Bug Summary

File:llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
Warning:line 7960, column 5
Value stored to 'IsScaledIndex' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name TargetLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG -I include -I /build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-10-14-182615-21155-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/TargetLowering.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/CodeGen/CallingConvLower.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineJumpTableInfo.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/TargetRegisterInfo.h"
22#include "llvm/CodeGen/TargetSubtargetInfo.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/MC/MCAsmInfo.h"
28#include "llvm/MC/MCExpr.h"
29#include "llvm/Support/DivisionByConstantInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/KnownBits.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetLoweringObjectFile.h"
34#include "llvm/Target/TargetMachine.h"
35#include <cctype>
36using namespace llvm;
37
38/// NOTE: The TargetMachine owns TLOF.
39TargetLowering::TargetLowering(const TargetMachine &tm)
40 : TargetLoweringBase(tm) {}
41
42const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43 return nullptr;
44}
45
46bool TargetLowering::isPositionIndependent() const {
47 return getTargetMachine().isPositionIndependent();
48}
49
50/// Check whether a given call node is in tail position within its function. If
51/// so, it sets Chain to the input chain of the tail call.
52bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53 SDValue &Chain) const {
54 const Function &F = DAG.getMachineFunction().getFunction();
55
56 // First, check if tail calls have been disabled in this function.
57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58 return false;
59
60 // Conservatively require the attributes of the call to match those of
61 // the return. Ignore following attributes because they don't affect the
62 // call sequence.
63 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65 Attribute::DereferenceableOrNull, Attribute::NoAlias,
66 Attribute::NonNull})
67 CallerAttrs.removeAttribute(Attr);
68
69 if (CallerAttrs.hasAttributes())
70 return false;
71
72 // It's not safe to eliminate the sign / zero extension of the return value.
73 if (CallerAttrs.contains(Attribute::ZExt) ||
74 CallerAttrs.contains(Attribute::SExt))
75 return false;
76
77 // Check if the only use is a function return node.
78 return isUsedByReturnOnly(Node, Chain);
79}
80
81bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82 const uint32_t *CallerPreservedMask,
83 const SmallVectorImpl<CCValAssign> &ArgLocs,
84 const SmallVectorImpl<SDValue> &OutVals) const {
85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86 const CCValAssign &ArgLoc = ArgLocs[I];
87 if (!ArgLoc.isRegLoc())
88 continue;
89 MCRegister Reg = ArgLoc.getLocReg();
90 // Only look at callee saved registers.
91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92 continue;
93 // Check that we pass the value used for the caller.
94 // (We look for a CopyFromReg reading a virtual register that is used
95 // for the function live-in value of register Reg)
96 SDValue Value = OutVals[I];
97 if (Value->getOpcode() != ISD::CopyFromReg)
98 return false;
99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101 return false;
102 }
103 return true;
104}
105
106/// Set CallLoweringInfo attribute flags based on a call instruction
107/// and called function attributes.
108void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109 unsigned ArgIdx) {
110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122 Alignment = Call->getParamStackAlign(ArgIdx);
123 IndirectType = nullptr;
124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&(static_cast <bool> (IsByVal + IsPreallocated + IsInAlloca
<= 1 && "multiple ABI attributes?") ? void (0) : __assert_fail
("IsByVal + IsPreallocated + IsInAlloca <= 1 && \"multiple ABI attributes?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 125, __extension__ __PRETTY_FUNCTION__))
125 "multiple ABI attributes?")(static_cast <bool> (IsByVal + IsPreallocated + IsInAlloca
<= 1 && "multiple ABI attributes?") ? void (0) : __assert_fail
("IsByVal + IsPreallocated + IsInAlloca <= 1 && \"multiple ABI attributes?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 125, __extension__ __PRETTY_FUNCTION__))
;
126 if (IsByVal) {
127 IndirectType = Call->getParamByValType(ArgIdx);
128 if (!Alignment)
129 Alignment = Call->getParamAlign(ArgIdx);
130 }
131 if (IsPreallocated)
132 IndirectType = Call->getParamPreallocatedType(ArgIdx);
133 if (IsInAlloca)
134 IndirectType = Call->getParamInAllocaType(ArgIdx);
135}
136
137/// Generate a libcall taking the given operands as arguments and returning a
138/// result of type RetVT.
139std::pair<SDValue, SDValue>
140TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141 ArrayRef<SDValue> Ops,
142 MakeLibCallOptions CallOptions,
143 const SDLoc &dl,
144 SDValue InChain) const {
145 if (!InChain)
146 InChain = DAG.getEntryNode();
147
148 TargetLowering::ArgListTy Args;
149 Args.reserve(Ops.size());
150
151 TargetLowering::ArgListEntry Entry;
152 for (unsigned i = 0; i < Ops.size(); ++i) {
153 SDValue NewOp = Ops[i];
154 Entry.Node = NewOp;
155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157 CallOptions.IsSExt);
158 Entry.IsZExt = !Entry.IsSExt;
159
160 if (CallOptions.IsSoften &&
161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162 Entry.IsSExt = Entry.IsZExt = false;
163 }
164 Args.push_back(Entry);
165 }
166
167 if (LC == RTLIB::UNKNOWN_LIBCALL)
168 report_fatal_error("Unsupported library call operation!");
169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170 getPointerTy(DAG.getDataLayout()));
171
172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173 TargetLowering::CallLoweringInfo CLI(DAG);
174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175 bool zeroExtend = !signExtend;
176
177 if (CallOptions.IsSoften &&
178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179 signExtend = zeroExtend = false;
180 }
181
182 CLI.setDebugLoc(dl)
183 .setChain(InChain)
184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185 .setNoReturn(CallOptions.DoesNotReturn)
186 .setDiscardResult(!CallOptions.IsReturnValueUsed)
187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188 .setSExtResult(signExtend)
189 .setZExtResult(zeroExtend);
190 return LowerCallTo(CLI);
191}
192
193bool TargetLowering::findOptimalMemOpLowering(
194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195 unsigned SrcAS, const AttributeList &FuncAttributes) const {
196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197 return false;
198
199 EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200
201 if (VT == MVT::Other) {
202 // Use the largest integer type whose alignment constraints are satisfied.
203 // We only need to check DstAlign here as SrcAlign is always greater or
204 // equal to DstAlign (or zero).
205 VT = MVT::i64;
206 if (Op.isFixedDstAlign())
207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210 assert(VT.isInteger())(static_cast <bool> (VT.isInteger()) ? void (0) : __assert_fail
("VT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 210, __extension__ __PRETTY_FUNCTION__))
;
211
212 // Find the largest legal integer type.
213 MVT LVT = MVT::i64;
214 while (!isTypeLegal(LVT))
215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216 assert(LVT.isInteger())(static_cast <bool> (LVT.isInteger()) ? void (0) : __assert_fail
("LVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 216, __extension__ __PRETTY_FUNCTION__))
;
217
218 // If the type we've chosen is larger than the largest legal integer type
219 // then use that instead.
220 if (VT.bitsGT(LVT))
221 VT = LVT;
222 }
223
224 unsigned NumMemOps = 0;
225 uint64_t Size = Op.size();
226 while (Size) {
227 unsigned VTSize = VT.getSizeInBits() / 8;
228 while (VTSize > Size) {
229 // For now, only use non-vector load / store's for the left-over pieces.
230 EVT NewVT = VT;
231 unsigned NewVTSize;
232
233 bool Found = false;
234 if (VT.isVector() || VT.isFloatingPoint()) {
235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237 isSafeMemOpType(NewVT.getSimpleVT()))
238 Found = true;
239 else if (NewVT == MVT::i64 &&
240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241 isSafeMemOpType(MVT::f64)) {
242 // i64 is usually not legal on 32-bit targets, but f64 may be.
243 NewVT = MVT::f64;
244 Found = true;
245 }
246 }
247
248 if (!Found) {
249 do {
250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251 if (NewVT == MVT::i8)
252 break;
253 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254 }
255 NewVTSize = NewVT.getSizeInBits() / 8;
256
257 // If the new VT cannot cover all of the remaining bits, then consider
258 // issuing a (or a pair of) unaligned and overlapping load / store.
259 bool Fast;
260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261 allowsMisalignedMemoryAccesses(
262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263 MachineMemOperand::MONone, &Fast) &&
264 Fast)
265 VTSize = Size;
266 else {
267 VT = NewVT;
268 VTSize = NewVTSize;
269 }
270 }
271
272 if (++NumMemOps > Limit)
273 return false;
274
275 MemOps.push_back(VT);
276 Size -= VTSize;
277 }
278
279 return true;
280}
281
282/// Soften the operands of a comparison. This code is shared among BR_CC,
283/// SELECT_CC, and SETCC handlers.
284void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285 SDValue &NewLHS, SDValue &NewRHS,
286 ISD::CondCode &CCCode,
287 const SDLoc &dl, const SDValue OldLHS,
288 const SDValue OldRHS) const {
289 SDValue Chain;
290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291 OldRHS, Chain);
292}
293
294void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295 SDValue &NewLHS, SDValue &NewRHS,
296 ISD::CondCode &CCCode,
297 const SDLoc &dl, const SDValue OldLHS,
298 const SDValue OldRHS,
299 SDValue &Chain,
300 bool IsSignaling) const {
301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302 // not supporting it. We can update this code when libgcc provides such
303 // functions.
304
305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)(static_cast <bool> ((VT == MVT::f32 || VT == MVT::f64 ||
VT == MVT::f128 || VT == MVT::ppcf128) && "Unsupported setcc type!"
) ? void (0) : __assert_fail ("(VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) && \"Unsupported setcc type!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 306, __extension__ __PRETTY_FUNCTION__))
306 && "Unsupported setcc type!")(static_cast <bool> ((VT == MVT::f32 || VT == MVT::f64 ||
VT == MVT::f128 || VT == MVT::ppcf128) && "Unsupported setcc type!"
) ? void (0) : __assert_fail ("(VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) && \"Unsupported setcc type!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 306, __extension__ __PRETTY_FUNCTION__))
;
307
308 // Expand into one or more soft-fp libcall(s).
309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310 bool ShouldInvertCC = false;
311 switch (CCCode) {
312 case ISD::SETEQ:
313 case ISD::SETOEQ:
314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317 break;
318 case ISD::SETNE:
319 case ISD::SETUNE:
320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321 (VT == MVT::f64) ? RTLIB::UNE_F64 :
322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323 break;
324 case ISD::SETGE:
325 case ISD::SETOGE:
326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327 (VT == MVT::f64) ? RTLIB::OGE_F64 :
328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329 break;
330 case ISD::SETLT:
331 case ISD::SETOLT:
332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333 (VT == MVT::f64) ? RTLIB::OLT_F64 :
334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335 break;
336 case ISD::SETLE:
337 case ISD::SETOLE:
338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339 (VT == MVT::f64) ? RTLIB::OLE_F64 :
340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341 break;
342 case ISD::SETGT:
343 case ISD::SETOGT:
344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345 (VT == MVT::f64) ? RTLIB::OGT_F64 :
346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347 break;
348 case ISD::SETO:
349 ShouldInvertCC = true;
350 LLVM_FALLTHROUGH[[gnu::fallthrough]];
351 case ISD::SETUO:
352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353 (VT == MVT::f64) ? RTLIB::UO_F64 :
354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355 break;
356 case ISD::SETONE:
357 // SETONE = O && UNE
358 ShouldInvertCC = true;
359 LLVM_FALLTHROUGH[[gnu::fallthrough]];
360 case ISD::SETUEQ:
361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362 (VT == MVT::f64) ? RTLIB::UO_F64 :
363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367 break;
368 default:
369 // Invert CC for unordered comparisons
370 ShouldInvertCC = true;
371 switch (CCCode) {
372 case ISD::SETULT:
373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374 (VT == MVT::f64) ? RTLIB::OGE_F64 :
375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376 break;
377 case ISD::SETULE:
378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379 (VT == MVT::f64) ? RTLIB::OGT_F64 :
380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381 break;
382 case ISD::SETUGT:
383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384 (VT == MVT::f64) ? RTLIB::OLE_F64 :
385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386 break;
387 case ISD::SETUGE:
388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389 (VT == MVT::f64) ? RTLIB::OLT_F64 :
390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391 break;
392 default: llvm_unreachable("Do not know how to soften this setcc!")::llvm::llvm_unreachable_internal("Do not know how to soften this setcc!"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 392)
;
393 }
394 }
395
396 // Use the target specific return value for comparions lib calls.
397 EVT RetVT = getCmpLibcallReturnType();
398 SDValue Ops[2] = {NewLHS, NewRHS};
399 TargetLowering::MakeLibCallOptions CallOptions;
400 EVT OpsVT[2] = { OldLHS.getValueType(),
401 OldRHS.getValueType() };
402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404 NewLHS = Call.first;
405 NewRHS = DAG.getConstant(0, dl, RetVT);
406
407 CCCode = getCmpLibcallCC(LC1);
408 if (ShouldInvertCC) {
409 assert(RetVT.isInteger())(static_cast <bool> (RetVT.isInteger()) ? void (0) : __assert_fail
("RetVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 409, __extension__ __PRETTY_FUNCTION__))
;
410 CCCode = getSetCCInverse(CCCode, RetVT);
411 }
412
413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414 // Update Chain.
415 Chain = Call.second;
416 } else {
417 EVT SetCCVT =
418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421 CCCode = getCmpLibcallCC(LC2);
422 if (ShouldInvertCC)
423 CCCode = getSetCCInverse(CCCode, RetVT);
424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425 if (Chain)
426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427 Call2.second);
428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429 Tmp.getValueType(), Tmp, NewLHS);
430 NewRHS = SDValue();
431 }
432}
433
434/// Return the entry encoding for a jump table in the current function. The
435/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436unsigned TargetLowering::getJumpTableEncoding() const {
437 // In non-pic modes, just use the address of a block.
438 if (!isPositionIndependent())
439 return MachineJumpTableInfo::EK_BlockAddress;
440
441 // In PIC mode, if the target supports a GPRel32 directive, use it.
442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444
445 // Otherwise, use a label difference.
446 return MachineJumpTableInfo::EK_LabelDifference32;
447}
448
449SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450 SelectionDAG &DAG) const {
451 // If our PIC model is GP relative, use the global offset table as the base.
452 unsigned JTEncoding = getJumpTableEncoding();
453
454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457
458 return Table;
459}
460
461/// This returns the relocation base for the given PIC jumptable, the same as
462/// getPICJumpTableRelocBase, but as an MCExpr.
463const MCExpr *
464TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465 unsigned JTI,MCContext &Ctx) const{
466 // The normal PIC reloc base is the label at the start of the jump table.
467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468}
469
470bool
471TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472 const TargetMachine &TM = getTargetMachine();
473 const GlobalValue *GV = GA->getGlobal();
474
475 // If the address is not even local to this DSO we will have to load it from
476 // a got and then add the offset.
477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478 return false;
479
480 // If the code is position independent we will have to add a base register.
481 if (isPositionIndependent())
482 return false;
483
484 // Otherwise we can do it.
485 return true;
486}
487
488//===----------------------------------------------------------------------===//
489// Optimization Methods
490//===----------------------------------------------------------------------===//
491
492/// If the specified instruction has a constant integer operand and there are
493/// bits set in that constant that are not demanded, then clear those bits and
494/// return true.
495bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496 const APInt &DemandedBits,
497 const APInt &DemandedElts,
498 TargetLoweringOpt &TLO) const {
499 SDLoc DL(Op);
500 unsigned Opcode = Op.getOpcode();
501
502 // Do target-specific constant optimization.
503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504 return TLO.New.getNode();
505
506 // FIXME: ISD::SELECT, ISD::SELECT_CC
507 switch (Opcode) {
508 default:
509 break;
510 case ISD::XOR:
511 case ISD::AND:
512 case ISD::OR: {
513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514 if (!Op1C || Op1C->isOpaque())
515 return false;
516
517 // If this is a 'not' op, don't touch it because that's a canonical form.
518 const APInt &C = Op1C->getAPIntValue();
519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520 return false;
521
522 if (!C.isSubsetOf(DemandedBits)) {
523 EVT VT = Op.getValueType();
524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526 return TLO.CombineTo(Op, NewOp);
527 }
528
529 break;
530 }
531 }
532
533 return false;
534}
535
536bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537 const APInt &DemandedBits,
538 TargetLoweringOpt &TLO) const {
539 EVT VT = Op.getValueType();
540 APInt DemandedElts = VT.isVector()
541 ? APInt::getAllOnes(VT.getVectorNumElements())
542 : APInt(1, 1);
543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544}
545
546/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548/// generalized for targets with other types of implicit widening casts.
549bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550 const APInt &Demanded,
551 TargetLoweringOpt &TLO) const {
552 assert(Op.getNumOperands() == 2 &&(static_cast <bool> (Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!") ? void (
0) : __assert_fail ("Op.getNumOperands() == 2 && \"ShrinkDemandedOp only supports binary operators!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 553, __extension__ __PRETTY_FUNCTION__))
553 "ShrinkDemandedOp only supports binary operators!")(static_cast <bool> (Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!") ? void (
0) : __assert_fail ("Op.getNumOperands() == 2 && \"ShrinkDemandedOp only supports binary operators!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 553, __extension__ __PRETTY_FUNCTION__))
;
554 assert(Op.getNode()->getNumValues() == 1 &&(static_cast <bool> (Op.getNode()->getNumValues() ==
1 && "ShrinkDemandedOp only supports nodes with one result!"
) ? void (0) : __assert_fail ("Op.getNode()->getNumValues() == 1 && \"ShrinkDemandedOp only supports nodes with one result!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 555, __extension__ __PRETTY_FUNCTION__))
555 "ShrinkDemandedOp only supports nodes with one result!")(static_cast <bool> (Op.getNode()->getNumValues() ==
1 && "ShrinkDemandedOp only supports nodes with one result!"
) ? void (0) : __assert_fail ("Op.getNode()->getNumValues() == 1 && \"ShrinkDemandedOp only supports nodes with one result!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 555, __extension__ __PRETTY_FUNCTION__))
;
556
557 SelectionDAG &DAG = TLO.DAG;
558 SDLoc dl(Op);
559
560 // Early return, as this function cannot handle vector types.
561 if (Op.getValueType().isVector())
562 return false;
563
564 // Don't do this if the node has another user, which may require the
565 // full value.
566 if (!Op.getNode()->hasOneUse())
567 return false;
568
569 // Search for the smallest integer type with free casts to and from
570 // Op's type. For expedience, just check power-of-2 integer types.
571 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572 unsigned DemandedSize = Demanded.getActiveBits();
573 unsigned SmallVTBits = DemandedSize;
574 if (!isPowerOf2_32(SmallVTBits))
575 SmallVTBits = NextPowerOf2(SmallVTBits);
576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579 TLI.isZExtFree(SmallVT, Op.getValueType())) {
580 // We found a type with free casts.
581 SDValue X = DAG.getNode(
582 Op.getOpcode(), dl, SmallVT,
583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?")(static_cast <bool> (DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?") ? void (0) : __assert_fail (
"DemandedSize <= SmallVTBits && \"Narrowed below demanded bits?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 585, __extension__ __PRETTY_FUNCTION__))
;
586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587 return TLO.CombineTo(Op, Z);
588 }
589 }
590 return false;
591}
592
593bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594 DAGCombinerInfo &DCI) const {
595 SelectionDAG &DAG = DCI.DAG;
596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597 !DCI.isBeforeLegalizeOps());
598 KnownBits Known;
599
600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601 if (Simplified) {
602 DCI.AddToWorklist(Op.getNode());
603 DCI.CommitTargetLoweringOpt(TLO);
604 }
605 return Simplified;
606}
607
608bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609 KnownBits &Known,
610 TargetLoweringOpt &TLO,
611 unsigned Depth,
612 bool AssumeSingleUse) const {
613 EVT VT = Op.getValueType();
614
615 // TODO: We can probably do more work on calculating the known bits and
616 // simplifying the operations for scalable vectors, but for now we just
617 // bail out.
618 if (VT.isScalableVector()) {
619 // Pretend we don't know anything for now.
620 Known = KnownBits(DemandedBits.getBitWidth());
621 return false;
622 }
623
624 APInt DemandedElts = VT.isVector()
625 ? APInt::getAllOnes(VT.getVectorNumElements())
626 : APInt(1, 1);
627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628 AssumeSingleUse);
629}
630
631// TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632// TODO: Under what circumstances can we create nodes? Constant folding?
633SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635 SelectionDAG &DAG, unsigned Depth) const {
636 // Limit search depth.
637 if (Depth >= SelectionDAG::MaxRecursionDepth)
638 return SDValue();
639
640 // Ignore UNDEFs.
641 if (Op.isUndef())
642 return SDValue();
643
644 // Not demanding any bits/elts from Op.
645 if (DemandedBits == 0 || DemandedElts == 0)
646 return DAG.getUNDEF(Op.getValueType());
647
648 unsigned NumElts = DemandedElts.getBitWidth();
649 unsigned BitWidth = DemandedBits.getBitWidth();
650 KnownBits LHSKnown, RHSKnown;
651 switch (Op.getOpcode()) {
652 case ISD::BITCAST: {
653 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
654 EVT SrcVT = Src.getValueType();
655 EVT DstVT = Op.getValueType();
656 if (SrcVT == DstVT)
657 return Src;
658
659 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
660 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
661 if (NumSrcEltBits == NumDstEltBits)
662 if (SDValue V = SimplifyMultipleUseDemandedBits(
663 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
664 return DAG.getBitcast(DstVT, V);
665
666 // TODO - bigendian once we have test coverage.
667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
668 DAG.getDataLayout().isLittleEndian()) {
669 unsigned Scale = NumDstEltBits / NumSrcEltBits;
670 unsigned NumSrcElts = SrcVT.getVectorNumElements();
671 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
672 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
673 for (unsigned i = 0; i != Scale; ++i) {
674 unsigned Offset = i * NumSrcEltBits;
675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
676 if (!Sub.isZero()) {
677 DemandedSrcBits |= Sub;
678 for (unsigned j = 0; j != NumElts; ++j)
679 if (DemandedElts[j])
680 DemandedSrcElts.setBit((j * Scale) + i);
681 }
682 }
683
684 if (SDValue V = SimplifyMultipleUseDemandedBits(
685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686 return DAG.getBitcast(DstVT, V);
687 }
688
689 // TODO - bigendian once we have test coverage.
690 if ((NumSrcEltBits % NumDstEltBits) == 0 &&
691 DAG.getDataLayout().isLittleEndian()) {
692 unsigned Scale = NumSrcEltBits / NumDstEltBits;
693 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
694 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
695 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
696 for (unsigned i = 0; i != NumElts; ++i)
697 if (DemandedElts[i]) {
698 unsigned Offset = (i % Scale) * NumDstEltBits;
699 DemandedSrcBits.insertBits(DemandedBits, Offset);
700 DemandedSrcElts.setBit(i / Scale);
701 }
702
703 if (SDValue V = SimplifyMultipleUseDemandedBits(
704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705 return DAG.getBitcast(DstVT, V);
706 }
707
708 break;
709 }
710 case ISD::AND: {
711 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
712 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
713
714 // If all of the demanded bits are known 1 on one side, return the other.
715 // These bits cannot contribute to the result of the 'and' in this
716 // context.
717 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
718 return Op.getOperand(0);
719 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
720 return Op.getOperand(1);
721 break;
722 }
723 case ISD::OR: {
724 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
725 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
726
727 // If all of the demanded bits are known zero on one side, return the
728 // other. These bits cannot contribute to the result of the 'or' in this
729 // context.
730 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
731 return Op.getOperand(0);
732 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
733 return Op.getOperand(1);
734 break;
735 }
736 case ISD::XOR: {
737 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
738 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
739
740 // If all of the demanded bits are known zero on one side, return the
741 // other.
742 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
743 return Op.getOperand(0);
744 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
745 return Op.getOperand(1);
746 break;
747 }
748 case ISD::SHL: {
749 // If we are only demanding sign bits then we can use the shift source
750 // directly.
751 if (const APInt *MaxSA =
752 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
753 SDValue Op0 = Op.getOperand(0);
754 unsigned ShAmt = MaxSA->getZExtValue();
755 unsigned NumSignBits =
756 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
757 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
758 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
759 return Op0;
760 }
761 break;
762 }
763 case ISD::SETCC: {
764 SDValue Op0 = Op.getOperand(0);
765 SDValue Op1 = Op.getOperand(1);
766 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
767 // If (1) we only need the sign-bit, (2) the setcc operands are the same
768 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
769 // -1, we may be able to bypass the setcc.
770 if (DemandedBits.isSignMask() &&
771 Op0.getScalarValueSizeInBits() == BitWidth &&
772 getBooleanContents(Op0.getValueType()) ==
773 BooleanContent::ZeroOrNegativeOneBooleanContent) {
774 // If we're testing X < 0, then this compare isn't needed - just use X!
775 // FIXME: We're limiting to integer types here, but this should also work
776 // if we don't care about FP signed-zero. The use of SETLT with FP means
777 // that we don't care about NaNs.
778 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
779 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
780 return Op0;
781 }
782 break;
783 }
784 case ISD::SIGN_EXTEND_INREG: {
785 // If none of the extended bits are demanded, eliminate the sextinreg.
786 SDValue Op0 = Op.getOperand(0);
787 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
788 unsigned ExBits = ExVT.getScalarSizeInBits();
789 if (DemandedBits.getActiveBits() <= ExBits)
790 return Op0;
791 // If the input is already sign extended, just drop the extension.
792 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
793 if (NumSignBits >= (BitWidth - ExBits + 1))
794 return Op0;
795 break;
796 }
797 case ISD::ANY_EXTEND_VECTOR_INREG:
798 case ISD::SIGN_EXTEND_VECTOR_INREG:
799 case ISD::ZERO_EXTEND_VECTOR_INREG: {
800 // If we only want the lowest element and none of extended bits, then we can
801 // return the bitcasted source vector.
802 SDValue Src = Op.getOperand(0);
803 EVT SrcVT = Src.getValueType();
804 EVT DstVT = Op.getValueType();
805 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806 DAG.getDataLayout().isLittleEndian() &&
807 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
808 return DAG.getBitcast(DstVT, Src);
809 }
810 break;
811 }
812 case ISD::INSERT_VECTOR_ELT: {
813 // If we don't demand the inserted element, return the base vector.
814 SDValue Vec = Op.getOperand(0);
815 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
816 EVT VecVT = Vec.getValueType();
817 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
818 !DemandedElts[CIdx->getZExtValue()])
819 return Vec;
820 break;
821 }
822 case ISD::INSERT_SUBVECTOR: {
823 SDValue Vec = Op.getOperand(0);
824 SDValue Sub = Op.getOperand(1);
825 uint64_t Idx = Op.getConstantOperandVal(2);
826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
827 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
828 // If we don't demand the inserted subvector, return the base vector.
829 if (DemandedSubElts == 0)
830 return Vec;
831 // If this simply widens the lowest subvector, see if we can do it earlier.
832 if (Idx == 0 && Vec.isUndef()) {
833 if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
834 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
835 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
836 Op.getOperand(0), NewSub, Op.getOperand(2));
837 }
838 break;
839 }
840 case ISD::VECTOR_SHUFFLE: {
841 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
842
843 // If all the demanded elts are from one operand and are inline,
844 // then we can use the operand directly.
845 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
846 for (unsigned i = 0; i != NumElts; ++i) {
847 int M = ShuffleMask[i];
848 if (M < 0 || !DemandedElts[i])
849 continue;
850 AllUndef = false;
851 IdentityLHS &= (M == (int)i);
852 IdentityRHS &= ((M - NumElts) == i);
853 }
854
855 if (AllUndef)
856 return DAG.getUNDEF(Op.getValueType());
857 if (IdentityLHS)
858 return Op.getOperand(0);
859 if (IdentityRHS)
860 return Op.getOperand(1);
861 break;
862 }
863 default:
864 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
865 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
866 Op, DemandedBits, DemandedElts, DAG, Depth))
867 return V;
868 break;
869 }
870 return SDValue();
871}
872
873SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
874 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
875 unsigned Depth) const {
876 EVT VT = Op.getValueType();
877 APInt DemandedElts = VT.isVector()
878 ? APInt::getAllOnes(VT.getVectorNumElements())
879 : APInt(1, 1);
880 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
881 Depth);
882}
883
884SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
885 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
886 unsigned Depth) const {
887 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
888 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
889 Depth);
890}
891
892/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
893/// result of Op are ever used downstream. If we can use this information to
894/// simplify Op, create a new simplified DAG node and return true, returning the
895/// original and new nodes in Old and New. Otherwise, analyze the expression and
896/// return a mask of Known bits for the expression (used to simplify the
897/// caller). The Known bits may only be accurate for those bits in the
898/// OriginalDemandedBits and OriginalDemandedElts.
899bool TargetLowering::SimplifyDemandedBits(
900 SDValue Op, const APInt &OriginalDemandedBits,
901 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
902 unsigned Depth, bool AssumeSingleUse) const {
903 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
904 assert(Op.getScalarValueSizeInBits() == BitWidth &&(static_cast <bool> (Op.getScalarValueSizeInBits() == BitWidth
&& "Mask size mismatches value type size!") ? void (
0) : __assert_fail ("Op.getScalarValueSizeInBits() == BitWidth && \"Mask size mismatches value type size!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 905, __extension__ __PRETTY_FUNCTION__))
905 "Mask size mismatches value type size!")(static_cast <bool> (Op.getScalarValueSizeInBits() == BitWidth
&& "Mask size mismatches value type size!") ? void (
0) : __assert_fail ("Op.getScalarValueSizeInBits() == BitWidth && \"Mask size mismatches value type size!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 905, __extension__ __PRETTY_FUNCTION__))
;
906
907 // Don't know anything.
908 Known = KnownBits(BitWidth);
909
910 // TODO: We can probably do more work on calculating the known bits and
911 // simplifying the operations for scalable vectors, but for now we just
912 // bail out.
913 if (Op.getValueType().isScalableVector())
914 return false;
915
916 unsigned NumElts = OriginalDemandedElts.getBitWidth();
917 assert((!Op.getValueType().isVector() ||(static_cast <bool> ((!Op.getValueType().isVector() || NumElts
== Op.getValueType().getVectorNumElements()) && "Unexpected vector size"
) ? void (0) : __assert_fail ("(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 919, __extension__ __PRETTY_FUNCTION__))
918 NumElts == Op.getValueType().getVectorNumElements()) &&(static_cast <bool> ((!Op.getValueType().isVector() || NumElts
== Op.getValueType().getVectorNumElements()) && "Unexpected vector size"
) ? void (0) : __assert_fail ("(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 919, __extension__ __PRETTY_FUNCTION__))
919 "Unexpected vector size")(static_cast <bool> ((!Op.getValueType().isVector() || NumElts
== Op.getValueType().getVectorNumElements()) && "Unexpected vector size"
) ? void (0) : __assert_fail ("(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 919, __extension__ __PRETTY_FUNCTION__))
;
920
921 APInt DemandedBits = OriginalDemandedBits;
922 APInt DemandedElts = OriginalDemandedElts;
923 SDLoc dl(Op);
924 auto &DL = TLO.DAG.getDataLayout();
925
926 // Undef operand.
927 if (Op.isUndef())
928 return false;
929
930 if (Op.getOpcode() == ISD::Constant) {
931 // We know all of the bits for a constant!
932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933 return false;
934 }
935
936 if (Op.getOpcode() == ISD::ConstantFP) {
937 // We know all of the bits for a floating point constant!
938 Known = KnownBits::makeConstant(
939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940 return false;
941 }
942
943 // Other users may use these bits.
944 EVT VT = Op.getValueType();
945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946 if (Depth != 0) {
947 // If not at the root, Just compute the Known bits to
948 // simplify things downstream.
949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950 return false;
951 }
952 // If this is the root being simplified, allow it to have multiple uses,
953 // just set the DemandedBits/Elts to all bits.
954 DemandedBits = APInt::getAllOnes(BitWidth);
955 DemandedElts = APInt::getAllOnes(NumElts);
956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957 // Not demanding any bits/elts from Op.
958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960 // Limit search depth.
961 return false;
962 }
963
964 KnownBits Known2;
965 switch (Op.getOpcode()) {
966 case ISD::TargetConstant:
967 llvm_unreachable("Can't simplify this node")::llvm::llvm_unreachable_internal("Can't simplify this node",
"/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 967)
;
968 case ISD::SCALAR_TO_VECTOR: {
969 if (!DemandedElts[0])
970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971
972 KnownBits SrcKnown;
973 SDValue Src = Op.getOperand(0);
974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977 return true;
978
979 // Upper elements are undef, so only get the knownbits if we just demand
980 // the bottom element.
981 if (DemandedElts == 1)
982 Known = SrcKnown.anyextOrTrunc(BitWidth);
983 break;
984 }
985 case ISD::BUILD_VECTOR:
986 // Collect the known bits that are shared by every demanded element.
987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989 return false; // Don't fall through, will infinitely loop.
990 case ISD::LOAD: {
991 auto *LD = cast<LoadSDNode>(Op);
992 if (getTargetConstantFromLoad(LD)) {
993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994 return false; // Don't fall through, will infinitely loop.
995 }
996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997 // If this is a ZEXTLoad and we are looking at the loaded value.
998 EVT MemVT = LD->getMemoryVT();
999 unsigned MemBits = MemVT.getScalarSizeInBits();
1000 Known.Zero.setBitsFrom(MemBits);
1001 return false; // Don't fall through, will infinitely loop.
1002 }
1003 break;
1004 }
1005 case ISD::INSERT_VECTOR_ELT: {
1006 SDValue Vec = Op.getOperand(0);
1007 SDValue Scl = Op.getOperand(1);
1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009 EVT VecVT = Vec.getValueType();
1010
1011 // If index isn't constant, assume we need all vector elements AND the
1012 // inserted element.
1013 APInt DemandedVecElts(DemandedElts);
1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015 unsigned Idx = CIdx->getZExtValue();
1016 DemandedVecElts.clearBit(Idx);
1017
1018 // Inserted element is not required.
1019 if (!DemandedElts[Idx])
1020 return TLO.CombineTo(Op, Vec);
1021 }
1022
1023 KnownBits KnownScl;
1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027 return true;
1028
1029 Known = KnownScl.anyextOrTrunc(BitWidth);
1030
1031 KnownBits KnownVec;
1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033 Depth + 1))
1034 return true;
1035
1036 if (!!DemandedVecElts)
1037 Known = KnownBits::commonBits(Known, KnownVec);
1038
1039 return false;
1040 }
1041 case ISD::INSERT_SUBVECTOR: {
1042 // Demand any elements from the subvector and the remainder from the src its
1043 // inserted into.
1044 SDValue Src = Op.getOperand(0);
1045 SDValue Sub = Op.getOperand(1);
1046 uint64_t Idx = Op.getConstantOperandVal(2);
1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049 APInt DemandedSrcElts = DemandedElts;
1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051
1052 KnownBits KnownSub, KnownSrc;
1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054 Depth + 1))
1055 return true;
1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057 Depth + 1))
1058 return true;
1059
1060 Known.Zero.setAllBits();
1061 Known.One.setAllBits();
1062 if (!!DemandedSubElts)
1063 Known = KnownBits::commonBits(Known, KnownSub);
1064 if (!!DemandedSrcElts)
1065 Known = KnownBits::commonBits(Known, KnownSrc);
1066
1067 // Attempt to avoid multi-use src if we don't need anything from it.
1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069 !DemandedSrcElts.isAllOnes()) {
1070 SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074 if (NewSub || NewSrc) {
1075 NewSub = NewSub ? NewSub : Sub;
1076 NewSrc = NewSrc ? NewSrc : Src;
1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078 Op.getOperand(2));
1079 return TLO.CombineTo(Op, NewOp);
1080 }
1081 }
1082 break;
1083 }
1084 case ISD::EXTRACT_SUBVECTOR: {
1085 // Offset the demanded elts by the subvector index.
1086 SDValue Src = Op.getOperand(0);
1087 if (Src.getValueType().isScalableVector())
1088 break;
1089 uint64_t Idx = Op.getConstantOperandVal(1);
1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092
1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094 Depth + 1))
1095 return true;
1096
1097 // Attempt to avoid multi-use src if we don't need anything from it.
1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101 if (DemandedSrc) {
1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103 Op.getOperand(1));
1104 return TLO.CombineTo(Op, NewOp);
1105 }
1106 }
1107 break;
1108 }
1109 case ISD::CONCAT_VECTORS: {
1110 Known.Zero.setAllBits();
1111 Known.One.setAllBits();
1112 EVT SubVT = Op.getOperand(0).getValueType();
1113 unsigned NumSubVecs = Op.getNumOperands();
1114 unsigned NumSubElts = SubVT.getVectorNumElements();
1115 for (unsigned i = 0; i != NumSubVecs; ++i) {
1116 APInt DemandedSubElts =
1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119 Known2, TLO, Depth + 1))
1120 return true;
1121 // Known bits are shared by every demanded subvector element.
1122 if (!!DemandedSubElts)
1123 Known = KnownBits::commonBits(Known, Known2);
1124 }
1125 break;
1126 }
1127 case ISD::VECTOR_SHUFFLE: {
1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129
1130 // Collect demanded elements from shuffle operands..
1131 APInt DemandedLHS(NumElts, 0);
1132 APInt DemandedRHS(NumElts, 0);
1133 for (unsigned i = 0; i != NumElts; ++i) {
1134 if (!DemandedElts[i])
1135 continue;
1136 int M = ShuffleMask[i];
1137 if (M < 0) {
1138 // For UNDEF elements, we don't know anything about the common state of
1139 // the shuffle result.
1140 DemandedLHS.clearAllBits();
1141 DemandedRHS.clearAllBits();
1142 break;
1143 }
1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range")(static_cast <bool> (0 <= M && M < (int)(
2 * NumElts) && "Shuffle index out of range") ? void (
0) : __assert_fail ("0 <= M && M < (int)(2 * NumElts) && \"Shuffle index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1144, __extension__ __PRETTY_FUNCTION__))
;
1145 if (M < (int)NumElts)
1146 DemandedLHS.setBit(M);
1147 else
1148 DemandedRHS.setBit(M - NumElts);
1149 }
1150
1151 if (!!DemandedLHS || !!DemandedRHS) {
1152 SDValue Op0 = Op.getOperand(0);
1153 SDValue Op1 = Op.getOperand(1);
1154
1155 Known.Zero.setAllBits();
1156 Known.One.setAllBits();
1157 if (!!DemandedLHS) {
1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159 Depth + 1))
1160 return true;
1161 Known = KnownBits::commonBits(Known, Known2);
1162 }
1163 if (!!DemandedRHS) {
1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165 Depth + 1))
1166 return true;
1167 Known = KnownBits::commonBits(Known, Known2);
1168 }
1169
1170 // Attempt to avoid multi-use ops if we don't need anything from them.
