145 | return ABIArgInfo::getDirect( |
7146 | nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); |
7147 | } |
7148 | |
7149 | llvm::Type* |
7150 | MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { |
7151 | const RecordType *RT = RetTy->getAs<RecordType>(); |
7152 | SmallVector<llvm::Type*, 8> RTList; |
7153 | |
7154 | if (RT && RT->isStructureOrClassType()) { |
7155 | const RecordDecl *RD = RT->getDecl(); |
7156 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
7157 | unsigned FieldCnt = Layout.getFieldCount(); |
7158 | |
7159 | // N32/64 returns struct/classes in floating point registers if the |
7160 | // following conditions are met: |
7161 | // 1. The size of the struct/class is no larger than 128-bit. |
7162 | // 2. The struct/class has one or two fields all of which are floating |
7163 | // point types. |
7164 | // 3. The offset of the first field is zero (this follows what gcc does). |
7165 | // |
7166 | // Any other composite results are returned in integer registers. |
7167 | // |
7168 | if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { |
7169 | RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); |
7170 | for (; b != e; ++b) { |
7171 | const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); |
7172 | |
7173 | if (!BT || !BT->isFloatingPoint()) |
7174 | break; |
7175 | |
7176 | RTList.push_back(CGT.ConvertType(b->getType())); |
7177 | } |
7178 | |
7179 | if (b == e) |
7180 | return llvm::StructType::get(getVMContext(), RTList, |
7181 | RD->hasAttr<PackedAttr>()); |
7182 | |
7183 | RTList.clear(); |
7184 | } |
7185 | } |
7186 | |
7187 | CoerceToIntArgs(Size, RTList); |
7188 | return llvm::StructType::get(getVMContext(), RTList); |
7189 | } |
7190 | |
7191 | ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { |
7192 | uint64_t Size = getContext().getTypeSize(RetTy); |
7193 | |
7194 | if (RetTy->isVoidType()) |
7195 | return ABIArgInfo::getIgnore(); |
7196 | |
7197 | // O32 doesn't treat zero-sized structs differently from other structs. |
7198 | // However, N32/N64 ignores zero sized return values. |
7199 | if (!IsO32 && Size == 0) |
7200 | return ABIArgInfo::getIgnore(); |
7201 | |
7202 | if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { |
7203 | if (Size <= 128) { |
7204 | if (RetTy->isAnyComplexType()) |
7205 | return ABIArgInfo::getDirect(); |
7206 | |
7207 | // O32 returns integer vectors in registers and N32/N64 returns all small |
7208 | // aggregates in registers. |
7209 | if (!IsO32 || |
7210 | (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { |
7211 | ABIArgInfo ArgInfo = |
7212 | ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); |
7213 | ArgInfo.setInReg(true); |
7214 | return ArgInfo; |
7215 | } |
7216 | } |
7217 | |
7218 | return getNaturalAlignIndirect(RetTy); |
7219 | } |
7220 | |
7221 | // Treat an enum type as its underlying type. |
7222 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
7223 | RetTy = EnumTy->getDecl()->getIntegerType(); |
7224 | |
7225 | if (RetTy->isPromotableIntegerType()) |
7226 | return ABIArgInfo::getExtend(RetTy); |
7227 | |
7228 | if ((RetTy->isUnsignedIntegerOrEnumerationType() || |
7229 | RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) |
7230 | return ABIArgInfo::getSignExtend(RetTy); |
7231 | |
7232 | return ABIArgInfo::getDirect(); |
7233 | } |
7234 | |
7235 | void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { |
7236 | ABIArgInfo &RetInfo = FI.getReturnInfo(); |
7237 | if (!getCXXABI().classifyReturnType(FI)) |
7238 | RetInfo = classifyReturnType(FI.getReturnType()); |
7239 | |
7240 | // Check if a pointer to an aggregate is passed as a hidden argument. |
7241 | uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; |
7242 | |
7243 | for (auto &I : FI.arguments()) |
7244 | I.info = classifyArgumentType(I.type, Offset); |
7245 | } |
7246 | |
7247 | Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
7248 | QualType OrigTy) const { |
7249 | QualType Ty = OrigTy; |
7250 | |
7251 | // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. |
7252 | // Pointers are also promoted in the same way but this only matters for N32. |
7253 | unsigned SlotSizeInBits = IsO32 ? 32 : 64; |
7254 | unsigned PtrWidth = getTarget().getPointerWidth(0); |
7255 | bool DidPromote = false; |
7256 | if ((Ty->isIntegerType() && |
7257 | getContext().getIntWidth(Ty) < SlotSizeInBits) || |
7258 | (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { |
7259 | DidPromote = true; |
7260 | Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, |
7261 | Ty->isSignedIntegerType()); |
7262 | } |
7263 | |
7264 | auto TyInfo = getContext().getTypeInfoInChars(Ty); |
7265 | |
7266 | // The alignment of things in the argument area is never larger than |
7267 | // StackAlignInBytes. |
7268 | TyInfo.second = |
7269 | std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); |
7270 | |
7271 | // MinABIStackAlignInBytes is the size of argument slots on the stack. |
7272 | CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); |
7273 | |
7274 | Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
7275 | TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); |
7276 | |
7277 | |
7278 | // If there was a promotion, "unpromote" into a temporary. |
7279 | // TODO: can we just use a pointer into a subset of the original slot? |
7280 | if (DidPromote) { |
7281 | Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); |
7282 | llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); |
7283 | |
7284 | // Truncate down to the right width. |
7285 | llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() |
7286 | : CGF.IntPtrTy); |
7287 | llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); |
7288 | if (OrigTy->isPointerType()) |
7289 | V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); |
7290 | |
7291 | CGF.Builder.CreateStore(V, Temp); |
7292 | Addr = Temp; |
7293 | } |
7294 | |
7295 | return Addr; |
7296 | } |
7297 | |
7298 | ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { |
7299 | int TySize = getContext().getTypeSize(Ty); |
7300 | |
7301 | // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. |
7302 | if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
7303 | return ABIArgInfo::getSignExtend(Ty); |
7304 | |
7305 | return ABIArgInfo::getExtend(Ty); |
7306 | } |
7307 | |
7308 | bool |
7309 | MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
7310 | llvm::Value *Address) const { |
7311 | // This information comes from gcc's implementation, which seems to |
7312 | // as canonical as it gets. |
7313 | |
7314 | // Everything on MIPS is 4 bytes. Double-precision FP registers |
7315 | // are aliased to pairs of single-precision FP registers. |
7316 | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
7317 | |
7318 | // 0-31 are the general purpose registers, $0 - $31. |
7319 | // 32-63 are the floating-point registers, $f0 - $f31. |
7320 | // 64 and 65 are the multiply/divide registers, $hi and $lo. |
7321 | // 66 is the (notional, I think) register for signal-handler return. |
7322 | AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); |
7323 | |
7324 | // 67-74 are the floating-point status registers, $fcc0 - $fcc7. |
7325 | // They are one bit wide and ignored here. |
7326 | |
7327 | // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. |
7328 | // (coprocessor 1 is the FP unit) |
7329 | // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. |
7330 | // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. |
7331 | // 176-181 are the DSP accumulator registers. |
7332 | AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); |
7333 | return false; |
7334 | } |
7335 | |
7336 | //===----------------------------------------------------------------------===// |
7337 | // AVR ABI Implementation. |
7338 | //===----------------------------------------------------------------------===// |
7339 | |
7340 | namespace { |
7341 | class AVRTargetCodeGenInfo : public TargetCodeGenInfo { |
7342 | public: |
7343 | AVRTargetCodeGenInfo(CodeGenTypes &CGT) |
7344 | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } |
7345 | |
7346 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
7347 | CodeGen::CodeGenModule &CGM) const override { |
7348 | if (GV->isDeclaration()) |
7349 | return; |
7350 | const auto *FD = dyn_cast_or_null<FunctionDecl>(D); |
7351 | if (!FD) return; |
7352 | auto *Fn = cast<llvm::Function>(GV); |
7353 | |
7354 | if (FD->getAttr<AVRInterruptAttr>()) |
7355 | Fn->addFnAttr("interrupt"); |
7356 | |
7357 | if (FD->getAttr<AVRSignalAttr>()) |
7358 | Fn->addFnAttr("signal"); |
7359 | } |
7360 | }; |
7361 | } |
7362 | |
7363 | //===----------------------------------------------------------------------===// |
7364 | // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. |
7365 | // Currently subclassed only to implement custom OpenCL C function attribute |
7366 | // handling. |
7367 | //===----------------------------------------------------------------------===// |
7368 | |
7369 | namespace { |
7370 | |
7371 | class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { |
7372 | public: |
7373 | TCETargetCodeGenInfo(CodeGenTypes &CGT) |
7374 | : DefaultTargetCodeGenInfo(CGT) {} |
7375 | |
7376 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
7377 | CodeGen::CodeGenModule &M) const override; |
7378 | }; |
7379 | |
7380 | void TCETargetCodeGenInfo::setTargetAttributes( |
7381 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
7382 | if (GV->isDeclaration()) |
7383 | return; |
7384 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
7385 | if (!FD) return; |
7386 | |
7387 | llvm::Function *F = cast<llvm::Function>(GV); |
7388 | |
7389 | if (M.getLangOpts().OpenCL) { |
7390 | if (FD->hasAttr<OpenCLKernelAttr>()) { |
7391 | // OpenCL C Kernel functions are not subject to inlining |
7392 | F->addFnAttr(llvm::Attribute::NoInline); |
7393 | const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); |
7394 | if (Attr) { |
7395 | // Convert the reqd_work_group_size() attributes to metadata. |
7396 | llvm::LLVMContext &Context = F->getContext(); |
7397 | llvm::NamedMDNode *OpenCLMetadata = |
7398 | M.getModule().getOrInsertNamedMetadata( |
7399 | "opencl.kernel_wg_size_info"); |
7400 | |
7401 | SmallVector<llvm::Metadata *, 5> Operands; |
7402 | Operands.push_back(llvm::ConstantAsMetadata::get(F)); |
7403 | |
7404 | Operands.push_back( |
7405 | llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( |
7406 | M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); |
7407 | Operands.push_back( |
7408 | llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( |
7409 | M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); |
7410 | Operands.push_back( |
7411 | llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( |
7412 | M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); |
7413 | |
7414 | // Add a boolean constant operand for "required" (true) or "hint" |
7415 | // (false) for implementing the work_group_size_hint attr later. |
7416 | // Currently always true as the hint is not yet implemented. |
7417 | Operands.push_back( |
7418 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); |
7419 | OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); |
7420 | } |
7421 | } |
7422 | } |
7423 | } |
7424 | |
7425 | } |
7426 | |
7427 | //===----------------------------------------------------------------------===// |
7428 | // Hexagon ABI Implementation |
7429 | //===----------------------------------------------------------------------===// |
7430 | |
7431 | namespace { |
7432 | |
7433 | class HexagonABIInfo : public ABIInfo { |
7434 | |
7435 | |
7436 | public: |
7437 | HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
7438 | |
7439 | private: |
7440 | |
7441 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
7442 | ABIArgInfo classifyArgumentType(QualType RetTy) const; |
7443 | |
7444 | void computeInfo(CGFunctionInfo &FI) const override; |
7445 | |
7446 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
7447 | QualType Ty) const override; |
7448 | }; |
7449 | |
7450 | class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { |
7451 | public: |
7452 | HexagonTargetCodeGenInfo(CodeGenTypes &CGT) |
7453 | :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} |
7454 | |
7455 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
7456 | return 29; |
7457 | } |
7458 | }; |
7459 | |
7460 | } |
7461 | |
7462 | void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { |
7463 | if (!getCXXABI().classifyReturnType(FI)) |
7464 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
7465 | for (auto &I : FI.arguments()) |
7466 | I.info = classifyArgumentType(I.type); |
7467 | } |
7468 | |
7469 | ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { |
7470 | if (!isAggregateTypeForABI(Ty)) { |
7471 | // Treat an enum type as its underlying type. |
7472 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
7473 | Ty = EnumTy->getDecl()->getIntegerType(); |
7474 | |
7475 | return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
7476 | : ABIArgInfo::getDirect()); |
7477 | } |
7478 | |
7479 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
7480 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
7481 | |
7482 | // Ignore empty records. |
7483 | if (isEmptyRecord(getContext(), Ty, true)) |
7484 | return ABIArgInfo::getIgnore(); |
7485 | |
7486 | uint64_t Size = getContext().getTypeSize(Ty); |
7487 | if (Size > 64) |
7488 | return getNaturalAlignIndirect(Ty, /*ByVal=*/true); |
7489 | // Pass in the smallest viable integer type. |
7490 | else if (Size > 32) |
7491 | return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); |
7492 | else if (Size > 16) |
7493 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
7494 | else if (Size > 8) |
7495 | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
7496 | else |
7497 | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
7498 | } |
7499 | |
7500 | ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { |
7501 | if (RetTy->isVoidType()) |
7502 | return ABIArgInfo::getIgnore(); |
7503 | |
7504 | // Large vector types should be returned via memory. |
7505 | if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) |
7506 | return getNaturalAlignIndirect(RetTy); |
7507 | |
7508 | if (!isAggregateTypeForABI(RetTy)) { |
7509 | // Treat an enum type as its underlying type. |
7510 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
7511 | RetTy = EnumTy->getDecl()->getIntegerType(); |
7512 | |
7513 | return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
7514 | : ABIArgInfo::getDirect()); |
7515 | } |
7516 | |
7517 | if (isEmptyRecord(getContext(), RetTy, true)) |
7518 | return ABIArgInfo::getIgnore(); |
7519 | |
7520 | // Aggregates <= 8 bytes are returned in r0; other aggregates |
7521 | // are returned indirectly. |
7522 | uint64_t Size = getContext().getTypeSize(RetTy); |
7523 | if (Size <= 64) { |
