Bug Summary

File:llvm/lib/CodeGen/TargetInstrInfo.cpp
Warning:line 915, column 3
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name TargetInstrInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen/TargetInstrInfo.cpp
1//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/TargetInstrInfo.h"
14#include "llvm/ADT/StringExtras.h"
15#include "llvm/CodeGen/MachineFrameInfo.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineMemOperand.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/CodeGen/MachineScheduler.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
22#include "llvm/CodeGen/StackMaps.h"
23#include "llvm/CodeGen/TargetFrameLowering.h"
24#include "llvm/CodeGen/TargetLowering.h"
25#include "llvm/CodeGen/TargetRegisterInfo.h"
26#include "llvm/CodeGen/TargetSchedule.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugInfoMetadata.h"
29#include "llvm/MC/MCAsmInfo.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetMachine.h"
35#include <cctype>
36
37using namespace llvm;
38
39static cl::opt<bool> DisableHazardRecognizer(
40 "disable-sched-hazard", cl::Hidden, cl::init(false),
41 cl::desc("Disable hazard detection during preRA scheduling"));
42
43TargetInstrInfo::~TargetInstrInfo() {
44}
45
46const TargetRegisterClass*
47TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
48 const TargetRegisterInfo *TRI,
49 const MachineFunction &MF) const {
50 if (OpNum >= MCID.getNumOperands())
51 return nullptr;
52
53 short RegClass = MCID.OpInfo[OpNum].RegClass;
54 if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
55 return TRI->getPointerRegClass(MF, RegClass);
56
57 // Instructions like INSERT_SUBREG do not have fixed register classes.
58 if (RegClass < 0)
59 return nullptr;
60
61 // Otherwise just look it up normally.
62 return TRI->getRegClass(RegClass);
63}
64
65/// insertNoop - Insert a noop into the instruction stream at the specified
66/// point.
67void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
68 MachineBasicBlock::iterator MI) const {
69 llvm_unreachable("Target didn't implement insertNoop!")__builtin_unreachable();
70}
71
72/// insertNoops - Insert noops into the instruction stream at the specified
73/// point.
74void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
75 MachineBasicBlock::iterator MI,
76 unsigned Quantity) const {
77 for (unsigned i = 0; i < Quantity; ++i)
78 insertNoop(MBB, MI);
79}
80
81static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
82 return strncmp(Str, MAI.getCommentString().data(),
83 MAI.getCommentString().size()) == 0;
84}
85
86/// Measure the specified inline asm to determine an approximation of its
87/// length.
88/// Comments (which run till the next SeparatorString or newline) do not
89/// count as an instruction.
90/// Any other non-whitespace text is considered an instruction, with
91/// multiple instructions separated by SeparatorString or newlines.
92/// Variable-length instructions are not handled here; this function
93/// may be overloaded in the target code to do that.
94/// We implement a special case of the .space directive which takes only a
95/// single integer argument in base 10 that is the size in bytes. This is a
96/// restricted form of the GAS directive in that we only interpret
97/// simple--i.e. not a logical or arithmetic expression--size values without
98/// the optional fill value. This is primarily used for creating arbitrary
99/// sized inline asm blocks for testing purposes.
100unsigned TargetInstrInfo::getInlineAsmLength(
101 const char *Str,
102 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
103 // Count the number of instructions in the asm.
104 bool AtInsnStart = true;
105 unsigned Length = 0;
106 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
107 for (; *Str; ++Str) {
108 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
109 strlen(MAI.getSeparatorString())) == 0) {
110 AtInsnStart = true;
111 } else if (isAsmComment(Str, MAI)) {
112 // Stop counting as an instruction after a comment until the next
113 // separator.
114 AtInsnStart = false;
115 }
116
117 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
118 unsigned AddLength = MaxInstLength;
119 if (strncmp(Str, ".space", 6) == 0) {
120 char *EStr;
121 int SpaceSize;
122 SpaceSize = strtol(Str + 6, &EStr, 10);
123 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
124 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
125 ++EStr;
126 if (*EStr == '\0' || *EStr == '\n' ||
127 isAsmComment(EStr, MAI)) // Successfully parsed .space argument
128 AddLength = SpaceSize;
129 }
130 Length += AddLength;
131 AtInsnStart = false;
132 }
133 }
134
135 return Length;
136}
137
138/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
139/// after it, replacing it with an unconditional branch to NewDest.
140void
141TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
142 MachineBasicBlock *NewDest) const {
143 MachineBasicBlock *MBB = Tail->getParent();
144
145 // Remove all the old successors of MBB from the CFG.
146 while (!MBB->succ_empty())
147 MBB->removeSuccessor(MBB->succ_begin());
148
149 // Save off the debug loc before erasing the instruction.
150 DebugLoc DL = Tail->getDebugLoc();
151
152 // Update call site info and remove all the dead instructions
153 // from the end of MBB.
154 while (Tail != MBB->end()) {
155 auto MI = Tail++;
156 if (MI->shouldUpdateCallSiteInfo())
157 MBB->getParent()->eraseCallSiteInfo(&*MI);
158 MBB->erase(MI);
159 }
160
161 // If MBB isn't immediately before MBB, insert a branch to it.
162 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
163 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
164 MBB->addSuccessor(NewDest);
165}
166
167MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
168 bool NewMI, unsigned Idx1,
169 unsigned Idx2) const {
170 const MCInstrDesc &MCID = MI.getDesc();
171 bool HasDef = MCID.getNumDefs();
172 if (HasDef && !MI.getOperand(0).isReg())
173 // No idea how to commute this instruction. Target should implement its own.