1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175 if (DemandedOp0 || DemandedOp1) {
1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179 return TLO.CombineTo(Op, NewOp);
1180 }
1181 }
1182 break;
1183 }
1184 case ISD::AND: {
1185 SDValue Op0 = Op.getOperand(0);
1186 SDValue Op1 = Op.getOperand(1);
1187
1188 // If the RHS is a constant, check to see if the LHS would be zero without
1189 // using the bits from the RHS. Below, we use knowledge about the RHS to
1190 // simplify the LHS, here we're using information from the LHS to simplify
1191 // the RHS.
1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193 // Do not increment Depth here; that can cause an infinite loop.
1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196 if ((LHSKnown.Zero & DemandedBits) ==
1197 (~RHSC->getAPIntValue() & DemandedBits))
1198 return TLO.CombineTo(Op, Op0);
1199
1200 // If any of the set bits in the RHS are known zero on the LHS, shrink
1201 // the constant.
1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203 DemandedElts, TLO))
1204 return true;
1205
1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207 // constant, but if this 'and' is only clearing bits that were just set by
1208 // the xor, then this 'and' can be eliminated by shrinking the mask of
1209 // the xor. For example, for a 32-bit X:
1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212 LHSKnown.One == ~RHSC->getAPIntValue()) {
1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214 return TLO.CombineTo(Op, Xor);
1215 }
1216 }
1217
1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219 Depth + 1))
1220 return true;
1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1221, __extension__ __PRETTY_FUNCTION__))
;
1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223 Known2, TLO, Depth + 1))
1224 return true;
1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1225, __extension__ __PRETTY_FUNCTION__))
;
1226
1227 // Attempt to avoid multi-use ops if we don't need anything from them.
1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233 if (DemandedOp0 || DemandedOp1) {
1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237 return TLO.CombineTo(Op, NewOp);
1238 }
1239 }
1240
1241 // If all of the demanded bits are known one on one side, return the other.
1242 // These bits cannot contribute to the result of the 'and'.
1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244 return TLO.CombineTo(Op, Op0);
1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246 return TLO.CombineTo(Op, Op1);
1247 // If all of the demanded bits in the inputs are known zeros, return zero.
1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250 // If the RHS is a constant, see if we can simplify it.
1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252 TLO))
1253 return true;
1254 // If the operation can be done in a smaller type, do so.
1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256 return true;
1257
1258 Known &= Known2;
1259 break;
1260 }
1261 case ISD::OR: {
1262 SDValue Op0 = Op.getOperand(0);
1263 SDValue Op1 = Op.getOperand(1);
1264
1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266 Depth + 1))
1267 return true;
1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1268, __extension__ __PRETTY_FUNCTION__))
;
1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270 Known2, TLO, Depth + 1))
1271 return true;
1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1272, __extension__ __PRETTY_FUNCTION__))
;
1273
1274 // Attempt to avoid multi-use ops if we don't need anything from them.
1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280 if (DemandedOp0 || DemandedOp1) {
1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284 return TLO.CombineTo(Op, NewOp);
1285 }
1286 }
1287
1288 // If all of the demanded bits are known zero on one side, return the other.
1289 // These bits cannot contribute to the result of the 'or'.
1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291 return TLO.CombineTo(Op, Op0);
1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293 return TLO.CombineTo(Op, Op1);
1294 // If the RHS is a constant, see if we can simplify it.
1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296 return true;
1297 // If the operation can be done in a smaller type, do so.
1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299 return true;
1300
1301 Known |= Known2;
1302 break;
1303 }
1304 case ISD::XOR: {
1305 SDValue Op0 = Op.getOperand(0);
1306 SDValue Op1 = Op.getOperand(1);
1307
1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309 Depth + 1))
1310 return true;
1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1311, __extension__ __PRETTY_FUNCTION__))
;
1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313 Depth + 1))
1314 return true;
1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1315, __extension__ __PRETTY_FUNCTION__))
;
1316
1317 // Attempt to avoid multi-use ops if we don't need anything from them.
1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323 if (DemandedOp0 || DemandedOp1) {
1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327 return TLO.CombineTo(Op, NewOp);
1328 }
1329 }
1330
1331 // If all of the demanded bits are known zero on one side, return the other.
1332 // These bits cannot contribute to the result of the 'xor'.
1333 if (DemandedBits.isSubsetOf(Known.Zero))
1334 return TLO.CombineTo(Op, Op0);
1335 if (DemandedBits.isSubsetOf(Known2.Zero))
1336 return TLO.CombineTo(Op, Op1);
1337 // If the operation can be done in a smaller type, do so.
1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339 return true;
1340
1341 // If all of the unknown bits are known to be zero on one side or the other
1342 // turn this into an *inclusive* or.
1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346
1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348 if (C) {
1349 // If one side is a constant, and all of the set bits in the constant are
1350 // also known set on the other side, turn this into an AND, as we know
1351 // the bits will be cleared.
1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353 // NB: it is okay if more bits are known than are requested
1354 if (C->getAPIntValue() == Known2.One) {
1355 SDValue ANDC =
1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358 }
1359
1360 // If the RHS is a constant, see if we can change it. Don't alter a -1
1361 // constant because that's a 'not' op, and that is better for combining
1362 // and codegen.
1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364 // We're flipping all demanded bits. Flip the undemanded bits too.
1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366 return TLO.CombineTo(Op, New);
1367 }
1368 }
1369
1370 // If we can't turn this into a 'not', try to shrink the constant.
1371 if (!C || !C->isAllOnes())
1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373 return true;
1374
1375 Known ^= Known2;
1376 break;
1377 }
1378 case ISD::SELECT:
1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380 Depth + 1))
1381 return true;
1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383 Depth + 1))
1384 return true;
1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1385, __extension__ __PRETTY_FUNCTION__))
;
1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1386, __extension__ __PRETTY_FUNCTION__))
;
1387
1388 // If the operands are constants, see if we can simplify them.
1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390 return true;
1391
1392 // Only known if known in both the LHS and RHS.
1393 Known = KnownBits::commonBits(Known, Known2);
1394 break;
1395 case ISD::SELECT_CC:
1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397 Depth + 1))
1398 return true;
1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400 Depth + 1))
1401 return true;
1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1402, __extension__ __PRETTY_FUNCTION__))
;
1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1403, __extension__ __PRETTY_FUNCTION__))
;
1404
1405 // If the operands are constants, see if we can simplify them.
1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407 return true;
1408
1409 // Only known if known in both the LHS and RHS.
1410 Known = KnownBits::commonBits(Known, Known2);
1411 break;
1412 case ISD::SETCC: {
1413 SDValue Op0 = Op.getOperand(0);
1414 SDValue Op1 = Op.getOperand(1);
1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418 // -1, we may be able to bypass the setcc.
1419 if (DemandedBits.isSignMask() &&
1420 Op0.getScalarValueSizeInBits() == BitWidth &&
1421 getBooleanContents(Op0.getValueType()) ==
1422 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423 // If we're testing X < 0, then this compare isn't needed - just use X!
1424 // FIXME: We're limiting to integer types here, but this should also work
1425 // if we don't care about FP signed-zero. The use of SETLT with FP means
1426 // that we don't care about NaNs.
1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429 return TLO.CombineTo(Op, Op0);
1430
1431 // TODO: Should we check for other forms of sign-bit comparisons?
1432 // Examples: X <= -1, X >= 0
1433 }
1434 if (getBooleanContents(Op0.getValueType()) ==
1435 TargetLowering::ZeroOrOneBooleanContent &&
1436 BitWidth > 1)
1437 Known.Zero.setBitsFrom(1);
1438 break;
1439 }
1440 case ISD::SHL: {
1441 SDValue Op0 = Op.getOperand(0);
1442 SDValue Op1 = Op.getOperand(1);
1443 EVT ShiftVT = Op1.getValueType();
1444
1445 if (const APInt *SA =
1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447 unsigned ShAmt = SA->getZExtValue();
1448 if (ShAmt == 0)
1449 return TLO.CombineTo(Op, Op0);
1450
1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452 // single shift. We can do this if the bottom bits (which are shifted
1453 // out) are never demanded.
1454 // TODO - support non-uniform vector amounts.
1455 if (Op0.getOpcode() == ISD::SRL) {
1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457 if (const APInt *SA2 =
1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459 unsigned C1 = SA2->getZExtValue();
1460 unsigned Opc = ISD::SHL;
1461 int Diff = ShAmt - C1;
1462 if (Diff < 0) {
1463 Diff = -Diff;
1464 Opc = ISD::SRL;
1465 }
1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467 return TLO.CombineTo(
1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469 }
1470 }
1471 }
1472
1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474 // are not demanded. This will likely allow the anyext to be folded away.
1475 // TODO - support non-uniform vector amounts.
1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477 SDValue InnerOp = Op0.getOperand(0);
1478 EVT InnerVT = InnerOp.getValueType();
1479 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484 ShTy = InnerVT;
1485 SDValue NarrowShl =
1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488 return TLO.CombineTo(
1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490 }
1491
1492 // Repeat the SHL optimization above in cases where an extension
1493 // intervenes: (shl (anyext (shr x, c1)), c2) to
1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1495 // aren't demanded (as above) and that the shifted upper c1 bits of
1496 // x aren't demanded.
1497 // TODO - support non-uniform vector amounts.
1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499 InnerOp.hasOneUse()) {
1500 if (const APInt *SA2 =
1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502 unsigned InnerShAmt = SA2->getZExtValue();
1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504 DemandedBits.getActiveBits() <=
1505 (InnerBits - InnerShAmt + ShAmt) &&
1506 DemandedBits.countTrailingZeros() >= ShAmt) {
1507 SDValue NewSA =
1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510 InnerOp.getOperand(0));
1511 return TLO.CombineTo(
1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513 }
1514 }
1515 }
1516 }
1517
1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520 Depth + 1))
1521 return true;
1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1522, __extension__ __PRETTY_FUNCTION__))
;
1523 Known.Zero <<= ShAmt;
1524 Known.One <<= ShAmt;
1525 // low bits known zero.
1526 Known.Zero.setLowBits(ShAmt);
1527
1528 // Try shrinking the operation as long as the shift amount will still be
1529 // in range.
1530 if ((ShAmt < DemandedBits.getActiveBits()) &&
1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532 return true;
1533 }
1534
1535 // If we are only demanding sign bits then we can use the shift source
1536 // directly.
1537 if (const APInt *MaxSA =
1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539 unsigned ShAmt = MaxSA->getZExtValue();
1540 unsigned NumSignBits =
1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544 return TLO.CombineTo(Op, Op0);
1545 }
1546 break;
1547 }
1548 case ISD::SRL: {
1549 SDValue Op0 = Op.getOperand(0);
1550 SDValue Op1 = Op.getOperand(1);
1551 EVT ShiftVT = Op1.getValueType();
1552
1553 if (const APInt *SA =
1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555 unsigned ShAmt = SA->getZExtValue();
1556 if (ShAmt == 0)
1557 return TLO.CombineTo(Op, Op0);
1558
1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560 // single shift. We can do this if the top bits (which are shifted out)
1561 // are never demanded.
1562 // TODO - support non-uniform vector amounts.
1563 if (Op0.getOpcode() == ISD::SHL) {
1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565 if (const APInt *SA2 =
1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567 unsigned C1 = SA2->getZExtValue();
1568 unsigned Opc = ISD::SRL;
1569 int Diff = ShAmt - C1;
1570 if (Diff < 0) {
1571 Diff = -Diff;
1572 Opc = ISD::SHL;
1573 }
1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575 return TLO.CombineTo(
1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577 }
1578 }
1579 }
1580
1581 APInt InDemandedMask = (DemandedBits << ShAmt);
1582
1583 // If the shift is exact, then it does demand the low bits (and knows that
1584 // they are zero).
1585 if (Op->getFlags().hasExact())
1586 InDemandedMask.setLowBits(ShAmt);
1587
1588 // Compute the new bits that are at the top now.
1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590 Depth + 1))
1591 return true;
1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1592, __extension__ __PRETTY_FUNCTION__))
;
1593 Known.Zero.lshrInPlace(ShAmt);
1594 Known.One.lshrInPlace(ShAmt);
1595 // High bits known zero.
1596 Known.Zero.setHighBits(ShAmt);
1597 }
1598 break;
1599 }
1600 case ISD::SRA: {
1601 SDValue Op0 = Op.getOperand(0);
1602 SDValue Op1 = Op.getOperand(1);
1603 EVT ShiftVT = Op1.getValueType();
1604
1605 // If we only want bits that already match the signbit then we don't need
1606 // to shift.
1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609 NumHiDemandedBits)
1610 return TLO.CombineTo(Op, Op0);
1611
1612 // If this is an arithmetic shift right and only the low-bit is set, we can
1613 // always convert this into a logical shr, even if the shift amount is
1614 // variable. The low bit of the shift cannot be an input sign bit unless
1615 // the shift amount is >= the size of the datatype, which is undefined.
1616 if (DemandedBits.isOne())
1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618
1619 if (const APInt *SA =
1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621 unsigned ShAmt = SA->getZExtValue();
1622 if (ShAmt == 0)
1623 return TLO.CombineTo(Op, Op0);
1624
1625 APInt InDemandedMask = (DemandedBits << ShAmt);
1626
1627 // If the shift is exact, then it does demand the low bits (and knows that
1628 // they are zero).
1629 if (Op->getFlags().hasExact())
1630 InDemandedMask.setLowBits(ShAmt);
1631
1632 // If any of the demanded bits are produced by the sign extension, we also
1633 // demand the input sign bit.
1634 if (DemandedBits.countLeadingZeros() < ShAmt)
1635 InDemandedMask.setSignBit();
1636
1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638 Depth + 1))
1639 return true;
1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1640, __extension__ __PRETTY_FUNCTION__))
;
1641 Known.Zero.lshrInPlace(ShAmt);
1642 Known.One.lshrInPlace(ShAmt);
1643
1644 // If the input sign bit is known to be zero, or if none of the top bits
1645 // are demanded, turn this into an unsigned shift right.
1646 if (Known.Zero[BitWidth - ShAmt - 1] ||
1647 DemandedBits.countLeadingZeros() >= ShAmt) {
1648 SDNodeFlags Flags;
1649 Flags.setExact(Op->getFlags().hasExact());
1650 return TLO.CombineTo(
1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652 }
1653
1654 int Log2 = DemandedBits.exactLogBase2();
1655 if (Log2 >= 0) {
1656 // The bit must come from the sign.
1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659 }
1660
1661 if (Known.One[BitWidth - ShAmt - 1])
1662 // New bits are known one.
1663 Known.One.setHighBits(ShAmt);
1664
1665 // Attempt to avoid multi-use ops if we don't need anything from them.
1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669 if (DemandedOp0) {
1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671 return TLO.CombineTo(Op, NewOp);
1672 }
1673 }
1674 }
1675 break;
1676 }
1677 case ISD::FSHL:
1678 case ISD::FSHR: {
1679 SDValue Op0 = Op.getOperand(0);
1680 SDValue Op1 = Op.getOperand(1);
1681 SDValue Op2 = Op.getOperand(2);
1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683
1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686
1687 // For fshl, 0-shift returns the 1st arg.
1688 // For fshr, 0-shift returns the 2nd arg.
1689 if (Amt == 0) {
1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691 Known, TLO, Depth + 1))
1692 return true;
1693 break;
1694 }
1695
1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701 Depth + 1))
1702 return true;
1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704 Depth + 1))
1705 return true;
1706
1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711 Known.One |= Known2.One;
1712 Known.Zero |= Known2.Zero;
1713 }
1714
1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716 if (isPowerOf2_32(BitWidth)) {
1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719 Known2, TLO, Depth + 1))
1720 return true;
1721 }
1722 break;
1723 }
1724 case ISD::ROTL:
1725 case ISD::ROTR: {
1726 SDValue Op0 = Op.getOperand(0);
1727 SDValue Op1 = Op.getOperand(1);
1728
1729 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1730 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1731 return TLO.CombineTo(Op, Op0);
1732
1733 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1734 if (isPowerOf2_32(BitWidth)) {
1735 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1736 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1737 Depth + 1))
1738 return true;
1739 }
1740 break;
1741 }
1742 case ISD::UMIN: {
1743 // Check if one arg is always less than (or equal) to the other arg.
1744 SDValue Op0 = Op.getOperand(0);
1745 SDValue Op1 = Op.getOperand(1);
1746 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1747 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1748 Known = KnownBits::umin(Known0, Known1);
1749 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1750 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1751 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1752 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1753 break;
1754 }
1755 case ISD::UMAX: {
1756 // Check if one arg is always greater than (or equal) to the other arg.
1757 SDValue Op0 = Op.getOperand(0);
1758 SDValue Op1 = Op.getOperand(1);
1759 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1760 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1761 Known = KnownBits::umax(Known0, Known1);
1762 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1763 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1764 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1765 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1766 break;
1767 }
1768 case ISD::BITREVERSE: {
1769 SDValue Src = Op.getOperand(0);
1770 APInt DemandedSrcBits = DemandedBits.reverseBits();
1771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1772 Depth + 1))
1773 return true;
1774 Known.One = Known2.One.reverseBits();
1775 Known.Zero = Known2.Zero.reverseBits();
1776 break;
1777 }
1778 case ISD::BSWAP: {
1779 SDValue Src = Op.getOperand(0);
1780 APInt DemandedSrcBits = DemandedBits.byteSwap();
1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1782 Depth + 1))
1783 return true;
1784 Known.One = Known2.One.byteSwap();
1785 Known.Zero = Known2.Zero.byteSwap();
1786 break;
1787 }
1788 case ISD::CTPOP: {
1789 // If only 1 bit is demanded, replace with PARITY as long as we're before
1790 // op legalization.
1791 // FIXME: Limit to scalars for now.
1792 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1794 Op.getOperand(0)));
1795
1796 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1797 break;
1798 }
1799 case ISD::SIGN_EXTEND_INREG: {
1800 SDValue Op0 = Op.getOperand(0);
1801 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1802 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1803
1804 // If we only care about the highest bit, don't bother shifting right.
1805 if (DemandedBits.isSignMask()) {
1806 unsigned NumSignBits =
1807 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1808 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1809 // However if the input is already sign extended we expect the sign
1810 // extension to be dropped altogether later and do not simplify.
1811 if (!AlreadySignExtended) {
1812 // Compute the correct shift amount type, which must be getShiftAmountTy
1813 // for scalar types after legalization.
1814 EVT ShiftAmtTy = VT;
1815 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1816 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1817
1818 SDValue ShiftAmt =
1819 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1820 return TLO.CombineTo(Op,
1821 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1822 }
1823 }
1824
1825 // If none of the extended bits are demanded, eliminate the sextinreg.
1826 if (DemandedBits.getActiveBits() <= ExVTBits)
1827 return TLO.CombineTo(Op, Op0);
1828
1829 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1830
1831 // Since the sign extended bits are demanded, we know that the sign
1832 // bit is demanded.
1833 InputDemandedBits.setBit(ExVTBits - 1);
1834
1835 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1836 return true;
1837 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1837, __extension__ __PRETTY_FUNCTION__))
;
1838
1839 // If the sign bit of the input is known set or clear, then we know the
1840 // top bits of the result.
1841
1842 // If the input sign bit is known zero, convert this into a zero extension.
1843 if (Known.Zero[ExVTBits - 1])
1844 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1845
1846 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1847 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1848 Known.One.setBitsFrom(ExVTBits);
1849 Known.Zero &= Mask;
1850 } else { // Input sign bit unknown
1851 Known.Zero &= Mask;
1852 Known.One &= Mask;
1853 }
1854 break;
1855 }
1856 case ISD::BUILD_PAIR: {
1857 EVT HalfVT = Op.getOperand(0).getValueType();
1858 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1859
1860 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1861 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1862
1863 KnownBits KnownLo, KnownHi;
1864
1865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1866 return true;
1867
1868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1869 return true;
1870
1871 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1872 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1873
1874 Known.One = KnownLo.One.zext(BitWidth) |
1875 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1876 break;
1877 }
1878 case ISD::ZERO_EXTEND:
1879 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1880 SDValue Src = Op.getOperand(0);
1881 EVT SrcVT = Src.getValueType();
1882 unsigned InBits = SrcVT.getScalarSizeInBits();
1883 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1884 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1885
1886 // If none of the top bits are demanded, convert this into an any_extend.
1887 if (DemandedBits.getActiveBits() <= InBits) {
1888 // If we only need the non-extended bits of the bottom element
1889 // then we can just bitcast to the result.
1890 if (IsVecInReg && DemandedElts == 1 &&
1891 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1892 TLO.DAG.getDataLayout().isLittleEndian())
1893 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1894
1895 unsigned Opc =
1896 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1897 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1898 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1899 }
1900
1901 APInt InDemandedBits = DemandedBits.trunc(InBits);
1902 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1903 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1904 Depth + 1))
1905 return true;
1906 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1906, __extension__ __PRETTY_FUNCTION__))
;
1907 assert(Known.getBitWidth() == InBits && "Src width has changed?")(static_cast <bool> (Known.getBitWidth() == InBits &&
"Src width has changed?") ? void (0) : __assert_fail ("Known.getBitWidth() == InBits && \"Src width has changed?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1907, __extension__ __PRETTY_FUNCTION__))
;
1908 Known = Known.zext(BitWidth);
1909
1910 // Attempt to avoid multi-use ops if we don't need anything from them.
1911 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1912 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1913 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1914 break;
1915 }
1916 case ISD::SIGN_EXTEND:
1917 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1918 SDValue Src = Op.getOperand(0);
1919 EVT SrcVT = Src.getValueType();
1920 unsigned InBits = SrcVT.getScalarSizeInBits();
1921 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1922 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1923
1924 // If none of the top bits are demanded, convert this into an any_extend.
1925 if (DemandedBits.getActiveBits() <= InBits) {
1926 // If we only need the non-extended bits of the bottom element
1927 // then we can just bitcast to the result.
1928 if (IsVecInReg && DemandedElts == 1 &&
1929 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1930 TLO.DAG.getDataLayout().isLittleEndian())
1931 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1932
1933 unsigned Opc =
1934 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1935 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1937 }
1938
1939 APInt InDemandedBits = DemandedBits.trunc(InBits);
1940 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1941
1942 // Since some of the sign extended bits are demanded, we know that the sign
1943 // bit is demanded.
1944 InDemandedBits.setBit(InBits - 1);
1945
1946 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1947 Depth + 1))
1948 return true;
1949 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1949, __extension__ __PRETTY_FUNCTION__))
;
1950 assert(Known.getBitWidth() == InBits && "Src width has changed?")(static_cast <bool> (Known.getBitWidth() == InBits &&
"Src width has changed?") ? void (0) : __assert_fail ("Known.getBitWidth() == InBits && \"Src width has changed?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1950, __extension__ __PRETTY_FUNCTION__))
;
1951
1952 // If the sign bit is known one, the top bits match.
1953 Known = Known.sext(BitWidth);
1954
1955 // If the sign bit is known zero, convert this to a zero extend.
1956 if (Known.isNonNegative()) {
1957 unsigned Opc =
1958 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1959 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1960 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1961 }
1962
1963 // Attempt to avoid multi-use ops if we don't need anything from them.
1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967 break;
1968 }
1969 case ISD::ANY_EXTEND:
1970 case ISD::ANY_EXTEND_VECTOR_INREG: {
1971 SDValue Src = Op.getOperand(0);
1972 EVT SrcVT = Src.getValueType();
1973 unsigned InBits = SrcVT.getScalarSizeInBits();
1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1975 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1976
1977 // If we only need the bottom element then we can just bitcast.
1978 // TODO: Handle ANY_EXTEND?
1979 if (IsVecInReg && DemandedElts == 1 &&
1980 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1981 TLO.DAG.getDataLayout().isLittleEndian())
1982 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1983
1984 APInt InDemandedBits = DemandedBits.trunc(InBits);
1985 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1986 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1987 Depth + 1))
1988 return true;
1989 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1989, __extension__ __PRETTY_FUNCTION__))
;
1990 assert(Known.getBitWidth() == InBits && "Src width has changed?")(static_cast <bool> (Known.getBitWidth() == InBits &&
"Src width has changed?") ? void (0) : __assert_fail ("Known.getBitWidth() == InBits && \"Src width has changed?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1990, __extension__ __PRETTY_FUNCTION__))
;
1991 Known = Known.anyext(BitWidth);
1992
1993 // Attempt to avoid multi-use ops if we don't need anything from them.
1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1995 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1996 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1997 break;
1998 }
1999 case ISD::TRUNCATE: {
2000 SDValue Src = Op.getOperand(0);
2001
2002 // Simplify the input, using demanded bit information, and compute the known
2003 // zero/one bits live out.
2004 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2005 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2006 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2007 Depth + 1))
2008 return true;
2009 Known = Known.trunc(BitWidth);
2010
2011 // Attempt to avoid multi-use ops if we don't need anything from them.
2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2013 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2015
2016 // If the input is only used by this truncate, see if we can shrink it based
2017 // on the known demanded bits.
2018 if (Src.getNode()->hasOneUse()) {
2019 switch (Src.getOpcode()) {
2020 default:
2021 break;
2022 case ISD::SRL:
2023 // Shrink SRL by a constant if none of the high bits shifted in are
2024 // demanded.
2025 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2026 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2027 // undesirable.
2028 break;
2029
2030 const APInt *ShAmtC =
2031 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2032 if (!ShAmtC || ShAmtC->uge(BitWidth))
2033 break;
2034 uint64_t ShVal = ShAmtC->getZExtValue();
2035
2036 APInt HighBits =
2037 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2038 HighBits.lshrInPlace(ShVal);
2039 HighBits = HighBits.trunc(BitWidth);
2040
2041 if (!(HighBits & DemandedBits)) {
2042 // None of the shifted in bits are needed. Add a truncate of the
2043 // shift input, then shift it.
2044 SDValue NewShAmt = TLO.DAG.getConstant(
2045 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2046 SDValue NewTrunc =
2047 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2048 return TLO.CombineTo(
2049 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2050 }
2051 break;
2052 }
2053 }
2054
2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2055, __extension__ __PRETTY_FUNCTION__))
;
2056 break;
2057 }
2058 case ISD::AssertZext: {
2059 // AssertZext demands all of the high bits, plus any of the low bits
2060 // demanded by its users.
2061 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2062 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2063 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2064 TLO, Depth + 1))
2065 return true;
2066 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2066, __extension__ __PRETTY_FUNCTION__))
;
2067
2068 Known.Zero |= ~InMask;
2069 break;
2070 }
2071 case ISD::EXTRACT_VECTOR_ELT: {
2072 SDValue Src = Op.getOperand(0);
2073 SDValue Idx = Op.getOperand(1);
2074 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2075 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2076
2077 if (SrcEltCnt.isScalable())
2078 return false;
2079
2080 // Demand the bits from every vector element without a constant index.
2081 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2082 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2083 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2084 if (CIdx->getAPIntValue().ult(NumSrcElts))
2085 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2086
2087 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2088 // anything about the extended bits.
2089 APInt DemandedSrcBits = DemandedBits;
2090 if (BitWidth > EltBitWidth)
2091 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2092
2093 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2094 Depth + 1))
2095 return true;
2096
2097 // Attempt to avoid multi-use ops if we don't need anything from them.
2098 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2099 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2100 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2101 SDValue NewOp =
2102 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2103 return TLO.CombineTo(Op, NewOp);
2104 }
2105 }
2106
2107 Known = Known2;
2108 if (BitWidth > EltBitWidth)
2109 Known = Known.anyext(BitWidth);
2110 break;
2111 }
2112 case ISD::BITCAST: {
2113 SDValue Src = Op.getOperand(0);
2114 EVT SrcVT = Src.getValueType();
2115 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2116
2117 // If this is an FP->Int bitcast and if the sign bit is the only
2118 // thing demanded, turn this into a FGETSIGN.
2119 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2120 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2121 SrcVT.isFloatingPoint()) {
2122 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2123 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2124 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2125 SrcVT != MVT::f128) {
2126 // Cannot eliminate/lower SHL for f128 yet.
2127 EVT Ty = OpVTLegal ? VT : MVT::i32;
2128 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2129 // place. We expect the SHL to be eliminated by other optimizations.
2130 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2131 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2132 if (!OpVTLegal && OpVTSizeInBits > 32)
2133 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2134 unsigned ShVal = Op.getValueSizeInBits() - 1;
2135 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2136 return TLO.CombineTo(Op,
2137 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2138 }
2139 }
2140
2141 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2142 // Demand the elt/bit if any of the original elts/bits are demanded.
2143 // TODO - bigendian once we have test coverage.
2144 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2145 TLO.DAG.getDataLayout().isLittleEndian()) {
2146 unsigned Scale = BitWidth / NumSrcEltBits;
2147 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2148 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2149 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2150 for (unsigned i = 0; i != Scale; ++i) {
2151 unsigned Offset = i * NumSrcEltBits;
2152 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2153 if (!Sub.isZero()) {
2154 DemandedSrcBits |= Sub;
2155 for (unsigned j = 0; j != NumElts; ++j)
2156 if (DemandedElts[j])
2157 DemandedSrcElts.setBit((j * Scale) + i);
2158 }
2159 }
2160
2161 APInt KnownSrcUndef, KnownSrcZero;
2162 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2163 KnownSrcZero, TLO, Depth + 1))
2164 return true;
2165
2166 KnownBits KnownSrcBits;
2167 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2168 KnownSrcBits, TLO, Depth + 1))
2169 return true;
2170 } else if ((NumSrcEltBits % BitWidth) == 0 &&
2171 TLO.DAG.getDataLayout().isLittleEndian()) {
2172 unsigned Scale = NumSrcEltBits / BitWidth;
2173 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2174 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2175 APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2176 for (unsigned i = 0; i != NumElts; ++i)
2177 if (DemandedElts[i]) {
2178 unsigned Offset = (i % Scale) * BitWidth;
2179 DemandedSrcBits.insertBits(DemandedBits, Offset);
2180 DemandedSrcElts.setBit(i / Scale);
2181 }
2182
2183 if (SrcVT.isVector()) {
2184 APInt KnownSrcUndef, KnownSrcZero;
2185 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2186 KnownSrcZero, TLO, Depth + 1))
2187 return true;
2188 }
2189
2190 KnownBits KnownSrcBits;
2191 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2192 KnownSrcBits, TLO, Depth + 1))
2193 return true;
2194 }
2195
2196 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2197 // recursive call where Known may be useful to the caller.
2198 if (Depth > 0) {
2199 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2200 return false;
2201 }
2202 break;
2203 }
2204 case ISD::ADD:
2205 case ISD::MUL:
2206 case ISD::SUB: {
2207 // Add, Sub, and Mul don't demand any bits in positions beyond that
2208 // of the highest bit demanded of them.
2209 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2210 SDNodeFlags Flags = Op.getNode()->getFlags();
2211 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2212 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2213 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2214 Depth + 1) ||
2215 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2216 Depth + 1) ||
2217 // See if the operation should be performed at a smaller bit width.
2218 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2219 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2220 // Disable the nsw and nuw flags. We can no longer guarantee that we
2221 // won't wrap after simplification.
2222 Flags.setNoSignedWrap(false);
2223 Flags.setNoUnsignedWrap(false);
2224 SDValue NewOp =
2225 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2226 return TLO.CombineTo(Op, NewOp);
2227 }
2228 return true;
2229 }
2230
2231 // Attempt to avoid multi-use ops if we don't need anything from them.
2232 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2233 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2234 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2235 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2236 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2237 if (DemandedOp0 || DemandedOp1) {
2238 Flags.setNoSignedWrap(false);
2239 Flags.setNoUnsignedWrap(false);
2240 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2241 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2242 SDValue NewOp =
2243 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2244 return TLO.CombineTo(Op, NewOp);
2245 }
2246 }
2247
2248 // If we have a constant operand, we may be able to turn it into -1 if we
2249 // do not demand the high bits. This can make the constant smaller to
2250 // encode, allow more general folding, or match specialized instruction
2251 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2252 // is probably not useful (and could be detrimental).
2253 ConstantSDNode *C = isConstOrConstSplat(Op1);
2254 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2255 if (C && !C->isAllOnes() && !C->isOne() &&
2256 (C->getAPIntValue() | HighMask).isAllOnes()) {
2257 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2258 // Disable the nsw and nuw flags. We can no longer guarantee that we
2259 // won't wrap after simplification.
2260 Flags.setNoSignedWrap(false);
2261 Flags.setNoUnsignedWrap(false);
2262 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2263 return TLO.CombineTo(Op, NewOp);
2264 }
2265
2266 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2267 }
2268 default:
2269 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2270 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2271 Known, TLO, Depth))
2272 return true;
2273 break;
2274 }
2275
2276 // Just use computeKnownBits to compute output bits.
2277 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2278 break;
2279 }
2280
2281 // If we know the value of all of the demanded bits, return this as a
2282 // constant.
2283 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2284 // Avoid folding to a constant if any OpaqueConstant is involved.
2285 const SDNode *N = Op.getNode();
2286 for (SDNode *Op :
2287 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2289 if (C->isOpaque())
2290 return false;
2291 }
2292 if (VT.isInteger())
2293 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2294 if (VT.isFloatingPoint())
2295 return TLO.CombineTo(
2296 Op,
2297 TLO.DAG.getConstantFP(
2298 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2299 }
2300
2301 return false;
2302}
2303
2304bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2305 const APInt &DemandedElts,
2306 APInt &KnownUndef,
2307 APInt &KnownZero,
2308 DAGCombinerInfo &DCI) const {
2309 SelectionDAG &DAG = DCI.DAG;
2310 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2311 !DCI.isBeforeLegalizeOps());
2312
2313 bool Simplified =
2314 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2315 if (Simplified) {
2316 DCI.AddToWorklist(Op.getNode());
2317 DCI.CommitTargetLoweringOpt(TLO);
2318 }
2319
2320 return Simplified;
2321}
2322
2323/// Given a vector binary operation and known undefined elements for each input
2324/// operand, compute whether each element of the output is undefined.
2325static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2326 const APInt &UndefOp0,
2327 const APInt &UndefOp1) {
2328 EVT VT = BO.getValueType();
2329 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&(static_cast <bool> (DAG.getTargetLoweringInfo().isBinOp
(BO.getOpcode()) && VT.isVector() && "Vector binop only"
) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && \"Vector binop only\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2330, __extension__ __PRETTY_FUNCTION__))
2330 "Vector binop only")(static_cast <bool> (DAG.getTargetLoweringInfo().isBinOp
(BO.getOpcode()) && VT.isVector() && "Vector binop only"
) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && \"Vector binop only\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2330, __extension__ __PRETTY_FUNCTION__))
;
2331
2332 EVT EltVT = VT.getVectorElementType();
2333 unsigned NumElts = VT.getVectorNumElements();
2334 assert(UndefOp0.getBitWidth() == NumElts &&(static_cast <bool> (UndefOp0.getBitWidth() == NumElts &&
UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"
) ? void (0) : __assert_fail ("UndefOp0.getBitWidth() == NumElts && UndefOp1.getBitWidth() == NumElts && \"Bad type for undef analysis\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2335, __extension__ __PRETTY_FUNCTION__))
2335 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis")(static_cast <bool> (UndefOp0.getBitWidth() == NumElts &&
UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"
) ? void (0) : __assert_fail ("UndefOp0.getBitWidth() == NumElts && UndefOp1.getBitWidth() == NumElts && \"Bad type for undef analysis\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2335, __extension__ __PRETTY_FUNCTION__))
;
2336
2337 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2338 const APInt &UndefVals) {
2339 if (UndefVals[Index])
2340 return DAG.getUNDEF(EltVT);
2341
2342 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2343 // Try hard to make sure that the getNode() call is not creating temporary
2344 // nodes. Ignore opaque integers because they do not constant fold.
2345 SDValue Elt = BV->getOperand(Index);
2346 auto *C = dyn_cast<ConstantSDNode>(Elt);
2347 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2348 return Elt;
2349 }
2350
2351 return SDValue();
2352 };
2353
2354 APInt KnownUndef = APInt::getZero(NumElts);
2355 for (unsigned i = 0; i != NumElts; ++i) {
2356 // If both inputs for this element are either constant or undef and match
2357 // the element type, compute the constant/undef result for this element of
2358 // the vector.
2359 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2360 // not handle FP constants. The code within getNode() should be refactored
2361 // to avoid the danger of creating a bogus temporary node here.
2362 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2363 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2364 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2365 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2366 KnownUndef.setBit(i);
2367 }
2368 return KnownUndef;
2369}
2370
2371bool TargetLowering::SimplifyDemandedVectorElts(
2372 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2373 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2374 bool AssumeSingleUse) const {
2375 EVT VT = Op.getValueType();
2376 unsigned Opcode = Op.getOpcode();
2377 APInt DemandedElts = OriginalDemandedElts;
2378 unsigned NumElts = DemandedElts.getBitWidth();
2379 assert(VT.isVector() && "Expected vector op")(static_cast <bool> (VT.isVector() && "Expected vector op"
) ? void (0) : __assert_fail ("VT.isVector() && \"Expected vector op\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2379, __extension__ __PRETTY_FUNCTION__))
;
2380
2381 KnownUndef = KnownZero = APInt::getZero(NumElts);
2382
2383 // TODO: For now we assume we know nothing about scalable vectors.
2384 if (VT.isScalableVector())
2385 return false;
2386
2387 assert(VT.getVectorNumElements() == NumElts &&(static_cast <bool> (VT.getVectorNumElements() == NumElts
&& "Mask size mismatches value type element count!")
? void (0) : __assert_fail ("VT.getVectorNumElements() == NumElts && \"Mask size mismatches value type element count!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2388, __extension__ __PRETTY_FUNCTION__))
2388 "Mask size mismatches value type element count!")(static_cast <bool> (VT.getVectorNumElements() == NumElts
&& "Mask size mismatches value type element count!")