7524 | // Return in the smallest viable integer type. |
7525 | if (Size <= 8) |
7526 | return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
7527 | if (Size <= 16) |
7528 | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
7529 | if (Size <= 32) |
7530 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
7531 | return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); |
7532 | } |
7533 | |
7534 | return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); |
7535 | } |
7536 | |
7537 | Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
7538 | QualType Ty) const { |
7539 | // FIXME: Someone needs to audit that this handle alignment correctly. |
7540 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
7541 | getContext().getTypeInfoInChars(Ty), |
7542 | CharUnits::fromQuantity(4), |
7543 | /*AllowHigherAlign*/ true); |
7544 | } |
7545 | |
7546 | //===----------------------------------------------------------------------===// |
7547 | // Lanai ABI Implementation |
7548 | //===----------------------------------------------------------------------===// |
7549 | |
7550 | namespace { |
7551 | class LanaiABIInfo : public DefaultABIInfo { |
7552 | public: |
7553 | LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
7554 | |
7555 | bool shouldUseInReg(QualType Ty, CCState &State) const; |
7556 | |
7557 | void computeInfo(CGFunctionInfo &FI) const override { |
7558 | CCState State(FI.getCallingConvention()); |
7559 | // Lanai uses 4 registers to pass arguments unless the function has the |
7560 | // regparm attribute set. |
7561 | if (FI.getHasRegParm()) { |
7562 | State.FreeRegs = FI.getRegParm(); |
7563 | } else { |
7564 | State.FreeRegs = 4; |
7565 | } |
7566 | |
7567 | if (!getCXXABI().classifyReturnType(FI)) |
7568 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
7569 | for (auto &I : FI.arguments()) |
7570 | I.info = classifyArgumentType(I.type, State); |
7571 | } |
7572 | |
7573 | ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; |
7574 | ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; |
7575 | }; |
7576 | } // end anonymous namespace |
7577 | |
7578 | bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { |
7579 | unsigned Size = getContext().getTypeSize(Ty); |
7580 | unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; |
7581 | |
7582 | if (SizeInRegs == 0) |
7583 | return false; |
7584 | |
7585 | if (SizeInRegs > State.FreeRegs) { |
7586 | State.FreeRegs = 0; |
7587 | return false; |
7588 | } |
7589 | |
7590 | State.FreeRegs -= SizeInRegs; |
7591 | |
7592 | return true; |
7593 | } |
7594 | |
7595 | ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, |
7596 | CCState &State) const { |
7597 | if (!ByVal) { |
7598 | if (State.FreeRegs) { |
7599 | --State.FreeRegs; // Non-byval indirects just use one pointer. |
7600 | return getNaturalAlignIndirectInReg(Ty); |
7601 | } |
7602 | return getNaturalAlignIndirect(Ty, false); |
7603 | } |
7604 | |
7605 | // Compute the byval alignment. |
7606 | const unsigned MinABIStackAlignInBytes = 4; |
7607 | unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
7608 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, |
7609 | /*Realign=*/TypeAlign > |
7610 | MinABIStackAlignInBytes); |
7611 | } |
7612 | |
7613 | ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, |
7614 | CCState &State) const { |
7615 | // Check with the C++ ABI first. |
7616 | const RecordType *RT = Ty->getAs<RecordType>(); |
7617 | if (RT) { |
7618 | CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); |
7619 | if (RAA == CGCXXABI::RAA_Indirect) { |
7620 | return getIndirectResult(Ty, /*ByVal=*/false, State); |
7621 | } else if (RAA == CGCXXABI::RAA_DirectInMemory) { |
7622 | return getNaturalAlignIndirect(Ty, /*ByRef=*/true); |
7623 | } |
7624 | } |
7625 | |
7626 | if (isAggregateTypeForABI(Ty)) { |
7627 | // Structures with flexible arrays are always indirect. |
7628 | if (RT && RT->getDecl()->hasFlexibleArrayMember()) |
7629 | return getIndirectResult(Ty, /*ByVal=*/true, State); |
7630 | |
7631 | // Ignore empty structs/unions. |
7632 | if (isEmptyRecord(getContext(), Ty, true)) |
7633 | return ABIArgInfo::getIgnore(); |
7634 | |
7635 | llvm::LLVMContext &LLVMContext = getVMContext(); |
7636 | unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
7637 | if (SizeInRegs <= State.FreeRegs) { |
7638 | llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); |
7639 | SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); |
7640 | llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); |
7641 | State.FreeRegs -= SizeInRegs; |
7642 | return ABIArgInfo::getDirectInReg(Result); |
7643 | } else { |
7644 | State.FreeRegs = 0; |
7645 | } |
7646 | return getIndirectResult(Ty, true, State); |
7647 | } |
7648 | |
7649 | // Treat an enum type as its underlying type. |
7650 | if (const auto *EnumTy = Ty->getAs<EnumType>()) |
7651 | Ty = EnumTy->getDecl()->getIntegerType(); |
7652 | |
7653 | bool InReg = shouldUseInReg(Ty, State); |
7654 | if (Ty->isPromotableIntegerType()) { |
7655 | if (InReg) |
7656 | return ABIArgInfo::getDirectInReg(); |
7657 | return ABIArgInfo::getExtend(Ty); |
7658 | } |
7659 | if (InReg) |
7660 | return ABIArgInfo::getDirectInReg(); |
7661 | return ABIArgInfo::getDirect(); |
7662 | } |
7663 | |
7664 | namespace { |
7665 | class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { |
7666 | public: |
7667 | LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
7668 | : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} |
7669 | }; |
7670 | } |
7671 | |
7672 | //===----------------------------------------------------------------------===// |
7673 | // AMDGPU ABI Implementation |
7674 | //===----------------------------------------------------------------------===// |
7675 | |
7676 | namespace { |
7677 | |
7678 | class AMDGPUABIInfo final : public DefaultABIInfo { |
7679 | private: |
7680 | static const unsigned MaxNumRegsForArgsRet = 16; |
7681 | |
7682 | unsigned numRegsForType(QualType Ty) const; |
7683 | |
7684 | bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
7685 | bool isHomogeneousAggregateSmallEnough(const Type *Base, |
7686 | uint64_t Members) const override; |
7687 | |
7688 | public: |
7689 | explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : |
7690 | DefaultABIInfo(CGT) {} |
7691 | |
7692 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
7693 | ABIArgInfo classifyKernelArgumentType(QualType Ty) const; |
7694 | ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; |
7695 | |
7696 | void computeInfo(CGFunctionInfo &FI) const override; |
7697 | }; |
7698 | |
7699 | bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
7700 | return true; |
7701 | } |
7702 | |
7703 | bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( |
7704 | const Type *Base, uint64_t Members) const { |
7705 | uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; |
7706 | |
7707 | // Homogeneous Aggregates may occupy at most 16 registers. |
7708 | return Members * NumRegs <= MaxNumRegsForArgsRet; |
7709 | } |
7710 | |
7711 | /// Estimate number of registers the type will use when passed in registers. |
7712 | unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { |
7713 | unsigned NumRegs = 0; |
7714 | |
7715 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
7716 | // Compute from the number of elements. The reported size is based on the |
7717 | // in-memory size, which includes the padding 4th element for 3-vectors. |
7718 | QualType EltTy = VT->getElementType(); |
7719 | unsigned EltSize = getContext().getTypeSize(EltTy); |
7720 | |
7721 | // 16-bit element vectors should be passed as packed. |
7722 | if (EltSize == 16) |
7723 | return (VT->getNumElements() + 1) / 2; |
7724 | |
7725 | unsigned EltNumRegs = (EltSize + 31) / 32; |
7726 | return EltNumRegs * VT->getNumElements(); |
7727 | } |
7728 | |
7729 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
7730 | const RecordDecl *RD = RT->getDecl(); |
7731 | assert(!RD->hasFlexibleArrayMember())((!RD->hasFlexibleArrayMember()) ? static_cast<void> (0) : __assert_fail ("!RD->hasFlexibleArrayMember()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 7731, __PRETTY_FUNCTION__)); |
7732 | |
7733 | for (const FieldDecl *Field : RD->fields()) { |
7734 | QualType FieldTy = Field->getType(); |
7735 | NumRegs += numRegsForType(FieldTy); |
7736 | } |
7737 | |
7738 | return NumRegs; |
7739 | } |
7740 | |
7741 | return (getContext().getTypeSize(Ty) + 31) / 32; |
7742 | } |
7743 | |
7744 | void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { |
7745 | llvm::CallingConv::ID CC = FI.getCallingConvention(); |
7746 | |
7747 | if (!getCXXABI().classifyReturnType(FI)) |
7748 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
7749 | |
7750 | unsigned NumRegsLeft = MaxNumRegsForArgsRet; |
7751 | for (auto &Arg : FI.arguments()) { |
7752 | if (CC == llvm::CallingConv::AMDGPU_KERNEL) { |
7753 | Arg.info = classifyKernelArgumentType(Arg.type); |
7754 | } else { |
7755 | Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); |
7756 | } |
7757 | } |
7758 | } |
7759 | |
7760 | ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { |
7761 | if (isAggregateTypeForABI(RetTy)) { |
7762 | // Records with non-trivial destructors/copy-constructors should not be |
7763 | // returned by value. |
7764 | if (!getRecordArgABI(RetTy, getCXXABI())) { |
7765 | // Ignore empty structs/unions. |
7766 | if (isEmptyRecord(getContext(), RetTy, true)) |
7767 | return ABIArgInfo::getIgnore(); |
7768 | |
7769 | // Lower single-element structs to just return a regular value. |
7770 | if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
7771 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
7772 | |
7773 | if (const RecordType *RT = RetTy->getAs<RecordType>()) { |
7774 | const RecordDecl *RD = RT->getDecl(); |
7775 | if (RD->hasFlexibleArrayMember()) |
7776 | return DefaultABIInfo::classifyReturnType(RetTy); |
7777 | } |
7778 | |
7779 | // Pack aggregates <= 4 bytes into single VGPR or pair. |
7780 | uint64_t Size = getContext().getTypeSize(RetTy); |
7781 | if (Size <= 16) |
7782 | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
7783 | |
7784 | if (Size <= 32) |
7785 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
7786 | |
7787 | if (Size <= 64) { |
7788 | llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); |
7789 | return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); |
7790 | } |
7791 | |
7792 | if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) |
7793 | return ABIArgInfo::getDirect(); |
7794 | } |
7795 | } |
7796 | |
7797 | // Otherwise just do the default thing. |
7798 | return DefaultABIInfo::classifyReturnType(RetTy); |
7799 | } |
7800 | |
7801 | /// For kernels all parameters are really passed in a special buffer. It doesn't |
7802 | /// make sense to pass anything byval, so everything must be direct. |
7803 | ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { |
7804 | Ty = useFirstFieldIfTransparentUnion(Ty); |
7805 | |
7806 | // TODO: Can we omit empty structs? |
7807 | |
7808 | // Coerce single element structs to its element. |
7809 | if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) |
7810 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
7811 | |
7812 | // If we set CanBeFlattened to true, CodeGen will expand the struct to its |
7813 | // individual elements, which confuses the Clover OpenCL backend; therefore we |
7814 | // have to set it to false here. Other args of getDirect() are just defaults. |
7815 | return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); |
7816 | } |
7817 | |
7818 | ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, |
7819 | unsigned &NumRegsLeft) const { |
7820 | assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow")((NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow" ) ? static_cast<void> (0) : __assert_fail ("NumRegsLeft <= MaxNumRegsForArgsRet && \"register estimate underflow\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 7820, __PRETTY_FUNCTION__)); |
7821 | |
7822 | Ty = useFirstFieldIfTransparentUnion(Ty); |
7823 | |
7824 | if (isAggregateTypeForABI(Ty)) { |
7825 | // Records with non-trivial destructors/copy-constructors should not be |
7826 | // passed by value. |
7827 | if (auto RAA = getRecordArgABI(Ty, getCXXABI())) |
7828 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
7829 | |
7830 | // Ignore empty structs/unions. |
7831 | if (isEmptyRecord(getContext(), Ty, true)) |
7832 | return ABIArgInfo::getIgnore(); |
7833 | |
7834 | // Lower single-element structs to just pass a regular value. TODO: We |
7835 | // could do reasonable-size multiple-element structs too, using getExpand(), |
7836 | // though watch out for things like bitfields. |
7837 | if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) |
7838 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
7839 | |
7840 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
7841 | const RecordDecl *RD = RT->getDecl(); |
7842 | if (RD->hasFlexibleArrayMember()) |
7843 | return DefaultABIInfo::classifyArgumentType(Ty); |
7844 | } |
7845 | |
7846 | // Pack aggregates <= 8 bytes into single VGPR or pair. |
7847 | uint64_t Size = getContext().getTypeSize(Ty); |
7848 | if (Size <= 64) { |
7849 | unsigned NumRegs = (Size + 31) / 32; |
7850 | NumRegsLeft -= std::min(NumRegsLeft, NumRegs); |
7851 | |
7852 | if (Size <= 16) |
7853 | return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
7854 | |
7855 | if (Size <= 32) |
7856 | return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
7857 | |
7858 | // XXX: Should this be i64 instead, and should the limit increase? |
7859 | llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); |
7860 | return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); |
7861 | } |
7862 | |
7863 | if (NumRegsLeft > 0) { |
7864 | unsigned NumRegs = numRegsForType(Ty); |
7865 | if (NumRegsLeft >= NumRegs) { |
7866 | NumRegsLeft -= NumRegs; |
7867 | return ABIArgInfo::getDirect(); |
7868 | } |
7869 | } |
7870 | } |
7871 | |
7872 | // Otherwise just do the default thing. |
7873 | ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); |
7874 | if (!ArgInfo.isIndirect()) { |
7875 | unsigned NumRegs = numRegsForType(Ty); |
7876 | NumRegsLeft -= std::min(NumRegs, NumRegsLeft); |
7877 | } |
7878 | |
7879 | return ArgInfo; |
7880 | } |
7881 | |
7882 | class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { |
7883 | public: |
7884 | AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) |
7885 | : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} |
7886 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
7887 | CodeGen::CodeGenModule &M) const override; |
7888 | unsigned getOpenCLKernelCallingConv() const override; |
7889 | |
7890 | llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, |
7891 | llvm::PointerType *T, QualType QT) const override; |
7892 | |
7893 | LangAS getASTAllocaAddressSpace() const override { |