174 return nullptr;
175
176 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
177 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
178 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&(static_cast<void> (0))
179 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&(static_cast<void> (0))
180 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.")(static_cast<void> (0));
181 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&(static_cast<void> (0))
182 "This only knows how to commute register operands so far")(static_cast<void> (0));
183
184 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
185 Register Reg1 = MI.getOperand(Idx1).getReg();
186 Register Reg2 = MI.getOperand(Idx2).getReg();
187 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
188 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
189 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
190 bool Reg1IsKill = MI.getOperand(Idx1).isKill();
191 bool Reg2IsKill = MI.getOperand(Idx2).isKill();
192 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
193 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
194 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
195 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
196 // Avoid calling isRenamable for virtual registers since we assert that
197 // renamable property is only queried/set for physical registers.
198 bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
199 ? MI.getOperand(Idx1).isRenamable()
200 : false;
201 bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
202 ? MI.getOperand(Idx2).isRenamable()
203 : false;
204 // If destination is tied to either of the commuted source register, then
205 // it must be updated.
206 if (HasDef && Reg0 == Reg1 &&
207 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
208 Reg2IsKill = false;
209 Reg0 = Reg2;
210 SubReg0 = SubReg2;
211 } else if (HasDef && Reg0 == Reg2 &&
212 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
213 Reg1IsKill = false;
214 Reg0 = Reg1;
215 SubReg0 = SubReg1;
216 }
217
218 MachineInstr *CommutedMI = nullptr;
219 if (NewMI) {
220 // Create a new instruction.
221 MachineFunction &MF = *MI.getMF();
222 CommutedMI = MF.CloneMachineInstr(&MI);
223 } else {
224 CommutedMI = &MI;
225 }
226
227 if (HasDef) {
228 CommutedMI->getOperand(0).setReg(Reg0);
229 CommutedMI->getOperand(0).setSubReg(SubReg0);
230 }
231 CommutedMI->getOperand(Idx2).setReg(Reg1);
232 CommutedMI->getOperand(Idx1).setReg(Reg2);
233 CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
234 CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
235 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
236 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
237 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
238 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
239 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
240 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
241 // Avoid calling setIsRenamable for virtual registers since we assert that
242 // renamable property is only queried/set for physical registers.
243 if (Register::isPhysicalRegister(Reg1))
244 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
245 if (Register::isPhysicalRegister(Reg2))
246 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
247 return CommutedMI;
248}
249
250MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
251 unsigned OpIdx1,
252 unsigned OpIdx2) const {
253 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
254 // any commutable operand, which is done in findCommutedOpIndices() method
255 // called below.
256 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
257 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
258 assert(MI.isCommutable() &&(static_cast<void> (0))
259 "Precondition violation: MI must be commutable.")(static_cast<void> (0));
260 return nullptr;
261 }
262 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
263}
264
265bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
266 unsigned &ResultIdx2,
267 unsigned CommutableOpIdx1,
268 unsigned CommutableOpIdx2) {
269 if (ResultIdx1 == CommuteAnyOperandIndex &&
270 ResultIdx2 == CommuteAnyOperandIndex) {
271 ResultIdx1 = CommutableOpIdx1;
272 ResultIdx2 = CommutableOpIdx2;
273 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
274 if (ResultIdx2 == CommutableOpIdx1)
275 ResultIdx1 = CommutableOpIdx2;
276 else if (ResultIdx2 == CommutableOpIdx2)
277 ResultIdx1 = CommutableOpIdx1;
278 else
279 return false;
280 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
281 if (ResultIdx1 == CommutableOpIdx1)
282 ResultIdx2 = CommutableOpIdx2;
283 else if (ResultIdx1 == CommutableOpIdx2)
284 ResultIdx2 = CommutableOpIdx1;
285 else
286 return false;
287 } else
288 // Check that the result operand indices match the given commutable
289 // operand indices.
290 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
291 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
292
293 return true;
294}
295
296bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
297 unsigned &SrcOpIdx1,
298 unsigned &SrcOpIdx2) const {
299 assert(!MI.isBundle() &&(static_cast<void> (0))
300 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles")(static_cast<void> (0));
301
302 const MCInstrDesc &MCID = MI.getDesc();
303 if (!MCID.isCommutable())
304 return false;
305
306 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
307 // is not true, then the target must implement this.
308 unsigned CommutableOpIdx1 = MCID.getNumDefs();
309 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
310 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
311 CommutableOpIdx1, CommutableOpIdx2))
312 return false;
313
314 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
315 // No idea.
316 return false;
317 return true;
318}
319
320bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
321 if (!MI.isTerminator()) return false;
322
323 // Conditional branch is a special case.