? void (0) : __assert_fail ("VT.getVectorNumElements() == NumElts && \"Mask size mismatches value type element count!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2388, __extension__ __PRETTY_FUNCTION__))
;
2389
2390 // Undef operand.
2391 if (Op.isUndef()) {
2392 KnownUndef.setAllBits();
2393 return false;
2394 }
2395
2396 // If Op has other users, assume that all elements are needed.
2397 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2398 DemandedElts.setAllBits();
2399
2400 // Not demanding any elements from Op.
2401 if (DemandedElts == 0) {
2402 KnownUndef.setAllBits();
2403 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2404 }
2405
2406 // Limit search depth.
2407 if (Depth >= SelectionDAG::MaxRecursionDepth)
2408 return false;
2409
2410 SDLoc DL(Op);
2411 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2412
2413 // Helper for demanding the specified elements and all the bits of both binary
2414 // operands.
2415 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2416 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2417 TLO.DAG, Depth + 1);
2418 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2419 TLO.DAG, Depth + 1);
2420 if (NewOp0 || NewOp1) {
2421 SDValue NewOp = TLO.DAG.getNode(
2422 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2423 return TLO.CombineTo(Op, NewOp);
2424 }
2425 return false;
2426 };
2427
2428 switch (Opcode) {
2429 case ISD::SCALAR_TO_VECTOR: {
2430 if (!DemandedElts[0]) {
2431 KnownUndef.setAllBits();
2432 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2433 }
2434 SDValue ScalarSrc = Op.getOperand(0);
2435 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2436 SDValue Src = ScalarSrc.getOperand(0);
2437 SDValue Idx = ScalarSrc.getOperand(1);
2438 EVT SrcVT = Src.getValueType();
2439
2440 ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2441
2442 if (SrcEltCnt.isScalable())
2443 return false;
2444
2445 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2446 if (isNullConstant(Idx)) {
2447 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2448 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2449 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2450 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2451 TLO, Depth + 1))
2452 return true;
2453 }
2454 }
2455 KnownUndef.setHighBits(NumElts - 1);
2456 break;
2457 }
2458 case ISD::BITCAST: {
2459 SDValue Src = Op.getOperand(0);
2460 EVT SrcVT = Src.getValueType();
2461
2462 // We only handle vectors here.
2463 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2464 if (!SrcVT.isVector())
2465 break;
2466
2467 // Fast handling of 'identity' bitcasts.
2468 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2469 if (NumSrcElts == NumElts)
2470 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2471 KnownZero, TLO, Depth + 1);
2472
2473 APInt SrcDemandedElts, SrcZero, SrcUndef;
2474
2475 // Bitcast from 'large element' src vector to 'small element' vector, we
2476 // must demand a source element if any DemandedElt maps to it.
2477 if ((NumElts % NumSrcElts) == 0) {
2478 unsigned Scale = NumElts / NumSrcElts;
2479 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2480 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2481 TLO, Depth + 1))
2482 return true;
2483
2484 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2485 // of the large element.
2486 // TODO - bigendian once we have test coverage.
2487 if (TLO.DAG.getDataLayout().isLittleEndian()) {
2488 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2489 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2490 for (unsigned i = 0; i != NumElts; ++i)
2491 if (DemandedElts[i]) {
2492 unsigned Ofs = (i % Scale) * EltSizeInBits;
2493 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2494 }
2495
2496 KnownBits Known;
2497 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2498 TLO, Depth + 1))
2499 return true;
2500 }
2501
2502 // If the src element is zero/undef then all the output elements will be -
2503 // only demanded elements are guaranteed to be correct.
2504 for (unsigned i = 0; i != NumSrcElts; ++i) {
2505 if (SrcDemandedElts[i]) {
2506 if (SrcZero[i])
2507 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2508 if (SrcUndef[i])
2509 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2510 }
2511 }
2512 }
2513
2514 // Bitcast from 'small element' src vector to 'large element' vector, we
2515 // demand all smaller source elements covered by the larger demanded element
2516 // of this vector.
2517 if ((NumSrcElts % NumElts) == 0) {
2518 unsigned Scale = NumSrcElts / NumElts;
2519 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2520 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2521 TLO, Depth + 1))
2522 return true;
2523
2524 // If all the src elements covering an output element are zero/undef, then
2525 // the output element will be as well, assuming it was demanded.
2526 for (unsigned i = 0; i != NumElts; ++i) {
2527 if (DemandedElts[i]) {
2528 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2529 KnownZero.setBit(i);
2530 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2531 KnownUndef.setBit(i);
2532 }
2533 }
2534 }
2535 break;
2536 }
2537 case ISD::BUILD_VECTOR: {
2538 // Check all elements and simplify any unused elements with UNDEF.
2539 if (!DemandedElts.isAllOnes()) {
2540 // Don't simplify BROADCASTS.
2541 if (llvm::any_of(Op->op_values(),
2542 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2543 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2544 bool Updated = false;
2545 for (unsigned i = 0; i != NumElts; ++i) {
2546 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2547 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2548 KnownUndef.setBit(i);
2549 Updated = true;
2550 }
2551 }
2552 if (Updated)
2553 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2554 }
2555 }
2556 for (unsigned i = 0; i != NumElts; ++i) {
2557 SDValue SrcOp = Op.getOperand(i);
2558 if (SrcOp.isUndef()) {
2559 KnownUndef.setBit(i);
2560 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2561 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2562 KnownZero.setBit(i);
2563 }
2564 }
2565 break;
2566 }
2567 case ISD::CONCAT_VECTORS: {
2568 EVT SubVT = Op.getOperand(0).getValueType();
2569 unsigned NumSubVecs = Op.getNumOperands();
2570 unsigned NumSubElts = SubVT.getVectorNumElements();
2571 for (unsigned i = 0; i != NumSubVecs; ++i) {
2572 SDValue SubOp = Op.getOperand(i);
2573 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2574 APInt SubUndef, SubZero;
2575 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2576 Depth + 1))
2577 return true;
2578 KnownUndef.insertBits(SubUndef, i * NumSubElts);
2579 KnownZero.insertBits(SubZero, i * NumSubElts);
2580 }
2581 break;
2582 }
2583 case ISD::INSERT_SUBVECTOR: {
2584 // Demand any elements from the subvector and the remainder from the src its
2585 // inserted into.
2586 SDValue Src = Op.getOperand(0);
2587 SDValue Sub = Op.getOperand(1);
2588 uint64_t Idx = Op.getConstantOperandVal(2);
2589 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2590 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2591 APInt DemandedSrcElts = DemandedElts;
2592 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2593
2594 APInt SubUndef, SubZero;
2595 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2596 Depth + 1))
2597 return true;
2598
2599 // If none of the src operand elements are demanded, replace it with undef.
2600 if (!DemandedSrcElts && !Src.isUndef())
2601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2602 TLO.DAG.getUNDEF(VT), Sub,
2603 Op.getOperand(2)));
2604
2605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2606 TLO, Depth + 1))
2607 return true;
2608 KnownUndef.insertBits(SubUndef, Idx);
2609 KnownZero.insertBits(SubZero, Idx);
2610
2611 // Attempt to avoid multi-use ops if we don't need anything from them.
2612 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2613 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2614 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2615 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2616 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2617 if (NewSrc || NewSub) {
2618 NewSrc = NewSrc ? NewSrc : Src;
2619 NewSub = NewSub ? NewSub : Sub;
2620 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2621 NewSub, Op.getOperand(2));
2622 return TLO.CombineTo(Op, NewOp);
2623 }
2624 }
2625 break;
2626 }
2627 case ISD::EXTRACT_SUBVECTOR: {
2628 // Offset the demanded elts by the subvector index.
2629 SDValue Src = Op.getOperand(0);
2630 if (Src.getValueType().isScalableVector())
2631 break;
2632 uint64_t Idx = Op.getConstantOperandVal(1);
2633 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2635
2636 APInt SrcUndef, SrcZero;
2637 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2638 Depth + 1))
2639 return true;
2640 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2641 KnownZero = SrcZero.extractBits(NumElts, Idx);
2642
2643 // Attempt to avoid multi-use ops if we don't need anything from them.
2644 if (!DemandedElts.isAllOnes()) {
2645 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2646 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2647 if (NewSrc) {
2648 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2649 Op.getOperand(1));
2650 return TLO.CombineTo(Op, NewOp);
2651 }
2652 }
2653 break;
2654 }
2655 case ISD::INSERT_VECTOR_ELT: {
2656 SDValue Vec = Op.getOperand(0);
2657 SDValue Scl = Op.getOperand(1);
2658 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2659
2660 // For a legal, constant insertion index, if we don't need this insertion
2661 // then strip it, else remove it from the demanded elts.
2662 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2663 unsigned Idx = CIdx->getZExtValue();
2664 if (!DemandedElts[Idx])
2665 return TLO.CombineTo(Op, Vec);
2666
2667 APInt DemandedVecElts(DemandedElts);
2668 DemandedVecElts.clearBit(Idx);
2669 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2670 KnownZero, TLO, Depth + 1))
2671 return true;
2672
2673 KnownUndef.setBitVal(Idx, Scl.isUndef());
2674
2675 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2676 break;
2677 }
2678
2679 APInt VecUndef, VecZero;
2680 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2681 Depth + 1))
2682 return true;
2683 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2684 break;
2685 }
2686 case ISD::VSELECT: {
2687 // Try to transform the select condition based on the current demanded
2688 // elements.
2689 // TODO: If a condition element is undef, we can choose from one arm of the
2690 // select (and if one arm is undef, then we can propagate that to the
2691 // result).
2692 // TODO - add support for constant vselect masks (see IR version of this).
2693 APInt UnusedUndef, UnusedZero;
2694 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2695 UnusedZero, TLO, Depth + 1))
2696 return true;
2697
2698 // See if we can simplify either vselect operand.
2699 APInt DemandedLHS(DemandedElts);
2700 APInt DemandedRHS(DemandedElts);
2701 APInt UndefLHS, ZeroLHS;
2702 APInt UndefRHS, ZeroRHS;
2703 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2704 ZeroLHS, TLO, Depth + 1))
2705 return true;
2706 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2707 ZeroRHS, TLO, Depth + 1))
2708 return true;
2709
2710 KnownUndef = UndefLHS & UndefRHS;
2711 KnownZero = ZeroLHS & ZeroRHS;
2712 break;
2713 }
2714 case ISD::VECTOR_SHUFFLE: {
2715 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2716
2717 // Collect demanded elements from shuffle operands..
2718 APInt DemandedLHS(NumElts, 0);
2719 APInt DemandedRHS(NumElts, 0);
2720 for (unsigned i = 0; i != NumElts; ++i) {
2721 int M = ShuffleMask[i];
2722 if (M < 0 || !DemandedElts[i])
2723 continue;
2724 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range")(static_cast <bool> (0 <= M && M < (int)(
2 * NumElts) && "Shuffle index out of range") ? void (
0) : __assert_fail ("0 <= M && M < (int)(2 * NumElts) && \"Shuffle index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2724, __extension__ __PRETTY_FUNCTION__))
;
2725 if (M < (int)NumElts)
2726 DemandedLHS.setBit(M);
2727 else
2728 DemandedRHS.setBit(M - NumElts);
2729 }
2730
2731 // See if we can simplify either shuffle operand.
2732 APInt UndefLHS, ZeroLHS;
2733 APInt UndefRHS, ZeroRHS;
2734 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2735 ZeroLHS, TLO, Depth + 1))
2736 return true;
2737 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2738 ZeroRHS, TLO, Depth + 1))
2739 return true;
2740
2741 // Simplify mask using undef elements from LHS/RHS.
2742 bool Updated = false;
2743 bool IdentityLHS = true, IdentityRHS = true;
2744 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2745 for (unsigned i = 0; i != NumElts; ++i) {
2746 int &M = NewMask[i];
2747 if (M < 0)
2748 continue;
2749 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2750 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2751 Updated = true;
2752 M = -1;
2753 }
2754 IdentityLHS &= (M < 0) || (M == (int)i);
2755 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2756 }
2757
2758 // Update legal shuffle masks based on demanded elements if it won't reduce
2759 // to Identity which can cause premature removal of the shuffle mask.
2760 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2761 SDValue LegalShuffle =
2762 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2763 NewMask, TLO.DAG);
2764 if (LegalShuffle)
2765 return TLO.CombineTo(Op, LegalShuffle);
2766 }
2767
2768 // Propagate undef/zero elements from LHS/RHS.
2769 for (unsigned i = 0; i != NumElts; ++i) {
2770 int M = ShuffleMask[i];
2771 if (M < 0) {
2772 KnownUndef.setBit(i);
2773 } else if (M < (int)NumElts) {
2774 if (UndefLHS[M])
2775 KnownUndef.setBit(i);
2776 if (ZeroLHS[M])
2777 KnownZero.setBit(i);
2778 } else {
2779 if (UndefRHS[M - NumElts])
2780 KnownUndef.setBit(i);
2781 if (ZeroRHS[M - NumElts])
2782 KnownZero.setBit(i);
2783 }
2784 }
2785 break;
2786 }
2787 case ISD::ANY_EXTEND_VECTOR_INREG:
2788 case ISD::SIGN_EXTEND_VECTOR_INREG:
2789 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2790 APInt SrcUndef, SrcZero;
2791 SDValue Src = Op.getOperand(0);
2792 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2793 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2794 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2795 Depth + 1))
2796 return true;
2797 KnownZero = SrcZero.zextOrTrunc(NumElts);
2798 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2799
2800 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2801 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2802 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2803 // aext - if we just need the bottom element then we can bitcast.
2804 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2805 }
2806
2807 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2808 // zext(undef) upper bits are guaranteed to be zero.
2809 if (DemandedElts.isSubsetOf(KnownUndef))
2810 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2811 KnownUndef.clearAllBits();
2812 }
2813 break;
2814 }
2815
2816 // TODO: There are more binop opcodes that could be handled here - MIN,
2817 // MAX, saturated math, etc.
2818 case ISD::OR:
2819 case ISD::XOR:
2820 case ISD::ADD:
2821 case ISD::SUB:
2822 case ISD::FADD:
2823 case ISD::FSUB:
2824 case ISD::FMUL:
2825 case ISD::FDIV:
2826 case ISD::FREM: {
2827 SDValue Op0 = Op.getOperand(0);
2828 SDValue Op1 = Op.getOperand(1);
2829
2830 APInt UndefRHS, ZeroRHS;
2831 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2832 Depth + 1))
2833 return true;
2834 APInt UndefLHS, ZeroLHS;
2835 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2836 Depth + 1))
2837 return true;
2838
2839 KnownZero = ZeroLHS & ZeroRHS;
2840 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2841
2842 // Attempt to avoid multi-use ops if we don't need anything from them.
2843 // TODO - use KnownUndef to relax the demandedelts?
2844 if (!DemandedElts.isAllOnes())
2845 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2846 return true;
2847 break;
2848 }
2849 case ISD::SHL:
2850 case ISD::SRL:
2851 case ISD::SRA:
2852 case ISD::ROTL:
2853 case ISD::ROTR: {
2854 SDValue Op0 = Op.getOperand(0);
2855 SDValue Op1 = Op.getOperand(1);
2856
2857 APInt UndefRHS, ZeroRHS;
2858 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2859 Depth + 1))
2860 return true;
2861 APInt UndefLHS, ZeroLHS;
2862 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2863 Depth + 1))
2864 return true;
2865
2866 KnownZero = ZeroLHS;
2867 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2868
2869 // Attempt to avoid multi-use ops if we don't need anything from them.
2870 // TODO - use KnownUndef to relax the demandedelts?
2871 if (!DemandedElts.isAllOnes())
2872 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2873 return true;
2874 break;
2875 }
2876 case ISD::MUL:
2877 case ISD::AND: {
2878 SDValue Op0 = Op.getOperand(0);
2879 SDValue Op1 = Op.getOperand(1);
2880
2881 APInt SrcUndef, SrcZero;
2882 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2883 Depth + 1))
2884 return true;
2885 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2886 TLO, Depth + 1))
2887 return true;
2888
2889 // If either side has a zero element, then the result element is zero, even
2890 // if the other is an UNDEF.
2891 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2892 // and then handle 'and' nodes with the rest of the binop opcodes.
2893 KnownZero |= SrcZero;
2894 KnownUndef &= SrcUndef;
2895 KnownUndef &= ~KnownZero;
2896
2897 // Attempt to avoid multi-use ops if we don't need anything from them.
2898 // TODO - use KnownUndef to relax the demandedelts?
2899 if (!DemandedElts.isAllOnes())
2900 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2901 return true;
2902 break;
2903 }
2904 case ISD::TRUNCATE:
2905 case ISD::SIGN_EXTEND:
2906 case ISD::ZERO_EXTEND:
2907 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2908 KnownZero, TLO, Depth + 1))
2909 return true;
2910
2911 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2912 // zext(undef) upper bits are guaranteed to be zero.
2913 if (DemandedElts.isSubsetOf(KnownUndef))
2914 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2915 KnownUndef.clearAllBits();
2916 }
2917 break;
2918 default: {
2919 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2920 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2921 KnownZero, TLO, Depth))
2922 return true;
2923 } else {
2924 KnownBits Known;
2925 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2926 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2927 TLO, Depth, AssumeSingleUse))
2928 return true;
2929 }
2930 break;
2931 }
2932 }
2933 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero")(static_cast <bool> ((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero") ? void (0) : __assert_fail
("(KnownUndef & KnownZero) == 0 && \"Elements flagged as undef AND zero\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2933, __extension__ __PRETTY_FUNCTION__))
;
2934
2935 // Constant fold all undef cases.
2936 // TODO: Handle zero cases as well.
2937 if (DemandedElts.isSubsetOf(KnownUndef))
2938 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2939
2940 return false;
2941}
2942
2943/// Determine which of the bits specified in Mask are known to be either zero or
2944/// one and return them in the Known.
2945void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2946 KnownBits &Known,
2947 const APInt &DemandedElts,
2948 const SelectionDAG &DAG,
2949 unsigned Depth) const {
2950 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2955, __extension__ __PRETTY_FUNCTION__))
2951 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2955, __extension__ __PRETTY_FUNCTION__))
2952 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2955, __extension__ __PRETTY_FUNCTION__))
2953 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2955, __extension__ __PRETTY_FUNCTION__))
2954 "Should use MaskedValueIsZero if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2955, __extension__ __PRETTY_FUNCTION__))
2955 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2955, __extension__ __PRETTY_FUNCTION__))
;
2956 Known.resetAll();
2957}
2958
2959void TargetLowering::computeKnownBitsForTargetInstr(
2960 GISelKnownBits &Analysis, Register R, KnownBits &Known,
2961 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2962 unsigned Depth) const {
2963 Known.resetAll();
2964}
2965
2966void TargetLowering::computeKnownBitsForFrameIndex(
2967 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2968 // The low bits are known zero if the pointer is aligned.
2969 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2970}
2971
2972Align TargetLowering::computeKnownAlignForTargetInstr(
2973 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2974 unsigned Depth) const {
2975 return Align(1);
2976}
2977
2978/// This method can be implemented by targets that want to expose additional
2979/// information about sign bits to the DAG Combiner.
2980unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2981 const APInt &,
2982 const SelectionDAG &,
2983 unsigned Depth) const {
2984 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
2985 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
2986 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
2987 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
2988 "Should use ComputeNumSignBits if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
2989 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
;
2990 return 1;
2991}
2992
2993unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2994 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2995 const MachineRegisterInfo &MRI, unsigned Depth) const {
2996 return 1;
2997}
2998
2999bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3000 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3001 TargetLoweringOpt &TLO, unsigned Depth) const {
3002 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3007, __extension__ __PRETTY_FUNCTION__))
3003 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3007, __extension__ __PRETTY_FUNCTION__))
3004 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3007, __extension__ __PRETTY_FUNCTION__))
3005 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3007, __extension__ __PRETTY_FUNCTION__))
3006 "Should use SimplifyDemandedVectorElts if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3007, __extension__ __PRETTY_FUNCTION__))
3007 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3007, __extension__ __PRETTY_FUNCTION__))
;
3008 return false;
3009}
3010
3011bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3012 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3013 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3014 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3019, __extension__ __PRETTY_FUNCTION__))
3015 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3019, __extension__ __PRETTY_FUNCTION__))
3016 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3019, __extension__ __PRETTY_FUNCTION__))
3017 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3019, __extension__ __PRETTY_FUNCTION__))
3018 "Should use SimplifyDemandedBits if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3019, __extension__ __PRETTY_FUNCTION__))
3019 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3019, __extension__ __PRETTY_FUNCTION__))
;
3020 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3021 return false;
3022}
3023
3024SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3025 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3026 SelectionDAG &DAG, unsigned Depth) const {
3027 assert((static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
3028 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
3029 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
3030 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
3031 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
3032 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
3033 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3033, __extension__ __PRETTY_FUNCTION__))
;
3034 return SDValue();
3035}
3036
3037SDValue
3038TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3039 SDValue N1, MutableArrayRef<int> Mask,
3040 SelectionDAG &DAG) const {
3041 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3042 if (!LegalMask) {
3043 std::swap(N0, N1);
3044 ShuffleVectorSDNode::commuteMask(Mask);
3045 LegalMask = isShuffleMaskLegal(Mask, VT);
3046 }
3047
3048 if (!LegalMask)
3049 return SDValue();
3050
3051 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3052}
3053
3054const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3055 return nullptr;
3056}
3057
3058bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3059 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3060 bool PoisonOnly, unsigned Depth) const {
3061 assert((static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3062 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3063 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3064 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3065 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3066 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3067 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
;
3068 return false;
3069}
3070
3071bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3072 const SelectionDAG &DAG,
3073 bool SNaN,
3074 unsigned Depth) const {
3075 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3080, __extension__ __PRETTY_FUNCTION__))
3076 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3080, __extension__ __PRETTY_FUNCTION__))
3077 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3080, __extension__ __PRETTY_FUNCTION__))
3078 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3080, __extension__ __PRETTY_FUNCTION__))
3079 "Should use isKnownNeverNaN if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3080, __extension__ __PRETTY_FUNCTION__))
3080 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3080, __extension__ __PRETTY_FUNCTION__))
;
3081 return false;
3082}
3083
3084// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3085// work with truncating build vectors and vectors with elements of less than
3086// 8 bits.
3087bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3088 if (!N)
3089 return false;
3090
3091 APInt CVal;
3092 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3093 CVal = CN->getAPIntValue();
3094 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3095 auto *CN = BV->getConstantSplatNode();
3096 if (!CN)
3097 return false;
3098
3099 // If this is a truncating build vector, truncate the splat value.
3100 // Otherwise, we may fail to match the expected values below.
3101 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3102 CVal = CN->getAPIntValue();
3103 if (BVEltWidth < CVal.getBitWidth())
3104 CVal = CVal.trunc(BVEltWidth);
3105 } else {
3106 return false;
3107 }
3108
3109 switch (getBooleanContents(N->getValueType(0))) {
3110 case UndefinedBooleanContent:
3111 return CVal[0];
3112 case ZeroOrOneBooleanContent:
3113 return CVal.isOne();
3114 case ZeroOrNegativeOneBooleanContent:
3115 return CVal.isAllOnes();
3116 }
3117
3118 llvm_unreachable("Invalid boolean contents")::llvm::llvm_unreachable_internal("Invalid boolean contents",
"/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3118)
;
3119}
3120
3121bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3122 if (!N)
3123 return false;
3124
3125 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3126 if (!CN) {
3127 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3128 if (!BV)
3129 return false;
3130
3131 // Only interested in constant splats, we don't care about undef
3132 // elements in identifying boolean constants and getConstantSplatNode
3133 // returns NULL if all ops are undef;
3134 CN = BV->getConstantSplatNode();
3135 if (!CN)
3136 return false;
3137 }
3138
3139 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3140 return !CN->getAPIntValue()[0];
3141
3142 return CN->isZero();
3143}
3144
3145bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3146 bool SExt) const {
3147 if (VT == MVT::i1)
3148 return N->isOne();
3149
3150 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3151 switch (Cnt) {
3152 case TargetLowering::ZeroOrOneBooleanContent:
3153 // An extended value of 1 is always true, unless its original type is i1,
3154 // in which case it will be sign extended to -1.
3155 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3156 case TargetLowering::UndefinedBooleanContent:
3157 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3158 return N->isAllOnes() && SExt;
3159 }
3160 llvm_unreachable("Unexpected enumeration.")::llvm::llvm_unreachable_internal("Unexpected enumeration.", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3160)
;
3161}
3162
3163/// This helper function of SimplifySetCC tries to optimize the comparison when
3164/// either operand of the SetCC node is a bitwise-and instruction.
3165SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3166 ISD::CondCode Cond, const SDLoc &DL,
3167 DAGCombinerInfo &DCI) const {
3168 // Match these patterns in any of their permutations:
3169 // (X & Y) == Y
3170 // (X & Y) != Y
3171 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3172 std::swap(N0, N1);
3173
3174 EVT OpVT = N0.getValueType();
3175 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3176 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3177 return SDValue();
3178
3179 SDValue X, Y;
3180 if (N0.getOperand(0) == N1) {
3181 X = N0.getOperand(1);
3182 Y = N0.getOperand(0);
3183 } else if (N0.getOperand(1) == N1) {
3184 X = N0.getOperand(0);
3185 Y = N0.getOperand(1);
3186 } else {
3187 return SDValue();
3188 }
3189
3190 SelectionDAG &DAG = DCI.DAG;
3191 SDValue Zero = DAG.getConstant(0, DL, OpVT);
3192 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3193 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3194 // Note that where Y is variable and is known to have at most one bit set
3195 // (for example, if it is Z & 1) we cannot do this; the expressions are not
3196 // equivalent when Y == 0.
3197 assert(OpVT.isInteger())(static_cast <bool> (OpVT.isInteger()) ? void (0) : __assert_fail
("OpVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3197, __extension__ __PRETTY_FUNCTION__))
;
3198 Cond = ISD::getSetCCInverse(Cond, OpVT);
3199 if (DCI.isBeforeLegalizeOps() ||
3200 isCondCodeLegal(Cond, N0.getSimpleValueType()))
3201 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3202 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3203 // If the target supports an 'and-not' or 'and-complement' logic operation,
3204 // try to use that to make a comparison operation more efficient.
3205 // But don't do this transform if the mask is a single bit because there are
3206 // more efficient ways to deal with that case (for example, 'bt' on x86 or
3207 // 'rlwinm' on PPC).
3208
3209 // Bail out if the compare operand that we want to turn into a zero is
3210 // already a zero (otherwise, infinite loop).
3211 auto *YConst = dyn_cast<ConstantSDNode>(Y);
3212 if (YConst && YConst->isZero())
3213 return SDValue();
3214
3215 // Transform this into: ~X & Y == 0.
3216 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3217 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3218 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3219 }
3220
3221 return SDValue();
3222}
3223
3224/// There are multiple IR patterns that could be checking whether certain
3225/// truncation of a signed number would be lossy or not. The pattern which is
3226/// best at IR level, may not lower optimally. Thus, we want to unfold it.
3227/// We are looking for the following pattern: (KeptBits is a constant)
3228/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3229/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3230/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
3231/// We will unfold it into the natural trunc+sext pattern:
3232/// ((%x << C) a>> C) dstcond %x
3233/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
3234SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3235 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3236 const SDLoc &DL) const {
3237 // We must be comparing with a constant.
3238 ConstantSDNode *C1;
3239 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3240 return SDValue();
3241
3242 // N0 should be: add %x, (1 << (KeptBits-1))
3243 if (N0->getOpcode() != ISD::ADD)
3244 return SDValue();
3245
3246 // And we must be 'add'ing a constant.
3247 ConstantSDNode *C01;
3248 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3249 return SDValue();
3250
3251 SDValue X = N0->getOperand(0);
3252 EVT XVT = X.getValueType();
3253
3254 // Validate constants ...
3255
3256 APInt I1 = C1->getAPIntValue();
3257
3258 ISD::CondCode NewCond;
3259 if (Cond == ISD::CondCode::SETULT) {
3260 NewCond = ISD::CondCode::SETEQ;
3261 } else if (Cond == ISD::CondCode::SETULE) {
3262 NewCond = ISD::CondCode::SETEQ;
3263 // But need to 'canonicalize' the constant.
3264 I1 += 1;
3265 } else if (Cond == ISD::CondCode::SETUGT) {
3266 NewCond = ISD::CondCode::SETNE;
3267 // But need to 'canonicalize' the constant.
3268 I1 += 1;
3269 } else if (Cond == ISD::CondCode::SETUGE) {
3270 NewCond = ISD::CondCode::SETNE;
3271 } else
3272 return SDValue();
3273
3274 APInt I01 = C01->getAPIntValue();
3275
3276 auto checkConstants = [&I1, &I01]() -> bool {
3277 // Both of them must be power-of-two, and the constant from setcc is bigger.
3278 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3279 };
3280
3281 if (checkConstants()) {
3282 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
3283 } else {
3284 // What if we invert constants? (and the target predicate)
3285 I1.negate();
3286 I01.negate();
3287 assert(XVT.isInteger())(static_cast <bool> (XVT.isInteger()) ? void (0) : __assert_fail
("XVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3287, __extension__ __PRETTY_FUNCTION__))
;
3288 NewCond = getSetCCInverse(NewCond, XVT);
3289 if (!checkConstants())
3290 return SDValue();
3291 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
3292 }
3293
3294 // They are power-of-two, so which bit is set?
3295 const unsigned KeptBits = I1.logBase2();
3296 const unsigned KeptBitsMinusOne = I01.logBase2();
3297
3298 // Magic!
3299 if (KeptBits != (KeptBitsMinusOne + 1))
3300 return SDValue();
3301 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable")(static_cast <bool> (KeptBits > 0 && KeptBits
< XVT.getSizeInBits() && "unreachable") ? void (0
) : __assert_fail ("KeptBits > 0 && KeptBits < XVT.getSizeInBits() && \"unreachable\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3301, __extension__ __PRETTY_FUNCTION__))
;
3302
3303 // We don't want to do this in every single case.
3304 SelectionDAG &DAG = DCI.DAG;
3305 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3306 XVT, KeptBits))
3307 return SDValue();
3308
3309 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3310 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable")(static_cast <bool> (MaskedBits > 0 && MaskedBits
< XVT.getSizeInBits() && "unreachable") ? void (0
) : __assert_fail ("MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && \"unreachable\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3310, __extension__ __PRETTY_FUNCTION__))
;
3311
3312 // Unfold into: ((%x << C) a>> C) cond %x
3313 // Where 'cond' will be either 'eq' or 'ne'.
3314 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3315 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3316 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3317 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3318
3319 return T2;
3320}
3321
3322// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3323SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3324 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3325 DAGCombinerInfo &DCI, const SDLoc &DL) const {
3326 assert(isConstOrConstSplat(N1C) &&(static_cast <bool> (isConstOrConstSplat(N1C) &&
isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
"Should be a comparison with 0.") ? void (0) : __assert_fail
("isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->getAPIntValue().isZero() && \"Should be a comparison with 0.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3328, __extension__ __PRETTY_FUNCTION__))
3327 isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&(static_cast <bool> (isConstOrConstSplat(N1C) &&
isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
"Should be a comparison with 0.") ? void (0) : __assert_fail
("isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->getAPIntValue().isZero() && \"Should be a comparison with 0.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3328, __extension__ __PRETTY_FUNCTION__))
3328 "Should be a comparison with 0.")(static_cast <bool> (isConstOrConstSplat(N1C) &&
isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
"Should be a comparison with 0.") ? void (0) : __assert_fail
("isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->getAPIntValue().isZero() && \"Should be a comparison with 0.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3328, __extension__ __PRETTY_FUNCTION__))
;
3329 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Valid only for [in]equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Valid only for [in]equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3330, __extension__ __PRETTY_FUNCTION__))
3330 "Valid only for [in]equality comparisons.")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Valid only for [in]equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Valid only for [in]equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3330, __extension__ __PRETTY_FUNCTION__))
;
3331
3332 unsigned NewShiftOpcode;
3333 SDValue X, C, Y;
3334
3335 SelectionDAG &DAG = DCI.DAG;
3336 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3337
3338 // Look for '(C l>>/<< Y)'.
3339 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3340 // The shift should be one-use.
3341 if (!V.hasOneUse())
3342 return false;
3343 unsigned OldShiftOpcode = V.getOpcode();
3344 switch (OldShiftOpcode) {
3345 case ISD::SHL:
3346 NewShiftOpcode = ISD::SRL;
3347 break;
3348 case ISD::SRL:
3349 NewShiftOpcode = ISD::SHL;
3350 break;
3351 default:
3352 return false; // must be a logical shift.
3353 }
3354 // We should be shifting a constant.
3355 // FIXME: best to use isConstantOrConstantVector().
3356 C = V.getOperand(0);
3357 ConstantSDNode *CC =
3358 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3359 if (!CC)
3360 return false;
3361 Y = V.getOperand(1);
3362
3363 ConstantSDNode *XC =
3364 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3365 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3366 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3367 };
3368
3369 // LHS of comparison should be an one-use 'and'.
3370 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3371 return SDValue();
3372
3373 X = N0.getOperand(0);
3374 SDValue Mask = N0.getOperand(1);
3375
3376 // 'and' is commutative!
3377 if (!Match(Mask)) {
3378 std::swap(X, Mask);
3379 if (!Match(Mask))
3380 return SDValue();
3381 }
3382
3383 EVT VT = X.getValueType();
3384
3385 // Produce:
3386 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3387 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3388 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3389 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3390 return T2;
3391}
3392
3393/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3394/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3395/// handle the commuted versions of these patterns.
3396SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3397 ISD::CondCode Cond, const SDLoc &DL,
3398 DAGCombinerInfo &DCI) const {
3399 unsigned BOpcode = N0.getOpcode();
3400 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&(static_cast <bool> ((BOpcode == ISD::ADD || BOpcode ==
ISD::SUB || BOpcode == ISD::XOR) && "Unexpected binop"
) ? void (0) : __assert_fail ("(BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && \"Unexpected binop\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3401, __extension__ __PRETTY_FUNCTION__))
3401 "Unexpected binop")(static_cast <bool> ((BOpcode == ISD::ADD || BOpcode ==
ISD::SUB || BOpcode == ISD::XOR) && "Unexpected binop"
) ? void (0) : __assert_fail ("(BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && \"Unexpected binop\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3401, __extension__ __PRETTY_FUNCTION__))
;
3402 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Unexpected condcode") ? void (0) : __assert_fail
("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Unexpected condcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3402, __extension__ __PRETTY_FUNCTION__))
;
3403
3404 // (X + Y) == X --> Y == 0
3405 // (X - Y) == X --> Y == 0
3406 // (X ^ Y) == X --> Y == 0
3407 SelectionDAG &DAG = DCI.DAG;
3408 EVT OpVT = N0.getValueType();
3409 SDValue X = N0.getOperand(0);
3410 SDValue Y = N0.getOperand(1);
3411 if (X == N1)
3412 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3413
3414 if (Y != N1)
3415 return SDValue();
3416
3417 // (X + Y) == Y --> X == 0
3418 // (X ^ Y) == Y --> X == 0
3419 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3420 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3421
3422 // The shift would not be valid if the operands are boolean (i1).
3423 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3424 return SDValue();
3425
3426 // (X - Y) == Y --> X == Y << 1
3427 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3428 !DCI.isBeforeLegalize());
3429 SDValue One = DAG.getConstant(1, DL, ShiftVT);
3430 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3431 if (!DCI.isCalledByLegalizer())
3432 DCI.AddToWorklist(YShl1.getNode());
3433 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3434}
3435
3436static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3437 SDValue N0, const APInt &C1,
3438 ISD::CondCode Cond, const SDLoc &dl,
3439 SelectionDAG &DAG) {
3440 // Look through truncs that don't change the value of a ctpop.
3441 // FIXME: Add vector support? Need to be careful with setcc result type below.
3442 SDValue CTPOP = N0;
3443 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3444 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3445 CTPOP = N0.getOperand(0);
3446
3447 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3448 return SDValue();
3449
3450 EVT CTVT = CTPOP.getValueType();
3451 SDValue CTOp = CTPOP.getOperand(0);
3452
3453 // If this is a vector CTPOP, keep the CTPOP if it is legal.
3454 // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3455 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3456 return SDValue();
3457
3458 // (ctpop x) u< 2 -> (x & x-1) == 0
3459 // (ctpop x) u> 1 -> (x & x-1) != 0
3460 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3461 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3462 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3463 return SDValue();
3464 if (C1 == 0 && (Cond == ISD::SETULT))
3465 return SDValue(); // This is handled elsewhere.
3466
3467 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3468
3469 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3470 SDValue Result = CTOp;
3471 for (unsigned i = 0; i < Passes; i++) {
3472 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3473 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3474 }
3475 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3476 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3477 }
3478
3479 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3480 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3481 // For scalars, keep CTPOP if it is legal or custom.
3482 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3483 return SDValue();
3484 // This is based on X86's custom lowering for CTPOP which produces more
3485 // instructions than the expansion here.
3486
3487 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3488 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3489 SDValue Zero = DAG.getConstant(0, dl, CTVT);
3490 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3491 assert(CTVT.isInteger())(static_cast <bool> (CTVT.isInteger()) ? void (0) : __assert_fail
("CTVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3491, __extension__ __PRETTY_FUNCTION__))
;
3492 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3493 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3494 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3495 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3496 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3497 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3498 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3499 }
3500
3501 return SDValue();
3502}
3503
3504/// Try to simplify a setcc built with the specified operands and cc. If it is
3505/// unable to simplify it, return a null SDValue.
3506SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3507 ISD::CondCode Cond, bool foldBooleans,
3508 DAGCombinerInfo &DCI,
3509 const SDLoc &dl) const {
3510 SelectionDAG &DAG = DCI.DAG;
3511 const DataLayout &Layout = DAG.getDataLayout();
3512 EVT OpVT = N0.getValueType();
3513
3514 // Constant fold or commute setcc.
3515 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3516 return Fold;
3517
3518 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3519 // TODO: Handle non-splat vector constants. All undef causes trouble.
3520 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3521 // infinite loop here when we encounter one.