7894 | return getLangASFromTargetAS( |
7895 | getABIInfo().getDataLayout().getAllocaAddrSpace()); |
7896 | } |
7897 | LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, |
7898 | const VarDecl *D) const override; |
7899 | llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, |
7900 | SyncScope Scope, |
7901 | llvm::AtomicOrdering Ordering, |
7902 | llvm::LLVMContext &Ctx) const override; |
7903 | llvm::Function * |
7904 | createEnqueuedBlockKernel(CodeGenFunction &CGF, |
7905 | llvm::Function *BlockInvokeFunc, |
7906 | llvm::Value *BlockLiteral) const override; |
7907 | bool shouldEmitStaticExternCAliases() const override; |
7908 | void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; |
7909 | }; |
7910 | } |
7911 | |
7912 | static bool requiresAMDGPUProtectedVisibility(const Decl *D, |
7913 | llvm::GlobalValue *GV) { |
7914 | if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) |
7915 | return false; |
7916 | |
7917 | return D->hasAttr<OpenCLKernelAttr>() || |
7918 | (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || |
7919 | (isa<VarDecl>(D) && |
7920 | (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || |
7921 | D->hasAttr<HIPPinnedShadowAttr>())); |
7922 | } |
7923 | |
7924 | static bool requiresAMDGPUDefaultVisibility(const Decl *D, |
7925 | llvm::GlobalValue *GV) { |
7926 | if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) |
7927 | return false; |
7928 | |
7929 | return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); |
7930 | } |
7931 | |
7932 | void AMDGPUTargetCodeGenInfo::setTargetAttributes( |
7933 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
7934 | if (requiresAMDGPUDefaultVisibility(D, GV)) { |
7935 | GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
7936 | GV->setDSOLocal(false); |
7937 | } else if (requiresAMDGPUProtectedVisibility(D, GV)) { |
7938 | GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); |
7939 | GV->setDSOLocal(true); |
7940 | } |
7941 | |
7942 | if (GV->isDeclaration()) |
7943 | return; |
7944 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
7945 | if (!FD) |
7946 | return; |
7947 | |
7948 | llvm::Function *F = cast<llvm::Function>(GV); |
7949 | |
7950 | const auto *ReqdWGS = M.getLangOpts().OpenCL ? |
7951 | FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; |
7952 | |
7953 | |
7954 | const bool IsOpenCLKernel = M.getLangOpts().OpenCL && |
7955 | FD->hasAttr<OpenCLKernelAttr>(); |
7956 | const bool IsHIPKernel = M.getLangOpts().HIP && |
7957 | FD->hasAttr<CUDAGlobalAttr>(); |
7958 | if ((IsOpenCLKernel || IsHIPKernel) && |
7959 | (M.getTriple().getOS() == llvm::Triple::AMDHSA)) |
7960 | F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); |
7961 | |
7962 | const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); |
7963 | if (ReqdWGS || FlatWGS) { |
7964 | unsigned Min = 0; |
7965 | unsigned Max = 0; |
7966 | if (FlatWGS) { |
7967 | Min = FlatWGS->getMin() |
7968 | ->EvaluateKnownConstInt(M.getContext()) |
7969 | .getExtValue(); |
7970 | Max = FlatWGS->getMax() |
7971 | ->EvaluateKnownConstInt(M.getContext()) |
7972 | .getExtValue(); |
7973 | } |
7974 | if (ReqdWGS && Min == 0 && Max == 0) |
7975 | Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); |
7976 | |
7977 | if (Min != 0) { |
7978 | assert(Min <= Max && "Min must be less than or equal Max")((Min <= Max && "Min must be less than or equal Max" ) ? static_cast<void> (0) : __assert_fail ("Min <= Max && \"Min must be less than or equal Max\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 7978, __PRETTY_FUNCTION__)); |
7979 | |
7980 | std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); |
7981 | F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); |
7982 | } else |
7983 | assert(Max == 0 && "Max must be zero")((Max == 0 && "Max must be zero") ? static_cast<void > (0) : __assert_fail ("Max == 0 && \"Max must be zero\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 7983, __PRETTY_FUNCTION__)); |
7984 | } else if (IsOpenCLKernel || IsHIPKernel) { |
7985 | // By default, restrict the maximum size to 256. |
7986 | F->addFnAttr("amdgpu-flat-work-group-size", "1,256"); |
7987 | } |
7988 | |
7989 | if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { |
7990 | unsigned Min = |
7991 | Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); |
7992 | unsigned Max = Attr->getMax() ? Attr->getMax() |
7993 | ->EvaluateKnownConstInt(M.getContext()) |
7994 | .getExtValue() |
7995 | : 0; |
7996 | |
7997 | if (Min != 0) { |
7998 | assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max")(((Max == 0 || Min <= Max) && "Min must be less than or equal Max" ) ? static_cast<void> (0) : __assert_fail ("(Max == 0 || Min <= Max) && \"Min must be less than or equal Max\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 7998, __PRETTY_FUNCTION__)); |
7999 | |
8000 | std::string AttrVal = llvm::utostr(Min); |
8001 | if (Max != 0) |
8002 | AttrVal = AttrVal + "," + llvm::utostr(Max); |
8003 | F->addFnAttr("amdgpu-waves-per-eu", AttrVal); |
8004 | } else |
8005 | assert(Max == 0 && "Max must be zero")((Max == 0 && "Max must be zero") ? static_cast<void > (0) : __assert_fail ("Max == 0 && \"Max must be zero\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8005, __PRETTY_FUNCTION__)); |
8006 | } |
8007 | |
8008 | if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { |
8009 | unsigned NumSGPR = Attr->getNumSGPR(); |
8010 | |
8011 | if (NumSGPR != 0) |
8012 | F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); |
8013 | } |
8014 | |
8015 | if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { |
8016 | uint32_t NumVGPR = Attr->getNumVGPR(); |
8017 | |
8018 | if (NumVGPR != 0) |
8019 | F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); |
8020 | } |
8021 | } |
8022 | |
8023 | unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { |
8024 | return llvm::CallingConv::AMDGPU_KERNEL; |
8025 | } |
8026 | |
8027 | // Currently LLVM assumes null pointers always have value 0, |
8028 | // which results in incorrectly transformed IR. Therefore, instead of |
8029 | // emitting null pointers in private and local address spaces, a null |
8030 | // pointer in generic address space is emitted which is casted to a |
8031 | // pointer in local or private address space. |
8032 | llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( |
8033 | const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, |
8034 | QualType QT) const { |
8035 | if (CGM.getContext().getTargetNullPointerValue(QT) == 0) |
8036 | return llvm::ConstantPointerNull::get(PT); |
8037 | |
8038 | auto &Ctx = CGM.getContext(); |
8039 | auto NPT = llvm::PointerType::get(PT->getElementType(), |
8040 | Ctx.getTargetAddressSpace(LangAS::opencl_generic)); |
8041 | return llvm::ConstantExpr::getAddrSpaceCast( |
8042 | llvm::ConstantPointerNull::get(NPT), PT); |
8043 | } |
8044 | |
8045 | LangAS |
8046 | AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, |
8047 | const VarDecl *D) const { |
8048 | assert(!CGM.getLangOpts().OpenCL &&((!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only" ) ? static_cast<void> (0) : __assert_fail ("!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && \"Address space agnostic languages only\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8050, __PRETTY_FUNCTION__)) |
8049 | !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&((!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only" ) ? static_cast<void> (0) : __assert_fail ("!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && \"Address space agnostic languages only\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8050, __PRETTY_FUNCTION__)) |
8050 | "Address space agnostic languages only")((!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && "Address space agnostic languages only" ) ? static_cast<void> (0) : __assert_fail ("!CGM.getLangOpts().OpenCL && !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && \"Address space agnostic languages only\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8050, __PRETTY_FUNCTION__)); |
8051 | LangAS DefaultGlobalAS = getLangASFromTargetAS( |
8052 | CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); |
8053 | if (!D) |
8054 | return DefaultGlobalAS; |
8055 | |
8056 | LangAS AddrSpace = D->getType().getAddressSpace(); |
8057 | assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace))((AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace )) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8057, __PRETTY_FUNCTION__)); |
8058 | if (AddrSpace != LangAS::Default) |
8059 | return AddrSpace; |
8060 | |
8061 | if (CGM.isTypeConstant(D->getType(), false)) { |
8062 | if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) |
8063 | return ConstAS.getValue(); |
8064 | } |
8065 | return DefaultGlobalAS; |
8066 | } |
8067 | |
8068 | llvm::SyncScope::ID |
8069 | AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, |
8070 | SyncScope Scope, |
8071 | llvm::AtomicOrdering Ordering, |
8072 | llvm::LLVMContext &Ctx) const { |
8073 | std::string Name; |
8074 | switch (Scope) { |
8075 | case SyncScope::OpenCLWorkGroup: |
8076 | Name = "workgroup"; |
8077 | break; |
8078 | case SyncScope::OpenCLDevice: |
8079 | Name = "agent"; |
8080 | break; |
8081 | case SyncScope::OpenCLAllSVMDevices: |
8082 | Name = ""; |
8083 | break; |
8084 | case SyncScope::OpenCLSubGroup: |
8085 | Name = "wavefront"; |
8086 | } |
8087 | |
8088 | if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { |
8089 | if (!Name.empty()) |
8090 | Name = Twine(Twine(Name) + Twine("-")).str(); |
8091 | |
8092 | Name = Twine(Twine(Name) + Twine("one-as")).str(); |
8093 | } |
8094 | |
8095 | return Ctx.getOrInsertSyncScopeID(Name); |
8096 | } |
8097 | |
8098 | bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { |
8099 | return false; |
8100 | } |
8101 | |
8102 | void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( |
8103 | const FunctionType *&FT) const { |
8104 | FT = getABIInfo().getContext().adjustFunctionType( |
8105 | FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); |
8106 | } |
8107 | |
8108 | //===----------------------------------------------------------------------===// |
8109 | // SPARC v8 ABI Implementation. |
8110 | // Based on the SPARC Compliance Definition version 2.4.1. |
8111 | // |
8112 | // Ensures that complex values are passed in registers. |
8113 | // |
8114 | namespace { |
8115 | class SparcV8ABIInfo : public DefaultABIInfo { |
8116 | public: |
8117 | SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
8118 | |
8119 | private: |
8120 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
8121 | void computeInfo(CGFunctionInfo &FI) const override; |
8122 | }; |
8123 | } // end anonymous namespace |
8124 | |
8125 | |
8126 | ABIArgInfo |
8127 | SparcV8ABIInfo::classifyReturnType(QualType Ty) const { |
8128 | if (Ty->isAnyComplexType()) { |
8129 | return ABIArgInfo::getDirect(); |
8130 | } |
8131 | else { |
8132 | return DefaultABIInfo::classifyReturnType(Ty); |
8133 | } |
8134 | } |
8135 | |
8136 | void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
8137 | |
8138 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
8139 | for (auto &Arg : FI.arguments()) |
8140 | Arg.info = classifyArgumentType(Arg.type); |
8141 | } |
8142 | |
8143 | namespace { |
8144 | class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { |
8145 | public: |
8146 | SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) |
8147 | : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} |
8148 | }; |
8149 | } // end anonymous namespace |
8150 | |
8151 | //===----------------------------------------------------------------------===// |
8152 | // SPARC v9 ABI Implementation. |
8153 | // Based on the SPARC Compliance Definition version 2.4.1. |
8154 | // |
8155 | // Function arguments a mapped to a nominal "parameter array" and promoted to |
8156 | // registers depending on their type. Each argument occupies 8 or 16 bytes in |
8157 | // the array, structs larger than 16 bytes are passed indirectly. |
8158 | // |
8159 | // One case requires special care: |
8160 | // |
8161 | // struct mixed { |
8162 | // int i; |
8163 | // float f; |
8164 | // }; |
8165 | // |
8166 | // When a struct mixed is passed by value, it only occupies 8 bytes in the |
8167 | // parameter array, but the int is passed in an integer register, and the float |
8168 | // is passed in a floating point register. This is represented as two arguments |
8169 | // with the LLVM IR inreg attribute: |
8170 | // |
8171 | // declare void f(i32 inreg %i, float inreg %f) |
8172 | // |
8173 | // The code generator will only allocate 4 bytes from the parameter array for |
8174 | // the inreg arguments. All other arguments are allocated a multiple of 8 |
8175 | // bytes. |
8176 | // |
8177 | namespace { |
8178 | class SparcV9ABIInfo : public ABIInfo { |
8179 | public: |
8180 | SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
8181 | |
8182 | private: |
8183 | ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; |
8184 | void computeInfo(CGFunctionInfo &FI) const override; |
8185 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
8186 | QualType Ty) const override; |
8187 | |
8188 | // Coercion type builder for structs passed in registers. The coercion type |
8189 | // serves two purposes: |
8190 | // |
8191 | // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' |
8192 | // in registers. |
8193 | // 2. Expose aligned floating point elements as first-level elements, so the |
8194 | // code generator knows to pass them in floating point registers. |
8195 | // |
8196 | // We also compute the InReg flag which indicates that the struct contains |
8197 | // aligned 32-bit floats. |
8198 | // |
8199 | struct CoerceBuilder { |
8200 | llvm::LLVMContext &Context; |
8201 | const llvm::DataLayout &DL; |
8202 | SmallVector<llvm::Type*, 8> Elems; |
8203 | uint64_t Size; |
8204 | bool InReg; |
8205 | |
8206 | CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) |
8207 | : Context(c), DL(dl), Size(0), InReg(false) {} |
8208 | |
8209 | // Pad Elems with integers until Size is ToSize. |
8210 | void pad(uint64_t ToSize) { |
8211 | assert(ToSize >= Size && "Cannot remove elements")((ToSize >= Size && "Cannot remove elements") ? static_cast <void> (0) : __assert_fail ("ToSize >= Size && \"Cannot remove elements\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8211, __PRETTY_FUNCTION__)); |
8212 | if (ToSize == Size) |
8213 | return; |
8214 | |
8215 | // Finish the current 64-bit word. |
8216 | uint64_t Aligned = llvm::alignTo(Size, 64); |
8217 | if (Aligned > Size && Aligned <= ToSize) { |
8218 | Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); |
8219 | Size = Aligned; |
8220 | } |
8221 | |
8222 | // Add whole 64-bit words. |
8223 | while (Size + 64 <= ToSize) { |
8224 | Elems.push_back(llvm::Type::getInt64Ty(Context)); |
8225 | Size += 64; |
8226 | } |
8227 | |