324 if (MI.isBranch() && !MI.isBarrier())
325 return true;
326 if (!MI.isPredicable())
327 return true;
328 return !isPredicated(MI);
329}
330
331bool TargetInstrInfo::PredicateInstruction(
332 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
333 bool MadeChange = false;
334
335 assert(!MI.isBundle() &&(static_cast<void> (0))
336 "TargetInstrInfo::PredicateInstruction() can't handle bundles")(static_cast<void> (0));
337
338 const MCInstrDesc &MCID = MI.getDesc();
339 if (!MI.isPredicable())
340 return false;
341
342 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
343 if (MCID.OpInfo[i].isPredicate()) {
344 MachineOperand &MO = MI.getOperand(i);
345 if (MO.isReg()) {
346 MO.setReg(Pred[j].getReg());
347 MadeChange = true;
348 } else if (MO.isImm()) {
349 MO.setImm(Pred[j].getImm());
350 MadeChange = true;
351 } else if (MO.isMBB()) {
352 MO.setMBB(Pred[j].getMBB());
353 MadeChange = true;
354 }
355 ++j;
356 }
357 }
358 return MadeChange;
359}
360
361bool TargetInstrInfo::hasLoadFromStackSlot(
362 const MachineInstr &MI,
363 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
364 size_t StartSize = Accesses.size();
365 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
366 oe = MI.memoperands_end();
367 o != oe; ++o) {
368 if ((*o)->isLoad() &&
369 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
370 Accesses.push_back(*o);
371 }
372 return Accesses.size() != StartSize;
373}
374
375bool TargetInstrInfo::hasStoreToStackSlot(
376 const MachineInstr &MI,
377 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
378 size_t StartSize = Accesses.size();
379 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
380 oe = MI.memoperands_end();
381 o != oe; ++o) {
382 if ((*o)->isStore() &&
383 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
384 Accesses.push_back(*o);
385 }
386 return Accesses.size() != StartSize;
387}
388
389bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
390 unsigned SubIdx, unsigned &Size,
391 unsigned &Offset,
392 const MachineFunction &MF) const {
393 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
394 if (!SubIdx) {
395 Size = TRI->getSpillSize(*RC);
396 Offset = 0;
397 return true;
398 }
399 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
400 // Convert bit size to byte size.
401 if (BitSize % 8)
402 return false;
403
404 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
405 if (BitOffset < 0 || BitOffset % 8)
406 return false;
407
408 Size = BitSize / 8;
409 Offset = (unsigned)BitOffset / 8;
410
411 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range")(static_cast<void> (0));
412
413 if (!MF.getDataLayout().isLittleEndian()) {
414 Offset = TRI->getSpillSize(*RC) - (Offset + Size);
415 }
416 return true;
417}
418
419void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
420 MachineBasicBlock::iterator I,
421 Register DestReg, unsigned SubIdx,
422 const MachineInstr &Orig,
423 const TargetRegisterInfo &TRI) const {
424 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
425 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
426 MBB.insert(I, MI);
427}
428
429bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
430 const MachineInstr &MI1,
431 const MachineRegisterInfo *MRI) const {
432 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
433}
434
435MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
436 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
437 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated")(static_cast<void> (0));
438 MachineFunction &MF = *MBB.getParent();
439 return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
440}
441
442// If the COPY instruction in MI can be folded to a stack operation, return
443// the register class to use.
444static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
445 unsigned FoldIdx) {
446 assert(MI.isCopy() && "MI must be a COPY instruction")(static_cast<void> (0));
447 if (MI.getNumOperands() != 2)
448 return nullptr;
449 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand")(static_cast<void> (0));
450
451 const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
452 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
453
454 if (FoldOp.getSubReg() || LiveOp.getSubReg())
455 return nullptr;
456
457 Register FoldReg = FoldOp.getReg();
458 Register LiveReg = LiveOp.getReg();
459
460 assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs")(static_cast<void> (0));
461
462 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
463 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
464
465 if (Register::isPhysicalRegister(LiveOp.getReg()))
466 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
467
468 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
469 return RC;
470
471 // FIXME: Allow folding when register classes are memory compatible.
472 return nullptr;
473}
474
475MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented")__builtin_unreachable(); }
476
477std::pair<unsigned, unsigned>
478TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
479 switch (MI.getOpcode()) {
480 case TargetOpcode::STACKMAP:
481 // StackMapLiveValues are foldable
482 return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
483 case TargetOpcode::PATCHPOINT:
484 // For PatchPoint, the call args are not foldable (even if reported in the
485 // stackmap e.g. via anyregcc).
486 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
487 case TargetOpcode::STATEPOINT:
488 // For statepoints, fold deopt and gc arguments, but not call arguments.
489 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
490 default:
491 llvm_unreachable("unexpected stackmap opcode")__builtin_unreachable();
492 }
493}
494
495static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
496 ArrayRef<unsigned> Ops, int FrameIndex,
497 const TargetInstrInfo &TII) {
498 unsigned StartIdx = 0;
499 unsigned NumDefs = 0;
500 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
501 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
502
503 unsigned DefToFoldIdx = MI.getNumOperands();
504
505 // Return false if any operands requested for folding are not foldable (not
506 // part of the stackmap's live values).
507 for (unsigned Op : Ops) {
508 if (Op < NumDefs) {
509 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs")(static_cast<void> (0));
510 DefToFoldIdx = Op;
511 } else if (Op < StartIdx) {
512 return nullptr;
513 }
514 if (MI.getOperand(Op).isTied())
515 return nullptr;
516 }
517
518 MachineInstr *NewMI =
519 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
520 MachineInstrBuilder MIB(MF, NewMI);
521
522 // No need to fold return, the meta data, and function arguments
523 for (unsigned i = 0; i < StartIdx; ++i)
524 if (i != DefToFoldIdx)
525 MIB.add(MI.getOperand(i));
526
527 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
528 MachineOperand &MO = MI.getOperand(i);
529 unsigned TiedTo = e;
530 (void)MI.isRegTiedToDefOperand(i, &TiedTo);
531
532 if (is_contained(Ops, i)) {
533 assert(TiedTo == e && "Cannot fold tied operands")(static_cast<void> (0));
534 unsigned SpillSize;
535 unsigned SpillOffset;
536 // Compute the spill slot size and offset.