3522 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3523 if (isConstOrConstSplat(N0) &&
3524 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3525 (DCI.isBeforeLegalizeOps() ||
3526 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3527 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3528
3529 // If we have a subtract with the same 2 non-constant operands as this setcc
3530 // -- but in reverse order -- then try to commute the operands of this setcc
3531 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3532 // instruction on some targets.
3533 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3534 (DCI.isBeforeLegalizeOps() ||
3535 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3536 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3537 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3538 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3539
3540 if (auto *N1C = isConstOrConstSplat(N1)) {
3541 const APInt &C1 = N1C->getAPIntValue();
3542
3543 // Optimize some CTPOP cases.
3544 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3545 return V;
3546
3547 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3548 // equality comparison, then we're just comparing whether X itself is
3549 // zero.
3550 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3551 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3552 isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3553 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3554 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3555 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3556 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3557 // (srl (ctlz x), 5) == 0 -> X != 0
3558 // (srl (ctlz x), 5) != 1 -> X != 0
3559 Cond = ISD::SETNE;
3560 } else {
3561 // (srl (ctlz x), 5) != 0 -> X == 0
3562 // (srl (ctlz x), 5) == 1 -> X == 0
3563 Cond = ISD::SETEQ;
3564 }
3565 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3566 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3567 Cond);
3568 }
3569 }
3570 }
3571 }
3572
3573 // FIXME: Support vectors.
3574 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3575 const APInt &C1 = N1C->getAPIntValue();
3576
3577 // (zext x) == C --> x == (trunc C)
3578 // (sext x) == C --> x == (trunc C)
3579 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3580 DCI.isBeforeLegalize() && N0->hasOneUse()) {
3581 unsigned MinBits = N0.getValueSizeInBits();
3582 SDValue PreExt;
3583 bool Signed = false;
3584 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3585 // ZExt
3586 MinBits = N0->getOperand(0).getValueSizeInBits();
3587 PreExt = N0->getOperand(0);
3588 } else if (N0->getOpcode() == ISD::AND) {
3589 // DAGCombine turns costly ZExts into ANDs
3590 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3591 if ((C->getAPIntValue()+1).isPowerOf2()) {
3592 MinBits = C->getAPIntValue().countTrailingOnes();
3593 PreExt = N0->getOperand(0);
3594 }
3595 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3596 // SExt
3597 MinBits = N0->getOperand(0).getValueSizeInBits();
3598 PreExt = N0->getOperand(0);
3599 Signed = true;
3600 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3601 // ZEXTLOAD / SEXTLOAD
3602 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3603 MinBits = LN0->getMemoryVT().getSizeInBits();
3604 PreExt = N0;
3605 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3606 Signed = true;
3607 MinBits = LN0->getMemoryVT().getSizeInBits();
3608 PreExt = N0;
3609 }
3610 }
3611
3612 // Figure out how many bits we need to preserve this constant.
3613 unsigned ReqdBits = Signed ?
3614 C1.getBitWidth() - C1.getNumSignBits() + 1 :
3615 C1.getActiveBits();
3616
3617 // Make sure we're not losing bits from the constant.
3618 if (MinBits > 0 &&
3619 MinBits < C1.getBitWidth() &&
3620 MinBits >= ReqdBits) {
3621 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3622 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3623 // Will get folded away.
3624 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3625 if (MinBits == 1 && C1 == 1)
3626 // Invert the condition.
3627 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3628 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3629 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3630 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3631 }
3632
3633 // If truncating the setcc operands is not desirable, we can still
3634 // simplify the expression in some cases:
3635 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3636 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3637 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3638 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3639 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3640 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3641 SDValue TopSetCC = N0->getOperand(0);
3642 unsigned N0Opc = N0->getOpcode();
3643 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3644 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3645 TopSetCC.getOpcode() == ISD::SETCC &&
3646 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3647 (isConstFalseVal(N1C) ||
3648 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3649
3650 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3651 (!N1C->isZero() && Cond == ISD::SETNE);
3652
3653 if (!Inverse)
3654 return TopSetCC;
3655
3656 ISD::CondCode InvCond = ISD::getSetCCInverse(
3657 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3658 TopSetCC.getOperand(0).getValueType());
3659 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3660 TopSetCC.getOperand(1),
3661 InvCond);
3662 }
3663 }
3664 }
3665
3666 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3667 // equality or unsigned, and all 1 bits of the const are in the same
3668 // partial word, see if we can shorten the load.
3669 if (DCI.isBeforeLegalize() &&
3670 !ISD::isSignedIntSetCC(Cond) &&
3671 N0.getOpcode() == ISD::AND && C1 == 0 &&
3672 N0.getNode()->hasOneUse() &&
3673 isa<LoadSDNode>(N0.getOperand(0)) &&
3674 N0.getOperand(0).getNode()->hasOneUse() &&
3675 isa<ConstantSDNode>(N0.getOperand(1))) {
3676 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3677 APInt bestMask;
3678 unsigned bestWidth = 0, bestOffset = 0;
3679 if (Lod->isSimple() && Lod->isUnindexed()) {
3680 unsigned origWidth = N0.getValueSizeInBits();
3681 unsigned maskWidth = origWidth;
3682 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3683 // 8 bits, but have to be careful...
3684 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3685 origWidth = Lod->getMemoryVT().getSizeInBits();
3686 const APInt &Mask = N0.getConstantOperandAPInt(1);
3687 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3688 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3689 for (unsigned offset=0; offset<origWidth/width; offset++) {
3690 if (Mask.isSubsetOf(newMask)) {
3691 if (Layout.isLittleEndian())
3692 bestOffset = (uint64_t)offset * (width/8);
3693 else
3694 bestOffset = (origWidth/width - offset - 1) * (width/8);
3695 bestMask = Mask.lshr(offset * (width/8) * 8);
3696 bestWidth = width;
3697 break;
3698 }
3699 newMask <<= width;
3700 }
3701 }
3702 }
3703 if (bestWidth) {
3704 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3705 if (newVT.isRound() &&
3706 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3707 SDValue Ptr = Lod->getBasePtr();
3708 if (bestOffset != 0)
3709 Ptr =
3710 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3711 SDValue NewLoad =
3712 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3713 Lod->getPointerInfo().getWithOffset(bestOffset),
3714 Lod->getOriginalAlign());
3715 return DAG.getSetCC(dl, VT,
3716 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3717 DAG.getConstant(bestMask.trunc(bestWidth),
3718 dl, newVT)),
3719 DAG.getConstant(0LL, dl, newVT), Cond);
3720 }
3721 }
3722 }
3723
3724 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3725 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3726 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3727
3728 // If the comparison constant has bits in the upper part, the
3729 // zero-extended value could never match.
3730 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3731 C1.getBitWidth() - InSize))) {
3732 switch (Cond) {
3733 case ISD::SETUGT:
3734 case ISD::SETUGE:
3735 case ISD::SETEQ:
3736 return DAG.getConstant(0, dl, VT);
3737 case ISD::SETULT:
3738 case ISD::SETULE:
3739 case ISD::SETNE:
3740 return DAG.getConstant(1, dl, VT);
3741 case ISD::SETGT:
3742 case ISD::SETGE:
3743 // True if the sign bit of C1 is set.
3744 return DAG.getConstant(C1.isNegative(), dl, VT);
3745 case ISD::SETLT:
3746 case ISD::SETLE:
3747 // True if the sign bit of C1 isn't set.
3748 return DAG.getConstant(C1.isNonNegative(), dl, VT);
3749 default:
3750 break;
3751 }
3752 }
3753
3754 // Otherwise, we can perform the comparison with the low bits.
3755 switch (Cond) {
3756 case ISD::SETEQ:
3757 case ISD::SETNE:
3758 case ISD::SETUGT:
3759 case ISD::SETUGE:
3760 case ISD::SETULT:
3761 case ISD::SETULE: {
3762 EVT newVT = N0.getOperand(0).getValueType();
3763 if (DCI.isBeforeLegalizeOps() ||
3764 (isOperationLegal(ISD::SETCC, newVT) &&
3765 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3766 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3767 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3768
3769 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3770 NewConst, Cond);
3771 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3772 }
3773 break;
3774 }
3775 default:
3776 break; // todo, be more careful with signed comparisons
3777 }
3778 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3779 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3780 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3781 OpVT)) {
3782 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3783 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3784 EVT ExtDstTy = N0.getValueType();
3785 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3786
3787 // If the constant doesn't fit into the number of bits for the source of
3788 // the sign extension, it is impossible for both sides to be equal.
3789 if (C1.getMinSignedBits() > ExtSrcTyBits)
3790 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3791
3792 assert(ExtDstTy == N0.getOperand(0).getValueType() &&(static_cast <bool> (ExtDstTy == N0.getOperand(0).getValueType
() && ExtDstTy != ExtSrcTy && "Unexpected types!"
) ? void (0) : __assert_fail ("ExtDstTy == N0.getOperand(0).getValueType() && ExtDstTy != ExtSrcTy && \"Unexpected types!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3793, __extension__ __PRETTY_FUNCTION__))
3793 ExtDstTy != ExtSrcTy && "Unexpected types!")(static_cast <bool> (ExtDstTy == N0.getOperand(0).getValueType
() && ExtDstTy != ExtSrcTy && "Unexpected types!"
) ? void (0) : __assert_fail ("ExtDstTy == N0.getOperand(0).getValueType() && ExtDstTy != ExtSrcTy && \"Unexpected types!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3793, __extension__ __PRETTY_FUNCTION__))
;
3794 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3795 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3796 DAG.getConstant(Imm, dl, ExtDstTy));
3797 if (!DCI.isCalledByLegalizer())
3798 DCI.AddToWorklist(ZextOp.getNode());
3799 // Otherwise, make this a use of a zext.
3800 return DAG.getSetCC(dl, VT, ZextOp,
3801 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3802 } else if ((N1C->isZero() || N1C->isOne()) &&
3803 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3804 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3805 if (N0.getOpcode() == ISD::SETCC &&
3806 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3807 (N0.getValueType() == MVT::i1 ||
3808 getBooleanContents(N0.getOperand(0).getValueType()) ==
3809 ZeroOrOneBooleanContent)) {
3810 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3811 if (TrueWhenTrue)
3812 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3813 // Invert the condition.
3814 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3815 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3816 if (DCI.isBeforeLegalizeOps() ||
3817 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3818 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3819 }
3820
3821 if ((N0.getOpcode() == ISD::XOR ||
3822 (N0.getOpcode() == ISD::AND &&
3823 N0.getOperand(0).getOpcode() == ISD::XOR &&
3824 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3825 isOneConstant(N0.getOperand(1))) {
3826 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3827 // can only do this if the top bits are known zero.
3828 unsigned BitWidth = N0.getValueSizeInBits();
3829 if (DAG.MaskedValueIsZero(N0,
3830 APInt::getHighBitsSet(BitWidth,
3831 BitWidth-1))) {
3832 // Okay, get the un-inverted input value.
3833 SDValue Val;
3834 if (N0.getOpcode() == ISD::XOR) {
3835 Val = N0.getOperand(0);
3836 } else {
3837 assert(N0.getOpcode() == ISD::AND &&(static_cast <bool> (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR) ? void (0) : __assert_fail
("N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3838, __extension__ __PRETTY_FUNCTION__))
3838 N0.getOperand(0).getOpcode() == ISD::XOR)(static_cast <bool> (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR) ? void (0) : __assert_fail
("N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3838, __extension__ __PRETTY_FUNCTION__))
;
3839 // ((X^1)&1)^1 -> X & 1
3840 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3841 N0.getOperand(0).getOperand(0),
3842 N0.getOperand(1));
3843 }
3844
3845 return DAG.getSetCC(dl, VT, Val, N1,
3846 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3847 }
3848 } else if (N1C->isOne()) {
3849 SDValue Op0 = N0;
3850 if (Op0.getOpcode() == ISD::TRUNCATE)
3851 Op0 = Op0.getOperand(0);
3852
3853 if ((Op0.getOpcode() == ISD::XOR) &&
3854 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3855 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3856 SDValue XorLHS = Op0.getOperand(0);
3857 SDValue XorRHS = Op0.getOperand(1);
3858 // Ensure that the input setccs return an i1 type or 0/1 value.
3859 if (Op0.getValueType() == MVT::i1 ||
3860 (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3861 ZeroOrOneBooleanContent &&
3862 getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3863 ZeroOrOneBooleanContent)) {
3864 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3865 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3866 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3867 }
3868 }
3869 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3870 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3871 if (Op0.getValueType().bitsGT(VT))
3872 Op0 = DAG.getNode(ISD::AND, dl, VT,
3873 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3874 DAG.getConstant(1, dl, VT));
3875 else if (Op0.getValueType().bitsLT(VT))
3876 Op0 = DAG.getNode(ISD::AND, dl, VT,
3877 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3878 DAG.getConstant(1, dl, VT));
3879
3880 return DAG.getSetCC(dl, VT, Op0,
3881 DAG.getConstant(0, dl, Op0.getValueType()),
3882 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3883 }
3884 if (Op0.getOpcode() == ISD::AssertZext &&
3885 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3886 return DAG.getSetCC(dl, VT, Op0,
3887 DAG.getConstant(0, dl, Op0.getValueType()),
3888 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3889 }
3890 }
3891
3892 // Given:
3893 // icmp eq/ne (urem %x, %y), 0
3894 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3895 // icmp eq/ne %x, 0
3896 if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3897 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3898 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3899 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3900 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3901 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3902 }
3903
3904 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3905 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3906 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3907 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3908 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3909 N1C && N1C->isAllOnes()) {
3910 return DAG.getSetCC(dl, VT, N0.getOperand(0),
3911 DAG.getConstant(0, dl, OpVT),
3912 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3913 }
3914
3915 if (SDValue V =
3916 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3917 return V;
3918 }
3919
3920 // These simplifications apply to splat vectors as well.
3921 // TODO: Handle more splat vector cases.
3922 if (auto *N1C = isConstOrConstSplat(N1)) {
3923 const APInt &C1 = N1C->getAPIntValue();
3924
3925 APInt MinVal, MaxVal;
3926 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3927 if (ISD::isSignedIntSetCC(Cond)) {
3928 MinVal = APInt::getSignedMinValue(OperandBitSize);
3929 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3930 } else {
3931 MinVal = APInt::getMinValue(OperandBitSize);
3932 MaxVal = APInt::getMaxValue(OperandBitSize);
3933 }
3934
3935 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3936 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3937 // X >= MIN --> true
3938 if (C1 == MinVal)
3939 return DAG.getBoolConstant(true, dl, VT, OpVT);
3940
3941 if (!VT.isVector()) { // TODO: Support this for vectors.
3942 // X >= C0 --> X > (C0 - 1)
3943 APInt C = C1 - 1;
3944 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3945 if ((DCI.isBeforeLegalizeOps() ||
3946 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3947 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3948 isLegalICmpImmediate(C.getSExtValue())))) {
3949 return DAG.getSetCC(dl, VT, N0,
3950 DAG.getConstant(C, dl, N1.getValueType()),
3951 NewCC);
3952 }
3953 }
3954 }
3955
3956 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3957 // X <= MAX --> true
3958 if (C1 == MaxVal)
3959 return DAG.getBoolConstant(true, dl, VT, OpVT);
3960
3961 // X <= C0 --> X < (C0 + 1)
3962 if (!VT.isVector()) { // TODO: Support this for vectors.
3963 APInt C = C1 + 1;
3964 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3965 if ((DCI.isBeforeLegalizeOps() ||
3966 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3967 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3968 isLegalICmpImmediate(C.getSExtValue())))) {
3969 return DAG.getSetCC(dl, VT, N0,
3970 DAG.getConstant(C, dl, N1.getValueType()),
3971 NewCC);
3972 }
3973 }
3974 }
3975
3976 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3977 if (C1 == MinVal)
3978 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3979
3980 // TODO: Support this for vectors after legalize ops.
3981 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3982 // Canonicalize setlt X, Max --> setne X, Max
3983 if (C1 == MaxVal)
3984 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3985
3986 // If we have setult X, 1, turn it into seteq X, 0
3987 if (C1 == MinVal+1)
3988 return DAG.getSetCC(dl, VT, N0,
3989 DAG.getConstant(MinVal, dl, N0.getValueType()),
3990 ISD::SETEQ);
3991 }
3992 }
3993
3994 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3995 if (C1 == MaxVal)
3996 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3997
3998 // TODO: Support this for vectors after legalize ops.
3999 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4000 // Canonicalize setgt X, Min --> setne X, Min
4001 if (C1 == MinVal)
4002 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4003
4004 // If we have setugt X, Max-1, turn it into seteq X, Max
4005 if (C1 == MaxVal-1)
4006 return DAG.getSetCC(dl, VT, N0,
4007 DAG.getConstant(MaxVal, dl, N0.getValueType()),
4008 ISD::SETEQ);
4009 }
4010 }
4011
4012 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4013 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4014 if (C1.isZero())
4015 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4016 VT, N0, N1, Cond, DCI, dl))
4017 return CC;
4018
4019 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4020 // For example, when high 32-bits of i64 X are known clear:
4021 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
4022 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
4023 bool CmpZero = N1C->getAPIntValue().isZero();
4024 bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4025 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4026 // Match or(lo,shl(hi,bw/2)) pattern.
4027 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4028 unsigned EltBits = V.getScalarValueSizeInBits();
4029 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4030 return false;
4031 SDValue LHS = V.getOperand(0);
4032 SDValue RHS = V.getOperand(1);
4033 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4034 // Unshifted element must have zero upperbits.
4035 if (RHS.getOpcode() == ISD::SHL &&
4036 isa<ConstantSDNode>(RHS.getOperand(1)) &&
4037 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4038 DAG.MaskedValueIsZero(LHS, HiBits)) {
4039 Lo = LHS;
4040 Hi = RHS.getOperand(0);
4041 return true;
4042 }
4043 if (LHS.getOpcode() == ISD::SHL &&
4044 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4045 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4046 DAG.MaskedValueIsZero(RHS, HiBits)) {
4047 Lo = RHS;
4048 Hi = LHS.getOperand(0);
4049 return true;
4050 }
4051 return false;
4052 };
4053
4054 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4055 unsigned EltBits = N0.getScalarValueSizeInBits();
4056 unsigned HalfBits = EltBits / 2;
4057 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4058 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4059 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4060 SDValue NewN0 =
4061 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4062 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4063 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4064 };
4065
4066 SDValue Lo, Hi;
4067 if (IsConcat(N0, Lo, Hi))
4068 return MergeConcat(Lo, Hi);
4069
4070 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4071 SDValue Lo0, Lo1, Hi0, Hi1;
4072 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4073 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4074 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4075 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4076 }
4077 }
4078 }
4079 }
4080
4081 // If we have "setcc X, C0", check to see if we can shrink the immediate
4082 // by changing cc.
4083 // TODO: Support this for vectors after legalize ops.
4084 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4085 // SETUGT X, SINTMAX -> SETLT X, 0
4086 // SETUGE X, SINTMIN -> SETLT X, 0
4087 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4088 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4089 return DAG.getSetCC(dl, VT, N0,
4090 DAG.getConstant(0, dl, N1.getValueType()),
4091 ISD::SETLT);
4092
4093 // SETULT X, SINTMIN -> SETGT X, -1
4094 // SETULE X, SINTMAX -> SETGT X, -1
4095 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4096 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4097 return DAG.getSetCC(dl, VT, N0,
4098 DAG.getAllOnesConstant(dl, N1.getValueType()),
4099 ISD::SETGT);
4100 }
4101 }
4102
4103 // Back to non-vector simplifications.
4104 // TODO: Can we do these for vector splats?
4105 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4106 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4107 const APInt &C1 = N1C->getAPIntValue();
4108 EVT ShValTy = N0.getValueType();
4109
4110 // Fold bit comparisons when we can. This will result in an
4111 // incorrect value when boolean false is negative one, unless
4112 // the bitsize is 1 in which case the false value is the same
4113 // in practice regardless of the representation.
4114 if ((VT.getSizeInBits() == 1 ||
4115 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4116 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4117 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4118 N0.getOpcode() == ISD::AND) {
4119 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4120 EVT ShiftTy =
4121 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4122 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
4123 // Perform the xform if the AND RHS is a single bit.
4124 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4125 if (AndRHS->getAPIntValue().isPowerOf2() &&
4126 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4127 return DAG.getNode(ISD::TRUNCATE, dl, VT,
4128 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4129 DAG.getConstant(ShCt, dl, ShiftTy)));
4130 }
4131 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4132 // (X & 8) == 8 --> (X & 8) >> 3
4133 // Perform the xform if C1 is a single bit.
4134 unsigned ShCt = C1.logBase2();
4135 if (C1.isPowerOf2() &&
4136 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4137 return DAG.getNode(ISD::TRUNCATE, dl, VT,
4138 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4139 DAG.getConstant(ShCt, dl, ShiftTy)));
4140 }
4141 }
4142 }
4143 }
4144
4145 if (C1.getMinSignedBits() <= 64 &&
4146 !isLegalICmpImmediate(C1.getSExtValue())) {
4147 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4148 // (X & -256) == 256 -> (X >> 8) == 1
4149 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4150 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4151 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4152 const APInt &AndRHSC = AndRHS->getAPIntValue();
4153 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4154 unsigned ShiftBits = AndRHSC.countTrailingZeros();
4155 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4156 SDValue Shift =
4157 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4158 DAG.getConstant(ShiftBits, dl, ShiftTy));
4159 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4160 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4161 }
4162 }
4163 }
4164 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4165 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4166 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4167 // X < 0x100000000 -> (X >> 32) < 1
4168 // X >= 0x100000000 -> (X >> 32) >= 1
4169 // X <= 0x0ffffffff -> (X >> 32) < 1
4170 // X > 0x0ffffffff -> (X >> 32) >= 1
4171 unsigned ShiftBits;
4172 APInt NewC = C1;
4173 ISD::CondCode NewCond = Cond;
4174 if (AdjOne) {
4175 ShiftBits = C1.countTrailingOnes();
4176 NewC = NewC + 1;
4177 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4178 } else {
4179 ShiftBits = C1.countTrailingZeros();
4180 }
4181 NewC.lshrInPlace(ShiftBits);
4182 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4183 isLegalICmpImmediate(NewC.getSExtValue()) &&
4184 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4185 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4186 DAG.getConstant(ShiftBits, dl, ShiftTy));
4187 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4188 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4189 }
4190 }
4191 }
4192 }
4193
4194 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4195 auto *CFP = cast<ConstantFPSDNode>(N1);
4196 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value")(static_cast <bool> (!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value") ? void (0) : __assert_fail ("!CFP->getValueAPF().isNaN() && \"Unexpected NaN value\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4196, __extension__ __PRETTY_FUNCTION__))
;
4197
4198 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
4199 // constant if knowing that the operand is non-nan is enough. We prefer to
4200 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4201 // materialize 0.0.
4202 if (Cond == ISD::SETO || Cond == ISD::SETUO)
4203 return DAG.getSetCC(dl, VT, N0, N0, Cond);
4204
4205 // setcc (fneg x), C -> setcc swap(pred) x, -C
4206 if (N0.getOpcode() == ISD::FNEG) {
4207 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4208 if (DCI.isBeforeLegalizeOps() ||
4209 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4210 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4211 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4212 }
4213 }
4214
4215 // If the condition is not legal, see if we can find an equivalent one
4216 // which is legal.
4217 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4218 // If the comparison was an awkward floating-point == or != and one of
4219 // the comparison operands is infinity or negative infinity, convert the
4220 // condition to a less-awkward <= or >=.
4221 if (CFP->getValueAPF().isInfinity()) {
4222 bool IsNegInf = CFP->getValueAPF().isNegative();
4223 ISD::CondCode NewCond = ISD::SETCC_INVALID;
4224 switch (Cond) {
4225 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4226 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4227 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4228 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4229 default: break;
4230 }
4231 if (NewCond != ISD::SETCC_INVALID &&
4232 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4233 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4234 }
4235 }
4236 }
4237
4238 if (N0 == N1) {
4239 // The sext(setcc()) => setcc() optimization relies on the appropriate
4240 // constant being emitted.
4241 assert(!N0.getValueType().isInteger() &&(static_cast <bool> (!N0.getValueType().isInteger() &&
"Integer types should be handled by FoldSetCC") ? void (0) :
__assert_fail ("!N0.getValueType().isInteger() && \"Integer types should be handled by FoldSetCC\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4242, __extension__ __PRETTY_FUNCTION__))
4242 "Integer types should be handled by FoldSetCC")(static_cast <bool> (!N0.getValueType().isInteger() &&
"Integer types should be handled by FoldSetCC") ? void (0) :
__assert_fail ("!N0.getValueType().isInteger() && \"Integer types should be handled by FoldSetCC\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4242, __extension__ __PRETTY_FUNCTION__))
;
4243
4244 bool EqTrue = ISD::isTrueWhenEqual(Cond);
4245 unsigned UOF = ISD::getUnorderedFlavor(Cond);
4246 if (UOF == 2) // FP operators that are undefined on NaNs.
4247 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4248 if (UOF == unsigned(EqTrue))
4249 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4250 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
4251 // if it is not already.
4252 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4253 if (NewCond != Cond &&
4254 (DCI.isBeforeLegalizeOps() ||
4255 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4256 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4257 }
4258
4259 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4260 N0.getValueType().isInteger()) {
4261 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4262 N0.getOpcode() == ISD::XOR) {
4263 // Simplify (X+Y) == (X+Z) --> Y == Z
4264 if (N0.getOpcode() == N1.getOpcode()) {
4265 if (N0.getOperand(0) == N1.getOperand(0))
4266 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4267 if (N0.getOperand(1) == N1.getOperand(1))
4268 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4269 if (isCommutativeBinOp(N0.getOpcode())) {
4270 // If X op Y == Y op X, try other combinations.
4271 if (N0.getOperand(0) == N1.getOperand(1))
4272 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4273 Cond);
4274 if (N0.getOperand(1) == N1.getOperand(0))
4275 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4276 Cond);
4277 }
4278 }
4279
4280 // If RHS is a legal immediate value for a compare instruction, we need
4281 // to be careful about increasing register pressure needlessly.
4282 bool LegalRHSImm = false;
4283
4284 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4285 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4286 // Turn (X+C1) == C2 --> X == C2-C1
4287 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4288 return DAG.getSetCC(dl, VT, N0.getOperand(0),
4289 DAG.getConstant(RHSC->getAPIntValue()-
4290 LHSR->getAPIntValue(),
4291 dl, N0.getValueType()), Cond);
4292 }
4293
4294 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4295 if (N0.getOpcode() == ISD::XOR)
4296 // If we know that all of the inverted bits are zero, don't bother
4297 // performing the inversion.
4298 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4299 return
4300 DAG.getSetCC(dl, VT, N0.getOperand(0),
4301 DAG.getConstant(LHSR->getAPIntValue() ^
4302 RHSC->getAPIntValue(),
4303 dl, N0.getValueType()),
4304 Cond);
4305 }
4306
4307 // Turn (C1-X) == C2 --> X == C1-C2
4308 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4309 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4310 return
4311 DAG.getSetCC(dl, VT, N0.getOperand(1),
4312 DAG.getConstant(SUBC->getAPIntValue() -
4313 RHSC->getAPIntValue(),
4314 dl, N0.getValueType()),
4315 Cond);
4316 }
4317 }
4318
4319 // Could RHSC fold directly into a compare?
4320 if (RHSC->getValueType(0).getSizeInBits() <= 64)
4321 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4322 }
4323
4324 // (X+Y) == X --> Y == 0 and similar folds.
4325 // Don't do this if X is an immediate that can fold into a cmp
4326 // instruction and X+Y has other uses. It could be an induction variable
4327 // chain, and the transform would increase register pressure.
4328 if (!LegalRHSImm || N0.hasOneUse())
4329 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4330 return V;
4331 }
4332
4333 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4334 N1.getOpcode() == ISD::XOR)
4335 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4336 return V;
4337
4338 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4339 return V;
4340 }
4341
4342 // Fold remainder of division by a constant.
4343 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4344 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4345 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4346
4347 // When division is cheap or optimizing for minimum size,
4348 // fall through to DIVREM creation by skipping this fold.
4349 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4350 if (N0.getOpcode() == ISD::UREM) {
4351 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4352 return Folded;
4353 } else if (N0.getOpcode() == ISD::SREM) {
4354 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4355 return Folded;
4356 }
4357 }
4358 }
4359
4360 // Fold away ALL boolean setcc's.
4361 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4362 SDValue Temp;
4363 switch (Cond) {
4364 default: llvm_unreachable("Unknown integer setcc!")::llvm::llvm_unreachable_internal("Unknown integer setcc!", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4364)
;
4365 case ISD::SETEQ: // X == Y -> ~(X^Y)
4366 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4367 N0 = DAG.getNOT(dl, Temp, OpVT);
4368 if (!DCI.isCalledByLegalizer())
4369 DCI.AddToWorklist(Temp.getNode());
4370 break;
4371 case ISD::SETNE: // X != Y --> (X^Y)
4372 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4373 break;
4374 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
4375 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
4376 Temp = DAG.getNOT(dl, N0, OpVT);
4377 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4378 if (!DCI.isCalledByLegalizer())
4379 DCI.AddToWorklist(Temp.getNode());
4380 break;
4381 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
4382 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
4383 Temp = DAG.getNOT(dl, N1, OpVT);
4384 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4385 if (!DCI.isCalledByLegalizer())
4386 DCI.AddToWorklist(Temp.getNode());
4387 break;
4388 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
4389 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
4390 Temp = DAG.getNOT(dl, N0, OpVT);
4391 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4392 if (!DCI.isCalledByLegalizer())
4393 DCI.AddToWorklist(Temp.getNode());
4394 break;
4395 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
4396 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
4397 Temp = DAG.getNOT(dl, N1, OpVT);
4398 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4399 break;
4400 }
4401 if (VT.getScalarType() != MVT::i1) {
4402 if (!DCI.isCalledByLegalizer())
4403 DCI.AddToWorklist(N0.getNode());
4404 // FIXME: If running after legalize, we probably can't do this.
4405 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4406 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4407 }
4408 return N0;
4409 }
4410
4411 // Could not fold it.
4412 return SDValue();
4413}
4414
4415/// Returns true (and the GlobalValue and the offset) if the node is a
4416/// GlobalAddress + offset.
4417bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4418 int64_t &Offset) const {
4419
4420 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4421
4422 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4423 GA = GASD->getGlobal();
4424 Offset += GASD->getOffset();
4425 return true;
4426 }
4427
4428 if (N->getOpcode() == ISD::ADD) {
4429 SDValue N1 = N->getOperand(0);
4430 SDValue N2 = N->getOperand(1);
4431 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4432 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4433 Offset += V->getSExtValue();
4434 return true;
4435 }
4436 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4437 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4438 Offset += V->getSExtValue();
4439 return true;
4440 }
4441 }
4442 }
4443
4444 return false;
4445}
4446
4447SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4448 DAGCombinerInfo &DCI) const {
4449 // Default implementation: no optimization.
4450 return SDValue();
4451}
4452
4453//===----------------------------------------------------------------------===//
4454// Inline Assembler Implementation Methods
4455//===----------------------------------------------------------------------===//
4456
4457TargetLowering::ConstraintType
4458TargetLowering::getConstraintType(StringRef Constraint) const {
4459 unsigned S = Constraint.size();
4460
4461 if (S == 1) {
4462 switch (Constraint[0]) {
4463 default: break;
4464 case 'r':
4465 return C_RegisterClass;
4466 case 'm': // memory
4467 case 'o': // offsetable
4468 case 'V': // not offsetable
4469 return C_Memory;
4470 case 'n': // Simple Integer
4471 case 'E': // Floating Point Constant
4472 case 'F': // Floating Point Constant
4473 return C_Immediate;
4474 case 'i': // Simple Integer or Relocatable Constant
4475 case 's': // Relocatable Constant
4476 case 'p': // Address.
4477 case 'X': // Allow ANY value.
4478 case 'I': // Target registers.
4479 case 'J':
4480 case 'K':
4481 case 'L':
4482 case 'M':
4483 case 'N':
4484 case 'O':
4485 case 'P':
4486 case '<':
4487 case '>':
4488 return C_Other;
4489 }
4490 }
4491
4492 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4493 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4494 return C_Memory;
4495 return C_Register;
4496 }
4497 return C_Unknown;
4498}
4499
4500/// Try to replace an X constraint, which matches anything, with another that
4501/// has more specific requirements based on the type of the corresponding
4502/// operand.
4503const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4504 if (ConstraintVT.isInteger())
4505 return "r";
4506 if (ConstraintVT.isFloatingPoint())
4507 return "f"; // works for many targets
4508 return nullptr;
4509}
4510
4511SDValue TargetLowering::LowerAsmOutputForConstraint(
4512 SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4513 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4514 return SDValue();
4515}
4516
4517/// Lower the specified operand into the Ops vector.
4518/// If it is invalid, don't add anything to Ops.
4519void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4520 std::string &Constraint,
4521 std::vector<SDValue> &Ops,
4522 SelectionDAG &DAG) const {
4523
4524 if (Constraint.length() > 1) return;
4525
4526 char ConstraintLetter = Constraint[0];
4527 switch (ConstraintLetter) {
4528 default: break;
4529 case 'X': // Allows any operand; labels (basic block) use this.
4530 if (Op.getOpcode() == ISD::BasicBlock ||
4531 Op.getOpcode() == ISD::TargetBlockAddress) {
4532 Ops.push_back(Op);
4533 return;
4534 }
4535 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4536 case 'i': // Simple Integer or Relocatable Constant
4537 case 'n': // Simple Integer
4538 case 's': { // Relocatable Constant
4539
4540 GlobalAddressSDNode *GA;
4541 ConstantSDNode *C;
4542 BlockAddressSDNode *BA;
4543 uint64_t Offset = 0;
4544
4545 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4546 // etc., since getelementpointer is variadic. We can't use
4547 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4548 // while in this case the GA may be furthest from the root node which is
4549 // likely an ISD::ADD.
4550 while (1) {
4551 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4552 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4553 GA->getValueType(0),
4554 Offset + GA->getOffset()));
4555 return;
4556 }
4557 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4558 // gcc prints these as sign extended. Sign extend value to 64 bits
4559 // now; without this it would get ZExt'd later in
4560 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4561 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4562 BooleanContent BCont = getBooleanContents(MVT::i64);
4563 ISD::NodeType ExtOpc =
4564 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4565 int64_t ExtVal =
4566 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4567 Ops.push_back(
4568 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4569 return;
4570 }
4571 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4572 Ops.push_back(DAG.getTargetBlockAddress(
4573 BA->getBlockAddress(), BA->getValueType(0),
4574 Offset + BA->getOffset(), BA->getTargetFlags()));
4575 return;
4576 }
4577 const unsigned OpCode = Op.getOpcode();
4578 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4579 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4580 Op = Op.getOperand(1);
4581 // Subtraction is not commutative.
4582 else if (OpCode == ISD::ADD &&
4583 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4584 Op = Op.getOperand(0);
4585 else
4586 return;
4587 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4588 continue;
4589 }
4590 return;
4591 }
4592 break;
4593 }
4594 }
4595}
4596
4597std::pair<unsigned, const TargetRegisterClass *>
4598TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4599 StringRef Constraint,
4600 MVT VT) const {
4601 if (Constraint.empty() || Constraint[0] != '{')
4602 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4603 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?")(static_cast <bool> (*(Constraint.end() - 1) == '}' &&
"Not a brace enclosed constraint?") ? void (0) : __assert_fail
("*(Constraint.end() - 1) == '}' && \"Not a brace enclosed constraint?\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4603, __extension__ __PRETTY_FUNCTION__))
;
4604
4605 // Remove the braces from around the name.
4606 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4607
4608 std::pair<unsigned, const TargetRegisterClass *> R =
4609 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4610
4611 // Figure out which register class contains this reg.
4612 for (const TargetRegisterClass *RC : RI->regclasses()) {
4613 // If none of the value types for this register class are valid, we
4614 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4615 if (!isLegalRC(*RI, *RC))
4616 continue;
4617
4618 for (const MCPhysReg &PR : *RC) {
4619 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4620 std::pair<unsigned, const TargetRegisterClass *> S =
4621 std::make_pair(PR, RC);
4622
4623 // If this register class has the requested value type, return it,
4624 // otherwise keep searching and return the first class found
4625 // if no other is found which explicitly has the requested type.
4626 if (RI->isTypeLegalForClass(*RC, VT))
4627 return S;
4628 if (!R.second)
4629 R = S;
4630 }
4631 }
4632 }
4633
4634 return R;
4635}
4636
4637//===----------------------------------------------------------------------===//
4638// Constraint Selection.
4639
4640/// Return true of this is an input operand that is a matching constraint like
4641/// "4".
4642bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4643 assert(!ConstraintCode.empty() && "No known constraint!")(static_cast <bool> (!ConstraintCode.empty() &&
"No known constraint!") ? void (0) : __assert_fail ("!ConstraintCode.empty() && \"No known constraint!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4643, __extension__ __PRETTY_FUNCTION__))
;
4644 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4645}
4646
4647/// If this is an input matching constraint, this method returns the output
4648/// operand it matches.
4649unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4650 assert(!ConstraintCode.empty() && "No known constraint!")(static_cast <bool> (!ConstraintCode.empty() &&
"No known constraint!") ? void (0) : __assert_fail ("!ConstraintCode.empty() && \"No known constraint!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4650, __extension__ __PRETTY_FUNCTION__))
;
4651 return atoi(ConstraintCode.c_str());
4652}
4653
4654/// Split up the constraint string from the inline assembly value into the
4655/// specific constraints and their prefixes, and also tie in the associated
4656/// operand values.
4657/// If this returns an empty vector, and if the constraint string itself
4658/// isn't empty, there was an error parsing.
4659TargetLowering::AsmOperandInfoVector
4660TargetLowering::ParseConstraints(const DataLayout &DL,
4661 const TargetRegisterInfo *TRI,
4662 const CallBase &Call) const {
4663 /// Information about all of the constraints.
4664 AsmOperandInfoVector ConstraintOperands;
4665 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4666 unsigned maCount = 0; // Largest number of multiple alternative constraints.
4667
4668 // Do a prepass over the constraints, canonicalizing them, and building up the
4669 // ConstraintOperands list.
4670 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4671 unsigned ResNo = 0; // ResNo - The result number of the next output.