8228 | // Final in-word padding. |
8229 | if (Size < ToSize) { |
8230 | Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); |
8231 | Size = ToSize; |
8232 | } |
8233 | } |
8234 | |
8235 | // Add a floating point element at Offset. |
8236 | void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { |
8237 | // Unaligned floats are treated as integers. |
8238 | if (Offset % Bits) |
8239 | return; |
8240 | // The InReg flag is only required if there are any floats < 64 bits. |
8241 | if (Bits < 64) |
8242 | InReg = true; |
8243 | pad(Offset); |
8244 | Elems.push_back(Ty); |
8245 | Size = Offset + Bits; |
8246 | } |
8247 | |
8248 | // Add a struct type to the coercion type, starting at Offset (in bits). |
8249 | void addStruct(uint64_t Offset, llvm::StructType *StrTy) { |
8250 | const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); |
8251 | for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { |
8252 | llvm::Type *ElemTy = StrTy->getElementType(i); |
8253 | uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); |
8254 | switch (ElemTy->getTypeID()) { |
8255 | case llvm::Type::StructTyID: |
8256 | addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); |
8257 | break; |
8258 | case llvm::Type::FloatTyID: |
8259 | addFloat(ElemOffset, ElemTy, 32); |
8260 | break; |
8261 | case llvm::Type::DoubleTyID: |
8262 | addFloat(ElemOffset, ElemTy, 64); |
8263 | break; |
8264 | case llvm::Type::FP128TyID: |
8265 | addFloat(ElemOffset, ElemTy, 128); |
8266 | break; |
8267 | case llvm::Type::PointerTyID: |
8268 | if (ElemOffset % 64 == 0) { |
8269 | pad(ElemOffset); |
8270 | Elems.push_back(ElemTy); |
8271 | Size += 64; |
8272 | } |
8273 | break; |
8274 | default: |
8275 | break; |
8276 | } |
8277 | } |
8278 | } |
8279 | |
8280 | // Check if Ty is a usable substitute for the coercion type. |
8281 | bool isUsableType(llvm::StructType *Ty) const { |
8282 | return llvm::makeArrayRef(Elems) == Ty->elements(); |
8283 | } |
8284 | |
8285 | // Get the coercion type as a literal struct type. |
8286 | llvm::Type *getType() const { |
8287 | if (Elems.size() == 1) |
8288 | return Elems.front(); |
8289 | else |
8290 | return llvm::StructType::get(Context, Elems); |
8291 | } |
8292 | }; |
8293 | }; |
8294 | } // end anonymous namespace |
8295 | |
8296 | ABIArgInfo |
8297 | SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { |
8298 | if (Ty->isVoidType()) |
8299 | return ABIArgInfo::getIgnore(); |
8300 | |
8301 | uint64_t Size = getContext().getTypeSize(Ty); |
8302 | |
8303 | // Anything too big to fit in registers is passed with an explicit indirect |
8304 | // pointer / sret pointer. |
8305 | if (Size > SizeLimit) |
8306 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
8307 | |
8308 | // Treat an enum type as its underlying type. |
8309 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
8310 | Ty = EnumTy->getDecl()->getIntegerType(); |
8311 | |
8312 | // Integer types smaller than a register are extended. |
8313 | if (Size < 64 && Ty->isIntegerType()) |
8314 | return ABIArgInfo::getExtend(Ty); |
8315 | |
8316 | // Other non-aggregates go in registers. |
8317 | if (!isAggregateTypeForABI(Ty)) |
8318 | return ABIArgInfo::getDirect(); |
8319 | |
8320 | // If a C++ object has either a non-trivial copy constructor or a non-trivial |
8321 | // destructor, it is passed with an explicit indirect pointer / sret pointer. |
8322 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
8323 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
8324 | |
8325 | // This is a small aggregate type that should be passed in registers. |
8326 | // Build a coercion type from the LLVM struct type. |
8327 | llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); |
8328 | if (!StrTy) |
8329 | return ABIArgInfo::getDirect(); |
8330 | |
8331 | CoerceBuilder CB(getVMContext(), getDataLayout()); |
8332 | CB.addStruct(0, StrTy); |
8333 | CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); |
8334 | |
8335 | // Try to use the original type for coercion. |
8336 | llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); |
8337 | |
8338 | if (CB.InReg) |
8339 | return ABIArgInfo::getDirectInReg(CoerceTy); |
8340 | else |
8341 | return ABIArgInfo::getDirect(CoerceTy); |
8342 | } |
8343 | |
8344 | Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
8345 | QualType Ty) const { |
8346 | ABIArgInfo AI = classifyType(Ty, 16 * 8); |
8347 | llvm::Type *ArgTy = CGT.ConvertType(Ty); |
8348 | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
8349 | AI.setCoerceToType(ArgTy); |
8350 | |
8351 | CharUnits SlotSize = CharUnits::fromQuantity(8); |
8352 | |
8353 | CGBuilderTy &Builder = CGF.Builder; |
8354 | Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); |
8355 | llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); |
8356 | |
8357 | auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
8358 | |
8359 | Address ArgAddr = Address::invalid(); |
8360 | CharUnits Stride; |
8361 | switch (AI.getKind()) { |
8362 | case ABIArgInfo::Expand: |
8363 | case ABIArgInfo::CoerceAndExpand: |
8364 | case ABIArgInfo::InAlloca: |
8365 | llvm_unreachable("Unsupported ABI kind for va_arg")::llvm::llvm_unreachable_internal("Unsupported ABI kind for va_arg" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8365); |
8366 | |
8367 | case ABIArgInfo::Extend: { |
8368 | Stride = SlotSize; |
8369 | CharUnits Offset = SlotSize - TypeInfo.first; |
8370 | ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); |
8371 | break; |
8372 | } |
8373 | |
8374 | case ABIArgInfo::Direct: { |
8375 | auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); |
8376 | Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); |
8377 | ArgAddr = Addr; |
8378 | break; |
8379 | } |
8380 | |
8381 | case ABIArgInfo::Indirect: |
8382 | Stride = SlotSize; |
8383 | ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); |
8384 | ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), |
8385 | TypeInfo.second); |
8386 | break; |
8387 | |
8388 | case ABIArgInfo::Ignore: |
8389 | return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); |
8390 | } |
8391 | |
8392 | // Update VAList. |
8393 | Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); |
8394 | Builder.CreateStore(NextPtr.getPointer(), VAListAddr); |
8395 | |
8396 | return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); |
8397 | } |
8398 | |
8399 | void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
8400 | FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); |
8401 | for (auto &I : FI.arguments()) |
8402 | I.info = classifyType(I.type, 16 * 8); |
8403 | } |
8404 | |
8405 | namespace { |
8406 | class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { |
8407 | public: |
8408 | SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) |
8409 | : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} |
8410 | |
8411 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
8412 | return 14; |
8413 | } |
8414 | |
8415 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
8416 | llvm::Value *Address) const override; |
8417 | }; |
8418 | } // end anonymous namespace |
8419 | |
8420 | bool |
8421 | SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
8422 | llvm::Value *Address) const { |
8423 | // This is calculated from the LLVM and GCC tables and verified |
8424 | // against gcc output. AFAIK all ABIs use the same encoding. |
8425 | |
8426 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
8427 | |
8428 | llvm::IntegerType *i8 = CGF.Int8Ty; |
8429 | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
8430 | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
8431 | |
8432 | // 0-31: the 8-byte general-purpose registers |
8433 | AssignToArrayRange(Builder, Address, Eight8, 0, 31); |
8434 | |
8435 | // 32-63: f0-31, the 4-byte floating-point registers |
8436 | AssignToArrayRange(Builder, Address, Four8, 32, 63); |
8437 | |
8438 | // Y = 64 |
8439 | // PSR = 65 |
8440 | // WIM = 66 |
8441 | // TBR = 67 |
8442 | // PC = 68 |
8443 | // NPC = 69 |
8444 | // FSR = 70 |
8445 | // CSR = 71 |
8446 | AssignToArrayRange(Builder, Address, Eight8, 64, 71); |
8447 | |
8448 | // 72-87: d0-15, the 8-byte floating-point registers |
8449 | AssignToArrayRange(Builder, Address, Eight8, 72, 87); |
8450 | |
8451 | return false; |
8452 | } |
8453 | |
8454 | // ARC ABI implementation. |
8455 | namespace { |
8456 | |
8457 | class ARCABIInfo : public DefaultABIInfo { |
8458 | public: |
8459 | using DefaultABIInfo::DefaultABIInfo; |
8460 | |
8461 | private: |
8462 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
8463 | QualType Ty) const override; |
8464 | |
8465 | void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { |
8466 | if (!State.FreeRegs) |
8467 | return; |
8468 | if (Info.isIndirect() && Info.getInReg()) |
8469 | State.FreeRegs--; |
8470 | else if (Info.isDirect() && Info.getInReg()) { |
8471 | unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; |
8472 | if (sz < State.FreeRegs) |
8473 | State.FreeRegs -= sz; |
8474 | else |
8475 | State.FreeRegs = 0; |
8476 | } |
8477 | } |
8478 | |
8479 | void computeInfo(CGFunctionInfo &FI) const override { |
8480 | CCState State(FI.getCallingConvention()); |
8481 | // ARC uses 8 registers to pass arguments. |
8482 | State.FreeRegs = 8; |
8483 | |
8484 | if (!getCXXABI().classifyReturnType(FI)) |
8485 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
8486 | updateState(FI.getReturnInfo(), FI.getReturnType(), State); |
8487 | for (auto &I : FI.arguments()) { |
8488 | I.info = classifyArgumentType(I.type, State.FreeRegs); |
8489 | updateState(I.info, I.type, State); |
8490 | } |
8491 | } |
8492 | |
8493 | ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; |
8494 | ABIArgInfo getIndirectByValue(QualType Ty) const; |
8495 | ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; |
8496 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
8497 | }; |
8498 | |
8499 | class ARCTargetCodeGenInfo : public TargetCodeGenInfo { |
8500 | public: |
8501 | ARCTargetCodeGenInfo(CodeGenTypes &CGT) |
8502 | : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} |
8503 | }; |
8504 | |
8505 | |
8506 | ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { |
8507 | return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : |
8508 | getNaturalAlignIndirect(Ty, false); |
8509 | } |
8510 | |
8511 | ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { |
8512 | // Compute the byval alignment. |
8513 | const unsigned MinABIStackAlignInBytes = 4; |
8514 | unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
8515 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, |
8516 | TypeAlign > MinABIStackAlignInBytes); |
8517 | } |
8518 | |
8519 | Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
8520 | QualType Ty) const { |
8521 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
8522 | getContext().getTypeInfoInChars(Ty), |
8523 | CharUnits::fromQuantity(4), true); |
8524 | } |
8525 | |
8526 | ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, |
8527 | uint8_t FreeRegs) const { |
8528 | // Handle the generic C++ ABI. |
8529 | const RecordType *RT = Ty->getAs<RecordType>(); |
8530 | if (RT) { |
8531 | CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); |
8532 | if (RAA == CGCXXABI::RAA_Indirect) |
8533 | return getIndirectByRef(Ty, FreeRegs > 0); |
8534 | |
8535 | if (RAA == CGCXXABI::RAA_DirectInMemory) |
8536 | return getIndirectByValue(Ty); |
8537 | } |
8538 | |
8539 | // Treat an enum type as its underlying type. |
8540 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
8541 | Ty = EnumTy->getDecl()->getIntegerType(); |
8542 | |
8543 | auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; |
8544 | |
8545 | if (isAggregateTypeForABI(Ty)) { |
8546 | // Structures with flexible arrays are always indirect. |
8547 | if (RT && RT->getDecl()->hasFlexibleArrayMember()) |
8548 | return getIndirectByValue(Ty); |
8549 | |
8550 | // Ignore empty structs/unions. |
8551 | if (isEmptyRecord(getContext(), Ty, true)) |
8552 | return ABIArgInfo::getIgnore(); |
8553 | |
8554 | llvm::LLVMContext &LLVMContext = getVMContext(); |
8555 | |
8556 | llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); |
8557 | SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); |
8558 | llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); |
8559 | |
8560 | return FreeRegs >= SizeInRegs ? |
8561 | ABIArgInfo::getDirectInReg(Result) : |
8562 | ABIArgInfo::getDirect(Result, 0, nullptr, false); |
8563 | } |
8564 | |
8565 | return Ty->isPromotableIntegerType() ? |
8566 | (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : |
8567 | ABIArgInfo::getExtend(Ty)) : |
8568 | (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : |
8569 | ABIArgInfo::getDirect()); |
8570 | } |
8571 | |
8572 | ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { |
8573 | if (RetTy->isAnyComplexType()) |
8574 | return ABIArgInfo::getDirectInReg(); |
8575 | |
8576 | // Arguments of size > 4 registers are indirect. |
8577 | auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; |
8578 | if (RetSize > 4) |
8579 | return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); |
8580 | |
8581 | return DefaultABIInfo::classifyReturnType(RetTy); |
8582 | } |
8583 | |
8584 | } // End anonymous namespace. |
8585 | |
8586 | //===----------------------------------------------------------------------===// |
8587 | // XCore ABI Implementation |
8588 | //===----------------------------------------------------------------------===// |
8589 | |
8590 | namespace { |
8591 | |
8592 | /// A SmallStringEnc instance is used to build up the TypeString by passing |
8593 | /// it by reference between functions that append to it. |
8594 | typedef llvm::SmallString<128> SmallStringEnc; |
8595 | |
8596 | /// TypeStringCache caches the meta encodings of Types. |
8597 | /// |
8598 | /// The reason for caching TypeStrings is two fold: |
8599 | /// 1. To cache a type's encoding for later uses; |
8600 | /// 2. As a means to break recursive member type inclusion. |
8601 | /// |
8602 | /// A cache Entry can have a Status of: |
8603 | /// NonRecursive: The type encoding is not recursive; |
8604 | /// Recursive: The type encoding is recursive; |
8605 | /// Incomplete: An incomplete TypeString; |
8606 | /// IncompleteUsed: An incomplete TypeString that has been used in a |
8607 | /// Recursive type encoding. |
8608 | /// |
8609 | /// A NonRecursive entry will have all of its sub-members expanded as fully |
8610 | /// as possible. Whilst it may contain types which are recursive, the type |
8611 | /// itself is not recursive and thus its encoding may be safely used whenever |
8612 | /// the type is encountered. |
8613 | /// |
8614 | /// A Recursive entry will have all of its sub-members expanded as fully as |
8615 | /// possible. The type itself is recursive and it may contain other types which |
8616 | /// are recursive. The Recursive encoding must not be used during the expansion |