537 const TargetRegisterClass *RC =
538 MF.getRegInfo().getRegClass(MO.getReg());
539 bool Valid =
540 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
541 if (!Valid)
542 report_fatal_error("cannot spill patchpoint subregister operand");
543 MIB.addImm(StackMaps::IndirectMemRefOp);
544 MIB.addImm(SpillSize);
545 MIB.addFrameIndex(FrameIndex);
546 MIB.addImm(SpillOffset);
547 } else {
548 MIB.add(MO);
549 if (TiedTo < e) {
550 assert(TiedTo < NumDefs && "Bad tied operand")(static_cast<void> (0));
551 if (TiedTo > DefToFoldIdx)
552 --TiedTo;
553 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
554 }
555 }
556 }
557 return NewMI;
558}
559
560MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
561 ArrayRef<unsigned> Ops, int FI,
562 LiveIntervals *LIS,
563 VirtRegMap *VRM) const {
564 auto Flags = MachineMemOperand::MONone;
565 for (unsigned OpIdx : Ops)
566 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
567 : MachineMemOperand::MOLoad;
568
569 MachineBasicBlock *MBB = MI.getParent();
570 assert(MBB && "foldMemoryOperand needs an inserted instruction")(static_cast<void> (0));
571 MachineFunction &MF = *MBB->getParent();
572
573 // If we're not folding a load into a subreg, the size of the load is the
574 // size of the spill slot. But if we are, we need to figure out what the
575 // actual load size is.
576 int64_t MemSize = 0;
577 const MachineFrameInfo &MFI = MF.getFrameInfo();
578 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
579
580 if (Flags & MachineMemOperand::MOStore) {
581 MemSize = MFI.getObjectSize(FI);
582 } else {
583 for (unsigned OpIdx : Ops) {
584 int64_t OpSize = MFI.getObjectSize(FI);
585
586 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
587 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
588 if (SubRegSize > 0 && !(SubRegSize % 8))
589 OpSize = SubRegSize / 8;
590 }
591
592 MemSize = std::max(MemSize, OpSize);
593 }
594 }
595
596 assert(MemSize && "Did not expect a zero-sized stack slot")(static_cast<void> (0));
597
598 MachineInstr *NewMI = nullptr;
599
600 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
601 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
602 MI.getOpcode() == TargetOpcode::STATEPOINT) {
603 // Fold stackmap/patchpoint.
604 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
605 if (NewMI)
606 MBB->insert(MI, NewMI);
607 } else {
608 // Ask the target to do the actual folding.
609 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
610 }
611
612 if (NewMI) {
613 NewMI->setMemRefs(MF, MI.memoperands());
614 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
615 assert((!(Flags & MachineMemOperand::MOStore) ||(static_cast<void> (0))
616 NewMI->mayStore()) &&(static_cast<void> (0))
617 "Folded a def to a non-store!")(static_cast<void> (0));
618 assert((!(Flags & MachineMemOperand::MOLoad) ||(static_cast<void> (0))
619 NewMI->mayLoad()) &&(static_cast<void> (0))
620 "Folded a use to a non-load!")(static_cast<void> (0));
621 assert(MFI.getObjectOffset(FI) != -1)(static_cast<void> (0));
622 MachineMemOperand *MMO =
623 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
624 Flags, MemSize, MFI.getObjectAlign(FI));
625 NewMI->addMemOperand(MF, MMO);
626
627 // The pass "x86 speculative load hardening" always attaches symbols to
628 // call instructions. We need copy it form old instruction.
629 NewMI->cloneInstrSymbols(MF, MI);
630
631 return NewMI;
632 }
633
634 // Straight COPY may fold as load/store.
635 if (!MI.isCopy() || Ops.size() != 1)
636 return nullptr;
637
638 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
639 if (!RC)
640 return nullptr;
641
642 const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
643 MachineBasicBlock::iterator Pos = MI;
644
645 if (Flags == MachineMemOperand::MOStore)
646 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
647 else
648 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
649 return &*--Pos;
650}
651
652MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
653 ArrayRef<unsigned> Ops,
654 MachineInstr &LoadMI,
655 LiveIntervals *LIS) const {
656 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!")(static_cast<void> (0));
657#ifndef NDEBUG1
658 for (unsigned OpIdx : Ops)
659 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!")(static_cast<void> (0));
660#endif
661
662 MachineBasicBlock &MBB = *MI.getParent();
663 MachineFunction &MF = *MBB.getParent();
664
665 // Ask the target to do the actual folding.
666 MachineInstr *NewMI = nullptr;
667 int FrameIndex = 0;
668
669 if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
670 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
671 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
672 isLoadFromStackSlot(LoadMI, FrameIndex)) {
673 // Fold stackmap/patchpoint.
674 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
675 if (NewMI)
676 NewMI = &*MBB.insert(MI, NewMI);
677 } else {
678 // Ask the target to do the actual folding.
679 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
680 }
681
682 if (!NewMI)
683 return nullptr;
684
685 // Copy the memoperands from the load to the folded instruction.
686 if (MI.memoperands_empty()) {
687 NewMI->setMemRefs(MF, LoadMI.memoperands());
688 } else {
689 // Handle the rare case of folding multiple loads.
690 NewMI->setMemRefs(MF, MI.memoperands());
691 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
692 E = LoadMI.memoperands_end();
693 I != E; ++I) {
694 NewMI->addMemOperand(MF, *I);
695 }
696 }
697 return NewMI;
698}
699
700bool TargetInstrInfo::hasReassociableOperands(
701 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
702 const MachineOperand &Op1 = Inst.getOperand(1);
703 const MachineOperand &Op2 = Inst.getOperand(2);
704 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
705
706 // We need virtual register definitions for the operands that we will
707 // reassociate.
708 MachineInstr *MI1 = nullptr;
709 MachineInstr *MI2 = nullptr;
710 if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
711 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
712 if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
713 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
714
715 // And they need to be in the trace (otherwise, they won't have a depth).