4672
4673 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4674 ConstraintOperands.emplace_back(std::move(CI));
4675 AsmOperandInfo &OpInfo = ConstraintOperands.back();
4676
4677 // Update multiple alternative constraint count.
4678 if (OpInfo.multipleAlternatives.size() > maCount)
4679 maCount = OpInfo.multipleAlternatives.size();
4680
4681 OpInfo.ConstraintVT = MVT::Other;
4682
4683 // Compute the value type for each operand.
4684 switch (OpInfo.Type) {
4685 case InlineAsm::isOutput:
4686 // Indirect outputs just consume an argument.
4687 if (OpInfo.isIndirect) {
4688 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4689 break;
4690 }
4691
4692 // The return value of the call is this value. As such, there is no
4693 // corresponding argument.
4694 assert(!Call.getType()->isVoidTy() && "Bad inline asm!")(static_cast <bool> (!Call.getType()->isVoidTy() &&
"Bad inline asm!") ? void (0) : __assert_fail ("!Call.getType()->isVoidTy() && \"Bad inline asm!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4694, __extension__ __PRETTY_FUNCTION__))
;
4695 if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4696 OpInfo.ConstraintVT =
4697 getSimpleValueType(DL, STy->getElementType(ResNo));
4698 } else {
4699 assert(ResNo == 0 && "Asm only has one result!")(static_cast <bool> (ResNo == 0 && "Asm only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Asm only has one result!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4699, __extension__ __PRETTY_FUNCTION__))
;
4700 OpInfo.ConstraintVT =
4701 getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4702 }
4703 ++ResNo;
4704 break;
4705 case InlineAsm::isInput:
4706 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4707 break;
4708 case InlineAsm::isClobber:
4709 // Nothing to do.
4710 break;
4711 }
4712
4713 if (OpInfo.CallOperandVal) {
4714 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4715 if (OpInfo.isIndirect) {
4716 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4717 if (!PtrTy)
4718 report_fatal_error("Indirect operand for inline asm not a pointer!");
4719 OpTy = PtrTy->getElementType();
4720 }
4721
4722 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4723 if (StructType *STy = dyn_cast<StructType>(OpTy))
4724 if (STy->getNumElements() == 1)
4725 OpTy = STy->getElementType(0);
4726
4727 // If OpTy is not a single value, it may be a struct/union that we
4728 // can tile with integers.
4729 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4730 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4731 switch (BitSize) {
4732 default: break;
4733 case 1:
4734 case 8:
4735 case 16:
4736 case 32:
4737 case 64:
4738 case 128:
4739 OpInfo.ConstraintVT =
4740 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4741 break;
4742 }
4743 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4744 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4745 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4746 } else {
4747 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4748 }
4749 }
4750 }
4751
4752 // If we have multiple alternative constraints, select the best alternative.
4753 if (!ConstraintOperands.empty()) {
4754 if (maCount) {
4755 unsigned bestMAIndex = 0;
4756 int bestWeight = -1;
4757 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4758 int weight = -1;
4759 unsigned maIndex;
4760 // Compute the sums of the weights for each alternative, keeping track
4761 // of the best (highest weight) one so far.
4762 for (maIndex = 0; maIndex < maCount; ++maIndex) {
4763 int weightSum = 0;
4764 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4765 cIndex != eIndex; ++cIndex) {
4766 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4767 if (OpInfo.Type == InlineAsm::isClobber)
4768 continue;
4769
4770 // If this is an output operand with a matching input operand,
4771 // look up the matching input. If their types mismatch, e.g. one
4772 // is an integer, the other is floating point, or their sizes are
4773 // different, flag it as an maCantMatch.
4774 if (OpInfo.hasMatchingInput()) {
4775 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4776 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4777 if ((OpInfo.ConstraintVT.isInteger() !=
4778 Input.ConstraintVT.isInteger()) ||
4779 (OpInfo.ConstraintVT.getSizeInBits() !=
4780 Input.ConstraintVT.getSizeInBits())) {
4781 weightSum = -1; // Can't match.
4782 break;
4783 }
4784 }
4785 }
4786 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4787 if (weight == -1) {
4788 weightSum = -1;
4789 break;
4790 }
4791 weightSum += weight;
4792 }
4793 // Update best.
4794 if (weightSum > bestWeight) {
4795 bestWeight = weightSum;
4796 bestMAIndex = maIndex;
4797 }
4798 }
4799
4800 // Now select chosen alternative in each constraint.
4801 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4802 cIndex != eIndex; ++cIndex) {
4803 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4804 if (cInfo.Type == InlineAsm::isClobber)
4805 continue;
4806 cInfo.selectAlternative(bestMAIndex);
4807 }
4808 }
4809 }
4810
4811 // Check and hook up tied operands, choose constraint code to use.
4812 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4813 cIndex != eIndex; ++cIndex) {
4814 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4815
4816 // If this is an output operand with a matching input operand, look up the
4817 // matching input. If their types mismatch, e.g. one is an integer, the
4818 // other is floating point, or their sizes are different, flag it as an
4819 // error.
4820 if (OpInfo.hasMatchingInput()) {
4821 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4822
4823 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4824 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4825 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4826 OpInfo.ConstraintVT);
4827 std::pair<unsigned, const TargetRegisterClass *> InputRC =
4828 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4829 Input.ConstraintVT);
4830 if ((OpInfo.ConstraintVT.isInteger() !=
4831 Input.ConstraintVT.isInteger()) ||
4832 (MatchRC.second != InputRC.second)) {
4833 report_fatal_error("Unsupported asm: input constraint"
4834 " with a matching output constraint of"
4835 " incompatible type!");
4836 }
4837 }
4838 }
4839 }
4840
4841 return ConstraintOperands;
4842}
4843
4844/// Return an integer indicating how general CT is.
4845static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4846 switch (CT) {
4847 case TargetLowering::C_Immediate:
4848 case TargetLowering::C_Other:
4849 case TargetLowering::C_Unknown:
4850 return 0;
4851 case TargetLowering::C_Register:
4852 return 1;
4853 case TargetLowering::C_RegisterClass:
4854 return 2;
4855 case TargetLowering::C_Memory:
4856 return 3;
4857 }
4858 llvm_unreachable("Invalid constraint type")::llvm::llvm_unreachable_internal("Invalid constraint type", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4858)
;
4859}
4860
4861/// Examine constraint type and operand type and determine a weight value.
4862/// This object must already have been set up with the operand type
4863/// and the current alternative constraint selected.
4864TargetLowering::ConstraintWeight
4865 TargetLowering::getMultipleConstraintMatchWeight(
4866 AsmOperandInfo &info, int maIndex) const {
4867 InlineAsm::ConstraintCodeVector *rCodes;
4868 if (maIndex >= (int)info.multipleAlternatives.size())
4869 rCodes = &info.Codes;
4870 else
4871 rCodes = &info.multipleAlternatives[maIndex].Codes;
4872 ConstraintWeight BestWeight = CW_Invalid;
4873
4874 // Loop over the options, keeping track of the most general one.
4875 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4876 ConstraintWeight weight =
4877 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4878 if (weight > BestWeight)
4879 BestWeight = weight;
4880 }
4881
4882 return BestWeight;
4883}
4884
4885/// Examine constraint type and operand type and determine a weight value.
4886/// This object must already have been set up with the operand type
4887/// and the current alternative constraint selected.
4888TargetLowering::ConstraintWeight
4889 TargetLowering::getSingleConstraintMatchWeight(
4890 AsmOperandInfo &info, const char *constraint) const {
4891 ConstraintWeight weight = CW_Invalid;
4892 Value *CallOperandVal = info.CallOperandVal;
4893 // If we don't have a value, we can't do a match,
4894 // but allow it at the lowest weight.
4895 if (!CallOperandVal)
4896 return CW_Default;
4897 // Look at the constraint type.
4898 switch (*constraint) {
4899 case 'i': // immediate integer.
4900 case 'n': // immediate integer with a known value.
4901 if (isa<ConstantInt>(CallOperandVal))
4902 weight = CW_Constant;
4903 break;
4904 case 's': // non-explicit intregal immediate.
4905 if (isa<GlobalValue>(CallOperandVal))
4906 weight = CW_Constant;
4907 break;
4908 case 'E': // immediate float if host format.
4909 case 'F': // immediate float.
4910 if (isa<ConstantFP>(CallOperandVal))
4911 weight = CW_Constant;
4912 break;
4913 case '<': // memory operand with autodecrement.
4914 case '>': // memory operand with autoincrement.
4915 case 'm': // memory operand.
4916 case 'o': // offsettable memory operand
4917 case 'V': // non-offsettable memory operand
4918 weight = CW_Memory;
4919 break;
4920 case 'r': // general register.
4921 case 'g': // general register, memory operand or immediate integer.
4922 // note: Clang converts "g" to "imr".
4923 if (CallOperandVal->getType()->isIntegerTy())
4924 weight = CW_Register;
4925 break;
4926 case 'X': // any operand.
4927 default:
4928 weight = CW_Default;
4929 break;
4930 }
4931 return weight;
4932}
4933
4934/// If there are multiple different constraints that we could pick for this
4935/// operand (e.g. "imr") try to pick the 'best' one.
4936/// This is somewhat tricky: constraints fall into four classes:
4937/// Other -> immediates and magic values
4938/// Register -> one specific register
4939/// RegisterClass -> a group of regs
4940/// Memory -> memory
4941/// Ideally, we would pick the most specific constraint possible: if we have
4942/// something that fits into a register, we would pick it. The problem here
4943/// is that if we have something that could either be in a register or in
4944/// memory that use of the register could cause selection of *other*
4945/// operands to fail: they might only succeed if we pick memory. Because of
4946/// this the heuristic we use is:
4947///
4948/// 1) If there is an 'other' constraint, and if the operand is valid for
4949/// that constraint, use it. This makes us take advantage of 'i'
4950/// constraints when available.
4951/// 2) Otherwise, pick the most general constraint present. This prefers
4952/// 'm' over 'r', for example.
4953///
4954static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4955 const TargetLowering &TLI,
4956 SDValue Op, SelectionDAG *DAG) {
4957 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options")(static_cast <bool> (OpInfo.Codes.size() > 1 &&
"Doesn't have multiple constraint options") ? void (0) : __assert_fail
("OpInfo.Codes.size() > 1 && \"Doesn't have multiple constraint options\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4957, __extension__ __PRETTY_FUNCTION__))
;
4958 unsigned BestIdx = 0;
4959 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4960 int BestGenerality = -1;
4961
4962 // Loop over the options, keeping track of the most general one.
4963 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4964 TargetLowering::ConstraintType CType =
4965 TLI.getConstraintType(OpInfo.Codes[i]);
4966
4967 // Indirect 'other' or 'immediate' constraints are not allowed.
4968 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4969 CType == TargetLowering::C_Register ||
4970 CType == TargetLowering::C_RegisterClass))
4971 continue;
4972
4973 // If this is an 'other' or 'immediate' constraint, see if the operand is
4974 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4975 // the operand is an integer in the range [0..31] we want to use I (saving a
4976 // load of a register), otherwise we must use 'r'.
4977 if ((CType == TargetLowering::C_Other ||
4978 CType == TargetLowering::C_Immediate) && Op.getNode()) {
4979 assert(OpInfo.Codes[i].size() == 1 &&(static_cast <bool> (OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint") ? void (0) : __assert_fail
("OpInfo.Codes[i].size() == 1 && \"Unhandled multi-letter 'other' constraint\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4980, __extension__ __PRETTY_FUNCTION__))
4980 "Unhandled multi-letter 'other' constraint")(static_cast <bool> (OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint") ? void (0) : __assert_fail
("OpInfo.Codes[i].size() == 1 && \"Unhandled multi-letter 'other' constraint\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4980, __extension__ __PRETTY_FUNCTION__))
;
4981 std::vector<SDValue> ResultOps;
4982 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4983 ResultOps, *DAG);
4984 if (!ResultOps.empty()) {
4985 BestType = CType;
4986 BestIdx = i;
4987 break;
4988 }
4989 }
4990
4991 // Things with matching constraints can only be registers, per gcc
4992 // documentation. This mainly affects "g" constraints.
4993 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4994 continue;
4995
4996 // This constraint letter is more general than the previous one, use it.
4997 int Generality = getConstraintGenerality(CType);
4998 if (Generality > BestGenerality) {
4999 BestType = CType;
5000 BestIdx = i;
5001 BestGenerality = Generality;
5002 }
5003 }
5004
5005 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5006 OpInfo.ConstraintType = BestType;
5007}
5008
5009/// Determines the constraint code and constraint type to use for the specific
5010/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5011void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5012 SDValue Op,
5013 SelectionDAG *DAG) const {
5014 assert(!OpInfo.Codes.empty() && "Must have at least one constraint")(static_cast <bool> (!OpInfo.Codes.empty() && "Must have at least one constraint"
) ? void (0) : __assert_fail ("!OpInfo.Codes.empty() && \"Must have at least one constraint\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5014, __extension__ __PRETTY_FUNCTION__))
;
5015
5016 // Single-letter constraints ('r') are very common.
5017 if (OpInfo.Codes.size() == 1) {
5018 OpInfo.ConstraintCode = OpInfo.Codes[0];
5019 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5020 } else {
5021 ChooseConstraint(OpInfo, *this, Op, DAG);
5022 }
5023
5024 // 'X' matches anything.
5025 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5026 // Labels and constants are handled elsewhere ('X' is the only thing
5027 // that matches labels). For Functions, the type here is the type of
5028 // the result, which is not what we want to look at; leave them alone.
5029 Value *v = OpInfo.CallOperandVal;
5030 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5031 OpInfo.CallOperandVal = v;
5032 return;
5033 }
5034
5035 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5036 return;
5037
5038 // Otherwise, try to resolve it to something we know about by looking at
5039 // the actual operand type.
5040 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5041 OpInfo.ConstraintCode = Repl;
5042 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5043 }
5044 }
5045}
5046
5047/// Given an exact SDIV by a constant, create a multiplication
5048/// with the multiplicative inverse of the constant.
5049static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5050 const SDLoc &dl, SelectionDAG &DAG,
5051 SmallVectorImpl<SDNode *> &Created) {
5052 SDValue Op0 = N->getOperand(0);
5053 SDValue Op1 = N->getOperand(1);
5054 EVT VT = N->getValueType(0);
5055 EVT SVT = VT.getScalarType();
5056 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5057 EVT ShSVT = ShVT.getScalarType();
5058
5059 bool UseSRA = false;
5060 SmallVector<SDValue, 16> Shifts, Factors;
5061
5062 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5063 if (C->isZero())
5064 return false;
5065 APInt Divisor = C->getAPIntValue();
5066 unsigned Shift = Divisor.countTrailingZeros();
5067 if (Shift) {
5068 Divisor.ashrInPlace(Shift);
5069 UseSRA = true;
5070 }
5071 // Calculate the multiplicative inverse, using Newton's method.
5072 APInt t;
5073 APInt Factor = Divisor;
5074 while ((t = Divisor * Factor) != 1)
5075 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5076 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5077 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5078 return true;
5079 };
5080
5081 // Collect all magic values from the build vector.
5082 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5083 return SDValue();
5084
5085 SDValue Shift, Factor;
5086 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5087 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5088 Factor = DAG.getBuildVector(VT, dl, Factors);
5089 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5090 assert(Shifts.size() == 1 && Factors.size() == 1 &&(static_cast <bool> (Shifts.size() == 1 && Factors
.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("Shifts.size() == 1 && Factors.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5092, __extension__ __PRETTY_FUNCTION__))
5091 "Expected matchUnaryPredicate to return one element for scalable "(static_cast <bool> (Shifts.size() == 1 && Factors
.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("Shifts.size() == 1 && Factors.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5092, __extension__ __PRETTY_FUNCTION__))
5092 "vectors")(static_cast <bool> (Shifts.size() == 1 && Factors
.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("Shifts.size() == 1 && Factors.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5092, __extension__ __PRETTY_FUNCTION__))
;
5093 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5094 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5095 } else {
5096 assert(isa<ConstantSDNode>(Op1) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(Op1) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(Op1) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5096, __extension__ __PRETTY_FUNCTION__))
;
5097 Shift = Shifts[0];
5098 Factor = Factors[0];
5099 }
5100
5101 SDValue Res = Op0;
5102
5103 // Shift the value upfront if it is even, so the LSB is one.
5104 if (UseSRA) {
5105 // TODO: For UDIV use SRL instead of SRA.
5106 SDNodeFlags Flags;
5107 Flags.setExact(true);
5108 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5109 Created.push_back(Res.getNode());
5110 }
5111
5112 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5113}
5114
5115SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5116 SelectionDAG &DAG,
5117 SmallVectorImpl<SDNode *> &Created) const {
5118 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5119 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5120 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5121 return SDValue(N, 0); // Lower SDIV as SDIV
5122 return SDValue();
5123}
5124
5125/// Given an ISD::SDIV node expressing a divide by constant,
5126/// return a DAG expression to select that will generate the same value by
5127/// multiplying by a magic number.
5128/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5129SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5130 bool IsAfterLegalization,
5131 SmallVectorImpl<SDNode *> &Created) const {
5132 SDLoc dl(N);
5133 EVT VT = N->getValueType(0);
5134 EVT SVT = VT.getScalarType();
5135 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5136 EVT ShSVT = ShVT.getScalarType();
5137 unsigned EltBits = VT.getScalarSizeInBits();
5138 EVT MulVT;
5139
5140 // Check to see if we can do this.
5141 // FIXME: We should be more aggressive here.
5142 if (!isTypeLegal(VT)) {
5143 // Limit this to simple scalars for now.
5144 if (VT.isVector() || !VT.isSimple())
5145 return SDValue();
5146
5147 // If this type will be promoted to a large enough type with a legal
5148 // multiply operation, we can go ahead and do this transform.
5149 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5150 return SDValue();
5151
5152 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5153 if (MulVT.getSizeInBits() < (2 * EltBits) ||
5154 !isOperationLegal(ISD::MUL, MulVT))
5155 return SDValue();
5156 }
5157
5158 // If the sdiv has an 'exact' bit we can use a simpler lowering.
5159 if (N->getFlags().hasExact())
5160 return BuildExactSDIV(*this, N, dl, DAG, Created);
5161
5162 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5163
5164 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5165 if (C->isZero())
5166 return false;
5167
5168 const APInt &Divisor = C->getAPIntValue();
5169 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5170 int NumeratorFactor = 0;
5171 int ShiftMask = -1;
5172
5173 if (Divisor.isOne() || Divisor.isAllOnes()) {
5174 // If d is +1/-1, we just multiply the numerator by +1/-1.
5175 NumeratorFactor = Divisor.getSExtValue();
5176 magics.Magic = 0;
5177 magics.ShiftAmount = 0;
5178 ShiftMask = 0;
5179 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5180 // If d > 0 and m < 0, add the numerator.
5181 NumeratorFactor = 1;
5182 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5183 // If d < 0 and m > 0, subtract the numerator.
5184 NumeratorFactor = -1;
5185 }
5186
5187 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5188 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5189 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5190 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5191 return true;
5192 };
5193
5194 SDValue N0 = N->getOperand(0);
5195 SDValue N1 = N->getOperand(1);
5196
5197 // Collect the shifts / magic values from each element.
5198 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5199 return SDValue();
5200
5201 SDValue MagicFactor, Factor, Shift, ShiftMask;
5202 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5203 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5204 Factor = DAG.getBuildVector(VT, dl, Factors);
5205 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5206 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5207 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5208 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5211, __extension__ __PRETTY_FUNCTION__))
5209 Shifts.size() == 1 && ShiftMasks.size() == 1 &&(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5211, __extension__ __PRETTY_FUNCTION__))
5210 "Expected matchUnaryPredicate to return one element for scalable "(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5211, __extension__ __PRETTY_FUNCTION__))
5211 "vectors")(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5211, __extension__ __PRETTY_FUNCTION__))
;
5212 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5213 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5214 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5215 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5216 } else {
5217 assert(isa<ConstantSDNode>(N1) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(N1) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N1) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5217, __extension__ __PRETTY_FUNCTION__))
;
5218 MagicFactor = MagicFactors[0];
5219 Factor = Factors[0];
5220 Shift = Shifts[0];
5221 ShiftMask = ShiftMasks[0];
5222 }
5223
5224 // Multiply the numerator (operand 0) by the magic value.
5225 // FIXME: We should support doing a MUL in a wider type.
5226 auto GetMULHS = [&](SDValue X, SDValue Y) {
5227 // If the type isn't legal, use a wider mul of the the type calculated
5228 // earlier.
5229 if (!isTypeLegal(VT)) {
5230 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5231 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5232 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5233 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5234 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5235 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5236 }
5237
5238 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5239 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5240 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5241 SDValue LoHi =
5242 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5243 return SDValue(LoHi.getNode(), 1);
5244 }
5245 return SDValue();
5246 };
5247
5248 SDValue Q = GetMULHS(N0, MagicFactor);
5249 if (!Q)
5250 return SDValue();
5251
5252 Created.push_back(Q.getNode());
5253
5254 // (Optionally) Add/subtract the numerator using Factor.
5255 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5256 Created.push_back(Factor.getNode());
5257 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5258 Created.push_back(Q.getNode());
5259
5260 // Shift right algebraic by shift value.
5261 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5262 Created.push_back(Q.getNode());
5263
5264 // Extract the sign bit, mask it and add it to the quotient.
5265 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5266 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5267 Created.push_back(T.getNode());
5268 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5269 Created.push_back(T.getNode());
5270 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5271}
5272
5273/// Given an ISD::UDIV node expressing a divide by constant,
5274/// return a DAG expression to select that will generate the same value by
5275/// multiplying by a magic number.
5276/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5277SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5278 bool IsAfterLegalization,
5279 SmallVectorImpl<SDNode *> &Created) const {
5280 SDLoc dl(N);
5281 EVT VT = N->getValueType(0);
5282 EVT SVT = VT.getScalarType();
5283 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5284 EVT ShSVT = ShVT.getScalarType();
5285 unsigned EltBits = VT.getScalarSizeInBits();
5286 EVT MulVT;
5287
5288 // Check to see if we can do this.
5289 // FIXME: We should be more aggressive here.
5290 if (!isTypeLegal(VT)) {
5291 // Limit this to simple scalars for now.
5292 if (VT.isVector() || !VT.isSimple())
5293 return SDValue();
5294
5295 // If this type will be promoted to a large enough type with a legal
5296 // multiply operation, we can go ahead and do this transform.
5297 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5298 return SDValue();
5299
5300 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5301 if (MulVT.getSizeInBits() < (2 * EltBits) ||
5302 !isOperationLegal(ISD::MUL, MulVT))
5303 return SDValue();
5304 }
5305
5306 bool UseNPQ = false;
5307 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5308
5309 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5310 if (C->isZero())
5311 return false;
5312 // FIXME: We should use a narrower constant when the upper
5313 // bits are known to be zero.
5314 const APInt& Divisor = C->getAPIntValue();
5315 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5316 unsigned PreShift = 0, PostShift = 0;
5317
5318 // If the divisor is even, we can avoid using the expensive fixup by
5319 // shifting the divided value upfront.
5320 if (magics.IsAdd != 0 && !Divisor[0]) {
5321 PreShift = Divisor.countTrailingZeros();
5322 // Get magic number for the shifted divisor.
5323 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5324 assert(magics.IsAdd == 0 && "Should use cheap fixup now")(static_cast <bool> (magics.IsAdd == 0 && "Should use cheap fixup now"
) ? void (0) : __assert_fail ("magics.IsAdd == 0 && \"Should use cheap fixup now\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5324, __extension__ __PRETTY_FUNCTION__))
;
5325 }
5326
5327 APInt Magic = magics.Magic;
5328
5329 unsigned SelNPQ;
5330 if (magics.IsAdd == 0 || Divisor.isOne()) {
5331 assert(magics.ShiftAmount < Divisor.getBitWidth() &&(static_cast <bool> (magics.ShiftAmount < Divisor.getBitWidth
() && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.ShiftAmount < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5332, __extension__ __PRETTY_FUNCTION__))
5332 "We shouldn't generate an undefined shift!")(static_cast <bool> (magics.ShiftAmount < Divisor.getBitWidth
() && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.ShiftAmount < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5332, __extension__ __PRETTY_FUNCTION__))
;
5333 PostShift = magics.ShiftAmount;
5334 SelNPQ = false;
5335 } else {
5336 PostShift = magics.ShiftAmount - 1;
5337 SelNPQ = true;
5338 }
5339
5340 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5341 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5342 NPQFactors.push_back(
5343 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5344 : APInt::getZero(EltBits),
5345 dl, SVT));
5346 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5347 UseNPQ |= SelNPQ;
5348 return true;
5349 };
5350
5351 SDValue N0 = N->getOperand(0);
5352 SDValue N1 = N->getOperand(1);
5353
5354 // Collect the shifts/magic values from each element.
5355 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5356 return SDValue();
5357
5358 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5359 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5360 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5361 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5362 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5363 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5364 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5365 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&(static_cast <bool> (PreShifts.size() == 1 && MagicFactors
.size() == 1 && NPQFactors.size() == 1 && PostShifts
.size() == 1 && "Expected matchUnaryPredicate to return one for scalable vectors"
) ? void (0) : __assert_fail ("PreShifts.size() == 1 && MagicFactors.size() == 1 && NPQFactors.size() == 1 && PostShifts.size() == 1 && \"Expected matchUnaryPredicate to return one for scalable vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5367, __extension__ __PRETTY_FUNCTION__))
5366 NPQFactors.size() == 1 && PostShifts.size() == 1 &&(static_cast <bool> (PreShifts.size() == 1 && MagicFactors
.size() == 1 && NPQFactors.size() == 1 && PostShifts
.size() == 1 && "Expected matchUnaryPredicate to return one for scalable vectors"
) ? void (0) : __assert_fail ("PreShifts.size() == 1 && MagicFactors.size() == 1 && NPQFactors.size() == 1 && PostShifts.size() == 1 && \"Expected matchUnaryPredicate to return one for scalable vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5367, __extension__ __PRETTY_FUNCTION__))
5367 "Expected matchUnaryPredicate to return one for scalable vectors")(static_cast <bool> (PreShifts.size() == 1 && MagicFactors
.size() == 1 && NPQFactors.size() == 1 && PostShifts
.size() == 1 && "Expected matchUnaryPredicate to return one for scalable vectors"
) ? void (0) : __assert_fail ("PreShifts.size() == 1 && MagicFactors.size() == 1 && NPQFactors.size() == 1 && PostShifts.size() == 1 && \"Expected matchUnaryPredicate to return one for scalable vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5367, __extension__ __PRETTY_FUNCTION__))
;
5368 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5369 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5370 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5371 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5372 } else {
5373 assert(isa<ConstantSDNode>(N1) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(N1) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N1) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5373, __extension__ __PRETTY_FUNCTION__))
;
5374 PreShift = PreShifts[0];
5375 MagicFactor = MagicFactors[0];
5376 PostShift = PostShifts[0];
5377 }
5378
5379 SDValue Q = N0;
5380 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5381 Created.push_back(Q.getNode());
5382
5383 // FIXME: We should support doing a MUL in a wider type.
5384 auto GetMULHU = [&](SDValue X, SDValue Y) {
5385 // If the type isn't legal, use a wider mul of the the type calculated
5386 // earlier.
5387 if (!isTypeLegal(VT)) {
5388 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5389 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5390 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5391 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5392 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5393 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5394 }
5395
5396 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5397 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5398 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5399 SDValue LoHi =
5400 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5401 return SDValue(LoHi.getNode(), 1);
5402 }
5403 return SDValue(); // No mulhu or equivalent
5404 };
5405
5406 // Multiply the numerator (operand 0) by the magic value.
5407 Q = GetMULHU(Q, MagicFactor);
5408 if (!Q)
5409 return SDValue();
5410
5411 Created.push_back(Q.getNode());
5412
5413 if (UseNPQ) {
5414 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5415 Created.push_back(NPQ.getNode());
5416
5417 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5418 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5419 if (VT.isVector())
5420 NPQ = GetMULHU(NPQ, NPQFactor);
5421 else
5422 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5423
5424 Created.push_back(NPQ.getNode());
5425
5426 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5427 Created.push_back(Q.getNode());
5428 }
5429
5430 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5431 Created.push_back(Q.getNode());
5432
5433 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5434
5435 SDValue One = DAG.getConstant(1, dl, VT);
5436 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5437 return DAG.getSelect(dl, VT, IsOne, N0, Q);
5438}
5439
5440/// If all values in Values that *don't* match the predicate are same 'splat'
5441/// value, then replace all values with that splat value.
5442/// Else, if AlternativeReplacement was provided, then replace all values that
5443/// do match predicate with AlternativeReplacement value.
5444static void
5445turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5446 std::function<bool(SDValue)> Predicate,
5447 SDValue AlternativeReplacement = SDValue()) {
5448 SDValue Replacement;
5449 // Is there a value for which the Predicate does *NOT* match? What is it?
5450 auto SplatValue = llvm::find_if_not(Values, Predicate);
5451 if (SplatValue != Values.end()) {
5452 // Does Values consist only of SplatValue's and values matching Predicate?
5453 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5454 return Value == *SplatValue || Predicate(Value);
5455 })) // Then we shall replace values matching predicate with SplatValue.
5456 Replacement = *SplatValue;
5457 }
5458 if (!Replacement) {
5459 // Oops, we did not find the "baseline" splat value.
5460 if (!AlternativeReplacement)
5461 return; // Nothing to do.
5462 // Let's replace with provided value then.
5463 Replacement = AlternativeReplacement;
5464 }
5465 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5466}
5467
5468/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5469/// where the divisor is constant and the comparison target is zero,
5470/// return a DAG expression that will generate the same comparison result
5471/// using only multiplications, additions and shifts/rotations.
5472/// Ref: "Hacker's Delight" 10-17.
5473SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5474 SDValue CompTargetNode,
5475 ISD::CondCode Cond,
5476 DAGCombinerInfo &DCI,
5477 const SDLoc &DL) const {
5478 SmallVector<SDNode *, 5> Built;
5479 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5480 DCI, DL, Built)) {
5481 for (SDNode *N : Built)
5482 DCI.AddToWorklist(N);
5483 return Folded;
5484 }
5485
5486 return SDValue();
5487}
5488
5489SDValue
5490TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5491 SDValue CompTargetNode, ISD::CondCode Cond,
5492 DAGCombinerInfo &DCI, const SDLoc &DL,
5493 SmallVectorImpl<SDNode *> &Created) const {
5494 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5495 // - D must be constant, with D = D0 * 2^K where D0 is odd
5496 // - P is the multiplicative inverse of D0 modulo 2^W
5497 // - Q = floor(((2^W) - 1) / D)
5498 // where W is the width of the common type of N and D.
5499 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5500, __extension__ __PRETTY_FUNCTION__))
5500 "Only applicable for (in)equality comparisons.")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5500, __extension__ __PRETTY_FUNCTION__))
;
5501
5502 SelectionDAG &DAG = DCI.DAG;
5503
5504 EVT VT = REMNode.getValueType();
5505 EVT SVT = VT.getScalarType();
5506 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5507 EVT ShSVT = ShVT.getScalarType();
5508
5509 // If MUL is unavailable, we cannot proceed in any case.
5510 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5511 return SDValue();
5512
5513 bool ComparingWithAllZeros = true;
5514 bool AllComparisonsWithNonZerosAreTautological = true;
5515 bool HadTautologicalLanes = false;
5516 bool AllLanesAreTautological = true;
5517 bool HadEvenDivisor = false;
5518 bool AllDivisorsArePowerOfTwo = true;
5519 bool HadTautologicalInvertedLanes = false;
5520 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5521
5522 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5523 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5524 if (CDiv->isZero())
5525 return false;
5526
5527 const APInt &D = CDiv->getAPIntValue();
5528 const APInt &Cmp = CCmp->getAPIntValue();
5529
5530 ComparingWithAllZeros &= Cmp.isZero();
5531
5532 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5533 // if C2 is not less than C1, the comparison is always false.
5534 // But we will only be able to produce the comparison that will give the
5535 // opposive tautological answer. So this lane would need to be fixed up.
5536 bool TautologicalInvertedLane = D.ule(Cmp);
5537 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5538
5539 // If all lanes are tautological (either all divisors are ones, or divisor
5540 // is not greater than the constant we are comparing with),
5541 // we will prefer to avoid the fold.
5542 bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5543 HadTautologicalLanes |= TautologicalLane;
5544 AllLanesAreTautological &= TautologicalLane;
5545
5546 // If we are comparing with non-zero, we need'll need to subtract said
5547 // comparison value from the LHS. But there is no point in doing that if
5548 // every lane where we are comparing with non-zero is tautological..
5549 if (!Cmp.isZero())
5550 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5551
5552 // Decompose D into D0 * 2^K
5553 unsigned K = D.countTrailingZeros();
5554 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.")(static_cast <bool> ((!D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.") ? void (0) : __assert_fail
("(!D.isOne() || (K == 0)) && \"For divisor '1' we won't rotate.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5554, __extension__ __PRETTY_FUNCTION__))
;
5555 APInt D0 = D.lshr(K);
5556
5557 // D is even if it has trailing zeros.
5558 HadEvenDivisor |= (K != 0);
5559 // D is a power-of-two if D0 is one.
5560 // If all divisors are power-of-two, we will prefer to avoid the fold.
5561 AllDivisorsArePowerOfTwo &= D0.isOne();
5562
5563 // P = inv(D0, 2^W)
5564 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5565 unsigned W = D.getBitWidth();
5566 APInt P = D0.zext(W + 1)
5567 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5568 .trunc(W);
5569 assert(!P.isZero() && "No multiplicative inverse!")(static_cast <bool> (!P.isZero() && "No multiplicative inverse!"
) ? void (0) : __assert_fail ("!P.isZero() && \"No multiplicative inverse!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5569, __extension__ __PRETTY_FUNCTION__))
; // unreachable
5570 assert((D0 * P).isOne() && "Multiplicative inverse sanity check.")(static_cast <bool> ((D0 * P).isOne() && "Multiplicative inverse sanity check."
) ? void (0) : __assert_fail ("(D0 * P).isOne() && \"Multiplicative inverse sanity check.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5570, __extension__ __PRETTY_FUNCTION__))
;
5571
5572 // Q = floor((2^W - 1) u/ D)
5573 // R = ((2^W - 1) u% D)
5574 APInt Q, R;
5575 APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5576
5577 // If we are comparing with zero, then that comparison constant is okay,
5578 // else it may need to be one less than that.
5579 if (Cmp.ugt(R))
5580 Q -= 1;
5581
5582 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&(static_cast <bool> (APInt::getAllOnes(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5583, __extension__ __PRETTY_FUNCTION__))
5583 "We are expecting that K is always less than all-ones for ShSVT")(static_cast <bool> (APInt::getAllOnes(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5583, __extension__ __PRETTY_FUNCTION__))
;
5584
5585 // If the lane is tautological the result can be constant-folded.
5586 if (TautologicalLane) {
5587 // Set P and K amount to a bogus values so we can try to splat them.
5588 P = 0;
5589 K = -1;
5590 // And ensure that comparison constant is tautological,
5591 // it will always compare true/false.
5592 Q = -1;
5593 }
5594
5595 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5596 KAmts.push_back(
5597 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5598 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5599 return true;
5600 };
5601
5602 SDValue N = REMNode.getOperand(0);
5603 SDValue D = REMNode.getOperand(1);
5604
5605 // Collect the values from each element.
5606 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5607 return SDValue();
5608
5609 // If all lanes are tautological, the result can be constant-folded.
5610 if (AllLanesAreTautological)
5611 return SDValue();
5612
5613 // If this is a urem by a powers-of-two, avoid the fold since it can be
5614 // best implemented as a bit test.
5615 if (AllDivisorsArePowerOfTwo)
5616 return SDValue();
5617
5618 SDValue PVal, KVal, QVal;
5619 if (D.getOpcode() == ISD::BUILD_VECTOR) {
5620 if (HadTautologicalLanes) {
5621 // Try to turn PAmts into a splat, since we don't care about the values
5622 // that are currently '0'. If we can't, just keep '0'`s.
5623 turnVectorIntoSplatVector(PAmts, isNullConstant);
5624 // Try to turn KAmts into a splat, since we don't care about the values
5625 // that are currently '-1'. If we can't, change them to '0'`s.
5626 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5627 DAG.getConstant(0, DL, ShSVT));
5628 }
5629
5630 PVal = DAG.getBuildVector(VT, DL, PAmts);
5631 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5632 QVal = DAG.getBuildVector(VT, DL, QAmts);
5633 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5634 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&(static_cast <bool> (PAmts.size() == 1 && KAmts
.size() == 1 && QAmts.size() == 1 && "Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs") ? void (0) : __assert_fail ("PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchBinaryPredicate to return one element for \" \"SPLAT_VECTORs\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5636, __extension__ __PRETTY_FUNCTION__))
5635 "Expected matchBinaryPredicate to return one element for "(static_cast <bool> (PAmts.size() == 1 && KAmts
.size() == 1 && QAmts.size() == 1 && "Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs") ? void (0) : __assert_fail ("PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchBinaryPredicate to return one element for \" \"SPLAT_VECTORs\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5636, __extension__ __PRETTY_FUNCTION__))
5636 "SPLAT_VECTORs")(static_cast <bool> (PAmts.size() == 1 && KAmts
.size() == 1 && QAmts.size() == 1 && "Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs") ? void (0) : __assert_fail ("PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchBinaryPredicate to return one element for \" \"SPLAT_VECTORs\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5636, __extension__ __PRETTY_FUNCTION__))
;
5637 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5638 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5639 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5640 } else {
5641 PVal = PAmts[0];
5642 KVal = KAmts[0];
5643 QVal = QAmts[0];
5644 }
5645
5646 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5647 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5648 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5649 assert(CompTargetNode.getValueType() == N.getValueType() &&(static_cast <bool> (CompTargetNode.getValueType() == N
.getValueType() && "Expecting that the types on LHS and RHS of comparisons match."
) ? void (0) : __assert_fail ("CompTargetNode.getValueType() == N.getValueType() && \"Expecting that the types on LHS and RHS of comparisons match.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5650, __extension__ __PRETTY_FUNCTION__))
5650 "Expecting that the types on LHS and RHS of comparisons match.")(static_cast <bool> (CompTargetNode.getValueType() == N
.getValueType() && "Expecting that the types on LHS and RHS of comparisons match."