8617 | /// of a recursive type's recursive branch. For simplicity the code uses |
8618 | /// IncompleteCount to reject all usage of Recursive encodings for member types. |
8619 | /// |
8620 | /// An Incomplete entry is always a RecordType and only encodes its |
8621 | /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and |
8622 | /// are placed into the cache during type expansion as a means to identify and |
8623 | /// handle recursive inclusion of types as sub-members. If there is recursion |
8624 | /// the entry becomes IncompleteUsed. |
8625 | /// |
8626 | /// During the expansion of a RecordType's members: |
8627 | /// |
8628 | /// If the cache contains a NonRecursive encoding for the member type, the |
8629 | /// cached encoding is used; |
8630 | /// |
8631 | /// If the cache contains a Recursive encoding for the member type, the |
8632 | /// cached encoding is 'Swapped' out, as it may be incorrect, and... |
8633 | /// |
8634 | /// If the member is a RecordType, an Incomplete encoding is placed into the |
8635 | /// cache to break potential recursive inclusion of itself as a sub-member; |
8636 | /// |
8637 | /// Once a member RecordType has been expanded, its temporary incomplete |
8638 | /// entry is removed from the cache. If a Recursive encoding was swapped out |
8639 | /// it is swapped back in; |
8640 | /// |
8641 | /// If an incomplete entry is used to expand a sub-member, the incomplete |
8642 | /// entry is marked as IncompleteUsed. The cache keeps count of how many |
8643 | /// IncompleteUsed entries it currently contains in IncompleteUsedCount; |
8644 | /// |
8645 | /// If a member's encoding is found to be a NonRecursive or Recursive viz: |
8646 | /// IncompleteUsedCount==0, the member's encoding is added to the cache. |
8647 | /// Else the member is part of a recursive type and thus the recursion has |
8648 | /// been exited too soon for the encoding to be correct for the member. |
8649 | /// |
8650 | class TypeStringCache { |
8651 | enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; |
8652 | struct Entry { |
8653 | std::string Str; // The encoded TypeString for the type. |
8654 | enum Status State; // Information about the encoding in 'Str'. |
8655 | std::string Swapped; // A temporary place holder for a Recursive encoding |
8656 | // during the expansion of RecordType's members. |
8657 | }; |
8658 | std::map<const IdentifierInfo *, struct Entry> Map; |
8659 | unsigned IncompleteCount; // Number of Incomplete entries in the Map. |
8660 | unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. |
8661 | public: |
8662 | TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} |
8663 | void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); |
8664 | bool removeIncomplete(const IdentifierInfo *ID); |
8665 | void addIfComplete(const IdentifierInfo *ID, StringRef Str, |
8666 | bool IsRecursive); |
8667 | StringRef lookupStr(const IdentifierInfo *ID); |
8668 | }; |
8669 | |
8670 | /// TypeString encodings for enum & union fields must be order. |
8671 | /// FieldEncoding is a helper for this ordering process. |
8672 | class FieldEncoding { |
8673 | bool HasName; |
8674 | std::string Enc; |
8675 | public: |
8676 | FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} |
8677 | StringRef str() { return Enc; } |
8678 | bool operator<(const FieldEncoding &rhs) const { |
8679 | if (HasName != rhs.HasName) return HasName; |
8680 | return Enc < rhs.Enc; |
8681 | } |
8682 | }; |
8683 | |
8684 | class XCoreABIInfo : public DefaultABIInfo { |
8685 | public: |
8686 | XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
8687 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
8688 | QualType Ty) const override; |
8689 | }; |
8690 | |
8691 | class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { |
8692 | mutable TypeStringCache TSC; |
8693 | public: |
8694 | XCoreTargetCodeGenInfo(CodeGenTypes &CGT) |
8695 | :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} |
8696 | void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, |
8697 | CodeGen::CodeGenModule &M) const override; |
8698 | }; |
8699 | |
8700 | } // End anonymous namespace. |
8701 | |
8702 | // TODO: this implementation is likely now redundant with the default |
8703 | // EmitVAArg. |
8704 | Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
8705 | QualType Ty) const { |
8706 | CGBuilderTy &Builder = CGF.Builder; |
8707 | |
8708 | // Get the VAList. |
8709 | CharUnits SlotSize = CharUnits::fromQuantity(4); |
8710 | Address AP(Builder.CreateLoad(VAListAddr), SlotSize); |
8711 | |
8712 | // Handle the argument. |
8713 | ABIArgInfo AI = classifyArgumentType(Ty); |
8714 | CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); |
8715 | llvm::Type *ArgTy = CGT.ConvertType(Ty); |
8716 | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
8717 | AI.setCoerceToType(ArgTy); |
8718 | llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); |
8719 | |
8720 | Address Val = Address::invalid(); |
8721 | CharUnits ArgSize = CharUnits::Zero(); |
8722 | switch (AI.getKind()) { |
8723 | case ABIArgInfo::Expand: |
8724 | case ABIArgInfo::CoerceAndExpand: |
8725 | case ABIArgInfo::InAlloca: |
8726 | llvm_unreachable("Unsupported ABI kind for va_arg")::llvm::llvm_unreachable_internal("Unsupported ABI kind for va_arg" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8726); |
8727 | case ABIArgInfo::Ignore: |
8728 | Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); |
8729 | ArgSize = CharUnits::Zero(); |
8730 | break; |
8731 | case ABIArgInfo::Extend: |
8732 | case ABIArgInfo::Direct: |
8733 | Val = Builder.CreateBitCast(AP, ArgPtrTy); |
8734 | ArgSize = CharUnits::fromQuantity( |
8735 | getDataLayout().getTypeAllocSize(AI.getCoerceToType())); |
8736 | ArgSize = ArgSize.alignTo(SlotSize); |
8737 | break; |
8738 | case ABIArgInfo::Indirect: |
8739 | Val = Builder.CreateElementBitCast(AP, ArgPtrTy); |
8740 | Val = Address(Builder.CreateLoad(Val), TypeAlign); |
8741 | ArgSize = SlotSize; |
8742 | break; |
8743 | } |
8744 | |
8745 | // Increment the VAList. |
8746 | if (!ArgSize.isZero()) { |
8747 | Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); |
8748 | Builder.CreateStore(APN.getPointer(), VAListAddr); |
8749 | } |
8750 | |
8751 | return Val; |
8752 | } |
8753 | |
8754 | /// During the expansion of a RecordType, an incomplete TypeString is placed |
8755 | /// into the cache as a means to identify and break recursion. |
8756 | /// If there is a Recursive encoding in the cache, it is swapped out and will |
8757 | /// be reinserted by removeIncomplete(). |
8758 | /// All other types of encoding should have been used rather than arriving here. |
8759 | void TypeStringCache::addIncomplete(const IdentifierInfo *ID, |
8760 | std::string StubEnc) { |
8761 | if (!ID) |
8762 | return; |
8763 | Entry &E = Map[ID]; |
8764 | assert( (E.Str.empty() || E.State == Recursive) &&(((E.Str.empty() || E.State == Recursive) && "Incorrectly use of addIncomplete" ) ? static_cast<void> (0) : __assert_fail ("(E.Str.empty() || E.State == Recursive) && \"Incorrectly use of addIncomplete\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8765, __PRETTY_FUNCTION__)) |
8765 | "Incorrectly use of addIncomplete")(((E.Str.empty() || E.State == Recursive) && "Incorrectly use of addIncomplete" ) ? static_cast<void> (0) : __assert_fail ("(E.Str.empty() || E.State == Recursive) && \"Incorrectly use of addIncomplete\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8765, __PRETTY_FUNCTION__)); |
8766 | assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()")((!StubEnc.empty() && "Passing an empty string to addIncomplete()" ) ? static_cast<void> (0) : __assert_fail ("!StubEnc.empty() && \"Passing an empty string to addIncomplete()\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8766, __PRETTY_FUNCTION__)); |
8767 | E.Swapped.swap(E.Str); // swap out the Recursive |
8768 | E.Str.swap(StubEnc); |
8769 | E.State = Incomplete; |
8770 | ++IncompleteCount; |
8771 | } |
8772 | |
8773 | /// Once the RecordType has been expanded, the temporary incomplete TypeString |
8774 | /// must be removed from the cache. |
8775 | /// If a Recursive was swapped out by addIncomplete(), it will be replaced. |
8776 | /// Returns true if the RecordType was defined recursively. |
8777 | bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { |
8778 | if (!ID) |
8779 | return false; |
8780 | auto I = Map.find(ID); |
8781 | assert(I != Map.end() && "Entry not present")((I != Map.end() && "Entry not present") ? static_cast <void> (0) : __assert_fail ("I != Map.end() && \"Entry not present\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8781, __PRETTY_FUNCTION__)); |
8782 | Entry &E = I->second; |
8783 | assert( (E.State == Incomplete ||(((E.State == Incomplete || E.State == IncompleteUsed) && "Entry must be an incomplete type") ? static_cast<void> (0) : __assert_fail ("(E.State == Incomplete || E.State == IncompleteUsed) && \"Entry must be an incomplete type\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8785, __PRETTY_FUNCTION__)) |
8784 | E.State == IncompleteUsed) &&(((E.State == Incomplete || E.State == IncompleteUsed) && "Entry must be an incomplete type") ? static_cast<void> (0) : __assert_fail ("(E.State == Incomplete || E.State == IncompleteUsed) && \"Entry must be an incomplete type\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8785, __PRETTY_FUNCTION__)) |
8785 | "Entry must be an incomplete type")(((E.State == Incomplete || E.State == IncompleteUsed) && "Entry must be an incomplete type") ? static_cast<void> (0) : __assert_fail ("(E.State == Incomplete || E.State == IncompleteUsed) && \"Entry must be an incomplete type\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8785, __PRETTY_FUNCTION__)); |
8786 | bool IsRecursive = false; |
8787 | if (E.State == IncompleteUsed) { |
8788 | // We made use of our Incomplete encoding, thus we are recursive. |
8789 | IsRecursive = true; |
8790 | --IncompleteUsedCount; |
8791 | } |
8792 | if (E.Swapped.empty()) |
8793 | Map.erase(I); |
8794 | else { |
8795 | // Swap the Recursive back. |
8796 | E.Swapped.swap(E.Str); |
8797 | E.Swapped.clear(); |
8798 | E.State = Recursive; |
8799 | } |
8800 | --IncompleteCount; |
8801 | return IsRecursive; |
8802 | } |
8803 | |
8804 | /// Add the encoded TypeString to the cache only if it is NonRecursive or |
8805 | /// Recursive (viz: all sub-members were expanded as fully as possible). |
8806 | void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, |
8807 | bool IsRecursive) { |
8808 | if (!ID || IncompleteUsedCount) |
8809 | return; // No key or it is is an incomplete sub-type so don't add. |
8810 | Entry &E = Map[ID]; |
8811 | if (IsRecursive && !E.Str.empty()) { |
8812 | assert(E.State==Recursive && E.Str.size() == Str.size() &&((E.State==Recursive && E.Str.size() == Str.size() && "This is not the same Recursive entry") ? static_cast<void > (0) : __assert_fail ("E.State==Recursive && E.Str.size() == Str.size() && \"This is not the same Recursive entry\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8813, __PRETTY_FUNCTION__)) |
8813 | "This is not the same Recursive entry")((E.State==Recursive && E.Str.size() == Str.size() && "This is not the same Recursive entry") ? static_cast<void > (0) : __assert_fail ("E.State==Recursive && E.Str.size() == Str.size() && \"This is not the same Recursive entry\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8813, __PRETTY_FUNCTION__)); |
8814 | // The parent container was not recursive after all, so we could have used |
8815 | // this Recursive sub-member entry after all, but we assumed the worse when |
8816 | // we started viz: IncompleteCount!=0. |
8817 | return; |
8818 | } |
8819 | assert(E.Str.empty() && "Entry already present")((E.Str.empty() && "Entry already present") ? static_cast <void> (0) : __assert_fail ("E.Str.empty() && \"Entry already present\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 8819, __PRETTY_FUNCTION__)); |
8820 | E.Str = Str.str(); |
8821 | E.State = IsRecursive? Recursive : NonRecursive; |
8822 | } |
8823 | |
8824 | /// Return a cached TypeString encoding for the ID. If there isn't one, or we |
8825 | /// are recursively expanding a type (IncompleteCount != 0) and the cached |
8826 | /// encoding is Recursive, return an empty StringRef. |
8827 | StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { |
8828 | if (!ID) |
8829 | return StringRef(); // We have no key. |
8830 | auto I = Map.find(ID); |
8831 | if (I == Map.end()) |
8832 | return StringRef(); // We have no encoding. |
8833 | Entry &E = I->second; |
8834 | if (E.State == Recursive && IncompleteCount) |
8835 | return StringRef(); // We don't use Recursive encodings for member types. |
8836 | |
8837 | if (E.State == Incomplete) { |
8838 | // The incomplete type is being used to break out of recursion. |
8839 | E.State = IncompleteUsed; |
8840 | ++IncompleteUsedCount; |
8841 | } |
8842 | return E.Str; |
8843 | } |
8844 | |
8845 | /// The XCore ABI includes a type information section that communicates symbol |
8846 | /// type information to the linker. The linker uses this information to verify |
8847 | /// safety/correctness of things such as array bound and pointers et al. |
8848 | /// The ABI only requires C (and XC) language modules to emit TypeStrings. |
8849 | /// This type information (TypeString) is emitted into meta data for all global |
8850 | /// symbols: definitions, declarations, functions & variables. |
8851 | /// |
8852 | /// The TypeString carries type, qualifier, name, size & value details. |
8853 | /// Please see 'Tools Development Guide' section 2.16.2 for format details: |
8854 | /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf |
8855 | /// The output is tested by test/CodeGen/xcore-stringtype.c. |
8856 | /// |
8857 | static bool getTypeString(SmallStringEnc &Enc, const Decl *D, |
8858 | CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); |
8859 | |
8860 | /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. |
8861 | void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, |
8862 | CodeGen::CodeGenModule &CGM) const { |
8863 | SmallStringEnc Enc; |
8864 | if (getTypeString(Enc, D, CGM, TSC)) { |
8865 | llvm::LLVMContext &Ctx = CGM.getModule().getContext(); |
8866 | llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), |
8867 | llvm::MDString::get(Ctx, Enc.str())}; |
8868 | llvm::NamedMDNode *MD = |
8869 | CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); |
8870 | MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
8871 | } |
8872 | } |
8873 | |
8874 | //===----------------------------------------------------------------------===// |
8875 | // SPIR ABI Implementation |
8876 | //===----------------------------------------------------------------------===// |
8877 | |
8878 | namespace { |
8879 | class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { |
8880 | public: |
8881 | SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
8882 | : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
8883 | unsigned getOpenCLKernelCallingConv() const override; |
8884 | }; |
8885 | |
8886 | } // End anonymous namespace. |
8887 | |
8888 | namespace clang { |
8889 | namespace CodeGen { |
8890 | void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { |
8891 | DefaultABIInfo SPIRABI(CGM.getTypes()); |
8892 | SPIRABI.computeInfo(FI); |
8893 | } |
8894 | } |
8895 | } |
8896 | |
8897 | unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { |
8898 | return llvm::CallingConv::SPIR_KERNEL; |
8899 | } |
8900 | |
8901 | static bool appendType(SmallStringEnc &Enc, QualType QType, |
8902 | const CodeGen::CodeGenModule &CGM, |
8903 | TypeStringCache &TSC); |
8904 | |
8905 | /// Helper function for appendRecordType(). |
8906 | /// Builds a SmallVector containing the encoded field types in declaration |
8907 | /// order. |
8908 | static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, |
8909 | const RecordDecl *RD, |
8910 | const CodeGen::CodeGenModule &CGM, |
8911 | TypeStringCache &TSC) { |
8912 | for (const auto *Field : RD->fields()) { |
8913 | SmallStringEnc Enc; |
8914 | Enc += "m("; |
8915 | Enc += Field->getName(); |
8916 | Enc += "){"; |
8917 | if (Field->isBitField()) { |
8918 | Enc += "b("; |
8919 | llvm::raw_svector_ostream OS(Enc); |
8920 | OS << Field->getBitWidthValue(CGM.getContext()); |
8921 | Enc += ':'; |
8922 | } |
8923 | if (!appendType(Enc, Field->getType(), CGM, TSC)) |
8924 | return false; |
8925 | if (Field->isBitField()) |
8926 | Enc += ')'; |
8927 | Enc += '}'; |
8928 | FE.emplace_back(!Field->getName().empty(), Enc); |
8929 | } |
8930 | return true; |
8931 | } |
8932 | |
8933 | /// Appends structure and union types to Enc and adds encoding to cache. |
8934 | /// Recursively calls appendType (via extractFieldType) for each field. |
8935 | /// Union types have their fields ordered according to the ABI. |
8936 | static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, |
8937 | const CodeGen::CodeGenModule &CGM, |
8938 | TypeStringCache &TSC, const IdentifierInfo *ID) { |
8939 | // Append the cached TypeString if we have one. |
8940 | StringRef TypeString = TSC.lookupStr(ID); |
8941 | if (!TypeString.empty()) { |
8942 | Enc += TypeString; |
8943 | return true; |
8944 | } |
8945 | |
8946 | // Start to emit an incomplete TypeString. |
8947 | size_t Start = Enc.size(); |
8948 | Enc += (RT->isUnionType()? 'u' : 's'); |
8949 | Enc += '('; |
8950 | if (ID) |
8951 | Enc += ID->getName(); |
8952 | Enc += "){"; |
8953 | |
8954 | // We collect all encoded fields and order as necessary. |
8955 | bool IsRecursive = false; |
8956 | const RecordDecl *RD = RT->getDecl()->getDefinition(); |
8957 | if (RD && !RD->field_empty()) { |
8958 | // An incomplete TypeString stub is placed in the cache for this RecordType |
8959 | // so that recursive calls to this RecordType will use it whilst building a |
8960 | // complete TypeString for this RecordType. |
8961 | SmallVector<FieldEncoding, 16> FE; |
8962 | std::string StubEnc(Enc.substr(Start).str()); |
8963 | StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. |
8964 | TSC.addIncomplete(ID, std::move(StubEnc)); |
8965 | if (!extractFieldType(FE, RD, CGM, TSC)) { |
8966 | (void) TSC.removeIncomplete(ID); |
8967 | return false; |
8968 | } |
8969 | IsRecursive = TSC.removeIncomplete(ID); |
8970 | // The ABI requires unions to be sorted but not structures. |
8971 | // See FieldEncoding::operator< for sort algorithm. |
8972 | if (RT->isUnionType()) |
8973 | llvm::sort(FE); |
8974 | // We can now complete the TypeString. |
8975 | unsigned E = FE.size(); |
8976 | for (unsigned I = 0; I != E; ++I) { |
8977 | if (I) |
8978 | Enc += ','; |
8979 | Enc += FE[I].str(); |
8980 | } |
8981 | } |
8982 | Enc += '}'; |
8983 | TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); |
8984 | return true; |
8985 | } |
8986 | |
8987 | /// Appends enum types to Enc and adds the encoding to the cache. |
8988 | static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, |
8989 | TypeStringCache &TSC, |
8990 | const IdentifierInfo *ID) { |
8991 | // Append the cached TypeString if we have one. |
8992 | StringRef TypeString = TSC.lookupStr(ID); |
8993 | if (!TypeString.empty()) { |
8994 | Enc += TypeString; |
8995 | return true; |
8996 | } |
8997 | |
8998 | size_t Start = Enc.size(); |
8999 | Enc += "e("; |
9000 | if (ID) |
9001 | Enc += ID->getName(); |
9002 | Enc += "){"; |
9003 | |
9004 | // We collect all encoded enumerations and order them alphanumerically. |
9005 | if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { |
9006 | SmallVector<FieldEncoding, 16> FE; |
9007 | for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; |
9008 | ++I) { |
9009 | SmallStringEnc EnumEnc; |
9010 | EnumEnc += "m("; |
9011 | EnumEnc += I->getName(); |
9012 | EnumEnc += "){"; |
9013 | I->getInitVal().toString(EnumEnc); |
9014 | EnumEnc += '}'; |
9015 | FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); |
9016 | } |
9017 | llvm::sort(FE); |
9018 | unsigned E = FE.size(); |
9019 | for (unsigned I = 0; I != E; ++I) { |
9020 | if (I) |
9021 | Enc += ','; |
9022 | Enc += FE[I].str(); |
9023 | } |
9024 | } |
9025 | Enc += '}'; |
9026 | TSC.addIfComplete(ID, Enc.substr(Start), false); |
9027 | return true; |
9028 | } |
9029 | |
9030 | /// Appends type's qualifier to Enc. |
9031 | /// This is done prior to appending the type's encoding. |
9032 | static void appendQualifier(SmallStringEnc &Enc, QualType QT) { |
9033 | // Qualifiers are emitted in alphabetical order. |
9034 | static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; |
9035 | int Lookup = 0; |
9036 | if (QT.isConstQualified()) |
9037 | Lookup += 1<<0; |
9038 | if (QT.isRestrictQualified()) |
9039 | Lookup += 1<<1; |
9040 | if (QT.isVolatileQualified()) |
9041 | Lookup += 1<<2; |
9042 | Enc += Table[Lookup]; |
9043 | } |
9044 | |
9045 | /// Appends built-in types to Enc. |
9046 | static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { |
9047 | const char *EncType; |
9048 | switch (BT->getKind()) { |
9049 | case BuiltinType::Void: |
9050 | EncType = "0"; |
9051 | break; |
9052 | case BuiltinType::Bool: |
9053 | EncType = "b"; |
9054 | break; |
9055 | case BuiltinType::Char_U: |
9056 | EncType = "uc"; |
9057 | break; |
9058 | case BuiltinType::UChar: |
9059 | EncType = "uc"; |
9060 | break; |
9061 | case BuiltinType::SChar: |
9062 | EncType = "sc"; |
9063 | break; |
9064 | case BuiltinType::UShort: |
9065 | EncType = "us"; |
9066 | break; |
9067 | case BuiltinType::Short: |
9068 | EncType = "ss"; |
9069 | break; |
9070 | case BuiltinType::UInt: |
9071 | EncType = "ui"; |
9072 | break; |
9073 | case BuiltinType::Int: |
9074 | EncType = "si"; |
9075 | break; |
9076 | case BuiltinType::ULong: |
9077 | EncType = "ul"; |
9078 | break; |
9079 | case BuiltinType::Long: |
9080 | EncType = "sl"; |
9081 | break; |
9082 | case BuiltinType::ULongLong: |
9083 | EncType = "ull"; |
9084 | break; |
9085 | case BuiltinType::LongLong: |
9086 | EncType = "sll"; |
9087 | break; |
9088 | case BuiltinType::Float: |
9089 | EncType = "ft"; |
9090 | break; |
9091 | case BuiltinType::Double: |
9092 | EncType = "d"; |
9093 | break; |
9094 | case BuiltinType::LongDouble: |
9095 | EncType = "ld"; |
9096 | break; |
9097 | default: |
9098 | return false; |
9099 | } |
9100 | Enc += EncType; |
9101 | return true; |
9102 | } |
9103 | |
9104 | /// Appends a pointer encoding to Enc before calling appendType for the pointee. |
9105 | static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, |
9106 | const CodeGen::CodeGenModule &CGM, |
9107 | TypeStringCache &TSC) { |
9108 | Enc += "p("; |
9109 | if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) |
9110 | return false; |
9111 | Enc += ')'; |
9112 | return true; |
9113 | } |
9114 | |
9115 | /// Appends array encoding to Enc before calling appendType for the element. |
9116 | static bool appendArrayType(SmallStringEnc &Enc, QualType QT, |
9117 | const ArrayType *AT, |
9118 | const CodeGen::CodeGenModule &CGM, |
9119 | TypeStringCache &TSC, StringRef NoSizeEnc) { |
9120 | if (AT->getSizeModifier() != ArrayType::Normal) |
9121 | return false; |
9122 | Enc += "a("; |
9123 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
9124 | CAT->getSize().toStringUnsigned(Enc); |
9125 | else |
9126 | Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". |
9127 | Enc += ':'; |
9128 | // The Qualifiers should be attached to the type rather than the array. |
9129 | appendQualifier(Enc, QT); |
9130 | if (!appendType(Enc, AT->getElementType(), CGM, TSC)) |
9131 | return false; |
9132 | Enc += ')'; |
9133 | return true; |
9134 | } |
9135 | |
9136 | /// Appends a function encoding to Enc, calling appendType for the return type |
9137 | /// and the arguments. |
9138 | static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, |
9139 | const CodeGen::CodeGenModule &CGM, |
9140 | TypeStringCache &TSC) { |
9141 | Enc += "f{"; |
9142 | if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) |
9143 | return false; |
9144 | Enc += "}("; |
9145 | if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { |
9146 | // N.B. we are only interested in the adjusted param types. |
9147 | auto I = FPT->param_type_begin(); |
9148 | auto E = FPT->param_type_end(); |
9149 | if (I != E) { |
9150 | do { |
9151 | if (!appendType(Enc, *I, CGM, TSC)) |
9152 | return false; |
9153 | ++I; |
9154 | if (I != E) |
9155 | Enc += ','; |
9156 | } while (I != E); |
9157 | if (FPT->isVariadic()) |
9158 | Enc += ",va"; |
9159 | } else { |
9160 | if (FPT->isVariadic()) |
9161 | Enc += "va"; |
9162 | else |
9163 | Enc += '0'; |
9164 | } |
9165 | } |
9166 | Enc += ')'; |
9167 | return true; |
9168 | } |
9169 | |
9170 | /// Handles the type's qualifier before dispatching a call to handle specific |
9171 | /// type encodings. |
9172 | static bool appendType(SmallStringEnc &Enc, QualType QType, |
9173 | const CodeGen::CodeGenModule &CGM, |
9174 | TypeStringCache &TSC) { |
9175 | |
9176 | QualType QT = QType.getCanonicalType(); |
9177 | |
9178 | if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) |
9179 | // The Qualifiers should be attached to the type rather than the array. |
9180 | // Thus we don't call appendQualifier() here. |
9181 | return appendArrayType(Enc, QT, AT, CGM, TSC, ""); |
9182 | |
9183 | appendQualifier(Enc, QT); |
9184 | |
9185 | if (const BuiltinType *BT = QT->getAs<BuiltinType>()) |
9186 | return appendBuiltinType(Enc, BT); |
9187 | |
9188 | if (const PointerType *PT = QT->getAs<PointerType>()) |
9189 | return appendPointerType(Enc, PT, CGM, TSC); |
9190 | |
9191 | if (const EnumType *ET = QT->getAs<EnumType>()) |
9192 | return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); |
9193 | |
9194 | if (const RecordType *RT = QT->getAsStructureType()) |
9195 | return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); |
9196 | |
9197 | if (const RecordType *RT = QT->getAsUnionType()) |
9198 | return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); |
9199 | |
9200 | if (const FunctionType *FT = QT->getAs<FunctionType>()) |
9201 | return appendFunctionType(Enc, FT, CGM, TSC); |
9202 | |
9203 | return false; |
9204 | } |
9205 | |
9206 | static bool getTypeString(SmallStringEnc &Enc, const Decl *D, |
9207 | CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { |
9208 | if (!D) |
9209 | return false; |
9210 | |
9211 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
9212 | if (FD->getLanguageLinkage() != CLanguageLinkage) |
9213 | return false; |
9214 | return appendType(Enc, FD->getType(), CGM, TSC); |
9215 | } |
9216 | |
9217 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
9218 | if (VD->getLanguageLinkage() != CLanguageLinkage) |
9219 | return false; |
9220 | QualType QT = VD->getType().getCanonicalType(); |
9221 | if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { |
9222 | // Global ArrayTypes are given a size of '*' if the size is unknown. |
9223 | // The Qualifiers should be attached to the type rather than the array. |
9224 | // Thus we don't call appendQualifier() here. |
9225 | return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); |
9226 | } |
9227 | return appendType(Enc, QT, CGM, TSC); |
9228 | } |
9229 | return false; |
9230 | } |
9231 | |
9232 | //===----------------------------------------------------------------------===// |
9233 | // RISCV ABI Implementation |
9234 | //===----------------------------------------------------------------------===// |
9235 | |
9236 | namespace { |
9237 | class RISCVABIInfo : public DefaultABIInfo { |
9238 | private: |
9239 | // Size of the integer ('x') registers in bits. |
9240 | unsigned XLen; |
9241 | // Size of the floating point ('f') registers in bits. Note that the target |
9242 | // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target |
9243 | // with soft float ABI has FLen==0). |
9244 | unsigned FLen; |
9245 | static const int NumArgGPRs = 8; |
9246 | static const int NumArgFPRs = 8; |
9247 | bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, |
9248 | llvm::Type *&Field1Ty, |
9249 | CharUnits &Field1Off, |
9250 | llvm::Type *&Field2Ty, |
9251 | CharUnits &Field2Off) const; |
9252 | |
9253 | public: |
9254 | RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) |
9255 | : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} |
9256 | |
9257 | // DefaultABIInfo's classifyReturnType and classifyArgumentType are |
9258 | // non-virtual, but computeInfo is virtual, so we overload it. |
9259 | void computeInfo(CGFunctionInfo &FI) const override; |
9260 | |
9261 | ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, |
9262 | int &ArgFPRsLeft) const; |
9263 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
9264 | |
9265 | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
9266 | QualType Ty) const override; |
9267 | |
9268 | ABIArgInfo extendType(QualType Ty) const; |
9269 | |
9270 | bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, |
9271 | CharUnits &Field1Off, llvm::Type *&Field2Ty, |
9272 | CharUnits &Field2Off, int &NeededArgGPRs, |
9273 | int &NeededArgFPRs) const; |
9274 | ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, |
9275 | CharUnits Field1Off, |
9276 | llvm::Type *Field2Ty, |
9277 | CharUnits Field2Off) const; |
9278 | }; |
9279 | } // end anonymous namespace |
9280 | |
9281 | void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { |
9282 | QualType RetTy = FI.getReturnType(); |
9283 | if (!getCXXABI().classifyReturnType(FI)) |
9284 | FI.getReturnInfo() = classifyReturnType(RetTy); |
9285 | |
9286 | // IsRetIndirect is true if classifyArgumentType indicated the value should |
9287 | // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 |
9288 | // is passed direct in LLVM IR, relying on the backend lowering code to |