716 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
717}
718
719bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
720 bool &Commuted) const {
721 const MachineBasicBlock *MBB = Inst.getParent();
722 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
723 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
724 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
725 unsigned AssocOpcode = Inst.getOpcode();
726
727 // If only one operand has the same opcode and it's the second source operand,
728 // the operands must be commuted.
729 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
730 if (Commuted)
731 std::swap(MI1, MI2);
732
733 // 1. The previous instruction must be the same type as Inst.
734 // 2. The previous instruction must also be associative/commutative (this can
735 // be different even for instructions with the same opcode if traits like
736 // fast-math-flags are included).
737 // 3. The previous instruction must have virtual register definitions for its
738 // operands in the same basic block as Inst.
739 // 4. The previous instruction's result must only be used by Inst.
740 return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) &&
741 hasReassociableOperands(*MI1, MBB) &&
742 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
743}
744
745// 1. The operation must be associative and commutative.
746// 2. The instruction must have virtual register definitions for its
747// operands in the same basic block.
748// 3. The instruction must have a reassociable sibling.
749bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
750 bool &Commuted) const {
751 return isAssociativeAndCommutative(Inst) &&
752 hasReassociableOperands(Inst, Inst.getParent()) &&
753 hasReassociableSibling(Inst, Commuted);
754}
755
756// The concept of the reassociation pass is that these operations can benefit
757// from this kind of transformation:
758//
759// A = ? op ?
760// B = A op X (Prev)
761// C = B op Y (Root)
762// -->
763// A = ? op ?
764// B = X op Y
765// C = A op B
766//
767// breaking the dependency between A and B, allowing them to be executed in
768// parallel (or back-to-back in a pipeline) instead of depending on each other.
769
770// FIXME: This has the potential to be expensive (compile time) while not
771// improving the code at all. Some ways to limit the overhead:
772// 1. Track successful transforms; bail out if hit rate gets too low.
773// 2. Only enable at -O3 or some other non-default optimization level.
774// 3. Pre-screen pattern candidates here: if an operand of the previous
775// instruction is known to not increase the critical path, then don't match
776// that pattern.
777bool TargetInstrInfo::getMachineCombinerPatterns(
778 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
779 bool DoRegPressureReduce) const {
780 bool Commute;
781 if (isReassociationCandidate(Root, Commute)) {
782 // We found a sequence of instructions that may be suitable for a
783 // reassociation of operands to increase ILP. Specify each commutation
784 // possibility for the Prev instruction in the sequence and let the
785 // machine combiner decide if changing the operands is worthwhile.
786 if (Commute) {
787 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
788 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
789 } else {
790 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
791 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
792 }
793 return true;
794 }
795
796 return false;
797}
798
799/// Return true when a code sequence can improve loop throughput.
800bool
801TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
802 return false;
803}
804
805/// Attempt the reassociation transformation to reduce critical path length.
806/// See the above comments before getMachineCombinerPatterns().
807void TargetInstrInfo::reassociateOps(
808 MachineInstr &Root, MachineInstr &Prev,
809 MachineCombinerPattern Pattern,
810 SmallVectorImpl<MachineInstr *> &InsInstrs,
811 SmallVectorImpl<MachineInstr *> &DelInstrs,
812 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
813 MachineFunction *MF = Root.getMF();
814 MachineRegisterInfo &MRI = MF->getRegInfo();
815 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
816 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
817 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
818
819 // This array encodes the operand index for each parameter because the
820 // operands may be commuted. Each row corresponds to a pattern value,
821 // and each column specifies the index of A, B, X, Y.
822 unsigned OpIdx[4][4] = {
823 { 1, 1, 2, 2 },
824 { 1, 2, 2, 1 },
825 { 2, 1, 1, 2 },
826 { 2, 2, 1, 1 }
827 };
828
829 int Row;
830 switch (Pattern) {
831 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
832 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
833 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
834 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
835 default: llvm_unreachable("unexpected MachineCombinerPattern")__builtin_unreachable();
836 }
837
838 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
839 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
840 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
841 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
842 MachineOperand &OpC = Root.getOperand(0);
843
844 Register RegA = OpA.getReg();
845 Register RegB = OpB.getReg();
846 Register RegX = OpX.getReg();
847 Register RegY = OpY.getReg();
848 Register RegC = OpC.getReg();
849
850 if (Register::isVirtualRegister(RegA))
851 MRI.constrainRegClass(RegA, RC);
852 if (Register::isVirtualRegister(RegB))
853 MRI.constrainRegClass(RegB, RC);
854 if (Register::isVirtualRegister(RegX))
855 MRI.constrainRegClass(RegX, RC);
856 if (Register::isVirtualRegister(RegY))
857 MRI.constrainRegClass(RegY, RC);
858 if (Register::isVirtualRegister(RegC))
859 MRI.constrainRegClass(RegC, RC);
860
861 // Create a new virtual register for the result of (X op Y) instead of
862 // recycling RegB because the MachineCombiner's computation of the critical
863 // path requires a new register definition rather than an existing one.
864 Register NewVR = MRI.createVirtualRegister(RC);
865 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
866
867 unsigned Opcode = Root.getOpcode();
868 bool KillA = OpA.isKill();
869 bool KillX = OpX.isKill();
870 bool KillY = OpY.isKill();
871
872 // Create new instructions for insertion.
873 MachineInstrBuilder MIB1 =
874 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
875 .addReg(RegX, getKillRegState(KillX))
876 .addReg(RegY, getKillRegState(KillY));
877 MachineInstrBuilder MIB2 =
878 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
879 .addReg(RegA, getKillRegState(KillA))
880 .addReg(NewVR, getKillRegState(true));
881
882 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
883
884 // Record new instructions for insertion and old instructions for deletion.