) ? void (0) : __assert_fail ("CompTargetNode.getValueType() == N.getValueType() && \"Expecting that the types on LHS and RHS of comparisons match.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5650, __extension__ __PRETTY_FUNCTION__))
;
5651 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5652 }
5653
5654 // (mul N, P)
5655 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5656 Created.push_back(Op0.getNode());
5657
5658 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5659 // divisors as a performance improvement, since rotating by 0 is a no-op.
5660 if (HadEvenDivisor) {
5661 // We need ROTR to do this.
5662 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5663 return SDValue();
5664 // UREM: (rotr (mul N, P), K)
5665 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5666 Created.push_back(Op0.getNode());
5667 }
5668
5669 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5670 SDValue NewCC =
5671 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5672 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5673 if (!HadTautologicalInvertedLanes)
5674 return NewCC;
5675
5676 // If any lanes previously compared always-false, the NewCC will give
5677 // always-true result for them, so we need to fixup those lanes.
5678 // Or the other way around for inequality predicate.
5679 assert(VT.isVector() && "Can/should only get here for vectors.")(static_cast <bool> (VT.isVector() && "Can/should only get here for vectors."
) ? void (0) : __assert_fail ("VT.isVector() && \"Can/should only get here for vectors.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5679, __extension__ __PRETTY_FUNCTION__))
;
5680 Created.push_back(NewCC.getNode());
5681
5682 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5683 // if C2 is not less than C1, the comparison is always false.
5684 // But we have produced the comparison that will give the
5685 // opposive tautological answer. So these lanes would need to be fixed up.
5686 SDValue TautologicalInvertedChannels =
5687 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5688 Created.push_back(TautologicalInvertedChannels.getNode());
5689
5690 // NOTE: we avoid letting illegal types through even if we're before legalize
5691 // ops – legalization has a hard time producing good code for this.
5692 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5693 // If we have a vector select, let's replace the comparison results in the
5694 // affected lanes with the correct tautological result.
5695 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5696 DL, SETCCVT, SETCCVT);
5697 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5698 Replacement, NewCC);
5699 }
5700
5701 // Else, we can just invert the comparison result in the appropriate lanes.
5702 //
5703 // NOTE: see the note above VSELECT above.
5704 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5705 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5706 TautologicalInvertedChannels);
5707
5708 return SDValue(); // Don't know how to lower.
5709}
5710
5711/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5712/// where the divisor is constant and the comparison target is zero,
5713/// return a DAG expression that will generate the same comparison result
5714/// using only multiplications, additions and shifts/rotations.
5715/// Ref: "Hacker's Delight" 10-17.
5716SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5717 SDValue CompTargetNode,
5718 ISD::CondCode Cond,
5719 DAGCombinerInfo &DCI,
5720 const SDLoc &DL) const {
5721 SmallVector<SDNode *, 7> Built;
5722 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5723 DCI, DL, Built)) {
5724 assert(Built.size() <= 7 && "Max size prediction failed.")(static_cast <bool> (Built.size() <= 7 && "Max size prediction failed."
) ? void (0) : __assert_fail ("Built.size() <= 7 && \"Max size prediction failed.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5724, __extension__ __PRETTY_FUNCTION__))
;
5725 for (SDNode *N : Built)
5726 DCI.AddToWorklist(N);
5727 return Folded;
5728 }
5729
5730 return SDValue();
5731}
5732
5733SDValue
5734TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5735 SDValue CompTargetNode, ISD::CondCode Cond,
5736 DAGCombinerInfo &DCI, const SDLoc &DL,
5737 SmallVectorImpl<SDNode *> &Created) const {
5738 // Fold:
5739 // (seteq/ne (srem N, D), 0)
5740 // To:
5741 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5742 //
5743 // - D must be constant, with D = D0 * 2^K where D0 is odd
5744 // - P is the multiplicative inverse of D0 modulo 2^W
5745 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5746 // - Q = floor((2 * A) / (2^K))
5747 // where W is the width of the common type of N and D.
5748 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5749, __extension__ __PRETTY_FUNCTION__))
5749 "Only applicable for (in)equality comparisons.")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5749, __extension__ __PRETTY_FUNCTION__))
;
5750
5751 SelectionDAG &DAG = DCI.DAG;
5752
5753 EVT VT = REMNode.getValueType();
5754 EVT SVT = VT.getScalarType();
5755 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5756 EVT ShSVT = ShVT.getScalarType();
5757
5758 // If we are after ops legalization, and MUL is unavailable, we can not
5759 // proceed.
5760 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5761 return SDValue();
5762
5763 // TODO: Could support comparing with non-zero too.
5764 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5765 if (!CompTarget || !CompTarget->isZero())
5766 return SDValue();
5767
5768 bool HadIntMinDivisor = false;
5769 bool HadOneDivisor = false;
5770 bool AllDivisorsAreOnes = true;
5771 bool HadEvenDivisor = false;
5772 bool NeedToApplyOffset = false;
5773 bool AllDivisorsArePowerOfTwo = true;
5774 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5775
5776 auto BuildSREMPattern = [&](ConstantSDNode *C) {
5777 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5778 if (C->isZero())
5779 return false;
5780
5781 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5782
5783 // WARNING: this fold is only valid for positive divisors!
5784 APInt D = C->getAPIntValue();
5785 if (D.isNegative())
5786 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5787
5788 HadIntMinDivisor |= D.isMinSignedValue();
5789
5790 // If all divisors are ones, we will prefer to avoid the fold.
5791 HadOneDivisor |= D.isOne();
5792 AllDivisorsAreOnes &= D.isOne();
5793
5794 // Decompose D into D0 * 2^K
5795 unsigned K = D.countTrailingZeros();
5796 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.")(static_cast <bool> ((!D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.") ? void (0) : __assert_fail
("(!D.isOne() || (K == 0)) && \"For divisor '1' we won't rotate.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5796, __extension__ __PRETTY_FUNCTION__))
;
5797 APInt D0 = D.lshr(K);
5798
5799 if (!D.isMinSignedValue()) {
5800 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5801 // we don't care about this lane in this fold, we'll special-handle it.
5802 HadEvenDivisor |= (K != 0);
5803 }
5804
5805 // D is a power-of-two if D0 is one. This includes INT_MIN.
5806 // If all divisors are power-of-two, we will prefer to avoid the fold.
5807 AllDivisorsArePowerOfTwo &= D0.isOne();
5808
5809 // P = inv(D0, 2^W)
5810 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5811 unsigned W = D.getBitWidth();
5812 APInt P = D0.zext(W + 1)
5813 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5814 .trunc(W);
5815 assert(!P.isZero() && "No multiplicative inverse!")(static_cast <bool> (!P.isZero() && "No multiplicative inverse!"
) ? void (0) : __assert_fail ("!P.isZero() && \"No multiplicative inverse!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5815, __extension__ __PRETTY_FUNCTION__))
; // unreachable
5816 assert((D0 * P).isOne() && "Multiplicative inverse sanity check.")(static_cast <bool> ((D0 * P).isOne() && "Multiplicative inverse sanity check."
) ? void (0) : __assert_fail ("(D0 * P).isOne() && \"Multiplicative inverse sanity check.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5816, __extension__ __PRETTY_FUNCTION__))
;
5817
5818 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5819 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5820 A.clearLowBits(K);
5821
5822 if (!D.isMinSignedValue()) {
5823 // If divisor INT_MIN, then we don't care about this lane in this fold,
5824 // we'll special-handle it.
5825 NeedToApplyOffset |= A != 0;
5826 }
5827
5828 // Q = floor((2 * A) / (2^K))
5829 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5830
5831 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&(static_cast <bool> (APInt::getAllOnes(SVT.getSizeInBits
()).ugt(A) && "We are expecting that A is always less than all-ones for SVT"
) ? void (0) : __assert_fail ("APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && \"We are expecting that A is always less than all-ones for SVT\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5832, __extension__ __PRETTY_FUNCTION__))
5832 "We are expecting that A is always less than all-ones for SVT")(static_cast <bool> (APInt::getAllOnes(SVT.getSizeInBits
()).ugt(A) && "We are expecting that A is always less than all-ones for SVT"
) ? void (0) : __assert_fail ("APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && \"We are expecting that A is always less than all-ones for SVT\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5832, __extension__ __PRETTY_FUNCTION__))
;
5833 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&(static_cast <bool> (APInt::getAllOnes(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5834, __extension__ __PRETTY_FUNCTION__))
5834 "We are expecting that K is always less than all-ones for ShSVT")(static_cast <bool> (APInt::getAllOnes(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5834, __extension__ __PRETTY_FUNCTION__))
;
5835
5836 // If the divisor is 1 the result can be constant-folded. Likewise, we
5837 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5838 if (D.isOne()) {
5839 // Set P, A and K to a bogus values so we can try to splat them.
5840 P = 0;
5841 A = -1;
5842 K = -1;
5843
5844 // x ?% 1 == 0 <--> true <--> x u<= -1
5845 Q = -1;
5846 }
5847
5848 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5849 AAmts.push_back(DAG.getConstant(A, DL, SVT));
5850 KAmts.push_back(
5851 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5852 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5853 return true;
5854 };
5855
5856 SDValue N = REMNode.getOperand(0);
5857 SDValue D = REMNode.getOperand(1);
5858
5859 // Collect the values from each element.
5860 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5861 return SDValue();
5862
5863 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5864 if (AllDivisorsAreOnes)
5865 return SDValue();
5866
5867 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5868 // since it can be best implemented as a bit test.
5869 if (AllDivisorsArePowerOfTwo)
5870 return SDValue();
5871
5872 SDValue PVal, AVal, KVal, QVal;
5873 if (D.getOpcode() == ISD::BUILD_VECTOR) {
5874 if (HadOneDivisor) {
5875 // Try to turn PAmts into a splat, since we don't care about the values
5876 // that are currently '0'. If we can't, just keep '0'`s.
5877 turnVectorIntoSplatVector(PAmts, isNullConstant);
5878 // Try to turn AAmts into a splat, since we don't care about the
5879 // values that are currently '-1'. If we can't, change them to '0'`s.
5880 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5881 DAG.getConstant(0, DL, SVT));
5882 // Try to turn KAmts into a splat, since we don't care about the values
5883 // that are currently '-1'. If we can't, change them to '0'`s.
5884 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5885 DAG.getConstant(0, DL, ShSVT));
5886 }
5887
5888 PVal = DAG.getBuildVector(VT, DL, PAmts);
5889 AVal = DAG.getBuildVector(VT, DL, AAmts);
5890 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5891 QVal = DAG.getBuildVector(VT, DL, QAmts);
5892 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5893 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5896, __extension__ __PRETTY_FUNCTION__))
5894 QAmts.size() == 1 &&(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5896, __extension__ __PRETTY_FUNCTION__))
5895 "Expected matchUnaryPredicate to return one element for scalable "(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5896, __extension__ __PRETTY_FUNCTION__))
5896 "vectors")(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5896, __extension__ __PRETTY_FUNCTION__))
;
5897 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5898 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5899 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5900 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5901 } else {
5902 assert(isa<ConstantSDNode>(D) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(D) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(D) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5902, __extension__ __PRETTY_FUNCTION__))
;
5903 PVal = PAmts[0];
5904 AVal = AAmts[0];
5905 KVal = KAmts[0];
5906 QVal = QAmts[0];
5907 }
5908
5909 // (mul N, P)
5910 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5911 Created.push_back(Op0.getNode());
5912
5913 if (NeedToApplyOffset) {
5914 // We need ADD to do this.
5915 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5916 return SDValue();
5917
5918 // (add (mul N, P), A)
5919 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5920 Created.push_back(Op0.getNode());
5921 }
5922
5923 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5924 // divisors as a performance improvement, since rotating by 0 is a no-op.
5925 if (HadEvenDivisor) {
5926 // We need ROTR to do this.
5927 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5928 return SDValue();
5929 // SREM: (rotr (add (mul N, P), A), K)
5930 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5931 Created.push_back(Op0.getNode());
5932 }
5933
5934 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5935 SDValue Fold =
5936 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5937 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5938
5939 // If we didn't have lanes with INT_MIN divisor, then we're done.
5940 if (!HadIntMinDivisor)
5941 return Fold;
5942
5943 // That fold is only valid for positive divisors. Which effectively means,
5944 // it is invalid for INT_MIN divisors. So if we have such a lane,
5945 // we must fix-up results for said lanes.
5946 assert(VT.isVector() && "Can/should only get here for vectors.")(static_cast <bool> (VT.isVector() && "Can/should only get here for vectors."
) ? void (0) : __assert_fail ("VT.isVector() && \"Can/should only get here for vectors.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5946, __extension__ __PRETTY_FUNCTION__))
;
5947
5948 // NOTE: we avoid letting illegal types through even if we're before legalize
5949 // ops – legalization has a hard time producing good code for the code that
5950 // follows.
5951 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5952 !isOperationLegalOrCustom(ISD::AND, VT) ||
5953 !isOperationLegalOrCustom(Cond, VT) ||
5954 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
5955 return SDValue();
5956
5957 Created.push_back(Fold.getNode());
5958
5959 SDValue IntMin = DAG.getConstant(
5960 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5961 SDValue IntMax = DAG.getConstant(
5962 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5963 SDValue Zero =
5964 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
5965
5966 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5967 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5968 Created.push_back(DivisorIsIntMin.getNode());
5969
5970 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5971 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5972 Created.push_back(Masked.getNode());
5973 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5974 Created.push_back(MaskedIsZero.getNode());
5975
5976 // To produce final result we need to blend 2 vectors: 'SetCC' and
5977 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5978 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5979 // constant-folded, select can get lowered to a shuffle with constant mask.
5980 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
5981 MaskedIsZero, Fold);
5982
5983 return Blended;
5984}
5985
5986bool TargetLowering::
5987verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5988 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5989 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5990 "be a constant integer");
5991 return true;
5992 }
5993
5994 return false;
5995}
5996
5997SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5998 const DenormalMode &Mode) const {
5999 SDLoc DL(Op);
6000 EVT VT = Op.getValueType();
6001 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6002 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6003 // Testing it with denormal inputs to avoid wrong estimate.
6004 if (Mode.Input == DenormalMode::IEEE) {
6005 // This is specifically a check for the handling of denormal inputs,
6006 // not the result.
6007
6008 // Test = fabs(X) < SmallestNormal
6009 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6010 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6011 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6012 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6013 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6014 }
6015 // Test = X == 0.0
6016 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6017}
6018
6019SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6020 bool LegalOps, bool OptForSize,
6021 NegatibleCost &Cost,
6022 unsigned Depth) const {
6023 // fneg is removable even if it has multiple uses.
6024 if (Op.getOpcode() == ISD::FNEG) {
6025 Cost = NegatibleCost::Cheaper;
6026 return Op.getOperand(0);
6027 }
6028
6029 // Don't recurse exponentially.
6030 if (Depth > SelectionDAG::MaxRecursionDepth)
6031 return SDValue();
6032
6033 // Pre-increment recursion depth for use in recursive calls.
6034 ++Depth;
6035 const SDNodeFlags Flags = Op->getFlags();
6036 const TargetOptions &Options = DAG.getTarget().Options;
6037 EVT VT = Op.getValueType();
6038 unsigned Opcode = Op.getOpcode();
6039
6040 // Don't allow anything with multiple uses unless we know it is free.
6041 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6042 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6043 isFPExtFree(VT, Op.getOperand(0).getValueType());
6044 if (!IsFreeExtend)
6045 return SDValue();
6046 }
6047
6048 auto RemoveDeadNode = [&](SDValue N) {
6049 if (N && N.getNode()->use_empty())
6050 DAG.RemoveDeadNode(N.getNode());
6051 };
6052
6053 SDLoc DL(Op);
6054
6055 // Because getNegatedExpression can delete nodes we need a handle to keep
6056 // temporary nodes alive in case the recursion manages to create an identical
6057 // node.
6058 std::list<HandleSDNode> Handles;
6059
6060 switch (Opcode) {
6061 case ISD::ConstantFP: {
6062 // Don't invert constant FP values after legalization unless the target says
6063 // the negated constant is legal.
6064 bool IsOpLegal =
6065 isOperationLegal(ISD::ConstantFP, VT) ||
6066 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6067 OptForSize);
6068
6069 if (LegalOps && !IsOpLegal)
6070 break;
6071
6072 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6073 V.changeSign();
6074 SDValue CFP = DAG.getConstantFP(V, DL, VT);
6075
6076 // If we already have the use of the negated floating constant, it is free
6077 // to negate it even it has multiple uses.
6078 if (!Op.hasOneUse() && CFP.use_empty())
6079 break;
6080 Cost = NegatibleCost::Neutral;
6081 return CFP;
6082 }
6083 case ISD::BUILD_VECTOR: {
6084 // Only permit BUILD_VECTOR of constants.
6085 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6086 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6087 }))
6088 break;
6089
6090 bool IsOpLegal =
6091 (isOperationLegal(ISD::ConstantFP, VT) &&
6092 isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6093 llvm::all_of(Op->op_values(), [&](SDValue N) {
6094 return N.isUndef() ||
6095 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6096 OptForSize);
6097 });
6098
6099 if (LegalOps && !IsOpLegal)
6100 break;
6101
6102 SmallVector<SDValue, 4> Ops;
6103 for (SDValue C : Op->op_values()) {
6104 if (C.isUndef()) {
6105 Ops.push_back(C);
6106 continue;
6107 }
6108 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6109 V.changeSign();
6110 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6111 }
6112 Cost = NegatibleCost::Neutral;
6113 return DAG.getBuildVector(VT, DL, Ops);
6114 }
6115 case ISD::FADD: {
6116 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6117 break;
6118
6119 // After operation legalization, it might not be legal to create new FSUBs.
6120 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6121 break;
6122 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6123
6124 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6125 NegatibleCost CostX = NegatibleCost::Expensive;
6126 SDValue NegX =
6127 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6128 // Prevent this node from being deleted by the next call.
6129 if (NegX)
6130 Handles.emplace_back(NegX);
6131
6132 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6133 NegatibleCost CostY = NegatibleCost::Expensive;
6134 SDValue NegY =
6135 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6136
6137 // We're done with the handles.
6138 Handles.clear();
6139
6140 // Negate the X if its cost is less or equal than Y.
6141 if (NegX && (CostX <= CostY)) {
6142 Cost = CostX;
6143 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6144 if (NegY != N)
6145 RemoveDeadNode(NegY);
6146 return N;
6147 }
6148
6149 // Negate the Y if it is not expensive.
6150 if (NegY) {
6151 Cost = CostY;
6152 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6153 if (NegX != N)
6154 RemoveDeadNode(NegX);
6155 return N;
6156 }
6157 break;
6158 }
6159 case ISD::FSUB: {
6160 // We can't turn -(A-B) into B-A when we honor signed zeros.
6161 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6162 break;
6163
6164 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6165 // fold (fneg (fsub 0, Y)) -> Y
6166 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6167 if (C->isZero()) {
6168 Cost = NegatibleCost::Cheaper;
6169 return Y;
6170 }
6171
6172 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6173 Cost = NegatibleCost::Neutral;
6174 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6175 }
6176 case ISD::FMUL:
6177 case ISD::FDIV: {
6178 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6179
6180 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6181 NegatibleCost CostX = NegatibleCost::Expensive;
6182 SDValue NegX =
6183 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6184 // Prevent this node from being deleted by the next call.
6185 if (NegX)
6186 Handles.emplace_back(NegX);
6187
6188 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6189 NegatibleCost CostY = NegatibleCost::Expensive;
6190 SDValue NegY =
6191 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6192
6193 // We're done with the handles.
6194 Handles.clear();
6195
6196 // Negate the X if its cost is less or equal than Y.
6197 if (NegX && (CostX <= CostY)) {
6198 Cost = CostX;
6199 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6200 if (NegY != N)
6201 RemoveDeadNode(NegY);
6202 return N;
6203 }
6204
6205 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6206 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6207 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6208 break;
6209
6210 // Negate the Y if it is not expensive.
6211 if (NegY) {
6212 Cost = CostY;
6213 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6214 if (NegX != N)
6215 RemoveDeadNode(NegX);
6216 return N;
6217 }
6218 break;
6219 }
6220 case ISD::FMA:
6221 case ISD::FMAD: {
6222 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6223 break;
6224
6225 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6226 NegatibleCost CostZ = NegatibleCost::Expensive;
6227 SDValue NegZ =
6228 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6229 // Give up if fail to negate the Z.
6230 if (!NegZ)
6231 break;
6232
6233 // Prevent this node from being deleted by the next two calls.
6234 Handles.emplace_back(NegZ);
6235
6236 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6237 NegatibleCost CostX = NegatibleCost::Expensive;
6238 SDValue NegX =
6239 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6240 // Prevent this node from being deleted by the next call.
6241 if (NegX)
6242 Handles.emplace_back(NegX);
6243
6244 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6245 NegatibleCost CostY = NegatibleCost::Expensive;
6246 SDValue NegY =
6247 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6248
6249 // We're done with the handles.
6250 Handles.clear();
6251
6252 // Negate the X if its cost is less or equal than Y.
6253 if (NegX && (CostX <= CostY)) {
6254 Cost = std::min(CostX, CostZ);
6255 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6256 if (NegY != N)
6257 RemoveDeadNode(NegY);
6258 return N;
6259 }
6260
6261 // Negate the Y if it is not expensive.
6262 if (NegY) {
6263 Cost = std::min(CostY, CostZ);
6264 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6265 if (NegX != N)
6266 RemoveDeadNode(NegX);
6267 return N;
6268 }
6269 break;
6270 }
6271
6272 case ISD::FP_EXTEND:
6273 case ISD::FSIN:
6274 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6275 OptForSize, Cost, Depth))
6276 return DAG.getNode(Opcode, DL, VT, NegV);
6277 break;
6278 case ISD::FP_ROUND:
6279 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6280 OptForSize, Cost, Depth))
6281 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6282 break;
6283 }
6284
6285 return SDValue();
6286}
6287
6288//===----------------------------------------------------------------------===//
6289// Legalization Utilities
6290//===----------------------------------------------------------------------===//
6291
6292bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6293 SDValue LHS, SDValue RHS,
6294 SmallVectorImpl<SDValue> &Result,
6295 EVT HiLoVT, SelectionDAG &DAG,
6296 MulExpansionKind Kind, SDValue LL,
6297 SDValue LH, SDValue RL, SDValue RH) const {
6298 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||(static_cast <bool> (Opcode == ISD::MUL || Opcode == ISD
::UMUL_LOHI || Opcode == ISD::SMUL_LOHI) ? void (0) : __assert_fail
("Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || Opcode == ISD::SMUL_LOHI"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6299, __extension__ __PRETTY_FUNCTION__))
6299 Opcode == ISD::SMUL_LOHI)(static_cast <bool> (Opcode == ISD::MUL || Opcode == ISD
::UMUL_LOHI || Opcode == ISD::SMUL_LOHI) ? void (0) : __assert_fail
("Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || Opcode == ISD::SMUL_LOHI"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6299, __extension__ __PRETTY_FUNCTION__))
;
6300
6301 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6302 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6303 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6304 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6305 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6306 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6307 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6308 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6309
6310 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6311 return false;
6312
6313 unsigned OuterBitSize = VT.getScalarSizeInBits();
6314 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6315
6316 // LL, LH, RL, and RH must be either all NULL or all set to a value.
6317 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||(static_cast <bool> ((LL.getNode() && LH.getNode
() && RL.getNode() && RH.getNode()) || (!LL.getNode
() && !LH.getNode() && !RL.getNode() &&
!RH.getNode())) ? void (0) : __assert_fail ("(LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6318, __extension__ __PRETTY_FUNCTION__))
6318 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()))(static_cast <bool> ((LL.getNode() && LH.getNode
() && RL.getNode() && RH.getNode()) || (!LL.getNode
() && !LH.getNode() && !RL.getNode() &&
!RH.getNode())) ? void (0) : __assert_fail ("(LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6318, __extension__ __PRETTY_FUNCTION__))
;
6319
6320 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6321 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6322 bool Signed) -> bool {
6323 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6324 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6325 Hi = SDValue(Lo.getNode(), 1);
6326 return true;
6327 }
6328 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6329 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6330 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6331 return true;
6332 }
6333 return false;
6334 };
6335
6336 SDValue Lo, Hi;
6337
6338 if (!LL.getNode() && !RL.getNode() &&
6339 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6340 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6341 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6342 }
6343
6344 if (!LL.getNode())
6345 return false;
6346
6347 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6348 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6349 DAG.MaskedValueIsZero(RHS, HighMask)) {
6350 // The inputs are both zero-extended.
6351 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6352 Result.push_back(Lo);
6353 Result.push_back(Hi);
6354 if (Opcode != ISD::MUL) {
6355 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6356 Result.push_back(Zero);
6357 Result.push_back(Zero);
6358 }
6359 return true;
6360 }
6361 }
6362
6363 if (!VT.isVector() && Opcode == ISD::MUL &&
6364 DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6365 DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6366 // The input values are both sign-extended.
6367 // TODO non-MUL case?
6368 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6369 Result.push_back(Lo);
6370 Result.push_back(Hi);
6371 return true;
6372 }
6373 }
6374
6375 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6376 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6377 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6378 // FIXME getShiftAmountTy does not always return a sensible result when VT
6379 // is an illegal type, and so the type may be too small to fit the shift
6380 // amount. Override it with i32. The shift will have to be legalized.
6381 ShiftAmountTy = MVT::i32;
6382 }
6383 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6384
6385 if (!LH.getNode() && !RH.getNode() &&
6386 isOperationLegalOrCustom(ISD::SRL, VT) &&
6387 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6388 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6389 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6390 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6391 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6392 }
6393
6394 if (!LH.getNode())
6395 return false;
6396
6397 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6398 return false;
6399
6400 Result.push_back(Lo);
6401
6402 if (Opcode == ISD::MUL) {
6403 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6404 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6405 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6406 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6407 Result.push_back(Hi);
6408 return true;
6409 }
6410
6411 // Compute the full width result.
6412 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6413 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6414 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6415 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6416 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6417 };
6418
6419 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6420 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6421 return false;
6422
6423 // This is effectively the add part of a multiply-add of half-sized operands,
6424 // so it cannot overflow.
6425 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6426
6427 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6428 return false;
6429
6430 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6431 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6432
6433 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6434 isOperationLegalOrCustom(ISD::ADDE, VT));
6435 if (UseGlue)
6436 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6437 Merge(Lo, Hi));
6438 else
6439 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6440 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6441
6442 SDValue Carry = Next.getValue(1);
6443 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6444 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6445
6446 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6447 return false;
6448
6449 if (UseGlue)
6450 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6451 Carry);
6452 else
6453 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6454 Zero, Carry);
6455
6456 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6457
6458 if (Opcode == ISD::SMUL_LOHI) {
6459 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6460 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6461 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6462
6463 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6464 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6465 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6466 }
6467
6468 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6469 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6470 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6471 return true;
6472}
6473
6474bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6475 SelectionDAG &DAG, MulExpansionKind Kind,
6476 SDValue LL, SDValue LH, SDValue RL,
6477 SDValue RH) const {
6478 SmallVector<SDValue, 2> Result;
6479 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6480 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6481 DAG, Kind, LL, LH, RL, RH);
6482 if (Ok) {
6483 assert(Result.size() == 2)(static_cast <bool> (Result.size() == 2) ? void (0) : __assert_fail
("Result.size() == 2", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6483, __extension__ __PRETTY_FUNCTION__))
;
6484 Lo = Result[0];
6485 Hi = Result[1];
6486 }
6487 return Ok;
6488}
6489
6490// Check that (every element of) Z is undef or not an exact multiple of BW.
6491static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6492 return ISD::matchUnaryPredicate(
6493 Z,
6494 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6495 true);
6496}
6497
6498bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6499 SelectionDAG &DAG) const {
6500 EVT VT = Node->getValueType(0);
6501
6502 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6503 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6504 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6505 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6506 return false;
6507
6508 SDValue X = Node->getOperand(0);
6509 SDValue Y = Node->getOperand(1);
6510 SDValue Z = Node->getOperand(2);
6511
6512 unsigned BW = VT.getScalarSizeInBits();
6513 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6514 SDLoc DL(SDValue(Node, 0));
6515
6516 EVT ShVT = Z.getValueType();
6517
6518 // If a funnel shift in the other direction is more supported, use it.
6519 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6520 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6521 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6522 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6523 // fshl X, Y, Z -> fshr X, Y, -Z
6524 // fshr X, Y, Z -> fshl X, Y, -Z
6525 SDValue Zero = DAG.getConstant(0, DL, ShVT);
6526 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6527 } else {
6528 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6529 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6530 SDValue One = DAG.getConstant(1, DL, ShVT);
6531 if (IsFSHL) {
6532 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6533 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6534 } else {
6535 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6536 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6537 }
6538 Z = DAG.getNOT(DL, Z, ShVT);
6539 }
6540 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6541 return true;
6542 }
6543
6544 SDValue ShX, ShY;
6545 SDValue ShAmt, InvShAmt;
6546 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6547 // fshl: X << C | Y >> (BW - C)
6548 // fshr: X << (BW - C) | Y >> C
6549 // where C = Z % BW is not zero
6550 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6551 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6552 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6553 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6554 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6555 } else {
6556 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6557 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6558 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6559 if (isPowerOf2_32(BW)) {
6560 // Z % BW -> Z & (BW - 1)
6561 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6562 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6563 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6564 } else {
6565 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6566 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6567 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6568 }
6569
6570 SDValue One = DAG.getConstant(1, DL, ShVT);
6571 if (IsFSHL) {
6572 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6573 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6574 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6575 } else {
6576 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6577 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6578 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6579 }
6580 }
6581 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6582 return true;
6583}
6584
6585// TODO: Merge with expandFunnelShift.
6586bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6587 SDValue &Result, SelectionDAG &DAG) const {
6588 EVT VT = Node->getValueType(0);
6589 unsigned EltSizeInBits = VT.getScalarSizeInBits();
6590 bool IsLeft = Node->getOpcode() == ISD::ROTL;
6591 SDValue Op0 = Node->getOperand(0);
6592 SDValue Op1 = Node->getOperand(1);
6593 SDLoc DL(SDValue(Node, 0));
6594
6595 EVT ShVT = Op1.getValueType();
6596 SDValue Zero = DAG.getConstant(0, DL, ShVT);
6597
6598 // If a rotate in the other direction is supported, use it.
6599 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6600 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6601 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6602 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6603 return true;
6604 }
6605
6606 if (!AllowVectorOps && VT.isVector() &&
6607 (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6608 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6609 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6610 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6611 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6612 return false;
6613
6614 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6615 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6616 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6617 SDValue ShVal;
6618 SDValue HsVal;
6619 if (isPowerOf2_32(EltSizeInBits)) {
6620 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6621 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6622 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6623 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6624 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6625 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6626 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6627 } else {
6628 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6629 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6630 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6631 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6632 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6633 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6634 SDValue One = DAG.getConstant(1, DL, ShVT);
6635 HsVal =
6636 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6637 }
6638 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6639 return true;
6640}
6641
6642void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6643 SelectionDAG &DAG) const {
6644 assert(Node->getNumOperands() == 3 && "Not a double-shift!")(static_cast <bool> (Node->getNumOperands() == 3 &&
"Not a double-shift!") ? void (0) : __assert_fail ("Node->getNumOperands() == 3 && \"Not a double-shift!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6644, __extension__ __PRETTY_FUNCTION__))
;
6645 EVT VT = Node->getValueType(0);
6646 unsigned VTBits = VT.getScalarSizeInBits();
6647 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected")(static_cast <bool> (isPowerOf2_32(VTBits) && "Power-of-two integer type expected"
) ? void (0) : __assert_fail ("isPowerOf2_32(VTBits) && \"Power-of-two integer type expected\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6647, __extension__ __PRETTY_FUNCTION__))
;
6648
6649 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6650 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6651 SDValue ShOpLo = Node->getOperand(0);
6652 SDValue ShOpHi = Node->getOperand(1);
6653 SDValue ShAmt = Node->getOperand(2);
6654 EVT ShAmtVT = ShAmt.getValueType();
6655 EVT ShAmtCCVT =
6656 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6657 SDLoc dl(Node);
6658
6659 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6660 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6661 // away during isel.
6662 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6663 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6664 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6665 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6666 : DAG.getConstant(0, dl, VT);
6667
6668 SDValue Tmp2, Tmp3;
6669 if (IsSHL) {
6670 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6671 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6672 } else {
6673 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6674 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6675 }
6676
6677 // If the shift amount is larger or equal than the width of a part we don't
6678 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6679 // values for large shift amounts.
6680 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6681 DAG.getConstant(VTBits, dl, ShAmtVT));
6682 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6683 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6684
6685 if (IsSHL) {
6686 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6687 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6688 } else {
6689 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6690 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6691 }
6692}
6693
6694bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6695 SelectionDAG &DAG) const {
6696 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6697 SDValue Src = Node->getOperand(OpNo);
6698 EVT SrcVT = Src.getValueType();
6699 EVT DstVT = Node->getValueType(0);
6700 SDLoc dl(SDValue(Node, 0));
6701
6702 // FIXME: Only f32 to i64 conversions are supported.
6703 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6704 return false;
6705
6706 if (Node->isStrictFPOpcode())
6707 // When a NaN is converted to an integer a trap is allowed. We can't
6708 // use this expansion here because it would eliminate that trap. Other
6709 // traps are also allowed and cannot be eliminated. See
6710 // IEEE 754-2008 sec 5.8.
6711 return false;
6712
6713 // Expand f32 -> i64 conversion
6714 // This algorithm comes from compiler-rt's implementation of fixsfdi:
6715 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6716 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6717 EVT IntVT = SrcVT.changeTypeToInteger();
6718 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6719
6720 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6721 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6722 SDValue Bias = DAG.getConstant(127, dl, IntVT);
6723 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6724 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6725 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6726
6727 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6728
6729 SDValue ExponentBits = DAG.getNode(
6730 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6731 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6732 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6733
6734 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6735 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6736 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6737 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6738
6739 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6740 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6741 DAG.getConstant(0x00800000, dl, IntVT));
6742
6743 R = DAG.getZExtOrTrunc(R, dl, DstVT);
6744
6745 R = DAG.getSelectCC(
6746 dl, Exponent, ExponentLoBit,
6747 DAG.getNode(ISD::SHL, dl, DstVT, R,
6748 DAG.getZExtOrTrunc(
6749 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6750 dl, IntShVT)),
6751 DAG.getNode(ISD::SRL, dl, DstVT, R,
6752 DAG.getZExtOrTrunc(
6753 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6754 dl, IntShVT)),
6755 ISD::SETGT);
6756
6757 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6758 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6759
6760 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6761 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6762 return true;
6763}
6764
6765bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6766 SDValue &Chain,
6767 SelectionDAG &DAG) const {
6768 SDLoc dl(SDValue(Node, 0));
6769 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6770 SDValue Src = Node->getOperand(OpNo);
6771
6772 EVT SrcVT = Src.getValueType();
6773 EVT DstVT = Node->getValueType(0);
6774 EVT SetCCVT =
6775 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6776 EVT DstSetCCVT =
6777 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6778
6779 // Only expand vector types if we have the appropriate vector bit operations.
6780 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6781 ISD::FP_TO_SINT;
6782 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6783 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6784 return false;
6785
6786 // If the maximum float value is smaller then the signed integer range,
6787 // the destination signmask can't be represented by the float, so we can
6788 // just use FP_TO_SINT directly.
6789 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6790 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6791 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6792 if (APFloat::opOverflow &
6793 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6794 if (Node->isStrictFPOpcode()) {
6795 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6796 { Node->getOperand(0), Src });
6797 Chain = Result.getValue(1);
6798 } else
6799 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6800 return true;
6801 }
6802
6803 // Don't expand it if there isn't cheap fsub instruction.
6804 if (!isOperationLegalOrCustom(
6805 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6806 return false;
6807
6808 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6809 SDValue Sel;
6810
6811 if (Node->isStrictFPOpcode()) {
6812 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6813 Node->getOperand(0), /*IsSignaling*/ true);
6814 Chain = Sel.getValue(1);
6815 } else {
6816 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6817 }
6818
6819 bool Strict = Node->isStrictFPOpcode() ||
6820 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6821
6822 if (Strict) {
6823 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6824 // signmask then offset (the result of which should be fully representable).
6825 // Sel = Src < 0x8000000000000000
6826 // FltOfs = select Sel, 0, 0x8000000000000000
6827 // IntOfs = select Sel, 0, 0x8000000000000000
6828 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6829
6830 // TODO: Should any fast-math-flags be set for the FSUB?
6831 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6832 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6833 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6834 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6835 DAG.getConstant(0, dl, DstVT),
6836 DAG.getConstant(SignMask, dl, DstVT));
6837 SDValue SInt;
6838 if (Node->isStrictFPOpcode()) {
6839 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6840 { Chain, Src, FltOfs });
6841 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6842 { Val.getValue(1), Val });
6843 Chain = SInt.getValue(1);
6844 } else {
6845 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6846 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6847 }
6848 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6849 } else {
6850 // Expand based on maximum range of FP_TO_SINT:
6851 // True = fp_to_sint(Src)
6852 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6853 // Result = select (Src < 0x8000000000000000), True, False
6854
6855 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6856 // TODO: Should any fast-math-flags be set for the FSUB?
6857 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6858 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6859 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6860 DAG.getConstant(SignMask, dl, DstVT));
6861 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6862 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6863 }
6864 return true;
6865}
6866
6867bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6868 SDValue &Chain,
6869 SelectionDAG &DAG) const {
6870 // This transform is not correct for converting 0 when rounding mode is set
6871 // to round toward negative infinity which will produce -0.0. So disable under
6872 // strictfp.
6873 if (Node->isStrictFPOpcode())
6874 return false;
6875
6876 SDValue Src = Node->getOperand(0);
6877 EVT SrcVT = Src.getValueType();
6878 EVT DstVT = Node->getValueType(0);
6879
6880 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6881 return false;
6882
6883 // Only expand vector types if we have the appropriate vector bit operations.