9289 | // rewrite the argument list and pass indirectly on RV32. |
9290 | bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || |
9291 | getContext().getTypeSize(RetTy) > (2 * XLen); |
9292 | |
9293 | // We must track the number of GPRs used in order to conform to the RISC-V |
9294 | // ABI, as integer scalars passed in registers should have signext/zeroext |
9295 | // when promoted, but are anyext if passed on the stack. As GPR usage is |
9296 | // different for variadic arguments, we must also track whether we are |
9297 | // examining a vararg or not. |
9298 | int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; |
9299 | int ArgFPRsLeft = FLen ? NumArgFPRs : 0; |
9300 | int NumFixedArgs = FI.getNumRequiredArgs(); |
9301 | |
9302 | int ArgNum = 0; |
9303 | for (auto &ArgInfo : FI.arguments()) { |
9304 | bool IsFixed = ArgNum < NumFixedArgs; |
9305 | ArgInfo.info = |
9306 | classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); |
9307 | ArgNum++; |
9308 | } |
9309 | } |
9310 | |
9311 | // Returns true if the struct is a potential candidate for the floating point |
9312 | // calling convention. If this function returns true, the caller is |
9313 | // responsible for checking that if there is only a single field then that |
9314 | // field is a float. |
9315 | bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, |
9316 | llvm::Type *&Field1Ty, |
9317 | CharUnits &Field1Off, |
9318 | llvm::Type *&Field2Ty, |
9319 | CharUnits &Field2Off) const { |
9320 | bool IsInt = Ty->isIntegralOrEnumerationType(); |
9321 | bool IsFloat = Ty->isRealFloatingType(); |
9322 | |
9323 | if (IsInt || IsFloat) { |
9324 | uint64_t Size = getContext().getTypeSize(Ty); |
9325 | if (IsInt && Size > XLen) |
9326 | return false; |
9327 | // Can't be eligible if larger than the FP registers. Half precision isn't |
9328 | // currently supported on RISC-V and the ABI hasn't been confirmed, so |
9329 | // default to the integer ABI in that case. |
9330 | if (IsFloat && (Size > FLen || Size < 32)) |
9331 | return false; |
9332 | // Can't be eligible if an integer type was already found (int+int pairs |
9333 | // are not eligible). |
9334 | if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) |
9335 | return false; |
9336 | if (!Field1Ty) { |
9337 | Field1Ty = CGT.ConvertType(Ty); |
9338 | Field1Off = CurOff; |
9339 | return true; |
9340 | } |
9341 | if (!Field2Ty) { |
9342 | Field2Ty = CGT.ConvertType(Ty); |
9343 | Field2Off = CurOff; |
9344 | return true; |
9345 | } |
9346 | return false; |
9347 | } |
9348 | |
9349 | if (auto CTy = Ty->getAs<ComplexType>()) { |
9350 | if (Field1Ty) |
9351 | return false; |
9352 | QualType EltTy = CTy->getElementType(); |
9353 | if (getContext().getTypeSize(EltTy) > FLen) |
9354 | return false; |
9355 | Field1Ty = CGT.ConvertType(EltTy); |
9356 | Field1Off = CurOff; |
9357 | assert(CurOff.isZero() && "Unexpected offset for first field")((CurOff.isZero() && "Unexpected offset for first field" ) ? static_cast<void> (0) : __assert_fail ("CurOff.isZero() && \"Unexpected offset for first field\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 9357, __PRETTY_FUNCTION__)); |
9358 | Field2Ty = Field1Ty; |
9359 | Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); |
9360 | return true; |
9361 | } |
9362 | |
9363 | if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { |
9364 | uint64_t ArraySize = ATy->getSize().getZExtValue(); |
9365 | QualType EltTy = ATy->getElementType(); |
9366 | CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); |
9367 | for (uint64_t i = 0; i < ArraySize; ++i) { |
9368 | bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, |
9369 | Field1Off, Field2Ty, Field2Off); |
9370 | if (!Ret) |
9371 | return false; |
9372 | CurOff += EltSize; |
9373 | } |
9374 | return true; |
9375 | } |
9376 | |
9377 | if (const auto *RTy = Ty->getAs<RecordType>()) { |
9378 | // Structures with either a non-trivial destructor or a non-trivial |
9379 | // copy constructor are not eligible for the FP calling convention. |
9380 | if (getRecordArgABI(Ty, CGT.getCXXABI())) |
9381 | return false; |
9382 | if (isEmptyRecord(getContext(), Ty, true)) |
9383 | return true; |
9384 | const RecordDecl *RD = RTy->getDecl(); |
9385 | // Unions aren't eligible unless they're empty (which is caught above). |
9386 | if (RD->isUnion()) |
9387 | return false; |
9388 | int ZeroWidthBitFieldCount = 0; |
9389 | for (const FieldDecl *FD : RD->fields()) { |
9390 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
9391 | uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); |
9392 | QualType QTy = FD->getType(); |
9393 | if (FD->isBitField()) { |
9394 | unsigned BitWidth = FD->getBitWidthValue(getContext()); |
9395 | // Allow a bitfield with a type greater than XLen as long as the |
9396 | // bitwidth is XLen or less. |
9397 | if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) |
9398 | QTy = getContext().getIntTypeForBitwidth(XLen, false); |
9399 | if (BitWidth == 0) { |
9400 | ZeroWidthBitFieldCount++; |
9401 | continue; |
9402 | } |
9403 | } |
9404 | |
9405 | bool Ret = detectFPCCEligibleStructHelper( |
9406 | QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), |
9407 | Field1Ty, Field1Off, Field2Ty, Field2Off); |
9408 | if (!Ret) |
9409 | return false; |
9410 | |
9411 | // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp |
9412 | // or int+fp structs, but are ignored for a struct with an fp field and |
9413 | // any number of zero-width bitfields. |
9414 | if (Field2Ty && ZeroWidthBitFieldCount > 0) |
9415 | return false; |
9416 | } |
9417 | return Field1Ty != nullptr; |
9418 | } |
9419 | |
9420 | return false; |
9421 | } |
9422 | |
9423 | // Determine if a struct is eligible for passing according to the floating |
9424 | // point calling convention (i.e., when flattened it contains a single fp |
9425 | // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and |
9426 | // NeededArgGPRs are incremented appropriately. |
9427 | bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, |
9428 | CharUnits &Field1Off, |
9429 | llvm::Type *&Field2Ty, |
9430 | CharUnits &Field2Off, |
9431 | int &NeededArgGPRs, |
9432 | int &NeededArgFPRs) const { |
9433 | Field1Ty = nullptr; |
9434 | Field2Ty = nullptr; |
9435 | NeededArgGPRs = 0; |
9436 | NeededArgFPRs = 0; |
9437 | bool IsCandidate = detectFPCCEligibleStructHelper( |
9438 | Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); |
9439 | // Not really a candidate if we have a single int but no float. |
9440 | if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) |
9441 | return IsCandidate = false; |
Although the value stored to 'IsCandidate' is used in the enclosing expression, the value is never actually read from 'IsCandidate' | |
9442 | if (!IsCandidate) |
9443 | return false; |
9444 | if (Field1Ty && Field1Ty->isFloatingPointTy()) |
9445 | NeededArgFPRs++; |
9446 | else if (Field1Ty) |
9447 | NeededArgGPRs++; |
9448 | if (Field2Ty && Field2Ty->isFloatingPointTy()) |
9449 | NeededArgFPRs++; |
9450 | else if (Field2Ty) |
9451 | NeededArgGPRs++; |
9452 | return IsCandidate; |
9453 | } |
9454 | |
9455 | // Call getCoerceAndExpand for the two-element flattened struct described by |
9456 | // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an |
9457 | // appropriate coerceToType and unpaddedCoerceToType. |
9458 | ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( |
9459 | llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, |
9460 | CharUnits Field2Off) const { |
9461 | SmallVector<llvm::Type *, 3> CoerceElts; |
9462 | SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; |
9463 | if (!Field1Off.isZero()) |
9464 | CoerceElts.push_back(llvm::ArrayType::get( |
9465 | llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); |
9466 | |
9467 | CoerceElts.push_back(Field1Ty); |
9468 | UnpaddedCoerceElts.push_back(Field1Ty); |
9469 | |
9470 | if (!Field2Ty) { |
9471 | return ABIArgInfo::getCoerceAndExpand( |
9472 | llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), |
9473 | UnpaddedCoerceElts[0]); |
9474 | } |
9475 | |
9476 | CharUnits Field2Align = |
9477 | CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); |
9478 | CharUnits Field1Size = |
9479 | CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); |
9480 | CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); |
9481 | |
9482 | CharUnits Padding = CharUnits::Zero(); |
9483 | if (Field2Off > Field2OffNoPadNoPack) |
9484 | Padding = Field2Off - Field2OffNoPadNoPack; |
9485 | else if (Field2Off != Field2Align && Field2Off > Field1Size) |
9486 | Padding = Field2Off - Field1Size; |
9487 | |
9488 | bool IsPacked = !Field2Off.isMultipleOf(Field2Align); |
9489 | |
9490 | if (!Padding.isZero()) |
9491 | CoerceElts.push_back(llvm::ArrayType::get( |
9492 | llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); |
9493 | |
9494 | CoerceElts.push_back(Field2Ty); |
9495 | UnpaddedCoerceElts.push_back(Field2Ty); |
9496 | |
9497 | auto CoerceToType = |
9498 | llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); |
9499 | auto UnpaddedCoerceToType = |
9500 | llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); |
9501 | |
9502 | return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); |
9503 | } |
9504 | |
9505 | ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, |
9506 | int &ArgGPRsLeft, |
9507 | int &ArgFPRsLeft) const { |
9508 | assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow")((ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow" ) ? static_cast<void> (0) : __assert_fail ("ArgGPRsLeft <= NumArgGPRs && \"Arg GPR tracking underflow\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 9508, __PRETTY_FUNCTION__)); |
9509 | Ty = useFirstFieldIfTransparentUnion(Ty); |
9510 | |
9511 | // Structures with either a non-trivial destructor or a non-trivial |
9512 | // copy constructor are always passed indirectly. |
9513 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
9514 | if (ArgGPRsLeft) |
9515 | ArgGPRsLeft -= 1; |
9516 | return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == |
9517 | CGCXXABI::RAA_DirectInMemory); |
9518 | } |
9519 | |
9520 | // Ignore empty structs/unions. |
9521 | if (isEmptyRecord(getContext(), Ty, true)) |
9522 | return ABIArgInfo::getIgnore(); |
9523 | |
9524 | uint64_t Size = getContext().getTypeSize(Ty); |
9525 | |
9526 | // Pass floating point values via FPRs if possible. |
9527 | if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { |
9528 | ArgFPRsLeft--; |
9529 | return ABIArgInfo::getDirect(); |
9530 | } |
9531 | |
9532 | // Complex types for the hard float ABI must be passed direct rather than |
9533 | // using CoerceAndExpand. |
9534 | if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { |
9535 | QualType EltTy = Ty->getAs<ComplexType>()->getElementType(); |
9536 | if (getContext().getTypeSize(EltTy) <= FLen) { |
9537 | ArgFPRsLeft -= 2; |
9538 | return ABIArgInfo::getDirect(); |
9539 | } |
9540 | } |
9541 | |
9542 | if (IsFixed && FLen && Ty->isStructureOrClassType()) { |
9543 | llvm::Type *Field1Ty = nullptr; |
9544 | llvm::Type *Field2Ty = nullptr; |
9545 | CharUnits Field1Off = CharUnits::Zero(); |
9546 | CharUnits Field2Off = CharUnits::Zero(); |
9547 | int NeededArgGPRs; |
9548 | int NeededArgFPRs; |
9549 | bool IsCandidate = |
9550 | detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, |
9551 | NeededArgGPRs, NeededArgFPRs); |
9552 | if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && |
9553 | NeededArgFPRs <= ArgFPRsLeft) { |
9554 | ArgGPRsLeft -= NeededArgGPRs; |
9555 | ArgFPRsLeft -= NeededArgFPRs; |
9556 | return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, |
9557 | Field2Off); |
9558 | } |
9559 | } |
9560 | |
9561 | uint64_t NeededAlign = getContext().getTypeAlign(Ty); |
9562 | bool MustUseStack = false; |
9563 | // Determine the number of GPRs needed to pass the current argument |
9564 | // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" |
9565 | // register pairs, so may consume 3 registers. |
9566 | int NeededArgGPRs = 1; |
9567 | if (!IsFixed && NeededAlign == 2 * XLen) |
9568 | NeededArgGPRs = 2 + (ArgGPRsLeft % 2); |
9569 | else if (Size > XLen && Size <= 2 * XLen) |
9570 | NeededArgGPRs = 2; |
9571 | |
9572 | if (NeededArgGPRs > ArgGPRsLeft) { |
9573 | MustUseStack = true; |
9574 | NeededArgGPRs = ArgGPRsLeft; |
9575 | } |
9576 | |
9577 | ArgGPRsLeft -= NeededArgGPRs; |
9578 | |
9579 | if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { |
9580 | // Treat an enum type as its underlying type. |
9581 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
9582 | Ty = EnumTy->getDecl()->getIntegerType(); |
9583 | |
9584 | // All integral types are promoted to XLen width, unless passed on the |
9585 | // stack. |
9586 | if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { |
9587 | return extendType(Ty); |
9588 | } |
9589 | |
9590 | return ABIArgInfo::getDirect(); |
9591 | } |
9592 | |
9593 | // Aggregates which are <= 2*XLen will be passed in registers if possible, |
9594 | // so coerce to integers. |
9595 | if (Size <= 2 * XLen) { |
9596 | unsigned Alignment = getContext().getTypeAlign(Ty); |
9597 | |
9598 | // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is |
9599 | // required, and a 2-element XLen array if only XLen alignment is required. |
9600 | if (Size <= XLen) { |
9601 | return ABIArgInfo::getDirect( |
9602 | llvm::IntegerType::get(getVMContext(), XLen)); |
9603 | } else if (Alignment == 2 * XLen) { |
9604 | return ABIArgInfo::getDirect( |
9605 | llvm::IntegerType::get(getVMContext(), 2 * XLen)); |
9606 | } else { |
9607 | return ABIArgInfo::getDirect(llvm::ArrayType::get( |
9608 | llvm::IntegerType::get(getVMContext(), XLen), 2)); |
9609 | } |
9610 | } |
9611 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
9612 | } |
9613 | |
9614 | ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { |
9615 | if (RetTy->isVoidType()) |
9616 | return ABIArgInfo::getIgnore(); |
9617 | |
9618 | int ArgGPRsLeft = 2; |
9619 | int ArgFPRsLeft = FLen ? 2 : 0; |
9620 | |
9621 | // The rules for return and argument types are the same, so defer to |
9622 | // classifyArgumentType. |
9623 | return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, |
9624 | ArgFPRsLeft); |
9625 | } |
9626 | |
9627 | Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
9628 | QualType Ty) const { |
9629 | CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); |
9630 | |
9631 | // Empty records are ignored for parameter passing purposes. |
9632 | if (isEmptyRecord(getContext(), Ty, true)) { |
9633 | Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); |
9634 | Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); |
9635 | return Addr; |
9636 | } |
9637 | |
9638 | std::pair<CharUnits, CharUnits> SizeAndAlign = |
9639 | getContext().getTypeInfoInChars(Ty); |
9640 | |
9641 | // Arguments bigger than 2*Xlen bytes are passed indirectly. |
9642 | bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; |