885 InsInstrs.push_back(MIB1);
886 InsInstrs.push_back(MIB2);
887 DelInstrs.push_back(&Prev);
888 DelInstrs.push_back(&Root);
889}
890
891void TargetInstrInfo::genAlternativeCodeSequence(
892 MachineInstr &Root, MachineCombinerPattern Pattern,
893 SmallVectorImpl<MachineInstr *> &InsInstrs,
894 SmallVectorImpl<MachineInstr *> &DelInstrs,
895 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
896 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
897
898 // Select the previous instruction in the sequence based on the input pattern.
899 MachineInstr *Prev = nullptr;
1
'Prev' initialized to a null pointer value
900 switch (Pattern) {
2
Control jumps to the 'default' case at line 909
901 case MachineCombinerPattern::REASSOC_AX_BY:
902 case MachineCombinerPattern::REASSOC_XA_BY:
903 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
904 break;
905 case MachineCombinerPattern::REASSOC_AX_YB:
906 case MachineCombinerPattern::REASSOC_XA_YB:
907 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
908 break;
909 default:
910 break;
3
Execution continues on line 913
911 }
912
913 assert(Prev && "Unknown pattern for machine combiner")(static_cast<void> (0));
914
915 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
4
Forming reference to null pointer
916}
917
918bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
919 const MachineInstr &MI, AAResults *AA) const {
920 const MachineFunction &MF = *MI.getMF();
921 const MachineRegisterInfo &MRI = MF.getRegInfo();
922
923 // Remat clients assume operand 0 is the defined register.
924 if (!MI.getNumOperands() || !MI.getOperand(0).isReg() ||
925 MI.getOperand(0).isTied())
926 return false;
927 Register DefReg = MI.getOperand(0).getReg();
928
929 // A sub-register definition can only be rematerialized if the instruction
930 // doesn't read the other parts of the register. Otherwise it is really a
931 // read-modify-write operation on the full virtual register which cannot be
932 // moved safely.
933 if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
934 MI.readsVirtualRegister(DefReg))
935 return false;
936
937 // A load from a fixed stack slot can be rematerialized. This may be
938 // redundant with subsequent checks, but it's target-independent,
939 // simple, and a common case.
940 int FrameIdx = 0;
941 if (isLoadFromStackSlot(MI, FrameIdx) &&
942 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
943 return true;
944
945 // Avoid instructions obviously unsafe for remat.
946 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
947 MI.hasUnmodeledSideEffects())
948 return false;
949
950 // Don't remat inline asm. We have no idea how expensive it is
951 // even if it's side effect free.
952 if (MI.isInlineAsm())
953 return false;
954
955 // Avoid instructions which load from potentially varying memory.
956 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
957 return false;
958
959 // If any of the registers accessed are non-constant, conservatively assume
960 // the instruction is not rematerializable.
961 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
962 const MachineOperand &MO = MI.getOperand(i);
963 if (!MO.isReg()) continue;
964 Register Reg = MO.getReg();
965 if (Reg == 0)
966 continue;
967
968 // Check for a well-behaved physical register.
969 if (Register::isPhysicalRegister(Reg)) {
970 if (MO.isUse()) {
971 // If the physreg has no defs anywhere, it's just an ambient register
972 // and we can freely move its uses. Alternatively, if it's allocatable,
973 // it could get allocated to something with a def during allocation.
974 if (!MRI.isConstantPhysReg(Reg))
975 return false;
976 } else {
977 // A physreg def. We can't remat it.
978 return false;
979 }
980 continue;
981 }
982
983 // Only allow one virtual-register def. There may be multiple defs of the
984 // same virtual register, though.
985 if (MO.isDef() && Reg != DefReg)
986 return false;
987 }
988
989 // Everything checked out.
990 return true;
991}
992
993int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
994 const MachineFunction *MF = MI.getMF();
995 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
996 bool StackGrowsDown =
997 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
998
999 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1000 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1001
1002 if (!isFrameInstr(MI))
1003 return 0;
1004
1005 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1006
1007 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1008 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1009 SPAdj = -SPAdj;
1010
1011 return SPAdj;
1012}
1013
1014/// isSchedulingBoundary - Test if the given instruction should be
1015/// considered a scheduling boundary. This primarily includes labels
1016/// and terminators.
1017bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1018 const MachineBasicBlock *MBB,
1019 const MachineFunction &MF) const {
1020 // Terminators and labels can't be scheduled around.
1021 if (MI.isTerminator() || MI.isPosition())
1022 return true;
1023
1024 // INLINEASM_BR can jump to another block
1025 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1026 return true;
1027
1028 // Don't attempt to schedule around any instruction that defines
1029 // a stack-oriented pointer, as it's unlikely to be profitable. This
1030 // saves compile time, because it doesn't require every single
1031 // stack slot reference to depend on the instruction that does the
1032 // modification.
1033 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1034 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1035 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1036}
1037
1038// Provide a global flag for disabling the PreRA hazard recognizer that targets
1039// may choose to honor.
1040bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1041 return !DisableHazardRecognizer;
1042}
1043
1044// Default implementation of CreateTargetRAHazardRecognizer.
1045ScheduleHazardRecognizer *TargetInstrInfo::
1046CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1047 const ScheduleDAG *DAG) const {
1048 // Dummy hazard recognizer allows all instructions to issue.
1049 return new ScheduleHazardRecognizer();
1050}
1051
1052// Default implementation of CreateTargetMIHazardRecognizer.
1053ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1054 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1055 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1056}
1057
1058// Default implementation of CreateTargetPostRAHazardRecognizer.
1059ScheduleHazardRecognizer *TargetInstrInfo::
1060CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1061 const ScheduleDAG *DAG) const {
1062 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1063}
1064
1065// Default implementation of getMemOperandWithOffset.