6884 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6885 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6886 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6887 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6888 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6889 return false;
6890
6891 SDLoc dl(SDValue(Node, 0));
6892 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6893
6894 // Implementation of unsigned i64 to f64 following the algorithm in
6895 // __floatundidf in compiler_rt. This implementation performs rounding
6896 // correctly in all rounding modes with the exception of converting 0
6897 // when rounding toward negative infinity. In that case the fsub will produce
6898 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6899 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000)0x4330000000000000UL, dl, SrcVT);
6900 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6901 BitsToDouble(UINT64_C(0x4530000000100000)0x4530000000100000UL), dl, DstVT);
6902 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000)0x4530000000000000UL, dl, SrcVT);
6903 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF)0x00000000FFFFFFFFUL, dl, SrcVT);
6904 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6905
6906 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6907 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6908 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6909 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6910 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6911 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6912 SDValue HiSub =
6913 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6914 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6915 return true;
6916}
6917
6918SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6919 SelectionDAG &DAG) const {
6920 SDLoc dl(Node);
6921 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6922 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6923 EVT VT = Node->getValueType(0);
6924
6925 if (VT.isScalableVector())
6926 report_fatal_error(
6927 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6928
6929 if (isOperationLegalOrCustom(NewOp, VT)) {
6930 SDValue Quiet0 = Node->getOperand(0);
6931 SDValue Quiet1 = Node->getOperand(1);
6932
6933 if (!Node->getFlags().hasNoNaNs()) {
6934 // Insert canonicalizes if it's possible we need to quiet to get correct
6935 // sNaN behavior.
6936 if (!DAG.isKnownNeverSNaN(Quiet0)) {
6937 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6938 Node->getFlags());
6939 }
6940 if (!DAG.isKnownNeverSNaN(Quiet1)) {
6941 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6942 Node->getFlags());
6943 }
6944 }
6945
6946 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6947 }
6948
6949 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6950 // instead if there are no NaNs.
6951 if (Node->getFlags().hasNoNaNs()) {
6952 unsigned IEEE2018Op =
6953 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6954 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6955 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6956 Node->getOperand(1), Node->getFlags());
6957 }
6958 }
6959
6960 // If none of the above worked, but there are no NaNs, then expand to
6961 // a compare/select sequence. This is required for correctness since
6962 // InstCombine might have canonicalized a fcmp+select sequence to a
6963 // FMINNUM/FMAXNUM node. If we were to fall through to the default
6964 // expansion to libcall, we might introduce a link-time dependency
6965 // on libm into a file that originally did not have one.
6966 if (Node->getFlags().hasNoNaNs()) {
6967 ISD::CondCode Pred =
6968 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6969 SDValue Op1 = Node->getOperand(0);
6970 SDValue Op2 = Node->getOperand(1);
6971 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6972 // Copy FMF flags, but always set the no-signed-zeros flag
6973 // as this is implied by the FMINNUM/FMAXNUM semantics.
6974 SDNodeFlags Flags = Node->getFlags();
6975 Flags.setNoSignedZeros(true);
6976 SelCC->setFlags(Flags);
6977 return SelCC;
6978 }
6979
6980 return SDValue();
6981}
6982
6983bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6984 SelectionDAG &DAG) const {
6985 SDLoc dl(Node);
6986 EVT VT = Node->getValueType(0);
6987 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6988 SDValue Op = Node->getOperand(0);
6989 unsigned Len = VT.getScalarSizeInBits();
6990 assert(VT.isInteger() && "CTPOP not implemented for this type.")(static_cast <bool> (VT.isInteger() && "CTPOP not implemented for this type."
) ? void (0) : __assert_fail ("VT.isInteger() && \"CTPOP not implemented for this type.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6990, __extension__ __PRETTY_FUNCTION__))
;
6991
6992 // TODO: Add support for irregular type lengths.
6993 if (!(Len <= 128 && Len % 8 == 0))
6994 return false;
6995
6996 // Only expand vector types if we have the appropriate vector bit operations.
6997 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6998 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6999 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7000 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
7001 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7002 return false;
7003
7004 // This is the "best" algorithm from
7005 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7006 SDValue Mask55 =
7007 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7008 SDValue Mask33 =
7009 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7010 SDValue Mask0F =
7011 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7012 SDValue Mask01 =
7013 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7014
7015 // v = v - ((v >> 1) & 0x55555555...)
7016 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7017 DAG.getNode(ISD::AND, dl, VT,
7018 DAG.getNode(ISD::SRL, dl, VT, Op,
7019 DAG.getConstant(1, dl, ShVT)),
7020 Mask55));
7021 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7022 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7023 DAG.getNode(ISD::AND, dl, VT,
7024 DAG.getNode(ISD::SRL, dl, VT, Op,
7025 DAG.getConstant(2, dl, ShVT)),
7026 Mask33));
7027 // v = (v + (v >> 4)) & 0x0F0F0F0F...
7028 Op = DAG.getNode(ISD::AND, dl, VT,
7029 DAG.getNode(ISD::ADD, dl, VT, Op,
7030 DAG.getNode(ISD::SRL, dl, VT, Op,
7031 DAG.getConstant(4, dl, ShVT))),
7032 Mask0F);
7033 // v = (v * 0x01010101...) >> (Len - 8)
7034 if (Len > 8)
7035 Op =
7036 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7037 DAG.getConstant(Len - 8, dl, ShVT));
7038
7039 Result = Op;
7040 return true;
7041}
7042
7043bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7044 SelectionDAG &DAG) const {
7045 SDLoc dl(Node);
7046 EVT VT = Node->getValueType(0);
7047 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7048 SDValue Op = Node->getOperand(0);
7049 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7050
7051 // If the non-ZERO_UNDEF version is supported we can use that instead.
7052 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7053 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7054 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7055 return true;
7056 }
7057
7058 // If the ZERO_UNDEF version is supported use that and handle the zero case.
7059 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7060 EVT SetCCVT =
7061 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7062 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7063 SDValue Zero = DAG.getConstant(0, dl, VT);
7064 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7065 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7066 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7067 return true;
7068 }
7069
7070 // Only expand vector types if we have the appropriate vector bit operations.
7071 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7072 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7073 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7074 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7075 return false;
7076
7077 // for now, we do this:
7078 // x = x | (x >> 1);
7079 // x = x | (x >> 2);
7080 // ...
7081 // x = x | (x >>16);
7082 // x = x | (x >>32); // for 64-bit input
7083 // return popcount(~x);
7084 //
7085 // Ref: "Hacker's Delight" by Henry Warren
7086 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7087 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7088 Op = DAG.getNode(ISD::OR, dl, VT, Op,
7089 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7090 }
7091 Op = DAG.getNOT(dl, Op, VT);
7092 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7093 return true;
7094}
7095
7096bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7097 SelectionDAG &DAG) const {
7098 SDLoc dl(Node);
7099 EVT VT = Node->getValueType(0);
7100 SDValue Op = Node->getOperand(0);
7101 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7102
7103 // If the non-ZERO_UNDEF version is supported we can use that instead.
7104 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7105 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7106 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7107 return true;
7108 }
7109
7110 // If the ZERO_UNDEF version is supported use that and handle the zero case.
7111 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7112 EVT SetCCVT =
7113 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7114 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7115 SDValue Zero = DAG.getConstant(0, dl, VT);
7116 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7117 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7118 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7119 return true;
7120 }
7121
7122 // Only expand vector types if we have the appropriate vector bit operations.
7123 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7124 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7125 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7126 !isOperationLegalOrCustom(ISD::SUB, VT) ||
7127 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7128 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7129 return false;
7130
7131 // for now, we use: { return popcount(~x & (x - 1)); }
7132 // unless the target has ctlz but not ctpop, in which case we use:
7133 // { return 32 - nlz(~x & (x-1)); }
7134 // Ref: "Hacker's Delight" by Henry Warren
7135 SDValue Tmp = DAG.getNode(
7136 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7137 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7138
7139 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7140 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7141 Result =
7142 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7143 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7144 return true;
7145 }
7146
7147 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7148 return true;
7149}
7150
7151bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7152 SelectionDAG &DAG, bool IsNegative) const {
7153 SDLoc dl(N);
7154 EVT VT = N->getValueType(0);
7155 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7156 SDValue Op = N->getOperand(0);
7157
7158 // abs(x) -> smax(x,sub(0,x))
7159 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7160 isOperationLegal(ISD::SMAX, VT)) {
7161 SDValue Zero = DAG.getConstant(0, dl, VT);
7162 Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7163 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7164 return true;
7165 }
7166
7167 // abs(x) -> umin(x,sub(0,x))
7168 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7169 isOperationLegal(ISD::UMIN, VT)) {
7170 SDValue Zero = DAG.getConstant(0, dl, VT);
7171 Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7172 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7173 return true;
7174 }
7175
7176 // 0 - abs(x) -> smin(x, sub(0,x))
7177 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7178 isOperationLegal(ISD::SMIN, VT)) {
7179 SDValue Zero = DAG.getConstant(0, dl, VT);
7180 Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7181 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7182 return true;
7183 }
7184
7185 // Only expand vector types if we have the appropriate vector operations.
7186 if (VT.isVector() &&
7187 (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7188 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7189 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7190 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7191 return false;
7192
7193 SDValue Shift =
7194 DAG.getNode(ISD::SRA, dl, VT, Op,
7195 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7196 if (!IsNegative) {
7197 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7198 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7199 } else {
7200 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7201 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7202 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7203 }
7204 return true;
7205}
7206
7207SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7208 SDLoc dl(N);
7209 EVT VT = N->getValueType(0);
7210 SDValue Op = N->getOperand(0);
7211
7212 if (!VT.isSimple())
7213 return SDValue();
7214
7215 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7216 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7217 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7218 default:
7219 return SDValue();
7220 case MVT::i16:
7221 // Use a rotate by 8. This can be further expanded if necessary.
7222 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7223 case MVT::i32:
7224 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7225 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7226 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7227 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7228 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7229 DAG.getConstant(0xFF0000, dl, VT));
7230 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7231 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7232 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7233 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7234 case MVT::i64:
7235 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7236 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7237 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7238 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7239 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7240 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7241 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7242 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7243 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7244 DAG.getConstant(255ULL<<48, dl, VT));
7245 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7246 DAG.getConstant(255ULL<<40, dl, VT));
7247 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7248 DAG.getConstant(255ULL<<32, dl, VT));
7249 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7250 DAG.getConstant(255ULL<<24, dl, VT));
7251 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7252 DAG.getConstant(255ULL<<16, dl, VT));
7253 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7254 DAG.getConstant(255ULL<<8 , dl, VT));
7255 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7256 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7257 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7258 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7259 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7260 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7261 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7262 }
7263}
7264
7265SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7266 SDLoc dl(N);
7267 EVT VT = N->getValueType(0);
7268 SDValue Op = N->getOperand(0);
7269 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7270 unsigned Sz = VT.getScalarSizeInBits();
7271
7272 SDValue Tmp, Tmp2, Tmp3;
7273
7274 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7275 // and finally the i1 pairs.
7276 // TODO: We can easily support i4/i2 legal types if any target ever does.
7277 if (Sz >= 8 && isPowerOf2_32(Sz)) {
7278 // Create the masks - repeating the pattern every byte.
7279 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7280 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7281 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7282
7283 // BSWAP if the type is wider than a single byte.
7284 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7285
7286 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7287 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7288 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7289 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7290 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7291 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7292
7293 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7294 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7295 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7296 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7297 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7298 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7299
7300 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7301 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7302 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7303 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7304 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7305 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7306 return Tmp;
7307 }
7308
7309 Tmp = DAG.getConstant(0, dl, VT);
7310 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7311 if (I < J)
7312 Tmp2 =
7313 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7314 else
7315 Tmp2 =
7316 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7317
7318 APInt Shift(Sz, 1);
7319 Shift <<= J;
7320 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7321 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7322 }
7323
7324 return Tmp;
7325}
7326
7327std::pair<SDValue, SDValue>
7328TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7329 SelectionDAG &DAG) const {
7330 SDLoc SL(LD);
7331 SDValue Chain = LD->getChain();
7332 SDValue BasePTR = LD->getBasePtr();
7333 EVT SrcVT = LD->getMemoryVT();
7334 EVT DstVT = LD->getValueType(0);
7335 ISD::LoadExtType ExtType = LD->getExtensionType();
7336
7337 if (SrcVT.isScalableVector())
7338 report_fatal_error("Cannot scalarize scalable vector loads");
7339
7340 unsigned NumElem = SrcVT.getVectorNumElements();
7341
7342 EVT SrcEltVT = SrcVT.getScalarType();
7343 EVT DstEltVT = DstVT.getScalarType();
7344
7345 // A vector must always be stored in memory as-is, i.e. without any padding
7346 // between the elements, since various code depend on it, e.g. in the
7347 // handling of a bitcast of a vector type to int, which may be done with a
7348 // vector store followed by an integer load. A vector that does not have
7349 // elements that are byte-sized must therefore be stored as an integer
7350 // built out of the extracted vector elements.
7351 if (!SrcEltVT.isByteSized()) {
7352 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7353 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7354
7355 unsigned NumSrcBits = SrcVT.getSizeInBits();
7356 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7357
7358 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7359 SDValue SrcEltBitMask = DAG.getConstant(
7360 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7361
7362 // Load the whole vector and avoid masking off the top bits as it makes
7363 // the codegen worse.
7364 SDValue Load =
7365 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7366 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7367 LD->getMemOperand()->getFlags(), LD->getAAInfo());
7368
7369 SmallVector<SDValue, 8> Vals;
7370 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7371 unsigned ShiftIntoIdx =
7372 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7373 SDValue ShiftAmount =
7374 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7375 LoadVT, SL, /*LegalTypes=*/false);
7376 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7377 SDValue Elt =
7378 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7379 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7380
7381 if (ExtType != ISD::NON_EXTLOAD) {
7382 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7383 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7384 }
7385
7386 Vals.push_back(Scalar);
7387 }
7388
7389 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7390 return std::make_pair(Value, Load.getValue(1));
7391 }
7392
7393 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7394 assert(SrcEltVT.isByteSized())(static_cast <bool> (SrcEltVT.isByteSized()) ? void (0)
: __assert_fail ("SrcEltVT.isByteSized()", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7394, __extension__ __PRETTY_FUNCTION__))
;
7395
7396 SmallVector<SDValue, 8> Vals;
7397 SmallVector<SDValue, 8> LoadChains;
7398
7399 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7400 SDValue ScalarLoad =
7401 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7402 LD->getPointerInfo().getWithOffset(Idx * Stride),
7403 SrcEltVT, LD->getOriginalAlign(),
7404 LD->getMemOperand()->getFlags(), LD->getAAInfo());
7405
7406 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7407
7408 Vals.push_back(ScalarLoad.getValue(0));
7409 LoadChains.push_back(ScalarLoad.getValue(1));
7410 }
7411
7412 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7413 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7414
7415 return std::make_pair(Value, NewChain);
7416}
7417
7418SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7419 SelectionDAG &DAG) const {
7420 SDLoc SL(ST);
7421
7422 SDValue Chain = ST->getChain();
7423 SDValue BasePtr = ST->getBasePtr();
7424 SDValue Value = ST->getValue();
7425 EVT StVT = ST->getMemoryVT();
7426
7427 if (StVT.isScalableVector())
7428 report_fatal_error("Cannot scalarize scalable vector stores");
7429
7430 // The type of the data we want to save
7431 EVT RegVT = Value.getValueType();
7432 EVT RegSclVT = RegVT.getScalarType();
7433
7434 // The type of data as saved in memory.
7435 EVT MemSclVT = StVT.getScalarType();
7436
7437 unsigned NumElem = StVT.getVectorNumElements();
7438
7439 // A vector must always be stored in memory as-is, i.e. without any padding
7440 // between the elements, since various code depend on it, e.g. in the
7441 // handling of a bitcast of a vector type to int, which may be done with a
7442 // vector store followed by an integer load. A vector that does not have
7443 // elements that are byte-sized must therefore be stored as an integer
7444 // built out of the extracted vector elements.
7445 if (!MemSclVT.isByteSized()) {
7446 unsigned NumBits = StVT.getSizeInBits();
7447 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7448
7449 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7450
7451 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7452 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7453 DAG.getVectorIdxConstant(Idx, SL));
7454 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7455 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7456 unsigned ShiftIntoIdx =
7457 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7458 SDValue ShiftAmount =
7459 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7460 SDValue ShiftedElt =
7461 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7462 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7463 }
7464
7465 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7466 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7467 ST->getAAInfo());
7468 }
7469
7470 // Store Stride in bytes
7471 unsigned Stride = MemSclVT.getSizeInBits() / 8;
7472 assert(Stride && "Zero stride!")(static_cast <bool> (Stride && "Zero stride!") ?
void (0) : __assert_fail ("Stride && \"Zero stride!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7472, __extension__ __PRETTY_FUNCTION__))
;
7473 // Extract each of the elements from the original vector and save them into
7474 // memory individually.
7475 SmallVector<SDValue, 8> Stores;
7476 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7477 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7478 DAG.getVectorIdxConstant(Idx, SL));
7479
7480 SDValue Ptr =
7481 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7482
7483 // This scalar TruncStore may be illegal, but we legalize it later.
7484 SDValue Store = DAG.getTruncStore(
7485 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7486 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7487 ST->getAAInfo());
7488
7489 Stores.push_back(Store);
7490 }
7491
7492 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7493}
7494
7495std::pair<SDValue, SDValue>
7496TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7497 assert(LD->getAddressingMode() == ISD::UNINDEXED &&(static_cast <bool> (LD->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed loads not implemented!"
) ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed loads not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7498, __extension__ __PRETTY_FUNCTION__))
7498 "unaligned indexed loads not implemented!")(static_cast <bool> (LD->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed loads not implemented!"
) ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed loads not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7498, __extension__ __PRETTY_FUNCTION__))
;
7499 SDValue Chain = LD->getChain();
7500 SDValue Ptr = LD->getBasePtr();
7501 EVT VT = LD->getValueType(0);
7502 EVT LoadedVT = LD->getMemoryVT();
7503 SDLoc dl(LD);
7504 auto &MF = DAG.getMachineFunction();
7505
7506 if (VT.isFloatingPoint() || VT.isVector()) {
7507 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7508 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7509 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7510 LoadedVT.isVector()) {
7511 // Scalarize the load and let the individual components be handled.
7512 return scalarizeVectorLoad(LD, DAG);
7513 }
7514
7515 // Expand to a (misaligned) integer load of the same size,
7516 // then bitconvert to floating point or vector.
7517 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7518 LD->getMemOperand());
7519 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7520 if (LoadedVT != VT)
7521 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7522 ISD::ANY_EXTEND, dl, VT, Result);
7523
7524 return std::make_pair(Result, newLoad.getValue(1));
7525 }
7526
7527 // Copy the value to a (aligned) stack slot using (unaligned) integer
7528 // loads and stores, then do a (aligned) load from the stack slot.
7529 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7530 unsigned LoadedBytes = LoadedVT.getStoreSize();
7531 unsigned RegBytes = RegVT.getSizeInBits() / 8;
7532 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7533
7534 // Make sure the stack slot is also aligned for the register type.
7535 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7536 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7537 SmallVector<SDValue, 8> Stores;
7538 SDValue StackPtr = StackBase;
7539 unsigned Offset = 0;
7540
7541 EVT PtrVT = Ptr.getValueType();
7542 EVT StackPtrVT = StackPtr.getValueType();
7543
7544 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7545 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7546
7547 // Do all but one copies using the full register width.
7548 for (unsigned i = 1; i < NumRegs; i++) {
7549 // Load one integer register's worth from the original location.
7550 SDValue Load = DAG.getLoad(
7551 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7552 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7553 LD->getAAInfo());
7554 // Follow the load with a store to the stack slot. Remember the store.
7555 Stores.push_back(DAG.getStore(
7556 Load.getValue(1), dl, Load, StackPtr,
7557 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7558 // Increment the pointers.
7559 Offset += RegBytes;
7560
7561 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7562 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7563 }
7564
7565 // The last copy may be partial. Do an extending load.
7566 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7567 8 * (LoadedBytes - Offset));
7568 SDValue Load =
7569 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7570 LD->getPointerInfo().getWithOffset(Offset), MemVT,
7571 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7572 LD->getAAInfo());
7573 // Follow the load with a store to the stack slot. Remember the store.
7574 // On big-endian machines this requires a truncating store to ensure
7575 // that the bits end up in the right place.
7576 Stores.push_back(DAG.getTruncStore(
7577 Load.getValue(1), dl, Load, StackPtr,
7578 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7579
7580 // The order of the stores doesn't matter - say it with a TokenFactor.
7581 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7582
7583 // Finally, perform the original load only redirected to the stack slot.
7584 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7585 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7586 LoadedVT);
7587
7588 // Callers expect a MERGE_VALUES node.
7589 return std::make_pair(Load, TF);
7590 }
7591
7592 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&(static_cast <bool> (LoadedVT.isInteger() && !LoadedVT
.isVector() && "Unaligned load of unsupported type.")
? void (0) : __assert_fail ("LoadedVT.isInteger() && !LoadedVT.isVector() && \"Unaligned load of unsupported type.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7593, __extension__ __PRETTY_FUNCTION__))
7593 "Unaligned load of unsupported type.")(static_cast <bool> (LoadedVT.isInteger() && !LoadedVT
.isVector() && "Unaligned load of unsupported type.")
? void (0) : __assert_fail ("LoadedVT.isInteger() && !LoadedVT.isVector() && \"Unaligned load of unsupported type.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7593, __extension__ __PRETTY_FUNCTION__))
;
7594
7595 // Compute the new VT that is half the size of the old one. This is an
7596 // integer MVT.
7597 unsigned NumBits = LoadedVT.getSizeInBits();
7598 EVT NewLoadedVT;
7599 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7600 NumBits >>= 1;
7601
7602 Align Alignment = LD->getOriginalAlign();
7603 unsigned IncrementSize = NumBits / 8;
7604 ISD::LoadExtType HiExtType = LD->getExtensionType();
7605
7606 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7607 if (HiExtType == ISD::NON_EXTLOAD)
7608 HiExtType = ISD::ZEXTLOAD;
7609
7610 // Load the value in two parts
7611 SDValue Lo, Hi;
7612 if (DAG.getDataLayout().isLittleEndian()) {
7613 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7614 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7615 LD->getAAInfo());
7616
7617 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7618 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7619 LD->getPointerInfo().getWithOffset(IncrementSize),
7620 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7621 LD->getAAInfo());
7622 } else {
7623 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7624 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7625 LD->getAAInfo());
7626
7627 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7628 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7629 LD->getPointerInfo().getWithOffset(IncrementSize),
7630 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7631 LD->getAAInfo());
7632 }
7633
7634 // aggregate the two parts
7635 SDValue ShiftAmount =
7636 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7637 DAG.getDataLayout()));
7638 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7639 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7640
7641 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7642 Hi.getValue(1));
7643
7644 return std::make_pair(Result, TF);
7645}
7646
7647SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7648 SelectionDAG &DAG) const {
7649 assert(ST->getAddressingMode() == ISD::UNINDEXED &&(static_cast <bool> (ST->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed stores not implemented!"
) ? void (0) : __assert_fail ("ST->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed stores not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7650, __extension__ __PRETTY_FUNCTION__))
7650 "unaligned indexed stores not implemented!")(static_cast <bool> (ST->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed stores not implemented!"
) ? void (0) : __assert_fail ("ST->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed stores not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7650, __extension__ __PRETTY_FUNCTION__))
;
7651 SDValue Chain = ST->getChain();
7652 SDValue Ptr = ST->getBasePtr();
7653 SDValue Val = ST->getValue();
7654 EVT VT = Val.getValueType();
7655 Align Alignment = ST->getOriginalAlign();
7656 auto &MF = DAG.getMachineFunction();
7657 EVT StoreMemVT = ST->getMemoryVT();
7658
7659 SDLoc dl(ST);
7660 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7661 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7662 if (isTypeLegal(intVT)) {
7663 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7664 StoreMemVT.isVector()) {
7665 // Scalarize the store and let the individual components be handled.
7666 SDValue Result = scalarizeVectorStore(ST, DAG);
7667 return Result;
7668 }
7669 // Expand to a bitconvert of the value to the integer type of the
7670 // same size, then a (misaligned) int store.
7671 // FIXME: Does not handle truncating floating point stores!
7672 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7673 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7674 Alignment, ST->getMemOperand()->getFlags());
7675 return Result;
7676 }
7677 // Do a (aligned) store to a stack slot, then copy from the stack slot
7678 // to the final destination using (unaligned) integer loads and stores.
7679 MVT RegVT = getRegisterType(
7680 *DAG.getContext(),
7681 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7682 EVT PtrVT = Ptr.getValueType();
7683 unsigned StoredBytes = StoreMemVT.getStoreSize();
7684 unsigned RegBytes = RegVT.getSizeInBits() / 8;
7685 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7686
7687 // Make sure the stack slot is also aligned for the register type.
7688 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7689 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7690
7691 // Perform the original store, only redirected to the stack slot.
7692 SDValue Store = DAG.getTruncStore(
7693 Chain, dl, Val, StackPtr,
7694 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7695
7696 EVT StackPtrVT = StackPtr.getValueType();
7697
7698 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7699 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7700 SmallVector<SDValue, 8> Stores;
7701 unsigned Offset = 0;
7702
7703 // Do all but one copies using the full register width.
7704 for (unsigned i = 1; i < NumRegs; i++) {
7705 // Load one integer register's worth from the stack slot.
7706 SDValue Load = DAG.getLoad(
7707 RegVT, dl, Store, StackPtr,
7708 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7709 // Store it to the final location. Remember the store.
7710 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7711 ST->getPointerInfo().getWithOffset(Offset),
7712 ST->getOriginalAlign(),
7713 ST->getMemOperand()->getFlags()));
7714 // Increment the pointers.
7715 Offset += RegBytes;
7716 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7717 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7718 }
7719
7720 // The last store may be partial. Do a truncating store. On big-endian
7721 // machines this requires an extending load from the stack slot to ensure
7722 // that the bits are in the right place.
7723 EVT LoadMemVT =
7724 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7725
7726 // Load from the stack slot.
7727 SDValue Load = DAG.getExtLoad(
7728 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7729 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7730
7731 Stores.push_back(
7732 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7733 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7734 ST->getOriginalAlign(),
7735 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7736 // The order of the stores doesn't matter - say it with a TokenFactor.
7737 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7738 return Result;
7739 }
7740
7741 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&(static_cast <bool> (StoreMemVT.isInteger() && !
StoreMemVT.isVector() && "Unaligned store of unknown type."
) ? void (0) : __assert_fail ("StoreMemVT.isInteger() && !StoreMemVT.isVector() && \"Unaligned store of unknown type.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7742, __extension__ __PRETTY_FUNCTION__))
7742 "Unaligned store of unknown type.")(static_cast <bool> (StoreMemVT.isInteger() && !
StoreMemVT.isVector() && "Unaligned store of unknown type."
) ? void (0) : __assert_fail ("StoreMemVT.isInteger() && !StoreMemVT.isVector() && \"Unaligned store of unknown type.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7742, __extension__ __PRETTY_FUNCTION__))
;
7743 // Get the half-size VT
7744 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7745 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7746 unsigned IncrementSize = NumBits / 8;
7747
7748 // Divide the stored value in two parts.
7749 SDValue ShiftAmount = DAG.getConstant(
7750 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7751 SDValue Lo = Val;
7752 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7753
7754 // Store the two parts
7755 SDValue Store1, Store2;
7756 Store1 = DAG.getTruncStore(Chain, dl,
7757 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7758 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7759 ST->getMemOperand()->getFlags());
7760
7761 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7762 Store2 = DAG.getTruncStore(
7763 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7764 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7765 ST->getMemOperand()->getFlags(), ST->getAAInfo());
7766
7767 SDValue Result =
7768 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7769 return Result;
7770}
7771
7772SDValue
7773TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7774 const SDLoc &DL, EVT DataVT,
7775 SelectionDAG &DAG,
7776 bool IsCompressedMemory) const {
7777 SDValue Increment;
7778 EVT AddrVT = Addr.getValueType();
7779 EVT MaskVT = Mask.getValueType();
7780 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&(static_cast <bool> (DataVT.getVectorElementCount() == MaskVT
.getVectorElementCount() && "Incompatible types of Data and Mask"
) ? void (0) : __assert_fail ("DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && \"Incompatible types of Data and Mask\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7781, __extension__ __PRETTY_FUNCTION__))
7781 "Incompatible types of Data and Mask")(static_cast <bool> (DataVT.getVectorElementCount() == MaskVT
.getVectorElementCount() && "Incompatible types of Data and Mask"
) ? void (0) : __assert_fail ("DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && \"Incompatible types of Data and Mask\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7781, __extension__ __PRETTY_FUNCTION__))
;
7782 if (IsCompressedMemory) {
7783 if (DataVT.isScalableVector())
7784 report_fatal_error(
7785 "Cannot currently handle compressed memory with scalable vectors");
7786 // Incrementing the pointer according to number of '1's in the mask.
7787 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7788 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7789 if (MaskIntVT.getSizeInBits() < 32) {
7790 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7791 MaskIntVT = MVT::i32;
7792 }
7793
7794 // Count '1's with POPCNT.
7795 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7796 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7797 // Scale is an element size in bytes.
7798 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7799 AddrVT);
7800 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7801 } else if (DataVT.isScalableVector()) {
7802 Increment = DAG.getVScale(DL, AddrVT,
7803 APInt(AddrVT.getFixedSizeInBits(),
7804 DataVT.getStoreSize().getKnownMinSize()));
7805 } else
7806 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7807
7808 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7809}
7810
7811static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7812 EVT VecVT, const SDLoc &dl,
7813 unsigned NumSubElts) {
7814 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7815 return Idx;
7816
7817 EVT IdxVT = Idx.getValueType();
7818 unsigned NElts = VecVT.getVectorMinNumElements();
7819 if (VecVT.isScalableVector()) {
7820 // If this is a constant index and we know the value plus the number of the
7821 // elements in the subvector minus one is less than the minimum number of
7822 // elements then it's safe to return Idx.
7823 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7824 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7825 return Idx;
7826 SDValue VS =
7827 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7828 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7829 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7830 DAG.getConstant(NumSubElts, dl, IdxVT));
7831 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7832 }
7833 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7834 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7835 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7836 DAG.getConstant(Imm, dl, IdxVT));
7837 }
7838 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7839 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7840 DAG.getConstant(MaxIndex, dl, IdxVT));
7841}
7842
7843SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7844 SDValue VecPtr, EVT VecVT,
7845 SDValue Index) const {
7846 return getVectorSubVecPointer(
7847 DAG, VecPtr, VecVT,
7848 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7849 Index);
7850}
7851
7852SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7853 SDValue VecPtr, EVT VecVT,
7854 EVT SubVecVT,
7855 SDValue Index) const {
7856 SDLoc dl(Index);
7857 // Make sure the index type is big enough to compute in.
7858 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7859
7860 EVT EltVT = VecVT.getVectorElementType();
7861
7862 // Calculate the element offset and add it to the pointer.
7863 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7864 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&(static_cast <bool> (EltSize * 8 == EltVT.getFixedSizeInBits
() && "Converting bits to bytes lost precision") ? void
(0) : __assert_fail ("EltSize * 8 == EltVT.getFixedSizeInBits() && \"Converting bits to bytes lost precision\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7865, __extension__ __PRETTY_FUNCTION__))
7865 "Converting bits to bytes lost precision")(static_cast <bool> (EltSize * 8 == EltVT.getFixedSizeInBits
() && "Converting bits to bytes lost precision") ? void
(0) : __assert_fail ("EltSize * 8 == EltVT.getFixedSizeInBits() && \"Converting bits to bytes lost precision\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7865, __extension__ __PRETTY_FUNCTION__))
;
7866
7867 // Scalable vectors don't need clamping as these are checked at compile time
7868 if (SubVecVT.isFixedLengthVector()) {
7869 assert(SubVecVT.getVectorElementType() == EltVT &&(static_cast <bool> (SubVecVT.getVectorElementType() ==
EltVT && "Sub-vector must be a fixed vector with matching element type"
) ? void (0) : __assert_fail ("SubVecVT.getVectorElementType() == EltVT && \"Sub-vector must be a fixed vector with matching element type\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7870, __extension__ __PRETTY_FUNCTION__))
7870 "Sub-vector must be a fixed vector with matching element type")(static_cast <bool> (SubVecVT.getVectorElementType() ==
EltVT && "Sub-vector must be a fixed vector with matching element type"
) ? void (0) : __assert_fail ("SubVecVT.getVectorElementType() == EltVT && \"Sub-vector must be a fixed vector with matching element type\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7870, __extension__ __PRETTY_FUNCTION__))
;
7871 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7872 SubVecVT.getVectorNumElements());
7873 }
7874
7875 EVT IdxVT = Index.getValueType();
7876
7877 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7878 DAG.getConstant(EltSize, dl, IdxVT));
7879 return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7880}
7881
7882//===----------------------------------------------------------------------===//
7883// Implementation of Emulated TLS Model
7884//===----------------------------------------------------------------------===//
7885
7886SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7887 SelectionDAG &DAG) const {
7888 // Access to address of TLS varialbe xyz is lowered to a function call:
7889 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7890 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7891 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7892 SDLoc dl(GA);
7893
7894 ArgListTy Args;
7895 ArgListEntry Entry;
7896 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7897 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7898 StringRef EmuTlsVarName(NameString);
7899 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7900 assert(EmuTlsVar && "Cannot find EmuTlsVar ")(static_cast <bool> (EmuTlsVar && "Cannot find EmuTlsVar "
) ? void (0) : __assert_fail ("EmuTlsVar && \"Cannot find EmuTlsVar \""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7900, __extension__ __PRETTY_FUNCTION__))
;
7901 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7902 Entry.Ty = VoidPtrType;
7903 Args.push_back(Entry);
7904
7905 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7906
7907 TargetLowering::CallLoweringInfo CLI(DAG);
7908 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7909 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7910 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7911
7912 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7913 // At last for X86 targets, maybe good for other targets too?
7914 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7915 MFI.setAdjustsStack(true); // Is this only for X86 target?
7916 MFI.setHasCalls(true);
7917
7918 assert((GA->getOffset() == 0) &&(static_cast <bool> ((GA->getOffset() == 0) &&
"Emulated TLS must have zero offset in GlobalAddressSDNode")
? void (0) : __assert_fail ("(GA->getOffset() == 0) && \"Emulated TLS must have zero offset in GlobalAddressSDNode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7919, __extension__ __PRETTY_FUNCTION__))
7919 "Emulated TLS must have zero offset in GlobalAddressSDNode")(static_cast <bool> ((GA->getOffset() == 0) &&
"Emulated TLS must have zero offset in GlobalAddressSDNode")
? void (0) : __assert_fail ("(GA->getOffset() == 0) && \"Emulated TLS must have zero offset in GlobalAddressSDNode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7919, __extension__ __PRETTY_FUNCTION__))
;
7920 return CallResult.first;
7921}
7922
7923SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7924 SelectionDAG &DAG) const {
7925 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.")(static_cast <bool> ((Op->getOpcode() == ISD::SETCC)
&& "Input has to be a SETCC node.") ? void (0) : __assert_fail
("(Op->getOpcode() == ISD::SETCC) && \"Input has to be a SETCC node.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7925, __extension__ __PRETTY_FUNCTION__))
;
7926 if (!isCtlzFast())
7927 return SDValue();
7928 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7929 SDLoc dl(Op);
7930 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7931 if (C->isZero() && CC == ISD::SETEQ) {
7932 EVT VT = Op.getOperand(0).getValueType();
7933 SDValue Zext = Op.getOperand(0);
7934 if (VT.bitsLT(MVT::i32)) {
7935 VT = MVT::i32;
7936 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7937 }
7938 unsigned Log2b = Log2_32(VT.getSizeInBits());
7939 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7940 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7941 DAG.getConstant(Log2b, dl, MVT::i32));
7942 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7943 }
7944 }
7945 return SDValue();
7946}
7947
7948// Convert redundant addressing modes (e.g. scaling is redundant
7949// when accessing bytes).
7950ISD::MemIndexType
7951TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7952 SDValue Offsets) const {
7953 bool IsScaledIndex =
7954 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7955 bool IsSignedIndex =
7956 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7957
7958 // Scaling is unimportant for bytes, canonicalize to unscaled.
7959 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7960 IsScaledIndex = false;
Value stored to 'IsScaledIndex' is never read
7961 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7962 }
7963
7964 return IndexType;
7965}
7966
7967SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7968 SDValue Op0 = Node->getOperand(0);
7969 SDValue Op1 = Node->getOperand(1);
7970 EVT VT = Op0.getValueType();
7971 unsigned Opcode = Node->getOpcode();
7972 SDLoc DL(Node);
7973
7974 // umin(x,y) -> sub(x,usubsat(x,y))
7975 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7976 isOperationLegal(ISD::USUBSAT, VT)) {
7977 return DAG.getNode(ISD::SUB, DL, VT, Op0,
7978 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7979 }
7980
7981 // umax(x,y) -> add(x,usubsat(y,x))
7982 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7983 isOperationLegal(ISD::USUBSAT, VT)) {
7984 return DAG.getNode(ISD::ADD, DL, VT, Op0,
7985 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7986 }
7987
7988 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7989 ISD::CondCode CC;
7990 switch (Opcode) {
7991 default: llvm_unreachable("How did we get here?")::llvm::llvm_unreachable_internal("How did we get here?", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7991)
;
7992 case ISD::SMAX: CC = ISD::SETGT; break;
7993 case ISD::SMIN: CC = ISD::SETLT; break;
7994 case ISD::UMAX: CC = ISD::SETUGT; break;
7995 case ISD::UMIN: CC = ISD::SETULT; break;
7996 }
7997
7998 // FIXME: Should really try to split the vector in case it's legal on a
7999 // subvector.