9643 | |
9644 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, |
9645 | SlotSize, /*AllowHigherAlign=*/true); |
9646 | } |
9647 | |
9648 | ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { |
9649 | int TySize = getContext().getTypeSize(Ty); |
9650 | // RV64 ABI requires unsigned 32 bit integers to be sign extended. |
9651 | if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
9652 | return ABIArgInfo::getSignExtend(Ty); |
9653 | return ABIArgInfo::getExtend(Ty); |
9654 | } |
9655 | |
9656 | namespace { |
9657 | class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { |
9658 | public: |
9659 | RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, |
9660 | unsigned FLen) |
9661 | : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} |
9662 | |
9663 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
9664 | CodeGen::CodeGenModule &CGM) const override { |
9665 | const auto *FD = dyn_cast_or_null<FunctionDecl>(D); |
9666 | if (!FD) return; |
9667 | |
9668 | const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); |
9669 | if (!Attr) |
9670 | return; |
9671 | |
9672 | const char *Kind; |
9673 | switch (Attr->getInterrupt()) { |
9674 | case RISCVInterruptAttr::user: Kind = "user"; break; |
9675 | case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; |
9676 | case RISCVInterruptAttr::machine: Kind = "machine"; break; |
9677 | } |
9678 | |
9679 | auto *Fn = cast<llvm::Function>(GV); |
9680 | |
9681 | Fn->addFnAttr("interrupt", Kind); |
9682 | } |
9683 | }; |
9684 | } // namespace |
9685 | |
9686 | //===----------------------------------------------------------------------===// |
9687 | // Driver code |
9688 | //===----------------------------------------------------------------------===// |
9689 | |
9690 | bool CodeGenModule::supportsCOMDAT() const { |
9691 | return getTriple().supportsCOMDAT(); |
9692 | } |
9693 | |
9694 | const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { |
9695 | if (TheTargetCodeGenInfo) |
9696 | return *TheTargetCodeGenInfo; |
9697 | |
9698 | // Helper to set the unique_ptr while still keeping the return value. |
9699 | auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { |
9700 | this->TheTargetCodeGenInfo.reset(P); |
9701 | return *P; |
9702 | }; |
9703 | |
9704 | const llvm::Triple &Triple = getTarget().getTriple(); |
9705 | switch (Triple.getArch()) { |
9706 | default: |
9707 | return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); |
9708 | |
9709 | case llvm::Triple::le32: |
9710 | return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); |
9711 | case llvm::Triple::mips: |
9712 | case llvm::Triple::mipsel: |
9713 | if (Triple.getOS() == llvm::Triple::NaCl) |
9714 | return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); |
9715 | return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); |
9716 | |
9717 | case llvm::Triple::mips64: |
9718 | case llvm::Triple::mips64el: |
9719 | return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); |
9720 | |
9721 | case llvm::Triple::avr: |
9722 | return SetCGInfo(new AVRTargetCodeGenInfo(Types)); |
9723 | |
9724 | case llvm::Triple::aarch64: |
9725 | case llvm::Triple::aarch64_be: { |
9726 | AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; |
9727 | if (getTarget().getABI() == "darwinpcs") |
9728 | Kind = AArch64ABIInfo::DarwinPCS; |
9729 | else if (Triple.isOSWindows()) |
9730 | return SetCGInfo( |
9731 | new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); |
9732 | |
9733 | return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); |
9734 | } |
9735 | |
9736 | case llvm::Triple::wasm32: |
9737 | case llvm::Triple::wasm64: |
9738 | return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); |
9739 | |
9740 | case llvm::Triple::arm: |
9741 | case llvm::Triple::armeb: |
9742 | case llvm::Triple::thumb: |
9743 | case llvm::Triple::thumbeb: { |
9744 | if (Triple.getOS() == llvm::Triple::Win32) { |
9745 | return SetCGInfo( |
9746 | new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); |
9747 | } |
9748 | |
9749 | ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; |
9750 | StringRef ABIStr = getTarget().getABI(); |
9751 | if (ABIStr == "apcs-gnu") |
9752 | Kind = ARMABIInfo::APCS; |
9753 | else if (ABIStr == "aapcs16") |
9754 | Kind = ARMABIInfo::AAPCS16_VFP; |
9755 | else if (CodeGenOpts.FloatABI == "hard" || |
9756 | (CodeGenOpts.FloatABI != "soft" && |
9757 | (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || |
9758 | Triple.getEnvironment() == llvm::Triple::MuslEABIHF || |
9759 | Triple.getEnvironment() == llvm::Triple::EABIHF))) |
9760 | Kind = ARMABIInfo::AAPCS_VFP; |
9761 | |
9762 | return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); |
9763 | } |
9764 | |
9765 | case llvm::Triple::ppc: |
9766 | return SetCGInfo( |
9767 | new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || |
9768 | getTarget().hasFeature("spe"))); |
9769 | case llvm::Triple::ppc64: |
9770 | if (Triple.isOSBinFormatELF()) { |
9771 | PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; |
9772 | if (getTarget().getABI() == "elfv2") |
9773 | Kind = PPC64_SVR4_ABIInfo::ELFv2; |
9774 | bool HasQPX = getTarget().getABI() == "elfv1-qpx"; |
9775 | bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; |
9776 | |
9777 | return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, |
9778 | IsSoftFloat)); |
9779 | } else |
9780 | return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); |
9781 | case llvm::Triple::ppc64le: { |
9782 | assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!")((Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!" ) ? static_cast<void> (0) : __assert_fail ("Triple.isOSBinFormatELF() && \"PPC64 LE non-ELF not supported!\"" , "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/TargetInfo.cpp" , 9782, __PRETTY_FUNCTION__)); |
9783 | PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; |
9784 | if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") |
9785 | Kind = PPC64_SVR4_ABIInfo::ELFv1; |
9786 | bool HasQPX = getTarget().getABI() == "elfv1-qpx"; |
9787 | bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; |
9788 | |
9789 | return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, |
9790 | IsSoftFloat)); |
9791 | } |
9792 | |
9793 | case llvm::Triple::nvptx: |
9794 | case llvm::Triple::nvptx64: |
9795 | return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); |
9796 | |
9797 | case llvm::Triple::msp430: |
9798 | return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); |
9799 | |
9800 | case llvm::Triple::riscv32: |
9801 | case llvm::Triple::riscv64: { |
9802 | StringRef ABIStr = getTarget().getABI(); |
9803 | unsigned XLen = getTarget().getPointerWidth(0); |
9804 | unsigned ABIFLen = 0; |
9805 | if (ABIStr.endswith("f")) |
9806 | ABIFLen = 32; |
9807 | else if (ABIStr.endswith("d")) |
9808 | ABIFLen = 64; |
9809 | return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); |
9810 | } |
9811 | |
9812 | case llvm::Triple::systemz: { |
9813 | bool HasVector = getTarget().getABI() == "vector"; |
9814 | return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); |
9815 | } |
9816 | |
9817 | case llvm::Triple::tce: |
9818 | case llvm::Triple::tcele: |
9819 | return SetCGInfo(new TCETargetCodeGenInfo(Types)); |
9820 | |
9821 | case llvm::Triple::x86: { |
9822 | bool IsDarwinVectorABI = Triple.isOSDarwin(); |
9823 | bool RetSmallStructInRegABI = |
9824 | X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); |
9825 | bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); |
9826 | |
9827 | if (Triple.getOS() == llvm::Triple::Win32) { |
9828 | return SetCGInfo(new WinX86_32TargetCodeGenInfo( |
9829 | Types, IsDarwinVectorABI, RetSmallStructInRegABI, |
9830 | IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); |
9831 | } else { |
9832 | return SetCGInfo(new X86_32TargetCodeGenInfo( |
9833 | Types, IsDarwinVectorABI, RetSmallStructInRegABI, |
9834 | IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, |
9835 | CodeGenOpts.FloatABI == "soft")); |
9836 | } |
9837 | } |
9838 | |
9839 | case llvm::Triple::x86_64: { |
9840 | StringRef ABI = getTarget().getABI(); |
9841 | X86AVXABILevel AVXLevel = |
9842 | (ABI == "avx512" |
9843 | ? X86AVXABILevel::AVX512 |
9844 | : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); |
9845 | |
9846 | switch (Triple.getOS()) { |
9847 | case llvm::Triple::Win32: |
9848 | return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); |
9849 | default: |
9850 | return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); |
9851 | } |
9852 | } |
9853 | case llvm::Triple::hexagon: |
9854 | return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); |
9855 | case llvm::Triple::lanai: |
9856 | return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); |
9857 | case llvm::Triple::r600: |
9858 | return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); |
9859 | case llvm::Triple::amdgcn: |
9860 | return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); |
9861 | case llvm::Triple::sparc: |
9862 | return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); |
9863 | case llvm::Triple::sparcv9: |
9864 | return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); |
9865 | case llvm::Triple::xcore: |
9866 | return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); |
9867 | case llvm::Triple::arc: |
9868 | return SetCGInfo(new ARCTargetCodeGenInfo(Types)); |
9869 | case llvm::Triple::spir: |
9870 | case llvm::Triple::spir64: |
9871 | return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); |
9872 | } |
9873 | } |
9874 | |
9875 | /// Create an OpenCL kernel for an enqueued block. |
9876 | /// |
9877 | /// The kernel has the same function type as the block invoke function. Its |
9878 | /// name is the name of the block invoke function postfixed with "_kernel". |
9879 | /// It simply calls the block invoke function then returns. |
9880 | llvm::Function * |
9881 | TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, |
9882 | llvm::Function *Invoke, |
9883 | llvm::Value *BlockLiteral) const { |
9884 | auto *InvokeFT = Invoke->getFunctionType(); |
9885 | llvm::SmallVector<llvm::Type *, 2> ArgTys; |
9886 | for (auto &P : InvokeFT->params()) |
9887 | ArgTys.push_back(P); |
9888 | auto &C = CGF.getLLVMContext(); |
9889 | std::string Name = Invoke->getName().str() + "_kernel"; |
9890 | auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); |
9891 | auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, |
9892 | &CGF.CGM.getModule()); |
9893 | auto IP = CGF.Builder.saveIP(); |
9894 | auto *BB = llvm::BasicBlock::Create(C, "entry", F); |
9895 | auto &Builder = CGF.Builder; |
9896 | Builder.SetInsertPoint(BB); |
9897 | llvm::SmallVector<llvm::Value *, 2> Args; |
9898 | for (auto &A : F->args()) |
9899 | Args.push_back(&A); |
9900 | Builder.CreateCall(Invoke, Args); |
9901 | Builder.CreateRetVoid(); |
9902 | Builder.restoreIP(IP); |
9903 | return F; |
9904 | } |
9905 | |
9906 | /// Create an OpenCL kernel for an enqueued block. |
9907 | /// |
9908 | /// The type of the first argument (the block literal) is the struct type |
9909 | /// of the block literal instead of a pointer type. The first argument |
9910 | /// (block literal) is passed directly by value to the kernel. The kernel |
9911 | /// allocates the same type of struct on stack and stores the block literal |
9912 | /// to it and passes its pointer to the block invoke function. The kernel |
9913 | /// has "enqueued-block" function attribute and kernel argument metadata. |
9914 | llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( |
9915 | CodeGenFunction &CGF, llvm::Function *Invoke, |
9916 | llvm::Value *BlockLiteral) const { |
9917 | auto &Builder = CGF.Builder; |
9918 | auto &C = CGF.getLLVMContext(); |
9919 | |
9920 | auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); |
9921 | auto *InvokeFT = Invoke->getFunctionType(); |
9922 | llvm::SmallVector<llvm::Type *, 2> ArgTys; |
9923 | llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; |
9924 | llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; |
9925 | llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; |
9926 | llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; |
9927 | llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; |
9928 | llvm::SmallVector<llvm::Metadata *, 8> ArgNames; |
9929 | |
9930 | ArgTys.push_back(BlockTy); |
9931 | ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); |
9932 | AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); |
9933 | ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); |
9934 | ArgTypeQuals.push_back(llvm::MDString::get(C, "")); |
9935 | AccessQuals.push_back(llvm::MDString::get(C, "none")); |
9936 | ArgNames.push_back(llvm::MDString::get(C, "block_literal")); |
9937 | for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { |
9938 | ArgTys.push_back(InvokeFT->getParamType(I)); |
9939 | ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); |
9940 | AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); |
9941 | AccessQuals.push_back(llvm::MDString::get(C, "none")); |
9942 | ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); |
9943 | ArgTypeQuals.push_back(llvm::MDString::get(C, "")); |
9944 | ArgNames.push_back( |
9945 | llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); |
9946 | } |
9947 | std::string Name = Invoke->getName().str() + "_kernel"; |
9948 | auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); |
9949 | auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, |
9950 | &CGF.CGM.getModule()); |
9951 | F->addFnAttr("enqueued-block"); |
9952 | auto IP = CGF.Builder.saveIP(); |
9953 | auto *BB = llvm::BasicBlock::Create(C, "entry", F); |
9954 | Builder.SetInsertPoint(BB); |
9955 | unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); |
9956 | auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); |
9957 | BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign)); |
9958 | Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); |
9959 | auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); |
9960 | llvm::SmallVector<llvm::Value *, 2> Args; |
9961 | Args.push_back(Cast); |
9962 | for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) |
9963 | Args.push_back(I); |
9964 | Builder.CreateCall(Invoke, Args); |
9965 | Builder.CreateRetVoid(); |
9966 | Builder.restoreIP(IP); |
9967 | |
9968 | F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); |
9969 | F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); |
9970 | F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); |
9971 | F->setMetadata("kernel_arg_base_type", |
9972 | llvm::MDNode::get(C, ArgBaseTypeNames)); |
9973 | F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); |
9974 | if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) |
9975 | F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); |
9976 | |
9977 | return F; |
9978 | } |