1066bool TargetInstrInfo::getMemOperandWithOffset(
1067 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1068 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1069 SmallVector<const MachineOperand *, 4> BaseOps;
1070 unsigned Width;
1071 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1072 Width, TRI) ||
1073 BaseOps.size() != 1)
1074 return false;
1075 BaseOp = BaseOps.front();
1076 return true;
1077}
1078
1079//===----------------------------------------------------------------------===//
1080// SelectionDAG latency interface.
1081//===----------------------------------------------------------------------===//
1082
1083int
1084TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1085 SDNode *DefNode, unsigned DefIdx,
1086 SDNode *UseNode, unsigned UseIdx) const {
1087 if (!ItinData || ItinData->isEmpty())
1088 return -1;
1089
1090 if (!DefNode->isMachineOpcode())
1091 return -1;
1092
1093 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1094 if (!UseNode->isMachineOpcode())
1095 return ItinData->getOperandCycle(DefClass, DefIdx);
1096 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1097 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1098}
1099
1100int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1101 SDNode *N) const {
1102 if (!ItinData || ItinData->isEmpty())
1103 return 1;
1104
1105 if (!N->isMachineOpcode())
1106 return 1;
1107
1108 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1109}
1110
1111//===----------------------------------------------------------------------===//
1112// MachineInstr latency interface.
1113//===----------------------------------------------------------------------===//
1114
1115unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1116 const MachineInstr &MI) const {
1117 if (!ItinData || ItinData->isEmpty())
1118 return 1;
1119
1120 unsigned Class = MI.getDesc().getSchedClass();
1121 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1122 if (UOps >= 0)
1123 return UOps;
1124
1125 // The # of u-ops is dynamically determined. The specific target should
1126 // override this function to return the right number.
1127 return 1;
1128}
1129
1130/// Return the default expected latency for a def based on it's opcode.
1131unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1132 const MachineInstr &DefMI) const {
1133 if (DefMI.isTransient())
1134 return 0;
1135 if (DefMI.mayLoad())
1136 return SchedModel.LoadLatency;
1137 if (isHighLatencyDef(DefMI.getOpcode()))
1138 return SchedModel.HighLatency;
1139 return 1;
1140}
1141
1142unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1143 return 0;
1144}
1145
1146unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1147 const MachineInstr &MI,
1148 unsigned *PredCost) const {
1149 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1150 // still have a MinLatency property, which getStageLatency checks.
1151 if (!ItinData)
1152 return MI.mayLoad() ? 2 : 1;
1153
1154 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1155}
1156
1157bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1158 const MachineInstr &DefMI,
1159 unsigned DefIdx) const {
1160 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1161 if (!ItinData || ItinData->isEmpty())
1162 return false;
1163
1164 unsigned DefClass = DefMI.getDesc().getSchedClass();
1165 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1166 return (DefCycle != -1 && DefCycle <= 1);
1167}
1168
1169Optional<ParamLoadedValue>
1170TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1171 Register Reg) const {
1172 const MachineFunction *MF = MI.getMF();
1173 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1174 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1175 int64_t Offset;
1176 bool OffsetIsScalable;
1177
1178 // To simplify the sub-register handling, verify that we only need to
1179 // consider physical registers.
1180 assert(MF->getProperties().hasProperty((static_cast<void> (0))
1181 MachineFunctionProperties::Property::NoVRegs))(static_cast<void> (0));
1182
1183 if (auto DestSrc = isCopyInstr(MI)) {
1184 Register DestReg = DestSrc->Destination->getReg();
1185
1186 // If the copy destination is the forwarding reg, describe the forwarding
1187 // reg using the copy source as the backup location. Example:
1188 //
1189 // x0 = MOV x7
1190 // call callee(x0) ; x0 described as x7
1191 if (Reg == DestReg)
1192 return ParamLoadedValue(*DestSrc->Source, Expr);
1193
1194 // Cases where super- or sub-registers needs to be described should
1195 // be handled by the target's hook implementation.
1196 assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) &&(static_cast<void> (0))
1197 "TargetInstrInfo::describeLoadedValue can't describe super- or "(static_cast<void> (0))
1198 "sub-regs for copy instructions")(static_cast<void> (0));
1199 return None;
1200 } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1201 Register SrcReg = RegImm->Reg;
1202 Offset = RegImm->Imm;
1203 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1204 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1205 } else if (MI.hasOneMemOperand()) {
1206 // Only describe memory which provably does not escape the function. As
1207 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1208 // callee (or by another thread).
1209 const auto &TII = MF->getSubtarget().getInstrInfo();
1210 const MachineFrameInfo &MFI = MF->getFrameInfo();
1211 const MachineMemOperand *MMO = MI.memoperands()[0];
1212 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1213
1214 // If the address points to "special" memory (e.g. a spill slot), it's
1215 // sufficient to check that it isn't aliased by any high-level IR value.
1216 if (!PSV || PSV->mayAlias(&MFI))
1217 return None;
1218
1219 const MachineOperand *BaseOp;
1220 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1221 TRI))
1222 return None;
1223
1224 // FIXME: Scalable offsets are not yet handled in the offset code below.
1225 if (OffsetIsScalable)
1226 return None;
1227
1228 // TODO: Can currently only handle mem instructions with a single define.
1229 // An example from the x86 target:
1230 // ...
1231 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1232 // ...
1233 //
1234 if (MI.getNumExplicitDefs() != 1)
1235 return None;
1236
1237 // TODO: In what way do we need to take Reg into consideration here?