8000 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8001 return DAG.UnrollVectorOp(Node);
8002
8003 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8004 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8005}
8006
8007SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8008 unsigned Opcode = Node->getOpcode();
8009 SDValue LHS = Node->getOperand(0);
8010 SDValue RHS = Node->getOperand(1);
8011 EVT VT = LHS.getValueType();
8012 SDLoc dl(Node);
8013
8014 assert(VT == RHS.getValueType() && "Expected operands to be the same type")(static_cast <bool> (VT == RHS.getValueType() &&
"Expected operands to be the same type") ? void (0) : __assert_fail
("VT == RHS.getValueType() && \"Expected operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8014, __extension__ __PRETTY_FUNCTION__))
;
8015 assert(VT.isInteger() && "Expected operands to be integers")(static_cast <bool> (VT.isInteger() && "Expected operands to be integers"
) ? void (0) : __assert_fail ("VT.isInteger() && \"Expected operands to be integers\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8015, __extension__ __PRETTY_FUNCTION__))
;
8016
8017 // usub.sat(a, b) -> umax(a, b) - b
8018 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8019 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8020 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8021 }
8022
8023 // uadd.sat(a, b) -> umin(a, ~b) + b
8024 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8025 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8026 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8027 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8028 }
8029
8030 unsigned OverflowOp;
8031 switch (Opcode) {
8032 case ISD::SADDSAT:
8033 OverflowOp = ISD::SADDO;
8034 break;
8035 case ISD::UADDSAT:
8036 OverflowOp = ISD::UADDO;
8037 break;
8038 case ISD::SSUBSAT:
8039 OverflowOp = ISD::SSUBO;
8040 break;
8041 case ISD::USUBSAT:
8042 OverflowOp = ISD::USUBO;
8043 break;
8044 default:
8045 llvm_unreachable("Expected method to receive signed or unsigned saturation "::llvm::llvm_unreachable_internal("Expected method to receive signed or unsigned saturation "
"addition or subtraction node.", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8046)
8046 "addition or subtraction node.")::llvm::llvm_unreachable_internal("Expected method to receive signed or unsigned saturation "
"addition or subtraction node.", "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8046)
;
8047 }
8048
8049 // FIXME: Should really try to split the vector in case it's legal on a
8050 // subvector.
8051 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8052 return DAG.UnrollVectorOp(Node);
8053
8054 unsigned BitWidth = LHS.getScalarValueSizeInBits();
8055 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8056 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8057 SDValue SumDiff = Result.getValue(0);
8058 SDValue Overflow = Result.getValue(1);
8059 SDValue Zero = DAG.getConstant(0, dl, VT);
8060 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8061
8062 if (Opcode == ISD::UADDSAT) {
8063 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8064 // (LHS + RHS) | OverflowMask
8065 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8066 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8067 }
8068 // Overflow ? 0xffff.... : (LHS + RHS)
8069 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8070 }
8071
8072 if (Opcode == ISD::USUBSAT) {
8073 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8074 // (LHS - RHS) & ~OverflowMask
8075 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8076 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8077 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8078 }
8079 // Overflow ? 0 : (LHS - RHS)
8080 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8081 }
8082
8083 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8084 APInt MinVal = APInt::getSignedMinValue(BitWidth);
8085 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8086 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8087 DAG.getConstant(BitWidth - 1, dl, VT));
8088 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8089 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8090}
8091
8092SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8093 unsigned Opcode = Node->getOpcode();
8094 bool IsSigned = Opcode == ISD::SSHLSAT;
8095 SDValue LHS = Node->getOperand(0);
8096 SDValue RHS = Node->getOperand(1);
8097 EVT VT = LHS.getValueType();
8098 SDLoc dl(Node);
8099
8100 assert((Node->getOpcode() == ISD::SSHLSAT ||(static_cast <bool> ((Node->getOpcode() == ISD::SSHLSAT
|| Node->getOpcode() == ISD::USHLSAT) && "Expected a SHLSAT opcode"
) ? void (0) : __assert_fail ("(Node->getOpcode() == ISD::SSHLSAT || Node->getOpcode() == ISD::USHLSAT) && \"Expected a SHLSAT opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8102, __extension__ __PRETTY_FUNCTION__))
8101 Node->getOpcode() == ISD::USHLSAT) &&(static_cast <bool> ((Node->getOpcode() == ISD::SSHLSAT
|| Node->getOpcode() == ISD::USHLSAT) && "Expected a SHLSAT opcode"
) ? void (0) : __assert_fail ("(Node->getOpcode() == ISD::SSHLSAT || Node->getOpcode() == ISD::USHLSAT) && \"Expected a SHLSAT opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8102, __extension__ __PRETTY_FUNCTION__))
8102 "Expected a SHLSAT opcode")(static_cast <bool> ((Node->getOpcode() == ISD::SSHLSAT
|| Node->getOpcode() == ISD::USHLSAT) && "Expected a SHLSAT opcode"
) ? void (0) : __assert_fail ("(Node->getOpcode() == ISD::SSHLSAT || Node->getOpcode() == ISD::USHLSAT) && \"Expected a SHLSAT opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8102, __extension__ __PRETTY_FUNCTION__))
;
8103 assert(VT == RHS.getValueType() && "Expected operands to be the same type")(static_cast <bool> (VT == RHS.getValueType() &&
"Expected operands to be the same type") ? void (0) : __assert_fail
("VT == RHS.getValueType() && \"Expected operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8103, __extension__ __PRETTY_FUNCTION__))
;
8104 assert(VT.isInteger() && "Expected operands to be integers")(static_cast <bool> (VT.isInteger() && "Expected operands to be integers"
) ? void (0) : __assert_fail ("VT.isInteger() && \"Expected operands to be integers\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8104, __extension__ __PRETTY_FUNCTION__))
;
8105
8106 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8107
8108 unsigned BW = VT.getScalarSizeInBits();
8109 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8110 SDValue Orig =
8111 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8112
8113 SDValue SatVal;
8114 if (IsSigned) {
8115 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8116 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8117 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8118 SatMin, SatMax, ISD::SETLT);
8119 } else {
8120 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8121 }
8122 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8123
8124 return Result;
8125}
8126
8127SDValue
8128TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8129 assert((Node->getOpcode() == ISD::SMULFIX ||(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8133, __extension__ __PRETTY_FUNCTION__))
8130 Node->getOpcode() == ISD::UMULFIX ||(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8133, __extension__ __PRETTY_FUNCTION__))
8131 Node->getOpcode() == ISD::SMULFIXSAT ||(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8133, __extension__ __PRETTY_FUNCTION__))
8132 Node->getOpcode() == ISD::UMULFIXSAT) &&(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8133, __extension__ __PRETTY_FUNCTION__))
8133 "Expected a fixed point multiplication opcode")(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8133, __extension__ __PRETTY_FUNCTION__))
;
8134
8135 SDLoc dl(Node);
8136 SDValue LHS = Node->getOperand(0);
8137 SDValue RHS = Node->getOperand(1);
8138 EVT VT = LHS.getValueType();
8139 unsigned Scale = Node->getConstantOperandVal(2);
8140 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8141 Node->getOpcode() == ISD::UMULFIXSAT);
8142 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8143 Node->getOpcode() == ISD::SMULFIXSAT);
8144 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8145 unsigned VTSize = VT.getScalarSizeInBits();
8146
8147 if (!Scale) {
8148 // [us]mul.fix(a, b, 0) -> mul(a, b)
8149 if (!Saturating) {
8150 if (isOperationLegalOrCustom(ISD::MUL, VT))
8151 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8152 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8153 SDValue Result =
8154 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8155 SDValue Product = Result.getValue(0);
8156 SDValue Overflow = Result.getValue(1);
8157 SDValue Zero = DAG.getConstant(0, dl, VT);
8158
8159 APInt MinVal = APInt::getSignedMinValue(VTSize);
8160 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8161 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8162 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8163 // Xor the inputs, if resulting sign bit is 0 the product will be
8164 // positive, else negative.
8165 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8166 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8167 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8168 return DAG.getSelect(dl, VT, Overflow, Result, Product);
8169 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8170 SDValue Result =
8171 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8172 SDValue Product = Result.getValue(0);
8173 SDValue Overflow = Result.getValue(1);
8174
8175 APInt MaxVal = APInt::getMaxValue(VTSize);
8176 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8177 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8178 }
8179 }
8180
8181 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&(static_cast <bool> (((Signed && Scale < VTSize
) || (!Signed && Scale <= VTSize)) && "Expected scale to be less than the number of bits if signed or at "
"most the number of bits if unsigned.") ? void (0) : __assert_fail
("((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && \"Expected scale to be less than the number of bits if signed or at \" \"most the number of bits if unsigned.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8183, __extension__ __PRETTY_FUNCTION__))
8182 "Expected scale to be less than the number of bits if signed or at "(static_cast <bool> (((Signed && Scale < VTSize
) || (!Signed && Scale <= VTSize)) && "Expected scale to be less than the number of bits if signed or at "
"most the number of bits if unsigned.") ? void (0) : __assert_fail
("((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && \"Expected scale to be less than the number of bits if signed or at \" \"most the number of bits if unsigned.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8183, __extension__ __PRETTY_FUNCTION__))
8183 "most the number of bits if unsigned.")(static_cast <bool> (((Signed && Scale < VTSize
) || (!Signed && Scale <= VTSize)) && "Expected scale to be less than the number of bits if signed or at "
"most the number of bits if unsigned.") ? void (0) : __assert_fail
("((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && \"Expected scale to be less than the number of bits if signed or at \" \"most the number of bits if unsigned.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8183, __extension__ __PRETTY_FUNCTION__))
;
8184 assert(LHS.getValueType() == RHS.getValueType() &&(static_cast <bool> (LHS.getValueType() == RHS.getValueType
() && "Expected both operands to be the same type") ?
void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType() && \"Expected both operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8185, __extension__ __PRETTY_FUNCTION__))
8185 "Expected both operands to be the same type")(static_cast <bool> (LHS.getValueType() == RHS.getValueType
() && "Expected both operands to be the same type") ?
void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType() && \"Expected both operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8185, __extension__ __PRETTY_FUNCTION__))
;
8186
8187 // Get the upper and lower bits of the result.
8188 SDValue Lo, Hi;
8189 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8190 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8191 if (isOperationLegalOrCustom(LoHiOp, VT)) {
8192 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8193 Lo = Result.getValue(0);
8194 Hi = Result.getValue(1);
8195 } else if (isOperationLegalOrCustom(HiOp, VT)) {
8196 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8197 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8198 } else if (VT.isVector()) {
8199 return SDValue();
8200 } else {
8201 report_fatal_error("Unable to expand fixed point multiplication.");
8202 }
8203
8204 if (Scale == VTSize)
8205 // Result is just the top half since we'd be shifting by the width of the
8206 // operand. Overflow impossible so this works for both UMULFIX and
8207 // UMULFIXSAT.
8208 return Hi;
8209
8210 // The result will need to be shifted right by the scale since both operands
8211 // are scaled. The result is given to us in 2 halves, so we only want part of
8212 // both in the result.
8213 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8214 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8215 DAG.getConstant(Scale, dl, ShiftTy));
8216 if (!Saturating)
8217 return Result;
8218
8219 if (!Signed) {
8220 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8221 // widened multiplication) aren't all zeroes.
8222
8223 // Saturate to max if ((Hi >> Scale) != 0),
8224 // which is the same as if (Hi > ((1 << Scale) - 1))
8225 APInt MaxVal = APInt::getMaxValue(VTSize);
8226 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8227 dl, VT);
8228 Result = DAG.getSelectCC(dl, Hi, LowMask,
8229 DAG.getConstant(MaxVal, dl, VT), Result,
8230 ISD::SETUGT);
8231
8232 return Result;
8233 }
8234
8235 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8236 // widened multiplication) aren't all ones or all zeroes.
8237
8238 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8239 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8240
8241 if (Scale == 0) {
8242 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8243 DAG.getConstant(VTSize - 1, dl, ShiftTy));
8244 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8245 // Saturated to SatMin if wide product is negative, and SatMax if wide
8246 // product is positive ...
8247 SDValue Zero = DAG.getConstant(0, dl, VT);
8248 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8249 ISD::SETLT);
8250 // ... but only if we overflowed.
8251 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8252 }
8253
8254 // We handled Scale==0 above so all the bits to examine is in Hi.
8255
8256 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8257 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8258 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8259 dl, VT);
8260 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8261 // Saturate to min if (Hi >> (Scale - 1)) < -1),
8262 // which is the same as if (HI < (-1 << (Scale - 1))
8263 SDValue HighMask =
8264 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8265 dl, VT);
8266 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8267 return Result;
8268}
8269
8270SDValue
8271TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8272 SDValue LHS, SDValue RHS,
8273 unsigned Scale, SelectionDAG &DAG) const {
8274 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||(static_cast <bool> ((Opcode == ISD::SDIVFIX || Opcode ==
ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::
UDIVFIXSAT) && "Expected a fixed point division opcode"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && \"Expected a fixed point division opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8276, __extension__ __PRETTY_FUNCTION__))
8275 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&(static_cast <bool> ((Opcode == ISD::SDIVFIX || Opcode ==
ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::
UDIVFIXSAT) && "Expected a fixed point division opcode"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && \"Expected a fixed point division opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8276, __extension__ __PRETTY_FUNCTION__))
8276 "Expected a fixed point division opcode")(static_cast <bool> ((Opcode == ISD::SDIVFIX || Opcode ==
ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::
UDIVFIXSAT) && "Expected a fixed point division opcode"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && \"Expected a fixed point division opcode\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8276, __extension__ __PRETTY_FUNCTION__))
;
8277
8278 EVT VT = LHS.getValueType();
8279 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8280 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8281 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8282
8283 // If there is enough room in the type to upscale the LHS or downscale the
8284 // RHS before the division, we can perform it in this type without having to
8285 // resize. For signed operations, the LHS headroom is the number of
8286 // redundant sign bits, and for unsigned ones it is the number of zeroes.
8287 // The headroom for the RHS is the number of trailing zeroes.
8288 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8289 : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8290 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8291
8292 // For signed saturating operations, we need to be able to detect true integer
8293 // division overflow; that is, when you have MIN / -EPS. However, this
8294 // is undefined behavior and if we emit divisions that could take such
8295 // values it may cause undesired behavior (arithmetic exceptions on x86, for
8296 // example).
8297 // Avoid this by requiring an extra bit so that we never get this case.
8298 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8299 // signed saturating division, we need to emit a whopping 32-bit division.
8300 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8301 return SDValue();
8302
8303 unsigned LHSShift = std::min(LHSLead, Scale);
8304 unsigned RHSShift = Scale - LHSShift;
8305
8306 // At this point, we know that if we shift the LHS up by LHSShift and the
8307 // RHS down by RHSShift, we can emit a regular division with a final scaling
8308 // factor of Scale.
8309
8310 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8311 if (LHSShift)
8312 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8313 DAG.getConstant(LHSShift, dl, ShiftTy));
8314 if (RHSShift)
8315 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8316 DAG.getConstant(RHSShift, dl, ShiftTy));
8317
8318 SDValue Quot;
8319 if (Signed) {
8320 // For signed operations, if the resulting quotient is negative and the
8321 // remainder is nonzero, subtract 1 from the quotient to round towards
8322 // negative infinity.
8323 SDValue Rem;
8324 // FIXME: Ideally we would always produce an SDIVREM here, but if the
8325 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8326 // we couldn't just form a libcall, but the type legalizer doesn't do it.
8327 if (isTypeLegal(VT) &&
8328 isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8329 Quot = DAG.getNode(ISD::SDIVREM, dl,
8330 DAG.getVTList(VT, VT),
8331 LHS, RHS);
8332 Rem = Quot.getValue(1);
8333 Quot = Quot.getValue(0);
8334 } else {
8335 Quot = DAG.getNode(ISD::SDIV, dl, VT,
8336 LHS, RHS);
8337 Rem = DAG.getNode(ISD::SREM, dl, VT,
8338 LHS, RHS);
8339 }
8340 SDValue Zero = DAG.getConstant(0, dl, VT);
8341 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8342 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8343 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8344 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8345 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8346 DAG.getConstant(1, dl, VT));
8347 Quot = DAG.getSelect(dl, VT,
8348 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8349 Sub1, Quot);
8350 } else
8351 Quot = DAG.getNode(ISD::UDIV, dl, VT,
8352 LHS, RHS);
8353
8354 return Quot;
8355}
8356
8357void TargetLowering::expandUADDSUBO(
8358 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8359 SDLoc dl(Node);
8360 SDValue LHS = Node->getOperand(0);
8361 SDValue RHS = Node->getOperand(1);
8362 bool IsAdd = Node->getOpcode() == ISD::UADDO;
8363
8364 // If ADD/SUBCARRY is legal, use that instead.
8365 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8366 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8367 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8368 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8369 { LHS, RHS, CarryIn });
8370 Result = SDValue(NodeCarry.getNode(), 0);
8371 Overflow = SDValue(NodeCarry.getNode(), 1);
8372 return;
8373 }
8374
8375 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8376 LHS.getValueType(), LHS, RHS);
8377
8378 EVT ResultType = Node->getValueType(1);
8379 EVT SetCCType = getSetCCResultType(
8380 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8381 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8382 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8383 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8384}
8385
8386void TargetLowering::expandSADDSUBO(
8387 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8388 SDLoc dl(Node);
8389 SDValue LHS = Node->getOperand(0);
8390 SDValue RHS = Node->getOperand(1);
8391 bool IsAdd = Node->getOpcode() == ISD::SADDO;
8392
8393 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8394 LHS.getValueType(), LHS, RHS);
8395
8396 EVT ResultType = Node->getValueType(1);
8397 EVT OType = getSetCCResultType(
8398 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8399
8400 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8401 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8402 if (isOperationLegal(OpcSat, LHS.getValueType())) {
8403 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8404 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8405 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8406 return;
8407 }
8408
8409 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8410
8411 // For an addition, the result should be less than one of the operands (LHS)
8412 // if and only if the other operand (RHS) is negative, otherwise there will
8413 // be overflow.
8414 // For a subtraction, the result should be less than one of the operands
8415 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8416 // otherwise there will be overflow.
8417 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8418 SDValue ConditionRHS =
8419 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8420
8421 Overflow = DAG.getBoolExtOrTrunc(
8422 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8423 ResultType, ResultType);
8424}
8425
8426bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8427 SDValue &Overflow, SelectionDAG &DAG) const {
8428 SDLoc dl(Node);
8429 EVT VT = Node->getValueType(0);
8430 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8431 SDValue LHS = Node->getOperand(0);
8432 SDValue RHS = Node->getOperand(1);
8433 bool isSigned = Node->getOpcode() == ISD::SMULO;
8434
8435 // For power-of-two multiplications we can use a simpler shift expansion.
8436 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8437 const APInt &C = RHSC->getAPIntValue();
8438 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8439 if (C.isPowerOf2()) {
8440 // smulo(x, signed_min) is same as umulo(x, signed_min).
8441 bool UseArithShift = isSigned && !C.isMinSignedValue();
8442 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8443 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8444 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8445 Overflow = DAG.getSetCC(dl, SetCCVT,
8446 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8447 dl, VT, Result, ShiftAmt),
8448 LHS, ISD::SETNE);
8449 return true;
8450 }
8451 }
8452
8453 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8454 if (VT.isVector())
8455 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8456 VT.getVectorNumElements());
8457
8458 SDValue BottomHalf;
8459 SDValue TopHalf;
8460 static const unsigned Ops[2][3] =
8461 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8462 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8463 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8464 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8465 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8466 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8467 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8468 RHS);
8469 TopHalf = BottomHalf.getValue(1);
8470 } else if (isTypeLegal(WideVT)) {
8471 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8472 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8473 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8474 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8475 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8476 getShiftAmountTy(WideVT, DAG.getDataLayout()));
8477 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8478 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8479 } else {
8480 if (VT.isVector())
8481 return false;
8482
8483 // We can fall back to a libcall with an illegal type for the MUL if we
8484 // have a libcall big enough.
8485 // Also, we can fall back to a division in some cases, but that's a big
8486 // performance hit in the general case.
8487 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8488 if (WideVT == MVT::i16)
8489 LC = RTLIB::MUL_I16;
8490 else if (WideVT == MVT::i32)
8491 LC = RTLIB::MUL_I32;
8492 else if (WideVT == MVT::i64)
8493 LC = RTLIB::MUL_I64;
8494 else if (WideVT == MVT::i128)
8495 LC = RTLIB::MUL_I128;
8496 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!")(static_cast <bool> (LC != RTLIB::UNKNOWN_LIBCALL &&
"Cannot expand this operation!") ? void (0) : __assert_fail (
"LC != RTLIB::UNKNOWN_LIBCALL && \"Cannot expand this operation!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8496, __extension__ __PRETTY_FUNCTION__))
;
8497
8498 SDValue HiLHS;
8499 SDValue HiRHS;
8500 if (isSigned) {
8501 // The high part is obtained by SRA'ing all but one of the bits of low
8502 // part.
8503 unsigned LoSize = VT.getFixedSizeInBits();
8504 HiLHS =
8505 DAG.getNode(ISD::SRA, dl, VT, LHS,
8506 DAG.getConstant(LoSize - 1, dl,
8507 getPointerTy(DAG.getDataLayout())));
8508 HiRHS =
8509 DAG.getNode(ISD::SRA, dl, VT, RHS,
8510 DAG.getConstant(LoSize - 1, dl,
8511 getPointerTy(DAG.getDataLayout())));
8512 } else {
8513 HiLHS = DAG.getConstant(0, dl, VT);
8514 HiRHS = DAG.getConstant(0, dl, VT);
8515 }
8516
8517 // Here we're passing the 2 arguments explicitly as 4 arguments that are
8518 // pre-lowered to the correct types. This all depends upon WideVT not
8519 // being a legal type for the architecture and thus has to be split to
8520 // two arguments.
8521 SDValue Ret;
8522 TargetLowering::MakeLibCallOptions CallOptions;
8523 CallOptions.setSExt(isSigned);
8524 CallOptions.setIsPostTypeLegalization(true);
8525 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8526 // Halves of WideVT are packed into registers in different order
8527 // depending on platform endianness. This is usually handled by
8528 // the C calling convention, but we can't defer to it in
8529 // the legalizer.
8530 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8531 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8532 } else {
8533 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8534 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8535 }
8536 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&(static_cast <bool> (Ret.getOpcode() == ISD::MERGE_VALUES
&& "Ret value is a collection of constituent nodes holding result."
) ? void (0) : __assert_fail ("Ret.getOpcode() == ISD::MERGE_VALUES && \"Ret value is a collection of constituent nodes holding result.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8537, __extension__ __PRETTY_FUNCTION__))
8537 "Ret value is a collection of constituent nodes holding result.")(static_cast <bool> (Ret.getOpcode() == ISD::MERGE_VALUES
&& "Ret value is a collection of constituent nodes holding result."
) ? void (0) : __assert_fail ("Ret.getOpcode() == ISD::MERGE_VALUES && \"Ret value is a collection of constituent nodes holding result.\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8537, __extension__ __PRETTY_FUNCTION__))
;
8538 if (DAG.getDataLayout().isLittleEndian()) {
8539 // Same as above.
8540 BottomHalf = Ret.getOperand(0);
8541 TopHalf = Ret.getOperand(1);
8542 } else {
8543 BottomHalf = Ret.getOperand(1);
8544 TopHalf = Ret.getOperand(0);
8545 }
8546 }
8547
8548 Result = BottomHalf;
8549 if (isSigned) {
8550 SDValue ShiftAmt = DAG.getConstant(
8551 VT.getScalarSizeInBits() - 1, dl,
8552 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8553 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8554 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8555 } else {
8556 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8557 DAG.getConstant(0, dl, VT), ISD::SETNE);
8558 }
8559
8560 // Truncate the result if SetCC returns a larger type than needed.
8561 EVT RType = Node->getValueType(1);
8562 if (RType.bitsLT(Overflow.getValueType()))
8563 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8564
8565 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&(static_cast <bool> (RType.getSizeInBits() == Overflow.
getValueSizeInBits() && "Unexpected result type for S/UMULO legalization"
) ? void (0) : __assert_fail ("RType.getSizeInBits() == Overflow.getValueSizeInBits() && \"Unexpected result type for S/UMULO legalization\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8566, __extension__ __PRETTY_FUNCTION__))
8566 "Unexpected result type for S/UMULO legalization")(static_cast <bool> (RType.getSizeInBits() == Overflow.
getValueSizeInBits() && "Unexpected result type for S/UMULO legalization"
) ? void (0) : __assert_fail ("RType.getSizeInBits() == Overflow.getValueSizeInBits() && \"Unexpected result type for S/UMULO legalization\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8566, __extension__ __PRETTY_FUNCTION__))
;
8567 return true;
8568}
8569
8570SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8571 SDLoc dl(Node);
8572 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8573 SDValue Op = Node->getOperand(0);
8574 EVT VT = Op.getValueType();
8575
8576 if (VT.isScalableVector())
8577 report_fatal_error(
8578 "Expanding reductions for scalable vectors is undefined.");
8579
8580 // Try to use a shuffle reduction for power of two vectors.
8581 if (VT.isPow2VectorType()) {
8582 while (VT.getVectorNumElements() > 1) {
8583 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8584 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8585 break;
8586
8587 SDValue Lo, Hi;
8588 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8589 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8590 VT = HalfVT;
8591 }
8592 }
8593
8594 EVT EltVT = VT.getVectorElementType();
8595 unsigned NumElts = VT.getVectorNumElements();
8596
8597 SmallVector<SDValue, 8> Ops;
8598 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8599
8600 SDValue Res = Ops[0];
8601 for (unsigned i = 1; i < NumElts; i++)
8602 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8603
8604 // Result type may be wider than element type.
8605 if (EltVT != Node->getValueType(0))
8606 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8607 return Res;
8608}
8609
8610SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8611 SDLoc dl(Node);
8612 SDValue AccOp = Node->getOperand(0);
8613 SDValue VecOp = Node->getOperand(1);
8614 SDNodeFlags Flags = Node->getFlags();
8615
8616 EVT VT = VecOp.getValueType();
8617 EVT EltVT = VT.getVectorElementType();
8618
8619 if (VT.isScalableVector())
8620 report_fatal_error(
8621 "Expanding reductions for scalable vectors is undefined.");
8622
8623 unsigned NumElts = VT.getVectorNumElements();
8624
8625 SmallVector<SDValue, 8> Ops;
8626 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8627
8628 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8629
8630 SDValue Res = AccOp;
8631 for (unsigned i = 0; i < NumElts; i++)
8632 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8633
8634 return Res;
8635}
8636
8637bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8638 SelectionDAG &DAG) const {
8639 EVT VT = Node->getValueType(0);
8640 SDLoc dl(Node);
8641 bool isSigned = Node->getOpcode() == ISD::SREM;
8642 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8643 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8644 SDValue Dividend = Node->getOperand(0);
8645 SDValue Divisor = Node->getOperand(1);
8646 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8647 SDVTList VTs = DAG.getVTList(VT, VT);
8648 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8649 return true;
8650 }
8651 if (isOperationLegalOrCustom(DivOpc, VT)) {
8652 // X % Y -> X-X/Y*Y
8653 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8654 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8655 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8656 return true;
8657 }
8658 return false;
8659}
8660
8661SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8662 SelectionDAG &DAG) const {
8663 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8664 SDLoc dl(SDValue(Node, 0));
8665 SDValue Src = Node->getOperand(0);
8666
8667 // DstVT is the result type, while SatVT is the size to which we saturate
8668 EVT SrcVT = Src.getValueType();
8669 EVT DstVT = Node->getValueType(0);
8670
8671 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8672 unsigned SatWidth = SatVT.getScalarSizeInBits();
8673 unsigned DstWidth = DstVT.getScalarSizeInBits();
8674 assert(SatWidth <= DstWidth &&(static_cast <bool> (SatWidth <= DstWidth &&
"Expected saturation width smaller than result width") ? void
(0) : __assert_fail ("SatWidth <= DstWidth && \"Expected saturation width smaller than result width\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8675, __extension__ __PRETTY_FUNCTION__))
8675 "Expected saturation width smaller than result width")(static_cast <bool> (SatWidth <= DstWidth &&
"Expected saturation width smaller than result width") ? void
(0) : __assert_fail ("SatWidth <= DstWidth && \"Expected saturation width smaller than result width\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8675, __extension__ __PRETTY_FUNCTION__))
;
8676
8677 // Determine minimum and maximum integer values and their corresponding
8678 // floating-point values.
8679 APInt MinInt, MaxInt;
8680 if (IsSigned) {
8681 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8682 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8683 } else {
8684 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8685 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8686 }
8687
8688 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8689 // libcall emission cannot handle this. Large result types will fail.
8690 if (SrcVT == MVT::f16) {
8691 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8692 SrcVT = Src.getValueType();
8693 }
8694
8695 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8696 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8697
8698 APFloat::opStatus MinStatus =
8699 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8700 APFloat::opStatus MaxStatus =
8701 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8702 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8703 !(MaxStatus & APFloat::opStatus::opInexact);
8704
8705 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8706 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8707
8708 // If the integer bounds are exactly representable as floats and min/max are
8709 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8710 // of comparisons and selects.
8711 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8712 isOperationLegal(ISD::FMAXNUM, SrcVT);
8713 if (AreExactFloatBounds && MinMaxLegal) {
8714 SDValue Clamped = Src;
8715
8716 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8717 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8718 // Clamp by MaxFloat from above. NaN cannot occur.
8719 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8720 // Convert clamped value to integer.
8721 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8722 dl, DstVT, Clamped);
8723
8724 // In the unsigned case we're done, because we mapped NaN to MinFloat,
8725 // which will cast to zero.
8726 if (!IsSigned)
8727 return FpToInt;
8728
8729 // Otherwise, select 0 if Src is NaN.
8730 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8731 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8732 ISD::CondCode::SETUO);
8733 }
8734
8735 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8736 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8737
8738 // Result of direct conversion. The assumption here is that the operation is
8739 // non-trapping and it's fine to apply it to an out-of-range value if we
8740 // select it away later.
8741 SDValue FpToInt =
8742 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8743
8744 SDValue Select = FpToInt;
8745
8746 // If Src ULT MinFloat, select MinInt. In particular, this also selects
8747 // MinInt if Src is NaN.
8748 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8749 ISD::CondCode::SETULT);
8750 // If Src OGT MaxFloat, select MaxInt.
8751 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8752 ISD::CondCode::SETOGT);
8753
8754 // In the unsigned case we are done, because we mapped NaN to MinInt, which
8755 // is already zero.
8756 if (!IsSigned)
8757 return Select;
8758
8759 // Otherwise, select 0 if Src is NaN.
8760 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8761 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8762}
8763
8764SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8765 SelectionDAG &DAG) const {
8766 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!")(static_cast <bool> (Node->getOpcode() == ISD::VECTOR_SPLICE
&& "Unexpected opcode!") ? void (0) : __assert_fail (
"Node->getOpcode() == ISD::VECTOR_SPLICE && \"Unexpected opcode!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8766, __extension__ __PRETTY_FUNCTION__))
;
8767 assert(Node->getValueType(0).isScalableVector() &&(static_cast <bool> (Node->getValueType(0).isScalableVector
() && "Fixed length vector types expected to use SHUFFLE_VECTOR!"
) ? void (0) : __assert_fail ("Node->getValueType(0).isScalableVector() && \"Fixed length vector types expected to use SHUFFLE_VECTOR!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8768, __extension__ __PRETTY_FUNCTION__))
8768 "Fixed length vector types expected to use SHUFFLE_VECTOR!")(static_cast <bool> (Node->getValueType(0).isScalableVector
() && "Fixed length vector types expected to use SHUFFLE_VECTOR!"
) ? void (0) : __assert_fail ("Node->getValueType(0).isScalableVector() && \"Fixed length vector types expected to use SHUFFLE_VECTOR!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8768, __extension__ __PRETTY_FUNCTION__))
;
8769
8770 EVT VT = Node->getValueType(0);
8771 SDValue V1 = Node->getOperand(0);
8772 SDValue V2 = Node->getOperand(1);
8773 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8774 SDLoc DL(Node);
8775
8776 // Expand through memory thusly:
8777 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8778 // Store V1, Ptr
8779 // Store V2, Ptr + sizeof(V1)
8780 // If (Imm < 0)
8781 // TrailingElts = -Imm
8782 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8783 // else
8784 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
8785 // Res = Load Ptr
8786
8787 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8788
8789 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8790 VT.getVectorElementCount() * 2);
8791 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8792 EVT PtrVT = StackPtr.getValueType();
8793 auto &MF = DAG.getMachineFunction();
8794 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8795 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8796
8797 // Store the lo part of CONCAT_VECTORS(V1, V2)
8798 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8799 // Store the hi part of CONCAT_VECTORS(V1, V2)
8800 SDValue OffsetToV2 = DAG.getVScale(
8801 DL, PtrVT,
8802 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8803 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8804 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8805
8806 if (Imm >= 0) {
8807 // Load back the required element. getVectorElementPointer takes care of
8808 // clamping the index if it's out-of-bounds.
8809 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8810 // Load the spliced result
8811 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8812 MachinePointerInfo::getUnknownStack(MF));
8813 }
8814
8815 uint64_t TrailingElts = -Imm;
8816
8817 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8818 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8819 SDValue TrailingBytes =
8820 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8821
8822 if (TrailingElts > VT.getVectorMinNumElements()) {
8823 SDValue VLBytes = DAG.getVScale(
8824 DL, PtrVT,
8825 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8826 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8827 }
8828
8829 // Calculate the start address of the spliced result.
8830 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8831
8832 // Load the spliced result
8833 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8834 MachinePointerInfo::getUnknownStack(MF));
8835}
8836
8837bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8838 SDValue &LHS, SDValue &RHS,
8839 SDValue &CC, bool &NeedInvert,
8840 const SDLoc &dl, SDValue &Chain,
8841 bool IsSignaling) const {
8842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8843 MVT OpVT = LHS.getSimpleValueType();
8844 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8845 NeedInvert = false;
8846 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8847 default:
8848 llvm_unreachable("Unknown condition code action!")::llvm::llvm_unreachable_internal("Unknown condition code action!"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8848)
;
8849 case TargetLowering::Legal:
8850 // Nothing to do.
8851 break;
8852 case TargetLowering::Expand: {
8853 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8854 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8855 std::swap(LHS, RHS);
8856 CC = DAG.getCondCode(InvCC);
8857 return true;
8858 }
8859 // Swapping operands didn't work. Try inverting the condition.
8860 bool NeedSwap = false;
8861 InvCC = getSetCCInverse(CCCode, OpVT);
8862 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8863 // If inverting the condition is not enough, try swapping operands
8864 // on top of it.
8865 InvCC = ISD::getSetCCSwappedOperands(InvCC);
8866 NeedSwap = true;
8867 }
8868 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8869 CC = DAG.getCondCode(InvCC);
8870 NeedInvert = true;
8871 if (NeedSwap)
8872 std::swap(LHS, RHS);
8873 return true;
8874 }
8875
8876 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8877 unsigned Opc = 0;
8878 switch (CCCode) {
8879 default:
8880 llvm_unreachable("Don't know how to expand this condition!")::llvm::llvm_unreachable_internal("Don't know how to expand this condition!"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8880)
;
8881 case ISD::SETUO:
8882 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8883 CC1 = ISD::SETUNE;
8884 CC2 = ISD::SETUNE;
8885 Opc = ISD::OR;
8886 break;
8887 }
8888 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETUE is expanded, SETOEQ or SETUNE must be legal!"
) ? void (0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETUE is expanded, SETOEQ or SETUNE must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8889, __extension__ __PRETTY_FUNCTION__))
8889 "If SETUE is expanded, SETOEQ or SETUNE must be legal!")(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETUE is expanded, SETOEQ or SETUNE must be legal!"
) ? void (0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETUE is expanded, SETOEQ or SETUNE must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8889, __extension__ __PRETTY_FUNCTION__))
;
8890 NeedInvert = true;
8891 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8892 case ISD::SETO:
8893 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETO is expanded, SETOEQ must be legal!") ? void
(0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETO is expanded, SETOEQ must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8894, __extension__ __PRETTY_FUNCTION__))
8894 "If SETO is expanded, SETOEQ must be legal!")(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETO is expanded, SETOEQ must be legal!") ? void
(0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETO is expanded, SETOEQ must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8894, __extension__ __PRETTY_FUNCTION__))
;
8895 CC1 = ISD::SETOEQ;
8896 CC2 = ISD::SETOEQ;
8897 Opc = ISD::AND;
8898 break;
8899 case ISD::SETONE:
8900 case ISD::SETUEQ:
8901 // If the SETUO or SETO CC isn't legal, we might be able to use
8902 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8903 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8904 // the operands.
8905 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8906 if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8907 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8908 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8909 CC1 = ISD::SETOGT;
8910 CC2 = ISD::SETOLT;
8911 Opc = ISD::OR;
8912 NeedInvert = ((unsigned)CCCode & 0x8U);
8913 break;
8914 }
8915 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8916 case ISD::SETOEQ:
8917 case ISD::SETOGT:
8918 case ISD::SETOGE:
8919 case ISD::SETOLT:
8920 case ISD::SETOLE:
8921 case ISD::SETUNE:
8922 case ISD::SETUGT:
8923 case ISD::SETUGE:
8924 case ISD::SETULT:
8925 case ISD::SETULE:
8926 // If we are floating point, assign and break, otherwise fall through.
8927 if (!OpVT.isInteger()) {
8928 // We can use the 4th bit to tell if we are the unordered
8929 // or ordered version of the opcode.
8930 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8931 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8932 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8933 break;
8934 }
8935 // Fallthrough if we are unsigned integer.
8936 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8937 case ISD::SETLE:
8938 case ISD::SETGT:
8939 case ISD::SETGE:
8940 case ISD::SETLT:
8941 case ISD::SETNE:
8942 case ISD::SETEQ:
8943 // If all combinations of inverting the condition and swapping operands
8944 // didn't work then we have no means to expand the condition.
8945 llvm_unreachable("Don't know how to expand this condition!")::llvm::llvm_unreachable_internal("Don't know how to expand this condition!"
, "/build/llvm-toolchain-snapshot-14~++20211014061306+0fbd3aad75f9/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8945)
;
8946 }
8947
8948 SDValue SetCC1, SetCC2;
8949 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8950 // If we aren't the ordered or unorder operation,
8951 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8952 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8953 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8954 } else {
8955 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8956 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8957 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8958 }
8959 if (Chain)
8960 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8961 SetCC2.getValue(1));
8962 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8963 RHS = SDValue();
8964 CC = SDValue();
8965 return true;
8966 }
8967 }
8968 return false;
8969}