1238
1239 SmallVector<uint64_t, 8> Ops;
1240 DIExpression::appendOffset(Ops, Offset);
1241 Ops.push_back(dwarf::DW_OP_deref_size);
1242 Ops.push_back(MMO->getSize());
1243 Expr = DIExpression::prependOpcodes(Expr, Ops);
1244 return ParamLoadedValue(*BaseOp, Expr);
1245 }
1246
1247 return None;
1248}
1249
1250/// Both DefMI and UseMI must be valid. By default, call directly to the
1251/// itinerary. This may be overriden by the target.
1252int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1253 const MachineInstr &DefMI,
1254 unsigned DefIdx,
1255 const MachineInstr &UseMI,
1256 unsigned UseIdx) const {
1257 unsigned DefClass = DefMI.getDesc().getSchedClass();
1258 unsigned UseClass = UseMI.getDesc().getSchedClass();
1259 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1260}
1261
1262bool TargetInstrInfo::getRegSequenceInputs(
1263 const MachineInstr &MI, unsigned DefIdx,
1264 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1265 assert((MI.isRegSequence() ||(static_cast<void> (0))
1266 MI.isRegSequenceLike()) && "Instruction do not have the proper type")(static_cast<void> (0));
1267
1268 if (!MI.isRegSequence())
1269 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1270
1271 // We are looking at:
1272 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1273 assert(DefIdx == 0 && "REG_SEQUENCE only has one def")(static_cast<void> (0));
1274 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1275 OpIdx += 2) {
1276 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1277 if (MOReg.isUndef())
1278 continue;
1279 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1280 assert(MOSubIdx.isImm() &&(static_cast<void> (0))
1281 "One of the subindex of the reg_sequence is not an immediate")(static_cast<void> (0));
1282 // Record Reg:SubReg, SubIdx.
1283 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1284 (unsigned)MOSubIdx.getImm()));
1285 }
1286 return true;
1287}
1288
1289bool TargetInstrInfo::getExtractSubregInputs(
1290 const MachineInstr &MI, unsigned DefIdx,
1291 RegSubRegPairAndIdx &InputReg) const {
1292 assert((MI.isExtractSubreg() ||(static_cast<void> (0))
1293 MI.isExtractSubregLike()) && "Instruction do not have the proper type")(static_cast<void> (0));
1294
1295 if (!MI.isExtractSubreg())
1296 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1297
1298 // We are looking at:
1299 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1300 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def")(static_cast<void> (0));
1301 const MachineOperand &MOReg = MI.getOperand(1);
1302 if (MOReg.isUndef())
1303 return false;
1304 const MachineOperand &MOSubIdx = MI.getOperand(2);
1305 assert(MOSubIdx.isImm() &&(static_cast<void> (0))
1306 "The subindex of the extract_subreg is not an immediate")(static_cast<void> (0));
1307
1308 InputReg.Reg = MOReg.getReg();
1309 InputReg.SubReg = MOReg.getSubReg();
1310 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1311 return true;
1312}
1313
1314bool TargetInstrInfo::getInsertSubregInputs(
1315 const MachineInstr &MI, unsigned DefIdx,
1316 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1317 assert((MI.isInsertSubreg() ||(static_cast<void> (0))
1318 MI.isInsertSubregLike()) && "Instruction do not have the proper type")(static_cast<void> (0));
1319
1320 if (!MI.isInsertSubreg())
1321 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1322
1323 // We are looking at:
1324 // Def = INSERT_SEQUENCE v0, v1, sub0.
1325 assert(DefIdx == 0 && "INSERT_SUBREG only has one def")(static_cast<void> (0));
1326 const MachineOperand &MOBaseReg = MI.getOperand(1);
1327 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1328 if (MOInsertedReg.isUndef())
1329 return false;
1330 const MachineOperand &MOSubIdx = MI.getOperand(3);
1331 assert(MOSubIdx.isImm() &&(static_cast<void> (0))
1332 "One of the subindex of the reg_sequence is not an immediate")(static_cast<void> (0));
1333 BaseReg.Reg = MOBaseReg.getReg();
1334 BaseReg.SubReg = MOBaseReg.getSubReg();
1335
1336 InsertedReg.Reg = MOInsertedReg.getReg();
1337 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1338 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1339 return true;
1340}
1341
1342// Returns a MIRPrinter comment for this machine operand.
1343std::string TargetInstrInfo::createMIROperandComment(
1344 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1345 const TargetRegisterInfo *TRI) const {
1346
1347 if (!MI.isInlineAsm())
1348 return "";
1349
1350 std::string Flags;
1351 raw_string_ostream OS(Flags);
1352
1353 if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1354 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1355 unsigned ExtraInfo = Op.getImm();
1356 bool First = true;
1357 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1358 if (!First)
1359 OS << " ";
1360 First = false;
1361 OS << Info;
1362 }
1363
1364 return OS.str();
1365 }
1366
1367 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1368 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1369 return "";
1370
1371 assert(Op.isImm() && "Expected flag operand to be an immediate")(static_cast<void> (0));
1372 // Pretty print the inline asm operand descriptor.
1373 unsigned Flag = Op.getImm();
1374 unsigned Kind = InlineAsm::getKind(Flag);
1375 OS << InlineAsm::getKindName(Kind);
1376
1377 unsigned RCID = 0;
1378 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1379 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1380 if (TRI) {
1381 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1382 } else
1383 OS << ":RC" << RCID;
1384 }
1385
1386 if (InlineAsm::isMemKind(Flag)) {
1387 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1388 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1389 }
1390
1391 unsigned TiedTo = 0;
1392 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1393 OS << " tiedto:$" << TiedTo;
1394
1395 return OS.str();
1396}
1397
1398TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}